
Chapter 1
What Is This All About?

This introductory chapter is meant as a tour of the main topics in this book: patterns,
ordinal relations, complexity, and entropy. The approach is mostly informal; for the
technicalities behind the different notions met on the way, the reader is referred to
Annex A and Annex B.

1.1 Patterns, Complexity, and Entropy

Pattern is an abstract concept with different acceptations. In the context of dynam-
ical systems, information theory, and computer science (the ones we are interested
in), a pattern is a finite string of symbols, eventually chosen with some criterion. In
the next sections we will meet some familiar instances of patterns in those contexts.
Contrary to the concept of pattern, complexity does not lend itself to a short defini-
tion (would this be not a contradiction otherwise?) but, like poetry, it is very easy
to recognize. For a panorama of complexity, see [77] or, at an introductory level,
[158]. A third and also recurrent issue in the next pages will be entropy, one of the
most important quantities when dealing with complexity in deterministic and ran-
dom dynamical systems. Indeed, no matter how one counts the diversity of patterns
generated by a data source, entropy enters the scene in some of its many disguises:
Shannon entropy, metric entropy, topological entropy, etc.

1.1.1 Information Theory

Consider an information source outputting symbols or letters, one at a time, from
a finite alphabet S = {s1, . . . , s|S|} (i.e., |S| is the cardinality of S). Formally, an
information source is a discrete-time, stationary stochastic process X = {Xn}n∈N0 ,
where N0 = {0, 1, . . .} and Xn are random variables on a common probability space,
taking on values in S. For the time being, we will dispense with the underlying prob-
ability space. A realization of X is a one-sided sequence, x∞0 := (xn)n∈N0 , called1 a

1 The symbol “:=” means that the left side is defined by the right one; a corresponding meaning
holds for “=:”.
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message. Correspondingly, the symbols xn ∈ S are sometimes called letters. A finite
segment of a message, say, xk+L−1

k := xkxk+1 . . . xk+L−1 is called a word of length L.
If p(xL−1

0 ) denotes the probability of the word xL−1
0 to be output, then the (Shannon)

entropy rate (or just entropy) of the data source X is defined as

h(X) = − lim
L→∞

1

L

∑
p(xL−1

0 ) log p(xL−1
0 ), (1.1)

where log usually stands for logarithm to base 2 (h(X) is then measured in bits per
symbol), and the sum is over all possible words of length L, numbering |S|L, with
the convention 0 × log 0 = limx→0+ x log x = 0. To indicate that a logarithm is to
base e, we will write ln instead of log (h(X) is then measured in nats per symbol).
The convergence of limit (1.1) is proven in Sect. B.1.2.

In an information-theoretical setting, log p(xL−1
0 ) is the information conveyed by

the output xL−1
0 , hence h(X) is the average information per symbol conveyed by the

messages of the information source X in the limit of arbitrarily long messages.
When the random variables Xn are independent, or (more often) intersymbol

dependency is neglected for simplicity or limited influence, the information source
is called memoryless. In this case h(X) coincides with the entropy H(X) of a random
variable X with outcomes x ∈ S and probabilities p(x):

H(X) = −
∑

x∈S

p(x) log p(x).

Compression is any procedure that reduces the data requirements of a message
without, in principle, losing information—although it can be acceptable as a trade-
off between data reduction and information degradation. The idea of using codes
or dictionaries for compression of information originates with the invention of the
telegraph, since users were charged by the number of letters in the message. It is
clear that data compression can be achieved by assigning short words to the most
frequent outcomes of the information source. For example, in the Morse code, the
most frequent symbol in English, namely the letter e, is represented by a single
dot. This intuition is the guiding principle in the construction of the celebrated
Huffman code for memoryless sources. Suppose that code words w1, . . . , w|S| of
lengths l1, . . . , l|S|, respectively, are assigned to the values s1, . . . , s|S| taken on by
a random variable X with probabilities p(s1), . . . , p(s|S|). The code words are com-
binations of characters taken from an alphabet a1, . . . , aD, usually 0, 1 (D = 2) in
modern communications. Then the Huffman code is a uniquely decipherable code
that minimizes the average code-word length l̄ =∑|S|

n=1 p(sn)ln, which according to
the noiseless coding theorem is known to satisfy [22]

H(X) ≤ l̄ < H(X)+ 1, (1.2)

where the logarithm of H(X) is taken to base D. But how to compress a message,
say a digital picture to be sent by electronic mail or a text file written in a foreign
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language, if the probabilities of the corresponding symbols are not known? This feat
requires a universal compressor.

Universal compressors are based on the fact that natural languages are not com-
pletely random but repeat patterns from time to time. In 1976 and 1978, A. Lem-
pel and J. Ziv published two simple algorithms for universal data compression
[137, 211], which work by parsing an input string of finite length into successive
phrases. Some variants of the second (LZ78) are implemented in the most popular
compressors currently used in electronic editing (like WinZip or pdf). For our pur-
poses it is sufficient to consider the first scheme (LZ76); also, we will emphasize
the interplay between complexity and entropy rather than the compression-related
aspects.

In the LZ76, the message is sequentially parsed into strings that have not
appeared so far in the initial segment ending at (and excluding) the current letter.
For example, the binary word x19

0 = 01011010001101110010 is parsed as

0, 1, 011, 0100, 011011, 1001, 0. (1.3)

If, say, xk is the first bit after a comma, then we check whether xk appears in xk−1
0 .

If it does not, then we write a comma after xk and start a new block (this is the case
for k = 1 in (1.3)). Otherwise, we check whether xkxk+1 appears in xk

0; in negative
case, we write a comma after xk+1, otherwise the process continues till a pattern
xkxk+1 . . . xk+l repeats (or the sequence finishes). The number of patterns found in
the parsing of a word xL−1

0 is called its Lempel–Ziv (LZ) complexity, C(xL−1
0 ). In

example (1.3), C(x19
0 ) = 7. Words xL−1

0 with a general alphabet S are parsed in an
analogous way.

The formal definition of C(xL−1
0 ) is recursive. A block of length l (1 ≤ l ≤ L) is

just a segment of xL−1
0 of length l, i.e., a string of l consecutive letters, say xk+l−1

k =
xkxk+1 . . . xk+l−1 (0 ≤ k ≤ L − l). In particular, letters are blocks of length 1. Set
B0 = x0 and suppose that after k ≥ 1 steps, we have parsed xL−1

0 as

B0, B1, . . . , Bk−1,

where B1 = xn1
1 ,. . . , Bk−1 = xnk−1

nk−2+1, and ni−1+1 ≤ ni < L−1 for i = 1, . . . , k−1
(with n0 = 0). Define

Bk := xnk
nk−1+1 (nk−1 + 1 ≤ nk ≤ L− 1),

to be the shortest block such that it does not occur in the sequence xnk−1
0 . (In the

LZ78 algorithm, one checks instead whether the current block xnk
nk−1+1 coincides

with one of the previous blocks, B0, B1, . . . , Bk−1.) Proceeding in this way, we
obtain a (uniquely defined) decomposition of xL−1

0 in “minimal” blocks, say

xL−1
0 = B0, B1, . . . , Bp−1, (1.4)

in which only the last block can occasionally appear twice. Then,
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C(xL−1
0 ) := p.

For computational efficiency, one uses the well-known “suffix-tree” data structure
and search algorithms for quickly finding substrings of the input string.

From the foregoing description, we may say that C(xL−1
0 ) measures the complex-

ity of the word xL−1
0 ; words with a periodic or almost periodic structure have a small

LZ complexity, while those displaying a random-looking structure have a high count
of distinct patterns, hence a great LZ complexity. It can be proven [211] that if the
source X is ergodic (i.e., the probability of any length-L word equals its frequency
in a single, “typical” sequence), then

lim sup
L→∞

C(xL−1
0 )

L/ log|S| L
= h(X) (1.5)

with probability 1. The normalization factor in (1.5) is the LZ complexity of a mem-
oryless, equidistributed source. Let us mention in passing that (1.5) shows that the
ideal compression factor of the LZ76 algorithm, in the limit of long messages, is
h(X). The same is true for the LZ78 scheme.

