
Chapter 6
Metric Permutation Entropy

The word “entropy” was coined by the German physicist R. Clausius (1822–1888),
who introduced it in thermodynamics in 1865 to measure the amount of energy
in a system that cannot produce work. The fact that the entropy of an isolated
system never decreases constitutes the second law of thermodynamics and clearly
shows the central role of entropy in many-particle physics. The direction of time
is then explained as a consequence of the increase of entropy in all irreversible
processes. Later on the concept of entropy was given a microscopic interpretation in
the foundational works of L. Boltzmann (1844–1906) on gas kinetics and statistical
mechanics [184]. The celebrated Boltzmann’s equation reads in the usual physical
notation

S = kB ln �, (6.1)

where here S is the entropy of the thermodynamical system, kB is a physical constant
(called Boltzmann’s constant, kB = 1.3806504(24)× 10−23 J/K) and � is the num-
ber of microscopic states consistent with the macroscopic constraints. In this realm,
the entropy is a measure of the microscopic disorder of the system, the entropy
being higher the more disordered the system.

In 1948 the word entropy came to the fore in the new context of information
theory, coding theory, and cryptography through the seminal papers of C.E. Shan-
non1 (1916–2001) [186]. This time, entropy measures the average uncertainty about
the outcome of a random variable. More generally, the entropy rate measures the
uncertainty per symbol (time unit, channel use, etc.) of a stationary stochastic pro-
cess, eventually modeling an information source. Instead of associating entropy with
uncertainty, one can alternatively speak of the average information gained by per-
forming a random experiment. Entropy plays a paramount role in all information-
related fields, being at the heart of the fundamental results.

1 According to [64] “When Shannon had invented his quantity and consulted von Neumann on
what to call it, von Neumann replied: ‘Call it entropy. It is already in use under that name and
besides, it will give you a great edge in debates because nobody knows what entropy is anyway.’ ”

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_6,
C© Springer-Verlag Berlin Heidelberg 2010

105

106 6 Metric Permutation Entropy

Shannon’s ideas, properly transformed, were incorporated by A.N. Kolmogorov
(1903–1987) into ergodic theory in 1958 [126] to measure the randomness of deter-
ministic dynamical systems. Kolmogorov’s proposal was improved a short time later
by Sinai [189]. The result became the most important invariant in the theory of
discrete and continuous dynamical systems.

Since then the concept of entropy has evolved along different ways: Rényi
entropy, topological entropy, sequence entropy, Tsallis entropy, directional entropy,
permutation entropy, epsilon–tau entropy, etc. The basics of Shannon entropy, met-
ric (Kolmogorov–Sinai or measure-theoretical) entropy, and topological entropy are
systematized in Annex B.

Permutation entropy, both in the metric version (this chapter) and in the topolog-
ical version (next chapter), was introduced by Bandt, Keller, and Pompe in [29] (see
[28] as well). The main ingredient of permutation entropy is the ordinal patterns we
studied in Chap. 3. As we shall see below, the definition of the metric permutation
entropy of an information source is formally the same as Shannon’s entropy, except
for the fact that now probabilities refer not to length-L blocks of symbols but to the
length-L ordinal patterns realized by them (assuming, of course, that those symbols
can be ordered).

On defining the metric permutation entropy of maps, we depart from [29] to fol-
low basically Kolmogorov’s strategy: coarse-grain the state space with a partition,
apply the definition of (in our case, permutation) entropy to the resulting symbolic
dynamics, and then refine successively the original partition into the partition into
separate points. Moreover, the partitions used may be taken to be product, uniform
partitions, making possible the numerical estimation of metric permutation entropy
under rather general conditions. Most importantly, we shall show that metric permu-
tation entropy converges to the conventional metric entropy for ergodic self-maps
of n-dimensional intervals.

6.1 The Metric Permutation Entropy of a Finite-State Process

Let X = {Xn}n∈N0 be a random process with finite state space S (see Annex A.3).
We take without restriction S = {1, 2, . . . , |S|}. As noted in Example 2, the relation
between length-L words and length-L ordinal patterns is in general many-to-one.
This is due to the fact that ordinal patterns do not take into account the sizes of the
elements being compared, but only their relative order. The same happens with the
ranks or rank variables, which are the outputs of a random process R = {Rn}n∈N0

subsidiary of X, defined as follows:

Rn = |{Xi, 0 ≤ i ≤ n:Xi ≤ Xn}| =
n∑

i=0

δ(Xi ≤ Xn),

where as usual the δ-function of a proposition is 1 if it holds and 0 otherwise. By def-
inition, Rn is a discrete random variable with range {1, . . . , n+1}, and the sequence

6.1 The Metric Permutation Entropy of a Finite-State Process 107

R = {Rn}n∈N0 builds a discrete-time, non-stationary stochastic process. The point
about introducing rank variables is that the relation between length-L ordinal pat-
terns π (xn+L−1

n) and length-L ranks rn+L−1
n = rn, rn+1, . . ., rn+L−1 is one-to-one.

The many-to-one relation between XL−1
0 and RL−1

0 will be written as

RL−1
0 = rank (XL−1

0). (6.2)

Ranks are specially useful in proofs.

Example 10 If, as in Example 2, S = {a, b, c} with a < b < c and x2
0 = c, a, a,

then r2
0 = 1, 1, 2. All other words defining the same ordinal pattern π (x2

0) = 〈1, 2, 0〉
define also the same rank variables:

r2
0 = 1, 1, 2 = rank (c, b, b) = rank (c, a, b) = rank (b, a, a).

Having defined the sibling concepts of ordinal patterns and rank variables of
finite-alphabet sequences, we can proceed now very much the same way as we
did when defining Shannon’s entropy (rate) of stochastic processes or information
sources in Sect. 1.1.1 (see also Annex B.1), this time though bookkeeping ordinal
patterns instead of symbol blocks.

