


Lecture Notes in Computer Science 5743
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Vladimir P. Gerdt Ernst W. Mayr
Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific
Computing

11th International Workshop, CASC 2009
Kobe, Japan, September 13-17, 2009
Proceedings

13



Volume Editors

Vladimir P. Gerdt
Joint Institute for Nuclear Research
Laboratory of Information Technologies, Dubna, Russia
E-mail: gerdt@jinr.ru

Ernst W. Mayr
Technische Universität München
Institut für Informatik
Garching, Germany
E-mail: mayr@in.tum.de

Evgenii V. Vorozhtsov
Russian Academy of Sciences
Institute of Theoretical and Applied Mechanics
Novosibirsk, Russia
E-mail: vorozh@itam.nsc.ru

Library of Congress Control Number: 2009933206

CR Subject Classification (1998): I.1, F.2.1-2, G.1, I.3.5, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-04102-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04102-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12747016 06/3180 5 4 3 2 1 0



Preface

After a pause taken in 2008 (owed to the political situation in the Caucasus
region where CASC 2008 was supposed to take place), CASC 2009 continued
the series of international workshops on the latest advances and trends both
in the methods of computer algebra and in applications of computer algebra
systems (CASs) to the solution of various problems in scientific computing.

The ten earlier CASC conferences, CASC 1998, CASC 1999, CASC 2000,
CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005, CASC 2006, and
CASC 2007 were held, respectively, in St. Petersburg (Russia), in Munich (Ger-
many), in Samarkand (Uzbekistan), in Konstanz (Germany), in Yalta (Ukraine),
in Passau (Germany), in St. Petersburg (Russia), in Kalamata (Greece), in
Chişinău (Moldova), and in Bonn, Germany, and they all proved to be successful.

Research in the area of computer algebra and its applications is being con-
ducted actively in Japan. For example, during the years 2005–2007, at the
CASC conferences, talks were presented by researchers from the University of
Kobe, Osaka University, Yamaguchi University, Kyushu University, University of
Tsukuba, Waseda University, Cybernet Systems, Japan Science and Technology
Agency, and several other institutions of Japan. In this connection, it was de-
cided to hold the CASC 2009 Workshop in Japan in the hope that it would help
bring together non-Japanese and Japanese researchers working both in the areas
of computer algebra (CA) methods and of various CA applications in natural
sciences and engineering.

The present volume contains revised versions of the papers submitted to the
workshop by the participants and accepted by the Program Committee after a
thorough reviewing process (each paper was reviewed by at least three referees).

A number of papers included in the proceedings deal with computer algebra
methods and algorithms: these are contributions to the computation of Groebner
bases, to quantifier elimination, to number theory, to the theory of matrices, to
polynomial algebra, and to the analytical solution of linear difference equations.

Several papers are devoted to the application of symbolic manipulations for
obtaining new analytic solutions of both ordinary and linear and nonlinear par-
tial differential equations.

There are also papers in which the CA methods and results are applied for
the derivation of new interesting finite-difference schemes for numerical inte-
gration of partial differential equations of mathematical physics, including the
two-dimensional Navier–Stokes equations.

The presented applications of computer algebra techniques and CASs include
tasks in the fields of fluid mechanics, nuclear physics, quantum mechanics, stability
of satellites, dimensionality theory, discrete dynamics, and epidemic modeling.

In the invited lecture of X.-S. Gao et al., an important task of triangular
meshing of implicit algebraic surfaces with singularities was considered. Such



VI Preface

tasks are basic operations in computer graphics, geometric modeling, and finite-
element methods. To solve the above task the authors propose to use an isotopic
meshing, whose feature is that it possesses correct topology. Symbolic compu-
tations are used to guarantee the correctness, and numerical computations are
used whenever possible to enhance the efficiency.

The other invited talk authored by J.-Ch. Faugère dealt with algebraic crypt-
analysis as a general method for solving the problem of evaluating the security of
cryptosystems, which is of fundamental importance in cryptography. Within this
approach, one has to solve a set of multivariate polynomial equations. It is shown
that for a recommended family of parameters, one can solve the corresponding
systems in polynomial time and, thus, break the corresponding cryptosystem.

The CASC 2009 workshop was supported financially by the Japan Society for
the Promotion of Science (JSPS), Cybernet Systems, and Maplesoft. The JSPS
also supported financially the publication of the present proceedings volume. Our
particular thanks are due to the members of the CASC 2009 Local Organizing
Committee in Japan: K. Nagasaka (Kobe University), T. Kitamoto (Yamaguchi
University), and T. Yamaguchi (Cybernet Systems), who ably handled local
arrangements in Kobe. We are grateful to W. Meixner for his technical help in
the preparation of the camera-ready manuscript for this volume.

July 2009 V.P. Gerdt
E.W. Mayr

E.V. Vorozhtsov



Organization

CASC 2009 was organized jointly by the Department of Informatics at the Tech-
nische Universität München, Germany, and the Graduate School of Human De-
velopment and Environment, Kobe University, Japan.

Workshop General Chairs

Vladimir Gerdt (JINR, Dubna) Ernst W. Mayr (TU München)

Program Committee Chair

Evgenii Vorozhtsov (Novosibirsk)

Program Committee

Alkis Akritas (Volos)
Gerd Baumann (Cairo)
Hans-Joachim Bungartz (Munich)
Andreas Dolzmann (Passau)
Victor Edneral (Moscow)
Ioannis Emiris (Athens)
Jaime Gutierrez (Santander)
Robert Kragler (Weingarten)
Richard Liska (Prague)
Marc Moreno Maza (London, Ontario)

Eugenio Roanes-Lozano (Madrid)
Markus Rosenkranz (Linz)
Mohab Safey El Din (Paris)
Yosuke Sato (Tokyo)
Werner Seiler (Kassel)
Doru Stefanescu (Bucharest)
Stanly Steinberg (Albuquerque)
Serguei P. Tsarev (Krasnoyarsk)
Andreas Weber (Bonn)
Song Yan (Cambridge, Mass.)

Local Organization

K. Nagasaka (Kobe Univversity) T. Kitamoto (Ymaguchi University)
T. Ymaguchi (Cybernet Systems

Publicity Chair

Victor G. Ganzha (Munich)

Website

http://wwwmayr.in.tum.de/CASC2009



Table of Contents

On m-Interlacing Solutions of Linear Difference Equations . . . . . . . . . . . . 1
S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

Parametric Analysis of Stability Conditions for a Satellite with
Gyrodines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Andrey V. Banshchikov

Computing and Visualizing Closure Objects Using Relation Algebra
and RelView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Rudolf Berghammer and Bernd Braßel

On Integrability of a Planar ODE System Near a Degenerate Stationary
Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Alexander Bruno and Victor Edneral

Conditions of D-Stability of the Fifth-Order Matrices . . . . . . . . . . . . . . . . 54
Larisa A. Burlakova

Code Generation for Polynomial Multiplication . . . . . . . . . . . . . . . . . . . . . . 66
Ling Ding and Éric Schost

Solving Structured Polynomial Systems and Applications to
Cryptology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Jean-Charles Faugère

The Comparison Method of Physical Quantity Dimensionalities . . . . . . . . 81
Alexander V. Flegontov and M.J. Marusina

Ambient Isotopic Meshing for Implicit Algebraic Surfaces with
Singularities (An Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Jin-San Cheng, Xiao-Shan Gao, and Jia Li

Involution and Difference Schemes for the Navier–Stokes Equations . . . . . 94
Vladimir P. Gerdt and Yuri A. Blinkov

A Mathematica Package for Simulation of Quantum Computation . . . . . . 106
Vladimir P. Gerdt, Robert Kragler, and Alexander N. Prokopenya

On Computing the Hermite Form of a Matrix of Differential
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Mark Giesbrecht and Myung Sub Kim

On the Computation of Comprehensive Boolean Gröbner Bases . . . . . . . . 130
Shutaro Inoue



X Table of Contents

On Invariant Manifolds of Dynamical Systems in Lie Algebras . . . . . . . . . 142
Valentin Irtegov and Tatyana Titorenko

On the Complexity of Reliable Root Approximation . . . . . . . . . . . . . . . . . . 155
Michael Kerber

Algebraic Approach to the Computation of the Defining Polynomial of
the Algebraic Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Takuya Kitamoto

Discrete Dynamics: Gauge Invariance and Quantization . . . . . . . . . . . . . . . 180
Vladimir V. Kornyak

Effective Quantifier Elimination for Presburger Arithmetic with
Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Aless Lasaruk and Thomas Sturm

An Algorithm for Symbolic Solving of Differential Equations and
Estimation of Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Natasha Malaschonok

Lazy and Forgetful Polynomial Arithmetic and Applications . . . . . . . . . . . 226
Michael Monagan and Paul Vrbik

On the Average Growth Rate of Random Compositions of Fibonacci
and Padovan Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Nikita Gogin and Aleksandr Mylläri

A Study on Gröbner Basis with Inexact Input . . . . . . . . . . . . . . . . . . . . . . . 247
Kosaku Nagasaka

Modular Algorithms for Computing a Generating Set of the Syzygy
Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Masayuki Noro

A Symbolic Framework for Operations on Linear Boundary Problems . . . 269
Markus Rosenkranz, Georg Regensburger, Loredana Tec, and
Bruno Buchberger

Mathematical Model for Dengue Epidemics with Differential
Susceptibility and Asymptomatic Patients Using Computer Algebra . . . . 284

Clarita Saldarriaga Vargas

Multiple Factorizations of Bivariate Linear Partial Differential
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Ekaterina Shemyakova

Computing Gröbner Bases within Linear Algebra . . . . . . . . . . . . . . . . . . . . 310
Akira Suzuki



Table of Contents XI

A Mimetic Finite-Difference Scheme for Convection of Multicomponent
Fluid in a Porous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Vyacheslav Tsybulin, Andrew Nemtsev, and Bülent Karasözen

Symbolic-Numerical Algorithms for Solving Parabolic Quantum Well
Problem with Hydrogen-Like Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

S.I. Vinitsky, O. Chuluunbaatar, V.P. Gerdt, A.A. Gusev, and
V.A. Rostovtsev

New Analytic Solutions of the Problem of Gas Flow in a Casing with
Rotating Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Evgenii V. Vorozhtsov

Hybrid Solution of Two-Point Linear Boundary Value Problems . . . . . . . 373
M. Youssef and G. Baumann

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393



On m-Interlacing Solutions of Linear Difference
Equations�

S.A. Abramov1, M.A. Barkatou2, and D.E. Khmelnov3

1 Computing Centre of the Russian Academy of Sciences, Vavilova, 40,
Moscow 119991, GSP-1 Russia

sergeyabramov@mail.ru
2 Institute XLIM, Université de Limoges, CNRS, 123, Av. A. Thomas, 87060

Limoges cedex, France
moulay.barkatou@unilim.fr

3 Computing Centre of the Russian Academy of Sciences, Vavilova, 40,
Moscow 119991, GSP-1, Russia

dennis khmelnov@mail.ru

Abstract. We consider linear homogeneous difference equations with
rational-function coefficients. The search for solutions in the form of the
m-interlacing (1 ≤ m ≤ ord L, where L is a given operator) of finite sums
of hypergeometric sequences, plays an important role in the Hendriks–
Singer algorithm for constructing all Liouvillian solutions of L(y) = 0.
We show that Hendriks–Singer’s procedure for finding solutions in the
form of such m-interlacing can be simplified. We also show that the space
of solutions of L(y) = 0 spanned by the solutions of the form of the m-
interlacing of hypergeometric sequences possesses a cyclic permutation
property. In addition, we describe adjustments of our implementation of
the Hendriks–Singer algorithm to utilize the presented results.

1 Introduction

In [5] the definition of Liouvillian sequence was given, and the fact that the
Galois group of a linear homogeneous difference equation with rational-function
coefficients is solvable iff the equation has a fundamental system of Liouvillian
solutions was proven (the definition of the Galois group of an equation of this
type was given earlier in [10]). Let C be an algebraically closed subfield of the
field C of complex numbers. In [5] two sequences u, v : N → C are supposed to
be equal iff un = vn for all integer n large enough, i.e., factually the germs of
sequences are considered. The ring of the germs of sequences is denoted by S.
As it is done in [5], we will frequently identify a sequence with its equivalent
class in S. We will use the symbol ∀n as “for all integer n large enough”. Denote
k = C(x). This field can be embedded in S: since the germs of sequences are
considered we can map f ∈ k, e.g., to the sequence u such that un = 0 if n is a
pole of f and f(n) otherwise.

� Supported by ECONET grant 21315ZF.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

The map φ : S → S defined by φ(u0, u1, u2, . . .) = (u1, u2, u3, . . .) is an
automorphism of S (with φ(f(x)) = f(x + 1) for f(x) ∈ k). We say that a
sequence u = 〈un〉 satisfies the equation L(y) = 0 with

L = φd + ad−1(x)φd−1 + . . .+ a1(x)φ + a0(x), (1)

a1(x), a2(x), . . . , ad−1(x) ∈ k, a0(x) ∈ k \ {0}, if the sequence

〈un+d + ad−1(n)un+d−1 + . . .+ a1(n)un+1 + a0(n)un〉
is equal to zero sequence, i.e., if

un+d + ad−1(n)un+d−1 + . . .+ a1(n)un+1 + a0(n)un = 0, ∀n.
For short, we will talk about solutions of L instead of solutions of the equation
L(y) = 0.

The definition of Liouvillian sequence (we will discuss this definition in Sec-
tion 5.1) uses the notion of the interlacing of sequences: for sequences b(0) =
〈b(0)n 〉, b(1) = 〈b(1)n 〉, . . . , b(m−1) = 〈b(m−1)

n 〉, m ≥ 1, their interlacing is the se-
quence u = 〈un〉 defined by

un =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b
(0)
n
m
, if n ≡ 0 (mod m),

b
(1)
n−1

m

, if n ≡ 1 (mod m),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

b
(m−1)
n−m+1

m

, if n ≡ m− 1 (mod m).

(2)

For example, the interlacing of two sequences

b(0) : b
(0)
0 , b

(0)
1 , b

(0)
2 , . . . ,

b(1) : b
(1)
0 , b

(1)
1 , b

(1)
2 , . . .

is the sequence u0, u1, u2, . . . of the form

b
(0)
0 , b

(1)
0 , b

(0)
1 , b

(1)
1 , b

(0)
2 , b

(1)
2 , . . .

A non-zero sequence g is hypergeometric if it satisfies a first order operator

φ− h(x), h(x) ∈ k,
the rational function h(x) is the certificate of g. By definition, zero sequence is
also hypergeometric with zero certificate.

The interlacing of m sequences, m ≥ 1, which have the form of finite sums of
hypergeometric sequences will be called an m-interlacing.

The C-linear spaces of all sequences that satisfy L and, resp., of all
m-interlacings, that satisfy L will be denoted by V (L) and, resp., Vm(L), m ≥ 1.
The Hendriks–Singer algorithm (HS) for constructing a basis for the C-linear
space of Liouvillian solutions of L is based on two facts proven in [5]:



On m-Interlacing Solutions of Linear Difference Equations 3

(a) If L has a Liouvillian solution then for some integer m, 1 ≤ m ≤ ordL,
the operator L has a solution in the form of an m-interlacing.

(b) For any integer m, 1 ≤ m ≤ ordL, one can construct algorithmically an
operator H ∈ k[φ] such that V (H) = Vm(H) = Vm(L). (It is possible, of course,
that ordH = dimVm(H) = 0.)

The central part of HS is constructing for a givenm the operatorH mentioned
in (b), and a basis for Vm(H). This procedure (a part of HS) will be denoted by
mHS.

In Section 2, a simplification of the procedure mHS by removing some unnec-
essary actions is described. (The authors of the paper [5] notice that they ignore
effectiveness questions and just try to present their algorithm in an understand-
able form — see Remarks on p. 251 of [5].)

In Section 3, we briefly consider the special cases when C is not algebraically
closed, and the case of an irreducible L (the Cha – van Hoeij algorithm [2]).

In Section 4, we prove some properties of the space Vm(L).
In Section 5, an implementation of a simplified version of mHS and a modified

version of the search for all Liouvillian solutions is described.

2 Search for m-Interlacing Solutions of L for a Fixed m

2.1 The Hendriks–Singer Procedure for Finding m-Interlacing
Solutions

Let L be of the form (1), an integer m such that 1 ≤ m ≤ d be fixed, and
τ : k → k be the automorphism defined by x 
→ mx. The procedure described
in [5] by Hendriks and Singer for finding all solutions of L which have the form
of m-interlacings is as follows.

mHS1: Constructing a polynomial P ∈ k[Z] of smallest degree such that the
operator P (φm) is right divisible by L in k[φ].

mHS2: Constructing polynomials P0, P1, . . . , Pm−1 ∈ k[Z] such that if L has
a solution in the form of an m-interlacing of some sequences l(0) = 〈l(0)n 〉, l(1) =
〈l(1)n 〉, . . . , l(m−1) = 〈l(m−1)

n 〉, then Pi(φ)(l(i)) = 0:

Pi = τφiP, i = 0, 1, . . . ,m− 1.

mHS3: Constructing finite sets Gi ⊂ k∗, i = 0, 1, . . . ,m−1, such that V1(Pi(φ)) ⊂
V (LCLM

h∈Gi

(φ− h)) (one can use algorithms from [8], [6], and [3] for this).

mHS4: Constructing an operator Lm such that Vm(L) ⊂ Vm(Lm) = V (Lm):

Lm = LCLM
h∈H

(φm − h), (3)

where
H =

⋃
0≤i≤m−1

{φ−iτ−1(h) |h ∈ Gi}. (4)



4 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

mHS5: Constructing the operatorH = GCRD(L,Lm) and a basis for V (H) such
that each element of this basis is the m-interlacing of hypergeometric sequences.

2.2 A Simplification of the Hendriks–Singer Procedure

The procedure mHS can be simplified by removing some unnecessary actions.

Theorem 1. Let G0,G1, . . . ,Gm−1 be as in mHS3, and G = τ−1G0. In this case

(i) Gi = τφiτ−1G0 = τφiG, i = 0, 1, . . . ,m− 1;
(ii) one can use G instead of H in the right-hand side of (3).

Proof. (i) For P as in mHS1, and P0, P1, . . . , Pm−1 as in mHS2 we have

Pi = τφiP = τφiτ−1(τP ) = τφiτ−1P0.

The proof follows from the definition of G. (Notice that τφiτ−1 is defined by
x 
→ x+ i

m , and τφi is defined by x 
→ mx+ i.)
(ii) We have Gi = τφiG. Therefore, if h ∈ Gi, then φ−iτ−1(h) ∈ G. �

As a consequence of this theorem we obtain a simplified version of mHS which
we denote by mHS′:

mHS′
1: The same as mHS1.

mHS′
2: Constructing the polynomial P0 = τP .

mHS′
3: Constructing G = τ−1G0, where the finite set G0 ⊂ k∗ is such that

V1(P0(φ)) ⊂ V (LCLM
h∈G0

(φ − h)).

mHS′
4: Set Lm = LCLM

h∈G
(φm − h).

mHS′
5: The same as mHS5.

The cost of mHS′
1, mHS′

5 is the same as the cost of mHS1, mHS5. The cost of
mHS′

2, mHS′
3, mHS′

4 is m times less than the cost of mHS2, mHS3, mHS4.

Example 1. Let

L = φ5 − 2
x+ 5

φ4 +
x− 1
x+ 5

φ− 2
x+ 5

, (5)

m = 2. Then

P (Z) = (x+10)(x+7)Z5−(4x+30)Z4+4Z3−(x+4)(x+1)Z2+(4x+6)Z−4,
P0(φ) = (2x+10)(2x+7)φ5 − (8x+30)φ4 +4φ3 − (2x+4)(2x+1)φ2 +(8x+
6)φ− 4,
G0 =

{
1

x+1 ,
2

2x−1

}
,

G =
{

2
x+2 ,

2
x−1

}
,



On m-Interlacing Solutions of Linear Difference Equations 5

L2 = φ4 − (4x+6)
(x+4)(x+1)φ

2 + (4x+16)
(x+1) ,

H = φ2 + (12x+12)
(x+2)(x3−x−8)φ− (2x3+6x2+4x−16)

(x+2)(x3−x−8) .

A basis for V (H) = V2(L) consists of two following sequences

the 2-interlacing of the sequences
〈

1
Γ (n−1/2)

〉
and

〈
1

Γ (n+3/2)

〉
,

the 2-interlacing of the sequences
〈

1
Γ (n+1)

〉
and

〈
1

Γ (n)

〉
.

Notice that once the set G is constructed the operators Lm and H are not needed
for constructing a basis for Vm(L). This would simplify mHS′. But the operator
H is used by the Hendriks–Singer algorithm for a recursion to construct all
Liouvillian solutions of L (Section 5.3).

3 Some Special Cases

3.1 When C Is Not Algebraically Closed

Suppose that C is not algebraically closed. Then L may have hypergeometric
solutions whose certificates belong to C̄(x) but not to k = C(x). However, the
following statement holds (has been proven in [7]):

Let L ∈ k[φ] and each of the sets Gi, i = 0, 1, . . . ,m, constructed at the step
mHS3 contains all belonging to C̄(x) certificates of hypergeometric solutions of
Pi(φ). Then the operator H computed at the step mHS5 belongs to k[φ].

As a consequence we have that if L ∈ k[φ], and and the step mHS4 we use
some algorithm A for finding all certificates belonging to C̄(x), then we obtain
H ∈ k[φ]. The operator L is right-divisible by H , and we have L = L̃H , L̃ ∈
k[φ]. Even if the algorithm A is applicable only to operators from k[φ] then
we always can apply this algorithm to L̃. The same is correct if we use mHS′

instead of mHS for constructing H since we construct the same H in both cases.
This fact might be quite important for finding all Liouvillian solutions of L, if
the corresponding implementation of an algorithm for finding hypergeometric
solution is not applicable to operators with the coefficients from C̄(x).

3.2 When L Is Irreducible

An algorithm which does not compute hypergeometric solutions of P0(φ) was
proposed in [2] for the case of an irreducible operator L. The idea of this algo-
rithm is based on the notion of gauge equivalence of operators. Two operators
L, L̃ ∈ k[φ] are gauge equivalent if ordL = ord L̃ and there exists an operator T ,
ordT < ordL, such that V (L) = T (V (L̃)). If T exists then there also exists an
“inverse” T ′ such that V (L̃) = T̃ (V (L)). An irreducible L is gauge equivalent to
an operator of the form (6) iff L has Liouvillian solutions. When L is irreducible,
getting (6) is equivalent to computing Liouvillian solutions ([5]). It was shown
in [2] that this approach is very productive for irreducible L of order 2 or 3.
However the gauge equivalence is not sufficient to get (6) for L in the general



6 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

case. The full factorization has a high complexity. In addition L may have a
Liouvillian solution although L = KM with an irreducible operator M which
has no Liouvillian solution. It means one factorization L = KM may not be
sufficient for finding Liouvillian solution using factorization and paper [5]; it can
happen that other factorizations L = K ′M ′ are needed to be searched for. So
algorithms that are directly applicable in the general case are of definite value.

4 Some Properties of the Space Vm(L)

4.1 The Dimension of the Space Vm(L)

Lemma 1. Any operator A of the form

φd − a(x), a(x) ∈ k, (6)

can be written as
A = LCLM(Q1, Q2, . . . , Ql) (7)

for some irreducible operators Q1, Q2, . . . , Ql of the same order ρ, lρ = d.

Proof. LetQ be any irreducible right factor ofA: i.e. A = BQ with an irreducible
Q. Let Rk be the operator φ − e 2πki

d , and the sequences z(k) = 〈z(k)
n 〉 be such

that z(k)
n = e

2πki
d n, k = 1, 2, . . . , d (recall that k = C(x) and the ground field C

is an algebraically closed subfield of C). Set Qk to be equal to the symmetric
product of Q and Rk. The operator Qk is monic irreducible and of same order
as Q, k = 1, 2, . . . , d. Then A = LCLM(Q1, Q2, . . . , Qd) holds since for any y ∈
V (A)\{0} the sequences z(k)y , k = 1, 2, . . . , d, are linearly independent elements
of V (A). Notice that some of operators Q1, Q2, . . . , Qd can be equal. We get (7)
with pairwise different irreducible Q1, Q2, . . . , Ql after removing duplicates1. �

Lemma 2. Let L be of the form (1), Vj(L) = 0 for j = 0, 1, . . . ,m − 1 and
Vm(L) �= 0. Let H be an operator such that V (H) = Vm(L). Then H can be
written as

H = LCLM(S1, S2, . . . , St) (8)

for some irreducible S1, S2, . . . , St of order m.

Proof. Follows from the construction of the operator H (see mHS4, mHS5),
Lemma 1 and the fact that if H has a right factor of order k < m then Vj(L) �= 0
for some j such that 1 ≤ j ≤ k < m. �

Theorem 2. Let L be of the form (1), Vj(L) = 0 for j = 0, 1, . . . ,m − 1 and
Vm(L) �= 0. Then m divides dimVm(L).

Proof. Follows from Lemma 2. �

1 This proof is by M. van Hoeij (a private communication).



On m-Interlacing Solutions of Linear Difference Equations 7

Example 2. The operator

L = φ5 − φ4 − (x+ 1)(x+ 3)φ+ x(x+ 2) (9)

has no hypergeometric (i.e. 1-interlacing) solutions, so V1(L) = 0. But it has
2-interlacing solutions, a basis for V2(L) consists of four following sequences

the 2-interlacing of the sequences 〈0〉 and
〈
(−2)n+1/2Γ (n+ 1/2)

〉
,

the 2-interlacing of the sequences 〈0〉 and
〈
2n+1/2Γ (n+ 1/2)

〉
,

the 2-interlacing of the sequences 〈(−2)nΓ (n)〉 and 〈0〉,
the 2-interlacing of the sequences 〈2nΓ (n)〉 and 〈0〉.

As by Theorem 2, m = 2 divides dim V2(L) = 4.

4.2 Structure of m-Interlacing Solutions

Let sequences 〈fn〉, 〈f (0)
n 〉, 〈f (1)

n 〉, . . . , 〈f (m−1)
n 〉 be such that

fn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f

(0)
n , if n ≡ 0 (mod m),
f

(1)
n , if n ≡ 1 (mod m),
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(m−1)
n , if n ≡ m− 1 (mod m),

(10)

∀n. Then we will use the notation

f =
〈
f (0)

n , f (1)
n , . . . , f (m−1)

n

〉
,

e.g., we will write 〈
b
(0)
n
m
, b

(1)
n−1

m

, . . . , b
(m−1)
n−m+1

m

〉
for the sequence defined by (2) for all integer n large enough.

If h(x) ∈ k is the certificate of a hypergeometric sequence 〈gn〉 then the source
of the sequence 〈gn〉 is a meromorphic function G(x) such that

– G(x) is defined for all x with large enough Rex, and G(x+1)−h(x)G(x) = 0,
– gn = G(n), ∀n.

Remark. A priory the function G(x) is not defined uniquely but up to a factor
in the form of a 1-periodic holomorphic function. We suppose that one of such
functions which does not vanish for x ∈ 1

mZ is fixed, and, therefore, we get the
source uniquely defined by the certificate h(x).

Let
〈g(1)n 〉, 〈g(2)n 〉, . . . , 〈g(s)n 〉 (11)

be hypergeometric sequences whose certificates are in G (see mSH′
3), and

G1(x), G2(x), . . . , Gs(x) (12)



8 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

be the sources of the hypergeometric sequences (11). By Theorem 1(i) any ele-
ment of Vm(L) can be represented in the form〈

s∑
j=1

c0,j Uj(n),
s∑

j=1

c1,j Uj(n), . . . ,
s∑

j=1

cm−1,j Uj(n)

〉
, (13)

with
Uj(x) = Gj

( x
m

)
, j = 1, 2, . . . , s, (14)

and with some concrete complex constants

ci,j , i = 0, 1, . . . ,m− 1, j = 1, 2, . . . , s. (15)

Note that in representation (13), all components of any element of Vm(L) have
identical structure, and each of the steps mHS5 and mHS′

5 constructs a basis for
the space of suitable constants (15).

Example 3. The sequences belonging to the basis constructed in Example 1 can
be presented as〈

c1

Γ (n
2 − 1

2 )
+

c2
Γ (n

2 + 1)
,

c2

Γ (n
2 − 1

2 )
+

c1
Γ (n

2 + 1)

〉
,

with (1, 0), (0, 1) as (c1, c2), and the sequences belonging to the basis constructed
in Example 2 can be presented as〈
c1 (−2)n/2 Γ (n/2) + c2 2n/2 Γ (n/2), c3 (−2)n/2 Γ (n/2) + c4 2n/2 Γ (n/2)

〉
with (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) as (c1, c2, c3, c4).

We suppose that one unique value α of 21/2 and, resp., one unique value β of
(−2)1/2 are selected. Then 2n/2 = αn, (−2)n/2 = βn. This is in agreement with
the remark to definition of the source of a hypergeometric sequence.

The following proposition enables one to apply an operator of k[φ] to an m-
interlacing of sequences.

Proposition 1. If 〈f (0)
n 〉, 〈f (1)

n 〉, . . . , 〈f (m−1)
n 〉 are arbitrary sequences, then

φ
(〈
f (0)

n , f (1)
n , . . . , f (m−1)

n

〉)
=
〈
f

(1)
n+1, f

(2)
n+1, . . . , f

(m−1)
n+1 , f

(0)
n+1

〉
.

Proof. A direct check. �

4.3 Cyclic Permuted Solutions

Some of functions (12) can be similar, i.e., such that Gi(x)/Gj(x) ∈ k for
some indexes i �= j (the corresponding hypergeometric sequences are also called
similar).



On m-Interlacing Solutions of Linear Difference Equations 9

Lemma 3. Let h = 〈hn〉 be a hypergeometric sequence with the source G(x). Let
f=〈fn〉 be the m-interlacing of sequences 〈S0(n)hn〉, 〈S1(n)hn〉, . . . , 〈Sm−1(n)hn〉
with S0(x), S1(x), . . . , Sm−1(x) ∈ k. Then for some R0(x), R1(x), . . . , Rm(x) ∈ k
and U(x) = G

(
x
m

)
f = 〈R0(n)U(n), R1(n)U(n− 1), . . . , Rm−1(n)U(n−m+ 1) 〉 , (16)

and

φ(f) = 〈R1(n+ 1)U(n), R2(n+ 1)U(n− 1), . . .
. . . , Rm(n+ 1)U(n−m+ 1) 〉 . (17)

Proof. Indeed, by definition of f

f =
〈
S0

( n
m

)
G
( n
m

)
, S1

(
n− 1
m

)
G

(
n− 1
m

)
, . . .

. . . , Sm−1

(
n−m+ 1

m

)
G

(
n−m+ 1

m

)〉
.

This proves (16). By Proposition 1 applying φ to a sequence of the form (16)
gives

〈R1(n+ 1)U(n), R2(n+ 1)U(n− 1), . . .
. . . , Rm−1(n+ 1)U(n−m+ 2), R0(n+ 1)U(n+ 1) 〉 .

But U(n+1) = U((n−m+1)+m) = S(n)U(n−m+1) with a rational function
S(x). Setting Rm+1(x) = S(x− 1)R0(x) we get (17). �

Lemma 4. Any element of Vm(L) can be represented as a sum of solutions
such that each of these solutions has the form of an m-interlacing of similar
hypergeometric sequences.

Proof. We can present any element of Vm(L) as a sum of the m-interlacings of
similar hypergeometric sequences such that the components of different sum-
mands are not similar. Application of L to the m-interlacing of similar hy-
pergeometric sequences gives again the m-interlacing of similar hypergeometric
sequences whose components are similar to components of the original
m-interlacing. The claimed follows. �

Theorem 3. Let L have a solution (13). Then L has the cyclic permuted
solution〈

s∑
j=1

c1,j Uj(n),
s∑

j=1

c2,j Uj(n), . . . ,
s∑

j=1

cm−1,j Uj(n),
s∑

j=1

c0,j Uj(n)

〉
. (18)



10 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

Proof. By Lemmas 3, 4 it is sufficient to consider the case (16) of the m-
interlacing of similar hypergeometric sequences. We have to prove that if (16) is
a solution of L then

〈R1(n)U(n− 1), R2(n)U(n− 2), . . .
. . . , Rm−1(n)U(n−m+ 1), R0(n)U(n)〉 (19)

is also a solution of L. By the second part of Lemma 3 the result of applying L
to (19) has the form

〈S0(n)U(n− 1), S1(n)U(n− 2), . . . , Sm−1(n)U(n−m) 〉 , (20)

S0(x), S1(x), . . . , Sm−1(x) ∈ k.
We introduce the operation ′:〈

f (0)
n , f (1)

n , . . . , f (m−1)
n

〉′
=
〈
f

(0)
n+1, f

(1)
n+1, . . . , f

(m−1)
n+1

〉
(in the case m = 1 this operation coincides with φ). For the operator (1) we set
L′ = φd + ad−1(x+ 1)φd−1 + . . .+ a1(x+ 1)φ+ a0(x+ 1). It is easy to see that
L′(f ′) = (L(f))′ for any m-interlacing.

Using Proposition 1 we have

L (〈R0(n)U(n), R1(n)U(n− 1), . . . , Rm−1(n)U(n−m+ 1) 〉) =
= Lφ−1 (〈R1(n+ 1)U(n), R2(n+ 1)U(n− 1), . . .
. . . , Rm−1(n+ 1)U(n−m), R0(n+ 1)U(n+ 1) 〉) =

= φ−1L′ (〈R1(n+ 1)U(n), R2(n+ 1)U(n− 1), . . .
. . . , Rm−1(n+ 1)U(n−m), R0(n+ 1)U(n+ 1) 〉) =

= φ−1L′ (〈R1(n)U(n− 1), R2(n)U(n− 2), . . .
. . . , Rm−1(n)U(n−m− 1), R0(n)U(n) 〉′) =

= φ−1((L (〈R1(n)U(n− 1), R2(n)U(n− 2), . . .
. . . , Rm−1(n)U(n−m− 1), R0(n)U(n) 〉))′) =

= φ−1 (〈S0(n+ 1)U(n), S1(n+ 1)U(n− 1), . . .
. . . , Sm−1(n+ 1)U(n−m+ 1) 〉) =

= (〈Sm−1(n)U(n−m), S0(n)U(n− 1), . . . , Sm−2(n)U(n−m+ 1) 〉) .
Since (16) is a solution of L we have

Si(n) = 0 when n ≡ i+ 1 (mod m), i = 0, 1, . . .m− 1.

But this implies that Si(x), i = 0, 1, . . . ,m − 1, are equal to zero identically.
Therefore, (19) is a solution of L. �

Example 4. The sequences belonging to the basis constructed in Example 1 can
be presented as〈

1
Γ (n

2 − 1
2 )
,

1
Γ (n

2 + 1)

〉
,

〈
1

Γ (n
2 + 1)

,
1

Γ (n
2 − 1

2 )

〉
.



On m-Interlacing Solutions of Linear Difference Equations 11

5 Implementation

The improvements proposed in Section 2 are implemented as a modification of
the MAPLE implementation [7] of the original Hendriks–Singer algorithm for
finding Liouvillian solutions. The implementation is done as
LiouvillianSolution function that extends the MAPLE package LREtools
containing various functions for solving linear recurrence equations. To the best
of the authors’ knowledge it is the only one existing full implementations (at
least, in MAPLE) of this algorithm.

The paper [1] presents a modification of the Hendriks–Singer algorithm HS
and describes its implementation. However, the implementation described in that
paper is not full since it solves the second-order equations only.

5.1 Liouvillian Solutions

By [5] the ring L of Liouvillian sequences is the smallest subring of S such that
k ⊂ L,
u ∈ L iff φ(u) ∈ L,
u ∈ k implies that v ∈ L if φ(v) = uv,
u ∈ L implies that v ∈ L if φ(v) = u+ v,
u(0), u(1), . . . , u(m−1) ∈ L implies that the interlacing of these sequences be-

longs to L.
Note that the definition of Liouvillian sequences may be given in a different

way, but the defined object is still the same. For example, by [9] (also used in
[7]) the ring L of Liouvillian sequences is the smallest subring of S that contains
the set of all hypergeometric elements from S and closed with respect to φ, φ−1,
Σ (the summation), and the interlacing.

The space of all Liouvillian solutions of L will be denoted by VL(L). We also
will use notations V (L), Vm(L) introduced before.

5.2 Finding the Operator H and a Basis for the Space Vm(H) for a
Fixed m

The implementation [7] was adjusted to utilize the procedure mHS′ described
in Section 2.2. In the initial implementation [7], the procedure mHS was an
internal integral part of the function LiouvillianSolution to find all Liouvil-
lian solutions. The output option output=interlacing[m] is added to
LiouvillianSolution to provide users with a possibility to search for the space
Vm(L) for a givenm. Note that m can be omitted in the option, and in this case,
the function will find itself the smallestm for which Vm(L) �= 0 (if such integerm
exist). This is exactly what is needed as a first step for finding all Liouvillian so-
lutions by HS, i.e., to construct the space VL(L). Our implementation represents
m-interlacing solutions in the form (13) using MAPLE’s structure piecewise in
the sense of the expression (10).

Example 5. Consider equation (5) from Example 1:
> rec := (n+5)*y(n+5)-2*y(n+3)+(n-1)*y(n+2)-2*y(n):



12 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

There is no 1-interacing solution:
> sol1 := LiouvillianSolution(rec,y(n),{},
output=interlacing[1]);

sol1 := FAIL

There are 2-interacing solutions as was presented in Example 1, and 2 is the
smallest m for which there are m-interlacing solutions:

> sol2 := LiouvillianSolution(rec,y(n),{},output=interlacing);

sol2 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C 1

Γ (
n

2
+ 1)

+
C 2

Γ (
n

2
− 1

2
)

irem(n, 2) = 1

C 2

Γ (
n

2
+ 1)

+
C 1

Γ (
n

2
− 1

2
)

otherwise

Now try to find 4-interlacing solutions:
> sol4 := LiouvillianSolution(rec,y(n),{},
output=interlacing[4]);

sol4 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
4
)(

n
4 ) C 1

Γ (
n

4
+

1
4
)Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )

√
2 C 2

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

irem(n, 4) = 1

(
1
4
)(

n
4 ) C 2

Γ (
n

4
+

1
4
)Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )

√
2 C 1

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

irem(n, 4) = 2

(
1
4
)(

n
4 ) C 1

Γ (
n

4
+

1
4
)Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )

√
2 C 2

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

irem(n, 4) = 3

(
1
4
)(

n
4 ) C 2

Γ (
n

4
+

1
4
)Γ (

n

4
− 1

4
)

+
1
4

(
1
4
)(

n
4 )

√
2 C 1

Γ (
n

4
+

1
2
)Γ (

n

4
+ 1)

otherwise

They exist. But in this case, they actually correspond to the 2-interlacing
solutions up to arbitrary constants transformation, which can be checked
directly.

There is also an implementation consideration which does not relate to the al-
gorithm efficiency but to the efficiency of the implementation in MAPLE. As
follows from Theorem 1(ii) the elements of the union in the right-hand side of
(4) are equal for all i. But if LCLM function is applied to H directly without
removing duplicated elements it works very ineffective. Since it is just a pecu-
liarity of the MAPLE implementation rather than algorithm’s feature, in order
to check only the gain from the algorithm simplification itself, the trick of re-
moving duplicates in H before application of LCLM was added into our mHS
implementation.



On m-Interlacing Solutions of Linear Difference Equations 13

Example 6. Consider the following equation:
> rec := m^2*y(n+4+m)-((n+4)^2-m^2)*y(n+4)+(n-10)*m^2*y(n+1+m)
> -(n-10)*((n+1)^2-m^2)*y(n+1)-m^2*y(n+m)+(n^2-m^2)*y(n);

rec := m2 y(n+ 4 +m) − ((n+ 4)2 −m2) y(n+ 4) + (n− 10)m2 y(n+ 1 +m)
− (n− 10) ((n+ 1)2 −m2) y(n+ 1) −m2 y(n+m) + (n2 −m2) y(n)

The equation has m-interlacing solutions with the components which differ by
constant factors. For example, let m = 3.

> m := 3: LiouvillianSolution(rec, y(n), {},
> output=interlacing[m]);⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ (
n

3
+ 1)Γ (−1 +

n

3
) C 1 irem(n, 3) = 1

Γ (
n

3
+ 1)Γ (−1 +

n

3
) C 2 irem(n, 3) = 2

Γ (
n

3
+ 1)Γ (−1 +

n

3
) C 3 otherwise

To check the performance changes we use m = 10.
> m := 10:

Let us find 10-interlacing solutions (not printed, but it has the same structure
as above for the case m = 3) and check the time needed to compute the result.

> st:=time():
> LiouvillianSolution(rec, y(n), {}, output=interlacing[m]):
> time()-st;

m=10:

---Finding P took 0.6 seconds

---Constructing L_10 took 3.3 seconds

---Computing H took 0.0 seconds

---Constructing basis took 0.1 seconds

4.063
> st:=time():
> LiouvillianSolution_old(rec,y(n),{},output=interlacing[m]):
> time()-st;

m=10:

---Finding P took 0.6 seconds

---Constructing L_10 took 34.9 seconds

---Computing H took 0.0 seconds

---Constructing basis took 0.1 seconds

35.562



14 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

The old version (mHS) took more time than the simplified one (mHS’) to check
existence of 10-interlacing solution. But if we missed LCLM trick the old version
is even worse. Note that unchanged parts in both versions took the same time.

> st:=time():
> LiouvillianSolution_old_no_trick(rec, y(n), {},
> output=interlacing[m]):
> time()-st;

m=10:

---Finding P took 0.6 seconds

---Constructing L_10 took 74.5 seconds

---Computing H took 0.0 seconds

---Constructing basis took 0.1 seconds

75.125

5.3 Finding All Liouvillian Solutions

Liouvillian solutions of general form are constructed recursively by HS. The
recursive application of mHS or mHS′ leads to a factorization L = RHt . . .H2H1

where the operator R is such that Vm(R) = 0 for all integer m ≥ 1, and where
each of the operators Hi satisfies V (Hi) = Vmi(Hi) �= 0 for an integer mi ≥ 1.
For any i = 1, 2, . . . , t a basis Bi for Vmi(Hi) has to be constructed. Once a basis
Bi for V (Hi) = Vmi(Hi) is constructed, i = 1, 2, . . . , t, algorithm HS constructs
a basis B of V (Ht . . .H2H1) = VL(Ht . . . H2H1) = VL(L), using the difference
version of the method of variation of parameters ([4]). To do this HS solves
t− 1 linear algebraic systems whose determinants are shifted Casoratians which
correspond to the bases B1, B2, . . . , Bt−1 for solutions spaces of the operators
H1, H2, . . . , Ht−1.

Recall that the bases B1, B2, . . . , Bt and the basis B consist of the elements
of the ring S of the germs of sequences. The problem of defining integer n0 such
that any of the germs from B is a sequence (in the usual meaning) that satisfies L
for all n ≥ n0 looks like quite actual. We will describe below two rules following
which a suitable n0 can be computed. Our implementation provides users with
such n0 in addition to B.

We will suppose that all operators under consideration are of the form

φs + rs−1(x)φs−1 + . . .+ r0(x), (21)

where r0(x), r1(x), . . . , rs−1(x) ∈ k. For an integer l we set Nl = {n ∈ N, n ≥ l}.
The mentioned rules are as follows.



On m-Interlacing Solutions of Linear Difference Equations 15

1) If a rational function h(x) is defined and does not vanish on Nl then a
hypergeometric sequence with certificate h(x) is defined and does not vanish
on Nl. Note that the Casoratian of a basis for the solutions space of (21) also
represents a hypergeometric sequence with h(x) = (−1)sr0(x) ([4]).

2) If operators L, L̃,H are such that L = L̃H and we use the procedure
described in [5, Lemma 5.4.1] for constructing a basis for V (H) in the form of a
finite set of linear combinations of some computed sequences, then elements of
the basis sequences are defined on Nl if initial computed sequences are defined
on Nl and all coefficients of L, L̃,H are defined on Nl as well.

Our implementation computes the Casoratian as a hypergeometric sequence
using its certificate. The computed result may differ from the Casoratian by
a constant factor. It still leads to computing correct basis elements since the
elements are also defined up to an arbitrary constant non-zero factor.

Example 7. Consider again equation (5) from Example 1:
> rec := (n+5)*y(n+5)-2*y(n+3)+(n-1)*y(n+2)-2*y(n):

Find all Liouvillian solutions. We use the implicit output form, since the
explicit forms are too huge. The computation time is also printed:

> st:=time():
> LiouvillianSolution(rec, y(n), {},
> output=implicit,usepiecewise=true);
> time()-st;⎡⎢⎢⎢⎣ C 1

((
n−1∑
i1=2

(
−B12(i1 + 1)B21(i1 )

D1(i1 )

))
B11(n)+

(
n−1∑
i1=2

B11(i1 + 1)B21(i1 )
D1(i1 )

)
B12(n)

)
+

C 2

((
n−1∑
i1=2

(
−B12(i1 + 1)B22(i1 )

D1(i1 )

))
B11(n)+(

n−1∑
i1=2

B11(i1 + 1)B22(i1 )
D1(i1 )

)
B12(n)

)
+

C 3

((
n−1∑
i1=2

(
−B12(i1 + 1)B23(i1 )

D1(i1 )

))
B11(n)+(

n−1∑
i1=2

B11(i1 + 1)B23(i1 )
D1(i1 )

)
B12(n)

)
+ C 4 B11(n) + C 5B12(n),



16 S.A. Abramov, M.A. Barkatou, and D.E. Khmelnov

⎡⎢⎢⎢⎣B21(n) =
(−1)n (6 + 3n+ n2)
(n+ 2) (n3 − n− 8)

,

B22(n) =
(
1
2
− 1

2
I
√

3)n (−3 −√
3 I + n

√
3 I + n2)

(n+ 2) (n3 − n− 8)
,

B23(n) = −
(
1
2

+
1
2
I
√

3)n (3 −√
3 I + n

√
3 I − n2)

(n+ 2) (n3 − n− 8)
,

B11(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ (
n

2
+ 1)

irem(n, 2) = 1

1

Γ (
n

2
− 1

2
)

otherwise
,

B12(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ (
n

2
− 1

2
)

irem(n, 2) = 1

1

Γ (
n

2
+ 1)

otherwise
,

D1(n) =
(−2)(n+1) ((n+ 1)3 − n− 9)

Γ (n+ 3)

⎤⎥⎥⎥⎦ , 2 ≤ n

⎤⎥⎥⎥⎦
4.125

The solutions basis is formed from a 2-interlacing basis of 2 elements and a
1-interlacing basis of 3 elements. The corresponding shifted Casoratian D1(n)
is also presented. The expression is applicable for n ≥ 2.

Acknowledgement. The authors wish to express their thanks to M. van Hoeij
for useful discussions.

References

1. Bomboy, R.: Liouvillian Solutions of Ordinary Linear Difference Equations. In: Proc.
5th Internat. Workshop on Comp. Algebra in Scientific Computing, pp. 17–28 (2002)

2. Cha, Y., van Hoeij, M.: Liouvillian Solutions of Irreducible Linear Difference Equa-
tions. In: Proc. ISSAC 2009 (2009)

3. Cluzeau, T., van Hoeij, M.: Hypergeometric Solutions of Linear Difference Equa-
tions. AAECC 17(2), 83–115 (2006)

4. Elaydi, S.N.: An Introduction to Difference Equations. Springer, New York (1999)



On m-Interlacing Solutions of Linear Difference Equations 17

5. Hendriks, P.A., Singer, M.F.: Solving Difference Equations in Finite Terms. J.
Symb. Comput. 27, 239–259 (1999)

6. van Hoeij, M.: Finite singularities and hypergeometric solutions of linear recurrence
equations. J. Pure Appl. Algebra 139, 109–131 (1999)

7. Khmelnov, D.E.: Search for Liouvillian solutions of linear recurrence equations
in the MAPLE computer algebra system. Programming and Computing Soft-
ware 34(4), 204–209 (2008)

8. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial
coefficients. J. Symb. Comput. 14, 243–264 (1992)

9. Petkovšek, M.: Symbolic computation with sequences. Programming and Computer
Software 32(2), 65–70 (2006)

10. van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. LNM,
vol. 1666. Springer, Heidelberg (1997)



Parametric Analysis of Stability Conditions for a
Satellite with Gyrodines�

Andrey V. Banshchikov

Institute for System Dynamics and Control Theory,
Siberian Branch of Russian Academy of Sciences,

P.O. Box 292, 134, Lermontov str., Irkutsk, 664033, Russia

Abstract. With the aid of software LinModel elaborated on the ba-
sis of the computer algebra system “Mathematica” we have conducted
an analysis of dynamics for a mechanical system, which represents an
unguided satellite with 3 gyrodines on a circular orbit. Modeling of sys-
tems (i.e., constructing nonlinear and linearized differential equations of
motion in the Lagrange 2nd kind form), as well as investigation of the
issues of stability and gyroscopic stabilization for eight steady motions
obtained, have been conducted on a PC with the aid of symbolic or
symbolic-numeric computations. The domains of stability and stabiliza-
tion constructed are represented in either an analytical form or graphic
form.

1 Introduction

Productivity of computer algebra systems and efficiency of their application have
been growing substantially side by side with the increase in the time optimal-
ity of contemporary computers and the capacity of their RAM. This gives the
possibility to efficiently process larger volumes of symbolic information. When
it becomes problematic to conduct investigation exclusively in symbolic form, it
is possible to proceed to attributing definite values to some (or all) parameters
of the scrutinized problem, and hence to remove the problem of rounding errors.
This allows the researcher to penetrate deeper into the qualitative nature of the
processes and to proceed to the quantitative (numerical) assessment on the later
stage of the investigation.

The objective of the work is analysis of dynamics and stability of motion
for a well-known orbital system [1] with the use of the software LinModel [2]
elaborated on the basis of the computer algebra system (CAS) “Mathematica”
(license L3228-8720).

Until now, in some works, which are not numerous and related to dynamics
of satellites with 2- or 3-degrees of freedom gyroscopes, only some of possible
steady motions have been investigated. The problem of defining the total set of
steady motions has been stated for a satellite carrying only one gyroscope. In
several cases, such a problem has been stated for similar systems under some
� The work has been supported by RF President’s grant (Project SS–1676.2008.1).

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 18–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Parametric Analysis of Stability Conditions for a Satellite with Gyrodines 19

substantial restrictions, e.g. the absence of moments of gravitation forces. In
the set of the publications, one can find the works (see e.g. [3]), in which the
gyrodamping is realized with the use of various laws of control of the gyrodines.
Such gravitation orientation of satellite is considered to be active. Meanwhile,
in the present paper, we consider passive (unguided) orientation with the use
of three gyroscopes. Any works, which consider the issue of possible gyroscopic
stabilization of unperturbed motions of a satellite with gyrodines, are not known
to the author. The author has to emphasize that problems related to stabilization
of definite mechanical systems under the effect of diverse nature forces are of
great interest at present.

2 Description of the System of Bodies under Investigation

Let, according to the approximate statement, point O1 (the system’s mass cen-
ter) move along a circular orbit of radius R with some velocity, which is constant
in its value. Introduce an orbital coordinate system Σ1 at point O1 such that
axis O1x1 is directed along the radius of the orbit, while axis O1y1 is directed
along the tangent to the orbital plane in the direction of the vector of linear
velocity; axis O1z1 is directed along the normal to the orbital plane. The ori-
entation of the orbital coordinate system is described in the inertial coordinate
system Σ0 with the center in the attracting point Ō. Let us attribute the number
of body 1 to the orbital coordinate system. The position of the satellite B2 is
determined with respect to the orbital coordinate system. There are 3 gyrodines

z
0

0

Σ

ω
0

R

z
1

1

Σ
1

Σ

5

8

6

O
1

B

3

O

x
1

y
1

x
0

y
0

B

B

B

7

B

4

B
B

2

Fig. 1. The structure of interconnection between the bodies



20 A.V. Banshchikov

installed on the satellite for the purpose of provision of proper orientation. The
gyrodine is a 2-degree-of-freedom system composed of a rotor and a frame.
The rotor is fixed inside the frame and rotates with a constant angular rate.
The frame and the rotor of each of gyrodines are denoted in Fig. 1, resp., as
bodies B3 , B4 ; B5 , B6 ; B7 , B8 .

Consider initial data of the software LinModel, which assign geometric and
kinematic characteristics of the satellite with its gyrodines.

The number of bodies is 8.
Body B1 (orbital coordinate system) is described with regard to the inertial

coordinate system. The mass and the inertial tensor are zero. The numbers of the
rotation axes are { 3, 0, 0} , and the angles of rotations are {χ , 0, 0} , i.e., the
orbital coordinate system’s orientation with respect to the inertial coordinate
system is determined from one rotation at an angle χ about the 3rd axis Ōz0.
Zeros among the numbers of rotation axes indicate to the fact that there are
no rotations about other axes. The radius vector of point O1 in the coordinate
system Σ0 is r0

O1
= (R cosχ , R sinχ , 0 ). The radius vector of the mass center

is r1
C1

= ( 0 , 0 , 0 ). The vector of absolute linear velocity of point O1 is V 0
O1

=
(−Rω0 sinχ , Rω0 cosχ , 0 ) , where ω0 = χ̇ = const is an angular rate of the
orbital coordinate system.

Body B2 (satellite) is described with regard to body 1. The body’s mass
is M2. Numbers of rotation axes are { 1, 3, 2 }, and the respective angles of
rotations are {ψ , θ , ϕ }, i.e., the orientation of the satellite with respect to the
orbital coordinate system is determined by a sequence of three rotations: about
the first axis O1x1 at an angle ψ ; about the third axis O1z1 at an angle θ ;
about the second axis O1y1 at an angle ϕ . The radius vector of point O2 in the
orbital coordinate system is r1

O2
= ( 0 , 0 , 0 ), i.e., points O1 and O2 coincide.

The radius vector of the mass center is r2
C2

= ( 0 , 0 , 0 ), i.e., the satellite’s
mass center is at point O1. The vector of relative linear velocity of point O2 is
V 1

O2
= ( 0 , 0 , 0 ) .

The body’s tensor of inertia at point O2 writes ΘO2 =

⎛⎝Jx 0 0
0 Jy 0
0 0 Jz

⎞⎠ , i.e.,

Jx , Jy , Jz are satellite’s main inertia moments.
Body B3 (the first gyrodine’s frame) is connected with body 2.Mf is the mass

of the frame, Jf is the inertia moment with respect to the axis of rotation of the
frame itself (we neglect equatorial inertia moments). There takes place rotation
of the frame about the 2nd axis at an angle α1 . The radius vector of point O3,
where the bodies connect with each other; its relative linear velocity; the radius
vector of the mass center and the body’s inertia tensor are, respectively,

r2
O3

= V 2
O3

= r3
C3

= ( 0 , 0 , 0 ) ; ΘO3 =

⎛⎝0 0 0
0 Jf 0
0 0 0

⎞⎠ .



Parametric Analysis of Stability Conditions for a Satellite with Gyrodines 21

Body B4 (rotor of the first gyrodine) is connected with body 3. Mp is the mass
of the rotor, Jp is the inertia moment with respect to the axis of its rotation
(we neglect equatorial moments of inertia). There takes place rotation of the
rotor about the first axis at an angle φ1. The radius vector of point O4, where
the bodies are connected; its relative linear velocity; the radius vector of the
mass center have (likewise for the previous body) zero components.

Pairs of bodies 5−6 and 7−8 represent, respectively, the 2nd and the 3rd gy-
rodines, whose geometric description and distribution of masses is similar to
those of the 1st gyrodine’s frame and rotor. The difference consists only in
the axes proper rotations. As far as the 2nd gyrodine is concerned, rotation
of the frame takes place about the 3rd axis at an angle of α2 , and rotation of
the rotor occurs about the 2nd axis at an angle φ2 . As far as the 3rd gyrodine is
concerned, rotation of the frame takes place about the 1st axis at an angle α3 ,
and the rotation of the rotor occurs about the 3rd axis at an angle φ3 .

So, the conservative mechanical system under scrutiny is described by the
nine generalized coordinates ϕ , θ , ψ , α1 , φ1 , α2 , φ2 , α3 , φ3 and is located in
the Newtonian field of gravitation to the center of circle Ō .

3 Constructing a Symbolic Model

Let us list the set of problems solved in symbolic form with the aid of the software
LinModel for the scrutinized system of bodies.

Problem 1. The following geometric and kinematic characteristics have been
computed for each of the bodies:
• matrices of directional cosines;
• radius vectors of the mass centers and the points of connection of the bodies;
• relative and absolute angular rates of the bodies;
• relative and absolute linear velocities of the points of connection of the bodies.

Problem 2. The kinetic energy T (q̇ , q) for the system of bodies as a quadratic
form with respect to generalized velocities q̇ , and the force function U(q) of
the approximate Newtonian field of gravitation have been obtained. Here q is
the vector of generalized coordinates.

Problem 3. Nonlinear equations of motion in the Lagrange 2nd kind form have
been constructed.

It has been determined that the three generalized coordinates φ1 , φ2 , φ3 are
cyclic, while the rest six coordinates are positional.

The formulas used in Problems 1 − 3 can be found, for example, in [4] or at
the URL-address of [5].

Problem 4. Let us assign the unperturbed motion in the following form:{
ϕ = 0 , θ = 0 , ψ = 0 , α1 = αo

1 , α2 = αo
2 , α3 = αo

3 , ϕ̇ = 0 , θ̇ = 0 ,

ψ̇ = 0 , α̇1 = 0 , α̇2 = 0 , α̇3 = 0 , φ̇1 = h1 , φ̇2 = h2 , φ̇3 = h3 .
(1)



22 A.V. Banshchikov

Here h1 , h2 , h3 are constant values for angular rates of proper rotations of
the rotors; αo

1 , α
o
2 , α

o
3 are constant values of the angles of the gyrodine’s frames.

The given unperturbed motion is substituted into nonlinear equations of motion
constructed at the previous step. Hence we obtain the following independent
conditions of existence of motion (1):{

cosαo
1Jp ω0 (h1 − 4ω0 sinαo

1 ) = 0 , sinαo
3Jp ω0 (h3 + ω0 cosαo

3 ) = 0 ,

3 cosαo
2 sinαo

2Jp ω0
2 = 0 , −Jp ω0 sinαo

2h2 = 0 , −Jp ω0 cosαo
2h2 = 0 .

(2)

Assuming that αo
1 , α

o
2 , α

o
3 have the values within the interval [ 0 , π/2 ] , from

equations (1) and (2) one can easily obtain the following eight solutions:

ϕ = 0 , θ = 0 , ψ = 0 , α1 = π
2 , α2 = π

2 , α3 = 0 ,

φ̇1 = h1 , φ̇2 = 0 , φ̇3 = h3 ;
(3)

ϕ = 0 , θ = 0 , ψ = 0 , α1 = π
2 , α2 = 0 , α3 = 0 ,

φ̇1 = h1 , φ̇2 = 0 , φ̇3 = h3 ;
(4)

ϕ = 0 , θ = 0 , ψ = 0 , α1 = 0 , α2 = 0 , α3 = 0 ,

φ̇1 = 0 , φ̇2 = 0 , φ̇3 = h3 ;
(5)

ϕ = 0 , θ = 0 , ψ = 0 , α1 = π
2 , α2 = π

2 , α3 = π
2 ,

φ̇1 = h1 , φ̇2 = 0 , φ̇3 = 0 ;
(6)

ϕ = 0 , θ = 0 , ψ = 0 , α1 = π
2 , α2 = 0 , α3 = π

2 ,

φ̇1 = h1 , φ̇2 = 0 , φ̇3 = 0 ;
(7)

ϕ = 0 , θ = 0 , ψ = 0 , α1 = 0 , α2 = 0 , α3 = π
2 ,

φ̇1 = 0 , φ̇2 = 0 , φ̇3 = 0 ;
(8)

ϕ = 0 , θ = 0 , ψ = 0 , α1 = 0 , α2 = π
2 , α3 = 0 ,

φ̇1 = 0 , φ̇2 = 0 , φ̇3 = h3 ;
(9)

ϕ = 0 , θ = 0 , ψ = 0 , α1 = 0 , α2 = π
2 , α3 = π

2 ,

φ̇1 = 0 , φ̇2 = 0 , φ̇3 = 0 .
(10)

Definition. Above particular solutions of nonlinear equations of motion shall
be called steady motions.

Note, for all the solutions (3) − (10), the second gyrodine’s rotor must be
at rest (i.e. h2 = 0 ). Among the eight solutions there are two steady motions
(3), (4) with parameters h1 , h3 and two equilibrium positions (8), (10) without
any parameters. The rest of the solutions have only one nonzero parameter
(h1 or h3 ).



Parametric Analysis of Stability Conditions for a Satellite with Gyrodines 23

4 Stability Analysis

Algorithms intended for investigation (in symbolic-numerical form) of stability
and stabilization of linearized models of mechanical systems can be found in
[6], [7]. Consideration of above issues often leads to the problem of “parametric
analysis” of algebraic inequalities obtained.

Example 1 ( Steady motion (4) ). Consider the problem of stability and of gy-
roscopic stabilization of solution (4).

Let us expand the Lagrangian L = T (q̇ , q)+U(q) in series up to the 2nd de-
gree of smallness with respect to the powers of deviations from the unperturbed
motion (4). As a result, we construct equations of perturbed motion in the first
approximation.

With the use of equations with respect to cyclic coordinates we exclude the
cyclic velocities and accelerations from the obtained linear equations of motion.
Hence we obtain an already “reduced” system of equations of the perturbed
motion.

Let us present these equations in their explicit form, which coincides with their
form of representation (a file of Notebook’s of CAS “Mathematica” format) in
the software LinModel:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jf ( ϕ̈+ α̈1 ) + (Jp(h1 − ω0) + Jfω0) ψ̇ + Jp(ϕ+ α1)ω0(4ω0 − h1) = 0 ,

Jf ( θ̈ + α̈2 ) + 3Jp(θ + α2)ω2
0 = 0 ,

Jf ( ψ̈ + α̈3 ) + (Jp(h3 + ω0) − Jfω0) ϕ̇+ Jp(ψ + α3)ω0(h3 + ω0) = 0 ,

(Jf + Jy) ϕ̈+ Jf α̈1 + ((Jf − Jp)ω0 − h3Jp) α̇3

+ (Jp(h1 − h3) + (Jf − 2Jp + Jx + Jy − Jz)ω0) ψ̇
+ ω0(α1Jp(4ω0 − h1) + ϕ (Jp(h3 − h1) + 4 (2Jp − Jx + Jz)ω0) = 0 ,

(Jf + Jx) ψ̈ + Jf α̈3 + ((Jp − Jf )ω0 − Jph1) α̇1

+ (Jp(h3 − h1) − (Jf − 2Jp + Jx + Jy − Jz)ω0) ϕ̇
+ ω0(α3Jp(h3 + ω0) + ψ (Jp(h3 − h1) + (2Jp − Jy + Jz)ω0) = 0 ,

(Jf + Jz) θ̈ + Jf α̈2 + 3ω2
0((Jp − Jx + Jy) θ + Jp α2) = 0 .

(11)

From the coefficients of equations of system (11) we have constructed matrices
A , G , C of the system’s characteristic equation: | Aλ2 +Gλ+ C |= 0 , where
A is a positive definite matrix of kinetic energy, and G , C are, respectively,
matrices of gyroscopic and potential forces.

Kelvin–Chetayev’s theorems [8] allow one to start investigation of the issue
of stability of the solution from analysis of the matrix of potential forces. The
matrix of potential forces for solution (4) writes:



24 A.V. Banshchikov

C =

⎛⎜⎜⎜⎜⎜⎜⎝
c11 0 0 c14 0 0
0 c22 0 0 0 c26
0 0 c33 0 c35 0
c14 0 0 c44 0 0
0 0 c35 0 c55 0
0 c26 0 0 0 c66

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

where c22 = c26 = 3ω2
0Jp ; c44 = ω0(Jp(h3 − h1) + 4(Jz − Jx + 2Jp)ω0) ;

c55 = ω0(Jp(h3 − h1) + (Jz − Jy + 2Jp)ω0) ; c33 = c35 = Jp ω0(h3 + ω0) ;
c11 = c14 = Jp ω0(4ω0 − h1) ; c66 = 3ω2

0(Jp − Jx + Jy) .
Let us write down the conditions of definite positiveness of matrix (12):

Jy > Jx , 4ω0 − h1 > 0 , h3 + ω0 > 0 , h1 + p1ω0 < 0 , h3 + p2ω0 > 0 , (13)

where p1 = (Jy − Jz − Jp) /Jp ; p2 = 4 (Jp − Jx + Jz) /Jp .

Inequalities (13) are the sufficient conditions of stability of solution (4) with
respect to positional coordinates.

Note that in practice absolute values of angular rates of the rotors are sub-
stantially in excess of ω0 (i.e. |h1| � ω0 , |h3| � ω0 , and 0 < ω0 � 1 ).
Consequently, to satisfy conditions (13), rotors of the 1st and 3rd gyrodines
shall rotate in different directions, i.e. h1 < 0 , h3 > 0 .

Suppose, some of conditions (13) are not satisfied (i.e., the potential system
is unstable). Hence we may consider the issue of possibility of stabilization of
the system’s solution at the expense of influence of the gyroscopic forces.

It is known [8] that evenness (oddness) of the degree instability is determined
by positiveness (negativity) of the determinant of matrix C of potential forces.
It follows from Kelvin–Chetayev’s theorem, which is related to the influence
of the gyroscopic forces, that gyroscopic stabilization is possible only for those
systems, which have an even degree of instability.

For example, if the second and fourth inequalities in (13) are replaced with
inequalities of opposite sign 4ω0 −h1 < 0 , h1 + p1ω0 > 0 then the determinant
of matrix C from (12) remains positive, while some main diagonal minors of
this matrix are negative. So, the system shall have an even degree of instability.
Satisfaction of these two conditions necessitates that h1 be positive.

The characteristic equation of system (11) Δ(λ2) = Δ1(λ2) ∗ Δ2(λ2) = 0
contains λ only in the even powers. It is known that stability in such systems
is possible only when all the roots of the polynomial Δ are purely imaginary,
and, respectively, the roots with respect to λ2 are negative and real numbers.
This criterion [9] has been implemented in the form of program CrKozlov in the
software LinModel.

Let us write down the algebraic conditions, which provide for existence of
purely imaginary roots for the two co-factors Δ1(λ2) , Δ2(λ2) of the character-
istic equation of the “reduced” system of equations of motion.

The only condition Jy > Jx provides the desired properties of the roots for
the equation Δ1(λ2) =

(
Jf λ

2 + 3Jp ω0
2
) (
Jz λ

2 + 3 (Jy − Jx)ω0
2
)

= 0 .



Parametric Analysis of Stability Conditions for a Satellite with Gyrodines 25

Coefficients of the equation Δ2(λ2) = a0λ
8 +a1λ

6 +a2λ
4 +a3λ

2 +a4 = 0 and
the following necessary and sufficient conditions of existence of purely imaginary
roots for the polynomial Δ2(λ2) :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a0 > 0 , a1 > 0 , a2 > 0 , a3 > 0 , a4 > 0 , 3a2
1 − 8a0a2 > 0 ,

a2
2a

2
1 − 3a3a

3
1 − 6a0a4a

2
1 + 14a0a2a3a1 − 4a0a

3
2 − 18a2

0a
2
3 + 16a2

0a2a4 > 0 ,

a2
2a

2
3a

2
1 − 27a2

4a
4
1 − 4a3

3a
3
1 + 18a2a3a4a

3
1 + 144a0a2a

2
4a

2
1 − 4a3

2a4a
2
1

− 6a0a
2
3a4a

2
1 + 18a0a2a

3
3a1 − 192a2

0a3a
2
4a1 − 80a0a

2
2a3a4a1 − 27a2

0a
4
3

+ 256a3
0a

3
4 − 4a0a

3
2a

2
3 − 128a2

0a
2
2a

2
4 + 16a0a

4
2a4 + 144a2

0a2a
2
3a4 > 0

(14)

have a rather bulky analytical form, and are not given herein explicitly.

Note, a4 = det C
9Jp(Jy−Jx)ω4

0
. Having written the analytical solution for the posi-

tiveness of coefficient a4 , we obtain the three possible variants of values Jz :

0 < Jz ≤ Jx − 3Jp

4
; Jx − 3Jp

4
< Jz ≤ 3Jp + Jy ; Jz > 3Jp + Jy . (15)

Parametric analysis of inequalities (14) has been conducted in symbolic-
numeric form. Furthermore, we have used the functions Reduce, RegionPlot,
RegionPlot3D of CAS “Mathematica” intended, respectively, for solving the
systems of algebraic inequalities as well as for obtaining the graphic 2D- and
3D-representations of solutions of these systems.

The following numerical values related to distribution of masses in the sys-
tem have been introduced: Jp = 3 , Jf = 1 , Jx = 230 , Jy = 310 (dimen-
sion of inertia moments: kg m2), and ω0 = 0.0011 rad c−1. For each of three
intervals (15) we have constructed graphic domains (in the space of parameters
Jz , h1 , h3 ), in which inequalities (14) are satisfied. It has been determined that
the largest domain of gyroscopic stabilization shall take place for the first interval
from (15).

For example, in Fig. 2 we give a solution of inequalities (14) for the third
interval when Jz = 350 . The dotted domains are the domains of gyroscopic sta-
bilization for solution (4). It is obvious from the figure that – in order to provide
for the system’s stabilization – the 3rd gyrodine’s rotor shall rotate more than
six times as fast (or slow) as the 1st gyrodine’s rotor.

Example 2 ( Steady motion (8) ). Let us investigate the issue of stability of the
equilibrium position (8).

It has been found out, there exists an additional fourth cyclic integral in the
“reduced” system of equations of the perturbed motion in the first approximation
(with respect to coordinate α3) for solution (8). Respectively, the characteristic
equation of the initial system has four zero roots of multiplicity two.

Stability analysis of solution (8) is conducted with respect to five positional
coordinates α1 , α2 , ϕ , ψ , θ and four cyclic velocities φ̇1 , φ̇2 , φ̇3 , α̇3 .



26 A.V. Banshchikov

0 100 200 300 400 500

0

200

400

600

800

1000

h1

h 3

Fig. 2. The domain of gyroscopic stabilization

Having obtained equations of the perturbed motion in the neighborhood of
solution (8), let us represent the matrix of potential forces already for the “re-
duced” system of equations:

C = ω2
0

⎛⎜⎜⎜⎜⎝
−3Jp 0 −3Jp 0 0

0 3Jp 0 0 3Jp

−3Jp 0 Jf − 3Jp − 4Jx + 4Jz 0 0
0 0 0 Jz − Jy 0
0 3Jp 0 0 3 (Jp − Jx + Jy)

⎞⎟⎟⎟⎟⎠ (16)

Matrix C from (16) is not definite positive, since some main diagonal minors
are negative. But under the conditions Jf − 4Jx + 4Jz > 0 , Jy > Jx , Jy > Jz ,
the determinant of this matrix is positive, and the system shall have an even
degree of instability. In this case, let us consider the problem of possibility of
gyroscopic stabilization.

The characteristic equation of the “reduced” system of equations of perturbed
motion for the scrutinized solution has the form:

(Jfλ
2 + 3Jpω0

2)(Jzλ
2 + 3(Jy − Jx)ω0

2)(a0λ
6 + a1λ

4 + a2λ
2 + a3) = 0



Parametric Analysis of Stability Conditions for a Satellite with Gyrodines 27

where a0 = JfJxJy ; a3 = 3Jp (Jy − Jz) (Jf − 4Jx + 4Jz)ω6
0 ;

a1 =
( (

2 (Jy + Jz)Jx + Jz (Jz − Jy) − 3J2
x

)
Jf − 3JpJxJy

− (Jx + Jy − 2Jz)J2
f + J3

f

)
ω2

0 ;

a2 =
(
3Jp

(
3J2

x − 2 (Jy + Jz)Jx + (Jy − Jz)Jz

)− (3Jp + 4Jx + Jy − 5Jz)J2
f

+ J3
f + (3Jp (Jx + 2Jy − 2Jz) + 4 (Jx − Jz) (Jy − Jz))Jf

)
ω4

0 .

It is known that the necessary condition of stabilization is the positiveness of
all the coefficients in the characteristic equation. With the use of above function
Reduce we have managed to find out that these conditions are incompatible.

In[1] = Reduce[Jf > 0 ∧ Jf < Jp < Jx < Jz < Jy ∧ a1/ω
2
0 > 0

∧ a2/ω
4
0 > 0 ∧ a3/ω

6
0 > 0 , {Jf , Jp , Jx , Jz , Jy} , Reals ]
Out[1] = False

So, the simultaneous positiveness of coefficients a1 , a2 , a3 cannot be provided.
Consequently, gyroscopic stabilization of the equilibrium position (8) is
impossible.

As a result of stability analysis of other steady motions we have obtained the
following results:

a) Solutions (3), (6), (9), and (10) are unstable because one of the co-factors
λ2Jf − 3Jp ω0

2 = 0 of the system’s characteristic equation has a positive real
root with respect to λ2. Note, for all these solutions, αo

2 = π/2 .
b) Solution (5) is potentially unstable and cannot be stabilized at the expense

of the effect of gyroscopic forces with an even degree of instability.
c) Solution (7) is potentially stable (with respect to five positional coordinates)

in case of satisfaction of the obtained conditions of positive definiteness for the
matrix of potential forces. If these conditions are not satisfied, then the issue
of the possibility of gyroscopic stabilization for the system, which has an even
degree of instability, is solved positively.

5 Conclusion

It is necessary to emphasize that problems of plausibility and precision of com-
putations, as well as problems of explicitness and time optimality of the process
of investigations can be partially solved, when a computer algebra system (CAS)
is chosen in the capacity of the software tool. Side by side with employment of
CAS (as the “computing tool”) for solving a definite problem, the approach,
which presumes elaboration of the software for solving a definite class of prob-
lems on the basis of the CAS’s (in our case – CAS “Mathematica”) internal
programming language, may be considered as more valuable. Practically, above
analysis on the whole has been conducted with the use of such software.

Summarizing the results, we have to note some provisions related to the timing
data and the computational environment:



28 A.V. Banshchikov

1) Execution of programs inside CAS “Mathematica” takes place only in the
mode of interpretation, so, the total process of investigation with the aid of the
software LinModel is conducted in the environment of CAS “Mathematica”.

2) The description of the mechanical system is formed in interactive mode,
when the user inputs above data (see section 2) into the corresponding windows
of the software. This important process is conducted just once. Later it is always
possible to correct input data already in the created file when there is the need.

3) Modeling of the system (i.e., constructing nonlinear and linearized differ-
ential equations of motion in the neighborhood of one of eight steady motions)
has necessitated some 100 Megabyte of RAM and 11 seconds of CPU time on a
PC with the processor Core 2 Duo 2.40 GHz.

4) The process of investigation related to stability of steady motions has been
conducted already not in automatic mode. At this stage, we have employed our
own software, side by side with built-in functions and standard add-on packages
of CAS “Mathematica”.

References

1. Sarychev, V.A.: Problems of orientation of satellites. In: Itogi Nauki i Tekhniki.
Series “Space Research”. Moscow, VINITI Publ. 11 (1978) (in Russian)

2. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: A software
LinModel intended for analysis of dynamics of large-dimensional mechanical sys-
tems. Certificate of State Registration of Computer Software No.2008610622.
FGU FIPS, issued February 1 (2008) (in Russian)

3. Banshchikov, A.V., Bourlakova, L.A.: On Stability of a Satellite with Gyrodines.
In: Proc. Seventh Workshop on Computer Algebra in Scientific Computing,
pp. 61–69. Technische Universität München (2004)

4. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: The tasks of
mechanics and computer algebra. Mathematical Machines and Systems 4, 82–97
(2008) (in Russian)

5. Banshchikov, A.V., Bourlakova, L.A., Irtegov, V.D., Ivanova, G.N., Titorenko, T.N.:
Symbolic Computations in Problems of Mechanics. Meixner Symbolic Computations
in Problems of Mechanics. In: Proc. Int. Mathematica Symposium. The Mathemat-
ica Journal, vol. 8(2) (2001),
http://south.rotol.ramk.fi/keranen/IMS99/paper15/ims99paper15.pdf

6. Banshchikov, A.V., Bourlakova, L.A.: Information and Research System “Stability”.
Journal of Computer and Systems Sciences International 35(2), 177–184 (1996)

7. Banshchikov, A.V., Bourlakova, L.A.: Computer algebra and problems of motion
stability. Mathematics and Computer in Simulation 57, 161–174 (2001)

8. Chetayev, N.G.: Stability of Motion. Works on Analytical Mechanics. AS USSR,
Moscow (1962) (in Russian)

9. Kozlov, V.V.: Stabilization of the unstable equilibria of charges by intense magnetic
fields. J. Appl. Math. and Mech. 61(3), 377–384 (1997)

http://south.rotol.ramk.fi/keranen/IMS99/paper15/ims99paper15.pdf


Computing and Visualizing Closure Objects
Using Relation Algebra and RelView

Rudolf Berghammer and Bernd Braßel

Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstraße 40, D-24098 Kiel

{rub,bbr}@informatik.uni-kiel.de

Abstract. Closure systems and closure operations play an important
role in both mathematics and computer science. In addition there are a
number of concepts which have been proven to be isomorphic to closure
systems and we refer to all such concepts as closure objects. In this work
we develop relation-algebraic specifications to recognize several classes
of closure objects, compute the complete lattices they constitute and
transform any of these closure objects into another. All specifications
are algorithmic and can directly be translated into the programming
language of the computer algebra system RelView, which is a special
purpose tool for computing with relations. We show that the system
is well suited for computing and visualizing closure objects and their
complete lattices.

1 Introduction

The procedure of computing the closure of a given object is an important ba-
sic technique for applications in mathematics and computer science alike. The
approach followed most frequently is to employ so-called closure operations. Ex-
amples include operations that yield the transitive closure of a relation, the
convex hull of a set of points in real vector spaces or the subgroup generated by
a set of elements of a given group. The practical importance of closures is also
documented by the fact that equivalent or at least very similar notions are fre-
quently reinvented. For example, what [6] denotes as “full implicational system”
is called a “full family of functional dependencies” in the theory of relational
databases [7] or a “closed family of implications” in formal concept analysis [9].
Likewise a “dependency relation” [6, Section 2.2] is the same as a “contact re-
lation” in the sense of [1] and one needs only to transpose such a relation and
restrict its range to 2X \ {∅} in order to obtain an “entailment relation” in the
sense of [8]. Moreover, on the lattice theoretic side it has been proven that there
exists a close correspondence between all of the aforementioned concepts and
the concept of a closure operation on a set. All of these objects form complete
lattices which are pairwise isomorphic [6].

The subject of this work is to give a relation-algebraic representation of clo-
sure objects. The presented formulas are proven to be correct with respect to the

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 29–44, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



30 R. Berghammer and B. Braßel

original formulation in predicate logic. The resulting specifications are algorith-
mic and directly lead to corresponding programs for RelView [2,5], which is
a computer algebra system for the special purpose of computing with relations.
The developed formulas provide three basic algorithms for each closure object
given as a finite relation, viz.recognition of an object, i.e., deciding whether a
given relation is, for example, a dependency relation, transformation between
closure objects, e.g., compute the closure operation corresponding to a given full
implicational system, and computation of the complete lattice which is consti-
tuted by the set of all such closure objects. Employing the resulting programs
the computer algebra system RelView supports the study of specific closure
objects in several ways, among which are visualization as Boolean matrices or
as graphs, providing various graph layout algorithms and offering a number of
ways to highlight selected portions, retracing the results of sub expressions via
step-wise execution, and testing, e.g., by providing random matrices of a speci-
fied degree of filling. Beyond the possibility to study individual closure objects,
the presented algorithms scale well and are applicable to large examples. This
is due to the fact that finite relations can be implemented efficiently with ROB-
DDs [10] and we have taken care that the developed formulas fit the setting of
RelView. The only exception is the computation of all possible closure systems
which is presented in Section 3.1 as the according problem is well known to be
exponential for sets.

2 Relation Algebra

Since many years relation algebra in the sense of [12,11] is used by many math-
ematicians, computer scientists and engineers as conceptual and methodological
base of their work. Its practical importance is due to the fact that many impor-
tant objects of discrete mathematics can be seen as specific relations. Relation
algebra allows very concise and exact problem specifications and, combined with
predicate logic, extremely formal and precise calculations that drastically reduce
the danger of making mistakes during the algorithm developments. In this sec-
tion, we first recall the basics of relation algebra (Section 2.1), provide the reader
with an introduction of how pairs and products can be modeled (Section 2.2)
and then show how to represent sets (Section 2.3). More specific to the task
at hand Section 2.4 deals with the relation-algebraic specification of extremal
elements of ordered sets and lattices.

2.1 Relations and Relation Algebra

We write R : X↔Y if R is a relation with domain X and range Y , i.e., a subset
of the direct product X×Y . If the sets X and Y of R’s type [X↔Y ] are finite
and of size m and n, respectively, we may consider R as a Boolean matrix with
m rows and n columns. Since the Boolean matrix interpretation is well suited for
many purposes and is also used by the computer algebra system RelView as one
of its possibilities to depict relations, we often use matrix terminology and matrix



Computing and Visualizing Closure Objects 31

notation. Especially we speak about the rows, columns and entries of a relation
and write Rx,y instead of 〈x, y〉 ∈ R or xR y. Relation algebra knows three basic
relations. The identity relation I : X↔X satisfying for all x, y ∈ X that Ix,y iff
x = y, the universal relation L : X↔Y holding for all x ∈ X and y ∈ Y , and the
empty relation O : X↔Y which holds for no pair in X×Y . The transposition
of a given relation R : X↔Y is denoted by RT : Y ↔X and satisfies for all
x, y that RT

x,y iff Ry,x. Transposition allows, e.g., a compact formulation that a
given relation R is symmetric by simply stating that it satisfies R = RT. When
viewing relations as sets it comes natural to form the union R ∪ S : X↔Y
and intersection R ∩ S : X↔Y of two relations R,S : X↔Y or to state the
inclusion R ⊆ S. The suggestive meaning is, respectively, that for all x, y we
have Rx,y or Sx,y for R∪S, both Rx,y and Sx,y for R∩S and that Rx,y implies
Sx,y for R ⊆ S. The fact that, for example, a given relation R is reflexive can
thus simply be expressed as I ⊆ R. A lot of the expressive power of relation
algebra is due to the possibility to express the composition RS : X↔Y of two
relations R : X↔Z and S : Z↔Y . Its definition in predicate logic is that for
all x ∈ X and y ∈ Y we have RSx,y iff there exists a z ∈ Z such that Rx,z

and Sz,y. Employing composition the fact that a given relation is transitive is
concisely expressed by RR ⊆ R. The complementation of a relation R : X↔Y
is denoted by R : X↔Y and corresponds to negation in predicate logic: for all
x, y we have R x,y iff Rx,y does not hold.

The symmetric quotient of two relations R : X↔Y and S : X↔Z is not a
basic construct of relation algebra but can be defined by

syq(R,S) := RT S ∩ R
T
S : Y ↔Z.

The corresponding definition in predicate logic is that syq(R,S)y,z iff for all
x we have that Rx,y iff Sx,z. In other words for all y ∈ Y and z ∈ Z we have
syq(R,S)y,z iff the y-column ofR equals the z-column of S. Additional properties
of this construct can be found in [11].

2.2 Pairing and Related Constructions

The pairing (or fork) [R,S] : Z↔X×Y of two relations R : Z↔X and S :
Z↔Y is defined by demanding for all z ∈ Z and u = 〈u1, u2〉 ∈ X×Y that
[R,S]z,u iff Rz,u1 and Sz,u2 . (It should be noted that throughout this paper
pairs u ∈ X×Y are assumed to be of the form 〈u1, u2〉.) Using identity and
universal relations of appropriate types, the pairing operation allows to define
the two projection relations π : X×Y ↔X and ρ : X×Y ↔Y of the direct
product X×Y as π := [I, L]T and ρ := [L, I]T. Then the above definition implies
for all u ∈ X×Y , x ∈ X and y ∈ Y that πu,x iff u1 = x and ρu,y iff u2 = y. Also
the parallel composition (or product) R ||S : X×X ′↔Y×Y ′ of two relations
R : X↔Y and S : X ′ ↔Y ′, such that (R || S)u,v is equivalent to Ru1,v1 and
Su2,v2 for all u ∈ X×X ′ and v ∈ Y×Y ′, can be defined by means of pairing. We
get the desired property if we define R ||S := [πR, ρS], where π : X×X ′ ↔X
and ρ : X×X ′ ↔X ′ are the projection relations on X×X ′.



32 R. Berghammer and B. Braßel

2.3 The Representation of Sets

There are several possibilities to model sets in relation algebra. Firstly, sets can
be modeled using vectors , which are relations v which satisfy v = vL. For a
vector the range is irrelevant and we therefore consider vectors v : X↔ 1 with a
specific singleton set 1 = {⊥} as range and omit the second subscript, i.e., write
vx instead of vx,⊥. Such a vector can be considered as a Boolean matrix with
exactly one column, i.e., as a Boolean column vector, and represents the subset
{x ∈ X | vx} of X . A non-empty vector v is said to be a point if vvT ⊆ I, i.e., v is
injective. This means that it represents a singleton set and we frequently identify
this singleton set with the only element it contains. In the Boolean matrix model
a point v : X↔ 1 is a Boolean column vector in which exactly one entry is 1.

As a second way to model sets we will apply the relation-level equivalents of
the set-theoretic symbol ∈, i.e., membership-relations M : X↔ 2X on X and its
powerset 2X . These specific relations are defined by demanding for all x ∈ X and
Y ∈ 2X that Mx,Y iff x ∈ Y . A Boolean matrix implementation of M requires ex-
ponential space. Using reduced ordered binary decision diagrams (ROBDDs) as
implementation of relations (as in RelView), however, the number of ROBDD-
nodes for M is linear in the cardinality of X . See [10,4] for details.

Finally, we use injective functions to model sets. Given an injective function ı
from Y to X , we may consider Y as a subset ofX by identifying it with its image
under ı. If Y is actually a subset of X and ı is given as relation of type [Y ↔X ]
such that ıy,x iff y = x for all y ∈ Y and x ∈ X , then the vector ıTL : X↔ 1
represents Y as subset of X in the sense above. Clearly, the transition in the
other direction is also possible, i.e., the generation of a relation inj(v) : Y ↔X
from the vector representation v : X↔ 1 of Y ⊆ X such that for all y ∈ Y and
x ∈ X we have inj(v)y,x iff y = x.

A combination of injective functions with membership-relations allows a
column-wise enumeration of sets of subsets. More specifically, if v : 2X ↔ 1 rep-
resents a subset S of the powerset 2X in the sense defined above, then for all
x ∈ X and Y ∈ S we get the equivalence of (M inj(v)T)x,Y and x ∈ Y . This
means that S := M inj(v)T : X↔S is the relation-algebraic specification of
membership on S, or, using matrix terminology, the elements of S are repre-
sented precisely by the columns of S. Furthermore, a little reflection shows for
all Y, Z ∈ S the equivalence of Y ⊆ Z and ST S Y,Z. Therefore, ST S : S↔S
is the relation-algebraic specification of set inclusion on S.

2.4 Extremal Elements of Orders and Lattices

Given a relation R : X↔X , the pair (X,R) is a partial order set iff I ⊆ R
(reflexivity), R∩RT ⊆ I (antisymmetry) and RR ⊆ R (transitivity) hold. In the
following we may omit the set X when clear from context and simply refer to
R as a partial order. When dealing with ordered sets, one typically investigates
extremal elements. Based upon the vector representation of sets we will use the
following relation-algebraic specifications taken from [11].



Computing and Visualizing Closure Objects 33

lel(R, v) := v ∩ Rv gel(R, v) := lel(RT, v)
glb(R, v) := gel(R, Rv ) lub(R, v) := glb(RT, v)

(1)

If R : X↔X is a partial order relation and Y a subset of X that is represented
by the vector v : X↔ 1, then lel(R, v) : X↔ 1 is empty iff Y does not have a least
element and is a point that represents the least element of Y , otherwise. Similarly,
gel(R, v) : X↔ 1 (glb(R, v) : X↔ 1 and lub(R, v) : X↔ 1, respectively) is either
empty or a point that represents the greatest element (greatest lower bound and
least upper bound, respectively) of Y ,

If the second arguments of the specifications of (1) are not vectors but “proper”
relations with a non-singleton range, then the corresponding extremal elements
are computed column-wisely. E.g., in the case of the first specification this means
the following. For all A : X↔Y we obtain lel(R,A) : X↔Y and, furthermore,
for all x ∈ X and y ∈ Y that lel(R,A)x,y iff the least element of {z ∈ X | Az,y}
exists and equals x. Hence, for all y ∈ Y the y-column of lel(R,A) is either
empty or a point that represents (with respect to R) the least element of the set
the y-column of A represents.

For a partial order R : X↔X we also need the following specifications:

Inf(R) := [R,R]T ∩ [R,R]TR Sup(R) := Inf(RT) (2)

Both specifications of (2) are of type [X×X↔X] and it is shown in [3] that
for all u ∈ X×X and x ∈ X we have Inf(R)u,x iff x is the greatest lower
bound of u1 and u2 and Sup(R)u,x iff x is the least upper bound of u1 and
u2. Hence, (2) relation-algebraically specifies the two lattice prerations � and
�. As a consequence, an ordered set (X,R) constitutes a lattice (X,�,�) iff
L = Inf(R)L and L = Sup(R)L, since the latter equations express that the two
relations Inf(R) and Sup(R) are total (see [11]). Also complete lattices can easily
be characterized by relation-algebraic means. If R : X↔X is the partial order
of a lattice (X,�,�), then X is complete iff L = L glb(R,M) or, equivalently, iff
L = L lub(R,M), where M : X↔ 2X is the membership relation.

3 Computing and Visualizing Closure Objects

In the introduction we have mentioned several concepts which we refer to as
“closure objects”. In the literature, all of these notions are usually defined on
powersets; see e.g., [6]. But with the exception of dependency relations the re-
striction to such a specific class of lattices is not necessary. We therefore prefer to
define all closure objects on more general ordered structures. In this section, we
develop relation-algebraic specifications for recognizing, computing and trans-
forming closure objects on complete lattices. The specifications will be algorith-
mic and, hence, can directly be translated into RelView-code. Since RelView
only allows to treat relations on finite sets, we assume for the developments finite
lattices if this is advantageous.



34 R. Berghammer and B. Braßel

3.1 Closure Systems

Assume (X,�,�) to be a complete lattice. Then S ⊆ X is called a closure system
(or a Moore family) of X if it is closed under arbitrary least upper bounds, that
is, for all X ⊆ S we have X ∈ S. In the case of a finite carrier set X this
second order definition is obviously equivalent to the two requirements that
� ∈ S, where � denotes the greatest element of the lattice, and that for all
x, y ∈ S also x � y ∈ S. The next theorem provides the transformation of this
first-order specification to relation algebra.

Theorem 3.11. Assume R : X↔X to be the partial order of a finite lattice
(X,�,�) and let S ⊆ X be represented by the vector s : X↔ 1. Then S is a
closure system of X iff the following formulae hold:

gel(R, L) ⊆ s [sT, sT]
T ⊆ Inf(R) s

Proof. As L : X↔ 1 represents the carrierX , the formula gel(R, L) ⊆ s expresses
that S contains the greatest lattice element �. The following calculation shows
that the second formula specifies S to be closed under the binary operation �.

∀u ∈ X×X : u1 ∈ S ∧ u2 ∈ S → u1 � u2 ∈ S
⇔ ∀u ∈ X×X : su1 ∧ su2 → ∃x ∈ X : Inf(R)u,x ∧ sx
⇔ ∀u ∈ X×X : [sT, sT]Tu → (Inf(R) s)u

⇔ [sT, sT]T ⊆ Inf(R) s �

The formulae of Theorem 3.11 can immediately be translated into the program-
ming language of the computer algebra system RelView. Hence, given a partial
order R : X↔X of a lattice and a vector s : X↔ 1, the tool can be used to test
whether s represents a closure system. Note that in Theorem 3.11 the type of sT

is [1↔X ] and, thus, the type of [sT, sT] is [1↔X×X]. This is advantageous for
the implementation in RelView, which is based on ROBDDs. In general, the
transposition of a relation requires that a new ROBDD has to be computed from
the old one by exchanging the variables encoding the domain with those encod-
ing the range. But in the case of a relation with domain or range 1 this process
can be omitted since the ROBDD of the relation and its transpose coincide [4].

Having specified a single closure system within relation algebra, we turn to
specify the set S(X) of all closure systems of X as a subset of the powerset via
a vector of type [2X ↔ 1]. In the following theorem M : X↔ 2X is a membership
relation, π, ρ : X×X↔X are the projection relations of X×X, the left L has
type [X↔ 1] and the remaining L is of type [1↔X×X].

Theorem 3.12. Assume again R : X↔X to be the partial order of a finite
lattice (X,�,�). Then the following vector represents the set S(X) of all closure
systems of X as a subset of the powerset 2X :

cls(R) := (gel(R, L)T
M ∩ L(πM ∩ ρM ∩ Inf(R)M ) )

T

: 2X ↔ 1



Computing and Visualizing Closure Objects 35

Proof. For all S ∈ 2X holds

� ∈ S ⇔ ∃x ∈ X : Mx,S ∧ gel(R, L)x ⇔ (MTgel(R, L))S

and also

∀u ∈ X×X : u1 ∈ S ∧ u2 ∈ S → u1 � u2 ∈ S
⇔ ∀u ∈ X×X : u1 ∈ S ∧ u2 ∈ S → ∃ z ∈ X : u1 � u2 = z ∧ z ∈ S
⇔ ∀u ∈ X×X : u1 ∈ S ∧ u2 ∈ S → ∃ z ∈ X : Inf(R)u,z ∧ z ∈ S
⇔ ∀u ∈ X×X : (πM)u,S ∧ (ρM)u,S → ∃ z ∈ X : Inf(R)u,z ∧ Mz,S

⇔ ∀u ∈ X×X : (πM)u,S ∧ (ρM)u,S → (Inf(R)M)u,S

⇔ ¬∃u ∈ X×X : (πM)u,S ∧ (ρM)u,S ∧ Inf(R)M u,S

⇔ ¬∃u ∈ X×X : (πM ∩ ρM � Inf(R)M )
T

S,u ∧ Lu

⇔ (πM ∩ ρM ∩ Inf(R)M )
T
L S .

As a consequence, MTgel(R, L)∩ (πM ∩ ρM ∩ Inf(R)M )
T
L represents S(X) and

the result follows according to three simple rules of transposition, namely L = LT,
RTST = (SR)T, and RT = R

T
. �

Again, the transpositions occurring in the definition of cls(R) are motivated
by the aim to obtain an efficient RelView program. Stating the formula in the
given way, the relations affected during program execution are all of domain 1. If,
in contrast, we would not have simplified the result by applying the rule RTST =
(SR)T the resulting program would be less efficient and not scale anymore.

A significant fact about the set S(X) is that it is itself a closure system of the
powerset lattice (2V ,∪,∩). Hence, it forms a complete lattice with intersection
as greatest lower bound operation and set inclusion as partial order. A relation-
algebraic specification of the partial order of S(X) is rather simple. Using the
technique described in Section 2.3, by

ClSys(R) := M inj(cls(R))T : X↔S(X) (3)

the set S(X) is enumerated by column and we immediately obtain from (3) that
the set inclusion on S(X)can be specified as

ClLat(R) := ClSys(R)T ClSys(R) : S(X)↔S(X). (4)

The number of different closure systems of a finite lattice grows very rapidly,
see [6] for the numbers in the case of powersets 2X up to |X | = 6. Therefore, a
visualization of the according lattice is useful for rather small examples, only.

Example 3.11. Figure 1 contains a picture of the Hasse-diagram of the partial
order of a lattice X∗ with 6 elements x1, . . . .x6. The picture demonstrates the
support in RelView to depict relations as directed graphs. Each vertex with
label n represents the lattice element xn, 1 ≤ n ≤ 6.



36 R. Berghammer and B. Braßel

Fig. 1. Hasse-diagram of the partial order of a lattice with 6 elements

Stating the relation-algebraic specifications (3) and (4) above as RelView-
programs, we computed that 24 of the 64 subsets of X∗ are closure systems.
The result of this computation is shown in Figure 2. There the 24 subsets are
enumerated by column in a 6× 24 Boolean matrix. In the picture a filled square
denotes a 1-entry and an empty square a 0-entry. If we denote the closure sys-
tem represented by column i with Si, 1 ≤ i ≤ 24, then, e.g., the first column
represents the closure system S1 = {x6} consisting of the greatest lattice ele-
ment only, the second column represents the closure system S2 = {x5, x6}, the
third column represents the closure system S3 = {x4, x6} and the last column
represents the closure system S24 = X∗ consisting of all lattice elements.

Finally, Figure 3 shows the Hasse-diagram of the lattice S(X∗), where the
vertex with label i corresponds to the closure system Si, 1 ≤ i ≤ 24, and an
arrow denotes set inclusion. From Figure 2 it follows that the n-th layer of the
graph exactly contains the vertices corresponding to the closure systems with
cardinality n, 1 ≤ n ≤ 6. �

3.2 Closure Operations

For a given partial order (X,R) a closure operation is a function C : X → X
which is extensive, monotone, and idempotent. Note that it is not necessary
to restrict such operations to sets. In the next theorem we provide a relation-
algebraic characterization of closure operations of (X,R) as specific relations of
type [X↔X]. Again the given formulae directly lead to a RelView-program
for recognizing closure operations.

Theorem 3.21. Given a partial order R : X↔X, a relation C : X↔X is a
closure operation of the ordered set (X,R) iff the following formulae hold:

C I = C C ⊆ R R ⊆ CRCT CC ⊆ C

Fig. 2. Closure systems of the partial order of Figure 1



Computing and Visualizing Closure Objects 37

Fig. 3. Hasse-diagram of the lattice S(X∗)

Proof. The first equation characterizes C as a function; cf. [11]. To enhance
readability, we apply the common notation of function application for C in the
following. First, we show that C ⊆ R states that C is extensive.

∀x ∈ X : Rx,C(x) ⇔ ∀x, y ∈ X : C(x) = y → Rx,y

⇔ ∀x, y ∈ X : Cx,y → Rx,y

⇔ C ⊆ R

The next calculation verifies that R ⊆ CRCT specifies monotonicity.

∀x, y ∈ X : Rx,y → RC(x),C(y)

⇔ ∀x, y ∈ X : Rx,y → ∃ a, b ∈ X : C(x) = a ∧ C(y) = b ∧Ra,b

⇔ ∀x, y ∈ X : Rx,y → ∃ a ∈ X : Cx,a ∧ ∃ b ∈ X : Ra,b ∧ CT
b,y

⇔ ∀x, y ∈ X : Rx,y → (CRCT)x,y

⇔ R ⊆ CRCT

Finally, idempotency and transitivity of C are equivalent due to

∀x ∈ X : C(C(x)) = x⇔ ∀x, y, a ∈ X : C(x) = a ∧C(a) = y → C(x) = y
⇔ ∀x, y, a ∈ X : Cx,a ∧Ca,y → Cx,y

⇔ ∀x, y ∈ X : (∃ a ∈ X : Cx,a ∧ Ca,y) → Cx,y

⇔ ∀x, y ∈ X : (CC)x,y → Cx,y

⇔ CC ⊆ C. �

On complete lattices (X,�,�) there is a well-known one-to-one correspondence
between the set O(X) of all closure operations and the set S(X) of all closure
systems. The closure system corresponding to the closure operation C ∈ O(X) is
the set of all fixed points of C. Conversely, the closure operation corresponding to
the closure system S ∈ S(X) is such that x ∈ X is mapped to {z ∈ S | Rx,z},
where R : X↔X is the partial order of the lattice. The following theorem states
how these correspondences can be formulated as a pair of relation-algebraic



38 R. Berghammer and B. Braßel

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

Fig. 4. Closure operations C1 . . . C4 of O(X∗)

specifications. To this end, we identify the subsets of X with their representation
as vectors [X↔ 1]. This enables us to consider S(X) to as a subset of the
powerset 2[X↔X], and O(X) as a subset of [X↔X].

Theorem 3.22. Let R : X↔X be the partial order of a lattice (X,�,�). Then,
for all C ∈ O(X) the vector

CloToCls(C) := (C ∩ I)L : X↔ 1

represents the set of all fixed points of C and for all s ∈ S(X) the relation

ClsToClo(s) := glb(R, sL ∩RT)
T

: X↔X

fulfills for all x, y ∈ X that ClsToClo(s)x,y iff y = {z ∈ V | sz ∧Rx,z}.
Proof. Applying the function notation for C, we get for all x ∈ X that

C(x) = x⇔ ∃ y ∈ X : Cx,y ∧ x = y ∧ Ly ⇔ ((C ∩ I)L)x

and, thus, the definition of CloToCls(C) ensures the first claim. To prove the
second claim, we calculate for given x, y ∈ X

y = {z ∈ V | sz ∧Rx,z} ⇔ y = {z ∈ V | (sL)z,x ∧RT
z,x}

⇔ glb(R, sL ∩RT)y,x (cf. Section 2.4)
⇔ glb(R, sL ∩RT)Tx,y

and the definition of ClsToClo(C) yields the desired result. �

The functions CloToCls : O(X) → S(X) and ClsToClo : S(X) → O(X) of
Theorem 3.22 are order-reversing with respect to set inclusion for closure systems
and the pointwise ordering of functions. The latter order on functions can be
specified in relation algebra as C1 ≤ C2 iff C1 ⊆ C2R

T.

Example 3.21. As the functions of Theorem 3.22 are order-reversing a trans-
position of the Hasse-diagram in Figure 3 yields the Hasse-diagram of the lattice
O(X∗). Accordingly, in the resulting graph the vertex with label n represents
the closure operation Cn corresponding to the closure system Si for 1 ≤ i ≤ 24
and Figure 4 depicts the relations C! . . . C4. The function C1 maps all elements
to the greatest lattice element. It is the greatest closure operation with respect
to the pointwise ordering. The least closure operation is the identity relation I
and corresponds to the greatest closure system S24. Figure 5 shows the partial



Computing and Visualizing Closure Objects 39

Fig. 5. Lattice X∗, emphasizing closure system S4 and closure operation C4

order relation of the lattice X∗ as directed graph, where the vertices of the clo-
sure system S4 are emphasized as black squares and the arcs corresponding to
the pairs of the closure operation C4 are drawn boldface.

Two of the three properties of closure operations can immediately be verified
by examining the picture. The operation C4 is extensive, since each arc of C4 is
an arc of the graph. It is idempotent, since each C4-path leads into a loop over
at most one non-loop edge. Monotonicity of C4 can be recognized by pointwise
comparisons. The picture also clearly visualizes that each element of the lattice
is either a fixed point of C4, i.e., contained in the corresponding closure system
S4, or is mapped to the least element of S4 above it. �

The topological closure operations of a lattice (X,�,�) distribute over the �-
operation and form an important subclass of O(X). If the lattice X is finite, the
corresponding closure systems are precisely the sublattices of X which contain
the greatest element of X . Assuming R : X↔X to be the partial order of X , a
simple calculation shows that C ∈ O(X) is topological iff

(C ||C) Sup(R) = Sup(R)C. (5)

We have transformed (5) into RelView-code and computed for the above ex-
ample lattice X∗ that exactly 20 out of the 24 closure operations are topological.
The four exceptions are C14, C18, C21 and C22.

3.3 Full Implicational Systems and Join-Congruences

The origin of full implicational systems is relational database theory, where they
are called families of functional dependencies (see e.g., [7]). In [6] full implica-
tional systems are defined on powersets by a variant of the well known Arm-
strong axioms which require for all sets A,B,C,D that 1) if A→ B and B → C



40 R. Berghammer and B. Braßel

then A → C, 2) if A ⊇ B then A → B and 3) if A → B and C → D then
A ∪ C → B ∪ D. We generalize this description to finite (complete) lattices
(X,�,�) with partial order R : X↔X . In this sense, a full implicational sys-
tem on X is a relation F : X↔X that is 1) transitive, 2) contains RT and
3) for all x, y, x′, y′ ∈ X it holds that Fx,x′ and Fy,y′ imply Fx	y,x′	y′ . As a
side remark we note that axiom 3) could be generalized to arbitrary least upper
bounds, i.e., arbitrary complete lattices. The resulting relation-algebraic formu-
lation would be that 3’) for all subrelations D ⊆ F we have vwT ⊆ F , where
v := lub(R,DL) specifies the least upper bound of all first components of pairs
of D and w := lub(R,DTL) does the same for the second components. But as
we restrict ourselves to finite relations, the following theorem considers the first
version of the axiom only.

Theorem 3.31. Given R : X↔X as partial order of a finite lattice (X,�,�),
F : X↔X is a full implicational system of X iff the following formulae hold:

FF ⊆ F RT ⊆ F F ||F ⊆ Sup(R)F Sup(R)T

Proof. We only consider the last formula and get the desired property by

∀u, v ∈ X×X : Fu1,v1 ∧ Fu2,v2 → Fu1	u2,v1	v2

⇔ ∀u, v ∈ X×X : (F ||F )u,v → ∃x, y ∈ X : x = u1 � u2 ∧ y = v1 � v2 ∧ Fx,y

⇔ ∀u, v ∈ X×X : (F ||F )u,v → ∃x, y ∈ X : Sup(R)u,x ∧ Fx,y ∧ Sup(R)v,y

⇔ ∀u, v ∈ X×X : (F ||F )u,v → (Sup(R)F Sup(R)T)u,v

⇔ F ||F ⊆ Sup(R)F Sup(R)T. �

If full implicational systems are ordered by inclusion, then the complete lattice
induced by (O(X),≤) is isomorphic to the complete lattice induced by (F(X),⊆),
where F(X) denotes the set of all full implicational systems of (X,�,�). One
direction of this isomorphism is given by mapping C ∈ O(X) to the full impli-
cational system F ∈ F(X) that consists of all pairs 〈x, y〉 ∈ X×X with Ry,C(x).
The converse direction is obtained by mapping F ∈ F(X) to the closure opera-
tion C ∈ O(X) such that C(x) =

⊔{z ∈ X | Dx,z} for all x ∈ X . The following
theorem yields these correspondences formulated as a pair of relation-algebraic
specifications.

Theorem 3.32. Let R : X↔X be the partial order of a lattice (X,�,�). Then,
for all C ∈ O(X) the relation

CloToFis(C) := CRT : X↔X

fulfills for all x, y ∈ X that CloToFis(C)x,y iff Ry,C(x), and, conversely, for all
F ∈ F(X) the relation

FisToClo(F ) := lub(R,FT)
T

: X↔X

fulfills for all x, y ∈ X that FisToClo(F )x,y iff y =
⊔{z ∈ X | Fx,z}.



Computing and Visualizing Closure Objects 41

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

Fig. 6. Full implicational systems F1 to F4

Proof. The first claim follows from the definition of CloToFis(C) and

Ry,C(x) ⇔ ∃ z ∈ X : Cx,z ∧RT
z,y ⇔ (CRT)x,y

and the proof of the second claim is analogue to the one of Theorem 3.22. �

There is a very close relation between full implicational systems and join-congru-
ence relations, which are generalizations of lattice congruences. Given a lattice
(X,�,�), a relation J : X↔X is a join-congruence of X iff it is an equiv-
alence relation and, in addition for all x, y, z ∈ X from Jx,y it follows that
Jx	z,y	z. How to specify equivalence relations with relation-algebraic means is
well-known; see e.g., [11]. From the proof of Theorem 3.31 we obtain as spe-
cial case that the remaining requirement on join-congruences holds for J iff
J || I ⊆ Sup(R)J Sup(R)T. This leads to the following result.

Theorem 3.33. Let R : X↔X be the partial order of a lattice (X,�,�). Then
J : X↔X is a join-congruence of X iff the following formulae hold:

I ⊆ J J = JT JJ ⊆ J J || I ⊆ Sup(R)J Sup(R)T �

In the case of a finite lattice (X,�,�) there is a one-to-one correspondence
between the set O(X) of all closure operations of X and the set J(X) of all join-
congruences of X which again establishes a lattice isomorphism wrt. the lattices
induced by the ordered sets (O(X),≤) and (J(X),⊆). The join-congruence J
associated with the closure operation C ∈ O(X) is the kernel of the function C,
i.e., we have for all x, y ∈ X that Jx,y iff C(x) = C(y). Relation-algebraically
this means that J = CloToJc(C), where

CloToJc(C) := CCT : X↔X. (6)

In the reverse direction, the closure operation C is obtained from the join-
congruence J ∈ J(X) as in the case of full implicational systems, i.e., by map-
ping each element x ∈ X to

⊔{z ∈ X | Jx,z}. Using Theorem 3.32 we get
C = JcToClo(J) as

JcToClo(J) := lub(R, J)T : X↔X (7)

where R : X↔X is the partial order of the finite lattice (X,�,�).

Example 3.31. In Figure 6 the full implicational systems F1 to F4 of our
running example are shown as RelView-pictures, where Fi is the value of
CloToFis(Ci) with the closure operations Ci from Figure 4, 1 ≤ i ≤ 4.



42 R. Berghammer and B. Braßel

Fig. 7. Join congruences J1 to J4

For our running example we already know that exactly 24 equivalence relations
Ji = CloToJc(Ci), 1 ≤ i ≤ 24, onX∗ are join-congruences. Figure 7 shows the re-
lations J1 to J4. Each column (or row) directly corresponds to a congruence class
of the respective relation. In addition we used RelView to test which of the 24
join-congruences are also meet-congruences. Analogously, a meet-congruence M
satisfies for all x, y, z ∈ X thatMx,y impliesMx
z,y
z. We obtained four positive
answers: J1, J3, J22 (with the classes {x1}, {x2}, {x3}, {x4, x6}, {x5}) and I = J24.
The relation J2, for example, is not a meet-congruence, since x = z = x2 and
y = x3 is one of the 12 triples such that 〈x, y〉 is in J2 but 〈x � z, y � z〉 is not
in J2. �

3.4 Dependency Relations

In [1] Aumann introduced certain relations to formalize the essential properties
of a “contact” between objects and sets of objects. His motivation was to obtain
an access to topology which is more suggestive for beginners than the ones
provided by “traditional” axiom systems. If we formulate his original definition
in our notation, then a relation D : X↔ 2X is a contact if 1) for all x ∈ X and
Y, Z ∈ 2X we have Dx,{x}, that 2) from Dx,Y and Y ⊆ Z it follows Dx,Z, and
that 3) fromDx,Y it followsDx,Z ifDy,Z holds for all y ∈ Y . Obviously, demands
1) and 2) are equivalent to the fact that x ∈ Y implies Dx,Y for all x ∈ X and
Y ∈ 2X . Hence, Aumann’s contacts are exactly the dependency relations in the
sense of [6]. In the following theorem, we present relation-algebraic versions of
the two axioms given in [6].

Theorem 3.41. Let M : X↔ 2X be a membership-relation. Then a relation
D : X↔ 2X is a dependency relation iff the following formulae hold:

M ⊆ D DMTD ⊆ D
Proof. We only show how the second inclusion can be obtained from a first-order
formalization of the sexond axiom of [6]:

∀x ∈ X,Y, Z ∈ 2X : Dx,Y ∧ (∀ y ∈ Y : Dy,Z) → Dx,Z

⇔ ∀x ∈ X,Y, Z ∈ 2X : Dx,Y ∧ ¬(∃ y ∈ X : y ∈ Y ∧ D y,Z) → Dx,Z

⇔ ∀x ∈ X,Y, Z ∈ 2X : Dx,Y ∧ MTD Y,Z → Dx,Z

⇔ ∀x ∈ X,Z ∈ 2X : (∃Y ∈ 2X : Dx,Y ∧ MTD Y,Z) → Dx,Z

⇔ ∀x ∈ X,Z ∈ 2X : (DMTD )x,Z → Dx,Z

⇔ DMTD ⊆ D �



Computing and Visualizing Closure Objects 43

In [1] a one-to-one correspondence between the set O(2X) of all closure opera-
tions of (2X ,⊆) and the set D(X) of all contacts of type [X↔ 2X ] is established,
which is also mentioned in [6] for dependency relations. The relation D ∈ D(X)
corresponding to C ∈ O(2X) is for all x ∈ X and Y ∈ 2X given by Dx,Y iff
x ∈ C(Y ). Conversely, the closure operation associated with D ∈ D(X) maps
Y ∈ 2X to {x ∈ X | Dx,Y }. The next theorem contains corresponding specifica-
tions in relation algebra.

Theorem 3.42. Assume M : X↔ 2X to be a membership-relation. Then, for
all C ∈ O(2X) the relation

CloToDep(C) := MCT : X↔ 2X

fulfills for all x ∈ X and Y ∈ 2X that CloToDep(C)x,Y iff x ∈ C(Y ), and,
conversely, for all D ∈ D(X) the relation

DepToClo(D) := syq(D,M) : 2X ↔ 2X

fulfills for all Y ∈ X that DepToClo(D)(Y ) = {x ∈ X | Dx,Y }.
Proof. For the first claim, we calculate for all x ∈ X and Y ∈ 2X that

x ∈ C(Y ) ⇔ ∃Z ∈ 2X : Mx,Z ∧CT
Z,Y ⇔ (MCT)x,Y

and use the definition of CloToDep(C)x,Y . Since for all Y, Z ∈ 2X we have

{x ∈ X | Dx,Y } = Z ⇔ ∀x ∈ X : Dx,Y ↔ x ∈ Z
⇔ ∀x ∈ X : Dx,Y ↔ Mx,Z

⇔ syq(D,M)Y,Z (cf. Section 2)

the definition of DepToClo(D)Y,Z in combination with the common notation for
function application yields the second claim. �
In [1] Aumann mentions that his relations may also be used to investigate the
notion of a contact in sociology or political science. For this, it is frequently nec-
essary to replace M by a relationM : X↔G with the interpretation “individual
x is a member of a group g of individuals” of Mx,g. If syq(M,M) = I, then
(G,R) is an ordered set, where R := MTM . In this general setting the one-to-
one correspondence between closure operations and contacts is lost. It can only
be shown that there is an order embedding from the set of closure operations to
the set of these generalized contacts.

4 Conclusion

Closure systems and closure operations play an important role in both math-
ematics and computer science. Moreover, the literature contains many exam-
ples for concepts employed in practice which could be proven to be isomorphic
to special closure systems. In this work we have presented relation-algebraic
formulations of the connections between closure systems on the one hand and



44 R. Berghammer and B. Braßel

closure operations, full implication systems, join-congruences, and dependency
relations on the other hand. The resulting algebraic representations are very com-
pact and we have given proofs of the correctness of each formulation. In addition
we have demonstrated that the formulas can directly be used to compute the
transformation between concepts, e.g., transform a given finite dependency rela-
tion to the corresponding closure operation. Each of the definitions can also be
used to efficiently test given relations for conformance, e.g., to compute whether
a given relation is a dependency relation or not. We have used the computer
algebra system RelView to compute both transformations and tests. As shown
by examples, the system can also be used to visualize the results either as graphs
or as Boolean matrices, whatever is more appropriate to the case.

A final word about scalability. We have taken care that the presented tests and
transformations fit well into the setting of relations implemented using ROBDDs.
As a consequence all of the resulting programs scale well and are also applica-
ble to big relations with ten thousands of elements. The only exception is the
enumeration of all possible closure systems on a given set provided with Theo-
rem 3.12. As shown in [6] the number of such systems grows too rapidly to be
subject to an efficient complete enumeration.

References

1. Aumann, G.: Contact relations. Bayerische Akademie der Wissenschaften, Mathe-
Nat. Klasse Sitzungsberichte, 67–77 (1970) (in German)

2. Behnke, R., Berghammer, R., Meyer, E., Schneider, P.: RELVIEW - A system for cal-
culating with relations and relational programming. In: Astesiano, E. (ed.) ETAPS
1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)

3. Berghammer, R.: Solving algorithmic problems on orders and lattices by relation
algebra and relView. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2006. LNCS, vol. 4194, pp. 49–63. Springer, Heidelberg (2006)

4. Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relational alge-
bra using binary decision diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS,
vol. 2561, pp. 241–257. Springer, Heidelberg (2002)

5. Berghammer, R., Neumann, F.: RelView – An OBDD-based Computer Algebra
system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

6. Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and
implicational systems on a finite set: a survey.Discr. Appl.Math. 127, 241–269 (2003)

7. Demetrovics, J., Lipkin, L.O., Muchnik, J.B.: Functional dependencies in relational
databases: a lattice point of view. Discr. Appl. Math. 40, 155–185 (1992)

8. Doignon, J.P., Falmagne, J.C.: Knowledge spaces. Springer, Heidelberg (1999)
9. Ganter, B., Wille, R.: Formal concept analysis, Mathematical foundations.

Springer, Heidelberg (1998)
10. Leoniuk, B.: ROBDD-based implementation of relational algebra with applications.

Ph.D. thesis, Univ. Kiel (2001) (in German)
11. Schmidt, G., Ströhlein, T.: Relations and graphs. Discrete Mathematics for

Computer Scientists. In: EATCS Monographs on Theor. Comp. Sci., Springer,
Heidelberg (1993)

12. Tarski, A.: On the calculus of relations. J. Symb. Logic 6, 73–89 (1941)



On Integrability of a Planar ODE System
Near a Degenerate Stationary Point

Alexander Bruno1 and Victor Edneral2,�

1 Keldysh Institute for Applied Mathematics of RAS
Miusskaya Sq. 4, Moscow, 125047, Russia

bruno@keldysh.ru
2 Skobeltsyn Institute of Nuclear Physics
of Lomonosov Moscow State University

Leninskie Gory 1, Moscow, 119991, Russia
edneral@theory.sinp.msu.ru

Abstract. We consider an autonomous system of ordinary differential
equations, which is solved with respect to derivatives. To study local
integrability of the system near a degenerate stationary point, we use
an approach based on Power Geometry method and on the computation
of the resonant normal form. For a planar 5-parametric example of such
system, we found the complete set of necessary and sufficient conditions
on parameters of the system for which the system is locally integrable
near a degenerate stationary point.

Keywords: ordinary differential equations, local integrability, resonant
normal form, power geometry, computer algebra.

1 Introduction

We consider an autonomous system of ordinary differential equations

dxi/dt
def= ẋi = ϕi(X), i = 1, . . . , n, (1)

where X = (x1, . . . , xn) ∈ Cn and ϕi(X) are polynomials.
In a neighborhood of the stationary point X = X0, the system (1) is locally

integrable if it has there sufficient number m of independent first integrals of the
form

aj(X)/bj(X), j = 1, . . . ,m,

where functions aj(X) and bj(X) are analytic in a neighborhood of the point
X = X0. Otherwise we call the system (1) locally nonintegrable in this neigh-
borhood.

In [1], there was proposed a method of analysis of integrability of a system
based on power transformations and computation of normal forms near station-
ary solutions of transformed systems [2].
� The grant of the Russian Foundation for Basic Research 08-01-00082 and the grant of

the President of the Russian Federation for support of scientific schools 195.2008.2.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 45–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



46 A. Bruno and V. Edneral

In this paper we demonstrate how this approach can be applied to the study
of local integrability of the planar case (i.e., n = 2) of system (1) near the
stationary point X0 = 0 of high degeneracy.

In the neighborhood of the stationary point X = 0, system (1) can be written
in the form

Ẋ = AX + Φ̃(X), (2)

where Φ̃(X) has no linear in X terms.
Let λ1, λ2, . . . , λn be eigenvalues of the matrix A. If at least one of them

λi �= 0, then the stationary point X = 0 is called an elementary stationary
point. In this case, system (1) has a normal form which is equivalent to a system
of lower order [3]. If all eigenvalues vanish, then the stationary point X = 0 is
called a nonelementary stationary point. In this case, there is no normal form for
the system (1). But by using power transformations, a nonelementary stationary
point X = 0 can be blown up to a set of elementary stationary points. After
that, it is possible to compute the normal form and verify that the condition A
is satisfied [4] at each elementary stationary point.

If n = 2 then rationality of the ratio λ1/λ2 and the condition A (see the next
paragraph) are necessary and sufficient conditions for local integrability of a sys-
tem near an elementary stationary point. For local integrability of original sys-
tem (1) near a degenerate (nonelementary) stationary point, it is necessary and
sufficient to have local integrability near each of elementary stationary points,
which are produced by the blowing up process described above.

So we study the system

ẋ1 = x1

∑
φQX

Q,
ẋ2 = x2

∑
ψQX

Q,
(3)

where Q = (q1, q2), XQ = xq1
1 x

q2
2 ; φQ and ψQ are constant coefficients, which

can be polynomials in parameters of the system.
System (3) has a quasi-homogeneous initial approximation if there exists an

integer vector R = (r1, r2) > 0 and a number s such that the scalar product

〈Q,R〉 def= q1 r1 + q2 r2 ≥ s = const

for nonzero |φQ| + |ψQ| �= 0, and between vectors Q with 〈Q,R〉 = s there are
vectors of the form (q1,−1) and (−1, q2). In this case, system (3) takes the form

ẋ1 = x1[φs(X) + φs+1(X) + φs+2(X) + . . .],
ẋ2 = x2[ψs(X) + ψs+1(X) + ψs+2(X) + . . .],

where φk(X) is the sum of terms φQX
Q for which 〈Q,R〉 = k. And the same

holds for the ψk(X). Then the initial approximation of (3) is the quasi-homoge-
neous system

ẋ1 = x1 φs(X),
ẋ2 = x2 ψs(X). (4)

We study the problem: what are the conditions on parameters under which
system (3) is locally integrable. The local integrability of (4) is necessary for



On Integrability of a Planar ODE System 47

this. For an autonomous planar system m = 1 (on m see the introduction); so
there are two cases:

1. System (4) is Hamiltonian, i.e., it has the form

ẋ1 = ∂H(X)/∂x2, ẋ2 = −∂H(X)/∂x1,

where H(X) is a quasi-homogeneous polynomial.
2. System (4) is non Hamiltonian, but it has the first integral F (X):

∂F (X)
∂x1

x1 φs +
∂F (X)
∂x2

x2 ψs = 0,

where F (X) is a quasi-homogeneous polynomial.

For the first case, with the additional assumption that the polynomial H(X) is
expandable into the product of only square free factors, the problem is solved
in [5]. Therefore, here we discuss only the second case. More precisely, we study
the system with R = (2, 3) and s = 7.

At R = (2, 3) and s = 7 the quasi-homogeneous system (4) has the form

ẋ = a y3 + b x3 y, ẏ = c x2 y2 + d x5, (5)

where a �= 0 and d �= 0.

Lemma 11. If system (5) with b �= 0 and c �= 0 has the first integral

I = αy4 + β x3 y2 + γ x6, β �= 0, (6)

then
(a d− b c)(3 b+ 2 c) = 0. (7)

Proof. A derivative of integral (6) with respect to system (5) has the form

∂I/∂x (a y3 + b x3y) + ∂I/∂y (c x2y2 + d x5) =
= (3 β a+ 4αc)x2y5 + (6 γ a+ 3 β b+ 2 β c+ 4αd)x5y3+
+(6 γ b+ 2 β d)x8y ≡ 0,

thus, coefficients at three monomials xpyq are equal to zero, i.e.