Equations (1.2) and (1.5) provide examples in which the concepts of complexity
(here related to “incompressibility”) and entropy (here related to “uncertainty”) are
linked in a perhaps unexpected way. As a by-product, LZ complexity can be used
as an estimator of the entropy. A principal advantage of this approach is that the LZ
algorithm is entirely automatic with no free parameters (unlike naive plug-in meth-
ods or methods which estimate h(X) via block entropies; see [167] and Sect. 2.1).
Another practical issue is the convergence speed with L: the normalized LZ76 com-
plexity converges to the entropy faster than the LZ78, what makes it a better choice
in practice [6]. A variance estimator for the entropy estimation by means of the
LZ76 complexity can be found in [9].

1.1.2 Symbolic Dynamics

Symbolic dynamics, first proposed by Morse and Hedlund [160], is an approach
to complex dynamics that aims to capture the essential aspects of complexity by
studying conceptually simple models. As it often happens in mathematics, symbolic
dynamics has developed in short time from an auxiliary tool to an independent field
[139, 123], with applications to the study of formal languages. As a result, dynam-
ical systems connect through symbolic dynamics to computer science, information
theory, and automata.

To motivate symbolic dynamics, consider the dynamics generated by a self-map
f of a set �. Of course, the dynamics is introduced in the state space � via the
repeated action of f on �. Given x ∈ �, the orbit or trajectory of x under f is
defined as Of (x) = {f n(x):n ∈ N0}, where f 0(x) := x and f n(x) := f (f n−1(x)). If f
is invertible, then one can distinguish between the full orbit Of (x) = {f n(x):n ∈ Z}
and the forward orbit O+f (x) = {f n(x):n ∈ N0}. The name “orbit” clearly hints to
the interpretation of the iteration index n as discrete time: each application of f on
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the point xn = f (xn−1) updates the “movement” of the initial condition x in �. If
the resulting dynamics is complicated, we might content ourselves with a “blurred”
picture of the orbit behavior. This can be done as follows. Divide � into a finite
number of disjoint pieces Ai, i = 0, 1, . . . , k − 1, and keep track of the trajectory of
x ∈ � with the precision set by the decomposition α = {A0, . . . , Ak−1}. (We reserve
the name partition for a measurable decomposition, provided � is endowed with
a sigma algebra; see below.) Specifically, we assign to x a (one-sided) sequence2

�(x) = (ξ0, ξ1, . . . , ξn, . . . ), the nth entry ξn ∈ {0, 1, . . . , k − 1} telling us in which
element of α the iterate f n(x) is to be found. When f is invertible, we can also assign
a two-sided sequence �(x) = ( . . . , ξ−1, ξ0, ξ1, . . . , ξn, . . . ), the entries with negative
indices corresponding to the locations of f−n(x), n ≥ 1. For brevity we focus on the
general case. We call � a coding map, and �(x) the itinerary of x with respect to
the decomposition α. Formally,

�n(x) = i iff f n(x) ∈ Ai, (1.6)

where n ∈ N0 and �n(x) denotes the nth component of the sequence �(x).
Let us reformulate this simple idea in a more general way. Given the finite alpha-

bet S = {0, 1, . . . , k−1}, denote by SN0 the space of one-sided sequences of symbols
from S:

SN0 = {(ξn)n∈N0 = (ξ0, ξ1, . . . , ξn, . . . ):ξn ∈ S}.

Hence, �(x) ∈ SN0 . The space SN0 (and also SZ) is generically referred to as
a sequence or symbolic space. One can put on a sequence space different (non-
equivalent) metrics d making it a compact space. For example,

d((ξn)n∈N0 , (ηn)n∈N0 ) =
{

0 if ξn = ηn for all n ∈ N0,
2−N if ξn = ηn for n < N and ξN �= ηN .

(1.7)

Thus, two one-sided sequences are apart 2−N in this metric if their first N entries
coincide (and the (N + 1)th ones do not). In SZ, two sequences (ξn)n∈Z and (ηn)n∈Z

are at distance 2−N if their entries coincide from −(N − 1) to N − 1, i.e., if ξn = ηn

for |n| < N. In Annex A.2 we consider other metrics.
Having introduced the sequence spaces, observe now that the action of f on the

orbit of x ∈ �, namely, f n(x) 	→ f (f n(x)) = f n+1(x), translates into the action
(�(x))n 	→ (�(x))n+1 on the components of the itineraries. For this reason one
introduces the (one-sided) shift transformation (or just shift) �:SN0 → SN0 as fol-
lows:

�:(ξ0, ξ1, . . . , ξn, . . . ) 	→ (ξ1, ξ2, . . . , ξn+1, . . . ). (1.8)

2 The dependence of �(x) on f and α is not made explicit in order to keep the notation simple.
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In words, � deletes the first component of (ξn)n∈N0 and shifts the other components
one position to the left. It is easily shown that � is a continuous transformation. As
observed above, the diagram

�
f→ �

� ↓ ↓ �

SN0
�→ SN0

commutes, i.e., � ◦ f = � ◦ �. Note that � is not invertible (indeed, it is a k-to-1
map), although f might be invertible—unless two-sided itineraries are used.

As a simple illustration (see Fig. 1.1), consider the sawtooth (also called dyadic,
shift, etc.) map E2:[0, 1] → [0, 1], defined as

E2(x) = 2x mod 1,

and decompose [0, 1] into the intervals A0 = [0, 1
2 ) and A1 = [ 1

2 , 1], so the alphabet
is S = {0, 1}. In this case, the orbit En

2(x), n ∈ N0, is coded to an infinitely long 0–1
string �(x), where

(�(x))n =
{

0 if En
2(x) ∈ A0,

1 if En
2(x) ∈ A1.

0 1/2 1

1

x

2x
 m

od
 1

 

Fig. 1.1 The function E2(x) = 2x mod 1
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Let

x = b0

2
+ b1

22
+ · · · + bk

2k+1
+ · · · =

∞∑

k=0

bk2−(k+1) = : 0.b0b1 . . . bk . . . ,

bn ∈ {0, 1}, be a binary expansion of x ∈ [0, 1]. Then

E2(0.b0b1 . . . bk . . . ) = 0.b1b2 . . . bk+1 . . .

for x ∈ [0, 1) and E2(1) = E2(0.1∞) = 0 = 0.0∞, where here and throughout the
upper label “∞” attached to a symbol means indefinite repetition of that symbol.
The dyadic rationals in (0, 1) (i.e., numbers of the form m/2n, m = 1, 2, . . . , 2n−1)
are characterized by possessing two binary expansions: one terminating with 0∞
and other terminating with 1∞. Indeed, 0.10∞ = 0.01∞ and 0.b0 . . . bk−110∞ =
0.b0 . . . bk−101∞, k ≥ 1, since

∞∑

n=k+1

2−(n+1) = 2−(k+2)
∞∑

n=0

2−n = 2−(k+2) · 2 = 2−(k+1).

