
Chapter 9
Detection of Determinism

In Chap. 2 we have illustrated the applications of ordinal patterns with four exam-
ples. In this chapter we present a further application, this time to the detection
of determinism in noisy time series. Following the common usage of the term in
applied science, “determinism” is meant here as the opposite to statistical indepen-
dence, hence it includes colored noise as well. This application hinges on two basic
properties of ordinal patterns: existence of forbidden patterns in the orbits of maps
(Sects. 1.2, 3.3, and 7.7) and robustness to observational noise (Sects. 3.4.3, and
9.1). We shall actually present two detection methods.

Method I is based on the number of missing ordinal patterns. It proceeds by
(i) counting the number of missing ordinal patterns in sliding, overlapping windows
of size L along the data sequence, (ii) randomizing the sequence, and (iii) repeat-
ing (i) with the randomized sequence. Is the result of step (iii) clearly greater than
the result of step (i), so may we conclude that the original noisy sequence has a
deterministic component.

Method II is based on the distribution of the visible ordinal patterns. This method
proceeds by (i) counting the number of ordinal patterns in sliding, non-overlapping
windows of size L along the data sequence and (ii) performing a χ2 test based
on the results of (i), the null hypothesis being that the data are white noise. Hold
the null hypothesis, so should all possible ordinal L-patterns be visible and evenly
distributed over sufficiently many windows, at variance with what happens in the
case of noisy deterministic data. In the latter case, the number of missing ordinal
patterns is higher, its decay rate with L is slower, and the distribution of patterns is
not necessarily uniform.

Both methods, as other applications of permutation entropy, are conceptually
simple and computationally fast for moderate values of L. But not only this: Method
II compares favorably to the popular Brock–Dechert–Scheinkman (BDS) indepen-
dence test when applied to time series projected from the attractors of the Lorenz
map and the time-delayed Hénon map. The bottom line is that determinism in noisy
multivariate time series can be detected by observing a single component, a possi-
bility that can come in handy in experimental situations.

Noisy univariate and multivariate time series have been intensively studied in the
last few decades [1, 112]. Depending on the noise level of the data, one can expect to
recover the full deterministic dynamics, to reconstruct the geometry of the noise-free
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160 9 Detection of Determinism

signal in some appropriate space, or just to ascertain the existence of an underlying
determinism. The ordinal pattern-based methods described in this chapter falls in
the third category. As a compensation for such a seemingly modest accomplish-
ment, it has a remarkable success even with very high levels of noise. Besides the
BDS method, which is based on the correlation dimension, other detection methods
for determinism use the smoothness of the measure along reconstructed trajectories
[164], functionals of probabilistic distributions [176], or the Higuchi fractal dimen-
sion on Poincaré sections [85].

9.1 Dynamical Robustness Against Observational Noise

Ordinal patterns are robust against small additive perturbations on account of
being defined by inequalities. This property was called conditional robustness in
Sect. 3.4.3. Yet, this property alone would not explain the persistence of forbidden
patterns in the very noisy deterministic sequences that we are going to study in the
next section. It turns out that, in deterministic sequences, there is a second mecha-
nism for robustness, also in case of multi-dimensional maps—the dynamics itself.
The result is an enhancement of the robustness of ordinal patterns against additive
noise, which we call dynamical robustness. A simple explanation follows.

In the sequel we deal with a time series of the form

ξn = f n(x0)+ wn = xn + wn (9.1)

(n ∈ N0, or in practice 0 ≤ n ≤ N − 1), where f is a self-map of the interval
[a, b] ⊂ R and wn are independent and uniformly distributed random variables
(i.e., uniform white noise) in the interval [−η, η]. In order that the noise destroys a
given allowed or forbidden pattern π = 〈π0, . . . , πL−1〉 of the noise-free sequence
(xn)n∈N0 , it must happen that

xπi < xπi+1

but

xπi + wπi > xπi+1 + wπi+1

for some 0 ≤ i ≤ L − 2 and wπi , wπi+1 ∈ [−η, η]. If η is small, this will be
only possible if xπi ≈ xπi+1 , i.e., if f min{πi, πi+1}(x0) is an “approximately” periodic
point with period |πi − πi+1|. We conclude that, indeed, the dynamics imposes an
extra condition on xπi , xπi+1 so that a small amplitude perturbation can reverse their
order.

