
Chapter 5
Ordinal Structure of the Signed Shifts

Shift transformations are a special case of a more general family: signed shift
transformations—a sort of state-dependent shifts. The tent map is the simplest and
perhaps most popular representative of the signed shifts. In this chapter we are going
to show that most of the results on the ordinal structure of the shifts can be gener-
alized to the signed shifts. By order isomorphy, these results apply also to more
interesting cases, like the signed sawtooth maps.

5.1 Ordinal Patterns and the Tent Map

In this section we mimic the strategy used in the previous chapter, in order to get a
handle on the ordinal patterns of the symmetric tent map. We will also address an
issue pointed out in Fig. 1.7, namely, the interval structure of the sets Pπ defining
the allowed ordinal patterns of the logistic map.

5.1.1 A State-Dependent Shift Approach to the Tent Map

Just as some important dynamical properties of the sawtooth map EN (like density
of periodic points, sensitivity to initial conditions, topological transitivity, and the
structure of its admissible and forbidden ordinal patterns) can be easily studied in the
sequence space with the help of the relevant order isomorphisms, the same happens
with the symmetric tent map. Remember from Sect. 1.1.3 that the symmetric tent
map �:[0, 1] → [0, 1] is given by

�(x) = 1− |1− 2x| =
{

2x 0 ≤ x ≤ 1
2

2(1− x) 1
2 ≤ x ≤ 1

. (5.1)

For x ∈ [0, 1], write

x =
∞∑

n=0

xn2−(n+1) = 0.x0x1 . . . xn . . . ,
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xn ∈ {0, 1}. If 0 ≤ x < 1/2, then

�(x) = 2x = 0.x1x2 . . . xn+1 . . . ,

hence the action of � coincides with the action of the sawtooth map E2. Otherwise,
if 1/2 ≤ x ≤ 1, then

�(x) = 2− 2x ≡ 1− 2x mod 1

= 1− 0.x2x3 . . . xn+1 . . .

Introducing the dual bit

x∗ = 1− x =
{

1 if x = 0
0 if x = 1

(5.2)

(thus, (x∗)∗ = x), we have

�(x) = 0.x∗1x∗2 . . . x∗n+1 . . .

because

0.x1x2 . . . xn+1 + · · · + 0.x∗1x∗2 . . . x∗n+1 · · · = 0.11 . . . 1 . . . = 1.

All in all,

�(0.x0x1 . . . xn . . . ) =
{

0.x1x2 . . . xn+1 . . . if x0 = 0,
0.x∗1x∗2 . . . x∗n+1 . . . if x0 = 1.

(5.3)

Identify now the binary representation 0. x0 x1 . . . xn . . ., xn ∈ {0, 1}, of a number
x ∈ [0, 1], with the sequence

(x0, x1, . . . , xn, . . . ) ∈ {0, 1}N0 ,

via the map φ2:{0, 1}N0 → [0, 1] defined as in (4.3) with N = 2. Then action (5.3)
translates into the following zeroth-state-dependent shift on {0, 1}N0 :

�(+,−)(x0, x1, . . . , xn, . . . ) =
{

(x1, x2, . . . , xn+1, . . . ) if x0 = 0
(x∗1, x∗2, . . . , x∗n+1, . . . ) if x0 = 1

(5.4)

(the subscripts (+,−) will be explained later). Observe that if we write

x∗ = (x∗0, x∗1, . . . , x∗n, . . . ),
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then

�(+,−)(x) =
{

�2(x) if x0 = 0,
�2(x∗) if x0 = 1,

where �2 is the usual one-sided shift on sequences of two symbols.
A method of visualizing how the orbits of x are generated by �(+,−) is the fol-

lowing. Take as way of illustration

x = (0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, . . . ), (5.5)

so as

�1
(+,−)(x) = (1 1 0 0 0 1 0 1 1 0 0 1 . . . ) = �1

2(x)
�2

(+,−)(x) = (0 1 1 1 0 1 0 0 1 1 0 0 . . . ) = �2
2(x∗)

�3
(+,−)(x) = (1 1 1 0 1 0 0 1 1 0 0 0 . . . ) = �3

2(x∗)
�4

(+,−)(x) = (0 0 1 0 1 1 0 0 1 1 1 0 . . . ) = �4
2(x)

�5
(+,−)(x) = (0 1 0 1 1 0 0 1 1 1 0 1 . . . ) = �5

2(x)
�6

(+,−)(x) = (1 0 1 1 0 0 1 1 1 0 1 0 . . . ) = �6
2(x)

�7
(+,−)(x) = (1 0 0 1 1 0 0 0 1 0 1 1 . . . ) = �7

2(x∗)
�8

(+,−)(x) = (1 1 0 0 1 1 1 0 1 0 0 1 . . . ) = �8
2(x)

�9
(+,−)(x) = (0 1 1 0 0 0 1 0 1 1 0 0 . . . ) = �9

2(x∗)
�10

(+,−)(x) = (1 1 0 0 0 1 0 1 1 0 0 1 . . . ) = �10
2 (x∗)

etc., that is,

�i
(+,−)(x) =

{
�i

2 (x) for i = 0, 1, 4, 5, 6, 8, . . . ,
�i

2 (x∗) for i = 2, 3, 7, 9, 10, . . . .

Write now x∗ directly under x, and mark (for example, with an underline) the initial
digit of �i

(+,−)(x), i ≥ 0:

i = 0 1 2 3 4 5 6 7 8 9 10 11 12
x = 0 1 1 0 0 0 1 0 1 1 0 0 1
x∗ = 1 0 0 1 1 1 0 1 0 0 1 1 0

(5.6)

That is, we set out from x0, which is always underlined. If x0 = 0, then go over to
x1 and underline it. If x0 = 1, then go down to x∗1 and underline it. In general, if
xi = 0 or x∗i = 0, go one step rightward on the same row and underline xi+1 or x∗i+1,
respectively. On the other hand, if xi = 1 or x∗i = 1, we go one step rightward on
the other row and underline x∗i+1 or xi+1, respectively. The L-pattern π defined by
x can be found now by ordering all the sequences on the x-row and x∗-row starting
with an underlined bit, for 0 ≤ i ≤ L− 1.