3 β a+ 4α c = 0, 6 γ b+ 2 β d = 0,
6 γ a+ 3 β b+ 2 β c+ 4αd = 0. (8)

From the first two equations (8), we obtain

α = −3 β a
4 c

, γ = −β d
3 b
. (9)

Substituting these values in the third equations (8), cancelling the factor β,
multiplying (b c), and simplifying we obtain equality (7).



48 A. Bruno and V. Edneral

In accordance with Lemma 11, system (5) has the first integral (6) in the two
cases:

1. 3 b+ 2 c = 0, then in accordance with equalities (9) integral (6) has the form

I = (−3
2
a y4 + 2 c x3y2 + d x6)

β

2 c
(10)

and Hamiltonian function H = −I c/(3 β);
2. a d− b c = 0, if 3 b+2 c �= 0, then the integral c0 I is not a Hamiltonian func-

tion for any constant c0; if 3 b+ 2 c = 0, then integral (10) and Hamiltonian
are proportional to the square (c1y2 + c2x3)2, where c1, c2 = const.
Multiplying x and y in system (5) by the constants, we can reduce 2 from 4
parameters a, b, c, d. For example it is possible to take a = d = 1.

In [5], systems (3), (5) were studied in the case 1 above. We study them in the
case 2.

2 About Normal Form and the Condition A

Let the linear transformation
X = BY (11)

bring the matrix A to the Jordan form J = B−1AB and (2) to

Ẏ = JY + ˜̃Φ(Y ). (12)

Let the formal change of coordinates

Y = Z +Ξ(Z), (13)

where Ξ = (ξ1, . . . , ξn) and ξj(Z) are formal power series, transform (12) in the
system

Ż = JZ + Ψ(Z). (14)

We write it in the form

żj = zjgi(Z) = zj
∑

gjQZ
Q over Q ∈ Nj , j = 1, . . . , n, (15)

where Q = (q1, . . . , qn), ZQ = zq1
1 . . . z

qn
n ,

Nj = {Q : Q ∈ Zn, Q+ Ej ≥ 0}, j = 1, . . . , n,

Ej means the unit vector. Denote

N = N1 ∪ . . . ∪ Nn. (16)

The diagonal Λ = (λ1, . . . , λn) of J consists of eigenvalues of the matrix A.
System (14), (15) is called the resonant normal form if:
a) J is the Jordan matrix,
b) in writing (15), there are only the resonant terms, for which the scalar

product
〈Q,Λ〉 def= q1λ1 + . . .+ qnλn = 0. (17)



On Integrability of a Planar ODE System 49

Theorem 21 (Bruno [4]). There exists a formal change (13) reducing (12) to
its normal form (14), (15).

In [4] there are conditions on the normal form (15), which guarantee the conver-
gence of the normalizing transformation (13).

Condition A. In the normal form (15)

gj = λjα(Z) + λ̄jβ(Z), j = 1, . . . , n,

where α(Z) and β(Z) are some power series.
Let

ωk = min |〈Q,Λ〉| over Q ∈ N, 〈Q,Λ〉 �= 0,
n∑

j=1

qj < 2k, k = 1, 2, . . .

Condition ω (on small divisors). The series

∞∑
k=1

2−k logωk > −∞,

i.e. it converges.
It is fulfilled for almost all vectors Λ.

Theorem 22 (Bruno [4]). If vector Λ satisfies Condition ω and the normal
form (2.6) satisfies Condition A then the normalizing transformation (13) con-
verges.

The algorithm of a calculation of the normal form, the normalizing transforma-
tion, and the corresponding computer program are briefly described in [7].

3 The Simplest Nontrivial Example

We consider the system

dx/dt = −y3 − b x3y + a0 x
5 + a1 x

2y2,
dy/dt = (1/b)x2y2 + x5 + b0 x4y + b1 x y3,

(18)

with arbitrary complex parameters ai, bi and b �= 0.
Systems with a nilpotent matrix of the linear part are thoroughly studied by

Lyapunov et. al. In our example, there is no linear part, and the first approxi-
mation is not homogeneous but quasi homogeneous. This is the simplest case of
a planar system without linear part with Newton’s open polygon consisting of a
single edge. In our case, the system corresponds to the quasi homogeneous first
approximation with R = (2, 3), s = 7. In general case, such problems have not
been studied, and the authors do not know of any applications of the system
(18).



50 A. Bruno and V. Edneral

After the power transformation

x = u v2, y = u v3 (19)

and time rescaling
dt = u2v7dτ,

we obtain system (18) in the form

du/dτ = −3 u− [3 b+ (2/b)]u2 − 2 u3 + (3 a1 − 2 b1)u2v + (3 a0 − 2 b0)u3v,
dv/dτ = v + [b+ (1/b)]u v + u2v + (b1 − a1)u v2 + (b0 − a0)u2v2.

(20)
Under the power transformation (19), the point x = y = 0 blows up into two
straight lines u = 0 and v = 0. Along the line u = 0, system (20) has a single
stationary point u = v = 0. Along the second line v = 0 this system has three
elementary stationary points

u = 0, u = −1
b
, u = −3b

2
. (21)

Lemma 31. Near the point u = v = 0, the system (20) is locally integrable.

Proof. In accordance with Chapter 2 of the book [3], the support of the system
(20) consists of the five points Q = (q1, q2)

(0, 0), (1, 0), (2, 0), (1, 1), (2, 1). (22)

At the point u = v = 0, the eigenvalues of system (20) are Λ = (λ1, λ2) = (−3, 1).
Only for the first point from (22) Q = 0, the scalar product 〈Q,Λ〉 is zero, for
the remaining four points (22) it is negative, so these four points lie on the same
side of the straight line 〈Q,Λ〉 = 0. In accordance with the remark at the end
of Subsection 2.1 of Chapter 2 of the book [3], in such case the normal form
consists only of the terms of a right-hand side of system (20) such that their
support Q lies on the straight line 〈Q,Λ〉 = 0. But only linear terms of system
(20) satisfy this condition. Therefore, at the point u = v = 0 the normal form of
the system is linear

dz1/dτ = −3 z1, dz2/dτ = z2.

It is obvious that this normal form satisfies the condition A. So the normalizing
transformation converges, and at the point u = v = 0 the system (20) has the
analytic first integral

z1 z
3
2 = const.

The proof of local integrability at the point u = ∞, v = 0 is similar.
Thus, we must find conditions of local integrability at two other stationary

points (21). We will have the conditions of local integrability of system (18) near
the point X = 0.

Let us consider the stationary point u = −1/b, v = 0. Below we restrict
ourselves to the case b2 �= 2/3 when a linear part of the system (20), after the



On Integrability of a Planar ODE System 51

shift u = ũ− 1/b, has non-vanishing eigenvalues. At b2 = 2/3 the shifted system
in new variables ũ and v has a Jordan cell with both zero eigenvalues as the
linear part. This case can be studied by using one more power transformation.

To simplify eigenvalues, we change the time at this point once more with the
factor dτ = (2 − 3 b2)/b2 dτ1. After that we obtain the vector of eigenvalues of
system (20) at this point as (λ1, λ2) = (−1, 0). So the normal form of the system
will become

dz1/dτ1 = −z1 + z1 g1(z2),
dz2/dτ1 = z2 g2(z2),

(23)

where g1,2(x) are formal power series in x. Coefficients of these series are rational
functions of the parameters of the system a0, a1, b0, b1 and b. It can be proved that
denominator of each of these rational functions is proportional to some integer
degree k(n) of the polynomial (2 − 3b2). Their numerators are polynomials in
parameters of the system

g1,2(x) =
∞∑

n=1

p1,2;n(b, a0, a1, b0, b1)
(2 − 3 b2)k(n)

xn.

The condition A of integrability for equation (23) is g2(x) ≡ 0. It is equivalent
to the infinite polynomial system of equations

p2,n(b, a0, a1, b0, b1) = 0, n = 1, 2, . . . . (24)

According to the Hilbert’s theorem on bases in polynomial ideals [6], this system
has a finite basis.

We computed the first three polynomials p2,1, p2,2, p2,3 by our program [7].
There are 2 solutions of a corresponding subset of equations (24) at b �= 0

a0 = 0, a1 = −b0 b, b1 = 0, b2 �= 2/3 (25)

and
a0 = a1 b, b0 = b1 b, b2 �= 2/3. (26)

Addition of the fourth equation p2,4 = 0 to the subset of equations does not
change these solutions.

The calculation of polynomials p2,n(b, a0, a1, b0, b1) in generic case is techni-
cally a very difficult problem. But we can verify some of these equations from
the set (24) on solutions (25) and (26) for several fixed values of the parameter
b. We verified solutions of subset of equations

p2,n(b, a0 = a1b, a1, b0 = b1b, b1) = 0, n = 1, 2, . . . , 28.

at b = 1 and b = 2. All equations are satisfied, so we can assume that (25) and
(26) satisfy the condition A at the stationary point u = −1/b, v = 0.

Let us consider the stationary point u = −3 b/2, v = 0. We rescale time at
this point with the factor dτ = (2 − 3 b2) dτ2. After that we get the vector of



52 A. Bruno and V. Edneral

eigenvalues of the system (20) at this point as (−1/4, 3/2). So the normal form
has a resonance of the seventh order

dz1/dτ2 = −(1/4) z1 + z1 r1(z61 z2),
dz2/dτ2 = (3/2) z2 + z2 r2(z61 z2),

(27)

where r1,2(x) are also formal power series, and in (27) they depend on single
“resonant” variable z61z2. Coefficients of these series are rational functions of
system parameters a0, a1, b0, b1 and b again. The denominator of each of these
functions is proportional to some integer degree l(n) of the polynomial (2−3 b2).
Their numerators are polynomials in parameters of the system

r1,2(x) =
∞∑

n=1

q1,2;n(b, a0, a1, b0, b1)
(2 − 3 b2)l(n)

xn.

The condition A for the equation (27) is 6 r1(x) + r2(x) = 0. It is equivalent to
the infinite polynomial system of equations

6 q1,n(b, a0, a1, b0, b1) + q2,n(b, a0, a1, b0, b1) = 0, n = 7, 14, . . . . (28)

We computed polynomials q1,7, q2,7 and solved the lowest equation from the set
(28) for the parameters of solution (26). We have found 5 different two-parameter
(b and a1) solutions. With the (26) they are

1) b1 = −2 a1, a0 = a1b, b0 = b1b, b2 �= 2/3,
2) b1 = (3/2) a1, a0 = a1b, b0 = b1b, b2 �= 2/3,
3) b1 = (8/3) a1, a0 = a1b, b0 = b1b, b2 �= 2/3

(29)

and
4) b1 = 197−7

√
745

24 a1, a0 = a1b, b0 = b1b, b2 �= 2/3,
5) b1 = 197+7

√
745

24 a1, a0 = a1b, b0 = b1b b2 �= 2/3.
(30)

We verified (28) up to n = 49 for solutions (29) for b = 1 and b = 2 and arbitrary
a1. They are correct. We verified solution (25) in the same way. It is also correct.

Solutions (30) starting from the order n = 14 are correct only for the addi-
tional condition a1 = 0. But for this condition, solutions (30) are a special case
of solutions (29). So in accordance with the main supposition we can formulate
the

Corollary 1. If b2 �= 2/3, equalities (25) and (29) form a complete set of neces-
sary and sufficient conditions of local integrability of system (20) at all stationary
points on the manifold v = 0 and thus at the corresponding values of parameters
(25) and (29), then system (18) is locally integrable near the degenerate point
x = y = 0.

Of course we should prove corollary (1) by methods independent of the “exper-
imental mathematics”. At the moment, we can do it strictly analytically for all
cases above at all stationary points except of the cases (29) 2) and 3) at station-
ary points u = −3b/2, v = 0. I.e., now we have not proved yet local integrability



On Integrability of a Planar ODE System 53

by other strong methods only for cases a0 = a1 b, b0 = b1 b, b1 = 3a1/2 and
a0 = a1 b, b0 = b1 b, b1 = 8a1/3 at stationary point u = −3b/2, v = 0. All
other cases have been proved. But we strongly believe that we can finish proving
for these two cases also.

4 Remark

It is interesting that for parameters of solution 2) from (29), the normal form
at both stationary points is linear at least up to 49th order, i.e. g1,n = g2,n =
r1,n = r2,n = 0, n = 1, 2, . . . , 49 at b = 1 and b = 2. Thus, for these values
of parameters, the normalizing transformation splits the system into two inde-
pendent equations. It seems that this is the simplest variant of equations (20).
In the coordinates u, v the equation for the derivative of u does not depend on
the variable v. The solver ”DSolve” of the MATHEMATICA system gives for
parameters values 2) from (29) a solution with two arbitrary constants in a finite
form.

5 Conclusion

We found the complete set of necessary and sufficient conditions on parameters
of system (18) for which this system is locally integrable near the degenerate
stationary point x = y = 0. We exclude from the analysis the point b2 = 2/3.

References

1. Bruno, A.D., Edneral, V.F.: Algorithmic analysis of local integrability. Dokl.
Akademii Nauk 424(3), 299–303 (2009) (in Russian); Doklady Mathem. 79(1), 48–52
(2009) (in English)

2. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Fizmatlit,
Moscow (1998) (in Russian); Elsevier Science, Amsterdam (2000) (in English)

3. Bruno, A.D.: Local Methods in Nonlinear Differential Equations, Nauka, Moscow
(1979) (in Russian); Springer, Berlin (1989) (in English)

4. Bruno, A.D.: Analytical form of differential equations (I,II). Trudy Moskov. Mat.
Obsc. 25, 119–262 (1971); 26, 199–239 (1972) (in Russian); Trans. Moscow Math.
Soc. 25, 131–288; 26, 199–239 (1972) (in English)

5. Algaba, A., Gamero, E., Garcia, C.: The integrability problem for a class of planar
systems. Nonlinearity 22, 395–420 (2009)

6. Siegel, C.L.: Vorlesungen über Himmelsmechanik. Springer, Berlin (1956)
(in German); Fizmatlit, Moscow (1959) (in Russian)

7. Edneral, V.F.: On algorithm of the normal form building. In: Ganzha, et al. (eds.)
Proc. CASC 2007. LNCS, vol. 4770, pp. 134–142. Springer, Heidelberg (2007)



Conditions of D-Stability of the Fifth-Order
Matrices

Larisa A. Burlakova

Institute for System Dynamics and Control Theory, Siberian Branch, Russian
Academy of Sciences, 134, Lermontov st., Irkutsk, 664033, Russia

Abstract. The necessary conditions and some sufficient conditions rep-
resented in terms of matrix elements have been obtained for the property
of D-stability of the fifth-order matrices.

1 Introduction

The concept of D-stability of matrices has appeared rather long ago, for the first
time in publications on mathematical economics [1]. It has later been applied in
mathematical ecology [2]. The problem is reduced to verification of positiveness
for the real polynomial of n variables everywhere in the positive orthant. Only
some necessary and some sufficient conditions are known for the n×n−matrices
of general form ([3], [4], [5], etc.). In the general case, the condition of D-stability
can hardly be verified within a finite number of steps (constructively – according
to the definition given in [6]) with the use of algorithms of elimination of variables
from polynomial problems because the complexity of algorithms employed for
elimination of variables in polynomial optimization problems does not allow one
to apply them to rather complex polynomials having large numbers and high
powers of the variables [7]. So, the problem of constructing analytically verifiable
conditions in terms of matrix elements is important. Necessary and sufficient
conditions of D-stability for the 2nd- and 3rd-order matrices have been known for
a long time ([5], [8]). In [6], one can find a general approach to solving the problem
for the case of 4th-order matrices on the basis of applying the Routh–Hurwitz
criterion. An algorithm of polynomial programming is used for the purpose of
numerical verification of sufficient conditions and necessary conditions of D-
stability for arbitrary 4 × 4−matrices. This algorithm has been implemented in
the form of the software applied to several particular cases when the matrix has
not less than two zeros on the main diagonal. The analytical conditions for the
4th-order matrices are discussed in [9].

1.1 Some Definitions

Let Mn(R) be a set of quadratic n × n−matrices over the domain R of real
numbers; σ(A) be the spectrum of matrix A ∈ Mn(R); Dn ⊂ Mn(R) be a class
of diagonal matrices with positive elements on the main diagonal.

Definition 1. Matrix A is called stable if Re(λ) < 0 for any λ ∈ σ(A).

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 54–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Conditions of D-Stability of the Fifth-Order Matrices 55

Matrix A is stable if and only if the Routh–Hurwitz conditions hold for the
characteristic polynomial

det(λI −A) = λn + a1λ
n−1 + . . .+ an−1λ+ an, (1)

where I is the identity matrix;

aj = (−1)j
∑

1≤i1<...<in−j≤n

Aji1,...,in−j
;

Aji1,...,in−j
are main minors having the order j; furthermore, a1 = −TrA, an =

(−1)ndetA. From now on, the first index in designations of the main minors
denotes the minor’s order, the numbers of deleted rows and columns of matrix A
are indicated in the sub-indices in the order of growth; the main diagonal minors
of order k are denoted by Δkk.

Definition 2. Matrix A ∈ Mn(R) is called D-stable if Re(λ) < 0 for all λ ∈
σ(DA) for any D ∈ Dn .

Definition 3. Matrix B ∈Mn(R) belongs to the class P0 if all the main minors
of matrix B are non-negative, and for each k ≤ n there exists a strongly positive
minor of matrix B, which has order k [3].

Let X ∈Mn(R). Let us now define the set (−X) = {−x | x ∈ X}. If matrix A of
any order is D-stable then A ∈ (−P0) [10]. This condition, which is both neces-
sary and sufficient for the positiveness of all the coefficients of the characteristic
polynomial of matrix DA for any di > 0, requires that (i) all the main odd-order
minors be non-positive (at least one minor for each odd order be strongly neg-
ative); (ii) all the main even-order minors be non-negative (at least one minor
for each even order be strongly positive). Condition A ∈ (−P0) for the second
order matrices is the necessary and sufficient condition of D-stability [10]. The

following theorem is known for the 3-rd order matrices A =

⎛⎝a1,1 a1,2 a2,3

a2,1 a1,2 a2,3

a3,1 a3,2 a3,3

⎞⎠ .
Theorem 1. [8]. Matrix A ∈ M3(R) is D-stable if and only if the following

conditions hold: A ∈ (−P0);
(√−A23a3,3+

√−a2,2A22+
√−a1,1A21

)2

≥ −Δ33,

furthermore, the equality is reached only when at least one factor under the
radical vanishes, and the other is nonzero.

The system of necessary inequations A ∈ (−P0) for the matrix A ∈ M4(R) is
complemented by the following conditions [9]

Δ44 > 0,

0 ≤ a2
1,1Δ44 ≤ −

(√−A33A22,4 +
√−A32Δ22 +

√−A22,3Δ33

)2

a1,1,

0 ≤ a2
2,2Δ44 ≤ −

(√−A33A21,4 +
√−A31Δ22 +

√−A21,3Δ33

)2

a2,2,

0 ≤ a2
3,3Δ44 ≤ −(√−A32A21,4 +

√−A31A22,4 +
√−A21,2Δ33

)2
a3,3,

0 ≤ a2
4,4Δ44 ≤ −(√−A33A21,2 +

√−A32A21,3 +
√−A31A22,3

)2
a4,4;

(2)



56 L.A. Burlakova

0 ≤ (−A31) ≤ (√−A21,2a2,2 +
√−A21,3a3,3 +

√−A21,4a4,4

)2
,

0 ≤ (−A32) ≤ (√−A21,2a1,1 +
√−A22,3a3,3 +

√−A22,4a4,4

)2
,

0 ≤ (−A33) ≤ (√A21,3(−a1,1) +
√
A22,3 (−a2,2) +

√
Δ22(−a4,4)

)2
,

0 ≤ (−Δ33) ≤ (√
A21,4 (−a1,1) +

√
A22,4(−a2,2) +

√
Δ22(−a3,3)

)2
;

(3)

Furthermore, the simultaneous equality on the left in each of the groups of
conditions (2) and (3) is not permitted. Some sufficient conditions of D-stability
for the 4 × 4 matrices have been obtained in [9].

2 The 5th-Order Matrix

For the purpose of investigation of D-stability conditions for the 5th-order matrix

A =

⎛⎜⎜⎜⎜⎝
a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

⎞⎟⎟⎟⎟⎠ (4)

let us write down the characteristic equation of matrix DA ∈M5(R) :

λ5 + λ3
(
A23,4,5d1d2 +A22,4,5d1d3 +A21,4,5d2d3 +A22,3,5d1d4 +A21,3,5d2d4

+A21,2,5d3d4 +A22,3,4d1d5 +A21,3,4d2d5 +A21,2,4d3d5 +A21,2,3d4d5
)

+λ2
(− A34,5d1d2d3 −A33,5d1d2d4 −A32,5d1d3d4 −A31,5d2d3d4 −A33,4d1d2d5

−A32,4d1d3d5 −A31,4d2d3d5 −A32,3d1d4d5 −A31,3d2d4d5 −A31,2d3d4d5
)

+λ(A45d1d2d3d4 +A44d1d2d3d5 +A43d1d2d4d5 +A42d1d3d4d5 +A41d2d3d4d5)
−d1d2d3d4d5Δ5 + λ4(−d1a1,1 − d2a2,2 − d3a3,3 − d4a4,4 − d5a5,5) = 0.

(5)

In accordance with Definition 2, matrix (4) possesses the property of D-stability
if for any D ∈ D5 the Routh–Hurwitz conditions for the characteristic poly-
nomial (5) are satisfied. In the variant under scrutiny it is necessary to find
out the fact of positiveness of polynomial (5) coefficients and positiveness of
Hurwitz 2nd- and 4th-order determinants. Satisfaction of the requirement that
A ∈ (−P0) provides for positiveness of the coefficients in the characteristic poly-
nomial for any di > 0. The Hurwitz determinants represent polynomials of five di.
To the end of obtaining conditions of positiveness of these polynomials let us use
the principal idea of the method of quasi-homogeneous polynomial forms [7]: in
the scrutinized polynomial we group simpler polynomials representing sums of
some part of its terms, whose non-negativity forms the necessary conditions of
positiveness of the initial polynomial. The necessary conditions of positiveness
of the polynomials in the positive orthant are represented by the requirements of
non-negativity of the polynomial’s coefficients with the highest and zero powers
of the variable.



Conditions of D-Stability of the Fifth-Order Matrices 57

2.1 The Second-Order Hurwitz Determinant

The second-order Hurwitz determinant Γ2 = a1a2 −a0a3 may be written in the
following form:

Γ2 =
∑
d2i
(
A2k,m,n

dj

)
(−ai,i) + didjdk

(
A3m,n −A2i,m,nai,i −A2m,j,naj,j

−A2m,n,k
ak,k

)
, i �=j �=k �=m �=n, i+j+k+m+n = 15; i, j, k,m, n = 1, 5 (6)

(from now on the indices are placed in the order of increase). The form (6)
has a total power for all di, i.e. the degree of the polynomial, which is 3, and
with respect to each di – not more than 2. As obvious from the form (6), the
coefficients with second powers of any variable are non-negative (the coefficient
is positive at least with respect to one of the variables) when matrix (4) is such
that A ∈ (−P0). When the following conditions(

A3m,n −A2i,m,nai,i −A2m,j,naj,j −A2m,n,k
ak,k

) ≥ 0,
i �= j �= k �= m �= n, i+ j + k +m+ n = 15; i, j, k, m, n = 1, 5, (7)

are satisfied in addition, polynomial Γ2 (6) is positive for any di > 0. As we
intend to demonstrate below, conditions (7) are far from necessary ones.

Introduce the following denotations:{
β12 = A31,2 +

(√−A21,2,3a3,3 +
√−A21,2,4a4,4 +

√−A21,2,5a5,5

)2
,

β13 = A31,3 +
(√−A21,2,3a2,2 +

√−A21,3,4a4,4 +
√−A21,3,5a5,5

)2
,

β14 = A31,4 +
(√−A21,2,4a2,2 +

√−A21,3,4a3,3 +
√−A21,4,5a5,5

)2
,

β15 = A31,5 +
(√−A21,2,5a2,2 +

√−A21,3,5a3,3 +
√−A21,4,5a4,4

)2
,

β23 = A32,3 +
(√−A21,2,3a1,1 +

√−A22,3,4a4,4 +
√−A22,3,5a5,5

)2
,

β24 = A32,4 +
(√−A21,2,4a1,1 +

√−A22,3,4a3,3 +
√−A22,4,5a5,5

)2
,

β25 = A32,5 +
(√−A21,2,5a1,1 +

√−A22,3,5a3,3 +
√−A22,4,5a4,4

)2
,

β34 = A33,4 +
(√−A21,3,4a1,1 +

√−A22,3,4a2,2 +
√−A23,4,5a5,5

)2
,

β35 = A33,5 +
(√−A21,3,5a1,1 +

√−A22,3,5a2,2 +
√−A23,4,5a4,4

)2
,

β45 = A34,5 +
(√−A21,4,5a1,1 +

√−A22,4,5a2,2 +
√−A23,4,5a3,3

)2}
.

(8)

Now execute necessary transformations and reduce Γ2 (6) to the form

Γ2 = 1/3

(∑
i,jdkdmdn

(
2
(
A3i,j −A2i,j,k

ak,k −A2i,j,mam,m −A2i,j,nan,n

)
+βi,j

)
+
∑

idi

(∑
j,k

(
dj

√−A2k,m,n
aj,j − dk

√−A2j,m,nak,k

)2
))

,(
i �= i �= k; i, j, k = 1, 5

)
.

(9)

In the form (9), for the purpose of positiveness of the expression it is sufficient
to require satisfaction of the inequalities:(

2

(
A3i,j −∑kA2i,j,k

ak,k

)
+ βi,j

)
≥ 0,

(
i �= i �= k; i, j, k = 1, 5

)
. (10)

Sufficient conditions (10) are softer than conditions (7), if in (8) βij ≥ 0 .



58 L.A. Burlakova

2.2 The Fourth-Order Hurwitz Determinant

The fourth-order Hurwitz determinant for the 5th-order matrix DA

Γ4 = a1a2a3a4 − a0a
2
3a4 − a2

1a
2
4 − a1a

2
2a5 + a0a2a3a5 + 2a0a1a4a5 − a2

0a
2
5

represents a homogeneous polynomial of five variables di having the total degree
of 10, with respect to each of the variables di the power is not higher than 4.
The polynomial contains 291 addends:

Γ4 =
∑(

b1i12i23i34i45i5
di1
1 d

i2
2 d

i3
3 d

i4
4 d

i5
5 + bkjk

mjmnjn sjs
djk

k d
jm
m djn

n d
js
s

)
,

k < m < n < s; k,m, n, s = 1, 5; i1+i2+i3+i4+i5 = 10, jk +jm +jn+js = 10,

where denotations for polynomial coefficients introduced are such that numbers
di are indicated in the indices, while the powers of respective di are given in the
sub-indices. The values of these coefficients are given in the Appendix, but since
expressions are bulky, the coefficients have been decomposed into groups, and in
each of the groups are written only some of the coefficients. Group (A.1) includes
the coefficients, which contain 4 indices, the sub-indices are all unequal and
assume the values from the set 1,2,3,4; each coefficient is equal to the product
of the main minors of orders 1,2,3,4; the list (A.1) contains 120 elements. If
conditions (7) are satisfied then coefficients of group (A.2) are non-negative.

Noteworthy, coefficients of group (A.1) are non-negative due to the require-
ment that A ∈ (−P0). This allows one to execute some transpositions and trans-
form the polynomial to the form

Γ4 = f0 + d41
(
d32f12 + d33f13 + d34f14 + f15d35 + f1

)
+ d42

(
d31f21 + d33f23

+d34f24 + f25d35 + f2
)

+ d43
(
d31f31 + d323f32 + d34f34 + f35d35 + f3

)
+ d44

(
d31f41

+d32f42 + d33f43 + f45d35 + f4
)

+ d45
(
d31f51 + d32f52 + d33f53 + f54d34 + f5

)
,

(11)
where f0 does not contain di of the 4th power; fj (j = 1, 5) does not contain dj ,
and all the rest of dk enter the polynomial, while having the power not higher
than 2:

f0 =
∑
bi3j3k2m2d

3
i d

3
jd

2
kd

2
m +

∑
bi3j3k3m1d

3
i d

3
jd

3
kdm +

∑
bi3j3k2m1n1d

3
i d

3
jd

2
kdmdn

+
∑
bi3j2k2m2n1d

3
i d

2
jd

2
kd

2
mdn + b1222324252d

2
1d

2
2d

2
3d

2
4d

2
5,(

i �= j �= k �= m �= n; i, j, k,m, n = 1, 5
)
.

(12)
f1 = b14223242d

2
2d

2
3d

2
4 + b1422324151d

2
2d

2
3d4d5 + b1422314251d

2
2d3d

2
4d5

+b1421324251d2d
2
3d

2
4d5 + b14223252d

2
2d

2
3d

2
5 + b1422314152d

2
2d3d4d

2
5

+b1421324152d2d
2
3d4d

2
5 + b14224252d

2
2d

2
4d

2
5

+b1421314252d2d3d
2
4d

2
5 + b14324252d

2
3d

2
4d

2
5;

(13)

{
f12 = d4

(
d3
√
b14233241 −d5

√
b14234152

)2

+ d3
(
d4
√
b14233142 −d5

√
b14233152

)2

+d5
(
d3
√
b14233251 − d4

√
b14234251

)2

+ μ21d3d4d5;



Conditions of D-Stability of the Fifth-Order Matrices 59

f13 = d4

(
d2
√
b14223341 − d5

√
b14334152

)2

+ d2
(
d4
√
b14213342 − d5

√
b14213352

)2

+d5
(
d2
√
b14223351 − d4

√
b14334251

)2

+ μ31d2d4d5;

f14 = d3

(√
b14223143d2 −√b14314352d5

)2

+ d2
(√

b14213243d3 −√b14214352d5

)2

+d5
(√

b14224351d2 −√b14324351d3

)2

+ μ41d2d3d5;

f15 = d3

(√
b14223153d2 −√b14314253d4

)2

+ d2
(√

b14213253d3 −√b14214253d4

)2

+d4
(√

b14224153d2 −√b14324153d3

)2

+ μ51d2d3d4
}
.

(14)
Other values of fj and fjk may be obtained from (13)–(14) by the correspond-
ing transposition of indices and sub-indices. The values of μij are given in the
Appendix (A.3).

In the general case, it is possible to equate to zero all the three brackets
simultaneously in each of the coefficients fij with d4i by choosing dj > 0. So, the
requirements of μij ≥ 0 are necessary for the positiveness of Γ4 for any dj > 0.
There are 20 such conditions:

μij =
(−A2k,m,n

aj,j

)
δij ≥ 0,(

k < m < n; i �= j �= k �= m �= n; i, j, k, m, n = 1, 5; δij = δji

)
,

but these are reduced to ten inequalities of the form:{
δ12 =

(√−A45A33,4 +
√−A44A33,5 +

√−A43A34,5

)2
+A23,4,5Δ5 ≥ 0,

δ13 =
(√−A45A32,4 +

√−A44A32,5 +
√−A42A34,5

)2 +A22,4,5Δ5 ≥ 0,

δ14 =
(√−A45A32,3 +

√−A43A32,5 +
√−A42A33,5

)2
+A22,3,5Δ5 ≥ 0,

δ15 =
(√−A44A32,3 +

√−A43A32,4 +
√−A42A33,4

)2 +A22,3,4Δ5 ≥ 0,

δ23 =
(√−A45A31,4 +

√−A44A31,5 +
√−A41A34,5

)2 +A21,4,5Δ5 ≥ 0,

δ24 =
(√−A45A31,3 +

√−A43A31,5 +
√−A41A33,5

)2
+A21,3,5Δ5 ≥ 0,

δ25 =
(√−A44A31,3 +

√−A43A31,4 +
√−A41A33,4

)2 +A21,3,4Δ5 ≥ 0,

δ34 =
(√−A45A31,2 +

√−A42A31,5 +
√−A41A32,5

)2 +A21,2,5Δ5 ≥ 0,

δ35 =
(√−A44A31,2 +

√−A42A31,4 +
√−A41A32,4

)2 +A21,2,4Δ5 ≥ 0,

δ45 =
(√−A43A31,2 +

√−A42A31,3 +
√−A41A32,3

)2 +A21,2,3Δ5 ≥ 0
}
.

(15)

If one considers Γ4 (11) as a polynomial with respect to any di, whose coefficients
represent the polynomials with respect to the rest of the variables dj , (i �= j =
1, 5), then it is necessary also to provide for the non-negativity of the coefficients
with the zero power of dj in the coefficient with d4i and in the addend, which
does not contain variable di. So, in the capacity of the necessary conditions of



60 L.A. Burlakova

positiveness of Γ4 in the positive orthant, we obtain additional two groups of
inequalities, which – in terms of the main minors – write:

βij ≥ 0, (i, j = 1, 5, βij = βji) (16)

γij =
(√−A3n,iA2k,m,i

+
√−A3k,i

A2m,n,i +
√−A3m,iA2k,n,i

)2 +A4iaj,j ≥ 0,(
i �= j �= k �= m �= n; i, j, k,m, n = 1, 5

)
.

(17)
The list (17) contains 20 elements. When comparing inequalities (16), (17) and
the necessary conditions (2),(3) known for 3rd- and 4th-order matrices [8], [9]
note that these coincide with the accuracy up to the boundary. The following
theorem represents the result of our above reasoning.

Theorem 2. If matrix A ∈M5(R) is D-stable then A ∈ (−P0), and the follow-
ing conditions hold:(√−A3n,iA2k,m,i

+
√−A3k,i

A2m,n,i +
√−A3m,iA2k,n,i

)2 +A4iaj,j ≥ 0,(√−A4iA3j,k
+
√−A4jA3i,k

+
√−A4k

A3i,j

)2 +A2i,j,k
Δ5 ≥ 0,(∑√−A2k,i,j

ak,k

)2 +A3i,j ≥ 0,
(
i �= j �= k �= m �= n; i, j, k,m, n = 1, 5

)
2.3 On the Sufficient Conditions of D-Stability

As noted above, when conditions A ∈ (−P0) and (7) or (10) hold, the 2-order
Hurwitz determinant is positive for any matrix D ∈ D5. Let conditions (7) be
satisfied, then the necessary conditions (16) hold, and the coefficients in the
group (A.2) are non-negative.

Let the following conditions for the coefficients of the group (A.8) be satisfied:
bi4j2k2m2 ≥ 0 (i �= j �= k �= m; i, j, k,m = 1, 5). Hence necessary conditions
(17) hold. In this case it is possible to transform coefficient fi from (11) to the
following form:

fi = 1/3
(
djdkdmdn

(∑
j,k

(
3bi4j2k2m1n1 + 2

√
bi4j2k2m2

√
bi4j2k2n2

)
djdk

)
+
(√

bi4j2k2m2djdkdm +
√
b14j2k2n2djdkdn−√

bi4j2m2n2djdmdn −√bi4k2m2n2dkdmdn

)2

+
(√

bi4j2k2m2djdkdm −√b14j2k2n2djdkdn+√
bi4j2m2n2djdmdn −√bi4k2m2n2dkdmdn

)2

+
(√

bi4j2k2m2djdkdm −√b14j2k2n2djdkdn−√
bi4j2m2n2djdmdn +

√
bi4k2m2n2dkdmdn

)2)
.

(18)



Conditions of D-Stability of the Fifth-Order Matrices 61

It follows from the representation (18) that to provide for the positiveness of
coefficients with d4i in (11) it is sufficient that the following inequalities (30
inequalities for (A.5)) be satisfied:(

3bi4j2k2m1n1 + 2
√
bi4j2k2m2

√
bi4j2k2n2

)
≥ 0,(

i �= j �= k �= m �= n; i, j, k,m, n = 1, 5
)
.

Now, to grant the positiveness of Γ4 (11) in the positive orthant it is sufficient
to have the positive addend f0 (12).
If the coefficients (A.2) bi3j3k3m1 ≥ 0, then the expression

∑
bi3j3k2m2d

3
i d

3
jd

2
kd

2
m+∑

bi3j3k3m1d
3
i d

3
jd

3
kdm from (12) may be transformed to the form:

1/3
∑((

didjdkdm

((√
bi3j1k3m3di −

√
bi1j3k3m3dj

)2

d2kd
2
m

)
+
(
3 bi2j2k3m3+

2
√
bi3j1k3m3

√
bi1j3k3m3

)
d3i d

3
jd

2
kd

2
m

))
,
(
i �= j �= k �= m �= n; i, j, k,m, n = 1, 5

)
(19)

It follows from (19) that in order to have non-negativity of this form, it is suffi-
cient to require that(

3 bi2j2k3m3 + 2
√
bi3j1k3m3

√
bi1j3k3m3

)
≥ 0,(

i �= j �= k �= m �= n; i, j, k,m, n = 1, 5
)
.

(20)

Here we have 30 inequalities for the coefficients (A.4).
Let the coefficients (A.9) bi3j1k2m2n2 ≥ 0, then

∑
bi3j2k2m2n1d

3
i d

2
jd

2
kd

2
mdn +

b1222324252d
2
1d

2
2d

2
3d

2
4d

2
5 from (12) may be written down in the form:

d1d2d3d4d5
∑(√

bi3j1k2m2n2di −
√
bi1j3k2m2n2dj

)2

dkdmdn +
(
b1222324252

+2
∑√

bi3j1k2m2n2

√
bi1j3k2m2n2

)
d21d

2
2d

2
3d

2
4d

2
5,(

i �= j �= k �= m �= n; i, j, k,m, n = 1, 5
)
,

(21)
and in order to grant (21) non-negativity it is sufficient that the following in-
equalities be satisfied:(

b1222324252 + 2
∑√

bi3j1k2m2n2

√
bi1j3k2m2n2

)
≥ 0,(

i �= j �= k �= m �= n; i, j, k,m, n = 1, 5
)
.

(22)

When the coefficients (A.6) bi3j3k2m1n1 ≥ 0, conditions (20), (22) are satisfied,
f0 ≥ 0 for all D ∈ D5. Consequently, the following theorem is valid.

Theorem 3. Matrix A ∈ M5(R) is D-stable when the following conditions are
satisfied: A ∈ (−P0), δij ≥ 0,

(
3 bi4j2k2m1n1 + 2

√
bi4j2k2m2

√
bi4j2k2n2

)
≥ 0,(

3 bi2j2k3m3 + 2
√
bi3j1k3m3

√
bi1j3k3m3

)
≥ 0, bi4j2k2m2 ≥ 0, bi3j1k2m2n2 ≥ 0,

bi3j3k3m1 ≥ 0,
(
b1222324252 + 2

∑√
bi3j1k2m2n2

√
bi1j3k2m2n2

)
≥ 0,

bi3j3k2m1n1 ≥ 0,
(
i �= j �= k �= m �= n; i, j, k, m, n = 1, 5

)
.



62 L.A. Burlakova

Note, if the coefficients (A.7) bi4j1k1m1n3 ≥ 0 then the conditions (15) be satisfied.
The case, when all the inequalities turn into equalities simultaneously in the
conditions of Theorem 3, requires additional investigations.

References

1. Arrow, K.J., McManus, M.: A note of dynamic stability. Econometrica 26, 448–454
(1958)

2. Svirezhev, Y.M., Logofet, D.O.: Stability of biological communities. Nauka,
Moscow (1978) (in Russian)

3. Johnson, C.R.: Sufficient conditions for D-stability. J. Economic Theory 9, 53–62
(1974)

4. Johnson, C.R.: D-stability and Rreal and complex quadratic forms. Lin. Algebra
and its Applications 9, 89–94 (1974)

5. Cross, G.W.: Three types of matrix stability. Lin. Algebra and its Applications. 20,
253–263 (1978)

6. Kanovei, G.V., Logofet, D.O.: D-stability of 4-by-4 matrices. J. Comp. Math. and
Math. Phys. 38, 1429–1435 (1998)

7. Kanovei, G.V., Nephedov, V.N.: On the necessary condition of positiveness for the
real polynomial of several variables in the positive orthant. Vestnik Moskovskogo
universiteta, vol. 15(2), pp. 24–29. Vytchislitelnaya Mathematika i Kibernetika
(2000)

8. Cain, B.E.: Real, 3 × 3 D-stable matrices. J. Research Nat. Bureau Standards
USA B80(1), 75–77 (1976)

9. Burlakova, L.A.: D-Stable 4th-order matrices. J. Sovremennie technologii. System-
niy analiz. Modelirovanie. 1(21), 109–116 (2009) (in Russian)

10. Johnson, C.R.: Second, third and fourth order D-Stability. J. Research Nat. Bureau
Standards USA B78(1), 11–13 (1974)

Appendix

{
b14314253 = A42A32,3A22,3,4a1,1, b14214253 = A43A32,3A22,3,4a1,1,

b24314253 = A41A31,3A21,3,4a2,2, b11244253 = A43A31,3A21,3,4a2,2,

b21344253 = A41A31,2A21,2,4a3,3, b11344253 = A42A31,2A21,2,4a3,3,

b13314452 = A42A32,3A22,3,5a4,4, b13214452 = A43A32,3A22,3,5a4,4,

b21324354 = A41A31,2A21,2,3a5,5, b11324354 = A42A31,2A21,2,3a5,5,

. . . . The list contains 120 elements
}
.

(A.1)

{
b13233351 = A44A34,5

(−A34,5 +A21,4,5a1,1 +A22,4,5a2,2 +A23,4,5a3,3

)
,

b13213343 = A45A32,5

(−A32,5 +A21,2,5a1,1 +A22,3,5a3,3 +A22,4,5a4,4

)
,

b11234353 = A43A31,3

(−A31,3 +A21,2,3a2,2 +A21,3,4a4,4 +A21,3,5a5,5

)
,

b23314353 = A41A31,3

(−A31,3 +A21,2,3a2,2 +A21,3,4a4,4 +A21,3,5a5,5

)
,

b11334353 = A42A31,2

(−A31,2 +A21,2,3a3,3 +A21,2,4a4,4 +A21,2,5a5,5

)
,

. . . . The list contains 20 elements
}
;

(A.2)



Conditions of D-Stability of the Fifth-Order Matrices 63

{
μ12 = b1324314151 + 2

√
b13243251

√
b13244251 + 2

√
b13243142

√
b13243152

+2
√
b13243241

√
b13244152 , μ13 = b1321344151 + 2

√
b13223451

√
b13344251

+2
√
b13213442

√
b13213452 + 2

√
b13223441

√
b13344152 , μ14 = b1321314451

+2
√
b13224451

√
b13324451 + 2

√
b13213244

√
b13214452 + 2

√
b13223144

√
b13314452 ,

μ15 = b1321314154 + 2
√
b13224154

√
b13324154 + 2

√
b13213254

√
b13214254

+2
√
b13223154

√
b13314254 , . . . .The list contains 20 elements

}
.

(A.3){
b12233342 = A45

(− 2A31,5A34,5 +A31,5A21,4,5a1,1 +A34,5A21,4,5a4,4

+a2,2(A34,5A21,2,5 +A32,5A21,4,5 +A31,5A22,4,5) + a3,3(A34,5A21,3,5

+A33,5A21,4,5 +A31,5A23,4,5 − 2A45a2,2)
)
, b13233252 = A44

(− 2A33,4A34,5

+A33,4A23,4,5a3,3 +A34,5A23,4,5a5,5 + a1,1(A34,5A21,3,4 +A33,4A21,4,5

+A31,4A23,4,5 ) + a2,2(A34,5A22,3,4 +A33,4A22,4,5 +A32,4A23,4,5 − 2A44a1,1)
)
,

b13234252 = A43

(− 2A33,4A33,5 +A33,4A23,4,5a4,4 +A33,5A23,4,5a5,5

+a1,1(A33,5A21,3,4 +A33,4A21,3,5 +A31,3A23,4,5) + a2,2(A33,5A22,3,4

+A33,4A22,3,5 +A32,3A23,4,5 − 2A43a1,1)
)
, b13334252 = A42

(− 2A32,4A32,5

+A32,4A22,4,5a4,4 +A32,5A22,4,5a5,5 + a1,1(A32,5A21,2,4 +A32,4A21,2,5

+A31,2A22,4,5 ) + a3,3(A32,5A22,3,4 +A32,4A22,3,5 +A32,3A22,4,5 − 2A42a1,1)
)
,

. . . . The list contains 30 elements
}
;

(A.4){
b1421314252 = a1,1

(
A45A32,3A22,3,4 +A43A32,5A22,3,4 +A42A33,5A22,3,4

+A44A32,3A22,3,5 +A43A32,4A22,3,5 +A42A33,4A22,3,5 +A43A32,3A22,4,5

+A42A32,3A23,4,5 − 2A22,3,4A22,3,5Δ5 − 2A42A43a1,1

)
, b1224314152 =

a2,2

(
A45A33,4A21,3,4 +A44A33,5A21,3,4 +A43A34,5A21,3,4 +A44A33,4A21,3,5

+A43A33,4A21,4,5 +A44A31,3A23,4,5 +A43A31,4A23,4,5 +A41A33,4A23,4,5

− 2A21,3,4A23,4,5Δ5 − 2A43A44a2,2

)
, b1122344152 = a3,3

(
A45A31,4A21,2,4

+A44A31,5A21,2,4 +A41A34,5A21,2,4 +A44A31,4A21,2,5 +A44A31,2A21,4,5

+A42A31,4A21,4,5 +A41A32,4A21,4,5 +A41A31,4A22,4,5 − 2A21,2,4A21,4,5Δ5

− 2A41A44a3,3

)
, b1221314452 = a4,4

(
A45A32,3A21,2,3 + A43A32,5A21,2,3

+A42A33,5A21,2,3 +A43A32,3A21,2,5 +A42A32,3A21,3,5 +A43A31,2A22,3,5

+A42A31,3A22,3,5 +A41A32,3A22,3,5 − 2A21,2,3A22,3,5Δ5 − 2A42A43a4,4

)
,

. . . .The list contains 30 elements
}
;

(A.5){
b1122334351 = A21,2,5

(
A45A31,3 +A43A31,5 +A41A33,5 −A21,3,5Δ5

)
a3,3

+A21,2,5

(
A45A31,4 +A44A31,5 +A41A34,5 −A21,4,5Δ5

)
a4,4 − 4A41A45a3,3a4,4

−(A42A31,5 +A41A32,5 +A45A31,2 −A21,2,5Δ5

)(
A31,5 −A21,2,5a2,2

−A21,3,5a3,3 −A21,4,5a4,4

)−A41A31,5

(
A32,5 −A21,2,5a1,1 −A22,3,5a3,3

−A22,4,5a4,4

)−A45A31,5

(
A31,2 −A21,2,3a3,3 −A21,2,4a4,4 −A21,2,5a5,5

)
,

. . . . The list contains 30 elements
}
;

(A.6)



64 L.A. Burlakova{
b1421314153 = A22,3,4a1,1(A44A32,3 +A43A32,4 +A42A33,4 −A22,3,4Δ5),
b1124314153 = A21,3,4a2,2(A44A31,3 +A43A31,4 +A41A33,4 −A21,3,4Δ5),
b1121344153 = A21,2,4a3,3(A44A31,2 +A42A31,4 +A41A32,4 −A21,2,4Δ5),
b1121314453 = A21,2,3a4,4(A43A31,2 +A42A31,3 +A41A32,3 −A21,2,3Δ5),
b1123314154 = A21,3,4a5,5(A44A31,3 +A43A31,4 +A41A33,4 −A21,3,4Δ5),
. . . . The list contains 20 elements

}
;

(A.7)

{
b14324252 = A42a1,1

(
A32,5A22,3,4 +A32,4A22,3,5 +A32,3A22,4,5 −A42a1,1

)
,

b24324252 = A41a2,2

(
A31,5A21,3,4 +A31,4A21,3,5 +A31,3A21,4,5 −A41a2,2

)
,

b12223452 = A44a3,3

(
A34,5A21,2,4 +A32,4A21,4,5 +A31,4A22,4,5 −A44a3,3

)
,

b12223244 = A45a4,4

(
A33,5A21,2,5 +A32,5A21,3,5 +A31,5A22,3,5 −A45a4,4

)
,

b12224254 = A43a5,5

(
A33,4A21,2,3 +A32,3A21,3,4 +A31,3A22,3,4 −A43a5,5

)
,

. . . .The list contains 20 elements
}
;

(A.8){
b1322314252 = −A33,5

(
A44A32,3 +A43A32,4 +A42A33,4 −A22,3,4Δ5

)
−A33,4

(
A45A32,3 +A43A32,5 +A42A33,5 −A22,3,5Δ5

)−A32,3

(
A45A33,4

+A44A33,5 +A43A34,5 −A23,4,5Δ5

)
+
(
A23,4,5

(
A43A31,2 +A42A31,3 +A41A32,3

−A21,2,3Δ5

)
+A22,3,5

(
A44A31,3 +A43A31,4 +A41A33,4 −A21,3,4Δ5

)
+A22,3,4

(
A45A31,3 +A43A31,5 +A41A33,5 −A21,3,5Δ5

)
+A21,3,5

(
A44A32,3

+A43A32,4 +A42A33,4 −A22,3,4Δ5

)
+A21,3,4

(
A45A32,3 +A43A32,5 +A42A33,5

−A22,3,5Δ5

)
+A21,2,3

(
A45A33,4 +A44A33,5 +A43A34,5 −A23,4,5Δ5

))
a1,1+(

A22,3,5

(
A44A32,3 +A43A32,4 +A42A33,4 −A22,3,4Δ5

)
+A22,3,4

(
A45A32,3

+A43A32,5 +A42A33,5 −A22,3,5Δ5

))
a2,2 −A43A32,3

(
A34,5 −A21,4,5a1,1

−A22,4,5a2,2 −A23,4,5a3,3

)
+
(
A23,4,5

(
A44A32,3 +A43A32,4 +A42A33,4

−A22,3,4Δ5

)
+A22,3,4

(
A45A33,4 +A44A33,5 +A43A34,5 −A23,4,5Δ5

))
a4,4

−A43A33,4

(
A32,5 −A21,2,5a1,1 −A22,3,5a3,3 −A22,4,5a4,4

)
+
(
A23,4,5

(
A45A32,3

+A43A32,5 +A42A33,5 −A22,3,5Δ5

)
+A22,3,5

(
A45A33,4 +A44A33,5 +A43A34,5

−A23,4,5Δ5

))
a5,5 −A43A33,5

(
A32,4 −A21,2,4a1,1 −A22,3,4a3,3 −A22,4,5a5,5

)
+
(
A43A31,3A22,4,5 + 2A43Δ5

)
a1,1 +A45A33,5A22,3,4a5,5 +A44A33,4A22,3,5a4,4

−2A41A43a
2
1,1 +A42A32,3A23,4,5a2,2 − 4A42A43a1,1a2,2 − 2A2

43
a1,1a3,3

−4A43A44a1,1a4,4 − 4A43A45a1,1a5,5, . . . .The list contains 20 elements
}
;

(A.9)

b1222324252 = −Δ2
5 −A2

41
a2
1,1 −A2

42
a2
2,2 −A2

43
a2
3,3 −A2

44
a2
4,4 −A2

45
a2
5,5

+Δ5(A34,5A21,2,3 +A33,5A21,2,4 +A33,4A21,2,5 +A32,5A21,3,4 +A32,4A21,3,5

+A32,3A21,4,5 +A31,5A22,3,4 +A31,4A22,3,5 +A31,3A22,4,5 +A31,2A23,4,5

−2(A21,2,5A21,3,4 +A21,2,4A21,3,5 +A21,2,3A21,4,5 )a1,1 − 2(A21,2,5A22,3,4

+A21,2,4A22,3,5 +A21,2,3A22,4,5)a2,2 − 2(A21,3,5A22,3,4 +A21,3,4A22,3,5

+A21,2,3A23,4,5)a3,3 − 2(A21,4,5A22,3,4 +A21,3,4A22,4,5

+A21,2,4A23,4,5 )a4,4 − 2(A21,4,5A22,3,5 +A21,3,5A22,4,5 +A21,2,5A23,4,5 )a5,5)
+A45(−2(A31,4A32,3 +A31,3A32,4 +A31,2A33,4 ) + (A31,4A21,2,3



Conditions of D-Stability of the Fifth-Order Matrices 65

+A31,3A21,2,4 +A31,2A21,3,4)a1,1 + (A32,4A21,2,3 +A32,3A21,2,4

+A31,2A22,3,4 )a2,2 + (A33,4A21,2,3 +A32,3A21,3,4 +A31,3A22,3,4 )a3,3

+(A33,4A21,2,4 +A32,4A21,3,4 +A31,4A22,3,4)a4,4 + (A34,5A21,2,3

+A33,5A21,2,4 +A33,4A21,2,5 +A32,5A21,3,4 +A32,4A21,3,5 +A32,3A21,4,5

+A31,5A22,3,4 +A31,4A22,3,5 +A31,3A22,4,5 +A31,2A23,4,5 + 2Δ5)a5,5)
+A44(−2(A31,5A32,3 +A31,3A32,5 +A31,2A33,5 ) + (A31,5A21,2,3

+A31,3A21,2,5 +A31,2A21,3,5)a1,1 + (A32,5A21,2,3 +A32,3A21,2,5

+A31,2A22,3,5 )a2,2 + (A33,5A21,2,3 +A32,3A21,3,5 +A31,3A22,3,5 )a3,3

+(A33,5A21,2,5 +A32,5A21,3,5 +A31,5A22,3,5)a5,5 + a4,4(A34,5A21,2,3

+A33,5A21,2,4 +A33,4A21,2,5 +A32,5A21,3,4 +A32,4A21,3,5

+A32,3A21,4,5 +A31,5A22,3,4 +A31,4A22,3,5 +A31,3A22,4,5 +A31,2A23,4,5

+2Δ5 − 4A45a5,5)) +A43(−2(A31,5A32,4 +A31,4A32,5

+A31,2A34,5) + (A31,5A21,2,4 +A31,4A21,2,5 +A31,2A21,4,5)a1,1

+(A32,5A21,2,4 +A32,4A21,2,5 +A31,2A22,4,5)a2,2 + (A34,5A21,2,4

+A32,4A21,4,5 +A31,4A22,4,5)a4,4 + (A34,5A21,2,5 +A32,5A21,4,5

+A31,5A22,4,5)a5,5 + a3,3(A34,5A21,2,3 +A33,5A21,2,4 +A33,4A21,2,5

+A32,5A21,3,4 +A32,4A21,3,5 +A32,3A21,4,5 +A31,5A22,3,4

+A31,4A22,3,5 +A31,3A22,4,5 +A31,2A23,4,5 + 2Δ5 − 4A44a4,4

−4A45a5,5)) +A42(−2(A31,5A33,4 +A31,4A33,5 +A31,3A34,5)
+(A31,5A21,3,4 +A31,4A21,3,5 +A31,3A21,4,5)a1,1 + (A33,5A21,3,4

+A33,4A21,3,5 +A31,3A23,4,5)a3,3 + (A34,5A21,3,4 +A33,4A21,4,5

+A31,4A23,4,5 )a4,4 + (A34,5A21,3,5 +A33,5A21,4,5 +A31,5A23,4,5 )a5,5

+a2,2(A34,5A21,2,3 +A33,5A21,2,4 +A33,4A21,2,5 +A32,5A21,3,4

+A32,4A21,3,5 +A32,3A21,4,5 +A31,5A22,3,4 +A31,4A22,3,5

+A31,3A22,4,5 +A31,2A23,4,5 + 2Δ5 − 4A43a3,3 − 4A44a4,4

−4A45a5,5)) +A41(−2(A32,5A33,4 +A32,4A33,5 +A32,3A34,5) + (A32,5A22,3,4

+A32,4A22,3,5 +A32,3A22,4,5)a2,2 + (A33,5A22,3,4 +A33,4A22,3,5 +A32,3A23,4,5 )a3,3

+(A34,5A22,3,4 +A33,4A22,4,5 +A32,4A23,4,5 )a4,4 + (A34,5A22,3,5 +A33,5A22,4,5

+A32,5A23,4,5)a5,5 + a1,1(A34,5A21,2,3 +A33,5A21,2,4 +A33,4A21,2,5 +A32,5A21,3,4

+A32,4A21,3,5 +A32,3A21,4,5 +A31,5A22,3,4 +A31,4A22,3,5 +A31,3A22,4,5

+A31,2A23,4,5 + 2Δ5 − 4A42a2,2 − 4A43a3,3 − 4A44a4,4 − 4A45a5,5)).

All the computations have been executed with the aid of the software
MATHEMATICA.



Code Generation for Polynomial Multiplication

Ling Ding1 and Éric Schost2

1 ORCCA, Computer Science Department, The University of Western Ontario,
London, Ontario, Canada

lding6@csd.uwo.ca
2 ORCCA, Computer Science Department, The University of Western Ontario,

London, Ontario, Canada
eschost@uwo.ca

Abstract. We discuss the family of “divide-and-conquer” algorithms
for polynomial multiplication, that generalize Karatsuba’s algorithm. We
give explicit versions of transposed and short products for this family of
algorithms and describe code generation techniques that result in high-
performance implementations.

1 Introduction

Polynomial multiplication is a cornerstone of higher-level algorithms: fast algo-
rithms for Euclidean division, GCD, Chinese remaindering, factorization,
Newton iteration, etc, depend on fast (subquadratic) algorithms for polynomial
multiplication [20]. This article describes implementation techniques for several
aspects of this question; we focus on dense polynomial arithmetic, as opposed
the sparse model [12].

Variants of polynomial multiplication. To fix notation, we let R be our base
ring, and for n ∈ N>0, we let R[x]n be the set of polynomials in R[x] of degree
less than n. We will write the input polynomials as

A = a0 +a1x+ · · ·+an−1x
n−1 ∈ R[x]n, B = b0 +b1x+ · · ·+bn−1x

n−1 ∈ R[x]n;

note that the number of terms of A and B is at most n. Note also that we assume
the same degree upper bound on A and B: this needs not be a sensible assump-
tion in general, but makes sense in many applications (such as Newton iteration
or GCD). Our first objective is to compute the coefficients of the product

C = AB = c0x+ c1x+ · · · + c2n−2x
2n−2 ∈ R[x]2n−1.

This operation will be called plain multiplication. It turns out that two other
forms of multiplication are useful: the first is the transposed multiplication,
closely related to the middle product of [9]. The other noteworthy form is the
short product, introduced in [14] and studied in [10]. Both are detailed in Sec-
tion 3, together with mentions of their applications.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 66–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Code Generation for Polynomial Multiplication 67

Our contribution: code generation for divide-and-conquer algorithms.
Beyond from the naive algorithm, the main classes of fast algorithms are gener-
alizations of Karatsuba’s approach [11,18,21], where a given pattern is used in a
divide-and-conquer fashion, and FFT-like approaches, that use or build suitable
evaluation points [7,15,6], usually roots of unity.

In this paper, we focus on the former family. Despite its richness, we are not
aware of a systematic treatment of algorithms for transposed or short product in
this context. First, we fill this gap, giving explicit versions of such algorithms. We
will see the algorithms of this family can be described in finite terms, by triples
of graphs. Then, we describe a code generator that turns such graphs into C
implementations, avoiding the need to reimplement everything from scratch; the
performance of these implementations is among the best known to us.

Previous work. Most algorithms for plain multiplication discussed here are
well-known: the most classical ones are due to Karatsuba [11] and Toom [18],
with improvements in [1]; some less well-known ones are due to Winograd [21].

It is well-known that any algorithm for plain multiplication can be trans-
formed into an algorithm for transposed multiplication; this is already in [21],
and is developed in [9,3], together with applications. However, while the ex-
istence of transposed algorithms was known, our general derivation of explicit
divide-and-conquer algorithms is new, to our knowledge: the only explicit exam-
ples in [9,3] describe Karatsuba multiplication. Similarly, the possibility of using
any divide-and-conquer algorithm to perform short products is hinted at in [10],
but no details are given; only the case of Karatsuba multiplication is developed
in great detail. Our general presentation is, to our knowledge, new.

Computational model. Our problems are bilinear; computations will thus be
done as follows: linear combinations of the inputs are computed (separately), fol-
lowed by pairwise products of the values thus obtained; the result is deduced by
a last series of linear combinations of these products. Our complexity estimates
count the linear operations and the pairwise products.

2 Preliminaries: Graphs for Linear Maps

We address first the linear part of the computations: we recall here how to com-
pute linear maps using a graphical representation. The material in this section
is well-known [5, Ch. 13].

Definition. A linear graph G consists of

– a directed acyclic graph (V,E) with k inputs and � outputs,
– a weight function λ which assigns a weight λ(e) ∈ R to each edge e,
– orderings (A0, . . . , Ak−1) and (F0, . . . , F�−1) of the inputs and outputs.

One assigns a matrix to a linear graph in a straightforward way. Each vertex is
assigned a value, obtained by following the “flow” from inputs to outputs: going
from a vertex v to a vertex v′ along an edge e, the value at v is multiplied by
the weight λ(e); the value at v′ is obtained by summing the contributions of



68 L. Ding and É. Schost

all incoming edges. The values obtained at each vertex are linear combinations
of the values a0, . . . , ak−1 given at the inputs A0, . . . , Ak−1. In particular, let
f0, . . . , f�−1 be the values computed by the output nodes F0, . . . , F�−1; fi can
thus be written fi = Li,0a0 + · · · + Li,k−1ak−1, for some constants Li,j , so that⎡⎢⎣ f0...

f�−1

⎤⎥⎦ = L

⎡⎢⎣ a0

...
ak−1

⎤⎥⎦ , with L =

⎡⎢⎣ L0,0 · · · L0,k−1

...
...

L�−1,0 · · · L�−1,k−1

⎤⎥⎦ .
Thus, we say that the linear graph G computes the matrix L.
Cost. To measure the number of operations attached to a linear graph, we first
make our computational model more precise: we count at unit cost multiplica-
tions by constants, as well as operations of the form α = ±β±γ. Then, we define
the cost of G as the number

c(G) := |{e ∈ E | λ(e) �= ±1}| + |E| − |V | + k.
We claim that, with a = [a0 · · · ak−1]t, the matrix-vector product a 
→ La can
be computed using c(G) operations. Indeed, along the edges, each multiplication
by a constant different from ±1 costs one operation, which add up to |{e ∈
E | λ(e) �= ±1}|. Then, if the input of a vertex v consists of s edges, computing
the value at v uses another s− 1 operations of the form ±β ± γ; summing over
all v gives an extra |E| − |V | + k operations.

Transposition. The transposition principle asserts that an algorithm perform-
ing a matrix-vector product can be transposed, producing an algorithm that
computes the transposed matrix-vector product, in almost the same complexity
as the original one. In our model, the transposition principle is easy to prove.
If G is a linear graph with k inputs and � outputs, that computes a matrix
L, we define the transposed graph Gt exchanging inputs and outputs and re-
versing the edges, without changing the weights. Theorem 13.10 in [5] proves
that Gt computes the transposed matrix of L; besides the cost c(Gt) is given by
c(Gt) = c(G) − k + �.

3 Polynomial Multiplication and Its Variants

In this section, we describe three variants of polynomial multiplication (plain,
transposed and short product), and give algorithms for all of them. The al-
gorithms we consider will be called “divide-and-conquer”, following the termi-
nology of [19]. The most well-known representatives of this class are due to
Karatsuba and Toom, though many more exist.

3.1 Divide-and-Conquer Algorithms

A divide-and-conquer algorithm of parameters (k, �), with k < �, is a triple
G = (GA,GB,GC) of linear graphs such that GA and GB have k inputs and �
outputs, and GC has � inputs and 2k − 1 outputs (other conditions follow).



Code Generation for Polynomial Multiplication 69

Let A = (A0, . . . , Ak−1) and B = (B0, . . . , Bk−1) be indeterminates and let
L0(A), . . . , L�−1(A) and M0(B), . . . ,M�−1(B) be the linear forms computed by
respectively GA and GB . Let further Ni = LiMi and let P0, . . . , P2k−2 be the
linear forms computed by GC . Then, the last conditions for GA, GB and GC to
form a divide-and-conquer algorithm is that for i = 0, . . . , 2k − 2,

Pi(N) =
∑

0≤j<k, 0≤j′<k, j+j′=iAjBj′ ,

where Pi(N) stands for the evaluation of the linear form Pi at N0, . . . , N�−1. For
instance, Karatsuba’s algorithm has k = 2, � = 3 and

– L0 = A0, L1 = A0 +A1, L2 = A1

– M0 = B0, M1 = B0 +B1, M2 = B1

– P0(N) = N0, P1(N) = N1 −N0 −N2, P2(N) = N2.

Other examples due to Toom [18] and Winograd [21] are in the last section; note
that in these examples, GA = GB .

3.2 Plain Multiplication

Let G = (GA,GB,GC) be a divide-and-conquer algorithm of parameters (k, �).
We now recall the well-known derivation of an algorithm for plain multiplication
using G; note that this formalism does not cover evaluations at points in R(x),
which are useful e.g. over GF(2) [22].

Given n and A,B in R[x]n, we let h = �(n+ k− 1)/k and h′ = n− (k− 1)h,
so that h′ ≤ h. To make the algorithm simpler, we also want h′ > 0; this will be
the case as soon as n > (k − 1)2. Then, we write

A = A0 +A1x
h + · · · +Ak−1x

(k−1)h, B = B0 +B1x
h + · · · +Bk−1x

(k−1)h,

C = C0 + C1x
h + · · · + C2k−2x

(2k−2)h.

In Algorithm 1 below, we use the notation slice(A, p, q) to denote the “slice”
of A of length q starting at index p, that is, (A div xp) mod xq . Note that
A0, . . . , Ak−2 are in R[x]h and Ak−1 in R[x]h′ ; the same holds for the Bi; similarly,
C0, . . . , C2k−4 are in R[x]2h−1, C2k−3 in R[x]h+h′−1 and C2k−2 in R[x]2h′−1.

To obtain C, we compute the linear combinations Li of A0, . . . , Ak−1 and
Mi of B0, . . . , Bk−1, the products Ni = LiMi, and the polynomials Ci as the
linear combinations Pi(N). To handle the recursive calls, we need bounds ei and
fi such that deg(Li) < ei and deg(Mi) < fi holds: we simply take ei = h if
Li �= Ak−1, and ei = h′ if Li = Ak−1; the same construction holds for fi. For
simplicity, we assume that ei = fi for all i: this is e.g. the case when GA = GB. If
ei �= fi, the recursive calls need to be slightly modified, by e.g. doing a recursive
call in length min(ei, fi) and an extra O(n) operations to complete the product.

The cost T (n) of this algorithm is O(nlogk(�)); one cannot easily give a more
precise statement, since the ratio T (n)/nlogk(�) does not have a limit as n→ ∞.
We give here closed form expressions for n of the form ki; in this case, we can
go down the recursion until n = 1, which simplifies the estimates.



70 L. Ding and É. Schost

Algorithm 1. Mul(A,B, n)
Require: A, B, n, with deg(A) < n and deg(B) < n
Ensure: C = AB
1: if n ≤ (k − 1)2 then
2: return AB naive multiplication
3: h = �(n + k − 1)/k�, h′ = n − (k − 1)h
4: for i = 0 to k − 2 do
5: Ai = slice(A, ih, h)
6: Bi = slice(B, ih, h)
7: Ak−1 = slice(A, (k − 1)h, h′)
8: Bk−1 = slice(B, (k − 1)h, h′)
9: compute the linear combinations L0, . . . , L�−1 of A0, . . . , Ak−1

10: compute the linear combinations M0, . . . , M�−1 of B0, . . . , Bk−1

11: for i = 0 to � − 1 do
12: Ni = Mul(Li, Mi, ei)
13: recover C0, . . . , C2k−2 as linear combinations of N0, . . . , N�−1

14: return C = C0 + C1x
h + · · · + C2k−2x

(2k−2)h.

The number of bilinear multiplications is �i. As to the linear operations, let
cA, cB, cC be the costs of GA,GB,GC . On inputs of length n, a quick inspection
shows that we do cAn/k+cBn/k+cC(2n/k−1) operations at steps 9, 10 and 13
and 2(k − 1)(n/k− 1) additions at step 14, for a total of (cA + cB + 2cC + 2k−
2)n/k − (cC + 2k − 2). For n = ki, summing over all recursive calls gives an
overall estimate of

t(i) = (cA +cB +2cC +2k−2)(�i−ki)/(�−k)−(cC +2k−2)(�i−1)/(�−1). (1)

3.3 Transposed Product

If A is fixed, the map A,B 
→ AB becomes linear in B. The transposed product
is the transposed map; applications include Newton iteration [9], evaluation and
interpolation [3], etc.

If A is in R[x]n, multiplication-by-A maps B ∈ R[x]n to C = AB ∈ R[x]2n−1.
For k ∈ N, we identify R[x]k with its dual; then, the transposed product A,C 
→
B = CAt maps C ∈ R[x]2n−1 to B ∈ R[x]n. Writing down the matrix of this
map, we deduce the explicit formula [9,3]

B = (CÃ div xn−1) mod xn,

where Ã = xn−1A(1/x) is the reverse of A. This formula gives a quadratic algo-
rithm for the transposed product; actually, any algorithm for the plain product
can be used, by computing CÃ and discarding the unnecessary terms.

However, one can do better. As a consequence of the transposition principle,
algorithms for the plain product yield algorithms for the transposed one, with
only O(n) cost difference: this was mentioned in [21], and developed further in [9]
and [3]. However, none of the previous references gave an explicit form for the
transposed version of divide-and-conquer algorithms, except for Karatsuba.



Code Generation for Polynomial Multiplication 71

In Algorithm 2, we provide such an explicit form, on the basis of a divide-
and-conquer algorithm G of parameters (k, �). The polynomial A is subdivided
as before, and the linear operations applied to the slices Ai are unchanged. The
other input is now C; we apply to it the transposes of the operations seen in Al-
gorithm 1, in the reverse order. Summing C0, . . . , C2k−2 in Algorithm 1 becomes
here the subdivision of C into C0, . . . , C2k−2, using the degree information ob-
tained in the previous section. Then, we follow the transposed graph Gt

C to obtain
N0, . . . , N�−1; we enforce the degree constraints deg(Ni) < 2ei −1 by truncation
(these truncations are the transposes of injections between some R[x]2ei−1 and
R[x]2ej−1 that were implicit at step 13 of Algorithm 1). After this, we apply the
algorithm recursively, follow the transposed graph Gt

B to obtain B0, . . . , Bk−1,
and obtain B as the sum B0 + · · · +Bk−1x

(k−1)h.

Algorithm 2. TranMul(A,C, n)
Require: A, C, n, with deg(A) < n and deg(C) < 2n − 1
Ensure: B = CAt

1: if n ≤ (k − 1)2 then
2: return CAt naive transposed multiplication
3: h = �(n + k − 1)/k�, h′ = n − (k − 1)h
4: for i = 0 to k − 2 do
5: Ai = slice(A, ih, h)
6: Ak−1 = slice(A, (k − 1)h, h′)
7: for i = 0 to 2k − 4 do
8: Ci = slice(C, ih, 2h − 1)
9: C2k−3 = slice(C, (2k − 3)h, h + h′ − 1)

10: C2k−2 = slice(C, (2k − 2)h, 2h′ − 1)
11: compute the linear combinations L0, . . . , L�−1 of A0, . . . , Ak−1

12: compute the transposed linear combinations N0, . . . , N�−1 of C0, . . . , C2k−2, with
Ni truncated modulo x2ei−1

13: for i = 0 to � − 1 do
14: Mi = TranMul(Li, Ni, ei)
15: compute the transposed linear combinations B0, . . . , Bk−1 of M0, . . . , M�−1, with

Bk−1 truncated modulo xh′
output B0 + · · · + Bk−1x

(k−1)h

The cost T ′(n) of this algorithm is still O(nlogk(�)). Precisely, let cA, cB, cC
be the costs of GA,GB ,GC , and consider the case where n = ki. The number of
bilinear multiplications does not change compared to the direct version. As to
linear operations, the cost of step 12 is (cC − �+ 2k − 1)(2n/k − 1) and that of
step 15 is (cB − k + �)n/k. After simplification and summation, we obtain that
for n = ki, the overall number of linear operations is now

t′(i) = (cA+cB +2cC +3k−�−2)(�i−ki)/(�−k)−(cC +2k−�−1)(�i−1)/(�−1).

With t(i) given in Eq. (1), we obtain t′(i)− t(i) = ki − 1 = n− 1, as implied by
the transposition principle: the transposed algorithm uses n−1 more operations.



72 L. Ding and É. Schost

3.4 Short Product

The short product is a truncated product: to A,B in R[x]n, it associates C =
AB mod xn ∈ R[x]n; it was introduced and described in [14,10], and finds a
natural role in many algorithms involving power series operations, such as those
relying on Newton iteration [4]. The situation is similar to that of the trans-
posed product: the previous references describe Karatsuba’s version in detail,
but hardly mention other algorithms in the divide-and-conquer family. Thus, as
for transposed product, we give here an explicit version of the short product
algorithm, starting from a divide-and-conquer algorithm G of parameters (k, �).

For Karatsuba’s algorithm, two strategies exist in the literature; the latter
one, due to [10], extends directly to the general case. Instead of slicing the input
polynomials, we “decimate” them: for A ∈ R[x]n, we write A =

∑
i<k Ai(xk)xi

(the same holds for B). Here, the polynomial Ai belongs to R[x]hi , with hi =
�(n + k − 1 − i)/k ; we denote it by Ai = decimation(A, i, hi). Then, with
Ci =

∑
j+j′=iAjBj′ , we deduce

C =
∑

i<2k−1 Ci(xk)xi =
∑

i<k−1(Ci + xCi+k)(xk)xi + Ck−1(xk)xk−1.

We compute the linear combinations Li of A0, . . . , Ak−1 andMi of B0, . . . , Bk−1,
the products Ni = LiMi, and finally Ci using the linear forms P0, . . . , P2k−2. We
need to compute Ci modulo xhi . For i < �, let thus i′ be the largest index such
that the product LiMi appears with a non-zero coefficient in the linear form Pi′

(this depends on the divide-and-conquer algorithm), and let gi = hi′ Since the
hi form a decreasing sequence, it suffices to compute LiMi mod xgi .

These steps are summarized in Algorithm 3, where we reuse the notation
introduced above. Here, it suffices that n ≥ k to ensure that all hi, and thus all
gi, are positive, since smallest is hk−1 = �n/k . As for the previous algorithms,
the cost is O(nlogk(�)); however, the precise analysis is much more delicate [10],
so we do not give any closed-form estimate here, even for n of the form ki.

Algorithm 3. ShortMul(A,B, n)
Require: A, B, n, with deg(A) < n, deg(B) < n
Ensure: C = AB mod xn

1: if n = 1 then
2: return AB
3: for i = 0 to k − 1 do
4: Ai = decimation(A, i, hi)
5: Bi = decimation(B, i, hi)
6: compute the linear combinations L0, . . . , L�−1 of A0, . . . , Ak−1

7: compute the linear combinations M0, . . . , M�−1 of B0, . . . , Bk−1

8: for i = 0 to � − 1 do
9: Ni = ShortMul(Li mod xgi , Mi mod xgi , gi)

10: compute the linear combinations C0, . . . , C2k−2 of N0, . . . , N�−1, truncating Ci

modulo xhi

11: return C =
∑k−2

i=0 (Ci + xCi+k)(xk) xi + Ck−1(xk)xk−1



Code Generation for Polynomial Multiplication 73

4 Code Generation

The algorithms given in the previous section all share the same shape; they
only depend on the datum of a divide-and-conquer algorithm G, that is, three
linear graphs. We wrote a java program that inputs such graphs and generates
C implementations; we describe it here.

Coefficient arithmetic. We focus on coefficient types that can be represented
using machine data types: polynomials with double coefficients and polynomials
with coefficients in Z/pZ, where p is an integer (typically a prime) that fits in a
machine word; p is not known in advance (the mpfq library [8] is able to exploit
possible prior knowledge of p).

In the first case, due to cancellations, operations on doubles do not satisfy
the ring axioms. Nevertheless, we support this type, since we want to compare
the running times between double and modular coefficients, and to measure to
what extent divide-and-conquer algorithms suffer from precision loss.

In the second case, we use unsigned longs. Since our implementations are all
done on 64 bit platforms (Intel Core2 or AMD 64), long machine words can hold
up to 64 bits (we will actually slightly reduce this bound, for reasons explained
later). The implementation of operations modulo p follows well-known recipes;
we recall some of them here.

– The addition c = a + b mod p is done by computing c′ = a + b − p; if it is
negative, we add p to it. This is done by using the sign bit of c′ as a mask [17],
using shifts, ands and additions. The same trick is used for subtraction and
multiplication by small constants (used in the linear combination steps).

– Multiplications are done using Montgomery’s algorithm [13].
– The algorithms may do divisions by constants in the linear combination

steps; division by α is done by computing β = 1/α modulo p and multiplying
by β modulo p. Division by 2 receives a special treatment: writing p = 2q+1,
we obtain that p − q = 1/2 mod p. Thus, for an integer a = 2u + v, with
v ∈ {0, 1}, a/2 mod p is given by u+ v(p− q) mod p.

– Some algorithms use roots of unity of low order (e.g.,
√−1) when p allows it.

Input and output. On input a triple of matrices, the code generator produces C
code for plain, transposed, short multiplication, as well as two related operations,
square (where both inputs are the same, so some savings are possible) and short
square (similar, but with the same truncation as in the short product). Suppose
for instance that we consider the Karatsuba algorithm; the code generator takes
as input the following matrices:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 -1 1 -1 0 0 0 0

0 0 1 0 0 0 0



74 L. Ding and É. Schost

For a given multiplication type (plain, transposed or short) and a given data
type, we produce several functions: a top-level function, which allocates some
workspace and does some precomputations (e.g., the modular inverses or roots
of unity needed for the linear combinations), the main recursive function, and
functions for the linear combinations.

Memory management. Intermediate results are stored in temporary memory,
in successive slots of length either !n/k" or 2!n/k". At code generation, when we
determine that a memory area can be reused, we reuse it. We can thus determine
how much workspace will be needed in a single call to the main recursive function
in length n. In general, if the call in length n uses rn+ s space, the total amount
will be rn + rn/k + · · · + s logk(n) ≤ rkn/(k − 1) + s logk(n). This memory is
allocated by the top-level function. Efforts are made to avoid using too much
memory, similarly to what one would do when writing the code by hand. When
an output of the linear combinations aliases an input, we reuse the input in all
other operations (e.g., for Karatsuba, the linear combinations are L0 = a0, L1 =
a0 + a1, L2 = a1: no copy is made and only an addition takes place).

Naive product. We implemented naive algorithms (for plain, transposed and
short products), for degrees up to 16. Our code for this case is generated auto-
matically as well, so as to unroll loops, since the compiler was not doing a very
good job by itself. We do not perform modular reduction after each step: we first
compute the whole result without any reduction, and apply the reduction in the
end. In degree < n, this reduces the number of reductions from n2 to n. However,
this slightly reduces the possible size of the modulus: only 60-bit modulus can
now be used. No assembly code was used: using gcc’s custom uint128 t type,
we obtained code of satisfying quality after compilation.

5 Experiments

We finally give the results of experiments an Intel Core2 Duo CPU T7300 with
4Gb RAM, set to 800Mhz clock speed. The timings are in seconds, for 500 rep-
etitions of the same computation. Our experiments use Karatsuba’s algorithm
and its generalizations by Toom, of parameters (k, 2k − 1): for the standard
evaluation points (0,±1,±2,±1/2, . . . ,∞), we use linear graphs from [1]. Com-
puting modulo p, with p = 4r+1, we wrote a version of Toom’s algorithm (called
i-Toom below) that evaluates at (0,±1,±√−1, 2,∞) using FFT techniques in
size 4. We also use a less known algorithm of parameters (3, 6) due to Winograd,
with only additions and subtractions in its linear combinations [21, Ch. IVc].
Complexity predicts that it should be slower than Karatsuba, but the simple
structure of the linear combinations made it worthwhile to experiment with.

Comparison between divide-and-conquer algorithms. Figure 1 compares
the algorithms of Karatsuba, Toom (k = 3) and Winograd, for plain product,
using unsigned longs (transposed and short products behave similarly). As
predicted, Winograd’s algorithm does not perform very well. More surprisingly,



Code Generation for Polynomial Multiplication 75

Toom’s algorithm appears useful for most degrees (examples using other divide-
and-conquer algorithm are given below). Jumps appear for all algorithms; these
are due to crossing degree thresholds determined by both the parameter k of
the graphs, and the threshold for the switch to the naive algorithm: increasing
the latter smooths the curves noticeably. Finally, profiling using Valgrind shows
that in all cases, 65% to 70% is the time is spent in the naive algorithm.

tim
e 

(s
.)

degree

Karatsuba
Toom

Winograd

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  200  400  600  800  1000  1200

Fig. 1. Comparison between divide-and-conquer algorithms

Comparison between multiplication types. Figure 2 compares plain, trans-
posed and short product, square and short square, with unsigned longs and
Toom’s algorithm (k = 3); the results for other divide-and-conquer algorithms
are similar. The transposed product is faster than its plain counterpart, even if
operation count predicts it should be slightly slower. Indeed, in the naive trans-
posed product, fewer modular reduction are needed than in the plain one (since
the output is twice as short); this is not accounted for in our model and seems
to explain the savings. The time for a short product is about 60% to 70% that
of a plain product, as in [10] for Karatsuba. The square product and the short
square are faster than their non-square counterparts, but not by much.

Comparison with other systems. For primes of size 60 bit, the library NTL
v5.5 [16] and the computer algebra system Magma v2.15-6 [2] are the fastest
implementations known to us. We use the two available representations for NTL,
lzz p and ZZ p (our 60 bit primes are too large for the former, so we used 52
bit primes in that case). Figure 3 gives running times, where our code uses
“standard” Toom multiplication for k = 3 or k = 4 or i-Toom for p = 4r + 1.
Even though some other implementations use asymptotically faster algorithms
(the staircases indicate FFT multiplication), our code performs better in these
degree ranges. From degree 10000 on, Toom’s algorithm with k = 5 is the best
of our divide-and-conquer algorithms, but does no better than NTL’s FFT.



76 L. Ding and É. Schost

tim
e 

(s
.)

degree

plain
transposed

square
short

short square

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000  1200

Fig. 2. Comparison between multiplication types

tim
e 

(s
.)

degree

ntl lzz p
ntl ZZ p
magma
Toom 3

 0

 1

 2

 3

 4

 5

 6

 0  200  400  600  800  1000  1200

tim
e 

(s
.)

degree

ntl lzz p
magma
Toom 4
i-Toom

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  1000  2000  3000  4000  5000

Fig. 3. Comparison with other systems



Code Generation for Polynomial Multiplication 77

Comparison between data types. Operations with double coefficients are
faster than with unsigned longs, but only by a factor of about 1.7 to 1.9 (for all
variants, and for all divide-and-conquer algorithms). Divide-and-conquer algo-
rithms do poorly in terms of precision with double coefficients: for useful kinds
of inputs (such as solutions of ODE’s), the cancellation errors make results un-
usable for degrees from 50 on.

6 Conclusion

Our approach offers several advantages: after paying the small price of writing
the code generator, it becomes straightforward to experiment various divide-and-
conquer algorithms, test optimizations, etc. Also, we now have general versions of
transposed and short product. For plain products, performance is comparable to,
and actually better than, that of software using FFT multiplication in significant
degree ranges. For short products, our advantage is actually higher, since it is
rather difficult to obtain an efficient short product using FFT multiplication.

Acknowledgments. We acknowledge the support of the Canada Research
Chairs Program, of the MITACS MOCAA project and of NSERC, and thank
the referees for their helpful comments.

References

1. Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: towards optimal
Toom-Cook matrices. In: ISSAC 2007, pp. 17–24. ACM, New York (2007)

2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

3. Bostan, A., Lecerf, G., Schost, É.: Tellegen’s principle into practice. In: ISSAC
2003, pp. 37–44. ACM, New York (2003)

4. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J.
ACM 25(4), 581–595 (1978)

5. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory. Grund.
Math. Wissen, vol. 315. Springer, Heidelberg (1997)

6. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica 28(7), 693–701 (1991)

7. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier
series. Mathematics of computation 19 (1965)

8. Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key ex-
changes. In: SPEED, pp. 49–64 (2007)

9. Hanrot, G., Quercia, M., Zimmermann, P.: The middle product algorithm. I. Appl.
Algebra Engrg. Comm. Comput. 14(6), 415–438 (2004)

10. Hanrot, G., Zimmermann, P.: A long note on Mulders’ short product. J. Symb.
Comput. 37(3), 391–401 (2004)

11. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Math. Dokl. 7, 595–596 (1963)



78 L. Ding and É. Schost

12. Monagan, M., Pearce, R.: Parallel sparse polynomial multiplication using heaps.
In: ISSAC 2009. ACM, New York (to appear, 2009)

13. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

14. Mulders, T.: On short multiplications and divisions. Appl. Algebra Engrg. Comm.
Comput. 11(1), 69–88 (2000)

15. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7,
281–292 (1971)

16. Shoup, V.: A library for doing number theory, http://www.shoup.net/ntl/
17. Shoup, V.: A new polynomial factorization algorithm and its implementation. J.

Symb. Comp. 20(4), 363–397 (1995)
18. Toom, A.: The complexity of a scheme of functional elements realizing the multi-

plication of integers. Doklady Akad. Nauk USSR 150(3), 496–498 (1963)
19. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symbolic Comput. 34(6),

479–542 (2002)
20. von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge

University Press, Cambridge (2003)
21. Winograd, S.: Arithmetic complexity of computations. In: CBMS-NSF Regional

Conference Series in Applied Mathematics, vol. 33. SIAM, Philadelphia (1980)
22. Zimmermann, P.: Irred-ntl patch, http://www.loria.fr/~zimmerma/irred/

http://www.shoup.net/ntl/
http://www.loria.fr/~zimmerma/irred/


Solving Structured Polynomial Systems
and Applications to Cryptology

(Plenary Talk)

Jean-Charles Faugère

SALSA Project INRIA, Centre Paris-Rocquencourt
UPMC, Univ Paris 06, LIP6

CNRS, UMR 7606, LIP6
UFR Ingénierie 919, LIP6 Passy Kennedy

Boite Courrier 169, 4, Place Jussieu 75252 Paris Cedex 05
Jean-Charles.Faugere@inria.fr

http:/www-salsa.lip6.fr/~jcf

Algebraic Cryptanalysis

Cryptography is a collection of mathematical techniques used to secure the trans-
mission and storage of information. A fundamental problem in cryptography is
to evaluate the security of cryptosystems against the most powerful techniques.
To this end, several general methods have been proposed: linear cryptanalysis,
differential cryptanalysis, . . . Extensively used cryptographic standards – such
as aes [1] – are all resistant against linear and differential attacks. In this talk,
we will describe another general method – Algebraic Cryptanalysis – which can
be used to evaluate the security of such cryptosystems.

Algebraic cryptanalysis can be described as a general framework that permits
to evaluate the security of a wide range of cryptographic schemes.The basic
principle of such cryptanalysis is to model a cryptographic primitive by a set
of multivariate polynomial equations. The system of equations is constructed in
such a way that solving the system is equivalent to recover a secret information
of the cryptographic primitive (for instance, the secret key in the case of an
encryption scheme). Consequently, evaluate the security of this cryptosystem
is equivalent to estimate the theoretical and practical complexity of solving the
corresponding system of equations. Since one of the most efficient tool for solving
algebraic system over finite field is Gröbner bases [2], it is necessary to evaluate
theoretically (e.g. [3]) and practically (e.g. [8]) the complexity of computing
Gröbner bases over Fq .

While it is well known that solving system of polynomial equations is NP-hard
[4] in many applications, including cryptography, the polynomial systems that we
have to consider are not random at all (see for instance [6]). Hence, it is a crucial
task to identify several classes of polynomial systems that are easier to solve (or
at least such that we are able to predict accurately the complexity [5]). In this

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 79–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



80 J.-C. Faugère

talk we will consider a public-key cryptosystem (namely the Minrank problem)
and we will show [7] how its multi-homogenous structure can be used to predict
accurately the complexity of the Gröbner basis computation. For instance, for a
recommended family of parameters, we can solve the corresponding systems in
polynomial time and thus break the corresponding cryptosystem.

References

1. Daemen, J., Rijmen, V.: The Design of Rijndael: The Wide Trail Strategy. Springer,
Heidelberg (2001)

2. Buchberger, B.: An Algorithm for Finding the Basis Elements in the Residue Class
Ring Modulo a Zero Dimensional Polynomial Ideal (German), PhD Thesis, Univ of
Innsbruck, Math. Institute, Austria, English Translation: J. of Symbolic Computa-
tion, Special Issue on Logic, Math and Comp Science: Interactions 41(3-4), 475-511
(1965)

3. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic Behaviour of the
Degree of Regularity of Semi-Regular Polynomial Systems. In: Proc. of MEGA
2005, Eighth International Symposium on Effective Methods in Algebraic Geom-
etry (2005)

4. Garey, M.R., Johnson, D.B.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

5. Courtois, N.: Efficient Zero-knowledge Authentication Based on a Linear Algebra
Problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 402.
Springer, Heidelberg (2001)

6. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

7. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer,
Heidelberg (2008)

8. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Basis without
Reduction to Zero: F5. In: Proceedings of ISSAC, July 2002, pp. 75–83. ACM press,
New York (2002)



The Comparison Method of Physical Quantity
Dimensionalities

Alexander V. Flegontov1 and M.J. Marusina2

1 Herzen State Pedagogical University of Russia,
48, Moika Emb., 191186, St.-Petersburg, Russia

aflegontoff@herzen.spb.ru
2 St.Petersburg State University of Information Technology, Mechanics and Optics

Abstract. There is examined the comparison method of dimensional-
ities on a basis of group-theoretical analysis. It has obtained certain
scaling group and operators possible within the differential equations for
different tasks. It has made the comparison of calculated operators of
tension with known results.

1 Introduction

Methods of similarity and dimensionality theory have huge practical and theo-
retical value [1 – 3]. It is possible to argue on a certain analogy of dimensionality
theory (similarity theory) and the fundamental theory for contemporary math-
ematics and physics – geometrical theory of invariants concerning the transfor-
mation of coordinates.

For the correct formulation and processing of experiments, which results
would allow determine general trends, it is essentially important to select non-
dimensional parameters. Their amount has to be minimal, and selected param-
eters should reflect the main characteristics of physical process in the most
convenient form. The probability of such preliminary qualitative-theoretical anal-
ysis and the choice of the defining non-dimensional parameters system derive
from the dimensionality and similarity theory [1].

Also it is necessary to mention the opposite influence of dimensionality theory
on group-theoretical analysis tasks, which is entirely used in different applica-
tions. Such method is known as the dimensionalities comparison [3].

2 The Theory of Dimensionalities

The notion of scaling group is closely connected with the theory of physical
quantity dimensionalities [3]. Let us consider the main equation of dimension

X = 〈X〉[X ], (1)

which represents the measurable physical quantity X as a product of its numer-
ical value 〈X〉 and the unit of physical quantity [X ].

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 81–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



82 A.V. Flegontov and M.J. Marusina

If through Eα , α = 1, . . . , r, we denote some independent units of physical
quantity, and if it is possible to express E in terms of these units, and such
an expression would have the form of compound monomial: E = Eλ1

1 ...E
λr
r =

dimX , then it could be called the dimensionality of physical quantity X in the
units Eα. Hence, the following form is valid for the physical quantity X :

X = 〈X〉dimX = 〈X〉Eλ1
1 . . . Eλr

r . (2)

It follows from this formula that multiplication and involution (in any real power)
of physical quantities are reduced to the same operation on their numerical
values and dimensionalities. Further, if the physical quantity X is the function
of physical quantity x, then dimensionality of derivative would be determined
according to the rule dim ∂xX = dimX/ dimx.

The quantity X with zero dimension (λ1 = . . . = λr = 0) is called non-
dimensional. In other words, non-dimensional quantity is such physical quantity,
in which dimensionality of the main physical quantities are included in zero
power. The dimensionality is not a kind of invariable property of this physical
quantity and depends on the way of constructing the system of units. For ex-
ample, in international system of units SI (LMTIQNJ), where these symbols
are the symbols of basic quantities: length L, mass M , time T , electric current
strength I, thermodynamic temperature Q, matter quantity N and light inten-
sity J , the permittivity (ratio of electric flux density and electric field intensity)
z has the following dimensionality dim z = L−3M−1T 4I2. In the electrostatic
system SGSE (LMT ), where basic units are centimeter, gram, second, the per-
mittivity z is a dimensionless quantity and for the vacuum is equal to unity
z0 = 1 (z0 is the electric constant).

According to the work [3], quantities X1, . . . , XN will call dependent (on their
dimensionalities), if there exist such numbers χ1, . . . , χN , not all simultaneously
equal to zero, with which the combination of these quantities Xχ1

1 . . .XχN

N is
non-dimensional. Otherwise quantities X1, . . . , XN would be called independent.

One of the essential tasks of dimensionality theory consists in determining
how many independent physical quantities there are among physical quantities
of such gang X1, . . . , XN choosing them and expressing the rest quantities by
independents.

Example 1. In mechanical systems, the following basic quantities are considered
as independent units: E1 = L = m, E2 = M = kg, E3 = T = s. Hence,
dimensions of velocity v, acceleration g, substance density r, and pressure p
could be written in such a form:

dim v = ms−1 = LT−1 = E1E
−1
3 , dim g = ms−2 = LT−2 = E1E

−2
3 ,

dim r = kgm−3 =ML−3 = E−3
1 E2,

dim p = kgm−1s−2 =ML−1T−2 = E−1
1 E2E

−2
3 .

Here v, g, r are independent quantities since there are no numbers χ1, . . . , χN

that are not simultaneously equal to zero and with which the combination of



The Comparison Method of Physical Quantity Dimensionalities 83

these quantities v, g, r would be non-dimensional. Let us show this examining
the combination vχ1gχ2rχ3 or

(E1E
−1
3 )χ1(E1E

−2
3 )χ2 (E−3

1 E2)χ3 = Eχ1+χ2−3χ3
1 Eχ3

2 E
−χ1−2χ2
3 .

Equating to zero exponents E1, E2, E3, we will obtain the system of equations.
While solving it we will calculate: χ1 = χ2 = χ3 = 0. Hence, all exponents are
simultaneously equal to zero, in such a case there is no dimensionless combination
of quantities v, g, r, and these quantities are independent in accordance with
the above definition.

Let us consider the combination of quantities v, r, p: vχ1rχ2pχ3 ,

(E1E
−1
3 )χ1(E−3

1 E2)χ2(E−1
1 E2E

−2
3 )χ3 = Eχ1−3χ2−χ3

1 Eχ2+χ3
2 E−χ1−2χ3

3 ,

solving the system, we will obtain the following result: χ1 is any number, χ2 =
1
2χ1, χ3 = − 1

2χ1. It means that there is such a set of exponents χ1, χ2, χ3,
under which not all of them are simultaneously equal to zero, and with such a
set the combination of quantities v, r, p will be dimensionless. For example, if
χ1 = 1 then

χ2 =
1
2
, χ3 = −1

2
, dim v(

r

p
)

1
2 = E1E

−1
3 (

E−3
1 E2

E−1
1 E2E

−2
3

)
1
2 = 1.

Hence, since there exists a non-dimensional combination of quantities v, r, p, so
velocity, density, and pressure are dependent variables.

Let us consider the transition from one set of independent basic units Eα, α =
1, . . . , r to the other set. The change of dimension scale by transition from units
Eα to new units E′

α , i.e.,

Eα = aαE′
α, α = 1, . . . , r (3)

will lead to a change in the numerical value of quantity X in accordance with
the equality following from formula (2)

〈X〉dimX = 〈X〉(a1)
λ1
. . . (ar)λr (E′

1)
λ1 . . . (E′

1)
λr = 〈X〉′ dimX ′,

where dimX ′ = (E′
1)

λ1 . . . (E′
r)

λr – is the dimensionality of X in new units, and

〈X〉′ = 〈X〉
r∏

α=1

(aα)λα (4)

The analysis of equality (4) demonstrates that any change of the numerical value
of quantity X during the passage to new dimensional units is just a group trans-
formation belonging to scaling group Hr [3]. Hence it follows the assertion: the
quantity X is non-dimensional if and only if its numerical value 〈X〉 is an invari-
ant of the relevant scaling groupHr. That’s why any result of the dimensionality
theory could be obtained as some result of the scaling group theory.



84 A.V. Flegontov and M.J. Marusina

The general conclusion of the dimensionality theory is well-known as the
Pi - theorem: any non-dimensional function of physical quantities is the func-
tion of a non-dimensional combination of these quantities. Any parity between
physical quantities is equivalent to certain parity between their non-dimensional
combinations [3].

There is the opposite influence of dimensionality theory on group-theoretical
analysis tasks. Mathematical equality expressing the connection between differ-
ent physical quantities ought to possess the dimensional homogeneity. For differ-
ential equations, an admitted scaling group could be calculated by introducing
few independent units and searching dimensionalities of the rest of quantities by
using equations themselves on a basis of the request of dimensional equality of
separate summands in these equations. Further, applying this method of com-
parison of dimensionalities, there have been obtained operators of infinitesimal
symmetry in Lie algebra, generated by the scaling group, which are admitted by
differential equations.

3 Calculation of Admitted Lie Operators of Scaling
Group

3.1 The Heat Equation

Lets examine heat equation for one-dimensional rod

ut = uxx. (5)

We assume the diffusion coefficient to be equal to unity. The reduced nota-
tions with relevant indexes are used for partial derivatives, for example, ut =
∂u/∂t, uxx = ∂2u/∂x2, and so on. In equation (5), there exist three defining
quantities: u, x, t, hence, according to the work [5], the number of independent
quantities should be not less than two.

Example 2. As independent dimensional units we can choose

dimu = E1, dim t = E2,

so the dimensionality of x will be dim x = Eα1
1 E

α2
2 . Let us write down the

dimensionality equation for heat equation (5)

E1E
−1
2 = E1−2α1

1 E−2α2
2 .

The comparison of dimensionalities leads to the system of linear equations for
exponents, which has the unique solution. As a result, we have obtained the
following table of exponents determining dimensionalities of all variables involved
in equation (5):

u x t
E1 1 0 0
E2 0 1

2 1



The Comparison Method of Physical Quantity Dimensionalities 85

Under this table, it is possible to write down at once the operators of Lie alge-
bra of infinitesimal symmetry generated by scaling group admitted by equation
(5):

u∂u, x∂x + 2t∂t.

Example 3. If we choose as independent dimension the units

dimu = E1, dimx = E2,

then dim t = Eα1
1 E

α2
2 , and the equation of dimensionalities for (5) would obtain

the form E1−α1
1 E−α2

2 = E1E
−2
2 . Thus, the table of exponents determining di-

mensionalities of all variables involved in equation (5) will revert to the following
form:

u x t
E1 1 0 0
E2 0 1 2

In this case, the operators of Lie algebra of scaling group admitted by equation
(5) will be identical to those calculated in the first example:

u∂u, x∂x + 2t∂t.

So the operators of scaling group are included in the symmetry algebra of the
heat equation, hence, this equation is invariant under the transformations of
scaling group.

In the work of P. Olver [4, p.165] for the scaling group there exist the following
operators of Lie algebra calculated by the traditional classic method through
defining equations of the general symmetry group of the heat equation:

v3 = u∂u, v4 = x∂x + 2t∂t.

Hence, it is possible to conclude that results calculated by the dimensionalities
comparison method are equal to calculation made by P. Olver.

3.2 The KdV Equation

As example of equation of the high order we can examine the KdV equation

ut + uxxx + uux = 0. (6)

This equation is typical of the shallow water theory and of other physical systems
concerned with non-linear effects and dispersion.

In equation (6), there are three defining quantities: u, x, t, and so the number
of independent quantities ought to be not less than one. Let us take as an
independent dimensional unit u:

dimu = E,

so dimensionalities x and t: dimx = Eα, dim t = Eβ . Hence, the table of expo-
nents determining dimensionalities of all variables involved in equation (6) will
have the form



86 A.V. Flegontov and M.J. Marusina

u x t
E 1 − 1

2 − 3
2

Operators of Lie algebra of scaling group admitted by the equation (6):

x∂x + 3t∂t − 2u∂u.

If we select x or t as independent dimensional units, operators of scaling group
would be the same.

Thus, for the KdV equation, the infinitesimal symmetries for scaling group
calculated by the dimensionalities comparison method are completely equal to
calculations of P. Olver. In the work [4, p. 174] it is resulted the symmetry
algebra of the KdV equation generated by four vector fields, particularly for
scaling

v4 = x∂x + 3t∂t − 2u∂u.

3.3 The Boundary Layer Equation

Let us examine the equations of two-dimensional non-stationary boundary layer
(the Prandtl equations)that are well-known from the hydrodynamics, which de-
scribe the motion of ductile incompressible liquid nearby the impenetrable solid
surface along with the enormous Reynolds numbers. Researched system of equa-
tions according to the work [3] has the following form:

{ut + uux + vuy + px = uyy, py = 0, ux + vy = 0. (7)

Here u and v are coordinates of the velocity vector; x, y are space coordinates;
t is the time; p is the pressure, besides, in this system of equations, the solidity
of liquid and ductility coefficient are equal to unity.

In system (7), there are six defining quantities: u, v, x, y, t, p, so the number
of independent quantities ought to be not less than two. As independent dimen-
sional units we can choose dim t = E1 and dim p = E2. If we make an assumption
that the dimensionalities of the rest of variables are possible to write in a such
way

dim x = Eα1
1 E

α2
2 , dim y = Eβ1

1 E
β2
2 , dimu = Eγ1

1 E
γ2
2 , dim v = Eδ1

1 E
δ2
2

then the dimensionality equation for system (7) would have the following form:

Eγ1−1
1 Eγ2

2 + E2γ1−α1
1 E2γ2−α2

2 + Eδ1+γ1−β1
1 Eδ2+γ2−β2

2 + E−α1
1 E1−α2

2

= Eγ1−2β1
1 Eγ2−2β2

2 .

As a result of dimensionalities comparison, it has been formulated the table
of exponents determining the dimensionalities of all variables encompassed by
system (7):

t x y u v p

E1 1 1 1
2 0 − 1

2 0
E2 0 1

2 0 1
2 0 1



The Comparison Method of Physical Quantity Dimensionalities 87

Hence, operators of scaling group in the Lie algebra admitted by the system
of equations of the two-dimensional non-stationary boundary layer (7) are as
follows:

x∂x + u∂u + 2p∂p, −2t∂t − 2x∂x − y∂y + v∂v.

These operators coincide with scaling operators obtained in the work [3, p. 131]
by means of resolving defining equations for the system of equations of boundary
layer. Besides, these operators coincide with scaling operators obtained in the
work [3] by the dimensionality theory. However, u and v were selected as inde-
pendent quantities, which actually are dependent because their combination is
dimensionless.

The symmetry algebra of examined equations contains certain operators of
scaling group. Hence, these equations are invariant under the transformations of
scaling group.

3.4 The Equation of Self-balancing Beam Oscillation

It is known that if the beam is under the harmonic external influence F∼ =
Fm sinωt, where Fm and ω are the amplitude and circular frequency of external
force, correspondingly, so its dynamics is described by the differential equation

T 2
K

∂2ϕ

dt2
+ 2ξTK

dϕ

dt
+ ϕ = SKFm sinωt, (8)

where TK is the time constant of beam; ξ is the power of tranquility; Sk is
static coefficient of beams conversion (sensitivity). Dimensionalities of defining
quantities involved in equation (8): dimTK = T 1, dimϕ0 = 1, dim t = T ,
dim ξ = 1, dimSK = M−1T−2, dimFm = MT 2, dimω = T−1.

If as independent quantities we select dimTK = E1 , dimSK = E2, then
the rest of defining quantities could be written as dim t = Eα1

1 E
α2
2 , dimFm =

Eβ1
1 E

β2
2 . Using these dimensionalities in equation (8), we will obtain the

expression:
E2−2α1

1 E−2α2
2 = Eβ1

1 E
1+β2
2 − E1−α1

1 E−α2
2

in which let us unite the dimensionalities exponents in the following table:

TK t SK Fm

E1 1 1 0 0
E2 0 0 1 −1

In this case, the operators of scaling group of Lie algebra admitted by the
equation of beams dynamics (8) having two independent quantities will have the
following form:

TK∂TK + t∂t, SK∂SK − Fm∂Fm . (9)

According to the work [5], the operators of scaling group of Lie algebra ob-
tained by the suggested method are equal for all four possible combinations of
independent quantities:



88 A.V. Flegontov and M.J. Marusina

dimTK = E1, dimSK = E2; dimSK = E1, dim t = E2;

dim TK = E1, dimFm = E2; dimFm = E1, dim t = E2;

Hence, the differential equation of the beams dynamics in self-balancing beam-
balances (8) admits the scaling group with operators (9) or scaling group is the
group symmetry of equation (8).

4 Conclusion

So, the dimensionalities comparison method allows us to find rather simply the
operators of scaling group admitted by differential equations, and so, it allows
arguing about invariance of equations under the transformations of scaling group.
This method is certainly an efficient computing procedure of finding infinitesimal
symmetries generated by transformations of scaling group.

References

1. Birkhoff, G.: Dimensional analysis of partial differential equations. J. Electr.
Engng. 67, 1185–1188 (1948)

2. Buckingham, E.: Model experiments and the forms of empirical equations. Trans.
Amer. Soc. Mech. Eng. 37, 263–296 (1915)

3. Ovsyannikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978)
(in Russian)

4. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer,
New York (1986)

5. Marusina, M.J., Flegontov, A.V.: Applications in mechanics of the dimensionalities
theory and groups theory. Scientific Instrument Making 15(1), 94–99 (2005)



Ambient Isotopic Meshing for
Implicit Algebraic Surfaces with Singularities

(Plenary Talk)

Jin-San Cheng, Xiao-Shan Gao, and Jia Li

Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS, Chinese Academy of Sciences

xgao@mmrc.iss.ac.cn

Abstract. A complete method is proposed to compute an ambient iso-
topic meshing for an implicit algebraic surface with singularities. By am-
bient isotopic, we mean a meshing with correct topology and any given
precision. We use symbolic computation to guarantee the correctness and
use numerical computation whenever possible to enhance the efficiency.
Nontrivial examples are given to show the effectiveness of the algorithm.

1 The Main Results

To determine the topology of an algebraic surface and to use triangular meshes
to approximately represent the surface are basic operations in computer graphics
and geometric modeling. A recent survey on this topic can be found in [2].

A meshing is called isotopic if it has the same topology and the same geom-
etry as the surface. A meshing is called ambient isotopic or certified if it is
isotopic and approximates the surface to any given precision. It is known that
isotopy is stronger than homeomorphism [2].

Precisely, an isotopic meshing for a surface S ⊂ R3 consists of a triangular
polyhedron G and a continuous mapping γ : R3×[0, 1] → R3 which, for any fixed
t ∈ [0, 1], is a homeomorphism γ(·, t) from R3 to itself, and which continuously
deforms G into S: γ(·, 0) = id, γ(G , 1) = S.

An isotopic meshing G for a surface S ⊂ R3 is called an ambient isotopic
meshing if, for a given number ε > 0, G gives an ε-approximation for S in the
following sense ‖ P − γ(P, 1) ‖≤ ε for all P ∈ G . Such a meshing is also called
an ε-meshing.

We use intervals to isolate real numbers: let Q denote the set of intervals
of the form [a, b] where a < b ∈ Q. The length of an interval box Bn =
[a1, b1] × · · · × [an, bn] ∈ Qn is defined to be |Bn| = maxi(bi − ai).

Our main result can be summarized as follows.

Theorem 1. Let f(x, y, z) be a square free polynomial with rational numbers as
coefficients. For any algebraic surface S : f(x, y, z) = 0, a given number ε > 0,
and a bounding box B ∈ Q3, we have an algorithm to compute an ε-meshing
for SB = S ∩ B.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 89–93, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



90 J.-S. Cheng, X.-S. Gao, and J. Li

We first give a sketch of our algorithm and will explain some of the key steps
later in this extended abstract.

Algorithm 2. AMeshSur(f(x, y, z),B, ε). The input is the same as described
in Theorem 1. The output is an ε-meshing for SB.

S1 Compute the strong projection curve C : g(x, y) = 0 and an ε-meshing for C.
S2 Meshing the singular part of S.
S3 Meshing the non-singular part of S.
S4 Merge the meshes obtained in Steps S2 and S3.

We will explain how to compute the strong projection curve in Section 2. The
methods to compute an ε-meshing for a plane curve can be found in [4]. We will
briefly show how to mesh the singular parts of S in Section 3. We use modified
methods from [3,11] to mesh the non-singular part of S. Details of our results
can be found in [5,7,8].

There exist four main approaches to compute isotopic meshings for surfaces:
the marching cube method, the Morse theory method, the Delaunay refinement
method, and the CAD (Cylindrical Algebraic Decomposition) based method [2].
Of these methods, only the CAD based methods are capable of treating surfaces
with singularities.

We give a method to compute a certified meshing for implicit algebraic sur-
faces with singularities. The method is a hybrid one based on the CAD approach.
We use symbolic computation to guarantee the correctness and use numerical
computation whenever possible to enhance the efficiency. To our knowledge, this
is the first method to compute an ambient isotopic meshing for surfaces with
singularities.

To use a triangular polyhedron to approximate a surface, we usually need
polyhedrons with thousands of faces. A strategy to reduce the number of meshes
is to use quadratic surfaces to construct certified approximation. This has been
done for algebraic curves [9,10] and is an interest problem for algebraic surfaces.

2 Strong Projection Curve

The basic idea for the CAD based methods to compute the topology of a surface
S is to project S to the xy-plane, compute the topology of the projection curve,
and obtain the topology of S by lifting the topology of the projection curve
to the space. To compute the ambient meshing for a surface, we need a strong
projection curve, which will be discussed in this section.

Let S : f(x, y, z) = 0 be an algebraic surface, where f(x, y, z) ∈ Q[x, y, z] is
square free. A point P0 is a z-critical point of S if f(P0) = fz(P0) = 0.

Let

G1(x, y) = sqrfree(Res(f,
∂f

∂z
, z)). (1)

The plane curve G1(x, y) = 0 is called the projection curve of S.



Ambient Isotopic Meshing for Implicit Algebraic Surfaces 91

A point is called z-extremal of a surface or a space curve if the surface or
curve achieves a local extremum value at this point in the z-direction. In order
to compute the ambient meshing for a surface, we need to project the z-extremal
points of S and the space curve f(x, y, z) = G1(x, y) = 0 to the plane. We have

Lemma 1. Let f(x, y, z) =
∏

i fi(x, y, z) be a square free polynomial and fi

irreducible polynomials. A necessary condition for the surface f(x, y, z) = 0 to
have a z-extremal point is

G2(x, y) =
∏

i

Res(fi,
∂fi

∂x
, z)
∏

i

Res(fi,
∂fi

∂y
, z) = 0 (2)

where only the nonzero resultants are included.

The following example shows that we need to consider the irreducible factors.
Let f = (z − y)(z − x)(x2 + y2 + z2 − 1). Then Res(f, fx, z) = Res(f, fy, z) ≡ 0.
But the surface indeed has an z-extremal point at (0, 0, 1).

We also need to consider the z-extremal points of spatial curves defined by
g(x, y) = f(x, y, z) = 0, where g and f are polynomials. For this purpose, we
need to decompose the curve into irreducible ones. The leading coefficient of g
(f) as a univariate polynomial in y (z) is called the initial of g (f). Any spatial
curve f(x, y, z) = g(x, y) = 0 can be decomposed into the union of irreducible
curves represented by irreducible chains algorithmically [12,5]. The initials of
these irreducible chains are univariate polynomial in x. We have:

Lemma 2. Let g(x, y), f(x, y, z) be an irreducible chain and

I(x) = product of the initials of f, g. (3)

T (x) = Res(Res(h, f, z), g, y) where h(x, y, z) = fxgy − fygx.

Let E be the set of z-extremal points of the curve C : f = g = 0. Then
Projx(E) ⊂ V (T (x))∪V (I(x)). Furthermore, if T (x) ≡ 0, then the curve defined
by f, g is contained in several planes perpendicular to the z-axis.

The following example shows that we need to decompose the curve into irre-
ducible ones. Let f = z(x2 + z2 −1), g = y. Then Res(fxgy − fygx, f, z) ≡ 0. But
the curve indeed has a z-extremal point at (0, 0, 1).

The plane curve

g(x, y) = G1(x, y)G2(x, y)T (x)I(x) (4)

is called the strong projection curve of surface S, where G1, G2, T and I
are defined in (1), (2), and (3) respectively. In the case of (3), we will include
the nonzero projections for all irreducible components of G1(x, y)G2(x, y) =
f(x, y, z) = 0.

The purpose to introduce the concept of strong projection curve is that on
a region containing no points of g(x, y) = 0, the surface S and the space curve
g(x, y) = f(x, y, z) = 0 have no z-extremal points. This property allows us to
estimate the z-values of a surface patch or a curve segment over a region R with
their values on the boundary of R.



92 J.-S. Cheng, X.-S. Gao, and J. Li

3 Segregating Box for Points and Curve Segments

A key idea to mesh the singular part of S : f(x, y, z) = 0 is to compute the
segregating boxes for the critical points and critical curve segments of S. The
idea of segregating boxes for points of plane curves was originally introduced in
[1]. Here, we give a new interval based method to compute it and extend the
concept to critical curve segments.

The critical parts of S consists of the critical curve defined by g(x, y) =
f(x, y, z) = 0 and the critical points defined by h(x) = g(x, y) = f(x, y, z) = 0,
where g is defined in (4) and h(x) = Res(g, gy, y).

We may compute isolating boxes for the singular points of S with the method
given in [8]. Let P = (α, β, γ) be a critical point on S such that f(α, β, z) = 0
has a finite number of solutions. Then B is called a segregating box of P if
S does not intersect with the top and bottom faces of B. A segregating box
can be computed as follows. We may compute an isolating interval [u, v] of γ
as the solution of f(α, β, z) = 0. Let B2 = [a, b] × [c, d] be a box containing
(α, β). We may compute the inclusion function f(B2, u), f(B2, v) and subdi-
vide B2 until 0 �∈ f(B2, u) and 0 �∈ f(B2, v). This process will terminate since
f(α, β, u)f(α, β, v) �= 0.

In a similar way, we may assume that the strong projection curve C : g(x, y) =
0 of S does not meet the top and bottom of B2. As a consequence, S intersects
B on the four side faces and the critical curves of S intersects B on the left and
right faces: [a, a] × [c, d] × [u, v] and [b, b] × [c, d] × [u, v]. With these conditions,
it is not difficult to compute the topology and meshing for S inside B. We can
subdivide the boxes until |B| < ε and the meshings thus obtained are ε-meshings
for S.

Now, we introduce briefly how to mesh S near a critical curve segment. A box
B = [a, b]× [c, d]× [u, v] is called a segregating box for a critical curve segment
S inside B if S is the only smooth curve branch of the critical curve inside B
and S does not intersect with the top and bottom faces of B.

We may compute a segregating box for a critical curve segment S as follows.
Let Pa and Pb be the intersection points of S with planes x = a and x = b
respectively. Then we may compute an isolating box Ba = [ya,1, ya,2]× [za,1, za,2]
for Pa by solving the equations g(a, y) = f(a, y, z) = 0 with [6]. Compute Bb =
[yb,1, yb,2]× [zb,1, zb,2] similarly. We may set the segregating box of S to be BP =
[a, b]× [min{ya,1, yb,1},max{ya,2, yb,2}]× [min{za,1, zb,1},max{za,2, zb,2}]. This is

Fig. 1. Meshing for surfaces with singular points and singular curves



Ambient Isotopic Meshing for Implicit Algebraic Surfaces 93

true because, due to the conditions in the strong projection curve, S is monotone
both in y and z directions. If |BP | > ε, we can further subdivide the boxes.
After the segregating boxes for the critical curve segments are constructed, we
can compute a meshing for the surface inside B.

Now, we have computed the meshing and topological structure for S inside
the segregating boxes for the critical point and critical curve of S. Outside these
boxes, S has no singular points and can be meshed by modifying the methods
in [3,11].

Figure 1 are the meshings for five surfaces computed with the implementation
of our algorithm in Maple. Equations defining these surfaces can be found in [5].

References

1. Arnon, D.S., Collins, G., McCallum, S.: Cylindrical Algebraic Decomposition, II:
An Adjacency Algorithm for Plane. SIAM J. on Comput. 13(4), 878–889 (1984)

2. Boissonnat, J.D., Cohen-Steiner, D., Mourrain, B., Rote, G., Vegter, G.: Mesh-
ing of Surfaces. In: Effective Computational Geometry for Curves and Surfaces,
pp. 181–230. Springer, Berlin (2006)

3. Cheng, S.W., Dey, T.K., Ramos, A., Ray, T.: Sampling and Meshing a Surface with
Guaranteed Topology and Geometry. In: Proc. 20th Symposium on Computational
Geometry, pp. 280–289. ACM Press, New York (2004)

4. Cheng, J.S., Gao, X.S., Li, J.: Topology Determination and Isolation for Implicit
Plane Curves. In: Proc. ACM Symposium on Applied Computing, pp. 1140–1141
(2009)

5. Cheng, J.S., Gao, X.S., Li, J.: Ambient Isotopic Meshing of Implicit Alge-
braic Surface with Singularities. MM-Preprints 27, 150–183 (2008) Arxiv preprint
arXiv:0903.3524 (2009)

6. Cheng, J.S., Gao, X.S., Li, J.: Root Isolation for Bivariate Polynomial Systems
with Local Generic Position Method (2009) (accepted ACM ISSAC)

7. Cheng, J.S., Gao, X.S., Li, M.: Determine the Topology of Real Algebraic Sur-
faces. In: Martin, R., Bez, H.E., Sabin, M.A. (eds.) IMA 2005. LNCS, vol. 3604,
pp. 121–146. Springer, Heidelberg (2005)

8. Cheng, J.S., Gao, X.S., Yap, C.K.: Complete Numerical Isolation of Real Roots
in Zero-dimensional Triangular Systems. Journal of Symbolic Computation 44(7),
768–785 (2009)

9. Gao, X.S., Li, M.: Rational Quadratic Approximation to Real Algebraic Curves.
Computer Aided Geometric Design 21, 805–828 (2004)

10. Li, M., Gao, X.S., Chou, S.C.: Quadratic Approximation to Plane Parametric
Curves and Applications in Approximate Implicitization. Visual Computers 22,
906–917 (2006)

11. Plantinga, S., Vegter, G.: Isotopic Meshing of Implicit Surfaces. Visual Com-
puter 23, 45–58 (2007)

12. Wu, W.T.: Mathematics Machenization. Science Press/Kluwer, Beijing (2001)



Involution and Difference Schemes for the
Navier–Stokes Equations

Vladimir P. Gerdt1 and Yuri A. Blinkov2

1 Laboratory of Information Technologies, Joint Institute for Nuclear Research,
141980 Dubna, Russia

gerdt@.jinr.ru
2 Department of Mathematics and Mechanics, Saratov State University

410012 Saratov, Russia
BlinkovUA@info.sgu.ru

Abstract. In the present paper we consider the Navier–Stokes equa-
tions for the two-dimensional viscous incompressible fluid flows and ap-
ply to these equations our earlier designed general algorithmic approach
to generation of finite-difference schemes. In doing so, we complete first
the Navier–Stokes equations to involution by computing their Janet basis
and discretize this basis by its conversion into the integral conservation
law form. Then we again complete the obtained difference system to
involution with eliminating the partial derivatives and extracting the
minimal Gröbner basis from the Janet basis. The elements in the ob-
tained difference Gröbner basis that do not contain partial derivatives
of the dependent variables compose a conservative difference scheme.
By exploiting arbitrariness in the numerical integration approximation
we derive two finite-difference schemes that are similar to the classical
scheme by Harlow and Welch. Each of the two schemes is characterized
by a 5×5 stencil on an orthogonal and uniform grid. We also demonstrate
how an inconsistent difference scheme with a 3×3 stencil is generated by
an inappropriate numerical approximation of the underlying integrals.

1 Introduction

In this paper we consider the Navier–Stokes equations for the Newtonian incom-
pressible fluids with constant viscosity. We restrict ourselves to two-dimensi-
onal flows though all the below results admit a straightforward extension to
the three-dimensional case. The incompressibility and constancy of viscosity
are assumed in most mathematical treatments of the two-and three-dimensional
Navier–Stokes equations (see, for example, [1]), since it is a common belief that
such simplification of the equations still preserves their applicability to descrip-
tion of the main features of laminar and turbulent flows. Though in this paper
we do not impose any restriction on the the Reynolds number and treat this
number as a parameter, the difference schemes we obtain are not expected to be
appropriate to turbulent flows. Thus, it is implicitly assumed that the Reynolds
number is small enough.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 94–105, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Involution and Difference Schemes for the Navier–Stokes Equations 95

To generate a finite-difference scheme for the Navier-Stokes equations we ap-
ply our general algorithmic approach [2] based on the integral conservation law
form of the initial system extended with some relevant integral relations be-
tween the dependent variables and their partial derivatives. Then discretization
of the system is done by choosing an integration contour (or surface in the
three-dimensional case) on an appropriate grid, and a finite-difference scheme is
obtained by the (difference) elimination of the partial derivatives.

In paper [2] we considered differential systems of the Cauchy–Kovalevskaya
type that is trivially involutive. Generally, before discretizing, a system of differ-
ential equations has to be completed to involution. More precisely, the system
has to be completed to its formally integrable form, that is, such that all the
integrability conditions are incorporated into the system. The integrability con-
ditions are differential consequences of the system of the order not higher than
the order of the system and such that they cannot be obtained from the system
by means of pure algebraic transformations, i.e. without differentiation.

A constructive way to compute the integrability conditions and to incorpo-
rate them into the system is to complete the system to involution by doing
prolongation of equations in the system - taking their derivatives with respect
to the independent variables - and elimination of the highest order derivatives
from the prolonged equations [3] (see also the introductory paper [4]). Without
completion of a differential system to involution some hidden integrability con-
ditions may not be satisfied in the discrete version within a reasonable accuracy.
If so a numerical solution does not preserve internal algebraic and differential
properties of the continuous solution.

Furthermore, an inappropriate discretization may lead to a difference scheme
which is inconsistent with the initial differential system. The inconsistency means
the existence of a difference consequence of the discrete system that in the con-
tinuous limit becomes a differential equation which does not follow from the
initial differential system.