In this spirit, the metric permutation entropy of a stochastic process X =
{Xn}n∈N0 is defined as

h∗(X) = lim
L→∞ h∗(XL−1

0), (6.3)

provided the limit exists, where

h∗(XL−1
0) = −1

L

∑

x0,..., xL−1

p(π (xL−1
0)) log p(π (xL−1

0))

is the metric permutation entropy of order L ≥ 2 of X. Here p(π (xL−1
0)) is the

probability for the length-L block xL−1
0 = x0, . . . , xL−1 to be of type π (xL−1

0) ∈ SL.
Alternatively,

h∗(XL−1
0) = −1

L

∑

r0,...,rL−1

p(rL−1
0) log p(rL−1

0) = h(RL−1
0), (6.4)

where p(rL−1
0) is the probability for the block xL−1

0 to define the rank vector rL−1
0 =

r0, . . . , rL−1 (remember that the relation between π (XL−1
0) and RL−1

0 = rank(XL−1
0)

is one-to-one). In both cases,

h∗(X) = h(π (X)) = h(R),

where h(·) denotes the Shannon entropy of the corresponding stochastic process.

108 6 Metric Permutation Entropy

In case that the random process X is stationary, there is still a third way to look
at its metric entropy permutation. If (SN0 ,B�(S), m, �) is the sequence space model
of X (see Annex A.3), then the non-empty cylinder sets

Cπ = {(xn) ∈ SN0 :xL−1
0 is of type π ∈ SL}

build a partition of (SN0 ,B�(S), m) with m(Cπ) = Pr{π (XL−1
0) = π} = Pr{RL−1

0 =
rL−1

0 }, where RL−1
0 = rank (XL−1

0), and 1 ≤ rk ≤ k + 1 for k = 0, . . . , L − 1.
Therefore

h∗(XL−1
0) = −1

L

∑

π∈SL

m(Cπ) log m(Cπ). (6.5)

As a result, the permutation entropy is sensitive to the measures of non-trivial
order relationships observed in a word, as the Shannon entropy is sensitive to the
measures of the different word values themselves.

When stationarity is important, as in (6.5), we call X an information source or
just a source.

In the next lemma we use the conditional entropy of a random variable Y given
another random variable X, H(Y |X), which is the expected value of the entropies
of the conditional distributions averaged over the conditioning variable X (see
Annex B, (B.5)).

Lemma 7 Given an ergodic source X = {Xn}n∈N0 , the equality

lim
k→∞H(Rk+l

k |Xk−1
0) = lim

k→∞H(Xk+l
k |Xk−1

0)

holds for all l ≥ 0.

That is, given a sufficiently long tail of previously observed symbols, the later
ranks can be predicted virtually as well as the symbols themselves. Heuristically,
this is because the rank of a late variable is sensitive effectively to the cumulative
distribution function of the source, approximated by the normalized sum of Xk−1

0 . In
turn, this means that the information contained in Rk is the same as the information
in Xk.

Proof Consider Rk =∑k
i=0 δ(Xi ≤ Xk). For a ∈ S = {1, . . . , |S|} define the sample

frequency of the letter a in the word xk
0, k ≥ 0, to be

ϑk(a) = 1

k + 1

k∑

i=0

δ(Xi = a).

With the help of ϑk(a) we may express Rk in terms of Xi, 0 ≤ i ≤ k, namely,

Rk(Xk) = (k + 1)
Xk∑

a=1

ϑk(a),

6.1 The Metric Permutation Entropy of a Finite-State Process 109

where we assume the outcomes X0, . . . , Xk to be known. Then, the identity

Pr{Rk = y} =
|S|∑

q=1

Pr{Xk = q}δ (Rk(q) = y) (6.6)

gives us the probability for observing some Rk with value y ∈ {1, . . . , k + 1} by
means of Pr{Xk = q}, 1 ≤ q ≤ |S|. Since, given Xk−1

0 (k ≥ 1), Rk is a deterministic
function of the random variable Xk, i.e., Pr{Rk = y|Xk = q} = δ(Rk(q) = y), (6.6)
can be seen as an application of the law of total probability.

Without loss of generality, we may first rearrange the sum in (6.6) to consider
only those symbol values q with non-zero Pr{Xk = q}, summing to N ≤ |S|. Expand
the sum,

Pr {Rk = y} = Pr{Xk = 1}δ [y = (k + 1)ϑk(1)
]

+Pr{Xk = 2}δ [y = (k + 1)(ϑk(1)+ ϑk(2))
]

+ · · · + Pr{Xk = N}δ [y = (k + 1)(ϑk(1)+ · · · + ϑk(N))
]

.

Suppose all the relevant sample frequencies ϑk(1), . . . , ϑk(N) are greater than zero.
This means that for any y, only a single one of the δ-functions can be non-zero,
and hence we have a one-to-one transformation taking non-zero elements from
the distribution Pr{Xk} without change into some bin for Pr{Rk}. Since entropy
is invariant to a renaming of the bins, and the remaining zero probability bins
add nothing to the entropy, we conclude that, if ϑk(a) > 0 for all a where the
true probability Pr{Xk = a} > 0 (i.e., a = 1, . . . , N after a hypothetical rear-
rangement), then H(Rk|Xk−1

0) = H(Xk|Xk−1
0) for k ≥ 1. Because of the assumed

ergodicity, we can make the probability that ϑk(a) = 0 when Pr{Xk = a} > 0
to be arbitrarily small by taking k to be sufficiently large, and the claim follows
for l = 0.

This construction can be extended without change to words Xk+l
k of arbitrary

length l+ 1 ≥ 1 via

Pr{Rk+l
k = y0 . . . yl}

=
N∑

q0,...,ql=1

Pr{Xk+l
k = q0 . . . ql}δ(Rk(q0) = y0) . . . δ(Rk+l(ql) = yl).