If x is sequence (5.5), then the ordinal L-patterns of x under �(+,−) are obtained
by comparing the shifts �i (x) for i = 0, 1, 4, 5, 6, 8, . . . with the shifts �j( x∗) for
j �= i. In particular, x is of type
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π = 〈4, 5, 9, 0, 2;7, 6, 10, 1, 8, 3〉 ∈ S11 (5.7)

under the action of �(+,−).
Rather than deriving at this point the structure of the allowed ordinal patterns for

�(+,−) (or the tent map � for this matter), which follows from the general results of
the next section, let us prove here a particular property of the allowed patterns for
�(+,−).

Lemma 6 The subsequence n+ 2, . . . , n+ 1, . . . , n (0 ≤ n ≤ L− 3) cannot appear
in the entries of an allowed L-pattern for �(+,−). Thus, the allowed ordinal patterns
of �(+,−) cannot contain decreasing subsequences of length 3.

Proof We prove by contradiction that the order relation

�2
(+,−)(x) < �(+,−)(x) < x (5.8)

cannot hold true. If x0 = 0 there is no way that �(+,−)(x) ≡ �2(x) < x. Hence
x = (1, x1, x2, . . . ) and

�(+,−)(x) ≡ �2(x∗) = (x∗1, x∗2, . . . ).

By the same token, if x∗1 = 0 there is no way that �(+,−)(�(+,−)(x)) ≡ �2
(+,−)(x)

< �(+,−)(x). Hence

x = (1, 0, x2, . . . ), �(+,−)(x) = (1, x∗2, x∗3, . . . ), �2
(+,−)(x) = (x2, x3, . . . ).

From �(+,−)(x) < x it follows x∗2 = 0. In turn, from �2
(+,−)(x) = (1, x3, . . . )

< �(+,−)(x) = (1, 0, x∗3, . . . ) it follows x3 = 0. So far, we found that x =
(1, 0, 1, 0, x4, . . . ) (thus �(+,−)(x) = (1, 0, 1, x∗4, . . . ) and �2

(+,−)(x) = (1, 0, x4, . . . )).
A straightforward induction along these lines yields

x = (1, 0, 1, 0, . . . , 1, 0, . . . ) = ((1, 0)∞),

which is the binary expansion of the rational number 2/3. Since �2
(+,−)(x) =

�(+,−)(x) = x for this particular sequence (in other words, 2/3 is a fixed point
of �(+,−)), the statement follows by contradiction. �

Exercise 5 Prove, using representation (5.4) that the symmetric tent map has dense
periodic points, sensitive dependence on initial conditions, and is topologically tran-
sitive.
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5.1.2 The Interval Structure of the Sets Pπ

The points in state space � defining an ordinal L-pattern π under the action of a map
f :�→ � build the set Pπ , (3.4). The sets Pπ �= ∅, π ∈ SL, build in turn the set PL,
which build a finite partition of � under the condition set by Proposition 2. In this
section we examine the “topology” of Pπ ∈ PL for some one-dimensional interval
maps. For continuous maps, those sets are clearly open sets (hence, an enumerable
union of disjoint open intervals), but no further dissection can be made. For the
sawtooth map family x 	→ Nx mod 1, N ≥ 2, it is easy to convince oneself that Pπ

consists of a single open or half-open interval for all admissible patterns π ∈ SL,
L ≥ 2 (see Figs. 3.2 and 3.3). For the logistic map, Figs. 1.5 and 1.6 show that all
Pπ ∈ PL with L = 2, 3 consist of a single open interval, but from Fig. 1.7 it can be
read that

P〈0,3,1,2〉 ≈ (0.09549, 0.11698) ∪ (0.18826, 0.25),

P〈2,0,3,1〉 ≈ (0.34549, 0.41318) ∪ (0.61126, 0.65451),

P〈1,2,3,0〉 ≈ (0.93301, 0.95048) ∪ (0.96985, 1).

We claim the following.

Proposition 6 For the logistic map and the symmetric tent map, all Pπ �= ∅ consist
of one or two components.

As stated in Example 4 (1), the logistic map g and the symmetric tent map �

are order isomorphic. Specifically, g(φ(x)) = φ(�(x)), where φ(x) = sin2 (π
2 x),

0 ≤ x ≤ 1, so that

gn(φ(x)) = gm(φ(x)) ⇔ φ(�n(x)) = φ(�m(x)) ⇔ �n(x) = �m(x).

Thus, the curves y = gn(x) and y = gm(x) cross at x0 if and only if the piecewise
straight lines y = �n(x) and y = �m(x) cross at φ−1(x0). Moreover, the iterates of �

have not only a simple graphical representation (triangular waves with frequencies
increasing as powers of 2) but also a scaling property that makes � handier for the
proof of Proposition 6:

�n(x) = �n−1(2x), 0 ≤ x ≤ 1
2 ,

�n(x) = �n−1(2(1− x)), 1
2 ≤ x ≤ 1.

(5.9)

Therefore, the left-half part of the graphs (x, �0(x)), (x, �1(x)), . . . , (x, �L(x)) is a
“squeezed” copy of the graphs (x, x

2 ), (x, �0(x)), . . . , (x, �L−1(x)) on the interval
0 ≤ x ≤ 1

2 ; indeed, upon rescaling the X-axis by a factor 1
2 , we have (x, x

2 ) 	→ ( x
2 , x

2 )
and (x, �l(x)) 	→ ( x

2 , �l(x)) = ( x
2 , �l+1( x

2 )). The corresponding right-half parts
require the squeezed copy of the graphs (x, 1 − x

2 ), (x, �0(x)), . . . , (x, �L−1(x)) on
0 ≤ x ≤ 1

2 to be further mirrored with respect to the line x = 1
2 (this is the transfor-

mation (x, y) 	→ (x, 1− x)); see Fig. 5.1 for further insights.
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0 1/3 1/2 2/3 1

1

Fig. 5.1 If this figure is “opened” at the right side as a book put upside down, with the line y = x/2
only on the left page, the (dashed) line y = 1−x/2 only on the right page, and the triangular waves
y = �(x), y = �2(x) on both, and the resulting graph is shrunk by a factor 1/2 along the X-axis,
then we get the graphs of y = �n(x), 0 ≤ n ≤ 3. Alternatively, we can go from P∗3 to P∗4 just by
going first rightward on the bottom page (containing y = x/2) of the closed book and then leftward
on the top page (containing y = 1− x/2)

Proof Proposition 6 follows from the considerations prior to Proposition 3 (remem-
ber the terminology mother and daughter intervals, here shortened to mother and
daughter), together with the following facts.