If x = 0.b0b1 . . . ∈ (0, 1) is not a dyadic rational, then

En
2(x) = 0.bnbn+1 . . . ∈ Ai iff bn = i ∈ {0, 1},

hence

�(x) = (bn)n∈N0 = (b0, b1, . . . , bn, . . . ). (1.9)

Furthermore, �(0) = (0∞) and �(1) = (1, 0∞). If x ∈ (1, 0) is a dyadic rational,
then x is a preimage of 0 under E2, thus (1.9) is fulfilled provided (bn)n∈N0 corre-
sponds to the binary expansion of x ending with 0∞. We conclude that given any
binary sequence (bn)n∈N0 not terminating with 1∞, there exists always x ∈ [0, 1],
namely x = 0.b0b1 . . ., such that its itinerary with respect to the decomposition
α = {A0, A1} under E2 is precisely that sequence. In particular, given a finite word
bn

0, there exist infinitely many points in [0, 1], to wit:

x ∈
[

b02n + b12n−1 + · · · + bn

2n+1
,

b02n + b12n−1 + · · · + bn + 1

2n+1

)

= [0.b0 . . . bn, 0.b0 . . . bn + 2−(n+1)), (1.10)

whose itineraries �(x) “realize” the pattern bL−1
0 in the sense that �(x)n

0 = bn
0. The

fact that all finite words of a symbolic space can be materialized as segments of
itineraries for a wide class of maps (Sect. 3.1) contrasts with the situation we shall
come upon when studying the so-called ordinal patterns in Sect. 1.2.
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Shifts are a special instance of the so-called subshifts. If K is a closed and
�-invariant (i.e., �(K) ⊂ K) subset of SN0 , the restriction of the shift transfor-
mation to K, written as �|K , is called a subshift. Sometimes � is called a full shift
to distinguish it from the subshifts proper (K �= SN0 ).

A special class of subshifts are of great interest in applications. Let A =
(aij)0≤i, j≤k−1 be a k × k matrix of 0’s and 1’s and define

SN0
A =

{
(ξn)n∈N0 ∈ SN0 :aξnξn+1 = 1 for all n ∈ N0

}
.

Put in simple terms, the matrix A determines which letters ξn+1 ∈ S = {0, 1, . . . ,
k − 1} may follow the letter ξn in the word (ξn)n∈N0 . Thus SN0

A is a closed and
�-invariant subset of the sequence space SN0 that contains all well-formed or admis-
sible sequences. Alternatively, one can also describe SN0

A by listing the forbidden
words. This explains the connection between symbolic dynamics and the theory of
formal languages we mentioned above. The restriction of � to SN0

A , written as �A,
is called a subshift of finite type, Markov subshift, or a topological Markov chain. If
aij = 1 for every 0 ≤ i, j ≤ k− 1, we recover the full shift. At the opposite end, SN0

A
may be empty. This happens if and only if the matrix A is nilpotent (i.e., An = 0 for
some n ∈ N).

As way of example, take k = 2 and

A =
(

1 1
1 0

)
.

Since a11 = 0, this means that the binary sequence (ξn)n∈N0 is admissible if and
only if it does not contain two consecutive 1’s. In this case, the only forbidden block
of length 2 is 11.

Let K = N0 or Z, and (SK
A , �A), (TK

B , �B) be two subshifts of finite type possibly
with different alphabets S and T , respectively. Suppose F:SK

A → TK
B is a shift-

commuting map, that is, F ◦�A = �B ◦ F. The continuous, shift-commuting maps
from a subshift of finite type SK

A to another TK
B were characterized in [92] as those

maps for which there exist integers l ≤ r and a “local rule” f :Sr−l+1 → T such that
for any ξ = (ξn)n∈K ∈ SK

A and i ∈ K,

F(ξ )i = f (ξi+l, . . . , ξi+r). (1.11)

If F is not the constant map, then a maximal l and a minimal r with this property
exist; they are called left and right radii of F, respectively. If K = N0, then l ≥ 0.
When K = Z, p = max{−l, r} is called the radius of F. In this case,

F(ξ )i = f (ξi−p, . . . , ξi, . . . ξi+p),
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where ξ = (ξn)n∈Z. A map between two subshifts of finite type of the form (1.11)
is called a block map [123]. Block maps provide the mathematical underpinnings of
cellular automata (Sect. 1.5).

Markov subshifts not only do provide conceptually simple prototypes for impor-
tant dynamical properties, but they are basic components of some physical systems
(e.g., think of Smale’s horseshoes in Hamiltonian dynamical systems). To be more
specific, we point out next that Markov subshifts can exhibit all properties of low-
dimensional chaos.

Let us recall some basic definitions first. A 0–1 matrix A is said to be transitive
if Am is positive (i.e., all its entries are positive) for some m ∈ N. A continuous
self-map f of a metric space M is topologically transitive if there exists x ∈ M
such that Of (x) = (f n)n∈N0 is dense in M; if f is invertible, then the requirement
for topological transitivity is that Of (x) = (f n)n∈Z is dense in M for some x ∈ M. It
holds [91] that if A is a transitive k×k matrix, then the topological Markov chain �A

is topologically transitive and its periodic orbits are dense in SN0
A (S = {0, 1, . . . , k−

1}), therefore �A is chaotic in the sense of Devaney [69]; in particular, �A has
sensitive dependence on initial conditions (see Sect. A.2). This result includes the
full shifts. The corresponding statements for f invertible and M = SZ

A hold true as
well.

1.1.3 Dynamical Systems

We shall encounter two kinds of dynamical systems in this book. A continuous
(or topological) dynamical system consists of a topological space (e.g., a metrical
space) M and a continuous map f :M → M. This being the case, these systems
will be denoted by the pair (M, f ). Subshifts are examples of continuous systems,
(K, �K). A measure-theoretical dynamical system is comprised of a measurable
space (�,B), a measurable map f :�→ �, and a non-singular measure μ on (�,B).
Thus, � is a non-empty set, B is a sigma-algebra of subsets of �, f−1B ∈ B for all
B ∈ B, and B ∈ B is a μ-zero set iff f−1B is a μ-zero set. Only finite-measure spaces
will be considered henceforth. Therefore, (�,B, μ) may be assumed without restric-
tion to be a probability space, with μ being a probability on the space of “events”
(�,B). Measure-theoretical systems will be denoted by (�,B, μ, f ). To promote a
continuous system (M, f ) to a measure-theoretical one, it suffices to endow the topo-
logical space M with its Borel sigma-algebra (i.e., the sigma-algebra generated by
the open sets), and the corresponding Lebesgue measure. In topological dynamics,
the attention focuses on continuous systems. In ergodic theory, the framework is
set by measure-preserving self-maps of (usually) probability spaces. We say that
f :�→ � preserves a measure μ on (�,B), if μ(f−1B) = μ(B) for all B ∈ B. Alter-
natively, we say that the measure-theoretical system (�,B, μ, f ) is μ-preserving,
or that μ is f -invariant. Sometimes, measure-preserving, invertible maps are called



10 1 What Is This All About?

automorphisms, while the name endomorphisms is reserved for the non-invertible
ones.

The dynamical complexity of a measure-preserving system (�,B, μ, f ) can be
quantified by its metric entropy. So to speak, the metric entropy measures the
uncertainty of the forward evolution of the system when the initial condition is
not exactly known —the higher the uncertainty, the greater the complexity. The
original proposal of A. Kolmogorov (later completed by Y. Sinai) amounts to the
following recipe: coarse-grain the state space of the dynamical system and calculate
the Shannon entropy of the resulting stochastic process. Let us follow this path.

A partition of a measure space (�,B, μ) (or just � for brevity) is a disjoint
family of elements of B, called atoms, whose union is �. Partitions will be denoted
by small Greek letters. Two extreme examples of partitions of � are the trivial
partition {∅, �} and the point partition (or partition of � into separate points)

ε = {{x}:x ∈ �}. (1.12)

Except for ε, we consider only finite partitions, i.e., partitions with a finite number
of atoms. If, furthermore, � is a compact metric space with metric d, then the “size”
or “coarseness” of a partition α = {A0, A1, . . . , A|α|−1} is measured by its norm
(sometimes also called diameter),

‖α‖ = sup
0≤k≤|α|−1

{d(x, y):x, y ∈ Ak}. (1.13)

We saw already in the last section that a discretization of the state space � may
provide useful insights into a complicated dynamic. In measure-preserving systems
this is even more certain since, as we are going to see presently, partitions allow
establishing a connection with stochastic and information theory.