To put some numbers on this argument, take f (x) = 4x(1 − x), 0 ≤ x ≤ 1,
the logistic map. We know that for η = 0 this map has one forbidden 3 -pattern,
namely, 〈2, 1, 0〉 (Fig. 1.6). In other words, there exists no x ∈ [0, 1] such that
f 2(x) < f (x) < x. The pattern 〈2, 1, 0〉 can appear in the noisy sequence (9.1) by
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a single order reversal if the noise changes the order of xn, xn+1 or the order of
xn+1, xn+2 in the allowed patterns

xn+2 < xn < xn+1 or xn+1 < xn+2 < xn,

respectively. In the first case, this requires xn ≈ xn+1 = f (xn), i.e., xn must be close
to any of the two fixed points of the map: x = 0 or x = 3

4 (see Fig. 1.5). In the
second case, the same applies to xn+1 and xn+2 = f (xn+1). Therefore, it suffices to
discuss the first case.

Consider the fixed point x = 0 and take xn = δ > 0. Then xn+1 = f ′(0)δ +
Rδ2, where R can be estimated with the remainder of the Taylor series. Since ξn ∈
[xn− η, xn+ η] =: In, the inequality ξn+1 < ξn can be fulfilled only if the intervals
In and In+1 overlap, i.e., if

δ ≤ δ0(η) = 1− f ′(0)+√(1− f ′(0))2 + 8Rη

2R
. (9.2)

One can analogously estimate δ+(η) > 0 and δ−(η) > 0 such that if xn ∈ [ 3
4 −

δ−(η), 3
4 + δ+(η)], then xn is sufficiently close to x = 3

4 again in the sense that the
inequality ξn+1 < ξn can hold for η small.

Thus, the probability Pr (η) for two consecutive orbit points (xn, xn+1 or xn+1,
xn+2) to lie sufficiently close to either fixed point so as the pattern 〈2, 1, 0〉 becomes
observable in a noisy orbit of the logistic map by means of a single order reversal is

Pr (η) = μ([0, δ0(η)])+ μ([ 3
4 − δ−(η), 3

4 + δ+(η)]),

where μ is the natural invariant measure for the logistic map,

μ([c, d]) =
∫ d

c

dx

π
√

x(1− x)

(see (1.20)). To make the argument even simpler, observe that once two consecutive
orbit points in xn, xn+1, xn+2 are close to a fixed point, we may assume that the third
one is around as well. In this case, the type of ξn, ξn+1, ξn+2 is going to depend
basically on the type of wn, wn+1, wn+2.

Consider now a string of length N, ξN−1
0 = ξ0, ξ1, . . . , ξN−1, along with the

⌊N
3

⌋

independent random vectors ξn+2
n = ξn, ξn+1, ξn+2, n = 0, 3, 6, . . .. If we pick one

of those vectors, the probability Pr ( 〈2, 1, 0〉 ) that ξn+2 < ξn+1 < ξn holds is then

Pr (〈2, 1, 0〉) ≈ Pr (η) Pr {wn+2 < wn+1 < wn} )

= Pr (η) · 1

6
.

In order to verify these results, the probability P of finding at least once the
pattern 〈2, 1, 0〉 in any of the

⌊N
3

⌋
windows ξ3n, ξ3n+1, ξ3n+2 of the noisy time
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series (ξn)N−1
n=0 , (9.1), was calculated numerically. From the reasoning above, this

probability should be close to 1 − (1 − Pr (η)/6)
⌊N

3

⌋
for the logistic map contami-

nated with additive, uniform white noise of small amplitude η, whereas it should be

1− (1− 1/6)
⌊ N

3

⌋
for uniform white noise only (i.e., ξn = wn in (9.1)). Clearly, the

former probability is greater than the latter because Pr (η) is going to be very small.
This is confirmed by Fig. 9.1.
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Fig. 9.1 Numerical computation (continuous line) and analytical estimation (dashed) of the prob-
ability P of finding the pattern 〈2, 1, 0〉 in any of the

⌊N
3

⌋
windows ξ3n, ξ3n+1, ξ3n+2 of a time

series of length N generated with the logistic map. The noise amplitude is η = 0.0001 (light gray),
η = 0.01 (gray), η = 0.1 (dark gray). The top curve corresponds to uniform white noise. Clearly
the probability P is smaller for a noisy, deterministic time series than for uniform white noise