The structure of the paper is as follows. In Section 2 we consider the Navier–
Stokes equations in the Cartesian coordinates and complete them to involution
using the Janet monomial division [5,6,7]. In doing so we detect just one integra-
bility condition, namely, the pressure Poisson equation. In Section 3 we discretize
the involutive Navier–Stokes system by applying the approach of paper [2] based
on the integral form of the system. The structure of the discrete system depends
on numerical approximation methods for the integrals. Here we consider two
simple approximation methods that lead to two distinct discrete systems. Then
in Section 4 we construct for the both discrete systems the minimal Gröbner
bases by extracting them from the corresponding Janet bases for the ranking
that eliminates the partial derivatives and, thus, can serve to generate finite-
difference schemes for the Navier–Stokes equations. The schemes generated in
this way are qualitatively similar to the classical scheme derived by Harlow and
Welch in [8]. In Section 5 we discuss consistency of the discrete version of the
Navier–Stokes equations with their differential form. By explicit computation we
demonstrate that an inappropriate numerical integration may lead to a difference



96 V.P. Gerdt and Y.A. Blinkov

scheme whose algebraically rigorous difference consequence yields in the contin-
uous limit a differential equation which does not follow from the Navier–Stokes
equations. Thereby such a scheme is inconsistent. We conclude in Section 6.

2 Involutive Form of the Navier–Stokes Equations

We consider unsteady two-dimensional motion of incompressible viscous liquid
of constant viscosity that is governed by the following system of equations which
we refer to as the Navier–Stokes system:⎧⎪⎨⎪⎩

f1 := ux + vy = 0 ,
f2 := ut + uux + vuy = −px + 1

Re$u ,
f3 := vt + uvx + vvy = −py + 1

Re$v .
(1)

Here f1 is the continuity equation, and f1 and f2 are the proper Navier–Stokes
equations [1]. Equations in (1) are written in the dimensionless form, where
(u, v) is the velocity field, and p is the pressure. The density is included in the
Reynolds number denoted by Re. To determine a nonstationary flow one has
to specify the initial data u = u0(x, y) and v = v0(x, y) satisfying equation f1.
The boundary conditions on a solid surface lead to vanishing relative speed of
the liquid. For the pressure there is no need to specify the boundary conditions
on the surface. Throughout this paper we use notions and definitions from the
papers [2,6,7]. If one chooses the orderly ranking % on the derivatives in (1) such
that x % y % t and u % v % p, then completion of the system (1) to involution
based on the Janet division reveals the only integrability condition

f4 := u2
x + 2vxuy + v2y = −$p

which is the differential consequence of the equations in (1)

f2
x + f3

y − f1
t − uf1

x − vf1
y + 1

Re$f1 = f4 . (2)

Therefore, the involutive Janet form of the Navier-Stokes system is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1 : ux + vy = 0 ,
f2 : ut + uux + vuy = −px + 1

Re$u ,
f3 : vt + uvx + vvy = −py + 1

Re$v ,
f4 : u2

x + 2vxuy + v2y = −$p .

(3)

Equation (2) which plays an important role in the computational fluid dynamics
is usually called the pressure Poisson equation [9]. By completion of the Navier–
Stokes system to involution this equation was obtained first by applying Cartan’s
algorithm [10]. Apparently, the pressure Poisson equation is to be detected by
any completion procedure. For instance, in [4] it was obtained by the geometric
Cartan–Kuranishi completion.



Involution and Difference Schemes for the Navier–Stokes Equations 97

To see that the system (3) is in involution, and hence there are no other integra-
bility conditions, we give in the below table the following data for the equations
in the system: the first column enumerates the equations; the second column
shows the leader, i.e. the highest ranking derivative in the equation; the third
and the fourth columns show, respectively, Janet multiplicative and nonmulti-
plicative independent variables for the equations.

equation leader multiplicative nonmultiplicative
f1 ux {x, y, t} ∅
f2 uyy {y, t} {x}
f3 vxx {x, y, t} ∅
f4 pxx {x, y, t} ∅

Thus, only f2 has a nonmultiplicative prolongation, namely, the prolongation
with respect to x. Equality (2) explicitly demonstrates that this prolongation is
reduced to zero by the multiplicative prolongations of the other equations in (3).
This is just the condition of involutivity [5,7] for the system.

Apparently, the system of equations (3) is a formally integrable extension of
(1) of the minimal cardinality.

3 Discretization

The pressure Poisson equation f4 in (3) can be written as

f4 :=
∂2

∂x2

(
u2 + p

)
+

∂2

∂x∂y
(2uv) +

∂2

∂y2

(
v2 + p

)
= 0 ,

and, thus, the involutive differential system (3) admits the conservation law form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1 : ∂
∂xu+ ∂

∂yv = 0 ,

f2 : ∂
∂tu+ ∂

∂x

(
u2 + p− 1

Reux

)
+ ∂

∂y

(
vu− 1

Reuy

)
= 0 ,

f3 : ∂
∂tv + ∂

∂x

(
uv − 1

Revx
)

+ ∂
∂y

(
v2 + p− 1

Revy
)

= 0 ,

f4 : ∂
∂x (uux + vuy + px) + ∂

∂y (vvy + uvx + py) = 0 .

(4)

Consider now the square integration contour Γ in the plane (x, y) as shown in
Fig. 1 and convert system (4) into the equivalent integral system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∮
Γ

−vdx+ udy = 0 ,

xj+2∫
xj

yk+2∫
yk

udxdy

∣∣∣∣∣
tn+1

tn

−
tn+1∫
tn

(∮
Γ

(
vu− 1

Reuy

)
dx− (u2 + p− 1

Reux

)
dy

)
dt = 0 ,

xj+2∫
xj

yk+2∫
yk

vdxdy

∣∣∣∣∣
tn+1

tn

−
tn+1∫
tn

(∮
Γ

(
v2 + p− 1

Revy
)
dx − (uv − 1

Revx
)
dy

)
dt = 0 ,∮

Γ

− ((v2)y + (uv)x + py

)
dx+

(
(u2)x + (vu)y + px

)
dy = 0 .

(5)



98 V.P. Gerdt and Y.A. Blinkov

To pass to the discrete form of (5) we follow our approach in [2] and consider
the orthogonal and uniform grids with the mesh steps h in x and y and τ
in t, i.e.

xj+1 − xj = yk+1 − yk = h, tm+1 − tm = τ .

Now we add to system (5) the integral relations between dependent variables
and all their partial derivatives entering into the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj+1∫
xj

(u2)xdx = u(xj+1, y)2 − u(xj , y)2 ,

yk+1∫
yk

(v2)ydy = v(x, yk+1)2 − v(x, yk)2 ,

xj+1∫
xj

(uv)xdx = u(xj+1, y)v(xj+1, y) − u(xj , y)v(xj , y) ,

yk+1∫
yk

(uv)ydy = u(x, yk+1)v(x, yk+1) − u(x, yk)v(x, yk) ,

xj+1∫
xj

uxdx = u(xj+1, y) − u(xj , y) ,
yk+1∫
yk

uydy = u(x, yk+1) − u(x, yk) ,

xj+1∫
xj

uxdx = u(xj+1, y) − u(xj , y) ,
yk+1∫
yk

uydy = u(x, yk+1) − u(x, yk) ,

xj+1∫
xj

vxdx = v(xj+1, y) − u(xj , y) ,
yk+1∫
yk

vydy = v(x, yk+1) − u(x, yk) ,

xj+1∫
xj

pxdx = p(xj+1, y) − u(xj , y) ,
yk+1∫
yk

pydy = p(x, yk+1) − u(x, yk) .

(6)

j j + 1 j + 2
k

k + 1

k + 2

Fig. 1. Integration contour



Involution and Difference Schemes for the Navier–Stokes Equations 99

By applying the midpoint rule to approximate integration over x and y and the
rectangle rule for integration over t in the system (5-6), we obtain the difference
equations on the grid:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u2)x
n
j+1 k · 2h = un

j+2 k
2 − un

j k
2 ,

(v2)y
n

j k+1 · 2h = vn
j k+2

2 − vn
j k

2 ,

(uv)x
n
j+1 k · 2h = un

j+2 kv
n
j+2 k − un

j kv
n
j k ,

(uv)y
n
j k+1 · 2h = un

j k+2v
n
j k+2 − un

j kv
n
j k ,

ux
n
j+1 k · 2h = un

j+2 k − un
j k ,

uy
n
j k+1 · 2h = un

j k+2 − un
j k ,

vx
n
j+1 k · 2h = vn

j+2 k − vn
j k ,

vy
n
j k+1 · 2h = vn

j k+2 − vn
j k .

px
n
j+1 k · 2h = pn

j+2 k − pn
j k ,

py
n
j k+1 · 2h = pn

j k+2 − pn
j k .

−(vn
j+1 k − vn

j+1 k+2) · 2h+ (un
j+2 k+1 − un

j k+1) · 2h = 0 ,

(un+1
j+1 k+1 − un

j+1 k+1) · 4h2 − 2hτ
(
vn

j+1 ku
n
j+1 k + 1

Reuy
n
j+1 k +

+ vn
j+1 k+2u

n
j+1 k+2 − 1

Reuy
n
j+1 k+2 − (u2)n

j+2 k+1 − pn
j+2 k+1+

+ 1
Reux

n
j+2 k+1 + (u2)n

j k+1 + pn
j k+1 − 1

Reux
n
j k+1

)
= 0 ,

(vn+1
j+1 k+1 − vn

j+1 k+1) · 4h2 − 2hτ
(
(v2)n

j+1 k − pn
j+1 k

1
Revy

n
j+1 k +

+ (v2)n
j+1 k+2 + pn

j+1 k+2 − 1
Revy

n
j+1 k+2−

− un
j+2 k+1v

n
j+2 k+1 + 1

Revx
n
j+2 k+1 + un

j k+1v
n
j k+1 + 1

Revx
n
j k+1

)
= 0 ,

(v2)y
n

j+1 k+2 + (uv)x
n
j+1 k+2 + py

n
j+1 k+2 − (v2)y

n

j+1 k−
− (uv)x

n
j+1 k+2 − py

n
j+1 k+2 + (u2)x

n
j+2 k+1+

+ (uv)y
n
j+2 k+1 − px

n
j+2 k+1 − (u2)x

n
j k+1 − (uv)y

n
j k+1 − px

n
j k+1 = 0 .

(7)

Hereafter we use the operator notations to represent the difference equations in
a more compact form. Denote by θα (α ∈ {x, y, t} ) the right-shift operator in
the variable α, by Irα the integration operator over the variable α and by D1

and D2, respectively, the difference and two-step difference operators. Then the
following operator relations hold

Irx = 2hθx , Iry = 2hθy , Irxy = 4h2θxθy ,

Irt = τ , D1α = θα − 1 , D2α = θ2α − 1 ,
(8)

and the difference system (7) reads



100 V.P. Gerdt and Y.A. Blinkov

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Irx ◦ (u2)x = D2x ◦ u2 , Irx ◦ (vu)x = D2x ◦ vu ,
Iry ◦ (uv)y = D2y ◦ uv , Iry ◦ (v2)y = D2y ◦ v2 ,
Irx ◦ ux = D2x ◦ u , Iry ◦ uy = D2y ◦ u ,
Irx ◦ vx = D2x ◦ v , Iry ◦ vy = D2y ◦ v ,
Irx ◦ px = D2x ◦ p , Iry ◦ py = D2y ◦ p ,
IryD2x ◦ u+ IrxD2y ◦ v = 0 ,
IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu − 1

Reuy

)
+ IryD2x ◦ (u2 + p− 1

Reux

))
= 0 ,

IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (v2 + p− 1

Revy
)

+ IryD2x ◦ (uv − 1
Revx

))
= 0 ,

IrxD2y ◦ ((v2)y + (uv)x + py

)
+ IryD2x ◦ ((u2)x + (vu)y + px

)
= 0 .

(9)

As an example of another possible discretization we consider application of the
trapezoidal rule to the integral relations for ux, uy, vx, vy in (6). For this case we
shall use the corresponding integration operators

Itx = h
2 (θx + 1) , Ity = h

2 (θy + 1) (10)

what leads to the following modification of (9)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Irx ◦ (u2)x = D2x ◦ u2 , Irx ◦ (vu)x = D2x ◦ vu ,
Iry ◦ (uv)y = D2y ◦ uv , Iry ◦ (v2)y = D2y ◦ v2 ,
Itx ◦ ux = D1x ◦ u , Ity ◦ uy = D1y ◦ u ,
Itx ◦ vx = D1x ◦ v , Ity ◦ vy = D1y ◦ v ,
Irx ◦ px = D2x ◦ p , Iry ◦ py = D2y ◦ p ,
IryD2x ◦ u+ IrxD2y ◦ v = 0 ,
IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu − 1

Reuy

)
+ IryD2x ◦ (u2 + p− 1

Reux

))
= 0 ,

IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (v2 + p− 1

Revy
)

+ IryD2x ◦ (uv − 1
Revx

))
= 0 ,

IrxD2y ◦ ((v2)y + (uv)x + py

)
+ IryD2x ◦ ((u2)x + (vu)y + px

)
= 0 .

(11)

4 Difference Elimination of Partial Derivatives

In order to eliminate partial derivatives from (9) and (11) and hence to obtain
difference schemes we construct difference Gröbner bases [2] (for a more rigorous
treatment of Gröbner bases in the difference polynomial rings, cf. [11]) for these
systems under the elimination ranking

ux % uy % vx % vy % u % v % p, θt % θx % θy. (12)

Since there is no software available for computing Gröbner bases for nonlinear
difference polynomials, we performed the computation “by hand”. In doing so,
we used the involutive completion procedure based on the Janet division [2].
The obtained Janet basis as a redundant Gröbner basis is rather cumbersome.
For this reason we give below only its subset which is a minimal Gröbner basis.
The basis is not reduced.1 We use this redundant form because it is much more
1 The last term in the equation e2 in (13) is redundant modulo e1.



Involution and Difference Schemes for the Navier–Stokes Equations 101

compact than the reduced Gröbner basis and explicitly shows its connection to
the differential (3) and difference (11) systems.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Irx ◦ (u2)x = D2x ◦ u2 , Irx ◦ (vu)x = D2x ◦ vu ,
Iry ◦ (uv)y = D2y ◦ uv , Iry ◦ (v2)y = D2y ◦ v2 ,
Irx ◦ ux = D2x ◦ u , Iry ◦ uy = D2y ◦ u ,
Irx ◦ vx = D2x ◦ v , Iry ◦ vy = D2y ◦ v ,
Irx ◦ px = D2x ◦ p , Iry ◦ py = D2y ◦ p ,
e1 := IryD2x ◦ u+ IrxD2y ◦ v = 0 ,
e2 := IrxIryIrxyD1t ◦ u+ Irt

(
IrxIr

2
yD2x ◦ (u2 + p

)
+

+ Ir2
xIryD2y ◦ (vu) − 1

Re

(
Ir

2
yD2

2
x + Ir2

xD2
2
y

) ◦ u) = 0 ,
IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu − 1

Reuy

)
+ IryD2x ◦ (u2 + p− 1

Reux

))
= 0 ,

e3 := IrxIryIrxyD1t ◦ v + Irt

(
IrxIr

2
yD2x ◦ (uv) +

+ Ir2
xIryD2y ◦ (v2 + p

)− 1
Re

(
Ir

2
yD2

2
x + Ir2

xD2
2
y

) ◦ v) = 0 ,
IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (v2 + p− 1

Revy
)

+ IryD2x ◦ (uv − 1
Revx

))
= 0 ,

e4 := Ir
2
xD2

2
y ◦ (v2)+ 2IrxIryD2xD2y ◦ (uv) + Ir2

yD2
2
x ◦ (u2

)
+

+
(
Ir

2
yD2

2
x + Ir2

xD2
2
y

) ◦ p = 0 ,
IrxD2y ◦ ((v2)y + (uv)x + py

)
+ IryD2x ◦ ((u2)x + (vu)y + px

)
= 0 .

(13)

To see that (13) is a Gröbner basis, we note that there is the only critical pair
{e1, e2} to be verified. The corresponding difference S−polynomial S(e1, e2) :=
IrxIryIrxyDt ◦ e1 − IryD2x ◦ e2 is reduced to zero modulo (13) in accordance
with the equality

S(e1, e2) = 1
ReIrt

(
Ir

2
yD2

2
x + Ir2

xD2
2
y

) ◦ e1 + IrxD2y ◦ e3 − Irt ◦ e4 . (14)

Similarly, a Gröbner basis for the second discrete system (11) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Irx ◦ (u2)x = D2x ◦ u2 , Irx ◦ (vu)x = D2x ◦ vu ,
Iry ◦ (uv)y = D2y ◦ uv , Iry ◦ (v2)y = D2y ◦ v2 ,
Itx ◦ ux = D1x ◦ u , Ity ◦ uy = D1y ◦ u ,
Itx ◦ vx = D1x ◦ v , Ity ◦ vy = D1y ◦ v ,
Irx ◦ px = D2x ◦ p , Iry ◦ py = D2y ◦ p ,
e1 := IryD2x ◦ u+ IrxD2y ◦ v = 0 ,
e2 := IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu) +

+ IryD2x ◦ (u2 + p
)− 2

h
1

Re

(
IryD1

2
x + IrxD1

2
y

) ◦ u) = 0 ,
IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu − 1

Reuy

)
+ IryD2x ◦ (u2 + p− 1

Reux

))
= 0 ,

e3 := IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (uv) +

+ IryD2x ◦ (v2 + p
)− 2

h
1
Re

(
IryD1

2
x + IrxD1

2
y

) ◦ v) = 0 ,
IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (v2 + p− 1

Revy
)

+ IryD2x ◦ (uv − 1
Revx

))
= 0 ,

e4 := Ir
2
xD2

2
y ◦ (v2)+ 2IrxIryD2xD2y ◦ (uv) + Ir2

yD2
2
x ◦ (u2

)
+

+
(
Ir

2
yD2

2
x + Ir2

xD2
2
y

) ◦ p = 0 ,
IrxD2y ◦ ((v2)y + (uv)x + py

)
+ IryD2x ◦ ((u2)x + (vu)y + px

)
= 0 .

(15)



102 V.P. Gerdt and Y.A. Blinkov

Again, the equality

IrxIryIrxyDt ◦ e1 − IryD2x ◦ e2 =

=
2
h

1
Re
Irt

(
IryD1

2
x + IrxD1

2
y

) ◦ e1 + IrxD2y ◦ s3 − Irt ◦ e4 . (16)

implies that the left-hand side of (16) - the only difference S−polynomial to be
verified - is reduced to zero.

Both systems (13) and (15) include the difference equations e1, e2, e3, e4 which
do not contain partial derivatives of the dependent variables. These equations
are just the finite-difference schemes for the involutive Navier–Stokes differen-
tial system (3). One can see that the schemes in (13) and (15) have identical
equations e1 and e4 which are discrete versions of the continuity equation and
the pressure Poisson equation, respectively, and the distinct equations e2 and e3
discretizing the Navier–Stokes equations.

It is important to emphasize that e2 in (13) was obtained from the prolonga-
tion of the equation that follows e2 in (13) by action of the operator IrxIry at
this equation. The equation e2 is resulted by reduction of the prolonged equa-
tions modulo other equations in the system. The other elements (e3, e4) in the
difference scheme are also obtained by the prolongation and reduction of the
equations that follow e3 and e4 in (13). System (15) is derived in much the same
way.

The derived difference schemes are qualitatively similar to the classical scheme
by Harlow and Welch [8]. All three schemes have the following common features:

– The initial conditions must satisfy the continuity equation f1 in (1) and the
pressure Poisson equation f4 in (3).

– Transition to the next temporal layer is done by means of the equations e2
and e3 that are difference analogues of the Navier–Stokes equations f2 and
f3 in (1).

– The continuity equation on the next temporal layer is automatically satisfied
when the pressure satisfies the discrete version of equation f4.

However, as opposed to the approach in [8], we perform first the discrete ap-
proximation of system (3) and then verify its consistency (see the next section
for more detailed discussion of the consistency check) by means of the equali-
ties (14) and (16). In formula (7) of the paper [8], a discrete version of f4 was
obtained from the consistency condition for the difference scheme. In the last
case the derived discrete version of f4 includes (discrete) partial derivatives of
the velocity field (u, v) with respect to time and by this reason looks like much
more cumbersome than our equation e4.

It should be noted that, by the construction, the schemes in (13) and (15)
are conservative since they approximate the integral form (5) of the involutive
Navier–Stokes system (3).



Involution and Difference Schemes for the Navier–Stokes Equations 103

5 Consistency Issues

The obtained schemes in (13) and (15) have a 5×5 stencil what is clear from the
equations e2, e3, e4 and e4, respectively. This involves some difficulties in using
those schemes at approaching to boundaries and makes the related numerical
computation rather cumbersome. It is tempting to derive a difference scheme
with a more compact stencil. Consider the following discretization of (3) which
differs from (15) by applying the trapezoidal rule rather than of the midpoint
rule for the pressure integral relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Itx ◦ (u2)x = D1x ◦ u2 , Irx ◦ (vu)x = D2x ◦ vu ,
Iry ◦ (uv)y = D2y ◦ uv , Ity ◦ (v2)y = D1y ◦ v2 ,
Itx ◦ ux = D1x ◦ u , Ity ◦ uy = D1y ◦ u ,
Itx ◦ vx = D1x ◦ v , Ity ◦ vy = D1y ◦ v ,
Itx ◦ px = D1x ◦ p , Ity ◦ py = D1y ◦ p ,
IryD2x ◦ u+ IrxD2y ◦ v = 0 ,
IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu − 1

Reuy

)
+ IryD2x ◦ (u2 + p− 1

Reux

))
= 0 ,

IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (v2 + p− 1

Revy
)

+ IryD2x ◦ (uv − 1
Revx

))
= 0 ,

IrxD2y ◦ ((v2)y + (uv)x + py

)
+ IryD2x ◦ ((u2)x + (vu)y + px

)
= 0 .

(17)

To construct a Gröbner basis for (17) under the elimination ranking (12) we
perform, as done in Section 4, suitable prolongations of the discrete versions
of the Navier-Stokes equations and the pressure Poisson equation to eliminate
the partial derivatives in the independent variables. Then we obtain again the
difference scheme consisting of the four difference equations denoted as above
by e1, e2, e3, e4 and entering in the following difference set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Itx ◦ (u2)x = D1x ◦ u2 , Irx ◦ (vu)x = D2x ◦ vu ,
Iry ◦ (uv)y = D2y ◦ uv , Ity ◦ (v2)y = D1x ◦ v2 ,
Itx ◦ ux = D1x ◦ u , Ity ◦ uy = D1y ◦ u ,
Itx ◦ vx = D1x ◦ v , Ity ◦ vy = D1y ◦ v ,
Itx ◦ px = D1x ◦ p , Ity ◦ py = D1y ◦ p ,
e1 := IryD2x ◦ u+ IrxD2y ◦ v = 0 ,
e2 := IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu) +

+ IryD2x ◦ (u2 + p
)− 2

h
1

Re

(
IryD1

2
x + IrxD1

2
y

) ◦ u) = 0 ,
IrxyD1t ◦ u+ Irt

(
IrxD2y ◦ (vu − 1

Reuy

)
+ IryD2x ◦ (u2 + p− 1

Reux

))
= 0 ,

e3 := IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (uv) +

+ IryD2x ◦ (v2 + p
)− 2

h
1
Re

(
IryD1

2
x + IrxD1

2
y

) ◦ v) = 0 ,
IrxyD1t ◦ v + Irt

(
IrxD2y ◦ (v2 + p− 1

Revy
)

+ IryD2x ◦ (uv − 1
Revx

))
= 0 ,

e4 := 2
hIrxD1

2
y ◦ (v2)+ 2D2xD2y ◦ (uv) + 2

hIryD1
2
x ◦ (u2

)
+

+ 2
h

(
IryD1

2
x + IrxD1

2
y

) ◦ p = 0 ,
IrxD2y ◦ ((v2)y + (uv)x + py

)
+ IryD2x ◦ ((u2)x + (vu)y + px

)
= 0 .

(18)



104 V.P. Gerdt and Y.A. Blinkov

It is readily seen that the difference scheme e1, e2, e3, e4 in (18) has a 3×3 stencil.
However, the equation set (18), unlike those in (13) and (15), is not a Gröbner ba-
sis. To show this we construct the difference S−polynomial S(e1, e2) := IrxyDt ◦
e1 − IryD2x ◦ e2. Its reduction modulo e1, e2, e3, e4 reads

S(e1, e2) =
2
h

1
Re
IrtIrxIry

(
IryD1

2
x + IrxD1

2
y

) ◦ e1+
+ IrxD2y ◦ e3 − IrtIrxIry ◦ e4 − IrtΔ (19)

where

Δ =
(
Ir

2
yD2

2
x − 2

h
IrxIr

2
yD1

2
x

)
◦ (u2 + p

)
+

+
(
Ir

2
xD2

2
y − 2

h
Ir

2
xIryD1

2
y

)
◦ (v2 + p

)
. (20)

Thus, to proceed in constructing a difference Gröbner basis we have to add Δ
to the set (18), and to the difference scheme e1, e2, e3, e4 too. However, in the
continuous limit the difference equation Δ = 0 implies the differential equation

u2
xx + v2yy + pxx + pyy = 0 . (21)

This follows from application of formulae (8) and (10) to (20):

Δ = 4h2
((
un

j+4 k+2
2 − un

j+3 k+2
2 − un

j+1 k+2
2 + un

j k+2
2
)

+

+
(
vn

j+2 k+4
2 − vn

j+2 k+3
2 − vn

j+2 k+1
2 + vn

j+2 k
2
)

+

+
((
pn

j+4 k+2 − pn
j+3 k+2 − pn

j+1 k+2 + pn
j k+2

)
+(

pn
j+2 k+4 − pn

j+2 k+3 − pn
j+2 k+1 + pn

j+2 k

)))
≈

≈ 12h4
(
un

j+2 k+2
2

xx
+ vn

j+2 k+2
2

yy
+ pn

j+2 k+2xx
+ pn

j+2 k+2yy
+O(h2)

)
The differential equation (21) does not follow from the Navier–Stokes system (1).
Otherwise (21) would be an integrability condition for (1), and hence (3) could
not be involutive. Therefore, the numerical integration rules used for discretiza-
tion of (17), namely the trapezoidal rule for the pressure integral relations, are
not consistent with the initial differential system.

6 Conclusions

By applying our algorithmic approach to generation of finite-difference schemes
suggested in [2] we derived two new conservative schemes for the involutive
Navier–Stokes system (1) which are similar to (although distinct from) the clas-
sical scheme derived by Harlow and Welch in [8]. However, the consistency check
of the last scheme requires too cumbersome Gröbner basis computation to be
done by hand whereas both our schemes admit such check done in Section 5.
We have also shown that an inconsistent difference scheme can be derived by



Involution and Difference Schemes for the Navier–Stokes Equations 105

an inappropriate choice of the numerical integration method. To check the prac-
tical quality of the new schemes one has to apply them to explicit numerical
simulation of flows with appropriate initial and boundary conditions, and this is
planned as our future work.

Apparently, by choosing different numerical integration methods (cf. [12]) for
evaluation of the integral equations in (6) and by verification of their consistency
one can generate many difference schemes for the Navier–Stokes equations. From
the above described method it is also clear that it admits a natural extension to
the three-dimensional Navier–Stokes equations.

Acknowledgements

The research presented in this paper was partially supported by grant 07-01-
00660 from the Russian Foundation for Basic Research and by grant 1027.2008.2
from the Ministry of Education and Science of the Russian Federation.

References

1. Pozrikidis, C.: Fluid Dynamics: Theory, Computation and Numerical Simulation.
Kluwer, Dordrecht (2001)

2. Gerdt, V.P., Blinkov, Y. A., Mozzhilkin, V.V.: Gröbner Bases and Generation
of Difference Schemes for Partial Differential Equations. SIGMA 2, 51 (2006)
arXiv:math.RA/0605334

3. Pommaret, J.F.: Partial Differential Equations and Lie Pseudogroups. Gordon &
Breach, London (1978)

4. Calmet, J., Hausdorf, M., Seiler, W.M.: A Constructive Introduction to Involution.
In: Akerkar, R. (ed.) Proc. Int. Symp. Applications of Computer Algebra - ISACA
2000, pp. 33–50. Allied Publishers, New Delhi (2001),
http://www.mathematik.uni-kassel.de/~seiler/

5. Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles. Cahiers
Scientifiques, IV, Gauthier-Villars, Paris (1929)

6. Gerdt, V.P., Blinkov, Y. A.: Involutive Bases of Polynomial Ideals. Math. Comp.
Sim. 45, 519–542 (1998) arXiv:math.AC/9912027

7. Gerdt, V.P.: Completion of Linear Differential Systems to Involution. In: Computer
Algebra in Scientific Computing CASC 1999, pp. 115–137. Springer, Berlin (1999)
arXiv:math.AP/9909114

8. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

9. Gresho, P.M., Sani, R.L.: On Pressure Boundary Conditions for the Incompressible
Navier-Stokes Equations. Int. J. Numer. Meth. Fluids 7, 1111–1145 (1987)

10. Sidorov, A.F., Shapeev, V.P., Yanenko, N.N.: Method of Differential Constraints
and its Application to Gas Dynamics, Nauka, Novosibirsk (1984) (in Russian)

11. Levin, A.: Difference Algebra. Springer, Heidelberg (2008)
12. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Dover Publications

(2007)

http://www.mathematik.uni-kassel.de/~seiler/


A Mathematica Package for Simulation of
Quantum Computation

Vladimir P. Gerdt1, Robert Kragler2, and Alexander N. Prokopenya3

1 Joint Institute for Nuclear Research
141980 Dubna, Russia

gerdt@jinr.ru
2 University of Applied Sciences
D-88241 Weingarten, Germany
kragler@hs-weingarten.de

3 Brest State Technical University
Moskowskaya str. 267, 224017 Brest, Belarus

prokopenya@brest.by

Abstract. In this paper we briefly describe a Mathematica package for
simulation of quantum circuits and illustrate some of its features by
simple examples. Unlike other Mathematica-based quantum simulators,
our program provides a user-friendly graphical interface for generating
quantum circuits and computing the circuit unitary matrices. It can be
used for designing and testing different quantum algorithms. As an ex-
ample we consider a quantum circuit implementing Grover’s search algo-
rithm and show that it gives a quadratic speed-up in solving the search
problem.

1 Introduction

Quantum computation is a topic of great interest for the last two decades [1]. The
main reason for this is the potential ability of a quantum computer to provide
massive performance speedup in certain types of computational problems such
as data searching [2], factorization [3] and encryption [4].

However, in spite of some exciting rumors that are spread by the Canadian
company D-Wave (see the Web page http://www.dwavesys.com/), realistic
quantum computers have not been built yet. Their general unavailability gener-
ates interest in developing classical simulators of quantum computation which
can be used for finding and testing new efficient quantum algorithms. There is
quite a number of such simulators (the corresponding links see on the website
http://www.quantiki.org/wiki/index.php/List of QC simulators). But
most of them have been designed for solving some particular tasks such as demon-
stration of various quantum circuits and algorithms and, hence, can not be used
for applications more general. There are also several simulators of quantum
computation developed with Mathematica [5], for example, the Mathematica
packages Quantum (see http://homepage.cem.itesm.mx/lgomez/quantum/),
Qdensity [6], QuCalc [7]. But these programs have similar shortcomings and are

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 106–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Mathematica Package for Simulation of Quantum Computation 107

not universal in a sense that it is not possible to analyze an arbitrary quantum
algorithm within the framework of any of them.

Note that all quantum algorithms are traditionally expressed in the quantum
circuit model [1]. And so the problem of simulating a quantum computation is
reduced to construction of a quantum circuit transforming a given initial state of
quantum memory register into the final state that can be measured. Such trans-
formation is done by means of the corresponding unitary operator. Therefore, a
simulator program must be able to calculate a unitary matrix corresponding to
the quantum circuit in the general case of n-qubit memory register. Besides, a
simulator must be a user-friendly tool which can be easily used to design and
test different quantum algorithms.

We have developed the first version of a Mathematica package “QuantumCir-
cuit” [8] that, in our opinion, satisfies the requirements above. At the moment
we focus on constructing quantum circuits and computing the corresponding
unitary transformations of quantum register but the package is improved and
extended to cover all types of calculations being necessary to simulate a quan-
tum computer. It should be noted also that in addition to the straightforward
computation of the circuit matrix by means of the Mathematica build-in linear
algebra facilities, our program provide users with the special routine to generate
a system of multivariate Boolean polynomials [9] for a circuit constructed from
Toffoli and Hadamard gates. This system is such that its number of common
roots in the finite field F2 defines the matrix elements of the circuit matrix [10].

The paper is organized as follows. In Section 2 we briefly describe the general
structure of an arbitrary quantum circuit and introduce the concept of its matrix
representation. Then we describe (Section 3) the features of computing unitary
matrices corresponding to different quantum gates and their sequences by apply-
ing the straightforward linear algebra procedures provided by the Mathematica
and demonstrate examples how to compute the circuit matrix. As an application
of our package in Section 4 we consider a quantum circuit implementing Grover’s
search algorithm to show that repeating Grover’s iteration gives a hidden item
with high probability.

2 Quantum Circuit and Its Matrix Representation

The quantum circuit model of computation is constructed analogous to the clas-
sical computing and provides an efficient and powerful language for describing
quantum algorithms. A collection of n qubits forms a quantum memory register,
where the input data and intermediate results of computations are held. Each
qubit is a two-level quantum system that can be prepared, manipulated and
measured in a controlled way. Traditionally, the state of a qubit is denoted as
|a〉, corresponding to standard Dirac notation for quantum mechanical states.
Therefore, a quantum memory register is shown on a diagram visualizing the
circuit as a column of states of the form |aj〉 (j = 1, 2, ..., n) from which “quan-
tum wires” start. Although a quantum circuit doesn’t contain any wires as such,
the term “wires” is merely used to show evolution of qubits acted on by various
quantum gates.



108 V.P. Gerdt, R. Kragler, and A.N. Prokopenya

�a1�

�a2�

�a3�

�b1�

�b2�

�b3�H T æ T T æ

T æ

T

T æ

H

T

S

Fig. 1. Implementation of the Toffoli gate using Hadamard (H), phase (S), controlled-
NOT (CNOT) and π/8 (T) gates

General structure of any quantum circuit can be readily understood from
Fig. 1, where a quantum circuit implementing the Toffoli gate is depicted.

The circuit is to be read from left-to-right. It means that a column of three
qubits |a1〉, |a2〉, |a3〉 in the left-hand side of the diagram determines an initial
state of the memory register. Then it is successively acted on by different quan-
tum gates and its final state is shown on the right-hand side of the diagram as
a column of qubits |b1〉, |b2〉, |b3〉. We have drawn vertical dashed lines in Fig. 1
to show clearly that evolution of the memory register is controlled by means
of successive application of quantum gates to different qubits at each step of
computation.

Note that all gates are usually denoted with some symbols, for example, H
is the Hadamard gate, “•” and symbol

⊕
connected with a vertical line corre-

spond to the control and target qubits in the controlled-NOT gate, S and T are
the phase and π/8 gates, respectively, and so on (we follow here the notations
of [1]). So it seems to be quite natural to introduce the following matrix for
representation of the circuit shown in Fig. 1:

⎛⎝ 1 1 1 C 1 1 1 C 1 C 1 C T
1 C 1 1 1 C 1 1 T † N T † N S
H N T † N T N T † N T 1 H 1 1

⎞⎠ . (1)

Here the unit means identical transformation of the qubit, letters “C” and “N”
in the same column correspond to the control and target qubits of the controlled-
NOT gate, “T †” denotes an adjoint gate for “T”. One can easily see that this
matrix contains all the information about the structure of this circuit. It means
that defining a matrix whose columns from left-to-right contain symbols corre-
sponding to quantum gates acting on the qubits on each step of computation
we can encode thus information about any quantum circuit. Obviously, number
of rows in the matrix should be equal to the number of qubits in the memory
register. This is an idea of our representation of a quantum circuit.

Thus, in our package a quantum circuit is represented internally as a n×m
matrix, where n is a number of qubits and m determines a number of steps in
the computation. It is assumed that each column contains either one multi-qubit



A Mathematica Package for Simulation of Quantum Computation 109

gate or single-qubit gates only. To decrease dimension of the matrix it is rea-
sonable to assume also that there are no neighboring columns in the matrix
containing only single-qubit gates acting on different qubits. Note that to define
the corresponding matrix one can use either standard Mathematica representa-
tion for a matrix as list of lists or traditional notation as shown in Fig. 2. Then
a function circuit[mat] generates a diagram corresponding to the matrix mat.

mat �

1 1 1 C 1 1 1 C 1 C 1 C T

1 C 1 1 1 C 1 1 Tæ N Tæ N S

H N Tæ N T N Tæ N T 1 H 1 1

; circuit�mat�

Fig. 2. A matrix corresponding to the quantum circuit of Fig. 1

It should be emphasized that a user can easily add or delete some row or
column in the matrix mat or change some symbols replacing the corresponding
quantum gates. Then running the command circuit[mat] immediately visual-
izes a new quantum circuit. Afterwards, one can easily compute a unitary matrix
corresponding to the quantum circuit.

The data base of gates in our package contains the following gates [1]:

– one-qubit gates: Hadamard, Pauli X, Pauli Y, Pauli Z, Phase shift Rk,
Phase S ≡ R2 and the π/8 or T ≡ R3.

– two-qubit gates: Controlled-X (CNOT), Controlled-Y, Controlled-Z,
Controlled-S, Controlled-T, Controlled-Rk and Swap gate.

– three-qubit gates: Toffoli (CCNOT).

Note that each controlled gate in our program may have not only one but several
control qubits and for visualization it is sufficient to write a symbol “C” in the
corresponding places of the matrix mat. Besides, the set of available gates can
be easily extended by a user.

3 Constructing the Circuit Unitary Matrix

A state of each qubit is characterized by a vector in the two-dimensional complex
Hilbert space with two mutually orthogonal quantum states |0〉 and |1〉 forming
a computational basis. Therefore, the state of n-qubit memory register is char-
acterized by a vector in the 2n-dimensional complex Hilbert space, where the
basis states are given by

|a1a2 . . . an〉 ≡ |a1〉 ⊗ |a2〉 ⊗ . . .⊗ |an〉 . (2)

Here aj = 0, 1 (j = 1, . . . , n) and the sign ⊗ denotes tensor product of the
vectors. Considering the set of digits (a1a2 . . . an) as a binary notation for the
number k, the basis states (2) can be represented as column vectors:



110 V.P. Gerdt, R. Kragler, and A.N. Prokopenya

|00 . . . 00〉 ≡ |0〉 =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ , |00 . . .01〉 ≡ |1〉 =

⎛⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎠ , . . . ,

|11 . . . 11〉 ≡ |2n − 1〉 =

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠ , (3)

where the vector |k〉 (k = 0, 1, . . . , 2n − 1) has the component k+ 1 equal to one
and all other components equal to zero.

A unitary matrix U defined by the quantum circuit with n qubits is repre-
sented as a 2n × 2n matrix with respect to the basis states (3). As the circuit is
read from left-to-right and we use the matrix mat to represent the circuit, the
matrix U can be written as the following product

U = UmUm−1 . . . U2U1 , (4)

where Uj (j = 1, 2, . . . ,m) is the 2n × 2n matrix determined by the quantum
gates being in the jth column of the matrix mat.

Remind that each column of the matrix mat contains either several one-
qubit gates acting on different qubits or a multi-qubit gate. In the first case
the corresponding matrix Uj is obtained as a tensor product of n matrices of
second order representing the one-qubit gates in the computational basis. For
example, the first column of the matrix (1), encoding the quantum circuit of
Fig. 1, contains three symbols, namely, 1, 1, H. Therefore, the corresponding
8 × 8 matrix U1 is obtained as a tensor product of the following matrices

(
1 0
0 1

)
⊗
(

1 0
0 1

)
⊗ 1√

2

(
1 1
1 −1

)
=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠⊗ 1√
2

(
1 1
1 −1

)
=

=
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where we have used two 2×2 unity matrices and standard matrix representation
for the Hadamard gate (see [1]). Computing this tensor product can be easily
implemented with built-in linear algebra Mathematica tools, the corresponding
source code is shown in Fig. 3. However, memory resources for storing such a



A Mathematica Package for Simulation of Quantum Computation 111

mat1 � ��1, 0�, �0, 1��;

mat2 � ��1, 0�, �0, 1��;

mat3 �
1

2

��1, 1�, �1, �1��;

ArrayFlatten� Outer� Times,

ArrayFlatten� Outer� Times, mat1, mat2��, mat3��

Fig. 3. Mathematica code implementing calculation of the matrix (4)

matrix grow exponentially with the number of qubits. And to store the 210×210

unitary matrix being a tensor product of ten Hadamard gates, for example, one
needs more than 1 GB memory size which limits efficient simulation of quantum
circuits containing more than 10 qubits. If most of the matrix elements are zeros
one can store the matrix as a sparse array and this enables to increase the number
of qubits in the circuit. For example, to store the 220 × 220 unitary matrix being
a tensor product of twenty Pauli-X gates one needs only about 25 MB memory
size. But in any case time of calculation grows exponentially with the number
of qubits as well (see Fig. 4).

5 10 15 20
n

4

2

2

4

ln t

Fig. 4. Calculation time of tensor product of n Hadamard (•) and Pauli-X (�) matrices

Note that the kth column of the matrix Uj is a vector in the 2n-dimensional
Hilbert space and is obtained as a result of the action of quantum gates, being in
the jth column of the matrix mat, on the basis vector |k − 1〉. Therefore, if the
column contains only some controlled gate, the corresponding matrix Uj may be
obtained directly by specifying the transformation rules for the basis vectors (3).



112 V.P. Gerdt, R. Kragler, and A.N. Prokopenya

For example, in the case of CNOT gate defined by the second column of the
matrix (1) the Pauli-X or NOT gate is applied to the target qubit |a3〉 only if
the control qubit |a2〉 is in the state |1〉. This operation doesn’t depend on the
state of the qubit |a1〉. As a result we obtain only permutation of the basis states
(3) according to the rule

|0〉 ≡ |000〉 → |000〉 ≡ |0〉
|1〉 ≡ |001〉 → |001〉 ≡ |1〉
|2〉 ≡ |010〉 → |011〉 ≡ |3〉
|3〉 ≡ |011〉 → |010〉 ≡ |2〉
|4〉 ≡ |100〉 → |100〉 ≡ |4〉
|5〉 ≡ |101〉 → |101〉 ≡ |5〉
|6〉 ≡ |110〉 → |111〉 ≡ |7〉
|7〉 ≡ |111〉 → |110〉 ≡ |6〉

(5)

Consequently, the columns of the matrix U2 from left-to right are just basis
vectors (3) written in the order they appear in the right-hand side of equa-
tion (5). This permutation is implemented in our package with the function
gateCN[3,3,{2}], the corresponding source code is shown in Fig. 5. Its argu-
ments n, kn and kc are a number of qubits in the circuit, position of the target
qubit and list of positions of the controlled qubits, respectively. The matrix Uj

is stored as a sparse one what reduces the memory resources and time of cal-
culation dramatically. For example, the computing time and memory used in
the case of tensor product of eleven Hadamard gates are 104 times larger than
similar values for the CCNOT gate in the circuit with eleven qubits.

gateCN�n_, kn_, kc_ ?ListQ� :�

Block� �b1, u0, rules�,

b1 � Table�IntegerDigits�j, 2, n�, �j, 0, 2^n � 1��;

rules � Table� �FromDigits�ReplacePart�b1��j��,

kn �� Mod�Apply�Times,

b1��j, kc�� � � b1��j, kn��, 2� �, 2� � 1, j� �� 1,

�j, 2^n��;

u0 � SparseArray�rules, �2^n, 2^n�� ; u0 �

Fig. 5. Mathematica code implementing matrix representation of the CNOT gate

When all unitary matrices Uj corresponding to the columns of matrix mat
have been calculated one can compute their product according to the expression
(4) and thus find the unitary matrix of the whole circuit. Such sequence of
operations in our package is done by the function matrixU[mat] which is called
with a single argument that is just the matrix mat encoding the circuit. For the
matrix (1), for example, the corresponding command gives the unitary 8 × 8
matrix shown in Fig. 6. It should be noted that this unitary matrix coincides
with the matrix given by the function gateCN[3, 3, {1,2}] which generates the



A Mathematica Package for Simulation of Quantum Computation 113

unitary matrix corresponding to the Toffoli gate. Therefore, one can conclude
that the circuit shown in Fig. 1 implements the Toffoli gate. This is a direct
proof of the statement that Toffoli gate can be composed from the Hadamard,
phase, CNOT and π/8 gates. This example demonstrates one application of our
package as a tool for proving the equivalence of different quantum circuits.

�a1�

�a2�

�a3�

�b1�

�b2�

�b3�

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

Fig. 6. Toffoli gate and its unitary matrix

It should be emphasized that a matrix mat representing some quantum circuit
may be not only constructed by hand as it has been done above but may be
generated by some function as well. For example, to generate a matrix modeling a
quantum circuit implementing the Fourier transform for n-qubit memory register
one can define the function modelFourier[n] (Fig. 8). Then using the functions
circuit and matrixU, we can easily visualize the circuit (Fig. 7) and compute
the corresponding unitary matrix.

modelFourier�n_� :� Module��model, mm, n1�,

model � Array�mm, �n, n �n � 1� � 2�� �. mm�i_, j_� � 1;

n1 � 0;

Do� Do� If�k � 1, model��j, n1 � 1�� � H,

�model��j, n1 � k�� � C; model��j � k � 1, n1 � k�� � Rk�

� , �k, n � j � 1��;

n1 � n1 � n � j � 1, �j, n��; model �

Fig. 7. Mathematica code for generation of a matrix representing the circuit for the
quantum Fourier transform

Note that a unitary matrix corresponding to the quantum Fourier transform
may be also computed with the Mathematica package Qdensity [6] but this is
done by a procedure written specially for this quantum circuit. However, time of
calculation is only a little bit less than in the case of our package “QuantumCir-
cuit”, whereas the function matrixU is universal, and of course this time grows
exponentially with the number of qubits for both programs (see Fig. 9).



114 V.P. Gerdt, R. Kragler, and A.N. Prokopenya

�a1�

�a2�

�a3�

�a4�

�b1�

�b2�

�b3�

�b4�

H

R2

R3

R4

H

R2

R3

H

R2 H

Fig. 8. A quantum circuit implementing the Fourier transform (n = 4)

4 5 6 7 8 9 10
n

4

2

2

4

ln tc

Fig. 9. Time of computing a unitary matrix for the Fourier transform with our package
”QuantumCircuit” (•) and Qdensity (�)

4 Implementation of the Grover Search Algorithm

To demonstrate application of the package “QuantumCircuit” for analysis of
quantum circuits let us consider Grover’s search algorithm [2] as an example.
The search problem is formulated as follows [11]: some n-bit integer k is hidden in
a black-boxed subroutine that indicates, when presented with any n-bit integer
x, whether or not x coincides with k, returning this information as the value
of the n-bit binary function. The problem is to find k with minimum number
of applying the subroutine. Let a quantum memory register contain five qubits
(n = 4): four qubits |a1〉, |a2〉, |a3〉, |a4〉 are originally prepared in the state |0〉
and one ancillary qubit |a5〉 is in the state |1〉. It means that the initial state
of the memory register is |00001〉 and the corresponding basis vector in the 32-
dimensional Hilbert space has the second component equal to one and all other
components equal to zero (see equation (3)). Applying five Hadamard gates,
one for each qubit, we obtain an equal superposition of all basis states of the
five-qubit system. A quantum search subroutine bounded by two dashed lines



A Mathematica Package for Simulation of Quantum Computation 115

�a1�

�a2�

�a3�

�a4�

�a5�

�b1�

�b2�

�b3�

�b4�

�b5�

H

H

H

H

H

X X

H

H

H

H

X

X

X

X Z

X

X

X

X

H

H

H

H

Fig. 10. Quantum circuit implementing Grover’s search algorithm (n = 4, k = 11)

in the diagram (Fig. 10) is a 4-bit binary function that outputs 1 if its input is
some given integer (k = 11 in the case shown) and 0 otherwise. This subroutine
together with a quantum circuit drawn on the right of the dashed line form one
Grover’s iteration.

Note that Grover’s iteration can be applied to the memory register several
times bringing it to some final state that can be measured in the computa-
tional basis. And if the number of iterations is equal to the integer part of
π/(4 arcsin(2−n/2)) = π/(4 arcsin(1/4)) = 3.108 (see [1], [2], [11]), then the final
state will be exactly |k〉 with very high probability.

To find a final state of the memory register after several Grover’s iterations let
us define two matrices mat0 and matG (see Fig. 11). The first one represents a
column of Hadamard gates bringing initial state |00001〉 of the memory register
to equal superposition of all basis states. The corresponding unitary 25 × 25

matrix matU0 is given by the function matrixU[mat0] .

initial � SparseArray�2 � 1, 2^5�;

mat0 � ��H�, �H�, �H�, �H�, �H��; matU0 � matrixU�mat0�;

matG �

1 C 1 H X C X H

X C X H X C X H

1 C 1 H X C X H

1 C 1 H X Z X H

1 N 1 1 1 1 1 1

; matU1 � matrixU�matG�;

firstIteration � matU1.matU0.initial;

secondIteration � matU1.firstIteration;

thirdIteration � matU1.secondIteration

Fig. 11. Mathematica code for computing a final vector after three Grover’s iterations



116 V.P. Gerdt, R. Kragler, and A.N. Prokopenya

The second matrix matG represents one Grover’s iteration and the corre-
sponding unitary matrix is given by matrixU[matG]. Defining the initial state
of the memory register as a sparse vector initial, one can act on it with op-
erator matU0 and then apply successively several Grover’s iterations matU1.
As a result we obtain a unit vector with 25 = 32 components which determine
probabilities of different basis states of the memory register. Remind that hid-
den item is encoded by the states of four qubits |a1〉, |a2〉, |a3〉, |a4〉, while the
ancillary qubit |a5〉 is finally in the state 1√

2
(|0〉− |1〉) and may be found in both

basis states |0〉 and |1〉 with equal probability. Therefore, a probability P to get
k (k = 0, 1, ..., 15) as a result of measurement of the memory register |a1a2a3a4〉
is equal to a sum of the 2kth and (2k + 1)th components squared of the final
vector.

2 4 6 8 10 12 14
k

0.2

0.4

0.6

0.8

1.0
P

Pmax
(3) = 0.96 for k=11

=11Pmax
(1) = 0.47 for k

Fig. 12. Probability distribution in the final state after one and three Grover’s
iterations

Fig. 12 shows that after one iteration a probability to get a correct number
k = 11 as a result of measurement is equal to 47 percent, while after the third
Grover’s iteration a standard measurement in the computational basis gives 11
with probability 96 percent. It should be noted also that the fourth iteration de-
creases a probability to get a correct result to 58 percent. Thus, maximum proba-
bility to obtain correct result is reached if the number of iterations is equal to its
optimal value that is determined as an integer part of π/(4 arcsin(1/

√
N), where

N = 2n. For large values of N this number is O(
√
N) and, hence, Grover’s algo-

rithm provides a quadratic speed-up in solving the search problem in comparison
with a classical computer which requires O(N) applications of the subroutine.

5 Conclusion

In this paper we present a Mathematica package for simulation of quantum cir-
cuits we are currently working on. The package provides a user-friendly graphi-
cal interface for generating quantum circuits and computing the circuit unitary



A Mathematica Package for Simulation of Quantum Computation 117

matrices. Arbitrary circuit is represented internally as a symbolic table whose
elements correspond to different one- and multi-qubit gates. Its unitary matrix
is computed by means of the Mathematica build-in linear algebra facilities.

Estimating the time of calculation of the unitary matrix corresponding to the
quantum Fourier transform with our package and with the Mathematica package
Qdensity [6] shows that they are comparable (see Fig. 9). But the package Qden-
sity implements the standard algorithm for computing this matrix what means
that simulating other quantum circuit requires to design new algorithm of calcu-
lation. In our package the corresponding function matrixU for computing the
unitary matrix is quite universal. Therefore, our package “QuantumCircuit” is
universal and can be used for designing and testing different quantum algorithms.

Acknowledgements

The contribution of one of the authors (V.P.G.) research was partially supported
by grant 07-01-00660 from the Russian Foundation for Basic Research.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79, 325–328 (1997)

3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

4. Phoenix, S.J.D., Townsend, P.D.: Quantum cryptography: how to beat the code
breakers using quantum mechanics. Contemp. Phys. 36, 165–195 (1995)

5. Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media/Cambridge
University Press (1999)

6. Julia-Diaz, B., Burdis, J.M., Tabakin, F.: QDENSITY – A Mathematica quantum
computer simulation. Computer Physics Comm. 174(11), 914–934 (2006)

7. Phillips, F.: Editor’s Pick: Quantum computation. The Mathematica Journal 8(1)
(2001)

8. Gerdt, V.P., Kragler, R., Prokopenya, A.N.: A Mathematica Package for Construc-
tion of Circuit Matrices in Quantum Computation. In: Computer Algebra and Dif-
ferential Equations. Acta Academiae Aboensis, Ser. B, vol. 67(2), pp. 28–38 (2007)

9. Rudeanu, S.: Boolean functions and equations. North-Holland Publishing Co.,
Amsterdam. American Elsevier Publishing Co., Inc., New York (1974)

10. Dawson, C.M., Haselgrove, H.L., Hines, A.P., et al.: Quantum computing and poly-
nomial equations over the finite field Z2. Quantum Information and Computa-
tion 5(2), 102–112 (2005) arXiv:quant-ph/0408129

11. Mermin, N.D.: Quantum computer science. An introduction. Cambridge University
Press, Cambridge (2007)



On Computing the Hermite Form of a Matrix of
Differential Polynomials

Mark Giesbrecht and Myung Sub Kim

Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Abstract. Given a matrix A ∈ F(t)[D; δ]n×n over the ring of differential
polynomials, we show how to compute the Hermite form H of A and a
unimodular matrix U such that UA = H . The algorithm requires a
polynomial number of operations in F in terms of n, degDA, degtA.
When F = Q it require time polynomial in the bit-length of the rational
coefficients as well.

1 Introduction

Canonical forms of matrices over principal ideal domains (such as Z or F[x],
for a field F) have proven invaluable for both mathematical and computational
purposes. One of the successes of computer algebra over the past three decades
has been the development of fast algorithms for computing these canonical forms.
These include triangular forms such as the Hermite form (Hermite, 1863), low
degree forms like the Popov form (Popov, 1972), as well as the diagonal Smith
form (Smith, 1861).

Canonical forms of matrices over non-commutative domains, especially rings
of differential and difference operators, are also extremely useful. These have
been examined at least since Dickson (1923), Wedderburn (1932), and Jacobson
(1943). A typical domain under consideration is that of differential polynomials.
For our purposes these are polynomials over a function field F(t) (where F is a
field of characteristic zero, typically an extension of Q, or some representation
of C). A differential indeterminate D is adjoined to form the ring of differential
polynomials F(t)[D; δ], which consists of the polynomials in F(t)[D] under the
usual addition and a non-commutative multiplication defined such that Da =
aD+δ(a), for any a ∈ F(t). Here δ : F(t) → F(t) is a pseudo-derivative, a function
such that for all a, b ∈ F(t) we have

δ(a+ b) = δ(a) + δ(b) and δ(ab) = aδ(b) + δ(a)b.

The most common derivation in F(t) takes δ(a) = a′ for any a ∈ F(t), the usual
derivative of a, though other derivations (say δ(t) = t) are certainly of interest.

A primary motivation in the definition of F(t)[D; δ] is that there is a nat-
ural action on the space of infinitely differentiable functions in t, namely the
differential polynomial

amDm + am−1Dm−1 + · · · + a1D + a0 ∈ F(t)[D; δ]

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 118–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On Computing the Hermite Form of a Matrix of Differential Polynomials 119

acts as the linear differential operator

am(t)
dmy(t)
dtm

+ am−1(t)
dm−1y(t)
dtm−1

+ · · · + a1(t)
dy(t)
dt

+ a0(t)y(t)

on a differentiable function y(t). Solving and analyzing systems of such opera-
tors involves working with matrices over F(t)[D; δ], and invariants such as the
differential analogues of the Smith, Popov and Hermite forms provide important
structural information.

In commutative domains such as Z and F[x], it has been more common to com-
pute the triangular Hermite and diagonal Smith form (as well as the lower degree
Popov form, especially as an intermediate computation). Indeed, these forms are
more canonical in the sense of being canonical in their class under multiplication
by unimodular matrices. Polynomial-time algorithms for the Smith and Hermite
forms over F[x] were developed by Kannan (1985), with important advances
by Kaltofen et al. (1987), Villard (1995), Mulders and Storjohann (2003), and
many others. One of the key features of this recent work in computing normal
forms has been a careful analysis of the complexity in terms of matrix size, en-
try degree, and coefficient swell. Clearly identifying and analyzing the cost in
terms of all these parameters has led to a dramatic drop in both theoretical and
practical complexity.

Computing the classical Smith and Hermite forms of matrices over differen-
tial (and more general Ore) domains has received less attention though normal
forms of differential polynomial matrices have applications in solving differen-
tial systems and control theory. Abramov and Bronstein (2001) analyzes the
number of reduction steps necessary to compute a row-reduced form, while
Beckermann et al. (2006) analyze the complexity of row reduction in terms of
matrix size, degree and the sizes of the coefficients of some shifts of the input
matrix. Beckermann et al. (2006) demonstrates tight bounds on the degree and
coefficient sizes of the output, which we will employ here. For the Popov form,
Cheng (2003) gives an algorithm for matrices of shift polynomials. Cheng’s ap-
proach involves order bases computation in order to eliminate lower order terms
of Ore polynomial matrices. A main contribution of Cheng (2003) is to give an
algorithm computing the row rank and a row-reduced basis of the left nullspace
of a matrix of Ore polynomials in a fraction-free way. This idea is extended in
Davies et al. (2008) to compute Popov form of general Ore polynomial matrices.
In Davies et al. (2008), they reduce the problem of computing Popov form to a
nullspace computation. However, though Popov form is useful for rewriting high
order terms with respect to low order terms, we want a different normal form
more suited to solving system of linear diophantine equations. Since the Hermite
form is upper triangular it meets this goal nicely, not to mention the fact that
it is a “classical” canonical form. In a slightly different vein, Middeke (2008)
has recently given an algorithm for the Smith (diagonal) form of a matrix of
differential polynomials, which requires time polynomial in the matrix size and
degree (but the coefficient size is not analyzed).



120 M. Giesbrecht and M.S. Kim

In this paper, we first discuss some basic operations with polynomials in
F(t)[D; δ], which are typically written with respect to the differential variable
D as

f = f0 + f1D + f2D2 + · · · + fdDd, (1.1)

where f0, . . . , fd ∈ F(t), with fd �= 0. We write d = degDf to mean the degree in
the differential variable, and generally refer to this as the degree of f . Since this is
a non-commutative ring, it is important to set a standard notation in which the
coefficients f0, . . . , fd ∈ F(t) are written to the left of the differential variable D.
For u, v ∈ F[t] relatively prime, we can define degt(u/v) = max{degtu, degtv}.
This is extended to f ∈ F(t)[D; δ] as in (1.1) by letting degtf = maxi{degtfi}.
We think of degt as measuring coefficient size or height. Indeed, with a little
extra work the bounds and algorithms in this paper are effective over Q(t) as
well, where we also include the bit-length of rational coefficients, as well as the
degree in t, in our analyses.

A matrix U ∈ F(t)[D; δ]n×n is said to be unimodular if there exists a V ∈
F(t)[D; δ]n×n such that UV = I, the n× n identity matrix. Note that we do not
employ the typical determinantal definition of a unimodular matrix, as there
is no easy notion of determinant for matrices over F(t)[D; δ] (indeed, working
around this deficiency suffuses much of our work).

A matrix H ∈ F(t)[D; δ]n×n is said to be in Hermite form if H is upper
triangular, if every diagonal entry is monic, and every off-diagonal entry has
degree less than the diagonal entry below it. As an example, the matrix⎛⎝ 1 + (t+ 2)D + D2 2 + (2t+ 1)D 1 + (1 + t)D

2t+ t2 + tD 2 + 2t+ 2t2 + D 4t+ t2

3 + t+ (3 + t)D + D2 8 + 4t+ (5 + 3t)D + D2 7 + 8t+ (2 + 4t)D

⎞⎠
has Hermite form⎛⎝2 + t + D 1 + 2t −2+t+2t2

2t − 1
2tD

0 2 + t+ D 1 + 7t
2 + 1

2D
0 0 − 2

t + −1+2t+t2

t D + D2

⎞⎠ .
Note that the Hermite form may have denominators in t. Also, while this example
does not demonstrate it, it is common that the degrees in the Hermite form, in
both t an D, are substantially larger than in the input.

In this paper we will only concern ourselves with matrices in F(t)[D; δ]n×n

of full row rank, that is, matrices whose rows are F(t)[D; δ]-linear independent.
For any matrix A ∈ F(t)[D; δ]n×n, we show there exists a unimodular matrix
U such that UA = H is in Hermite form. This form is canonical in the sense
that if two matrices A,B ∈ F(t)[D; δ]n×n are such that A = PB for unimodular
P ∈ F(t)[D; δ]n×n then the Hermite form of A equals the Hermite form of B.

The main contribution of this paper is an algorithm that, given a matrix
A ∈ F(t)[D; δ]n×n (of full row rank), computes H and U such that UA = H ,
which requires a polynomial number of F-operations in n, degDA, and degtA. It
will also require time polynomial in the coefficient bit-length when F = Q.



On Computing the Hermite Form of a Matrix of Differential Polynomials 121

The remainder of the paper is organized as follows. In Section 2 we summarize
some basic properties of differential polynomial rings and present and analyze
algorithms for some necessary basic operations. In Section 3 we introduce a new
approach to compute appropriate degree bounds on the coefficients of H and
U . In Section 4 we present our algorithm for computing the Hermite form of a
matrix of differential polynomials and analyze it completely.

2 Basic Structure and Operations in F[t][D; δ]

In this section we discuss some of the basic structure of the ring F(t)[D; δ] and
present and analyze simple algorithms to do some computations that will be
necessary in the next section.

Some well-known properties of F(t)[D; δ] are worth recalling; see
Bronstein and Petkovšek (1994) for an algorithmic presentation of this theory.
Given f, g ∈ F(t)[D; δ], there is a degree function (in D) which satisfies the usual
properties: degD(fg) = degDf +degDg and degD(f + g) ≤ max{degDf, degDg}.
F(t)[D; δ] is also a left and right principal ideal ring, which implies the existence
of a right (and left) division with remainder algorithm such that there exists
unique q, r ∈ F(t)[D; δ] such that f = qg + r where degD(r) < degD(g). This
allows for a right (and left) euclidean-like algorithm which shows the existence of
a greatest common right divisor, h = gcrd(f, g), a polynomial of minimal degree
(in D) such that f = uh and g = vh for u, v ∈ F(t)[D; δ]. The GCRD is unique
up to a left multiple in F(t)\{0}, and there exist co-factors a, b ∈ F(t)[D; δ]
such that af + bg = gcrd(f, g). There also exists a least common left multiple
lclm(f, g). Analogously there exists a greatest common left divisor, gcld(f, g),
and least common right multiple, lcrm(f, g), both of which are unique up to a
right multiple in F(t).

Efficient algorithms for computing products of polynomials are developed in
van der Hoeven (2002) and Bostan et al. (2008), while fast algorithms to com-
pute the LCLM and GCRD, are developed in Li and Nemes (1997) and Li (1998).
In this paper we will only need to compute very specific products of the form
Dkf for some k ∈ N. We will work with differential polynomials in F[t][D; δ], as
opposed to F(t)[D; δ], and manage denominators separately. If f ∈ F[t][D; δ] is
written as in (1.1), then f0, . . . , fd ∈ F[t], and

Df =
∑

0≤i≤d

fiDi+1 +
∑

0≤i≤d

f ′iDi ∈ F[t][D; δ],

where f ′i ∈ F[t] is the usual derivative of fi ∈ F[t]. Assume degtf ≤ e. It is easily
seen that degD(Df) = d + 1, and degt(Df) ≤ e. The cost of computing Df is
O(de) operations in F. Computing Dkf , for 1 ≤ k ≤ m then requires O(dem)
operations in F.

If F = Q we must account for the bit-length of the coefficients as well. Assum-
ing our polynomials are in Z[t][D; δ] (which will be sufficient), and are written
as above, we have fi =

∑
0≤j≤e fijt

j for fij ∈ Z. We write ‖f‖∞ = max |fij | to
capture the coefficient size of f . It easily follows that ‖Df‖∞ ≤ (e + 1)‖f‖∞,
and so ‖Dmf‖∞ ≤ (e+ 1)m‖f‖∞.



122 M. Giesbrecht and M.S. Kim

Lemma 2.1

(i) Let f ∈ F[t][D; δ] have degDf = d, degtf = e, and let m ∈ N. Then we can
compute Dkf , for 1 ≤ k ≤ m, with O(dem) operations in F.

(ii) Let f ∈ Z[t][D; δ]. Then ‖Dmf‖∞ ≤ (e + 1)m · ‖f‖∞, and we can compute
Dif , for 1 ≤ i ≤ m, with O(dem · (m log e+ log ‖f‖∞)2) bit operations.

We make no claim that the above methods are the most efficient, and faster
polynomial and matrix arithmetic will certainly improve the cost. However, the
above analysis will be sufficient, and these costs will be dominated by others in
the algorithms of later sections.

3 Existence and Degree Bounds on the Hermite Form

In this section we prove the existence and uniqueness of the Hermite form over
F(t)[D; δ], and prove some important properties about unimodular matrices and
equivalence over this ring. The principal technical difficulty is that there is no
natural determinant function with the properties found in commutative linear
algebra. The determinant is one of the main tools used in the analysis of essen-
tially all fast algorithms for computing the Hermite form H and transformation
matrix U , and specifically two relevant techniques in established methods by
Storjohann (1994) and Kaltofen et al. (1987). One approach might be to employ
the non-commutative determinant of Dieudonné (1943), but this adds consider-
able complication. Instead, we find degree bounds via established bounds on the
row-reduced form.

Definition 3.1 (Unimodular matrix). Let U ∈ F(t)[D; δ]n×n and suppose
there exists a V ∈ F(t)[D; δ]n×n such that UV = In, where In is the identity
matrix over F(t)[D; δ]n×n. Then U is called a unimodular matrix over F(t)[D; δ].

This definition is in fact symmetric, in that V is also unimodular, as shown in
the following lemma (the proof of which is left to the reader).

Lemma 3.1. Let U ∈ F(t)[D; δ]n×n be unimodular such that there exists a V ∈
F(t)[D; δ]n×n with UV = In. Then V U = In as well.

Theorem 3.1. Let a, b ∈ F(t)[D; δ]. There exists a unimodular matrix

W =
(
u v
s t

)
∈ F(t)[D; δ]2×2 such that W

(
a
b

)
=
(
g
0

)
,

where g = gcrd(a, b) and sa = −tb = lclm(a, b).

Proof. Let u, v ∈ F(t)[D; δ] be the multipliers from the euclidean algorithm such
that ua + vb = g. Since sa = −tb = lclm(a, b), we know that gcld(s, t) = 1
(otherwise the minimality of the degree of the lclm would be violated). It follows
that there exist c, d ∈ F(t)[D; δ] such that sc+ td = 1. Now observe that(

u v
s t

)(
ag−1 c
bg−1 d

)(
1 −uc− vd
0 1

)
=
(

1 uc+ vd
0 1

)(
1 −uc− vd
0 1

)
=
(

1 0
0 1

)
.



On Computing the Hermite Form of a Matrix of Differential Polynomials 123

Thus

W−1 =
(
ag−1 ag−1(−uc− vd) + c
bg−1 bg−1(−uc− vd) + d

)
=
(
ag−1 −a+ c
bg−1 −b+ d

)
,

so W is unimodular. ��
Definition 3.2 (Hermite Normal Form). Let H ∈ F(t)[D; δ]n×n with full
row rank. The matrix H is in Hermite form if H is upper triangular, if every
diagonal entry of H is monic, and if every off-diagonal entry of H has degree
(in D) strictly lower than the degree of the diagonal entry below it.

Theorem 3.2. Let A ∈ F(t)[D; δ]n×n have row rank n. Then there exists a
matrix H ∈ F(t)[D; δ]n×n with row rank n in Hermite form, and a unimodular
matrix U ∈ F(t)[D; δ]n×n, such that UA = H.

Proof. We show this induction on n. The base case, n = 1, is trivial and we
suppose that the theorem holds for n− 1×n− 1 matrices. Since A has row rank
n, we can find a permutation of the rows of A such that every principal minor of
A has full row rank. Since this permutation is a unimodular transformation of
A, we assume this property about A. Thus, by the induction hypothesis, there
exists a unimodular matrix U1 ∈ F(t)[D; δ](n−1)×(n−1) such that⎛⎜⎜⎜⎜⎜⎝

0
U1 0

...
0

0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎠ · A = H̄ =

⎛⎜⎜⎜⎜⎜⎝
H̄1,1 · · · · · · ∗ ∗

H̄2,2 · · · ∗ ∗

0
. . .

...
...

H̄n−1,n−1 ∗
An,1 An,2 · · · An,n−1 An,n

⎞⎟⎟⎟⎟⎟⎠ ∈ F(t)[D; δ]n×n
,

where the (n − 1)st principal minor of H̄ is in Hermite form. By Theorem 3.1,
we know that there exists a unimodular matrix

W =
(
ui vi
si −ti

)
∈ F(t)[D; δ]2×2 such that W

(
H̄ii

An,i

)
=
(
gi
0

)
∈ F(t)[D; δ]2×1

.

This allows us to reduce An,1, . . . , An,n−1 to zero, and does not introduce any
non-zero entries below the diagonal. Also, all off-diagonal entries can be reduced
using unimodular operations modulo the diagonal entry, putting the matrix into
Hermite form. ��
Corollary 3.1. Let A ∈ F(t)[D; δ]n×n have full row rank. Suppose UA = H for
unimodular U ∈ F(t)[D; δ]n×n and Hermite form H ∈ F(t)[D; δ]n×n. Then both
U and H are unique.

Proof. Suppose H and G are both Hermite forms of A. Thus, there exist uni-
modular matrices U and V such that UA = H and V A = G, and G = WH
where W = V U−1 is unimodular. Since G and H are upper triangular matrices,
we know W is as well. Moreover, since G and H have monic diagonal entries,
the diagonal entries of W equal 1. We now prove W is the identity matrix. By



124 M. Giesbrecht and M.S. Kim

way of contradiction, first assume that W is not the identity, so there exists an
entry Wij which is the first nonzero off-diagonal entry on the ith row of W .
Since i < j and since Wii = 1, Gij = Hij +WijHjj . Because Wij �= 0, we see
degDGij ≥ degDGjj , which contradicts the definition of the Hermite form. The
uniqueness of U follows similarly. ��
Definition 3.3 (Row Degree). A matrix T ∈ F(t)[D; δ]n×n has row degree−→u ∈ (N ∪ {−∞})n if the ith row of T has degree ui. We write rowdeg−→u .

Definition 3.4 (Leading Row Coefficient Matrix). Let T ∈ F(t)[D; δ]n×n

have rowdeg−→u . Set N = degDT and S = diag(DN−u1 , . . . ,DN−un). We write

ST = LDN + lower degree terms in D,

where the matrix L = LCrow(T ) ∈ F(t)n×n is called the leading row coefficient
matrix of T .

Definition 3.5 (Row-reduced Form). A matrix T ∈ F(t)[D; δ]m×s with rank
r is in row-reduced form if rank LCrow(T ) = r.

Fact 3.1 (Beckermann et al. (2006) Theorem 2.2). For any
A ∈ F(t)[D; δ]m×s there exists a unimodular matrix U ∈ F(t)[D; δ]m×m, with
T = UA having r ≤ min{m, s} nonzero rows, rowdegT ≤ rowdegA, and where
the submatrix consisting of the r nonzero rows of T are row-reduced. Moreover,
the unimodular multiplier satisfies the degree bound

rowdegU ≤ −→v + (|−→u | − |−→v | − min
j

{uj})−→e ,

where −→u := max(
−→
0 , rowdegA), −→v := max(

−→
0 , rowdegT ), and −→e is the column

vector with all entries equal to 1.

The proof of the following is left to the reader.

Corollary 3.2. If A ∈ F(t)[D; δ]n×n is a unimodular matrix then the row re-
duced form of A is an identity matrix.

The following theorems provide degree bounds on H and U . We first compute
a degree bound of the inverse of U by using the idea of backward substitution,
and then use the result of Beckermann et al. (2006) to compute degree bound
of U .

Theorem 3.3. Let A ∈ F(t)[D; δ]n×n be a matrix with degDAij ≤ d and full
row rank. Suppose UA = H for unimodular matrix U ∈ F(t)[D; δ]n×n and
H ∈ F(t)[D; δ]n×n in Hermite form. Then there exist a unimodular matrix
V ∈ F(t)[D; δ]n×n such that A = V H where UV = In and degDVij ≤ d.
Proof. We prove by induction on n. The base case is n = 1. Since H11 =
gcrd(A11, . . . , An1), degDH11 ≤ d and so degDVi1 ≤ d for 1 ≤ i ≤ n. Now,



On Computing the Hermite Form of a Matrix of Differential Polynomials 125

we suppose that our claim is true for k where 1 < k < n. Then we have to show
that degDVik+1 ≤ d. We need to consider two cases:

Case 1: degDVi,k+1 > max(degDVi1, . . . , degDVik). Since

degDHk+1,k+1 ≥ max(degD H1,k+1, . . . ,degDHk,k+1),
degDAi,k+1 = degD(Vi,k+1Hk+1,k+1),

where Ai,k+1 = Vi1H1,k+1 + · · · + Vi,k+1Hk+1,k+1. Thus, degDVi,k+1 ≤ d.
Case 2: degDVi,k+1 ≤ max(degDVi1, . . . ,degDVik). Thus, by induction hypothe-
sis, degDVi,k+1 ≤ d. ��
Corollary 3.3. Let A, V , and U be those in Theorem 3.3. Then degDUij ≤
(n− 1)d.

Proof. By Corollary 3.2, we know that the row reduced form of V is In. Moreover,
since In = UV , we can compute the degree bound of U by using Fact 3.1. Clearly,

−→v + (|−→u | − |−→v | − min
j

{uj})−→e ≤ −→v + (|−→u | − min
j

{uj})−→e ,

where −→u := max(
−→
0 , rowdegV ) and −→v := max(

−→
0 , rowdegIn) =

−→
0 . Since the

degree of each row of V is bounded by d, (|−→u | − minj{uj}) ≤ (n − 1)d. Then,
by Fact 3.1, rowdegU ≤ (n− 1)d. Therefore, degDUij ≤ (n− 1)d. ��
Corollary 3.4. Let H be same as that in Theorem 3.3. Then degDHij ≤ nd.
Proof. Since degDUij ≤ (n− 1)d and degDAij ≤ d, degDHij ≤ nd. ��

4 Computing Hermite Forms by Linear Systems over F(t)

In this section we present our polynomial-time algorithm to compute the Hermite
form of a matrix over F(t)[D; δ]. We exhibit a variant of the linear system method
developed in Kaltofen et al. (1987) and Storjohann (1994). The approach of these
papers is to reduce the problem of computing the Hermite of matrices with
(usual) polynomial entries in F[z] to the problem of solving a linear system
equations over F. Analogously, we reduce the problem of computing the Hermite
form over F[t][D; δ] to solving linear systems over F(t). The point is that the field
F(t) over which we solve is the usual, commutative, field of rational functions.

For convenience, we assume that our matrix is over F[t][D; δ] instead of
F(t)[D; δ], which can easily be achieved by clearing denominators with a “scalar”
multiple from F[t]. This is clearly a unimodular operation in the class of matrices
over F(t)[D; δ].

We first consider formulating the computation of the Hermite form a matrix
over F(t)[D; δ] as the solution of a “pseudo”-linear system over F(t)[D; δ] (i.e., a
matrix equation over the non-commutative ring F(t)[D; δ]).

Theorem 4.1. Let A ∈ F[t][D; δ]n×n have full row rank, with degDAi,j ≤ d,
and (d1, . . . , dn) ∈ Nn be given. Consider the system of equations PA = G, for
n× n matrices for P,G ∈ F(t)[D; δ] restricted as follows:



126 M. Giesbrecht and M.S. Kim

– The degree (in D) of each entry of P is bounded by (n− 1)d+ max1≤i≤n di.
– The matrix G is upper triangular, where every diagonal entry is monic and

the degree of each off-diagonal entry is less than the degree of the diagonal
entry below it.

– The degree of the ith diagonal entry of G is di.

Let H be the Hermite form of A and (h1, . . . , hn) ∈ Nn be the degrees of the
diagonal entries of H. Then the following are true:

(a) There exists at least one pair P,G as above with PA = G if and only if
di ≥ hi for 1 ≤ i ≤ n.

(b) If di = hi for 1 ≤ i ≤ n then G is the Hermite form of A and P is a
unimodular matrix.

Proof. The proof is similar to that of Kaltofen et al. (1987), Lemma 2.1. Given
a degree vector (d1, . . . , dn), we view PA = G as a system of equations in the
unknown entries of P and G. Since H is the Hermite form of A, there exist a
unimodular matrix U such that UA = H . Thus PU−1H = G and the matrix
PU−1 must be upper triangular since the matricesH and G are upper triangular.
Moreover, since the matrix PU−1 is in F(t)[D; δ]n×n, and Gii = (PU−1)ii ·Hii

for 1 ≤ i ≤ n, we know di ≥ hi for 1 ≤ i ≤ n. For the other direction, we
suppose di ≥ hi for 1 ≤ i ≤ n. Let D = diag(Dd1−h1 , . . . ,Ddn−hn). Then since
(DU)A = (DH), we can set P = DU and G = DH as a solution to PA = G,
and the ith diagonal of G has degree di by construction. By Corollary 3.3, we
know degDUi,j ≤ (n− 1)d and so degDPi,j ≤ (n− 1)d+ max1≤i≤n di.

To prove (b), suppose di = hi for 1 ≤ i ≤ n and that, contrarily, G is not the
Hermite form of A. Since PU−1 is an upper triangular matrix with ones on the
diagonal, PU−1 is a unimodular matrix. Thus P is a unimodular matrix and,
by Corollary 3.1, G is the (unique) Hermite form of A, a contradiction. ��
Lemma 4.1. Let A, P , (d1, . . . , dn), and G be as in Theorem 4.1, and let
β := (n − 1)d + max1≤i≤n di. Also, assume that degtAij ≤ e for 1 ≤ i, j ≤ n.
Then we can express the system PA = G as a linear system over F(t) as P̂ Â = Ĝ
where

P̂ ∈ F(t)n×n(β+1), Â ∈ F[t]n(β+1)×n(β+d+1), Ĝ ∈ F (t)n×n(β+d+1).

Assuming the entries Â are known while the entries of P̂ and Ĝ are indeter-
minates, the system of equations from P̂ Â = Ĝ for the entries of P̂ and Ĝ is
linear over F(t) in its unknowns, and the number of equations and unknowns is
O(n3d). The entries in Â are in F[t] and have degree at most e.

Proof. Since degDPi,j ≤ β, each entry of P has at most (β+1) coefficients in F(t)
and can be written as Pij =

∑
0≤k≤β PijkDk. We let P̂ ∈ F(t)n×n(β+1) be the

matrix formed from P with Pij replaced by the row vector (Pij0, . . . , Pijβ) ∈ F(t).
Since degDP ≤ β, when forming PA, the entries in A are multiplied by D� for

0 ≤ � ≤ β, resulting in polynomials of degree in D of degree at most μ = β + d.



On Computing the Hermite Form of a Matrix of Differential Polynomials 127

Thus, we construct Â as the matrix formed from A with Aij replaced by the
(β + 1) × (μ+ 1) matrix whose �th row is

(A[�]
ij0, A

[�]
ij1, . . . , A

[�]
ijμ) such that D�Aij = A

[�]
ij0 +A[�]

ij1D + · · · +A[�]
ijμDμ.

Note that by Lemma 2.1 we can compute D�Ai,j quickly.
Finally, we construct the matrix Ĝ. Each entry of G has degree in D of degree

at most nd ≤ n(β+ d+1). Thus, initially Ĝ is the matrix formed by G with Gij

replaced by

(Gij0, . . . , Gijμ) where Gij = Gij0 +Gij1D + · · · +GijμDμ.

However, because of the structure of the system we can fix values of many of
the entries of Ĝ as follows. First, since every diagonal entry of the Hermite form
is monic, we know the corresponding entry in Ĝ is 1. Also, by Corollary 3.4,
the degree in D of every diagonal entry of H is bounded by nd, and every off-
diagonal has degree in D less than that of the diagonal below it (and hence less
than nd), and we can set all coefficients of larger powers of D to 0 in Ĝ.

The resulting system P̂ Â = Ĝ, restricted as above according to Theorem 4.1,
has O(n3d) linear equations in O(n3d) unknowns. Since the coefficients in Â are
all of the form D�Aij , and since this does not affect their degree in t, the degree
in t of entries of Â is the same as that of A, namely e. ��
With more work, we believe the dimension of the system can be reduced to
O(n2d) × O(n2d) if we apply the techniques presented in Storjohann (1994)
Section 4.3, wherein the unknown coefficients of Ĝ are removed from the system.
See also Labhalla et al. (1996).

So far, we have shown how to convert the differential system over F(t)[D; δ]
into a linear system over F(t). Also, we note, by Theorem 4.1, that the correct
degree of the ith diagonal entry in the Hermite form of A can be found by
seeking the smallest non-negative integer k such that PA = G is consistent
when degDGj,j = nd for j = 1, . . . , i − 1, i + 1, . . . , n and k ≤ degDGi,i. Using
binary search, we can find the correct degrees of all diagonal entries by solving
at most O(n log(nd)) systems. We then find the correct degrees of the diagonal
entries in the Hermite form of A, solving the system PA = G with the correct
diagonal degrees gives the matrices U and H such that UA = H where H is the
Hermite form of A.

Theorem 4.2. Let A ∈ F[t][D; δ]n×n with degDAij ≤ d and degtAij ≤ e for
1 ≤ i, j ≤ n. Then we can compute the Hermite form H ∈ F(t)[D; δ] of A, and a
unimodular U ∈ F[t][D; δ] such that UA = H, with O((n10d3 + n7d2e) log(nd))
operations in F

Proof. Lemma 4.1 and the following discussion, above shows that computing U
and H is reduced to solving O(n log(nd)) systems of linear equations over F(t),
each of which is m ×m for m = O(n3d) and in which the entries have degree
e. Using standard linear algebra this can be solved with O(m4e) operations in
F, since any solution has degree at most me (see von zur Gathen and Gerhard



128 M. Giesbrecht and M.S. Kim

(2003)). A somewhat better strategy is to use the t-adic lifting approach of Dixon
(1982), which would require O(m3+m2e) operations in F for each system, giving
a total cost of O((n10d3 + n7d2e) log(nd)) operations in F. ��

As noted above, it is expected that we can bring this cost down through a
smaller system similar to that of Storjohann (1994), to a cost of O((n7d2 +
n5d2e) log(nd)). Nonetheless, the algorithm as it is stated achieves a guaranteed
polynomial-time solution.

It is often the case that we are considering differential systems over Q(t)[D; δ],
where we must contend with growth in coefficients in D, t and in the size of
the rational coefficients. However, once again we may employ the fact that the
Hermite form and unimodular transformation matrix are solutions of a linear
system over Q[t]. For convenience, we can assume in fact that our input is in
Z[t][D; δ]n×n (since the rational matrix to eliminate denominators is unimodular
in Q(t)[D; δ]). There is some amount of extra coefficient growth when going from
A to Â; namely we take up to nd derivatives, introducing a multiplicative con-
stant of size around min((nd)!, e!). In terms of the bit-length of the coefficients,
this incurs a multiplicative blow-up of only O(� log(�)) where � = min(nd, e). It
follows that we can find the Hermite form of A ∈ Q(t)[D; δ]n×n in time polyno-
mial in n, degtAij , degDAij , and log ‖Aij‖, the maximum coefficient length in
an entry, for 1 ≤ i, j ≤ n. A modular algorithm, for example along the lines of
Li and Nemes (1997), would improve performance considerably, as might p-adic
solvers and a more careful construction of the linear system.

5 Conclusions and Future Work

We have shown that the problem of computing the Hermite form of a matrix over
F(t)[D; δ] can be accomplished in polynomial time. Moreover, our algorithm will
also control growth in coefficient bit-length when F = Q. We have also shown
that the degree bounds on Hermite forms in the differential ring are very similar
to the regular polynomial case. From a practical point of view our method is
still expensive. Our next work will be to investigate more efficient algorithms.
We have suggested ways to compress the system of equations and to employ
structured matrix techniques. Also, the use of randomization has been shown to
be highly beneficial over F[t], and should be investigated in this domain. Finally,
our approach should be applicable to difference polynomials and more general
Ore polynomial rings.

References

Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: Proc. ACM
International Symposium on Symbolic and Algebraic Computation, pp. 1–7 (2001)

Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of ore
polynomials. Journal of Symbolic Computation 41(1), 513–543 (2006)



On Computing the Hermite Form of a Matrix of Differential Polynomials 129

Bostan, A., Chyzak, F., Le Roux, N.: Products of ordinary differential operators by
evaluation and interpolation. In: Proc. International Symposium on Symbolic and
Algebraic Computation, pp. 23–30 (2008)

Bronstein, M., Petkovšek, M.: On Ore rings, linear operators and factorisation. Pro-
grammirovanie 20, 27–45 (1994)

Cheng, H.: Algorithms for Normal Forms for Matrices of Polynomials and Ore Poly-
nomials. PhD thesis, University of Waterloo (2003),
http://www.cs.uleth.ca/~cheng/publications.html

Davies, P., Cheng, H., Labahn, G.: Computing Popov form of general Ore polynomial
matrices. In: Milestones in Computer Algebra, pp. 149–156 (2008)

Dickson, L.E.: Algebras and their arithmetics. G.E. Stechert, New York (1923)
Jean Dieudonné, M.: Les déterminants sur un corps non commutatif. Bulletin de la

Société Mathématique de France 71, 27–45 (1943)
Dixon, J.D.: Exact solution of linear equations using p-adic expansions. Numer.

Math. 40, 137–141 (1982)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University

Press, Cambridge (2003)
Hermite, C.: Sur les fonctions de sept lettres. C.R. Acad. Sci. Paris 57, 750–757 (1863);

OE uvres. Gauthier-Villars, Paris 2, 280–288 (1908)
van der Hoeven, J.: FFT-like multiplication of linear differential operators. Journal of

Symbolic Computation 33(1), 123–127 (2002)
Jacobson, N.: The Theory of Rings. American Math. Soc., New York (1943)
Kaltofen, E., Krishnamoorthy, M.S., Saunders, B.D.: Fast parallel computation of Her-

mite and Smith forms of polynomial matrices. SIAM J. Algebraic and Discrete Meth-
ods 8, 683–690 (1987)

Kannan, R.: Polynomial-time algorithms for solving systems of linear equations over
polynomials. Theoretical Computer Science 39, 69–88 (1985)

Labhalla, S., Lombardi, H., Marlin, R.: Algorithmes de calcul de la réduction de Hermite
d’une matrice à coefficients polynomiaux. Theoretical Computer Science 161(1–2),
69–92 (1996)

Li, Z.: A subresultant theory for Ore polynomials with applications. In: Proc. Interna-
tional Symposium on Symbolic and Algebraic Computation, pp. 132–139 (1998)

Li, Z., Nemes, I.: A modular algorithm for computing greatest common right divisors of
ore polynomials. In: ISSAC 1997: Proceedings of the 1997 international symposium
on Symbolic and algebraic computation. ACM, New York (1997)

Middeke, J.: A polynomial-time algorithm for the jacobson form for matrices of differen-
tial operators. Technical Report 08-13, Research Institute for Symbolic Computation
(RISC), Linz, Austria (2008)

Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. Journal of
Symbolic Computation 35(4), 377–401 (2003)

Popov, V.: Invariant description of linear, time-invariant controllable systems. SIAM
J. Control 10, 252–264 (1972)

Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos.
Trans. Royal Soc. London 151, 293–326 (1861)

Storjohann, A.: Computation of Hermite and Smith normal forms of matrices. Master’s
thesis, University of Waterloo (1994)

Villard, G.: Generalized subresultants for computing the smith normal form of poly-
nomial matrices. Journal of Symbolic Computation 20, 269–286 (1995)

Wedderburn, J.H.M.: Non-commutative domains of integrity. Journal für die reine und
angewandte Mathematik 167, 129–141 (1932)

http://www.cs.uleth.ca/~cheng/publications.html


On the Computation of Comprehensive
Boolean Gröbner Bases

Shutaro Inoue

Tokyo University of Science
1-3, Kagurazaka, Shinjuku-ku, Tokyo, Japan

inoue@mi.kagu.tus.ac.jp

Abstract. We show that a comprehensive Boolean Gröbner basis of
an ideal I in a Boolean polynomial ring B(Ā, X̄) with main variables X̄
and parameters Ā can be obtained by simply computing a usual Boolean
Gröbner basis of I regarding both X̄ and Ā as variables with a certain
block term order such that X̄ � Ā. The result together with a fact
that a finite Boolean ring is isomorphic to a direct product of the Galois
field GF2 enables us to compute a comprehensive Boolean Gröbner basis
by only computing corresponding Gröbner bases in a polynomial ring
over GF2. Our implementation in a computer algebra system Risa/Asir
shows that our method is extremely efficient comparing with existing
computation algorithms of comprehensive Boolean Gröbner bases.

1 Introduction

A commutative ring B with an identity is called a Boolean ring if every element of
which is idempotent. A residue class ring B[X1, . . . , Xn]/〈X2

1 −X1, . . . , X
2
n−Xn〉

with an ideal 〈X2
1−X1, . . . , X

2
n−Xn〉 also becomes a Boolean ring, which is called

a Boolean polynomial ring and denoted by B(X1, . . . , Xn). A Gröbner basis in a
Boolean polynomial ring (called a Boolean Gröbner basis) is first introduced in
[5,6] and further developments are done in [7,8,10,12]. The original computation
algorithm introduced in [5,6] uses a special monomial reduction which is more
complicated than a usual monomial reduction in a polynomial ring over a field.
Though the algorithm is based on such a complicated monomial reduction, it is
also directly applicable for the computations of comprehensive Boolean Gröbner
bases. This algorithm is implemented in [7] for computations of both Boolean
Gröbner bases and comprehensive Boolean Gröbner bases. In [9], an alternative
algorithm is introduced where we can obtain a Boolean Gröbner basis by only
computing usual Gröbner bases in a polynomial ring over the Galois field GF2.
Its implementation brought us a much faster program than the previous one of
[7]. Unfortunately, however, this algorithm is not applicable for the computations
of comprehensive Boolean Gröbner bases.

In this paper, we show that a Boolean Gröbner basis {g1(Ā, X̄), . . . , gs(Ā, X̄)}
of an ideal I in a Boolean polynomial ring B(Ā, X̄) with variables Ā=A1, . . . , Am

and X̄ = X1, . . . , Xn w.r.t. a block term order such that X̄ � Ā is stable for any
specialization of Ā, i.e. {g1(ā, X̄), . . . , gs(ā, X̄)} also becomes a Boolean Gröbner

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 130–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On the Computation of Comprehensive Boolean Gröbner Bases 131

basis of the ideal 〈{f(ā, X̄)|f(Ā, X̄) ∈ I}〉 in a Boolean polynomial ring B′(X̄)
for any Boolean extension B′ of B and elements ā = a1, . . . , am of B′. This result
together with an algorithm of [9] enables us to compute comprehensive Boolean
Gröbner bases by only computing usual Gröbner bases in polynomial rings over
the Galois field GF2. We implemented the method in a computer algebra system
Risa/Asir([4]). Our program achieves a tremendous speedup comparing with the
previous one. It enables us to do our recent work [11] of a non-trivial application
of Boolean Gröbner bases.

The paper is organized as follows. In section 2, we give a quick review of
Boolean Gröbner bases, which we need for understanding our work. More de-
tailed descriptions can be found in [12]. We also prove a key fact (namely The-
orem 16) which plays an important role in this paper. In section 3, we describe
the algorithm to compute Boolean Gröbner bases introduced in [9]. In section 4,
we prove the above result in much stronger form. In section 5, we describe our
implementation together with some timing data of our computation experiments.

2 Boolean Gröbner Bases

A Boolean Gröbner basis is defined as a natural modification of a Gröbner basis
in a Boolean polynomial ring. Though it was introduced in [5,6] together with
a computation algorithm using a special monomial reduction, the same notion
was independently discovered in [15] for a polynomial ring over a more general
coefficient ring. In this section, we give a quick review of Boolean Gröbner bases.
More detailed descriptions with proofs can be found in [8] or [15].

2.1 Boolean Polynomial Ring

Definition 1. A commutative ring B with an identity 1 is called a Boolean ring
if every element a of B is idempotent, i.e. a2 = a.

〈B,∨,∧,¬〉 becomes a Boolean algebra with the Boolean operations ∨,∧,¬ de-
fined by a ∨ b = a+ b+ a · b, a ∧ b = a · b,¬a = 1 + a. Conversely, for a Boolean
algebra 〈B,∨,∧,¬〉, if we define + and · by a + b = (¬a ∧ b) ∨ (a ∧ ¬b) and
a · b = a ∧ b, 〈B,+, ·〉 becomes a Boolean ring.
Since −a = a in a Boolean ring, we do not need to use the symbol ’−’, however,
we also use − when we want to stress its meaning.

Definition 2. Let B be a Boolean ring. A quotient ring B[X1, . . . , Xn]/〈X2
1 −

X1, . . . , X
2
n −Xn〉 modulo an ideal 〈X2

1 −X1, . . . , X
2
n −Xn〉 becomes a Boolean

ring. It is called a Boolean polynomial ring and denoted by B(X1, . . . , Xn), its
element is called a Boolean polynomial.

Note that a Boolean polynomial of B(X1, . . . , Xn) is uniquely represented by a
polynomial of B[X1, . . . , Xn] that has at most degree 1 for each variable Xi. In
what follows, we identify a Boolean polynomial with such a representation.
Multiple variables such as A1, . . . , Am or X1, . . . , Xn are abbreviated to Ā or
X̄ respectively. Lower small roman letters such as a, b, c are usually used for



132 S. Inoue

elements of a Boolean ring B. The symbol ā denotes an m-tuple of element of B
for some m. For a Boolean polynomial f(Ā, X̄) with variables Ā and X̄, f(ā, X̄)
denotes a Boolean polynomial in B(X̄) obtained by specializing Ā with ā.

2.2 Gröbner Bases

In what follows, we assume that some term order on a set of power products of
variables is given. For a polynomial f in a polynomial ring B[X̄] over a Boolean
ring B, we use the notations LT (f), LM(f) and LC(f) to denote the leading
power product, the leading monomial and leading coefficient of f respectively.
f − LM(f) is also denoted by Rd(f). We also use the notations LT (F ) and
LM(F ) to denote the sets {LT (f)|f ∈ F} and {LM(f)|f ∈ F} for a (possibly
infinite) subset F of B[X̄ ]. T (X̄) denotes the set of power products consisting
of variables X̄.

Definition 3. For an ideal I of a polynomial ring B[X̄], a finite subset G of I
is called a Gröbner basis of I if 〈LM(I)〉 = 〈LM(G)〉.

Definition 4. For a polynomial f ∈ B[X̄], let a = LC(f), t = LT (f) and
h = Rd(f). A monomial reduction →f by f is defined as follows:

bts+ p→f (1 − a)bts+ absh+ p.

(Note that (bts+ p) − ((1 − a)bts+ absh+ p) = bs(af).)
Where s is a term of T (X̄), b is an element of B such that ab �= 0 and p is
any polynomial of B[X̄]. For a set F ⊆ B[X̄], we write g →F g′ if and only
if g →f g

′ for some f ∈ F . A recursive closure of →F is denoted by ∗→F , i.e.
g

∗→F g
′ if and only if g = g′ or there exist a sequence of monomial reductions

g →F g1 →F · · · →F gk = g′.

Theorem 5. When F is finite, →F is noetherian, that is there is no infinite
sequence of polynomials g1, g2, . . . such that gi →F gi+1 for each i = 1, 2, . . ..

Theorem 6. Let I be an ideal of a polynomial ring B[X̄].
A finite subset G of I is a Gröbner basis of I if and only if ∀h ∈ I h ∗→G 0.

Using our monomial reductions, a reduced Gröbner basis is similarly defined as
in a polynomial ring over a field. A Gröbner basis G is reduced if each polynomial
of G is not reducible by a monomial reduction of any other polynomial of G. In
a polynomial ring over a field, a reduced Gröbner basis is uniquely determined.
In our case, however, this property does not hold.

Example 1. Let B = GF2×GF2. In a polynomial ring B[X ], {(1, 0)X, (0, 1)X}
and {(1, 1)X} are both reduced Gröbner bases of the same ideal.

In order to have a unique Gröbner basis, we need one more definition.



On the Computation of Comprehensive Boolean Gröbner Bases 133

Definition 7. A reduced Gröbner basis G is said to be stratified if G does not
contain two polynomials which have the same leading power product.

Theorem 8. If G and G′ are stratified Gröbner bases of the same ideal w.r.t.
some term order, then G = G′.

In the above example, {(1, 1)X} is the stratified Gröbner basis, but the other is
not.

Definition 9. For a polynomial f , LC(f)f is called the Boolean closure of f ,
and denoted by bc(f). If f = bc(f), f is said to be Boolean closed.

Theorem 10. Let G be a Gröbner basis of an ideal I, then bc(G) \ {0} is also
a Gröbner basis of an ideal I.

Theorem 11. Let G be a reduced Gröbner basis, then every element is Boolean
closed.

S-polynomial is also defined similarly as in a polynomial ring over a field.

Definition 12. Let f = atr + f ′ and g = bsr + g′ be polynomials where a =
LC(f), b = LC(g), tr = LT (f) and sr = LT (g) for some power product t, s, r
such that GCD(t, s) = 1, i.e. t and s do not contain a common variable. The
polynomial bsf + atg = bsf ′ + atg′ is called an S-polynomial of f and g and
denoted by S(f, g).

As in a polynomial ring over a field, the following property is crucial for the
construction of Gröbner bases.

Theorem 13. Let G be a finite set of polynomials such that each element of G
is Boolean closed. Then, G is a Gröbner basis if and only if S(f, g) ∗→G 0 for
any pair f, g of G.

For any given finite set F , using our monomial reductions, we can always con-
struct a Gröbner basis of 〈F 〉 by computing Boolean closures and S-polynomials
using the following algorithms. It is also easy to construct a stratified Gröbner
basis from a Gröbner basis.

Algorithm BC
Input: F a finite subset of B[X̄]
Output: F ′ a set of Boolean closed polynomials such that 〈F ′〉 = 〈F 〉
begin
F ′ = ∅
while there exists a polynomial f ∈ F which is not Boolean closed

F = F ∪ {bc(f) − f} \ {f}, F ′ = F ′ ∪ {bc(f)}
end.



134 S. Inoue

Algorithm GBasis
Input: F a finite subset of B[X̄], > a term order of T (X̄)
Output: G a Gröbner basis of 〈F 〉 w.r.t. >
begin
G = BC(F)
while there exists two polynomials p, q ∈ G such that S(p, q) ∗→G h

for some non-zero polynomial h which is irreducible by →G

G = G∪BC({h})
end.

Since any element of a Boolean ring is idempotent, a Boolean polynomial ring
is more natural to work on. We can also define Gröbner bases in Boolean poly-
nomial rings. A power product X l1

1 · · ·X ln
n is called a Boolean power product

if each li is either 0 or 1. The set of all Boolean power products consisting
of variables X̄ is denoted by BT (X̄). A Boolean polynomial f(X̄) in B(X̄) is
uniquely represented by b1t1 + · · · + bktk with elements b1, . . . , bk of B and dis-
tinct Boolean power products t1, . . . , tk. We call b1t1 + · · · + bktk the canonical
representation of f(X̄). Since BT (X̄) is a subset of T (X̄), a term order > on
T (X̄) is also defined on BT (X̄). Given a term order >, we use the same nota-
tions LT (f), LM(f), LC(f) and Rd(f) as before, which are defined by using its
canonical representation. We also use the same notations LT (F ) and LM(F )
for a set F of Boolean polynomials as before.

Definition 14. For an ideal I of a Boolean polynomial ring B(X̄), a finite subset
G of I is called a Boolean Gröbner basis of I if 〈LM(I)〉 = 〈LM(G)〉 in B(X̄).

Using canonical representations of Boolean polynomials, we can also define mono-
mial reductions for Boolean polynomials as Definition 4 and have the same prop-
erty of Theorem 6. We can also define a stratified Boolean Gröbner basis as in
Definition 7, which is unique w.r.t. a term order. The Boolean closure of a Boolean
polynomial is also similarly defined as Definition 9 and the same properties of
Theorem 10,11 and 13 hold. Construction of a Boolean Gröbner basis is very sim-
ple. Given a finite set of Boolean polynomials F ⊆ B(X̄). Compute a Gröbner
basis G of the ideal 〈F ∪ {X2

1 −X1, . . . , X
2
n −Xn}〉 in B[X̄] w.r.t. the same term

order. Then, G \ {X2
1 −X1, . . . , X

2
n −Xn} is a Boolean Gröbner basis of 〈F 〉 in

B(X̄). If G is stratified, then G \ {X2
1 −X1, . . . , X

2
n −Xn} is also stratified.

2.3 Comprehensive Gröbner Bases (Previous Algorithm)

In a polynomial ring over a field, construction of a comprehensive Gröbner basis
is not so simple in general. In order to get a uniform (with respect to param-
eters) representation of reduced Gröbner bases, we need to divide a parameter
space into several partitions according to the conditions that parameters sat-
isfy. (See [1,2,3,13,14,16].) In our Boolean polynomial ring, however, we can
always construct a stratified comprehensive Boolean Gröbner basis. We do not
even need to divide a parameter space. In this section, we present an important
fact which enables us to have a naive construction method of comprehensive



On the Computation of Comprehensive Boolean Gröbner Bases 135

Boolean Gröbner bases. This method is implemented in [7,9], although a detailed
description of the fact is recently published in [12]. We prove it in a more general
form, which plays an important role in this paper.

We use variables Ā = A1, . . . , Am for parameters and variables X̄ = X1, . . . , Xn

for main variables. We also assume that some term order on T (X̄) is given.

Definition 15. Let I be an ideal in B(Ā). For a Boolean extension B′ of B, i.e.
a Boolean ring which includes B as a subring, VB′(I) denotes the variety of I in
B′, i.e. VB′(I) = {ā ∈ B′m|∀f ∈ I f(ā) = 0}. Let F = {f1(Ā, X̄), . . . , fl(Ā, X̄)}
be a finite subset of B(Ā, X̄). A finite subset G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} of
B(Ā, X̄) is called a comprehensive Boolean Gröbner basis of F on I, if G(ā) =
{g1(ā, X̄),. . . , gk(ā, X̄)} \ {0} is a Boolean Gröbner basis of the ideal 〈F (ā)〉 =
〈f1(ā, X̄), . . . , fl(ā, X̄)〉 in B′(X̄) for any Boolean extension B′ of B and ā ∈
VB′(I). When I = {0}, we simply call G a comprehensive Boolean Gröbner basis
of F . G is also said to be stratified if G(ā) is stratified for any ā ∈ VB′(I).

Theorem 16. Let I be an ideal in B(Ā). Let F be a finite subset of B(Ā, X̄).
Considering each fi(Ā, X̄) as a member of the Boolean polynomial ring
(B(Ā)/I)(X̄) over the coefficient Boolean ring B(Ā)/I, let G be a (stratified)
Boolean Gröbner basis of the ideal 〈F 〉 in this polynomial ring, then G is a
(stratified) comprehensive Boolean Gröbner basis of F on I.

proof. Note first that G is also a (stratified) Boolean Gröbner basis of 〈F 〉 in
(B′(Ā)/I)(X̄), here we abuse the same symbol I to denote an ideal of B′(Ā) gen-
erated from I. Therefore, it suffices to consider only specialization from VB(I).
Let ā be an arbitrary m-tuple lying on VB(I). Note that the specialization of
parameters Ā with ā induces a homomorphism from (B(Ā)/I)(X̄) to B(X̄). We
clearly have 〈F (ā)〉 = 〈G(ā)〉 in B(X̄).
If f(Ā, X̄) →g(Ā,X̄) h(Ā, X̄) in (B(Ā)/I)(X̄), then f(Ā, X̄) = p(Ā)ts+f ′(Ā, X̄),
g(Ā, X̄) = q(Ā)t+g′(Ā, X̄) and h(Ā, X̄) = (1−q(Ā))p(Ā)ts+q(Ā)p(Ā)sg′(Ā, X̄)
+f ′(Ā, X̄) for some t, s ∈ T (X̄) and p(Ā), q(Ā) ∈ B(Ā)/I and f ′(Ā, X̄), g′(Ā, X̄)
∈ (B(Ā)/I)(X̄), where q(Ā)t is the leading monomial of g(Ā, X̄).

In case q(ā)p(ā) �= 0, certainly q(ā) �= 0 and p(ā) �= 0, so q(ā)t is the leading
monomial of g(ā, X̄) and p(ā)ts is a monomial of f(Ā, X̄) and f(ā, X̄) →g(ā,X̄)

h(ā, X̄). Otherwise, h(ā, X̄) = f(ā, X̄). In either case, we have f(ā, X̄) ∗→g(ā,X̄)

h(ā, X̄). Therefore, if f(Ā, X̄) →G h(Ā, X̄) in (B(Ā))(X̄), then we have
f(ā, X̄) ∗→G(ā) h(ā, X̄) in B(X̄). Any Boolean polynomial in the ideal 〈F (ā)〉
is equal to f(ā, X̄) for some Boolean polynomial f(Ā, X̄) in the ideal 〈F 〉 of
(B(Ā))(X̄). Since G is a Boolean Gröbner basis of 〈F 〉, we have f(Ā, X̄) ∗→G 0.
By the above observation, we have f(ā, X̄) ∗→G(ā) 0. This shows that G is a
comprehensive Boolean Gröbner basis of F on I.

Suppose G is stratified, then any element g of G is Boolean closed.
So, if LC(g)(ā) = 0, then g(ā, X̄) must be equal to 0. Therefore, unless

g(ā, X̄) = 0, we have LT (g(ā, X̄)) = LT (g(Ā, X̄)). Now it is clear that G(ā)
is stratified. �



136 S. Inoue

3 Alternative Algorithm

An alternative computation algorithm of Boolean Gröbner bases introduced in
[9] is based on the following fact which is essentially a special instance of Theorem
2.3 of [15].

Definition 17. Let B be a Boolean ring and k be a natural number. Bk denotes
a direct product, i.e. the set of all k-tuples of elements of B. For an element p
of Bk, pi ∈ B denotes the i-th element of p for each i = 1, . . . , k. If we define
p + q and p · q for p, q ∈ Bk by (p + q)i = pi + qi and (p · q)i = pi · qi for
each i = 1, . . . , k, Bk also becomes a Boolean ring. For a polynomial f(X̄) in
Bk[X̄] fi(i = 1, . . . , k) denotes the polynomial in B[X̄ ] obtained by replacing each
coefficient p of f by pi. For a Boolean polynomial f(X̄) in Bk(X̄), a Boolean
polynomial fi in B(X̄) is defined similarly.

Theorem 18. In a polynomial ring Bk[X̄], let G be a finite set of Boolean closed
polynomials. Then, G is a (reduced) Gröbner basis of an ideal I if and only if
Gi = {gi|g ∈ G} \ {0} is a (reduced) Gröbner basis of the ideal Ii = {fi|f ∈ I}
in B[X̄] for each i = 1, . . . , k.

Corollary 19. In a Boolean polynomial ring Bk(X̄), let G be a finite set of
Boolean closed Boolean polynomials. Then, G is a (reduced) Boolean Gröbner
basis of an ideal I if and only if Gi = {gi|g ∈ G} \ {0} is a (reduced) Gröbner
basis of the ideal Ii = {fi|f ∈ I} in B(X̄) for each i = 1, . . . , k.

Let F be a finite set of polynomials in B[X̄] for a computable Boolean ring B.
Note that a Boolean subring which is generated from the set of all coefficients of
polynomials in F is finite. We denote this ring by BF . By Stone’s representation
theorem, BF is isomorphic to GFk

2 for some natural number k. Let ψ be such an
isomorphism. We also extend ψ to a polynomial ring BF [X̄]. Identifying a poly-
nomial p of B[X̄] with its image ψ(p) in GFk

2 , Fi(i = 1, . . . , k) denotes a set of
i-th projection of F in GF2[X̄], that is Fi = {ψ(p)i|p ∈ F}. For each i = 1, . . . , k,
let ei denote an element of GFk

2 such that its i-th component is 1 and the other
component is 0. For a polynomial f in GF2[X̄] and each i = 1, . . . , k, Exi(f)
denotes a polynomial in GF2[X̄]k obtained from f by replacing each monomial
t with eit. Now, the algorithm is given as follows:

Algorithm AGBasis
Input: F a finite subset of B[X̄], > a term order of T (X̄)
Output: G a Gröbner basis of 〈F 〉 w.r.t. >
begin
for each i = 1, . . . , k
Gi = GBasis(Fi, >)
Gi = {Exi(g)|g ∈ Gi}
G = ψ−1(∪k

i=1Gi)
end.



On the Computation of Comprehensive Boolean Gröbner Bases 137

For a finite set F of Boolean polynomials, its Boolean Gröbner basis is also
computed by the same algorithm with a suitable modification.

Note that GBasis(Fi, >) compute a usual Gröbner basis of 〈Fi〉 in a poly-
nomial ring GF2[X̄] over the field GF2. If each Gi is a reduced Gröbner basis,
obviously ∪k

i=1Gi is a reduced Gröbner basis and so is G. It is also easy to con-
struct the stratified Gröbner basis from a reduced Gröbner basis. If we can see k
is small(say less than 100) and ψ is easily computable from the input F a priori,
this algorithm is more practical than the original one as is reported in [9]. When
k is very big, however, this algorithm may be impractical. For the construction
of a comprehensive Boolean Gröbner basis by the method described in the pre-
vious section, we have to compute at least 2m-many Gröbner bases in GF2[X̄ ]
since B(Ā) is isomorphic to B2m

, which of course is infeasible unless m is small.

Example 2. The following left constraint with unknown set variables X and
Y is equivalent to the right system of equations of a Boolean polynomial ring
B(X,Y ), where B is a Boolean ring that consists of all computable subsets of
S(a set of all strings).⎧⎪⎪⎨⎪⎪⎩
X ∪ Y ⊆ {s1, s2}
s1 ∈ X
s2 ∈ Y
X ∩ Y = ∅

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
(1 + {s1, s2})(XY +X + Y ) = 0
{s1}X + {s1} = 0
{s2}Y + {s2} = 0
XY = 0

Let F = {(1+{s1, s2})(XY +X+Y ), {s1}X+{s1}, {s2}Y +{s2}, XY }. BF is a
finite subring of B that consists of {0, 1, {s1}, {s2}, {s1, s2}, 1+{s1}, 1+{s2}, 1+
{s1, s2}}. It is isomorphic to GF3 with an isomorphism ψ given by ψ({s1}) =
(1, 0, 0), ψ({s2}) = (0, 1, 0) and ψ(1+{s1, s2}) = (0, 0, 1). With this isomorphism
F1 = {0, X+1, 0, XY }, F2 = {0, 0, Y +1, XY } and F3 = {XY +X+Y, 0, 0, XY }.
Reduced Gröbner bases of them in a bbolean polynomial ring GF2(X,Y ) w.r.t.
a lexicographic term order such that X > Y are G1 = {Y,X + 1}, G2 = {Y +
1, X} and G3 = {X,Y } respectively. So, G1 = {(1, 0, 0)Y, (1, 0, 0)(X + 1)},
G2 = {(0, 1, 0)(Y +1), (0, 1, 0)X} and G3 = {(0, 0, 1)X, (0, 0, 1)Y } and we have a
reduced Boolean Gröbner basis G = {{s1}Y, {s1}(X+1), {s2}(Y +1), {s2}X, (1+
{s1, s2})X, (1 + {s1, s2})Y } of F . Stratified Boolean Gröbner basis is obtained
simply adding elements which have the same leading monomial. For this G, its
stratified Boolean Gröbner basis is {X + {s1}, Y + {s2}}.

4 Main Result

Let F be a finite set of B(Ā, X̄). As is described in section 2.3, a (stratified)
Boolean Gröbner basis G computed in the Boolean polynomial ring (B(Ā))(X̄)
becomes a (stratified) comprehensive Boolean Gröbner basis of F . When the X̄-
eliminate portion 〈F 〉∩B(Ā)(call this I) is not a trivial ideal {0}, the size of G
tends to be extremely big. In most applications, we do not need a specialization
by ā which does not vanish on I. What we actually need is a (stratified) com-
prehensive Boolean Gröbner basis of F on I. There are essentially two methods
to compute I. One is computing a stratified Boolean Gröbner basis of 〈F 〉 in
(B(Ā))(X̄), although the computation tends to consume much memory space



138 S. Inoue

as described above. The other is computing a stratified Boolean Gröbner basis
of 〈F 〉 in B(Ā, X̄) w.r.t. a block term order such that X̄ � Ā. In the latter
method, we have to compute again a (stratified) Boolean Gröbner basis of 〈F 〉
in a Boolean polynomial ring (B(Ā)/I)(X̄) in order to compute a (stratified)
comprehensive Boolean Gröbner basis of F on I. Even if we can decrease con-
sumed memory space, we need more computation time. Fortunately, however, a
Boolean Gröbner basis computed with a block term order is already a compre-
hensive Boolean Gröbner basis of F on I. In order to prove this fact, we need
the following well-known facts which are easy in themselves.

Lemma 20. Let R[Ā, X̄] be a polynomial ring with variables Ā and X̄ over
a commutative ring R with an identity. Let I be an ideal of this polynomial
ring. Let > be a term order of T (X̄) and G be a Gröbner basis of I w.r.t. >
regarding R[Ā, X̄ ] as a polynomial ring over the coefficient ring R[Ā], that is
〈{LM(g)|g ∈ G}〉 = 〈{LM(f)|f ∈ I}〉. Let IĀ be I ∩ R[Ā]. Let ψ be a natural
homomorphism from R[Ā] to R[Ā]/IĀ induced by IĀ. Then ψ(G \G ∩R[Ā]) is
a Gröbner basis of the ideal ψ(I) in (R[Ā]/IĀ)[X̄ ].

Lemma 21. Let R[Ā, X̄] and I be the same as the above lemma. Let > be a
block term order of T (Ā, X̄) such that X̄ � Ā and G be a Gröbner basis of I
w.r.t. >. Then G is also a Gröbner basis of I w.r.t. >X̄ regarding R[Ā, X̄] as a
polynomial ring over the coefficient ring R[Ā], where >X̄ denotes a restriction
of > to T (X̄).

In the above lemmas, obviously we can replace R by a Boolean ring B, further-
more the lemmas also hold if we replace R[Ā, X̄] and R[Ā] by B(Ā, X̄) and B(Ā)
respectively. By this observation together with Theorem 16, the following our
main theorem directly follows.

Theorem 22. Let G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} be a Boolean Gröbner basis
of F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} in a Boolean polynomial ring B(Ā, X̄) w.r.t.
a block term order > such that X̄ � Ā. Then G is a comprehensive Boolean
Gröbner basis of F w.r.t. >X̄, furthermore G \ G∩B(Ā) is a comprehensive
Boolean Gröbner basis of F on 〈F 〉∩B(Ā) w.r.t. >X̄ .

In the above theorem, G = {g1(ā, X̄), . . . , gk(ā, X̄)} may not be stratified or
reduced even if G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} is stratified, because G may
not be reduced as a Boolean Gröbner basis either in (B(Ā)/〈F 〉∩B(Ā))(X̄) or
(B(Ā))(X̄). In order to have a stratified comprehensive Boolean Gröbner basis,
we need further computation to transform G to be stratified in a Boolean poly-
nomial ring (B(Ā)/〈F 〉∩B(Ā))(X̄). If G is stratified in B(Ā, X̄), each coefficient
of members of G has a canonical form as an element of B(Ā)/〈F 〉∩B(Ā), i.e. a
normal form by a Boolean Gröbner basis G∩B(Ā). It is not a heavy computation
to make G stratified using G∩B(Ā) for the computation of the residue class ring
B(Ā)/〈F 〉∩B(Ā).

Example 3. The following left constraint is same as the previous example ex-
cept that we have an another unknown variable a for an element. Using another



On the Computation of Comprehensive Boolean Gröbner Bases 139

set variable A to represent a singleton set {a}, it is equivalent to the right system
of equations of a Boolean polynomial ring B(A,X, Y ).⎧⎪⎪⎨⎪⎪⎩
X ∪ Y ⊆ {s1, s2}
s1 ∈ X
a ∈ Y
X ∩ Y = ∅

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
(1 + {s1, s2})(XY +X + Y ) = 0
{s1}X + {s1} = 0
AY +A = 0
XY = 0

Let F = {(1 + {s1, s2})(XY +X + Y ), {s1}X + {s1}, AY +A,XY }.
The stratified Boolean Gröbner basis G of F w.r.t. a lexicographic term order
such that X > Y > A has the following form:

G = {{s2}XY, {s2}Y A+ {s2}A, (1 + {s2})Y,
{s2}XA, (1 + {s2})X + {s1}, (1 + {s2})A}.

This is not stratified or even ruduced as a Boolean Gröbner basis in (B(A))(X,Y )
or (B(A)/〈(1+{s2})A〉)(X,Y ). In fact, if we specialize A by {s2}, G({s2})\{0}
becomes {{s2}XY, {s2}Y + {s2}, (1+ {s2})Y, {s2}X, (1+ {s2})X+ {s1}}, which
is not stratified or even reduced.

The stratified Boolean Gröbner basis of F in (B(A)/〈(1 + {s2})A)〉)(X,Y ) has
the following form:

{({s2}A+ {s2})XY, ({s2}A+ 1 + {s2})X + {s1},
({s2}A+ 1 + {s2})Y + {s2}A}.

Whereas the stratified Boolean Gröbner basis of F in (B(A))(X,Y ) has the fol-
lowing form:

{({s2}A+ {s2})XY, (A+ 1 + {s2})X + {s1}A+ {s1},
(A+ 1 + {s2})Y + {s2}A, (1 + {s2})A}.

In the above example, the last two stratified Gröbner bases are not so different.
If we have many parameters and the X̄-eliminate portion 〈F 〉∩B(Ā) is not very
simple, the stratified Gröbner basis in (B(Ā))(X̄) is much bigger than the strat-
ified Gröbner basis in (B(Ā)/〈F 〉∩B(Ā))(X̄) in general because we do not use
any simplification by G∩B(Ā).

Let us conclude this section with the following obvious but important fact, which
actually plays an important role in our recent work [11] of a non-trivial applica-
tion of Boolean Gröbner bases.

Corollary 23. Let G = {g1(X̄), . . . , gk(X̄)} be a Boolean Gröbner basis of
F = {f1(X̄), . . . , fl(X̄)} in a Boolean polynomial ring B(X̄)} w.r.t. a purely
lexicographic term order > such that X̄n > Xn−1 > · · · > X1. Then G is a
Boolean comprehensive Gröbner basis of F regarding Xi, . . . , X1 as parameters,
for each i = 1, . . . , n− 1.

5 Implementation

The most important merit of Theorem 22 is that we can construct a compre-
hensive Boolean Gröbner basis by computing only usual Gröbner bases in a



140 S. Inoue

polynomial ring over GF2 with the algorithm described in section 3 in case we
have an isomorphism BF , GFk

2 for relatively small k, thereby we can easily
implement computation of comprehensive Boolean Gröbner bases in any com-
puter algebra system with a facility to compute Gröbner bases in polynomial
rings over GF2. For the case that B is a set of all finite or co-finite subsets of S,
where S is a set of all strings, we implemented our method decsribed in section
3 and 4 in a computer algebra system Risa/Asir.

For a given 9×9 Sudoku puzzle, if we associate a variable Xij for each
grid at the i-th row and the j-th column, it can be considered as a set con-
straint where each variable should be assigned a singleton set from 9 candidates
{1}, {2}, . . . , {9} so that any distinct two variables which lie on a same row,
column or block must be assigned different singleton sets. As initial conditions,
several variables (17 to 25 in mosts high level puzzles) are assigned singleton sets.
This constraint is translated into a system of equations of a Boolean polynomial
ring B(X11, X12, . . . , X99) with 81 variables as follows:

(1) Initial conditions such as X11 = {4}, X15 = {9}, . . ..
(2) XijXi′j′ = 0(= ∅) for each pair of distinct variables Xij , Xi′j′ which lie

on a same row, column or block.
(3)
∑

(i,j)∈AXij = 1(= {1, 2, . . . , 9}) where A is a set of indices lying on
a same row, column or block. (There are 27 such A’s.)

We applied our implementation to solve such equations in [11]. The following
table includes data of our computations of Boolean Gröbner bases w.r.t. a purely
lexicographic term order such that X99 > · · · > X91 > · · · > X11 for solving 12
Sudoku puzzles each of which has 17 initial conditions and ranked as extremly
difficult(thereby we have 64 unknown variables to solve). Each Boolean Gröbner
basis can be considered as a simultaneous comprehensive Boolean Gröbner basis
by Corollary 23, which is especially important for our application. We used a
linux machine with 2GB memory and CPU Core2Duo 2GHZ. The data contains
computation time(in terms of second) by our implementation (namely Asir) and
old implementation of [9] (namely Klic0). We also include computation time of
comprehensive Boolean Gröbner bases with old implementation of [9] which is
based on the method described in section 2.3 in the column Klic1 and Klic2,
where X11 is treated as a parameter in Klic1 and X11, X12 in Klic2. The symbol
∞ means that the computation did not terminate within 2 hours.

puzzle Asir Klic0 Klic1 Klic2
1 41.7 85.3 134.1 592.3
2 135.5 ∞ ∞ ∞
3 48.1 ∞ ∞ ∞
4 83.9 ∞ ∞ ∞
5 44.3 1242.3 2657.2 2309.1
6 76.2 ∞ ∞ ∞

puzzle Asir Klic0 Klic1 Klic2
7 43.6 398.3 643.3 850.6
8 80.4 ∞ ∞ ∞
9 40.1 1025.3 1179.4 1089.3
10 85.8 ∞ ∞ ∞
11 92.6 ∞ ∞ ∞
12 48.9 686.5 1233.1 1634.7

computation data 1 computation data 2
From this rather small data, we can see remarkable speedup of our new
implementation.



On the Computation of Comprehensive Boolean Gröbner Bases 141

6 Conclusions

Essentially the same assertion of Theorem 22 has been reported in [10]. The proof
we gave there is based on a fact concerning stability of a specialization with a
zero of a zero-dimensional ideal. It is not only complicated but also turned out
to be incomplete. The proof we give in this paper does not employ any tricky
technique but is a simple and natural consequence if we are sufficiently familiar
with structures of Boolean polynomial rings.

