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José Marı́a Amigó
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Preface

This is a research book on ordinal patterns, permutation entropy, and complexity,
written at graduate level. The common denominator of the different topics presented
in its pages is a hypothetical order structure of the state space, substantiated in
form of ordinal patterns—permutations defined by the order relations among points
in the orbits of dynamical systems. Here the state space is meant to be arbitrary
(including discrete sets and n-dimensional intervals), as long as it is totally ordered,
and the dynamical systems are meant to include stochastic processes (sometimes
called random dynamical systems). Out of the order structure of the state space, a
number of constructs will emerge to pave our way as we progress: admissible and
forbidden patterns, order isomorphy, metric and topological permutation entropy,
discrete entropy, regularity parameters, etc. The relation of these concepts to similar
concepts in applied mathematics and computer science will be addressed as well,
especially in the introductory part. The final result is a new approach to dynamical
complexity characterized by conceptual simplicity, an algebraic flavor, and compu-
tational speed. The term permutation complexity in the title of this book intends to
direct attention to this circle of ideas.

Complexity is a general concept that has different meanings in different contexts.
For instance, complexity is related to “incompressibility” in information theory
and computer science. In dynamical systems, complexity is usually measured by
the topological entropy and reflects roughly speaking, the proliferation of periodic
orbits with ever longer periods or the number of orbits that can be distinguished
with increasing precision. In physics, the label “complex” is in principle attached to
any nonlinear system whose numerical solutions exhibit a chaotic behavior. Neurol-
ogists claim that the human brain is the most complex system in the solar system,
while entomologists teach us the baffling complexity of some insect societies. The
list could be enlarged with examples from geometry, management science, commu-
nication and social networks, etc. In this book we will be mainly concerned with
complexity from the viewpoint of discrete-time dynamical systems. In particular,
permutation complexity refers to the dynamical features captured and quantified by
tools based on order relations.

Permutation entropy was introduced in 2002 by C. Bandt and B. Pompe as a
measure of complexity in time series. In a nutshell, permutation entropy replaces
the probabilities of length-L symbol blocks in the definition of the Shannon entropy
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by the probabilities of length-L ordinal patterns. Since then this proposal has sparked
new lines of research that capitalize on the order structure of the state space. Order
is as well at the base of some classical results of combinatorial dynamics (notably,
Sarkovskii’s theorem), but the focus in these investigations is the periodicity struc-
ture of the map. Ordinal patterns provide an akin though different picture: akin
because periodic points and ordinal patterns are closely related; different because
ordinal patterns are amenable to numerical methods, while periodicity is not. A
complete analysis of the relation between ordinal patterns and periodic points is
still lacking.

As conventional entropy, permutation entropy comes in metric and topological
versions, and these are limits of the corresponding rates of finite order. The metric
and topological permutation entropies can be shown to coincide with their conven-
tional counterparts under several assumptions. In applications, permutation entropy
rates of finite order may be used to measure the complexity of a finite data sequence.
Periodic or quasiperiodic sequences have vanishing or negligible complexity. At
the opposite end, independent and identically distributed random sequences (white
noise) have asymptotically divergent permutation entropies, owing to the fact that
the number of allowed (or “admissible”) ordinal patterns grows superexponentially
with length. Between both ends lie the kind of sequences we are interested in; their
permutation entropy rates of finite order can be calibrated by comparison with the
corresponding rates of the white noise.

The study of permutation complexity, which we call ordinal analysis, can be
envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal pat-
terns. Interesting enough, it turns out that under some mild mathematical assump-
tions, not all ordinal patterns can be materialized by the orbits of a given one- or
multi-dimensional deterministic dynamics, not even if this dynamic is chaotic—
contrarily to what happens with the symbol patterns. As a result, the existence of
“forbidden” (i.e., not occurring) ordinal patterns is always a persistent dynamical
feature, in opposition to properties such as proximity and correlation which die
out with time in a chaotic dynamic. Moreover, if an ordinal pattern is forbidden,
its absence pervades all longer patterns in form of more missing ordinal patterns,
called outgrowth forbidden patterns. Admissible ordinal patterns grow exponen-
tially with length, while forbidden patterns do superexponentially. Since random
(unconstrained) dynamics has no forbidden patterns with probability 1, their exis-
tence can be used as a fingerprint of deterministic orbit generation.

This book is addressed to both researchers on dynamical systems and complexity
and graduate students interested in these subjects. Some topics are already well
established; others are asking for generalizations or more comprehensive analyses;
still others, like the applications to space–time dynamics, are newcomers. The book
consists of ten chapters, plus two technical annexes where the reader can find the
mathematical background needed in the main text; overlaps between the main text
and the annexes were unavoidable, but they have been kept at a minimum. The topics
selected correspond to materials published by the author and collaborators in recent
years, although they have been thoroughly revised and eventually reformulated for
this occasion. The presentation is a compromise between mathematical rigor and
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getting the message across in a smooth way. Formal statements of results and their
proofs allow knowing exactly which are the assumptions behind them, facilitating
at the same time to refer to them from any place in the text. Examples illustrate the
theory wherever convenient. Both the main text and the annexes contain also a suf-
ficient number of exercises that invite the reader to explore beyond our exposition.
Next we describe briefly the content of the different chapters.