Observe that if ϑk(a) > 0 for 1 ≤ a ≤ N, then the same happens with ϑk+1(a),. . . ,
ϑk+l(a) and H(Rk+l

k |Xk−1
0) = H(Xk+l

k |Xk−1
0) follows. Again, ergodicity guarantees

that there exist realizations of Xk+l
0 with sufficiently large k, whose sample frequen-

cies fulfill the said condition. �

Example 11 As way of illustration, suppose that Xn = 0, 1 are independent ran-
dom variables with probability Pr{Xn = 0} = Pr{Xn = 1} = 1

2 . Given xk−1
0 =

110 6 Metric Permutation Entropy

x0 . . . xk−1 ∈ {0, 1}k, set N0 =
∣∣∣{i:xi = 0 in xk−1

0 }
∣∣∣, 0 ≤ N0 ≤ k. Consider the case

l = 1 in Lemma 1. There are two possibilities:

(i) 0 ≤ N0 ≤ k − 1. Then

xk+1
k = 0, 0 ⇒ rk+1

k = N0 + 1, N0 + 2,
xk+1

k = 0, 1 ⇒ rk+1
k = N0 + 1, k + 2,

xk+1
k = 1, 0 ⇒ rk+1

k = k + 1, N0 + 1,
xk+1

k = 1, 1 ⇒ rk+1
k = k + 1, k + 2.

Each of these events has the joint probability

Pr{N0 = ν, Rk+1
k = rk+1

k } =
(k
ν

)

2k
· 1

4
= 1

2k+2

(
k

ν

)

and conditional probability

Pr{Rk+1
k = rk+1

k |N0 = ν} = 1

4
,

where 0 ≤ ν ≤ k − 1 and rk+1
k = (ν + 1, ν + 2), (ν + 1, k + 2), (k + 1, ν + 1),

or (k + 1, k + 2).
(ii) N0 = k. Then

xk+1
k = 0, 0 & xk+1

k = 0, 1 & xk+1
k = 1, 1 ⇒ rk+1

k = k + 1, k + 2,
xk+1

k = 1, 0 ⇒ rk+1
k = k + 1, k + 1.

These events have the joint probabilities

Pr
{

N0 = k, Rk+1
k = (k + 1, k + 2)

}
= 1

2k
· 1

4
· 3 = 3

2k+2
,

Pr
{

N0 = k, Rk+1
k = (k + 1, k + 1)

}
= 1

2k
· 1

4
= 1

2k+2

and conditional probabilities

Pr
{

Rk+1
k = (k + 1, k + 2)|N0 = k

}
= 3

4
,

Pr
{

Rk+1
k = (k + 1, k + 1)|N0 = k

}
= 1

4
.

6.1 The Metric Permutation Entropy of a Finite-State Process 111

From Annex (B.5) and (i)–(ii), we get

H(Rk+1
k |Xk−1

0) = −4×
k−1∑

ν=0

1

2k+2

(
k

ν

)
log

1

4
− 3

2k+2
log

3

4
− 1

2k+2
log

1

4

= 4× 2

2k+2
(2k − 1)+ 8

2k+2
− 3

2k+2
log 3

= 2

(
1− 3

2k+3
log 3

)
.

On the other hand, since the random variables Xn are independent,

H(Xk+1
k |Xk−1

0) = H(Xk+1
k) = 2.

It follows that H(Rk+1
k |Xk−1

0) and H(Xk+1
k |Xk−1

0) coincide in the limit k → ∞, as
guaranteed by Lemma 7.

With Lemma 7 in hand, we turn to the main result.

Theorem 8 For a finite-alphabet ergodic source X, the permutation entropy exists
and equals the metric entropy: h∗(X) = h(X).

Proof We prove inequalities in both directions.

(a) lim supL→∞ h∗(XL−1
0) ≤ h(X). Given XL−1

0 , the corresponding rank variables
are uniquely determined via RL−1

0 = rank (XL−1
0). By [59, Chap. 2, Exercise

5], H(ϕ(Z)) ≤ H(Z) for any discrete random variable Z and function ϕ, so
H(RL−1

0) ≤ H(XL−1
0) and thus (see (6.4)),

lim sup
L→∞

h∗(XL−1
0) = lim sup

L→∞
h(RL−1

0) ≤ lim sup
L→∞

h(XL−1
0) = h(X).

(b) lim infL→∞ h∗(XL−1
0) ≥ h(X). There are several ways to prove this inequality.

Consider, for instance,

lim inf
L→∞ h∗(XL−1

0)

= lim inf
L→∞

1

L
H(RL−1

0)

= lim inf
L→∞

1

L

([
H(RL−1|RL−2

0)+ · · · + H(RL∗+1|RL∗
0)
]
+ H(RL∗

0)
)

for any L∗ < L− 1, where we have applied the chain rule for entropy (B.9). As
Rk

1 = rank (Xk
1) we apply the data processing inequality H(Y|ϕ(Z)) ≥ H(Y|Z)

[59] to all elements of the first term on the right-hand side:

lim inf
L→∞ h(XL−1

0)

≥ lim inf
L→∞

1

L

([
H(RL−1|XL−2

0)+ · · · + H(RL∗+1|XL∗
0)
]
+ H(RL∗

0)
)

.

112 6 Metric Permutation Entropy

By Lemma 7 with l = 0, for any ε > 0 there exists some L∗ such that

∣∣∣H(XL|XL−1
0)− H(RL|XL−1

0)
∣∣∣ < ε

for L > L∗, so

lim inf
L→∞ h(XL−1

0)

> lim inf
L→∞

(
1

L

[
H(XL−1|XL−2

0)+ · · · + H(X1|X0)+ H(X0)
]

+1

L

[
H(RL∗

0)− H(XL∗
0)
]
−
(

L− L∗ − 1

L

)
ε

)

= h(X)− ε,

since H(XL∗
0) = H(X0)+ H(X1|X0)+ · · · + H(XL∗ |XL∗−1

0) (B.9).
The existence of the limit and equality follows from (a) and (b). �

Observe in the proof of Theorem 8 that the ergodicity hypothesis was used only
in part (b) via Lemma 7, while part (a) is completely general. We highlight this
particular result in the following corollary for further reference.

Corollary 4 For finite-alphabet sources X,

lim sup
L→∞

h∗(XL−1
0) ≤ h(X)

holds.