References

1. Kapur, D.: An Approach for Solving Systems of Parametric Polynomial Equa-
tions. In: Saraswat, Van Hentenryck (eds.) Principles and Practices of Constraint
Programming, pp. 217–244. MIT Press, Cambridge (1995)

2. Manubens, M., Montes, A.: Improving DISPGB algorithm using the discriminant
ideal. J. Symb. Comp. 41, 1245–1263 (2006)

3. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J.
Symb. Comp. 33(2), 183–208 (2002)

4. Noro, M., et al.: A Computer Algebra System Risa/Asir (2009),
http://www.math.kobe-u.ac.jp/Asir/asir.html

5. Sakai, K., Sato, Y.: Boolean Gröbner bases. ICOT Technical Momorandum 488
(1988), http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tm-list-E.html

6. Sakai, K., Sato, Y., Menju, S.: Boolean Gröbner bases(revised). ICOT Technical
Report 613. (1991),
http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tr-list-E.html

7. Sato, Y., et al.: Set Constrains Solvers(Prolog version) (1996),
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-96-E.html

8. Sato, Y.: A new type of canonical Gröbner bases in polynomial rings over Von
Neumann regular rings. In: Proceedings of ISSAC 1998, pp. 317–332. ACM Press,
New York (1998)

9. Sato, Y., et al.: Set Constrains Solvers(Klic version) (1998),
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-98-E.html

10. Sato, Y., Inoue, S.: On the Construction of Comprehensive Boolean Gröbner
Bases. In: Proceedings of the Seventh Asian Symposium on Computer Mathematics
(ASCM 2005), pp. 145–148 (2005)

11. Sato, Y., Inoue, S., Suzuki, A., Nabeshima, K.: Boolean Gröbner Bases and Sudoku
(submitted for publication)

12. Sato, Y., Nagai, A., Inoue, S.: On the Computation of Elimination Ideals of Boolean
Polynomial Rings. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081,
pp. 334–348. Springer, Heidelberg (2008)

13. Suzuki, A., Sato, Y.: An Alternative approach to Comprehensive Gröbner Bases.
J. Symb. Comp. 36(3-4), 649–667 (2003)

14. Suzuki, A., Sato,Y.: A Simple Algorithm to Compute Comprehensive Gröbner
Bases Using Gröbner Bases. In: International Symposium on Symbolic and Alge-
braic Computation (ISSAC 2006), Proceedings, pp. 326–331 (2006)

15. Weispfenning, V.: Gröbner bases in polynomial ideals over commutative regular
rings. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378,
pp. 336–347. Springer, Heidelberg (1989)

16. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14(1), 1–29
(1992)

http://www.math.kobe-u.ac.jp/Asir/asir.html
http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tm-list-E.html
http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tr-list-E.html
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-96-E.html
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-98-E.html


On Invariant Manifolds of Dynamical Systems in
Lie Algebras

Valentin Irtegov and Tatyana Titorenko

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov str., Irkutsk, 664033, Russia

irteg@icc.ru

Abstract. Some problems of obtaining, analysis of stability and bifur-
cations of invariant sets of dynamical systems described by Euler equa-
tions in Lie algebras so(4) and so(3, 1) are discussed. The considered
systems assume additional polynomial first integrals of the 3rd and 6th
degrees. Invariant sets of these systems can be found from the conditions
of stationarity for the problem first integrals. Methods of computer alge-
bra have been employed in the capacity of the computational methods.
The computer algebra systems (CAS) Mathematica and Maple have been
used.

1 Introduction

In recent years, there appeared a series of publications devoted to finding com-
pletely integrable cases of Euler equations in Lie algebras [1]-[3]. Such equations
often have a rather good mechanical interpretation, for example, the generalized
Kirchhoff equations, the Poincaré–Zhukowsky equations [4], the Euler–Arnold
tops in algebra sl(2,C) as two-particle systems like the Cologero systems [5]. In
the present paper, for the two systems of equations of above type [6], [7], where
additional algebraic homogeneous integrals have the degree of 3 and 6, we have
considered the problem of finding and investigation of invariant sets, on which
the elements of the family of the problem’s first integrals assume a stationary
value. We call such sets the invariant manifolds of steady motions (IMSMs). The
class of such IMSMs is interesting for the fact that Lyapunov’s 2nd method is
more suitable for investigation of their stability. To the end of finding invariant
manifolds we use the family of the problem basic first integrals. It allows one to
obtain the families of IMSMs. We have considered problems of bifurcation and
stability in the sense of Lyapunov for a series of the families of IMSMs obtained.

The problem of obtaining “resonance” invariant manifolds, on which the ba-
sic first integrals are related by some polynomial relationships, has also been
considered.

We used CAS Mathematica and Maple for performing necessary computations.
All the computations have been conducted on a computer having the processor
Intel Core 2 Duo (2.4 GHz) and 2 GB RAM running under Windows XP.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 142–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On Invariant Manifolds of Dynamical Systems in Lie Algebras 143

2 Euler Equations on so(4)

2.1 Finding Invariant Manifolds

Consider a dynamical system described by the differential equations:

Ṁ1 = 2M2(α1M1 + 2α3M3) − (M3γ1 −M1γ3),
Ṁ2 = 2(α1M3 − α3M1)M3 − 2(α1M1 + α3M3)M1 + (M2γ3 −M3γ2),
Ṁ3 = −2α1M2M3,

γ̇1 = 2(α1M1 + α3M3)γ2 + (2α3M2 − γ1)γ3 + kM1M3,

γ̇2 = 2(α1M3 − α3M1)γ3 − 2(α1M1 + α3M3)γ1 + kM2M3 − γ2γ3,
γ̇3 = −2(α1M3 − α3M1)γ2 − k(M2

1 +M2
2 ) − 2α3M2γ1 + γ2

1 + γ2
2 , (1)

where Mi, γi (i = 1, 2, 3) are the components of the two 3-dimensional vectors,
α1, α2 are some constants, k = −α2

1 − α2
2.

Equations (1) have the first integrals:

V0 = α3(M2
1 +M2

2 +M2
3 ) − 2M3(α1M1 + α3M3) +M1γ2 −M2γ1 = h,

V1 = M1γ1+M2γ2+M3γ3 = c1, V2 = k(M2
1 +M2

2 +M2
3 ) + γ2

1 + γ2
2 + γ2

3 = c2,

V3 = {2[α3(M1γ2 −M2γ1) + α1(M2γ3 −M3γ2)] − k(M2
1 +M2

2 +M2
3 )

+γ2
1 + γ2

2 + γ2
3}M3 = c3 (h, ci = const). (2)

Here V3 is the additional cubic integral found in [6]. In this paper, one of applica-
tions for the systems similar to (1) is given. Such systems may also represent the
interest, for example, within the framework of the generalized Kirchhoff model,
which describes motion of a rigid body in fluid, or the Poincaré model, which
describes motion of a rigid body with a cavity filled with ideal rotational fluid
[4].

Let us consider the problem of obtaining invariant manifolds for equations (1).
To this end, we shall apply the Routh–Lyapunov method and its modifications
[8]–[10].

According to the modified Routh–Lyaponov method, invariant manifolds of
differential equations (1) may be found by solving the problem of conditional
extremum for the first integrals of the problem. For this purpose, some combi-
nations of the problem first integrals (families of first integrals) are formed. We
restrict our consideration to the linear combinations of first integrals:

K = λ0V0 − λ1V1 − λ2

2
V2 − λ3V3 (λi = const). (3)

Here λ0, λ1, λ2, λ3 are some constants, which may assume also zero values.
Next, while following the technique chosen, write stationary conditions for the

integral K with respect to the variables M1,M2,M3, γ1, γ2, γ3:

λ0γ2 − λ1γ1 + (2α3λ0 − kλ2)M1 − 2α1λ0M3 + 2λ3(kM1 − α3γ2)M3 = 0,
λ0γ1 + λ1γ2 − (2α3λ0 − kλ2)M2 + 2λ3[α1γ3 − α3γ1 − kM2]M3 = 0,



144 V. Irtegov and T. Titorenko

λ1γ3 + 2α1λ0M1 + (2α3λ0 + kλ2)M3 − λ3[k(M2
1 +M2

2 + 3M2
3 )

−2(α1γ3 − α3γ1)M2 − 2(α3M1 − 2α1M3)γ2 − (γ2
1 + γ2

2 + γ2
3)] = 0,

λ1M1 + λ0M2 + λ2γ1 − 2λ3(α3M2 − γ1)M3 = 0,
λ0M1 − λ1M2 − λ2γ2 + 2λ3[(α1M3 − α3M1) − γ2]M3 = 0,
λ1M3 + λ2γ3 + 2λ3(α1M2 + γ3)M3 = 0. (4)

In the case under consideration, equations (4) represent a system of the 2nd
degree algebraic equations. The parameters here are λi, αj .

The solutions of equations (4) allow one to define both the families of sta-
tionary solutions and the families of IMSMs of differential equations (1), which
correspond to the family of first integrals K. We take interest in solutions of
system (1), which represent families of IMSMs. To this end, we have to consider
the cases, when equations (4) are dependent. The conditions of existence of such
degenerations of system (4) may be found by equating the system Jacobian to
zero. Solutions of equations (4), which have been obtained under the conditions
indicated, are, generally speaking, the desired IMSMs. Computation of the Ja-
cobian of the parametric polynomial system of equations and its analysis may
represent a rather complex problem because of the system dimension and the
bulky character of expressions for the coefficients entering in it, etc. We employed
computer algebra methods for obtaining the solutions of interest for us.

Let us conduct a preliminary qualitative analysis of the solution set of equa-
tions (4), while using the Maple program package “PolynomialIdeals”. The pro-
grams of this package allow one, for example, to obtain the answer to the question
whether the system under investigation has finite or infinite number of solutions,
to find the dimension of its solution set, if the number of solutions is infinite, or
to determine the number of solutions for the system having a finite number of
solutions, etc. In particular, we have used the programs “IsZeroDimentional”,
“NumberOfSolutions”, “HilbertDimension” and some other programs.

Analysis for the solution set of equations (4) was conducted over the field
Q(λ0, λ1, λ2, λ3, α1, α2) [M1,M2,M3, γ1, γ2, γ3]. The following results have been
obtained. The system has zero-dimensional sets (stationary solutions) in the
capacity of its solutions, and their number is finite. On the whole, there are 6
solutions. In given case, by computing the Gröbner lexicographic basis it is easy
to verify that system (4) over the indicated field has indeed 6 solutions of above
type (including the zero one).

Equations (4) may have nonzero-dimensional sets in the capacity of their so-
lutions in the phase space, when some part of the parameters, for example, one
of λi, are included into the number of variables. With the aid of the program
Mathematica “GroebnerBasis” we have constructed the lexicographic bases with
respect to the variables γ1, γ2, γ3,M1,M2,M3, λi. All the bases constructed con-
tain the equation:

λ2
1 + (λ0 + α3λ2)2 + α2

1λ
2
2 = 0. (5)

Equation (5) may be considered as the condition imposed on the parameters
λi, αj . If this condition is satisfied, then system (4) has the solutions of dimension
higher than zero.



On Invariant Manifolds of Dynamical Systems in Lie Algebras 145

Real solutions for the quadratic equation (5) with respect to λ0 are:

i) λ0 = −α3λ2, λ1 = 0, α1 = 0; ii) λ0 = λ1 = λ2 = 0.

Under the above conditions imposed on the parameters λi, αj we have found the
following solutions of the stationary equations:

γ1 = α3M2, γ2 = −α3M1, γ3 = 0,M3 =
λ2

λ3
when λ0 = −α3λ2, λ1 = 0, α1 = 0;

γ1 = α3M2, γ2 = −α3M1, γ3 = 0,M3 = 0 when λ0 = −α3λ2, λ1 = 0, α1 = 0;

γ1 = α3M2, γ2 = −α
2
1 + α2

3

α3
M1, γ3 = −α1M2,M3 = −α1

α3
M1 when λ0 = λ1

= λ2 = 0;
γ1 = α3M2, γ2 = 0, γ3 = −α1M2,M1 = 0,M3 = 0 when λ0 = λ1 = λ2 = 0. (6)

Analysis of solutions (6) has given evidence that these represent families of
IMSMs for the differential equations (1).

When solving the stationary equations with respect to some part of the param-
eters λi and the phase variables, for example, M2, γ1, γ2, γ3, λ0, λ1, it is possible
to obtain also several families of IMSMs. Using the technique of Gröbner bases,
we have found the following solutions of the stationary equations with respect
to the indicated variables:

γ1 = ±
√
M1z1
M3

, γ2 = −2[
α1M

2
1

M3
− α1M3 + 2α3M1], γ3 = ±

√
z1√
M1

, M2 = 0,

λ0 =
2α1[λ2(M2

3 −M2
1 ) + λ3(M2

3 − 2M2
1 )M3]

M1M3
− 2α3(3λ3M3 + 2λ2),

λ1 = ∓
√
M1z1(2λ3M3 + λ2)√

M1M3

; (7)

γ1 =
2λ3[α1λ3M1 + α3(2λ3M3 + λ2)]M2M3 ±M1

√
z2

z3
,

γ2 =
2λ3[α1(λ2M3 + λ3(M2

3 −M2
1 )) − α3(2λ3M3 + λ2)M1]M3 ±M2

√
z2

z3
,

γ3 =
M3[−2α1λ3M2(λ3M3 + λ2) ±√

z2]
z3

,

λ0 = −2λ2
3M3(α1M1 + α3M3)
λ3M3 + λ2

, λ1 = ∓ z2
λ3M3

. (8)

Here z1 = α1(3α1M1 + 2α3M3)M2
3 − (2α1M1 + 3α3M3)2M1,

z2 = α3(λ2−λ3M3)[4α1λ3(2λ3M3+λ2)M1M3+α2
3(λ3M3−λ2)(2λ3M3+λ2)2]

−α2
1[λ2

2(λ3M3 + λ2)2 + 4λ4
3M

2
1M

2
3 ], z3 = (λ3M3 + λ2)(2λ3M3 + λ2).

The first four equations (7) define the family of IMSMs for the differential
equations (1) written in different maps. The vector field on the elements of the
given family of IMSMs is described by the equations:

Ṁ1 = 0, Ṁ3 = 0. (9)



146 V. Irtegov and T. Titorenko

The latter two equations (7) for λ0 and λ1 represent the first integrals of differ-
ential equations (9). In the given case, these integrals shall obviously be trivial
due to the fact that the equations themselves are trivial.

In (8), the first three equations define the family of IMSMs for the differential
equations (1), which is also written in different maps. The vector field on the
elements of the given family is written by the equations:

Ṁ1 =
2M2[α1λ2M1 + α3M3(λ3M3 + 2λ2)]

λ3M3 + λ2
,

Ṁ2 = − 2
z3

[α3(λ2(2λ3M3 + λ2) + z3)M1M3 + α1(λ2
2(M

2
1 −M2

3 )

+λ2λ3(3M2
1 +M2

2 − 2M2
3 )M3 + λ2

3(M
2
1 +M2

2 −M3
3 )M2

3 )],
Ṁ3 = −2α1M2M3. (10)

The latter two equations (8) represent the first integrals of differential equations
(10).

2.2 On Bifurcations of Invariant Manifolds

Consider the problem of branching for above IMSMs. For the purpose of simplic-
ity we restrict our consideration with trivial conditions imposed on the problem’s
parameters.

It can easily be shown that all the families of IMSMs (6) adjunct to the 0th
solution. Indeed, compute the Jacobian of system (4) for Mi = 0, γi = 0 (i =
1, 2, 3). The expression obtained for the Jacobian writes:

J = (λ2
1 + (λ0 + α3λ2)2 + α2

1λ
2
2))[λ

2
0(λ

2
1 − 2α3λ0λ2 − 3(α2

1 + α2
3)λ

2
2)

+(λ2
1 + (α2

1 + α2
3)λ

2
2)

2].

Having assumed that J = 0, find the conditions under which the families of
IMSMs, that adjunct to the 0th solution, can be found as the solutions of sta-
tionary equations (4). Such conditions, in particular, are:

(i) λ0 = −α3λ2, λ1 = 0, α1 = 0; (ii) λ0 = λ1 = λ2 = 0. (11)

When comparing the restrictions imposed on λi, for which the families of IMSMs
(6) have been obtained, with (11), we can conclude that these families of IMSMs
adjunct to the 0th solution.

By analogy, we can find the conditions and the families of IMSMs (that cor-
respond to these conditions), which adjunct to families of IMSMs (7) and (8).
Such conditions for (7) are (a) α1 = 0, (b) λ3 = 0. In case of (8), such condition
is λ3 = 0.

It follows from the condition α1 = 0 that the first two families of IMSMs
(6) adjunct to the family of IMSMs (7). In case of λ3 = 0, we have found one-
dimensional and two-dimensional families of IMSMs, which adjunct both to the
family of IMSMs (7) and to (8). One of these families may be obtained, while
assuming λ3 = 0 in (7).



On Invariant Manifolds of Dynamical Systems in Lie Algebras 147

3 Euler Equations on so(3,1)

3.1 Obtaining Invariant Manifolds

Consider a dynamical system described in [7]. Its differential equations write:

Ṁ1 = 2(γ1M3 − γ3M1) −M2(α1M1 + 2α3M3),
Ṁ2 = 2(γ3M2 − γ2M3) + [M1(α1M1 + α3M3) −M3(α1M3 − α3M1)],
Ṁ3 = α1M2M3,

γ̇1 = 2[α3(γ2M3 − γ3M2) − (α3M2 − γ1)γ3] − (α1γ2 + 2kM3)M1,

γ̇2 = α1(γ1M1 − γ3M3) + 2[α3(γ3M1 − γ1M3) + (α3M1 + γ2)γ3 − kM2M3],
γ̇3 = 4α3(γ1M2 − γ2M1) + α1γ2M3 + 2[k(M2

1 +M2
2 ) − (γ2

1 + γ2
2)]. (12)

Equations (12) have the following first integrals:

2V̄0 = 2(γ2M1 − γ1M2) −M3(α1M1 + α3M3) + 2α3(M2
1 +M2

2 +M2
3 ) = 2h̄,

V̄1 = γ1M1+γ2M2+γ3M3 = c̄1, V̄2 = k(M2
1 +M2

2 +M2
3 ) + γ2

1 +γ2
2+γ2

3 = c̄2,

V̄3 =
{
(α3M1 + γ2)2M2

1 + [(α3M2 − γ1)M1 − (α1M2 + γ3)M3]2

−2α1(α3M1 + γ2)(M2
1 +M2

3 )M3 + [(α3M1 + γ2)γ2 + (α3γ2 − kM1)M1

+α2
1M

2
3 ]M2

3

}
M2

3 = c̄3 (h̄, c̄i = const). (13)

Here Mi, γi, λj , αl, k have the same sense as in section 2.1. V̄3 is the additional
integral of the 6th degree obtained in paper [7].

Let us consider the problem of obtaining invariant manifolds for equations
(12). For this purpose, we introduce the function

K̄ = 2λ0V̄0 − λ1V̄1 − λ2

2
V̄2 − λ3

2
V̄3 (λi = const)

and write down the stationary conditions for K̄ with respect to the variables
M1,M2,M3, γ1, γ2, γ3

λ0(2(α3M1 + η) − α1M3) − λ1γ1 − λ2kM1 + λ3[α3(α1M3 − η)M2
1

−(η2 + ν2 − (2α1η + kM3)M3)M1 + (νρ+ α3M3σ)M3]M2
3 = 0,

2λ0(α3M2 + ν) − λ1γ2 − λ2kM2 − λ3(α1M3 − α3M1)(ρM3 − νM1)M2
3 = 0,

(2α3M3 − α1M1)λ0 − λ1γ3 − λ2kM3 − λ3[(η2 + ν2)M2
1 + α1(2α1M3 − 3η)

×(M2
1 +M2

3 )M3 + (2(η2+ρ2) + α1M3(α1M3−2η))M2
3 − 3νρM1M3]M3 = 0,

2λ0M2 + λ1M1 + λ2γ1 + λ3(ρM3 − νM1)M1M
2
3 = 0,

2λ0M1 − λ1M2 − λ2γ2 + λ3[(α1M3 − η)M2
1 + (σ − α3M1)M2

3 ]M2
3 = 0,

λ1M3 + γ3λ2 + λ3(ρM3 − νM1)M3
3 = 0, (14)

while using the following denotations η = α3M1 + γ2, ν = α3M2 − γ1, ρ =
α1M2 + γ3, σ = α1M3 − γ2.



148 V. Irtegov and T. Titorenko

The stationary equations obtained represent the system of polynomial alge-
braic equations of the 5th degree with the coefficients dependent on the param-
eters λi, αj . Let us conduct analysis of their solution set, while using programs
of the Maple package “PolynomialIdeals”.

In order to simplify the problem we have constructed the Gröbner basis of
the scrutinized system with respect to the elimination monomial ordering. As a
result, the initial system has decomposed into the two subsystems.

f1(M1,M3, λi, αi) = 0, f5(γ3,M1,M2,M3, λi, αi) = 0,
f2(M1,M2,M3, λi, αi) = 0, f6(γ2, γ3,M1,M2,M3, λi, αi) = 0,
f3(γ3,M1,M2,M3, λi, αi) = 0, f7(γ1, γ3,M1,M2,M3, λi, αi) = 0.
f4(γ3,M1,M2,M3, λi, αi) = 0, (15)

M2 = 0, g4(M1,M3, λi, αi) = 0, g8(M1,M3, λi, αi) = 0,
g1(γ1,M1,M3, λi, αi) = 0, g5(M1,M3, λi, αi) = 0, g9(M1,M3, λi, αi) = 0,
g2(γ2,M1,M3, λi, αi) = 0, g6(M1,M3, λi, αi) = 0, g10(M1,M3, λi, αi) = 0.
g3(γ3,M1,M3, λi, αi) = 0, g7(M1,M3, λi, αi) = 0, (16)

It is possible to investigate each of these subsystems separately. Here fi, gj are
some polynomials of Mi, γi of degree of 5 to 9.

As a result of the analysis of the subsystems we have the following.
Equations (15) have two one-dimensional sets in the capacity of their solu-

tions. By direct computation it is possible to obtain the sets. These represent
families of IMSMs of differential equations (12). Equations of the 1st family of
IMSMs write:

(a0M
16
3 + a1M

14
3 + a2M

12
3 + a3M

10
3 + a4M

8
3 + a5M

6
3 + a6M

4
3 + a7M

2
3

+a8)M2
3 + (a9M

12
3 + a10M

8
3 + a11M

6
3 + a12M

4
3 + a13M

2
3 + a14)M2

3 γ
2
1

+(a15M
10
3 + a16M

8
3 + a17M

6
3 + a18M

4
3 + a19M

2
3 + a20)M3γ1 + a21 = 0,

(b0M14
3 + b1M12

3 + b2M10
3 + b3M8

3 + b4M6
3 + b5M4

3 + b6M2
3 + b7)M2

3 + (b8M12
3

+b9M8
3 + b10M6

3 + b11M4
3 + b12M2

3 + b13)M2
3 γ

2
2 + (b14M14

3 + b15M12
3

+b16M10
3 + b17M8

3 + b18M6
3 + b19M4

3 + b20M2
3 + b21)M3γ2 + b22 = 0,

(c0M14
3 + c1M12

3 + c2M10
3 + c3M8

3 + c4M6
3 + c5M4

3 + c6M2
3 + c7)M2

3

+(c8M10
3 + c9M6

3 + c10M4
3 + c11M2

3 + c12)M2
3 γ

2
3 + (c13M8

3 + c14M6
3

+c15M4
3 + c16M2

3 + c17)M3γ3 + c18γ2
3 = 0,

ā0M
2
3 + ā1M1M3 + ā2 = 0, (b̄0M4

3 + b̄1M2
3 + b̄2M2

2 + b̄3)M2
3 + b̄4 = 0. (17)

Here ai, bj, cl, ām, b̄r are some expressions depending on α1, α3, λ0, λ1, λ2, λ3.
The vector field on the elements of the family of IMSMs (17) is defined by the

equation:

Ṁ3 =

√
p0M6

3 + p1M4
3 + p2M2

3 + p3
2α1λ2

√−λ2λ3z
, where (18)



On Invariant Manifolds of Dynamical Systems in Lie Algebras 149

p0 = −(α3
1λ0

√
−λ2λ3 λ3(4λ2

0+4α3λ0λ2−kλ2
2)z), p1 = α2

1λ2λ3(8λ2
0 + 6α3λ0λ2

−kλ2
2)z

2, p2 = α1

√
−λ2λ3λ2(5λ0(4λ2

0 + λ2
1) + 2α3(14λ2

0 + λ2
1)λ2 + (4α2

1

+13α2
3)λ0λ

2
2 − 2α3kλ

3
2)z, p3 = −λ2

2z
4, z =

√
4λ2

0 + λ2
1 + 4α3λ0λ2 − kλ2

2.

Equations of the 2nd family of IMSMs and the equation, which defines the
vector field on the elements of this family, differ from (17), (18) in the signs of
the coefficients.

It is possible to conclude from (18) that motion on the elements of the family
of IMSMs (17) is described by hyperelliptic functions of time. The latter can be
reduced to elliptic functions when λ0 = 0. Equation (18) in this case assumes
the form:

Ṁ3 =

√
2α1α3

√
(kλ2

2 − λ2
1)λ2λ3M2

3 − α2
1kλ2λ3M4

3 − λ2
1 + kλ2

2

2α1

√−λ2λ3

,

and the equations of the corresponding family of IMSMs differ structurally from
equations (17) by the absence of addends, which contain M18

3 ,M
16
3 ,M

6
3 in the

1st, 3rd and 5th equations, respectively.
Equations (16) have a finite number of solutions (zero-dimensional sets), and,

as the Maple program “NumberOfSolutions” shows, there shall be 33 such so-
lutions. The sets of nonzero dimension in this case may be obtained if we solve
the scrutinized equations with respect, for example, to the parameters λ1, λ2

and the phase variables M2, γ1, γ2, γ3. Using the Gröbner bases technique, we
have found a series of solutions for equations (16) with respect to the variables
indicated. Some of these are given below:

γ1 = ±
√
α1M1z

2M3
, γ2 =

α1(M2
3 −M2

1 )
2M3

− α3M1, γ3 = ±
√
α1z

2
√
M1

, M2 = 0,

λ1 =
√
α1z [2λ0M1 ± λ3(M2

1 +M2
3 )(α1M3 − α3M1)M2

3 ]√
M1(α1(M2

1 −M2
3 ) + 2α3M1M3)

,

λ2 =
[4λ0M1 + α1λ3(M2

1 +M2
3 )2M3]M3

α1(M2
3 −M2

1 ) − 2α3M1M3
. (19)

Here z = −(2α3M
3
3 + α1M1(M2

1 + 3M2
3 )).

Analysis of the solutions has shown that the first four equations define the
family of IMSMs of differential equations (12) written in different maps. The
vector field on the elements of this family of IMSMs is described by the equations:

Ṁ1 = 0, Ṁ3 = 0. (20)

The latter two equations in (19) for λ1 and λ2 represent the first integrals of
differential equations (20). The integrals here are trivial because the equations
themselves are trivial.



150 V. Irtegov and T. Titorenko

3.2 On Bifurcations of Invariant Manifolds

Consider the problem of branching for the obtained families of IMSMs, while
restricting the consideration – likewise above – with trivial conditions imposed
on the problem parameters.

While following the technique of section 2.2, find the conditions, under which
the families of IMSMs, which adjunct to (19), can be found as the solutions of
stationarity equations (14). To this end, compute the Jacobian of system (14)
on the solution under consideration and, by equating the expression obtained to
zero, find the desired conditions. Such conditions, in particular, are (a) α1 = 0,
(b) λ3 = 0.

In the case, when α1 = 0, we have found several 3-dimensional IMSMs. One of
these IMSMs has a rather simple form: γ1 = α3M2, γ2 = −α3M1, γ3 = 0, λ0 =
−α3λ2/2, λ1 = 0, α1 = 0, and, as obvious from the analysis, adjuncts to the 0th
solution.

In the case when λ3 = 0, we have found one-dimensional and two-dimensional
families of IMSMs, which adjunct to the family of IMSMs (19). One of these
families may be obtained when putting λ3 = 0 in (19).

As far as the family of IMSMs (17) is concerned, we have not managed to
conduct analysis for the Jacobian expression computed on the given solution
because the obtained expression is rather bulky.

4 On “Resonance” Invariant Manifolds

Consider the problem of obtaining “resonance” invariant manifolds for the sys-
tems of differential equations (1), (12). To this end, we employ the following
procedure.

Let the system of differential equations ẋi = Xi(x1, . . . , xn) assume the two
first integrals: V (x) = c1, W (x) = c2.

Consider some smooth manifold defined by the equations:

ϕj(x1, . . . , xn) = 0 (j = 1, . . . , k). (21)

Using the equations ϕj = ϕj(x1, . . . , xn), exclude k variables xi (i = 1, . . . , k)
from the first integrals and equations of motion. As a result, the first integrals as-
sume the following form: V̄ = V̄ (ϕ1, . . . , ϕk, xk+1, . . . , xn), W̄ = W̄ (ϕ1, . . . , ϕk,
xk+1, . . . , xn).

Let there exist some polynomial relation, for example,

V̄ p(0, . . . , 0, xk+1, . . . , xn) = W̄ q(0, . . . , 0, xk+1, . . . , xn), (22)

on the manifold (21) between the integrals V̄ and W̄ , where p �= 0, q �= 0 are
some integer numbers.

Consider the linear bundle of the first integrals K̄ = V̄ (ϕ1, . . . , ϕk, xk+1, . . . ,
xn) − μW̄ (ϕ1, . . . , ϕk, xk+1, . . . , xn). The following theorem is valid.



On Invariant Manifolds of Dynamical Systems in Lie Algebras 151

Theorem. If for some values of μ = const the system of equations

∂K̄

∂ϕj
=
∂V̄

∂ϕj
− μ∂W̄

∂ϕj
= 0 (j = 1, . . . , k),

is satisfied for any xk+1, . . . , xn on the manifold ϕj = 0 (j = 1, . . . , k), and
relation (22) is valid, then the differential equations have the family of invariant
manifolds

ϕj(x1, . . . , xn) = 0 (j = 1, . . . , k), V̄ (0, . . . , 0, xk+1, . . . , xn) = (
q

μp
)

q
p−q ,

on which function K̄ assumes a stationary value.
Let us use this theorem for obtaining IMSMs in our case. Consider the follow-

ing relation between the first integrals of equations (1): V 3
0 = λV 2

3 (λ = const).
The latter equality turns into an identity when γ1 = γ3 = M1 = M2 = 0, γ2 =

α1M3 and λ = −α−1
3 . Stationary conditions for the integral K = V0 − μV3 (μ =

const) with respect to variables γ1, γ3,M1,M2, y = γ2 − α1M3 hold for α1 = 0.
So, conditions of above theorem are satisfied here, and equations (1) have the

family of IMSMs

γ1 = γ2 = γ3 = M1 = M2 = 0, 3α3M3 = −2μ−1

under the condition, when α1 = 0.
Now consider the relation between the first integrals of equations (12):

V̄ 3
2 = λV̄3. The latter equality turns into an identity when M1 = M2 = γ1 =
γ3 = 0, γ2 = α1M3/2 and λ = −27α2

1/16. Stationary conditions for the integral
K = V̄2 − μV̄3 with respect to the variables γ1, γ3,M1,M2, y = γ2 − α1M3/2
hold for α3 = 0.

Hence equations (12) have the family of of IMSM

M1 =M2 = γ1 = γ3 = 0, γ2 =
1
2
α1M3, M

4
3 = −μ−1

under the condition when α3 = 0.

5 On Stability of Invariant Manifolds

Let us represent some results of investigation of stability for a series of above
IMSMs. For the purpose of investigation, we used the Routh–Lyapunov method.
This method allows one to obtain sufficient stability conditions.

Investigate the stability of one of the families of IMSMs (6), for example:
γ1 = α3M2, γ2 = −α3M1, γ3 = 0, M3 = λ2/λ3.

In accordance with the indicated method, we introduce deviations ζ1 = γ1 −
α3M2, ζ2 = γ2 + α3M1, ζ3 = γ3, ζ4 = M3 − λ2/λ3 and write the 2nd variation of
integral K (3) in the neighbourhood of manifold under consideration.

The second variation of integral K in terms of deviations has the form:

δ2K = −3
2
λ2(ζ21 + ζ22 + ζ33 + α2

3ζ
2
4 ). (23)



152 V. Irtegov and T. Titorenko

Obviously, the quadratic form (23) is signdefinite for all λ2 �= 0 and α3 �= 0.
Consequently, due to Zubov’s theorem [11], the elements of the scrutinized family
of IMSMs is stable under the condition indicated.

Next, let us investigate stability of the family of IMSMs (7):

γ1 =
√
M1 z

M3
, γ2 = −2[

α1M
2
1

M3
− α1M3 + 2α3M1], γ3 =

√
z√
M1

, M2 = 0,

z = α1(3α1M1 + 2α3M3)M2
3 − (2α1M1 + 3α3M3)2M1. (24)

The vector field on the elements of this family is described by the equations:

Ṁ1 = 0, Ṁ3 = 0, (25)

which are obtained from equations (1) with the use of expressions (24).
From the geometric viewpoint, elements of the family of IMSMs (24) represent

some surfaces in R6, at each point of which a solution (M1 = M0
1 = const, M3 =

M0
3 = const) of equations (25) is defined.
Consider the problem of stability investigation of solutions, which belong to

the elements of the family of IMSMs (24) and correspond to parametersM0
1 ,M

0
3 .

Likewise in the previous case, this problem is reduced to the investigation of
signdefiniteness of the 2nd variation of integral K (3), which has been obtained
in the neighbourhood of the solution under investigation.

The second variation of integral K in the neighbourhood of the solution cor-
responding to M0

1 ,M
0
3 , in terms of deviations

ξ1 = γ1 −
√
M0

1 z
0

M0
3

, ξ2 = γ2 + 2[
α1M

0
1

2

M0
3

− α1M
0
3 + 2α3M

0
1 ], ξ3 = γ3 −

√
z0√
M0

1

,

ξ4 =M2, ξ5 = M1 −M0
1 , ξ6 = M3 −M0

3 ,

z0 = α1(3α1M
0
1 + 2α3M

0
3 )M0

3
2 − (2α1M

0
1 + 3α3M

0
3 )2M0

1 ,

writes:

δ2K = a1ξ
2
1 + a2ξ1ξ4 + a3ξ1ξ5 + a4ξ1ξ6 + a5ξ

2
2 + a6ξ2ξ4 + a7ξ2ξ5 + a8ξ2ξ6

+a9ξ
2
3 + a10ξ3ξ5 + a11ξ3ξ6 + a12ξ

2
4 + a13ξ4ξ6 + a14ξ

2
5 + a15ξ5ξ6 + a16ξ

2
6 .

Now let us investigate signdefiniteness δ2K on the linear manifold:

δV0 = b1ξ2 + b2ξ4 + b3ξ5 + b4ξ6 = 0,
δV2 = b5ξ1 + b6ξ3 + b7ξ4 + b8ξ5 + b9ξ6 = 0,
δV1 = b10ξ1 + b11ξ2 + b12ξ3 + b13ξ4 + b14ξ6 = 0. (26)

Here ai, bj are some expressions of λ0, λ1, λ2, λ3, α1, α3,M
0
1 ,M

0
3 .

Having excluded the variables ξ1, ξ2 from δ2K with the use of equations (26)
(among which there are only two independent ones), we obtain a quadratic form



On Invariant Manifolds of Dynamical Systems in Lie Algebras 153

of the variables ξ3, ξ4, ξ5, ξ6. The conditions of its signdefiniteness are sufficient
conditions of stability of solutions under consideration. When written in the
form of the Sylvester inequalities with the use of the denotations a1 = M0

1
2 −

M0
3

2
, a2 = 3M0

1
2−2M0

3
2
, a3 = 11M0

1
2−3M0

3
2
, a4 = 4M0

1
2−3M0

3
2
, a5 = 3M0

1
2−

M0
3

2
, a6 = 27M0

1
2 − 5M0

3
2, these write:

Δ1 = − (M0
1

2 +M0
3

2)(2λ3M
0
3 + λ2)

2M0
1

2 > 0, Δ2 =
2λ3M

0
3 + λ2

M0
1

3 [9α3
3(2λ3M

0
3

+λ2)M0
1M

0
3

2
+ α2

1(a3λ3M
0
3 + a4λ2)M0

1 + α1α3(a6λ3M
0
3 + 4a5λ2)M0

3 ] > 0,

Δ3 = − 2α1Δ2

M0
1

2(2λ3M0
3 + λ2)

[α3(2λ3M
0
3 + λ2)(λ3M

0
3 + 2λ2)M0

1M
0
3 + α1(a1(λ2

2

+λ2
3M

0
3

2
) +a2λ2λ3M

0
3 ] > 0, Δ4 = −

[
(2λ3M

0
3 +λ2)Δ3

M0
1

2
M0

3Δ2

]2[
(α3

1(5M
0
1

2−9M0
3
2
)

×M0
1 + 18α3

3M
0
3

3
)M0

1
3

+ α1α3(2α1(12M0
1

2 − 11M0
3

2
)M0

1
3
M0

3 − α3((M0
3

2

+15M0
1

2
)M0

3
2 − 36M0

1
4
)
]
> 0. (27)

To solve the system of inequalities (27) we have used the Mathematica program
“Reduce”. We cannot represent the program result in its complete form because
it is rather bulky. Below you can see only some of the obtained compatibility
conditions of inequalities (27):

α1 �= 0 ∧M0
1 �= 0

∧
[(
α3 = 0 ∧

(a1λ3M
0
3

a2
+ λ2 < 0 ∧ ((λ3 > 0 ∧M0

1 +M0
3 = 0

)
∨(λ3 < 0 ∧M0

1 = M0
3

))))
∨
(
α3 �= 0 ∧

(α3(2λ3M
0
3 + 5λ2)M0

1M
0
3 + α1(a1λ3M

0
3 + a2λ2)

a1α1 + 5α3M0
1M

0
3

< 0

∧((M0
3 =

(α3 +
√
α2

1 + α2
3)M

0
1

α1
∧ λ3 < 0

)
∨(M0

3 =
(α3 −√α2

1 + α2
3)M

0
1

α1
= 0 ∧ λ3 > 0

))))]
.

So, stable in the sense of Lyapunov shall be only those considered solutions,
which belong to the elements of the family of IMSMs (24), for which the param-
eters M0

1 ,M
0
3 satisfy the obtained conditions.

A similar stability investigation has also been conducted for the family of
IMSMs (19). Here, sufficient stability conditions have been obtained for the
solutions, which belong to the elements of the given family of IMSMs.



154 V. Irtegov and T. Titorenko

References

1. Borisov, A.V., Mamayev, I.S., Sokolov, V.V.: A new integrable case on so (4). Dokl.
Phys. 46(12), 888–889 (2001)

2. Sokolov, V.V.: A new integrable case for the Kirchhoff equation. Theoret. and
Math. Phys. 129(1), 1335–1340 (2001)

3. Sokolov, V.V.: On a class of quadratic Hamiltonians on so (4). Dokl. Math. 69,
108–111 (2004)

4. Bogoyavlensky, O.I.: Breaking Solitons. Nonlinear Integrable Equations. Moscow,
Nauka (1991)

5. Smirnov, A.V.: Systems of sl(2, C) tops as two-particle systems. Theoret. and
Math. Phys. 157(1), 1370–1382 (2008)

6. Tsiganov, A.V., Goremykin, O.V.: Integrable systems on so(4) related with XXX
spin chains with boundaries. J. Phys. A: Math. Gen. 37, 4843–4849 (2004)

7. Sokolov, V.V., Wolf, T.: Integrable quadratic classical Hamiltonians on so(4) and
so(3,1). J. Phys. A: Mat. Gen. 39, 1915–1926 (2006)

8. Rumyantsev, V.V.: A comparison of three methods of constructing Lyapunov func-
tions. J. Appl. Math. Mech. 59(6), 873–877 (1995)

9. Irtegov, V.D.: Invariant Manifolds of Steady-State Motions and Their Stability,
Nauka, Novosibirsk (1985)

10. Karapetyan, A.V.: The Stability of Steady Motions, Moscow, URSS (1998)
11. Zubov, V.I.: Stability of integrable manifolds. Differential equations 13(9),

1720–1722 (1977)



On the Complexity of Reliable Root Approximation

Michael Kerber

Max-Planck Institut für Informatik, Saarbrücken, Germany
mkerber@mpi-inf.mpg.de

Abstract. This work addresses the problem of computing a certified ε-approx-
imation of all real roots of a square-free integer polynomial. We proof an up-
per bound for its bit complexity, by analyzing an algorithm that first computes
isolating intervals for the roots, and subsequently refines them using Abbott’s
Quadratic Interval Refinement method. We exploit the eventual quadratic con-
vergence of the method. The threshold for an interval width with guaranteed
quadratic convergence speed is bounded by relating it to well-known algebraic
quantities.

1 Introduction

Computing the roots of a univariate polynomial is one of the most prominent problems
in Computer Algebra. For the case that only real roots are of interest, several subdivision
approaches, based on Descartes’ rule of sign or on Sturm’s Theorem have been intro-
duced [6,14]. Their output consists of a set of disjoint intervals, each containing exactly
one root of the polynomial, and vice versa, each root is contained in one of the intervals;
they are also called isolating intervals. These subdivision solvers constitute a popular
method for root finding, primarily as they return a certified output (no root is lost, no
interval contains several roots). Also, they are relatively easy to implement, and have
shown good practical performance. Real root solving is a cornerstone, for instance, for
the computation of Cylindrical Algebraic Decomposition [4], for related problems such
as topology computation [11,8] and arrangement computation [10], and many more.

In this work, we will investigate the cost of computing isolating intervals, and sub-
sequently refining them until their width falls below ε. An equivalent description is to
approximate all roots to a precision of ε. It should not be surprising that this problem
frequently appears in concrete applications – for instance, when comparing the roots of
two polynomials, or when evaluating the sign of an algebraic expression that depends
on a root of a polynomial.

While the (worst-case) complexity of the root isolation process has been studied
extensively for various isolation methods [9,12,16], similar results seem not to be avail-
able yet for the subsequent refinement process. Our work will provide a complexity
analysis with the following main result. Let f :=

∑p
i=0 aix

i ∈ Z[x] be a polynomial of
degree p, with simple roots and |ai| < 2σ for each coefficient ai. For ε > 0, computing
isolating intervals of width at most ε for all roots requires in the worst-case

Õ(p4σ2 + p3 log ε−1), (1)

bit operations, where Õ means that logarithmic factors in p and σ are neglected.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 155–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



156 M. Kerber

We achieve our bound by analyzing the Quadratic Interval Refinement (qir) method
to refine isolating intervals, introduced by Abbott [1]. This method can be considered
as a hybrid of bisection and (an interval version of) the secant method. We will discuss
the algorithm in detail in Section 3. As Abbott has already pointed out, the method
initially behaves like naive bisection (linear convergence), but once the interval falls
below a certain width, the number of newly obtained bits is doubled in every step (which
basically means quadratic convergence). In our analysis, we split the sequence of qir
steps into an initial sequence where we assume bisections, and a quadratic sequence
where the root is rapidly approximated. We will show that the sum of the cost of all
initial sequences is bounded by the first summand of (1) (which also bounds the cost of
the root isolation), and that the second summand is caused by the cost of the quadratic
sequence. It is remarkable that our analysis profits from considering all (real) roots of f ;
when restricting to a single root of f , we are able to decrease only the second summand
by a factor of p, even if the root is already given by an isolating interval.

The reader might wonder at this point why not using a more prominent algorithm
like the famous Newton iteration instead of the qir method. A problem in Newton’s
method lies in the choice of a starting value – an unfortunate one leads to a diverging
sequence. A solution is to perform bisections initially to produce an interval where
convergence of Newton’s method is guaranteed, and then to switch to Newton iteration
manually. However, this manual switch depends on theoretical worst-case bounds for
valid starting values of Newton’s method, thus more bisections than actually necessary
are performed in the average case. The qir method, in contrast, switches adaptively as
soon as possible, independently of the worst-case bounds that are introduced only for
the analysis.

Dekker [7] presented a method which, similarly to the qir, combines bisections and
the secant method. Brent [3] combines Dekker’s method with inverse quadratic inter-
polation. Superlinear convergence can also be guaranteed for this method. However, a
problem in Dekker’s approach is the growth in the bitsize of the iteration values – it
appears unclear to the author how to choose a suitable working precision in each sub-
step to avoid a too big coefficient swell-up while still guaranteeing fast convergence.
The same holds true for Brent’s method, and additionally, an analysis seems to be even
more involved as it even adds more ingredients to Dekker’s method. The qir method
guarantees a minimal growth in the bitsizes, since all intervals are of the form [ a

2� ,
a+1
2� ]

(with a, � ∈ Z), thus the bitsize of the boundaries is proportional to the interval width,
what is the best one can hope for.

The simpleness of the qir method also make this approach attractive for concrete
implementation. It is used both in the COCOA library1 [1] and the (experimental) alge-
braic kernel of the CGAL library2 (used, for instance, in [11,10]). Its application is also
attested in [8]. In this work, however, we focus on the complexity analysis, and do not
address its practical performance.

This paper is structured as follows: In Section 2, we give a rough overview about real
root isolation algorithms, and their complexity. Section 3 revises the qir method. Our
complexity bound (1) is proved in Section 4. We conclude in Section 5.

1 http://http://cocoa.dima.unige.it/
2 http://www.cgal.org

http://http://cocoa.dima.unige.it/
http://www.cgal.org


On the Complexity of Reliable Root Approximation 157

Notation

It will be convenient to fix some notation. Throughout this article, let f =
∑p

i=0 aix
i

be a square-free polynomial (i.e., without multiple roots) of degree p, with integer co-
efficients ai of bitsize σ, that means, |ai| ≤ 2σ . The complex roots of f are denoted by
α1, . . . , αp, and we assume exactly the first s roots α1, . . . , αs to be real.

Also, let 0 < ε < 1 be fixed, and set L := log 1
ε . We write M(n) for the cost of

multiplying two integers of bitsize n, and assume that M(n) = O(n log n log logn),
according to the fast multiplication algorithm by Schönhage and Strassen [15]. To keep
the complexity bound handleable, we will often neglect logarithmic factors in p and σ
and denote such complexity bounds by Õ(·). As an example, M(n) = Õ(n). Finally,
for I = (c, d), we denote by w(I) := d− c its width.

2 Root Isolation

Several approaches have been investigated for the root isolation problem. They all ac-
cept the square-free polynomial f as input, and produce a list of s isolating intervals for
α1, . . . , αs. A considerable body of literature has appeared about this problem (a small
subset is [5,6,14,16]); it is not the scope of this work to discuss them in detail – still,
their worst-case bound is of importance.

Theorem 1. Computing isolating intervals for the real roots of f requires at most
Õ(n4σ2) bit operations in the worst-case (using fast arithmetic). Moreover, each iso-
lating interval is of the form ( a

2� ,
a+1
2� ) with a, � ∈ Z and log

∣∣ a
2�

∣∣ = O(σ).

The complexity bounds have been proved for root isolation based on Sturm sequences
[9], and based on Descartes’ rule of signs [12]. The special form of the isolating in-
tervals is a consequence of the subdivision that is initially started with an interval
[−2O(σ), 2O(σ)] that covers all real roots of f (compare [2, §10.1]).

We remark that the Continued fraction algorithm (introduced in [5]) usually per-
form best in practice among the available modern root solvers, although the best known
bound in the literature seems to be Õ(n5τ2) [16]. See [13] for a recent experimental
comparison on various modern root solvers.

3 Abbott’s Quadratic Interval Refinement

Everybody knows about the most naive method for refining isolating intervals – the
bisection method. Given an isolating interval (c, d), evaluate f at the midpoint m =
c+d
2 . If f(m) = 0, the root is found exactly. Otherwise, either (c,m) or (m, d) is chosen

as refined isolating interval, depending on where the sign change takes place. Clearly,
the isolating interval is halved in every step which means that one bit of precision is
added per bisection.

The analysis of the complexity for the bisection is also straight-forward. The cru-
cial operation is to evaluate f at m, the number of arithmetic operations is linear.



158 M. Kerber

Algorithm 1. Quadratic interval refinement
1: procedure QIR(f, I = (c, d), N ) � Returns a pair (J, Nnew), with J the refined interval
2: if N = 2, return (BISECTION(f,I),4).
3: w ← d−c

N

4: m′ ← c + round(N f(c)
f(c)−f(d)

)w � m = c + f(c)
f(c)−f(d)

(d − c)
5: s ← sgn(f(m′))
6: if s = 0, return ([m′, m′],∞)
7: if s = sgn(f(c)) and sgn(f(m′ + w)) = sgn(f(d)), return ((m′, m′ + w), N2)
8: if s = sgn(f(d)) and sgn(f(m′ − w)) = sgn(f(c)), return ((m′ − w, m′), N2)
9: Otherwise, return (I ,

√
N).

10: end procedure

If τ denotes the bitsize of c and d, then the bisection has to deal with bitsizes up to
O(σ + pτ) during the evaluation, and thus the number of bit operations is bounded by

O(pM(σ + pτ)).

What if we did bisection until the interval gets smaller then ε? We would have to
perform up to σ + L bisection steps (the initial σ bisections to make its width smaller
than one), and the interval boundaries would grow to bitsize σ + L. Thus, one would
arrive at a total complexity of O(p(σ + L)M(p(σ + L))) = Õ(p2(σ + L)2), with an
additional factor of p when doing this for each root. Not surprisingly, this is inferior to
(1) since L appears quadratically.

A more efficient way of refining the isolating interval has been presented with Ab-
bott’s Quadratic Interval Refinement method [1]; we call it qir from now. Consider an
isolating interval I = (c, d) for a root α, and let � be the secant through the points
(c, f(c)) and (d, f(d)) ∈ R2. If I is small enough, f should almost look like the line �
over I , and thus, the intersection pointm of � with the x-axis should be close to α.

m

m′

f

�

m′ + w

α

Successful qir instance for N = 4

This idea leads to the following algorithm: Hav-
ing an additional integer N as input, subdivide I
(conceptually) by N + 1 equidistant grid points
(with distance w := w(I)

N ). Then, compute m′,
the closest grid point to m, and evaluate f(m′).
Depending on its sign, evaluate the sign of either
the left or right neighboring grid point. If the sign
changes from m′ to m′ ± w, choose it as new iso-
lating interval (this refines by a factor ofN ) and set
N to N2 for the next qir call. Otherwise, keep I as
isolating interval and set N to

√
N for the next call. If N = 2, perform one bisection

step. See also Algorithm 1 for a pseudo-code description.
We assume that N is initially set to 4 for an isolating interval returned by a root

isolation algorithm, and that the method QIR is always called with the parameterN that
has been returned in the previous call for the given interval.

Different from Abbott’s original formulation, a call of QIR does not necessarily
refine the isolating interval. However, in this case, N is decreased as a side effect, and
at the latest whenN = 2, the method will refine the interval eventually.



On the Complexity of Reliable Root Approximation 159

Algorithm 2. Root isolation with refinement
1: procedure ISOLATE AND REFINE(f, ε)
2: I1, . . . , Is ← ISOLATE(f) � see Section 2
3: for k ∈ {1, . . . , s} do
4: N ← 4
5: while width(Ii) > ε do (Ii, N) ← QIR(f, Ii, N)
6: end for
7: return I1, . . . , Is

8: end procedure

Definition 1. A qir call (J,N2) ←QIR(f ,I ,N1) succeeds, if J � I , and it fails, if
J = I . Equivalently, the qir calls succeeds, if and only if N2 > N1.

For one qir call (successful or not), one has to perform onlyO(p) arithmetic operations
to evaluate f at m′ and m′ ± w, and perform another constant number of arithmetic
operations. The bitsize of m′ and m′ ± w is bounded by O(logN + τ) where τ is the
maximal bitsize of c and d.

It is easy to see that logN ∈ O(τ), assuming that the qir is initially started with
N = 4: if a qir call withN > 4 subintervals is started, there must have been a successful
qir call for

√
N . Thus, the width of the interval is at most 1√

N
, and the bitsize of either

c or d must be at least log
√
N = 1

2 logN .
After all, the cost of one qir call is thus bounded by

O(pM(σ + pτ)),

which is equal to the cost of one bisection step. We remark that one successful qir step
yields exactly the same result as logN bisections, so that the isolating interval remains
of the form ( a

2� ,
a+1
2� ) if the initial interval was of this type.

4 Analysis of Root Refinement

We prove the bound given in (1). For that, we analyze the complexity of this straight-
forward algorithm: Apply QIR to each isolating interval until its width falls below ε
(Algorithm 2).

Definition 2. Let α be a root of f for which Step 2 of Algorithm 2 returned the isolating
interval I0. The qir sequence (s0, . . . , sn) for α, is defined as

s0 := (I0, 4) si := (Ii, Ni) := QIR(f, Ii−1, Ni−1) for i ≥ 1

where In is the first index such that w(In) ≤ ε. We say that si−1
QIR→ si succeeds if

QIR(f, Ii−1, Ni−1) succeeds, and that si−1
QIR→ si fails otherwise.

The qir sequence forα is split into two subsequences, according to the valueMα defined
in the next lemma.Mα will turn out to be an upper bound for the width of the isolating
interval of α that ensures quadratic convergence. We will prove this in Section 4.2, but
we already show two simple properties ofMα.



160 M. Kerber

Lemma 1. Let α ∈ C be a root α of f . We define

Mα :=
|f ′(α)|

2ep32σ max{|α|, 1}p−1

with e ≈ 2.718. It holds that

1. 0 < Mα <
1
p

2. Let μ ∈ C be such that |α− μ| < Mα. Then

Mα <
|f ′(α)|

2|f ′′(μ)| .

Proof. We bound |f ′(α)| from above by the following

|f ′(α)| = |
p∑

i=1

iaiα
i−1| ≤ p2σ

p−1∑
i=0

max{|α|, 1}i ≤ p2σpmax{|α|, 1}p−1

which proves the first claim. For the second, we bound |f ′′(μ)| from above:

|f ′′(μ)| = |
p∑

i=2

i(i− 1)aiμ
i−2| ≤ p22σ

p−2∑
i=0

max{|μ|, 1}i

≤ p22σ

p−2∑
i=0

((1 +Mα)max{|α|, 1})i

≤ p32σ(1 +Mα)p−2 max{|α|, 1}p−2 < p32σ (1 +
1
p
)p︸ ︷︷ ︸

<e

max{|α|, 1}p−1

This shows that

|f ′(α)|
2|f ′′(μ)| >

|f ′(α)|
2e · p32σ max{|α|, 1}p−1

= Mα

Definition 3. Let (s0, . . . , sn) be the qir sequence for α. Let k be the minimal index

such that sk = (Ik, Nk)
QIR→ sk+1 succeeds, and w(Ik) ≤ Mα. We call the sequence

(s0, . . . , sk) the initial sequence, and (sk, . . . , sn) the quadratic sequence.

In other words, the quadratic sequence is the maximal qir sequence that only contains
intervals of size at most Mα, and starts with a successful qir step. In the next two
subsections, we will bound the cost of the initial sequence and the quadratic sequence
separately.



On the Complexity of Reliable Root Approximation 161

4.1 Cost of the Initial Sequence

Lemma 2. Let I be an isolating interval for α. The cost of the initial sequence of α is
bounded by

Õ(p2(σ + log
1
Mα

)2)

Proof. Let nq be the number of qir calls until I is refined such that w(I) < Mα.
Likewise, let nb be the number of bisections that would be needed to refine I to size
Mα. Note that nb = O(σ + log 1

Mα
).

A successful qir call for some N = 22i

yields the same accuracy as 2i bisections,
and can only cause up to i + 1 subsequent failing qir calls before the next successful
qir call. With that argument, it follows that nq ≤ 2nb, so the number of qir calls is in
O(σ + log 1

Mα
).

To bound the bitsizes, let Ne be the value of N in the last successful qir call of
the initial sequence. It holds that logNe ≤ 2nb, since otherwise, the preceding qir
call would have yielded as much accuracy as log

√
Ne > nb bisections, and the initial

sequence would have stopped earlier. Hence, the width of the final interval is at least
Mα

Ne
, and the interval boundaries have bit complexity

log
Ne

Mα
≤ 2nb + log

1
Mα

= O(σ + log
1
Mα

)

Therefore, the bitsizes of the qir calls are bounded by O(p(σ+ log 1
Mα

)), which proves
the claim.

It remains to bound the quantity log 1
Mα

. We do this simultaneously for all real roots of
the polynomial, according to the following theorem.

Theorem 2. Let α1, . . . , αs be the real roots of f . Then,

s∑
i=1

log
1
Mαi

= O(p(σ + log p)).

Proof. Recall that 0 < Mα < 1 for each (complex) root α, so log 1
Mα

> 0, and we can
bound:

s∑
i=1

log
1
Mαi

≤
p∑

i=1

log
1
Mαi

= log
∏p

i=1 2e · p32σ max{|αi|, 1}p−1

|∏p
i=1 f

′(αi)|

= p log(2e) + 3p log p+ pσ + (p− 1) log
p∏

i=1

max{|αi|, 1} − log |
p∏

i=1

f ′(αi)|

For both occurring products, we can apply well-known bounds from Algebra. For the
first one, note that

Mea(f) := |ap|
p∏

i=1

max{|αi|, 1}



162 M. Kerber

is the Mahler measure of f , and it holds that ([17, Lemma 4.14], [2, Prop.10.9])

Mea(f) ≤ ‖f‖2 ≤
√
p+ 1 · ‖f‖∞ ≤

√
p+ 1 · 2σ.

So, log
∏p

i=1 max{|αi|, 1} = log
(

1
|ap|Mea(f)

)
≤ log Mea(f) = O(log p+ σ)

The second product is related to the resultant of f and f ′ by the following identity [2,
Thm.4.16], [17, Thm.6.15]

res(f, f ′) = ap−1
p

p∏
i=1

f ′(αi).

In particular, the right hand side yields an integer. It follows

− log |
p∏

i=1

f ′(αi)| = log |ap−1
p | − log | res(f, f ′)︸ ︷︷ ︸

≥1

| < (p− 1) log |ap| = O(pσ).

Finally, we can estimate

s∑
i=1

log
1
Mαi

≤ O(p(σ + log p)) + (p− 1) log
p∏

i=1

max{|αi|, 1}︸ ︷︷ ︸
=O(log p+σ)

− log |
p∏

i=1

f ′(αi)|︸ ︷︷ ︸
=O(pσ)

= O(p(σ + log p)).

Corollary 1. The total computation cost for all initial sequences is Õ(p4σ2).

Proof. Combining Lemma 2 and Theorem 2, we get total costs of

Õ(
s∑

i=1

p2(σ + log
1
Mαi

)2) = Õ(p3σ2 + p2(
s∑

i=1

log
1
Mαi

)2) = Õ(p4σ2)

Corollary 1 shows that refining all isolating intervals to widthMα does not increase
the complexity bound to the initial root isolation.

4.2 Cost of the Quadratic Sequence

In the initial sequence, we have assumed that the qir sequence behaves roughly as the
bisection method. As soon as the isolating interval becomes smaller than Mα, we can
prove thatN is squared in (almost) every step, which leads to quadratic convergence of
the interval width. We start with a simple criterion that guarantees a successful qir call.

Lemma 3. Let I = (c, d) be an isolating interval of α, with w(I) = δ, and consider
the qir call QIR(f ,I ,N ) for someN . Letm := c+ f(c)

f(c)−f(d)(d− c) be defined as in the

qir method (Algorithm 1). If |m− α| < δ
2N , the qir call succeeds.



On the Complexity of Reliable Root Approximation 163

Proof. Recall that I is conceptually subdivided intoN subintervals of same width, and
that m′ is chosen as the grid point closest to m. Let J be the subinterval that contains
α, and J ′ be the subinterval that contains m. If J = J ′, then one of the endpoints of
J ′ is chosen as m′, so the qir call succeeds. If J �= J ′, they must be adjacent, since
otherwise, |m−α| > δ

N . W.l.o.g., assume thatm < α, thenm must be in the right half
of J , because otherwise |m− α| > δ

2N . Thus,m′ is chosen as the right endpoint of J ′

which is the left endpoint of J . Therefore, the qir call succeeds.

We need to investigate the distance between the interpolation point m and the root α.
The next theorem shows that this distance depends quadratically on the width of the
isolating interval, once it is smaller than Mα. This is basically analogous to Newton’s
iteration, for which a similar theorem is shown.

Theorem 3. Let (c, d) be an isolating interval for α of width δ < Mα. Then |m−α| <
δ2

2Mα
.

Proof. We consider the Taylor expansion of f at α. For a given x ∈ [c, d], we have

f(x) = f ′(α)(x − α) +
1
2
f ′′(α̃)(x− α)2

with some α̃ ∈ [x, α] or [α, x]. Thus, we can simplify

|m− α| =
∣∣∣∣f(d)(c− α)− f(c)(d− α)

f(d)− f(c)
∣∣∣∣

=
∣∣∣∣ 1

2 (f ′′(α̃1)(d− α)2(c− α) − f ′′(α̃2)(c− α)2(d− α))
f(d)− f(c)

∣∣∣∣
≤ 1

2
|d− α||c− α| · |f

′′(α̃1)|(d− α) + |f ′′(α̃2)|(α − c)
|f(d)− f(c)|

≤ 1
2
δ2 max{|f ′′(α̃1)|, |f ′′(α̃2)|} (d− α) + (α− c)

|f(d)− f(c)|
=
δ2 max{|f ′′(α̃1)|, |f ′′(α̃2)|}

2|f ′(ν)|
for some ν ∈ (c, d). The Taylor expansion of f ′ yields f ′(ν) = f ′(α) + f ′′(ν̃)(ν − α)
with ν̃ ∈ (c, d). Since δ ≤Mα, it follows with Lemma 1

|f ′′(ν̃)(ν − α)| ≤ |f ′′(ν̃)|Mα ≤ 1
2
|f ′(α)|.

Therefore |f ′(ν)| > 1
2 |f ′(α)|, and it follows again with Lemma 1 that

|m− α| ≤ δ2 max{|f ′′(α̃1)|, |f ′′(α̃2)|}
|f ′(α)| =

δ2

2 |f ′(α)|
2max{|f ′′(α̃1)|,|f ′′(α̃2)|}

<
δ2

2Mα
.

We apply this theorem on the quadratic sequence.



164 M. Kerber

Corollary 2. Let Ij be an isolating interval for α of width δj ≤ 1
Nj
Mα. Then, each

call of the qir sequence (Ij , Nj)
QIR→ (Ij+1, Nj+1)

QIR→ . . . succeeds.

Proof. We do induction on i. Assume (for i ≥ 0) that the first i calls succeeded. Then,
it is easily shown that δj+i := w(Ij+i) = Njδj

Nj+i
< Mα

Nj+i
(by another induction, and

exploiting thatN2
j+i = Nj+i+1). Using Theorem 3, we have that

|m− α| ≤ δ2j+i

1
2Mα

≤ δj+i
Mα

Nj+i

1
2Mα

=
1
2
δj+i

Nj+i
.

By Proposition 3, this is enough to guarantee success for the qir method.

Corollary 3. In the quadratic sequence, there is at most one failing qir call.

Proof. Let (Ii, Ni)
QIR→ (Ii+1, Ni+1) be the first failing qir call in the quadratic se-

quence. Since the quadratic sequence starts with a successful qir call, the predecessor

(Ii−1, Ni−1)
QIR→ (Ii, Ni) is also part of quadratic sequence, and succeeds. Thus we

have the sequence

(Ii−1, Ni−1)
Sucess
QIR→ (Ii, Ni)

Fail
QIR→ (Ii+1, Ni+1)

QIR→ . . . .

One observes that w(Ii+1) = w(Ii) = w(Ii−1)
Ni−1

≤ Mα

Ni−1
, and Ni+1 =

√
Ni =√

N2
i−1 = Ni−1. By Corollary 2, all further qir calls succeed.

If the quadratic sequence starts with a bisection (i.e.,N = 2 initially), no failing qir call
occurs. Otherwise, the single failing step is due to the fact that the quadratic sequence
might start with a too big value ofN , just because the algorithm was “too lucky” during
the initial sequence.

Let (Ii−1, Ni−1)
QIR→ (Ii, Ni) be the failing qir call in the quadratic sequence. Since

for any k ≥ 0, w(Ii+k) = Niw(Ii)
Ni+k

, it follows that

w(Ii+k+1) =
w(Ii+k)2

Nk · w(Ik)
.

That means, the interval width decreases quadratically in each step (up to the constant
Nk ·w(Ik)) which ultimately justifies the term “quadratic” in the Quadratic Interval Re-
finement method (the idea of our exposition was already sketched in Abbott’s original
work [1]).

Lemma 4. The number of bit operations in the quadratic sequence of a root α is
bounded by

Õ(p2 logL(σ + log
1
Mα

) + p2L).



On the Complexity of Reliable Root Approximation 165

Proof. By Corollary 3, the quadratic sequence consists of at most logL + 1 qir calls,
since N is doubled in each step, except the possible failing step. The bitsize in the first
qir call of the sequence is O(p(σ + log 1

Mα
)), and increases by at most 2i after the i-th

iteration. Therefore, the complexity of the quadratic sequence is given by

O

(
log L+1∑

i=1

p ·M(p(σ + log
1
Mα

+ 2i))

)
= Õ

(
p2

log L+1∑
i=1

σ + log
1
Mα

+ 2i

)

= Õ

(
p2 logL(σ + log

1
Mα

) + p2
log L+1∑

i=1

2i)

)
= Õ(p2 logL(σ + log

1
Mα

) + p2L)

Corollary 4. The total cost of all quadratic sequences for the real roots α1, . . . , αs of
f is bounded by

Õ(p3σ logL+ p3L).

Proof. We combine Lemma 4 and Theorem 2 to obtain
s∑

i=1

Õ(p2 logL(σ + log
1
Mα

) + p2L) = Õ(p3σ logL+ p2 logL
s∑

i=1

log
1
Mα︸ ︷︷ ︸

=O(p(σ+log p))

+p3L)

Combining the cost for root isolation (Theorem 1) with the cost of the initial sequences
(Corollary 1) and the cost of the quadratic sequences (Corollary 4) proves the main
result:

Theorem 4. Isolating the real roots of f , and computing an isolating interval of width
at most ε for each root using Algorithm 2 requires

Õ(p4σ2 + p3(L+ σ logL)) = Õ(p4σ2 + p3L)

bit operations.

Proof. We only have to argue why the summand p3σ logL can never dominate the other
two. If p4σ2 was dominated by p3σ logL, logL would dominated pσ, and in particular
L would dominate 2σ . If also p3L was dominated by p3σ logL, then L

log L is dominated

by σ, so L is dominated by σ1+γ for any γ > 0. Contradiction.

If only one isolating interval is refined, our method shows a complexity of Õ(p4σ2 +
p2L), and thus only a partial improvement (even without considering the initial root
isolation step). The reason is that we are not aware of an improved bound for the initial
sequence of a single α compared to what we prove in Theorem 2.

From a theoretical point of view, we do not expect significant improvements when
using any other quadratic convergent method than qir: the first summand p4σ2 of The-
orem 4 appears due to root isolation, and the summand p3L seems to be unavoidable as
well, since for each root, one has to perform at least one evaluation of f for a rational
number of bitsize O(L), which leads to O(n) arithmetic operations with integers of
bitsize up to Õ(nL).



166 M. Kerber

5 Conclusions and Further Work

Theorem 4 shows that refining all real roots of a polynomial to width ε is as com-
plex as just isolating the roots, provided that log ε−1 = Õ(pσ2). We believe this re-
sult to be of general interest for algorithm dealing with real algebraic numbers. For
instance, the usage of qir instead of naive bisection removes the asymptotic bottle-
neck in the topology computation algorithm presented in [11]; this is currently work in
progress.

On the practical side, we have argued that qir has a more adaptive behavior than a
combination of bisection and Newton’s method, since the switch from linear to quadratic
convergence happens without a “manual” control from outside. Abbott’s work [1] has
already shown that qir is competitive to Newton’s method in a different context. How-
ever, a comparison to other hybrid approaches like Brent’s method is still missing.

Acknowledgements. The author would like to thank Tobias Gärtner, Kurt Mehlhorn,
Michael Sagraloff and Vikram Sharma for valuable discussions.

References

1. Abbott, J.: Quadratic Interval Refinement for Real Roots. Poster presented at the 2006 Int.
Symp. on Symb. and Alg. Comp, ISSAC 2006 (2006),
http://www.dima.unige.it/˜abbott/

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. In: Algorithms
and Computation in Mathematics, 2nd edn., vol. 10. Springer, Heidelberg (2006)

3. Brent, R.: Algorithms for Minimization without Derivatives, ch. 4. Prentice-Hall, Englewood
Cliffs (1973)

4. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic De-
composition, Texts and Monographs in Symbolic Computation. Springer, Heidelberg (1998)

5. Collins, G.E., Akritas, A.G.: Polynomial Real Root Isolation Using Descartes’ Rule of Signs.
In: Jenks, R.D. (ed.) SYMSAC, pp. 272–275. ACM Press, Yorktown Heights (1976)

6. Collins, G.E., Loos, R.: Real zeroes of polynomials. In: Computer algebra: symbolic and
algebraic computation, 2nd edn., pp. 83–94. Springer, New York (1983)

7. Dekker, T.: Finding a zero by means of successive linear interpolation. In: Dejon, B.,
Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Algebra (1969)

8. Diochnos, D.I., Emiris, I.Z., Tsigaridas, E.P.: On the complexity of real solving bivariate
systems. In: ISSAC 2007: Proceedings of the 2007 international symposium on Symbolic
and algebraic computation, pp. 127–134. ACM, New York (2007)

9. Du, Z., Sharma, V., Yap, C.: Amortized Bound for Root Isolation via Sturm Sequences. In:
Proceedings of the International Workshop on Symbolic-Numeric Computation, SNC 2007
(2007)

10. Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic
curves. In: Proc. of the nineteenth annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2008), pp. 122–131 (2008)

11. Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and Exact Geometric Analysis of Real Alge-
braic Plane Curves. In: Brown, C.W. (ed.) Proocedings of the 2007 International Symposium
on Symbolic and Algebraic Compuation, ISSAC 2007 (2007)

http://www.dima.unige.it/~abbott/


On the Complexity of Reliable Root Approximation 167

12. Eigenwillig, A., Sharma, V., Yap, C.: Almost Tight Recursion Tree Bounds for the Descartes
Method. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic
Computation, pp. 71–78 (2006)

13. Emiris, I.Z., Hemmer, M., Karavelas, M., Mourrain, B., Tsigaridas, E.P., Zafeirakopoulos,
Z.: Experimental evaluation and cross-benchmarking of univariate real solvers. Rapport de
recherche EMIRIS:2008:INRIA-00340887:1, INRIA, Sophia Antipolis, France (2008)

14. Johnson, J.R.: Algorithms for Real Root Isolation. In: Caviness and Johnson [4] (1998)
15. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292

(1971)
16. Sharma, V.: Complexity of real root isolation using continued fractions. Theoretical Com-

puter Science 409, 292–310 (2008)
17. Yap, C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University Press, Oxford

(2000)



Algebraic Approach to the Computation of the
Defining Polynomial of the Algebraic Riccati

Equation

Takuya Kitamoto

Faculty of Education, Yamaguchi University
kitamoto@yamaguchi-u.ac.jp

Abstract. The algebraic Riccati equation, which we denote by ’ARE’
in the rest of the paper, is one of the most important equations of the
post modern control theory. It plays important role for solving H2 and
H∞ optimal control problems.

Although a well-known numerical algorithm can compute the solution
of ARE efficiently ([1],[2]), the algorithm can not be applied when a given
system contains an unknown parameter.

This paper presents an algorithm to compute the defining polynomial
of an ARE with unknown parameter k. Such algorithm is also discussed in
[3], where an algorithm with numerical approach is presented. The new
algorithm in this paper uses algebraic approaches based on Groebner
basis and resultant. Numerical experiments show the new algorithm is
more efficient than that of [3] in most cases.

1 Introduction

Recently, Computer Algebra has received an increasing attention from engineers
and scientists, because its capability to handle parameters can lead to a wide
variety of applications. In the field of control theory, various techniques of Com-
puter Algebra are proved to be quite effective for a design and analysis of control
systems. For example, QE (Quantifier Elimination), which is a comparatively
new technique in Computer Algebra, is applied the design of a control system
in the references [4]-[7]. Another application of Computer Algebra to the control
theory can be found in references [8] and [9], where the author of this paper
described an algorithm to compute H∞ norm of a given system that contains a
parameter.

In this paper, we treat the ’parametric’ algebraic Riccati equation, which is
the algebraic Riccati equation containing an unknown parameter. The algebraic
Riccati equation, which we denote by ’ARE’ in the rest of the paper, is the
equation in the form of

PA+ATP − PWP +Q = 0, (1)

where we are given n×n matrices A,W,Q (Q being positive semi definite andW
being symmetric) and find the n×n solution matrix P . It is used for solving H2

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 168–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Computation of the Defining Polynomial of the Algebraic Riccati Equation 169

and H∞ optimal control problems, and is one of the most important equations
in control theory. Typically, the solution P of the equation is computed by
the numerical algorithm, which utilizes the eigenvalues and eigenvectors of the
matrix H defined by

H
def=
[
A −W
−Q −AT

]
. (2)

However, when matrices A,W,Q contain unknown parameters, the numerical
algorithm can not be applied.

Letting each entry of the solution matrix be unknown variables, ARE can be
viewed as m simultaneous algebraic equations with m variables and a parameter
k, where m is the number of entries of the unknown matrix P . Hence, com-
puting Groebner basis of the algebraic equations with lexicographic ordering,
we obtain the polynomial whose roots are the solution of ARE, which is the
defining polynomial of ARE.

However, in practice, the procedure is effective only for quite small size prob-
lems because of its numerical complexities. Reference [3] presents a practical
algorithm to compute the defining polynomial of the solution P . The algorithm
uses polynomial interpolations and the numerical solutions of ARE (the algo-
rithm to compute numerical solutions is already known in control theory). In this
paper, we present another algorithm which uses Groebner basis and resultant.
Numerical experiments show that the new algorithm is more efficient than that
of [3] in most cases. In the rest of the paper, we use the following notations:

R : The set of real numbers.
C : The set of complex numbers.
Z : The set of integers.
Fp : Finite field with characteristic p.
Km,n : The set of matrices with entries in K.
K[x] : The set of polynomials with coefficients in K.
Resx(r1(x), r2(x)) : Resultant of polynomials r1(x) and r2(x) with respect to x.
GCDx(r1(x), · · · , rn(x)) : Polynomial GCD of r1(x),· · ·,rn(x) with respect to x.
H |k=k0 : H with k = k0.
Det(M) : Determinant of matrix M .

2 Original Algorithm

2.1 Problem Formulations

Let A ∈ Z[k]n,n, W ∈ Z[k]n,n, Q ∈ Z[k]n,n be polynomial matrices in k, where
W is symmetric and Q is semi definite for any value of k. Let pi,j be (i, j)th
entry of a symmetric solution P of (1). We will compute the defining polynomial
of pi,j . For the symmetric solutions, we have the following theorem:

Theorem 1. Let pi,j be (i, j)th entry of a symmetric solution P of (1), and
suppose that there exists real number k0 such that

(C1) All eigenvalues of H |k=k0 are distinct,



170 T. Kitamoto

(C2) λi + λj = 0 (i �= j) ⇒ P (λ1, · · · , λn) is not symmetric, where λi, λj are
eigenvalues of H |k=k0 .

Then there exists a polynomial fl(k) ∈ Z[k] (l = 0, · · · , 2n) which satisfies the
conditions

GCDk(f0(k), · · · , f2n(k)) = 1, (3)
f2n(k)p2

n

i,j + · · ·+ f1(k)pi,j + f0(k) = 0. (4)

In this paper, we assume the above conditions (C1) and (C2), and present an
algorithm to compute the polynomial (4).

2.2 Algorithm with Numerical Approach

In this subsection, we explain the algorithm in [3] briefly, which computes the
defining polynomial numerically. For details, see [3].

Let H be the matrix defined by (2), and compute vector v(y) with the follow-
ing algorithm:

Algorithm 1. Computation of v(λ)

〈1〉 Let x be x =
[
x1 · · · x2n

]T and compose 2n linear equations (H−λE)x = 0
(each entry of (H − λE)x = 0 compose a linear equation), where λ is an
indeterminate.

〈2〉 Select (2n − 1) linear equations from 2n ones in 〈1〉 and solve the (2n− 1)
linear equations as equations in variables x1,· · ·,x2n−1.

〈3〉 Substitute the solution of x1, · · · , x2n−1 into x and multiply an adequate
polynomial so that each entry of x is a polynomial in λ.

〈4〉 Let v(λ) ← x/x2n and output v(λ).

From Theorem 1, we see that there exists 2n symmetric solutions of ARE when
k = k0, provided that f2n(k0) �= 0. For the 2n symmetric solutions, we have the
following theorem:

Theorem 2. Let ±λ1, · · · ,±λn be the eigenvalues of H in (2). Then, (i, j)th
entry of the 2n symmetric solutions are given by

Det
(
Γ̄i,j(s1λ1, · · · , snλn)

)
Det (Γ1(s1λ1, · · · , snλn))

(sl = ±1, l = 1, · · · , n), (5)

where Γ1(y1, · · · , yn) and Γ̄i,j(y1, · · · , yn) are matrices defined by (vi(y) denotes
i-th entry of vector v(y) computed by Algorithm 2)

Γ1(y1, · · · , yn) def=

⎡⎢⎣ v1(y1) · · · v1(yn)
...

...
...

vn(y1) · · · vn(yn)

⎤⎥⎦ , (6)



Computation of the Defining Polynomial of the Algebraic Riccati Equation 171

Γ̄i,j(y1, · · · , yn) def=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(y1) · · · v1(yn)
...

...
...

vj−1(y1) · · · vj−1(yn)
vn+i(y1) · · · vn+i(yn)
vj+1(y1) · · · vj+1(yn)

...
...

...
vn(y1) · · · vn(yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

From the definitions (6) and (7), we see that polynomials Det(Γ1(y1, · · · , yn)) and
Det

(
Γ̄i,j(y1, · · · , yn)

)
are alternative polynomials. Thus, there exist symmetric

polynomials g1(y1, · · · , yn) and ḡi,j(y1, · · · , yn) such that

Det (Γ1(y1, · · · , yn)) = g1(y1, · · · , yn)
∏
s<t

(ys − yt), (8)

Det
(
Γ̄i,j(y1, · · · , yn)

)
= ḡi,j(y1, · · · , yn)

∏
s<t

(ys − yt). (9)

Therefore, the above theorem implies that (i, j)th entry pi,j of the 2n symmetric
solutions are given by

ḡi,j(s1λ1, · · · , snλn)
g1(s1λ1, · · · , snλn)

(sl = ±1, l = 1, · · · , n), (10)

and the defining polynomial of pi,j divides∏
sl=±1

{g1(s1λ1, · · · , snλn)pi,j − g̃i,j(s1λ1, · · · , snλn)} . (11)

This implies that head coefficient f2n(k) of (4) divides

φ(k) def=
∏

sl=±1

g1(s1λ1, · · · , snλn), (12)

and there exists polynomial f̄(k) ∈ Z[k] such that φ(k) = f2n(k)f̄(k). Then,
we can compute the polynomial in (4) as follows: Let kr be an integer and let
αl(kr) (l = 1, · · · , 2n) denote 2n roots of (4) when k = kr (αl(kr) can be com-
puted by numerical algorithms in [1]). Since αl(kr) are (i, j)th entries of 2n

symmetric solutions of (1), we can compute them numerically with a conven-
tional numerical method by substituting k = kr. Hence, if we have φ(k) in (12),
then we can compute

Eq. (11) with k = kr

= φ(kr) {(pi,j − α1(kr)) · · · (pi,j − α2n(kr))}
= f2n(kr)f̄(kr) {(pi,j − α1(kr)) · · · (pi,j − α2n(kr))}
= f̄(kr)

{
f2n(kr)p2

n

i,j + · · ·+ f1(kr)pi,j + f0(kr)
}

=
2n∑
l=0

f̄(kr)fl(kr)pl
i,j (∈ Z[pi,j ]). (13)



172 T. Kitamoto

Looking at the coefficients of (13), we obtain f̄(kr)fl(kr) ∈ Z for any kr, which
implies that we can compute a polynomial f̄(k)fl(k) ∈ Z[k], using polynomial
interpolation. With f̄(k)fl(k) obtained, we compute fl(k) (l = 0, · · · , 2n) by
factoring

∑2n

l=0 f̄(k)fl(k)pl
i,j as

2n∑
l=0

f̄(k)fl(k)pl
i,j = f̄(k)

{
f2n(k)p2

n

i,j + · · ·+ f1(k)pi,j + f0(k)
}
, (14)

from which we obtain polynomial (4). Thus, we obtain the following algorithm
to compute (4).

Algorithm 2 ([3]). Computation of (4)

〈1〉 For k = kr ∈ Z (r = 1, · · · ,m) do the following:
Let ±λ1, · · · ,±λn ∈ C be the eigenvalues of H |k=kr and compute

φ(kr) =
∏

sl=±1

g1(s1λ1, · · · , snλn) (∈ Z). (15)

〈2〉 Compute φ(k) (∈ Z[k]) by polynomial interpolations.
〈3〉 For k = kr ∈ Z (r = 1, · · · ,m) do the following:

Let α1(kr), · · · , α2n(kr) ∈ C the (i, j)th entry of the solution of ARE, and
compute f̄(kr)fl(kr) ∈ Z in (13).

〈4〉 Compute f̄(k)fl(k) ∈ Z[k] by polynomial interpolations. Then compute fl(k)
by factorization (14).

3 Algebraic Algorithm

3.1 Setting

Let g1(y1, · · · , yn) and g̃i,j(y1, · · · , yn) be polynomials defined by (8) and (9).
The previous section tells us that the defining polynomial can be computed
from (14), provided that (11) can be computed as a univariate polynomial in
pi,j for k = kr (∈ Z). Thus, first, we present algorithms to compute (11) with
k = kr (∈ Z) as a univariate polynomial in pi,j . Then, the polynomial in (14)
can be computed by polynomial interpolations with respect to k.

3.2 Preliminaries

Let σr (r =1, · · ·, n) denote r-th elementary symmetric polynomials of λ1, · · · , λn,
i.e.

σ1 = λ1 + · · ·+ λn, · · · , σn = λ1 · · ·λn, (16)

where ±λ1, · · · ,±λn are the eigenvalues of H in (2). The characteristic polyno-
mial of H can be expressed as

Det(xE −H) = (x2 − λ2
1) · · · (x2 − λ2

n)
= h0(k) + · · ·+ h2(n−1)(k)x2(n−1) + x2n, (17)



Computation of the Defining Polynomial of the Algebraic Riccati Equation 173

where h2r(k) (r = 0, · · · , 2(n− 1)) are polynomial in k satisfying

(−1)nh0(k) = λ2
1 · · ·λ2

n, · · · , (−1)h2(n−1)(k) = λ2
1 + · · ·+ λ2

n. (18)

Obviously, right-hand sides of (18) are symmetric polynomials in λ1, · · · , λn,
and can be written as polynomials in σ1, · · · , σn, i.e. there exist polynomials
ζr(σ1, · · · , σn) (r = 0, · · · , n− 1) such that

(−1)nh0(k) = ζ0(σ1, · · · , σn), · · · , (−1)h2(n−1)(k) = ζn−1(σ1, · · · , σn). (19)

When k is fixed to an integer k0 ∈ Z,

(−1)nh0(k0) = ζ0(σ1, · · · , σn), · · · , (−1)h2(n−1)(k0) = ζn−1(σ1, · · · , σn). (20)

is a system of polynomials in σ1, · · · , σn, whose solution is given by

σ̄1 = λ̄1 + · · ·+ λ̄n, · · · , σ̄n = λ̄1 · · · λ̄n, (21)

where±λ̄1, · · · ,±λ̄n (∈ C) are eigenvalues ofH |k=k0 . Since there are only finitely
many eigenvalues of H |k=k0 , there are only finitely many solutions (σ̄1,· · ·,σ̄n)
of (20).

Let τt() (t = 1, · · · , 2n) be a function which maps λr (r = 1, · · · , n) to
srλr (sr = ±1). For example, when n = 2, τt() (t = 1, · · · , 4) can be defined by

τ1(h(λ1, λ2)) = h(λ1, λ2), τ2(h(λ1, λ2)) = h(−λ1, λ2),
τ3(h(λ1, λ2)) = h(λ1,−λ2), τ4(h(λ1, λ2)) = h(−λ1,−λ2).

Similarly, we define τ̄ () as a function which maps λ̄r to srλ̄r (sr = ±1). If
(σ1, · · · , σn) = (σ̄1, · · · , σ̄n) is a solution of (20), then

(σ1, · · · , σn) = (τt(σ̄1), · · · , τt(σ̄n)) (t = 1, · · · , 2n)

are also solutions of (20), since they satisfy

ζ0(τ̄t(σ̄1), · · · , τ̄t(σ̄n)) = λ̄2
1 · · · λ̄2

n = (−1)nh0(k0),
...

ζn−1(τ̄t(σ̄1), · · · , τ̄t(σ̄n)) = λ̄2
1 + · · ·+ λ̄2

n = (−1)h2(n−1)(k0).

Thus, we have the following lemma:

Lemma 1. There are only finitely many solutions of σ1, · · · , σn of (20). More
concretely, there are 2n solutions of σ1, · · · , σn with multiplicities counted.

Let θ be defined by
θ = z1σ1 + · · · znσn, (22)

and consider a system of polynomial equations

θ = z1σ1 + · · · znσn, ζ0(σ1, · · · , σn) = (−1)nh0(k0),
· · · , ζn−1(σ1, · · · , σn) = −h2(n−1)(k0), (23)



174 T. Kitamoto

where z1, · · · , zn are some integers. If (σ1, · · · , σn) = (σ̄1, · · ·, σ̄n) is a solution of
(20), then

θ = z1τ̄t(σ̄1) + · · · znτ̄t(σ̄n)

are solutions of (23) with respect to θ. Hence, the defining polynomial of θ is
given by

2n∏
i=1

{θ − (z1τ̄t(σ̄1) + · · ·+ znτ̄t(σ̄n))} . (24)

Since there are only finitely many solutions of (19) with k = k0 (k0 ∈ Z), so are
the solutions of (23). Therefore, there are integers z1, · · · , zn such that Groebner
basis of

{z1σ1 + · · ·+ znσn − θ, ζ0(σ1, · · · , σn)− (−1)nh0(k0),
· · · , ζn−1(σ1, · · · , σn) + h2(n−1)(k0)

}
(25)

with lexicographic ordering σ1, · · · , σn � θ is in the form of in shape basis
{w0(θ), w1(θ, σ1), · · · , wn(θ, σn)}, where w0(θ) and wr(θ, σr) are polynomials in
the form of

w0(θ) = θ2
n

+ w0,2n−1θ
2n−1 + · · ·+ w0,0,

wr(θ, σr) = wr,2nσr + wr,2n−1θ
2n−1 + · · ·+ wr,1θ + wr,0 (r = 1, · · · , n) (26)

with wr,t, wr,2n ∈ Z (r = 1, · · · , n, t = 0, · · · , 2n − 1) (we note that w0(θ) is
monic, since we have w0(θ) = (24)). In fact, for almost all integers z1, · · · , zn
and k0, Groebner basis of (25) is in the form of shape basis.

Since g1(y1, · · · , yn) and ḡi,j(y1, · · · , yn) in (8),(9) are symmetric polynomials
in y1, · · · , yn, there exist polynomials u1(σ1, · · · , σn) and ūi,j(σ1, · · · , σn) such
that

u1(σ1, · · · , σn) = g1(λ1, · · · , λn), ūi,j(σ1, · · · , σn) = ḡi,j(λ1, · · · , λn). (27)

From the definition of τt(), we have an integer t (1 ≤ t ≤ 2n) such that

τt (u1(σ1, · · · , σn)pi,j − ūi,j(σ1, · · · , σn))
= τt (g1(λ1, · · · , λn)pi,j − g̃i,j(λ1, · · · , λn))
= g1(s1λ1, · · · , snλn)pi,j − g̃i,j(s1λ1, · · · , snλn) (28)

for any sl(= ±1) (l = 1, · · · , n). Hence, we have∏
sl=±1

{g1(s1λ1, · · · , snλn)pi,j − g̃i,j(s1λ1, · · · , snλn)} =

2n∏
t=1

τt (u1(σ1, · · · , σn)pi,j − ūi,j(σ1, · · · , σn)) . (29)

Let ξr(θ) (∈ Q[θ]) be defined by

ξr(θ)
def= −

(
wr,2n−1θ

2n−1 + · · ·+ wr,1θ + wr,0

wr,2n

)
, (30)



Computation of the Defining Polynomial of the Algebraic Riccati Equation 175

where wr,2n , wr,t are integers given by (26). From (26), we see that

σr = −wr,2n−1θ
2n−1 + · · ·+ wr,1θ + wr,0

wr,2n

= ξr(θ), (31)

which implies that

τt (u1(σ1, · · · , σn)pi,j − ūi,j(σ1, · · · , σn)) =
τt (u1(ξ1(θ), · · · , ξn(θ))pi,j − ūi,j(ξ1(θ), · · · , ξn(θ))) . (32)

The following algorithm is the key of our algorithm.

Theorem 3. Let k0, z1, · · · , zn be integers such that Groebner basis of (25) is in
the form of shape basis (26). Then, we have∏

sl=±1

{
g1(s1λ̄1, · · · , snλ̄n)pi,j − g̃i,j(s1λ̄1, · · · , snλ̄n)

}
= Resθ(w0(θ), Φ(θ, pi,j)), (33)

where ±λ̄1, · · · ,±λ̄n ∈ C are the eigenvalues of H |k=k0 , Φ(θ, pi,j) (∈ Q[θ, pi,j ])
is a polynomial defined by

Φ(θ, pi,j)
def= u1(ξ1(θ), · · · , ξn(θ))pi,j − ūi,j(ξ1(θ), · · · , ξn(θ)), (34)

and ξr(θ)(r = 1, · · · , n), u1(σ1, · · · , σn), ūi,j(σ1, · · · , σn) are polynomials defined
by (30),(27).

Proof
Let θ̄ (∈ C) be defined by

θ̄ = z1σ̄1 + · · ·+ znσ̄n, (35)

where σ̄1, · · · , σ̄n are given by (21). Since

(σ1, · · · , σn) = (τ̄t(σ̄1), · · · , τ̄t(σ̄n)) (1 ≤ t ≤ 2n)

is a solution of (25),

τ̄t(θ̄) = z1τ̄t(σ̄1) + · · · znτ̄t(σ̄n) (t = 1, · · · , 2n) (36)

are the roots of w0(θ) in (26). Hence, from the property of the resultant, we see

Resθ(w0(θ), Φ(θ, pi,j)) =
2n∏
t=1

Φ(τ̄t(θ̄), pi,j). (37)

Therefore, we obtain∏
sl=±1

{
g1(s1λ̄1, · · · , snλ̄n)pi,j − ḡi,j(s1λ̄1, · · · , snλ̄n)

}



176 T. Kitamoto

=
2n∏
t=1

τ̄t (u1(σ̄1, · · · , σ̄n)pi,j − ūi,j(σ̄1, · · · , σ̄n)pi,j) (∵ (29))

=
2n∏
t=1

τ̄t
(
u1(ξ1(θ̄), · · · , ξn(θ̄))pi,j − ūi,j(ξ1(θ̄), · · · , ξn(θ̄))

)
(∵ (32))

=
2n∏
t=1

τ̄t
(
Φ(θ̄, pi,j)

)
(∵ (34))

=
2n∏
t=1

Φ(τ̄t(θ̄), pi,j) = Resθ(w0(θ), Φ(θ, pi,j)) (∵ (37)), (38)

which proves the theorem. �

3.3 Algorithm Description

From Theorem 3, we obtain the following algorithm to compute the value of
(11).

Algorithm 3. Computation of (11) for k = k0

Input: k0(∈ Z) and ARE in (1) with parameter k.
Output: (11) where ±λ1, · · · ,±λn are eigenvalues of H |k=k0 .

〈1〉 Compute u1(σ1, · · · , σn), ūi,j(σ1, · · · , σn) in (27).
〈2〉 Let ζ0(σ1, · · · , σn), · · · , ζn−1(σ1, · · · , σn) be polynomial in σ1, · · · , σn such

that

ζ0(σ1, · · · , σn) = λ2
1 · · ·λ2

n, · · · , ζn−1(σ1, · · · , σn) = λ2
1 + · · ·+ λ2

n,

where σ1, · · · , σn are defined by (16).
〈3〉 Let z1, · · · , zn be some integers.
〈4〉 Compute Groebner basis of (25).
〈5〉 If Groebner basis computed in step 〈4〉 is not in the form of shape basis (26),

then change integers z1, · · · , zn and go back to step 〈4〉.
〈6〉 Compute Φ(θ, pi,j) in (34).
〈7〉 Compute Resθ(w0(θ), Φ(θ, pi,j)) (∈ Z[pi,j ]), and output the polynomial.

Step 〈1〉 of Algorithm 3 can be performed the algorithm in [12], where an effi-
cient algorithm to compute the determinant of generalized Vandermonde Matrix⎡⎢⎢⎢⎣

ψ1(x1) ψ2(x1) · · · ψn(x1)
ψ1(x2) ψ2(x2) · · · ψn(x2)

...
...

...
...

ψ1(xn) ψ2(xn) · · · ψn(xn)

⎤⎥⎥⎥⎦ (ψi(xj) ∈ Z[xj ])

is presented.



Computation of the Defining Polynomial of the Algebraic Riccati Equation 177

Step 〈2〉 of Algorithm 3 can be performed by computing Groebner basis of

{μ−Ωr(λ2
1, · · · , λ2

n), λ1 + · · ·+ λn − σ1, · · · , λ1 · · ·λn − σn},
with lexicographic ordering λ1, · · · , λn � σ1, · · · , σn, μ, where Ωr(λ2

1, · · · , λ2
n) is

the r-th symmetric polynomial of λ2
1,· · ·,λ2

n. Thus, this step is independent of
given input, and its computation can be performed beforehand.

Step 〈3〉-〈5〉 of Algorithm 3 requires a computation of Groebner basis of
(25) whose variety is zero dimensional, and can be performed efficiently.

Step 〈6〉 requires only substitution and can be performed efficiently, and Step
〈7〉 requires one resultant computation.

Thus, Algorithm 3 requires the following computations:

– Computation of u1(σ1, · · · , σn) and ūi,j(σ1, · · · , σn) of (27) in step 〈1〉 (the
algorithm in [12] can be used for this computation).

– Groebner basis of (25) in step 〈3〉.
– Resultant Resθ(w0(θ), Φ(θ, pi,j)) in step 〈7〉.
Based on Algorithm 3, we present the following algorithm to compute the

defining polynomial (4):

Algorithm 4. Computation of (4)

〈1〉 For k = kr ∈ Z (r = 1, · · · ,m) do the following: Compute (11) for k = kr

with Algorithm 3. Then, compute f̄(kr)fl(kr) ∈ Z in (13).
〈2〉 Compute f̄(k)fl(k) ∈ Z[k] by polynomial interpolations. Then compute fl(k)

by factorization (14).

4 Experiments

4.1 Setting

Let A ∈ Z[k]n,n, B ∈ Z1,n be the following matrices:

A = kĒ +Ωn,n, B = Ω1,n, (39)

where matrix Ωn,n ∈ Zn,n is a randomly generated n× n matrix whose entries
are integers between −5 and 5, and Ē is a matrix whose (i, j)-th entry ēi,j is
defined by

ēi,j =
{
τ, when (i, j) = (1, 1)
0, otherwise , τ = random integer (�= 0) between −5 and 5.

For example, when n = 2, an example of A,B in (39) is

A =
[

2k − 3 3
−1 −2

]
, B =

[
0
1

]
.

Numerical experiments are performed as follows: Matrices Q and R are set to
the identity matrices, and we generate 5 sets of A,B for each n = 2, 3, 4. Then
the defining polynomial (4) of symmetric solutions of ARE (1) is computed by
the following two methods:



178 T. Kitamoto

Table 1. Computation time (in seconds)

n 2 3 4
M1 1.406 20.61 445.9
M2 1.703 13.57 326.2

(M1) The method in [3] ( Algorithm 1 and 2).
(M2) The method in this paper (Algorithm 1, 3 and 4).

The experiments are performed with Maple 11 on the machine equipped with
Pentium M 2.0GHz and 1.5GByte memory.

4.2 Results

Table 1 shows the average of 5 computation times in seconds. From the table,
we see that our new algorithm (Algorithm 4) is more efficient than that of [3]
except for n = 2. Looking at the computation time closely, we find that almost all
computation time is spent on step 〈7〉 (resultant computation). Hence, efficient
resultant computation is the key to obtain further improvements of the efficiency
of the algorithm.

5 Applications

The application of the algorithm in this paper is not limited to the computation
of the defining polynomial of ARE. One of the application is [10], where it is
shown that the minimum of cost function

∫∞
0

(
xTQx+ uTRu

)
dt is a root of∏

sl=±1

{pd(s1λ1, · · · , snλn)q − pn(s1λ1, · · · , snλn)} , (40)

where pd(y1, · · · , yn) and pn(y1, · · · , yn) are certain polynomials symmetric in
y1, · · · , yn, and ±λ1, · · · ,±λn are eigenvalues of H in (2) with W = BR−1BT .
Obviously, given polynomials pd(y1, · · · , yn), pn(y1, · · · , yn) and matrix H , our
algorithm can compute (40) as a polynomial in q. Another application is given in
[11], where the optimal H∞ norm achievable using a static feedback controller
is expressed as a root of a polynomial. In the algorithm of [11], we need to
compute

∏
sl=±1 η1(s1λ1, · · · , snλn), where η1(y1, · · · , yn) is a certain polynomial

symmetric in y1, · · · , yn, and ±λ1, · · ·, ±λn are eigenvalues of H in (2) with
W = B2B

T
2 − 1

γ2B1B
T
1 , Q = CTC (B1, B2, C are certain matrices).

6 Conclusion

We present a new algorithm (Algorithm 4) to compute the defining polynomial
of ARE, which produces the same results as the one in [3]. From the numerical



Computation of the Defining Polynomial of the Algebraic Riccati Equation 179

experiments, we see that the new algorithm is more efficient than that of [3] in
most cases.

Applications of the algorithm in the paper is not limited to the computation of
the defining polynomial of ARE. It can be used to the algorithm which computes
(1) the minimum of the cost function

∫∞
0

(
xTQx+ uTRu

)
dt, (2) the optimal

H∞ norm achievable using a static feedback controller, as a root of a polynomial.
Our current targets are twofold: One is further improvement the efficiency of

the algorithm in the paper, and the other is further extensions of its applica-
tions. Close examination of the numerical experiments reveals that the efficient
resultant computation is the key for the further improvements of the efficiency
of the algorithm.

References

1. Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice-Hall. Inc.,
New Jersey (1996)

2. Nishimura, T., Kano, H.: Matrix Riccati Equations in Control Theory
(in Japanese). Asakura-syoten, Tokyo (1996)

3. Kitamoto, T., Yamaguchi, T.: On the computation of the defining polynomial of
the algebraic Riccati equation. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2007. LNCS, vol. 4770, pp. 224–235. Springer, Heidelberg (2007)

4. Abdallah, C., Dorato, P., Yang, W., Liska, R., Steinberg, S.: Application of Quanti-
fier Elimination Theory to Control System Design. In: Proc. of 4th IEEE Mediter-
anean Symposium of Control and Automation, Maleme, Crete, pp. 340–345 (1996)

5. Anai, H., Yanami, H.: syNRAC: A maple-package for solving real algebraic con-
straints. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Don-
garra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 828–837. Springer,
Heidelberg (2003)

6. Dorato, P., Yang, W., Abdallah, C.: Robust Multi-Objective Feedback Design by
Quantifier Elimination. J. Symbolic Computation 24, 153–159 (1997)

7. Hong, H., Liska, R., Steinberg, S.: Testing Stability by Quantifier Elimination. J.
Symbolic Computation 24, 161–187 (1997)

8. Kitamoto, T.: On the computation of H∞ norm of a system with a parameter. The
IEICE Transaction on Fundamentals (Japanese edition) J89-A(1), 25–39 (2006)

9. Kitamoto, T., Yamaguchi, T.: Parametric Computation of H∞ Norm of a System.
In: Proc. SICE-ICCAS 2006, Busan, Korea (2006)

10. Kitamoto, T., Yamaguchi, T.: On the parametric LQ control problem (in Japanese).
The IEICE Transaction on Fundamentals (Japanese edition) 91(3), 349–359 (2008)

11. Kitamoto, T., Yamaguchi, T.: The Optimal H∞ Norm of a Parametric System
Achievable Using Static Feedback Controller. IEICE Transaction on Fundamen-
tals E90-A(11), 2496–2509 (2007)

12. Kitamoto, T.: On the Computation of the Determinant of a Generalized Vander-
monde Matrix. Submitted to IEICE Transaction on Fundamentals



Discrete Dynamics: Gauge Invariance
and Quantization

Vladimir V. Kornyak

Laboratory of Information Technologies
Joint Institute for Nuclear Research

141980 Dubna, Russia
kornyak@jinr.ru

Abstract. Gauge invariance in discrete dynamical systems and its con-
nection with quantization are considered. For a complete description of
gauge symmetries of a system we construct explicitly a class of groups
unifying in a natural way the space and internal symmetries. We de-
scribe the main features of the gauge principle relevant to the discrete
and finite background. Assuming that continuous phenomena are ap-
proximations of more fundamental discrete processes, we discuss – with
the help of a simple illustration – relations between such processes and
their continuous approximations. We propose an approach to introduce
quantum structures in discrete systems based on finite gauge groups. In
this approach quantization can be interpreted as introduction of gauge
connection of a special kind. We illustrate our approach to quantization
by a simple model and suggest generalization of this model. One of the
main tools for our study is a program written in C.

1 Introduction

In 1918 Hermann Weyl – guided by the concept that the scale of length is
arbitrary: if there is no fundamental length in Nature it does not matter what
unit of length is used in measurements – conjectured that the scale can be taken
in the form eS(x), i.e., it may vary from point to point in time and space. This idea
failed in application to physics but gave rise to the concept of gauge invariance.

Later – in 1929, after advent of Quantum Mechanics – Weyl (and also Vladimir
Fock and Fritz London) replaced scale transformations eS(x) by rotations (phase
transformations) eiS(x) and derived electromagnetism from the gauge principle.

In 1954 C.N. Yang and R. Mills extended the gauge principle to non-Abelian
symmetries. Now the gauge principle is recognized as one of the central principles
in contemporary physics – in fact, all fundamental physical theories are gauge
theories (for historical review see [1]).

The lattice gauge theory was introduced by K.G. Wilson in 1974 as a practical
approach to the problems of strong interactions for which the standard pertur-
bative methods are inapplicable. This technique – based on approximation of
space, or space-time, by some (usually hypercubic) lattice – was considered as an
auxiliary computational method rather than a fundamental construction. The

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 180–194, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Discrete Dynamics: Gauge Invariance and Quantization 181

later mathematical generalizations established relations between lattice gauge
theories and such topics as topological quantum field theory (TQFT), invariants
of 3- and 4-manifolds, monoidal categories, Hopf algebras and quantum groups,
quantum gravity etc., [2].

In view of their origin and applications, the above mentioned lattice gauge
theories are not entirely discrete constructions. They involve continuous ingre-
dients: gauge groups are Lie groups, Lagrangians and observables are real or
complex functions. Furthermore, the gauge groups of these theories are groups
of internal symmetries and do not involve the lattice symmetries. It seems de-
sirable to include the space symmetries into construction of gauge group, since:
(a) the quantum statistics of particles is characterized by the rules describing
their behavior under permutations of the points of space; (b) there exist gauge
theories that deduce gravity by interpreting the space or space-time symmetries
as gauge groups.

In this paper we consider more radical version of discrete gauge invariance.
All our manipulations including quantization remain within the framework of
exact discrete mathematics requiring no more than the ring of algebraic integers
(and sometimes the quotient field of this ring). Our study was carried out with
the help of a program in C we are developing now.

2 Discrete Dynamics

We consider evolution in the discrete time t ∈ Z = {. . . ,−1, 0, 1, . . .}.
Let the space X be a finite set of points: X = {x1, . . . , xNX}. This – primor-

dially amorphous – set may possess some structure: some points may be “closer”
to each other than others. A mathematical abstraction of such a structure is an
abstract simplicial complex – a collection of subsets of X (simplices) such that
any subset of a simplex is also simplex. One-dimensional complexes, i.e., graphs
(or lattices), are sufficient to formulate a gauge theory. The symmetry group of
the space X is the graph automorphism group G = Aut (X).

Table 1 shows some lattices with their symmetries. We use these lattices in
our computer experiments. In the table, NX and NE are numbers of points
and vertices in space X ; the trivial, symmetric, cyclic, dihedral and alternating
groups are denoted by 1, Sym (n), Zn, D2n and Alt(n), respectively; the signs ×
and � denote direct and semidirect products, respectively. Note that the lattice
denoted as Toric square n×n in the table has three times larger symmetry group
at n = 4 than the general case formula predicts1.

Let each point x ∈ X take values in some finite set of local states Σ =
{σ1, . . . , σNΣ} possessing some symmetry group Γ ≤ Sym (Σ) . Such groups are
analogs of the “groups of internal symmetries” responsible for interactions in
physical gauge theories. The state of a system as a whole is a function σ(x) ∈ ΣX .

1 N. Vavilov pointed out to the author that this extra symmetry can be explained by

Z3 symmetry of the Dynkin diagram D4 = associated with the case n = 4.



182 V.V. Kornyak

Table 1. Examples of discrete spaces

X NX NE G |G|
Atom 1 0 1 1

Dimer 2 1 Sym(2) ∼= Z2 2

Triangle
3 3 Sym(3) ∼= D6 6

n-vertex polygon n n D2n 2n

Tetrahedron

4 6 Sym(4) 24

Octahedron

6 12 Z2 × Sym(4) 48

Hexahedron

8 12 Z2 × Sym(4) 48

Toric square n × n, n �= 4 n2 2n2 (Zn × Zn) � D8 8n2

n = 4 16 32 ((((Z2 × D8) � Z2) � Z3) � Z2) � Z2 384

Icosahedron

12 30 Z2 × Alt(5) 120

Dodecahedron

20 30 Z2 × Alt(5) 120

Fullerene C60

60 90 Z2 × Alt(5) 120

Toric graphene n × m

n = 6

m
=

4

nm 3nm
2 Dn × D2m 2nm



Discrete Dynamics: Gauge Invariance and Quantization 183

Dynamics of the system is determined by some evolution rule connecting the
current state of the system σt(x) with its prehistory σt−1(x), σt−2(x), . . . .
A typical form of evolution rule is evolution relation:

R (σt (x) ; σt−1 (x) , σt−2 (x) , . . .) ⊆ ΣX ×ΣX × · · · . (1)

Most commonly used in applications and convenient for study are determinis-
tic (or causal) dynamical systems. The current state of deterministic system is
uniquely determined by its prehistory, i.e., relations like (1) are functional and
can be written in the form

σt (x) = F (σt−1 (x) , σt−2 (x) , . . .) .

There are two important special types of non-deterministic dynamical systems:

– lattice models in statistical mechanics – special instances of Markov chains;
– discrete quantum systems obtained from classical systems by identification

of their states with basis elements of complex Hilbert spaces.

For these systems, transition from one state to any other is possible with some
probability controlled by additional structures: real (for Markov chains) or com-
plex (for quantum systems) weights assigned to state transitions. In this paper
we restrict our attention to the case of discrete quantum systems.

3 Unification of Space and Internal Symmetries

Having the groups G and Γ acting on X and Σ, respectively, we can combine
them into a single group W which acts on the states ΣX of the whole system.
The group W can be identified, as a set, with the Cartesian product ΓX ⊗ G,
where ΓX is the set of Γ -valued functions on X. That is, every element u ∈ W
can be represented in the form u = (α(x), a) , where α(x) ∈ ΓX and a ∈ G.

In physics, it is usually assumed that the space and internal symmetries are
independent, i.e., W is the direct product ΓX × G with action2 on ΣX and
multiplication rule:

σ(x) (α (x), a) = σ (x)α (x) action ,

(α (x), a) ∗ (β (x), b) = (α (x) β (x), ab) multiplication . (2)

Another standard construction is the wreath product Γ �X G having a structure
of the semidirect product ΓX �G with action and multiplication

σ(x) (α (x), a) = σ
(
xa−1

)
α
(
xa−1

)
,

(α (x), a) ∗ (β (x), b) = (α (x) β (xa), ab) . (3)

2 We write group actions on the right. This, more intuitive, convention is adopted
in both GAP and MAGMA – the most widespread computer algebra systems with
advanced facilities for computational group theory.



184 V.V. Kornyak

These examples are generalized by the following Statement:
There are equivalence classes of split group extensions 1 → ΓX → W → G→ 1
determined by antihomomorphisms μ : G→ G. The equivalence is described by
arbitrary function κ : G → G. The explicit formulas for main group operations
— action on ΣX , multiplication and inversion — are

σ(x) (α (x), a) = σ (xμ(a))α (xκ(a)) , (4)

(α (x), a) ∗ (β (x), b) =
(
α
(
xκ(ab)−1μ(b)κ(a)

)
β
(
xκ(ab)−1κ(b)

)
, ab
)
, (5)

(α(x), a)−1 =
(
α
(
xκ
(
a−1
)−1

μ(a)−1κ(a)
)−1

, a−1

)
. (6)

This statement follows from the general description of the structure of split
extensions of a group G1 by a group G0: all such extensions are determined by
the homomorphisms from G1 to Aut (G0) (see, e.g., [3], p. 18). Specializing this
description to the case when G0 is the set of Γ -valued function on X and G1

acts on arguments of these functions we obtain our statement. The equivalence
of extensions with the same antihomomorfism μ but with different functions κ
is expressed by the commutative diagram

1 ΓX W G 1

1 ΓX W ′ G 1

�� ��

��
��
��
�

��
� �
��
�

��

��
��
��
��
��

K

��

��
��
��
��

��
��
��
��

�� �� �� ��

, (7)

where the mapping K takes the form K : (α(x), a) �→ (α (xκ(a)), a) .
Note that the standard direct (2) and wreath (3) products are obtained from

this general construction by choosing (μ(a) = 1, κ(a) = 1) and
(
μ(a) = a−1,

κ(a) = a−1
)
, respectively.

In our C program the group W is specified by two groups G and Γ and two
functions μ(a) and κ(a) implemented as arrays. It is convenient in computations
to use the following specialization: μ(a) = a−m and κ(a) = ak. For such a choice,
formulas (4-6) take the form

σ(x) (α (x), a) = σ
(
xa−m

)
α
(
xak
)
, (8)

(α (x), a) ∗ (β (x), b) =
(
α
(
x(ab)−k−mak+m

)
β
(
x(ab)−kbk

)
, ab
)
, (9)

(α(x), a)−1 =
(
α
(
xa2k+m

)−1
, a−1

)
. (10)

Here k is arbitrary integer, m = 0 (direct product) or m = 1 (wreath product).

4 Discrete Gauge Principle

In fact, the gauge principle expresses the very general idea that any observable
data can be presented in different “frames” at different points of space and



Discrete Dynamics: Gauge Invariance and Quantization 185

time, and there should be some way to compare these data. At the set-theoretic
level, i.e., in the form suitable for both discrete and continuous cases, the main
concepts of the gauge principle can be reduced to the following elements

– a set X , space or space-time;
– a set Σ, local states;
– the set ΣX of Σ-valued functions onX , the set of states of dynamical system;
– a group W ≤ Sym

(
ΣX
)

acting on ΣX , symmetries of the system;
– identification of data describing dynamical system with states from ΣX

makes sense only modulo symmetries from W ;
– having no a priori connection between data from ΣX at different points x

and y in time and space we impose this connection (or parallel transport)
explicitly as W -valued functions on edges of abstract graph:

P (x, y) ∈W, ς(y) = σ(x)P (x, y) ;

connection P (x, y) has obvious property P (y, x) = P (x, y)−1;
– connection P (x, y) is called trivial if it can be expressed in terms of a function

on vertices of the graph: P (x, y) = p(x)−1p(y), p(x), p(y) ∈W ;
– invariance with respect to gauge symmetries depending on time or space
u(x), u(y) ∈ W leads to transformation rule for connection

P (x, y) → u(x)−1P (x, y)u(y); (11)

– the curvature of connection P (x, y) is defined as the conjugacy class of the
holonomy along a cycle of a graph:

P (x1, x2, . . . , xk) = P (x1, x2)P (x2, x3) · · ·P (xk, x1)

(the conjugacy means P ′(x1, . . . , xk) ∼ u−1P (x1, . . . , xk)u for any u ∈W );
the curvature of trivial connection is obviously trivial: P̃ (x1, . . . , xk) ≡ 1;

– the gauge principle does not tell us anything about the evolution of the con-
nection itself, so gauge invariant relation describing dynamics of connection
(gauge field) should be added.

Let us give two illustrations of how these concepts work in continuous case.

Electrodynamics. Abelian prototype of all gauge theories. Here the
set X is 4-dimensional Minkowski space with points x = (xμ) and the set of
states is Hilbert space of complex scalar (Schrödinger equation) or spinor (Dirac
equation) fields ψ(x). The symmetry group of the Lagrangians and physical
observables is W = U(1). The elements of U(1) can be represented as e−iα.

Let us make these elements dependent on space-time and consider the parallel
transport for two closely situated space-time points:

P (x, x+Δx) = e−iρ(x,x+Δx) .



186 V.V. Kornyak

Specializing transformation rule (11) to this particular case

P ′(x, x +Δx) = eiα(x)P (x, x+Δx)e−iα(x+Δx) ,

substituting approximations

P (x, x+Δx) = e−iρ(x,x+Δx) ≈ 1− iA(x)Δx ,

P ′(x, x+Δx) = e−iρ(x,x+Δx) ≈ 1− iA′(x)Δx ,

e−iα(x+Δx) ≈ e−iα(x) (1− i∇α(x)Δx) ,

and taking into account commutativity of W = U(1) we obtain

A′(x) = A(x) +∇α(x) or, in components, A′
μ(x) = Aμ(x) +

∂α(x)
∂xμ . (12)

The 1-form A taking values in the Lie algebra of U(1) and its differential F =
(Fμν) = dA are identified with the electromagnetic vector potential and field
strength, respectively. To provide the gauge invariance of the equations for field
ψ(x) we should replace partial by covariant derivatives

∂μ → Dμ = ∂μ − iAμ(x)

in those equations.
Finally, evolution equations for the gauge field A(x) should be added. In the

case of electromagnetics these are Maxwell’s equations:

dF = 0 first pair (13)
d # F = 0 second pair . (14)

Here # is the Hodge conjugation (Hodge star operator). Note that equation (14)
corresponds to vacuum Maxwell’s equations. In the presence of the current J
the second pair takes the form # d # F = J. Note also that the first pair is
essentially a priori statement, it reflects simply the fact that F , by definition, is
the differential of an exterior form.

Non-Abelian gauge theories in continuous space-time. Only minor mod-
ifications are needed for the case of non-Abelian Lie group W. Again expansion
of the W -valued parallel transport for two close space-time points x and x+Δx
with taking into account that P (x, x) = 1 leads to introducing of a Lie algebra
valued 1-form A = (Aμ) :

P (x, x+Δx) ≈ 1 +Aμ(x)Δxμ .

Infinitesimal manipulations with formula (11)

u(x)−1P (x, x+Δx)u(x+Δx) −→ u(x)−1 (1 +Aμ(x)Δxμ)
(
u(x) +

∂u(x)
∂xμ Δxμ

)



Discrete Dynamics: Gauge Invariance and Quantization 187

lead to the following transformation rule

A′
μ(x) = u(x)−1Aμ(x)u(x) + u(x)−1 ∂u(x)

∂xμ . (15)

The curvature 2-form
F = dA+ [A ∧A]

is interpreted as physical strength field. In particular, the trivial connection

Ãμ(x) = u0(x)−1 ∂u0(x)
∂xμ

is flat, i.e., its curvature F = 0.
There are different approaches to construct dynamical equations for gauge

fields [2]. The most important example is Yang-Mills theory based on the La-
grangian

LY M = Tr [F ∧ #F ] .

The Yang-Mills equations of motion read

dF + [A ∧ F ] = 0 , (16)
d # F + [A ∧ #F ] = 0 . (17)

Here again equation (16) is a priori statement called Bianci identity. Note that
Maxwell’s equations are a special case of Yang-Mills equations.

It is instructive to see what the Yang-Mills Lagrangian looks like in the discrete
approximation. Replacing the Minkowski space X by a hypercubic lattice one
can see that the discrete version of LY M is proportional to

∑
f σ (γf ), where the

summation is over all faces of a hypercubic constituent of the lattice;

σ = 2 dimU − (χU + χU†) ;

χU and χU† are characters of the fundamental representation U of the gauge
group and its dual representation, respectively; γf is the gauge group holonomy
around the face f .

The Yang-Mills theory uses Hodge operation converting k-forms to (n − k)-
forms in n-dimensional space with metric gμν . In topological applications so-
called BF theory plays an important role since it does not involve a metric.
In this theory, an additional dynamical field B is introduced. The Lie algebra
valued (n − 2)-form B and the 2-form F are combined into the Lagrangian
LBF = Tr [B ∧ F ] .

5 Quantization Based on Finite Group

Quantization is a procedure for recovering a more fundamental quantum theory
from its classical approximation. Both Lagrangian and Hamiltonian formulations
of classical mechanics are based on the principle of least action which looks a



188 V.V. Kornyak

bit mysterious: a particle moving from one point to another “knows” in advance
where it is going to arrive. Feynman’s path integral quantization [4] eliminates
this apparent teleology in a quite natural way: classical trajectories correspond
to the dominating (in the path integral) part of all possible trajectories.

Of course, recovering a theory from its approximation can not be performed
uniquely. Moreover, discrepancies between a theory and its approximation may
be essential. To illustrate, let us compare a simple discrete process with its
approximation by continuous physical law.

5.1 Heat Equation from Bernoulli Trials

Let us consider a sequence of Bernoulli trials. The probability of a separate
sequence is described by the binomial distribution

P (n−, n+) =
(n− + n+)!
n−!n+!

p
n−
− p

n+
+ . (18)

Here {−, +} are possible outcomes of a single trial; p−, p+ are probabilities
(p− + p+ = 1) and n−, n+ are numbers of the outcomes.

Applying Stirling’s approximation to (18) and introducing new variables
x = n+ − n−, t = n− + n+, v = p− − p+ — let us call them “space”, “time”
and “velocity”, respectively — we obtain

P (x, t) ≈ P̃ (x, t) =
1√

1− v2
√

2
πt

exp

{
− 1

2t

(
x− vt√
1− v2

)2
}
. (19)

This is the fundamental solution of the heat (also known as diffusion or Fokker–
Planck) equation:

∂P̃ (x, t)
∂t

+ v
∂P̃ (x, t)
∂x

=

(
1− v2)

2
∂2P̃ (x, t)
∂x2

. (20)

Note that expression (19) contains “relativistic” fragment x− vt√
1− v2 due to the

velocity limits −1 ≤ v ≤ 1 in our model. Note also that at |v| = 1 equation (20)
reduces to the wave equation

∂P̃ (x, t)
∂t

± ∂P̃ (x, t)
∂x

= 0 . (21)

Now let us set a problem as is typical in mechanics: find extremal trajectories
connecting two fixed points (0, 0) and (X,T ). We adopt here the search of tra-
jectories with maximum probability as a version of the “least action principle”.
The probability of trajectory passing through some intermediate point (x, t) is
the following conditional probability

P(0,0)→(x,t)→(X,T ) =
P (x, t)P (X − x, T − t)

P (X,T )

=
t!(T − t)! (T−X

2

)
!
(

T+X
2

)
!(

t−x
2

)
!
(

t+x
2

)
!
(

T−t
2 − X−x

2

)
!
(

T−t
2 + X−x

2

)
!T !

. (22)



Discrete Dynamics: Gauge Invariance and Quantization 189

The conditional probability computed for approximation (19) takes the form

P̃(0,0)→(x,t)→(X,T ) =
T√

π
2 (1− v2)tT (T − t) exp

{
− (Xt− xT )2

2(1− v2)tT (T − t)

}
. (23)

One can see essential differences between (22) and (23):

– exact probabilities (22) do not depend on the velocity v (or on the probabil-
ities p−, p+ of a single trial), whereas (23) contains artificial dependence,

– it is easy to check that expression (22) allows many trajectories with the
same maximum probability, whereas extremals of (23) are deterministic tra-
jectories, namely, straight lines x = X

T t.

These artifacts show that an important guiding principle of quantization —
correspondence with classical limit — may not be quite reliable.

5.2 Gauge Connection and Quantization

The Aharonov–Bohm effect (Fig. 1) is one of the most striking illustrations of
interplay between quantum behavior and gauge connection. Charged particles
moving through the region containing perfectly shielded thin solenoid produce
different interference patterns on a screen depending on whether the solenoid is
turned on or off. There is no electromagnetic force acting on the particles, but
working solenoid produces U(1)-connection adding or subtracting phases of the
particles and, thus, changing the interference pattern.

Electrons Solenoid

Double-slit barrier Screen

Interference
pattern

Fig. 1. Aharonov–Bohm effect. Magnetic flux is confined within the perfectly shielded
solenoid; interference pattern is shifted in spite of absence of electromagnetic forces
acting on the particles.

In the discrete time Feynman’s path amplitude decomposes into the product
of elements of the group U(1) (or, more precisely, elements of the fundamental
representation of U(1)):



190 V.V. Kornyak

Φ = exp (iS) = exp
(
i

∫
Ldt

)
−→ eiL0,1 . . . eiLt−1,t . . . eiLT−1,T . (24)

By the notation Lt−1,t we emphasize that the Lagrangian is in fact a function
defined on pairs of points (graph edges) — this is compatible with physics where
the typical Lagrangians are determined by the first order derivatives. Thus, the
expression P (t − 1, t) = eiLt−1,t ∈ U(1) can be interpreted as U(1)-parallel
transport.

We can introduce quantum mechanical description of a discrete system in-
terpreting states σ ∈ Σ as basis elements of a Hilbert space Ψ . This allows to
describe statistics of observations of σ,s in terms of the inner product in Ψ .

Now let us replace expression (24) for Feynman’s path amplitude by the fol-
lowing parallel transport along the path

Φ = ρ (α0,1) . . . ρ (αt−1,t) . . . ρ (αT−1,T ) .

Here αt−1,t are elements of a finite group Γ – we shall call Γ quantizing group –
and ρ is an unitary representation of Γ on the space Ψ .

Let us recall main properties of linear representations of finite groups [5].

– First of all, any linear representation of finite group is equivalent to unitary.
– Any unitary representation ρ is determined uniquely (up to isomorphism)

by its character defined as χρ(α) = Trρ(α), α ∈ Γ.
– All values of χρ and eigenvalues of ρ are elements of the ring A of algebraic

integers, moreover the eigenvalues are roots of unity. Recall that the ring A

consists of the roots of monic polynomials with integer coefficients [3].
– If all different irreducible representations of Γ are ρ1, · · · , ρi, · · · , ρh and
di = dim ρi, M = |Γ | then

h∑
i−1

d2i =M and any di divides M : di |M.