9.2 Detection of Determinism I: Number of Missing Ordinal
Patterns

We already know (Sect. 1.2) that if (xn)n∈N0 is a univariate time series generated
by a piecewise monotone interval map f , then there exist ordinal patterns which are
forbidden for f . The theoretical situation in higher dimensions is less satisfactory
in that the existence of forbidden patterns has been proved so far only under the
somewhat restrictive condition of expansiveness (Sect. 7.6). There is nevertheless
numerical evidence that forbidden ordinal patterns are also a general feature of
higher dimensional dynamics. Since, on the other hand, univariate and multivariate
random sequences have no forbidden patterns with probability 1, we conclude that
the existence of forbidden patterns can be used as a fingerprint of deterministic orbit
generation. Here “random sequence” means generated by an unconstrained, stochas-
tic process taking on values in an interval. In summary, the difference between
deterministic and random time series is clear-cut from an ordinal-theoretical point
of view: the former have forbidden patterns while the latter have not.

However, when it comes to exploit this forbidden pattern-based strategy to detect
determinism, two important practical issues arise: finiteness and noise contamination.
Finiteness produces false forbidden patterns, that is, ordinal patterns which are
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missing in a finite (segment of a) random sequence without constraints. Noise
destroys forbidden patterns; for instance, a forbidden pattern of the “clean” sequence
can turn visible because of additive random fluctuations. Let us mention in passing
that were not for the observational noise, determinism could be easily ascertained,
for example, with graphical methods. It is therefore interesting that ordinal patterns
themselves provide the remedy to the two said issues. First of all, the number of false
forbidden patterns of a fixed length always decreases with the length of the time
series. Second, “true” forbidden patterns (i.e., forbidden patterns for an underlying
deterministic dynamics) possess an additional dynamical robustness against additive
noise (Sect. 9.1). This translates into a greater number of missing ordinal patterns in
a noisy deterministic sequence than in a random one, and also to a slower decay rate
with the length of the sequence. We shall shortly present numerical evidence that
forbidden patterns persist in very noisy deterministic data—so noisy that the tradi-
tional methods [1, 112, 152] fail to uncover the underlying deterministic dynamics.
But before coming to this point, let us dwell on some practical issues.

In practice one uses sliding windows of size L to comb a finite sequence (xn)N
n=0

for visible ordinal L-patterns. Note that a sequence of length N allows N − L + 1
windows of size L, for 2 ≤ L ≤ N. Thus, in order to allow every possible ordinal
pattern of length L to occur in a time series of length N, the condition L! ≤ N−L+1
must hold. Moreover, in cases where undersampling might occur, N , L! + L − 1
should also hold. As a rule of thumb we chose (L + 1)! ≤ N in the numerical
simulations below, although L! ≤ N would do also in our case (very noisy data).
Furthermore, (xn)N

n=0 will be initial segments of variable length N ≤ Nmax = 8000,

taken from a sequence (xn)Nmax
n=0 . All these constraints leave L = 4, 5, 6 as interesting

choices for L. In general one takes also moderate values for L, not least because of
the sharp increase of the function L!.

Under these provisos, suppose now that the ordinal pattern π ∈ SL is missing in
a finite noise-free time series. Of course, the odds that a false forbidden pattern per-
sists in a random or deterministic sequence (or sample of sequences) will decrease
exponentially with the number of data (see, e.g., Sect. 9.1). As a result, the number
of false forbidden patterns in (xn)N

n=0 will decay as N increases up to Nmax, the

number of data at our disposal. Otherwise, if (xn)Nmax
n=0 is a deterministic noise-free

time series and π is a forbidden pattern, then π will be missing in (xn)N
n=0 for all

N ≤ Nmax. In other words, the number of true forbidden patterns in (xn)N
n=0 does

not depend on N.
Consider a fixed initial condition x and suppose that πforb = 〈π0, . . . , πL−1〉 is

a forbidden pattern for f . Suppose furthermore that we switch on a discrete-time
random perturbation wk, |wk| ≤ wmax, such that πforb is still missing in the finite

sequence
(
f k(x)+ wk

)N−1
k=0 (due to robustness). Observe that the noisy time series

ξk = f k(x)+wk can be viewed both as a perturbation of an underlying deterministic
dynamics and as a random process correlated with the deterministic dynamics1 f .