The decomposition of a mother Pπmother ∈ PL into several daughters includ-
ing two or more twins (disjoint subintervals with the same ordinal label) can only
happen in intervals containing “vertex” or “bouncing-off” points xv. As their name
indicates, these points correspond to projections onto the X-axis of points at the
bottom (y = 0) or at the ceiling (y = 1) of the unit square at which incom-
ing (left) and outgoing (right) lines y = �l(x) meet, like ( 1

2 , 0) and ( 1
4 , 1) in

Fig. 5.1. Possibly the most intuitive way to follow the growth of twins around
vertex points uses the scaling property (5.9). If 0 < xv < 1

2 , consider the graphs
of y = x

2 , y = �0(x), . . . , y = �L−1(x) around x = 2xv. If 2xv ∈ P〈π0,...,πL−1〉, then
the straight line y = x

2 generates (left to right) daughters of Pπmother (after squeezing)
with labels πleft = 〈π0+1, . . . , 0, πk+1, . . . , πL−1+1〉, πcentral = 〈π0+1, . . . , πk+
1, 0, . . . , πL−1 + 1〉 and πright = 〈π0 + 1, . . . , 0, πk + 1, . . . , πL−1 + 1〉 = πleft,
with xv ∈ Pπcentral ∈ PL+1. Here k depends on the number of lines meeting at
(xv, 0); if k = 0 or L − 1, then 0 is the first or last entry of the label, respec-
tively. Hence, the set Pπleft ∪ Pπright ∈ PL+1 (πleft = πright) consists of two
disjoint interval components, one on each side of Pπcentral . If, on the other hand,
1
2 < xv < 1, consider the graphs of y = 1 − x

2 , y = �0(x), . . . , y = �L−1(x)
around x = 2(1 − xv). If 2(1 − xv) ∈ P〈π0,...,πL−1〉, then the straight line y = 1 − x

2
generates daughters of Pπmother (after squeezing and mirroring) with labels πleft =
〈π0+1, . . . , πk+1, 0, . . . , πL−1+1〉, πcentral = 〈π0+1, . . . , 0, πk+1, . . . , πL−1+1〉,
and πright = 〈π0 + 1, . . . , πk + 1, 0, . . . , πL−1 + 1〉 = πleft. As before, Pπleft ∪ Pπright

consists of two disjoint interval components, one on each side of Pπcentral . Finally, for
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xv = 1
2 the first set of graphs produces πleft and πcentral, while the second produces

πcentral and πright = πleft, with xv ∈ Pπcentral . This mechanism repeats again and again
over all generations. After the step L → L + 1, only the one-component daughters
Pπcentral , all of which contain some xv, can in turn generate twins (two-component
grand daughters); the corresponding two-component sisters Pπleft ∪ Pπright cannot
generate twins because they contain no vertex point. As a result, only one- or two-
component intervals are possible, the latter forming a nested structure around some
vertex points. From Fig. 5.1 it is clear that all such vertex points originate from
x = 1

2 , 1 by squeezing and from x = 1
4 by squeezing and mirroring. �

Exercise 6 Discuss the interval structure of the sets Pπ for the map E−2:x 	→ −2x
mod 1.

5.2 Ordinal Patterns and the Signed Shifts

The results of Sect. 5.1.1 can be generalized to a particular case of piecewise linear
maps. Partition the unit interval [0, 1] in N ≥ 2 equal subintervals,

Ik =
[

k

N
,

k + 1

N

)
, 0 ≤ k ≤ N − 2 and IN−1 =

[
N − 1

N
, 1

]

(other choices regarding the endpoints are of course possible), and raise over Ik a
“/-lap” of slope +N,

f (x) = Nx− k, x ∈ Ik,

or a “\-lap” of slope −N,

f (y) = k + 1− Nx, x ∈ Ik.

A map of the unit interval whose graph consists of /-laps and \-laps of slopes ±N,
respectively, over the intervals Ik, 0 ≤ k ≤ N − 1, will be called a signed saw-
tooth map, the term “signed” referring to the fact that its laps can have positive or
negative slope (see Fig. 5.2). We say that a signed sawtooth map f has signature
σ = (σ0, σ1, . . . , σN−1), where σk ∈ {+,−}, 0 ≤ k ≤ N − 1, to summarize that (the
graph of) f has a /-lap over Ik whenever σk = + and a \-lap whenever σk = −.
In other words, the kth component of the signature gives the slope sign of the
kth lap.

We have already met two important representatives of the signed sawtooth map
family: the sawtooth map EN : x 	→ Nx mod 1 (σ = (+, . . . ,+)) and the symmetric
tent map � (σ = (+,−)).

Given a signature σ , define the signed shift �σ :{0, . . . , N − 1}N0 → {0, . . . , N −
1}N0 as follows:
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0 j/N (j+1)/N k/N (k+1)/N 1

1

Fig. 5.2 The graph of a generic signed sawtooth map with slopes ±N. The figure only depicts the
jth lap, with positive slope, and the kth slope, with negative slope

�σ (x0, . . . , xn, . . . ) =
{

(x1, . . . , xn+1, . . . ) if x0 = k, σk = +,
(N − 1− x1, . . . , N − 1− xn+1, . . . ) if x0 = k, σk = −.