Given a finite partition α = {A0, A1, . . . , A|α|−1} of (�,B, μ), the maps3 Xn:�→
S = {0, 1, . . . , |α| − 1}, n ∈ N0, defined as

Xn(x) = i iff f n(x) ∈ Ai

are random variables on the probability space (�,B, μ). Indeed,

X−1
n (i) = f−n(Ai) ∈ B

because f is measurable. Observe that Xn(x) is the nth component of the itinerary of
x with respect to α. The difference now with respect to the itineraries of Sect. 1.1.2
is the existence of an invariant measure, which allows to promote X = {Xn}n∈N0 to
a stationary stochastic process. In fact

(i) The probability (mass) function of Xn is given by

3 The dependence of Xn on α is not made explicit here in order to keep the notation simple.
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Pr{Xn = i} = μ
{
x ∈ �:f n(x) ∈ Ai

} = μ(f−nAi) = μ(Ai),

because f is μ-preserving. As for the joint probability function of X0, . . . ,
Xn = Xn

0,

Pr
{
Xn

0 = i0, . . . , in
} = μ

{
x ∈ �:x ∈ Ai0 , . . . , f n(x) ∈ Ain

}

= μ
(
Ai0 ∩ . . . ∩ f−nAin

)
.

(ii) The stochastic process {Xn:n ∈ N0} is stationary:

Pr
{

Xk+n
k = i0, . . . , in

}
= μ

{
x ∈ �:f k(x) ∈ Ai0 , . . . , f k+n(x) ∈ Ain

}

= μ
(

f−k(Ai0 ∩ · · · ∩ f−nAin )
)

= μ
(
Ai0 ∩ · · · ∩ f−nAin

)

because f is μ-preserving. Therefore,

Pr {Xk = i0, . . . , Xk+n = in} = Pr {X0 = i0, . . . , Xn = in}

for every n, k ∈ N0.

It follows that the stochastic process X = {Xn}n∈N0 is an information source with
alphabet S = {0, 1, . . . , |α|−1}. The metric entropy of f with respect to the partition
α is defined to be the Shannon entropy (rate) of X:

hμ(f , α)=− lim
n→∞

1

n

∑
Pr{Xn−1

0 = i0, . . . , in−1} log Pr{Xn−1
0 = i0, . . . , in−1}

= − lim
n→∞

1

n

∑
μ(Ai0 ∩ · · · ∩ f−nAin ) log μ(Ai0 ∩ · · · ∩ f−nAin ),

where the summation is over all i0, . . . , in−1 ∈ S. If we define the refinement

n−1∨

i=0

f−iα = {Aj0 ∩ f−1Aj1 ∩ · · · ∩ f−(n−1)Ajn−1 : 0 ≤ j0, . . . , jn−1 ≤ |α| − 1}

of the partition α = {A0, . . . , A|α|−1}, and the function

Hμ(β) = −
|β|−1∑

j=0

μ(Bj) log (Bj)

for any partition β = {B0, . . . , B|β|−1} of (�,B, μ), then we recover the usual
expression of hμ(f , α):
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hμ(f , α) = lim
n→∞

1

n
Hμ

(
n−1∨

i=0

f−iα

)
. (1.14)

The convergence of this limit is proven in Sect. B.2.
If an application of f is interpreted as a passage of one unit of time, then∨n−1

i=0 f−iα represents the combined experiment of performing n consecutive times
the original experiment, represented by α. Then hμ(f , α) is the average information
per unit of time that one gets from performing the original experiment every unit of
time [202].

The metric (Kolmogorov–Sinai or measure-theoretical) entropy of f is then the
supremum of hμ(f , α) over all finite partitions of (�,B, μ):

hμ(f ) = sup
α

hμ(f , α). (1.15)

Continuing with the previous information-theoretical interpretation, hμ(f ) provides
the maximum average information per unit of time obtainable by performing the
same experiment every unit of time.

In general there are several obstacles preventing an exact calculation of h(f ).
First, except in simple cases limit (1.14) itself is not computable, so we must be

content with an evaluation of 1
n Hμ

(∨n−1
i=0 f−iα

)
for some large value of n. Sec-

ond, considerable computation is necessary to identify the elements of the refined
partitions

∨n−1
i=0 f−iα, the computational effort being exponential in n. Third, the

measure μ is usually unknown to us in closed form. Fortunately, there are excep-
tions, for instance, when one can find a partition α for which hμ(f , α) = hμ(f ). Such
partitions are called generators or generating partitions with respect to f . A finite
partition α is a one-sided generator for f if

∞∨

i=0

f−iα = ε, (1.16)

where ε is the point partition of � (see (1.12)). Moreover, if f is even an auto-
morphism and

∨∞
i=−∞ f−iα = ε, then α is called a two-sided generator or just a

generator for f . Automorphisms may have not only generators but also one-sided
generators. According to the Kolmogorov–Sinai theorem (Annex B.13), if α is a
generator (one-sided or not) for f , then hμ(f , α) = hμ(f ).

As way of illustration, consider the symmetric tent map �:[0, 1] → [0, 1] defined
as (Fig. 1.2)

�(x) = 1− |1− 2x| =
{

2x if 0 ≤ x ≤ 1
2 ,

2(1− x) if 1
2 ≤ x ≤ 1.

(1.17)

If we equip [0, 1] with the Borel sigma-algebra (generated by the intersections of
open intervals of R with [0, 1]), then � is easily seen to preserve the Lebesgue
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1
1
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1
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0
Fig. 1.2 Symbolic intervals generated by the symmetric tent map � and its second iterate
�2(xc = 1

2 )

measure. As in the previous section, let α = {A0, A1}, where

A0 = [0, 1
2 ), A1 = [ 1

2 , 1].

Then,

�−1A0 = [0, 1
4 ) ∪ ( 3

4 , 1], �−1A1 = [ 1
4 , 3

4 ].

Hence

α ∩�−1α = {A00, A01, A11, A10},

with

A00 = A0 ∩�−1A0 = [0, 1
4 ), A01 = A0 ∩�−1A1 = [ 1

4 , 1
2 ),

A11 = A1 ∩�−1A1 = [ 1
2 , 3

4 ], A10 = A1 ∩�−1A0 = ( 3
4 , 1].

The sets of α, α∩�−1α, and α∩�−1α∩�−2α are shown in Fig. 1.2. In general,

k⋂

i=0

�−iα = {Ab0b1...bk : b0, b1, . . . , bk ∈ {0, 1}} ,

where the 2k+1 disjoint sets
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Ab0b1...bk = Ab0 ∩�−1Ab1 ∩ · · · ∩�−kAbk (1.18)

build a family of ever-shorter intervals that covers uniformly the unit interval. As
a matter of fact, the sets Ab0b1...bk are a permutation of the dyadic intervals (1.10),
except eventually for the endpoints. It follows that

⋂k
i=0 �−iα converges to the point

partition of [0, 1], hence α is a one-sided generator for �. If λ denotes the Lebesgue
measure, λ(dx) = dx, then

hλ(�) = − lim
n→∞

1

n

∑

b0...bn−1∈{0,1}
λ(Ab0...bn−1 ) log λ(Ab0...bn−1 )

= − lim
n→∞

1

n

∑

b0...bn−1∈{0,1}
2−n log 2−n

= log 2.

A similar argument can be applied to other maps, like the logistic map g:[0, 1] →
[0, 1],

g(x) = 4x(1− x). (1.19)

In this case, the absolutely continuous measure4

μ(dx) = dx

π
√

x(1− x)
(1.20)

is g-invariant. This measure is called the natural or physical invariant measure of g
because it is the one obtained in numerical experiments [72].

Since (�,B, μ) is a probability space, dynamical complexity can be given a prob-
abilistic meaning. In this sense we can say that the entropy hμ(f ) (or other related
concepts, like the Lyapunov exponents greater than 1) measures the randomness or,
rather, the pseudo-randomness of the dynamic induced by the map f .