Chapter 1 is an introduction to the main topics of this book, namely, patterns,
complexity, and entropy. We show how these concepts are linked—sometimes in
unexpected ways—in five different settings: information theory, symbolic dynam-
ics, dynamical systems, computer science, and cellular automata. Ordinal patterns
and permutation entropy make their first appearance in the second section, together
with the forbidden patterns, one of the main characters of permutation complexity.

Once the stage has been set, Chap. 2 is a brief account on a few applications of
ordinal analysis. We review four of them, to wit: entropy estimation, permutation
complexity of time series, recovery of control parameters of unimodal maps from
symbolic sequences, and characterization of the different kinds of synchronization
between chaotic oscillators. This chapter should convey to the reader a first impres-
sion of the disparate possibilities of ordinal analysis, before going into technical
details in Chaps. 3 through 7.

Chapter 3 is wholly devoted to the study of ordinal patterns and their main prop-
erties. Two of them are specially important in applications: existence of forbidden
patterns in the orbits of dynamical systems (herein referred only to one-dimensional
dynamics) and robustness of admissible and forbidden patterns against observa-
tional noise. Forbidden patterns are further classified into two groups: outgrowth
and root forbidden patterns. The study of robustness is continued in Chap. 9.

In the relation between maps and the structure of their admissible and forbidden
patterns there are far more questions than answers. It is therefore gratifying that
this relation can be analyzed with great detail in the case of the shift and signed
shift transformations. Due to its length, this topic has been divided into two parts:
Chap. 4 and Chap. 5. Signed shifts include the standard ones but their handling is
more difficult, and the results gotten till now are not so sharp. By order isomorphy,
the results of these two chapters apply to perhaps more interesting cases, like the
logistic map, baker map, sawtooth maps.

The next two chapters comprise an in-depth analysis of metric and topologi-
cal permutation entropies. On defining the metric permutation entropy of maps in
Chap. 6, we depart from the original approach to follow basically Kolmogorov’s
path, based on finite partitions. The pay-off is that the results are not limited to one-
dimensional maps. For this reason we have to make a detour over symbolic dynam-
ics (or, equivalently, finite-alphabet information sources), before getting ready to
deal with maps. The main outcome is that the metric permutation entropy of ergodic
maps coincides with the metric entropy (otherwise called measure-theoretical or
Kolmogorov–Sinai entropy) of the map.

The same applies to the topological permutation entropy (Chap. 7), where now
expansiveness is called in. An important consequence is the existence of forbidden
patterns also in higher dimensional dynamics. Furthermore, numerical simulations
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provide ample evidence that forbidden patterns is a general feature of deterministic
orbit generation.

Discrete entropy (Chap. 8) was proposed (together with the discrete Lyapunov
exponent) as a tool of discrete chaos, a generalization of chaos to dynamical systems
with discrete state spaces. Our approach follows the work of Bandt and Pompe on
permutation entropy of time series. It is proved that discrete entropy converges to its
“continuous” counterpart in an adequate sense.

Having shown in Chap. 7 that the existence of forbidden patterns is a landmark
of determinism, Chap. 9 grapples with the implementation of this fact, the main
obstacle being that real data are finite and noisy. The properties of ordinal patterns
studied in Chap. 3 come here to the rescue, as well as the “dynamical robustness”
discussed in the first section. Two methods are proposed, based on (i) the number
of missing ordinal patterns and (ii) the distribution of visible ordinal patterns. The
second resorts to a chi-square test, the null hypothesis being that the time series
is white noise; its performance compares favorably to some widely used tests of
statistical independence.

Cellular automata and coupled map lattices are, so to speak, toy models for real
physics. And yet, what these dynamical systems lack in sophistication as compared
to the usual space–time systems, they more than make up for in conceptual simplic-
ity and modelization power. On applying some tools of ordinal analysis to cellular
automata and coupled map lattices, as done in Chap. 10, we put to test the capabil-
ities of this approach to discern different temporal structures in spatially extended
systems. The task is formidable: trying to reduce the behavior of a space–time sys-
tem to just a parameter seems to be more than what one could reasonably ask for.
Nevertheless, the results reported in Chap. 10 are encouraging.

The book concludes with Chap. 11, where we remind the main messages of ordi-
nal analysis and permutation complexity, gather some open problems scattered in
the preceding chapters, and suggest future lines of research.