Therefore, if we define the dual digit of k ∈ {0, 1, . . . , N − 1} as

k∗ = N − 1− k, (5.10)

(thus (k∗)∗ = k), then

�σ (x) =
{

�N(x) if x0 = k and σk = +,
�N(x∗) if x0 = k and σk = −,

(5.11)

where

x∗ = (x∗0, . . . , x∗n, . . . ) = (N − 1− x0, . . . , N − 1− xn, . . . )

is the dual sequence to x = (x0, . . . , xn, . . . ) ∈ {0, 1, . . . , N − 1}N0 . In particular, if

N = 2ν + 1,

then ν = (N−1)/2 is “self-dual”: ν∗ = ν. Note that (5.10) generalizes the definition
of dual bit, (5.2).

Important for us is that if f is a signed sawtooth map with signature σ , then f and
�σ are order isomorphic via the map φN :{0, 1, . . . , N − 1}N0 → [0, 1] defined in
(4.3). Observe that φN(0∞) = 0, φN(1∞) = 1, and

k

N
≤ φN(x) ≤ k + 1

N
iff x0 = k.
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The technique described in Sect. 5.1 to keep track of the orbits of x under �(+,−)
can be used for �σ too. The number of symbols N goes in the definition of x∗,
while σk tells whether we have to jump from the current entry xi = k to x∗i+1 or from
the current entry x∗i = k to xi+1 (σk = −), instead of remaining on the same line
(σk = +), when underlining the entries of x in table (5.6).

Exercise 7 Check that

f (φN(x)) = φN(�σ x) =
{∑∞

n=1 xnN−n if x0 = k and σk = +,
1−∑∞

n=1 xnN−n if x0 = k and σk = −.

We turn now to the ordinal patterns realized by a signed shift �σ . Completely
analogous to the case �(+,...,+) ≡ �N , Chap. 4, the allowed ordinal patterns for �σ

can also be decomposed into s-blocks, (4.6), where now the s-block (4.7) contains
the locations of the symbol s ∈ {0, . . . , N − 1} in the segments xL−1

0 := x0, . . . , xL−1

of x and (x∗)L−1
0 := x∗0, . . . , x∗L−1 of x∗, such that the zeroth component of �i

σ x,
0 ≤ i ≤ L − 1, is s (i.e., the locations of the symbol s which are underlined in
the x- or x∗-row of table (5.6)). We shall presently see that each s-block consists
basically of two kinds of subsequences: monotone (σs = +) or spiraling (σs = −),
eventually intertwined by other subsequences of the same kind. Entries in an s-block
not belonging to a subsequence will be referred to as solitary or single components
or entries.

Theorem 4 The non-empty blocks πk0+···+ks−1 , . . . , πk0+···+ks−1+ks−1, 0 ≤ s ≤
N − 1, of π (x) ∈ SL fulfill the following basic restrictions:

R*1 If σs = +, 0 < s < N − 1, then the s-block is built by increasing subse-
quences,

n, . . . , n+ 1, . . . , n+ l− 1 (5.12)

(l ≥ 2) and/or decreasing subsequences,

n+ l− 1, . . . , n+ 1, . . . , n (5.13)

(l ≥ 2) and/or solitary components (l = 1). If σ0 = +, then the 0-block
consists of increasing subsequences (5.12) and/or solitary components. If
σN−1 = +, then the (N−1)-block consists of decreasing subsequences (5.13)
and/or solitary components.

R*2 If σs = −, 0 < s < N− 1, then the s-block is built by even-length spiraling
subsequences

n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1 (5.14)

with the entry n + 2l on an anterior block (if n + 2l ≤ L − 1) and/or the
mirrored subsequences
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n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2 (5.15)

with the entry n+2l on a posterior block (if n+2l ≤ L−1) and/or odd-length
spiraling subsequences

n+ 2l, . . . , n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1
(5.16)

with the entry n+ 2l+ 1 on a posterior block (if n+ 2l+ 1 ≤ L− 1) and/or
the mirrored subsequences

n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2, . . . , n+ 2l
(5.17)

with the entry n+ 2l+ 1 on an anterior block (if n+ 2l+ 1 ≤ L− 1) and/or
solitary components. If σ0 = −, then the first block consists of spiraling
subsequences of the form (5.15) and/or (5.16) and/or solitary components. If
σN−1 = −, then the last block consists of spiraling subsequences of the form
(5.14) and/or (5.17) and/or solitary components.

R*3 If (i) σs = +, (ii) the entries m, n ≤ L−2 belong to the s-block of π (x), and
(iii) m appears on the left of n, then m + 1 appears also on the left of n + 1
(not necessarily in the same block). If, on the other hand, (i) σs = −, (ii) the
entries m, n ≤ L − 2 belong to the s-block of π (x), and (iii) m appears on
the left of n, then m+ 1 appears on the right of n+ 1 (not necessarily in the
same block).

Proof R*1) Let s ∈ {0, 1, . . . , N − 1} and consider an s-run of length l ≥ 2 in the
segment xL−1

0 of x:

i = . . . n n+ 1 . . . n+ l− 1 n+ l . . .

x = . . . s s . . . s r . . .

x∗ = . . . N − 1− s N − 1− s . . . N − 1− s N − 1− r . . .

where r ∈ {0, 1, . . . , N − 1} and r �= s. If (i) s < N − 1 and (ii) xn+l = r > s, then
this s-run contributes the increasing subsequence

n, . . . , n+ 1, . . . , n+ l− 1 (5.18)

to the s-block of π (x). If, on the other hand, (i) s > 0 and (ii) xn+l = r < s, then the
s-run contributes the decreasing subsequence

n+ l− 1, . . . , n+ 1, . . . , n. (5.19)

The “. . .” between the entries of these subsequences allow for entries eventually
proceeding from other s-runs in x or x∗ (see Example 7).
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It follows that the 0-block can contain only increasing subsequences (and single
entries not belonging to subsequences in the block), whereas the (N − 1)-block can
contain only decreasing subsequences (and single entries not belonging to subse-
quences in the block).