The complexity of continuous dynamical systems is usually measured by the
topological entropy. As we shall presently see, this quantity is related to the peri-
odic structure in some relevant systems. Rather than going into the definition of
topological entropy, which is quite technical (see Sect. B.3), we only recall here its
expression for a one-sided or two-sided Markov subshift �A. It can be shown [91]
that

htop(�A) = lim sup
n→∞

1

n
log+ Pn(�A),

4 Absolute continuity of measures will refer to the Lebesgue measure throughout this book.
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where htop(�A) is the topological entropy of �A (in general, htop(f ) stands for the
topological entropy of a continuous self-map f ), Pn(�A) is the number of periodic
points of period n of �A, and log+ x = log x if x ≥ 1, and 0 otherwise. To explicitly
calculate the right-hand side of this expression, we need the following two proper-
ties: (i) If B is a non-negative matrix, then there exists an eigenvalue λmax ≥ 0 such
that no other eigenvalue of B has absolute value greater than λmax (this is part of the
Perron–Frobenius theorem [202]) and (ii) the number of periodic points of period
p ∈ N of a Markov subshift �A is the trace of Ap (i.e., the sum of the diagonal
elements), denoted as tr Ap. For the full shift on k symbols, (An)ij = kn−1, for all
0 ≤ i, j ≤ k − 1, hence the trace of An is kn. This yields

htop(�) = log k.

In general, tr Ap = λ
p
1+· · ·+λ

p
k , where λi are the k eigenvalues (eventually repeated)

of the matrix A. It follows that [91]

htop(�A) = log+ λmax.

1.1.4 Computer Science

The origin of algorithmic complexity has to be sought in the efforts of R. Solomonoff,
A. Kolmogorov, and G. Chaitin to define the elusive concept of “randomness”
of finite-alphabet sequences [79, 133, 201]. The basic intuition is that random
sequences are “patternless,” hence there is no efficient way to describe them other
than giving the sequence itself. The algorithmic complexity of a string sn−1

0 =
s0s1 . . . sn−1, written as K(sn−1

0 ), can be consistently defined as the length of the
shortest binary program that, run on a universal prefix-free Turing machine, outputs
sn−1

0 and halts [59, 67, 138]. As in the case of information theory, this definition of
complexity is linked to the general concept of compressibility, this time with respect
to all possible algorithms that produce the sequence in question.

Somewhat paradoxically, algorithmic complexity is not a computable quantity.
Then suppose that Kn is claimed to be the complexity of a length-n string sn−1

0 . In
order to check this, we remove one bit from the hypothetically shortest program
and let it run. There are two possibilities: either the (Kn − 1)-bit program outputs a
string different from sn−1

0 and halts or else it runs longer than we have time to wait.
In the second case, there is no way to know whether the program will halt (this is
the famous Turing’s halting problem), eventually revealing the actual complexity to
be Kn − 1.

Any finite sequence sn−1
0 can be certainly output by the copy program: “PRINT

s0, . . . , sn.” Without loss of generality, we may restrict to binary sequences for the
time being. Since patternless n-bit sequences cannot be computed by any algorithm
significantly shorter than the copy program, their complexity is given by Kn ≤ n+C,
where C is a constant that accounts for the computational overhead (like the operat-
ing system). At the opposite end stands the sequences consisting of a repeated bit,



16 1 What Is This All About?

say 0. The complexity of the program “PRINT 0, n TIMES” can be bounded as
Kn ≤ log2 n+ C′, where log2 n is the number of bits needed to specify the length n
and, again, C′ is the computational overhead. Observe that if these programs are
run on a computer other than a universal Turing machine, the constants C and
C′ may depend on the machine, but they are independent of the actual sequence
being calculated. In the limit of very long sequences, the algorithmic complexity
will practically range between log2 n and n. This being the case, one may state
that the binary sequence sn−1

0 is random if K(sn−1
0 ) � n. (In the non-binary case,

K(sn−1
0 ) � nb for random sequences, where b is the minimal number of bits needed

to code the symbols si, 0 ≤ i ≤ n − 1.) Formally, a sequence (sn) ∈ SN0 is said to
be incompressible when there exists a constant C such that

K(sn−1
0 ) ≥ n− C

for all n ≥ 1.
Randomness can also be defined as typicality, meaning that typical sequences

have no feature that makes them special in any sense. This was the path taken by
Martin-Löf to come to grips with the concept of random sequence. Rather than
addressing the technicalities of this approach, which are beyond the scope of this
book, we will proceed directly to the conclusions: random sequences are realizations
of stochastic processes.

Let (�,B, μ) be a probability space. The realizations of a stochastic process
{Xn}n∈N0 on (�,B, μ) with a finite number of possible outcomes can be identified
with the elements of a (one-sided) sequence space. Specifically, if Xn:� → S with
S = {s1, . . . , s|S|} for every n ∈ N0, then (Xn(ω))n∈N0 ∈ SN0 for every ω ∈ �.
The general method to place a probability m on SN0 induced by the probability μ

is explained in Sect. A.3. At present we only need to resort to the so-called (p, q)-
Bernoulli shifts or systems on two symbols, which are measure-preserving systems
(SN0 ,B, m, �), where

(i) S = {0, 1},
(ii) B is the sigma-algebra generated by the so-called cylinder sets,

Cs0...sn−1 = {ξ∞0 ∈ SN0 :ξ0 = s0, . . . , ξn−1 = sn−1},

(iii) the probability m of the binary string sn−1
0 = s0s1 . . . sn−1 is defined as

m(sn−1
0 ) = m(Cs0...sn−1 ) = pkqn−k,

where p+ q = 1, k is the number of 1’s in sn−1
0 , and n− k is the number of 0’s,

and
(iv) � is the shift transformation on SN0 .

In the language of probability theory, the cylinder sets correspond to the elementary
events; in the language of computer science, Cs0...sn−1 comprises all sequences with
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the prefix w = s0, . . . , sn−1. The (p, q)-Bernoulli system models an independent,
dichotomous process, one outcome (say, “success”) having probability p to occur
and the other (“failure”) probability q = 1 − p. Think, for example, of a random
experiment consisting in tossing forever a coin with the odds p for head and q for
tail. The shift � corresponds to the “time” translation n 	→ n + 1. The fact that �

preserves m (or, equivalently, that m is �-invariant) accounts for the probabilities
being the same in every draw.

In particular, the ( 1
2 , 1

2 )-Bernoulli system is a model for the tossing of a fair coin.
If 0.b0b1 . . . bn . . . is a binary expansion and �:[0, 1] → {0, 1}N0 is the map

�:0.b0b1 . . . bn . . . 	→ (b0, b1, . . . , bn, . . . )

we met already in (1.9), then

�([0.b0b1 . . . bn, 0.b0b1 . . . bn + 2−(n+1))) = Cb0b1...bn .

Thus, � allows to identify the cylinder set Cb0b1...bn of {0, 1}N0 with the interval
[0.b0b1. . . bn−1, 0.b0b1 . . . bn−1+ 2−n) of [0, 1]. But even more is true. If m denotes
the measure of the ( 1

2 , 1
2 )-Bernoulli system and λ the Lebesgue measure of [0, 1],

then

m(Cb0b1...bn−1 ) = 1

2n
= λ([0.b0b1 . . . bn−1, 0.b0b1 . . . bn−1 + 2−n)).

Since the cylinder sets generate the sigma-algebra of the Bernoulli systems and the
semi-open dyadic intervals do the same for the Borel sigma-algebra of [0, 1], we
conclude m = λ ◦ �−1, i.e., m corresponds to the Lebesgue (or uniform) measure
on [0, 1].

Levin, Schnorr, and Chaitin proved that a binary sequence is typical with respect
to the ( 1

2 , 1
2 )-Bernoulli measure (i.e., it can be considered the result of tossing a

fair coin indefinitely) if and only if it is incompressible. In this way, two seem-
ingly different concepts of randomness incompressibility and typicality are shown
to coincide in a natural setting.

Remarkably enough, this result is not the only achievement connecting concepts
related to complexity but stemming from different areas. Let us provide another one
in which algorithmic complexity and metric entropy are brought together.