Much labor will be necessary to survey the full potential of ordinal analysis and
the intricacies of permutation complexity at theoretical and practical levels. This
book should be considered as a contribution to this task. One of the main chal-
lenges of complexity theory is to design conceptual and numerical tools to study,
classify, and quantify the different degrees of complexity found in our mathematical
models of the world around. Think, for example, of turbulence in fluid mechanics
or the asymptotic behavior of cellular automata and coupled map lattices. Nonlinear
physics has developed a battery of instruments that go by the name of power spectra,
Lyapunov exponents, fractal dimensions of attractors, order parameters, etc. On the
mathematical side, ergodic theory and topological dynamics study general proper-
ties of systems evolving in time. These disciplines have provided plenty of handles
to understand complex dynamics, like deep concepts, invariants for classification
purposes (most notably, the entropy), prototypes, and powerful theoretical and prac-
tical techniques. But order relations have been less exploited. One possible reason
is that order relations are not invariant under metric and topological isomorphisms,
which consistently only address measure-theoretical and topological properties. We
hope that this book on permutation complexity convincingly shows that properties
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related to the temporal (and eventually also spatial) structure of a dynamics are
useful and worth researching.
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of the Springer Series in Complexity, for encouraging me to write this book, as
well as to Dr. Christian Caron, Executive Publishing Editor of Springer Verlag, for
guiding me through the publication stages. Last but not least, I wish to highlight
the enduring and stimulating collaboration of Samuel Zambrano; he has been much
of a driving force in exploring new ideas, working out the applications and getting
insights from the results.
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Chapter 1
What Is This All About?

This introductory chapter is meant as a tour of the main topics in this book: patterns,
ordinal relations, complexity, and entropy. The approach is mostly informal; for the
technicalities behind the different notions met on the way, the reader is referred to
Annex A and Annex B.

1.1 Patterns, Complexity, and Entropy

Pattern is an abstract concept with different acceptations. In the context of dynam-
ical systems, information theory, and computer science (the ones we are interested
in), a pattern is a finite string of symbols, eventually chosen with some criterion. In
the next sections we will meet some familiar instances of patterns in those contexts.
Contrary to the concept of pattern, complexity does not lend itself to a short defini-
tion (would this be not a contradiction otherwise?) but, like poetry, it is very easy
to recognize. For a panorama of complexity, see [77] or, at an introductory level,
[158]. A third and also recurrent issue in the next pages will be entropy, one of the
most important quantities when dealing with complexity in deterministic and ran-
dom dynamical systems. Indeed, no matter how one counts the diversity of patterns
generated by a data source, entropy enters the scene in some of its many disguises:
Shannon entropy, metric entropy, topological entropy, etc.

1.1.1 Information Theory

Consider an information source outputting symbols or letters, one at a time, from
a finite alphabet S = {s1, . . . , s|S|} (i.e., |S| is the cardinality of S). Formally, an
information source is a discrete-time, stationary stochastic process X = {Xn}n∈N0 ,
where N0 = {0, 1, . . .} and Xn are random variables on a common probability space,
taking on values in S. For the time being, we will dispense with the underlying prob-
ability space. A realization of X is a one-sided sequence, x∞0 := (xn)n∈N0 , called1 a

1 The symbol “:=” means that the left side is defined by the right one; a corresponding meaning
holds for “=:”.

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_1,
C© Springer-Verlag Berlin Heidelberg 2010
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2 1 What Is This All About?

message. Correspondingly, the symbols xn ∈ S are sometimes called letters. A finite
segment of a message, say, xk+L−1

k := xkxk+1 . . . xk+L−1 is called a word of length L.
If p(xL−1

0 ) denotes the probability of the word xL−1
0 to be output, then the (Shannon)

entropy rate (or just entropy) of the data source X is defined as

h(X) = − lim
L→∞

1

L

∑
p(xL−1

0 ) log p(xL−1
0 ), (1.1)

where log usually stands for logarithm to base 2 (h(X) is then measured in bits per
symbol), and the sum is over all possible words of length L, numbering |S|L, with
the convention 0 × log 0 = limx→0+ x log x = 0. To indicate that a logarithm is to
base e, we will write ln instead of log (h(X) is then measured in nats per symbol).
The convergence of limit (1.1) is proven in Sect. B.1.2.

In an information-theoretical setting, log p(xL−1
0 ) is the information conveyed by

the output xL−1
0 , hence h(X) is the average information per symbol conveyed by the

messages of the information source X in the limit of arbitrarily long messages.
When the random variables Xn are independent, or (more often) intersymbol

dependency is neglected for simplicity or limited influence, the information source
is called memoryless. In this case h(X) coincides with the entropy H(X) of a random
variable X with outcomes x ∈ S and probabilities p(x):

H(X) = −
∑

x∈S

p(x) log p(x).

Compression is any procedure that reduces the data requirements of a message
without, in principle, losing information—although it can be acceptable as a trade-
off between data reduction and information degradation. The idea of using codes
or dictionaries for compression of information originates with the invention of the
telegraph, since users were charged by the number of letters in the message. It is
clear that data compression can be achieved by assigning short words to the most
frequent outcomes of the information source. For example, in the Morse code, the
most frequent symbol in English, namely the letter e, is represented by a single
dot. This intuition is the guiding principle in the construction of the celebrated
Huffman code for memoryless sources. Suppose that code words w1, . . . , w|S| of
lengths l1, . . . , l|S|, respectively, are assigned to the values s1, . . . , s|S| taken on by
a random variable X with probabilities p(s1), . . . , p(s|S|). The code words are com-
binations of characters taken from an alphabet a1, . . . , aD, usually 0, 1 (D = 2) in
modern communications. Then the Huffman code is a uniquely decipherable code
that minimizes the average code-word length l̄ =∑|S|

n=1 p(sn)ln, which according to
the noiseless coding theorem is known to satisfy [22]

H(X) ≤ l̄ < H(X)+ 1, (1.2)

where the logarithm of H(X) is taken to base D. But how to compress a message,
say a digital picture to be sent by electronic mail or a text file written in a foreign
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language, if the probabilities of the corresponding symbols are not known? This feat
requires a universal compressor.