In order to deal further with the general, nonergodic case, we appeal to the
theorem on ergodic decompositions [114]: if � is a compact metrizable space
and T:(�,B, μ) → (�,B, μ) is a continuous transformation, then there is a par-
tition of � into T-invariant subsets �w, each equipped with a sigma-algebra Bw

and a probability measure μw, such that T acts ergodically on each probability
space (�w,Bw, μw), the indexing set being another probability space (W,F , ν).
Furthermore,

μ(E) =
∫

W

∫

E
dμwdν(w) =

∫

W
μw(E)dν(w) (E ∈ B).

The family {μw:w ∈ W} is called the ergodic decomposition of μ.
If � is the shift on the (compact, metric) sequence space (SN0 ,B�(S), m), the

indexing set can be taken to be SN0 , i.e.,

m(C) =
∫

SN0

∫

C
dmsdm(s) =

∫

SN0
ms(C)dm(s) (C ∈ B�(S)), (6.7)

6.1 The Metric Permutation Entropy of a Finite-State Process 113

where m�(s) = ms [89]. This result shows that any source which is not ergodic can
be represented as a mixture of ergodic subsources. The next lemma states that such
a decomposition holds also for the entropy.

Lemma 8 (Ergodic Decomposition of the Entropy) [89] Let (SN0 ,B�(S), m, �) be
the sequence space model of a stationary finite-alphabet random process X =
{Xn}n∈N0 . Let {ms:s ∈ SN0} be the ergodic decomposition of m. If hms (X) is
m-integrable, then

h(X) =
∫

SN0
hms (X)dm(s). (6.8)

Theorem 9 Under the assumptions of Lemma 8,

lim inf
L→∞ h∗(XL−1

0) ≥ h(X) (6.9)

for any finite-alphabet source X.

Proof Fix L ≥ 2. From (6.5) and (6.7),

h∗(XL−1
0) = −1

L

∑

π∈SL

(∫

SN0
ms(Cπ)dm(s)

)
log

(∫

SN0
ms(Cπ)dm(s)

)

≥ −1

L

∑

π∈SL

(∫

SN0
ms(Cπ) log ms(Cπ)dm(s)

)
(6.10)

=
∫

SN0

⎛

⎝−1

L

∑

π∈SL

ms(Cπ) log ms(Cπ)

⎞

⎠ dm(s)

=
∫

SN0
h∗ms

(XL−1
0)dm(s),

where in (6.10) we have used Jensen’s inequality,

�

(∫

SN

fdμ

)
≤
∫

SN

� ◦ fdμ,

with �(t) = t log t convex in [0,∞) and f (s) = ms(Cπ) ≥ 0.

114 6 Metric Permutation Entropy

Therefore,

lim inf
L→∞ h∗(XL−1

0) ≥ lim inf
L→∞

∫

SN0
h∗ms

(XL−1
0)dm(s)

≥
∫

SN0

(
lim inf
L→∞ h∗ms

(XL−1
0)

)
dm(s) (6.11)

=
∫

SN0
h∗ms

(X)dm(s),

where we have applied Fatou’s lemma in (6.11) to the sequence of positive and
(by hypothesis) m-measurable functions h∗ms

(XL−1
0). Observe that h∗ms

(X) exists for

all s ∈ SN0 (and is m-integrable as a function of s) since h∗ms
(X) = hms (X) by

Theorem 8 (X is ergodic with respect to ms). Therefore,

lim
L→∞ inf h∗(XL−1

0) ≥
∫

SN0
hms (X)dm(s) = h(X)

by (6.8). �

Corollary 4 and Theorem 9 yield the following result.

Corollary 5 Under the assumptions of Lemma 8, h∗(X) = h(X) holds for any finite-
alphabet source X.

6.2 Permutation Metric Entropy of Maps

In this section we shall use the previous results on finite-alphabet stochastic pro-
cesses to show that the equality between permutation and metric entropies holds
also for ergodic self-maps on domains homeomorphic to q-dimensional compact
intervals.

We say that a set D ⊂ R
q is a (q-dimensional) simple domain if it is homeo-

morphic to a q-dimensional compact interval (hence D is compact). In particular,
one-dimensional simple domains are close intervals. As a subset of R

q, D is also
ordered. Let D be a q-dimensional simple domain and f :D → D a μ-preserving
map, with μ being a probability measure on (D,B ∩ D) and B being the Borel
sigma-algebra of R

q. In order to define the permutation entropy of f , consider a
q-dimensional compact interval I ⊃ D and product partitions

ι =
q∏

k=1

{I1,k, . . . , INk ,k} (6.12)

of I into |ι| = N1 · · ·Nq subintervals of lengths �j,k, 1 ≤ j ≤ Nk, in each coordinate
k. As for the norm of ι (see (1.13)), the perhaps most popular are the Euclidean
norm,

6.2 Permutation Metric Entropy of Maps 115

‖ι‖ = max
j1,...,jq

(q∑

k=1

�2
jk ,k

)1/2

=: ‖ι‖2 (6.13)

(i.e., ‖ι‖2 is the longest diagonal of the bins Ij1,1× · · ·× Ijq,q ∈ ι) and the supremum
norm,

‖ι‖ = max
j,k

�j,k =: ‖ι‖∞ . (6.14)

For definiteness, the intervals are lexicographically ordered in each dimension, that
is, points in Ij,k are smaller than points in Ij+1,k and, for the multiple dimensions,
Ij,k < Ij,k+1, so there is an order relation between all the N partition elements, and
we can enumerate them with a single index i ∈ {1, . . . , |ι|}:

ι = {Ii:1 ≤ i ≤ |ι|}, Ii < Ii+1

(i.e., points in Ii are smaller than points in Ii+1).
Below we shall consider refinements of product and general partitions. As usual

we write α ≤ β to mean that the partition β is a refinement of the partition α

(of (D,B ∩ D) or of any other measurable space for that matter), meaning that
the elements of α are unions of the elements of β. By an increasing sequence of
partitions we mean therefore a sequence of partitions, (αn)n∈N, such that αn ≤ αn+1
for all n. If, as in the present case, the state space is a product space, then by a
product refinement of partition (6.12) we mean any product partition of I obtained
by subdividing some or all of the intervals {I1,k, . . . , INk ,k}, 1 ≤ k ≤ q.