Given a measure-preserving dynamical system (�,B, μ, f ), each x ∈ � generates
an infinitely long sequence under the action of f , namely, its (forward) orbit Of (x) =
{f n(x):n ∈ N0}. Let s∞0 = s∞0 (x, α) be the itinerary of x with respect to the partition
α = {A0, . . . , A|α|−1} of �, that is, sk = i iff f k(x) ∈ Ai, i ∈ {0, . . . , |α| − 1}.
The algorithmic complexity of Of (x), written as k(f , x), is measured by the largest
algorithmic complexity per symbol of s∞0 (x, α) over all possible finite partitions α:

k(f , x) = sup
α

lim sup
n→∞

1

n
K(sn−1

0 (x, α)).
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Of course, one expects that random-like trajectories are computationally more
difficult to reproduce than the regular ones. This expectation can be rigorously
proved under the proviso that f is ergodic with respect to the invariant measure
μ. In this case [39],

k(f , x) = hμ(f ) μ-almost everywhere.

1.1.5 Cellular Automata

A cellular automaton is a discrete-time dynamical system with discrete space and
discrete states. The state variables are defined on the sites of a D-dimensional regular
lattice (ZD)—the cells of the D-dimensional automaton—taking on values in a finite
alphabet S = {0, 1, . . . , k − 1}. The set of all possible states (formally the set of
all possible mappings Z

D → S) is called the configuration space. For numerical
simulations it is convenient that the lattice of sites is finite or has a non-trivial
topology, like a circle or a 2-torus; these requirements can be implemented with
quiescent cells or with periodic conditions, respectively. In order to accommodate
this disparity of possibilities, the configuration space will be denoted by a neutral
�. The states of the cells evolve synchronously in discrete time steps according to
identical rules. But what makes cellular automata special is the evolution rule: the
state of a particular cell is determined by the previous states of a neighborhood of
cells around it.

Cellular automata were introduced by Ulam [199] and von Neumann [161] as
simple models of universal computation and machine self-reproduction, respec-
tively. Indeed, a remarkable property of cellular automata is their ability to simulate
other symbol processors. Another one is self-organization, even when started from
disordered configurations. Two-dimensional cellular automata became quite popular
in the 1970s thanks to the article that Martin Gardner devoted to John Conway’s
Game of Life in his section “Mathematical Games” of Scientific American [84].
A purely mathematical approach was initiated by Hedlund and collaborators, who
studied the endomorphisms and automorphisms of the shift dynamical system [92].
Apart from the many subsequent papers on their dynamical and ergodic properties
from this point of view, cellular automata have also been the object of intensive
study in mathematical physics, computer science, biology, etc. [207]. Being at the
crossroads of symbolic dynamical systems and computation, it is not surprising that
the theory of cellular automata benefits from both areas, at the same time that cross-
pollinate them, as we try to show in the next lines. For a readable account on cellular
automata and their remarkable performance in physical modeling, see, e.g., [198].

For simplicity we will consider only one-dimensional cellular automata. In
this case, the configuration space is the two-sided sequence space SZ. One-sided
sequences or even finite sequences, corresponding to lattices adequately flanked by
quiescent cells, may also be considered along the same lines. A neighborhood of
size l ≥ 1 of the cell i ∈ Z, written as Ul(i), is the set of 2l+ 1 cells
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i− l, i− l+ 1, . . . , i, . . . , i+ l.

The state of cell i at time t ≥ 0 will be denoted as st(i). At each time step t + 1, the
previous state at each cell i, st(i) ∈ S, is updated according to the states of Ul(i) by a
local rule f :S2l+1 → S of the form

st+1(i) = f (st(i− l), st(i− l+ 1), . . . , st(i+ l)).

Note that f does not depend on i nor t, but only on the states of Ul(i); if f is allowed
to depend on i, then one speaks of hybrid cellular automata.

The local rule f leads to a global transition map of the configuration space,
F:�→ �, defined in the obvious way:

F( . . . , st(i), . . . ) = ( . . . , f (st(i− l), st(i− l+ 1), . . . , st(i+ l)), . . . )

= ( . . . , st+1(i), . . . ).

Observe that F is a block map from a full shift to itself of radius l. As pointed out in
Sect. 1.1.2, it follows that F is continuous and shift-commuting. (This characteriza-
tion generalizes to D-dimensional cellular automata just by replacing the sequence
space SZ by SZD

.)
As way of illustration, Fig. 1.3 depicts the time evolution of a one-dimensional,

binary cellular automaton with periodic boundary conditions: st(N + 1) = st(1)
and st(0) = st(N) for all t ≥ 0. Here N = 250, the horizontal axis represents
space (label i), and time (label t) elapses along the vertical direction, from top to
bottom. Once the initial configuration has been fixed, the global map F determines
the dynamics of the automaton on the configuration space.

The relation between the properties of the local rule f and the properties of the
global transition map F is one of the most important and difficult problems in the

Fig. 1.3 A typical space–time evolution diagram of a one-dimensional cellular automaton with
250 sites and periodic boundary conditions. Time elapses from top to bottom
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theory of cellular automata. This problem has been proved to be algorithmically
unsolvable for some properties (surjectivity and injectivity for dimension D > 1,
nilpotency for D ≥ 1, etc.), and it is believed to be unsolvable for others (ergodicity,
sensitivity, etc.).

On a more practical level, hybrid cellular automata with binary state variables
and null boundaries (i.e., the cells delimiting the site lattice are permanently in
the 0-state) have been explicitly shown to emulate linear feedback shift registers
(LFSRs), which are widely used in cryptography as pseudo-random bit generators
for stream ciphers. Specifically, given the primitive polynomial of an LFSR [151],
then the algorithm given in [48] allows to “synthesize” a null-boundary, hybrid
binary cellular automaton that emulates the said LFSR using only the local rules
f (p, q, r) = p+ r mod 2 ≡ p⊕ q and f (p, q, r) = p+ q+ r mod 2≡ p⊕ q⊕ r. Most
importantly, the same is true for the so-called self-shrunken LSFRs [149], which are
nonlinear structures featured in some designs of stream ciphers. Since the previous
local rules are linear, this fact allows to cryptanalize such ciphers using cellular
automata.

Suppose that the configuration space � is SZ. In the topology induced by the
cylinder sets

Cs−n,...,s0,...,sn = {ξ∞0 ∈ SZ:ξk = sk, |k| ≤ n},

the global transition map F:�→ � that updates the states of the cellular automaton
is continuous, which makes (�, F) a continuous dynamical system. Hence, we can
measure the complexity of its time evolution with the topological entropy htop(F);
see Sect. B.3 for different ways of calculating the topological entropy of a continu-
ous dynamical system. Alternatively, let R(w, t) be the number of distinct rectangles
of width w and height (temporal extent) t occurring in a space–time evolution dia-
gram of (�, F); see Fig. 1.4. Then [62]

htop(F) = lim
w→∞ lim

t→∞
1

t
log R(w, t). (1.21)

Fig. 1.4 Geometrical illustration of the rectangles R(w, t) used in (1.21)
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Therefore, the complexity of (�, F) can be measured by the number of distinct
words or patterns per time unit generated by the global transition map F as time
evolves. It follows that

htop(F) ≤ 2l log k,

where l is the neighborhood size of the automaton and k = |S|.
Topological entropy belongs also to the dynamical properties that cannot be algo-

rithmically computed for general cellular automata [101]. More generally, whether
metric and/or topological entropy is effectively computable (i.e., can be approxi-
mated with an arbitrary small error) is an open question for most dynamical systems.