Universal compressors are based on the fact that natural languages are not com-
pletely random but repeat patterns from time to time. In 1976 and 1978, A. Lem-
pel and J. Ziv published two simple algorithms for universal data compression
[137, 211], which work by parsing an input string of finite length into successive
phrases. Some variants of the second (LZ78) are implemented in the most popular
compressors currently used in electronic editing (like WinZip or pdf). For our pur-
poses it is sufficient to consider the first scheme (LZ76); also, we will emphasize
the interplay between complexity and entropy rather than the compression-related
aspects.

In the LZ76, the message is sequentially parsed into strings that have not
appeared so far in the initial segment ending at (and excluding) the current letter.
For example, the binary word x19

0 = 01011010001101110010 is parsed as

0, 1, 011, 0100, 011011, 1001, 0. (1.3)

If, say, xk is the first bit after a comma, then we check whether xk appears in xk−1
0 .

If it does not, then we write a comma after xk and start a new block (this is the case
for k = 1 in (1.3)). Otherwise, we check whether xkxk+1 appears in xk

0; in negative
case, we write a comma after xk+1, otherwise the process continues till a pattern
xkxk+1 . . . xk+l repeats (or the sequence finishes). The number of patterns found in
the parsing of a word xL−1

0 is called its Lempel–Ziv (LZ) complexity, C(xL−1
0 ). In

example (1.3), C(x19
0 ) = 7. Words xL−1

0 with a general alphabet S are parsed in an
analogous way.

The formal definition of C(xL−1
0 ) is recursive. A block of length l (1 ≤ l ≤ L) is

just a segment of xL−1
0 of length l, i.e., a string of l consecutive letters, say xk+l−1

k =
xkxk+1 . . . xk+l−1 (0 ≤ k ≤ L − l). In particular, letters are blocks of length 1. Set
B0 = x0 and suppose that after k ≥ 1 steps, we have parsed xL−1

0 as

B0, B1, . . . , Bk−1,

where B1 = xn1
1 ,. . . , Bk−1 = xnk−1

nk−2+1, and ni−1+1 ≤ ni < L−1 for i = 1, . . . , k−1
(with n0 = 0). Define

Bk := xnk
nk−1+1 (nk−1 + 1 ≤ nk ≤ L− 1),

to be the shortest block such that it does not occur in the sequence xnk−1
0 . (In the

LZ78 algorithm, one checks instead whether the current block xnk
nk−1+1 coincides

with one of the previous blocks, B0, B1, . . . , Bk−1.) Proceeding in this way, we
obtain a (uniquely defined) decomposition of xL−1

0 in “minimal” blocks, say

xL−1
0 = B0, B1, . . . , Bp−1, (1.4)

in which only the last block can occasionally appear twice. Then,
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C(xL−1
0 ) := p.

For computational efficiency, one uses the well-known “suffix-tree” data structure
and search algorithms for quickly finding substrings of the input string.

From the foregoing description, we may say that C(xL−1
0 ) measures the complex-

ity of the word xL−1
0 ; words with a periodic or almost periodic structure have a small

LZ complexity, while those displaying a random-looking structure have a high count
of distinct patterns, hence a great LZ complexity. It can be proven [211] that if the
source X is ergodic (i.e., the probability of any length-L word equals its frequency
in a single, “typical” sequence), then

lim sup
L→∞

C(xL−1
0 )

L/ log|S| L
= h(X) (1.5)

with probability 1. The normalization factor in (1.5) is the LZ complexity of a mem-
oryless, equidistributed source. Let us mention in passing that (1.5) shows that the
ideal compression factor of the LZ76 algorithm, in the limit of long messages, is
h(X). The same is true for the LZ78 scheme.

Equations (1.2) and (1.5) provide examples in which the concepts of complexity
(here related to “incompressibility”) and entropy (here related to “uncertainty”) are
linked in a perhaps unexpected way. As a by-product, LZ complexity can be used
as an estimator of the entropy. A principal advantage of this approach is that the LZ
algorithm is entirely automatic with no free parameters (unlike naive plug-in meth-
ods or methods which estimate h(X) via block entropies; see [167] and Sect. 2.1).
Another practical issue is the convergence speed with L: the normalized LZ76 com-
plexity converges to the entropy faster than the LZ78, what makes it a better choice
in practice [6]. A variance estimator for the entropy estimation by means of the
LZ76 complexity can be found in [9].

1.1.2 Symbolic Dynamics

Symbolic dynamics, first proposed by Morse and Hedlund [160], is an approach
to complex dynamics that aims to capture the essential aspects of complexity by
studying conceptually simple models. As it often happens in mathematics, symbolic
dynamics has developed in short time from an auxiliary tool to an independent field
[139, 123], with applications to the study of formal languages. As a result, dynam-
ical systems connect through symbolic dynamics to computer science, information
theory, and automata.