Furthermore, let κ be the partition of D defined as

κ = ι ∩ D = {Ii ∩ D �= ∅:1 ≤ i ≤ |ι|} = {Kj:1 ≤ j ≤ |κ|}.

In words, κ consists of all subintervals Ii ∈ ι contained in the interior of D, together
with the overlaps with D of those Ii that intersect the boundary of D. Partitions κ of
the form κ = ι ∩ D, where ι is a product partition and D a simple domain, will be
called quasi-product partitions; if, moreover, ι is a box (i.e., uniform) partition, κ

will be called a quasi-box partition. For simplicity, we set ‖κ‖ = ‖ι‖.
Next let Xκ = {Xκ

n }n∈N0 be the symbolic dynamics associated with f :D → D
with respect to the partition κ:

Xκ
n (x) = j if f n(x) ∈ Kj, n = 0, 1,

Hence Xκ is a stationary, |κ|-state random process on (D,B ∩ D, μ) with alphabet
Sκ = {1, . . . , |κ|}.
Example 12 If I = [0, 1] and κ = {Kj:1 ≤ j ≤ 10k}, with Kj = [(j− 1)10−k, j10−k)
for 1 ≤ j ≤ 10k − 1 and K10k = [1 − 10−k, 1], then Xκ can be written as follows:
Xκ

n (x) = ⌊f n(x) · 10k
⌋+ 1 for 0 ≤ x < 1 and Xκ

n (1) = 10k.

116 6 Metric Permutation Entropy

According to (B.16) (with α = κ), the entropy of the symbolic dynamics Xκ

equals the metric entropy of f with respect to κ:

hμ(f , κ) = hμ(Xκ). (6.15)

If we take now an increasing sequence of product refinements κ ≡ κ0 ≤ κ1 ≤ · · ·
such that ‖κn‖ → 0, then we deduce from Theorem 25 that hμ(f) = limn→∞ hμ(Xκn).
This suggests to define the metric permutation of f as h∗μ(f) = limn→∞ h∗μ(Xκn). The
fact that the limit n → ∞ proceeds by successive refinements of κ0 and the way
product partitions are being numbered guarantees that the order relations are pre-
served. This means, in particular, that if Xκn

k (x) = i < j = Xκn
k+1(x) (1 ≤ i, j ≤ |κn|),

then Xκn+1
k (x) = i′ < j′ = Xκn+1

k+1 (x) (1 ≤ i′, j′ ≤ |κn+1|) for all x ∈ D and k ∈ N0.
Thus h∗μ(f) has a good chance to exist.

Definition 3 Given a measure-preserving dynamical system (D,B ∩ D, μ, f), and a
lexicographically ordered, quasi-product partition κ0 of (D,B ∩ D, μ), the metric
permutation entropy of f with respect to the measure μ is defined by

h∗μ(f) = lim
n→∞ h∗μ(Xκn) (6.16)

(provided the limit exists), where (κn)n∈N is a sequence of successive product refine-
ments of κ0 such that ‖κn‖ → 0 and Xκn is the symbolic dynamics of f with respect
to κn.

It is plain that this definition is independent from the auxiliary interval I ⊃ D
used to construct κ0 and also independent from the particular collection of product
refinements κn used, as long as ‖κn‖ → 0. This being the case, we may take quasi-
box partitions in (6.16).

One practical reason for using product partitions is that they make numerical cal-
culations much easier. But most importantly, we claim that lim‖αn‖→0 h∗μ(Xαn) does
not depend on the particular increasing sequence (αn)n∈N0 of successive refinements
of a general finite partition α0 of (D,B ∩ D, μ), as long as (i) they converge to the
point partition of D, ε = {{x}:x ∈ D}, and (ii) the numbering of the elements of
α1, α2, . . . preserves the order relations through the process of refinement. Condi-
tion (i) requires that αn consists of connected sets for all n and limn→∞ ‖A‖ = 0
for all A ∈ αn. Condition (ii) means that if Ai, Aj ∈ αn and i < j, then i′ < j′
whenever Ai ⊃ A′i′ ∈ αn+1 and Aj ⊃ A′j′ ∈ αn+1 (this is automatically satisfied by
the lexicographically ordered, product refinements ιn).

Lemma 9 Let (D,B∩D, μ, f) be a measure-preserving dynamical system, α0 a finite
partition of (D,B ∩ D, μ), and (αn)n∈N a sequence of successive refinements of α0
preserving the order relations and converging to the point partition. Then

h∗μ(f) = lim
n→∞ h∗μ(Xαn),

where Xαn is the symbolic dynamics of f with respect to the partition αn.

6.2 Permutation Metric Entropy of Maps 117

Proof Roughly speaking, the increasing sequences · · · ≤ κn ≤ κn+1 ≤ · · · and
· · · ≤ αn ≤ αn+1 ≤ · · · are equivalent in the sense that, given κn there is a partition
αm with ‖αm‖ � ‖κn‖ which can resolve the orbits of f with the same precision as
κn does—and reciprocally. Of course, the ordinal patterns of length L = 2, 3, . . . of
a given orbit will be, in general, different, depending on the partitions used. Never-
theless, there will be a one-to-one relation between the ordinal L-patterns realized
by Xαn and Xκn in the limit n → ∞, and the same holds for the corresponding
probabilities. Therefore,

lim
n→∞ h∗μ(Xαn) = lim

n→∞ h∗μ(Xκn) = h∗μ(f).

�

The partitions PL, Eq. (3.5) build a sequence of successive refinements, but they
do not preserve in general the order relations because their elements eventually
decompose into different components. For the same reason, they cannot converge
in general to the partition of D into separate points, ε, nor are their norms otherwise
expected to vanish as L →∞.

Having shown that the metric permutation entropy does not depend on the par-
titions used in its calculation (with the provisos stated in Lemma 9), we turn to the
main result of this chapter.