– Any function ϕ(α) depending only on conjugacy classes of Γ , i.e.,
ϕ
(
β−1αβ

)
= ϕ (α), is linear combination of characters χρ1 , · · · , χρh

.
Such functions are called central or class functions.

If the group Γ consists of M elements γ0, . . . , γM−1 and nk is the number of
paths with the “phase” Φ = ρ (γk) at the point of observation (x, t), then the

amplitude at this point is A =
M−1∑
k=0

nkρ (γk)ψ, where ψ ∈ Ψ . The square of the

amplitude (i.e., probability after appropriate normalization) can be written as

〈Aψ|Aψ〉 =
M−1∑
k=0

n2
k |ψ|2 +

∑
γi,γk∈Γ

i<k

nink

〈
ψ
∣∣ρ (γ−1

i γk

)
+ ρ†

(
γ−1

i γk

)∣∣ψ〉 , (25)



Discrete Dynamics: Gauge Invariance and Quantization 191

or, after collecting like terms, as

〈Aψ|Aψ〉 ==
M−1∑
k=0

Nk (n0, · · · , nM−1)
〈
ψ
∣∣ρ (γk) + ρ† (γk)

∣∣ψ〉 , (26)

where Nk (n0, · · · , nM−1) are quadratic polynomials with integer coefficients and
arguments. Thus, algebraic integers are sufficient for all our computations except
for normalization of probabilities requiring the quotient field of the ring A.

5.3 Simple Model Inspired by Free Particle

In quantum mechanics – as is clear from the never vanishing expression exp
(

i
�
S
)

for the path amplitude – transitions from one to any other state are possible in
principle. However, we shall consider computationally more tractable models
with restricted sets of possible transitions.

Let us consider quantization of a free particle moving in one dimension. Such
a particle is described by the Lagrangian L = mẋ2

2 . Keeping only transitions to
the closest points in the discretized space we come to the following rule for the
one-time-step transition amplitudes

x

x+ 1

x

x− 1

w

1

w

e
i
�

m{(x+1)−x}2

2 = ei
m
2�

e
i
�

m(x−x)2

2 = 1

e
i
�

m{(x−1)−x}2

2 = ei
m
2� .

That is, we have evolution rule as an U(1)-valued function R defined on pairs of
points (graph edges). Symbolically:

R (x→ x) = 1 ∈ U(1) ,

R (x→ x− 1) = R (x→ x+ 1) = w = ei
m
2� ∈ U(1) . (27)

Now let us assume that w in (27) is an element of some representation of a
finite group: w = ρ (α) , α ∈ Γ = {γ0 = 1, . . . , γM−1}. Rearranging multinomial
coefficients — trinomial in this concrete case — it is not difficult to write the
sum amplitude over all paths of the form (0, 0) −→ (x, t)

At
x (w) =

t∑
τ=0

τ !(
τ−x

2

)
!
(

τ+x
2

)
!
× t!
τ ! (t− τ)! w

τ . (28)

Note that x must lie in the limits determined by t: x ∈ [−t, t] .
One of the most expressive peculiarities of quantum-mechanical behavior is

the destructive interference — cancellation of non-zero amplitudes attached to
different paths converging to the same point. By construction, the sum of am-
plitudes in our model is a function A(w) depending on distribution of sources



192 V.V. Kornyak

of the particles, their initial phases, gauge fields acting along the paths, re-
strictions – like, e.g., “slits” – imposed on possible paths, etc. In the case of
one-dimensional representation, the function A(w) is a polynomial with alge-
braic integer coefficients, and w is a root of unity. Thus, the condition for
destructive interference can be expressed by the system of polynomial equa-
tions: A(w) = 0 and wM = 1. For concreteness let us consider the cyclic group
Γ = ZM = {γ0, · · · , γk, · · · , γM−1}. Any of its M irreducible representations
takes the form ρ (γk) = wk, where w is one of the Mth roots of unity. For
simplicity let w be the primitive root : w = e2πi/M . Fig. 2 shows all possible
transitions from the point x in three time steps with their amplitudes.

x x
x

x± 1

x

x± 2

x

x± 3

Number of paths

Amplitude

7

A3
0 = 1 + 6w2

6

A3
±1 = 3w + 3w3

3

A3
±2 = 3w2

1

A3
±3 = w3

Fig. 2. Amplitudes for all possible paths in three time steps

We see that here only the conditions A3
±1 = 3w + 3w3 = 0 and wM = 1

with M = 4 can provide the destructive interference. Thus, for the model under
consideration the natural quantizing group is Z4. It is difficult to analyse more
complicated combinations of paths in general, but computational experiments
with the help of our C program support the assumption that the group Z4 is the
only cyclic group providing quantum-mechanical behavior in this model.

Fig. 3 shows interference patterns — normalized squared amplitudes (“prob-
abilities”) — from two sources placed in the positions x = −4 and x = 4 for 20
time steps. The upper and lower graph show interference pattern when sources
are in the same (Δφ = 0) and in the opposite (Δφ = π) phases, respectively.

5.4 Generalization: Local Quantum Model on Regular Graph

The above model — with quantum transitions allowed only within the neigh-
borhood of a vertex of a 1-dimensional lattice — can easily be generalized to
arbitrary regular graph. Our definition of local quantum model on k-valent graph
includes the following:

1. Space X = {x1, · · · , xN} is a k−valent graph.
2. Set of local transitions Ei = {e0,i, e1,i, · · · , ek,i} is the set of k adjacent to the

vertex xi edges em,i = (xi → xm,i) completed by the edge e0,i = (xi → xi).
3. We assume that the space symmetry group G = Aut (X) acts transitively

on the set {E1, · · · , EN}.
4. Gi = StabG (xi) ≤ G is the stabilizer of xi (g ∈ Gi means xig = xi).
5. Ωi = {ω0,i, ω1,i, · · · , ωh,i} is the set of orbits of Gi on Ei.



Discrete Dynamics: Gauge Invariance and Quantization 193

Δφ = 0

−30 −20 −10 0 10 20 30
0

0.1

0.2

Δφ = π

−30 −20 −10 0 10 20 30
0

0.1

0.2

Fig. 3. Group Z4. Interference from two sources. Number of time steps T = 20. Source
positions are -4 and 4. Phase differences Δφ = φ4 − φ−4 between sources are 0 and π.

6. Quantizing group Γ is a finite group: Γ = {γ0, · · · , γM−1}.
7. Evolution rule R is a function on Ei with values in some representation ρ (Γ ).

The rule R prescribes ρ (Γ )-weights to the one-time-step transitions from xi

to elements of the neighborhood of xi. From the symmetry considerations,
R must be a function on orbits from Ωi, i.e., R (em,ig) = R (em,i) for g ∈ Gi.

To illustrate these constructions, let us consider the local quantum model on the
graph of buckyball. The incarnations of this 3-valent graph include, in particular:

– the Caley graph of the icosahedral group Alt(5) (in mathematics);
– the molecule C60 (in carbon chemistry).

Here the space X = {x1, · · · , x60} has the shape and its symmetry

group is G = Aut (X) = Z2 ×Alt(5). The set of local transitions takes the form
Ei = {e0,i, e1,i, e2,i, e3,i}, where e0,i = (xi → xi), e1,i = (xi → x1,i),

e2,i = (xi → x2,i), e3,i = (xi → x3,i) in accordance with
xi

x1,i x2,i

x3,i

.

The stabilizer of xi is Gi = StabG (xi) = Z2. The set of orbits of Gi on Ei con-
tains 3 orbits: Ωi = {ω0,i = {e0,i} , ω1,i = {e1,i, e2,i} , ω2,i = {e3,i}}, i.e., the sta-
bilizer does not move the edges (xi → xi) and (xi → x3,i) and swaps (xi → x1,i)
and (xi → x2,i) . This asymmetry results from different roles the edges play in
the structure of the buckyball: (xi → x1,i) and (xi → x2,i) are edges of a pen-
tagon adjacent to xi , whereas (xi → x3,i) separates two hexagons; in the carbon
molecule C60 the edge (xi → x3,i) corresponds to the double bond, whereas oth-
ers are the single bonds.



194 V.V. Kornyak

The evolution rule takes the form:

R (xi → xi) = ρ (α0) ,
R (xi → x1,i) = R (xi → x2,i) = ρ (α1) ,
R (xi → x3,i) = ρ (α2) ,

where α0, α1, α2 ∈ Γ . If we take a one-dimensional representation and move α0

– using gauge invariance – to the identity element of Γ , we see that the rule R
depends on v = ρ (α1) and w = ρ (α2). Thus, the amplitudes in the quantum
model on the buckyball take the form A(v, w) depending on two roots of unity.

6 Conclusion

Extraordinary success of gauge theories in fundamental physics suggests that
the gauge principle may be useful in theory and applications of discrete dynam-
ical systems also. Furthermore, discrete and finite background allowing compre-
hensive study – especially with the help of computer algebra and methods of
computational group theory – may lead to a deeper understanding of the gauge
principle itself and its connection with the quantum behavior. To study more
complicated models we are developing the C program.

Acknowledgments

The author thanks Laurent Bartholdi, Vladimir Gerdt, and Nikolai Vavilov for
useful remarks and comments. This work was supported in part by the grants
07-01-00660 from the Russian Foundation for Basic Research and 1027.2008.2
from the Ministry of Education and Science of the Russian Federation.

References

1. O’Raifeartaigh, L., Straumann, N.: Gauge theory: Historical Origins and Some Mod-
ern Developments. Reviews of Modern Physics 72(1), 1–23 (2000)

2. Oeckl, R.: Discrete Gauge Theory (From Lattices to TQPT). Imperial College Press,
London (2005)

3. Kirillov, A.A.: Elements of the Theory of Representations. Springer, Berlin (1976)
4. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill,

New York (1965)
5. Serre, J.-P.: Linear Representations of Finite Groups. Springer, Heidelberg (1977)



Effective Quantifier Elimination for
Presburger Arithmetic with Infinity

Aless Lasaruk1 and Thomas Sturm2

1 FORWISS, Universität Passau, 94030 Passau, Germany
lasaruk@uni-passau.de

2 Departamento de Matemáticas, Estad́ıstica y Computación, Facultad de Ciencias,
Universidad de Cantabria, 39071 Santander, Spain

sturmt@unican.es

Abstract. We consider Presburger arithmetic extended by infinity. For
this we give an effective quantifier elimination and decision procedure
which implies also the completeness of our extension. The asymptotic
worst-case complexity of our procedure is bounded by a function that
is triply exponential in the input word length, which is known to be
a tight bound for regular Presburger arithmetic. Possible application
areas include quantifier elimination and decision procedures for Boolean
algebras with cardinality constraints, which have recently moved into the
focus of computer science research for software verification, and deductive
database queries.

1 Introduction

The systematic investigation of the additive theory of integers with congruences
started in 1929 with the pioneering work of Presburger [1]. The title of Pres-
burger’s original work is an understatement. It only mentions the completeness
of Presburger arithmetic. For his proof Presburger gave a decision procedure
proving every sentence equivalent to either “true” or “false.” That is, the result
is much more algorithmic than can be expected from complete theories in gen-
eral. Even more important, from a modern point of view Presburger even gave a
quantifier elimination procedure for a slightly extended language containing con-
gruences. This on the one hand has considerable model theoretic consequences
besides completeness, viz. substructure completeness, and on the other hand it
considerably extends the power of a pure decision procedure with respect to
possible practical applications.

For a long time already, Presburger arithmetic has been in the focus of math-
ematical as well as computer science research [2,3,4,5,6,7,8]. Quite recently the
authors of the present note have extended quantifier elimination for Presburger
arithmetic to parametric multiplicative constants [9] and furthermore to certain
nonlinear input formulas [10].

Applications quite naturally arise in many areas of science and engineering.
This might explain also the remarkable historical fact that already in 1954 Davis
had implemented Presburger’s original algorithm on a digital computer [11]. In

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 195–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



196 A. Lasaruk and T. Sturm

computer science many array subscript calculations fall within the region of prob-
lems decidable by Presburger arithmetic. This observation plays a prominent
role in several proof of correctness systems for computer programs, beginning
with the Stanford Pascal Verifier [12] and recently including Microsoft’s Spec#.
Further recent applications include elimination procedures for Boolean algebras
with cardinality constraints in the context of deductive database queries [13].

Our present work extends classical Presburger arithmetic PA to PAI by adding
a single infinite number with trivial arithmetic. This is inspired by the idea to in-
clude statements on the infinity of certain sets in deductive database queries [13].
Independently, Boolean algebras in combination with Presburger arithmetic have
recently been considered for software verification. Within that framework there
has even been considered our idea of including infinity. This was, however, real-
ized in the Boolean algebra sort in contrast to the Presburger sort [14,15,16].

Some additional mathematical applications of our work might arise from the
fact that in elimination procedures for valued fields, field quantifiers are often
eliminated in favour of quantifiers over the value group [17]. Such procedures can
possibly be simplified by not treating 0, which has value∞, specially. Notice that
the value group of the important class of p-adic valuations is in fact the ordered
additive group of the integers such that the set of possible values ranges over
Z ∪ {∞}.

The outline of our paper is as follows: In Section 2 we make precise our exten-
sion of Presburger arithmetic by infinity and its relation to Presburger’s original
work. In Section 3 we introduce essential equivalence transformations on and
normal forms of formulas in our extended framework, which are fundamental
on the one hand for our elimination procedure and on the other hand for any
serious attempt of an implementation. Section 4 states our main result, which
is an effective quantifier elimination procedure for PAI and the model theoretic
consequences of this. Section 5 gives asymptotic upper bounds on the worst-case
complexity of our procedure. These bounds are known to be tight for PA. Sec-
tion 6 give some examples for quantifier elimination in PAI in order to illustrate
the procedure, to give an intuition of the semantics, and to point at possible
applications. In Section 7 we finally summarize our results and indicate future
research directions.

2 Presburger Arithmetic with Infinity

From a precise model-theoretic point of view, Presburger arithmetic is the model
class of the axioms originally given by Presburger [1]. Presburger had considered
congruences a ≡α b as abbreviations for first-order sentences ∃x(α � x + a =
b), which he—besides atomic formulas—referred to as “ground formulas.” This
allowed him on the one hand to use the finite and apparently more natural
language (0, 1,+,≤) of additive ordered groups and on the other hand not to
emphasize too much the role of congruences in his procedures as they were
considered only intermediate objects for his decision procedure. It is noteworthy
that Presburger’s presentation does not explicitly treat the ordering “≤” at all.



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 197

There is only a remark in the appendix that the procedure can be generalized
accordingly. This generalization has been made explicit e.g. in a textbook by
Monk [18].

From a modern quantifier elimination point of view it is exactly the formal
manifestation of congruences in an extended language

L = (0, 1,+,−,≤,≡)

that straightforwardly exhibits that Presburger’s decision procedure is actually
even a quantifier elimination procedure over L. Notice that for convenience we
have also added a function “−” for the additive inverse. We are now going to list
Presburger’s set of axioms with some slight modifications: We drop six axioms
referring to the semantics of logical connectives and equality as their semantics
is usually fixed on the meta-mathematical level in modern algebraic model the-
ory. We use congruences in contrast to their existentially quantified equivalents
described above. We add one axiom for our additional function symbol “−.”
Concerning notation, we use the symbol “�” to emphasize that any “multiplica-
tion” α�a occurring here is in fact an abbreviated notation for a corresponding
addition a+ · · ·+ a (α times). Furthermore, we use modern logical symbols and
infix notation, and we save parentheses by following common conventions that
the precedence of our logical operators decreases in the order “≤,” “=,” “¬,”
“∧,” “∨,” “−→,” “←→:”

(π1) a+ c = b + c −→ a = b
(π2) a+ b = b+ a
(π3) a+ (b+ c) = (a+ b) + c
(π4) a+ 0 = a
(π5) ∃b(a+ b = c)
(π6) α� a = α� b −→ a = b for α = 2, 3, . . .
(π7) a ≡α 0 ∨ a ≡α 1 ∨ · · · ∨ a ≡α (α− 1)� 1 for α = 2, 3, . . .
(π8) ¬α� 1 = 0 for α = 2, 3, . . .
(π9) a+ (−a) = 0.

Note that in (π6)–(π8) we have countably infinite subsets of axioms and, con-
sequently, the entire set of axioms is countably infinite. For reasons discussed
above this system does not include any axioms for the ordering. Since for our
work here it is not necessary to refer to explicit axioms at all, we pragmatically
switch to the countably infinite set Π = {ϕ | ϕ is L-formula and Z |= ϕ }, which
obviously comprises π1, . . . , π9. We define PA to denote the model class of Π :

PA = Mod(Π) = {A | A L-structure and A |= Π }.

We obviously have Z ∈ PA, and thus Π is consistent. The main result stated
by Presburger was the fact that Π is even complete. That is, every L-sentence
is either valid or invalid in all L-structures in PA simultaneously. In the former
case, one writes PA |= ϕ or—since PA is completely determined by Π—shortly
Π |= ϕ. Since Π is first-order and recursively enumerable, it follows from this



198 A. Lasaruk and T. Sturm

completeness that PA is decidable. That is, there is an algorithm with input a
first-order L-formula ϕ and output either � or ⊥, which always terminates and
which returns � if and only if PA |= ϕ.

We would like to remind the reader at this point that there is no simple cor-
respondence between completeness and decidability in the sense defined above.
For instance, the theory of algebraically closed fields is decidable but not com-
plete while the theory axiomatized by all first-order (0, s)-sentences valid in N

is complete but not decidable.
From a modern point of view, Presburger has even shown that PA is sub-

structure complete. That is, for any two L-structures A and B in PA that have a
common substructure one may add to L constants for all elements of this com-
mon substructure yielding L′. When then viewing A and B as L′-structures in
a natural way even all L′-formulas will be either valid or invalid in both A and
B simultaneously. Substructure completeness is equivalent to the existence of a
quantifier elimination procedure, which Presburger has implicitly given for PA.

Since variable-free atomic formulas are decidable in PA, any quantifier elim-
ination procedure yields a decision procedure via successive elimination of all
variables. In fact, it does even more: Since every formula algorithmically turns
out to be equivalent to either “true” or “false,” a return value ⊥ for input ϕ
of such a decision procedure may be interpreted not only as the existence of
A0 ∈ PA with A0 �|= ϕ but it even follows that for all A ∈ PA we have A �|= ϕ.
In other words, this exhibits also the completeness of PA.

To get a more precise picture of PA, recall the famous upward Löwenheim–
Skolem Theorem [19,20,21]: From the existence of the infinite model Z ∈ PA, it
follows that PA contains models of arbitrary infinite cardinality. In particular,
PA is a proper class in contrast to a set.

We are now going to modify and extend Presburger’s axioms Π to describe
the integers with infinity in an extended language

L∞ = (0, 1,∞,+,−,≤,≡).

We obtain (ι1) by restricting the axioms in Π to finite numbers, and we add
(ι2)–(ι8) to axiomatize ∞. Let V (π) denote the finite set of variables occurring
freely in an L-formula π:

(ι1)
∧

v∈V (π) ¬ v = ∞ −→ π for π ∈ Π
(ι2) a+∞ = ∞
(ι3) ∞+ a = ∞
(ι4) −∞ = ∞
(ι5) a ≤ ∞
(ι6) ¬ a = ∞ −→ ¬∞ ≤ a
(ι7) a ≡α ∞ for α = 2, 3, . . .
(ι8) ∞ ≡α a for α = 2, 3, . . .

We refer to this new countably infinite set of axioms as I and to its model class
as PAI.



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 199

It is not hard to see that Z∪{∞} with trivial arithmetic on infinity as defined
in (ι2)–(ι4) and relations as defined in (ι5)–(ι8) is in PAI and thus I is consistent:
Since (ι1) collects assertions about Z ∪ {∞} explicitly excluding ∞ the validity
of these assertions for Z ∪ {∞} follows from the validity of Π for Z. Axioms
(ι2)–(ι4) straightforwardly complement the definitions of binary “+” and unary
“−” at points involving infinity. Axioms (ι5) and (ι6) define the binary relation
“≤” at points involving infinity. They cannot contradict each other since the
former refers to infinite right hand sides while the latter excludes this. Axioms
(ι7) and (ι8) straightforwardly give a trivial definition of the congruence relation
at points involving infinity. Observe that there are no axioms combining “+,”
“−” involving infinity on the one hand with “≤” or “≡” involving infinity on
the other hand.

In analogy to PA our new model class PAI is a proper class containing models
of arbitrarily large cardinality. In the next section we are going to devise a quan-
tifier elimination procedure for PAI. This exhibits the substructure completeness
of PAI. Since our axioms (ι2)–(ι8) obviously admit to decide variable-free atomic
formulas involving infinity, it will follow that PAI is furthermore complete and
decidable and our quantifier elimination procedure yields a corresponding deci-
sion procedure.

3 Normal Forms

As a preparation for our quantifier elimination procedure for PAI we are going
to discuss in this section normal forms for L∞-formulas, the contained atomic
formulas, and the terms in these atomic formulas.

3.1 Formulas

Our first goal is to isolate all occurrences of the L∞-constant ∞. We call an
L∞-formula in normal form if ∞ occurs there exclusively in equations x = ∞,
where x is a variable. The following lemma guarantees that such normal forms
generally exist:

Lemma 1 (Normalization of L∞-formulas). Let ϕ be an atomic L∞-
formula containing the L∞-constant ∞. Then ϕ can be equivalently transformed
into “true” or into an L-formula ∨

x∈X

x = ∞,

where X is a subset of the variables occurring in ϕ.

Proof. To start with, observe that for L-terms u with variables x1, . . . , xn we
have

PAI |= u = ∞←→
n∨

i=1

xi = ∞.



200 A. Lasaruk and T. Sturm

Our atomic L∞-formula ϕ is of the form s & t, where s, t are L∞-terms and & is
one of =, ≤, ≡α. From our observation above it follows that s or t can be equiv-
alently replaced by ∞ when containing the L∞-constant ∞. Next, congruences
containing ∞, atomic formulas s ≤ ∞, and equations ∞ = ∞ can be equiva-
lently replaced by “true.” Atomic formulas ∞ ≤ t can be equivalently replaced
by t = ∞. So unless we have already evaluated to “true” we finally arrive at an
equation of the form u = ∞ where u is an L-term, and we can once more apply
our above observation.  !
It is interesting to observe that the use of the L∞-constant ∞ can in fact be
avoided entirely: According to Lemma 1, we may assume w.l.o.g. that ∞ occurs
exclusively in equations x = ∞, where x is a variable.

Lemma 2. Let t be an L-term. Then PAI |= t = ∞←→ ¬ t− t = 0.  !
Furthermore, our language admits to bring quantifier-free L∞ formulas into pos-
itive normal form, i.e., the only logical operators occurring are “∧” and “∨.” All
Boolean connectives can be equivalently expressed by means of “∧,” “∨,” and
“¬.” Using de Morgan’s laws and involution, all “¬” can be moved inside until
they cancel or directly precede some atomic formula. Then we have:

Lemma 3 (Positive normal form). Let s, t be L∞-terms. Then the following
holds:

(i) PAI |= ¬ s ≡α t←→
∨α−1

β=1 s ≡α t+ β ∧ s− s = 0 ∧ t− t = 0
(ii) PAI |= ¬ s ≤ t←→ t+ 1 ≤ s ∧ t− t = 0
(iii) PAI |= ¬ s = t←→ (t+ 1 ≤ s ∧ t− t = 0) ∨ (s+ 1 ≤ t ∧ s− s = 0).  !
In particular from Lemma 2 and Lemma 3(iii) we obtain

t = ∞←→ ¬t− t = 0 ←→ 1 ≤ t− t.
Finally, notice that our Lemmas 1–3 are compatible in the following sense: for
quantifier-free L∞-formulas one can obtain positive normal forms not containing
the L∞-constant ∞.

3.2 Terms

Recall from Lemma 1 that we can bring all L∞-formulas into a normal form
where the L∞-constant ∞ occurs exclusively in equations of the form x = ∞
where x is a variable, and all other atomic formulas are L-formulas. So for the
discussion of normal forms of our terms it is sufficient to consider L-terms.

Notice that even for L-terms common transformations fail. At the first place,
“−” does not generally yield an additive inverse in PAI since ∞ + (−∞) =
∞+∞ = ∞. Consequently, simplifications of terms like replacing x+ (−x) by
0 are not sound.

The following lemma lists some relevant axioms in Π which remain valid in
PAI and mentions some further arithmetic rules valid for PAI, which we are
going to use in the sequel. When referring to elements α ∈ Z occurring in some
term, we consider α an abbreviated notation for the corresponding term of the
form ±(1 + · · ·+ 1) or 0.



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 201

Lemma 4 (Arithmetic in PAI). Presburger’s axioms (π2)–(π4), (π6)–(π8) re-
main valid in PAI. This includes the laws of commutativity and associativity and
the neutrality of 0 for addition and the involutivity of “−.” Furthermore the fol-
lowing arithmetic rules hold:

(i) PAI |= α� 0 = 0 for α ∈ N
(ii) PAI |= −0 = 0
(iii) PAI |= −(−a) = a
(iv) PAI |= −α� a = α� (−a) for α ∈ N
(v) PAI |= α� a+ (−β � a) = (α− β)� a for α, β ∈ N, α > β
(vi) PAI |= α� a+ (−α� a) = a− a for α ∈ N
(vii) PAI |= a+ α = b+ α −→ a = b for α ∈ Z

(viii) PAI |= α� (a+ b) = α� a+ α� b for α ∈ Z.  !
When using n-ary addition in the sequel, we tacitly assume that “+” is right-
associative. Due to Lemma 4(π2) this assumption is only of syntactic relevance.
Furthermore, we are going to use s− t as a short notation for terms s+ (−t).
Lemma 5 (Normal form of L-terms). Let t be an L-term with variables x1,
. . . , xn. Then there exist α1, . . . , αn, β1, . . . , βn ∈ N and α ∈ Z such that

PAI |= t = α+
n∑

i=1

αixi −
n∑

i=1

βixi.

Proof. Use Lemma 4(iv,viii) to move all occurrences of “−” inside until all such
occurrences are nested occurrences in front of constants or variables. Use Lemma
4(iii) to reduce each such nested occurrence to at most one. Use Lemma 4(ii)
and Lemma 4(π4) to eliminate all occurrences of 0. Use Lemma 4(π3) to obtain a
right-associative n-ary sum of variables and the constant 1 possibly preceded by
“−.” Use Lemma 4(π2, π3) to reorder this n-ary sum as required by our normal
form. Finally use (ι9) and Lemma 4(π2, π3, iv) to rewrite the initial sequence
±1± · · · ± 1 in this n-ary sum as ±(1 + · · ·+ 1).  !
Lemma 6 (Unique normal form of L-terms). Consider an L-term t with
variables x1, . . . , xn, which we assume to be ordered x1 ≺ x2 ≺ · · · ≺ xn. Then
there is an enumeration y1, . . . , yk, . . . , yn of {x1, . . . , xn} with y1 ≺ · · · ≺ yk

and yk+1 ≺ · · · ≺ yn, there is α ∈ Z, and there are α1, . . . , αk ∈ Z such that

PAI |= t = α+
k∑

i=1

αiyi +
n∑

i=k+1

yi −
n∑

i=k+1

yi.

Furthermore, there is only one such choice y1, . . . , yk, . . . , yn, α, α1, . . . , αk.
 !

Notice that the normal form in the previous lemma depends on the considered
set {x1, . . . , xn} of variables. A unique normal form that does not depend on
x1, . . . , xn is obtained by deleting summands αiyi where αi = 0. In addition,
we agree to delete α if α = 0.



202 A. Lasaruk and T. Sturm

3.3 Atomic Formulas

Notice that even for the atomic L-formulas in our normal form according to
Lemma 1 and even when subtracting terms “carefully” in the sense of the previ-
ous section, some familiar equivalence transformations are not valid in PAI. For
instance, x = x+y is not equivalent to y = 0 as the interpretation x = ∞ admits
arbitrary interpretations of y in the former equation. Normalization of right-hand
sides to 0 in atomic L-formulas can, however, be achieved when making on the
syntactic level case distinctions similar to those in the proof of Lemma 1.

Lemma 7 (Normal form of atomic L-formulas). Let s, t be L-terms. De-
note by V (s) and V (t) the finite sets of variables occurring in s and t, respec-
tively. Then

(i) PAI |= s ≡α t←→ s− t ≡α 0
(ii) PAI |= s ≤ t←→ s− t ≤ 0 ∨∨x∈V (t) x = ∞
(iii) PAI |= s = t←→ s− t = 0 ∨

(∨
x∈V (s) x = ∞∧∨x∈V (t) x = ∞

)
.

Proof. Fix an interpretation of all variables so that s, t ∈ Z ∪ {∞}. Recall from
the proof of Lemma 1 that s, t = ∞ if and only if at least one variable in s, t,
resp., is interpreted as infinity.

(i) If one of s = ∞ or t = ∞, then s− t = ∞ and both s ≡α t and s− t ≡α 0
are true. Otherwise s, t ∈ Z, where our transformation is known to be
correct.

(ii) If t = ∞, then both sides of our equivalence are true. Assume now that
t �= ∞. If s = ∞ then both sides of our equivalence are false. Otherwise s,
t ∈ Z, where subtraction on both sides of the atomic formula is known to
be correct, and our big disjunction is false.

(iii) If s = t = ∞, then both sides of our equivalence are true. If w.l.o.g. s = ∞
and t �= ∞, then both sides of our equivalence are false. Otherwise s, t ∈ Z,
where subtraction on both sides of the equation is known to be correct, and
our big disjunctions are both false.  !

This normal form for atomic formulas is very convenient for practical purposes.
Recall that the practical applicability of quantifier elimination by virtual substi-
tution crucially depends on powerful methods for simplification of intermediate
results, and these methods in turn are typically based on atomic formulas with
right-hand sides normalized to 0 [22].

For Presburger quantifier elimination, one temporarily renormalizes to sx = t
where x is the variable currently considered for elimination. The following lemma
describes a corresponding normal form for PAI:

Lemma 8 (Normal form of atomic L-formulas w.r.t. a variable). Let
t & 0 be an atomic L-formula in normal form according to Lemma 7, let t be in
unique normal form, and let x be a variable occurring in t. That is

t = α+
k∑

i=1

αiyi +
n∑

i=k+1

yi −
n∑

i=k+1

yi,



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 203

and yj = x for one and only one j ∈ {1, . . . , n}. Then

PAI |= t & 0 ←→ η,

where η is a quantifier-free L∞-formula, where x occurs in η exclusively in atomic
L-formulas s & u with

s =
{

αjx for j ≤ k
x− x for j > k

and u = −α+
k∑

i=1
i�=j

−αiyi +
n∑

i=k+1
i�=j

yi −
n∑

i=k+1
i�=j

yi.

Proof. To start with, it is easy to see that PAI |= t & 0 ←→ s − u & 0. We are
now going to distinguish cases on &:

PAI |= s− u ≡α 0 ←→ s ≡α u

PAI |= s− u ≤ 0 ←→ s ≤ u ∧ x− x = 0 ∧ u− u = 0
PAI |= s− u = 0 ←→ s = u ∧ (x− x = 0 ∨ u− u = 0).

Recall that PAI |= r − r = 0 ←→ ¬ r = ∞.  !

3.4 Relevant Combinations of Normal Forms

Consider a quantifier-free L∞-formula ϕ. To put ϕ into general normal form,
we apply Lemma 1 to isolate all occurrences of the L∞-constant ∞, then apply
Lemma 7 to normalize all right hand sides of contained atomic L-formulas to
0, and finally bring the left hand side terms of the contained atomic L-formulas
into unique normal form.

Recall from Section 3.1 that we can bring our ϕ into positive normal form.
Since none of the transformations leading to the general normal form defined
above introduces any Boolean connectives except “∧” and “∨,” we can obtain
positive general normal forms by computing positive normal forms and subse-
quently computing general normal forms.

An elimination normal form with respect to some variable x is obtained from
a general normal form of ϕ by applying Lemma 8 to equivalently replace all
contained atomic L-formulas containing x. Notice that this preserves positivity
as well. Hence we can obtain a positive elimination normal form with respect to
x from a positive general normal form.

4 Quantifier Elimination

We are going to reuse here an essential part of our existing quantifier elimi-
nation procedure for regular Presburger arithmetic [9]. At least for complex-
ity considerations it is going to be essential that this is a virtual substitution
method [23,24,25,26,27,9,10]. Let us recall some basic facts on virtual substitu-
tion: The key idea for the elimination of a quantifier ∃x from ∃xϕ is to compute
a finite elimination set E such that

∃xϕ←→
∨
t∈E

ϕ[t/x],



204 A. Lasaruk and T. Sturm

i.e., there are finitely many terms substituted for x into ϕ, where E is constructed
such that for any choice of parameters the following holds: If there exists some
satisfying choice for x at all, then at least one t ∈ E evaluates to a satisfying
choice for x. The notion virtual refers to the following generalization:

1. The elimination set E need not exclusively contain regular terms but possi-
bly also some pseudo-terms. A typical example are pseudo-terms containing
division with real quantifier elimination [24]. Since elimination sets can com-
prise both regular terms and pseudo-terms, one often refers to their elements
as test points.

2. Instead of regular substitution one uses a modified substitution, which does
not map terms to terms but more generally atomic formulas to quantifier-free
formulas. This happens in such a way that the substitution result, in contrast
to the substituted test point t, generally does not contain any symbols not
in the considered language.

3. The generalized test points are paired with guards, which ascertain their
validity. For instance, for a test point containing division we would add the
guard that the denominator is not zero. The guards are added conjunctively
when substituting.

Altogether our substitution idea given above generalizes as follows:

∃xϕ←→
∨

(γ,t)∈E

γ ∧ ϕ[t//x].

Our elimination procedure is going to make use of our main technical Lemma for
uniform Presburger arithmetic [9, Lemma 8]. This lemma uses a more general
form of virtual substitution introducing bounded quantifiers. For the special
case of classical Presburger arithmetic it can be adapted to the classical virtual
substitution framework discussed above [9, Lemma 2(ii)]. We explicitly formulate
this adapted result:

Lemma 9 (Regular Presburger elimination set). Consider an L-formula
∃xϕ where ϕ is quantifier-free and in positive normal form. Let the set of all
atomic formulas of ϕ that contain x be

A = {αix &i ri | i ∈ I1 ∪̇ I2 }.

We have αi ∈ Z \ {0}, and the ri do not contain the variable x. For i ∈ I1,
we have &i ∈ {=,≤}. For i ∈ I2, we have that &i is a congruence ≡mi . Define
m = lcm{ |mi| : i ∈ I2 } where lcm ∅ := 1. Then

E =
⋃
i∈I1

⋃
−|αi|m≤k≤|αi|m

{
(γi, ti)

} ∪ ⋃
0≤k<m

{
(true, k)

}
,

where γi = (ri + k ≡|αi| 0) and ti =
ri + k
αi

, is an elimination set for ∃xϕ.  !



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 205

For our purposes here it is important to know that the elimination set E is
computed essentially from the set of atomic formulas contained in ϕ in such a
way that the following holds:

Remark 10. Fix an interpretation v of all variables into Z for all variables, and
consider the subset A+ = {ψ ∈ A | (PA, v) |= ψ } of all atomic formulas that
hold with respect to this interpretation. Then there is (γ, t) ∈ E such that the
following holds:

(i) (PA, v) |= γ and (PA, v) |= ψ[t//x] for all ψ ∈ A+.
(ii) All variables in (γ, t) occur also in A+.  !

So with respect to any interpretation of variables where x = z, the relevant test
term satisfies at least those atomic formulas that are satisfied by z—possibly
more. This is the reason behind working with positive formulas when devising
elimination sets.

Weispfenning originally had used Skolem sets, which exactly simulated the
truth values of all atomic formulas [23]. He switched to positive formulas in the
subsequent work on the reals [24]. In the context of valued fields, the second au-
thor introduced CS-sets, which further generalize the positive formula approach
used here [26]. There has been also some research on taking into account the
Boolean structure of ϕ for computing smaller elimination sets [24,28].

Remark 10(ii) is a quite natural property, which in fact holds for elimination
sets for numerous theories. Nevertheless, it is not generally true but closely re-
lated to the question whether or not there are several atomic formulas combined
to obtain some test point. This happened for example in the first elimination
sets for the reals, where there were arithmetic means of interval boundaries com-
puted in order to hit open intervals [23]. In elimination sets for discretely valued
fields there are even up to three atomic formulas combined [26].

Lemma 11. Consider an atomic L-formula s & t in normal form with respect
to x:

s ∈ {βx, x− x} and t = α+
k∑

i=1

αiyi +
n∑

i=k+1

yi −
n∑

i=k+1

yi.

Fix an interpretation v : {y1, . . . , yn} → Z ∪ {∞}. If ∞ ∈ v[{y1, . . . , yn}], then
one and only one of the following two assertions is true:

(PAI, v ∪ {x = z}) |= s & t iff z = ∞, (PAI, v) |= s & t.

That is, with respect to v either x = ∞ is the only satisfying choice for s & t or
any choice from Z ∪ {∞} will do.

Proof. With respect to v we obtain s = ∞, s ≤ ∞, or s ≡α ∞ depending on &.
In the first case, x = ∞ is the only solution. In the other cases any choice for x
is valid.  !



206 A. Lasaruk and T. Sturm

Lemma 12 (Elimination of one existential quantifier). Let ϕ be a
quantifier-free L∞-formula in positive elimination normal form with respect to
x. Compute the set A of all those atomic L-formulas containing x, where the
left hand side is not x − x. Compute an elimination set E for A according to
Lemma 9. Then E′ := E ∪ {(true, 0), (true,∞)} is an elimination set for ∃xϕ.

Proof. Fix an interpretation into Z ∪ {∞} for all parameters, i.e. all variables
except x. Assume that there is a satisfying interpretation z ∈ Z ∪ {∞} for x.
Since ϕ is positive it suffices to substitute some test point for x such that at
least those atomic formulas A+ become true that contain x and hold for the
choice x = z. Notice that in general A+ is neither a subset nor a superset of A.
If z = ∞, then (true,∞) ∈ E′ is a suitable choice.

Assume now that z �= ∞ and note that then x = ∞ /∈ A+. Let A′ be the subset
of all atomic formulas in A not containing any parameter that is interpreted as
∞. If A′ ∩ A+ �= ∅, then according to Remark 10(i) the regular Presburger
elimination set E provides a test point t rendering true all atomic formulas in
A′ ∩ A+. Using Remark 10(ii) it follows that t ∈ Z with respect to our fixed
interpretation. If, in contrast, A′ ∩ A+ = ∅, then we may consider t = 0 as we
have explicitly added (true, 0) to E′. In either case for all atomic L-formulas in
A+ \ A, i.e., where the left hand side is x − x, the satisfying value z is exactly
simulated by t yielding 0 in both cases. By Lemma 11 all atomic formulas in
(A \A′)∩A+ are satisfied by any choice for x since they are satisfied by z �= ∞.

 !
Theorem 13. PAI admits effective quantifier elimination.

Proof. Let ϕ̂ = Q1x1 . . . Qnxnϕ be an L∞-formula, which is w.l.o.g. in prenex
normal form, i.e., ϕ is quantifier-free. We proceed by induction on the number
n of quantifiers in ϕ̂. If n = 0, then ϕ̂ is already quantifier-free. So there is
nothing to do. Consider now the case n > 0. We then either have Qnxn = ∀xn

or Qnxn = ∃xn. The former case can be reduced to the latter one by means of
the equivalence ∀xnϕ←→ ¬∃xn¬ϕ. In the latter case we equivalently transform
ϕ into elimination normal form ϕ̄ with respect to xn. By Lemma 12, there exists
an elimination set E for ∃xnϕ̄. That is

PAI |= ∃xnϕ←→ ∃xnϕ̄←→
∨

(γ,t)∈E

γ ∧ ϕ̄[t//xn] ←→
∨

(γ,t)∈E

γ ∧ ϕ[t//xn].

We obtain ϕ̂∗ from ϕ̂ by equivalently replacing ∃xnϕ with the last disjunction
above, and we can eliminate the remaining quantifiers from ϕ̂∗ by our induction
hypothesis.  !
Corollary 14. PAI is substructure-complete, complete, and decidable.

Proof. Admitting quantifier elimination is known to be equivalent to substruc-
ture completeness. For deciding an L∞-sentence in PAI we eliminate all quanti-
fiers according to Theorem 13, then decide all atomic formulas in Z ∪ {∞}, and
finally obtain an equivalent truth value via propositional calculus. This exhibits
also the completeness.  !



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 207

5 Complexity

All complexity bounds discussed in the sequel are based on the assumption
that the integers in the input formulas are binary coded. Notice that our formal
language L∞ would actually require to code them unary as sums of L∞-constants
1 possibly preceded by the unary function symbol “−.” Taking this into account,
however, might improve the bounds by one exponential step but would not
appropriately describe practical computations.

Notice that from a complexity point of view it is absolutely essential to have
ternary predicates symbols for the congruences. When considering, in contrast,
countably infinitely many binary ones—one for each modulus—our procedure is
not elementary recursive as by increasing moduli the number of test points can
by arbitrarily increased without increasing the input length. Again, our choice
of ternary predicate symbols, where the (logarithm of the) size of the modulus
contributes to the input length, establishes an appropriate model for practical
computations.

Our write-up of our elimination procedure in the previous two sections is
driven by the idea to use a small and natural language L∞ and to separate
mathematical foundations from implementation issues. Turning to complexity
we have to discuss and revise one detail of this procedure: The application of
Lemma 3(i) for making positive logically negated congruences introduces a num-
ber of atomic formulas, which is linear in the modulus. Since that modulus is
represented in binary, this causes an exponential blow-up, which can however
be easily avoided: one simply leaves negated congruences, which are directly
preceded by logical negation, unchanged. One could call this a weakly positive
formula. This is correct due to the following observation: The role of congruences
in the elimination set computation in Lemma 9 is only that their modulus con-
tributes to some least common multiple computation, and applying Lemma 3(i)
would introduce several new congruences but no new moduli.

Since the size of our elimination set in Lemma 12 is essentially that of the part
obtained via Lemma 9 for the regular Presburger case, we obtain the asymptotic
upper bounds given by Weispfenning for a similar procedure [8]. That is, the
procedure is triply exponential in the input word length. More precisely, it is
triply exponential in the number of quantifiers. This bound is known to be tight
for regular Presburger arithmetic [4].

Weispfenning observed, however, that this result still can be improved in sev-
eral ways [23,8]. First, consider the elimination of several consecutive existential
quantifiers in the proof of Theorem 13: When proceeding like

∃xn−1∃xnϕ←→ ∃xn−1

∨
(γ,t)∈E

γ ∧ ϕ[t//xn] ←→
∨

(γ,t)∈E

∃xn−1

(
γ ∧ ϕ[t//xn]

)
and independently eliminating ∃xn−1 from several smaller subproblems, one
achieves that test points originating from a certain subproblem are not sub-
stituted within other subproblems. An analogue observation holds with consecu-
tive universal quantifiers. This way, the quantifier elimination procedure is triply



208 A. Lasaruk and T. Sturm

exponential in the number of quantifier alternations but only doubly exponential
in the number of quantifiers for a bounded number of alternations.

Second, one can gain one exponential step by introducing big disjunction sym-
bols “

∨
” as an abbreviated notation for regular disjunctions following common

mathematical practice. These big disjunctions can be used for substituting the
big unions of elimination terms ranging over k in Lemma 9. The crucial observa-
tion is that this is compatible with the elimination procedure in the sense that
these big disjunctions need not be expanded for the elimination of subsequent
quantifiers. Our original main technical Lemma for uniform Presburger arith-
metic [9, Lemma 8], is in fact a formalization of this approach, since for regular
Presburger arithmetic the bounded quantifiers considered there represent such
big disjunctions, and this approach is compatible with our extension considered
here.

6 Elimination Examples

We start with two examples for quantifier elimination in PAI in order to illustrate
the procedure and to give an intuition of the semantics. Then we turn to a more
complex example pointing at one possible application of our work.

Example 15 (There is a maximum). Consider the sentence ∃x∀y(y ≤ x), which
in regular Presburger arithmetic is equivalent to “false.” We start with the
elimination of the inner quantifier ∀y using the equivalence ∀y(y ≤ x) ←→
¬∃y(¬ y ≤ x). We bring ¬ y ≤ x into positive elimination normal form with
respect to y by applying Lemma 3(ii), Lemma 7(ii), and Lemma 8:

¬ y ≤ x←→ x+ 1 ≤ y ∧ x− x = 0
←→ (x− y + 1 ≤ 0 ∨ y = ∞) ∧ x− x = 0
←→ (

(−y ≤ −x− 1 ∧ y − y = 0 ∧ x− x = 0) ∨ y = ∞) ∧ x− x = 0.

Applying Lemma 12 we compute A = {−y ≤ −x−1} and obtain from Lemma 9
the following elimination set with respect to y:

E =
{
(true, x), (true, x+ 1), (true, x+ 2)

}
.

To simplify our discussion here, we observe that all guarded points except for
(true, x+ 1) can be dropped from E without violating Remark 10. This yields

E′ =
{
(true, x+ 1), (true, 0), (true,∞)

}
.

The application of this E′ yields

∀y(y ≤ x) ←→ ¬∃y(¬ y ≤ x)
←→ ¬

∨
(γ,t)∈E′

γ ∧ ((x− y + 1 ≤ 0 ∨ y = ∞) ∧ x− x = 0
)
[t//y]

←→ ¬(x− x = 0 ∨ x+ 1 ≤ 0 ∨ x− x = 0)
←→ ¬x− x = 0.



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 209

Now ¬x− x = 0 is equivalent to x = ∞ so that for the elimination of the outer
quantifier ∃x we obtain “true” via (true,∞), which is generally contained in our
elimination sets.  !
Example 16 (There is a minimum). Consider the sentence ∃x∀y(x ≤ y), which is
dual to our previous example. Again we construct a positive elimination normal
form with respect to y of ¬x ≤ y to eliminate the inner quantifier:

¬x ≤ y ←→ y ≤ x− 1 ∧ y − y = 0.

For A = {y ≤ x − 1} Lemma 9 essentially yields {(true, x − 1)}, and according
to Lemma 12 we obtain the elimination set

E′ = {(true, x− 1), (true, 0), (true,∞)}.
The application of E′ yields

∀y(y ≤ x) ←→ ¬(x − x = 0 ∨ 0 ≤ x− 1 ∨ false) ←→ false,

and it follows that ∃x∀y(y ≤ x) ←→ false.  !
Recently, computer science research has focussed on decidable fragments of
Boolean algebras of power sets with cardinality constaints where the interpre-
tation of the 1 is a finite or countably infinite set [14,15]. This resulted in a
theory called BAPA combining Boolean algebra and Presburger arithmetic in a
two-sorted approach. The decision procedure for BAPA is based on quantifier
elimination. It reduces an input BAPA formula to an L-formula in our sense.
This method still yields a decision procedure when combined with any decidable
extension of Presburger arithmetic. In particular the results in [14,15] are com-
patible with our extension PAI. We are now going to demonstrate by means of
an example how PAI can be combined with Boolean algebras.

Example 17 (Boolean algebra with cardinality). Consider the following problem:
We are looking for a non-empty set which is a subset of every infinite element of
the powerset of some countable ground set. In the language of Boolean algebras
with cardinality constraints a first-order formulation is given by

|A| > 0 ∧ ∀X(|X | = ∞ −→ A ∩X = A).

Notice that we have |X | = ∞ as a constraint, which in BAPA is only first-order
definable, e.g. ∃k(|A| = k). Notice furthermore that we do not have a decision
problem but a quantifier elimination problem here.

We are going to transform the quantified part of the given formula into an
L∞-formula. To start with,

∀X(|X | = ∞ −→ A ∩X = A) ←→ ¬∃X(|X | = ∞∧A ∪X �= 1).

We can equivalently repace A ∪X �= 1 by A ∩X �= ∅. The latter can be trans-
formed into a cardinality constraint |A ∩X| > 0. Analogously |X | = ∞ can be



210 A. Lasaruk and T. Sturm

expressed by |X ∩A|+ |X ∩A| = ∞. We additionally introduce two tautological
constraints

|A| − |X ∩A| − |X ∩A| = 0 and |A| − |X ∩A| − |X ∩A| = 0.

We replace each cardinality by a variable ranging over Z ∪ {∞} as follows:

|A| = x, |X ∩A| = a, |X ∩A| = b, |X ∩A| = c, |X ∩A| = d.

This finally yields

¬∃a∃b∃c∃d(x ≥ 0 ∧ a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ∧ d ≥ 0 ∧
x− a− b = 0 ∧ x− c− d = 0 ∧ a+ c = ∞∧ c > 0).

Eliminating the quantified variables a, b, c, d we would obtain the formula x = 0.
The solution set with respect to x describes the cardinality of all sets A which
satisfy our condition. In our case the result x = 0 contradicts the condition
|A| > 0 outside the scope of the quantifier in the original problem. Consequently
there is no such set A.  !

7 Conclusions and Further Work

We have given a quantifier elimination procedure and a corresponding deci-
sion procedure for Presburger arithmetic with infinity. The asymptotic worst-
case complexity is not worse than that of corresponding procedures for regular
Presburger arithmetic, which are widely accepted as an important and useful
tool. The next reasonable step is to implement our procedure in the computer
logic system redlog [29], which already features an implementation of quan-
tifier elimination for regular Presburger Arithmetic [9,10], the essential part of
which can be reused as a subroutine. One can then address quantifier elimina-
tion for Boolean algebras with cardinality constraints and examine the practical
applicability of our approach to problems from deductive databases or software
verification [13,14,15]. For Boolean algebras with cardinality constraints it is a
promising idea to adopt for PAI the concept of positive quantifier elimination
restricting to variables that describe positive or non-negative numbers including
infinity. For applications of real quantifier elimination to problems in algebraic
biology this brought a considerable progress [30]. Finally note that our approach
can be expected to admit also extended quantifier elimination, where one ob-
tains satisfying sample values for existentially quantified variables if such values
exist [31].

Acknowledgment

We thank Peter Revesz, who pointed us at his work on deductive databases and
quantifier elimination for certain Boolean algebras via reduction to Presburger
formulas. Peter also pointed us at the option to extend this to considering infinite
sets on the basis of a potential Presburger implementation with infinity.



Effective Quantifier Elimination for Presburger Arithmetic with Infinity 211

References

1. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du premier congrès de Mathématiciens des Pays Slaves, Warsaw,
Poland, pp. 92–101 (1929)

2. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine In-
telligence 7, 91–99 (1972)

3. Ferrante, J., Rackoff, C.W.: The Computational Complexity of Logical Theories.
Lecture Notes in Mathematics, vol. 718. Springer, Berlin (1979)

4. Fischer, M.J., Rabin, M.: Super-exponential complexity of Presburger arithmetic.
SIAM-AMS Proceedings 7, 27–41 (1974)

5. Reddy, C.R., Loveland, D.W.: Presburger arithmetic with bounded quantifier al-
ternation. In: STOC 1978: Proceedings of the Tenth Annual ACM Symposium on
Theory of Computing, pp. 320–325. ACM, New York (1978)

6. Pugh, W.: The omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In: Supercomputing 1991: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, pp. 4–13. ACM, New York (1991)

7. Oppen, D.C.: A 222pn

upper bound on the complexity of Presburger arithmetic. J.
Comput. Syst. Sci. 16(3), 323–332 (1978)

8. Weispfenning, V.: The complexity of almost linear Diophantine problems. Journal
of Symbolic Computation 10(5), 395–403 (1990)

9. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of the
integers. A uniform generalization of Presburger arithmetic. Applicable Algebra in
Engineering, Communication and Computing 18(6), 545–574 (2007)

10. Lasaruk, A., Sturm, T.F.: Weak integer quantifier elimination beyond the linear
case. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS,
vol. 4770, pp. 275–294. Springer, Heidelberg (2007)

11. Davis, M.: Final report on mathematical procedures for decision problems. Tech-
nical report, Institute for Advanced Study, Princeton, NJ (October 1954), Under
Technical Supervision of Commanding General, Aberdeen Proving Ground. Work
Performed During Period 1, to 31, Under Contract No. DA-36-034-ORD-1645. De-
partment of Army Project No. 599-01-004 (1954)

12. Luckham, D.C., German, S.M., von Henke, F.W., Karp, R.A., Milne, P.W.,
Oppen, D.C., Polak, W., Scherlis, W.L.: Stanford Pascal verifier user manual. Tech-
nical report, Stanford University, Stanford, CA, USA (1979)

13. Revesz, P.Z.: Quantifier-elimination for the first-order theory of boolean algebras
with linear cardinality constraints. In: Benczúr, A.A., Demetrovics, J., Gottlob, G.
(eds.) ADBIS 2004. LNCS, vol. 3255, pp. 1–21. Springer, Heidelberg (2004)

14. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean
algebra with presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS
(LNAI), vol. 3632, pp. 260–277. Springer, Heidelberg (2005)

15. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean algebra with Presburger
arithmetic. Journal of Automated Reasoning 36(3), 213–239 (2006)

16. Kuncak, V.: Quantifier-free Boolean algebra with Presburger arithmetic is
NP-complete. Technical Report TR-2007-001, MIT Computer Science and AI Lab,
Cambridge, MA (January 2007)

17. Weispfenning, V.: Quantifier elimination and decision procedures for valued fields.
In: Mueller, G.H., Richter, M.M. (eds.) Models and Sets. Proceedings of the Logic
Colloquium held in Aachen, July 18–23, 1983 Part I. Lecture Notes in Mathematics
(LNM), vol. 1103, pp. 419–472. Springer, Heidelberg (1984)



212 A. Lasaruk and T. Sturm

18. Monk, J.D.: Mathematical Logic. Graduate Texts in Mathematics, vol. 37.
Springer, Heidelberg (1976)

19. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Mathematische An-
nalen 76(4), 447–470 (1915)

20. Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder
Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Men-
gen. Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse 6, 1–36
(1920)

21. Malcev, A.: Untersuchungen aus dem Gebiete der mathematischen Logik. Rec.
Math. [Mat. Sbornik] N.S. 1(43)(3), 323–336 (1936)

22. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

23. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1&2), 3–27 (1988)

24. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993); Special issue on computational quantifier elimina-
tion

25. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

26. Sturm, T.: Linear problems in valued fields. Journal of Symbolic Computa-
tion 30(2), 207–219 (2000)

27. Sturm, T., Weispfenning, V.: Quantifier elimination in term algebras. The case
of finite languages. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Com-
puter Algebra in Scientific Computing. Proceedings of the CASC 2002, Institut
für Informatik, Technische Universität München, Garching, Germany, pp. 285–300
(2002)

28. Dolzmann, A.: Algorithmic Strategies for Applicable Real Quantifier Elimination.
Doctoral dissertation, Universität Passau, 94030 Passau, Germany (July 2000)

29. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

30. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3), 493–515 (2009)

31. Weispfenning, V.: Simulation and optimization by quantifier elimination. Journal
of Symbolic Computation 24(2), 189–208 (1997)



An Algorithm for Symbolic Solving of
Differential Equations and Estimation of

Accuracy

Natasha Malaschonok

Tambov State University,
Internatsionalnaya 33, 392622 Tambov, Russia

Abstract. An algorithm for solving systems of differential equations
based on Laplace transform method is presented. There are considered
ordinary linear differential equations with constant coefficients, nonzero
initial conditions and right-hand sides as composite functions reducible
to sums of exponents with polynomial coefficients.

An algorithm to compute an error of calculations sufficient to obtain
a preassigned accuracy of solution of linear differential equations system
is included.

Present-day computer systems provide an ample equipment for solving differen-
tial equations. For numerical methods, there are many algorithms to estimate an
error of obtained approximate solutions. If it concerns symbolic algorithms one
can hardly find such estimations as it is customary to presume an exact charac-
ter of analytic solving. But nearly each symbolic algorithm of solving contains
numerical components or is based on approximation of involved functions or
other mathematical structures by series, products, sequences, etc. It is necessary
to guarantee an adequate accuracy in this case as well.

An algorithm, which is presented in this article, is based on the application
of the Laplace transform method for solving the systems of differential equa-
tions. This method provides a symbolic character of computations. However,
there exists a fragment of numerical calculations. It concerns the computing of
polynomial roots. This is the operation that requires an estimation of accuracy
for calculations. An algorithm for such estimation is presented in this paper.

The Laplace transform has been very useful in various problems of differential
equations theory (see, for example, [BurgHall05], [DahSN99], [MY97], [Pod97]).

In this article, we consider systems of ordinary linear differential equations
with constant coefficients, nonzero initial conditions, and right-hand sides as
composite functions reducible to the sums of exponents with polynomial co-
efficients. A case of continuous right-hand sides was discussed in [NMal05a],
[NMal05b]. Here we consider a general case of composite functions and obtain
estimates in a general case and of higher accuracy. Such systems are very impor-
tant because of their application for many problems in electronics, electrical or
radio engineering, economics, etc. Moreover such systems provide a transparent
application of Laplace method.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 213–225, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



214 N. Malaschonok

In the first section of the paper, an algorithm for solving systems of differ-
ential equations is presented. At first a preparation of data functions for the
formal Laplace transform is performed. It is achieved with application of Heavi-
side function and moving the obtained functions into the bounds of smoothness
intervals. The next step is solving the algebraic system with polynomial coeffi-
cients and the right-hand side obtained after the Laplace transform of the data
system. There are algorithms that are efficient for solving this type of equations,
and are different for various types of such systems. Then the obtained solution
of algebraic system is prepared to the inverse Laplace transform. It is reduced
to the sum of partial fractions with exponential coefficients. Just at this stage
it is necessary to calculate an error of the denominator roots sufficient for the
required accuracy of differential equations solutions.

The second section is devoted to an estimation of an error of calculations
sufficient to obtain a preassigned accuracy of solution of a system of differential
equations. We must underscore that it is not necessary to obtain the exact
solution of the system of differential equations in order to obtain the value of an
error sufficient for the required accuracy of an approximate solution.

The complexity of computations is discussed in the third section.
In the last section, an example is considered.

1 An Algorithm for Laplace Transform Method of
Solving Systems of Differential Equations

Consider [NMal06] the system

n∑
j=1

N∑
k=0

al
kjx

(k)
j = fl, l = 1, . . . , n, al

kj ∈ R, (1)

of n differential equations of order N with initial conditions x(k)
j (0) = xk

0j ,
k = 0, . . . , N − 1 and right-hand functions fl reduced to the form

fl(t) = f i
l (t), t

i
l < t < t

i+1
l , i = 1, . . . , Il, t1l = 0, tIl+1

l = ∞, (2)

where

f i
l (t) =

Si
l∑

s=1

P i
ls(t)e

bi
lst, i = 1, . . . , Il, l = 1, . . . , n,

and P i
ls(t) =

∑Mi
ls

m=0 c
li
smt

m.
We denote by xj , j = 1, . . . , n the unknown functions of argument t, t ≥ 0,

and by x(k)
j the order k derivative of the function xj , k = 0, . . . , N .

An algorithm suggested here will be disposed in three stages.

Stage 1. The Laplace transform of the input system
Denote the Laplace images of the functions xj(t) and fl(t) by Xj(p) and Fl(p),
respectively.



An Algorithm for Symbolic Solving of Differential Equations 215

Step 1.1. The Laplace transform of the left-hand side of system (1) with respect
to the initial conditions is performed by formal writing the expression

n∑
j=1

N∑
k=0

al
kjp

kXj(p)−
n∑

j=1

N−1∑
k=0

dl
jk(p)xk

0j ,

where

dl
jk(p) =

N−1∑
i=k

al
i+1,jp

i−k. (3)

Step 1.2. The preparation of right-hand functions fl(t) to the Laplace transform
is reduced to the application of Heaviside function η(t). Represent fl(t) as a sum

fm
l (t) = φm

l (t− tkl ) =
Sm

l∑
s=1

ψm
ls (t− tkl )eb

m
ls tk

l eb
m
ls(t−tk

l ).

Here ψm
ls (t− tkl ) = Pm

ls (t) and ψm
ls (t− tkl ) =

∑Jm
ls

j=0 γ
mk
lsj (t− tkl )j . Coefficients γmk

lsj

are calculated by the formula

γmk
lsj =

Mk
ls−j∑

r=0

clks,m+r

(
m+ r
r

)
(tkl )r.

Finally the function fl(t) is reduced to the form

fl(t) =
Il−1∑
i=1

[φi
l(t− til)η(t− til)− φi

l(t− ti+1
l )η(t − ti+1

l )] + φIl

l (t− tIl
)η(t− tIl

).

Step 1.3. Since the Laplace image of (t− t∗)neα(t−t∗)η(t− t∗) is n!
(p−α)n+1 e

−t∗p

the Laplace transform of fl(t) is the following:

Fl(p) =
Il−1∑
i=1

[
Φi,i

l (p)− Φi,i+1
l (p)

]
+ ΦIl,Il

l (p). (4)

For each l = 1, . . . , n we reduce (4) to the common denominator. The common
denominator is left factorized. At that the numerator is the sum of exponents
with polynomial coefficients.

Stage 2. The solution of the linear algebraic system with polynomial
coefficients
Consider the linear algebraic system of the order n with polynomial coefficients
relative to Xj , j = 1, . . . , n:

n∑
j=1

N∑
k=0

al
kjp

kXj(p) =
n∑

j=1

N−1∑
k=0

dl
jk(p)xk

0j + Fl(p), l = 1, . . . , n. (5)



216 N. Malaschonok

Step 2.1. With notation

n∑
j=1

N−1∑
k=0

dl
jk(p)xk

0j = Sl(p).

system (5) is reduced to the form

n∑
j=1

N∑
k=0

al
kjp

kXj(p) = Sl(p) + Fl(p), l = 1, . . . , n. (6)

For each l = 1, . . . , n the expressions on the right-hand side of (5) are reduced
to the common denominator.

Step 2.2. System (6) may be solved by any possible classical method, for ex-
ample, Cramer’s method. But now there are developed new effective procedures,
for example, p-adic method [Mal03], modula methods, and methods based on
determinant identities [Mal97], [Mal00].

Stage 3. The inverse Laplace transform

Step 3.1. The solution of (6), i.e., each desired function Xj(p), j = 1, . . . , n,
is represented as a fraction with polynomial denominator. This denominator is
partially factored – it contains the multipliers of Fl(p) denominators and the
determinant D(p) of system (6). The numerator is the sum of exponents with
polynomial coefficients. We reduce the function Xj(p), j = 1, . . . , n, to the sum
of exponents with fractional coefficients. Numerators and denominators of these
coefficients are polynomials.

The main step is the decomposition of each fraction in the Xj(p) expansion
into the sum of partial fractions A/(p − p∗)v, p∗ ∈ C. The roots of D(p) must
be determined.

Step 3.2. The determination of the D(p) roots may be performed in various
ways, for example by reducing to the system of two equations on R with respect
to p1 = Rep, p2 = Imp.

This step includes an algorithm of calculation of accuracy. This algorithm will
be described further in Section 2.

Step 3.3. Preparation for inverse Laplace transform is the decomposition of
rational fractions or fractional coefficients of exponents into the sums of partial
fractions A/(p− p∗)v, p∗ ∈ C. A standard method, for example, is the method
of indefinite coefficients. It is based on solving the system of algebraic equations
over C.It may be solved as it was mentioned already by modula or p-adic method.

Each Xj(p) is finally represented as a sum

Xj(p) =
∑
m

∑
k

Amk

(p− pjk)βmk
e−αmp. (7)



An Algorithm for Symbolic Solving of Differential Equations 217

Step 3.4. The Laplace originals of functions Xj(p) are obtained formally – by
writing the expressions

xj(t) =
∑
m

∑
k

Amk

(βmk − 1)!
(t− αm)βmk−1epik(t−αm)η(t− αm), j = 1, . . . , n.

Remark. In general, the functions x̃l(t) are complex valued. We take the real
part of x̃l(t) for each l = 1, . . . , n. The functions Re x̃l(t) may be taken as the
solution of system (1), i.e., the required functions xl(t). It is easy to show that
the error would not exceed the established precision assured by the calculated
accuracy of roots of D(p).

2 Estimation of Accuracy

At Step 3.2 of Laplace method, it is necessary to calculate the roots of D(p).
The problem is to compute an error of roots sufficient to the desired accuracy dif-
ferential equations solutions. In this section, the algorithm for this computation
is constructed.

We shall consider all functions and make calculations on the segment [0, T ],
where T > tIl

l for all l = 1, . . . n, and is sufficiently high for the input prob-
lem. Denote by x̃l(t) an approximate solution of (1) constructed by means of
approximate roots of D(p). We require the following accuracy for solutions on
the segment [0, T ]:

maxt∈[0,T ]|xl(t)− x̃l(t)| < ε, l = 1, . . . , n. (8)

We must determine an error Δ of the D(p) roots sufficient for the required
accuracy ε for xl(t). For the case when the right-hand sides of (1) are continuous
see ([NMal05a] – [NMal05b].

Here we consider a general case of composite right-hand sides.
Denote by T l

i (p) the i, l minor of the matrix of system (6). The solution Xl(p)
of system (6) may be expressed in the following way:

Xl(p) =
Dl(p)
D(P )

,

where

Dl(p) =
m∑

i=1

[Fl(p) + Sl(p)] T l
i (p).

Denote by pr roots, and by p∗r , r = 1, . . . , n, approximate roots of the polynomial
D(p). If the error of a root is less than Δ, then |pr − p∗r | < Δ.
Theorem. For every ε there exists such Δ that if |pr − p∗r | < Δ, then (8) is
true.



218 N. Malaschonok

Proof. Let us consider the polynomial D(p+Δeiα), α ∈ [0, 2π]. Denote

X̃l(p) =
Dl(p)

D(p+Δeiα)
. (9)

We must find Δ which produces (8).
For (8) and (9) we must estimate the original of

Dl(p)
D(p)

− Dl(p)
D(p+Δeiα)

.

According to the linearity of Laplace and inverse Laplace transforms we estimate
separately the Laplace originals of

n∑
i=1

Fl(p)
T l

i (p)
D(p)

−
n∑

i=1

Fl(p)
T l

i (p)
D(p+Δeiα)

(10)

and
n∑

i=1

Sl(p)
T l

i (p)
D(p)

−
n∑

i=1

Sl(p)
T l

i (p)
D(p+Δeiα)

. (11)

Write expression (10) in the form:

n∑
i=1

Fl(p)
(
T l

i (p)
D(p)

− T l
i (p)

D(p+Δeiα)

)
. (12)

Both functions Fl(p) and the difference in the brackets have the Laplace originals.
The original Ψl(t) of (10) is calculated as a sum of convolutions of fl(t) and the
original Ωi

l (t) of
T l

i (p)
D(p)

− T l
i (p)

D(p+Δeiα)
. (13)

Let us present (13) as follows:

T l
i (p)
D(p)

− T
l
i (p+Δeiα)
D(p+Δeiα)

+
T l

i (p+Δeiα)− T l
i (p)

D(p+Δeiα)
. (14)

Denote by Qi
l(t) and Q̃i

l(t) the originals of T l
i (p)

D(p) and T l
i (p)

D(p) − T l
i (p+Δeiα)

D(p+Δeiα) , corre-
spondingly. Then according to the properties of Laplace transform we have:

Q̃i
l(t) =

(
1− eΔT

)
Qi

l(t). (15)

Now let us estimate Qi
l(t). The function Qi

l(t) may be written in the form

Qi
l(t) =

R∑
r=1

(
μr∑

μ=1

Bi
rμ

tμr−μ

(μr − μ)!)

)
eprt, (16)

where pr are the roots of D(p) of order μr, R is the amount of various roots.



An Algorithm for Symbolic Solving of Differential Equations 219

Coefficients Bi
rμ may be calculated as the Taylor coefficients of the functions

(p − pr)μr
T l

i (p)
D(p) at the point pr. They may be estimated using the Cauchy in-

equality for the Tailor coefficients in the δ-neighborhood of the point pr. Let be
δ < 1/2 min |pr−ps|, r, s = 1, . . . R, δ < 1. We wish to obtain Δ ≤ δ. If it would
be not so, we shall take Δ = δ.

According to Cauchy evaluations we have:

|Bi
rμ| ≤

(
max|p−pr |=δ(p− pr)μr

T l
i (p)
D(p)

)/
δμ.

Consider the polynomial D(p) =
∑mn

ν=0 cνp
ν . As∣∣∣∣(p− pr)μr

T l
i (p)
D(p)

∣∣∣∣ = |T l
i (p)|

|cmn|
∏R

s=1,s�=r |p− pr|μs

we need to estimate |T l
i (p)| in the δ-neighborhood of pr. Denote by ρ the radius

of the circle containing all the roots of D(p). For such ρ we may take the number

ρ = max
{

1;
∑mn

ν=0 |cν |
|cmn|

}
,

it may be chosen such that

max|p−pr |=δ|T l
i (p)| ≤ max|p|=ρ|T l

i (p)|.

Each element of the matrix, whose determinant is denoted by T l
i (p), is a polyno-

mial γη,λ(p), where λ is a number of its row, λ �= l, η is a number of its column,
η �= i. Denote mη,λ = max|p|=ρ|γη,λ(p)|. According to Hadamard inequality

max|p|=ρ|T l
i (p)| ≤

√√√√ n∏
η=1,η �=i

n∑
λ=1,λ�=l

m2
η,λ.

Denote

Mil =

√√√√ n∏
η=1,η �=i

n∑
λ=1,λ�=l

m2
η,λ. (17)

As |p− ps| ≥ δ, taking into account that μ ≤ |mur, we get:

|Bi
rμ| ≤

Mil

|cmn|δmn
.

As a result, we obtain the estimate for Qi
l(t) on the segment [0, T ]:

|Qi
l(t)| ≤

mn

|cmn|δmn
Mile

ρT . (18)



220 N. Malaschonok

Consider the last item of (14). Due to the mean value theorem

T l
i (p)− T l

i (p+Δeiα) = Δeiα
1

2πi

∫
|ξ−p|=δ

T l
i (ξ)

(ξ − p−Δeiα)(ξ − p)dξ. (19)

From (19) we obtain the inequality:

|T l
i (p)− T l

i (p+Δeiα)| ≤ Δ

δ −ΔMil. (20)

As previously for the original
˜̃
Qi

l(t) of T l
i (p+Δeiα)−T l

i (p)
D(p+Δeiα) we obtain the following

estimate: ∣∣∣∣ ˜̃Qi
l(t)
∣∣∣∣ ≤ Δ

δ −Δ |Q
i
l(t)|. (21)

From (15), (18), (20), and (21) we estimate Ωi
l (t):

|Ωi
l (t)| ≤

(
eΔT − 1 +

Δ

δ −Δ
)

mn

|cmn|δmn
Mile

ρT . (22)

The original fi(t) of Fi(p) is composite. Each component of fi(t) is a sum of
exponents with polynomial coefficients. It is estimated with respect to maximums
of coefficients at the corresponding segments and values of exponents at the
right-hand ends of the segments. Denote

maxt∈[0,T ]|fi(t)| = Mfi. (23)

Evaluating the convolution of originals for (12) we obtain the estimate for Ψl(t):

maxt∈[0,T ]|Ψl(t)| ≤ (eΔT − 2)
mnT

|cmn|δmn

n∑
i=1

Mfi Mil e
ρT .

Denote

Λl =
mnT

|cmn|δmn

n∑
i=1

Mfi Mil e
ρT . (24)

Consider (11). The polynomial Si(p) has no original. Denote∑n
i=1 Si(p)T l

i (p) = Kl(p),
Kl(p)
D(p) = Nl(p). Then (11) may be written as

Kl(p)
D(p)

− Kl(p)
D(p+Δeiα)

=
Kl(p)
D(p)

− Kl(p+Δeiα)
D(p+Δeiα)

+

Δeiα
1

2πi

∫
|ξ−p|=δ

Nl(p)
(ξ − p−Δeiα)(ξ − p)dξ. (25)

For the originalRl(t) ofNl(p) the representation like (16) is possible. Evaluations
analogues to previous reduce to the estimations:

maxt∈[0,T ]|Rl(t)| ≤ mnT

|cmn|δmn

n∑
i=1

max|p|≤ρ|Si(p)| Mil e
ρT . (26)



An Algorithm for Symbolic Solving of Differential Equations 221

From (5) it is evident that

max|p|≤ρ|Si(p)| ≤
m−1∑
ν=k

|ai
ν+1,j |ρν−k|xk

oj |. (27)

Denote

Ll =
mnT

|cmn|δmn

n∑
i=1

max|p|≤ρ|Si(p)| Mil e
ρT . (28)

Similarly to previous evaluations we obtain for the original Θl(t) of (11):

|Θl(t)| ≤ (eΔT − 1 +
Δ

δ −Δ ) Ll. (29)

Finally, from (22) and (29) we obtain the following estimation for xl(t):

maxt∈[0,T ]|xl(t)− x̃l(t)| ≤
(
eΔT − 1 +

Δ

δ −Δ
)

(Λl + Ll) . (30)

We shall suppose that k
k+1δ < Δ < δ, k ≥ 0. Then inequality (30) looks like

maxt∈[0,T ]|xl(t)− x̃l(t)| ≤
(
eΔT − 1 + k

)
(Λl + Ll) . (31)

Starting from (9) and (31) we require

(
eΔT − 1 + k

)
(Λl + Ll) < ε. (32)

From (32) we find the estimation for Δ for each l, denote it by Δl:

Δl <
1
T

ln
(
ε (Λl + Ll)

−1 + 1− k
)
. (33)

We shall take

k < minl (Λl + Ll)
−1
. (34)

Note that calculations in [NMal05a], [NMal05b] implied k = 0.
Finally, we choose Δ = minlΔl.
The theorem is proved.
According to the theorem construct an algorithm for estimation.



222 N. Malaschonok

Stage 4. Algorithm for estimation of accuracy

Step 4.1. Consider the matrix of system (6), calculate its submatrices and their
elements the polynomials γη,λ(p). Calculate mη,λ = max|p|=ρ|γη,λ(p)| and Mil

(see (17)).

Step 4.2. Calculate Mfi (see (23)).

Step 4.3. Calculate Λl (see (24)) according to values of δ and ρ as it was
considered.

Step 4.4. Calculate Ll (see (28)), evaluating the polynomials Sl(p) as in (27).

Step 4.5. The final result Δl and Δ = minlΔl according to (33) and (34).

3 On the Complexity of the Algorithm

The complexity of the algorithm depends upon the complexity of three main
operations: solving the system with polynomial coefficients at step 2.2, solving
the system with constant coefficients for a representation in partial fractions at
step 3.3, determination of the polynomial roots at step 3.2.

The right-hand side of system (6) at step 2.2 is the linear combination of
exponents, the coefficients of which are the rational fractions. So step 2.2 is
reduced mainly to the following operations: calculation of inverse polynomial
matrix, multiplying polynomial matrices by polynomial vectors. The complexity
for various algorithms of these calculations so as for solving systems at step 3.3
is estimated in [Mal91]. The fastest method for solving such systems is p-adic
method ([Mal03]). The best for parallel machine is the modula method based on
Chinese Remainder Theorem.

The complexity for step 3.2 may be found, for example, in [Akr89].

4 Example

Data system {
x

′′′
1 − x′

1 − 2x1 − x′′′
2 + x2 = f1

3x
′′′
1 + x

′′
1 − 2x

′
1 + x

′′′
2 + x2 = f2.

Functions f1 and f2 and numbers til :
f1
1 = et, f2

1 = t2e2t, t11 = 0, t21 = 1;
f1
2 = tet, f2

2 = e2t, t12 = 0, t22 = 1.
Initial conditions:
x0

01 = 5, x1
01 = 10, x2

01 = 30, x0
02 = 4, x1

02 = 14, x2
02 = 20.

Step 1.1.

− 2X1 − pX1 + p3X1 + X2 − p3X2 − (10− 4p− 4p2+5(−1 + p2));
−2pX1 + p2X1 + 3p3X1 + X2 + p3X2 − (110 + 14p+ 4p2 + 10(1+ 3p)+

5(−2 + p + 3p2)).



An Algorithm for Symbolic Solving of Differential Equations 223

Step 1.2.
f1 := (f21 − f11)UnitStep[(t− t21)] + f11UnitStep[t];
f2 := (f22 − f12)UnitStep[(t− t22)] + f12UnitStep[t].

Step 1.3.

F1 = 1
−1+p

− e1−p

−1+p
+ e2−p(p2−2p+2)

(−2+p)3 ; F2 = e2−p

−2+p
+ 1

(−1+p)2 − e1−pp
(−1+p)2 .

Step 2.1.

−2X1 − pX1+ p3X1 + X2 − p3X2=
10− 4p− 4p2 + 5(−1+ p2) + 1

−1+p
− e1−p

−1+p
+ e2−p(p2−2p+2)

(−2+p)3 ;

−2pX1 + p2X1+3p3X1 + X2 + p3X2=
110 + 14p+ 4p2 + 10(1+ 3p) + 5(−2 + p + 3p2)+
e2−p

−2+p + 1
(−1+p)2 − e1−pp

(−1+p)2 .

Step 2.2.

X1(p) =
e−p(8e + 2e2 − 4ep− 4e2p + 2ep2 + 2e2p2 + 9ep3 − 6e2p3 − 19ep4+

12e2p4 + 11ep5 − 8e2p5 − 2ep6 + 2e2p6)/((−2 + p)3(−1 + p)(−2 + p−
p2 − 4p3 − 3p4 + p5 + 4p6))+

(−856+ 1692p− 982p2 + 1061p3 − 1991p4 + 1398p5 − 412p6 + 160p7−
95p8 + 20p9)/((−2 + p)3(−1 + p)(−2 + p− p2 − 4p3 − 3p4 + p5 + 4p6));

X2(p)=
e−p(−8e2 − 32ep+ 24e2p + 64ep2 − 28e2p2 − 32ep3 + 17e2p3 − 24ep4 − 5e2p4+

34ep5 − 3e2p5 − 14ep6 + 5e2p6 + 2ep7 − 2e2p7)/((−2 + p)3(−1 + p)2(−2+
p− p2 − 4p3 − 3p4 + p5 + 4p6)+
(1776− 4576p+ 3568p2 − 1404p3 + 2465p4 − 2751p5 + 841p6 + 133p7+
2p8 − 68p9 + 16p10)/((−2 + p)3(−1 + p)2(−2+p−p2−4p3−3p4+p5+4p6)).

Step 3.1. D(p) = −2+ p− p2 − 4p3 − 3p4 + p5 + 4p6.
To be short we produce the final results on the error of the roots. For arbitrary

T :
Step 4.3. Λ1 = (6240T3 + 20160T2)e5T, Λ2 = (6240T3 + 6720T2)e5T.
Step 4.4.
L1 = 9438240e4T; L2 = 3874080e4T.
We shall take two variants of k.
Let k = 1

2minl (Λl + Ll)
−1. The following table demonstrates the values of Δ

according to ε and T :

T \ε ε = 0.1 ε = 0.01 ε = 0.001
T = 2 8.06 · 10−13 8.06 · 10−14 7.99 · 10−15

T = 3 6.22 · 10−15 6.66 · 10−16 7.14 · 10−17



224 N. Malaschonok

Let k = 1
10minl (Λl + Ll)

−1. Then we obtain the corresponding table:

T \ε ε = 0.1 ε = 0.01 ε = 0.001
T = 2 1.45 · 10−12 1.45 · 10−13 1.44 · 10−14

T = 3 1.12 · 10−14 1.11 · 10−15 1.48 · 10−16

We shall take Δ = 10−15 and calculate approximate roots of D(p).
p∗1 = −1.00000000000000, p∗2 = −0.594937842169665− i0.830713582043548,
p∗3 = −0.594937842169665+ i0.830713582043548, p∗4 = 0.355937297682321−
i0.513128324882554, p∗5 = 0.355937297682321+ i0.513128324882554, p∗6 =
1.22800108897469.

The decomposition into the sum of partial fractions is rather bulky, so we
omit some steps and produce the final result – the solution of the system of
differential equations .

x1(t) =tt10.031249e−t− 1.25et + 5.538602e1.228001t+
2e0.355937t(−3.735568Cos0.513128t+ 15.529795Sin0.513128t)+
2e−0.594937t(−0.924357Cos0.830713t+ 0.061193Sin0.830713t);

x2(t) 10.03125e−t + 0.5et − 8.948223e1.228001t + 0.5ett+
2e0.355937t(−0.493116Cos0.513128t+ 33.959275Sin0.513128t)+
2e−0.594938t(1.701602Cos0.830713t+ 0.929609Sin0.830713t).

5 Conclusion

Let us adduce advantages of the algorithm presented in the paper.
1. The Laplace transform is a way for symbolic solving of differential equations

as it reduces the solution process to algebraic manipulations.
2. Representation of righthand side functions by sums of exponents with poly-

nomial coefficients (in a case when it is possible) makes the Laplace transform
completely symbolic.

3. The algebraic system obtained after the Laplace transform may be solved
by methods most convenient and efficient for each specific case.

4. Decomposition of algebraic equations into a sum of partial fractions with
exponential coefficients provides a symbolic character of the inverse Laplace
transform.

5. An algorithm to compute an error of calculations sufficient to obtain a
preassigned accuracy of solution of a system of linear differential equations is
presented. This method is realized according to the input data. It does not
demand the exact solution of the system.

References

[Akr89] Akritas, A.G.: Elements of Computer Algebra with Applications. J.
Wiley Interscience, New York (1989)

[BurgHall05] Burghelea, D., Haller, S.: Laplace transform, dynamics and spectral
geometry (January 17, 2005) arXiv:math.DG/0405037v2



An Algorithm for Symbolic Solving of Differential Equations 225

[DahSN99] Dahiya, R.S., Saberi-Nadjafi, J.: Theorems on n-dimensional Laplace
transforms and their applications. In: 15th Annual Conf. of Applied
Math., Univ. of Central Oklahoma, Electr. Journ. of Differential Equa-
tions, Conf. 02, pp. 61–74 (1999)

[DST87] Davenport, J., Siret, Y., Tournier, E.: Calcul Formel. Systemes et Al-
gorithmes de Manipulations Algebriques. MASSON, Paris (1987)

[GG99] Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra.
Cambridge University Press, Cambridge (1999)

[Mal91] Malaschonok, G.I.: Algorithm for the solution of systems of Linear
Equations in commutative rings. In: Mora, T., Traverso, C. (eds.)
Effective Methods in Algebraic Geometry. Progress in Mathematics,
vol. 94, pp. 289–298. Birkhauser, Basel (1991)

[Mal97] Malaschonok, G.I.: Recursive Method for the Solution of systems
of Linear Equations. In: Computational Mathematics, 15th IMACS
World Congress, Berlin, August 1997, vol. I, pp. 475–480. Wissenschaft
und Technik Verlag, Berlin (1997)

[Mal00] Malaschonok, G.I.: Effective Matrix Methods in Commutative Do-
mains. In: Formal Power Series and Algebraic Combinatorics,
pp. 506–517. Springer, Berlin (2000)

[Mal03] Malaschonok, G.I.: Solution of systems of linear equations by the
p-adic method. Programming and Computer Software 29(2), 59–71
(2003)

[NMal05a] Malaschonok, N.: An algorithm to settle the necessary exactness in
Laplace transform method. In: Computer Science and Information
Technologies, Berlin, pp. 453–456 (2005)

[NMal05b] Malaschonok, N.: Estimations in Laplace transform method for solu-
tions of differential equations in symbolic computations. In: Differential
Equations and Computer Algebra Systems, Minsk, pp. 195–199 (2005)

[NMal06] Malaschonok, N.: Parallel laplace method with assured accuracy
for solutions of differential equations by symbolic computations. In:
Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006.
LNCS, vol. 4194, pp. 251–260. Springer, Heidelberg (2006)

[MY97] Mizutani, N., Yamada, H.: Modified Laplace transformation method
and its applications to anharmonic oscillator, February 12 (1997)

[Pod97] Podlubny, I.: The Laplace transform method for linear differential
equations of the fractional order, October 30 (1997) arXiv:funct-
an/9710005v1



Lazy and Forgetful Polynomial Arithmetic
and Applications

Michael Monagan1 and Paul Vrbik2

1 Simon Fraser University, Department of Mathematics, Burnaby, B.C. Canada
2 The University of Western Ontario, Department of Computer Science, London, ON

Canada

Abstract. We present lazy and forgetful algorithms for multiplying and
dividing multivariate polynomials. The lazy property allows us to com-
pute the i-th term of a polynomial without doing the work required to
compute all the terms. The forgetful property allows us to forget earlier
terms that have been computed to save space. For example, given polyno-
mials A, B, C, D, E we can compute the exact quotient Q = A×B−C×D

E

without explicitly computing the numerator A×B−C×D which can be
much larger than any of A,B, C, D, E and Q. As applications we apply
our lazy and forgetful algorithms to reduce the maximum space needed
by the Bareiss fraction-free algorithm for computing the determinant of
a matrix of polynomials and the extended Subresultant algorithm for
computing the inverse of an element in a polynomial quotient ring.

1 Introduction

Lazy algorithms were first introduced into computer algebra systems by Burge
and Watt [3] where they were used in Scratchpad II for power series arithmetic.
But not all of the lazy power-series algorithms were efficient. For example, the
most obvious algorithm for computing exp(f(x)) to O(xn) requires O(n3) arith-
metic operations whereas the lazy algorithm in [3] required O(n4). In [9] Watt
showed how to reduce this to O(n2).

van der Hoeven considers lazy algorithms for multiplication of power series to
O(xn) which are asymptotically fast [8]. A lazy analogue of Karatsuba’s divide
and conquer algorithm is given which does O(nlog2 3) arithmetic operations (the
same as the as non-lazy algorithm) but uses O(n log n) space, an increase of a
factor of logn. van der Hoeven also gives a lazy multiplication based on the
FFT which does O(n log2 n) arithmetic operations, a factor of logn more than
the non-lazy multiplication. However, all of these results assume dense power
series and our interest is the sparse case.

Let D be an integral domain and R = D[x1, x2, ..., xn] be a polynomial ring.
Let f = f1 + f2 + ... + fn be a polynomial in R where each term fi of f is of
the form fi = aiXi where ai ∈ D and Xi is a monomial in x1, ..., xn. Two terms
aiXi, ajXj are like terms if Xi = Xj . We say f is in standard form if ai �= 0
and X1 � X2 � · · · � Xn in a monomial ordering &. This form is often called

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 226–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Lazy and Forgetful Polynomial Arithmetic and Applications 227

the sparse distributed form for polynomials in R. In what follows we use #f to
indicate the number of terms of f .

Let f, g be polynomials in the standard form. Johnson’s [5] multiplication
algorithm is based on the observation that multiplying f = f1 + · · · + fn by
g = g1 + · · ·+ gm can be done by executing a simultaneous m-ary merge on the
set of sorted sequences

S = {(f1g1, . . . , fng1), . . . , (f1gm, . . . , fngm)}.
Johnson used a heap H, initialized to contain the terms f1g1, f1g2, . . . , f1gm,
to merge the m sequences. The number of terms in this heap never exceeds
#g and inserting into and extracting terms from H costs O(log #g) mono-
mial comparisons per insertion/extraction. Therefore, since all #f#g terms are
eventually inserted and extracted from the heap, the algorithm does a total of
O(#f#g log #g) monomial comparisons and requires auxiliary space for at most
#g terms in the heap plus space for the output.

Monagan and Pearce [6] extended this heap algorithm to polynomial division.
Recall that when we do f ÷ g we are trying to construct the quotient q and
remainder r such that f − qg − r = 0. One could use a heap to store the sum
f − qg by merging the set of #g + 1 sorted sequences

{(f1, . . . , fn), (−q1g1, . . . ,−qkg1), . . . , (−q1gm, . . . ,−qkgm)}
where m = #g and k = #q. Alternatively we may see the heap as storing the
sum f −∑m

i=1 gi × (q1 + q2 + · · ·+ qk).
These heap algorithms dealt only with the so-called zealous (non-lazy) poly-

nomials. Our contributions are the variations of these algorithms that enable us
to compute in a lazy and forgetful manner.

2 Lazy Arithmetic

The intended purpose of working in a lazy way is to improve performance by
avoiding unnecessary calculations. To apply this to polynomial arithmetic we
restrict access to a polynomial to that of a single term. Furthermore, we save
intermediate results from this calculation so that the i-th term where i ≤ n will
be ‘calculated’ instantaneously.

Definition 1. A lazy polynomial, F , is an approximation of the polynomial
f = f1 + · · ·+ fn (in standard form), given by FN =

∑N
i=1 fi where N ≥ 0. To

ensure FN is always defined we let fi = 0 when i > n. This admits the useful
notation F∞ = f .

The terms F1, . . . , FN are called the forced terms of F and the nonzero terms
of f − FN are called the delayed terms of F . We denote the number of forced
terms of a lazy polynomial F by |F | (and to be consistent let #F = |F∞| = #f).

A lazy polynomial must satisfy two conditions regarding computation: all the
forced terms of F are cached for re-access and calculating a delayed term of F
should force as few terms as possible.



228 M. Monagan and P. Vrbik

Let us refine our focus and address the problem of determining the n-th term
of a polynomial when it is the result of some operation. We will use the heap
methods for division and multiplication and a simple merge for addition. Since
these methods build the result in &-order anyway, we simply halt and return
once n non-zero terms are generated. But, in order to initially populate the heap
one polynomial must be fully forced. We give an optimization that avoids this.

Claim. Let f, g be polynomials in the standard form and S[j] = (f1gj, . . . , fngj).
If f1gj is in the heap H , then no term of the sequences S[j + 1], . . . , S[m] can
be the �-largest term of H .

Proof. By the definition of a monomial ordering we have: if gj � gj+1 � . . . �
gm, then f1gj � f1gj+1 � . . . � f1gm. As f1gj+1, . . . , f1gm are (respectively) the
&-largest terms of S[j + 1], . . . , S[m], it follows that f1gj is &-larger than any
term of S[j + 1], . . . , S[m]. The claim is an immediate consequence of this.

This claim gives a natural replacement scheme that ensures no term is prema-
turely calculated and put in the heap. For multiplication this is reflected in lines
(13)-(15) of Algorithm 2. For division we replace a term coming out of the heap
with the &-next largest term in the sequence it was taken from. That is, we
replace fi with fi+1 and −qigj with −qi+1gj (we also use the optimization that
says only add −q1gj+1 after removing −q1gj). However, it is possible that we
remove −qi−1gj before qi is known, in which case we would not be able to insert
the term −qigj. But, since −qigj can certainly not be required to calculate qi,
the terms needed to determine qi must already be in the heap. Therefore, we
can just remember the terms that should have been added to the heap, and
eventually add them once qi has been calculated. In the lazy division algorithm,
this is referred to as ‘sleeping’.

We also require no work to be repeated to calculate XN−1, . . . , X1 after cal-
culating XN . To achieve this we pass our algorithms the approximation XN ,
which must also record the state of the algorithm that generated it. Specifically,
it must remember the heap the calculation was using and local variables that
would otherwise get erased (we will assume that this information is associated
with XN in some way and can be retrieved and updated).

Lazy algorithms for doing multiplication and division are now presented. Note
that the algorithm for division returns terms of the quotient (while updating the
remainder), but could easily be modified to instead return terms of the remainder
(while updating the quotient). Complexity results for multiplication and division
follow their respective algorithms.

Algorithm 2 - Lazy Multiplication

Input: The lazy polynomials F and G so that F∞ = f and G∞ = g, a positive integer
N (the desired term), and the lazy polynomial X so that X∞ = f × g.

Output: The N-th term of the product f × g.
1: if N ≤ |X| then {XN has already been calculated.} return XN ; end if
2: if |X| = 0 then
3: {X has no information.}



Lazy and Forgetful Polynomial Arithmetic and Applications 229

4: Initialize a heap H and insert (F1G1, 1, 1); {Order the heap by � on the mono-
mials in the first position.}

5: k ← 1;
6: else
7: Let H be the heap associated with X;
8: k ← number of elements in H ;
9: end if

10: while H is not empty do
11: t ← 0;
12: repeat
13: Extract (s, i, j) ← Hmax from the heap and assign t ← t + s;
14: if Fi+1 �= 0 then Insert (Fi+1Gj , i + 1, j) into H ; end if
15: if i = 1 and Gj+1 �= 0 then Insert (F1Gj+1, 1, j + 1) into H ; end if
16: until (H is empty) or (t and Hmax are not like terms);
17: if t �= 0 then (Xk, k) ← (t, k + 1); end if
18: if k = N then Associate the heap H with X; return Xk; end if
19: end while
20: Associate the (empty) heap H with X;
21: return 0;

Theorem 1. To force every term of X (that is to completely determine the
standard form of f × g) in Algorithm 2, requires O(#f#g log #g) monomial
comparisons, space for a heap with at most #g terms, and space for O(#f#g)
terms of the product.

Proof. Proceeding as in [7], the size of the heap is not effected by line 14, as
this merely replaces the term coming out of the heap in line 13. The only place
the heap can grow is on line 15, which is bounded by the number of terms of g.
Therefore O(#g) space is required for the heap. Since the product f × g has at
most #f#g many terms it will require O(#f#g) space.

Extracting/inserting from/to a heap with #g elements does O(log #g) many
monomial comparisons. As every term of the product passes through the heap,
we do O(#f#g) extractions/insertions totalingO(#f#g log #g) monomial com-
parisons.

Remark 1. It is possible to improve multiplication so that the heap requires space
for only min(#f,#g) terms and the number of monomial comparisons done is
O(#f#g log min(#f,#g)). If #f < #g and we could switch the order of the
input (i.e. calculate g × f instead of f × g) then the heap would be of size #f .
But we we may not know #f and #g! So, we must quote the worst case scenario
in our complexities (in fact we will emphasize this by using max(#f,#g)).

Algorithm 3 - Lazy Division

Input: The lazy polynomials F and G so that F∞ = f and G∞ = g, a positive integer
N (the desired term), and the lazy polynomials Q and R so that f = g×Q∞+R∞.

Output: The N-th term of the quotient from f ÷ g.
1: if F1 = 0 then return 0; end if
2: if N ≤ |Q| then {QN has already been calculated.} return QN ;
3: if |Q| = 0 then



230 M. Monagan and P. Vrbik

4: {Q has no information.}
5: Initialize a new heap H and insert F1 into H ;
6: s ← 2;
7: else
8: Let H be the heap associated with Q;
9: end if

10: while H is not empty do
11: t ← 0;
12: repeat
13: Extract x ← Hmax from the heap and assign t ← t + x;
14: if x = Fi and Fi+1 �= 0 then
15: Insert Fi+1 into H ;
16: else if x = GiQj and Qj+1 is forced then
17: Insert −GiQj+1 into H ;
18: else if x = GiQj and Qj+1 is delayed then
19: s ← s + 1; {Sleep −GiQj+1}
20: end if
21: if x = GiQ1 and Gi+1 �= 0 then Insert −Gi+1Q1 into H ; end if
22: until (H is empty) or (t and Hmax are not like terms)
23: if t �= 0 and g1|t then
24: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}
25: for k from 2 to s do
26: Insert −Gk · t/G1 into H ; {Insert all terms that are sleeping into H}
27: end for
28: else
29: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
30: end if
31: if |Q| = N then Associate the heap H with Q; return QN ; end if
32: end while
33: Associate the (empty) heap H with Q;
34: return 0;

Theorem 2. To force every term of Q and R (that is to completely determine
q and r such that f = g× q+ r) in Algorithm 3 requires O((#f +#q#g) log #g)
many monomial comparisons, space for a heap with O(#g) terms, and space for
O(#q + #r) terms of the solution.

Proof. Proceeding as in [6], the size of the heap H , denoted |H | is unaffected
by lines 15 and 17 since these lines only replace terms coming out of the heap.
Line 19 merely increments s and does not increase |H |. The only place where
H can grow is line 21 in which a new term of g is added to the heap, this is
clearly bounded by #g. It is clear that we require O(#q + #r) space to store
the quotient and remainder.

All terms of f and q×g are added to the heap, which is #f+#q#g terms. Pass-
ing this many terms through a heap of size #g requires O((#f +#q#g) log #g)
monomial comparisons.



Lazy and Forgetful Polynomial Arithmetic and Applications 231

3 Forgetful Arithmetic

We propose a variant to lazy polynomial arithmetic that has useful properties.
Consider that the operations from the previous section can be composed to form
polynomial expressions. For example, we could use lazy arithmetic to calculate
the n-th term of say, A × B − C × D. When we do this we store the interme-
diate terms But, if re-access was not required we could ‘forget’ these terms. A
‘forgetful’ operation is like a lazy operation but intermediate terms won’t be
stored. Forgetful operations are potentially useful when expanding compounded
polynomial expressions with large intermediate subexpressions.

We can make some straightforward modifications to our lazy algorithms to
accomplish this forgetful environment. Essentially all that is required is the re-
moval of lines that save terms to the solution polynomial (i.e. lines that look
like Xi ← �) and eliminating any references to previous terms (or even multiple
references to a current term). To emphasize this change we will limit our access
to a polynomial by way of a next command.

Definition 2. For some lazy polynomial F and monomial order &, the next

command returns the &-next un-calculated term of a polynomial (eventually re-
turning only zeros).

Remark 2. The next command satisfies: next (F ) � next (F ) � · · · � next (F )
= 0 = next (F ) = · · · and next (F ) + next (F ) + next (F ) + · · · = F∞.

Definition 3. A forgetful polynomial is a lazy polynomial that is accessed solely
via the next command. That is, intermediate terms of F are not stored and
can only be accessed once. If the functionality to re-access terms is restored in
any way (i.e. by caching any term but the current term in memory), F is no
longer considered to be a forgetful polynomial. Thus, for a forgetful polynomial
F , calculating Fn+1 forfeits access to the terms F1 through Fn, even if these
terms have never been accessed.

Although it would be ideal to have all of our forgetful routines take forgetful
polynomials as input and return forgetful polynomials as output, this is not
possible without caching previous results. Consider multiplication for instance.
Assuming that we must multiply each term of f by each term of g and we are
limited to single time access to terms, this task is impossible. For if we calculate
f1g2 we cannot then calculate f2g1 and vice versa.

For the same reason our division algorithm can not accept a forgetful divisor
as it must be repeatedly multiplied by terms of the quotient (thus the quotient
can not be forgetful either). However, the dividend can be forgetful which is a
highly desirable feature (see Section 5). The only ‘fully’ forgetful (forgetful input
and output) arithmetic operation we can have is addition (although polynomial
differentiation and scalar multiplication are also fully forgetful).

The variant of multiplication that takes as input lazy polynomials, returning
a forgetful polynomial, is a trivial change to Algorithm 2. In this case all that
must be done is to remove the ‘if’ statement on line 18 so that the &-next,



232 M. Monagan and P. Vrbik

instead of the N -th, term is returned. As this is not a significant change, we
will not present an algorithm for forgetful multiplication. Division will take as
input a forgetful dividend and lazy divisor returning a fully forced quotient and
remainder.

Theorem 3. When multiplying f by g the worst case storage complexity for
forgetful multiplication is O(max(#f,#g)) (the storage required for the heap).

Proof. A quick inspection of Algorithm 2 will show that the only time a previous
term of the product is used is on line 2 and line 18. In both cases the term is
merely being re-accessed and is not used to compute a new term of the product.
Since we do not store nor re-access terms of a forgetful polynomial, we can
eliminate the storage needed to do this requiring only space for a heap with
max(#f,#g) terms.

Algorithm 5 - Forgetful Division

Input: A forgetful polynomial F and lazy polynomial G so that F∞ = f and G∞ = g.
Output: The lazy polynomials Q and R so that f = g × Q∞ + R∞.
1: tF ← next (F );
2: if tF = 0 then Set Q and R to zero; return Q and R; end if
3: Initialize a new heap H and insert tF into H ;
4: s ← 2;
5: while H is not empty do
6: t ← 0;
7: repeat
8: Extract x ← Hmax from the heap and assign t ← t + x;
9: if x = tF then

10: tF = next (F )
11: if tF �= 0 then
12: Insert tF into H ;
13: end if
14: else if x = GiQj and Qj+1 is forced then
15: Insert −GiQj+1 into H ;
16: else if x = GiQj and Qj+1 is delayed then
17: s ← s + 1; {Sleep −GiQj+1}
18: end if
19: if x = GiQ1 and Gi+1 �= 0 then
20: Insert −Gi+1Q1 into H ;
21: end if
22: until (H is empty) or (t and Hmax are not like terms)
23: if t �= 0 and g1|t then
24: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}
25: for k from 2 to s do
26: Insert −Gk · t/G1 into H ; {Insert all terms that are sleeping into H}
27: end for
28: else
29: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
30: end if
31: end while
32: return Q and R;



Lazy and Forgetful Polynomial Arithmetic and Applications 233

In its current form Algorithm 5 returns a fully forced quotient Q and re-
mainder R. It is straightforward to modify this algorithm to return a forgetful
remainder instead. We simply have line 29 return t instead of saving a term to
the remainder and change line 32 to return 0 (for when terms of R have been
exhausted). In the interest of space we will assume this modification has been
done as:

Algorithm 6 - Forgetful Division (with forgetful remainder)

Input: The forgetful polynomial F and lazy polynomial G so that F∞ = f and
G∞ = g.

Output: The lazy polynomial Q and forgetful polynomial R so that f = g×Q∞+R∞.

Theorem 4. In algorithm 6, when calculating f÷g the space required ( including
space for the input) to force every term of the forgetful remainder R is:

1. Space for a heap with #g terms. 2. Space for #q terms of the quotient.
3. Space for #g terms of the divisor. 4. Space for one term of the dividend f .

Proof. .

1. As there has been no change to the division algorithm, Theorem 2 implies
the heap has #g many terms.

2. To fully force every term of a lazy polynomial Q requires storage for #q
many terms.

3. As G is a lazy polynomial that will be fully forced during the execution we
require space to store #g many terms for the divisor.

4. As F is a forgetful polynomial we are restricted to only accessing one term
from F at a time (where no previously calculated terms are cached). There-
fore we only require space to store one term of f .

4 Implementation

We have implemented a C-library for doing lazy (and forgetful) arithmetic for
polynomials with coefficients that are machine integers modulo p, for p some

Listing 1.1. The lazy polynomial structure

1 struct poly {
2 int N;
3 TermType ∗ terms ;
4 struct poly ∗F1 ;
5 struct poly ∗F2 ;
6 TermType (∗Method ) ( int n , struct poly ∗F,
7 struct poly ∗G, struct poly ∗H) ;
8 int s t a t e [ 6 ] ;
9 HeapType ∗Heap ;

10 } ;
11 typedef struct poly PolyType ;



234 M. Monagan and P. Vrbik

machine prime. In our implementation we represent monomials as single machine
integers (which allows us to compare and multiply monomials in one machine
instruction). This representation, analyzed by Monagan and Pearce [6], is based
on Bachmann and Schönemann’s scheme [1]. The C-structure we are using to
represent a lazy polynomial is given below.

The variable N is the number of forced terms, and F1 and F2 are two other
lazy polynomials which the procedure Method (among ADD, MULT, DIVIDE, and
DONE) is applied to. As previously discussed Method requires three inputs, two
lazy polynomials to operate on, and a third lazy polynomial where the solution
is stored (and where the current heap can be found). The array state[6] is a
place to put local variables that get erased but need to be maintained, and Heap
is the heap which the procedure Method uses.

The procedure Term produces the n-th term of the lazy polynomial F , calcu-
lating it if necessary, enabling us to follow the pseudo-code given more directly
as Term(i,F) = Fi.

Listing 1.2. Term

1 TermType Term ( int n , PolyType ∗F) {
2 i f (n>F−>N) {
3 return F−>Method (n ,F−>F1 ,F−>F2 ,F ) ;
4 }
5 return F−>terms [ n ] ;
6 } ;

Table 1. Benchmarks for Maple’s SDMP package [7], Singular, and our lazy package
on sparse examples

f × g mod 503 (fg) ÷ f mod 503
SDMP Singular Lazy SDMP Singular Lazy

f = (1 + x + y2 + z3)20 0.26 0.28 1.2 0.28 0.38 1.4

g = (1 + z + y2 + x3)20

f = (1 + x + y3 + z5)20 0.35 0.67 1.3 0.38 0.65 1.4

g = (1 + z + y3 + x5)20

f = (1 + x + y3)100 2.2 1.1 10.8 2.5 2.04 11.1

g = (1 + x3 + y)100

Many details about the implementation have been omitted but we note that
we have built a custom wrapper that interfaces the C-library with Maple (a
non-trivial technical feat). This allows us to manipulate polynomials in a lazy
way at the Maple level but do calculations at the C level.



Lazy and Forgetful Polynomial Arithmetic and Applications 235

Benchmarks are given in Table 1 where we see that calculating in a lazy/
forgetful manner is 3 − 5 times slower than calculating directly with Monagan
and Pearce’s SDMP package (see [7]) or Singular. Roman Pearce pointed out
that this is because we are not using chaining in our heap implementations.
Chaining is a technique where like terms are grouped together in a linked list
to dramatically reduce the number of monomial comparisons in the heap opera-
tions. In [7], Monagan and Pearce show that chaining improves the performance
of multiplication and division using heaps by a factor of 3− 5.

5 Applications

We give two similar, but nonetheless independently important, applications of
forgetful polynomial arithmetic: the Bareiss algorithm and the Subresultant algo-
rithm. These algorithms both have a deficiency in that intermediate calculations
can become quite large with respect to the algorithms output. By using forgetful
operations we can bypass the need to explicitly store intermediate polynomials
and thus reduce the operating space of the each algorithm significantly.

5.1 The Bareiss Algorithm

The Bareiss algorithm is ‘fraction free’ approach for calculating determinants
due to Bareiss [2] who noted that the method was first known to Jordan. The
algorithm does exact divisions over any integral domain to avoid fractions.

The Bareiss algorithm is given below. In the case where Mk,k = 0 (which
prevents us from dividing by Mk,k in the next step) it would be straightforward
to add code (between lines 2 and 3) to find a non-zero pivot. For the purpose of
this exposition we assume no pivoting is required.

Algorithm 6 - Bareiss Algorithm

Input: M an n-square matrix with entries over an integral domain D.
Output: The determinant of M.
1: M0,0 ← 1;
2: for k = 1 to n − 1 do
3: for i = k + 1 to n do
4: for j = k + 1 to n do

5: Mi,j ← Mk,kMi,j−Mi,kMk,j

Mk−1,k−1
; {Exact division.}

6: end for
7: end for
8: end for
9: return Mn,n

The problem is the exact division in line 5. In the final division where the
determinant Mn,n is obtained by dividing by Mn−1,n−1 the dividend must
be larger than the determinant. It is quite possible (in fact typical) that this



236 M. Monagan and P. Vrbik

calculation (of the form A×B−C×D
E ) produces a dividend that is much larger

than the corresponding quotient and denominator. This final division can be the
bottleneck of the entire algorithm.

Example 1. Consider the symmetric Toeplitz matrix with entries from the poly-
nomial ring Z[x1, x2, . . . , x9] generated by [x1, . . . , x9],⎡⎢⎢⎢⎢⎢⎣

x1 x2 x3 · · · x9

x2 x1 x2 · · · x8

x3 x2 x1 · · · x7

...
. . . . . . . . .

...
x9 · · · x3 x2 x1

⎤⎥⎥⎥⎥⎥⎦ .

When calculating the determinant of this matrix using Bareiss’ algorithm the
last division (in line 5 of Algorithm 6) will have a dividend of 128,530 terms,
whereas the divisor and quotient will only have 427 and 6,090 terms respectively.

To overcome this problem we use forgetful arithmetic to construct the quotient
of A×B−C×D

E without explicitly storing A×B−C×D (the forgetful algorithms
were invented to do precisely this calculation).

Theorem 5. Calculating Q = A×B−C×D
E (an exact division) with forgetful op-

erations requires space for at most O(max(#A,#B)+max(#C,#D)+#E+#Q)
terms at any one time.

Proof. We have from Theorem 3 that the products A × B and C × D require
at most max(#A,#B) and max(#C,#D) space, where the difference of these
products requires O(1) since it is merely a merge. As there is no remainder
because the division is exact, the division algorithm will use O(#E+#Q) storage
by Theorem 2. Summing these complexities gives the desired result.

The implications of this theorem can be observed in Table 2 where we have
measured the amount of memory used by our implementation of the Bareiss
algorithm with forgetful polynomials. The table shows a linear relationship with
the size of the input polynomials. For n = 8 the total space is reduced by a
factor of 57184/832 = 68 (compared to a Bareiss implementation that explicitly
stores the quotient), which is significant.

5.2 The Extended Subresultant Algorithm

Given a UFD D and non-constant polynomial m ∈ D[x], we can form the quo-
tient ring F [x]/ 〈m〉 where F is the fraction field of D. When m is an irreducible
element of D[x] (that is, there is no non-constant t ∈ D[x] such that t �= m
and t divides m), this quotient ring will be a field. Of course, when working
in fields it is natural to ask if there is a systematic way of finding inverses.
The extended subresultant algorithm does this by finding s, t ∈ D[x] such that



Lazy and Forgetful Polynomial Arithmetic and Applications 237

Table 2. Let Q = A×B−C×D
E

be the division of line 5 of the Bareiss algorithm and
α = max(#A, #B) + max(#C,#D). The following is a measurement of memory used
by our implementation of the Bareiss algorithm using forgetful polynomials to calculate
Mn,n when given the Toeplitz matrix generated by [x1, . . . , x7].

n #A #B #C #D #E #A#B + #C#D α + #E + #Q 32-bit words �-comparisons
5 12 15 17 17 4 469 106 426 2817
6 35 51 55 55 12 4810 306 944 45632
7 35 62 70 70 12 7070 326 1462 70028
8 120 182 188 188 35 57184 832 3468 720696

s · u + t ·m = Res(u,m, x). In this case degx(s) < degx(m) and the inverse of
u ∈ F [x]/ 〈m〉 is s/Res(u,m, x).

Our interest is finding subresultants in D[x] and inverses in F [x] when D = Z

or D = Z[y, z, . . .]. The Subresultant algorithm uses pseudo-division instead of
ordinary division (which the regular Euclidean algorithm uses) to avoid com-
puting with fractions in the fraction field F of D. We recall the definition of
pseudo-remainder and pseudo-quotient.

Definition 4. Let f, g ∈ D[x]. The pseudo-quotient q̃ and pseudo-remainder
r̃ are the ordinary quotient and remainder of α × f divided by g where α =
lcoeffx (g)δ+1 and δ = degx(f)− degx(g). Thus they satisfy αf = q̃ g + r̃.

One can show (e.g. see Ch. 2. of [4]) that q̃ and r̃ are elements of D[x]. The
extended Subresultant algorithm is given by Algorithm 7. The operations degx,
prem, pquo, and lcoeffx, stand for the degree in x, pseudo-remainder, pseudo-
quotient and leading coefficient in x (respectively).

Algorithm 7 - Extended Subresultant Algorithm

Input: The polynomials u, v ∈ D[x] where degx(u) ≥ degx(v) and v �= 0.
Output: The resultant r = Res(u, v, x) ∈ D and s, t ∈ D[x] where s · u + t · v = r.
1: (g, h) ← (1,−1);
2: (s0, s1, t0, t1) ← (1, 0, 0, 1);
3: while degx(v) �= 0 do
4: d ← degx(u) − degx(v);
5: (r̃, q̃) ← (prem(u, v, x),pquo(u, v, x)); {r̃, q̃ are computed simultaneously.}
6: u ← v;
7: α ← lcoeffx (v)d+1;
8: (s, t) ← (α · s0 − s1 · q̃, α · t0 − t1 · q̃);
9: (s0, t0) ← (s1, t1);

10: v ← r̃ ÷ (−g · hd);
11: (s1, t1) ← (s ÷ (−g · hd), t ÷ (−g · hd))
12: g ← lcoeffx (u);
13: h ← (−g)d ÷ hd−1;
14: end while
15: (r, s, t) ← (v, s1, t1);
16: return r, s, t;



238 M. Monagan and P. Vrbik

Table 3. Let r̃, q̃ be from line 5 and v,−g · hd be from line 10 of Algorithm 7.
The following is a measurement of the memory used by our implementation of the
extended subresultant algorithm using forgetful polynomials to calculate Res(f, g, x1)
where f = x8

1 +
∑5

i=1

(
xi + x3

i

)
, g = x4

1 +
∑5

i=1 x2
i ∈ Z[x1, . . . , x5] at iteration n.

n #r̃ #q̃ #v #
(−g · hd

)
32-bit words �-comparisons

1 29 7 29 1 236 137
2 108 6 108 1 154 953
3 634 57 634 1 2,672 75,453
4 14,692 2412 2,813 70 83,694 25,801,600

A bottleneck occurs when finding the pseudo-remainder on line 5. It can be
easily demonstrated, especially when u and v are sparse polynomials in many
variables, that r̃ is very large relative to the dividend and quotient given by the
division on line 10. In fact r̃ can be much larger than the resultant Res(u, v, x).

Example 2. Consider the two polynomials f = x6
1+
∑8

i=1

(
xi + x3

i

)
and g = x4

1+∑8
i=1 x

2
i in Z[x1, . . . , x9]. When we apply the extended subresultant algorithm

to these polynomials we find that in the last iteration, the pseudo-remainder r̃
has 427, 477 terms but the quotient v has only 15, 071 (v is the resultant in this
case).

To solve this problem we let the pseudo-remainder be a forgetful polynomial
so that the numerator on line 10 does not have to be explicitly stored. This is
accomplished by using Algorithm 5 since (when f and g regarded as univariate
polynomials in x) calculating prem(f, g, x) is equivalent to dividing α × f by g
using ordinary division with remainder. Table 3 shows the benefit of calculating
in this manner. In the final iteration only a max 634+2412=3046 terms will need
to be explicitly stored to calculate a pseudo-remainder with 14,692 terms. Note,
in order to implement this pseudo-division in the sparse distributed form, the
monomial ordering used must satisfy Y xn � Zxn−1 for all monomials Y and Z
that do not involve x.

Conclusion

We presented algorithms for lazy and forgetful polynomial arithmetic and two
applications. These applications have demonstrated that the space complexity of
the Bareiss algorithm and extended Subresultant algorithm can be significantly
improved by using forgetful arithmetic, as proposed in this paper.

Acknowledgement. We wish to thank Dr. Jürgen Gerhard, Dr. Marc Moreno
Maza, Dr. Eric Schost, and Roman Pearce for their contributions to this work.



Lazy and Forgetful Polynomial Arithmetic and Applications 239

References

1. Bachman, O., Schönemann, H.: Monomial representations for Gröbner bases com-
putations. In: Proceedings of ISSAC, pp. 309–316. ACM Press, New York (1998)

2. Bareiss, E.F.: Sylvester’s identity and multisptep integer-preserving Gaussian elim-
ination. J. Math. Comp. 103, 565–578 (1968)

3. Burge, W.H., Watt, S.M.: Infinite structures in Scratchpad II. In: Davenport, J.H.
(ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 138–148. Springer,
Heidelberg (1989)

4. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer
Academic Publishers, Dordrecht (1992)

5. Johnson, S.C.: Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8(3), 63–71
(1974)

6. Monagan, M.B., Pearce, R.: Polynomial Division using Dynamic Arrays, Heaps, and
Packed Exponent Vectors. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 295–315. Springer, Heidelberg (2007)

7. Monagan, M., Pearce, R.: Sparse polynomial arithmetic using a heap. Journal of
Symbolic Computation - Special Issue on Milestones In Computer Algebra (2008)
(submitted)

8. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symbolic Computation 11(1-000)
(2002)

9. Watt, S.M.: A fixed point method for power series computation. In: Gianni, P. (ed.)
ISSAC 1988. LNCS, vol. 358. Springer, Heidelberg (1989)



On the Average Growth Rate of Random
Compositions of Fibonacci and Padovan

Recurrences

Nikita Gogin and Aleksandr Mylläri

University of Turku, Finland
alemio@utu.fi

Abstract. An integer sequence {tn} defined by the random recurrence
t0 = 0 t1 = 1, t2 = 1, tn+1 = tn−ξ + tn−1−ξ, n ≥ 2, where the random
variable ξ is equal to 0 or 1 with the probabilities p and q respectively, is
called a random composition of Fibonacci and Padovan recurrences. We
show that limn→∞ n

√
E(tn) is equal to the greatest absolute value of the

roots of the algebraic equation λ3 = pλ2 + λ + q.

1 Introduction

The Fibonacci numbers defined by

f0 = 0, f1 = 1, fn+1 = fn + fn−1, n ≥ 1 (1)

and the Padovan numbers defined by

p0 = 0, p1 = 1, p2 = 1, pn+1 = pn−1 + pn−2, n ≥ 2 (2)

both are widely known. It is also well-known that fn and pn both increase
exponentially with n→∞ at the rates

φ =
1 +

√
5

2
=

√
1 +
√

1 +
√

1 + . . . = 1.61803398 . . . (the golden ratio) (3)

and

γ =
(9−√

69)
1
3 + (9 +

√
69)

1
3

2
1
3 3

2
3

=
3

√
1 +

3
√

1 + 3
√

1 + . . . (4)

= 1.32471795 . . . (the plastic number)

respectively, where
φ2 = φ+ 1, γ3 = γ + 1. (5)

Let now ζ be a random variable such that

ζ = 1 or − 1 with equal probabilities
1
2

(a case of the ”balanced coin”)

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 240–246, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On the Average Growth Rate of Random Compositions of Fibonacci 241

and let us consider a random sequence defined by the random recurrence

t0 = 0, t1 = 1, tn+1 = ζ · tn + tn−1, n ≥ 1. (6)

In his pioneer work [1], Divakar Viswanath proved that almost surely

n
√
|tn| → α = 1.13198824 . . . , n→∞, (7)

where logα is computed as the integral of the function 1
4 log

(
1+4m4

(1+m2)2

)
with

respect to some fractal measure on R+.
In the article [2], Viswanath’s result is generalized for the case of an “unbal-

anced coin”, and in Remark 1.2 the authors of the article mention their previous
results on the so-called “average point of view” in this problem, i.e., the problem
of calculating the limit limn→∞

n
√

E(tn), (E here stands for the mean value),
which is called “the average growth rate” (a.g.r.) of the sequence {tn} [3].

In our article we are interested in the problem of calculating the a.g.r. of the
random sequence defined as follows:
Let

ξ be a random variable such that ξ = 0 or 1 with the probabilities (8)
p and q = 1− p respectively, where 0 ≤ p ≤ 1,

and let us define a random sequence {tn} by

t0 = 0, t1 = 1, t2 = 1, tn+1 = tn−ξ + tn−1−ξ, n ≥ 2. (9)

The problem in question is to find the average growth rate of such sequences.
Recurrence (9) shows that the random variable “switches” randomly between

recurrences (1) and (2), so we shall refer to the resulting random sequence as a
random composition of Fibonacci and Padovan recurrences.

In the beginning of Section 2, for simplicity and clarity we consider in detail
the case of a “balanced coin”, and afterwards we give a brief overview of the
question for an “unbalanced coin”. In both cases we use in fact the method of
“random Fibonacci tree” suggested in [3] that allows us to find a linear recurrence
equation for E(tn) by means of quite elementary considerations.

2 The Fibonacci Tree and the a.g.r.

We begin with the case of a ”balanced coin”:
Let ξ and {tn} be the same as defined in (8) and (9) with p = 1

2 , and let G
be a random matrix:

G =

⎛⎝0 1 0
0 0 1
ξ 1 1− ξ

⎞⎠ . (10)



242 N. Gogin and A. Mylläri

Then if t = (0 1 1)T , coordinates of the vector⎛⎝ tn
tn+1

tn+2

⎞⎠ = Gn−1 . . .G1G0 · t (11)

where matrices Gn−1, . . . G1, G0 are selected randomly from the set {F, P},

where F =

⎛⎝0 1 0
0 0 1
0 1 1

⎞⎠ and P =

⎛⎝0 1 0
0 0 1
1 1 0

⎞⎠ , constitute three consequent

terms of {tn}.
Below are three possible examples of such random sequences:

0 1 1 2 2 3 5 5 8 13 13 26 . . .
0 1 1 1 2 2 4 6 10 16 16 32 . . .
0 1 1 1 2 2 4 4 6 8 14 14 . . .

Now we are going to describe a ”random Fibonacci tree” for p = 1
2 which indi-

cates all possible outcomes for {tn} (cf. [3]) Each node in this tree represents a

Fig. 1. The Fibonacci tree for the case of the balanced coin

parent-triple (a = tn−2, b = in−1, c = tn) together with two children-triples: left
(b, c, b + c) and right (b, c, a + b) in accordance with whether the parent-triple
was multiplied by matrix F or P , respectively. So, any conceivable realization
of {tn} corresponds to a (random) path in this tree. For example, the red path
in Fig. 1 corresponds to a sequence t0 = 0, 1, 1, 2, 3, 3, 5 . . . , where tn, n > 2 is
equal to the third element of a triple.

Let (An, Bn, Cn), n ≥ 0 be a sum of all 2n triples at the nth level of the tree.
Then obviously A0 = 0, B0 = 1, C0 = 1 and

An+1 = 2Bn, Bn+1 = 2Cn, (12)
Cn+1 = (Bn + Cn) + (An +Bn) = An + 2Bn + Cn, n ≥ 0,

hence C0 = 1, C1 = 3, C2 = 9 and for n ≥ 2

Cn+1 = Cn + 2(2Cn−1) + 2(2Cn−2) = Cn + 4Cn−1 + 4Cn−2. (13)



On the Average Growth Rate of Random Compositions of Fibonacci 243

From (13) we easily get a recurrence for the mean value E(Cn) = E(tn) = Cn

2n :

E(t0) = 1, E(t1) =
3
2
, E(t2) =

9
4
, (14)

E(tn+1) =
E(tn)

2
+ E(tn−1) +

E(tn−2)
2

, n ≥ 2.

Since the characteristic equation for (14) is

2λ3 = λ2 + 2λ+ 1, (15)

the a.g.r. of the sequence {tn} is equal to the greatest absolute value of its roots:

λ∗ =
(

1 +
3
√

73 + 6
√

87 +
3
√

73− 6
√

87
)

= 1.4375648970 . . . (16)

i.e. asymptotically

E(tn) ∼ λn
∗ or logE(tn) ∼ n · logλ∗. (17)

Let now p, 0 < p < 1 be an arbitrary rational number, p = m1
m1+m2

, where
m1, m2 are positive integers, and suppose one has a box containing m1 and m2

”black” = 0 and ”white” = 1 enumerated balls respectively:

Fig. 2. A box containing m1 “black” (0) and m2 “white” (1) balls

So, the numbers 1, 2, . . .m1 + m2 being sampled equiprobably, the “black”
and “white” balls will appear with probabilities p and q = 1 − p = m2

m1+m2
,

respectively.
Let now {tn} = {0 = t0, 1, 1, t3, t4, t5, . . .}, where

tn+1 = tn−ξ + tn−1−ξ, n ≥ 2 (18)

and ξ = 0 or 1 for the “black” or “white” ball, respectively.
The construction of the Fibonacci tree for this case (“unbalanced coin”) is

quite similar to the previous one, but now every node of the tree is as shown in
Figure 3.