1 Sometimes colored noise (i.e., a random process whose variables are statistically dependent) is
numerically simulated in this way. For other methods, see, e.g., [113, 83].
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If the orbit of x would be infinitely long, then the noisy time series had no missing
patterns and πforb would be visible with probability 1. In the finite-length case we are
considering, this is in general not the case; rather, there is a threshold θ = θ (N) (the
greater N, the smaller θ ) such that πforb will do appear in (ξk)

N−1
k=0 only if wmax > θ .

We conclude that amplifying a random perturbation destroys progressively the for-
bidden patterns of the underlying deterministic dynamic.

In the following we are going to test numerically one of the properties discussed
above, namely, the robustness of true forbidden patterns against additive random
perturbations. In order to estimate the average number 〈n(L, N)〉 of missing ordinal
L-patterns in a finite, noisy sequence of length N,

ξk = xk + wk, 0 ≤ k ≤ N − 1,

with xk+1 = f (xk) and wk a random process, we generate 100 samples of length
Nmax = 8000 and normalize the corresponding count of missing patterns of lengths
4 ≤ L ≤ 6. To check the decay of 〈n(L, N)〉 with N, this parameter is allowed to
vary in the range (L + 1)! ≤ N ≤ Nmax. We highlight next a few results obtained
with f being the logistic map and wk being white noise uniformly distributed in the
interval [−wmax, wmax], 0 ≤ wmax ≤ 1.

Figure 9.2 shows 〈n(L, N)〉 when (a) wmax = 0.25, (b) wmax = 0.50, and (c)
wmax = 1 and f k(x) = 0 (noise only), respectively. Note the different orders of
magnitude of the vertical scales. Needless to say, 〈n(L, N)〉 decays with increasing N
because the greater the N, the more unlikely that an L-pattern is missing in a noisy or
random sequence of length N; this is a statistical effect. The important features for us
are the magnitude of 〈n(L, N)〉 and its decay rate with N, since these two properties
are tightly related to the forbidden patterns of the underlying deterministic dynamic
via robustness: the smaller the wmax, the closer we are to the deterministic case,
therefore, the more missing ordinal patterns and the slower their decrease with N.
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Fig. 9.2 Average number of missing ordinal patterns of length L found in a time series of length
N, 〈n(L, N)〉, for noisy series of the logistic map with wmax = 0.25 (a), wmax = 0.5 (b), and for a
series of uniformly distributed noise (c)

Figure 9.3 depicts ξk+1 vs ξk in the previous cases (a) and (b). The higher order
of magnitude of, e.g., 〈n(6, N)〉 in Fig. 9.2(b) as compared to Fig. 9.2(c) signalizes
an underlying deterministic law, in spite of the fact that Fig. 9.3(b) hardly gives any
clue about this.
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Fig. 9.3 Return map for noisy time series from the logistic map with wmax = 0.25 (a) and
wmax = 0.5 (b). In the latter case, the high noise level does not allow to recognize the underlying
deterministic dynamics. However, the number of missing ordinal patterns is sensibly higher than
in the purely random case
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Fig. 9.4 Number of missing ordinal patterns of length L found in a noisy time series of the logistic
map with length 6000 vs the uniform noise amplitude wmax

Finally, Fig. 9.4 nicely illustrates the resistance of the true forbidden patterns to
disappear with increasing noise levels. In this figure, N = 6000, L = 5, 6, and
0 ≤ wmax ≤ 0.5.

These numerical simulations suggest the following simple-minded, three-step
method to discriminate noisy, deterministic, finite time series from random ones,
at least when the noise is white.

(a) Compute the number of missing ordinal L-patterns of adequate length (say
(L + 1)! ≤ N) in sliding windows along the sequence. It is convenient to
use segments of variable length N and to draw the corresponding curves, as
in Fig. 9.2.

(b) Randomize the sequence, i.e., change the temporal structure of the data in a
random way.

(c) Proceed as in step (a) with the randomized sequence.
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If the results of (a) and (c) are about the same, the sequence is very likely not
deterministic (or the observational noise is so strong as compared to the determin-
istic signal that the latter has been completely masked). Otherwise, the sequence
stems from a deterministic one. Needless to say, the method is more reliable if a sta-
tistically significant sample of sequences can be obtained, for instance, by cutting a
long sequence into shorter pieces. In the next section we discuss a more quantitative
method.