R*2) Consider an s-run of even length 2l in the segment xL−1
0 of x. Thus,

i = n n+ 1 . . . n+ 2l− 2 n+ 2l− 1 n+ 2l
x = s N − 1− 1 . . . s N − 1− s r
x∗ = N − 1− s s . . . N − 1− s s N − 1− r

where r ∈ {0, 1, . . . , N − 1} and r �= s. Therefore, if (i) s > 0 and (ii) xn+2l−1 =
N − 1− s < x∗n+2l = N− 1− r, i.e., r < s, then the s-block of π (x) will contain the
spiraling subsequence

n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1. (5.20)

Hence the entry n+ 2l will appear in the r-block (provided n+ 2l ≤ L− 1), which
precedes the s-block in π (x) because r < s. If, on the other hand, (i) s < L − 1
and (ii) xn+2l−1 = N − 1 − s > x∗n+2l = N − 1 − r, i.e., r > s, then we obtain the
mirrored, spiraling subsequence

n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2, (5.21)

with the symbol n + 2l in a posterior block (provided n + 2l ≤ L − 1), namely, on
the r-block.

Consider now an s-run of odd length 2l+ 1 in the segment xL−1
0 of x. Thus,

i = n n+ 1 . . . n+ 2l− 1 n+ 2l n+ 2l+ 1
x = s N − 1− s . . . N − 1− s s N − 1− r
x∗ = N − 1− s s . . . s N − 1− s r

where r ∈ {0, 1, . . . , N − 1} and r �= s. Therefore, if (i) s > 0 and (ii) x∗n+2l =
N − 1− s < xn+2l+1 = N − 1− r, i.e., r < s, then the s-block of π (x) will contain
the spiraling subsequence

n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2, . . . , n+ 2l.

The entry n+ 2l + 1 will appear on the r-block (provided n+ 2l + 1 ≤ L − 1),
which is on the left of the s-block because r < s. If, on the other hand, (i) s < L− 1
and (ii) x∗n+2l = N − 1 − s > xn+2l+1 = N − 1 − r, i.e., r > s, then we obtain the
mirrored, spiraling subsequence

n+ 2l, . . . , n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1,

with the entry n+ 2l+ 1 in a block on the right of the s-block (provided n+ 2l+ 1
≤ L− 1).
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The corresponding results for the first (s = 0) and last (s = N− 1) blocks follow
readily from these general results.

R*3) If m and n belong to the s-block, σs = +, and �m
σ (x) < �n

σ (x) for x ∈
{0, 1, . . . , N − 1}N0 , then

�m
σ (x) = (s, xm+1, . . . ) < (s, xn+1, . . . ) = �n

σ (x).

By the definition of lexicographical order, there are two possibilities: (i) xm+1
< xn+1 or (ii) xm+k = xn+k for 1 ≤ k ≤ l − 1, l ≥ 2, and xm+l < xn+l. In
both cases,

�m+1
σ (x) = (xm+1, . . . ) < (xn+1, . . . ) = �n+1

σ (x)

and, hence, the entry m+ 1 appears on the left of n+ 1 in π (x).
If, on the other hand, m and n belong to the s-block, σs = −, and �m

σ (x) < �n
σ (x),

then

�m
σ (x) = (s, xm+1, . . . ) < (s, xn+1, . . . ) = �n

σ (x).

As before, there are two possibilities: (i) xm+1 < xn+1 and (ii) xm+k = xn+k for
1 ≤ k ≤ l− 1, l ≥ 2, and xm+l < xn+l. In both cases,

�m+1
σ (x) = (N − 1− xm+1, . . . ) > (N − 1− xn+1, . . . ) = �n+1

σ (x)

and, hence, the entry m+ 1 appears on the right of n+ 1 in π (x). �
Conditions R*1–R*3 are not only necessary for an ordinal pattern to be allowed

for �σ , σ = (σ0, . . . , σN−1), but also sufficient. Indeed, given the s-block decom-
position of π ∈ SL with each block satisfying the pertinent restrictions, then it is a
simple matter to construct sequences x ∈ {0, . . . , N − 1}N0 of type π . Furthermore,
it is obvious that all L-patterns with L ≤ N are allowed for �σ .

Corollary 3 If π = 〈π0, π1, . . . , πL−1〉 is allowed (correspondingly, forbidden) for
�σ , σ = (σ0, σ1, . . . , σN−1), then πmirrored = 〈πL−1, πL−2, . . . , π0〉 is allowed (cor-
respondingly, forbidden) for �σmirrored , where

σmirrored := (σN−1, σN−2, . . . , σ0).

In the particular case σ = σmirrored, it follows that π is allowed (correspondingly,
forbidden) for �σ , iff πmirrored is also allowed (correspondingly, forbidden) for �σ .
These statements hold also true if “forbidden pattern” is replaced by “root forbid-
den pattern.”

Proof The s-block structure of an allowed ordinal pattern is preserved under the
transformation π 	→ πmirrored. Indeed, monotone subsequences transform into
monotone subsequences (in particular, increasing subsequences of the 0-block
transform in decreasing subsequences of the (N − 1)-block and vice versa), and
spiraling subsequences go over to spiraling subsequences.
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By the same token, mirrored outgrowth forbidden patterns for �σ will be out-
growth forbidden patterns for �σmirrored . It follows that π ∈ SL is a root forbidden
pattern for �σ in the case σ = σmirrored, iff πmirrored is also a root forbidden pattern
for �σ . �
Remark 1 If the first or last element of a monotone subsequence appearing in an
s-block is assigned to the anterior or posterior block, respectively (if any), then
the remaining subsequence preserves its increasing or decreasing character—or it
becomes a single entry. If the leftmost or the rightmost element of a spiraling sub-
sequence is assigned to the anterior or posterior block (if any), then the remaining
subsequence preserves its spiraling character, eventually appearing also a new single
entry in the same block. This implies that, when carrying out a decomposition of an
ordinal L-pattern into s-blocks, L ≥ N, we may assume without loss of generality
that all s-blocks are non-empty.