To motivate symbolic dynamics, consider the dynamics generated by a self-map
f of a set �. Of course, the dynamics is introduced in the state space � via the
repeated action of f on �. Given x ∈ �, the orbit or trajectory of x under f is
defined as Of (x) = {f n(x):n ∈ N0}, where f 0(x) := x and f n(x) := f (f n−1(x)). If f
is invertible, then one can distinguish between the full orbit Of (x) = {f n(x):n ∈ Z}
and the forward orbit O+f (x) = {f n(x):n ∈ N0}. The name “orbit” clearly hints to
the interpretation of the iteration index n as discrete time: each application of f on
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the point xn = f (xn−1) updates the “movement” of the initial condition x in �. If
the resulting dynamics is complicated, we might content ourselves with a “blurred”
picture of the orbit behavior. This can be done as follows. Divide � into a finite
number of disjoint pieces Ai, i = 0, 1, . . . , k − 1, and keep track of the trajectory of
x ∈ � with the precision set by the decomposition α = {A0, . . . , Ak−1}. (We reserve
the name partition for a measurable decomposition, provided � is endowed with
a sigma algebra; see below.) Specifically, we assign to x a (one-sided) sequence2

�(x) = (ξ0, ξ1, . . . , ξn, . . . ), the nth entry ξn ∈ {0, 1, . . . , k − 1} telling us in which
element of α the iterate f n(x) is to be found. When f is invertible, we can also assign
a two-sided sequence �(x) = ( . . . , ξ−1, ξ0, ξ1, . . . , ξn, . . . ), the entries with negative
indices corresponding to the locations of f−n(x), n ≥ 1. For brevity we focus on the
general case. We call � a coding map, and �(x) the itinerary of x with respect to
the decomposition α. Formally,

�n(x) = i iff f n(x) ∈ Ai, (1.6)

where n ∈ N0 and �n(x) denotes the nth component of the sequence �(x).
Let us reformulate this simple idea in a more general way. Given the finite alpha-

bet S = {0, 1, . . . , k−1}, denote by SN0 the space of one-sided sequences of symbols
from S:

SN0 = {(ξn)n∈N0 = (ξ0, ξ1, . . . , ξn, . . . ):ξn ∈ S}.

Hence, �(x) ∈ SN0 . The space SN0 (and also SZ) is generically referred to as
a sequence or symbolic space. One can put on a sequence space different (non-
equivalent) metrics d making it a compact space. For example,

d((ξn)n∈N0 , (ηn)n∈N0 ) =
{

0 if ξn = ηn for all n ∈ N0,
2−N if ξn = ηn for n < N and ξN �= ηN .

(1.7)

Thus, two one-sided sequences are apart 2−N in this metric if their first N entries
coincide (and the (N + 1)th ones do not). In SZ, two sequences (ξn)n∈Z and (ηn)n∈Z

are at distance 2−N if their entries coincide from −(N − 1) to N − 1, i.e., if ξn = ηn

for |n| < N. In Annex A.2 we consider other metrics.
Having introduced the sequence spaces, observe now that the action of f on the

orbit of x ∈ �, namely, f n(x) 	→ f (f n(x)) = f n+1(x), translates into the action
(�(x))n 	→ (�(x))n+1 on the components of the itineraries. For this reason one
introduces the (one-sided) shift transformation (or just shift) �:SN0 → SN0 as fol-
lows:

�:(ξ0, ξ1, . . . , ξn, . . . ) 	→ (ξ1, ξ2, . . . , ξn+1, . . . ). (1.8)

2 The dependence of �(x) on f and α is not made explicit in order to keep the notation simple.
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In words, � deletes the first component of (ξn)n∈N0 and shifts the other components
one position to the left. It is easily shown that � is a continuous transformation. As
observed above, the diagram

�
f→ �

� ↓ ↓ �

SN0
�→ SN0

commutes, i.e., � ◦ f = � ◦ �. Note that � is not invertible (indeed, it is a k-to-1
map), although f might be invertible—unless two-sided itineraries are used.

As a simple illustration (see Fig. 1.1), consider the sawtooth (also called dyadic,
shift, etc.) map E2:[0, 1] → [0, 1], defined as

E2(x) = 2x mod 1,

and decompose [0, 1] into the intervals A0 = [0, 1
2 ) and A1 = [ 1

2 , 1], so the alphabet
is S = {0, 1}. In this case, the orbit En

2(x), n ∈ N0, is coded to an infinitely long 0–1
string �(x), where

(�(x))n =
{

0 if En
2(x) ∈ A0,

1 if En
2(x) ∈ A1.