9.3 Detection of Determinism II: Distribution of Visible Ordinal
Patterns

Consider once more a univariate or multivariate time series of the form

ξn = f n(x0)+ wn, (9.3)

(0 ≤ n ≤ N − 1) where wn is white noise, i.e., outcomes of an independent and
identically distributed (i.i.d.) random process. In order to differentiate white noise
from a noisy deterministic time series of form (9.3), the perhaps simplest tool con-
sists in counting visible ordinal patterns before and after randomizing the time series
under scrutiny; depending on whether the number of visible patterns remains about
the same or decreases significantly, we may conclude that the series is random or
deterministic, respectively. This is the method discussed in Sect. 9.2.

A more quantitative method calls for performing a chi-square test based on the
count of visible ordinal patterns. The null hypothesis reads

H0: the ξn are i.i.d. (9.4)

From a statistical point of view, this method is going to be a test of independence
since the alternative to H0 includes also colored noise.

The method goes as follows. Take sliding windows of size L ≥ 2, overlapping at
a single point (i.e., the last point of a window is the first point of the next one) down
the sequence ξN−1

0 = ξ0, . . . , ξN−1. For brevity, we call them “non-overlapping”
windows. The number of such windows is

K =
⌊

N − 1

L− 1

⌋
, (9.5)

each comprising the entries

ek = ξkL−k, . . . , ξ(k+1)L−(k+1), 0 ≤ k ≤ K − 1.

Notice that if the variables ξ0, ξ1, . . . , ξN−1 are independently drawn from the same
probability distribution, then the ordinal L-patterns defined by the components of
ek ∈ R

L, which we denote by π (ek) ∈ SL, will also be independent and, moreover,
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uniformly distributed random variables. Therefore, if one or several ordinal patterns
are missing in a sample obtained using non-overlapping windows, this might be a
statistically significant signal that independence and/or the equality of the distribu-
tion are/is not fulfilled.

Given the non-overlapping windows {ek ∈ R
L : k ≥ 0} corresponding to an arbi-

trarily long time series {ξn : n ≥ 0}, suppose that some ordinal patterns of length L
are missing in the initial segment ξ0, ξ1, . . . , ξN−1. Let νπ be the number of ek’s
such that ek is of type π ∈ SL (i.e., π (ek) = π ). Thus, νπ = 0 means that the
L-pattern π has not been observed.

In order to accept or reject the null hypothesis H0, (9.4), based on our observa-
tions, we apply a chi-square goodness-of-fit hypothesis test with statistic [135]

χ2(L) =
∑

π∈SL

(νπ − K/L!)2

K/L!

= L!
K

⎛

⎝
∑

π∈SL

ν2
π − 2

K

L!
∑

π∈SL

νπ +
(

K

L!
)2 ∑

π∈SL

1

⎞

⎠

= L!
K

∑

π∈SL

ν2
π − 2K + K

= L!
K

∑

π∈SL : visible

ν2
π − K, (9.6)

since (i)
∑

π∈SL
νπ = K and (ii) νπ = 0 if π is missing. Here K/L! is the expected

relative frequency of an ordinal L-pattern, if H0 holds true. In the affirmative case,
χ2 = χ2(L) converges in distribution (as K →∞) to a chi-square distribution with
L! − 1 degrees of freedom. Thus, for large K, a test with approximate level α is
obtained by rejecting H0 if χ2 > χ2

L!−1, 1−α
, where χ2

L!−1, 1−α
is the upper 1 − α

critical point for the chi-square distribution with L! − 1 degrees of freedom [135].
In our case, the hypothetical convergence of χ2 to the corresponding chi-square
distribution may be considered sufficiently good if νπ > 10 for all visible L-patterns
π , and

K

L! > 5. (9.7)

Notice that since this test is based on distributions, it could happen that a deter-
ministic map has no forbidden L-patterns, thus νπ �= 0 for all π ∈ SL; however, the
null hypothesis be rejected because those νπ ’s are not evenly distributed.
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9.4 A Benchmark

A well-known benchmark for independence in time series is the Brock–Dechert–
Scheinkman (BDS) test [38, 193], which is based on the correlation dimension.
Since the numerical simulations below use the algorithm provided in [136], we
follow this reference for the basics of the BDS test.

Let Xt, t ≥ 1, be i.i.d. random variables, and

Iε(x, y) =
{

1 if |x− y| < ε,
0 otherwise.

The probability that two length-m vectors are within ε can be estimated by the cor-
relation sum

Cm, n(ε) = 2

n(n− 1)

n∑

s=1

n∑

t=s+1

m−1∏

j=0

Iε(Xs−j, Xt−j).