Theorem 10 Let f :D → D be ergodic with respect to the measure μ, and suppose
that h∗μ(f) exists. Then h∗μ(f) = hμ(f).

Proof Let κ0 be a quasi-box partition of (D,B ∩ D, μ) and (κn)n∈N a sequence of
successive product refinements of κ0. Then,

hμ(f , κn) = hμ(Xκn)

by (6.15), where Xκn = {Xκn
k }k∈N0 is the symbolic dynamics of f with respect to the

partition κn. Furthermore, hμ (Xκn) = h∗μ (Xκn) by Theorem 8, since Xκ is ergodic
with respect to the measure μ if f is ergodic with respect to μ. Putting together, we
have so far

h∗μ(f) = lim
n→∞ h∗μ(Xκn) = lim

n→∞ hμ(Xκn) = lim
n→∞ hμ(f , κn).

From Theorem 25 (Annex B) it follows then

lim
n→∞ hμ(f , κn) = hμ(f)

and we are done. �

If instead of Theorem 8, we use Corollary 5 in the previous proof for every pro-
cess Xκ , we conclude also h∗μ(f) = hμ(f) for μ-preserving maps. This requires

the technical assumption that hms (X
κ) is m-integrable, where {ms:s ∈ SN0}, S =

118 6 Metric Permutation Entropy

{1, . . . , |κ|}, is the ergodic decomposition of m, and m the shift-invariant measure of
the sequence space model (SN0 ,B�(S), m, �) of Xκ—and this for every partition κ .

Theorem 11 Let f : D → D be μ-preserving, and suppose that h∗μ(f) = limn→∞ h∗μ
(Xκn) exists. Under the assumptions of Lemma 8 for each Xκn , the equality h∗μ(f) =
hμ(f) holds.

6.3 On the Definition of Metric Permutation Entropy for Maps

The original definition of permutation entropy by Bandt, Keller, and Pompe [29]
was presented in Sect. 1.2. Recall that it involves closed one-dimensional intervals
I, maps f :I → I, and sets of the form

Pπ =
{
x ∈ I:f π0 (x) < f π1 (x) < · · · < f πL−1 (x)

}
,

where π = 〈π0, . . . , πL−1〉 ∈ SL, L ≥ 2. Recall once again that

PL = {Pπ �= ∅:π ∈ SL}.

In most situations of interest, PL will be a partition of (I,B ∩ I, μ), where B is the
Borel sigma-algebra of R and μ is an f -invariant measure. This is going to be our
setting throughout this section.

Bandt, Keller, and Pompe define then the metric permutation entropy of order L
as2

h∗BKP
μ (f , L) = − 1

L− 1

∑

π∈SL

μ(Pπ) log μ(Pπ) (6.17)

and the permutation entropy of f to be

h∗BKP
μ (f) = lim

L→∞ h∗BKP
μ (f , L), (6.18)

provided the limit exists.
As compared to conventional entropy, h∗BKP

μ (f) has at least one remarkable
feature: it involves only one infinite limit over the length of the word, while
hμ(f) involves additionally a second infinite process, namely, a supremum over
partitions—unless a generating partition is known. This fact can be rephrased by
saying that the sequence PL builds a “generator” for h∗BKP

μ .
Let us highlight at this point the main result concerning h∗BKP

μ (f):

Theorem 12 [29] If f :I → I is piecewise monotone, then h∗BKP
μ (f) = hμ(f).

2 Bandt, Keller, and Pompe chose the factor 1/(L − 1) instead of 1/L (see (1.30)) because π (x0
0)

contributes nothing to the entropy. Of course, either choice yields the same limit when L →∞.

6.3 On the Definition of Metric Permutation Entropy for Maps 119

Example 13 For the symmetric tent map (1.17), the elements of P2 are

P〈0,1〉 = (0, 2
3), P〈1,0〉 = (2

3 , 1) ;

the elements of P3 are

P〈0,1,2〉 = (0, 1
3), P〈0,2,1〉 = (1

3 , 2
5), P〈2,0,1〉 = (2

5 , 2
3),

P〈1,0,2〉 = (2
3 , 4

5), P〈1,2,0〉 = (4
5 , 1);

and the elements of P4 are

P〈0,1,2,3〉 = (0, 1
6), P〈0,1,3,2〉 = (1

6 , 1
5), P〈0,3,1,2〉 = (1

5 , 2
9) ∪ (2

7 , 1
3),

P〈3,0,1,2〉 = (2
9 , 2

7), P〈0,2,1,3〉 = (1
3 , 2

5), P〈2,0,3,1〉 = (2
5 , 4

9) ∪ (4
7 , 3

5),

P〈2,3,0,1〉 = (4
9 , 4

7), P〈2,0,1,3〉 = (3
5 , 2

3), P〈3,1,0,2〉 = (2
3 , 4

5),

P〈1,3,2,0〉 = (4
5 , 5

6), P〈1,2,0,3〉 = (6
7 , 8

9), P〈1,2,3,0〉 = (5
6 , 6

7) ∪ (8
9 , 1).

See Fig. 6.1 and compare with Fig. 1.7; owing to the order isomorphy of the sym-
metric tent map and the logistic map, there is a one-to-one relation between their
admissible ordinal L-patterns. Computation of the metric permutation entropies of
orders 2, 3, and 4 of the symmetric tent map � (the invariant measure μ is here the
Lebesgue measure) yields the following results:

0 0.2 0.4 0.6 0.8 1

1

Fig. 6.1 Graphs of the identity, �, �2, and �3. The vertical, dashed lines separate different Pπ ,
π ∈ S4

120 6 Metric Permutation Entropy

h∗BKP
μ (�, 2) = 2

3 log 3
2 + 1

3 log 3 = 0.9183 bit/symbol,

h∗BKP
μ (�, 3) = 1.0746 bit/symbol,

h∗BKP
μ (�, 4) = 1.1807 bit/symbol.

By Theorem 12,

h∗BKP
μ (�) = hμ(�) = log 2 = 1 bit/symbol.