For σk = +, 0 ≤ k ≤ N−1, we recover from Theorem 4 the restrictions fulfilled
by the allowed patterns for �N (Lemma 2). In the case σ = (+,−), considered in
Sect. 5.1.1, there are only two symbols and two blocks in the decomposition of the
ordinal patterns. Restrictions R*1 and R*2 entail then that π = 〈2, 1, 0〉 is forbidden
for �(+,−) (Lemma 6). Indeed, π0, π1 = 2, 1 cannot occur in the 0-block because
it is a decreasing sequence (R*1), hence π = 〈2;1, 0〉; but then the entry 2 should
appear on the right of π1, π2 = 1, 0 in order to form a spiraling subsequence (R*2);
the restriction R*3 is also violated.

The five root forbidden 4-patterns for the logistic map (hence, for � and �(+,−))
were found graphically in Sect. 1.2, (1.38). We check here that they do fail to satisfy
the restrictions R*1–R*3:

• 〈0;2, 3, 1〉 violates R*2; 〈0, 2;3, 1〉 and 〈0, 2, 3;1〉 violate R*3.
• 〈1;0, 2, 3〉 violates R*3; 〈1, 0;2, 3〉 and 〈1, 0, 2;3〉 violate R*1.
• 〈1;0, 3, 2〉 violates R*3; 〈1, 0;3, 2〉 and 〈1, 0, 3;2〉 violate R*1.
• 〈1;3, 0, 2〉 violates R*3; 〈1, 0;3, 2〉 and 〈1, 0, 3;2〉 violate R*1.
• 〈3;1, 2, 0〉 violates R*2; 〈3, 1;2, 0〉 violates R*3 and 〈3, 1, 2;0〉 violates R*1.

Exercise 8 Check that the allowed patterns for the logistic map, Fig. 1.7, comply
with the restrictions (R*1)–(R*4).

Finally, let us prove that �(+,−) has root forbidden L-patterns for L ≥ 5.

Theorem 5 The patterns

π = 〈3, . . . , L− 2, 0, 1, 2, L− 1〉 ∈ SL, (5.22)

L ≥ 5, are root forbidden patterns for �(+,−).

Proof Let us check that (5.22) is a forbidden pattern. First of all, πL−5, πL−4 =
L− 2, 0 cannot belong to the 0-block because πL−5+ 1 = L− 1 is not on the left of
πL−4 + 1 = 1 (R*3). Hence

π = 〈3, . . . , L− 2;0, 1, 2, L− 1〉 .
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But πL−4, πL−3, πL−2 = 0, 1, 2 is not a spiraling subsequence, hence it violates R*2.
Furthermore, we claim that (5.22) is a root forbidden pattern. Otherwise, see

(3.12), (i) π would be an outgrowth pattern of group I, i.e., the (L − 1)-pattern
obtained from π after removing the entry L− 1,

〈3, . . . , L− 2, 0, 1, 2〉 ∈ SL−1, (5.23)

would be forbidden or (ii) π would be an outgrowth pattern of group II, i.e., the
(L − 1)-pattern obtained from π after removing the entry 0 and subtracting 1 from
each remaining entry,

〈2, . . . , L− 3, 0, 1, L− 2〉 ∈ SL−1, (5.24)

would be forbidden. But (5.23) admits the s-block decompositions

〈3, . . . , L− 2, 0;1, 2〉 and 〈3, . . . , L− 2, 0, 1;2〉 ,

while (5.24) admits the decomposition

〈2, . . . , L− 3;0, 1, L− 2〉 .

�
Exercise 9 Consider the eight cylinder sets Ci0i1i2 of {0, 1}N0 . Check that the sequences
of these sets are of the following types under �(+,−):

(i) The sequences of C000 are of type 〈0, 1, 2〉.
(ii) The sequences of C001 are also of type 〈0, 1, 2〉.

(iii) The sequences (0, 1, 0, 0, . . . ) ∈ C010 are of type 〈0, 1, 2〉, while the sequences
(0, 1, 0, 1, . . . ) ∈ C010 are of type 〈0, 2, 1〉.

(iv) The sequences of C011 are of type 〈0, 2, 1〉 or 〈2, 0, 1〉.
(v) The sequences of C100 are of type 〈2, 0, 1〉.

(vi) The sequences of C101 are of type 〈1, 0, 2〉 or 〈2, 0, 1〉.
(vii) The sequences of C110 are of type 〈1, 0, 2〉 or 〈1, 2, 0〉.

(viii) The sequences of C111 are of type 〈1, 2, 0〉.

Among the signed sawtooth maps, those with signatures of alternating signs (we
call them alternating signatures) have the special property of being continuous. The
tent map is one of the two possibilities for N = 2. The next theorem generalizes the
result that the tent map has a forbidden pattern already for L = 3.

Theorem 6 Let �σ be a shift with alternating signature σ = (σ0, . . . , σN−1).

1. If N is even, then �σ has forbidden L-patterns for L ≥ N + 1.
2. If N is odd and σ = (+,−, . . . ,−,+), then �σ has forbidden L-patterns for

L ≥ N + 1.
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3. If N is odd and σ = (−,+, . . . ,+,−), then (i) all ordinal (N + 1)-patterns are
allowed for �σ and (ii) �σ has forbidden L-patterns for L ≥ N + 2.

In cases 2 and 3, along with a forbidden pattern π ∈ SL, πmirrored will also be a
forbidden pattern (Corollary 3).

Proof Remember that if �σ has a forbidden pattern of length L0, then its outgrowth
patterns provide forbidden L-patterns for every L ≥ L0. Hence, we need only to
exhibit forbidden patterns of the minimal lengths claimed in each case of Theorem 6.

1. Let N ≥ 2 be even. There are two possibilities: (a) σ0 = + and σN−1 = − and
(b) σ0 = − and σN−1 = +. Since the signatures of these cases are mirrored from
each other, we need to consider only one of them (Corollary 3), say (b).

A forbidden pattern of length L = N + 1 can be constructed attending to the
positive signs of σ , together with the first and last negative signs, as follows. Take
the entry π0 = 0 for σ0 = −,

π = 〈0, . . .〉 ,

the decreasing subsequence π2k−1, π2k = 2k, 2k − 1 for σ2k−1 = +, 1 ≤ k
≤ N/2− 1,

π = 〈0, 2, 1, . . . , 2k, 2k − 1, . . . , N − 2, N − 3, . . .〉 ,

and the increasing subsequence πN−1, πN = N − 1, N for σN−1 = −,

π = 〈0, 2, 1, . . . , 2k, 2k − 1, . . . , N − 2, N − 3, N − 1, N〉 ∈ SN+1.