For example, if m1 = 3, m2 = 2, the tree will look like the one in Figure 4.
Similarly to what was said above, let (An, Bn, Cn), n ≥ 0 be the sum of all

(m1 +m2)n triples at the nth level of this tree. Then A0 = 0, B0 = 1, C0 = 1
and

An+1 = (m1 +m2)Bn, Bn+1 = (m1 +m2)Cn, (19)
Cn+1 = m2An + (m1 +m2)Bn +m1Cn, n ≥ 0,



244 N. Gogin and A. Mylläri

Fig. 3. A node of the Fibonacci tree for the case of unbalanced coin

Fig. 4. An example of the Fibonacci tree for the case of unbalanced coin

from which it follows that

Cn+1 = m1Cn + (m1 +m2)2Cn−1 +m2(m1 +m2)2Cn−2, n ≥ 2 (20)
C0 = 1, C1 = 2m2

1 +m2, C2 = 3m1 + 4m1m2 + 2m2
2.

Now for the mean value E(Cn) = E(tn) = Cn

(m1+m2)n we get the recurrence
relation:

E(t0) = 1, E(t1) = 1 + p, E(t2) = 2 + p2, (21)
E(tn+1) = pE(tn) + E(tn−1) + qE(tn−2), n ≥ 2

with characteristic equation

λ3 = pλ2 + λ+ q. (22)

By reason of continuity, equation (22) remains valid for any values of p, 0 ≤ p ≤ 1
rather than for only rational values.

So, for any p, 0 ≤ p ≤ 1 the a.g.r. of the sequence {tn} is equal to the greatest
absolute value λ∗ of the roots of equation (22) and again asymptotically

logE(tn) ∼ n · logλ∗. (23)

Figure 5 shows a graphic of λ∗ = λ∗(p) for p ∈ [0, 1], where p = 0 and p = 1
correspond to the Padovan and Fibonacci sequences, respectively:



On the Average Growth Rate of Random Compositions of Fibonacci 245

Fig. 5. A graphic of λ∗ as a function of p

3 Computer Simulation Model

Figure 6 shows the result of the simulating by MATHEMATICA-program
FibPadCompose[N[Log[2]],7,50], where the random composition of the Fibonacci
and Padovan recurrences with p = Log[2] = 0.693147 was generated for a sample
of M = 7 sequences containing N = 50 terms in each sequence.

The seven (= M) blue curves represent the sequences {log tn}n≤N=50 whereas
the green curve shows the logarithms of their ”mean sequence”

{logE(tn)}n≤N=50,

Fig. 6. An example of the simulating computer experiment for the random Fibonacci
and Padovan composition



246 N. Gogin and A. Mylläri

and the red straight line represents the asymptotic behavior of the
{logE(tn)}n≤N=50, i.e., according to (23) the sequence {n · logλ∗}n≤N=50. The
slope of this line is equal to log λ∗ = 0.403903... where λ∗ = 1.49766.

It is evident that the green curve is very similar to a straight line parallel to
the red one in full accordance with formula (23).

Acknowledgements

The authors are grateful to Dr. A. Farina (Italy, Rome) who attracted their
attention to these problems [4]. A. Mylläri thanks also Vilho, Yrjö ja Kalle
Väisälän Foundation (Vilho, Yrjö ja Kalle Väisälän rahasto) for the financial
support.

References

1. Viswanath, D.: Random Fibonacci sequences and the number 1.13198824.. Math.
Comp. 69(231), 1131–1155 (2000)

2. Janvresse, E., Rittaud, B., De La Rue, T.: How do random Fibonacci sequences
grow? Probability Theory and Related Fields 142(3–4), 619–648 (2008)

3. Rittaud, B.: On the average growth of random Fibonacci sequences. J. Integer Se-
quences 10 (2007) Article 07.2.4

4. Benavoli, A., Chisci, L., Farina, A.: Fibonacci sequence, golden section, Kalman
filter and optimal control. Signal Processing 89, 1483–1488 (2009)



A Study on Gröbner Basis with Inexact Input

Kosaku Nagasaka

Kobe University, Japan
nagasaka@main.h.kobe-u.ac.jp

Abstract. Gröbner basis is one of the most important tools in recent
symbolic algebraic computations. However, computing a Gröbner basis
for the given polynomial ideal is not easy and it is not numerically stable
if polynomials have inexact coefficients. In this paper, we study what we
should get for computing a Gröbner basis with inexact coefficients and
introduce a naive method to compute a Gröbner basis by reduced row
echelon form, for the ideal generated by the given polynomial set having
a priori errors on their coefficients.

1 Introduction

Recently, computing a Gröbner basis for polynomials with inexact coefficients
has been studied by several researchers ([1], [2], [3], [4], [5], [6], [7]). In Sasaki
and Kako [1], this problem is classified into the first and the second kinds of
problems. The first kind is computing a Gröbner basis for the ideal generated
by the given polynomials with exact coefficients by numerical arithmetic (e.g.
floating-point arithmetic). The second kind is for the given polynomials with
inexact coefficients having a priori errors. In this case, we have to operate with a
priori errors whether we compute a basis by exact arithmetic or not. For exam-
ple, Shirayanagi’s method ([3], [4]) by stabilization techniques requires to extend
the input precision up to a point that the algorithm can work stably hence it
is for the first kind since we cannot extend the input precision of inexact data
in practice even if we can extend precisions during computations. For practical
computations, coefficients may have a priori errors due to limited accuracy, rep-
resentational error, measuring error and so on, hence the second kind is much
more important than the first one. In this paper, we try to interpret the second
kind of problem with the comprehensive Gröbner system and numerical linear
algebra.

We assume that we compute a Gröbner basis or its variants for the ideal
I ⊆ C[x] generated by a polynomial set F = {f1, . . . , fk} ⊂ C[x] where C[x] is
the polynomial ring in variables x = x1, . . . , x� over the complex number field
C. However, in our setting, coefficients may have a priori errors hence we have
only a polynomial set F̃ = {f̃1, . . . , f̃k̃} ⊂ C[x] as the given inexact input, which
may be different from F . We note that the number of polynomials may be also
different (i.e. k �= k̃). The most interesting part of this problem is what we should
compute for the inexact input F̃ when we are not able to discover the hidden
and desirable polynomial set F . We review some known interpretation of this
problem in Section 2 and 3 and give another resolution in the latter sections.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 247–258, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



248 K. Nagasaka

2 Comprehensive Gröbner System with Inexact Input

If we can bound the difference between F and F̃ in some way, the most faithful
solution for computing a Gröbner basis with inexact input is the comprehensive
Gröbner basis (or comprehensive Gröbner system) introduced by Weispfenning
([8], [7], [9]). By representing error parts as unknown parameters, the problem
becomes computing a parametric Gröbner basis. In this section, we briefly review
this approach in our problem setting.

Let A = C[α1, . . . ,αγ ] be the polynomial ring in parameters α1, . . . ,αγ over
the complex number field and consider the polynomial ring A[x] in variables
x1, . . . , x�. For a fixed term order � on C[x], it is well-known that in general
a Gröbner basis in A[x] with respect to variables x will no longer remain a
Gröbner basis in C[x] when the parameters α1, . . . ,αγ are specialized to some
values in C. The comprehensive Gröbner basis and system [8] are defined to
overcome this situation.

Definition 1 (Comprehensive Gröbner Basis). Let F ⊆ A[x] be a finite
parametric polynomial set and I be the ideal generated by F . We call a finite ideal
basis G of I a comprehensive Gröbner basis of I if G is a Gröbner basis of the
ideal generated by F in C[x] for every specialization of parameters α1, . . . ,αγ

in C. (

Definition 2 (Comprehensive Gröbner System). Let F ⊆ A[x] be a finite
parametric polynomial set, S be a subset of Cγ , A1, . . . ,Ar be algebraically con-
structible subsets of Cγ such that S ⊆ A1∪· · ·∪Ar and G1, . . . , Gr be subsets of
A[x]. We call a finite set G = {(A1, G1), . . . , (Ar, Gr)} of pairs a comprehensive
Gröbner system for F on S if Gi is a Gröbner basis of the ideal generated by F
in C[x] for every specialization of parameters (α1, . . . ,αγ) in Ai. Each (Ai, Gi)
is called a segment of G. (

Suppose that all the inexact parts on coefficients in F̃ can be represented by
parameters α1, . . . ,αγ . Then, computing a Gröbner basis with inexact input
can be done by computing a comprehensive Gröbner system for F ∈ A[x] on
S where S includes all the possible specialization of parameters (α1, . . . ,αγ) in
Cγ . However, in general, a comprehensive Gröbner system has a huge number of
segments and its computation time is quite slow (see [10] for example). Though
Weispfenning [7] tried to decrease the time-complexity by using only a single
parameter to represent the inexact parts, whose bounding error mechanism is
very similar to interval arithmetic and Traverso and Zanoni [6] pointed out that
an interval easily becomes too large when we compute a Gröbner basis by interval
arithmetic. In the author’s opinion, this is one of reasons that many researchers
still have been studying Gröbner basis with inexact input.

3 Approximate Gröbner Basis with Inexact Input

As in the previous section, unfortunately, treating inexact parts of coefficients as
parameters does not give us any reasonable (w.r.t. computation time and number



A Study on Gröbner Basis with Inexact Input 249

of segments) answer to the second kind of problem. In this section, we review
another approach by Sasaki and Kako [1]. They tried to define approximate
Gröbner basis by the following approximate-zero tests for polynomials appearing
in the Buchberger algorithm. We note that they also introduced several numerical
techniques to prevent cancellation errors and we briefly review only their concept
without their complete settings and definitions.

Definition 3 (Approximate-Zero Test). Let p(x) be a polynomial appear-
ing in the Buchberger algorithm, and (s1(x), . . . , sk̃(x)) be the syzygy for p(x)

satisfying p(x) =
∑k̃

i=1 si(x)f̃i(x). If ‖p‖< ε×max{‖s1f̃1‖, . . . , ‖sk̃f̃k̃‖} where
‖p‖ denote the infinity norm of p(x), then we say p(x) is approximately zero at
tolerance ε, and we denote this as p(x) ≡ 0 (tol ε). (

Definition 4 (Practical Approximate-Zero Test). Let p(x) be a polyno-
mial appearing in the Buchberger algorithm, and (p1, . . . , pm) be all the non-zero
coefficients tuple of p(x). If max{|p1|, . . . , |pm|} < ε, then we say p(x) is prac-
tically approximate-zero at tolerance ε, and we denote this as p(x) ≡ 0 (tol ε).

(

With one of the above definitions (computation of syzygies is time-consuming,
so they decided to use the second one in practice), they define the following
approximate Gröbner basis.

Definition 5 (Approximate Gröbner Basis). Let ε be a small positive num-
ber, and G = {g1, . . . , gr} be a polynomial set. We call G an approximate

Gröbner basis of tolerance ε, if we have S(gi, gj)
G ≡ 0 (tol ε) (∀i �= j) where

S(gi, gj) and pG denote the S-polynomial of gi and gj and the normal form of p
by G, respectively. (

The above definition can be considered as a numerical version of comprehensive
Gröbner system with a single parameter by Weispfenning [7], using much rea-
sonably relaxed bounds instead of exact interval arithmetic. In the Buchberger
algorithm, head terms of polynomials appearing in the procedure are critically
important hence most of known results have to take care of approximate zero
tests by exact interval arithmetic, parametric representation or the above way
for example. In the rest of the paper, we consider the second kind of problem as
a problem in numerical linear algebra instead of trying to extend the Buchberger
algorithm directly.

4 Gröbner Basis for Inexact Input as Linear Space

We note again that the first and second kinds of problem are fundamentally
different. For the first kind, there exists the answer which is a Gröbner basis of
the ideal I generated by F and can be computable by exact arithmetic. On the
other hand, for the second one, there exist so many possible answers since F is
not known in practice and the given polynomials of F̃ have a priori errors and we
can absolutely not be able to know that they should be. Moreover, for the given



250 K. Nagasaka

F̃ and the unknown F , it may happen that p(x) ∈ ideal(G) and p(x) /∈ ideal(F )
even if we can compute a Gröbner basis G for ideal(F̃ ) by some method, where
ideal(S) denotes the ideal generated by the elements of a set S. Because such
a Gröbner basis is only a candidate for possible so many Gröbner bases for
unknown F . It also be possible that they include {1}. Any resolution for the
second kind of problem must guarantee that p(x) ∈ ideal(G) and p(x) ∈ ideal(F̃ )
are equivalent with or without some conditions since what is the most reliable
is not G but the given F̃ (this is the only reliable information) which does not
have any posteriori error. In the below, we give a resolution from this point of
view.

4.1 Gröbner Basis as Linear Space

Some researchers studied computing a Gröbner basis by reduced row echelon
form ([11], [12]) though there are no concrete algorithms described. However,
this is not efficient since we have to operate with large matrices. Using matrix
operations partially like F4 and F5 ([13], [14], [2]) may be the best choice if we
want to decrease the computation time. We note that the matrix constructed in
the F4 algorithm is essentially the same as in this paper and is more compact
and well considered. On the other hand, for the second kind of problem, it
may be useful since we can use so many results from numerical linear algebra
for the situation where we must inevitably operate with a priori errors. Hence
we summarize an algorithm for computing Gröbner basis with exact input by
reduced row echelon form in this subsection. We note that we use the following
definition though there are several equivalents (see [15] or other text books).

Definition 6 (Gröbner Basis). G = {g1, . . . , gr} ⊆ I \ {0} is a Gröbner basis
for I w.r.t. a fixed term order � if for any f ∈ I \ {0}, there exists gi ∈ G such
that ht(gi)|ht(f) where ht(p) denotes the head term of p(x) ∈ C[x] w.r.t. �. (

We consider the linear map φT : C[x]T → Cm such that φT (ti) = −→ei where
C[x]T is the submodule of C[x] generated by an ordered set (the most left
element is the highest) of terms T = {t1, . . . , tm}� and −→ei (i = 1, . . . ,m) denotes
the canonical basis of Cm. The coefficient vector −→p of p(x) ∈ C[x] is defined to
be satisfying −→p = φT (p) and p(x) = φ−1

T (−→p ). With a fixed T , we consider the
following subset FT of I.

FT =

{
k∑

i=1

si(x)fi(x) | si(x)fi(x) ∈ C[x]T , si(x) ∈ C[x]

}
.

The Buchberger algorithm guarantees that G ⊆ FT if T has a large enough
number of elements. To compute a Gröbner basis for I, we construct the matrix
MT (F ) whose each row vector −→p satisfies φ−1

T (−→p ) ∈ PT (f) for f(x) ∈ F where

PT (p) = {ti × p(x) ∈ C[x]T | ti = φ−1
T (−→ei ), i = 1, . . . ,m}.

By this definition, FT and the linear space VT generated by the row vectors of
MT (F ) are isomorphic.



A Study on Gröbner Basis with Inexact Input 251

We note that a matrix is said to be in reduced row echelon form if it satisfies
the following four conditions.

1. All nonzero rows appear above zero rows.
2. Each leading element of a row is in a column to the right of the leading

element of the row above it.
3. The leading element in any nonzero row is 1.
4. Every leading element is the only nonzero element in its column.

Lemma 1. Let MT (F ) be the reduced row echelon form of MT (F ). If gi(x) ∈
FT for a fixed i ∈ {1, . . . , r}, MT (F ) has a row vector −→p satisfying ht(gi) =
ht(φ−1

T (−→p )). (

Proof. Since the linear map φT is defined by the ordered set T , each leading
element of a row vector −→p of MT (F ) is corresponding to ht(φ−1

T (−→p )). The
lemma follows from the facts that FT and VT are isomorphic and all the leading
entries of nonzero rows are disjoints since MT (F ) is in the reduced row echelon
form.

Lemma 2. Let MT (F ) be the reduced row echelon form of MT (F ). If T has a
large enough number of elements, the following GT is a Gröbner basis for I.

GT =
{
φ−1
T (−→p ) | −→p is a row vector of MT (F )

}
. (

Proof. The Buchberger algorithm guarantees that G ⊆ FT if T has a large
enough number of elements. Therefore, GT satisfies the condition of Definition
6 since we have gi(x) ∈ GT , i = {1, . . . , r} by Lemma 1.

The above lemmas lead us to the following algorithm directly.

Algorithm 1. (Gröbner Basis by Row Echelon Form)
Input: a term order � and a set F of polynomials,

F = {f1(x), . . . , fk(x)} ⊂ C[x].
Output: a Gröbner basis G for the ideal generated by F ,

G = {g1(x), . . . , gr(x)} ⊂ C[x].
1. d← maxi=1,...,k tdeg(fi) (the total degree of fi(x)).
2. T ← the ordered set of the terms of total degrees ≤ d.
3. MT (F ) ← the reduced row echelon form of MT (F ).
4. GT ←

{
φ−1
T (−→p ) | −→p is a row vector of MT (F )

}
.

5. G← GT \
{
g ∈ GT ∃h ∈ GT \ {g} s.t. ht(h)|ht(g)

}
.

6. Outputs G if the following conditions satisfied:
6-1. ∀f ∈ F, fi

G
= 0,

6-2. ∀gi, gj ∈ G, S(gi, gj)
G

= 0,
otherwise d← d+ 1 and goto Step 2. (



252 K. Nagasaka

Algorithm 1 is not optimized. For example, we should optimize the algo-
rithm as follows. In Step 1, it is better that we start with a larger d (e.g.
maxi=1,...,k tdeg(fi) + 1 or a large enough d such that all the S-polynomials
of F can be calculated in C[x]T ). Moreover, we can use the rectangular degree
(bounding each variable separately and also called the multi degree) instead of
the total degree. In Step 6, it is better that we increment d by Δd such that
S(gi, gj) can be calculated in FT for any pair of elements of G and T with
d← d+Δd.

Lemma 3. Algorithm 1 computes the reduced Gröbner basis for the ideal gen-
erated by the given polynomial set F . (

Proof. The condition 6-1 guarantees that the ideals generated by F and G are
the same. Hence, if T has a large enough number of elements, Algorithm 1
outputs a Gröbner basis for the ideal generated by F since the condition 6-2
means that G is a Gröbner basis for the ideal generated by G. Step 5 deletes
verbose polynomials by Definition 6 hence G is a minimal Gröbner basis. The
lemma follows from the fact that MT (F ) is in the reduced row echelon form so
that all the polynomials corresponding to row vectors are already reduced by
other rows (polynomials). In this algorithm, we use total degree bounds for T
hence T must have a large enough number of elements in finite steps.

Example 1. We compute the reduced Gröbner basis w.r.t. the graded lexico-
graphic order for the ideal generated by the following polynomials. We note that
we show only very simple example since it is difficult to show the whole matrices
for nontrivial cases.

F = {2x+ 3y, xy − 2}.
In this case, we construct the following matrix MT (F ) with d = 3 and compute
its reduced row echelon form MT (F ).

MT (F ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 0 0 0 0 0 0 0 0
0 2 3 0 0 0 0 0 0 0
0 0 0 0 2 3 0 0 0 0
0 0 2 3 0 0 0 0 0 0
0 0 0 0 0 2 3 0 0 0
0 0 0 0 0 0 0 2 3 0
0 1 0 0 0 0 0 −2 0 0
0 0 1 0 0 0 0 0 −2 0
0 0 0 0 0 1 0 0 0 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, MT (F ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 − 9
2 0

0 1 0 0 0 0 0 0 3 0
0 0 1 0 0 0 0 0 −2 0
0 0 0 1 0 0 0 0 4

3 0
0 0 0 0 1 0 0 0 0 3
0 0 0 0 0 1 0 0 0 −2
0 0 0 0 0 0 1 0 0 4

3
0 0 0 0 0 0 0 1 3

2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, we have the following candidate GT for a Gröbner basis.{
x3 − 9y

2
, yx2 + 3y, xy2 − 2y, y3 +

4y
3
, x2 + 3, xy − 2, y2 +

4
3
, x+

3y
2

}
.

We delete all the verbose elements and test the conditions in Step 6. Since they
pass the conditions, we obtain the following reduced Gröbner basis.

G =
{
x+ 3y

2 , y
2 + 4

3

}
. (



A Study on Gröbner Basis with Inexact Input 253

4.2 Definition of Numerical Gröbner Basis as Linear Space

Let MT (F̃ , p) be the matrix whose row vectors are of MT (F̃ ) and φT (p) of a
polynomial p(x). We denote the numerical rank of matrixM by rankε(M) which
satisfies

rankε(M) = min
‖M−M ′‖2≤ε

rank(M ′)

where rank(M) denotes the conventional matrix rank of M . We note that for
any κ < rank(M), we have

min
rank(M ′)=κ

‖M −M ′‖2= σκ+1

where σi denotes the i-th largest singular value of M .
The difference of the ideal membership of p(x), between ideal(G) ⊇ F̃ and

ideal(F ) may increase with increasing the total degree or the number of terms
of p(x). Hence, we consider the equivalence of ideal(G) and ideal(F̃ ) by limiting
the total degree or the number of terms that must be the lowest value satisfying
G ⊂ F̃T since we wish to keep the relations between G and F̃ . We note again
that F̃ is only reliable since F is not known.

Definition 7 (Numerical Membership). For a polynomial p(x), a polyno-
mial set F̃ and an ordered set of terms T , we say that p(x) is numerically a mem-
ber of ideal(F̃ ) w.r.t. T and the tolerance ε if rank(MT (F̃ )) = rankε(MT (F̃ , p)).
We denote this by p(x) ∈T ,ε ideal(F̃ ). (

By this definition, we say ideal(F̃ ) and ideal(G) are numerically equivalent if
and only if ∀f(x) ∈ F̃ , f(x) ∈T ,ε ideal(G) and ∀g(x) ∈ G, g(x) ∈T ,ε ideal(F̃ ).
On may think that with this definition some strange situations can happen. For
example, it is possible that every polynomials numerically belong to an ideal
or that s1f1 + s2f2 does not numerically belong to an ideal even if f1 and f2
numerically belong to it. This is correct and inevitable for the second kind of
problem. F̃ are just one of possible sets for F so we cannot ignore the extreme
case: 1 ∈ ideal(F ). Moreover, even if we use exact arithmetic as in Section 2,
after any computation (e.g. s1f1 + s2f2), the difference from F usually becomes
larger hence some strange situations may happen.

The above definition cannot be used for testing S(gi, gj)
G

= 0 (gi, gj ∈ G)
since it usually happens that S(gi, gj) ∈T ,ε ideal(G), depending on T . We sup-
pose gj(x) � gi(x) (j < i) and construct the matrix RT (G) whose each row
vector −→p satisfies φ−1

T (−→p ) ∈ PT (gi) for gi(x) ∈ G where

PT (gi) = {ti × gi ∈ C[x]T | ti = φ−1
T (−→ei ), i = 1, . . . ,m,

!∃g ∈ PT (gj) (j < i), ht(g) = ht(ti × gi)}.

Similar to MT (F̃ , p), RT (G, p) is defined as the matrix whose row vectors are
the vectors of RT (G) and φT (p) of a polynomial p(x).



254 K. Nagasaka

Definition 8 (Numerical S-Polynomial Check). For polynomials gi(x) and
gj(x) of a set G and an ordered set of terms T , we say that the S-polynomial
S(gi, gj) is numerically reduced to 0 by G w.r.t. T and the tolerance ε ∈ R≥0 if

rank(RT (G)) = rankε(RT (G, S(gi, gj))). We denote it by S(gi, gj)
G

=T ,ε 0. (

Definition 9 (Numerical Gröbner Basis). We say that G = {g1, . . . , gr} is
a numerical Gröbner basis for ideal(F̃ ) w.r.t. a fixed term order � and a toler-
ance ε ∈ R≥0 if the following conditions are satisfied.
1. ∀i, j ∈ {1, . . . , r}, lcm(ht(gi), ht(gj)) ∈ T ,

2. ∀i, j ∈ {1, . . . , r}, S(gi, gj)
G

=T ,ε 0
where T is an ordered set of terms such that ideal(F̃ ) and ideal(G) are numeri-
cally equivalent. In addition, minimal and reduced Gröbner basis are also defined
in the ordinary way. (

We note that the above definition is compatible with the conventional Gröbner
basis since they are the same if ε = 0. Moreover, any conventional Gröbner basis
is always a numerical Gröbner basis w.r.t. any tolerance. One may think that this
definition for the second kind of problem is not well-posed which is the notion
introduced by Hadamard and should have three properties: a solution exists, is
unique, and continuously depends on the data. Analyzing the definition from
this point of view is postponed for future work.

4.3 How to Compute Numerical Gröbner Basis

Computing a numerical Gröbner basis defined in the previous subsection is not
easy. In this subsection, we give a naive method using the reduced row echelon
form. Though Algorithm 1 uses only the reduced row echelon form, for the
numerical case, we separate it into the forward Gaussian elimination and back-
substitution. Let UT (F̃ ) be the upper triangular matrix by the forward Gaussian
elimination with partial pivoting, using an unitary transformation (i.g. givens
rotation), of MT (F̃ ), and UT ,ε(F̃ ) be the same matrix but neglecting elements
and rows that are smaller than the given tolerance ε in absolute value and 2-
norm, respectively.

Algorithm 2. (Numerical Gröbner Basis)
Input: a tolerance ε) 1, a term order � and a set F̃ ,

F̃ = {f1(x), . . . , fk̃(x)} ⊂ C[x].
Output: a numerical Gröbner basis G for ideal(F̃ ),

G = {g1(x), . . . , gr(x)} ⊂ C[x] or “failed”.
1. d← maxi=1,...,n tdeg(fi) and e← 1 .
2. T ← the ordered set of the terms of total degrees ≤ d.
3. UT ,ε(F̃ ) ← the upper triangular matrix by the forward Gaussian elimination

with partial pivoting, using an unitary transformation of MT (F̃ ).
4. UT ,ε(F̃ ) ← the reduced row echelon form of UT ,ε(F̃ )

by back-substitution without scaling pivots to one.
5. GT ←

{
φ−1
T (−→p ) | −→p is a row of UT ,ε(F̃ ), ‖−→p ‖2> ε

}
.



A Study on Gröbner Basis with Inexact Input 255

GT ←
{
φ−1
T (−→p ) | −→p is a row of UT ,ε(F̃ ), ‖−→p ‖2> ε

}
.

6. Ḡ← GT \
{
g ∈ GT ∃h ∈ GT \ {g} s.t. ht(h)|ht(g)

}
.

G← GT \
{
g ∈ GT ∃h ∈ GT \ {g} s.t. ht(h)|ht(g)

}
.

7. Outputs G or Ḡ whichever satisfies the conditions:
7-1. ∀gi, gj ∈ G, lcm(ht(gi), ht(gj)) ∈ T ,
7-2. ∀f ∈ F̃ , f(x) ∈T ,ε ideal(G),

7-3. ∀gi, gj ∈ G, S(gi, gj)
G

=T ,ε 0.
8. Outputs “failed” if 3eε ≥ 1 .
9. d← d+ 1, e← e+ 1 and goto Step 2. (

Lemma 4. Throughout Algorithm 2, we have

∀g ∈ GT (⊇ Ḡ), g(x) ∈T ,δ ideal(F̃ )

where δ =‖UT ,ε(F̃ )− UT (F̃ )‖. (

Proof. Let UT ,ε(F̃ , g) be the matrix whose row vectors are of UT ,ε(F̃ ) and
φT (g), and UT (F̃ , g) be the matrix whose row vectors are of UT (F̃ ) and φT (g).
By the assumption of the lemma and rank(UT ,ε(F̃ , g)) = rank(UT ,ε(F̃ )), we
have ‖ UT ,ε(F̃ , g) − UT (F̃ , g) ‖2≤ δ. Since UT (F̃ ) is calculated by only uni-
tary transformations, we have UT (F̃ ) = UMT (F̃ ) where U denotes the prod-
uct of such transformations. Let U ′ be the following unitary matrix satisfying
UT (F̃ , g) = U ′MT (F̃ , g).

U ′ =

⎛⎜⎜⎜⎝ U

0
...
0

0 · · · 0 1

⎞⎟⎟⎟⎠ .
The lemma follows from the facts that all the singular values of MT (F̃ , g) and
U ′MT (F̃ , g) are the same since U ′ is unitary.

Lemma 5. Throughout Algorithm 2, we have

∀g ∈ GT (⊇ G), g(x) ∈T ,δ ideal(F̃ )

where δ =‖UT ,ε(F̃ )− UT (F̃ )‖. (

Proof. Since for any row vector −→p of UT ,ε(F̃ ), −→p is a linear combination of row
vectors of UT ,ε(F̃ ), we have rank(UT ,ε(F̃ , g)) = rank(UT ,ε(F̃ )). The lemma is
proved by the same way in the above proof.

Lemma 6. Throughout Algorithm 2, we have

∀f ∈ F̃T , f(x) ∈T ,δ ideal(GT )

where δ =‖UT ,ε(F̃ )− UT (F̃ )‖. (



256 K. Nagasaka

Proof. The lemma follows from the fact ‖UT ,ε(F̃ , f)− UT (F̃ , f)‖2≤ δ as in the
above proves.

Unfortunately, the above lemmas do not guarantee that Algorithm 2 always
terminates with a numerical Gröbner basis. However, they suggest 3eε ≥ 1 in
Step 8 as follows. One of the reasons that Algorithm 2 can fail to terminate with
a numerical Gröbner basis is ∃g ∈ Ḡ, t ∈ T , tg /∈T ,ε GT . For a proper superset
T ′ of T , by the above lemmas, we have

‖ UT ′,ε(F̃ , tg)− UT ′,ε(F̃ ) ‖2

= ‖ UT ′,ε(F̃ , tg)− UT ′(F̃ , tg) + UT ′(F̃ , tg)− UT ′(F̃ ) + UT ′(F̃ )− UT ′,ε(F̃ ) ‖2

≤ ‖ UT ′,ε(F̃ , tg)− UT ′(F̃ , tg) ‖2 + ‖ UT ′(F̃ , tg)− UT ′(F̃ ) ‖2

+ ‖ UT ′(F̃ )− UT ′,ε(F̃ ) ‖2

≤ 3δ′

where δ′ =‖UT ′,ε(F̃ ) − UT ′(F̃ )‖. This means that the distance between Ḡ and
GT increases by a factor of 3 in the worst case, even if we decrease δ and δ′ such
that δ, δ′ ≈ ε.

In our preliminary implementation, due to accumulating numerical errors, we
use the following GT and GT instead of the above.

GT ←
{
φ−1
T (−→p ) | −→p is a row of UT ,ε(F̃ ), ‖−→p ‖2> ε

1/2
}
,

GT ←
{
φ−1
T (−→p ) | −→p is a row of UT ,ε(F̃ ), ‖−→p ‖2> ε

1/2
}
.

In Step 7, we test G and Ḡ. However, it is better that we test the all subset of GT
and GT if we do not consider the computing time though we do not implement
this. According to our experiments, we could detect a suitable tolerance ε as
follows.

ε = 10(log10 σk+log10 σk+1)/2 (4.1)

where σi denotes the i-th largest nonzero singular value of MT (F̃ ) and k is the
largest integer maximizes σk/σk+1. Moreover, in our preliminary implementa-
tion, we use matrices NT (F̃ ) and NT (F̃ , p) instead of MT (F̃ ) and MT (F̃ , p),
respectively, whose row vectors are normalized in 2-norm. This normalization
is not necessary for our definition, however this makes numerical computations
more stable.

Example 2. We compute a numerical Gröbner basis w.r.t. the graded lexico-
graphic order and the tolerance ε = 10−5 for the ideal generated by the following
polynomials that are the same polynomials in Example 1 but slightly perturbed.

F̃ = {2.000005x+ 3.000001y, 0.999999xy− 2.000003}.

In this case, we construct the matrixNT (F̃ ) with d = 3 and compute the reduced
row echelon form of NT (F̃ ). In Step 5, we have the following candidate for a



A Study on Gröbner Basis with Inexact Input 257

numerical Gröbner basis.

GT = { 0.554701x3 − 2.49615y, 0.712525yx2 + 2.13758y,
0.883413xy2− 1.76683y, 0.647575y3 + 0.863437y,
0.554701x2 + 1.6641, 0.712525xy− 1.42505,
0.522232y2 + 0.696312, 0.716116x+ 1.07417y }.

We delete all the verbose elements and test the conditions in Step 7. Since they
pass the conditions, we obtain the following numerical Gröbner basis that are
very similar to the result in Example 1.

G =
{
1.0y2 + 1.33334, 1.0x+ 1.5y

}
.

For the lexicographic order and ε = 10−5, we start with the rectangular degree
bound d = {2, 2} and we have the following GT .

GT = { 0.447213x2y2 − 1.78886, 0.712525yx2 + 2.13758y,
0.554701x2 + 1.6641, 0.68755xy2 − 1.3751y,
0.712525xy− 1.42505, 0.716116x+ 1.07417y, 0.522232y2 + 0.696312 }.

We delete all the verbose elements and test the conditions in Step 7. Since they
pass the conditions, we obtain the following numerical Gröbner basis.

G =
{
1.0x+ 1.5y, 1.0y2 + 1.33334

}
. (4.2)

Our method can work for the following polynomials having a small head coeffi-
cient w.r.t. the lexicographic order.

F̃ = { 0.0000001x2 + 2.000005x+ 3.000001y, 0.999999xy− 2.000003 }.
With the tolerance ε = 6.95972× 10−9 calculated by (4.1) and the rectangular
degree bound d = {5, 4}, we have the following numerical Gröbner basis. We note
that the head term of the first element is smaller than ε during inner calculations
hence it is not reduced. Moreover, Algorithm 2 outputs the same as in just above
(4.2) if we specify ε = 10−6.

{ 0.000861698y2 + 1.5y + 1.0x+ 0.00114879, 1.0y2 − 0.0000001y+ 1.33334 }.
(

5 Remarks

Our approach uses a huge matrix so that it is not effective if we try to compute
a Gröbner basis for polynomials with exact coefficients. However, as noted in the
beginning of Section 4, it is natural that we use several tools in numerical linear
algebra since we have to handle a priori errors and most of symbolic-numeric
algorithms for polynomials also use them from necessity. From this point of view,
instead of row echelon form by the Gaussian elimination in Algorithm 2, one can
use the QR decomposition or the singular value decomposition (SVD) to improve
the algorithm though we’ve not yet analyzed their effectiveness. We note that
for all the example in this paper, we use our preliminary implementation on
Mathematica 6.



258 K. Nagasaka

Acknowledgements. The author wishes to thank the many referees (especially
the one who knows the previous version of this paper) for their useful suggestions
that explicitly indicate the future work on the problem mentioned in this paper.

The preliminary implementation code can be found at the following URL.
http://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/casc09.nb

References

1. Sasaki, T., Kako, F.: Computing floating-point gröbner bases stably. In: SNC 2007,
pp. 180–189. ACM, New York (2007)

2. Kondratyev, A., Stetter, H.J., Winkler, S.: Numerical computation of gröbner
bases. In: Proceedings of CASC2004 (Computer Algebra in Scientific Computing),
pp. 295–306 (2004)

3. Shirayanagi, K.: An algorithm to compute floating point gröbner bases. In: Pro-
ceedings of the Maple summer workshop and symposium on Mathematical compu-
tation with Maple V: ideas and applications, pp. 95–106. Birkhauser Boston Inc,
Cambridge (1993)

4. Shirayanagi, K.: Floating point gröbner bases. In: Selected papers presented at
the international IMACS symposium on Symbolic computation, new trends and
developments, pp. 509–528. Elsevier Science Publishers B. V, Amsterdam (1996)

5. Stetter, H.J.: Approximate gröbner bases – an impossible concept? In: Proceedings
of SNC 2005 (Symbolic-Numeric Computation), pp. 235–236 (2005)

6. Traverso, C., Zanoni, A.: Numerical stability and stabilization of groebner basis
computation. In: ISSAC 2002: Proceedings of the 2002 international symposium
on Symbolic and algebraic computation, pp. 262–269. ACM, New York (2002)

7. Weispfenning, V.: Gröbner bases for inexact input data. In: Proceedings of CASC
2003 (Computer Algebra in Scientific Computing), pp. 403–411 (2002)

8. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Comput. 14, 1–29
(1992)

9. Weispfenning, V.: Canonical comprehensive Gröbner bases. J. Symbolic Com-
put. 36, 669–683 (2003); International Symposium on Symbolic and Algebraic
Computation (ISSAC 2002) (Lille)

10. Nabeshima, K.: A speed-up of the algorithm for computing comprehensive gröbner
systems. In: ISSAC 2007: Proceedings of the 2007 international symposium on
Symbolic and algebraic computation, pp. 299–306. ACM, New York (2007)

11. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983.
LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

12. Byröd, M., Josephson, K., Åström, K.: Fast optimal three view triangulation. In:
Yagi, Y., Kweon, I.S., Kang, S.B., Zha, H. (eds.) Asian Conference on Computer
Vision (2007)

13. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases F4. J. Pure
Appl. Algebra 139, 61–88 (1999)

14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero F5. In: Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation, pp. 75–83. ACM, New York (2002)
(electronic)

15. Becker, T., Weispfenning, V.: Gröbner bases. Graduate Texts in Mathematics,
vol. 141. Springer, New York (1993); A computational approach to commutative
algebra, In cooperation with Heinz Kredel



Modular Algorithms for Computing a
Generating Set of the Syzygy Module

Masayuki Noro

Department of Mathematics, Graduate School of Science, Kobe University
noro@math.kobe-u.ac.jp

Abstract. We present two modular algorithms for computing a gener-
ating set of the syzygy module of a given sequence of elements in Rl,
where R is a polynomial ring or a Weyl algebra over Q.

1 Introduction

Let R be an n-variate polynomial ring or an n-dimensional Weyl algebra over a
fieldK. For F = (f1, . . . , fk), fi ∈ Rl, its syzygy module syz(F ) = {(h1, . . . , hk) |
h1f1 + . . . + hkfk = 0} is a (left) submodule of Rk and the computation of a
generating set of syz(F ) is an important step for computing various invariants.
Algorithms for computing syz(F ) for an arbitrary sequence F are well known
and have already been implemented in several computer algebra system, but we
found that such implementations do not necessarily compute syzygies efficiently
especially over Q. In this paper we propose improvements of two well-known
algorithms for computing syzygies, Algorithm 1 and Algorithm 3, to which we
apply shortcuts by modular computation. Our method is based on the Gröbner
trace algorithm originated by C. Traverso [14]. In the algorithm, the Buchberger
algorithm is executed both over Q and over a finite field simultaneously and we
skip the reduction of an S-polynomial over Q if it is reduced to zero over the
finite field. Then we obtain a probable candidate of a Gröbner basis, but we
have to check the candidate to ensure that it is a Gröbner basis of the input
ideal. We cannot predict whether this method improves the total efficiency of
the Gröbner basis computation of a particular input ideal or not, but we observe
that the combination of the trace algorithm and homogenization speeds up the
computation in many examples.

When we only want to compute a Gröbner basis, the cost of the check proce-
dure often cancels the gain by skipping the reduction of S-polynomials over Q.
However, if we apply this trace algorithm to Algorithm 1, we can make full use
of all its parts. First of all the candidate of the reduced Gröbner basis of the
input can be computed efficiently. Furthermore, as a by-product of the candidate
computation we obtain data for computing a matrix for expressing the Gröbner
basis elements as linear combinations of the input polynomials with little extra
cost. Then the check procedure is effectively used for producing data necessary
for syzygy computation.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 259–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



260 M. Noro

We can also apply the trace algorithm to Algorithm 3. If the generating set
of an input ideal is a Gröbner basis with respect to a term order, then the check
of a Gröbner basis candidate obtained by the trace algorithm is not necessary.
That is, if a Gröbner basis candidate is successfully computed, then we can
ensure that the candidate is a Gröbner basis of the input ideal. In Algorithm
3, a Gröbner basis computation is executed for an input which is a Gröbner
basis with respect to a term order. Therefore we can improve the efficiency of
Algorithm 3 by applying the trace algorithm without the check procedure.

2 Algorithms for Computing Syzygies

Let R be an n-variate polynomial ring or an n-dimensional Weyl algebra over a
field K. There are two well-known algorithms for computing a generating set of
the syzygy module of a sequence F of elements in Rl. In the following algorithm
matrices act on column vectors from the left because it is natural for left R-
modules.

Algorithm 1 (c.f. [3] chapt. 5, sect. 3)

Input : F = (f1, . . . , fs), fi ∈ Rl (i = 1, . . . , s)
Output : a generating set of syz(F )
G = (g1, . . . , gt) ← a Gröbner basis of 〈F 〉 with respect to a term order <
C ← a (t, s)-matrix s.t. tG = C · tF
D ← an (s, t)-matrix s.t. tF = D · tG
S = {s1, . . . , su} ← a finite subset of Rt s.t. syz(G) = 〈S〉
{r1, . . . , rs} ← rows of Is −DC, where Is is the unit matrix of size s
return 〈s1C, . . . , suC, r1, . . . , rs〉
Algorithm 1 is well known and described in many textbooks [1], [3], [5], [6].
Algorithm 1 executes a Gröbner basis computation of 〈F 〉 in Rl, but additional
data have to be computed. In principle the matrix C and S can be obtained by
keeping track of the coefficients in the reductions of S-polynomials. In practice,
however, this adds heavy costs in the execution of the Buchberger algorithm.
For general input F , the output is not necessarily a Gröbner basis of syz(F ) and
we observe that the computation of a Gröbner basis of syz(F ) is rather hard in
general.

Definition 2. Let < be a term order in R. The POT (Position over Term)
extension <POT = (POT,<) in Rl of < is a term order defined by tei <POT

sej ⇔ j < i or (i = j and t < s), where t, s are monomials in R and (e1, . . . , el)
is the standard basis of Rl.

Algorithm 3 (c.f. [3] Exercise 15 in chapt. 5, sect. 3)

Input : F = (f1, . . . , fs), fi ∈ Rl (i = 1, . . . , s), a term order < in Rl

Output :a Gröbner basis S of syz(F ) with respect to (POT,<),
a Gröbner basis G = (g1, . . . , gt) of 〈F 〉 with respect to < and



Modular Algorithms for Computing a Generating Set of the Syzygy Module 261

a (t, s)-matrix C s.t. tG = C · tF
(e1, . . . , es) ← the standard basis of Rs

mi ← (fi, ei) ∈ Rl ⊕Rs = Rl+s (i = 1, . . . , s)
G̃← a Gröbner basis of 〈m1, . . . ,ms〉 with respect to (POT,<)
S ← {h ∈ Rs | (0, h) ∈ G̃}
G← {g ∈ Rl | g �= 0 and (g, h) ∈ G for some h ∈ Rs}
C ← a (t, s)-matrix whose i-th row is hi for (gi, hi) ∈ G̃
return (S,G,C)

We also find Algorithm 31 in several textbooks. In Algorithm 3, we have to
execute a Gröbner basis computation in Rl+s where s is the number of elements
in F , which is harder than that of 〈F 〉 in general. However, all the necessary
results can be obtained from the Gröbner basis, and it is important that we
have a Gröbner basis of syz(F ) automatically.

3 Gröbner Trace Algorithms

In this section we recall the Gröbner trace algorithm and a theorem [11] which
ensures that a Gröbner basis candidate is indeed a Gröbner basis without ex-
ecuting check procedures. For a prime p ∈ Z, Fp denotes the finite field of
order p. We set Z〈p〉 = {a/b | a, b ∈ Z, p � | b}. We define φp : Z〈p〉 → Fp by
φp(a/b) = (a mod p)/(b mod p).

Notation 4
LT(f) : the monic leading monomial of f
LC(f) : the leading coefficient of f
Spoly(f, g) : the S-polynomial of f, g
NFG,<(f) : a normal form of f with respect to (G,<)

Definition 5. Let F be a subset of Rl and < a term order in Rl. A prime p is
permissible for (F,<) if for each f ∈ F , f ∈ Z〈p〉[x1, . . . , xn] and φp(LC(f)) �= 0,

The following algorithm computes a Gröbner basis candidate of a submodule
〈F 〉.
Algorithm 6
GBCandidate(F,<, p)
Input : F ⊂ Z[x1, . . . , xn]l, a term order < and a prime p s.t. p is permissible

for (F,<)
Output : (Status,G); if Status = ok then G ⊂ 〈F 〉
D ← {{f, g}|f, g ∈ F ; f �= g}; G← F
while ( D �= ∅ ) do
C = {f, g} ← an element of D; D ← D \ {C}
if NFφp(G),<(Spoly(φp(f), φp(g))) �= 0 then

1 This is referred as Caboara-Traverso’s algorithm in [10]. In some textbooks it is often
given as an exercise without any reference.



262 M. Noro

h← NFG,<(Spoly(f, g)) (h ∈ Z〈p〉[X ])
if h �= 0 and φp(LC(h)) �= 0 then
D ← D ∪ {{f, h}|f ∈ G}; G← G ∪ {h}

else return (ng, ∅)
endif

endif
end while
G← the result of removing the redundancy of G
G← the result of inter-reduction of G return (ok, G)

The output G of this algorithm has the following property:

1. G ⊂ 〈F 〉 ∩ Z〈p〉[X ],
2. p is permissible for (G,<),
3. φp(G) is a Gröbner basis of 〈φp(F )〉.

Definition 7. For F ⊂ Rl, G ⊂ 〈F 〉 is said to be a p-compatible Gröbner basis
candidate of 〈F 〉 with respect to < if G satisfies the above three conditions.

It is often useful for applying homogenization to suppress intermediate coefficient
swells.

Algorithm 8
GBCandidateHomo(F,<, p)
Fh ← a homogenization of F
<h← a homogenization of < s.t. the leading term is preserved under

homogenization and dehomogenization.
(Status,Gh) ← GBCandidate(Fh, <h, p)
If Status = ng return (ng, ∅)
G← the dehomogenization of Gh

G← the result of removing the redundancy of G
return G

After obtaining a Gröbner basis candidate G, we perform the following two check
procedures. If G passes them, then G is a Gröbner basis of 〈F 〉.
Algorithm 9
GBCheck(G,<)
Input : a Gröbner basis candidate G, a term order <
Output : status (ok or ng)
If NFG,<(Spoly(f, g)) = 0 for all f, g ∈ G then return ok else return ng.

Algorithm 10
MemberCheck(F,G,<)
Input : F ⊂ Rl, a Gröbner basis candidate G of 〈F 〉, a term order <
Output : status (ok or ng)
If NFG,<(f) = 0 for all f ∈ F then return ok else return ng.

We can omit the checks if the input is known to be a Gröbner basis with respect
to a term order <0.



Modular Algorithms for Computing a Generating Set of the Syzygy Module 263

Theorem 11. Suppose that G0 ⊂ Z[x1, . . . , xn]l is a Gröbner basis of 〈G0〉 ⊂ Rl

with respect to a term order <0 and p is permissible for (G0, <0). Then the
following hold:

1. φp(〈G0〉 ∩ Z[x1, . . . , xn]l) = 〈φp(G0)〉 and φp(G0) is a Gröbner basis of
〈φp(G0)〉.

2. Let G ⊂ 〈G0〉 ∩ Z[x1, . . . , xn]l be a p-compatible Gröbner basis candidate of
〈G0〉 with respect to <. Then G is a Gröbner basis of 〈G0〉 with respect to
<.

Proof. 1. As 〈φp(G0)〉 ⊂ φp(〈G0〉 ∩ Z[x1, . . . , xn]l), it is sufficient to show that
for any f ∈ 〈G0〉 ∩ Z[x1, . . . , xn]l, φp(f) is reduced to 0 by φp(G). For any
f ∈ 〈G0〉 ∩ Z[x1, . . . , xn]l, f is reduced to 0 by G0. This reduction procedure is
written as follows:

f0 = f, fi = fi−1 − αitigki , fm = 0 for some m,

where αi ∈ Q, ti is a monomial and gki ∈ G0. As p is permissible for (G0, <0),
the denominator of αi is not divisible by p for each i. Thus we have φp(fi) =
φp(fi−1) − φp(αi)tiφp(gki) and this recurrence represents a reduction of φp(f0)
by φp(G0). φp(fm) = 0 implies that there exists i ≤ m s.t. φp(fi−1) �= 0 and
φp(fi) = 0, which means that φp(f) is reduced to 0 by φp(G0).
2. We show that every f ∈ 〈G0〉 is reduced to 0 by G. We may assume that f is
G-reduced. If f �= 0 then, by multiplying a rational number, we may assume that
f �= 0 is a G-reduced element of Z[x1, . . . , xn]l and the integer content of f is
equal to 1. Then φp(f) �= 0, otherwise the integer content of f would have a factor
p. As f ∈ 〈G0〉 ∩Z[x1, . . . , xn]l, φp(f) ∈ φp(〈G0〉 ∩Z[x1, . . . , xn]l) = 〈φp(G0)〉 =
〈φp(G)〉, φp(f) must be reduced to 0 by φp(G). But f is G-reduced and the
permissibility of p for (G,<) implies that the set of leading terms of φp(G) is
the same as that of G, thus φp(f) is φp(G)-reduced. This is a contradiction.  !
Remark 12. The above algorithms and theorems are still correct if we replace a
polynomial ring S[x1, . . . , xn] in the theorems with a Weyl algebra S〈x1, . . . , xn,
∂1, . . . , ∂n〉 where S is a coefficient ring.

4 Improvements of Algorithms for Computing Syzygies

In order to apply the trace algorithms to Algorithm 1, we modify Algorithm 6,
9 and 10 so that they output enough informations for reproducing the normal
form computations, which we call trace informations. The modified algorithms
are named GBCandidateEx, GBCheckEx and MemberCheckEx respectively.
Let F and G be an input and the output of GBCandidate respectively. In
GBCandidateEx we first collect the trace information for each reduction of
S-polynomial over Q. It is the following list:

[l, [1, i,m, 1], [1, j,m′, 1], [a1, k1,m1, d1], . . . , [as, ks,ms, ds]], (1)

which means that



264 M. Noro

1. r ← mgi + m′gj = cSpoly(gi, gj), where a, b ∈ Z, m,m′ are monomials,
c ∈ Q and r ∈ Z[x1, . . . , xn],

2. r ← (ajr+mjgkj )/dj (i = 1, . . . , s), where aj , cj , dj ∈ Z, mj is a monomial,
r ∈ Z[x1, . . . , xn] and the coefficients of r is kept as small as possible, and

3. gl ← r.

The list (1) is the data for computing gl from g1, . . . , gl−1. Inter-reduction is also
expressed by similar lists and finally we can express each g ∈ G in terms of F by
recursive computations, which gives each rows of the matrix C. In GBCheckEx,
the set of S-polynomials to check the candidate G being Gröbner basis coincides
with the set of S-polynomials whose coefficient vectors generate syz(LT(G)).
Here the coefficient vector of an S-polynomial agi − bgj is aei − bej for the
standard bases ei and ej . Then these S-polynomials are actually reduced over
Q and we obtain the trace informations similar to (1). In MemeberCheckEx,
polynomials in F are reduced by the candidate G over Q and we obtain the
trace informations for computing the matrix D. We notice that the generating
set S of syz(G) is computed only for the dehomogenized one even if we apply
GBCandidateHomoEx expecting efficient computation of the candidate G.

Algorithm 13 (Modular trace version of Algorithm 1)

Input : F = (f1, . . . , fs), fi ∈ Z[x1, . . . , xn]l (i = 1, . . . , s)
Output : a generating set of syz(F )
do

restart:
p← a new unused prime which is permissible for (F,<)
(Status,G,Ctrace) ← GBCandidateEx(F,<, p)
if Status = ng goto restart
(Status, Strace) ← GBCheckEx(G,<)
if Status = ng goto restart
(Status,Dtrace) ←MemberCheckEx(F,G,<)
if Status = ng goto restart
C ← a matrix s.t. tG = C · tF computed from Ctrace
D ← a matrix s.t. tF = D · tG computed from Dtrace
S = {s1, . . . , su} ← a generating set of syz(G) computed from Strace
{r1, . . . , rs} ← rows of Is −DC, where Is is the unit matrix of size s
return 〈s1C, . . . , suC, r1, . . . , rs〉

end do

Next we show how one can apply the trace algorithm and Theorem 11 to Algo-
rithm 3. We show that the input of the Gröbner basis computation in Algorithm
3 already forms a Gröbner basis with respect to a term order.

Theorem 14. For fi ∈ Rl (i = 1, . . . , s), we set mi = (ei, fi) ∈ Rs⊕Rl = Rs+l,
where (e1, . . . , es) is the standard basis of Rs. Then M = (m1, . . . ,ms) is a
Gröbner basis of 〈M〉 with respect to any POT order.



Modular Algorithms for Computing a Generating Set of the Syzygy Module 265

Proof. If we execute the Buchberger algorithm for M , there are no S-pairs to
be reduced because LT(mi) = ei with respect to any POT order. Thus M is a
Gröbner basis of 〈M〉.
Theorem 11 and 14 ensures that the following algorithm returns the same output
as Algorithm 3.

Algorithm 15 (Modular trace version of Algorithm 3)

Input : F = (f1, . . . , fs), fi ∈ Z[x1, . . . , xn]l (i = 1, . . . , s), a term order < in Rl

Output :a Gröbner basis S of syz(F ) with respect to (POT,<),
a Gröbner basis G = (g1, . . . , gt) of 〈F 〉 with respect to < and
a (t, s)-matrix C s.t. tG = C · tF

(e1, . . . , es) ← the standard basis of Rs

mi ← (fi, ei) ∈ Rl ⊕Rs = Rl+s (i = 1, . . . , s)
do

restart:
p← a new unused prime which is permissible for ((m1, . . . ,ms), (POT,<))
(Satus, G̃) ← GBCandidate((m1, . . . ,ms), (POT,<), p)
if Status = ng goto restart
S ← {h ∈ Rs | (0, h) ∈ G̃}
G← {g ∈ Rl | g �= 0 and (g, h) ∈ G̃ for some h ∈ Rs}
C ← a (t, s)-matrix whose i-th row is hi for (gi, hi) ∈ G̃

end do
return (S,G,C)

5 Experiments

We implemented Algorithm 13 and 15 in Risa/Asir [12] and made a number
of experiments. In Algorithm 13, the matrices C, D and the syzygies S are
computed by the user language of Risa/Asir from the trace information given
in the outputs of a built-in function nd gr trace, which executes the Gröbner
trace algorithm. In this function Algorithm 6 or 8 is executed with a prime
p , 108. Then the obtained candidate is checked by Algorithm 9 and 10. If the
check fails then another candidate is computed with another prime p. The main
task in Algorithm 15 is the computation of a Gröbner basis candidate, which is
also done by nd gr trace. Our experiments show that computing the syzygy of
a general input is very hard in general. We tried many examples of ideals for
which Gröbner basis can be easily computed, but we could compute the syzy-
gies of only a few ones among them. Nevertheless the timings of the successful
results will show that the new algorithms efficiently compute syzygies for cer-
tain inputs. Timings were measured on a Linux machine with Intel Xeon X5470,
3.33GHz and are given in seconds. Here we refer again to the validity check in
the modular algorithms. In Algorithm 13, a prime p is valid if GBCandidateEx,
GBCheckEx and MemberCheckEx return ok. In Algorithm 15, a prime p is
valid if GBCandidateEx returns ok. The default prime 99981793 was valid for
all candidate computations.



266 M. Noro

5.1 Computation over a Commutative Polynomial Ring

We show timings of Algorithm 13, Algorithm 3, Algorithm 15 in Risa/Asir.
SINGULAR [5] provides a function syz to compute a generating set of a syzygy
module. From the outputs of syz and the description in [5] we guess that
SINGULAR implements Algorithm 3 and we also show its timing for comparing
performances with the term order set to (c,dp), that is the POT extension of the
graded reverse lex order. For Algorithm 13 and 15, we tried both GBCandidate
and GBCandidateHomo for computing a Gröbner basis candidate. (H) in the
table indicates that the timing was obtained by GBCandidateHomo because it
took too much time by the non-homogenized computation. We note that Algo-
rithm 3 and 15 compute a Gröbner basis of the syzygy module, but Algorithm
13 simply outputs its generating set. Cyclic7, Kotsireas, V irasoro, Cohn3 and

Table 1. Timing data of syzygy computations over polynomial rings

Input Algorithm 13 Algorithm 3 Algorithm 15 SINGULAR

Cyclic7 > 2h – 882(H) > 2h
HCyclic7 658 2727 244 3557
Kotsireas > 2h – 1863 > 11h
V irasoro 936 > 2h 685 > 3h
Cohn3 3642(H) – 267(H) >1.5h

Fabrice24 5382 * * *
ABBA4 8h * > 72h *

Fabrice24 are taken from [4]. HCyclic7 is the homogenized Cyclic7, that is
(Cyclic7 \ {x1 · · ·x7 − 1}) ∪ {x1 · · ·x7 − x7} with the graded reverse lex order
s.t. x > x1 > · · · > x7. ABBA4 is the set of all the entries of AB − BA where
A = (aij), B = (bij) are 4 × 4 matrices. In Table 1 ‘−’ and ‘∗’ mean that we
have not executed the computation because the computation of Algorithm 15
over Q, or Fp respectively indicate that it will take very long time to perform
the computation.

Table 1 shows that computation of syzygy over Q without modular shortcuts
is very inefficient or practically impossible. Taking the fact that Algorithm 15
outputs a Gröbner basis of the syzygy module into account, we may say that
Algorithm 15 is preferable for computing syzygies. However if we only want
to know a generating set of the syzygy module, Algorithm 13 may be chosen
because Algorithm 15 could not output a result in two examples because of the
difficulty of the computation of the Gröbner basis candidate.

5.2 Computation over Weyl Algebra

We compute the syzygy of A-hypergeometric system HA(β), where A is a d× n
integer matrix and β is a d-dimensional column vector. For the following (Ai, βi)
(i = 1, . . . , 4), we generate HAi(βi) and compute its syzygy. See [13] the for
detail of HA(β). We show the results of Algorithm 13, 3 and 15. Macaulay2



Modular Algorithms for Computing a Generating Set of the Syzygy Module 267

[8] provides a function syz in Dmodules package. Although we don’t know the
algorithm implemented in Macaulay2, we also show its results for reference.

A1 =
(

1 1 1 1 1 1 1
1 0 1 2 3 4 5

)
, β1 =

(
123
456

)

A2 =

⎛⎝ 1 1 3 2 1 1
0 2 1 1 3 2
2 1 0 1 1 0

⎞⎠ , β2 =

⎛⎝ 1
2
3

⎞⎠

A3 =

⎛⎝ 1 2 3 2 1 1
1 4 3 3 4 5
4 0 0 1 1 0

⎞⎠ , β3 =

⎛⎝ 5
8
12

⎞⎠

A4 =

⎛⎜⎝
1 2 3 2 1 1
1 4 3 3 4 5
4 0 0 1 1 0
1 2 3 4 3 3

⎞⎟⎠ , β4 =

⎛⎜⎝
5
8
12
6

⎞⎟⎠
We only show HA4(βi).

HA4(βi) = {x6∂6 + x5∂5 + 2x4∂4 + 3x3∂3 + 2x2∂2 + x1∂1 − 5,
5x6∂6 + 4x5∂5 + 3x4∂4 + 3x3∂3 + 4x2∂2 + x1∂1 − 8,
x5∂5 + x4∂4 + 4x1∂1 − 12,
3x6∂6 + 3x5∂5 + 4x4∂4 + 3x3∂3 + 2x2∂2 + x1∂1 − 6,
−∂3∂5 + ∂2∂4,−∂1∂3∂

4
6 + ∂2

2∂
4
5 ,−∂1∂4∂

4
6 + ∂2∂

5
5 , ∂1∂

2
4∂

4
6 − ∂3∂

6
5}

Table 2. Timing data of syzygy computations of HA(β)

Input Algorithm 13 Algorithm 3 Algorithm 15 Macaulay2

(A1, β1) 19 47 2.3 32
(A2, β2) 51 741 71 > 1h
(A3, β3) 126 334 26 544
(A4, β4) 18 21 2.5 88

As in the polynomial case, Table 2 shows that Algorithm 15 is a good choice if
one wants to know a Gröbner basis of the syzygy module. From the comparison
of the results of Algorithm 3 and 15 we see that the trace algorithm efficiently
avoids the difficulty caused by large intermediate coefficients. We may say that
Algorithm 15 is efficient even if Macaulay2 outputs a Gröbner basis of the syzygy
module.

5.3 Discussions

If an input sequence F is already a Gröbner basis, then a generating set of the
syzygy module is easily obtained from the results of reductions of S-polynomials



268 M. Noro

and it is a Gröbner basis of the syzygy module with respect to a special or-
der (Schreyer order). Möller et al. [9] proposed an algorithm for computing a
Gröbner basis G of an input ideal and a Gröbner basis of the syzygy module of
G simultaneously. For computing a free resolution of the module generated by a
sequence F , we don’t have to compute the syzygy of F . Instead we can replace
F with a Gröbner basis and we can apply various efficient algorithms such as
Schreyer resolution[5] or La Scala-Stillman’s algorithm [7]. However, if F is not
a Gröbner basis, our experiments show that it is not an easy task to obtain the
generator set of the syzygy of F itself. In such a case the proposed methods in
this paper may efficiently give the result.

Another modular method for improving the efficiency of Gröbner basis com-
putations was proposed in [2]. In the algorithm, a Gröbner basis candidate is
constructed by Chinese remainder computation or Hensel lifting and the valid-
ity of the candidate is checked. If the elements of the resulting Gröbner basis
have small coefficients then the candidate computation will be efficient. But the
input of the algorithm must be homogeneous and the check contains Gröbner
basis check of the homogeneous candidate, which is often a heavy computation.
In Algorithm 15 we have to compute the candidates over Q but the check is not
necessary. It will be interesting to compare the two methods for various inputs.

References

1. Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies
in Mathematics, vol. 3. AMS (1994)

2. Arnold, E.: Modular Algorithms for computing Gröber bases. J. Symb.
Comp. 35(4), 403–419 (2003)

3. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. In: GTM, vol. 185,
Springer, Heidelberg (2005)

4. Examples in the web page of Janet Basis, http://invo.jinr.ru/examples.phtml
5. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra.

Springer, Heidelberg (2007), http://www.singular.uni-kl.de/
6. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 1. Springer,

Heidelberg (2008)
7. La Scala, R., Stillman, M.: Strategies for computing minimal free resolutions. J.

Symb. Comp. 26, 409–431 (1998)
8. Macaulay 2 home page, http://www.math.uiuc.edu/Macaulay2/
9. Möller, H.M., Mora, T., Traverso, C.: Gröber Bases Computation Using Syzygies.

In: Proc. ISSAC 1992, pp. 320–328. ACM Press, New York (1992)
10. Mora, T.: Solving Polynomial Equation Systems II, Macaulay’s pradigm and

Gróber Technology. In: Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, Cambridge (2005)

11. Noro, M., Yokoyama, K.: A Modular Method to Compute the Rational Univariate
Representation of Zero-Dimensional Ideals. J. Symb. Comp. 28(1), 243–263 (1999)

12. Risa/Asir: A computer algebra system,
http://www.math.kobe-u.ac.jp/Asir/asir.html

13. Saito, M., Sturmfels, B., Takayama, N.: Gröber deformations of hypergeometric
differential equations. Algorithms and Computation in Mathematics 6 (2000)

14. Traverso, C.: Gröber trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS,
vol. 358, pp. 125–138. Springer, Heidelberg (1989)

http://invo.jinr.ru/examples.phtml
http://www.singular.uni-kl.de/
http://www.math.uiuc.edu/Macaulay2/
http://www.math.kobe-u.ac.jp/Asir/asir.html


A Symbolic Framework for Operations on
Linear Boundary Problems

Markus Rosenkranz1, Georg Regensburger1,
Loredana Tec2, and Bruno Buchberger2

1 Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

2 Research Institute for Symbolic Computation,
Johannes Kepler Universität, 4032 Castle of Hagenberg, Austria

Abstract. We describe a symbolic framework for treating linear bound-
ary problems with a generic implementation in the Theorema system. For
ordinary differential equations, the operations implemented include com-
puting Green’s operators, composing boundary problems and integro-
differential operators, and factoring boundary problems. Based on our
factorization approach, we also present some first steps for symbolically
computing Green’s operators of simple boundary problems for partial
differential equations with constant coefficients. After summarizing the
theoretical background on abstract boundary problems, we outline an
algebraic structure for partial integro-differential operators. Finally, we
describe the implementation in Theorema, which relies on functors for
building up the computational domains, and we illustrate it with some
sample computations including the unbounded wave equation.

Keywords: Linear boundary problem, Green’s operator, Integro-
Differential Operator, Ordinary Differential Equation, Wave Equation.

1 Introduction

Due to their obvious importance in applications, boundary problems play a dom-
inant role in Scientific Computing, but almost exclusively in the numerical seg-
ment. It is therefore surprising that they have as yet gained little attention in
Symbolic Computation, neither from a theoretical perspective nor in computer
algebra systems.

In applications [1, p. 42] one is “concerned not only with solving [the boundary
problem] for specific data but also with finding a suitable form for the solution
that will exhibit its dependence on the data.” In our work, we focus on linear
boundary problems (and will henceforth suppress the attribute “linear”). For us,
a boundary problem is thus a differential equation with a symbolic right-hand
side, supplemented by suitable boundary conditions. Solving it means to deter-
mine its Green’s operator, namely the integral operator that maps the right-hand
side to the solution. For a symbolic approach to boundary problems, one has to
develop a constructive algebraic theory of integral operators and an algorithmic
framework for manipulating boundary conditions.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 269–283, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



270 M. Rosenkranz et al.

Such a development was initiated in [2], leading to a symbolic method for
computing Green’s operators of regular two-point boundary problems with con-
stant coefficients [3]. We extended these results to a differential algebra setting
in [4], where we also developed a factorization method applicable to boundary
problems for ordinary differential equations (ODEs). A more abstract view on
boundary problems and a general factorization theory is described in [5], includ-
ing in particular partial differential equations (PDEs).

In this paper, we describe a prototype implementation in Theorema [6], cur-
rently based on a raw interface that will be improved in the future. It provides
generic algorithms for various operations on boundary problems and integro-
differential operators for ODEs (Section 5), exemplified in (Appendix A): com-
puting Green’s operators, composing boundary problems and integro-differential
operators, and factoring boundary problems. The computations are realized by
a suitable noncommutative Gröbner basis that reflects the essential interactions
between certain basic operators. Gröbner bases were introduced by Buchberger
in [7]. For an introduction to the theory, we refer to [8], for its noncommutative
extension to [9].

Moreover, for PDEs we present some first steps for making the abstract setting
of [5] algorithmic. We develop an algebraic language for encoding the integro-
differential operators appearing as Green’s operators of some simple two-dimen-
sional Dirchlet problems for PDEs with constant coefficients (Section 4). Using
our generic factorization approach, this allows to find the Green’s operator of
higher-order boundary problems by composing those of its lower-order factors.
This idea is exemplified for the unbounded wave equation with a sample com-
putation (Appendix A).

For the broader audience of Scientific Computing, we summarize the necessary
theoretical background on abstract boundary problems, omitting all technical
details and illustrating it for the case of ODEs (Section 2). After explaining
the composition and factorization of boundary problems (Section 3), we outline
the algebraic structures used for encoding ordinary as well as partial integro-
differential operators (Section 4).

For motivating our algebraic setting of boundary problems, we consider first
the simplest two-point boundary problem. Writing F for the real or complex
vector space C∞[0, 1], it reads as follows: Given f ∈ F , find u ∈ F such that

u′′ = f,
u(0) = u(1) = 0. (1)

Let D : F → F denote the usual derivation and L,R the two linear functionals
L : f �→ f(0) and R : f �→ f(1). Note that u is annihilated by any linear combi-
nation of these functionals so that problem (1) can be described by (D2, [L,R]),
where [L,R] is the subspace generated by L, R in the dual space F∗ .

As a second example, consider the following boundary problem for the wave
equation on the domain Ω = R×R≥0, now writing F for C∞(Ω): Given f ∈ F ,
find u ∈ F such that



A Symbolic Framework for Operations on Linear Boundary Problems 271

utt − uxx = f,
u(x, 0) = ut(x, 0) = 0. (2)

Note that we use the terms “boundary condition/problem” in the general sense
of linear conditions. The boundary conditions in (2) can be expressed by the
infinite family of linear functionals βx : u �→ u(x, 0), γx : u �→ ut(x, 0) with x
ranging over R. So we can represent the boundary problem again by a pair
consisting of the differential operatorD2

t −D2
x and the (now infinite dimensional)

subspace generated by βx and γx in F∗.
For ensuring a unique representation of boundary conditions, we take the

orthogonal closure of this subspace, which we denote by [βx, γx]x∈R. This is the
space of all linear functionals vanishing on the functions annihilated by βx, γx.
Every finite dimensional subspace is orthogonally closed, but here, for example,
the functionals u �→ ∫ x

0
u(η, 0) dη and u �→ ux(x, 0) for arbitrary x ∈ R are in

the orthogonal closure but not in the space generated by βx and γx. We refer
to [10] or [5, App. A.1] for details on the orthogonal closure.

Some notational conventions. We use the symbol ≤ for algebraic substruc-
tures. If T : F → G is a linear map and B ≤ G∗, we write B · T for the subspace
{β ◦ T | β ∈ B} ≤ F∗. For a subset B ⊆ F∗ the so-called orthogonal is defined
as B⊥ = {u ∈ F | β(u) = 0 for all β ∈ B}.

2 An Algebraic Formulation of Boundary Problems

In this section, we give a summary of the algebraic setting for boundary prob-
lems exposed in [5], see also there for further details and proofs. We illustrate
the definitions and statements for ODEs on a compact interval [a, b] ⊆ R. In
this setting, most of the statements can be made algorithmic relative to solving
homogeneous linear differential equations (and the operations of integration and
differentiation).

A boundary problem is given by a pair (T,B), where T : F → G is a surjective
linear map between vector spaces F ,G and B ≤ F∗ is an orthogonally closed
subspace of homogeneous boundary conditions. We say that u ∈ F is a solution of
(T,B) for a given f ∈ G if Tu = f and u ∈ B⊥. Note that have restricted ourselves
to homogeneous conditions because the general solution is then obtained by
adding a “particular solution” satisfying the inhomogeneous conditions. While
for ODEs, this amounts to a simple interpolation problem, the treatment of
PDEs is more involved.

In the ODE setting, T = Dn+cn−1D
n−1+· · ·+c1D+c0 is a monic differential

operator of order n with coefficients ci ∈ G. For the spaces F ,G we could for
example choose F = G = C∞[a, b] or F = Cn[a, b] and G = C[a, b], as real
or complex vector spaces. The differential operator T is surjective since every
inhomogeneous linear differential equation has a solution in F , e.g. given by the
formula (3) below. The solution space of the homogeneous equation, KerT , has
dimension n, so we require dimB = n, and we assume that B is given by a



272 M. Rosenkranz et al.

basis β1, . . . , βn. Then the boundary problem reads as follows: Given f ∈ G, find
u ∈ F such that

Tu = f,
β1(u) = · · · = βn(u) = 0.

The boundary conditions can in principle be any linear functionals. In partic-
ular, they can be point evaluations of derivatives or also more general boundary
conditions of the form β(u) =

∑n−1
i=0 ai u

(i)(a) + bi u(i)(b) +
∫ b

a v(ξ)u(ξ) dξ with
v ∈ F , known in the literature [11] as “Stieltjes boundary conditions”. Integral
boundary conditions also appear naturally when we factor a boundary prob-
lem along a given factorization of the differential operator (Section 3), and they
appear in the normal forms of integro-differential operators (Section 4).

A boundary problem (T,B) is regular if for each f ∈ G there exists exactly
one solution u of (T,B). Then we call the linear operator G : G → F that maps
a right-hand side f to its unique solution u = Gf the Green’s operator for
the boundary problem (T,B), and we say that G solves the boundary problem
(T,B). Since TGf = f , we see that the Green’s operator for a regular boundary
problem (T,B) is a right inverse of T , determined by the property ImG = B⊥.
Therefore we use the notation G = (T,B)−1 for the Green’s operator.

Regular boundary problems can be characterized as follows. A boundary prob-
lem is regular iff B⊥ is a complement of KerT so that F = KerT � B⊥ as a
direct sum. For ODEs we have the following algorithmic regularity test (compare
[12, p. 184] for the special case of two-point boundary conditions): A boundary
problem (T,B) for an ODE is regular iff the evaluation matrix B = (βi(uj)) is
regular, where the βi and uj are any basis of respectively B and KerT .

Given any right inverse G̃ of a surjective linear map T : F → G, the Green’s
operator for a regular boundary problem (T,B) is given by G = (1−P )G̃, where
P is the projector with ImP = KerT and KerP = B⊥. Using this observation,
we outline in the following how the Green’s operator can be computed in the
ODE setting.

Let (T,B) be a regular boundary problem for an ODE of order n with B =
[β1, . . . , βn], and let u1, . . . , un be a fundamental system of solutions. We first
compute a right inverse of the differential operator T . This can be done by the
usual variation-of-constants formula (see for example [13, p. 87] for continuous
functions or [14] in a suitable integro-differential algebra setting): Let W =
W (u1, . . . , un) be the Wronskian matrix and d = detW . Moreover, let di =
detWi, where Wi is the matrix obtained from W by replacing the ith column
by the nth unit vector. Then the solution of the initial value problem Tu = f ,
u(a) = u′(a) = · · · = u(n−1)(a) = 0 is given by

u(x) =
n∑

i=1

ui(x)
� x

a
di(ξ)/d(ξ) f(ξ) dξ. (3)

The integral operator T� : f �→ u defined by (3) is a right inverse of T , which we
also call the fundamental right inverse. Computing the projector P : F → F with
ImP = [u1, . . . , un] and KerP = [β1, . . . , βn]⊥ is a linear algebra problem, see



A Symbolic Framework for Operations on Linear Boundary Problems 273

for example [5, App. A.1]: Let B be the evaluation matrix B = (βi(uj)). Since
(T,B) is regular, B is invertible. Set (β̃1, . . . , β̃n)t = B−1(β1, . . . , βn)t. Then the
projector P is given by u �→∑n

i=1 β̃i(u)ui. Finally, we compute

G = (1− P )T� (4)

to obtain the Green’s operator for (T,B).

3 Composing and Factoring Boundary Problems

In this section we discuss the composition of boundary problems corresponding
to their Green’s operators. We also describe how factorizations of a boundary
problem along a given factorization of the defining operator can be characterized
and constructed. We refer again to [5] for further details. In the following, we as-
sume that all operators are defined on suitable spaces such that the composition
is well-defined.

Definition 1. We define the composition of boundary problems (T1,B1) and
(T2,B2) by (T1,B1) ◦ (T2,B2) = (T1T2,B1 · T2 + B2).

So the boundary conditions from the first boundary problem are “translated” by
the operator from the second problem. The composition of boundary problems
is associative but in general not commutative. The next proposition tells us that
the composition of boundary problems preserves regularity.

Proposition 1. Let (T1,B1) and (T2,B2) be regular boundary problems with
Green’s operators G1 and G2. Then (T1,B1) ◦ (T2,B2) = (T,B) is regular with
Green’s operator G2G1 so that ((T1,B1) ◦ (T2,B2))−1 = (T2,B2)−1 ◦ (T1,B1)−1.

The simplest example of composing two boundary (more specifically, initial
value) problems for ODEs is the following. Using the notation from the In-
troduction, one sees that (D, [L]) ◦ (D, [L]) = (D2, [LD] + [L]) = (D2, [L,LD]).

Next we write the wave equation (2) as P = (D2
t−D2

x, [u(x, 0), ut(x, 0)]), where
u(x, 0) and ut(x, 0) are short for the functionals u �→ u(x, 0) and u �→ ut(x, 0),
respectively, with x ranging over R, and [. . .] denotes the orthogonal closure of
the subspace generated by these functionals. For boundary problems with PDEs,
we usually have to describe the boundary conditions as the orthogonal closure
of some subspaces that we can describe in finite terms. As detailed in [5], we can
still compute the composition of two such problems since taking the orthogonal
closure commutes with the operations needed for computing the boundary con-
ditions for the composite problem (precomposition with a linear operator and
sum of subspaces).

Using this observation, we can compute P as the composition of the two
boundary problems P1 = (Dt −Dx, [u(x, 0)]) and P2 = (Dt + Dx, [u(x, 0)]) as
follows. By Definition 1, we see that P1 ◦ P2 equals

(D2
t −D2

x, [ut(x, 0) + ux(x, 0)] + [u(x, 0)]) = (D2
t −D2

x, [u(x, 0), ut(x, 0)]), (5)



274 M. Rosenkranz et al.

where the last equality holds since u(x, 0) = 0 for x ∈ R implies also ux(x, 0) = 0
for x ∈ R, showing that ux(x, 0) is in the orthogonal closure [u(x, 0)].

In the following, we assume that for a boundary problem (T,B) we have
a factorization T = T1T2 of the defining operator with surjective linear maps
T1, T2. In [5], we characterize and construct all factorizations (T,B) = (T1,B1) ◦
(T2,B2) into boundary problems along the given factorization of T . We show in
particular that if we factor a regular problem into regular problems, the left factor
(T1,B1) is unique, and we can choose for the right factor (T2,B2) any subspace
B2 ≤ B that makes the problem regular. Moreover, if G2 is the Green’s operator
for some regular right factor (T2,B2), the boundary conditions for the left factor
can be computed by B1 = B · G2. Factoring boundary problems for differential
equations allows us to split a problem of higher order into subproblems of lower
order, provided we can factor the differential operator. For the latter, we can
exploit algorithms and results about factoring ordinary [15,16,17] and partial
differential operators [18,19].

For ODEs we can factor boundary problems algorithmically as described in [5]
and in an integro-differential algebra setting in [4]. There we assume that we are
given a fundamental system of the differential operator T and a right inverse
of T2. As we will detail in the next paragraph, we can also compute boundary
conditions B2 ≤ B such that (T2,B2) is a regular right factor, given only a
fundamental system of T2. We can then compute the left factor as explained
above. This can be useful in applications, because it still allows us to factor
a boundary problem if we can factor the differential operator and compute a
fundamental system of only one factor. The remaining lower order problem can
then be solved by numerical methods (and we expect that the integral conditions
B1 = B ·G2 may be beneficial since they are stable).

Let now (T,B) be a boundary problem of order m+ n with boundary condi-
tions [β1, . . . , βm+n]. Let T = T1T2 be a factorization into factors of respective
orders n andm, and let u1, . . . , um be a fundamental system for T2. We compute
the “partial” (m+n)×m evaluation matrix B̃ = βi(uj). Since (T,B) is regular,
the full evaluation matrix is regular and hence the columns of B̃ are linearly in-
dependent. Therefore computing the reduced row echelon form yields a regular
matrix C such that CB̃ =

(
Im
0

)
, where Im is the m ×m identity matrix. Let

now (β̃1, . . . , β̃m+n)t = C(β1, . . . , βm+n)t and B2 = [β̃1, . . . , β̃m]. Then (T2,B2)
is a regular right factor since its evaluation matrix is Im by our construction.
See Appendix A for an example.

As a first example, we factor the two-point boundary problem (D2, [L,R])
from the Introduction into two regular problems along the trivial factorization
with T1 = T2 = D. The indefinite integral A =

∫ x

0
is the Green’s operator for the

regular right factor (D, [L]). The boundary conditions for the unique left factor
are [LA,RA] = [0, RA] = [RA], where RA =

� 1

0 is the definite integral. So we
obtain (D, [RA]) ◦ (D, [L]) = (D2, [L,R]) or in traditional notation

u′ = f∫ 1

0 u(ξ) dξ = 0
◦ u′ = f
u(0) = 0 =

u′′ = f
u(0) = u(1) = 0 .



A Symbolic Framework for Operations on Linear Boundary Problems 275

Note that the boundary condition for the left factor is an integral (Stieltjes)
boundary condition.

As an example of a boundary problem for a PDE, we factor the wave equa-
tion (2) along the factorizationD2

t−D2
x = (Dt−Dx)(Dt+Dx). In Appendix A, we

show that one can use this factorization to determine algorithmically its Green’s
operator. The boundary problem P2 = (Dt +Dx, [u(x, 0)]) is a regular right fac-
tor. In general, choosing boundary conditions in such a way that they make up
a regular boundary problem for a given first-order right factor of a linear PDE
amounts to a geometric problem involving the characteristics; compare also Sec-
tion 4. The Green’s operator for P2 is G2f(x, t) =

∫ x

x−t
f(ξ, ξ−x+ t) dξ. We can

compute the boundary conditions for the left factor by [u(x, 0)·G2, ut(x, 0)·G2] =
[0, u(x, 0)] = [u(x, 0)] so that P1 = (Dt −Dx, [u(x, 0)]) is the desired left factor.
In (5) we have already verified that P1 ◦ P2 = P .

4 Representation of Integro-differential Operators

For representing ordinary boundary problems as well as their Green’s opera-
tors in a single algebraic structure, we have introduced the algebra of integro-
differential operators F [∂,

�
] in [4], see also [14] for a summary. It is based on

integro-differential algebras, which bring together the usual derivation struc-
ture with a suitable notion of indefinite integration and evaluation. The integro-
differential operators are defined as a quotient of the free algebra in the cor-
responding operators (derivation, integration, evaluation, and multiplication)
modulo an infinite parametrized Gröbner basis. See Section 5 for more details
and an implementation. Alternatively, integro-differential operators can also be
defined directly in terms of normal forms [20].

Let us now turn to the treatment of partial differential equations. We are cur-
rently forging an adequate notion of integro-differential operators for describing
the Green’s operators of an interesting class of PDEs, just as F [∂,

�
] can be used

for ODEs. In the remainder of this section we can only give a flavor (and a small
test implementation) of how integro-differential operators for PDEs might look
like in a simple case that includes the unbounded wave equation (2).

We construct a ring R of integro-differential operators acting on the function
space F = C∞(R×R); for simplicity we neglect here the restriction to R×R≥0.
The ring R is defined as the free C-algebra in the following indeterminates given
with their respective action on a function f(x, t) ∈ F .

Name Indeterminates Action

Differential operators Dx, Dt fx(x, t), ft(x, t)

Integral operators Ax, At

� x

0
f(ξ, t) dξ,

� t

0
f(x, τ ) dτ

Evaluation operators Lx, Lt f(0, t), f(x, 0)

Substitution operators
(

a b
c d

) ∈ GL(R, 2) f(ax + bt, cx + dt)



276 M. Rosenkranz et al.

Similar to the identities governing F [∂,
�
], described in [4], various relations

among the above operators can now be encoded in a quotient of R. We will only
sketch the most important relations, focusing on those that are needed for the
sample computations. (In a more complete setup, the indeterminates should also
be chosen in a more economical way. For example, it is possible to subsume the
evaluations under the substitutions if one allows all affine transformations by
adding translations and singular matrices.)

First of all, we can transfer all relations from F [∂,
�
] that involve D, A and

L, once for the corresponding x-operators and once for the corresponding t-
operators. Furthermore, each x-operator commutes with each t-operator. For
example, we have DxAx = 1 but DxAt = AtDx. For normalizing such commu-
tative products, we write the x-operators left of the t-operators. Our strategy
for normal forms is thus similar to the case of F [∂,

�
], the only new ingredient

being the substitutions: We will move them to the left as much as possible.
Since substitutions operate on the arguments, it is clear that we must reverse

their order when multiplying them as elements of R. But the most important
relations are those that connect the substitutions with the integro-differential
indeterminates: The chain rule governs the interaction with differentiation, the
substitution rule with integration. While the former gives rise to the identities

DxM = aMDx + cMDt and DtM = bMDx + dMDt

for a matrix M =
(

a b
c d

)
, the relation between M and integrals is a bit subtler.

If M is an upper triangular matrix (so that c = 0 and a �= 0), the substitution
rule yields

AxM = 1
a (1− Lx)MAx,

and if M is a lower triangular matrix (so that b = 0 and d �= 0) similarly
AtM = 1

d(1− Lt)MAt.
But there are no such identities for pushing

(
1 0
c 1

)
left of Ax or

(
1 b
0 1

)
left of

At; we leave them in their place for the normal forms. For treating the general
case, we make use of a variant of the Bruhat decomposition [21, p. 349], writing
M ∈ GL(R, 2) as

(
a b
c d

)
=
(

1 0
c/a 1

) (
a b
0 (ad−bc)/a

)
if a �= 0 and

(
a b
c d

)
=
(

b 0
d c

) (
0 1
1 0

)
if a = 0. Alternatively, we may also use

(
a b
c d

)
=
(

1 b/d
0 1

) (
(ad−bc)/d 0

c d

)
if d �= 0 and(

a b
c d

)
=
(

b a
0 c

) (
0 1
1 0

)
if d = 0. The former decomposition is applied in deriving

the rule for Ax, which reads

Ax

(
a b
c d

)
= 1

a (1− Lx)
(

a b
0 (ad−bc)/a

)
Ax

(
1 0

c/a 1

)
if a �= 0 and otherwise Ax

(
0 b
c d

)
= 1

c (1 − Lx)
(

0 b
c d

)
At. Analogously, the latter

decomposition yields the rule for At as

At

(
a b
c d

)
= 1

d (1− Lt)
(

(ad−bc)/d 0
c d

)
At

(
1 b/d
0 1

)
if d �= 0 and otherwise At

(
a b
c 0

)
= 1

b (1− Lt)
(

a b
c 0

)
Ax.

According to the rules above, an R-operator like Ax

(
1 0
k 1

)
is in normal form.

Also Ax

(
1 0
k 1

)
Ax is a normal form, describing an area integral. For interpreting



A Symbolic Framework for Operations on Linear Boundary Problems 277

it geometrically, it is convenient to postmultiply it with the reverse shear, ob-
taining thus the integral operator Tk =

(
1 0
−k 1

)
Ax

(
1 0
k 1

)
Ax. One can easily verify

that Tkf(x, t) represents the integral of f taken over the triangle with vertices
(x, t), (0, y) and (0, t− kx). This is the triangle delimited by the y-axis, the hor-
izontal through (x, y), and the slanted line through (x, t) with slope k. Similar
interpretations can be given for products involving At.

Finally, we need some rules relating substitutions with evaluations. Here the
situation is analogous to the integrals: We can move “most” of the substitutions
to the left of an evaluation, but certain shears remain on the right. In detail, we
have the rules

Lx

(
a b
c d

)
=
(

1 0
0 d

)
Lx

(
1 b/d
0 1

)
if d �= 0 Lx

(
a b
c 0

)
=
(

0 b
1 0

)
Lt otherwise

and

Lt

(
a b
c d

)
=
(

a 0
0 1

)
Lt

(
1 0

c/a 1

)
if a �= 0 Lt

(
0 b
c d

)
=
(

0 1
c 0

)
Lx otherwise.

As before, certain products remain as normal forms, for example Lx

(
1 k
0 1

)
. Such

an operator acts on a function f ∈ F as f(kt, t), collapsing the bivariate function
f to the univariate restriction along the diagonal line x = kt.

The language ofR-operators is not very expressive, but enough for our modest
purposes at this point—expressing the boundary problem (2) and computing its
Green’s operator. Let us first look at the general first-order boundary problem
with constant coefficients, prescribing homogeneous Dirichlet conditions on an
arbitrary line. Fixing the parameters a, b, c, k ∈ R, it reads as follows:

a ux + b ut = f
u(kt+ c, t) = 0 (6)

Here (a, b)t determines the direction (and speed) of the ground characteristics,
while x = kt + c gives the line of boundary values. Of course this excludes the
horizontal lines t = const, which would have to be treated separately, in a com-
pletely analogous manner. Since (in this paper) we are interested only in regular
boundary problems, the characteristics must have a transversal intersection with
the line of boundary values. Hence we stipulate that a − kb �= 0. Moreover, we
will also assume a �= 0; for otherwise one may switch the x- and t-coordinates. A
straightforward computation (or a suitable computer algebra system) gives now

u(x, y) =
1
a

∫ x

X

f(ξ, b
a (ξ − x) + t) dξ with X =

ac+ (at− bx)k
a− bk .

This solution for the general case can be reduced to (a, b)t = (1, 0)t and k = 0
by first rotating (a, b) into horizontal position, then normalizing it through x-
scaling, and finally shearing the line of boundary values into vertical position.
This yields the factorization

u(x, y) =
( 1/K −k/K
−b/L a/L

) · � x

c/K · ( a kL/K
b L/K

)
f(x, y), (7)



278 M. Rosenkranz et al.

where K = a − bk and L = a2 + b2. This is almost an R-operator, except that
we have only allowed Ax =

� x

0
and its t-analog, so we cannot express

� x

c/K

unless we allow more evaluations such that we could write the required integral
as Ax − Lc/K

x Ax, where Lξ
x acts on a function g(x, y) as g(ξ, y).

While it would be straightforward to incorporate such evaluations by adding
suitable relations, it is enough for our purposes to restrict the line of boundaries:
We require it to pass through the origin so that c = 0. In this case we have of
course

� x

c/K = Ax, and (7) shows that we can indeed write the Green’s operator
in the R language.

5 Implementation in Theorema

As explained in Sections 2 and 4, we compute the Green’s operator of a boundary
problem for an ODE as an integro-differential operator. These operators are
realized as noncommutative polynomials (introduced by a generic construct for
monoid algebras), taken modulo an infinite parametrized Gröbner basis.

As coefficients we allow either standard polynomials or—more generally—
exponential polynomials. Informally speaking, an exponential polynomial is a
linear combination of terms having the form xneλx, where n is a natural and λ a
complex number. Both the standard and the exponential polynomials can again
be generated as an instance of the monoid algebra, respectively using N and
N×C as a term monoid. In this way, we have complete algorithmic control over
the coefficient functions (modulo Mathematica’s simplifier for constants); see
also [22]. Alternatively, we can also take as coefficients all functions representable
in Mathematica and let it do the operations on them.

We describe now briefly the representation of integro-differential operators
and the implementation of the main algorithms solving, composing and factor-
ing boundary problems. The implementation will soon be available at the website
www.theorema.org. It is based on Theorema [6], a system designed as an inte-
grated environment for doing mathematics, in particular proving, computing,
and solving in various domains of mathematics. Its core language is higher-order
predicate logic, containing a natural programming language such that algorithms
can be coded and verified in a unified formal frame.

We make heavy use of functors, introduced and first implemented in Theorema
by Buchberger. The general idea—and its use for structuring those domains in
which Gröbner bases can be computed—is described in [23,24], where one can
also find references to original and early papers by Buchberger on the subject.
For a general discussion of functor programming, see also [25].

Functors are a powerful tool for building up hierarchical domains in mathe-
matics in a modular and generic way that unites elegance and formal clarity. In
Theorema, the notion of a functor is akin to functors in ML, not to be confused
with the functors of category theory. From a computational point of view, a The-
orema functor is a higher-order function that produces a new domain (carrier
and operations) from given domains: operations in the new domain are defined
in terms of operations in the underlying domains. Apart from this computational

www.theorema.org


A Symbolic Framework for Operations on Linear Boundary Problems 279

aspect, functors also have an important reasoning aspect—a functor transports
properties of the input domains to properties of the output domain, for example
by “conservation theorems”.

The MonoidAlgebra is the crucial functor that builds up polynomials, starting
from the base categories of fields with an ordering and ordered monoids. We
construct first the free vector space V over a field K generated by the set of words
in an ordered monoid W via the functor FreeVecSpc[K,W]. Then we extend this
domain by introducing a multiplication using the corresponding operations in K
and W as follows.

MonoidAlgebra�K, W� � where	V � FreeVecSpc�K, W�,

Functor	P, any�c, d, f, g, Ξ, Η, m


, n



�,

� � 
�

��� linear operations from V ��

�� multiplication ��


��
P
g � 
�

f�
P

� � 
�



c, Ξ�, m


��

P


d, Η�, n



� � ��c�

K
d, Ξ �

W
Η �

P


c, Ξ���

P

n



� �

P

m



��

P


d, Η�, n



�

��

For building up the integro-differential operators over an integro-differential al-
gebra F of coefficient functions, FreeIntDiffOp[F,K] constructs an instance of
the monoid algebra with the word monoid over the infinite alphabet consisting
of the letters ∂ and

�
along with a basis of F and all multiplicative characters

corresponding to evaluations at points in K.
Definition�"IntDiffOp", any��, K�,
IntDiffOp��, K� � where�� � FreeIntDiffOp��, K�, � � GreenSystem��, K�

QuotAlg�GBNF��, ����
�

The GreenSystem functor contains the encoding of the rewrite system described
in Table 1 of [4,14], representing a noncommutative Gröbner basis. The nor-
mal forms with respect to total reduction modulo infinite Gröbner bases are
introduced in the GBNF functor, while the QuotAlg functor creates the quotient
algebra from the corresponding canonical simplifier.

In Appendix A, we present a few examples of boundary problems for ODEs
whose Green’s operators are computed using (4), which now takes on the follow-
ing concrete form in Theorema code.

GreensOp
P

�F, �� � 1
�

�
�
Proj

P
��, F� �

�
RightInv

P
�F�

Here B is the vector of boundary conditions and F the given fundamental system
of solutions.

In a way similar to the integro-differential operators F [∂,
�
] for ODEs, we

have also implemented the integro-differential operators R for the simple PDE
setting outlined in Section 4. Using the same functor hierarchy, we added the
corresponding rules for the operatorsDx,Dt, Ax, At, Lx, Lt and the substitution
operators defined by matrices in GL(R, 2). Moreover, we implemented the com-
putation of Green’s operators for first-order boundary problems (7). With the



280 M. Rosenkranz et al.

factorization (5) we can then compute the Green’s operator for the unbounded
wave equation (Appendix A).

6 Conclusion

The implementation of our symbolic framework for boundary problems allows
us in particular to solve boundary problems for ODEs from a given fundamental
system of the corresponding homogeneous equations. Given a factorization of
the differential operator and a fundamental system of one of the factors, we
can also factor boundary problems into lower order problems. In both cases it
would be interesting to investigate the combination with numerical approaches
to differential equations and boundary problems. For example, how can we use
a fundamental system coming from a numerical algorithm or how can numerical
methods be adapted to deal with integral boundary conditions?

The current setting for PDEs is of course still very limited and should only be
seen as a starting point for future work. But in combination with our factoriza-
tion approach, we believe that it can be extended to include more complicated
problems. For example, the wave equation on the bounded interval [0, 1], which
in our notation reads as P = (D2

t −D2
x, [u(x, 0), ut(x, 0), u(0, t), u(1, t)]) with x

ranging over [0, 1] and t over R≥0, can be factored [5] into P = P1 ◦ P2 with

P1 = (Dt −Dx, [u(x, 0),
� 1

max (1−t,0)u(ξ, ξ + t− 1) dξ])

and P2 = (Dt + Dx, [u(x, 0), u(0, t)]). The more complicated structure of the
Green’s operator for P (it involves a finite sum with an upper bound depending
on its argument) is reflected in the Green’s operator for the left factor P1. Its
computation leads in this case to a simple functional equation, but a systematic
approach to compute and represent Green’s operators for PDEs with integral
boundary conditions still needs to be developed. In a generalized setting including
the bounded wave equation, we would also have to allow for more complicated
geometries: as a first step bounded intervals and then also arbitrary convex sets.

References

1. Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons,
New York (1979)

2. Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value prob-
lems via non-commutative Gröbner bases. Appl. Anal. 82, 655–675 (2003)

3. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Comput. 39, 171–199 (2005)

4. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. J. Symbolic Com-
put. 43, 515–544 (2008)

5. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear
boundary problems. Ann. Mat. Pura Appl. 188(4), 123–151 (2009)



A Symbolic Framework for Operations on Linear Boundary Problems 281

6. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K.,
Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: To-
wards computer-aided mathematical theory exploration. J. Appl. Log. 4, 359–652
(2006)

7. Buchberger, B.: An algorithm for finding the bases elements of the residue class
ring modulo a zero dimensional polynomial ideal (German). PhD thesis, Univ. of
Innsbruck (1965); English translation J. Symbolic Comput. 41(3-4), 475–511 (2006)

8. Buchberger, B.: Introduction to Gröbner bases. In: Buchberger, B., Winkler, F.
(eds.) Gröbner bases and applications, Cambridge Univ. Press, Cambridge (1998)

9. Mora, T.: An introduction to commutative and noncommutative Gröbner bases.
Theoret. Comput. Sci. 134, 131–173 (1994)

10. Köthe, G.: Topological vector spaces, vol. I. Springer, New York (1969)
11. Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary

conditions. Trans. Amer. Math. Soc. 198, 73–92 (1974)
12. Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I:

Gewöhnliche Differentialgleichungen. Akademische Verlagsgesellschaft, Leipzig
(1967)

13. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations.
McGraw-Hill Book Company, Inc., New York (1955)

14. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators.
In: Jeffrey, D. (ed.) Proceedings of ISSAC 2008, pp. 261–268. ACM, New York
(2008)

15. van der Put, M., Singer, M.F.: Galois theory of linear differential equations.
Springer, Berlin (2003)

16. Schwarz, F.: A factorization algorithm for linear ordinary differential equations.
In: Proceedings of ISSAC 1989, pp. 17–25. ACM, New York (1989)

17. Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear
ordinary differential operator. In: Proceedings of ISSAC 1996, pp. 226–231. ACM,
New York (1996)

18. Grigoriev, D., Schwarz, F.: Loewy- and primary decompositions of D-modules.
Adv. in Appl. Math. 38, 526–541 (2007)

19. Tsarev, S.P.: Factorization of linear partial differential operators and Darboux
integrability of nonlinear PDEs. SIGSAM Bull. 32, 21–28 (1998)

20. Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to
integro-differential operators. In: Proceedings of ISSAC 2009. ACM, New York (to
appear, 2009)

21. Cohn, P.M.: Further algebra and applications. Springer, London (2003)
22. Buchberger, B., Regensburger, G., Rosenkranz, M., Tec, L.: General polynomial

reduction with Theorema functors: Applications to integro-differential operators
and polynomials. ACM Commun. Comput. Algebra 42, 135–137 (2008)

23. Buchberger, B.: Groebner rings and modules. In: Maruster, S., Buchberger, B.,
Negru, V., Jebelean, T. (eds.) Proceedings of SYNASC 2001, pp. 22–25 (2001)

24. Buchberger, B.: Groebner bases in Theorema using functors. In: Faugere, J.,
Wang, D. (eds.) Proceedings of SCC 2008, pp. 1–15. LMIB Beihang University
Press (2008)

25. Windsteiger, W.: Building up hierarchical mathematical domains using functors in
Theorema. Electr. Notes Theor. Comput. Sci. 23, 401–419 (1999)



282 M. Rosenkranz et al.

A Sample Computations

Let us again consider example (1). By our implementation, we obtain the Green’s
operator for the boundary problem with the corresponding Green’s function.
As noted in [3], the Green’s function provides a canonical form for the Green’s
operator. In the following, we use the notation Au =

∫ x

0
u(ξ) dξ, Bu =

∫ 1

x
u(ξ) dξ,

Lu = u(0), Ru = u(1), and A1f(x, t) =
∫ x

0
f(ξ, t) dξ.

Compute	AsGreen
�

	GreensOp
�

�D2, 


1, 

"��", 0����, 

1, 

"��", 1��������

�A x � x B � x A x � x B x

Compute	GreensFct
��

	GreensOp
�

�D2, 


1, 

"��", 0����, 

1, 

"��", 1��������

� �Ξ � x Ξ � Ξ � x

�x � x Ξ � x � Ξ

As explained in Section 3, we can factor (1) along a factorization of the differ-
ential operator, given a fundamental system for the right factor. Here is how
we can compute the boundary conditions of the left and right factor problems,
respectively.

Compute	AsGreen
�

	Factorize
��

�D, D, 


1, 

"��", 0����, 

1, 

"��", 1�����, 


1, 
�������

��A � B�, �L��
We consider as a second example the fourth order boundary problem [4, Ex. 33]:

u′′′′ + 4u = f,
u(0) = u(1) = u′(0) = u′(1) = 0. (8)

Factoring the boundary problem along D4 + 4 = (D2 − 2i)(D2 + 2i), we obtain
the following boundary conditions for the factor problems.

Compute	AsGreen
�

	Factorize
��

�D2 � 2�, D2 � 2�,




1, 

"��", 0����, 

1, 

"��", 1����, 

1, 

"��", 0�, "�"���, 

1, 

"��", 1�, "�"����,




1, 

"��", 
0, �1 � ������, 

1, 

"��", 
0, 1 � ��1�����������

��A ��Complex��1,1�	 x � B ��Complex��1,1�	 x, A ��Complex�1,�1�	 x � B ��Complex�1,�1�	 x
, �L, R�

With our implementation we can also compute its Green’s operator and verify
the solution presented in [4].

The final example for ODEs is a third order boundary problem with expo-
nential coefficients.

u′′′ − (ex + 2)u′′ − u′ + (ex + 2)u = f,
u(0) = u(1) = u′(1) = 0. (9)

Here we use as coefficient algebra all functions representable in Mathematica.
The Green’s operator is computed as follows.



A Symbolic Framework for Operations on Linear Boundary Problems 283

Compute	GreensOp
�

��

1, mma��x���, 

1, mma���x���, ���1, mma���x ��x��, �1, mma���x����,




1, 

"��", 0����, 

1, 

"��", 1����, 

1, 

"��", 1�, "�"������

��1 � �	�2 ��1 � ��x  A � ��1 � �	�2 ��1 � ��x  B � ��1	 ��1 � �	�2 ��1 � ��x���1	 x A �

��1	 ��1 � �	�2 ��1 � ��x���1	 x B �
1

2
�
1

2
 ��1 � �	�2  ��1 x A �

1

2
 ��1 � �	�2 ��1 x B �

�1

2
 ��1 � �	�2 �x A �

�1

2
 ��1 � �	�2 �x B � ��1 � �	�2 ��1 � ��x  A ��2 x �

��2	 ��1 � �	�2 ��1 � ��x  A ��1 x � ��1	 ��x  B ��1 �x���2	 x � ��1 � �	�2 ��1 � ��x  B ��2 x �

��2	 ��1 � �	�2 ��1 � ��x  B ��1 x � ��1	 ��1 � �	�2 ��1 � ��x���1	 x A ��2 x � 2 ��1 � �	�2 ��1 � ��x���1	 x A ��1 x �

��x���1	 x B ��1 �x���2	 x � ��1	 ��1 � �	�2 ��1 � ��x���1	 x B ��2 x � 2 ��1 � �	�2 ��1 � ��x���1	 x B ��1 x �

1 �
1

2
 ��1 � ��1 � �	�2�  ��1 x A ��2 x � ��1 � ��1	 ��1 � �	�2� ��1 x A ��1 x �

1

2
 ��1 � ��1 � �	�2� ��1 x B ��2 x � ��1	 ��1 � �	�2 ��1 x B ��1 x �

�1

2
�
1

2
 ��2 � �	 ��1 � �	�2 �  �x A ��2 x �

��1 � �	�2 �x A ��1 x �
1

2
 ��2 � �	 ��1 � �	�2 � �x B ��2 x � ��1 � �	�2 �x B ��1 x

As a last example, we return to the boundary problem for the wave equation (2).
With Proposition 1 and using the factorization (5), we can compute the Green’s
operator for (2) simply by composing the Green’s operators of the first-order
problems P1 = (Dt − Dx, [u(x, 0)]) and P2 = (Dt + Dx, [u(x, 0)]). Relative to
the setting in Section 4, we switch the x- and t-coordinates.

Compute	GreensOp
�

�1, �1, 0��
�
GreensOp

�

�1, 1, 0��

��1, ��mat, ��1, 0�, ��1, 1���, A1, �mat, ��1, 0�, �2, 1���, A1, �mat, ��1, 0�, ��1, 1������
Interchanging again t and x, this corresponds in the usual notation toG1f(x, t) =∫ t

0 f(ξ,−ξ + x+ t) dξ and G2f(x, t) =
∫ t

0 f(ξ, ξ + x− t) dξ, which yields

G2G1f(x, t) =
∫ t

0

∫ τ

0

f(ξ, 2τ − ξ + x− t) dξ dτ

for the Green’s operator of the unbounded wave equation (2).



Mathematical Model for Dengue Epidemics with
Differential Susceptibility and Asymptomatic

Patients Using Computer Algebra

Clarita Saldarriaga Vargas

Logic and Computation Group
Program of Physical Engineering

School of Sciences and Humanities
EAFIT University
Medelĺın, Colombia

csalda13@eafit.edu.co

Abstract. When there are diseases affecting large populations where
the social, economic and cultural diversity is significant within the same
region, the biological parameters that determine the behavior of the
dispersion disease analysis are affected by the selection of different in-
dividuals. Therefore and because of the variety and magnitude of the
communities at risk of contracting dengue disease around all over the
world, suggest defining differentiated populations with individual contri-
butions in the results of the dispersion dengue disease analysis. In this
paper those conditions were taken in account when several epidemio-
logic models were analyzed. Initially a stability analysis was done for a
SEIR mathematical model of Dengue disease without differential suscep-
tibility. Both free disease and endemic equilibrium states were found in
terms of the basic reproduction number and were defined in the Theo-
rem (3.1). Then a DSEIR model was solved when a new susceptible group
was introduced to consider the effects of important biological parameters
of non-homogeneous populations in the spreading analysis. The results
were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4)
resumed the basic reproduction numbers for three and n different suscep-
tible groups respectively, giving an idea of how differential susceptibility
affects the equilibrium states. The computations were done using an al-
gorithmic method implemented in Maple 11, a general-purpose computer
algebra system.

Keywords: Dengue disease, epidemiology, SEIR model, DSEIR model,
differential susceptibility, basic reproduction number, equilibrium states,
stability analysis.

1 Introduction

Dengue disease is one of the most common mosquito-transmitted viral diseases,
caused by four virus serotypes of the genus Flavivirus with high occurrence in
tropical and subtropical regions, including urban districts and rural areas. Some

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 284–298, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Mathematical Model for Dengue Epidemics 285

of the disease signs and symptoms are high fever, severe headache, muscle and
joint pains and red rash. Currently there are about 2.5 billion people at risk
from dengue disease in over 100 endemic countries and is estimated that there
may be 50 million cases of dengue infection worldwide every year (Figure 1) [1].
In consonance with that, mathematical models of infectious diseases have been
done to approximate the future course of an outbreak and evaluate strategies to
control an epidemic.

Fig. 1. World distribution of Dengue viruses and their mosquito vector, Aedes aegypti,
in 2005

When there are diseases that affect large populations, where the social, eco-
nomic and cultural diversity is significant within the same region, the biological
parameters that determine the behavior of the dispersion disease analysis are
affected by the selection of different individuals. As mentioned earlier, Dengue
is a disease that affects all sorts of people located in tropical and subtropi-
cal regions. Communities on every continent are in constant risk of contracting
dengue through mosquito bites and therefore of developing the disease. The va-
riety and magnitude of the populations surrounding the earth along the parallel
of the equator, suggest defining differentiated populations with particular con-
tributions in the results of the dispersion disease analysis. To achieve this, below
are several epidemiological models that have synthesized their results in a series
of theorems. At first we started to establish a homogeneous distribution of com-
munities in which there is only one type of susceptible people. Then we define
two and three to n different types of susceptible populations which are charac-
terized by having three distinct parameters for each. Those sorts of models are
described below.

Compartmental SEIR models divide the human population in four classes:
susceptible, symptomatic infectious, asymptomatic infectious and recovered, be-
ing a good spreading dengue disease approaches when large human popula-
tions with homogeneous behavior are supposed as one susceptible compartment.



286 C. Saldarriaga Vargas

Nevertheless, when a non-homogeneous distribution of population is a potential
susceptible to acquire the disease, the SEIR model without differential suscep-
tibility isn’t able to take in account specific features and biological parameters
with high importance for the mathematical spreading analysis. Heterogeneous
mixing of the population because of economic, cultural and social tendencies,
disease location, rural-urban migration and urban infrastructure are some of the
factors that impact in the parameter values of spreading analysis.

For this case is important to use a DSEIR model that includes more than one
susceptible group, in which new different susceptible classes were introduced.
In this paper a multiple differential susceptibility were given by a DSEIR model
and three particular parameters were used to distinguish each susceptible group.
At the beginning a stability analysis were done for a SEIR mathematical model
without differential susceptibility. Both free disease and endemic equilibrium
states were found in terms of the basic reproduction number and were defined
in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible
group was introduced to consider the effects of important biological parameters
of non-homogeneous populations in the spreading analysis. The results were com-
piled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic
reproduction numbers for three and n different susceptible groups respectively.
The computations were done using an algorithmic method [2,3] implemented
in Maple 11, based on biological and mathematical criteria for determining the
equilibrium states.

2 Problem

Mathematical model without differential susceptibility
To study the mathematical SEIR model of spread of dengue disease, we need
to define four classes of human populations and two classes of vector popula-
tion. Those are the susceptible, asymptomatic infected, symptomatic infected
and recovered human population and for vector the susceptible and infected
population. In this first model we will not define different kinds of susceptible
population, like we will do in the second one. Vector population must be divided
only in two groups because it never recovers after the infection. Each group or
compartment is named below:

X(t) represents the number of individuals who are not yet infected with the
disease at time t, or those who are susceptible to the disease,
Y (t) is the number of asymptomatic infectious person (people who have been
infected with the disease but don’t show signs of symptoms) at time t,
Z(t) is the number of symptomatic infectious person (people who have been
infected with the disease and show signs of symptoms) at time t,
W (t) is the number of recovered person at time t. Those in this category
have been infected but then recovered from the disease. They are not able
to be infected again or to transmit the infection to others.
Xv(t) is the number of susceptible vector populations at time t,
Yv(t) is the number of infectious vector population at time t.



Mathematical Model for Dengue Epidemics 287

Both symptomatic and asymptomatic infectious humans are capable of spreading
the disease to those in the susceptible category. The dynamic model for each
compartment of human and vector populations without differential susceptibility
for dengue disease [2] is given by:

d

dt
X (t) = ρNh − b (βha + βhs)X (t)Zv (t)

Nh
− μhX (t) (1)

d

dt
Y (t) =

bβhaX (t)Zv (t)
Nh

− (μh + r)Y (t) (2)

d

dt
Z (t) =

bβhsX (t)Zv (t)
Nh

− (μh + r)Z (t) (3)

d

dt
W (t) = r (Y (t) + Z (t))− μhW (t) (4)

d

dt
Xv (t) = C − bβvXv (t) (Y (t) + Z (t))

Nh
− μvXv (t) (5)

d

dt
Zv (t) =

bβvXv (t) (Y (t) + Z (t))
Nh

− μvZv (t) (6)

where

Nt is the total number of human population,
Nv is the total number of vector population,
βha is the transmission probability of dengue virus from vector population to
human population and become asymptomatic infectious human population,
βhs is the transmission probability of dengue virus from vector population to
human population and become symptomatic infectious human population,
μh is the death rate of the human population,
μv is the death rate of the vector population,
ρ is the birth rate of the human population,
b is the biting rate of the vector population,
r is the recovery rate of the human population,
C is the constant recruitment rate of the vector population.

Now, knowing that X(t), Y (t), Z(t) and W (t) are fractions of the total human
population, we can say that

x (t) + y (t) + z (t) + w (t) = 1



288 C. Saldarriaga Vargas

where

x (t) =
X (t)
Nh

, y (t) =
Y (t)
Nh

, z (t) =
Z (t)
Nh

, w (t) =
W (t)
Nh

are the compartment densities.
The same is done for the vector compartments:

xv (t) + yv (t) = 1

where

xv (t) =
Xv (t)
Nv

, yv (t) =
Yv (t)
Nv

Using the last four equations we can resume the system (1-6) in the next
expressions:

(
d

dt
x (t)

)
Nh = ρNh − bx (t) zv (t)Nvβha

−bx (t) zv (t)Nvβhs − μhx (t)Nh (7)

(
d

dt
y (t)

)
Nh = bx (t) zv (t)Nvβha − y (t)Nhμh − y (t)Nhr (8)

(
d

dt
z (t)

)
Nh = bx (t) zv (t)Nvβhs − z (t)Nhμh − z (t)Nhr (9)

(
d

dt
zv (t)

)
Nv = Nvbβvy (t)−Nvbβvy (t) zv (t) +Nvbβvz (t)

−Nvbβvz (t) zv (t)− μvzv (t)Nv (10)

Mathematical model with differential susceptibility
In order to make and analyze the mathematical model for susceptible popula-
tions who have different decisive biological parameters for the spreading disease
results, we should introduce another group of this sort of population to take in
account its effects and optimize the mathematical model of dengue disease.

For that, we denote as X1(t) and X2(t) the new susceptible groups with
βha,1,βhs,1 and ρ1 forX1(t) and βha,2,βhs,2, and ρ2 forX2(t). The rest parameters
are the same for both susceptible groups.



Mathematical Model for Dengue Epidemics 289

The dynamic model for each compartment including the differential suscepti-
bility groups [4,5,6] becomes as it is shown:

d

dt
X1 (t) = ρ1Nh − b (βha,1 + βhs,1)X1 (t)Zv (t)

Nh
− μhX1 (t) (11)

d

dt
X2 (t) = ρ2Nh − b (βha,2 + βhs,2)X2 (t)Zv (t)

Nh
− μhX2 (t) (12)

d

dt
Y (t) =

bβha,1X1 (t)Zv (t)
Nh

+
bβha,2X2 (t)Zv (t)

Nh
− (μh + r) Y (t) (13)

d

dt
Z (t) =

bβhs,1X1 (t)Zv (t)
Nh

+
bβhs,2X2 (t)Zv (t)

Nh
− (μh + r)Z (t) (14)

d

dt
W (t) = r (Y (t) + Z (t))− μhW (t) (15)

d

dt
Xv (t) = C − bβvXv (t) (Y (t) + Z (t))

Nh
− μvXv (t) (16)

d

dt
Zv (t) =

bβvXv (t) (Y (t) + Z (t))
Nh

− μvZv (t) (17)

The compartments densities satisfies that

x1 (t) + x2 (t) + y (t) + z (t) + w (t) = 1

where

x1 (t) =
X1 (t)
Nh

, x2 (t) =
X2 (t)
Nh

, y (t) =
Y (t)
Nh

, z (t) =
Z (t)
Nh

, w (t) =
W (t)
Nh

are the compartment densities for the model with differential susceptibility.
The same follows for the vector compartments:

xv (t) + yv (t) = 1

where

xv (t) =
Xv (t)
Nv

, yv (t) =
Yv (t)
Nv



290 C. Saldarriaga Vargas

Using the last four equations we can resume the system (11-17) in the next
expressions:

(
d

dt
x1 (t)

)
Nh = ρ1Nh − bx1 (t) zv (t)Nvβha,1

−bx1 (t) zv (t)Nvβhs,1 − μhx1 (t)Nh (18)

(
d

dt
x2 (t)

)
Nh = ρ2Nh − bx2 (t) zv (t)Nvβha,2

−bx2 (t) zv (t)Nvβhs,2 − μhx2 (t)Nh (19)

(
d

dt
y (t)

)
Nh = bx1 (t) zv (t)Nvβha,1 + bx2 (t) zv (t)Nvβha,2

−y (t)Nhμh − y (t)Nhr (20)

(
d

dt
z (t)

)
Nh = bx1 (t) zv (t)Nvβhs,1 + bx2 (t) zv (t)Nvβhs,2

−z (t)Nhμh − z (t)Nhr (21)

(
d

dt
zv (t)

)
Nv = Nvbβvy (t)−Nvbβvy (t) zv (t) +Nvbβvz (t)

−Nvbβvz (t) zv (t)− μvzv (t)Nv (22)

3 Results

3.1 Mathematical Model without Differential Susceptibility

Theorem 3.1. For the model without differential susceptibility given by the sys-
tem (7-10) the following properties hold when host and vector populations with
constant size are assumed:

1. The equilibrium point without infection, called free disease equilibrium is
given by

x =
ρ

μh
= 1, y = 0, z = 0, w = 0



Mathematical Model for Dengue Epidemics 291

2. The equilibrium point with infection, called endemic equilibrium is given by

x =
Nh (bβvρ+ μhμv + μvr)

bβv (μhNh + bNvβhs + bNvβha)

y =

(
b2βvρNvβhs + b2βvρNvβha − μh

2Nhμv − μhNhμvr
)
βha

bβv (μhNh + bNvβhs + bNvβha ) (βha + βhs) (μh + r)

z =

(
b2βvρNvβhs + b2βvρNvβha − μh

2Nhμv − μhNhμvr
)
βhs

bβv (μhNh + bNvβhs + bNvβha) (βha + βhs) (μh + r)

w =
b2βvρNvβhs + b2βvρNvβha − μh

2Nhμv − μhNhμvr

(βha + βhs)Nv (bβvρ+ μhμv + μvr) b

3. The free disease equilibrium point is locally stable when

R0 < 1

where

R0 =
βvCb

2 (βha + βhs)
μv

2Nh (μh + r)

is the basic reproductive number for dengue in the model without differential
susceptibility.

4. The endemic equilibrium is locally stable when exists, it is when

1 < R0

Proof

1. Is directly obtained by computation.
2. Is directly obtained by computation.
3. The jacobian for the system (7-10) is given by

⎡⎢⎢⎢⎢⎢⎣
A 0 0 B

bwNvβha −μhNh −Nhr 0 bxNvβha

bwNvβhs 0 −μhNh −Nhr bxNvβhs

0 Nvbβv −Nvbβvw Nvbβv −Nvbβvw C

⎤⎥⎥⎥⎥⎥⎦



292 C. Saldarriaga Vargas

where A, B and C are given by

A = −bwNvβha − bwNvβhs − μhNh

B = −bxNvβha − bxNvβhs

C = −Nvbβvy −Nvbβvz − μvNv

and when this jacobian is evaluated at the free-disease equilibrium point we
obtain

⎡⎢⎢⎢⎢⎢⎢⎣
−μhNh 0 0 − bρ Nvβha

μh
− bρ Nvβhs

μh

0 −μhNh −Nhr 0 bρ Nvβha

μh

0 0 −μhNh −Nhr
bρ Nvβhs

μh

0 Nvbβv Nvbβv −μvNv

⎤⎥⎥⎥⎥⎥⎥⎦
Now, the solutions for the characteristic equation of this last jacobian (eigen-
values of the jacobian) are determined by

λ = −μhNh

λ = −μhNh −Nhr

μhλ
2 − (−μhNhr − μhμvNv − μh

2Nh

)
λ+ μvNvNhμhr

−Nv
2b2βvρ βha −Nv

2b2βvρ βhs + μvNvNhμh
2 = 0

In this point we demand that all the eigenvalues must have negative real
part and the condition for it is

0 < μvNvNhμhr −Nv
2b2βvρ βha −Nv

2b2βvρ βhs + μvNvNhμh
2

which can be rewritten as

βv <
μvNhμh (μh + r)
Nvb2ρ (βha + βhs)

it is to say



Mathematical Model for Dengue Epidemics 293

βvNvb
2ρ (βha + βhs)

μvNhμh (μh + r)
< 1

and assuming that the host and vector population have constant size, we
can use

Nv =
C

μv
, ρ = μh

to obtain

βvCb
2 (βha + βhs)

μv
2Nh (μh + r)

< 1

which can be rewritten as R0 < 1 , where

R0 =
βvCb

2 (βha + βhs)
μv

2Nh (μh + r)

4. The jacobian for the system (7-10) is evaluated at the endemic equilibrium
and for the resulting jacobian the characteristic equation is derived. In order
to get that all eigenvalues have negative real parts we demand that

0 < b2βvρNvβhs + b2βvρNvβha − μh
2Nhμv − μhNhμvr

which can be rewritten as

μhNhμv (μh + r)
b2ρNv (βha + βhs)

< βv

it is to say

1 <
βvCb

2 (βha + βhs)
Nhμv

2 (μh + r)

and for hence

1 < R0

The endemic equilibrium can be rewritten as

x =
R0μvNhμh + bCβha + bCβhs

(μvNhμh + bCβhs + bCβha)R0



294 C. Saldarriaga Vargas

y =
bCμh (R0 − 1)βha

(μvNhμh + bCβhs + bCβha)R0 (μh + r)

z =
bCμh (R0 − 1)βhs

(μvNhμh + bCβhs + bCβha)R0 (μh + r)

w =
μvNhμh (R0 − 1)

R0μvNhμh + bCβha + bCβhs

which is indicating that the endemic equilibrium exists when R0 > 1; and
then we conclude that the endemic equilibrium is locally stable when exists.

3.2 Mathematical Model with Differential Susceptibility

Theorem 3.2. For the model with differential susceptibility given by the sys-
tem (18-22) the following properties hold when host and vector populations with
constant size are assumed:

1. The free disease equilibrium is given by

x1 =
ρ1
μh

=
ρ1

ρ1 + ρ2
, x2 =

ρ2
μh

=
ρ2

ρ1 + ρ2
, y = 0, z = 0, w = 0

2. The free disease equilibrium point is locally stable when R0 < 1
where

R0 =
Cb2βv (ρ2βhs,2 + βha,1ρ1 + βhs,1ρ1 + ρ2βha,2)

μv
2Nh (ρ1 + ρ2) (ρ1 + ρ2 + r)

is the basic reproductive number for dengue in the model with two differential
susceptibility.