But in the case of general maps, it seems that only inequality (6.19) below (for-
mally similar to (6.9)) can be proved. Comparing such one-dimensional results with
the dimensional generality of Theorem 10, we may conclude that the definition
(6.16) of permutation entropy offers some advantages.

Note that the central distinction, which makes formulation (6.16) easier and more
natural, is that (6.16) takes the limit of infinite long conditioning (L →∞) first and
the discretization limit (‖κn‖ → 0) last, similar to Kolmogorov–Sinai entropy, and
as opposed to (6.18), where an explicit discretization is not taken. Thus we have two
limits to take (while h∗BKP

μ (f) involves only one limit), but the second, ‖κn‖ → 0,
is harmless and, in principle, can be numerically approximated. We conjecture that
for “non-pathological” dynamical systems of the sort one might observe in nature,
the two formulations are equivalent, but there are likely to be some non-trivial tech-
nicalities involved in a rigorous analysis. More on this, in the next chapter.

Transformations with an infinite number of monotonicity segments are not
unusual in ergodic theory.

Example 14 The Gauss transformation, f :[0, 1) → [0, 1) with

f (x) =
{

0 if x = 0
1
x (mod 1) if x �= 0

,

is an ergodic map [52, Chap. 5] with infinitely many monotonicity segments, see
Fig. 6.2.

The next theorem shows that, in general, h∗BKP
μ (f) can only be expected to be an

upper bound of hμ(f).

Theorem 13 [29] If f :I → I is a μ-preserving map with hμ(f) <∞, then

lim inf
L→∞ h∗BKP

μ (f , L) ≥ hμ(f). (6.19)

It follows h∗BKP
μ (f) ≥ hμ(f), provided h∗BKP

μ (f) exists.

Proof Let ι = {Ij, 1 ≤ j ≤ |ι|} be a partition of (I,B ∩ I, μ), where Ij ⊂ I are
intervals. This being the case, let c1 < c2 < · · · < c|ι|−1 be the points that subdivide
the interval I = [a, b] into the |ι| intervals Ij of the partition ι. We consider a fixed

6.3 On the Definition of Metric Permutation Entropy for Maps 121

0 1/51/4 1/3 1/2 1

1

Fig. 6.2 Some monotony intervals of the Gauss transformation

Pπ ∈ PL and show that it can intersect at most (L + 1)|ι|−1 sets of the partition
ιL−1
0 := ∨L−1

i=0 f−i(Iji) with Ij0 , . . . , IjL−1 ∈ ι. For x ∈ Pπ , let �L[x] denote the set in
ιL−1
0 that contains x. Thus, �L[x] can be written as Ij0 ∩ f−1(Ij1)∩· · ·∩ f−(L−1)(IjL−1)

with Ij0 , . . . , IjL−1 ∈ ι, so that it can be specified by the n-tupel j[x] = (j0, . . . , jL−1) ∈
{1, . . . , |ι|}L.

Now, π is given by inequalities xk1 < · · · < xkL with {k1, . . . , kL} = {0, . . . , L−1}
and xk = f k(x). For each x ∈ Pπ we can extend these inequalities so that they give
the common order of the cr and the xkl , where 1 ≤ r ≤ |ι| − 1 and 1 ≤ l ≤ L.
It follows that there are at most (L + 1)|ι|−1 possible extended orders since each cr

has L+ 1 possible bins to go among the xkl . Moreover, when we know the common
order of the cr and xkl , then j[x] is uniquely determined (since cj−1 < xk < cj

implies xk ∈ Ij and thus x ∈ f−k(Ij), with 1 ≤ j ≤ |ι|, c0 = a, and c|ι| = b).
Each Pπ ∈ PL is then the union of at most (L+ 1)|ι|−1 sets Vk ∈ ιL−1

0 ∨ PL with
total measure μ(Pπ). Hence,

−
(L+1)|ι|−1∑

k=1

μ(Vk) log μ(Vk)

≤ −
(L+1)|ι|−1∑

k=1

μ(Pπ)

(L+ 1)|ι|−1
log

μ(Pπ)

(L+ 1)|ι|−1

= −μ(Pπ) log μ(Pπ)+ (|ι| − 1)μ(Pπ) log (L+ 1)

and summing over all π ∈ SL,

Hμ(ιL−1
0) ≤ Hμ(ιL−1

0 ∨ PL) ≤ Hμ(PL)+ (|ι| − 1) log (L+ 1). (6.20)

122 6 Metric Permutation Entropy

It follows that

1

L− 1
Hμ(PL) ≥ 1

L− 1

[
Hμ(ιL−1

0)− (|ι| − 1) log (L+ 1)
]

and

lim inf
L→∞

1

L− 1
Hμ(PL) ≥ lim inf

L→∞
1

L− 1
Hμ(ιL−1

0), (6.21)

since 1
L−1 log (L+ 1) → 0 as L →∞.

On the other hand, the sequence 1
L−1 Hμ(ιL−1

0) converges to hμ(f , ι) when
L →∞, hence

lim inf
L→∞ h∗BKP

μ (f , L) = lim
L→∞ inf

1

L− 1
Hμ(PL) ≥ hμ(f , ι),

for any partition ι. Finally,

lim inf
L→∞ h∗BKP

μ (f , L) ≥ sup
ι

hμ(f , ι) = hμ(f).

�

6.4 Numerical Issues

Our way to the metric permutation entropy of maps was paved by partitions of the
state space and the corresponding symbolic dynamics, very much the same way as
it happens with the Kolmogorov–Sinai entropy. Therefore, calculating the metric
permutation entropy of maps and information sources turns out to be essentially the
same task, except for the fact that in the first case this calculation has, in principle, to
be repeated with ever finer partitions. In practice, one estimates the true value of the
permutation entropy by taking a “sufficiently” fine partition once and for all. This
corresponds, by the way, to the numerical practice, as we shall presently explain. If,
furthermore, the map (and hence the ensuing source) is ergodic, then it suffices to
consider one or a small sample of coarse-grained orbits.