(For N = 2, π = 〈0, 1, 2〉 ∈ S3.) Then R*3 requires a first semicolon between
π0 = 0 and π1 = 2, a second semicolon between π1 = 2 and π2 = 1, . . . , and an
(N − 1)th semicolon (the maximal number allowed) between πN−2 = N − 3 and
πN−1 = N − 1. Still the increasing subsequence πN−1, πN = N − 1, N in the last
block (σN−1 = +) violates R*1.

2. Let N ≥ 3 be odd and σ0 = σN−1 = +. A forbidden pattern of length L =
N + 1 can then be constructed attending to positive signs of σ . Take the decreasing
subsequence π0, π1 = 1, 0 for σ0 = +,

π = 〈1, 0, . . .〉 ,

the decreasing subsequence π2k, π2k+1 = 2k+1, 2k for σ2k = +, 1 ≤ k ≤ (N−1)/2,

π = 〈1, 0, 3, 2, . . . , 2k + 1, 2k, . . . , N − 2, N − 3, . . .〉 ,

and the increasing subsequence πN−1, πN = N − 1, N for σN−1 = +,

π = 〈1, 0, 3, 2, . . . , 2k + 1, 2k, . . . , N − 2, N − 3, N − 1, N〉 ∈ SN+1.
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(For N = 3, π = 〈1, 0, 2, 3〉 ∈ S4.) Then, R*3 requires a first semicolon between
π0 = 1 and π1 = 0, a second semicolon between π1 = 0 and π2 = 3, . . . , and an
(N − 1)th semicolon (the maximal number allowed) between πN−2 = N − 3 and
πN−1 = N − 1. Hence we are left with the increasing subsequence πN−1, πN =
N − 1, N in the last block (σN−1 = +), what violates R*1.

3. Finally, let N ≥ 3 be odd and σ0 = σN−1 = −.
(i) Let us prove that all ordinal (N + 1)-patterns are allowed for �(−,+,...,+,−).

Given π ∈ SN+1, there are three possibilities: (a) N = π0, (b) N = πn with
1 ≤ n ≤ N − 1, or (c) N = πN . In the first case, π admits the allowed
decomposition

π = 〈N, π1; π2; . . . ; πk; . . . ; πN〉 .

In the second case, π admits the decomposition

π = 〈π0; π1; . . . ; πn−1; N, πn+1; . . . ; πN〉

both if σn = + or σn = −. In the third case, π admits the decomposition

π = 〈π0;π1; . . . ;πk; . . . ;πN−1, N〉 .

(ii) A forbidden pattern of length L = N + 2 can be constructed attending to the
blocks with negative sign. Let first N = 5 mod 4, so that the central sign of σ is
σ(N−1)/2 = −. Take the increasing subsequence π0, π1 = 0, 1 for σ0 = −,

π = 〈0, 1, . . .〉 ,

the decreasing subsequence πN , πN+1 = 3, 2 for σN−1 = −,

π = 〈0, 1, . . . , 3, 2〉 ,

the increasing subsequence π2, π3 = 4, 5 for σ2 = −,

π = 〈0, 1, 4, 5, . . . , 3, 2〉 ,

the decreasing subsequence πN−2, πN−1 = 7, 6 for σN−3 = −,

π = 〈0, 1, 4, 5, . . . , 7, 6, 3, 2〉 ,

and so on until arriving at the central block, σ(N−1)/2 = −, for which we take
π(N−1)/2,π(N+1)/2,π(N+3)/2 = N − 1, N + 1, N,
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π = 〈0, 1, 4, 5, . . . , N − 1, N + 1, N, . . . , 7, 6, 3, 2〉 ∈ SN+2.

(For N = 5, π = 〈0, 1, 4, 6, 5, 3, 2〉 ∈ S7.) Then, R*3 requires a first semicolon
between π0 = 0 and π1 = 1, a second semicolon between π1 = 1 and π2 =
4, . . . , an ((N+1)/2)th semicolon between π(N−1)/2 = N−1 and π(N+1)/2 = N+1
or between π(N+1)/2 = N + 1 and π(N+3)/2 = N (since the central subsequence
N − 1, N + 1, N is not spiraling), . . ., and an (N − 1)th semicolon (the maximal
number allowed) between πN−1 = 6 and πN = 3. But the sequence πN , πN+1 = 3, 2
in the last block (σN−1 = −) violates R*3 because πN + 1 = 4 is not on the right of
πN+1 + 1 = 3.

In the case N = 3 mod 4, the central sign of σ is σ(N−1)/2 = +. The construction
of a forbidden pattern of length L = N+2 follows the same assignment of entry pairs
as before for σ0, σN−1, σ2, . . . , σ(N−3)/2, but takes π(N+1)/2, π(N+3)/2, π(N+5)/2 =
N + 1, N, N − 1 for σ(N+1)/2 = −:

π = 〈0, 1, 4, 5, . . . , N − 2, N + 1, N, N − 1, . . . , 7, 6, 3, 2〉 ∈ SN+2.

(For N = 3, π = 〈0, 1, 4, 3, 2〉 ∈ S5.) Then, R*3 requires a first semicolon
between π0 = 0 and π1 = 1, a second semicolon between π1 = 1 and π2 = 4,
. . . , an ((N + 1)/2)th semicolon between π(N−1)/2 = N − 2 and π(N+1)/2 =
N + 1 or between π(N+1)/2 = N + 1 and π(N+3)/2 = N (since the subsequence
π(N−1)/2,π(N+1)/2,π(N+3)/2 = N − 2, N + 1, N cannot belong to an s-block with
positive sign because π(N−1)/2+1 = N−1 is not on the left of π(N+3)/2+1 = N+1),
. . ., and an (N − 1)th semicolon (the maximal number allowed) between πN−1 = 6
and πN = 3. But the sequence πN , πN+1 = 3, 2 in the last block (σN−1 = −)
violates R*3 because πN + 1 = 4 is not on the right of πN+1 + 1 = 3. �

A further signature with general features is σ = (−,−, . . . ,−).