It is shown in [38] that

Wm, n(ε) = √n
Cm, n(ε)− Cm

1, n(ε)

σm, n(ε)

converges in distribution to a standard normal distribution. The normalization
σm, n(ε) is given by

σ 2
m, n(ε) = 4

⎡

⎣Bm + 2
m−1∑

j=1

Bm−jC2j + (m− 1)2C2m − m2BC2m−2

⎤

⎦ ,

where C is consistently estimated by C1, n(ε) and B can be estimated by

Bn(ε) = 6

n(n− 1)(n− 2)

n∑

t=1

n∑

s=t+1

n∑

r=s+1

hε(Xt, Xs, Xr),

hε(i, j, k) = 1

3

[
Iε(i, j)Iε(j, k)+ Iε(i, k)Iε(k, j)+ Iε(j, i)Iε(i, k)

]
.

A statistically significant non-zero value of Wm, n(ε) is evidence for determinism
in the univariate time series {Xt : t ≥ 1}.

This method relies on the selection of the parameters m and ε. Following the
usual procedure [140], we take ε = 0.9j with j = 0, 1 , 2, . . .. The criterion to say
whether a combination of m and ε is “adequate” call for evaluating if a random time
series is accepted as deterministic using this test the number of cases prescribed by
the significance level of the test α.
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9.5 Numerical Simulations

As underlying deterministic time series we use projections on the first coordinate of
orbits generated by the Lorenz and time-delayed Hénon maps (this amounts in prac-
tice to using the standard lexicographical order). The additive noise wn is modeled
as Gaussian white noise,

E(wm · wn) = σ 2δmn

(E stands for expectation value), with different standard deviations σ . Simulations
with uniformly distributed noise yield similar results.

Two kinds of results are going to be presented in the two next sections: (i) Plots of
the number of missing ordinal patterns as in Sect. 9.2 and (ii) plots of the distribution
of the χ2 statistic. Although the first ones provide only qualitative information, they
can eventually complement the information provided by the second ones, as we shall
see in the case of the Lorenz map. The specifics of plots (i) and (ii) are as follows.

(i) Let Nmax denote the length of the data sequence under scrutiny and let n(L, N)
be the number of missing L-patterns in the initial segment ξ0, ξ1, . . . , ξN−1 of
variable length N ≤ Nmax. The numbers n(L, N) are determined with over-
lapping sliding windows of sizes 4 ≤ L ≤ 7. In order to make the most of
sequences of length Nmax = 8000, we take this time

L! � N ≤ Nmax.

An average number 〈n(L, N)〉 is then estimated from 100 sequences.
(ii) Non-overlapping windows are used for the chi-square test of independence

based on the distributions of ordinal L-patterns, with statistic (9.6)

χ2 = χ2(L) = L!
K

∑

π∈SL : visible

ν2
π − K. (9.8)

Here, K =
⌊

N−1
L−1

⌋
is the number of non-overlapping windows of size L in a data

sequence of length N, (9.5). The window sizes in the simulations are L = 4, 5.
For L = 4, the acceptance/rejection thresholds of the null hypothesis (9.5) at levels
α = 0.10, 0.05 are

χ2
23, 0.90 = 32.01, χ2

23, 0.95 = 35.17, (9.9)

respectively. For L ≥ 5, corresponding to degrees of freedom over 100, the follow-
ing approximation for the thresholds χ2

L!−1, 1−α
is used [135]:

χ2
L!−1, 1−α ≈ (L! − 1)

(
1− 2

9(L! − 1)
+ z1−α

√
2

9(L! − 1)

)3

,
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where z1−α is the upper 1 − α critical point for the standard normal distribution,
N (0, 1); in particular, z0.90 = 1.282 and z0.95 = 1.645. Thus,

χ2
119, 0.90 = 139.15, χ2

119, 0.95 = 145.46. (9.10)

Remember from (9.7) that 5L! � K should hold for the chi-square test to be statis-
tically significant. Therefore

5L! � N

L− 1
,

i.e., N � 5(L − 1)L!. In consequence we take sequences of length N = 1000 for
L = 4 and N = 8000 for L = 5. To plot the χ2-value distribution, a sample of
10, 000 sequences was used.

The numerical results are summarized in the following two sections.