As a by-product of the previous results on metric permutation entropy, the prac-
titioner of time-series analysis will find an alternative way to envision or, eventu-
ally, numerically estimate the Kolmogorov–Sinai entropy of real sources. It is worth
reminding (see Chap. 1) that the entropy of information sources can be measured
by a variety of techniques that go beyond counting word statistics and comprise
different definitions of “complexities” such as, for example, counting the patterns
along a digital (or digitalized) data sequence [137, 211, 6]. Bandt and Pompe refer
in [28] to the permutation entropy of time series as complexity. That the entropy
can also be computed by counting ordinal patterns shows once again that it is a so
general concept that can be captured with different and seemingly blunt approaches.

6.4 Numerical Issues 123

3.5 3.6 3.7 3.8 3.9 4
–1

– 0.5

0

0.5

1

1.5

A (dimensionless)

h
(b

its
)

Fig. 6.3 Lyapunov exponent (black thick line) of the logistic map gA, 3.5 ≤ A ≤ 4, and metric
permutation entropy (rate) estimates ĥ = h∗(X13

0) in bits/symbol for N = 106 length time series
from the map (black thin lines). The metric permutation entropy estimate tracks changes in the
Lyapunov exponent well, with a nearly constant bias. Periodic orbits give a finite permutation
entropy, but the rate estimate would tend to zero given a sufficiently long word

We demonstrate numerical results on time series xn+1 = gA(xn) from the logistic
map gA(x) = Ax(1 − x), where 0 ≤ A ≤ 4 and 0 ≤ x ≤ 1. Figure 6.3 shows
an estimate of the metric permutation entropy on noise-free data as a function of
A, comparing the Lyapunov exponent Lμ(gA) (computed from the orbit knowing
the equation of motion) to the metric permutation entropy of gA for 3.5 ≤ A ≤ 4.
To be precise, we are estimating h∗μ(X) with X discretized from the logistic map
iterated at the discretization of double-precision numerical representation, i.e., X is
the output of a standard numerical iteration and μ is the natural invariant measure
with density dμ/dx = 1

π
√

x(1−x)
. The entropy estimator of the block ranks was

the plug-in estimator (substituting observed frequencies for probabilities) plus the
classical bias correction, first order in 1/N, N being here the number of samples
(which can be taken, for instance, from sliding windows of fixed length L along the
orbit/orbits considered) [167]. Let us remind that

hμ(g4) = Lμ(g4) =
∫ 1

0
log
∣∣g′4(x)

∣∣ dμ(x) = log 2.

Thus, in practice the BKP approach (Sect. 6.3) and our approach (Sect. 6.2)
boil down to the same recipe: generate orbits and count ordinal patterns in sliding
windows of increasing sizes; for more details, see Chap. 9. The most intriguing
characteristic of order relations is that they define, on their own, partitions PL for
the mapping from continuous values (as the discretization level ‖κn‖ goes to zero)
to a lower precision symbolic representation which has the natural structure for
entropy. When estimating entropy from the discrete information source induced

124 6 Metric Permutation Entropy

from a fixed discretization, the entropy of the symbol stream will not generally equal
the Kolmogorov–Sinai entropy unless a generating partition is used, and that can be
difficult to find, especially for observed data alone, although some recent works
show progress in this direction (e.g., [40] and references therein). The “magic” in
using ordinal patterns is that the self-defined partitions PL give the Kolmogorov–
Sinai entropy, at least asymptotically. Permutation entropy may offer a significant
opportunity to advance analytical computations of entropies for various dynamical
systems, where generating partitions might be too difficult to find rigorously.

It turns out that using metric permutation entropy to accurately estimate the
Kolmogorov–Sinai entropy is more difficult than using it as a very rapid and easy-
to-compute relative quantification of entropy or complexity which can be computed
without requiring a fixed partition (see, e.g., [45]). The key issue in using permuta-
tion entropy for empirical data analysis as an entropy estimator is the same as with
standard Shannon entropy estimation: balancing the tension between larger word
lengths L, to capture more dependencies, and the loss of sufficient sampling for
good statistics in the ever larger discrete space. Extracting permutation entropies is
rapid and easy—but taking the limits is not at all simple numerically. The finite L
performance and convergence rate and bias of any specific computational method
are major issues when it comes to accurately estimating the entropy of a source
from observed data. It is now appreciated that numerically estimating the Shannon
block entropy from finite data and, especially, the asymptotic entropy can be sur-
prisingly tricky [195, 127, 6, 121, 122]. The theoretical definitions of entropy do
not necessarily lead to good statistical methods, and superior alternatives have been
developed over the many years since Shannon. We believe that some of these ideas
may similarly be applicable to the permutation entropy situation, either in terms
of using some of the superior entropy estimation methods for block entropies or
developing algorithms based on more sophisticated data compression principles to
extract the entropy itself.

Also important for practical time-series analysis is the usual situation where
observations of a predominantly deterministic source is contaminated with a small
level of observational noise. Here, we recommend that the user fix some discretiza-
tion level ‖κn‖ characteristic of the noise and evaluate the permutation entropies via
entropies of rank words evaluated from the discretized observables.

In regard to vector-valued sources, we used (without restriction) lexicographic
ordering in the theoretical part because of definiteness and simplicity. For analyzing
chaotic observed data, however, it may be acceptable to still use but one scalar
projection subject to the traditional caveats of time-delay embedology. We would
expect that for appropriately mixing sources and generic observation functions, the
Kolmogorov–Sinai entropy estimated through that scalar still equals the true value,
and likewise so might permutation entropy. We have found that numerically this
appears to work in practice. Moreover, the lexicographic ordering will effectively
reduce to this case anyway except for the few cases where the symbols on the dom-
inant coordinate match, which will be less frequent as L increases. More on this in
Chaps. 7 and 9.

	to 6 Metric Permutation Entropy
	6.1 The Metric Permutation Entropy of a Finite-State Process
	6.2 Permutation Metric Entropy of Maps
	6.3 On the Definition of Metric Permutation Entropy for Maps
	6.4 Numerical Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