1.2 Admissible and Forbidden Ordinal Patterns

The concept of ordinal pattern of length L only demands a totally ordered set
(�,≤ ). Let us caution the reader that there are several definitions of ordinal pat-
terns in the literature; the one used in this book follows Bandt et al. [28, 29]. In
the simplest setting, the ordinal pattern defined by the elements x0, . . . , xL−1 ∈ �

can be viewed as the permutation π of {0, 1, . . . , L− 1} that arrange those elements
according to their order in �: xπ0 < xπ1 < · · · < xπL−1 . In case xi = xj, we
agree that xi < xj if i < j. We write π = 〈π0, π1, . . . , πL−1〉 to summarize that
xπ0 is the smallest element, xπ1 is the second smallest element, etc., in the length-L
sequence x0, . . . , xL−1. For example, if � = R (endowed with the standard order),
and x0 =

√
3, x1 = e, x2 = 2, and x3 = −1.7, then π = 〈3, 0, 2, 1〉. In an extended

setting where we have a self-map f of �, the sets of points to be arranged by π are
naturally provided by the initial segments of the f -orbits: xn = f n(x), 0 ≤ n ≤ L−1.
In this case, one usually dispenses with periodic orbits of period smaller than L.
The set of ordinal L-patterns will be denoted by SL throughout this book. Ordinal
patterns are sometimes called permutations.

As a minor technical point, let us mention that a permutation τ :i 	→ τ (i), i ∈
{0, 1, . . . , L− 1}, is written in combinatorics as

(
0 1 . . . L− 1

τ (0) τ (1) . . . τ (L− 1)

)
=: [τ (0), τ (1), . . . , τ (L− 1)]. (1.22)

Observe that an ordinal pattern π = 〈π0, . . . , πL−1〉 does not correspond—as one
might think— to the permutation [π0, . . . , πL−1], but rather to its inverse: π0 	→
0,. . . , πL−1 	→ L− 1, i.e.,

〈π0, . . . , πL−1〉 =
(

π0 π1 . . . πL−1
0 1 . . . L− 1

)
= [π0, . . . , πL−1

]−1 . (1.23)

For example, the ordering x2 < x0 < x1 defines the ordinal pattern 〈2, 0, 1〉 but
the permutation 0 = π1 	→ 1, 1 = π2 	→ 2, and 2 = π0 	→ 0, which in the
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conventional notation reads

[1, 2, 0] = [2, 0, 1]−1.

In sum, an ordinal pattern π ∈ SL corresponds actually to the permutation πi 	→ i,
0 ≤ i ≤ L− 1, which will be denoted as [π ]−1 whenever needed:

[π ]−1 = [π0, π1, . . . , πL−1]−1. (1.24)

Furthermore, if π = 〈π0, . . . , πL−1〉 and π ′ = 〈π ′0, . . . , π ′L−1

〉
, a (non-commutative)

product π ◦ π ′ can be defined in SL via composition

π ◦ π ′ =
(

π0 π1 . . . πL−1
0 1 . . . L− 1

)(
π ′0 π ′1 . . . π ′L−1
0 1 . . . L− 1

)

=
(

π ′π0
π ′π1

. . . π ′πL−1

0 1 . . . L− 1

)

= 〈π ′π0
, π ′π1

, . . . , π ′πL−1
〉. (1.25)

Endowed with this product, SL becomes a non-Abelian group of order L!. The neu-
tral element of the group (SL, ◦) is the identity permutation 〈0, 1, . . . , L−1〉. Ordinal
patterns will be studied in detail in Chap. 3.

After these algebraic prolegomena, consider now a function f :I → I, where I is
a closed interval of R. Given the finite orbit {f n(x):0 ≤ n ≤ L − 1} of x ∈ I, we
say that x defines the ordinal pattern of length L (or ordinal L-pattern) π = π (x) =
〈π0, π1, . . . , πL−1〉 if

f π0 (x) < f π1 (x) < · · · < f πL−1 (x). (1.26)

We say also that π is realized by x or that x is of type π .
If, for example, I = [0, 1] and g is the logistic map, g(x) = 4x(1 − x), then we

find to four digit precision.

Og(0.6416) = 0.6416, 0.9198, 0.2951, 0.8320, 0.5590, 0.9861, . . .

hence x = 0.6416 is of the types

〈0, 1〉 , 〈2, 0, 1〉 , 〈2, 0, 3, 1〉 , 〈2, 4, 0, 3, 1〉 , 〈2, 4, 0, 3, 1, 5〉 , . . .

Instead of fixing x and varying L, we can do the opposite, as in the following illus-
tration with L = 3:



1.2 Admissible and Forbidden Ordinal Patterns 23

Og(0.15) = 0.15, 0.51, 0.9996, . . . hence 0.15 is of type 〈0, 1, 2〉 ,
Og(0.30) = 0.30, 0.84, 0.5376, . . . hence 0.30 is of type 〈0, 2, 1〉 ,
Og(0.55) = 0.55, 0.99, 0.0396, . . . hence 0.55 is of type 〈2, 0, 1〉 ,
Og(0.80) = 0.80, 0.64, 0.9216, . . . hence 0.80 is of type 〈1, 0, 2〉 ,
Og(0.95) = 0.95, 0.19, 0.6156, . . . hence 0.95 is of type 〈1, 2, 0〉 .

Points and ordinal patterns provide complementary perspectives of the same pic-
ture. Thus, as in the first instance, one can be more interested in the ordinal patterns
defined by a given point or, as in the second instance, in the points that realize a
given pattern. In order to introduce the second point of view, we define following
[29] the sets

Pπ = {x ∈ I:x defines π ∈ SL}. (1.27)

If Pπ �= ∅, then π is said to be an allowed or admissible (ordinal) pattern for
f ; otherwise π is called a forbidden (ordinal) pattern for f . In words, π ∈ SL is
allowed or admissible if there exists x ∈ I such that x is of type π , whereas it is
forbidden if no x is of type π . We will see shortly that maps have forbidden patterns
(in fact, infinitely many of them) under quite general assumptions.

The properties of the sets Pπ �= ∅ are closely related to the properties of f . Thus,
Pπ is a union of open intervals if f is continuous or the union of intervals (including
none, one, or both endpoints) if f is piecewise continuous. The endpoints of Pπ are
determined by the periodic points of f . All these facts can be easily exposed via the
graphs of the map and their iterates. First of all, draw the graph of the identity (f 0)
in the square I × I ⊂ R

2, which is the diagonal y = x, x ∈ I, on the Cartesian plane
{(x, y) ∈ R× R}. Then draw the graphs of the functions y = f (x), . . . , y = f L−1(x),
x ∈ I. The components of the distinct Pπ ’s, π ∈ SL, are separated by the intersection
points of all those graphs. Indeed, if x ∈ Pπ “moves” leftward or rightward, it will
leave the current component of Pπ at the left or right endpoint, respectively, as soon
as the condition

f πi(x) = f πi+1 (x) (1.28)

holds for some i = 0, 1, . . . , L − 2, unless it leaves the interval I before. Note that
condition (1.28) implies that f min{πi,πi+1}(x) is a periodic point of period |πi − πi+1|,
thus x is a min{πi, πi+1}th preimage of such a point. In this case, min{πi, πi+1} +
|πi − πi+1| = max{πi, πi+1} ≤ L− 1. In particular, if πi = 0 or πi+1 = 0, then x is
a periodic point.

In short, the endpoints of the intervals Pπ �= ∅, π ∈ SL, are given by the periodic
points of f of periods p ≤ L − 1, and their preimages up to the order L − 2. We
conclude that the admissible ordinal patterns for f are determined by its periodic
structure.

As a simple illustration, consider again the logistic map g(x) = 4x(1 − x), 0 ≤
x ≤ 1. For L = 2 we have, see Fig. 1.5,
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P〈0,1〉 =
(

0, 3
4

)
, P〈1,0〉 =

(
3
4 , 1
)

.

The separating point x = 3
4 between P〈0,1〉 and P〈1,0〉 is given by the condition

gπ0 (x) = gπ1 (x), where π0, π1 ∈ {0, 1}, i.e.,

g(x) = x.

For L = 3 (g2(x) = −64x4 + 128x3 − 80x2 + 16x), Fig. 1.6 shows that

P〈0,1,2〉 =
(

0, 1
4

)
, P〈0,2,1〉 =

(
1
4 , 5−√5

8

)
, P〈2,0,1〉 =

(
5−√5

8 , 3
4

)
,

P〈1,0,2〉 =
(

3
4 , 5+√5

8

)
, P〈1,2,0〉 =

(
5+√5

8 , 1
)

.
(1.29)

The separating points of the intervals Pπ , π ∈ S3, are given now by the condi-
tions gπi (x) = gπi+1 (x), πi, πi+1 ∈ {0, 1, 2}, i.e.,

g(x) = x, g2(x) = x, g2(x) = g(x).