9.5.1 The Lorenz Map

The Lorenz map [193] is defined as

xn+1 = xnyn − zn, yn+1 = xn, zn+1 = yn. (9.11)

It has an attractor with Kaplan–Yorke dimension DKY = 2 [193]. Assuming the
well-tested Kaplan–Yorke conjecture DKY = D1, where D1 is the information
dimension, then the fractal dimension D0 satisfies

D0 ≥ D1 = 2.

Figure 9.5 shows the return map ξn+1 = xn+1 + wn+1 vs ξn = xn + wn for a
typical orbit of the Lorenz map on its attractor and additive Gaussian white noise
wn with σ = 0.25 (SNR2� 10 dB). The geometry of the attractor has been com-
pletely washed out by the noise, but the underlying determinism can still be detected
because of the different count of missing ordinal patterns before (Fig. 9.6) and after
(Fig. 9.7) switching off the deterministic signal. Not only the count of missing ordi-
nal patterns is different in these two cases, but also their decay rate with N. The
different behavior in Fig. 9.6 of the curve L = 4, on the one hand, and the curves
L ≥ 5, on the other hand, strongly indicates that the Lorenz map has no forbidden
4-patterns.

Figure 9.8 shows the distribution of the statistic χ2, (9.8), obtained from 10,000
projections xN−1

0 of orbits of the Lorenz map, contaminated with additive Gaussian
noise with σ = 0.25, 0.50 (SNR� 10, 4.0 dB, respectively). Since the rejection

2 SNR is short for “signal-to-noise ratio” and dB is short for “decibel.”



9.5 Numerical Simulations 171

–4 −2 0 2 4
−3

–2

–1

0

1

2

3

ξ
n

ξ n+
1

Fig. 9.5 Return map for a time series of the Lorenz map contaminated with Gaussian white noise
with σ = 0.25 (SNR� 10 dB). The structure of the underlying chaotic attractor has been totally
blurred. However, the count of missing ordinal patterns is sensibly higher than in the purely random
case
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Fig. 9.6 Average number of missing ordinal patterns of length L found in a time series of
length N, 〈n(L, N)〉 (in logarithmic scale), for a noisy series of the Lorenz map with σ = 0.25
(SNR� 10 dB)

threshold of the null hypothesis H0 (9.4) at level α = 0.05 is χ2
23, 0.95 = 35.17 in

(a) and χ2
119, 0.95 = 145.46 in (b), see (9.9), the χ2 test clearly detects determinism.

It is worth noticing that the rejection of H0 in case (a) is due to the non-uniform
distribution of νπ since, according to Fig. 9.6, all 4-patterns are visible in noisy time
series generated by the Lorenz map with N � 500 and σ = 0.25.

Finally, the comparison with the BDS test is shown in Fig. 9.9. There we show
the probability P of rejecting the null hypothesis (9.4) for the 27 possible adequate
BDS tests on a time series ξN−1

0 = (xn + wn)N−1
n=0 of length N = 1000, where

now wn is Gaussian white noise with 0 ≤ σ ≤ 2. In the same figure it is also
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Fig. 9.7 Average number of missing ordinal patterns of length L found in a time series of
length N, 〈n(L, N)〉 (in logarithmic scale), for time series of Gaussian white noise with σ = 0.25

Fig. 9.8 Distribution N(χ2) of χ2 for 10, 000 noisy sequences generated with the Lorenz map, for
L = 4, N = 1000, σ = 0.25 (continuous line) and σ = 0.50 (dashed line) (SNR� 10, 4.0 dB,
respectively) (a) and for L = 5, N = 8000, σ = 0.25 (continuous line) and σ = 0.50 (dashed line)
(SNR� 10, 4.0 dB, respectively) (b)

plotted the probability P of rejecting the null hypothesis using the chi-square test
with the same level α = 0.05. Notice that the chi-square test correctly rejects the
null hypothesis with higher probability than the BDS test in the high-noise regime
(σ ≥ 1), and its performance is comparable to the best one of the BDS test in the
low-noise regime (σ ≤ 1). Put in a different way, the probability of a false positive
is higher with the BDS test. We conclude also from Fig. 9.9 that the BDS test per-
formance strongly depends on the combinations of ε and m; for some combinations,
this method wrongly accepts the null hypothesis even for small values of σ .