0 1/2 1

1

x

2x
 m

od
 1

 

Fig. 1.1 The function E2(x) = 2x mod 1
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Let

x = b0

2
+ b1

22
+ · · · + bk

2k+1
+ · · · =

∞∑

k=0

bk2−(k+1) = : 0.b0b1 . . . bk . . . ,

bn ∈ {0, 1}, be a binary expansion of x ∈ [0, 1]. Then

E2(0.b0b1 . . . bk . . . ) = 0.b1b2 . . . bk+1 . . .

for x ∈ [0, 1) and E2(1) = E2(0.1∞) = 0 = 0.0∞, where here and throughout the
upper label “∞” attached to a symbol means indefinite repetition of that symbol.
The dyadic rationals in (0, 1) (i.e., numbers of the form m/2n, m = 1, 2, . . . , 2n−1)
are characterized by possessing two binary expansions: one terminating with 0∞
and other terminating with 1∞. Indeed, 0.10∞ = 0.01∞ and 0.b0 . . . bk−110∞ =
0.b0 . . . bk−101∞, k ≥ 1, since

∞∑

n=k+1

2−(n+1) = 2−(k+2)
∞∑

n=0

2−n = 2−(k+2) · 2 = 2−(k+1).

If x = 0.b0b1 . . . ∈ (0, 1) is not a dyadic rational, then

En
2(x) = 0.bnbn+1 . . . ∈ Ai iff bn = i ∈ {0, 1},

hence

�(x) = (bn)n∈N0 = (b0, b1, . . . , bn, . . . ). (1.9)

Furthermore, �(0) = (0∞) and �(1) = (1, 0∞). If x ∈ (1, 0) is a dyadic rational,
then x is a preimage of 0 under E2, thus (1.9) is fulfilled provided (bn)n∈N0 corre-
sponds to the binary expansion of x ending with 0∞. We conclude that given any
binary sequence (bn)n∈N0 not terminating with 1∞, there exists always x ∈ [0, 1],
namely x = 0.b0b1 . . ., such that its itinerary with respect to the decomposition
α = {A0, A1} under E2 is precisely that sequence. In particular, given a finite word
bn

0, there exist infinitely many points in [0, 1], to wit:

x ∈
[

b02n + b12n−1 + · · · + bn

2n+1
,

b02n + b12n−1 + · · · + bn + 1

2n+1

)

= [0.b0 . . . bn, 0.b0 . . . bn + 2−(n+1)), (1.10)

whose itineraries �(x) “realize” the pattern bL−1
0 in the sense that �(x)n

0 = bn
0. The

fact that all finite words of a symbolic space can be materialized as segments of
itineraries for a wide class of maps (Sect. 3.1) contrasts with the situation we shall
come upon when studying the so-called ordinal patterns in Sect. 1.2.
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Shifts are a special instance of the so-called subshifts. If K is a closed and
�-invariant (i.e., �(K) ⊂ K) subset of SN0 , the restriction of the shift transfor-
mation to K, written as �|K , is called a subshift. Sometimes � is called a full shift
to distinguish it from the subshifts proper (K �= SN0 ).

A special class of subshifts are of great interest in applications. Let A =
(aij)0≤i, j≤k−1 be a k × k matrix of 0’s and 1’s and define

SN0
A =

{
(ξn)n∈N0 ∈ SN0 :aξnξn+1 = 1 for all n ∈ N0

}
.

Put in simple terms, the matrix A determines which letters ξn+1 ∈ S = {0, 1, . . . ,
k − 1} may follow the letter ξn in the word (ξn)n∈N0 . Thus SN0

A is a closed and
�-invariant subset of the sequence space SN0 that contains all well-formed or admis-
sible sequences. Alternatively, one can also describe SN0

A by listing the forbidden
words. This explains the connection between symbolic dynamics and the theory of
formal languages we mentioned above. The restriction of � to SN0

A , written as �A,
is called a subshift of finite type, Markov subshift, or a topological Markov chain. If
aij = 1 for every 0 ≤ i, j ≤ k− 1, we recover the full shift. At the opposite end, SN0

A
may be empty. This happens if and only if the matrix A is nilpotent (i.e., An = 0 for
some n ∈ N).

As way of example, take k = 2 and

A =
(

1 1
1 0

)
.

Since a11 = 0, this means that the binary sequence (ξn)n∈N0 is admissible if and
only if it does not contain two consecutive 1’s. In this case, the only forbidden block
of length 2 is 11.

Let K = N0 or Z, and (SK
A , �A), (TK

B , �B) be two subshifts of finite type possibly
with different alphabets S and T , respectively. Suppose F:SK

A → TK
B is a shift-

commuting map, that is, F ◦�A = �B ◦ F. The continuous, shift-commuting maps
from a subshift of finite type SK

A to another TK
B were characterized in [92] as those

maps for which there exist integers l ≤ r and a “local rule” f :Sr−l+1 → T such that
for any ξ = (ξn)n∈K ∈ SK

A and i ∈ K,

F(ξ )i = f (ξi+l, . . . , ξi+r). (1.11)

If F is not the constant map, then a maximal l and a minimal r with this property
exist; they are called left and right radii of F, respectively. If K = N0, then l ≥ 0.
When K = Z, p = max{−l, r} is called the radius of F. In this case,

F(ξ )i = f (ξi−p, . . . , ξi, . . . ξi+p),
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where ξ = (ξn)n∈Z. A map between two subshifts of finite type of the form (1.11)
is called a block map [123]. Block maps provide the mathematical underpinnings of
cellular automata (Sect. 1.5).