Proof

1. Is directly obtained by computation.
2. The jacobian for the system (18-22) is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 0 E

0 F 0 0 G

bwNvβha,1 bwNvβha,2 −μhNh −Nhr 0 H

bwNvβhs,1 bwNvβhs,2 0 −μhNh −Nhr I

0 0 J K L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦



Mathematical Model for Dengue Epidemics 295

where D, E, F, G, H, I, J, K and L are given by:

D = −bwNvβha,1 − bwNvβhs,1 − μhNh

E = −bx1Nvβha,1 − bx1Nvβhs,1

F = −bwNvβha,2 − bwNvβhs,2 − μhNh

G = −bx2Nvβha,2 − bx2Nvβhs,2

H = bx1Nvβha,1 + bx2Nvβha,2

I = bx1Nvβhs,1 + bx2Nvβhs,2

J = Nvbβv −Nvbβvw

K = Nvbβv −Nvbβvw

L = −Nvbβvy −Nvbβvz − μvNv

and when this jacobian is evaluated at the free-disease equilibrium point we
obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μhNh 0 0 0 M

0 −μhNh 0 0 N

0 0 −μhNh −Nhr 0 O

0 0 0 −μhNh −Nhr P

0 0 Nvbβv Nvbβv −μvNv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where M, N, O and P are given by

M = −bρ1Nvβha ,1

μh
− bρ1Nvβhs,1

μh

N = −bρ2Nvβha,2

μh
− bρ2Nvβhs,2

μh

O =
bρ1Nvβha,1

μh
+
bρ2Nvβha,2

μh



296 C. Saldarriaga Vargas

P =
bρ1Nvβhs,1

μh
+
bρ2Nvβhs,2

μh

Now, the solutions of the characteristic equation for this last jacobian are
given by

λ = −μhNh

λ = −μhNh

λ = −μhNh −Nhr

0 = −μvNvNhμhr − λNhμhr − μvNvNhμh
2 − λNhμh

2 − μhλμvNv

−λ2μh +Nv
2b2βvρ2βha,2 +Nv

2b2βvρ2βhs,2

+Nv
2b2βvρ1βhs,1 +Nv

2b2βvρ1βha,1

In this point we demand that all the eigenvalues must have negative real
part and the condition for it is

0 < μvNvNhμhr −Nv
2b2βvρ1βha,1 + μvNvNhμh

2 −Nv
2b2βvρ2βhs,2

−Nv
2b2βvρ1βhs,1 −Nv

2b2βvρ2βha,2

which can be rewritten as

Nvb
2βv (ρ2βha,2 + ρ1βhs,1 + ρ2βhs,2 + ρ1βha,1)

μhNh (μh + r)
< μv

and assuming that the host and vector population have constant size, we
have that

Nv =
C

μv
, μh = ρ1 + ρ2

to obtain

Cb2βv (ρ2βha,2 + ρ1βhs,1 + ρ2βhs,2 + ρ1βha,1)
μv

2 (ρ1 + ρ2)Nh (ρ1 + ρ2 + r)
< 1

which can be rewritten as R0 < 1, where

R0 =
Cb2βv (ρ2βha,2 + ρ1βhs,1 + ρ2βhs,2 + ρ1βha,1)

μv
2 (ρ1 + ρ2)Nh (ρ1 + ρ2 + r)

Theorem 3.3. For the model with differential susceptibility with three classes
of susceptible individuals in which host and vector populations with constant size
are assumed the free-disease equilibrium point is locally stable when R0 < 1,
where the basic reproductive number for dengue is now given by



Mathematical Model for Dengue Epidemics 297

R0 =
βvb

2C (ρ2βha,2 + ρ1βhs,1 + ρ2βhs,2 + ρ1βha,1 + ρ3βhs,3 + ρ3βha,3)
Nhμv

2 (ρ1 + ρ2 + ρ3) (ρ1 + ρ2 + ρ3 + r)

Proof. It is obtained when is introduced a third susceptible group. Explicit proof
is not shown here because of space.

Theorem 3.4. For the model with differential susceptibility with n classes of
susceptible individuals in which host and vector populations with constant size
are assumed the free-disease equilibrium point is locally stable when R0 < 1,
where the basic reproductive number for dengue is now given by

R0 =
βvb

2C
∑n

k=1 ρkβhs,k + ρkβha,k

Nhμv
2
∑n

k=1 ρk (r +
∑n

k=1 ρk)

Proof. It is not shown here because of space.

Theorem 3.4. defines a flexible and more accurate approach of the conditions
that must be satisfied for having free dengue disease state in populations without
homogeneous distributions of biological parameters.

4 Conclusion

In order to develop more accurate models to the real transmission dynamics,it
is necessary to identify which assumptions can be taken so the theoretical re-
sults don’t deviate a lot from evidence results, making the modeling useless and
unnecessary for helping epidemiologists to approximate the future course of an
outbreak and evaluate strategies to control an epidemic. The basic reproductive
number is of vital importance to get this objective and determine when free
disease or endemic equilibrium state occurs. So if the considered model is based
on firm evidence, it will allow us to find the conditions for having or not those
equilibriums. To reduce the deviations produced from coarse assumptions, it is
indispensable to take in account those parameters that will lead the spreading
dynamics. For dengue disease is important to difference the susceptible popula-
tions, because there are factors like heterogeneous mixing of the population due
to of cultural and social trends, disease location, rural-urban migration and ur-
ban infrastructure that characterize individuals groups with a non-homogeneous
biological parameters distribution. Theorems 3.1, 3.2, 3.3 and 3.4 contribute to
the control strategies of dengue disease for both homogeneous and heterogeneous
distributions of susceptible populations, giving the flexibility and the accurate
necessary for an effective analysis of disease spreading of variety systems of indi-
viduals if the specific terms for the compartments are known. Taking particular
parameters ρ, βha and βhs for each susceptible compartment contributes to de-
velop a certain and more relevant biological model due to a better modeling of
the real system. The results of this paper are also important in order to expand
susceptible individuals until n types for having a major adaptation of the model
to the biological conditions present where the disease occurs, providing greater
flexibility of use to a specific real system.



298 C. Saldarriaga Vargas

References

1. World Health Organization, Dengue and Dengue Hemorrhagic Fever, Fact sheet
N117 (2009)

2. Pongsumpun, P., Samana, D.: Mathematical Model for Asymptomatic and Symp-
tomatic Infections of Dengue Disease. WSEAS Transactions on Biology and
Biomedicine 3, 264–269 (2006)

3. Brown, C.W., Kahoui, M.E., Novotni, D., Weber, A.: Algorithmic Methods for In-
vestigating Equilibria in Epidemic Modeling. Journal of Symbolic Computation 41,
1157–1173 (2006)

4. Hyman, J.M., Li, J.: Differential Susceptibility Epidemic Models. Journal of Math-
ematical Biology 50(6) (2005)

5. Hincapie, D., Ospina, J., Afuwape, A.U., Ruben, D., Gómez, A.: Epidemic Thresh-
olds in SIR and SIIR Models Applying an Algorithmic Method. BioSecure 2008,
119–130 (2008)

6. Taborda, J.A.M.: Epidemic Thresholds via Computer Algebra. In: MSV 2008,
pp. 178–181 (2008)



Multiple Factorizations of Bivariate Linear
Partial Differential Operators

Ekaterina Shemyakova

Research Institute for Symbolic Computation (RISC),
J. Kepler University,

Altenbergerstr. 69, A-4040 Linz, Austria
kath@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at

Abstract. We study the case when a bivariate Linear Partial Differ-
ential Operator (LPDO) of orders three or four has several different
factorizations.

We prove that a third-order bivariate LPDO has a first-order left
and right factors such that their symbols are co-prime if and only if the
operator has a factorization into three factors, the left one of which is
exactly the initial left factor, and the right one is exactly the initial right
factor. We show that the condition that the symbols of the initial left and
right factors are co-prime is essential, and that the analogous statement
“as it is” is not true for LPDOs of order four.

Then we consider completely reducible LPDOs, which are defined as
an intersection of principal ideals. Such operators may also be required
to have several different factorizations. Considering all possible cases, we
ruled out some of them from the consideration due to the first result
of the paper. The explicit formulae for the sufficient conditions for the
complete reducibility of an LPDO were found also.

1 Introduction

The factorization of Linear Partial Differential Operators (LPDOs) is an es-
sential part of recent algorithms for the exact solution for Linear Partial Dif-
ferential Equations (LPDEs). Examples of such algorithms include numerous
generalizations and modifications of the 18th-century Laplace Transformations
Method [1,2,3,4,5,6,7,8], the Loewy decomposition method [9,10,11], and others.

The problem of constructing a general factorization algorithm for an LPDO is
still an open problem, though several important contributions have been made
over the last decades (see for example [9,12,13,14,2,15]). The main difficulty in
the case of LPDOs is non-uniqueness of factorization: (irreducible) factors and
the number of factors are not necessarily the same for two different factorizations
of the same operator. For example, for the famous Landau operator [16] L we
have L = (Dx + 1 + 1

x+c(y)) ◦ (Dx + 1− 1
x+c(y)) ◦ (Dx + xDy) = (Dxx + xDxy +

Dx + (2 + x)Dy) ◦ (Dx + 1) . Note that the second order factor in the second
factorization is hyperbolic and is irreducible.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 299–309, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



300 E. Shemyakova

However, for some classes of LPDOs factorization is unique. For example,
there is [9] no more than one factorization that extends a factorization of the
principal symbol of the operator into co-prime factors (see Theorem 1).

Some important methods of exact integration, for example, mentioned above
Loewy decomposition methods require LPDOs to have a number of different
factorizations of certain types. Also completely reducible LPDOs introduced
in [9], which becomes significant as the solution space of a completely reducible
LPDO coincides with the sum of those of its irreducible right factors may require
a number of right factors. Thus, in Sec. 4 we study the case when a bivariate (not
necessarily hyperbolic) LPDO has two different factorizations. For operators of
order three we have a really interesting result (Theorems 4 and 5). We showed
that analogous statement for operators of order four is not true.

For the proof of the theorems we use invariants’ methods. Invariants of LPDOs
under the gauge transformations (see Sec. 2) are widely used for factorization
problems since Laplace’ times as many properties appearing in connection with
the factorization of an LPDO are invariant under the gauge transformations,
and, therefore, can be expressed in terms of generating invariants, which were
found in [17]. Factorization itself is invariant under the gauge transformations:
if for some LPDO L, L = L1 ◦L2, then Lg = Lg

1 ◦Lg
2. Expressions for necessary

and sufficient conditions for the existence of a factorization of a given LPDO of
a given factorization type were found in [18] and [19]. We use these expressions
in the proofs of the theorems of Sec. 5.

Theorems 4 and 5 of Section 4 allow us to reduce consideration of cases in
Sec. 5, where we show how the problem of the complete reducibility of a hyper-
bolic bivariate LPDO can be expressed in terms of invariants also.

2 Definitions and Notations

Consider a field K of characteristic zero with commuting derivations ∂x, ∂y,
and the ring of linear differential operators K[D] = K[Dx, Dy], where Dx, Dy

correspond to the derivations ∂x, ∂y, respectively. In K[D] the variables Dx, Dy

commute with each other, but not with elements of K. For a ∈ K we have
Dia = aDi + ∂i(a). Any operator L ∈ K[D] has the form L =

∑d
i+j=0 aijD

i
xD

j
y,

where aij ∈ K. The polynomial Sym(L) =
∑

i+j=d aijX
iY j in formal variables

X,Y is called the (principal) symbol of L.
Below we assume that the field K is differentially closed unless stated other-

wise, that is it contains solutions of (non-linear in the generic case) differential
equations with coefficients from K.

Let K∗ denote the set of invertible elements in K. For L ∈ K[D] and every
g ∈ K∗ consider the gauge transformation L → Lg = g−1 ◦ L ◦ g. Then an
algebraic differential expression I in the coefficients of L is invariant under
the gauge transformations (we consider only these in the present paper) if it
is unaltered by these transformations. Trivial examples of invariants are the
coefficients of the symbol of an operator. A generating set of invariants is a set
using which all possible differential invariants can be expressed.



Multiple Factorizations of Bivariate Linear Partial Differential Operators 301

Given a third-order bivariate LPDO L and a factorization of its symbol
Sym(L) into first-order factors. In some system of coordinates the operator has
one of the following normalized forms:

L = (p(x, y)Dx + q(x, y)Dy)DxDy +
2∑

i+j=0

aij(x, y)Di
xD

j
y , (1)

L = D2
xDy +

2∑
i+j=0

aij(x, y)Di
xD

j
y , (2)

L = D3
x +

2∑
i+j=0

aij(x, y)Di
xD

j
y , (3)

where p = p(x, y) �= 0, q = q(x, y) �= 0, aij = aij(x, y). The normalized form (1)
has symbol S = pX + qY . Without loss of generality one can assume p = 1.
Each of the class of operators admits gauge transformations L→ g−1 ◦L ◦ g for
g = g(x, y) �= 0.

Remark 1. Recall that since for two LPDOs L1, L2 ∈ K[D] we have Sym(L1 ◦
L2) = Sym(L1) · Sym(L2), any factorization of an LPDO extends some factor-
ization of its symbol. In general, if L ∈ K[D] and Sym(L) = S1 · . . . · Sk, then
we say that the factorization

L = F1 ◦ . . . ◦ Fk, Sym(Fi0 = Si, ∀i ∈ {1, . . . , k},
is of the factorization type (S1) . . . (Sk).

We reformulate the famous result of [9] in the new notation:

Theorem 1. [9] Let LPDO L of arbitrary order and in arbitrary number of in-
dependent variables have symbol Sym(L) = S1 . . . Sk, where Si-s are pairwise co-
prime. Then there exists at most one factorization of L of the type (S1) . . . (Sk).

3 Factorization via Invariants for Hyperbolic Bivariate
Operators of Order Three

Information from this section will be used in the proofs below in the case, where
L is hyperbolic operator.

Theorem 2. [20] The following 7 invariants form a generating set of invariants
for operators of the form (1): q, I1 = 2q2a20−qa11+2a02, I2 = −qa02y +a02qy +
q2a20x, I3 = a10 + 2qya20 + a2

20q − a11y + qa20y − a11a20, I4 = a01q
2 − 3qxa02 +

a2
02−a11xq

2 +a11qqx +qa02x−a02a11q, I5 = a00q+2a02a20x−a02a10−a01a20q−
1
2a11xyq + qqxa20y − a11qa20x + qqya20x + 2q2a20a20x + qqxya20 + a20a11a02.

The set of values of these seven invariants uniquely defines an equivalent class
of operators of the form (1). Also invariant properties of such operators can be
described in terms of the seven invariants.



302 E. Shemyakova

Lemma 1. The property of having a factorization (or a factorization extending
a certain factorization of the symbol) is invariant.

Proof. Let L = F1 ◦F2◦ . . .◦Fk, for some operators Fi ∈ K[D]. For every g ∈ K∗

we have g−1 ◦ L ◦ g =
(
g−1 ◦ F1 ◦ g

) ◦ (g−1 ◦ F2 ◦ g
) ◦ . . . ◦ (g−1 ◦ Fk ◦ g

)
.

Looking through the formulaes of the next theorem, notice that some conditions
are the same for different types of factorizations. In particular, one can pay
attention to conditions (A1) − (D1). Such correlations will be used in the next
section (Sec. 4).

Theorem 3. [18] Given the values of the invariants q, I1, I2, I3, I4, I5 (from
Theorem 2) for an equivalence class of operators of the form (1). The LPDOs
of the class have a factorization of factorization type

(S)(XY ) if and only if

I3q
3 − I1yq

2 + qyI1q − I4 + qI1x − 2qxI1 − 3qI2 = 0,
−q2I4y + 1/2q3I1xy − qI4x − 3/2q2qxI1y + q3I5 + q2I1xx

−3/2I1q2qxy − 2I1qqxx + 5I1qqxqy + 6I1q2x + 3I4qx
+3I4qqy − qI1I1x + I1I4 + 2qxI21 − 4I1xqqx − 3/2I1xq

2qy
−2q2I2x − q3I2y + I2qI1 + 4I2qqx + 2I2q2qy = 0 ;

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4)

(S)(X)(Y ) if and only if (4) & − I4 + qI1x − 2qxI1 − qI2 = 0 ;
(S)(Y )(X) if and only if (4) & (C1) ;
(X)(SY ) if and only if

(D1) : qqxx − I4 − 2qx = 0 ,
−3/2qxqI1y − q3I3x + I5q2 + 1/2q2I1xy − 1/2qqyI1x+
qxq

2I3 + 2I1qxqy − 1/2I1qxyq − 4qxI2 + qI2x = 0 .

⎫⎬⎭ (5)

(X)(S)(Y ) if and only if (5) & (B1);
(X)(Y )(S) if and only if (5) & (D1);
(XY )(S) if and only if

−qI2 + qqxqy + qyyq
3 − q2qxy + qqxx + I3q3 − I4 − 2q2x = 0 ,

q3I5 + qI4x + 1/2q3I1xy − 3/2q2qxI1y + I1I4 + q2I2x + 2I1qqxqy
+2I1q2x − 5I4qx − 1/2I1q2qxy − I1qqxx + I4qqy − 1/2I1xq

2qy − 4I2qqx
−10q3x − q2qxxx − q4I3x + I3q3qx + 2qq2xqy − q2qyqxx + 8qqxqxx = 0 .

⎫⎪⎪⎬⎪⎪⎭
(6)

(Y S)(X) if and only if

(C1) : −2qxI1 + qI1x − I4 − 2qI2 = 0 ,
−qI4y + 1/2q2I1xy + I5q2 − I2I1 − q2I2y + 2qyI4 + 3I1qxqy−
3/2I1qxyq − 1/2qqyI1x − 3/2qxqI1y = 0 .

⎫⎬⎭ (7)

(XS)(Y ) if and only if

(B1) : I3q
2 − qI1y + qyI1 − 2I2 = 0

−1/2qqyI1x − 3/2qxqI1y + I5q2 − q3I3x + 1/2q2I1xy + qxq2I3
−2qxI2 + qI2x + 3I1qxqy − 3/2I1qxyq − I2I1 + 2q2yqxq − 2qyqI2
−2qxyq

2qy + 2qxyqqx − 2qyq2x .

⎫⎪⎪⎬⎪⎪⎭ (8)



Multiple Factorizations of Bivariate Linear Partial Differential Operators 303

(Y )(SX) if and only if

(A1) : I3 + qyy = 0 ,
−qI4y − 3/2qxqI1y + I5q2 + 1/2q2I1xy + 2qyI4 − 1/2qqyI1x+

3I1qxqy − 3/2I1qxyq − q2I2y = 0 ;

⎫⎬⎭ (9)

(Y )(X)(S) if and only if (6) & −qqxx +I4 +2q2x+qI2−qqxqy +q2qxy = 0 ;
(Y )(S)(X) if and only if (7) & (A1) ;

For LPDOs of the forms (2) and (3) generating sets of invariants and the cor-
responding conditions of the existence of factorizations of different types are
known also [17], [19].

4 Several Factorizations of One Operator

Theorem 4. Let gcd(S1, S2) = 1. A third-order bivariate operator L has a first-
order left factor of the symbol S1 and a first-order right factor of the symbol S2

if and only if it has a complete factorization of the type (S1)(T )(S2), where
T = Sym(L)/(S1S2).

The following diagram is an informal illustration of the statement of the theorem:

((S1)(. . .) ∧ (. . .)(S2)) ⇐⇒ (S1)(. . .)(S2)

Proof. The part of the statement “⇐=” is trivial. Prove “=⇒”.
The symbol of the operator has two different factors, therefore, the normalized

form of the operator L is either (1) or (2). Without loss of generality we can
consider L in its normalized form.

Consider the first (hyperbolic) case. For this class of operators we have the
generating system of invariants q, I1, I2, I3, I4, I5 from Theorem 2. The symbol is
the same for all the operators in the class and isX ·Y ·S, where S = pX+qY . The
following six cases are the only possibilities for the S1 and S2, gcd(S1, S2) = 1.

Case S1 = S, S2 = Y . By the Theorem 3 operator L has a left factor of the
symbol S1 = S and a right factor of the symbol S2 = Y if and only if conditions
(4) and (8) are satisfied. From the second equality in (8) derive an expression
for I3 and substitute it for I3 into the first equality in (4). The resulting equality
implies that the third condition (in Theorem 3) for the existence of factorization
of the type (S)(X)(Y ) is satisfied. The remaining two first conditions are exactly
the same as two conditions (4), and, therefore, the theorem is proved for this
case.

Case S1 = Y , S2 = S. Operator L has a left factor of the symbol S1 = Y
and a right factor of the symbol S2 = S if and only if conditions (9) and (6) are
satisfied. From the first equality in (9) derive an expression for I3 (I3 = −qyy)
and substitute it for I3 into the first equality in (6). The resulting equality implies
that the third condition (in Theorem 3) for the existence of factorization of the
type (Y )(X)(S) is satisfied. Since the first two conditions are satisfied obviously,
we proved the theorem for this case.



304 E. Shemyakova

Cases S1 = X , S2 = Y and S1 = Y , S2 = X and S1 = X , S2 = S and S1 = S,
S2 = X are obvious consequences of Theorem 3.

Consider the case, where the symbol of L has exactly two different factors,
that is L is in the normalized form (2). There are only two cases to consider:
S1 = X,S2 = Y , and S1 = Y, S2 = X .

Straightforward computations show that the equality H1 ◦ H2 = G2 ◦ G1,
where Sym(H1) = X and Sym(G1) = Y implies that for some a = a(x, y) and
b = b(x, y) we have H2 = Dxy + aDx + bDy + ax + ab = (Dx + b) ◦ (Dy + a),
while G1 = Dy + a. Thus, H2 has a factorization of the type (X)(Y ).

Similar computations show that the equality H1 ◦ H2 = G2 ◦ G1, where
Sym(H1) = Y and Sym(G1) = X implies that for some a = a(x, y) and
b = b(x, y) we have G2 = Dxy + aDx + bDy + by + ab = (Dy + a) ◦ (Dx + b),
while H1 = Dy + a. Thus, H2 has a factorization of the type (Y )(X).

Example 1 (Symbol SXY , S1 = X + Y , S2 = Y ). We found an operator with
two factorizations L = (Dx + Dy + x) ◦ (Dxy + yDx + y2Dy + y3) and L =
(Dxx +Dxy +(x+y2)Dx +y2Dy +xy2 +2y)◦ (Dy +y). Then L has factorization
L = (Dx +Dy + x) ◦ (Dx + y2) ◦ (Dy + y).

Example 2 (Symbol X2Y , S1 = X, S2 = Y ). We found an operator with two
factorizations L = (Dx+x)◦(Dxy+yDx+y2Dy+y3) and L = (Dxx+(x+y2)Dx+
xy2) ◦ (Dy + y). Then L has factorization L = (Dx + x) ◦ (Dx + y2) ◦ (Dy + y).

Example 3 (Symbol X2Y , S1 = Y , S2 = X). We found an operator with two
factorizations L = (Dy + x) ◦ (Dxx + yDx + y3 − y4) and L = (Dxy + xDx +
y2Dy +xy2 +2y)◦ (Dx + y− y2). Then L has factorization L = (Dy +x)◦ (Dx +
y2) ◦ (Dx + y − y2).

Looking at the examples, one can notice that the factorizations into first-order
factors have the right and left factors exactly the same as they were in the initial,
given factorizations. In fact, this will be always the case. Accordingly, we improve
Theorem 4 proving the following one.

Theorem 5. A third-order bivariate operator L has a first-order left factor F1

and a first-order right factor F2 with gcd(Sym(F1), Sym(F2)) = 1 if and only if
L has a factorization into three factors, the left one of which is exactly F1 and
the right one is exactly F2.

The following diagram is an informal illustration of the statement of the theorem:

(L = F1 ◦ . . . ∧ L = . . . ◦ F2) ⇐⇒ L = F1 ◦ . . . ◦ F2 .

Proof. Let L have the normalized form (1). Then by Theorem 4 if L has a first-
order left factor F1 and a first-order right factor F2 (Sym(F2) is co-prime with
Sym(F1)), it has a factorization into first-order factors of the type (S1)(R)(S2),
where R = SymL/(S1S2). Theorem 1 implies that such factorization is unique,
so we have some unique first-order LPDOs T1, T, T2 such that L = T1 ◦ T ◦ T2,
where Sym(T1) = S1, Sym(T ) = R, Sym(T2) = S2. This also means that there



Multiple Factorizations of Bivariate Linear Partial Differential Operators 305

are factorization L = T1 ◦ (T ◦ T2) of the type (S1)(RS2) and factorization
L = (T1 ◦ T ) ◦ T2 of the type (S1R)(S2). Since S1, R, S2 are pairwise coprime,
by Theorem 1 such factorizations are unique. On the other hand we have initial
factorizations that are factorizations of the same types. Thus, we have F1 = T1

and F2 = T2.
For L that has the normalized form (2), the statement of the theorem is

actually a subresult in the proof of Theorem 4 for this case.

Proposition 1. The condition gcd(S1, S2) = 1 in Theorems 4 and 5 cannot be
omitted.

Proof. Hyperbolic case. Consider an equivalence class of (1) defined by q = 1,
I1 = I2 = I5 = 0, I3 = I4 = x − y of the invariants from Thereom 2. Using
Theorem 3 one can verify that operators of the class have factorizations of the
types (S)(XY ) and (XY )(S) only.

Such equivalence class is not empty. For example, operator A3 = Dxxy +
Dxyy +(x−y)(Dx +Dy) belongs to this equivalence class. Only the following two
factorizations exist for A3: A3 = (Dxy+x−y)(Dx+Dy) = (Dx+Dy)(Dxy+x−y).

The non-hyperbolic case. Consider operator of Landau

D3
x + xD2

xDy + 2D2
x + (2x+ 2)DxDy +Dx + (2 + x)Dy ,

which has two factorizations into different numbers of irreducible factors:

L = Q ◦Q ◦ P = R ◦Q ,
for the operators P = Dx + xDy, Q = Dx + 1, R = Dxx + xDxy + Dx +
(2 + x)Dy. That is factorizations of the types (X)(SX), (SX)(X) exist, while
those of the type (X)(S)(X) do not. Here we denote S = X + xY .

Proposition 2. The statement of Theorem 5 is not always true for a general
fourth-order hyperbolic operator.

Proof. For example, operator

L = (Dx +Dy) ◦ (DxDy(Dx +Dy) + xDxx + (2 − x2)Dx + xDy − 2x+ x2)
= (Dx(Dx +Dy)2 − xDx(Dx +Dy) + (x − 2)Dx + (x − 1)Dy + 1) ◦ (Dy + x) .

The second factor in the first factorization has no factorization.

5 Completely Reducible Operators

Let < L > denote the left ideal generated by an operator L ∈ K[D]. Consider
Linear Ordinary Differential Operators (LODOs). The ring of LODOs are the
principal ideal domain and, therefore, the intersection of two principal ideals is
again principle. Consequently, the least common multiple (lcm) of two LODOs
L1 and L2 can be defined uniquely as L such that < L >=< L1 > ∩ < L2 >.
Since in the ring of LPDOs this is not the case, it was suggested [9] to introduce
the notion of a completely irreducible LPDO.



306 E. Shemyakova

Definition 1. [9] An LPDO L is said to be completely irreducible, if it can be
expressed as < L >=< L1 > ∩ . . .∩ < Lk > for suitable irreducible LPDOs
L1, . . . , Lk. In this case L = lcm{L1, . . . , Lk} by definition.

Theorem 6. [9] If an LPDO L has right factors L1, . . . , Lk and

SymL = lcm(SymL1
, . . . , SymLk

) , (10)

then < L >=< L1 > ∩ . . .∩ < Lk >. If the factors L1, . . . , Lk are irreducible,
then L is completely reducible via L1, . . . , Lk.

An additional piece of motivation is [9] the following. Let for an ideal I ⊂ K[D]
denote by VI ⊂ K its space of solutions. Then for two ideals I1, I2 ⊂ K[D] we
have [21,22] VI1∩I2 = VI1 + VI2 , which allows to reduce the solution problem of
the partial differential equation corresponding to a completely reducible LPDO
to ones of corresponding to its factors.

Notice that the properties of the existence of a right factor with certain symbol
or a factorization of certain factorization type, and, therefore, irreducibility of
factors are invariant under the gauge transformations. Consequently, an invariant
description of the completely reducible operators is possible.

Consider a hyperbolic linear partial differential operator of third order in the
normalized form (1). Consider all possible right factors of the operator, their
symbols are

X ,Y , S ,XY ,XS , Y S ,

where S = X + qY . Let us list all the possibilities for {L1, . . . , Lk} that Li-s
together satisfy (10). Notice that the number (of factors) k is not fixed. However,
by Thereom 1 there is no more than one factorization of each factorization type.
Thus, Li �= Lj for i �= j, and, therefore, k ≤ 6.

I. {X,Y, S} ;
II. {SX, SY } , {SX,XY } , {SY,XY } ;

III. {X,SY } , {Y, SX} , {S,XY } – the right factors are co-prime ;
IV. {X,Y, SX} , {X,XY, SY } , . . . – the sets that contain as the subset one of

the sets of the groups III and I.
V. {SX, SY,XY } – the only set that contains as the subset one of the sets of

the groups II and does not belong to the group IV .

Theorem 4 allows us to avoid the consideration of the large group IV . Indeed,
by Thereom 4, at least one of the second-order factors of the sets fails to be
irreducible.

Now, when we rule out all cases but eight, using Theorem 3 it is easy to obtain
sufficient conditions for LPDOs to be completely reducible with

< L >=< L1 > ∩ . . .∩ < Lk > ,

where {Sym(L1), . . . , Sym(Lk)} belong to I or II or III or V . We just combine
certain conditions from Theorem 3. Further below we use notation W for an
arbitrary operator with the principal symbol W .

It is of interest to consider instead an important particular case q = 1. We
collect the sufficient conditions for this case in the following theorem.



Multiple Factorizations of Bivariate Linear Partial Differential Operators 307

Theorem 7. Given an equivalence class of (1) by q = 1, and values I1, . . . , I5
of the invariants from Theorem 2. Operators of the class are completely reducible
with
I. < L >=< X > ∩ < Y > ∩ < S > if

(Dy + I1) ◦ (2Dx +Dy)(I1) = 0 ,
I2 = I1x − I3 ,
I3 = (I1y + 2I1x)/3 ,
I4 = −I2 + I3 ,
I5 = I1I1x − 2I1I3 − I1xy/2 ;

II. < L >=< SX > ∩ < SY > if

I2 = F1(y − x) ,
I3 = I4 = 0 ,
I5 = −1/2I1xy + I2y ,

where F1(y − x) is some function;
< L >=< SX > ∩ < XY > if

I1xy + I2x − I1I1y − 2I1I2 = 0 ,
I3 = 0 ,
I4 = −I1y + I1x − 3I2 ,
I5 = I4y − I1xy/2 + I2y ;

< L >=< SY > ∩ < XY > if

I1xy − I1I1x − I2y + I1I2 = 0 ,
I3 = I1y − I1x + 3I2 ,
I4 = 0 ,
I5 = I3x − 1/2I1xy − I2x ;

III. < L >=< X > ∩ < SY > if

−I3x + (I1xI1 + I1xy + I1xx)/2 = 0 ,
I2 = I1x/2 ,
I4 = 0 ,
I5 = −1/2I1xy + I2I1 + I2y ;

< L >=< Y > ∩ < SX > if

−I4y − I1yI1/2 + I1xy/2 + I1yy/2 = 0 ,
I2 = −I1y/2 ,
I3 = 0 ,
I5 = I2I1 − I1xy/2− I2x ;



308 E. Shemyakova

< L >=< S > ∩ < XY > if
−I3y + (I1xy + I1xx − I1I1y − I1I1x)/2− I3x = 0 ,
I2 = (I1x − I1y)/2 ,
I4 = −I2 + I3 ,
I5 = (I1I1x − I1I1y − I1xy)/2− I1I3 ;

V . < L >=< SX > ∩ < SY > ∩ < XY > if
I1xx − I1yy = 0 ,
I1xx − 2I1I1x + 2I1xy − I1I1y = 0 ,
I2 = (I1x − I1y)/3 ,
I3 = I4 = 0 ,
I5 = −I1xy/2 + I2y .

6 Conclusions

The paper is devoted to the case when one LPDO has several factorizations.
In Sec. 4 we proved that a third-order bivariate operator L has a first-order

left factor F1 and a first-order right factor F2 with gcd(Sym(F1), Sym(F2)) = 1
if and only if L has a factorization into three factors, the left one of which is
exactly F1 and the right one is exactly F2. Also it was shown that the condition
gcd(Sym(F1), Sym(F2)) = 1 is essential, and that the analogous statement “as
it is” is not true for LPDOs of order four. However, other generalizations may
be possible.

The proof for the hyperbolic case was done using invariants’ methods. This is
a nice and easy way to prove the things since the expressions for the necessary
and sufficient conditions of the existence of factorizations of a given type are
already known. It was the form of the conditions that allowed us to make initial
hypotheses that were proved later to be true in Sec. 4. However, some other
method is required for generalizations to higher order LPDOs.

In Sec. 5 we considered the case, where one LPDO has two or more several
factorizations of certain types. Most of the cases were ruled out from the con-
sideration due to the results of Sec. 4. The explicit formulae for the sufficient
conditions for the complete reducibility of an LPDO were found for the case
p = 1 (which is the case where the symbol of L has constant coefficients only).

Acknowledgments. The author was supported by the Austrian Science Fund
(FWF) under project DIFFOP, Nr. P20336-N18.

References

1. Tsarev, S., Shemyakova, E.: Differential transformations of parabolic second-order
operators in the plane. In: Proc. Steklov Inst. Math., Moscow (2009),
http://arxiv.org/abs/0811.1492

2. Tsarev, S.: Generalized laplace transformations and integration of hyperbolic sys-
tems of linear partial differential equations. In: ISSAC 2005: Proc. 2005 Int. Symp.
on Symbolic and Algebraic Computation, pp. 325–331. ACM Press, New York (2005)

http://arxiv.org/abs/0811.1492


Multiple Factorizations of Bivariate Linear Partial Differential Operators 309

3. Tsarev, S.: Factorization of linear partial differential operators and darboux’
method for integrating nonlinear partial differential equations. Theo. Math.
Phys. 122, 121–133 (2000)

4. Anderson, I., Juras, M.: Generalized Laplace invariants and the method of Dar-
boux. Duke J. Math. 89, 351–375 (1997)

5. Anderson, I., Kamran, N.: The variational bicomplex for hyperbolic second-order
scalar partial differential equations in the plane. Duke J. Math. 87, 265–319 (1997)

6. Athorne, C.: A z × r toda system. Phys. Lett. A. 206, 162–166 (1995)
7. Zhiber, A.V., Startsev, S.Y.: Integrals, solutions and existence of the laplace trans-

formations for a linear hyperbolic system of equations. Math. Notes 74(6), 848–857
(2003)

8. Startsev, S.: Cascade method of laplace integration for linear hyperbolic systems
of equations. Mathematical Notes 83 (2008)

9. Grigoriev, D., Schwarz, F.: Factoring and solving linear partial differential equa-
tions. Computing 73(2), 179–197 (2004)

10. Grigoriev, D., Schwarz, F.: Generalized loewy-decomposition of d-modules. In:
ISSAC 2005: Proc. 2005 Int. Symp. on Symbolic and Algebraic Computation,
pp. 163–170. ACM, New York (2005)

11. Grigoriev, D., Schwarz, F.: Loewy decomposition of third-order linear pde’s in
the plane. In: ISSAC 2008: Proc. 2005 Int. Symp. on Symbolic and Algebraic
Computation, pp. 277–286. ACM, New York (2008)

12. Li, Z., Schwarz, F., Tsarev, S.P.: Factoring systems of linear pdes with finite-
dimensional solution spaces. J. Symb. Comput. 36(3-4), 443–471 (2003)

13. Li, Z., Schwarz, F., Tsarev, S.: Factoring zero-dimensional ideals of linear partial
differential operators. In: ISSAC 2002: Proc. 2002 Int. Symp. on Symbolic and
Algebraic Computation, pp. 168–175. ACM Press, New York (2002)

14. Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear
ordinary differential operator. In: ISSAC 1996: Proc. 1996 Int. Symp. on Symbolic
and Algebraic Computation, pp. 226–231. ACM, New York (1996)

15. Shemyakova, E., Winkler, F.: Obstacles to the Factorization of Linear Partial
Differential Operators into Several Factors. Programming and Computer Soft-
ware 33(2), 67–73 (2007)

16. Blumberg, H.: Über algebraische Eigenschaften von linearen homogenen Differen-
tialausdrücken. PhD thesis, Göttingen (1912)

17. Shemyakova, E., Mansfield, E.: Moving frames for laplace invariants. In: Proc.
ISSAC 2008 The International Symposium on Symbolic and Algebraic Computa-
tion, pp. 295–302 (2008)

18. Shemyakova, E., Winkler, F.: On the invariant properties of hyperbolic bivariate
third-order linear partial differential operators. In: Kapur, D. (ed.) ASCM 2007.
LNCS (LNAI), vol. 5081, pp. 199–212. Springer, Heidelberg (2008)

19. Shemyakova, E.: On the invariant properties of non-hyperbolic third-order linear
partial differential operators. In: Conferences on Intelligent Computer Mathemat-
ics, vol. 5625 (2009)

20. Shemyakova, E., Winkler, F.: A full system of invariants for third-order linear partial
differential operators in general form. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 360–369. Springer, Heidelberg (2007)

21. Cassidy, P.: Differential algebraic groups. Amer. J. Math. 94, 891–895 (1972)
22. Sit, W.: Typical differential dimension of the intersection of linear differential al-

gebraic groups. J. Algebra 32(3), 476–487 (1974)



Computing Gröbner Bases
within Linear Algebra

Akira Suzuki�

Kobe University
Rokkodai-Cho 1-1, Nada, Kobe, Japan

sakira@kobe-u.ac.jp

Abstract. In this paper, we present an alternative algorithm to com-
pute Gröbner bases, which is based on computations on sparse linear
algebra. Both of S-polynomial computations and monomial reductions
are computed in linear algebra simultaneously in this algorithm. So it
can be implemented to any computational system which can handle lin-
ear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner
basis along with the corresponding term order appropriately.

1 Introduction

The concept of Gröbner bases and the algorithm to compute them was in-
troduced by Buchberger [3] and the algorithm consists of computation of S-
polynomials and one of monomial reductions. Since it has applications across
a wide range of computer algebra, many optimizations have been studied and
developed [1,2,9,10,11,14]. In [6,7], Faugère introduced a new efficient algorithm
F4 and F5 to compute Gröbner bases by use of linear algebra in order to achieve
simultaneous monomial reductions. A method to solve systems of algebraic equa-
tions by use of linear algebra were also studied by Lazard in [12]. Also by ap-
propriate choices of term orders for given ideals, we may compute Gröbner basis
for it efficiently. Mora-Robbiano [13] and Caboara [4] studied several method to
find suitable term orders.

In this paper, we introduce a new method to compute Gröbner bases of ideals
on polynomial rings by use of sparse linear algebra. It implicitly processes both
of the computations of S-polynomials and the one of monomial reductions in
a single linear space simultaneously in the form of Gaussian elimination. Thus,
with this method, we can expect to use a great variety of techniques including
parallelism used by computation in linear algebras, in order to get Gröbner
bases. Moreover our algorithm includes an indicator to choose an appropriate
term order for an efficient computation of Gröbner basis for a given system of
polynomials. The term order changes dynamically during the computation.

Let K be a field. Let X̄ = {X1, . . . , Xn} be a finite set of variables, i.e., n is
the number of invariants. Let T (X̄) be the set of the terms of X̄. Throughout this

� This work was supported by KAKENHI (20500013).

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 310–321, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Computing Gröbner Bases within Linear Algebra 311

paper, we use roman letters a, b, c, . . . for elements of K, Greek letters α, β, γ, . . .
for terms in T (X̄), f, g, h, . . . for polynomials in K[X̄].

For a term order ≺ on T (X̄) and a polynomial f ∈ K[X̄], we let terms(f) ⊆
T (X̄) be the finite set of the terms appearing in f , and ht≺(f) ∈ T (X̄) be
the ≺-maximal term of f , i.e., ht≺(f) ∈ terms(f) and α ≺ ht≺(f) for all α ∈
terms(f) \ {ht≺(f)}. We also let hc≺(f) ∈ K be the corresponding coefficient of
ht≺(f) in f , and let hm≺(f) = hc≺(f) · ht≺(f).

For f ∈ K[X̄], we denote the partial degree of f with respect to Xi by
deg(f, i), i.e., for a term α, deg(α, i) = ai if Xai

i divides α and if Xai+1
i does

not divide α. We also denote the multi-degree of a term α ∈ T (X̄) by deg(α) =
(a1, . . . , an) when α = Xa1

1 · · ·Xan
n ∈ T (X̄).

For non-negative real numbers a1, . . . , an and α ∈ T (X̄), we denote
tdeg(a1,...,an)(α) ∈ ��0 by tdeg(a1,...,an)(α) = a1 ·deg(α, 1)+ · · ·+ an ·deg(α, n).
For f ∈ K[X̄], we define tdegā(f) = max{tdegā(α) : α ∈ terms(f)}.

For F ⊆ K[X̄], we denote 〈F 〉K ⊆ K[X̄] by 〈F 〉K = {a1f1 + · · · + amfm :
a1, . . . , am ∈ K, f1, . . . , fm ∈ F} and 〈F 〉K[X̄] ⊆ K[X̄] by 〈F 〉K[X̄] = {g1f1 +
· · ·+ gmfm : g1, . . . , gm ∈ K[X̄], f1, . . . , fm ∈ F}.

Our plan is as below. In Section 2, we give the main Lemma which gives a
sufficient condition to get a Gröbner basis. In Section 3 and 4, we give several
definitions and properties used in the main algorithm. In Section 5, we argue on
the dynamic change of term order. In Section 6, we give the main algorithm to
compute Gröbner bases along with the corresponding term order. In Section 7,
we show several optimization techniques. In Section 8, we show a prototypical
implementation with a few tiny computational examples.

2 A Sufficient Condition to Get a Gröbner Basis

For an n-tuple b̄ = (b1, . . . , bn) of non-negative integers, we define TB(b̄) =
{α ∈ T (X̄) : deg(α, i) ≤ bi for each i = 1, . . . , n}. In this section, we identify
polynomials in K[X̄] whose terms are in TB(b̄) with linear combinations of
TB(b̄), i.e., 〈TB(b̄)〉K = {f ∈ K[X̄] : terms(f) ⊆ TB(b̄)}, and express being
Gröbner bases in linear space 〈TB(b̄)〉K .

Definition 1. For F ⊆ K[X̄] and a term order < on T (X̄), we say F is K-
reduced with respect to < if ht<(g) �∈ terms(f) for any distinct f, g ∈ F .

Lemma 2. Fix a term order < on T (X̄). Assume G ⊆ K[X̄] is K-reduced and
f ∈ 〈G〉K \ {0}. Then f is top-K-reducible modulo G wrt <, i.e., there is g ∈ G
and a ∈ K \ {0} such that ht<(f + ag) < ht<(f).

Proof. We say α = ht(f). Since f ∈ 〈G〉K , we can take distinct g1, . . . , gm ∈ G
and a1, . . . , am ∈ K \ {0} such that f = a1g1 + +amgm. We assume, for i =
1, . . . ,m, that ht(gi) �= α for a contradiction.

Then we can take gk such that α ∈ terms(gk) since α ∈ terms(f). So letting
β = ht(gk), we have α < β since ht(gk) �= α. Then there is gi such that gi �= gk
and that β ∈ terms(gi) since β �∈ terms(f), which contradicts to the assumption
that G is K-reduced.



312 A. Suzuki

So there is gk such that ht(gk) = α = ht(f). Let a = −hc(f) · hc(gk)−1 ∈
K \ {0}. Then we have gk ∈ G and ht(f + agk) < ht(f).  !
The following is just a generalization of usual Gröbner bases on polynomial rings.
We notice that G is a Gröbner basis in the usual meaning when F is an ideal in
K[X̄].

Definition 3. For F,G ⊆ K[X̄] and a term order <, we say G is a Gröbner
basis of F with respect to < if 〈G〉K[X̄] ⊆ 〈F 〉K[X̄] and if, for every f ∈ F \ {0},
there is g ∈ G such that ht<(g) divides ht<(f). We say G is a Gröbner basis
when G is a Gröbner basis of 〈G〉K[X̄].

Definition 4. (T -closed) For T ⊆ T (X̄) and F ⊆ 〈T 〉K, we say F is T -closed
if αf ∈ 〈F 〉K for any α ∈ T (X̄) and f ∈ F such that terms(αf) ⊆ T .

Notation 5. (side) Let < be a term order on T (X̄). We define a mapping
side< : K[X̄]×{1, . . . , n} → ��0 by side<(f, i) = max{deg(α, i)−deg(ht<(f), i) :
α ∈ terms(f)}.
Now we have the following Lemma. In the latter sections, we give several algo-
rithms, and show ways to get Gröbner basis using this Lemma.

Lemma 6. Fix some term order < on T (X̄). Let b̄ = (b1, . . . , bn) and c̄ =
(c1, . . . , cn) are n-tuples of non-negative integers. Let G ⊆ 〈TB(b̄)〉K be TB(b̄)-
closed and K-reduced wrt <. Let G0 ⊆ 〈TB(c̄)〉K be a Gröbner basis of G such
that G0 ⊆ G. Assume, for any g ∈ G0 and i = 1, . . . , n, that ci +side<(g, i) ≤ bi.
Then G0 is a Gröbner basis wrt <.

Proof. We pick f, g ∈ G0 with f �= g arbitrarily. We show that SPol(f, g) −→∗
G0

0. Let α = ht(f), a = hc(f), β = ht(g), b = hc(g), γ = lcm(α, β). Then
SPol(f, g) = b(γ/α)f − a(γ/β)g.

We first show that b(γ/α)f, a(γ/β)g ∈ 〈G〉K . We say deg(α) = (a1, . . . , an)
and deg(β) = (a′1, . . . , a

′
n). Pick arbitrary δ ∈ terms(f) and say deg(δ) =

(d1, . . . , dn). Then deg((γ/α)δ) = (max(a1, a
′
1)−a1 +d1, . . . ,max(an, a

′
n)−an +

dn). For each i = 1, . . . , n, since di − ai ≤ side(f, i) and max(ai, a
′
i) ≤ ci, we

have max(ai, a
′
i) − ai + di ≤ ci + side(f, i) ≤ bi. Thus (γ/α)δ ∈ TB(b̄). Since G

is TB(b̄)-closed, we have b(γ/α)f ∈ 〈G〉K . By the same way, we can show that
a(γ/β)g ∈ 〈G〉K .

So letting s0 = SPol(f, g), we have s0 ∈ 〈G〉K . Next we construct sequences
s0, . . . sl, sl+1 ∈ 〈G〉K and g0, . . . , gl ∈ G0 such that ht(si) > ht(si+1) for each
i. Assume we have si ∈ 〈G〉K . Then, since si is top-K-reducible modulo G, we
have g′ ∈ G and c ∈ K\{0} such that ht(si+cg′) < ht(si). Since G0 is a Gröbner
basis of G, we can take gi ∈ G0 and η ∈ T (X̄) such that ht(ηgi) = ht(g′). Let
d ∈ K be such that hm(cg′) = hm(dηgi). We set si+1 = si + dηgi. Then we see
that ht(si+1) < ht(si). From the fact dηgi ∈ 〈G〉K , we also see that si+1 ∈ 〈G〉K .

Since < is Noetherian, we have sl+1 = 0 for some l. Thus we arrive at
SPol(f, g) −→∗

G0
0.  !

In the rest of this paper, we give a procedure to compute G required at the
assumption of this Lemma.



Computing Gröbner Bases within Linear Algebra 313

3 T -Closed K-Reduced Bases

In this section, we show a way to compute TB(d̄)-closed and K-reduced basis
for a given ideal on K[X̄] and an n-tuple d̄ of non-negative integers.

Notation 7. For T ⊆ T (X̄) and F ⊆ K[X̄], we let mult(F, T ) = {α·f ∈ K[X̄] :
α ∈ T (X̄), f ∈ F, terms(αf) ⊆ T }.
We should notice that, if both of F ⊆ K[X̄] and T are finite, mult(F, T ) is finite.
From Lemma 2, we also notice that, if 〈F 〉K = 〈G〉K and G is K-reduced, then
ht[F ] ⊆ ht[G]. We may assume that an algorithm LinearReduce is given, where,
for F ⊆ K[X̄] and a well-order <, if B:= LinearReduce(F, <), then B is K-
reduced with respect to <, 〈B〉K = 〈F 〉K . We should note that it is essentially
same as Gaussian elimination. Then we have the following algorithm.

Algorithm. CloseAndLReduce

Input: F : a finite subset of K[X̄],
T : a finite subset of T (X̄) with F ⊆ 〈T 〉K ,
< : a term order on T (X̄)

Output: R : a T -closed and K-reduced subset of 〈T 〉K
wrt < such that 〈F 〉K[X̄] = 〈R〉K[X̄]

R := F;
d := |R|;
d′ := 0;
while d′ �= d do
d′ := d;
R := LinearReduce(mult(R, T ), <);
d := |R|;

end while
return R;
end.

Lemma 8. Let T be a finite subset of T (X̄), F be a finite subset of 〈T 〉K , and
< be a term order on T (X̄). Then the algorithm CloseAndLReduce terminates
in finite steps and, the output R of CloseAndLReduce(F, T, <) satisfies that
R is T -closed and K-reduced wrt < and that 〈F 〉K[X̄] = 〈R〉K[X̄].

Proof. Let Rn be the R in the n-th while-iteration in the algorithm. Then we see
that 〈Rn〉K � 〈Rn+1〉K and so dimK〈Rn〉K < dimK〈Rn+1〉K for each n. Since
dimK〈Rn〉K ≤ |T |, the algorithm terminates in a finite step.

Let R be the output and pick f ∈ R arbitrarily. Let α ∈ T (X̄) be such that
terms(αf) ⊆ T . Then αf ∈ mult(R, T ) by the definition of mult(R, T ). Let R′

be the output of LinearReduce(mult(R, T ), <). Then 〈R〉K = 〈R′〉K by the
definition of algorithm. Since αf ∈ 〈R′〉K = 〈R〉K , we see that R is T -closed.

We can easily see that R is K-reduced wrt <.  !



314 A. Suzuki

4 Finding a Candidate

We fix an algorithm Bound such that, for finite F ⊆ K[X̄], b̄ = Bound(F) if
bi = max{deg(f, i) : f ∈ F} for i = 1, . . . , n where b̄ = (b1, . . . , bn). Then
F ⊆ 〈TB(Bound(F )〉K . Then, using the algorithm CloseAndLReduce, we can
get G ⊆ K[X̄] such that 〈F 〉K[X̄] = 〈G〉K[X̄] and that G is TB(b̄)-closed and
K-reduced. If we can find G0 ⊆ G which satisfies the assumptions of Lemma 6,
it is a Gröbner basis of 〈F 〉K[X̄]. So, we give a procedure to calculate a candidate
of G0 as below.

Algorithm. MinimalBasis

Input: G ⊆ K[X̄] finite, < : term order on T (X̄)
Output: H ⊆ G a Gröbner basis of G

H := ∅;
while G �= ∅ do
g := min<G;
G := G \ {g};
is gb := true;
foreach h ∈ H do
if ht<(h)|ht<(g) then
is gb := false;

end if
end for
if is gb then
H := H ∪ {g};

end if
end for
return H;
end.

For some b̄ ∈ (��0)n and G ⊆ TB(b̄) which is TB(b̄)-closed and K-reduces
wrt <, let G0 := MinimalBasis(G, <) and c̄ := Bound(G0). If they satisfy
the assumption of Lemma 6, we arrive at the destination, i.e., G0 is a required
Gröbner basis of the given ideal. But if they do not satisfies it, we have to
extend the bound b̄. We should note that, when we extend the bound b̄ to c̄ for
G ⊆ 〈TB(b̄)〉, we have to compute mult(G,TB(c̄)).

If the bound b̄ changes to another value, the term order for an efficient com-
putation of TB(b̄)-closed K-reduced basis would also be changed. In the next
section, we give a guideline to set an appropriate term order.

5 Appropriate Term Order

Combining the procedures above, we can compute a Gröbner basis for a given
ideal with respect to some given term order by extending the bound b̄ in each



Computing Gröbner Bases within Linear Algebra 315

step. On the other hand, we can switch term order during computation dynami-
cally in order to make the dimension |TB(b̄)| of the linear space at the next step
small. For such a purpose, we introduce weighted term order.

Definition 9. Let < be a term order on T (X̄) and w̄ be an n-tuple of non-
negative reals. Then we define the order <w̄ weighted by w̄ coherent to < by,
for any α, β ∈ T (X̄),

1. if tdegw̄(α) < tdegw̄(β), then α <w̄ β, and
2. if tdegw̄(α) = tdegw̄(β) and if α < β, then α <w̄ β.

For any term order < on T (X̄) and weights w̄ ∈ (R≥0)n, we easily see that <w̄

forms a term order on T (X̄).
For b1, . . . , bn ∈ ��0, we let T = TB((b1, . . . , bn)). For a term order ≺, we say

a term α ∈ T is (≺, T )-inside if β ∈ T for all β ≺ α. Then we notice that, if the
head term ht≺(f) of a polynomial is (≺, T )-inside, reduction of f modulo some
g can be computed within T . So choosing a term order ≺ to make the number of
(≺, T )-inside terms large, we can make the computation of Gröbner basis within
T efficiently.

For such a purpose, we are going to choose an appropriate degree d ∈ �>0 and
weights w̄ = (w1, . . . , wn) for some term order < for making the number large of
the terms α ∈ T (X̄) with tdegw̄(α) ≤ d→ α ∈ T . Even if some bi equals to 0,
the corresponding weight wi does not affect to (<w̄, T )-insideness, and so we may
assume that every bi’s are positive. Since Xb1

1 X
0
2 · · ·X0

n ∈ T = TB((b1, . . . , bn)),
we have d ≤ w1b1. By the same way, since X0

1X
0
1 · · ·Xbi

i · · ·X0
n−1X

0
n ∈ T , we

have d ≤ wibi for each i = 1, . . . , n. Thus we have d ≤ min{w1b1, . . . , wnbn}.
Then we notice that we can get the maximum number of the terms α with
tdegw̄(α) ≤ d→ α ∈ T when d = w1b1 = · · · = wnbn.

So we define the algorithm WeightedOrder to give appropriate term or-
der to compute within given TB(d̄) by ≺= WeightedOrder((b1, . . . , bn), <)
if ≺=<(w1,...,wn) where wi = 1/bi if bi �= 0 and wi = 0 if bi = 0 for i = 1, . . . , n.

TB((5,3))

x5y0

x0y3

x0y0
(<         ,TB((5,3)))-inside  (1/5,1/3)



316 A. Suzuki

6 The Main Algorithm

Now we can describe an algorithm to compute Gröbner basis as below. The
essential part of the computation is in CloseAndLReduce, and it is a combination
of mult() and LinearReduce. In fact, the Buchberger algorithm consists of S-
polynomials and monomial reductions, and they consist of multiplications of
coefficients and terms to polynomial and additions of two polynomials. We may
realize that the part of the multiplications of terms to polynomials is included
in mult(), and the one of the multiplications of coefficients to polynomials and
additions of two polynomials is in LinearReduce, Gaussian elimination.

Algorithm. GroebnerBasisLA

Input: F ⊆ K[X̄] : finite
Output: G ⊆ K[X̄] : a Gröbner basis of 〈F 〉K[X̄] wrt ≺,

≺ : a term order on T (X̄) let < be a grlex order;

(b1, . . . , bn) := (0, . . . , 0);
(c1, . . . , cn) := Bound(F);
(d1, . . . , dn) := (0, . . . , 0);
G := mult(F,TB((c1, . . . , cn));
T := terms(F );
≺ := WeightedOrder((c1, . . . , cn), <);
while c1 + d1 > b1 or . . . or cn + dn > bn do
for i = 1, . . . , n do
bi := ci + di;

end for
G := CloseAndLReduce(G, TB((b1, . . . , bn)), ≺);
G0 := MinimalBasis(G, ≺);
≺ := WeightedOrder(Bound(G0), <);
αT := max≺{T };
G1 := {g ∈ G : terms(g) / αT };
(c1, . . . , cn) := Bound(G0 ∪G1);
for i = 1, . . . , n do
di := max{side≺(g, i) : g ∈ G0};

end for
end while
return (G0,≺);
end.

Then we have the following Theorem.

Theorem 10. We assume that F is a finite subset of K[X̄]. Then the algorithm
GroebnerBasisLA(F) terminates in finite steps. So we also let (G0,≺) be the



Computing Gröbner Bases within Linear Algebra 317

output of GroebnerBasisLA(F). Then G0 is a Gröbner basis of 〈F 〉K[X̄] with
respect to ≺.

Proof. Let G′ be a universal Gröbner basis of 〈F 〉K[X̄]. For each i = 1, . . . , n,
we let c′i = max{deg(g, i) : g ∈ G′}, d′i = max{deg(α, i) − deg(β, i) : α, β ∈
terms(g) for some g ∈ G′}, and bi = c′i + d′i. We let ≺′ be the output of
WeightedOrder((b1, . . . , bn), <) where < is the grlex order used in the algo-
rithm. Then we let G be the output of CloseAndLReduce(G, TB(b1, . . . , bn),
≺′) and G0, (c1, . . . , cn), and (d1, . . . , dn) be as in the algorithm. Then we see
that ci + di ≤ bi for every i = 1, . . . , n. So the while-loop terminates at most
(b1 + 1) · (b2 + 1) · · · (bn + 1)-many steps.

Next we see, at the end of the algorithm, that G0 ∪ G1 forms a Gröbner
basis of 〈F 〉K[X̄] with respect to ≺ by Lemma 6. In fact, letting ≺, G,G0, G1

and b1, c1, d1, . . . , bn, cn, dn be as in the end of the algorithm, we see, for any
i = 1, . . . , n and g ∈ G0 ∪G1, that side≺(g, i) ≤ di and so ci + side≺(g, i) ≤ bi.
Thus they satisfy the assumption of the Lemma and soG0∪G1 is a Gröbner basis.
Next we let αT be as in the end of algorithm. Since F ⊆ 〈α ∈ T (X̄) : α / αT 〉K ,
we see that F ⊆ 〈G1〉K , and so F ⊆ 〈G0 ∪G1〉K[X̄]. Thus G0 ∪G1 is a Gröbner
basis of 〈F 〉K[X̄] with respect to ≺.

By the defnition of MinimalBasis, we see that G0 equals to MinimalBasis(G0

∪ G1, ≺). Thus we see that G0 is a Gröbner basis of 〈F 〉K[X̄] with respect to
≺.  !

Note. In fact, the algorithm GroebnerBasisLA outputs the reduced Gröbner
basis if LinearReduce outputs reduced row echelon forms, though we omit the
proof.

7 Optimizations

This algorithm is heavily depend on mult() and LinearReduce. In this section,
we introduce two methods to optimize them. Their basic concepts are in (1)
eliminating duplicated polynomials in the output of mult(), and (2) reducing
surplus polynomials in the input of the algorithm LinearReduce.

7.1 Extending Bound

We consider the case that F ⊆ 〈TB((b1, . . . , bn))〉K is TB((c1, . . . , cn))-closed
for some ci ≤ bi (i = 1, . . . , n). When we calculate TB((b1, . . . , bn))-closure of
F , we can get it by mult(F,TB((b1, . . . , bn))) but it contains lots of duplicated
polynomials. Then, using the information that F is TB((c1, . . . , cn))-closed, we
notice that it is enough to calculate mult(f,TB((b1, . . . , bn))) only for f ∈ F
on the “bound” of TB((c1, . . . , cn)). Thus we introduce the following algorithm
ExtendBound, though we omit the proof of its validity.



318 A. Suzuki

Algorithm. ExtendBound

Input: F ⊆ K[X̄], (b1, . . . , bn), (c1, . . . , cn) ∈ Zn
≤0 such that

F is TB((c1, . . . , cn))-closed and ci ≤ bi for i = 1, . . . , n.
Ouput: G ⊆ K[X̄] such that G is TB((b1, . . . , bn))-closed and

〈G〉K[X̄] = 〈F 〉K[X̄].

G := F;
foreach i = 1, . . . , n do
B := {f ∈ G : deg(f, i) = ci};
foreach f ∈ B and j = 1, . . . , bn − cn do
G := G ∪ {Xj

i f};
end for

end for
return G;
end.

7.2 Reduction Matrix

In this paper, we identify a K-linear combination of TB((b1, . . . , bn)) with a
polynomial in K[X̄] whose terms are in TB((b1, . . . , bn)). We fix b̄ = (b1, . . . , bn)
and a term-order ≺ on T (X̄), let 1 = t1 ≺ t2 ≺ · · · ≺ tl be the enumeration of
TB(b̄) where l = (b1 + 1) · (b2 + 1) · · · (bn + 1). Let φ : 〈t1, . . . , tl〉K → K l be the
canonical isomorphism.

For g ∈ 〈TB(b̄)〉, let kg and cg be such that tkg = ht≺(g) and cg = hc≺(g) ∈
K \ {0}. Then we define the reduction matrix Rg = (rij)1≤i,j≤l induced by g by
rikg = −φ(g)i/cg if i > kg, rii = 1 if i �= kg, and rij = 0 otherwise, where φ(g)i ∈
K is the i-th component of the vector φ(g), i.e., the coefficient of ti occurring in
g. Then we notice, for any f ∈ 〈TB(b̄)〉K , letting f ′ = φ−1(Rg ·φ(f)), that f −→∗

g

f ′. In fact, saying f = a1t1+· · ·+altl, we can easily check that φ−1(Rg ·φ(ajtj)) =
ajtj for j �= kg and φ−1(Rg ·φ(akg tkg )) = −akg · (φ(g−hm≺(g))/hc≺(g)), and so
φ−1(Rg ·φ(f)) = f−akgtkg −akg ·hc≺(g)−1 ·(g−hm≺(g)) = f−akg ·hc≺(g)−1 ·g.

Furthermore, we let G be a K-reduced subset of 〈TB(b̄)〉K . Then we can also
define the reduction matrix RG induced by G by the same fashion as in the
previous paragraph. For each g ∈ G, we let 1 ≤ kg ≤ l and cg ∈ K \ {0} be as
above. Then we define RG = (rij)1≤i,j≤l by

rij =

⎧⎪⎨⎪⎩
−φ(g)i/cg, if i > and j = kg for some g ∈ G,

1, if i = j and j �= kg for any g ∈ G, and
0, otherwise.

We can check that RG is well-defined and, for any f ∈ 〈TB(b̄)〉K , that f ′ =
φ−1(RG · φ(f)) satisfies f −→∗

G f ′ and f ′ is not K-reducible modulo G. Es-
pecially, for a K-reduced finite subset G of 〈TB(b̄)〉K and a polynomial f ∈
〈TB(b̄)〉K , we can check whether f ∈ 〈G〉K or not using the reduction matrix
RG induced by G.



Computing Gröbner Bases within Linear Algebra 319

7.3 Optimized CloseAndLReduce

In the algorithm GroebnerBasisLA, the input G of CloseAndLReduce is always
TB(c̄)-closed for some c̄. So, placing the call to the algorithm ExtendBound at the
beginning of the algorithm CloseAndLReduce, we can assume that the candidate
R⊆〈TB((b1, . . ., bn))〉K in an execution of CloseAndLReduce(G,TB((b1, . . . , bn)),
≺) is TB((b1, . . . , bn))-closed in the rest of the computing, thus we can optimize
it as follow.

Algorithm. CloseAndLReduce (optimized)

Input: F : a finite subset of K[X̄],
b̄ : an n-tuple of non-negative intergers with F ⊆ 〈TB(b̄)〉K ,
< : a term order on T (X̄)

Output: G : a T -closed and K-reduced subset of 〈T 〉K
wrt < such that 〈F 〉K[X̄] = 〈G〉K[X̄]

c̄ := Bound(F);
H := ExtendBound(F, c̄, b̄);
H ′ := ∅;
G := ∅;
d := |F |;
d′ := 0;
while d′ �= d do
d′ := d;
G := H \G;
let RH′ be the reduction matrix induced by H ′;
G′ := {RH′ · g : g ∈ mult(G,TB(b̄))};
H := LinearReduce(G′, <);
H ′ := H;
d := |H |;

end while
return G;
end.

8 An Implementation

We choose PARI/GP1 to implement the algorithms in this paper in order to
demonstrate that it is not difficult to implement Gröbner bases computation
to a system which has neither S-polynomials nor monomial reductions. You
can download the file from our page2. This file has three main routines, (1)
groebner basis la, (2) groebner basis la opt, and (3) groebner basis la
mat. The first one corresponds to the Algorithm GroebnerBasisLA in Section 6,
and the second one is an implementation applying the optimization methods
1 http://pari.math.u-bordeaux.fr/
2 http://kurt.scitec.kobe-u.ac.jp/~sakira/GBwithinLA/



320 A. Suzuki

in Section 7. The last (3) is a one which we remove the use of LinearReduce.
Though we omit the details, the technique of reduction matrix in Subsection 7.2
can be a substitution for LinearReduce in order to get a Gröbner basis by
the idea described in this paper. In these main algorithms input polynomials
are converted to vectors in a direct product of Q just before of computation,
the computed vectors are converted to output polynomials at the end of the
routines, and most of all computations are processed within linear algebra.

We give a tiny computational example as follow: For an example, when
we put groebner basis la opt([x^2+y^2+z^2-20, x+y-5, x*y*z-3]), it out-
puts [[8*z^3+40*z-48, 2*y^2-10*y+(z^2+5), x+(y-5)], [x,y,z], [6, 3,
2]] which means {z3+5z−6, 2y2−10y+z2+5, x+y−5} is the reduced Gröbner
basis of 〈x2+y2+z2−20, x+y−5, xyz−3〉Q[x,y,z] with respect to the term-order
weighted by {x : 6, y : 3, z : 2}. In the following table, we give a timing data
of these implementations though they are not faster than existing implementa-
tions to compute Gröbner bases. The unit of time in the table is the second.
(Mac OS X 10.5.6, CPU 2.8GHz Xeon, Memory 22GB, GP/PARI 2.3.4 with
x86-64/GMP-4.2.3)

polynomial system (1) no opt. (2) opt. (3) red. mat.
{xy + z − xy, x2 − z, x3 − x2yz} 10.5 1.5 10.6

{xy + z − xz, x2 − z, 2x3 − x2yz − 1} > 1 hour 1.6 11.5
{5x3 − 7yz, 11y2− 101z, x+ y − 65537z} > 1 hour 9.3 0.8
{x2 + y2 + z2 − 20, x+ y − 5, xyz − 3} > 1 hour 3.7 12.1

The routine groebner basis la opt is the fastest in these ones, though all of
them can calculate very tiny polynomial systems at the current moment.

9 Conclusion and Remarks

The algorithm GroebnerBasisLA does not require a term order as its input. It is
one of the characteristic properties of the algorithm, and it dynamically chooses
a suitable term order for the set of terms appearing in the linear space for the
sake of its efficient computation. For a given finite set F of polynomials in K[X̄],
our algorithm compute a Gröbner basis G of 〈F 〉K[X̄] with the corresponding
term order on T (X̄). On the other hand, if we need the Gröbner basis with
respect to a given term order, we can use a method for change of order, e.g.,
Gröbner walk [5], FGLM [8], and Hilbert driven [16].

Another of the characteristic properties is on lacking both of S-polynomials
and monomial reductions. Though it does not have them explicitly, the combi-
nation of mult() and LinearReduce involves them. So the algorithm places more
weight on Gaussian elimination than the other algorithms to compute Gröbner
bases. In our method, we require a set G of polynomials in 〈TB(b̄)〉K to be TB(b̄)-
closed, and it may spend many memory resources. From another viewpoint, we
may consider that much intermediary information is stored in memory, and so



Computing Gröbner Bases within Linear Algebra 321

the computation speed may become faster for some case if we have enough mem-
ory resources. We expect this tendency would be emphasized if the coefficient
ring K is finite, since less additional allocation of memory is required during
the computation in a fixed bound TB(b̄). We also expect to be used several
improved algorithms for linear algebra, e.g., parallel Gaussian elimination, in
our algorithm. Since PARI/GP does not support neither parallelization meth-
ods nor improved algorithms for Gaussian eliminations, we shall implement our
algorithm to another computer algebra system with such features.

References

1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24(3-4), 235–265 (1997)

2. Brickenstein, M.: Slimgb: Gröbner bases with slim polynomials. Reports on Com-
puter Algebra 35, ZCA, University of Kaiserslautern (2005)

3. Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebrais-
chen Geichungssystems. Aequ. Math. 4(3), 374–383 (1970)

4. Caboara, M.: A dynamic algorithm for Gröbner basis computation. In: Proc. ISSAC
1993, pp. 275–283 (1993)

5. Collart, S., Kalkbrenner, M., Mall, D.: Converting Bases with the Gröbner Walk.
J. Symb. Comput. 24(3–4), 465–469 (1997)

6. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
and Applied Algebra 139(1–3), 61–88 (1999)

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proc. ISSAC 2002, pp. 75–83 (2002)

8. Faugére, J.C., Gianni, P.M., Lazard, D., Mora, T.: Efficient Computation of Zero
Dimensional Gröbner Bases by Change of Ordering. J. Symb. Comput. 16(4),
329–344 (1993)

9. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2-3), 275–286 (1988)

10. Giovini, A., Mora, T., Nielsi, G., Robbiano, L., Traverso, C.: One sugar cube,
pleaseh OR Selection strategies in the Buchberger algorithm. In: Proc. ISSAC
1991, pp. 49–54 (1991)

11. Greuel, G.M., Pfister, G.: SINGULAR and Applications. Jahresbericht der
DMV 108, 167–196 (2006)

12. Lazard, D.: Gröbner-Bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983.
LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

13. Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6(2-3),
183–208 (1988)

14. Noro, M., Takeshima, T.: Risa/Asir – A Computer Algebra System. In: Proc.
ISSAC 1992, pp. 387–396 (1992)

15. Traverso, C.: Gröbner trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS,
vol. 358, pp. 125–138. Springer, Heidelberg (1989)

16. Traverso, C.: Hilbert functions and the Buchbeger algorithm. J. Symb. Com-
put. 22(4), 355–376 (1996)



A Mimetic Finite-Difference Scheme for
Convection of Multicomponent Fluid in a

Porous Medium

Vyacheslav Tsybulin1, Andrew Nemtsev2, and Bülent Karasözen3

1 Southern Federal University, Rostov-on-Don, Russia
2 Southern Scientific Center of Russian Academy of Science, Rostov-on-Don, Russia

3 Department of Mathematics & Institute of Applied Mathematics, Middle East
Technical University, Ankara, Turkey

Abstract. A mimetic finite-difference scheme for the equations of three-
dimensional convection of a multicomponent fluid in a porous medium is
developed. The discretization is based on staggered grids with five types
of nodes (velocities, pressure, temperature, and mass fractions) and on
a special approximation of nonlinear terms. Computer experiments have
revealed the continuous family of steady states in the case of the zero
heat fluxes through two opposite lateral planes of parallelepiped.

Introduction

Natural convection of an incompressible fluid in a porous medium differs from
that of single phase fluid [1]. Usually, after the state of rest, a finite number of
regimes (convective patterns) may appear due to loss of stability. An exciting ex-
ample with an infinite number of steady states was found for the planar problem
of incompressible fluid convection in a porous medium [2]. This phenomenon of
appearance of a continuum of solutions was explained by the cosymmetry theory
[3]. The strong nonuniqueness of steady states in the planar Darcy convection
was proved for the single [3] and multicomponent fluid [10]. First computations
of the families in the planar Darcy convection were done by the Galerkin method
[4] and the finite-difference approach [5].

To compute such a family of steady states the numerical scheme would be
mimetic and reproduce the behavior of the underlying system. The basic idea
behind the mimetic finite-difference is to define difference operators that inherit
the properties of differential operators (divergence, gradient, etc.), see for refer-
ence [7]. This approach permits the design of schemes that embody conservation
laws and solution symmetries. It was shown in [6] that mimetic preservation of
cosymmetry and some additional properties of nonlinear terms may be obtained
using computer algebra system Maple.

Computation in three-dimensional Darcy convection problem is more difficult
because the cosymmetry property does not exist for the three-dimensional case.
However, using a special staggered grid approach [8] it was possible to construct

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 322–333, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid 323

a mimetic discretization and to find the family of steady states for the Darcy con-
vection in the parallelepiped. The key point was the approximation of nonlinear
terms using the methodology outlined by Morinishi et. al. [9].

The multicomponent fluid in a porous medium significantly affects the con-
vective flow [1]. In the two-dimensional case, again the cosymmetry property
exists [10]. Using a mimetic mixed spectral and finite-difference approach which
preserves the cosymmetry, convection of two- and three-component fluids for
planar Darcy problem was analyzed in [11].

In this paper we study nontrivial strong nonuniqueness of convective patterns
in a multicomponent fluid. We consider the three-dimensional problem of natu-
ral convection in a porous medium and develop a finite-difference scheme for a
system in primitive variables (velocities, pressure, temperature, and mass frac-
tions). The discretization is based on staggered grids approach as in [8] with
five types of nodes for the variables of the problem. Using the differencing and
averaging operators on two-nodes stencil we construct the special approxima-
tion of advective terms and check their conservation properties using computer
algebra system Maple. The numerical verification of the scheme was done using
Maple and MATLAB. The continuous family of planar patterns was computed
when a depth of parallelepiped is small. A number of stable three-dimensional
convective patterns are obtained in the case of rather large depth.

1 Darcy Convection Equations for Multicomponent
Fluids

We consider a porous medium saturated by an incompressible multicomponent
fluid which is heated from below. We assume that the Boussinesq approximation
holds [1]; fluid velocities v = (v1, v2, v3)� are assumed to be much smaller than
the sound speed, so the fluid can be treated as incompressible. The density in the
buoyancy term varies linearly with local temperature θ1 and with mass fractions
θr (r = 2, . . . , S + 1). The system of dimensionless equations [10] consists of the
momentum equation based on the Darcy law

ε
∂v

∂t
= −∇p− v +

S+1∑
r=1

λrθ
rk, (1)

the continuity equation
∇ · v = 0, (2)

and the equation for the deviation of temperature from linear (in z) profile θ1

and deviation for each species θr (r = 2, . . . , S + 1)

br
∂θr

∂t
+ v · ∇θr = κrΔθ

r + v · k. (3)

Here k = (0, 0, 1)� denotes the vector opposing to the direction of gravity,
p(x, y, z, t) is the pressure, and x, y, z are the space variables. Parameters



324 V. Tsybulin, A. Nemtsev, and B. Karasözen

of relative porosity ε, Rayleigh numbers λr, and diffusion coefficients κr are
given by

ε =
K

μl2
, λr =

gβrArl
2K

ν2
, κr =

χr

ν
, (4)

where K is the permeability coefficient, μ is the porosity of the medium, l is
the length parameter, g is the gravity acceleration, βr is the thermal expansion
coefficient (r = 1) or the fractional expansion coefficient (r > 1), Ar is the
characteristic temperature (r = 1) or concentration difference (r > 1), ν is
viscosity, and χr is the thermal diffusivity of the fluid and mass fractions.

The parallelepiped D = [0, Lx] × [0, Ly] × [0, Lz] with length Lx, depth Ly

and height Lz is filled with the fluid. The normal component of the velocity is
equal to zero at the boundary

v · n = 0, (x, y, z) ∈ ∂D. (5)

We suppose that the temperature at the boundary is given by a linear function
on the vertical coordinate z and consider the problem with mixed boundary
conditions: the heat and concentration fluxes are equal to zero on two lateral
faces ∂1D = {y = 0} ∪ {y = Ly}, and the temperature deviation θr is equal to
zero on the remaining faces ∂2D = ∂D \ ∂1D, see Fig. 1.

θr
y = 0, (x, y, z) ∈ ∂1D, θr = 0, (x, y, z) ∈ ∂2D. (6)

Fig. 1. Sketch of the boundary conditions

The initial condition is given as follows

θr(x, y, z, 0) = θr
0(x, y, z), v(x, y, z, 0) = v0(x, y, z). (7)

It is easy to check that equations (1)–(6) are invariant with respect to the
discrete symmetries

Rx : {x, y, z, v1, v2, v3, p, θr} �→ {Lx − x, y, z,−v1, v2, v3, p, θr}, (8)
Ry : {x, y, z, v1, v2, v3, p, θr} �→ {x, Ly − y, z, v1,−v2, v3, p, θr}, (9)
Rz : {x, y, z, v1, v2, v3, p, θr} �→ {x, y, Lz − z, v1, v2,−v3, p,−θr}, (10)



A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid 325

where r = 1, . . . , S + 1. This implies the existence of solutions after appropriate
transformations of velocity, pressure, and deviation of the temperature and mass
fractions.

2 Staggered Grids

Equations (1)–(7) are discretized using five different types of nodes: one for the
pressure, another for the temperature and concentrations, and three nodes for
the components of velocity vector, see Fig. 2.

Fig. 2. A grid and nodes

Firstly we introduce the regular grids

xi = ihx, i = 0, . . . , Nx + 1, hx = Lx/(Nx + 1),
yj = −hy/2 + jhy, j = 0, . . . , Ny + 1, hy = Ly/Ny,

zk = khz, k = 0, . . . , Nz + 1, hz = Lz/(Nz + 1),

and the staggered grids along all coordinates: xi+1/2 = (xi + xi+1)/2, i =
0, . . . , Nx, yj+1/2 = (yj + yj+1)/2, j = 0, . . . , Ny, zk+1/2 = (zk + zk+1)/2,
k = 0, . . . , Nz.

Thus, the temperature and mass fractions θr are defined at the nodes

ω0 = {(xi, yj, zk), i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1, k = 0, . . . , Nz + 1}.
The velocities v1, v2 and v3 are defined on the grids which are staggered along
the corresponding coordinates

ω1 = {(xi, yj+1/2, zk+1/2), i = 0, . . . , Nx + 1, j = 0, . . . , Ny, k = 0, . . . , Nz},
ω2 = {(xi+1/2, yj, zk+1/2), i = 0, . . . , Nx, j = 0, . . . , Ny + 1, k = 0, . . . , Nz},
ω3 = {(xi+1/2, yj+1/2, zk), i = 0, . . . , Nx, j = 0, . . . , Ny, k = 0, . . . , Nz + 1}.



326 V. Tsybulin, A. Nemtsev, and B. Karasözen

Finally, the pressure p is defined at the nodes

ωp = {(xi+1/2, yj+1/2, zk+1/2), i = 0, . . . , Nx, j = 0, . . . , Ny, k = 0, . . . , Nz}.

The grids are introduced in such a way that at ∂2D, the boundary conditions
for the temperature and mass fractions and for the normal component of ve-
locity are fulfilled automatically. We define fictitious nodes for the temperature,
concentration, and velocity v2 to approximate the boundary conditions at ∂1D
with second-order accuracy.

2.1 Discrete Finite-Difference Operators

To approximate (1)–(7) a set of discrete analogs of differential and averaging
operators is defined on a two-point stencil

d1fi+1/2,j,k =
fi+1,j,k − fi,j,k

hx
, δ1fi+1/2,j,k =

fi+1,j,k + fi,j,k

2

d2fi,j+1/2,k =
fi,j+1,k − fi,j,k

hy
), δ2fi,j+1/2,k =

fi,j+1,k + fi,j,k

2
(11)

d3fi,j,k+1/2 =
fi,j,k+1 − fi,j,k

hz
), δ3fi,j,k+1/2 =

fi,j,k+1 + fi,j,k

2
.

Formulas (11)) are valid both for integer and half-integer values of i, j, and
k. Then the discrete analog of the Laplacian on the seven-nodes stencil can be
written as

0h = d1d1 + d2d2 + d3d3 ≈ 0, (12)

and the averaging operator on three-dimensional cell is given as

δ0 = δ1δ2δ3. (13)

The construction of the nonlinear term approximation is done using a linear
combination of two terms

(v · ∇f)i,j,k ≈ J(f, v)i,j,k (14)

=

⎡⎣α 3∑
s=1

dsδs

⎛⎝f 3∏
n�=s

δnv
s

⎞⎠+ (1 − α)
3∑

s=1

ds

3∏
n�=s

δn (δ0fδsvs)

⎤⎦
i,j,k

To find suitable parameter values α we apply Maple. It has been found that
the value α = 1/3 constitutes mimetic discretization of the underlying problem.
Then we verify this conclusion via direct numerical experiment with computa-
tions of the planar convective regimes and analyze their belongings to the family
of steady states.



A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid 327

2.2 Semi-discretization

To compute some steady states we use an artificial compressibility and consider
the equation with coefficient ζ

∂tp+ ζ−1∇ · v = 0 (15)

instead of equation (2).
Using the operators (11)–(14), the system (1), (3), and (15) is discretized in

the following form[
brθ̇r − κr0hθ

r − δ1δ2v3 + J(θr, v)
]

i,j,k
= 0, r = 1, . . . , S + 1, (16)[

εv̇1 + d1p+ v1
]

i,j+1/2,k+1/2
= 0, (17)[

εv̇2 + d2p+ v2
]

i+1/2,j,k+1/2
= 0, (18)[

εv̇3 + d3p+ v3 −
S+1∑
r=1

λrδ1δ2θ
r

]
i+1/2,j+1/2,k

= 0, (19)

[
ζṗ+ d1v1 + d2v2 + d3v3

]
i+1/2,j+1/2,k+1/2

= 0. (20)

The problem (1)–(6) is discretized using fictitious nodes to satisfy the boundary
conditions on the planes y = 0 and y = Ly. The discretization of the boundary
conditions is given below as:

– for x = 0 (i = 0) and x = Lx (i = Nx + 1):

v1i,j+1/2,k+1/2 = 0, j = 0, . . . , Ny, k = 0, . . . , Nz, (21)
θr

i,j,k = 0, j = 0, . . . , Ny + 1, k = 0, . . . , Nz + 1,

– for y = 0 (j = 0) and y = Ly (j = Ny + 1):

v2i+1/2,0,k+1/2 = −v2i+1/2,1,k+1/2, i = 0, . . . , Nx, k = 0, . . . , Nz, (22)

v2i+1/2,Ny+1,k+1/2 = −v2i+1/2,Ny,k+1/2, i = 0, . . . , Nx, k = 0, . . . , Nz,

θr
i,0,k = θr

i,1,k, θr
i,Ny+1,k = θr

i,Ny,k, i = 0, . . . , Nx+1, k = 0, . . . , Nz+1.

– for z = 0 (k = 0) and z = Lz (k = Nz + 1):

v3i+1/2,j+1/2,k = 0, i = 0, . . . , Nx, j = 0, . . . , Ny, (23)
θr

i,j,k = 0, i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1.

2.3 Computational Procedure

We rewrite the resulting system of equations (17)–(21) in vector form by intro-
ducing vectors which contain only unknowns at internal nodes

Θr = (θr
111, . . . , θ

r
Nx11, θ

r
121, . . . , θ

r
NxNyNz

),



328 V. Tsybulin, A. Nemtsev, and B. Karasözen

V 1 = (v1111, . . . , v
1
Nx11, v

1
121, . . . , v

1
Nx(Ny+1)(Nz+1)),

V 2 = (v2111, . . . , v
2
Nx+1,11, v

2
121, . . . , v

2
(Nx+1)Ny(Nz+1)),

V 3 = (v3111, . . . , v
3
Nx+1,11, v

3
121, . . . , v

3
(Nx+1)(Ny+1)Nz

),

P = (p111, . . . , pNx+1,11, p121, . . . , p(Nx+1)(Ny+1)(Nz+1)),

and obtain the system with V = (V 1, V 2, V 3)T

Θ̇r = κrA1Θ
r + C1V

3 − J(Θr , V ), r = 1, . . . , S + 1,

˙V k = −B3+kP − C1+kV
k + δ3k

S+1∑
r=1

λrC5Θ
r, (24)

Ṗ = −
3∑

k=1

BkV
k, k = 1, 2, 3.

Here the matrices Bk, k = 1, . . . , 6, are constructed by the first-order difference
operators (11), and the matrices Ck, k = 1, . . . , 5, are constructed by the averag-
ing operators (12). The matrix A1 represents the discrete form of the Laplacian.
The nonlinear term is given by J(Θr, V ). The number of unknowns in the system
of equations (24) is

(5 + S)NxNyNz + 3(NxNy +NxNz +NyNz) + 2(Nx +Ny +Nz) + 1.

From (24) at J = 0 we can derive the perturbation equations (σ is a decrement
of linear growth) to analyze the stability of the state of rest

σΘr = κrA1Θ
r + C1V

3, σP = −
3∑

k=1

BkV
k, (25)

σV k = −B3+kP − C1+kV
k + δ3k

S+1∑
r=1

λrC5Θ
r, k = 1, 2, 3. (26)

For the decrement σ = 0 we obtain the system from which we can determine
the threshold value of the Rayleigh number corresponding to the monotonic loss
of stability. We can express P , V 1, V 2 V 3 via Θr from (25)–(26) and obtain a
system of NxNyNz equations for the unknown vector Θr

κrA1Θ
r = C1(C5 −B6Q)

S+1∑
s=1

λsΘ
s, r = 1, . . . , S + 1. (27)

Here we find the vector P = Q
∑S+1

r=1 λrΘ
r from the system of rank one deficient

linear algebraic equations

3∑
k=1

BkC
−1
1+kB3+kP = B3C

−1
4 C5

S+1∑
r=1

λrΘ
r .



A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid 329

Since for an incompressible flow the pressure may differ by a constant we can
exclude one component of P and one respective equation.

To compute a family of steady states we apply the technique based on the
cosymmetric version of the implicit function theorem [3]. It contains numerical
computation of the matrix of linearization for a number of steady states, applica-
tion of the SVD technique, and the continuation method. To verify this approach
we carried out a number of experiments using Maple and MATLAB. Numeri-
cal computation of a matrix of linearization in MATLAB was compared with
corresponding analytical derivation in Maple. The tests with several hundreds
of nodes proved the possibility of the direct numerical approach. Similarly the
computation of a kernel for the matrix of linearization was found rather robust,
the corresponding spectral value was about 10−7. It was enough for the determi-
nation of direction along the family of steady states with admissible accuracy. To
find an isolated convective pattern we apply the direct approach and integrate
the system of ordinary differential equations (24) by the classical fourth-order
Runge–Kutta method up to convergence.

3 Numerical Results

We give some computational results of convective flows of two-component fluid
(S = 1) in the parallelepiped with Lx = 3, Lz = 1 for several values of the

−2 −1 0 1 2 3
−3.5

−3

−2.5

Nu
v

Nu
h

Fig. 3. Planar regimes from the family of steady states



330 V. Tsybulin, A. Nemtsev, and B. Karasözen

depth Ly. The problems were analyzed for Rayleigh numbers λ1 = 120, λ2 = 10,
and for the coefficients k1 = 1, k2 = 0.2, b1 = b2 = 1, ε = 0.05. The computations
of the discretized equations were performed for the grids with 60×10×20 and 60×
20×20 internal nodes. When the depth Ly was rather small we have detected only
planar convective flows which illustrates the cosymmetry phenomena: the state
of rest lost its stability, and a one-parameter family of steady states branched off.
Several steady regimes from the family are presented in Fig. 3, where the depth
of parallelepiped was Ly = 0.5. Because all the states are planar we give only
slice in x−z plane. One can see that convective patterns continuously transform
when we move along the curve of the family.

L
y

L
z

θ1

L
x

L
y

L
z

θ2

L
x

L
y

L
z

θ1

L
x

L
y

L
z

θ2

L
x

Fig. 4. Two convective regimes with the same number of convective cells on the planes
y = 0 and y = Ly

There exists a critical value of the depth L∗
y such that for Ly > L∗

y a fixed
number of isolated convective patterns occurs after loss of stability of the state of
rest. For Ly > L

∗
y, a family may exist only as a set of unstable planar regimes. De-

pending on initial conditions we have found different isolated three-dimensional
regimes in the parallelepiped with depth Ly = 1, see Figs. 4–6. First two regimes
are presented by its distribution of temperature θ1 and mass fraction θ2 in Fig. 4.
Upper (lower) ones are characterized by three (four) convective cells on the
planes y = 0 and y = Ly. Because of discrete symmetries in this problem there
exist similar flows which are given by corresponding reflections.

We have also observed more complicated regimes with different structure of
the temperature (mass fraction) on the planes y = 0 and y = Ly. Distributions
of the temperature in different sections are shown in Fig. 5, where the discrete
symmetry is also observed in this flow.



A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid 331

L
y

L
z

L
x

L
y

L
z

L
x

L
y

L
z

L
x

Fig. 5. Convective pattern with different numbers of convective cells on the planes
y = 0 and y = Ly

L
y

L
z

θ1

L
x

L
y

L
z

θ2

L
x

L
y

L
z

θ1

L
x

L
y

L
z

θ2

L
x

Fig. 6. Convective flows close to the planar regimes if x is far from the planes x = 0
and x = Lx



332 V. Tsybulin, A. Nemtsev, and B. Karasözen

It is interesting that for the given parallelepiped the most stable regimes ap-
pear two-dimensional (constant in direction x), which is demonstrated in Fig. 6,
where three-dimensional character of the flow is only revealed in the vicinity the
planes x = 0 and x = Lx. This is the case when length Lx is significantly greater
than depth and height.

−2 0 2

−4

−3

−2

Nu
v

Nu
h

Fig. 7. Destruction of the family of steady states under non-mimetic approximation of
advective terms

Finally we demonstrate that the non-mimetic approximation destroys the fam-
ily of steady states. When simpler approximation

(v · ∇f)i,j,k ≈
⎡⎣ 3∑

s=1

dsδsf

3∏
n�=s

δnv
s

⎤⎦
i,j,k

. (28)

instead of (15) was used, only two convective flows are obtained through com-
putations. Figure 7 depicts that from different initial states (circles) we come to
symmetric patterns (marked by stars). Convergence may take some time but the
typical trajectory (dotted line) reproduces the movement along the ’lost’ family
(solid line). One can see it as a shadow of the missing object.

Summary

Using a mimetic scheme on staggered grids for a three-dimensional convective
multicomponent flow in a porous medium, the preservation of the cosymme-
try and discrete symmetries were demonstrated. It was also shown that a non-
mimetic scheme can destroy the family of steady states.



A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid 333

Acknowledgements

V.T. was partially supported by the Program ’Scientific potential development’
by Russian Ministry for Education and Research, project 2.1.1/6095.

References

1. Nield, D.A., Bejan, A.: Convection in porous media. Springer, New York (1999)
2. Lyubimov, D.V.: On the convective flows in the porous medium heated from below.

J. Appl. Mech. Techn. Phys. 16, 257–261 (1975)
3. Yudovich, V.I.: Cosymmetry, degeneracy of the solutions of operator equations,

and the onset of filtrational convection. Math. Notes 49, 540–545 (1991)
4. Govorukhin, V.N.: Numerical simulation of the loss of stability for secondary steady

regimes in the Darcy plane-convection problem. Doklady Akademii Nauk 363,
806–808 (1998)

5. Karasözen, B., Tsybulin, V.G.: Finite-difference approximation and cosymmetry
conservation in filtration convection problem. Physics Letters A262, 321–329 (1999)

6. Karasözen, B., Tsybulin, V.G.: Conservative finite difference schemes for cosym-
metric systems. In: Proc. 4th Conf. on Computer Algebra in Scientific Computing,
pp. 363–375. Springer, Heidelberg (2001)

7. Hyman, J.M., Bochev, P.B.: Principles of Mimetic Discretizations of Differential
Operators. IMA Volumes in Mathematics and Its Applications 142, 89–114 (2006)

8. Karasözen, B., Nemtsev, A.D., Tsybulin, V.G.: Staggered grids discretization in
three-dimensional Darcy convection. Comput. Phys. Comm. 170, 885–893 (2008)

9. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully Conservative Higher
Order Finite Difference Schemes for Incompressible Flow. J. Comput. Phys. 143,
90–124 (1998)

10. Yudovich, V.I.: Cosymmetry and convection of a multicomponent fluid in a porous
medium. Izv. Vuzov. Severo-Kavkazs. Region. Estestv. Nauki. Spetsvypusk. Mat.
Modelirovanie, 174–178 (2001)

11. Kantur, O.Y., Tsybulin, V.G.: Numerical investigation of the plane problem of
convection of a multicomponent fluid in a porous medium. Fluid Dynamics 39,
464–473 (2004)



Symbolic-Numerical Algorithms for Solving
Parabolic Quantum Well Problem with

Hydrogen-Like Impurity

S.I. Vinitsky, O. Chuluunbaatar, V.P. Gerdt, A.A. Gusev, and V.A. Rostovtsev

Joint Institute for Nuclear Research, Dubna, Russia
vinitsky@theor.jinr.ru

Abstract. For parabolic quantum well problem with hydrogen-like im-
purity a two-dimensional boundary-value problem is formulated in spher-
ical coordinates at fixed magnetic quantum number. Calculational
scheme using modified angular prolate spheroidal functions is presented.
Symbolic-numerical algorithms for solving the problem are elaborated.
The efficiency of the algorithms and their implementation is demon-
strated by solving typical test examples and proving the compatibility
conditions for asymptotic solutions of scattering problems in spherical
and cylindrical coordinates.

Keywords: Symbolic-numerical algorithms, parabolic quantum well,
hydrogen-like impurity, modified prolate angular spheroidal functions.

1 Introduction

In [1] optical absorption into the ground state of GaAs parabolic quantum well
and rectangular quantum well with infinitely high walls in the presence of a
hydrogen-like impurity was considered. Calculation of the ground state of these
quantum wells was carried out using single-parameter variational functions in
the cylindrical coordinate system. The upper bounds of these energies were ob-
tained depending on the shift of the Coulomb potential center. The analysis of
more complex quantum mechanical models leads to boundary-value problems
in a non-standard domain of the configuration space with complex boundary,
solved using finite-element method [2,3], or by means of reducing the problem
to ordinary differential equations following Kantorovich method [4], known in
physics as the adiabatic approach to quantum mechanical problems with slow
and fast variables. In the Kantorovich method, the basis functions depend upon
the slow variables as parameters and obey the boundary conditions that account
for all specific features of the original problem. This provides the efficiency of
the method for solving boundary-value problems in a non-standard domain, e.g,
in a sector of a circle with mixed boundary conditions [5], as well as in the
presence of singular potential against the background of confining potentials of
the oscillator type with respect to some independent variables [6,7]. The latter
determines the potentialities of using the method to analyze low-dimensional
quantum mechanical models of semiconductor nanostructures [8].

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 334–349, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Symbolic-Numerical Algorithms 335

In this paper we present a scheme for solving the boundary-value problem for a
parabolic quantum well in the adiabatic representation and in the spherical co-
ordinates. For efficient application of the Kantorovich method we elaborated the
following symbolic-numerical algorithms to compute the appropriate quantities
to a prescribed accuracy:

• numerical solution of the parametric self-adjoined Sturm-Liouville problem
on a bounded interval of the parameter values and calculation of derivatives
with respect to the parameter of the eigenfunctions and of the matrix elements
(integrals of the eigenfunctions multiplied by their derivatives with respect to
the parameter) that appear as variable coefficients in the system of second-order
ordinary differential equations (ODPEVP, implemented in FORTRAN [9]),
• asymptotic forms of the eigenfunctions and of the matrix elements that ap-

pear as variable coefficients in asymptotic solutions of the boundary-value prob-
lem under consideration and in the asymptotic forms of the system of second-
order ordinary differential equations (MATRA, implemented in MAPLE),
• asymptotic forms of the solutions of the system of second-order ordinary

differential equations for small and large values of the radial variable needed for
solving the corresponding boundary-value problem with the third-type boundary
conditions (ASYMRS, implemented in MAPLE),
• numerical solutions of the boundary-value problem for a system of second-

order ordinary differential equations (KANTBP, implemented in FORTRAN[5]).

The paper is organized as follows. In Section 2, the statement of the boundary-
value problem is given. In Section 3, the procedure MATRA for analytic calcu-
lation of asymptotic form of basis functions and matrix elements at large values
of the radial variable is described. In Section 4, the procedure ASYMRS for the
calculation of asymptotic forms of fundamental solutions of a system of radial
equations at large values of radial variable in the analytic form is presented. In
Section 5, a test example of numerical calculation of the ground state energy and
wave functions with the help of ODPEVP and KANTBP programs is given. The
Conclusion outlines further applications of the above set of symbolic-numerical
algorithms and programs.

2 Problem Statement

The Schrödinger equation describing the parabolic quantum well problem with
shifted hydrogen-like impurity in the reduced atomic units and in the spherical
coordinates (r, η = cos θ, φ) at a fixed magnetic quantum number m reads as [4](

− 1
r2
∂

∂r
r2
∂

∂r
+

1
r2
A(c, b)− 2q

r

)
ψm(r, η) = 2Eψm(r, η). (1)

Here A(c, b) ≡ A(0)(c, b)+c2+f is the operator of the modified angular functions,
which at b = f = 0 correspond to the angular prolate spheroidal functions [10]

A(0)(c, b) = − ∂

∂η
(1− η2)

∂

∂η
+

m2

1− η2
+ c2(η2 − 1)− bη, (2)



336 S.I. Vinitsky et al.

where c = ωr2, b = −2ω2zcr
3, and f = (ωzcr)2 are real parameters depending

on the harmonic oscillator frequency ω and the shift zc of the Coulomb charge
q along z-axis from the origin of the cylindrical frame (ρ, z, φ) in R3, i.e., r =√
ρ2 + (z−zc)2. The wave functions ψm(r, η, b) ≡ ψmi(r, η, b) ≡ ψmi(r, η, zc) at

fixed m obey the following conditions at the boundary of the domain Ωr,η =
Ω(0 ≤ r <∞,−1 ≤ η ≤ 1):

lim
η→±1

(1− η2)
∂ψm(r, η)
∂η

= 0, for m = 0, and ψm(r,±1) = 0, for m �= 0,

lim
r→0

r2
∂ψm(r, η)

∂r
= 0.

At large r = rmax 1 1 the discrete-spectrum wave functions obey the Dirichlet
boundary condition that follows from the asymptotic behavior of the solution

lim
r→+∞

r2ψm(r, η) = 0 → ψm(rmax, η) = 0,

and also the orthonormality condition∫ rmax

0

∫ 1

−1

ψmi(r, η)ψmj(r, η)r2drdη = δij . (3)

The solution of (1)–(3) at fixed m is sought in the form of the Kantorovich
expansion with respect to the single-parameter functions Φj(η; r) ≡ Φmj(η; r):

ψmi(r, η) =
∑jmax

j=1
Φmj(η; r)χji(r), (4)

Here the functions χji(r) are to be found, while the basis functions Φj(η; r) ∈
Fr ∼ L2[−1, 1] are solutions of the eigenvalue problem:

A(c, b)Φmj(η; r) = Ej(r)Φmj(η; r). (5)

The eigenfunctions Φmj(η; r) ≡ Φmj(r, η, zc) at fixed m obey the symmetry
condition Φmj(r, η, zc) = exp(ıπνmq)Φmj(r,−η,−zc), where νmq ≡ νmq(r, zc) is
the real phase, q is the number of zeros in η ∈ [−1, 1], in particular, νmq(r, 0) = q
at zc = 0, Ej(r, zc) = Ej(r,−zc), and the boundary conditions with respect to
the angular variable η at each fixed value of the parameter r ∈ R1

+

lim
η→±1

(1−η2)
∂Φmj(η; r)

∂η
= 0, for m = 0, and Φmj(r,±1) = 0, for m �= 0, (6)

as well as the orthonormality conditions in the interval Ωη = [−1, 1]:

〈
Φmi(η; r)

∣∣Φmj(η; r)
〉

Ωη
=
∫ 1

−1

Φmi(η; r)Φmj(η; r)dη = δij . (7)

Note that the eigenvalues Ej(r) of the operator A(c, b) from (5) are related
to the eigenvalues λj(r) of the operator A(0)(c, b) from (2) by the equality



Symbolic-Numerical Algorithms 337

Ej(r) = λj(r)+c2 +f . The projection of Eq. (1), using expansion (4), is reduced
to the set of jmax ordinary second-order differential equations with respect to
the unknown vector function χ(i)(r) ≡ (χ1i(r), . . . , χjmaxi(r)):(

− 1
rd−1

I
d

dr
rd−1 d

dr
+

U(r)
r2

+Q(r)
d

dr
+

1
rd−1

d rd−1Q(r)
dr

−2E I
)

χ(i)(r) = 0.(8)

Here d = 3 is the dimension of the above space R3, I, U(r), and Q(r) are
jmax × jmax matrices whose entries are defined by the following relations:

Uij(r) = r2Hij(r) +
Ei(r) + Ej(r)

2
δij − 2qrδij Iij = δij ,

Hij(r) = Hji(r) =
〈
∂Φi(η; r)
∂r

∣∣∣∣ ∂Φj(η; r)
∂r

〉
Ωη

, (9)

Qij(r) = −Qji(r) = −
〈
Φi(η; r)

∣∣∣∣ ∂Φj(η; r)
∂r

〉
Ωη

.

The discrete-spectrum solutions obey the asymptotic boundary conditions and
the orthonormality condition

lim
r→0

rd−1 dχ
(i)(r)
dr

= 0, lim
r→∞

rd−1χ(i)(r) = 0 → χ(i)(rmax) = 0, (10)∫ rmax

0

rd−1
(
χ(i)(r)

)T

χ(j)(r)dr = δij . (11)

Remark 1. The continuity of the eigenfunction Φj(η; r) with respect to the
parameter r is very important for calculations of the potential matrix elements
(9) and their further applications for solution of boundary problems for a system
of coupled differential equations (8) as considered in [5]. Hence we required
Φj(η; r) > 0 in the vicinity of the right boundary point η = 1 [9].

Remark 2. The formulation of the boundary-value problem of continuous spec-
trum for the set of Eqs. (8) using asymptotic expansions of the solutions pre-
sented below is given in [5,7].

3 Symbolic Algorithm for Evaluating the Asymptotic
Forms of Matrix Elements

The procedure MATRA computes the asymptotic forms of solutions of the eigen-
value problem (5) together with the matrix elements (9) as expansions in powers
of r and 1/r for small and large values of r, respectively. Here we consider the
case of large r.

In step 1 we go from the coordinate η ∈ [−1, 1] to the new coordinate ẑ ∈
[
√
ω(−r+ zc),

√
ω(r+ zc)] using the formula rη ≡ z′ = z− zc = (ẑ− zc√ω)/

√
ω.

In step 2 we construct the asymptotic expansion defined in the domain
η ∈ [−η1, η1], where η1 = O((ωr2)−1/2+ε), 0 < ε < 1/2. It means that in



338 S.I. Vinitsky et al.

the evaluation of the corresponding integrals we omit exponentially small terms
and change the domain from the finite interval [

√
ω(−r+ zc),

√
ω(r+ zc)] to the

infinite one (−∞,+∞).
In step 3 we find the asymptotic solution Φas

j (ẑ; r) and r−2Ej(r) =
r−2(λj(r) + c2 + f) = ωβj(r) as an expansion with j = n+ 1

Φas
j (ẑ; r) = 4

√
ω
√
r

kmax∑
k=0

Φ
(2k)
n (ẑ)
r2k

, Ej(r) =
kmax∑
k=0

E
(2k)
n

r2k
, βj(r) =

kmax∑
k=0

β
(2k)
n

r2k
. (12)

Substituting Eq.(12) into Eq. (5) and equating the coefficients at the same powers
of r, we arrive at a system of recurrence differential equations for evaluating the
coefficients Φ(2k)

n (ẑ) and β(2k)
n , k = 1, . . . , kmax:

L(n)Φ(2k)
n = f (2k)

n (ẑ), L(n) = − d2

dẑ2
− (2n+ 1)+ẑ2, (13)

with the initial data β(0)
n = 2n+1, and Φ(0)

n (ẑ) is a known solution of the problem

L(n)Φ(0)
n (ẑ) = 0,

∫ +∞

−∞
Φ(0)

n (ẑ)Φ(0)
n′ (ẑ)dẑ = δnn′ . (14)

In Eqs. (13) the right-hand sides f (2k)
n (ẑ) are defined by the relations

f (2k)
n (ẑ) =

(ẑ − zc√ω)2

ω

d2Φ
(2k−2)
n (ẑ)
dẑ2

+
2(ẑ − zc√ω)

ω

dΦ
(2k−2)
n (ẑ)
dẑ

+
k∑

j=1

(a(2j)(ẑ, zc)− β(2j)
n )Φ(2k−2j)(ẑ) = 0,

where the coefficients a(2j)(ẑ, zc) are defined by Taylor expansion at large ωr2

m2

1− η2
= m2

(
1− (ẑ − zc√ω)2

ωr2

)−1

=
kmax∑
j=0

a(2j)(ẑ, zc)
r2j

. (15)

Note that the coefficients a(2j)(ẑ, zc) contain the terms of the order of ẑ2l till
l = j. The orthogonality and normalization conditions follow from (7) and (12)

I
(2k)
jj′ =

k∑
l=0

∫ ∞

−∞
Φ(2l)

nl
(ẑ)Φ(2k−2l)

nr
(ẑ)dẑ = δk0δnlnr , (16)

where nl = j − 1, nr = j′ − 1.
We find the asymptotic expressions of the matrix elements Hjj′ (r) and Qjj′(r)

from (9) in the form of expansions

Qjj′ (r) =
kmax∑
k=1

Q
(2k−1)
jj′

r2k−1
, Hjj′ (r) =

kmax∑
k=1

H
(2k)
jj′

r2k
. (17)



Symbolic-Numerical Algorithms 339

Table 1. Values of the partial sums (27) for r−2Ej(r) depending on kmax for ω = 3,
m = 0, zc = 0.4, and r = 8. The last row contains the corresponding numerical values
(n.v.) calculated by means of ODPEVP [9].

j r−2E1 r−2E2 r−2E3 r−2E4

r −0E
( 0)
j 3 9 15. 21.

+r −2E
( 2)
j 2.9845312 8.9614062 14.922656 20.868281

+r −4E
( 4)
j 2.9844843 8.9611764 14.922034 20.866998

+r −6E
( 6)
j 2.9844838 8.9611729 14.922022 20.866966

+r −8E
( 8)
j 2.9844838 8.9611729 14.922022 20.866965

+r−10E
(10)
j 2.9844838 8.9611729 14.922022 20.866965

(n.v.) 2.9844838 8.9611729 14.922022 20.866965

Here the coefficients Q(2k+1)
jj′ and H(2k+2)

jj′ are defined by the relations

Q
(2k+1)
jj′ = −

k∑
l=0

∫ +∞

−∞
Φ(2l)

nl
(ẑ)Q̂Φ(2k−2l)

nr
(ẑ)dẑ,

H
(2k+2)
jj′ =

k∑
l=0

∫ +∞

−∞
Q̂Φ(2l)

nl
(ẑ)Q̂Φ(2k−2l)

nr
(ẑ)dẑ, (18)

Q̂Φ(2l)
nl

(ẑ) =
(

1
2
− 2l

)
Φ(2l)

nl
(ẑ) + (ẑ − zc

√
ω)
dΦ

(2l)
nl (ẑ)
dẑ

.

In step 4 we construct Φ(2k)
n (ẑ) as the expansion with unknown coefficients b(2k)

n;s

Φ(2k)
n (ẑ) =

M(k)∑
s=−M(k)

b(2k)
n;s Φ

(0)
n+s(ẑ). (19)

Here the basis functions Φ(0)
v (ẑ) are solutions of (14) expressed in terms of the

Hermite polynomials [10]

Φ(0)
v (ẑ) =

Hv(ẑ) exp(−ẑ2/2)
4
√
π
√

2v
√
v!

.

Using the known recurrence relation for Hermite polynomials Hv(ẑ)

ẑHv(ẑ) =
Hv+1(ẑ)

2
+ vHv−1(ẑ),

dHv(ẑ)
dẑ

= 2vHv−1(ẑ), (20)

we obtain the recurrence relations for the basis functions Φ(0)
v (ẑ):

ẑΦ(0)
v (ẑ) = +

√
v + 1√

2
Φ

(0)
v+1(ẑ) +

√
v√
2
Φ

(0)
v−1(ẑ),

dΦ
(0)
v (ẑ)
dẑ

= −
√
v + 1√

2
Φ

(0)
v+1(ẑ) +

√
v√
2
Φ

(0)
v−1(ẑ), (21)



340 S.I. Vinitsky et al.

Table 2. The same as in Table 1, but for Qij(r) at i �= j

i, j Q12, 10−2 Q23, 10−2 Q34, 10−1 Q13, 10−2 Q24, 10−1 Q14, 10−4

r−1Q
( 1)
ij 6.1237243 8.6602540 1.0606601 –8.8388347 –1.5309310 0

+r−3Q
( 3)
ij 6.2072876 8.8911941 1.1027551 –8.8450495 –1.5340009 –5.5338541

+r−5Q
( 5)
ij 6.2085282 8.8962122 1.1040117 –8.8447852 –1.5339440 –5.6676737

+r−7Q
( 7)
ij 6.2085518 8.8963403 1.1040530 –8.8447748 –1.5339400 –5.6710585

+r−9Q
( 9)
ij 6.2085523 8.8963441 1.1040545 –8.8447745 –1.5339398 –5.6711548

(n.v.) 6.2085523 8.8963442 1.1040546 –8.8447745 –1.5339398 –5.6711580

ẑ
dΦ

(0)
v (ẑ)
dẑ

= −1
2
Φ(0)

v (ẑ)−
√
v + 1

√
v + 2

2
Φ

(0)
v+2(ẑ) +

√
v − 1

√
v

2
Φ

(0)
v−2(ẑ),

L(n)Φ(0)
n+s(ẑ) ≡

(
− d2

dẑ2
− (2n+ 1)+ẑ2

)
Φ

(0)
n+s(ẑ) = 2sΦ(0)

n+s(ẑ).

From (13), (15), and (21) we obtain the needed value of M(k) = 2k + 1 in the
expansion (19) to provide the calculation of nonzero terms only.

Substituting Eq. (19) into Eq. (13), using Eq. (21) and equating coefficients
at the same powers of r, we arrive at a set of recurrence relations for evaluating
the coefficients β(2k)

n and b(2k)
n;s

2sb(2k)
n;s = f (2k)

n;s , (22)

f (2k)
n;s = −

4∑
t=−4

hn;s−t,tb
(2k−2)
n;s−t −

k∑
j=1

2j∑
t=−2j

a
(2j)
n;s−t,tb

(2k−2j)
n;s−t +

k∑
j=1

β(2j)
n b(2k−2j)

n;s ,

I
(2k)
jj′ =

k∑
l=0

2k+1∑
s=−2k−1

b(2l)
nl;sb

(2k−2l)
nr;s+nl−nr

= δk0δnlnr , (23)

with the initial data β(0)
n = 2n + 1 and b(0)n;s = δs0. The coefficients hn;s,t and

a
(2j)
n;s,t in the relations (22) are calculated using (15), (21) from the relations

(ẑ − zc√ω)2

ω

d2Φ
(0)
n+s(ẑ)
dẑ2

+
2(ẑ − zc√ω)

ω

dΦ
(0)
n+s(ẑ)
dẑ

=
4∑

t=−4

hn;s,tΦ
(0)
n+s+t(ẑ),

a(2j)(ẑ, zc)Φ
(0)
n+s(ẑ) =

2j∑
t=−2j

a
(2j)
n;s,tΦ

(0)
n+s+t(ẑ). (24)

The corresponding coefficients Q(2k+1)
jj′ and H(2k+2)

jj′ from Eq. (18) have the
following explicit form:

Q
(2k+1)
jj′ = −

k∑
l=0

2k+1∑
s=−2k−1

b(2l)
nl;s

(
(−2k + 2l)b(2k−2l)

nr;s+nl−nr
(25)



Symbolic-Numerical Algorithms 341

Table 3. The same as in Table 1, but for Hij(r) at i �= j

i, j H12, 10−3 H23, 10−2 H34, 10−2 H13, 10−3 H24, 10−2 H14, 10−2

r −2H
( 2)
ij –7.6546554 –2.1650635 –3.9774756 –5.3033008 –0.9185586 1.8750000

+r −4H
( 4)
ij –7.7794422 –2.2165683 –4.1102192 –5.6189439 –1.0089114 1.9299804

+r −6H
( 6)
ij –7.7817944 –2.2178064 –4.1142837 –5.6289351 –1.0129576 1.9313221

+r −8H
( 8)
ij –7.7818496 –2.2178410 –4.1144203 –5.6292488 –1.0131247 1.9313584

+r−10H
(10)
ij –7.7818511 –2.2178422 –4.1144255 –5.6292592 –1.0131316 1.9313595

(n.v.) –7.7818512 –2.2178422 –4.1144257 –5.6292596 –1.0131319 1.9313596

+
zc
√
ω
√
nl + s√
2

b
(2k−2l)
nr;s+nl−nr−1 −

zc
√
ω
√
nl + s+ 1√

2
b
(2k−2l)
nr;s+nl−nr+1

−
√
nl + s− 1

√
nl + s

2
b
(2k−2l)
nr;s+nl−nr−2+

√
nl + s+ 1

√
nl + s+ 2

2
b
(2k−2l)
nr;s+nl−nr+2

)
,

H
(2k+2)
jj′ =

k∑
l=0

2k+1∑
s=−2k−1

b(2l)
nl;s

({
2l(2k − 2l) +

(nl + s)2 + nl + s+ 1
2

+
z2cω

2
(2nl + 2s+ 1)

}
b
(2k−2l)
nr ;s+nl−nr

(26)

+
zc
√
ω
√
nl + s√
2

(−4l+ 2k − nl − s) b(2k−2l)
nr;s+nl−nr−1

+
zc
√
ω
√
nl + s+ 1√

2
(4l− 2k − nl − s− 1) b(2k−2l)

nr;s+nl−nr+1

−
√
nl + s− 1

√
nl + s

2
(−4l+ 2k + z2cω

)
b
(2k−2l)
nr;s+nl−nr−2

−
√
nl + s+ 1

√
nl + s+ 2

2
(
4l − 2k + z2cω

)
b
(2k−2l)
nr;s+nl−nr+2

+
zc
√
ω
√
nl + s− 2

√
nl + s− 1

√
nl + s√

2
b
(2k−2l)
nr;s+nl−nr−3

+
zc
√
ω
√
nl + s+ 1

√
nl + s+ 2

√
nl + s+ 3√

2
b
(2k−2l)
nr;s+nl−nr+3

−
√
nl + s− 3

√
nl + s− 2

√
nl + s− 1

√
nl + s

4
b
(2k−2l)
nr;s+nl−nr−4

−
√
nl + s+ 1

√
nl + s+ 2

√
nl + s+ 3

√
nl + s+ 4

4
b
(2k−2l)
nr;s+nl−nr+4

)
.

In step 5 we sequentially evaluate the solutions b(2k)
n;s and β(2k)

n of the set of
recurrence relations (22), (23) in each kth order (k = 1, . . . , kmax):
f

(2k)
n;0 = 0 → β

(2k)
n ;

b
(2k)
n;s�=0 = f

(2k)
n;s /(2s);

I
(2k)
ii = δk0 → b

(2k)
n;0 .



342 S.I. Vinitsky et al.

Table 4. The same as in Table 1, but for Hjj(r)

j, j H11, 10−2 H22, 10−2 H33, 10−2 H44, 10−1

r −2H
( 2)
jj 1.1562500 3.4687500 7.3437500 1.2781250

+r −4H
( 4)
jj 1.1675830 3.5283837 7.5051513 1.3110092

+r −6H
( 6)
jj 1.1677930 3.5299856 7.5110492 1.3125245

+r −8H
( 8)
jj 1.1677976 3.5300324 7.5112738 1.3125967

+r−10H
(10)
jj 1.1677977 3.5300339 7.5112827 1.3126002

(n.v.) 1.1677977 3.5300339 7.5112831 1.3126004

In step 6, by substituting (12) with the coefficients b(2k)
n;s calculated at step

5 into the expressions for the matrix elements evaluated at step 4 and taking
into account the above definition r−2Ej(r) = r−2(λj(r) + c2 + f) = ωβj(r), i.e.
E

(2k)
j = ωβ

(2k)
j , we produce the output containing the matrix elements as an

expansion in inverse powers of r for k = 0, 1, . . . , kmax at j, j′ = 1, . . . , jmax:

r−2Ej(r) =
kmax∑
k=0

E
(2k)
j

r2k
, Hjj′ (r) =

kmax∑
k=1

H
(2k)
jj′

r2k
, Qjj′ (r) =

kmax∑
k=1

Q
(2k−1)
jj′

r2k−1
. (27)

The calculation described above was performed by the algorithm implemented
in MAPLE up to kmax = 8. For example, the explicit expression of the desirable
nonzero coefficients E(2k)

j , H(2k)
ij = H

(2k)
ji and Q(2k−1)

ij = −Q(2k−1)
ji reads as

(j = n+ 1):

E
(0)
j = ω(2n+ 1), E(2)

j = m2 − 1
4
− z

2
cω

2
(2n+ 1)− n

2 + n+ 1
2

,

H
(2)
jj =

z2cω

2
(2n+ 1) +

n2 + n+ 1
2

, (28)

H
(2)
jj−1 = −zc

√
ω
√
nn√

2
, H

(2)
jj−2 = −ωz

2
c

√
n− 1

√
n

2
,

Q
(1)
jj−1 = −zc

√
ω
√
n√

2
, Q

(1)
jj−2 =

√
n− 1

√
n

2
.

Tables 1–4 demonstrate the convergence of partial sums in the asymptotic ex-
pansions (27) of effective potentials Qij(r) and Hij(r) calculated by the algo-
rithm MATRA to the corresponding numerical values calculated by means of
ODPEVP [9].

Remark 3. As follows from Eq. (28), the reduction of the problem (1) un-
der the axial symmetry at fixed m by means of the modified angular prolate
spheroidal functions (4) at large r leads to the asymptotic centrifugal term
(E(2)

j + H
(2)
jj )r−2 = (m2 − 1/4)r−2 in the effective potentials (9) of the set

of radial equations (8). The latter term is characterized by the integer magnetic
quantum number m.



Symbolic-Numerical Algorithms 343

4 Symbolic Algorithm for Evaluation the Asymptotic
Forms of Radial Solutions

In the procedure ASYMRS, using the above asymptotic expressions of the matrix
elements, the asymptotic forms of the fundamental radial solutions χjio (r) of
Eqs. (8) at small and large values of r are calculated, and the needed boundary
conditions for the reduced interval [rmin, rmax] are generated. Here we consider
the case of large r.

We find the asymptotic solution χas
jio

(r) at large r ≥ rmax in the form

χas
jio

(r) =
(
φjio (r) + ψjio (r)

d

dr

)
R(pio , r), (29)

where p2io
= 2E − εthio

is the relative energy with respect to the threshold
value εthio

= E
(0)
io

, and the function R(pio , r) ≡ R(pio , r) satisfies the differential
equation

d2R(pio , r)
dr2

+
2
r

dR(pio , r)
dr

+
(
p2io

+
2q
r
− M2

r2

)
R(pio , r) = 0 (30)

In (30) the asymptotic centrifugal term M2/r
2 with the factor M2 = m2 − 1/4

determines the order ν of the desirable solution

R(pio , r) ≡ Rν(pio , r) = p
−1/2
io

r−1(ı Fν(pio , r) +Gν(pio , r))/2,

where Fν(pio , r) and Gν(pio , r) are the regular and irregular Coulomb functions
of the half-integer order ν = m− 1/2 [11].

Remark 4. In the conventional 3D problem under spherical symmetry using
the angular spherical harmonic functions leads to integer M2 = l(l + 1) and
ν = l [12], whereas in the 3D problem under axial symmetry the angular oblate
spheroidal functions at large r lead to M2 = 0 and ν = 0 [6]. However, at small
r in both cases we have M2 = l(l+ 1) and ν = l.

In the case of pio = 0 and q �= 0 the function R(pio , r) has the form

R(pio , r) = π1/2r−1/2(ı Jν′(
√

8qr)− Yν′(
√

8qr))/2,

while in the case of pio �= 0 and q = 0 it reads as

R(pio , r) = π1/22−1/2r−1/2(ıJν′/2(pior)− Yν′/2(pior))/2.

Here Jν′ and Yν′ are Bessel functions of the first and the second kind [10] of
the order ν′ =

√
1 + 4M2, ν′ = 2m at M2 = m2 − 1/4 and ν′ = 2l + 1 at

M2 = l(l + 1).
In step 1 substituting the function (29) into Eq. (8), using (30) and extracting

the coefficients for the Coulomb function and its derivative, we arrive at two
coupled differential equations with respect to the unknown functions φjio (r)
and ψjio (r).



344 S.I. Vinitsky et al.

In step 2 we expand the functions φjio (r) and ψjio (r) in inverse powers of r:

φjio (r) =
∑kmax

k=0
φ

(k)
jio
r−k, ψjio (r) =

∑kmax

k=0
ψ

(k)
jio
r−k. (31)

After substituting the expansions (27), (31) into Eqs. (8) and equating the co-
efficients at the same powers of r, we compute a set of recurrence relations with
respect to the unknown coefficients φ(k)

jio
and ψ(k)

jio(
p2io

− 2E + E(0)
j

)
φ

(k)
jio

= f
(k)
jio
,
(
p2io

− 2E + E(0)
j

)
ψ

(k)
jio

= g(k)
jio
, (32)

where the right-hand sides f (k)
jio

and g(k)
jio

are defined by the relations

f
(k)
jio

= 2p2io
(k − 1)ψ(k−1)

jio
(33)

+
(
(k − 2)(k − 3) +M2 −

(
E

(2)
j +H(2)

jj

))
φ

(k−2)
jio

+ 2q(2k − 3)ψ(k−2)
jio

−M2(k − 2)ψ(k−3)
jio

−
k∑

k′=3

(
E

(k′)
j +H(k′)

jj

)
φ

(k−k′)
jio

+
jmax∑

j′=1,j′ �=j

k∑
k′=1

[(
(2k − k′ − 3)Q(k′−1)

jj′ −H(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2io

Q
(k′)
jj′ + 4qQ(k′−1)

jj′

)
ψ

(k−k′)
j′io

]
,

g
(k)
jio

= −2(k − 1)φ(k−1)
jio

(34)

+M2φ
(k−2)
jio

+
(
k(k − 1)−

(
E

(2)
j +H(2)

jj

))
ψ

(k−2)
jio

−2M2(k − 2)ψ(k−3)
jio

−
k∑

k′=1

(
E

(k′)
j +H(k′)

jj

)
ψ

(k−k′)
jio

+
jmax∑

j′=1,j′ �=j

k∑
k′=1

[(
(2k − k′ + 1)Q(k′−1)

jj′ −H(k′)
jj′

)
ψ

(k−k′)
j′io

− 2Q(k′)
jj′ φ

(k−k′)
j′io

]
.

It should be noted that these relations differ from the case of M2 = 0 [6] only
by the terms containing M2 = E(2)

io
+H(2)

ioio
.

In step 3 from equations (32) at k = 0 we get the initial data for the recur-
rence procedure, including the special threshold case 2E = E(0)

io
(p2io

= 0)

φ
(0)
j0io

= δj0io , ψ
(0)
j0io

= 0, p2io
= 2E − E(0)

io
. (35)

The open channels have p2io
≥ 0 whereas the close channels have p2io

< 0. Suppose
that there areNo ≤ jmax open channels, i.e., p2io

≥ 0 for io = 1, . . .No and p2io
< 0

for io = No + 1, . . . jmax. After substitution of (35) into (32) the recurrence
relations for k = 1, 2, . . . , kmax take the form(

E
(0)
j − E(0)

io

)
φ

(k)
jio

= f (k)
jio
,
(
E

(0)
j − E(0)

io

)
ψ

(k)
jio

= g
(k)
jio
. (36)



Symbolic-Numerical Algorithms 345

Step 4 performs the calculation of the coefficients φ(k)
jio

and ψ(k)
jio

by a step–
by–step procedure of solving equations (36) with r.h.s. determined by (33), (34),
for k = 1, 2, . . . , kmax:

φ
(k)
jio

=
f

(k)
jio

E
(0)
j − E(0)

io

, ψ
(k)
jio

=
g
(k)
jio

E
(0)
j − E(0)

io

, j �= io,

{f (k+1+δpio )
ioio

= 0, g(k+1)
ioio

= 0} → {φ(k)
ioio
, ψ

(k)
ioio

},
where δpio = 1 at pio = 0 (threshold case) and δpio = 0 at pio �= 0.