We conclude that the common endpoints of the intervals Pπ for π ∈ S3 are now the
points of period 1 (fixed points), period 2, and first preimages of period-1 points.
Moreover, when going from L = 2 to L = 3, we see that P〈0,1〉 splits into the
subintervals P〈0,1,2〉, P〈0,2,1〉, and P〈2,0,1〉 at the eventually period-1 point 1

4 (preimage

of the fixed point 3
4 ) and at the period-2 point 5−√5

8 . Likewise, P〈1,0〉 splits into

P〈1,0,2〉 and P〈1,2,0〉 at the period-2 point 5+√5
8 .

Ordinal patterns are the main ingredient of permutation entropy which, as the
standard concept of entropy, comes also in metric and topological versions.

Suppose that μ is an f -invariant measure. Then the definition of the metric per-
mutation entropy of f is formally similar to the definition of the Shannon entropy of
an information source:

h∗μ(f ) = − lim
L→∞

1

L

∑

π∈SL

μ(Pπ ) log μ(Pπ ), (1.30)

provided the limit exists. Note that μ(Pπ ) is the probability for the ordinal L-pattern
π to occur (while in the expression for the Shannon entropy, (1.1), the corresponding
probabilities refer to length-L blocks xL−1

0 ). Sometimes the factor 1/(L− 1) is used
instead of 1/L —of course, this is inconsequential in the limit L →∞.

As for the topological permutation entropy of f , one just counts distinct allowed
patterns:

h∗top(f ) = − lim
L→∞

1

L
log |{Pπ �= ∅:π ∈ SL}| , (1.31)
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0 0.2 0.4 0.6 0.8 1

1

01 10 

Fig. 1.5 Points in the interval (0, 3
4 ) are of type 〈0, 1〉 (shorthanded 01), while points in the interval

( 3
4 , 0) are of type 〈1, 0〉 (shorthanded 10)

0 0.2 0.4 0.6 0.8 1

1

012 021 201 102 120 

Fig. 1.6 The sets Pπ , π ∈ S3, are graphically obtained by raising vertical lines at the crossing
points of the curves y = x, y = f (x), and y = f 2(x). The three digits on the upper part of the figure
are shorthand for ordinal patterns (e.g., 012 stands for 〈0, 1, 2〉). Observe that P〈2,1,0〉 = ∅
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where |·| denotes here cardinality. We are assuming again that this limit converges,
otherwise h∗top(f ) is not defined.

An interval map f :I → I is called piecewise monotone if there is a finite partition
of I into intervals, such that f is continuous and monotone on each of those intervals.
A nice result of Bandt, Keller, and Pompe [29] states that if f is piecewise monotone,
then (i) the metric permutation entropy of f coincides with its metric entropy and
(ii) the topological permutation entropy of f coincides with its topological entropy.
In mathematical notation:

(i) h∗μ(f ) = hμ(f ) and (ii) h∗top(f ) = htop(f ). (1.32)

From (ii) and (1.31), it follows that if f is piecewise monotone and its topological
entropy is finite, then

|{Pπ �= ∅:π ∈ SL}| ∼ eLhtop(f ), (1.33)

where the symbol ∼ stands for “asymptotically as L →∞.” Hence, the number of
allowed L-patterns for f grows exponentially with L. On the other hand,

|{Pπ :π ∈ SL}| = L! ∼ eL( ln L−1)+1/2 ln 2πL, (1.34)

according to Stirling’s formula for the factorial of a positive integer. Comparison of
(1.33) and (1.34) not only does show that piecewise monotone maps have neces-
sarily forbidden L-patterns for L sufficiently large but also that their number grows
superexponentially with L.

From (1.29) we see that already for L = 3 there is one forbidden pattern for the
logistic map, namely, 〈2, 1, 0〉. But this is not the end of the story. The absence of
the ordinal pattern π = 〈2, 1, 0〉 triggers, in turn, an avalanche of longer missing
patterns. To begin with, all the patterns 〈∗, 2, ∗, 1, ∗, 0, ∗〉 (where the wildcard ∗
stands eventually for any other entries of the pattern) cannot be realized by any
x ∈ [0, 1] since the inequalities

· · · < g2(x) < · · · < g(x) < · · · < x < · · · (1.35)

cannot occur. By the same token, the patterns 〈∗, 3, ∗, 2, ∗, 1, ∗〉, 〈∗, 4, ∗, 3, ∗, 2, ∗〉,
and, more generally,

〈∗, n+ 2, ∗, n+ 1, ∗, n, ∗〉 ∈ SL, 0 ≤ n ≤ L− 3, (1.36)

cannot be realized either for the same reason (replace x by gn(x) in (1.35)). We con-
clude that each forbidden pattern generates an infinite trail of ever-longer forbidden
patterns. This issue will be revisited in full generality in Chap. 3.

Let us clarify this last point with the logistic map once more and L = 4. In
Fig. 1.7, which is Fig. 1.6 with the curve
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

0123 

0132 

0312 

3012 0312 

0213

2031 

2301 

2031 

2013 3102 

1320 

1230 

1203 

1230 

Fig. 1.7 The 12 allowed ordinal 4-patterns for the logistic map. Note the two components of
P〈0,3,1,2〉, P〈2,0,3,1〉, and P〈1,2,3,0〉

y = g3(x)

= −16 384x8 + 65 536x7 − 106 496x6 + 90 112x5

−42 240x4 + 10 752x3 − 1344x2 + 64x

superimposed, we can see the 12 allowed 4-patterns for the logistic map. Since there
are 24 possible patterns of length 4, we conclude that 12 of them are forbidden.
Seven forbidden 4-patterns belong to trail (1.36) of 〈2, 1, 0〉 (observe that 〈3, 2, 1, 0〉
is repeated):

(n = 0) 〈3, 2, 1, 0〉, 〈2, 3, 1, 0〉, 〈2, 1, 3, 0〉, 〈2, 1, 0, 3〉
(n = 1) 〈0, 3, 2, 1〉, 〈3, 0, 2, 1〉, 〈3, 2, 0, 1〉, 〈3, 2, 1, 0〉 . (1.37)

Therefore, the remaining five forbidden 4-patterns,

〈0, 2, 3, 1〉 , 〈1, 0, 2, 3〉 , 〈1, 0, 3, 2〉 , 〈1, 3, 0, 2〉 , 〈3, 1, 2, 0〉 , (1.38)

are seeds for new trails of forbidden patterns of lengths L ≥ 5 that eventually can
overlap.

In Fig. 1.7 one can also follow the first two splittings of the intervals Pπ :
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P〈0,1〉 →
⎧
⎨

⎩

P〈0,1,2〉 → P〈0,1,2,3〉, P〈0,1,3,2〉, P〈0,3,1,2〉, P〈3,0,1,2〉,
P〈0,2,1〉 → P〈0,2,1,3〉,
P〈2,0,1〉 → P〈2,0,1,3〉, P〈2,0,3,1〉, P〈2,3,0,1〉,

P〈1,0〉 →
{

P〈1,0,2〉 → P〈3,1,0,2〉,
P〈1,2,0〉 → P〈1,2,0,3〉, P〈1,2,3,0〉, P〈1,3,2,0〉.

The splitting of the intervals Pπ can be understood in terms of periodic points and
their preimages. Thus, the splitting of P〈0,1〉 is due to the points 1

4 (first preimage of

the period-1 point 3
4 ) and 5−√5

8 (a period-2 point); the second period-2 point, 5−√5
8 ,

is responsible for the splitting of P〈1,0〉. On the contrary, P〈0,2,1〉 and P〈1,0,2〉 do not
split because they contain neither period-3 point nor first preimages of period-2
points nor second preimages of fixed points.
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