Markov subshifts not only do provide conceptually simple prototypes for impor-
tant dynamical properties, but they are basic components of some physical systems
(e.g., think of Smale’s horseshoes in Hamiltonian dynamical systems). To be more
specific, we point out next that Markov subshifts can exhibit all properties of low-
dimensional chaos.

Let us recall some basic definitions first. A 0–1 matrix A is said to be transitive
if Am is positive (i.e., all its entries are positive) for some m ∈ N. A continuous
self-map f of a metric space M is topologically transitive if there exists x ∈ M
such that Of (x) = (f n)n∈N0 is dense in M; if f is invertible, then the requirement
for topological transitivity is that Of (x) = (f n)n∈Z is dense in M for some x ∈ M. It
holds [91] that if A is a transitive k×k matrix, then the topological Markov chain �A

is topologically transitive and its periodic orbits are dense in SN0
A (S = {0, 1, . . . , k−

1}), therefore �A is chaotic in the sense of Devaney [69]; in particular, �A has
sensitive dependence on initial conditions (see Sect. A.2). This result includes the
full shifts. The corresponding statements for f invertible and M = SZ

A hold true as
well.

1.1.3 Dynamical Systems

We shall encounter two kinds of dynamical systems in this book. A continuous
(or topological) dynamical system consists of a topological space (e.g., a metrical
space) M and a continuous map f :M → M. This being the case, these systems
will be denoted by the pair (M, f ). Subshifts are examples of continuous systems,
(K, �K). A measure-theoretical dynamical system is comprised of a measurable
space (�,B), a measurable map f :�→ �, and a non-singular measure μ on (�,B).
Thus, � is a non-empty set, B is a sigma-algebra of subsets of �, f−1B ∈ B for all
B ∈ B, and B ∈ B is a μ-zero set iff f−1B is a μ-zero set. Only finite-measure spaces
will be considered henceforth. Therefore, (�,B, μ) may be assumed without restric-
tion to be a probability space, with μ being a probability on the space of “events”
(�,B). Measure-theoretical systems will be denoted by (�,B, μ, f ). To promote a
continuous system (M, f ) to a measure-theoretical one, it suffices to endow the topo-
logical space M with its Borel sigma-algebra (i.e., the sigma-algebra generated by
the open sets), and the corresponding Lebesgue measure. In topological dynamics,
the attention focuses on continuous systems. In ergodic theory, the framework is
set by measure-preserving self-maps of (usually) probability spaces. We say that
f :�→ � preserves a measure μ on (�,B), if μ(f−1B) = μ(B) for all B ∈ B. Alter-
natively, we say that the measure-theoretical system (�,B, μ, f ) is μ-preserving,
or that μ is f -invariant. Sometimes, measure-preserving, invertible maps are called
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automorphisms, while the name endomorphisms is reserved for the non-invertible
ones.

The dynamical complexity of a measure-preserving system (�,B, μ, f ) can be
quantified by its metric entropy. So to speak, the metric entropy measures the
uncertainty of the forward evolution of the system when the initial condition is
not exactly known —the higher the uncertainty, the greater the complexity. The
original proposal of A. Kolmogorov (later completed by Y. Sinai) amounts to the
following recipe: coarse-grain the state space of the dynamical system and calculate
the Shannon entropy of the resulting stochastic process. Let us follow this path.

A partition of a measure space (�,B, μ) (or just � for brevity) is a disjoint
family of elements of B, called atoms, whose union is �. Partitions will be denoted
by small Greek letters. Two extreme examples of partitions of � are the trivial
partition {∅, �} and the point partition (or partition of � into separate points)

ε = {{x}:x ∈ �}. (1.12)

Except for ε, we consider only finite partitions, i.e., partitions with a finite number
of atoms. If, furthermore, � is a compact metric space with metric d, then the “size”
or “coarseness” of a partition α = {A0, A1, . . . , A|α|−1} is measured by its norm
(sometimes also called diameter),

‖α‖ = sup
0≤k≤|α|−1

{d(x, y):x, y ∈ Ak}. (1.13)

We saw already in the last section that a discretization of the state space � may
provide useful insights into a complicated dynamic. In measure-preserving systems
this is even more certain since, as we are going to see presently, partitions allow
establishing a connection with stochastic and information theory.

Given a finite partition α = {A0, A1, . . . , A|α|−1} of (�,B, μ), the maps3 Xn:�→
S = {0, 1, . . . , |α| − 1}, n ∈ N0, defined as

Xn(x) = i iff f n(x) ∈ Ai

are random variables on the probability space (�,B, μ). Indeed,

X−1
n (i) = f−n(Ai) ∈ B

because f is measurable. Observe that Xn(x) is the nth component of the itinerary of
x with respect to α. The difference now with respect to the itineraries of Sect. 1.1.2
is the existence of an invariant measure, which allows to promote X = {Xn}n∈N0 to
a stationary stochastic process. In fact

(i) The probability (mass) function of Xn is given by

3 The dependence of Xn on α is not made explicit here in order to keep the notation simple.
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Pr{Xn = i} = μ
{
x ∈ �:f n(x) ∈ Ai

} = μ(f−nAi) = μ(Ai),

because f is μ-preserving. As for the joint probability function of X0, . . . ,
Xn = Xn

0,

Pr
{
Xn

0 = i0, . . . , in
} = μ

{
x ∈ �:x ∈ Ai0 , . . . , f n(x) ∈ Ain

}

= μ
(
Ai0 ∩ . . . ∩ f−nAin

)
.