Theorem 7 The shift �σ with σ0 = · · · = σN−1 = −, N ≥ 2, has

1. allowed L-patterns for L ≤ N + 1 and
2. root forbidden L-patterns for L ≥ N + 2.

Since σ = (−, . . . ,−) = σmirrored, the number of root forbidden patterns for �σ

will be even (Corollary 3).

Proof 1. We need to consider only the case L = N + 1, since all L-patterns with
L ≤ N are trivially allowed. Given π ∈ SN+1, there are three possibilities: (i)
N = π0, (ii) N = πn with 1 ≤ n ≤ N − 1, or (iii) N = πN . The decompositions (i)

π = 〈N, π1;π2; . . . ;πk; . . . ;πN〉 ,

(ii)

π = 〈π0; π1; . . . ; πn−1; N, πn+1; . . . ; πN〉 or 〈π0; π1; . . . ; πn−1, N;πn+1; . . . ; πN〉
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(since πn−1, πn, πn+1 = πn−1, N, πn+1 does not form a spiraling subsequence),
and (iii)

π = 〈π0; π1; . . . ; πk; . . . ; πN−1, N〉 ,

show that any π ∈ SN+1 is allowed for �σ , σ0 = · · · = σN−1 = −.
2. Consider

π = 〈0, 1, 2, . . . , N − 1, N, N + 1〉 ∈ SN+2.

Then R*2 requires a first semicolon between 0 and 1, a second semicolon between
1 and 2, and an (N − 1)th semicolon (the maximal number allowed) between N − 2
and N − 1. This leads to a last block πN−1, πN , πN+1 = N − 1, N, N + 1, which is
not a spiraling subsequence. Hence π is forbidden.

The assumption that π is not a root forbidden pattern leads to the fact that π is
outgrowth of the forbidden pattern

〈0, 1, 2, . . . , N − 1, N〉 ∈ SN+1,

whether π belongs to group I or II (3.12). But clearly this pattern admits the decom-
position

〈0;1;2; . . . ;N − 1, N〉 ,

with N − 1 semicolons (the maximal number allowed). This contradiction shows
that π is not an outgrowth forbidden pattern. Needless to say (Corollary 3),

πmirrored = 〈N + 1, N, N − 1, . . . , 2, 1, 0〉

is also a root forbidden pattern. �

To conclude this chapter, we consider briefly the existence of root forbidden
patterns for the signed shifts on N ≥ 3 symbols. For σ = (+, . . . ,+) and
σ = (−, . . . ,−) we know that there exist root forbidden patterns for every L ≥ N+2
(Theorems 2 and 7, respectively). The structure of the forbidden ordinal patterns
depends, of course, on the signature of the signed shift envisaged, thus the con-
struction of root forbidden patterns can only be done, in general, on a case-by-case
basis.

To illustrate this point, consider the signed shifts (with mixed signs) on three
symbols. Because of the relation between the allowed/forbidden patterns for �σ

and �σmirrored , only the following four cases are really distinct:

Case a: σ = (+,+,−), Case b: σ = (+,−,+),
Case c: σ = (+,−,−), Case d: σ = (−,+,−).
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These four cases were studied in [17]. There it is proven that all the signed shifts (a)–
(d) have root forbidden L-patterns for L ≥ 5. Furthermore, �(+,−,+) has two (root)
forbidden 4-patterns, �(+,−,−) has one (root) forbidden 4-pattern, while �(+,+,−),
�(−,+,−) have no forbidden 4-patterns. Of course, the same holds for any map order
isomorphic to those signed shifts, in particular for the corresponding signed saw-
tooth maps.

Exercise 10 Check the following statements on root forbidden patterns for �σ in
the four cases a–d.

(a)The patterns

π = 〈0, L− 1, 2, 3, . . . , L− 2, 1〉 ∈ SL,

L ≥ 5, are root forbidden patterns for �(+,+,−).
(b)The patterns

π = 〈L− 2, 0, L− 4, . . . , 3, 1, 2, 4, . . . , L− 3, L− 1〉 ∈ SL

if L ≥ 5 is odd and

π = 〈L− 1, L− 3, . . . , 3, 1, 2, 4, . . . , L− 4, 0, L− 2〉 ∈ SL

if L ≥ 6 is even, together with their corresponding mirrored patterns, are root
forbidden patterns for �(+,−,+). (If L = 5, then π = 〈3, 0, 1, 2, 4〉; if L = 6, then
π = 〈5, 3, 1, 2, 0, 4〉.)

(c)The patterns

π = 〈2, 1, 0, 3, 4〉 ∈ S5,

π = 〈L− 3, . . . , 4, 2, 1, 0, 3, 5, . . . , L− 4, L− 2, L− 1〉 ∈ SL

for L ≥ 7 odd, and

π = 〈L− 1, L− 2, L− 4, . . . , 4, 2, 1, 0, 3, 5, . . . , L− 3〉 ∈ SL

for L ≥ 6 even, are root forbidden patterns for �(+,−,−). Although σ =
(+,−,−) �= σmirrored = (−,−,+), the mirrored patterns of these patterns are
also root forbidden patterns for �(+,−,−).

(d)The patterns

π = 〈0, 1, 4, 3, 2〉 ∈ S5,

π = 〈0, 1, L− 1, L− 2, . . . , 3, 2, 4, . . . , L− 3〉 ∈ SL

if L ≥ 7 is odd and
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π = 〈0, 1, L− 1, L− 2, . . . , 4, 2, 3, . . . , L− 3〉 ∈ SL

if L ≥ 6 is even, together with the corresponding mirrored patterns, are root
forbidden patterns for �(−,+,−).

Exercise 11 Using signed sawtooth maps with alternating signature, construct a
continuous map whose orbits realize all possible ordinal patterns (hint: the con-
struction is similar to Fig. 4.2).
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