9.5.2 The Delayed Hénon Map

The time-delayed Hénon map [194] is defined as

xn = 1− ax2
n−1 + bxn−d, (9.12)
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Fig. 9.9 The continuous lines indicate the probability of rejecting the null hypothesis H0 (“the
time series is i.i.d.”) for a time series projected from the Lorenz map’s attractor, contaminated with
Gaussian white noise with σ up to σ = 2, when applying the BDS test with level α = 0.05. In
total, 27 tests for different combinations of ε and m were performed. The lighter the gray color is,
the bigger is the value of ε used (see text for details). The dashed line indicates the probability of
rejecting H0 when using the chi-square test based on missing ordinal patterns, with the same level
α = 0.05. The chi-square test correctly rejects the null hypothesis more often than the BDS test

where a, b are real constants and d ≥ 1. For d = 1, the time-delayed Hénon map is
equivalent to the logistic map xn+1 = Axn−1(1− xn−1), with [194]

A = b− 1

2a
± 1

2a

√
(b− 1)2 + 4a.

For d = 2 and a = 1.4, b = 0.3, we recover the familiar two-dimensional dissipative
Hénon map.

For a = 1.6 and b = 0.1, Sprott [194] finds the following linear relation between
DKY and d over the range 1 ≤ d ≤ 100:

DKY ∼= 0.192d + 0.699.

The Kaplan–Yorke conjecture implies now

D0 ≥ D1 = DKY ∼= 0.192d + 0.699

for the fractal dimension D0 of the attractor, 1 ≤ d ≤ 100. In particular, D0 ≥
1.083 for d = 2, D0 ≥ 10.299 for d = 50, and D0 ≥ 19.899 for d =
100. Thus, this family of maps provides attractors with a wide range of fractal
dimensions.

Figure 9.10 shows the return map ξn+1 vs ξn for a typical orbit on the attractor
of the time-delayed Hénon map with d = 50, both in the absence of noise, ξn = xn

(a) and corrupted with Gaussian white noise, ξn = xn + wn, with σ = 0.5 (SNR�
1.3 dB) (b). Again, the geometry of the attractor has been completely blurred by the
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Fig. 9.10 Return map for a time series of the time-delayed Hénon map with d = 50 in the absence
of noise (a) and contaminated with Gaussian white noise with σ = 0.5 (SNR� 1.3 dB) (b).
The structure of the underlying chaotic attractor has been totally blurred. Here again the count of
missing ordinal patterns is sensibly higher than in the purely random case

Fig. 9.11 Average number of missing ordinal patterns of length L found in a time series of
length N, 〈n(L, N)〉 (in logarithmic scale), for a noisy series of the time-delayed Hénon map with
σ=0.5 (SNR � 1.3 dB)

presence of the noise. However, it can be seen in Fig. 9.11 that also in this case, the
number of missing ordinal L-patterns found in a time series of length N, 〈n(L, N)〉,
is sensibly larger than in the white noise-only case, Fig. 9.7.

Figure 9.12(a)–(c) depicts the comparison of the chi-square test with the BDS
test for d = 2, d = 50, and d = 100, respectively. Again, the probability of a
false positive is higher with the BDS test. Since we are interested in the detection of
determinism, we may conclude that the chi-square test, based on the distribution of
visible ordinal patterns, is more reliable.

In conclusion, the (conditional+ dynamical) robustness against additive noise of
the forbidden patterns makes them a practical tool to distinguish deterministic, noisy
time series from white noise. It is in this sense that we claim that forbidden patterns
can be used to detect determinism in noisy time series—determinism as opposite to
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Fig. 9.12 Comparison of the chi-square test and the BDS test applied to projections of the time-
delayed Hénon map with d = 2 (a), d = 50 (b), d = 100 (c), and Gaussian white noise with
0 ≤ σ ≤ 2. The continuous lines indicate the probability of rejecting the null hypothesis H0
(“the time series is i.i.d.”) when applying the BDS test with level α = 0.05. In total, 27 tests with
different combinations of ε and m were performed. The lighter the gray color is, the bigger is the
value of ε. The dashed line indicates the probability of rejecting H0 when using the chi-square test
with the same level α = 0.05. Clearly, the chi-square test rejects the null hypothesis more often
than the BDS for all noise values and for the three values of d

statistical independence. In fact, determinism is usually equated to statistical depen-
dence among the observations in applications. On the other hand, the discrimination
of deterministic, noisy time series from colored noise seems problematic, although
some interesting methods have been proposed; see, e.g., [119] for a method based
on nonlinear predictability.
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