The calculation was performed by means of the algorithm, implemented in
MAPLE up to kmax = 8. Its output contains the elements at k = 0, 1, . . . , kmax.
For example, for kmax = 1 we have the coefficients φ(k)

jio
and φ(k)

jio
in the form

φ
(1)
jio

= 0, ψ
(1)
jio

=
2Q(1)

jio

E
(0)
io

− E(0)
j

, (37)

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −
(

1− δpio

3

) min(jmax,io+2)∑
j0=max(1,io−2),j0 �=io

Q
(1)
ioj0
ψ

(1)
j0io
,

and substituting the asymptotic expressions (27) into the above equation, we
arrive at the explicit expression of the desirable nonzero coefficients φ(k)

jio
and

φ
(k)
jio

(for jmax ≥ io +2k, io = no +1, 〈ẑ|io〉 = 4
√
ωΦ

(0)
no (ẑ), z′ = z− zc = ẑ√

ω
− zc):

ψ
(1)
io−2io

=−1
2

√
no−1

√
no

2ω
= −1

2

〈
io − 2

∣∣∣(z − zc)2∣∣∣ io〉
z
,

ψ
(1)
io−1io

=
zc
√
no√

2
√
ω

= −1
2

〈
io − 1

∣∣∣(z − zc)2∣∣∣ io〉
z
, (38)

ψ
(1)
ioio

=−1
2

(
1− δpio

3

)(
2no + 1

2ω
+ z2c

)
= −1

2

(
1− δpio

3

)〈
io
∣∣(z − zc)2∣∣ io〉z ,

ψ
(1)
io+1io

=
zc
√
no+1√
2
√
ω

= −1
2

〈
io + 1

∣∣∣(z − zc)2∣∣∣ io〉
z
,

ψ
(1)
io+2io

=−1
2

√
no + 1

√
no + 2

2ω
= −1

2

〈
io + 2

∣∣∣(z − zc)2∣∣∣ io〉
z
.

Remark 5. The obtained results correspond to the asymptotic transformation
of the arguments r, η of the total function ψas

mio
in terms of the asymptotic basis

functions Φas
j (ẑ; r) from (12) at fixed magnetic quantum number m:

ψas
mio

(r, η) =
jmax∑
j=1

Φas
j (ẑ; r)χas

jio
(r) =

jmax∑
j=1

Φas
j (ẑ; r)

(
φjio (r) + ψjio (r)

d

dr

)
R(pio , r)

= 4
√
ω
√
r

kmax∑
k=0

r−k
k∑

p=0

jmax∑
j=1

Φ
(p)
j (ẑ)

(
φ

(k−p)
jio

+ ψ(k−p)
jio

d

dr

)
R(pio , r).



346 S.I. Vinitsky et al.

–2

–1

1

2

x –1 1 2

z

-0,50 -0,25 0,00 0,25 0,50
1,0

1,2

1,4

1,6

1,8

2,0

E
B
/R

y*

z
c
/a

0
*

 Upper ad (j
max

=1)

 j
max

=6

 j
max

=2

 var
 Lower ad (j

max
=1)

Fig. 1. Isolines of the potential energy surface as a function of two independent vari-
ables ρ, z with shift of center of Coulomb potential along the variable z on zc = 0.4 (left
panel). The binding energy −EB = 2E − εth

1 (Ry∗ = 5.2 meV) versus position shift

of Coulomb center of impurity by variable z in interval zc ∈ [−0.5, 0.5] (a∗
0 = 102

◦
A)

at q = 1, ω = 3 and m = 0 (right panel). Dotted line is variational calculations [1],
dash-dotted line is the adiabatic approximation (jmax = 1), short-dashed line is the
Kantorovich approximation (4) at jmax = 2 basis functions, solid line is the Kantorovich
approximation (4) at jmax = 6 basis functions, dashed line is the crude adiabatic ap-
proximation (jmax = 1, when the diagonal adiabatic positive correction H11(r) = 0 is
neglected).

Taking into account the orthogonality (14) and completeness
∑

j〈ẑ′|j〉〈j|ẑ〉 =

δ(ẑ′ − ẑ) relations for the asymptotic basis functions Φ(0)
j (ẑ; r), we obtain the

desirable asymptotic form of the total wave function at pio ẑ/(2r) ) 1 and
kmax = 1:

ψ
(as)
mio

(r, η) = 4
√
ω
√
r
∑

j
〈ẑ|j〉

[
〈j|io〉 − 1

2r
〈j|(z − zc)2|io〉 d

dr

]
R(pio , r)

≈ 4
√
ω
√
rΦ

(0)
io

(ẑ)χ(as)
ioio

(
r − (z − zc)2

2r

)

≈
4
√
ω

2(pioρ)1/2
Φ

(0)
io

(ẑ) (ı Fν(pio , ρ) +Gν(pio , ρ)). (39)

Thus, we obtain the needed compatibility conditions for the asymptotic solutions
of scattering problems in the spherical coordinates (r, η, ϕ) shifted by zc along z
axis and in the cylindrical coordinates (ρ, z, ϕ)

ρ = r
√

1− (z − zc)2 /r2 = r − (z − zc)2 /(2r) +O(r−2),

including the regular Fν and irregular Gν Coulomb functions of the half-integer
order ν = m− 1/2 from Eq. (30).

It should be noted that at large r the linearly independent functions (29)
satisfy the Wronskian-type relation

W(Q(r); χ∗(r),χ(r)) =
ı

2
Ioo, (40)



Symbolic-Numerical Algorithms 347

–1.5

–1

–0.5

0

0.5

1

1.5

z 1 2 3 4 5 6 7 8
ρ

–1.5

–1

–0.5

0

0.5

1

1.5

z 1 2 3 4 5 6 7 8
ρ

Fig. 2. Isolines of the ground-state wave function for the values of parameters q = 1,
ω = 3 and m = 0. Left panel: zc = 0.4, Right panel: zc = 0.

where W(•; χ∗(r),χ(r)) is the generalized Wronskian with the long derivative
defined as

W(•; χ∗(r),χ(r)) = r2
[
(χ∗)T

(
dχ

dr
− •χ

)
−
(
dχ∗

dr
− •χ∗

)T

χ

]
.

These relations will be used to examine the desirable accuracy of the above
expansion till kmax using KANTBP program implemented in FORTRAN [5,7]
for numerical solving the boundary problem of discrete or continuous spectrum.
The symbolic calculations of the above asymptotic expressions were performed
using the codes MATRA and ASYMRS implemented in MAPLE, that generate
FORTRAN codes of subroutines POTCAL and ASYMSC in KANTBP [5,7].

5 Test Example

The calculation for the GaAs parabolic quantum well was carried out with the
values of parameters q = 1, ω = 3, m = 0, and zc ∈ [−0.5, 0.5] in the reduced
atomic units from [1,4] by applying the programs KANTBP [5] and ODPEVP [9].
These programs implementing the finite-element method to solve the boundary-
value problems (8)–(11) and (5)–(7) were applied respectively on the grids Ωr =
{0(200)1(200)5(200)100} and Ωη = {−1(800)1} with the Lagrange elements of
the order p = 4 between the nodes. In the above grids Ωr and Ωη, the number
of grid elements is shown in the parentheses.

As follows from the theorem [13], for the ground state the adiabatic approx-
imation (jmax = 1) gives the upper bound for the energy, while in the so-called
crude adiabatic approximation, when the diagonal adiabatic positive correction
H11(r) = 0 is neglected, one gets the lower bound for the energy. The corre-
sponding inverse estimators for the binding energy −EB = 2E − εth1 (in units
Ry∗ = 5.2 meV) in spherical coordinates are presented in Fig. 1. As one can
see, these values are upper and lower estimates of the binding energy from the
variational calculation [1]. The corresponding inverse lower estimators of the
binding energy for increasing number of single-parameter basis functions jmax



348 S.I. Vinitsky et al.

allow one to analyze the convergence rate of the method used for solving the
boundary-value problem in the two-dimensional domain (see Fig. 2). In partic-
ular, the Kantorovich approximation (4) at jmax = 10 basis functions leads to
the following inverse lower estimation of the binding energy EB/Ry

∗ = 1.82774.

6 Conclusion

We presented the scheme for solving the boundary-value problem with discrete
spectrum for a parabolic quantum well in the adiabatic representation. The
upper and lower bounds for the energy of the ground state of the systems are
obtained under the conditions of the shift of the Coulomb center in a given range
of the parameter with respect to earlier variational estimates. It is shown that
the rate of convergence depends significantly on the appropriate choice of the
adiabatic basis parameterization taking the specific features of the considered
problem into account. The presented results allow one to estimate the efficiency
of the method and to prove the compatibility conditions (39) for asymptotic
solutions of scattering problems in spherical and cylindrical coordinates. The
software package developed is applicable to the investigation of semiconductor
nanostructure models. Further development of the method and the software
package is planned for solving the quasi-2D and quasi-1D boundary-value prob-
lems with both discrete and continuous spectrum, which are necessary for cal-
culating the optical transition rates, channelling and transport characteristics in
the models like quantum wells and quantum wires.

Acknowledgements. The authors thank Profs. V.L. Derbov, E.M. Kazaryan,
A.A. Kostanyan and H.A. Sarkisyan for collaboration. The work was supported
partially by RFBR (grants 07-01-00660 and 08-01-00604).

References

1. Kazaryan, E.M., Kostanyan, A.A., Sarkisyan, H.: Impurity optical absorption in
parabolic quantim well. Physica E 28, 423–430 (2005)

2. Voss, H.: Numerical calculation of the electronic structure for three-dimensional
quantum dots. Comput. Phys. Commun. 174, 441–446 (2006)

3. Wang, W., Hwang, T.-M., Jang, J.-C.: A second-order finite volume scheme
for three dimensional truncated pyramidal quantum dot. Comput. Phys. Com-
mun. 174, 371–385 (2006)

4. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L., Kazaryan, E.M.,
Kostanyan, A.A., Sarkisyan, H.A.: Adiabatic approach to the problem of a quantum
well with a hydrogen-like impurity. Phys. Atomic Nuclei 72, 1600–1608 (2010)

5. Chuluunbaatar, O., Gusev, A.A., Abrashkevich, A.G., Amaya-Tapia, A., Kaschiev,
M.S., Larsen, S.Y., Vinitsky, S.I.: KANTBP: A program for computing energy lev-
els, reaction matrix and radial wave functions in the coupled-channel hyperspherical
adiabatic approach. Comput. Phys. Commun. 177, 649–675 (2007)



Symbolic-Numerical Algorithms 349

6. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I.,
Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for com-
puting potential curves and matrix elements of the coupled adiabatic radial equa-
tions for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys.
Commun. 178, 301–330 (2008)

7. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
2.0: New version of a program for computing energy levels, reaction matrix and
radial wave functions in the coupled-channel hyperspherical adiabatic approach.
Comput. Phys. Commun. 179, 685–693 (2008)

8. Gusev, A.I., Rempel, A.A.: Nanocrystalline materials. Cambridge Int. Sci,
Cambridge (2004)

9. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP:
A program for computing eigenvalues and eigenfunctions and their first deriva-
tives with respect to the parameter of the parametric self-adjoined Sturm-Liouville
problem. Accepted in Comput. Phys. Commun. (2009), 10.1016/j.cpc.2009.04.017

10. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover,
New York (1972)

11. Barnett, A.R.: KLEIN: Coulomb functions for real λ and positive energy of high
accuracy. Comput. Phys. Commun. 24, 141–159 (1981)

12. Barnett, A.R., Feng, D.H., Steed, J.W., Goldfarb, L.J.B.: Coulomb wave functions
for all real η and ρ. Comput. Phys. Comm. 8, 377–395 (1974)

13. Epstein, S.T.: Ground state energy of a molecule in adiabatic approximation. J.
Chem. Phys. 144, 836–837 (1965)



New Analytic Solutions of the Problem of Gas
Flow in a Casing with Rotating Disc

Evgenii V. Vorozhtsov

Khristianovich Institute of Theoretical and Applied Mechanics, Russian Academy of
Sciences, Novosibirsk 630090, Russia

vorozh@itam.nsc.ru

Abstract. We analyse the known approximate analytic solution of the
problem of gas flow induced by the disc rotation inside a closed cas-
ing. It is shown that this solution is inapplicable because of the negative
thickness of the boundary layer in the shaft neighborhood. Several new
analytic solutions are obtained for the flow parameters inside the bound-
ary layer of the casing motionless base. To reduce further the discrepancy
between the analytic solution and the direct difference solution of three-
dimensional Navier–Stokes equations it is proposed to account for the
viscous friction force moment on the lateral casing wall. The consid-
eration of this moment has improved considerably the accuracy of the
approximate analytic solution.

1 Introduction

According to [16], 8 % of the entire produced electric power were consumed
in the former Soviet Union by the ventilators (fans). In this connection, the
problem of the development of highly efficient and economical ventilation devices
for pumping the gases, cleaning the gases and liquids from admixtures, etc., in
various branches of the industry and agriculture is topical.

One can identify the following types of fans: centrifugal fans, axial fans, and
disc fans. The disc fans may be considered to belong to friction machines. They
differ from the conventional centrifugal and axial fans, which are the machines
of dynamic action.

N. Tesla [17] was the first to propose the application of the friction principle
in fans. Figure 1 shows the simplest (model) disc fan. The upper lid of the casing
has been removed to show more clearly the peculiarities of the disc fan design.
The arrows pointing to the left show the direction of the motion of gas sucked
in the fan, and the arrows pointing to the right show the direction of the motion
of gas ejected from the fan (the discs rotate counter-clockwise). The model fan
shown in Fig. 1 contains only two discs. In real industrial disc fans, the number
of discs on the shaft may amount to several dozens.

The disc fans are applied both in the industry and in agriculture [1,4,5,12].
The disc machines possess the following merits [5]: simplicity of the design; high
anti-cavitation characteristics; low noise; stability of operation, stable supply of
the gas or liquid.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 350–372, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Analytic Solutions for Gas Flow in a Casing with Disc 351

Fig. 1. The simplest disc fan

As follows from Fig. 1, the gas flow inside the disc fan cannot be axisymmetric
because of the presence of channels with parallel walls. Therefore, the numerical
modelling of the gas flow inside the fan under study must base on the mathe-
matical model of a three-dimensional unsteady gas flow. In the existing disc fans
the angular velocity of the rotation of discs is low, it ranges from 20 to 100 revo-
lutions per minute (rpm). Therefore, the Mach number of the gas flow, as simple
estimates show, does not exceed 0.05. In this connection, one can use the sys-
tem of Navier–Stokes equations governing the viscous incompressible fluid flows.
For the difference approximation of this system we have used a finite-difference
scheme described in [18]. Due to the fact that there are solid walls, which do not
coincide with the coordinate lines in the disc fan design, it is convenient to use
the immersed boundary method described in [3] for computation of the gas flow
in such fans.

For the verification of the developed computer code we have used the following
two well-known analytical solutions. One of them is the solution of the problem of
the Couette flow between two coaxial cylinders [7]. If we increase the thickness of
each disc in a disc fan so that all the discs merge into a single rotating cylinder,
we arrive at the known Couette problem. We present below in Section 3 the
results of the comparison of the finite-difference solution by the method of [18,3]
with the exact Couette–Taylor solution. These comparisons point to a correct
work of the method of [18,3] implemented by us.

As the second analytical test for the developed computer code we have chosen
an approximate analytic solution obtained by F. Schultz-Grunow [15] for the case
of the rotation of a single disc in a closed cylindrical casing. The main results
of the work [15] were reproduced subsequently without changes in the book [9]
and in a more shortened form in the book [10].

The computer implementation of the approximate analytic solution [15]
showed that the formula presented in [15,9,10] for the boundary layer thickness
δ0(x) on the motionless casing base yields the negative values of δ0(x) near the
rotor shaft, where x is a dimensionless coordinate. In this connection, we have re-
peated all the derivations of the work [15] with the aid of symbolic computations
in the system Mathematica. Another example showing the usefulness of symbolic
computations on computer for revealing the errors at the obtaining of analytic



352 E.V. Vorozhtsov

solutions of theoretical mechanics problems was previously presented in [14]. We
show below in Section 4 that the coefficients of the polynomial representation
of the solution, which were presented in [15], do not satisfy the requirements
formulated in [15]. In this connection, we propose in Section 5 to search for the
coefficients entering the analytic solution by the method of least squares. As a
result, a set of coefficients has been obtained, which ensures the non-negativeness
of the boundary layer thickness on the motionless casing base.

The approximate analytic solution was presented in [15,9,10] in a form in-
volving two polynomials P1(x) and P2(x) of the fourth degree in x. For the
purpose of reducing the value of the objective function of the method of the
least squares we present in Section 6 several new approximate analytic solu-
tions, which we have obtained with the aid of the Mathematica program devel-
oped by us for several combinations of the degrees of polynomials P1 and P2

in the interval 4 ≤ Deg(P1),Deg(P2) ≤ 6. These solutions ar compared with
one another as well as with the corrected solution obtained by us for the case
Deg(P1) = Deg(P2) = 4.

2 Governing Equations and Finite-Difference Method

The Navier–Stokes equations governing unsteady three-dimensional laminar
flows of a viscous incompressible fluid in the cylindrical coordinates θ, r, z, where
θ is the azimuthal coordinate, r is the polar radius, and the z-axis is directed
along the shaft on which the discs are mounted, may be written as [18]

∂vθ/∂t = H1 − (1/(ρr))∂p/∂θ + (A1θ +A1r +A1z)vθ ;
∂qr/∂t = H2 − (r/ρ)∂p/∂r + (A2θ +A2r +A2z)qr; (1)
∂vz/∂t = H3 − (1/ρ)∂p/∂z + (A3θ +A3r + A3z)vz ;

∂qr
∂r

+
∂vθ
∂θ

+ r
∂vz
∂z

= 0, (2)

where

H1 = − 1
r2
∂rvθqr
∂r

− 1
r

∂v2θ
∂θ

− ∂vθvz
∂z

+
2ν
r3
∂qr
∂θ

;

H2 = − ∂

∂r

(
q2r
r

)
− ∂

∂θ

(vθqr
r

)
− ∂qrvz

∂z
+ v2θ +

2ν
r

∂vθ
∂θ

;

H3 = −1
r

∂qrvz
∂r

− ∂v
2
z

∂z
;

A1θvθ = ν
(
−vθ
r2

+
1
r2
∂2vθ
∂θ2

)
; A1rvθ = ν

[
1
r

(
∂

∂r
r
∂vθ
∂r

)
− vθ
r2

]
;

A1zvθ = ν
∂2vθ
∂z2

;

A2θqr =
ν

r2
∂2qr
∂θ2

− ∂

∂θ

(vθqr
r

)
; A2rqr = νr

∂

∂r

(
1
r

∂qr
∂r

)
; A2zqr = ν

∂2qr
∂z2

;

A3θvz =
ν

r2
∂2vz
∂θ2

− 1
r

∂vθvz
∂θ

; A3rvz =
ν

r

∂

∂r

(
r
∂vz
∂r

)
; A3zvz = ν

∂2vz
∂z2

.



Analytic Solutions for Gas Flow in a Casing with Disc 353

In (1),(2), vθ, vr, and vz are the components of the gas velocity vector along the
θ−, r−, and z−axes, respectively. Instead of vr, the dependent variable qr =
r · vr is used to facilitate the treatment of the problem of the approximation of
the Navier–Stokes equations at point r = 0; p is the pressure, ρ = const > 0 is
the density of the gas or liquid, ν = μ/ρ, μ = const > 0 is the coefficient of the
dynamic viscosity of gas.

The boundary conditions for system of equations (1), (2):
1◦. The boundary conditions on the horizontal surfaces of the rotating disc:

vr = 0, vθ = ωr, vz = 0, ∂p/∂z = 0,

where ω is the user-specified constant angular velocity of the disc rotation.
2◦. The boundary conditions on the motionless butt ends of the cylindrical
casing:

vr = 0, vθ = 0, vz = 0, ∂p/∂z = 0.

3◦. The boundary conditions on the shaft and on the vertical butt end of the
rotating disc:

vr = 0, vθ = ωr, vz = 0, ∂p/∂r = ρω2r.

Thus, the boundary conditions on solid walls for velocity components are the
no-slip conditions.

The preliminary velocity field was computed by the one-stage difference
scheme from [6]. We now briefly describe this scheme below. To ensure a short
form of writing the scheme we introduce the notations: q1 ≡ vθ, q2 ≡ qr, q3 = vz .
Then the scheme from [6] as applied to system (1) has the form

(q̂i−qni )/τn = 0.5
(
3Hn

i −Hn−1
i

)−Gip
n +(Aiθh +Airh +Aizh)(q̂i +qni )/2, (3)

where i = 1, 2, 3, τn is the time step, n is the time level number, n = 0, 1, 2, . . .,
Aiθh, Airh, Aizh are the central difference approximations of the operators Aiθ ,
Air, Aiz , respectively, on a nonuniform spatial grid; Gip

n is the difference ap-
proximation of the pressure term in the ith equation. A direct solution of the
system of algebraic equations (3) is computationally very intensive, therefore,
the approximate factorization scheme was used instead of (3) in [6,18,3]:(

I − τn
2
Aiθh

)(
I − τn

2
Airh

)(
I − τn

2
Aizh

)
Δq̂i

= τn
[
(3Hn

i −Hn−1
i )/2−Gip

n + (Aiθh +Airh +Aizh)qni
]
, (4)

where I is the identity operator, Δq̂i = q̂i−qni . As was pointed out in [6], scheme
(4) has the second order of approximation in the spatial variables and in time.

The intermediate velocity field does generally not satisfy the continuity equa-
tion. In order to ensure the conservation of mass the field of intermediate veloc-
ities is corrected at the second fractional step by the formula

(qn+1
i − q̂i)/τn = −Giϕ

n+1, (5)



354 E.V. Vorozhtsov

where the pressure correction ϕn+1 is computed in the way to obtain a divergen-
ce-free velocity field at the (n + 1)th time step. To this end let us apply the
divergence operator to the both sides of equation (5):

(∇hq
n+1
i −∇hq̂i)/τn = −∇hGiϕ

n+1, (6)

where the difference operator ∇h is a difference approximation of the divergence
operator on the left-hand side of equation (2): ∇q = ∂q1

∂θ + ∂q2
∂r + r ∂q3

∂z , and
Lh = ∇hGiϕ is the difference approximation of the elliptic operator ∇Giϕ =
∂
∂θ

(
1
r

∂ϕ
∂θ

)
+ ∂

∂r

(
r ∂ϕ

∂r

)
+ r ∂2ϕ

∂z2 . In view of the requirement ∇hq
n+1
i = 0, equa-

tion (6) is the Poisson equation for ϕn+1. Having found ϕn+1 by solving equa-
tion (6), we compute the pressure pn+1 by formula [18,3] pn+1 = pn + ϕn+1 −
(τn/2)νLhϕ

n+1. The solution of the system of equations (4) was found with the
aid of three tridiagonal inversions. The Poisson equation (6) was solved with
the aid of the spectral/difference method described in [8]. Since the solution is
2π-periodic in the variable θ, the discrete Fourier transform in θ of the differ-
ence equation (6) was at first performed. The obtained system of linear algebraic
equations for the complex coefficients of the discrete Fourier transform was then
solved by the method of matrix sweep [13]. The direct and inverse discrete Fourier
transforms were implemented with the aid of the algorithms of the discrete fast
Fourier transform described in [11].

3 Couette Flow

Let us present the formulas of the exact solution for the Couette flow in the gap
between two coaxial cylinders in the particular case when the internal cylinder
rotates, and the external cylinder is at rest (see Fig. 2). We preliminarily perform
the nondimensionalization of variables by formulas

�0.1
�0.05

0
0.05

0.1

�0.1

�0.05

0
0.05

0.1

0
0.01
0.02
0.03

�0.1
�0.05

0
0.05

0.1

�0.05

0
0.05

Fig. 2. Two coaxial cylinders in the Couette flow problem

r∗ =
r

R2
, z∗ =

z

R2
, v∗θ =

vθ
qref

, v∗r =
vr
qref

, v∗z =
vz
qref

, p∗ =
p

ρq2ref

, (7)

where the superscript ∗ stands by the dimensionless variables, R2 is the radius
of the internal cylinder, qref = ωR2, ω is the angular velocity of the rotation
of the internal cylinder. Denote by R3 the dimensional radius of the external
cylinder. The Couette flow is known to be stationary, that is the components



Analytic Solutions for Gas Flow in a Casing with Disc 355

of the solution vector of the Navier–Stokes equations (1), (2) do not depend on
time t [7]. Besides, the flow under consideration is axisymmetric, that is it does
not depend on the variable θ. Let us write the exact solution formulas for the
particular case of the Couette flow under consideration:

v∗θ (r∗, z∗) =
(R∗2

3 − r∗2)
r∗(R∗2

3 − 1)
, v∗r (r∗, z∗) = 0, v∗z (r∗, z∗) = 0,

p∗(r∗, z∗) = p∗2 + (R∗2
3 − 1)−2 ·

[
r∗2 − 1

2
− R

∗4
3

2

(
1
r∗2

− 1
)
− 2R∗2

3 ln r∗
]
, (8)

where p∗2 = p∗(R∗
2, z

∗) = p∗(1, z∗).
The steady-state solution of the Couette flow problem was obtained by the

finite-difference/spectral method described in Section 2 in combination with the
steadying method. As a criterion for convergence to the stationary solution,
the satisfaction of the following inequality was verified at the end of each time
step: |E∗(tn+1)−E∗(tn)| < 10−4, where E∗(t) is the dimensionless kinetic energy
of the gas lying in the gap between the cylinders, tn is the value of time at the nth
time level. The exact value E∗

th of the kinetic energy was found with Mathematica
to be

E∗
th =

1
2

∫ H∗

0

[∫ R∗
3

1

(∫ 2π

0

(
v∗2θ + v∗2r + v∗2z

)
dθ

)
r dr

]
dz

=
1
2

∫ H∗

0

[∫ R∗
3

1

(∫ 2π

0

v∗2θ r dr

)
dθ

]
dz =

4R∗2
3 −1−3R∗4

3 + 4R∗4
3 ln(R∗

3)
4(R∗2

3 − 1)2
πH∗, (9)

where H∗ is the dimensionless height of the cylinders.

Fig. 3. Computational grid
in the (x, y) plane

25 50 75 100 125 150

0.2

0.4

0.6

0.8

1

t

E

Fig. 4. The dimensionless kinetic
energy of gas E∗ = E∗(t∗)

The computational grid in the interval [R2, R3] was nonuniform and was clus-
tered near the walls of cylinders with the use of the function tanh. The grid was
uniform along the θ− and z−axes. Figure 3 shows the grid in the plane of the
Cartesian coordinates x, y, where x = r cos θ, y = r sin θ. The numerical results
presented in Figs. 4 and 5 were obtained on the mesh of 65, 30, and 13 nodes



356 E.V. Vorozhtsov

along the θ-, r-, and z-axes, respectively. The angular velocity of the internal
cylinder rotation ω = 10 rpm, the Reynolds number Re=121.71, R2 = 0.04 m,
R3 = 0.10 m, H = 0.03 m.

The dotted line in Fig. 4 shows the graph of the kinetic energy obtained by the
finite-difference method described in the foregoing section after the execution of
1700 time steps. The dashed line is the exact stationary value E∗

th according to
the right-hand side of equality (9). It is seen from Fig. 4 that 1700 time steps
proved to be sufficient in the given computational example to reach the steady
regime.

1.2 1.4 1.6 1.8 2 2.2 2.4

0.2

0.4

0.6

0.8

1

r

vθ

1.2 1.4 1.6 1.8 2 2.2 2.4

0.05

0.1

0.15

0.2

0.25

r

p

(a) (b)

Fig. 5. Profiles of the difference solution (dotted lines) and exact solution (solid lines):
(a) the azimuthal velocity v∗

θ ; (b) the pressure p∗

Figure 5 shows the difference solution profiles for v∗θ and p∗, from which it
is seen that the finite-difference method described in Section 2, which was im-
plemented in a FORTRAN code, ensures a high accuracy of the results on a
relatively crude grid of 65× 30× 13 nodes.

4 Implementation of the Schultz-Grunow Procedure with
Mathematica

4.1 Boundary Layer of the Casing Base

An approximate analytic solution of the problem of steady flow of the gas or
liquid in a closed cylindrical casing was derived in [15]. This flow was induced by

�0.1 �0.05 0
0.05

0.1

�0.1 �0.05 0 0.05 0.1

0

0.02

0.04

0.06

�0.1 �0.05 0
0 05

�0.1 0.05

Fig. 6. The closed cylindrical casing with a single internal disc on the shaft



Analytic Solutions for Gas Flow in a Casing with Disc 357

the disc rotation inside the casing. Figure 6 shows the closed cylindrical casing
with a disc inside it; a part of the casing front vertical wall has been removed to
show the interior.

Following [15] we will assume that the gas flow inside the cylindrical casing
is steady and axisymmetric. The latter assumption implies that the derivatives
of the solution components with respect to the azimuthal coordinate θ are equal
to zero. Therefore, the Navier–Stokes equations (1), (2) take the following form
in the case under consideration:

u
∂u

∂r
− v

2

r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+ ν
[
∂2u

∂r2
+
∂

∂r

(u
r

)
+
∂2u

∂z2

]
, (10)

u
∂v

∂r
+
uv

r
+ w

∂v

∂z
= ν

[
∂2v

∂r2
+
∂

∂r

(v
r

)
+
∂2v

∂z2

]
, (11)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν
(
∂2w

∂r2
+

1
r

∂w

∂r
+
∂2w

∂z2

)
, (12)

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (13)

where u ≡ vr, v ≡ vθ, w ≡ vz . Following [15,9,10] we now obtain from equations
(10)–(13) several useful integral relations. Let us rewrite the left-hand side of
equation (10) as

u
∂u

∂r
− v

2

r
+
∂(uw)
∂z

− u∂w
∂z
. (14)

Let us multiply the both sides of the continuity equation (13) by u: u∂u
∂r + u2

r +
u∂w

∂z = 0, from where we have

u
∂w

∂z
= −u∂u

∂r
− u

2

r
. (15)

Replacing the term u∂w/∂z in (14) in accordance with formula (15) we obtain
the equality

u
∂u

∂r
− v

2

r
+
∂(uw)
∂z

− u∂w
∂z

=
∂(u2)
∂r

+
u2

r
− v

2

r
+
∂(uw)
∂z

. (16)

Let us denote by δ0(r) the thickness of the boundary layer on the motionless
base of the casing. Let us replace the left-hand side of equation (10) with the
right-hand side of equation (16), then multiply the both sides of the obtained
equation by r dz and integrate over z from zero to δ0(r). We take into account
the fact that

δ0(r)

∫
0
r
∂

∂r
(u2)dz =

δ0∫
0

∂

∂r
(ru2)dz −

δ0∫
0
u2dz. (17)

Following [15] we further assume that there is no radial motion of gas at the
external edge of the boundary layer z = δ0(r), that is u = 0 at z = δ0. Besides,
due to the no-slip condition on the casing motionless base, we have that u = 0,
w = 0 at z = 0. With regard for these conditions and equation (17) we obtain
from (10) the first integral relation:



358 E.V. Vorozhtsov

d/dr

(
r

δ0∫
0
u2dz

)
−

δ0∫
0
v2dz = −νr (∂u/∂z)z=0 − (r/ρ)

δ0∫
0
(∂p/∂r)dz. (18)

We now rewrite the left-hand side of equation (11) with regard for (13) in the
form ∂

∂r (uv) + ∂
∂z (vw) + 2uv

r and, multiplying the both sides of (11) by r2dz,
integrate over z from zero to δ0(r). Using (13) and integrating by parts we obtain
the second integral relation

d/dr

(
r2

δ0(r)

∫
0
uv dz

)
− ω̃r2(d/dr)

(
r

δ0∫
0
u dz

)
= −νr2 (∂v/∂z)z=0 . (19)

We have used here the boundary condition at the boundary layer edge z = δ0(r):
v(r, z) = ω̃r, where ω̃ is a constant angular velocity of the rotation of the external
flow in the gap between the boundary layers as a quasi-solid body [15,9,10], this
quantity will be determined below from the condition of the equality of the
moment of friction forces in the liquid on the disc surface to the viscous friction
force moments on the casing butt ends and on the casing lateral wall.

The following velocity profiles were taken in [15] as the approximate ones:

u = −u0(r)
[
1−
(
2
z

δ0(r)
− 1
)2]
, v = rω̃

[
1−
(
1− z

δ0(r)

)2]
, (20)

where u0(r) is the maximum radial velocity inside the boundary layer, which is
unknown for a while. and the minus sign affecting it is taken because the radial
velocity component on the casing base is directed from the periphery to the axis.

Let us substitute the representations (20) for u and v into the integrals en-
tering the left-hand sides of equations (18) and (19), and let us calculate these
integrals with the aid of CAS Mathematica:

u = -u0*(1 - (2z/del0 - 1)^2; v = r*t*(1 - z/del0)^2;

itgr1 = Integrate[u^2,{z,0,del0}]; itgr2 = Integrate[v^2,{z,0,del0}];

itgr3 = Integrate[u*v,{z,0,del0}]; itgr4 = Integrate[u,{z,0,del0}]

Here and in the following, t = ω̃. The CAS Mathematica has produced the
following results for the integrals:

δ0∫
0
u2(r, z)dz = (8/15)δ0u2

0;
δ0∫
0
v2(r, z)dz = (8/15)δ0r2ω̃2;

δ0∫
0
u(r, z)v(r, z)dz = −(7/15)δ0rω̃u0;

δ0∫
0
u(r, z)dz = −(2/3)δ0u0. (21)

According to (18) and (19), we will also need the expressions for the first deriva-
tives of functions (20) with respect to z at z = 0. Let us calculate them with the
aid of the CAS Mathematica:

duz0 = D[u,z]/.z -> 0; dvz0 = D[v,z]/.z-> 0

(∂u/∂z)z=0 = −4u0/δ0; (∂v/∂z)z=0 = 2rω̃/δ0. (22)



Analytic Solutions for Gas Flow in a Casing with Disc 359

We obtain for the derivative ∂p/∂r in the external flow the following equality
from equation (10):

∂p/∂r = ρv2/r. (23)

On the other hand, relation v(r, z) = ω̃r holds in the external flow, therefore,
we obtain from (23): ∂p/∂r = ρω̃2r. This derivative and the integral of it enter
equation (18), therefore, it is also necessary to insert in the Mathematica program
the corresponding symbolic computations:
dpdr = ρ*t̂ 2*r; itgrp = Integrate[dpdr,{z,0,del0}];

δ0∫
0
(∂p/∂r)dz = δ0rω̃

2ρ.

Using the integrals calculated above we are now ready to obtain from the first
integral relation (18) the first ordinary differential equation. Following [15,9,10]
we introduce the function Φ(r): Φ(r) = u0(r)δ0(r). It is convenient to account
for the variability of quantity δ0 with the aid of the following transformation
rules for integrals (21):

ruledu0 = {del0 -> del1[r], u0 -> Φ[r]/del1[r]};
itgr1v = itgr1/.ruledu0; itgr2v = itgr2/.ruledu0

itgr3v = itgr3/.ruledu0; itgr4v = itgr4/.ruledu0

It is now easy to compute the left-hand side of equation (18):

eq1 = D[r*itgr1v, r] - itgr2v + ν*r*duz0 + r/ρ*itgrp

As a result we obtain the left-hand side of the first ordinary differential equation:

7
15
δ0r

2ω̃2 − 4ru0ν

δ20
+

8Φ2(r)
15δ0(r)

− 8rΦ2(r)δ′0(r)
15δ20(r)

+
16rΦ(r)Φ′(r)

15δ0(r)
(24)

If we multiply this expression by 15/8 then we can easily see that the expression
will be obtained, which coincides with the left-hand side of the first equation of
system (11) from [15]. The prime by δ0(r) and Φ(r) in (24) means the differenti-
ation with respect to r. To reduce the amount of further symbolic computations
it is desirable to get rid of rational coefficients in (24). This was done with the
aid of the following Mathematica-commands:

eq1 = Expand[Simplify[15*del1[r]̂ 2*eq1]]; Print["eq1 = ", eq1]

eq1=7r2ω̃2δ30−60rνΦ(r)+8δ0(r)Φ2(r)−8rΦ2(r)δ′0(r)+16rδ0(r)Φ(r)Φ′(r). (25)

The computation of the left-hand side of the second ordinary differential equation
by the substitution of formulas (21) and (22) into (19) is carried out similarly
with Mathematica:

eq2 = Simplify[D[r̂ 2*itgr3v, r] - t*r̂ 2*D[r*itgr4v, r] + ν*r̂ 2*dvz0];

eq2 = Simplify[eq2]; eq2 = Expand[15del1[r]*eq2/(t*r̂ 2)];
Print["eq2 = ", eq2];

eq2 = 30rν − 11δ0(r)Φ(r) + 3rδ0(r)Φ′(r). (26)



360 E.V. Vorozhtsov

We further tried to apply the Mathematica-function DSolve[...] for finding
the solution of system eq1 = 0, eq2 = 0. This function was unfortunately unable
to find the exact general solution of this nonlinear system. In this connection,
we apply in the following an approximate procedure described in [15], that is
we introduce the new independent variable x = 1− (r/b), where b is the casing
radius. Let us introduce the notations: Φ̄(x) = Φ(b − bx), δ̄0(x) = δ0(b − bx).
We now derive the left-hand sides of the both ordinary differential equations
for Φ̄(x) and δ̄0(x) by applying the relations dΦ(r)

dr = dΦ̄(x)
dx · dx

dr = − 1
b

dΦ̄(x)
dx ,

dδ0(r)
dr = − 1

b
dδ̄0(x)

dx . This was realized in the Mathematica program as follows (we
present the program fragment only for the transformation of the first equation,
the transformation of the second equation is performed in the same way):

eq1 = eq1/.r -> b*(1 - x)

eq1 = eq1/. {del1[b (1 - x)] -> del1[x], del1’[b(1 - x)] -> -del1’[x]/b};
eq1 = eq1/. {Φ[b*(1 - x)] -> Φ[x], Φ′[b*(1 - x)] -> −Φ′[x]/b}
eq1t = eq1/. {del1[x]→ δ0[x], del1’[x]→ δ′0[x], t→ ω̃};
Print["eq1 = ", TraditionalForm[eq1t]];

eq1 = 7b2ω̃2(1− x)2δ30(x) + 8Φ2(x)δ0(x) − 16(1− x)Φ(x)Φ′(x)δ0(x)
− 60b(1− x)νΦ(x) + 8(1− x)Φ2(x)δ′0(x); (27)

eq2 = 30b(1− x)ν − 11Φ(x)δ0(x)− 3(1− x)δ0(x)Φ′(x).

Here and in the following, the bars over Φ(x) and δ0(x) are omitted for the sake
of notation brevity.

Following [15], we now search for the solution of system eq1 = 0, eq2 = 0 in
the form of the series

Φ = xn(c0 + c1x+ c2x2 + . . .), δ0 = xp(d0 + d1x+ d2x2 + . . .). (28)

The exponents n and p in (28) were then chosen in [15] from the requirement
that the exponents in the system eq1 = 0, eq2 = 0 differed from one another by
unity; this gives n = 3/4, p = 1/4. It was observed in [15] that if one specifies
expressions (28) in the form

Φ = x
3
4
√
νω̃(c0 + c1x+ c2x2 + . . .), δ0 = x

1
4

√
ν

ω̃
(d0 + d1x+ d2x2 + . . .), (29)

then one obtains for determining the coefficients cj and dj the polynomial equa-
tions whose coefficients depend only on cj and dj . The case was considered in
[15] when Φ and δ0 involve the fourth-degree polynomials in x:

Φ(x) = x3/4b
√
νω̃P1(x), δ0(x) = x1/4

√
ν/ω̃P2(x), (30)

where

P1(x) =
N1∑
j=0

cjx
j , P2(x) =

N2∑
j=0

djx
j , (31)

N1 = N2 = 4. The substitution of (30) and (31) in the left-hand sides (27) was
implemented by us with Mathematica as follows:



Analytic Solutions for Gas Flow in a Casing with Disc 361

P1 = c0 + c1*x + c2*x^2 + c3*x^3 + c4*x^4;

P2 = d0 + d1*x + d2*x^2 + d3*x^3 + d4*x^4;

Fi = b*Sqrt[t*ν]*x̂ (3/4)*P1;

del2 = Sqrt[ν/t]*x̂ (1/4)*P2;

dfix= D[Fi,x]; eq2r = eq2/. {Φ[x] -> Fi, Φ′[x] -> dfix, del1[x] -> del2}
eq2r = Expand[4eq2r/b]; eq2r = eq2r/.

√
ν
t

√
tν → ν;

eq2r = Expand[Simplify[eq2r/ν]]; Print["eq2r = ",eq2r];

ddel2x = D[del2, x];

eq1n=eq1/.{del1[x]-> del2, Φ[x] -> Fi, Φ′[x] -> dfix, del1’[x] -> ddel2x}
eq1r = Expand[x̂ (-3/4)*eq1n/b̂ 2];

eq1r = Expand[PowerExpand[Simplify[eq1r*Sqrt[t/ν]]]];

eq1r = Expand[Simplify[eq1r/ν/t]]; Print["eq1r = ",eq1r];

As a result of these symbolic computations, equations eq1 = 0, eq2 = 0 have
reverted into the following polynomial equations:

M1∑
k=0

Ak(X)xk = 0,
M2∑
k=0

Bk(X)xk = 0, (32)

where X = (c0, c1, c2, c3, c4, d0, d1, d2, d3, d4), M1 = 14, M2 = 9. It is easy to
obtain the expressions for the coefficients Ak(X) and Bk(X) with the aid of the
following Mathematica commands:

pol = eq1r; np1 = Exponent[eq1r, x]; np2 = Exponent[eq2r, x];

Print["np1 = ", np1, "; np2 = ", np2];

A = {eq1r/.x -> 0}; B = {eq2r/. x -> 0}; Print["A(0) = ",A[[1]]];

Do[aj = Coefficient[pol,x^j]; AppendTo[A,aj];

Print["A(",j,") = ",aj], {j, np1}];

pol = eq2r; Print["B(0) = ",B[[1]]];

Do[aj = Coefficient[pol,x^j]; AppendTo[B,aj];

Print["B(",j,") = ",aj], {j, np2}];

As a result we obtain the expressions for Ak and Bk in (32). We present below
the formulas for Ak and Bk only for k = 0, 1.

A0 = −60c0 − 10c20d0 + 7d30;
A1 = 60c0 − 60c1 + 18c20d0 − 36c0c1d0 − 14d30 − 2c20d1 + 21d20d1;
B0 = 120− 9c0d0; B1 = −120− 35c0d0 − 21c1d0 − 9c0d1.

The coefficients cj , dj in (31) were computed in [15] from the requirement that the
both equations (32) are identically equal to zero. This means that the following
systems of polynomial equations were solved:

Ak(X) = 0, k = 0, . . . ,M1; Bk(X) = 0, k = 0, . . . ,M2. (33)

As a result, the numerical values of the coefficients cj , dj in (29) were found in
[15] so that

Φ = x3/4b
√
νω̃(3.04− 4.64x+ 2.839x2 − 2.855x3 − 1.814x4); (34)

δ0 = x1/4
√
ν/ω̃(4.385− 5.845x+ 4.015x2 − 4.46x3 − 1.29x4). (35)



362 E.V. Vorozhtsov

However, the computation of the numerical values of the coefficients Ak and Bk

with the numerical values of cj and dj found in [15] shows that they are different
from zero:

ruleSG = {c0-> 3.04, c1-> -4.64, c2-> 2.839, c3 -> -2.855, c4 -> -1.814,

d0 -> 4.385, d1 -> -5.845, d2 -> 4.015, d3 -> -4.46, d4 -> -1.29};

Do[aj = A[[j]]/.ruleSG; j0= j- 1; Print["ASG(",j0,") = ",aj],{j,np1+1}];

Do[aj = B[[j]]/.ruleSG; j0= j- 1; Print["BSG(",j0,") = ",aj],{j,np2+1}];

A0 = 2.5662, A1 = −15.6054, A2= 23.6544, . . . , A7= −14429.8, . . . , A14 = −15.0268;

B0 = 0.0264, B1 = 0.6296, . . . , B7 = −668.551, B8 = −24.5247, B9 = 30.4208.

We will need in the following a formula for the moment M1 of friction forces
of the fluid on two motionless butt-end casing walls each of which is a disc of
radius b = R3 in order to determine the angular velocity ω̃. It is assumed here
and in the following that the disk lies in the casing middle. According to [15]
and with regard for (22) and (30), the above total moment for the both butt
ends is expressed by the formula

M1 = −2
∫ b

0

2πr2μ
(∂v
∂z

)
z=0

· dr = −8πμω̃b4
∫ 1

0

(1− x)3
δ0(x)

dx

= −8πμω̃b4
√
ω̃

ν

∫ 1

0

(1 − x)3x−1/4

P2(x)
dx. (36)

At the numerical computation of the integral on the right-hand side of (36) it
was accounted for the fact that P2(x) has the root x∗ = 0.746836. As a result,
the numerical value of the integral 8π ∫1

0 (1 − x)3x−1/4/P2(x)dx was found with
the aid of the Mathematica function NIntegrate[...] to be equal to 3.4048249.
On the other hand, the value of the integral under consideration was found by
a graphical technique in [15] and amounted to 3.387.

4.2 The Boundary Layer of the Disc

Let us now proceed to the consideration of the boundary layer of the disc rotating
with angular velocity ω. Following [15] we assume the presence of the constant
angular velocity ω̃ < ω in the co-flow of the external liquid, which rotates as
a quasi-solid body. Denote as in [15] by s the distance between the motionless
casing base and the lower horizontal disc surface. Following [15] let us introduce
the coordinate z̄ = s − z, so that z̄ = 0 on the lower horizontal surface of the
disc. We now specify as in [15] the following polynomial representations for u
and v near the disc surface:

u = u∗0
[
1−
(
2
z̄

δ
− 1
)2]
, v = ωr − (ω − ω̃)r

[
1−
(
1− z̄

δ

)2]
, (37)

where u∗0 is a new unknown maximum radial velocity, δ(r) is the thickness of the
boundary layer of the disc. We omit in the following the bar over z for the sake of
brevity. The integral relations (18) and (19) retain the same form, one must only



Analytic Solutions for Gas Flow in a Casing with Disc 363

replace δ0 with δ. Similarly to the foregoing we at first calculate in symbolic form
the integrals and the derivatives entering (18) and (19). Substituting the found
expressions into (18) and (19) we obtain the system of two ordinary differential
equations for δ(r) and u∗0(r):

− 1
5
ω2r2δ− 4

15
ωr2ω̃δ+

7
15
r2ω̃2δ+

4rνu∗0
δ

+
8
15
δu∗20 +

8
15
ru∗20 δ

′+
16
15
rδu∗0u

∗′
0 = 0;

(38)
−2ωr3ν

δ
+

2r3ω̃ν
δ

+
3
5
ωr2δu∗0 +

11
15
r2ω̃δu∗0 +

1
5
ωr3u∗0δ

′ − 1
5
r3ω̃u∗0δ

′

+
1
5
ωr3δu∗

′
0 − 1

5
r3ω̃δu∗

′
0 = 0. (39)

Unlike the case of the boundary layer of the motionless casing base, the system
(38), (39) has a particular solution of the form δ(r) = c1, u

∗
0 = c2r, where c1

and c2 are constants. For the sake of brevity, we omit the corresponding frag-
ment of our Mathematica program and present the obtained nonlinear algebraic
equations for the determination of c1, c2:

6c21c
2
2 − (3/4)c21ω

2 − c21ωω̃ + (7/4)c21ω̃
2 + 15c2ν = 0; (40)

(4/5)c21c2ω + (8/15)c21c2ω̃ − 2ν(ω − ω̃) = 0. (41)

Equation (41) is linear in c2, therefore, finding c2 from (41), we substitute the
found expression in (40) and find c1:

c2 =
15ν(ω − ω̃)

2c21(3ω + 2ω̃)
; c1 =

√
ν

ω̃
·

4
√

150√
2 + 3ω

ω̃

4

√
6ω

ω̃ − 1
ω
ω̃ + 7

3

. (42)

This result coincides with the one obtained in [15]. Let a be the disc radius. The
friction moment on the rotating disc is [15,9,10]

M2 = −
a

∫
0

4πμ(ω − ω̃)2
r3

δ
dr = − 2π

4
√

150
μa4(ω − ω̃)

√
ω̃

ν
·
√

2 + 3
ω

ω̃
· 4

√
ω
ω̃ + 7

3

6ω
ω̃ − 1

.

(43)
It remains to determine the unknown angular velocity ω̃ of the fluid rotation in
the casing far from solid walls. To this end, the requirement of the equality of
two moments was used in [15,9,10]: the moment M1 decelerating the fluid on
the butt-end walls, which is determined by formula (36), and the moment M2

(43), which decelerates the disc. But the radius of the cylindric base b enters the
expression for M1. It was assumed in [15] that the gap between the disc and the
casing wall is small. Then b ≈ a, and one can resolve equation M1 = M2 with
respect to ω̃:

eqM =3.404825-2Pi/(150.^(1/4))*(zet-1)*Sqrt[2+ 3zet]*((zet+7/3)/

(6zet- 1))^(1/4)

sol = NSolve[eqM == 0,zet]; z0 = zet/.sol[[1]]; z2 = 1/z0

We have introduced here the notation zet = ω/ω̃. As a result, it turned out that
ω/ω̃ = 1.89321 so that ω̃/ω = 0.528202. According to [15,9,10], ω̃/ω = 0.54, so



364 E.V. Vorozhtsov

that the quasi-solid kernel between the boundary layers rotates according to
[15,9,10] at about halved angular velocity in comparison with the disc.

It is convenient for the following to introduce two dimensionless parameters:
the Reynolds number Re= R2

2ω/ν and the number β = ω̃/ω; β = 0.54 in the
case of the solution (34), (35) from [15]. The formula for the thickness δ(r) of
the boundary layer of the horizontal surface of the rotating disc may then be
written as

δ =
R2√
Re

·
4
√

150√
2β + 3

· 4

√
6− β
1 + 7

3β
. (44)

We show in Fig. 8 the graphs of the functions z = δ0(r) and z = δ(r) for the case
when Re = 1288, R2 = 0.092 m, s = 0.031 m, ω = 20 rpm in (35) and (44). As
can be seen in Fig. 8, the lower and upper boundary layers do not intersect. The
thickness δ0(r) described by formula (35) is negative in the shaft neighborhood.
This contradicts the physical meaning of the boundary-layer thickness: it should
always be non-negative.

5 A New Solution for N1 = N2 = 4

Let us identify several shortcomings of the Schultz-Grunow’s solution (see for-
mulas (34) and (35)).

(i) Near the shaft, the thickness δ0(r) of the boundary layer of the casing
base is negative according to (35). This is seen in Fig. 8 and can also be easily
proved mathematically as follows. Let us denote by R1, R2, and R3 the radii of
the shaft, disc, and the cylindrical lateral casing wall. For real disc machines, the
inequality R1 ) R3 is satisfied. Then the corresponding value x = 1−(r/R3) ≈ 1
on the shaft surface. Substituting the value x = 1 into (35) it is easy to see that
δ0(1) < 0.

(ii) Formulas (34) and (35) do not ensure the satisfaction of the no-slip con-
dition u(R1, z) = 0 on the shaft surface. Let us indeed consider the formula
u0(r) = Φ(r)/δ0(r). The quantity u0(r) can vanish at r = R1 if and only if
Φ(1 − R1/R3) = 0. Since x ≈ 1 at r = R1, we obtain from (34) that in order
to ensure the equality Φ = 0 at r = R1 it is necessary that P1(1) = 0. But
P1(1) = −3.43 �= 0 according to (34).

(iii) Formulas (34) and (35) do not ensure the satisfaction of the no-slip con-
dition u = v = 0 on the motionless vertical circular wall of the casing (r = R3),
see also Fig. 7.

(iv) The procedure for determining the angular velocity ω̃ of a quasi-solid fluid
rotation between the lower and upper boundary layers described in [15,9,10] does
not account for the viscous friction force moment on a circular lateral casing wall.

Below in the present section, we will construct such a solution of the prob-
lem under consideration, in which the above shortcomings are eliminated. We



Analytic Solutions for Gas Flow in a Casing with Disc 365

0.02
0.04

0.06
0.08

0.1
r

0

0.02

0.04

0.06

z
0

0.05
0.1

0.15
0.2

v

.02
0.04

0.06
0 08r

Fig. 7. Surface v = v(r, z) in accordance with the Schultz–Grunow’s solution [15]

begin with eliminating the shortcoming (ii). It is easy to account for the no-slip
condition Φ(1 −R1R

−1
3 ) = 0 by specifying Φ in the form

Φ(x) = x3/4b
√
νω̃(1−R1/R3 − x)P̄1(x), (45)

where

P̄1(x) =
N1−1∑
j=0

cjx
j . (46)

Representation (45) has a shortcoming at its practical use: the coefficients cj
and dj will now depend on a specific value of the ratio ε = R1/R3. We will,
therefore, proceed as follows: let us assume that the ratio R1/R3 is small, and
we neglect it by specifying Φ(x) in the form

Φ(x) = x3/4b
√
νω̃(1 − x)P̄1(x). (47)

Substituting expression (47) and the expression for δ0 from (30) into the left-
hand sides of equations (27) we obtain a system of 25 polynomial equations (33)
for nine unknowns c0, c1, c2, c3, d0, d1, d2, d3, d4. Thus, (33) is the overdetermined
polynomial system. A widely accepted method for solving such systems is based
on the method of least squares [2]. Let us introduce the objective function F (X)
by the formula

F (X) =
M1∑
k=0

[Ak(X)]2 +
M2∑
k=0

[Bk(X)]2. (48)

The solution X∗ of system (33) is then sought for from the requirement of the
minimization of function (48): F (X) → min. Note that on the numerical values
cj , dj entering (34) and (35), the function F (X) takes the value F = 6.0625 ·108.

To find the minimum of function (48) we have applied the Mathematica func-
tion FindMinimum[...]:

FindMinimum[Funp,{c0,3.04},{c1,-4.64},{c3,-2.855},{c4,-1.814},

{d0,4.385},{d1,-5.845},{d2,4.015},{d3,-4.46},{d4,-1,29},

MaxIterations->175, WorkingPrecision -> 20]

As the initial guess for the point of the minimum of F (X) we have taken the
values of cj , dj from (34) and (35). It turned out that 30 iterations used by



366 E.V. Vorozhtsov

default in the method of numerical minimization implemented in the function
FindMinimum[...] are not enough to determine the point of the minimum X∗

with the required accuracy. Besides, we had to increase the working precision of
computations from the default precision 16 to precision 20.

Table 1. Convergence dynamics of the function (48)

Nit 30 100 150 175

F ∗ 1.405 · 105 1.722 · 104 4.513 · 103 4.513 · 103

In Table 1, Nit denotes the user-specified number of iterations, F ∗ = F (X∗).
It can be seen that the process of the numerical minimization has converged
already by 150 iterations. Further iterations have not led to the alteration of F ∗.
It is also seen in Table 1 that the final value of F ∗ obtained after 150 iterations is
by about five decimal orders lower than the value of F obtained on those values
of cj and dj , which were computed in [15]. As a result of executed computations,
the numerical values of cj , dj were found, which provide the minimum of function
(48) so that the corresponding approximate analytic solution for Φ(x) and δ0(x)
now has the form

Φ4,4 = x3/4b
√
νω̃(1−x)(2.703488−1.644563x+0.909018x2+0.021419x3); (49)

δ0,4,4 = x1/4
√
ν/ω̃(4.064651−5.198975x+4.005359x2−0.563374x3−0.047782x4).

(50)
The subscripts 4,4 by Φ and δ0 in (49) and (50) point to the fact that the degrees
N1 and N2 of the employed approximating polynomials P1(x) and P2(x) in (31)
are N1 = 4 and N2 = 4.

Although the ratio R1/R3 is assumed small, nevertheless at r = R1 the factor
1−x = R1/R3 �= 0. Assume that the coefficients cj depend weakly on ε = R1/R3.
We can then retain in the formula for Φ4,4 those numerical values of coefficients
cj , which were found in the limit as ε→ 0, and replace the factor 1−x with the
factor 1− R1

R3
−x for the purpose of the exact satisfaction of the no-slip condition

u(R1, z) = 0:

Φ4,4 = x3/4b
√
νω̃(1− R1

R3
−x)(2.703488−1.644563x+0.909018x2+0.021419x3).

(51)
It is easy to see from (50) that δ0,4,4(1) > 0, that is we have eliminated also the
shortcoming (i). We believe that this shortcoming has been eliminated owing to
the solution of the problem of minimizing function (48) with machine accuracy.

As can be seen in Fig. 8, the boundary layer thickness δ0,4,4(r) (see formula
(50)) on the motionless casing base slightly reduces with the decreasing distance
r from the shaft surface.

Let us proceed to the elimination of shortcoming (iii). As can be seen from the
approximate analytic representation (37) of the solution for the boundary layer



Analytic Solutions for Gas Flow in a Casing with Disc 367

0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

r

z

Fig. 8. The curves z = δ(r) by different formulas: solid line is z = δ0(r) according
to [15], the dotted line is z = δ0,4,4(r), the dashed line is z = s, the dash-dot line is
z = s − δ(r)

of the disc, it uses the boundary condition v = ωr on the disc surface. But this
condition is applicable only in the interval [R1, R2]. Let Ud = (u(r, z), v(r, z)) be
the vector of the approximate analytic solution in the interval [R1, R2], that is we
restrict the domain of the applicability of this solution by the given interval. Let
us expand the solution U = (u, v) into the Taylor series in the interval [R2, R3]
with respect to point r = R2:

U = U(R2, z) +
∂U(R2, z)

∂r
(r −R2) +O[(r −R2)2], r ∈ [R2, R3]. (52)

It follows from(52) that at small values of the gap between the disc and the
casing (which is typical of disc fans) the linear approximation

U(r, z) = Ar + B (53)

may be an approximation, which is satisfactory in terms of accuracy. It is easy
to find the expressions for the constant vectors A and B in (53) with regard
for conditions U(R3, z) = (0, 0), so that we obtain the following formula for the
approximate analytic solution U(r, z) in the interval [R1, R3]:

U(r, z) =
{

Ud(r, z), R1 ≤ r ≤ R2;
Ud(R2, z) · (r −R3)/(R2 −R3), R2 ≤ r ≤ R3.

(54)

It is easy to see that the solution U determined by formula (54) satisfies the
no-slip condition U(R3, z) = (0, 0).

Let us now find the expression for the viscous friction force moment on the
circular lateral wall of the casing for the purpose of eliminating the shortcoming
(iv) of the solution from [15]. Let us take a strip of height dz on the cylinder
surface. The viscous friction force moment equals 2πb dz · bμ(∂v/∂r)|r=b on this
elementary strip. The integral moment M3 of the viscous friction force on the
surface of the cylinder of height H is M3 = ∫H

0 ϕ(r, z)dz, where ϕ(r, z) = 2πb2μ ·
(∂v/∂r). To account for the presence of the boundary layers and the disc in the
interval 0 ≤ z ≤ H let us partition this interval into several subintervals:

M3 =
s−δ

∫
0
ϕdz +

s

∫
s−δ

ϕdz +
s+d

∫
s
ϕdz +

s+d+δ

∫
s+d

ϕdz +
H

∫
s+d+δ

ϕdz,



368 E.V. Vorozhtsov

where d is the disc thickness. In the interval (0, s − δ) we have according to
(54) the expression v(r, z) = ω̃R2(r − R3)/(R2 − R3), R2 ≤ r ≤ R3, therefore,
∂v/∂r = ω̃R2/(R2 −R3),

s−δ

∫
0
ϕdz +

H

∫
s+d+δ

ϕdz = −4πb2μω̃(s− δ)R2/(R3 −R2). (55)

We further obtain with regard for formulas (37) and (54) that
s

∫
s−δ

ϕdz +
s+d+δ

∫
s+d

ϕdz = −(4/3)πb2μδ(ω + 2ω̃)R2/(R3 −R2). (56)

And, finally, at the calculation of the remaining integral in the interval [s, s+ d]
we assume that in the gap [R2, R3] in front of the disc the gas flow differs little
from the Couette flow. Replacing R1 with R2 in formula (8) and calculating
∂v/∂r from (8) we obtain:

s+d

∫
s
ϕdz = −2πb2μωR2 · 2R3d/(R2

3 −R2
2). (57)

The quantity ω̃ was found in [15] by solving the equation M2 = M1, where the
expressions for M1 and M2 are given by formulas (36) and (43). We now take
into account also the moment M3 and will determine ω̃ from the equation

M2 = M1 +M3. (58)

Substituting into (58) the expressions (36), (43), (55)–(57) and multiplying the
both sides of the obtained equality by λ1(ζ/Re)1/2/(μb3ω̃), where λ1 = R2/b,
we arrive at the equation

2πλ4
1

4
√

150
(ζ − 1)

√
2 + 3ζ 4

√
ζ + 7

3

6ζ − 1
= I1 + 4π

√
ζ

Re
λ1[λ2 − λ1δ̄

+ 1
3λ1δ̄(ζ + 2)] λ1

1−λ1
+ 4πλ2

1λ3ζ
3/2/[(1− λ2

1)
√

Re]. (59)

where I1 = 8π ∫1
0 (1 − x3)x−1/4/P2(x) dx, λ2 = s/b, λ3 = d/b, ζ = ω/ω̃, δ̄ =

δ(r)/(λ1b) = [ζ/(Re(2 + 3ζ))]1/2 · [150(6ζ − 1)/(ζ + 7/3)]1/4.
Equation (59) was solved at given parameters λj and Re numerically by the

bisection method. For example, at R1 = 0.005 m, R2 = 0.092 m, R3 = 0.104 m,
s = 0.031 m, d = 0.01 m, ω = 20 rpm, and when the gas inside the casing is
air, the value β4,4 = 1/ζ = 0.345 was obtained from (59) so that ω̃ = 0.345ω.
Subscripts 4,4 by β indicate that N1 = N2 = 4, where N1 and N2 are the de-
grees of polynomials P1(x) and P2(x) entering (30). Figure 9 shows the graphs
v = v(r0, z) in two different sections r = const: section r ≈ 0.57(R1 + R2) lies
in about the middle of the interval [R1, R2], and section r ≈ 0.93R2 lies near
the disc butt end. Solid lines in Fig. 9 show the new analytic solution for v at
β4,4 = 0.345; the dashed line is the analytic solution of [15], β = 0.54. The dot-
ted line in Fig. 9 is the numerical solution of the problem under study, which
was obtained by the difference/spectral method described in Section 2 at the
same input data as the analytic solution. The stationary difference solution was



Analytic Solutions for Gas Flow in a Casing with Disc 369

0.01 0.02 0.03 0.04 0.05 0.06 0.07
z

0.02

0.04

0.06

0.08

0.1

v

0.01 0.02 0.03 0.04 0.05 0.06 0.07
z

0.025

0.05

0.075

0.1

0.125

0.15

0.175

v

(a) (b)

Fig. 9. Graphs of v = v(r0, z): (a) r0 = 0.05534 ≈ 0.57(R1 + R2); (b) r0 = 0.08606 ≈
0.93R2

obtained by the steadying method on a non-uniform spatial computational grid
which had 65, 41, and 51 nodes along the θ-, r-, and z-axes, respectively. The
analytic solution of [15] (β = 0.54) overestimates the values of the velocity
component v(r, z) in the region of the quasi-solid fluid rotation.

(b)

Fig. 10. Flow patterns in the casing axial section: (a) the streamlines; (b) the velocity
vectors

The flow patterns presented in Fig. 10 were obtained with the aid of the
difference/spectral method described in Section 2. The behaviour of streamlines
agrees qualitatively with the one presented in [10].

6 Further Solutions for the Boundary Layer of the Casing
Base

For the purpose of a further reduction of the value of the objective function (48)
of the least-squares method we present in the following the analytic solutions
for the boundary layer of the motionless casing base for the cases when N1 ≥ 4,
N2 ≥ 4, N1 + N2 > 8, where N1 and N2 are the degrees of polynomials (31).
For example, in order to obtain with the aid of our Mathematica-program the
solution for the case N1 = 4, N2 = 5 it is sufficient to replace the line

P2 = d0 + d1*x + d2*x^2 + d3*x^3 + d4*x^4;

with the line

P2 = d0 + d1*x + d2*x^2 + d3*x^3 + d4*x^4 + d5*x^5;

As in the case of N1 = N2 = 4, the Mathematica function FindMinimum was used
for computing the vector X∗ providing the minimum of the objective function.



370 E.V. Vorozhtsov

Table 2. The values of F (X∗) and βN1,N2 for different N1, N2

N1 4 4 5 5 5 6 6
N2 4 5 4 5 6 5 6

10−3F (X∗) 4.51 2.56 2.08 2.05 1.48 1.33 1.32
βN1,N2 0.345027 0.345057 0.345056 0.345045 0.345062 0.345046 0.345045

Table 2 presents the values of F (X∗) for different N1 and N2. It can be
seen that a significant reduction of the value of F (X∗) has occurred at N1 = 5,
N2 = 6 in comparison with the case N1 = N2 = 5. However, at a further increase
in N1 and N2, the reduction of the optimal value of the objective function F (X)
at the point of minimum X∗ slows down.

We present below, by analogy with the case N1 = N2 = 4, the forms of the
functions Φ(x) and δ0,N1,N2(x) describing the gas flow in the boundary layer of
the casing motionless base.

1◦. N1 = 4, N2 = 5

Φ4,5 = x3/4b
√

νω̃(1 − λ1 − x)(2.856340 − 1.570379x + 1.074781x2 + 0.082472x3);
δ0,4,5 = x1/4

√
ν/ω̃(4.185028 − 5.471901x + 3.871863x2 − 0.997633x3

− 0.353929x4 − 0.064053x5) .

2◦. N1 = 5, N2 = 4

Φ5,4 = x3/4b
√

νω̃(1 − λ1 − x)(2.787174 − 1.625395x + 0.964173x2 − 0.005921x3

− 0.044119x4);

δ0,5,4 = x1/4
√

ν/ω̃(4.110059 − 5.462528x + 3.745126x2 − 1.038496x3 − 0.328643x4) .

3◦. N1 = 5, N2 = 5

Φ5,5 = x3/4b
√

νω̃(1 − λ1 − x)(2.810254 − 1.611966x + 0.995323x2 + 0.014495x3

− 0.035890x4);

δ0,5,5 = x1/4
√

ν/ω̃(4.132542 − 5.483389x + 3.764532x2 − 1.055980x3

− 0.351856x4 − 0.015801x5) .

4◦. N1 = 5, N2 = 6

Φ5,6 = x3/4b
√

νω̃(1 − λ1 − x)(2.876983 − 1.619852x + 1.076446x2 + 0.077721x3

− 0.007302x4);

δ0,5,6 = x1/4
√

ν/ω̃(4.188974 − 5.648875x + 3.795984x2 − 1.197402x3

− 0.549613x4 − 0.162125x5 − 0.030455x6) .

5◦. N1 = 6, N2 = 5

Φ6,5 = x3/4b
√

νω̃(1 − λ1 − x)(2.844606 − 1.647739x + 1.016851x2 + 0.021477x3

− 0.050451x4 − 0.019380x5);

δ0,6,5 = x1/4
√

ν/ω̃(4.156011 − 5.637994x + 3.744278x2 − 1.215339x3

− 0.552950x4 − 0.138877x5) .



Analytic Solutions for Gas Flow in a Casing with Disc 371

0.02 0.04 0.06 0.08 0.1

0.002
0.004
0.006
0.008

0.01
0.012

r

z

Fig. 11. The curves z = δ0(r) by different formulas: (−−−) N1 = N2 = 4; (− − −)
N1 = 4, N2 = 5; (· · ·) N1 = 5, N2 = 4; (− · − · −) N1 = N2 = 5; (� � �)
N1 = 5, N2 = 6; (� � �) N1 = 6, N2 = 5, (♦ ♦ ♦) N1 = N2 = 6

6◦. N1 = 6, N2 = 6

Φ6,6 = x3/4b
√

νω̃(1 − λ1 − x)(2.848314 − 1.646002x + 1.022749x2 + 0.026754x3

− 0.046820x4 − 0.018012x5);

δ0,6,6 = x1/4
√

ν/ω̃(4.159553 − 5.642342x + 3.748718x2 − 1.216971x3

− 0.556802x4 − 0.143530x5 − 0.002778x6) .

Table 2 also presents the values of the ratio βN1,N2 = ω̃/ω corresponding to the
given N1 and N2. The βN1,N2 values were obtained as in the foregoing section
by the numerical solution of equation (59). The geometric parameters λ1, . . . , λ4

were the same as for N1 = N2 = 4 in all the above computations for different N1

and N2. It can be seen from Table 2 that the coefficient βN1,N2 depends weakly
on N1 and N2. But since the coefficients of equation (59) depend on λ1, . . . , λ4

and Re, at a variation of any of these parameters it is natural to expect also a
variation of the coefficient βN1,N2 = 1/ζ.

Figure 11 shows the curves z = δ0,N1,N2(r) for different N1, N2. The value ω̃
for each specific pair (N1, N2) was specified by formula ω̃ = βN1,N2ω, where the
values of βN1,N2 were taken from Table 2. It can be seen in Fig. 11 that for all
considered N1, N2, the boundary layer thickness δ0(r) on the motionless casing
base reduces with reducing polar distance r.

7 Conclusions

We now draw several conclusions from the above.
1. The analytic solution for the flow parameters inside the boundary layer

of the casing motionless base, which was obtained in [15], is inapplicable for
verification of the numerical solutions obtained by the numerical integration of
the three-dimensional Navier–Stokes equations (1), (2) because of the negative
thickness of the boundary layer in the shaft neighborhood.

2. Several new analytic solutions are obtained for the flow parameters inside
the boundary layer of the casing motionless base when the values of N1, N2 are
within the limits 4 ≤ N1, N2 ≤ 6. The common feature of all these solutions is
that the boundary layer thickness δ0(r) on the casing motionless base reduces
with reducing polar distance r.



372 E.V. Vorozhtsov

3. It is proposed to take into account the viscous friction force moment on the
lateral casing wall. This has improved considerably the accuracy of the approx-
imate analytic solution.

References

1. Baev, V.K., Bazhaikin, A.N., Frolov, A.D., Takeda, K., Hirano, Y.: Air cleaning
from ammonia in agricultural-purpose rooms. Ecology and Industry of Russia 11,
13–16 (2005) (in Russian)

2. Draper, N.R., Smith, H.: Applied Regression Analysis. John Wiley & Sons,
New York (1998)

3. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simulations.
J. Comput. Phys. 161, 35–60 (2000)

4. Fomichev, V.P.: Device for Gas Cleaning. Patent RU No. 2229658 C2, Moscow
(2004) (in Russian)

5. Khaidarov, S.V.: Experimental Investigation of Heat and Mass Exchange in Di-
ametral Disc Fans. Ph.D. Thesis, ITAM SB RAS, Novosibirsk (2000) (in Russian)

6. Kim, J., Moin, P.: Application of a fractional-step method to incompressible
Navier–Stokes equations. J. Comp. Phys. 59, 308–323 (1985)

7. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M.: Foundations of Fluid Mechanics with
Applications: Problem Solving Using Mathematica. Birkhäuser, Basel (1999)

8. Lai, M.C., Lin, W.-W., Wang, W.: A fast spectral/difference method without pole
conditions for Poisson-type equations in cylindrical and spherical geometries. IMA
J. Numer. Anal. 22, 537–548 (2002)

9. Loitsyanskii, L.G.: Boundary Layer Aerodynamics. Gos. izdatelstvo tekhniko-
teoreticheskoi literatury, Leningrad, Moscow (1941) (in Russian)

10. Loitsyanskii, L.G.: Laminar Boundary Layer. In: GIFML, Moscow (1962)
(in Russian)

11. Morozov, V.A., Kirsanova, N.N., Sysoev, A.F.: A complex of algorithms for fast
Fourier transform of discrete series. In: Numerical Analysis in FORTRAN, issue 15,
pp. 30–51. The Moscow State Univ., Moscow (1976) (in Russian)

12. Prikhodko, Yu.M.: Investigation of Flow and Heat Exchange in Diametral Disc
Fans at Low Reynolds Numbers. Ph.D. Thesis, ITAM SB RAS, Novosibirsk (2008)
(in Russian)

13. Samarskii, A.A., Gulin, A.V.: Numerical Methods. Nauka, Moscow (1989)
(in Russian)

14. Schacht, W., Vorozhtsov, E.V.: Implementation of Roe’s method for numerical
solution of three-dimensional fluid flow problems with the aid of computer algebra
systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra
in Scientific Computing/CASC 2004, pp. 409–422. Techn. Univ. Munich, Munich
(2004)

15. Schultz-Grunow, F.: Der Reibungswiderstand rotierender Scheiben in Gehäusen.
Zeitschr. für angew. Math. und Mech. 15, 191–204 (1935)

16. Solomakhova, T.S. (ed.): Centrifugal Ventilators. Mashinostroenie, Moscow (1975)
(in Russian)

17. Tesla, N.: Turbine. US Patent No. 1061206, May 6 (1913)
18. Verzicco, R., Orlandi, P.: A finite-difference scheme for three-dimensional incom-

pressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414 (1996)



Hybrid Solution of Two-Point Linear
Boundary Value Problems

M. Youssef and G. Baumann

German University in Cairo,
Mathematics Department,

New Cairo City,
Egypt

Maha.Youssef@GUC.edu.eg, Gerd.Baumann@GUC.edu.eg

Abstract. We discuss a general approach to solve linear two points
boundary value problems (BV) for ordinary differential equations of sec-
ond and higher order. The combination of symbolic and numeric methods
in a hybrid calculation allows us to derive solutions for boundary value
problems in a symbolic and numeric representation. The combination
of symbolic and numeric calculations simplifies not only the set up of
iteration formulas which allow us to numerically represent the solution
but also offers a way to standardize calculations and deliver a symbolic
approximation of the solution. We use the properties of distributions
and their approximations to set up interpolation formulas which are ef-
ficient and precise in the representation of solutions. In our examples
we compare the exact results for our test examples with the numerical
approximations to demonstrate that the solutions have an absolute error
of about 10−12. This order of accuracy is rarely reached by traditional
numerical approaches, like sweep and shooting methods, but is within
the limit of accuracy if we combine numerical methods with symbolic
ones.

1 Introduction

The solution of boundary value problems is central in engineering applications
such as mechanical structures, electrical circuits, hydrodynamic and thermal
systems [1]. A great deal of problems is formulated as boundary value problem.
There are a large number of methods currently available to solve these type of
problems numerically and there seems no need to add another one. However, if we
look at the approaches used in these methods we observe that results are either
gained by crude brute force methods which lack accuracy but are simple to use
or highly sophisticated methods which use special procedures applicable only for
a specific kind of problems [5, 4, 9, 2, 3]. To bridge this gap between numerical
and analytic calculations we discuss a hybrid approach which combines the
clearness of analytical representation and the efficiency of numerical calculations.
The approach we use is based on analytic functions and the generalization of
functions to distributions.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 373–391, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



374 M. Youssef and G. Baumann

The central function we will use in our approximations is the scaled sinc
function defined by

sinc(x) =
sin(πx)
πx

. (1)

And the shifted Sinc represented by

S(x, k) = sinc
(
x− kh
h

)
(2)

where k is an integer number k ∈ Z and h the step length of the shift.
The idea of Sinc methods is to represent a function by Sinc approximations.

A function can be approximated by using shifted Sinc functions by a linear
superposition of these functions. The basic relation is given by the following
expansion

u(x) =
Nx∑

k=−Mx

uksinc
(
x− kh
h

)
(3)

where Mx and Nx are the lower and upper limits of the discrete approximation
interval, h is the step length of the discretization and uk represents the expansion
coefficients of the function u[11]. If we deal with differential equations not only
the unknown function u is needed but also derivatives of this function of different
orders are needed. This means we have to handle terms including derivatives of
u with respect to the independent variable x such as dμu(x)

dxμ .
Using (3) we can represent higher order derivatives by

dμu(x)
dxμ =

Nx∑
k=−Mx

uk
dμ

dxμ

(
sinc

(
x− kh
h

))
. (4)

Equation (4) represents the higher order derivative symbolically. In fact, we
are interested in a numerical representation which means we have to collocate
the real line. This collocation is shown in the following relation representing a
discrete version of (4).

dμu(x)
dxμ |x=mh =

Nx∑
k=−Mx

uk
dμ

dxμ

(
sinc

(
x− kh
h

))
|x=mh (5)

with μ ∈ N0 and −Mx ≤ m ≤ Nx.

Combining (3) and (5) in differential equations will result into a sinc represen-
tation of an ordinary differential equation. Using this truncated Sinc expansion
guarantee that the error will exponentially decaying (as we will see in section 3)
which is not available in other truncated expansion like truncated Fourier series
expansion.



Hybrid Solution of Two-Point Linear Boundary Value Problems 375

2 Methods of Calculations

To use Sinc functions to approximate derivatives in any kind of differential equa-
tion for an arbitrary order we start with the one dimensional representation of
derivatives using (3) and (5) as basis to start with. First the scaled and shifted
Sinc functions are defined in Mathematica by,

sincScaled[x ]:=Sinc[πx]sincScaled[x ]:=Sinc[πx]sincScaled[x ]:=Sinc[πx]

and the related shifted Sinc function by

S[x , k ]:=sincScaled
[
x− kh
h

]
S[x , k ]:=sincScaled

[
x− kh
h

]
S[x , k ]:=sincScaled

[
x− kh
h

]
which are used in the definition of the derivative (5).

derivativeMatrixElements[orderx List,min List, kin List]:=
Block[{res1, t2, h, φ, x, ψ, k,m},Fold[Plus, 0,
MapThread [(res1 =(
h#1

(
∂{φ[x],#1}

(
sincScaled

[
φ[x]−kh

h

])))
/.{x→ ψ[mh]}/.φ[ψ[x ]] → x;

t2 = Limit[res1, k→ m];
Fold[Times ,1,
Map[Apply[KroneckerDelta,#]&,
Complement[Transpose[{min, kin}], {{#2,#3}}]]]
Piecewise[{{t2/.{k → #3,m→ #2},#3 == #2}, {res1/.{k → #3,m→
#2},#3 �= #2}},
0])&, {orderx,min, kin}]]]

The relation for derivatives delivers a symbolic expression for a piecewise
function depending on the discrete indices m and k. An example for a second
order derivative is given next

derivativeMatrixElements(2,m, k)derivativeMatrixElements(2,m, k)derivativeMatrixElements(2,m, k)⎧⎨⎩−
π2

3 k = m

πh

(
2h2 sin( π(hm−hk)

h )
π2(hm−hk)3 − sin(π(hm−hk)

h )
hm−hk − 2h cos(π(hm−hk)

h )
π(hm−hk)2

)
k �= m

The matrix representation of this function for a 3× 3 discretization is,

MatrixForm[Table[derivativeMatrixElements({2}, {m}, {k}), {m,1,3},
{k,1,3}]]⎛⎜⎝−π2

3 2 − 1
2

2 −π2

3 2
− 1

2 2 −π2

3

⎞⎟⎠



376 M. Youssef and G. Baumann

A graphical representation of the second order derivative a so called Toeplitz
matrix, is shown in Figure 1. Figure 1 shows a 15 × 15 matrix representing a
symmetric array of numerical values shown in different colors. One property of
Toeplitz matrices is that they are "symmetric" about the main diagonal which
is obvious from Figure 1.

1 5 10 15

1

5

10

15

1 5 10 15

1

5

10

15

Fig. 1. Graphical representation of the content of a 15 × 15 Toeplitz matrix. The
graphical representation shows the characteristic symmetric property.

So far we discussed only some of the important basic components of the Sinc
method. In the following we will summarize the overall frame of the calculation
steps. We will present the structure of the related calculation algorithm in an
object oriented program based on Elements [15], step by step.

2.1 Representation of the Algorithm

In this section we will set up a scheme for the total calculations which can
be divided into several classes of tasks. The different classes found in analyzing
the algorithm are implemented in an object oriented programming environment
called Elements developed in Mathematica [15]. The different classes used in
the implementation are listed below. For each class we give a short descrip-
tion expressing which part of the calculation is represented in this part of the
calculation.

1. BasicParameters Class:BasicParameters Class:BasicParameters Class: A collection of all the influencing parameters in
the calculation like α, γ, Mx, d, ax, bx, etc...

2. Manifold Class:Manifold Class:Manifold Class: A collection of independent and dependent variables.
3. subvarietyOfExtendedJetBundle Class:subvarietyOfExtendedJetBundle Class:subvarietyOfExtendedJetBundle Class: The subvariety of the jet space de-

fined by the differential equation.
4. conformalMapping Class :conformalMapping Class :conformalMapping Class : Different conformal mappings and their inverses

for different types of boundary values.
5. sincFunctions Class :sincFunctions Class :sincFunctions Class : The function used to represent the expansion basis

and the representation of derivatives.



Hybrid Solution of Two-Point Linear Boundary Value Problems 377

6. collocationTransform Class:collocationTransform Class:collocationTransform Class: A collection of functions that generate the dis-
crete representation of the equation.

7. collocationMatrices Class:collocationMatrices Class :collocationMatrices Class: A collection of functions that create the needed
matrices.

8. EigenSolution Class :EigenSolution Class :EigenSolution Class : The representation of the solution.
9. SolutionFunction Class :SolutionFunction Class :SolutionFunction Class : The solution of the BV problem.

The use and application of these classes is straight forward. The following ex-
ample demonstrates the application of the classes and the derived objects for a
specific problem. The example equation we use to demonstrate the steps of the
calculation is a second order singular BV problem given by

∂x,xu(x) +
1

1− x2
∂xu(x) + 7xu(x) = 1− x2 (6)

with u(1) = 0 and u(6) = 0.
This second order equation is defined on a two dimensional manifold with

variables {x, u}. This manifold is defined as an object derived from the class
Manifold

man1 = manifold ◦ new[{X → {x}, U → {u}}]man1 = manifold ◦ new[{X → {x}, U → {u}}]man1 = manifold ◦ new[{X → {x}, U → {u}}]
< Object of Manifold >

In the prolonged space a subvariety defined by the differential equation is
defined by a jet bundle. In practical terms we define this jet bundle by the fol-
lowing derivation of an object from the class subvarietyOfExtenededJetBundel.
This object uses the manifold object man1to represent the geometric structure
of the space where the differential equation lives in

subVar1 = subVarietyOfExtendedJetBundel

◦new
[{

manifoldM→ man1,

subvariety →
{
∂x,xu[x] +

1
1− x2

∂xu[x] + 7xu[x] == 1− x2
}
,

modelParameters → {}
}]

< Object of SubVarietyOfExtendedJetBundel >

For a boundary problem we need to specify the constraints under which we are
going to solve the equation. This part of information is related to the basic pa-
rameters used in the calculation. The lower bound of elements in the collocation
step is set to Mx = 8. The boundaries are located at x = 1 and x = 6. Parame-
ters as γ = 0 and d = 1 are used to guarantee an efficient convergence (see the
discussion in Section 3).

b1 = basicParameters ◦ new[{ax → {1}, bx → {6},Mx → {8}, d→ 1, γ → 0}]b1 = basicParameters ◦ new[{ax → {1}, bx → {6},Mx → {8}, d→ 1, γ → 0}]b1 = basicParameters ◦ new[{ax → {1}, bx → {6},Mx → {8}, d→ 1, γ → 0}]
< Object of BasicParameters >



378 M. Youssef and G. Baumann

The step length h =
√
πd /(α |Mx|) used in the calculation can be derived from

the object of basic parameters to be

b1 ◦ steplengthHx[ ]b1 ◦ steplengthHx[ ]b1 ◦ steplengthHx[ ]{√π
2

2

}
using default convergence parameters α = 1 and d = 1. Note that the current
value of h is not a small number. The interval of the boundary problem is finite
and thus needs the specific conformal mapping for finite intervals to represent
Dirichlet boundaries. The object of conformal mappings uses the object with
basic parameters to ensure that the step length and the boundary values are
used in all transformations

c1 = conformalMapping ◦ new[{intervalObject → b1,manifoldObject → man1}]c1 = conformalMapping ◦ new[{intervalObject → b1,manifoldObject → man1}]c1 = conformalMapping ◦ new[{intervalObject → b1,manifoldObject → man1}]

<Object of ConformalMapping>

The mapping is selected automatically depending on the type of boundary values
we specify, finite or infinite. For the current example we have the conformal map
and its inverse as the two transformations

c1 ◦ conformalMap[ ]c1 ◦ conformalMap[ ]c1 ◦ conformalMap[ ]{
log
[−1 + x

6− x
]}

The inverse mapping is given by

c1 ◦ inverseConformalMap[ ]c1 ◦ inverseConformalMap[ ]c1 ◦ inverseConformalMap[ ]{1 + 6ex

1 + ex
}

Both transformations depend on the boundary values at ax = 1 and bx = 6. The
next step is to derive an object which contains information on sinc functions. The
sincFunction class uses information contained in two objects, basic parameters
and conformal mappings. An instance of the sinc class is thus generated by

sinc01 = sincFunctions ◦ new[{intervalObject → b1, conformalObject → c1}]sinc01 = sincFunctions ◦ new[{intervalObject → b1, conformalObject → c1}]sinc01 = sincFunctions ◦ new[{intervalObject → b1, conformalObject → c1}]
< Object of SincFunctions >

From this object we can derive for example the elements of the Toeplitz matrix
for second order derivatives.

sinc01 ◦ derivativeMatrixElements(2, j, k)sinc01 ◦ derivativeMatrixElements(2, j, k)sinc01 ◦ derivativeMatrixElements(2, j, k)⎧⎨⎩−
π2

3 k = j

πh

(
2h2 sin(π(hj−hk)

h )
π2(hj−hk)3 − sin(π(hj−hk)

h )
hj−hk − 2h cos(π(hj−hk)

h )
π(hj−hk)2

)
k �= j



Hybrid Solution of Two-Point Linear Boundary Value Problems 379

The first element of the piecewise function represents the diagonal elements of
the matrix and the second line denotes the off diagonal elements of the Toeplitz
matrix. The next step is to combine both branches, the differential equation and
the solution representation, and derive information for the collocation transfor-
mation. The collocation transformation incorporates the jet space properties and
the basic parameters which are used in the definition of this object.

colTr1 = collocationTransform ◦ new[{jetBundelObject → subVar1,colTr1 = collocationTransform ◦ new[{jetBundelObject → subVar1,colTr1 = collocationTransform ◦ new[{jetBundelObject → subVar1,

intervalObject → b1}]
< Object of CollocationTransform >

Functions defined in this class are able to use the original equation and generate
a discrete representation of this equation by using the transformations

coltr1 = colTr1 ◦ collocationTransformation[ ]coltr1 = colTr1 ◦ collocationTransformation[ ]coltr1 = colTr1 ◦ collocationTransformation[ ]

{{x→ φx[x]}, {u→ Function[{x}, g1[x]u[φx[x]]]}, {g1 → Function[{x}, 1]}}
The transformation introduced for the dependent variable is u = g(x)u

(
φ(x)

h

)
which allows us to incorporate the boundaries of a conformal mapping φ(x). If the
discretization is applied by using the inverse conformal mapping ψ, xk = ψ(hk),
we find the discrete version of the equation.

deqs = colTr1 ◦ discreteSymbolicCollocationTransform[ ]deqs = colTr1 ◦ discreteSymbolicCollocationTransform[ ]deqs = colTr1 ◦ discreteSymbolicCollocationTransform[ ]

{
7u[hxmx]ψx[hxmx] +

u′[hxmx]φx′[ψx[hxmx]]
1− ψx[hxmx]2 +

φx′[ψx[hxmx]]2u′′[hxmx] + u′[hxmx]φx′′[ψx[hxmx]] == 1− ψx[hxmx]2}
Where hx is now the step length and mx is the collocation index along the x-axis.

Knowing the symbolic equation and its discrete version we can go on to gen-
erate the matrix representation of this equation, this is generated next based on
the collocation properties and the sinc function properties

colMat1 = collocationMatrices ◦ new[{collocationTrafoObject→ colTr1,colMat1 = collocationMatrices ◦ new[{collocationTrafoObject → colTr1,colMat1 = collocationMatrices ◦ new[{collocationTrafoObject→ colTr1,

sincFunctionObject → sinc01}]
< Object of CollocationMatrices >

The collocation matrix class allows to represent the original differential equation
in matrix form (result suppressed).

eqs1 = colMat1 ◦ replaceDerivatives[ ];eqs1 = colMat1 ◦ replaceDerivatives[ ];eqs1 = colMat1 ◦ replaceDerivatives[ ];

The next class uses the collocation matrix object to derive an instance for the
collocation equations and allows to derive the solution.



380 M. Youssef and G. Baumann

eigSol = eigenSolution ◦ new[{collocationMatricesObject→ colMat1}]eigSol = eigenSolution ◦ new[{collocationMatricesObject → colMat1}]eigSol = eigenSolution ◦ new[{collocationMatricesObject→ colMat1}]

< Object of EigenSolution >

sol01 = eigSol ◦ solution[ ];sol01 = eigSol ◦ solution[ ];sol01 = eigSol ◦ solution[ ];

This object generates the linear collocation equations and provides a function to
solve these equations. In addition the solution is represented in a symbolic way.
In addition to the symbolic expansion, the coefficients are numeric results based
on the solution of the linear collocation equation.

The following lines represent the total calculations combined in a single func-
tion applied to problem (6). In fact the solution is a mixture of numeric and
symbolic expressions, and in combination a hybrid representation of the solu-
tion. The solution for (6)

eq01 = ∂x,xu[x] +
1

1− x2
∂xu[x] + 7xu[x] == 1− x2eq01 = ∂x,xu[x] +

1
1− x2

∂xu[x] + 7xu[x] == 1− x2eq01 = ∂x,xu[x] +
1

1− x2
∂xu[x] + 7xu[x] == 1− x2

7xu[x] +
u′[x]

1− x2
+ u′′[x] == 1− x2

is gained by applying BVDSolve to this equation. The total number of steps
presented so far are collected in this single function BVDSolve. It generates the
classes and objects as discussed and offers a single interface to the user.

sol01 = BVDSolve[{eq01}, {u}, {x}, {{1}, {6}}, {20}, 1, 0];sol01 = BVDSolve[{eq01}, {u}, {x}, {{1}, {6}}, {20}, 1, 0];sol01 = BVDSolve[{eq01}, {u}, {x}, {{1}, {6}}, {20}, 1, 0];

The gained solution can be used in a graphical evaluation of the result as shown
in Figure 2.

The solution derived shows a chitter at the boundaries. This behavior is due
to the low number of collocation points, 20, used in the calculation. This chitter
indicates that the solution derived with this resolution is not "stable" and that
the approximation is far away from the actual solution. To demonstrate that a
solution becomes "stable" we increase the number of collocation points for the
interval division and thus decrease the step length h.

sol011 = BVDSolve[{eq01}, {u}, {x}, {{1}, {6}}, {60}, 1, 0];sol011 = BVDSolve[{eq01}, {u}, {x}, {{1}, {6}}, {60}, 1, 0];sol011 = BVDSolve[{eq01}, {u}, {x}, {{1}, {6}}, {60}, 1, 0];

The result of the calculation is shown in the following plot which does not show
the chitter at the endpoints of the interval as before.

Since we do not know an exact solution of this problem the question rises
how to measure the accuracy of a Sinc approximation. Before we deal with this
problem let us generalize the method to higher order BV-problems. In addition
we will verify convergence formulas derived by Kowalski et al, Lund and Bowers
[16, 17].



Hybrid Solution of Two-Point Linear Boundary Value Problems 381

1 2 3 4 5 6

�1.5

�1.0

�0.5

0.0

0.5

x

u�
x�

Fig. 2. Solution of the boundary value problem ∂x,xu(x)+ 1
1−x2 ∂xu(x)+7xu(x) = 1−x2

with boundary values u(1) = u(6) = 0

1 2 3 4 5 6

�1.5

�1.0

�0.5

0.0

0.5

x

u�
x�

Fig. 3. Solution of the BV problem ∂x,xu(x) + 1
1−x2 ∂xu(x) + 7xu(x) = 1 − x2, u(1) =

0, u(6) = 0 with a constant scaling function g(x) = 1 and a the lower collocation
boundary with M = 28

2.2 Higher Order BV Problems

There is not much information available in literature for higher order boundary
value problems solved by sinc-methods. For a sixth-order BV problem El-Gamel
et al [13] discussed a sinc-Galerkin method. They demonstrated the application
to a specific problem and discussed the convergence properties for this specific
type of equation. Bialecki in his paper [9] comments on higher order BV prob-
lems and states a general formula but does not discuss details of convergence
or calculations. Here we will use the already known algorithm for second order



382 M. Youssef and G. Baumann

equations and extend this algorithm to an arbitrary higher order algorithm for
linear equations. The theoretical procedure is similar to the method presented
for second order equations. The method for higher order is different from the
second order method with respect to the incorporation of the boundaries and
the discretization of derivatives. In this paper we deal only with the case where
Dirichlet boundary conditions are specified, and all derivatives vanish at the
boundaries. The derivatives are represented by using (5) as a general formula.
The following example for a fifth order singular boundary value problem will be
used to demonstrate the method.

∂x,xu(x) +
1

1− x2
∂x,x,x,x,xu(x) +

7x
2− xu(x) = 1− x2 (7)

with u(1) = 0 and u(6) = 0.
We selected this equation by arbitrarily specifying the order and setting the
coefficients to expressions which are singular either at the boundary at x = 1 or
at a point in the domain of the independent variable x = 2. The final result of
this calculation is shown in Figure 4. In Mathematica we define the equation
by,

eq02 =
∂5u(x)

∂x ∂x ∂x ∂x ∂x

1− x2
+
∂2u(x)
∂x ∂x

+
7xu(x)
2− x = 1− x2eq02 =

∂5u(x)
∂x ∂x ∂x ∂x ∂x

1− x2
+
∂2u(x)
∂x ∂x

+
7xu(x)
2− x = 1− x2eq02 =

∂5u(x)
∂x ∂x ∂x ∂x ∂x

1− x2
+
∂2u(x)
∂x ∂x

+
7xu(x)
2− x = 1− x2

u(5)(x)
1− x2

+ u′′(x) +
7xu(x)
2− x = 1− x2

and derive the solution, with the function

sol02 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {160}, 1, 0];sol02 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {160}, 1, 0];sol02 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {160}, 1, 0];

A graphical representation of the solution with m = 160 follows by using the
results as shown in Figure 4 (output suppressed).

To estimate an error of the discretization we use this high discretization as
reference. In addition we generate three different approximations with lower dis-
cretization of the fifth order BV problem. We start with m = 20 and double the
approximation order twice. The three solutions are compared with the approxi-
mation m = 160 by means of the error formula

ε =
∣∣∣u(160) − u(m)

∣∣∣ (8)

For this formula we assume that m=160 represents the reference solution.
The three solutions follow for m = 20, m = 40, and m = 80 by

sol022 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {20}, 1, 0];sol022 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {20}, 1, 0];sol022 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {20}, 1, 0];

sol023 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {40}, 1, 0];sol023 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {40}, 1, 0];sol023 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {40}, 1, 0];

sol024 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {80}, 1, 0];sol024 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {80}, 1, 0];sol024 = BVDSolve[{eq02}, {u}, {x}, {{1}, {6}}, {80}, 1, 0];



Hybrid Solution of Two-Point Linear Boundary Value Problems 383

1 2 3 4 5 6

0

1

2

3

4

5

Fig. 4. Solution of the fifth order boundary value problem (30) with m = 160

Formula (8) is used to generate an overview of the local error. From Figure 5, it
is obvious that the local error decreases if we increase the approximation order.
The magnitude of the mean error at m = 20 is about 10−1 while for m = 40
the magnitude is 10−4 and with m = 80 we have ε ∼ 10−6. This shows that
the local error decreases fast if the approximation order is increased toward the
reference value m = 160. This behavior is expected because the sinc-collocation
approximation shows an exponential convergence to the true solution[11].

m � 20

m � 40

m � 80

1 2 3 4 5 6

10�8

10�6

10�4

0.01

x

�u
�m
� �

u�
16

0�
�

Fig. 5. Relative errors
∣∣∣u(160) − u(m)

∣∣∣ for the solution of the fifth order boundary value
problem (7)

3 Convergence of the Collocation Method

To estimate the error in a Sinc calculation there is a large number of references
for analytic results available [10, 17]. In practical applications it is much more



384 M. Youssef and G. Baumann

m � 3

m � 23

m � 43

m � 63
m � 83
m � 103
m � 123
m � 143

�1 0 1 2 3 4
10�29

10�24

10�19

10�14

10�9

10�4

x

�y
�

y e
x
�2

Fig. 6. Local error of the calculation based on the (y − yex) 2 for different approxima-
tion orders m = −M + N + 1. The error decreases rapidly with increasing the total
approximation order.

efficient to compare the convergence of a numerical procedure by changing some
of the influencing parameters and measure the effect of influence. On the other
hand it is much more reliable if we can compare a derived numerical solution with
an exact symbolic solution. We will take the route to compare the numerical
results with exact solutions knowing that an exact symbolic solution is rarely
available in practical applications. As a symbolic example to demonstrate the
errors generated in practical calculations we reexamine the well known example
by Lybeck and Bowers [18], which is given by

−∂x,xy(x) + ∂xy(x) + y(x) =
(

4
25

)2 (
x4 − 2x3 − 29 x2 + 62x+ 38

)
(9)

with y(−1) = 0 and y(4) = 0.
The exact solution of this equation is given by the fourth order polynomial

P4(x) =
(

4
25

)2

(x + 1)2(x− 4)2 (10)

satisfying the boundary conditions. We used BVDSolve to solve the BV problem
with fixed convergence parameters α = β = 1 and d = 1. The squares of the error
(y − yex) 2 are shown in Figure 6 by changing the total number m of collocation
points to see the influence of the step length h on the solution. We observe that
if m ∈ [3, 143] then the error reduces dramatically. Above m > 160 we again
observe oscillations in the error which are due to the finite standard number
representation in Mathematica. If the precision of the number representation
in Mathematica is increased in the calculations the oscillations disappear for
m > 160.



Hybrid Solution of Two-Point Linear Boundary Value Problems 385

Λ � 1 �2
Λ � 1 �12
Λ � 1 �120
Λ � 1 �1200

Λ � 0

0 50 100 150

�50

�40

�30

�20

�10

0

m

lo
g�

Ε�

Fig. 7. Global error based on the norm ‖y − yex‖2 of the calculation with respect to
the scaling exponent λ of the scaling function g(x) = (∂xφ(x))−λ

Another point of interest in estimating the error is the influence of the scaling
function g(x) = (∂xφ(x)) −λ introduced in the class collocation. Due to the dis-
cussion in the literature [9, 11, 12], the scaling function is useful to symmetrize
the numerical schemes. We examined different scaling exponents λ to see how
the different scaling properties influence the error in a Sinc collocation calcula-
tion. In addition of changing the total number of collocation points we changed
the scaling exponent systematically in an interval from λ ∈ [1/2, 1/1200]. A
sub-sequence of calculations is shown in Figure 7. According to the theoreti-
cal prediction in [11] the errors should decrease exponentially like a stretched
exponential function

ε ∼ √
me−δmγ

(11)

with a stretching exponent of γ = 1/2. If the total number of collocation points
is increased the error should decrease. However, the observation in numerical
calculations is that the global error defined by

ε =
∥∥y − yex‖2 =

∫ b

a

(y − yex) 2 dx (12)

only decreases continuously if λ = 0, corresponding to a constant scaling function
g. For the other cases with 0 < λ < 1 we observe a plateau in a lin− log plot of
the global error. This means that in principal for larger λ the global error cannot
be changed by increasing the total number of collocation points but reaches a
finite value which is nearly independent of m. The exponential decay of the
global error is present only for g = 1. We verified this by fitting the gained error
estimations to the function log(ε) = −δmγ + a+ 1

2 log(x) where δ, a and γ are
the slope of the decay, the intercept of the error with ε and the deviation from
the pure exponential decay. The parameters for the fit in our calculations are



386 M. Youssef and G. Baumann

δ = 3.93067, γ = 0.536966, a = −1.24904. The deviation from the theoretical
decay with γ = 1/2 is 0.036. . . which is quite close to the expected theoretical
value.

The calculations and the fitting to the theoretical prediction show that the
stretched exponential decay of the error occurs only for λ = 0 where the theoret-
ical and experimental results are in good agreement to each other (see Fig. 7 line
and dots). For all the other cases the theoretical expectation does not fit to the
actual results. From a practical point of view this means that sinc collocation
methods are most efficient for λ = 0.

4 Applications

This section contains two examples to demonstrate the behavior and the appli-
cation of the method to practical engineering problems. some of these problems
are nonsingular models while the others are singular ones which are solvable by
the traditionall approaches only if the method is adapted to the singularity. But
her we have a unique approach for both singular and nonsingular cases.

4.1 Non-uniform Bar with Distributed Force

Let us consider a standard application in mechanics to determine the elongation
of a bar subject to acting forces and fixed endpoints. Such kind of problem is
standard if the mass distribution and the force is constant. However, if we allow
a spatial variation of the mass density and the force along the bar we have to deal
with problems which may have singularities along the bar or at the endpoints of
the bar. Let us consider the specific equilibrium equation

− d

dx

(
c(x)

du
dx

)
= f(x) (13)

for a non-uniform bar subject to homogeneous Dirichlet boundary conditions.
The bar is subject to an external force f depending on the location x of action.
The function c = c(x) and f = f(x) represents the stiffness and force distribution
along the bar, respectively. For further use of this equation we define the following
symbolic equation to change the two properties and derive the solution for these
different models.

eqsBar = − ∂

∂x

(
c(x)

∂u(x)
∂x

)
= f(x)eqsBar = − ∂

∂x

(
c(x)

∂u(x)
∂x

)
= f(x)eqsBar = − ∂

∂x

(
c(x)

∂u(x)
∂x

)
= f(x)

−c′(x)u′(x) − c(x)u′′(x) = f(x)

where u is the deflection at distance x from the left end of the bar, and c(x) and
f(x) are functions that depend on the applied load, the geometry of the bar, and
its elastic properties. The simplest model we can derive is a bar with constant
mass distribution normalized to 1 and a constant force f = 1 homogeneously
distributed along the bar. The related equation can be derived by



Hybrid Solution of Two-Point Linear Boundary Value Problems 387

eqBar1 = eqsBar/.{c→ (x �−→ 1), f → (x �−→ 1)}eqBar1 = eqsBar/.{c→ (x �−→ 1), f → (x �−→ 1)}eqBar1 = eqsBar/.{c→ (x �−→ 1), f → (x �−→ 1)}
−u′′(x) = 1

This simple equation is solved under homogeneous Dirichlet conditions by ap-
plying the established function from above to the equation eqBar1. The solution
in a symbolic representation follows with

solBar1 = BVDSolve[{eqBar1}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBar1 = BVDSolve[{eqBar1}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBar1 = BVDSolve[{eqBar1}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];

The solution is represented by the sinc-function expansion with numerical coef-
ficients derived from the collocation representation of the continuous problem.
So far the equation bears no problems neither in the differential equations nor
at the boundaries, there are no singularities at all. The next choice for the mass
distribution with c = log(x)

/(
1− x2

)
and f(x) = 1 introduces singularities at

the boundaries

eqBar2 = eqsBar/.
{
c→

(
x �−→ log(x)

1− x2

)
, f → (x �−→ 1)

}
eqBar2 = eqsBar/.

{
c→

(
x �−→ log(x)

1− x2

)
, f → (x �−→ 1)

}
eqBar2 = eqsBar/.

{
c→

(
x �−→ log(x)

1− x2

)
, f → (x �−→ 1)

}

− log(x)u′′(x)
1− x2

−
( 1
x(1− x2)

+
2x log(x)
(1− x2)2

)
u′(x) = 1

This choice generates a special kind of second order differential equation which
we solve by adding the boundary conditions

solBar2 = BVDSolve[{eqBar2}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBar2 = BVDSolve[{eqBar2}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBar2 = BVDSolve[{eqBar2}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];

The two different solutions of the BV problems are shown in Figure 8. The figure
shows that the boundary conditions are satisfied for the two models. Model 1
with constant densities shows a symmetric solution around the midpoint of the
boundary interval as expected. Model 2 shows a negative elongation which is
more pronounced in the upper part of the interval. All solutions derived with 22
collocation intervals show a continuous and smooth behavior.

4.2 Non-uniform Beam

Unlike a bar, which can only stretch longitudinally, a beam is allowed to bend.
Let 0 ≤ x ≤ l represent the reference position along a horizontal beam of length
l. To further simplify the model, we shall ignore stretching, and assume that the
atoms in the beam can only move in the transverse direction, with y = u(x)
representing the vertical displacement of the atom that starts out at position x.

The strain in a beam depends on how much it is bent. Mathematically, bending
is equal to the curvature of the graph of the displacement function u(x), and is
computed by the classical formula

κ =
u”

(1 + (u′)2)3/2
(14)



388 M. Youssef and G. Baumann

model 1

model 2

0.0 0.2 0.4 0.6 0.8 1.0

�0.10

�0.05

0.00

0.05

0.10

x

y

non�uniform bar

Fig. 8. Solution of the BV problem for a non-uniform bar with boundaries
u(0) = u(1) = 0. The models have the following mass densities and forces c ={
1, log(x)

/(
1 − x2

) }
, f = {1, 1}, respectively.

Since we are only willing to deal with linear systems, we assume that the deriva-
tive (u′) ) 1 of the tangent line is nearly horizontal. Then

κ ≈ u” (15)

The next step is to formulate a constitutive relation between stress and strain.
Our small bending assumption implies an elastic Hook’s law relation

w(x) = c(x)u” (16)

where the proportionality factor c(x) > 0 measures the stiffness of the beam at
point x. In particular, a uniform beam has constant stiffness, c(x) = c. Finally,
the differential equation governing the equilibrium configuration of the beam
will follow from a balance of the internal and external forces resulting to

eqsBeam =
∂2
(
c(x)∂2u(x)

∂x ∂x

)
∂x ∂x

= f(x)eqsBeam =
∂2
(
c(x)∂2u(x)

∂x ∂x

)
∂x ∂x

= f(x)eqsBeam =
∂2
(
c(x)∂2u(x)

∂x ∂x

)
∂x ∂x

= f(x)

c′′(x)u′′(x) + 2c′(x)u(3)(x) + c(x)u(4)(x) = f(x)

We conclude that the equilibrium configuration of the beam is characterized as
a solution to the fourth order ordinary differential equation.

Let us concentrate first our efforts on the uniform beam, of unit length, so
c(x) = 1 and f(x) = 1. The beam equation simplifies to

eqBeam1 = eqsBeam/.{c→ (x �−→ 1), f → (x �−→ 1)}eqBeam1 = eqsBeam/.{c→ (x �−→ 1), f → (x �−→ 1)}eqBeam1 = eqsBeam/.{c→ (x �−→ 1), f → (x �−→ 1)}

(u(4)(x) = 1



Hybrid Solution of Two-Point Linear Boundary Value Problems 389

Imposing the boundary conditions u(0) = u(1) = 0 we have

solBeam1 = BVDSolve[{eqBeam1}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBeam1 = BVDSolve[{eqBeam1}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBeam1 = BVDSolve[{eqBeam1}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];
Assuming again that f(x) = 1 and c(x) = 1

/(
1− x2

)
we end up with the

singular equation

eqBeam2 = eqsBeam/.
{
c→

(
x �−→ 1

1− x2

)
, f → (x �−→ 1)

}
eqBeam2 = eqsBeam/.

{
c→

(
x �−→ 1

1− x2

)
, f → (x �−→ 1)

}
eqBeam2 = eqsBeam/.

{
c→

(
x �−→ 1

1− x2

)
, f → (x �−→ 1)

}
4xu(3)(x)
(1 − x2)2

+
u(4)(x)
1− x2

+
( 8x2

(1− x2)3
+

2
(1− x2)2

)
u′′(x) = 1

Again we assume that the end points of the beam are not deflected so that we
can apply the solver to this setup

solBeam2 = BVDSolve[{eqBeam2}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBeam2 = BVDSolve[{eqBeam2}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];solBeam2 = BVDSolve[{eqBeam2}, {u}, {x}, {{0}, {1}}, {22}, 1, 0];
The elongation of the beam with the different models for the stiffness and the
external force are shown in the following Figure 9.

model 1

model 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

x

y

non�uniform beam

Fig. 9. Solution of the BV problem for a non-uniform beam with boundary conditions
u(0) = u(1) = 0

As expected the homogeneous model is symmetric while the singular model
shows some asymmetric shift due to the singularity.

5 Conclusions

The paper introduces a combination of symbolic and numeric calculation based
on Sinc methods. The combination of symbolic and numeric calculation in a



390 M. Youssef and G. Baumann

single tool allows us to set up a procedure which represents the different steps by
classes. The object oriented concept of introducing classes is naturally represent-
ing the way of calculation and allows a direct implementation of the calculation
steps. The approach is not only restricted to second order BV problems but can
be extended in a straight forward way to higher order equations. The solution
steps based on sinc-methods guarantee an exponential convergence of the nu-
merical calculations. This means that the number of collocation steps can be
reduced to a minimal number of steps if an accuracy of a specified magnitude
is required. Sinc collocation method have the property that they converge very
rapidly thus we gain an efficient way to do numerical calculations.

Note: Due to the limited space all calculations in this paper have been
compressed.

Acknowledgments. The Authors are very grateful to the German University
in Cairo (GUC) for offering the facilities they need to complete this paper which
is part of the PhD project of MY.

References

1. Duffy, D.G.: Mixed boundary value problems. Chapman & Hall/CRC, Boca Raton
(2008)

2. Morlet, A.C., Lybeck, A., Bowers, K.L.: The Schwarz alternating sinc domain
decomposition method. Appld. Num. Math. 25, 461–483 (1997)

3. Jang, A.P., Haber, S.: Numerical Indefinite Integration of Functions with Singu-
larities. Math. Comp. 70, 205–221 (2000)

4. Layton, E.G.: The Fourier-grid formalism: philosophy and application to scattering
problems using R-matrix theory. J. Phys. B: At. Mol. Opt, Phys. 26, 2501–2522
(1993)

5. Wendland, H.: Meshless Galerkin Methods using Radial Basis Functions. Math.
Comp. 68, 1521–1531 (1999)

6. Stenger, F.: Summary of Sinc numerical methods. J. Comp. Appld. Math. 121,
379–420 (2000)

7. Stens, R.L.: Error estimates for sampling sums based on convolution integrals,
Inform, and Control 45, 37–47 (1980)

8. Töplitz, O.: Zur Theorie der quadratischen und bilinearen Formen von unendlich
vielen Veränderlichen. Math. Anal. 70, 351–376 (1911)

9. Bialecki, B.: Sinc-Collocation Methods for Two-Point Boundary Value Problems.
IMA J. Num. Anal. 11, 357–375 (1991)

10. Stenger, F.: Matrices of Sinc methods. J. Comp. Appl. Math. 86, 297–310 (1997)
11. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer,

New York (1993)
12. Jarratt, M.: Galerkin Schemes and the Sine-Galerkin Method for Singular Sturm-

Liouville Problems. J. Comp. Phys. 89, 41–62 (1990)
13. El-Gamel, M., Cannon, J.R., Zayed, A.I.: Sinc-Galerkin Method for Solving Linear

Sixth-Order Boundary-Value Problems. Math. Comp. 73, 1325–1343 (2003)



Hybrid Solution of Two-Point Linear Boundary Value Problems 391

14. Narasimhan, S., Chen, K., Stenger, F.: The Harmonic-Sinc Solution of the Laplace
Equation for Problems with Singularities and Semi-Infinite Domains. Num. Heat
Transf. 33, 433–450 (1998)

15. Baumann, G., Mnuk, M.: Elements. Math. J. 10, 161–186 (2006)
16. Kowalski, M.A., Sikorski, K.A., Stenger, F.: Selected topics in approximation and

computation. Oxford Univ. Press, New York (1995)
17. Lund, J., Bowers, L.K.: Sinc methods for quadrature and differential equations,

Soc. for Industrial and Applied Mathematics, Philadelphia (1992)
18. Lybeck, N.J., Bowers, K.L.: Sinc methods for domain decomposition. Apl. Math.

Comp. 75, 13–41 (1996)



Author Index

Abramov, S.A. 1

Banshchikov, Andrey V. 18
Barkatou, M.A. 1
Baumann, G. 373
Berghammer, Rudolf 29
Blinkov, Yuri A. 94
Braßel, Bernd 29
Bruno, Alexander 45
Buchberger, Bruno 269
Burlakova, Larisa A. 54

Cheng, Jin-San 89
Chuluunbaatar, O. 334

Ding, Ling 66

Edneral, Victor 45

Faugère, Jean-Charles 79
Flegontov, Alexander V. 81

Gao, Xiao-Shan 89
Gerdt, Vladimir P. 94, 106, 334
Giesbrecht, Mark 118
Gogin, Nikita 240
Gusev, A.A. 334

Inoue, Shutaro 130
Irtegov, Valentin 142

Karasözen, Bülent 322
Kerber, Michael 155
Khmelnov, D.E. 1
Kim, Myung Sub 118
Kitamoto, Takuya 168

Kornyak, Vladimir V. 180
Kragler, Robert 106

Lasaruk, Aless 195
Li, Jia 89

Malaschonok, Natasha 213
Marusina, M.J. 81
Monagan, Michael 226
Mylläri, Aleksandr 240

Nagasaka, Kosaku 247
Nemtsev, Andrew 322
Noro, Masayuki 259

Prokopenya, Alexander N. 106

Regensburger, Georg 269
Rosenkranz, Markus 269
Rostovtsev, V.A. 334

Saldarriaga Vargas, Clarita 284
Schost, Éric 66
Shemyakova, Ekaterina 299
Sturm, Thomas 195
Suzuki, Akira 310

Tec, Loredana 269
Titorenko, Tatyana 142
Tsybulin, Vyacheslav 322

Vinitsky, S.I. 334
Vorozhtsov, Evgenii V. 350
Vrbik, Paul 226

Youssef, M. 373


	5743
	Preface
	Organization
	Table of Contents
	On m-Interlacing Solutions of Linear Difference Equations
	Introduction
	Search for m-Interlacing Solutions of L for a Fixed m
	The Hendriks–Singer Procedure for Finding m-Interlacing Solutions
	A Simplification of the Hendriks–Singer Procedure

	Some Special Cases
	When C Is Not Algebraically Closed
	When L Is Irreducible

	Some Properties of the Space Vm(L) 
	The Dimension of the Space Vm(L)
	Structure of m-Interlacing Solutions
	Cyclic Permuted Solutions

	Implementation
	Liouvillian Solutions
	Finding the Operator H and a Basis for the Space Vm(H) for a Fixed m
	Finding All Liouvillian Solutions


	Parametric Analysis of Stability Conditions for a Satellite with Gyrodines
	Introduction
	Description of the System of Bodies under Investigation
	Constructing a Symbolic Model
	Stability Analysis
	Conclusion

	Computing and Visualizing Closure Objects Using Relation Algebra and RelView
	Introduction
	Relation Algebra
	Relations and Relation Algebra
	Pairing and Related Constructions
	The Representation of Sets
	Extremal Elements of Orders and Lattices

	Computing and Visualizing Closure Objects
	Closure Systems
	Closure Operations
	Full Implicational Systems and Join-Congruences
	Dependency Relations

	Conclusion

	On Integrability of a Planar ODE System Near a Degenerate Stationary Point
	Introduction
	About Normal Form and the Condition A
	The Simplest Nontrivial Example
	Remark
	Conclusion

	Conditions of D-Stability of the Fifth-Order Matrices 
	Introduction
	Some Definitions

	The 5th-Order Matrix
	The Second-Order Hurwitz Determinant
	The Fourth-Order Hurwitz Determinant
	 On the Sufficient Conditions of D-Stability


	Code Generation for Polynomial Multiplication
	Introduction
	Preliminaries: Graphs for Linear Maps
	Polynomial Multiplication and Its Variants
	Divide-and-Conquer Algorithms
	Plain Multiplication
	Transposed Product
	Short Product

	Code Generation
	Experiments
	Conclusion

	Solving Structured Polynomial Systems and Applications to Cryptology
	The Comparison Method of Physical Quantity Dimensionalities
	Introduction
	The Theory of Dimensionalities 
	Calculation of Admitted Lie Operators of Scaling Group
	The Heat Equation
	The KdV Equation
	The Boundary Layer Equation
	The Equation of Self-balancing Beam Oscillation

	Conclusion

	Ambient Isotopic Meshing for Implicit Algebraic Surfaces with Singularities
	The Main Results
	Strong Projection Curve
	Segregating Box for Points and Curve Segments

	Involution and Difference Schemes for the Navier–Stokes Equations
	Introduction
	Involutive Form of the Navier–Stokes Equations
	Discretization
	Difference Elimination of Partial Derivatives
	Consistency Issues
	Conclusions

	A Mathematica Package for Simulation of Quantum Computation
	Introduction
	Quantum Circuit and Its Matrix Representation
	Constructing the Circuit Unitary Matrix
	Implementation of the Grover Search Algorithm
	Conclusion

	On Computing the Hermite Form of a Matrix of Differential Polynomials
	Introduction
	Basic Structure and Operations in F[t][D;]
	Existence and Degree Bounds on the Hermite Form
	Computing Hermite Forms by Linear Systems over F(t)
	Conclusions and Future Work

	On the Computation of Comprehensive Boolean Gröbner Bases
	Introduction
	Boolean Gröbner Bases
	Boolean Polynomial Ring
	Gröbner Bases
	Comprehensive Gröbner Bases (Previous Algorithm)

	Alternative Algorithm
	Main Result
	Implementation
	Conclusions

	On Invariant Manifolds of Dynamical Systems in Lie Algebras
	Introduction
	Euler Equations on so(4)
	Finding Invariant Manifolds
	On Bifurcations of Invariant Manifolds

	Euler Equations on so(3,1)
	Obtaining Invariant Manifolds
	On Bifurcations of Invariant Manifolds

	On ``Resonance'' Invariant Manifolds
	On Stability of Invariant Manifolds

	On the Complexity of Reliable Root Approximation
	Introduction
	Root Isolation
	Abbott's Quadratic Interval Refinement
	Analysis of Root Refinement
	Cost of the Initial Sequence
	Cost of the Quadratic Sequence

	Conclusions and Further Work

	Algebraic Approach to the Computation of the Defining Polynomial of the Algebraic Riccati Equation
	Introduction
	Original Algorithm
	Problem Formulations
	Algorithm with Numerical Approach

	Algebraic Algorithm
	Setting
	Preliminaries
	Algorithm Description

	Experiments
	Setting
	Results

	Applications
	Conclusion

	Discrete Dynamics: Gauge Invariance and Quantization
	Introduction
	Discrete Dynamics
	Unification of Space and Internal Symmetries
	Discrete Gauge Principle
	Quantization Based on Finite Group
	Heat Equation from Bernoulli Trials
	Gauge Connection and Quantization
	Simple Model Inspired by Free Particle
	Generalization: Local Quantum Model on Regular Graph

	Conclusion

	Effective Quantifier Elimination for Presburger Arithmetic with Infinity
	Introduction
	Presburger Arithmetic with Infinity
	Normal Forms
	Formulas
	Terms
	Atomic Formulas
	Relevant Combinations of Normal Forms

	Quantifier Elimination
	Complexity
	Elimination Examples
	Conclusions and Further Work

	An Algorithm for Symbolic Solving of Differential Equations and Estimation of Accuracy
	An Algorithm for Laplace Transform Method of Solving Systems of Differential Equations 
	Estimation of Accuracy
	On the Complexity of the Algorithm
	Example
	Conclusion

	Lazy and Forgetful Polynomial Arithmetic and Applications
	Introduction
	Lazy Arithmetic
	Forgetful Arithmetic
	Implementation
	Applications
	The Bareiss Algorithm
	The Extended Subresultant Algorithm


	On the Average Growth Rate of Random Compositions of Fibonacci and Padovan Recurrences
	Introduction
	The Fibonacci Tree and the a.g.r.
	Computer Simulation Model

	A Study on Gröbner Basis with Inexact Input
	Introduction
	Comprehensive Gröbner System with Inexact Input
	Approximate Gröbner Basis with Inexact Input
	Gröbner Basis for Inexact Input as Linear Space
	Gröbner Basis as Linear Space
	Definition of Numerical Gröbner Basis as Linear Space
	How to Compute Numerical Gröbner Basis

	Remarks

	Modular Algorithms for Computing a Generating Set of the Syzygy Module
	Introduction
	Algorithms for Computing Syzygies
	Gröbner Trace Algorithms
	Improvements of Algorithms for Computing Syzygies
	Experiments
	Computation over a Commutative Polynomial Ring
	Computation over Weyl Algebra
	Discussions


	A Symbolic Framework for Operations on Linear Boundary Problems
	Introduction
	An Algebraic Formulation of Boundary Problems
	Composing and Factoring Boundary Problems
	Representation of Integro-differential Operators
	Implementation in Theorema
	Conclusion
	Sample Computations

	Mathematical Model for Dengue Epidemics with Differential Susceptibility and Asymptomatic Patients Using Computer Algebra
	Introduction
	Problem
	Results
	Mathematical Model without Differential Susceptibility
	Mathematical Model with Differential Susceptibility

	Conclusion

	Multiple Factorizations of Bivariate Linear Partial Differential Operators
	Introduction
	Definitions and Notations
	Factorization via Invariants for Hyperbolic Bivariate Operators of Order Three
	Several Factorizations of One Operator
	Completely Reducible Operators
	Conclusions

	Computing Gröbner Bases  within Linear Algebra
	Introduction
	A Sufficient Condition to Get a Gröbner Basis
	T-Closed K-Reduced Bases
	Finding a Candidate
	Appropriate Term Order
	The Main Algorithm
	Optimizations
	Extending Bound
	Reduction Matrix
	Optimized CloseAndLReduce

	An Implementation
	Conclusion and Remarks

	A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid in a Porous Medium 
	Darcy Convection Equations for Multicomponent Fluids
	Staggered Grids
	Discrete Finite-Difference Operators
	Semi-discretization
	Computational Procedure

	Numerical Results

	Symbolic-Numerical Algorithms for Solving Parabolic Quantum Well Problem with Hydrogen-Like Impurity
	Introduction
	Problem Statement
	Symbolic Algorithm for Evaluating the Asymptotic Forms of Matrix Elements
	Symbolic Algorithm for Evaluation the Asymptotic Forms of Radial Solutions
	Test Example
	Conclusion
	Acknowledgements.


	New Analytic Solutions of the Problem of Gas Flow in a Casing with Rotating Disc
	Introduction
	Governing Equations and Finite-Difference Method
	Couette Flow
	Implementation of the Schultz-Grunow Procedure with Mathematica
	Boundary Layer of the Casing Base
	The Boundary Layer of the Disc

	A New Solution for N1=N2=4
	Further Solutions for the Boundary Layer of the Casing Base
	Conclusions

	Hybrid Solution of Two-Point Linear Boundary Value Problems
	Introduction
	Methods of Calculations
	Representation of the Algorithm
	Higher Order BV Problems

	Convergence of the Collocation Method
	Applications
	Non-uniform Bar with Distributed Force
	Non-uniform Beam

	Conclusions

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