(ii) The stochastic process {Xn:n ∈ N0} is stationary:

Pr
{

Xk+n
k = i0, . . . , in

}
= μ

{
x ∈ �:f k(x) ∈ Ai0 , . . . , f k+n(x) ∈ Ain

}

= μ
(

f−k(Ai0 ∩ · · · ∩ f−nAin )
)

= μ
(
Ai0 ∩ · · · ∩ f−nAin

)

because f is μ-preserving. Therefore,

Pr {Xk = i0, . . . , Xk+n = in} = Pr {X0 = i0, . . . , Xn = in}

for every n, k ∈ N0.

It follows that the stochastic process X = {Xn}n∈N0 is an information source with
alphabet S = {0, 1, . . . , |α|−1}. The metric entropy of f with respect to the partition
α is defined to be the Shannon entropy (rate) of X:

hμ(f , α)=− lim
n→∞

1

n

∑
Pr{Xn−1

0 = i0, . . . , in−1} log Pr{Xn−1
0 = i0, . . . , in−1}

= − lim
n→∞

1

n

∑
μ(Ai0 ∩ · · · ∩ f−nAin ) log μ(Ai0 ∩ · · · ∩ f−nAin ),

where the summation is over all i0, . . . , in−1 ∈ S. If we define the refinement

n−1∨

i=0

f−iα = {Aj0 ∩ f−1Aj1 ∩ · · · ∩ f−(n−1)Ajn−1 : 0 ≤ j0, . . . , jn−1 ≤ |α| − 1}

of the partition α = {A0, . . . , A|α|−1}, and the function

Hμ(β) = −
|β|−1∑

j=0

μ(Bj) log (Bj)

for any partition β = {B0, . . . , B|β|−1} of (�,B, μ), then we recover the usual
expression of hμ(f , α):
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hμ(f , α) = lim
n→∞

1

n
Hμ

(
n−1∨

i=0

f−iα

)
. (1.14)

The convergence of this limit is proven in Sect. B.2.
If an application of f is interpreted as a passage of one unit of time, then∨n−1

i=0 f−iα represents the combined experiment of performing n consecutive times
the original experiment, represented by α. Then hμ(f , α) is the average information
per unit of time that one gets from performing the original experiment every unit of
time [202].

The metric (Kolmogorov–Sinai or measure-theoretical) entropy of f is then the
supremum of hμ(f , α) over all finite partitions of (�,B, μ):

hμ(f ) = sup
α

hμ(f , α). (1.15)

Continuing with the previous information-theoretical interpretation, hμ(f ) provides
the maximum average information per unit of time obtainable by performing the
same experiment every unit of time.

In general there are several obstacles preventing an exact calculation of h(f ).
First, except in simple cases limit (1.14) itself is not computable, so we must be

content with an evaluation of 1
n Hμ

(∨n−1
i=0 f−iα

)
for some large value of n. Sec-

ond, considerable computation is necessary to identify the elements of the refined
partitions

∨n−1
i=0 f−iα, the computational effort being exponential in n. Third, the

measure μ is usually unknown to us in closed form. Fortunately, there are excep-
tions, for instance, when one can find a partition α for which hμ(f , α) = hμ(f ). Such
partitions are called generators or generating partitions with respect to f . A finite
partition α is a one-sided generator for f if

∞∨

i=0

f−iα = ε, (1.16)

where ε is the point partition of � (see (1.12)). Moreover, if f is even an auto-
morphism and

∨∞
i=−∞ f−iα = ε, then α is called a two-sided generator or just a

generator for f . Automorphisms may have not only generators but also one-sided
generators. According to the Kolmogorov–Sinai theorem (Annex B.13), if α is a
generator (one-sided or not) for f , then hμ(f , α) = hμ(f ).

As way of illustration, consider the symmetric tent map �:[0, 1] → [0, 1] defined
as (Fig. 1.2)

�(x) = 1− |1− 2x| =
{

2x if 0 ≤ x ≤ 1
2 ,

2(1− x) if 1
2 ≤ x ≤ 1.

(1.17)

If we equip [0, 1] with the Borel sigma-algebra (generated by the intersections of
open intervals of R with [0, 1]), then � is easily seen to preserve the Lebesgue
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0

00
00
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0

01
1

01
01

0

11
0

11
11

1
1

10
1

10
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0
Fig. 1.2 Symbolic intervals generated by the symmetric tent map � and its second iterate
�2(xc = 1

2 )

measure. As in the previous section, let α = {A0, A1}, where

A0 = [0, 1
2 ), A1 = [ 1

2 , 1].

Then,

�−1A0 = [0, 1
4 ) ∪ ( 3

4 , 1], �−1A1 = [ 1
4 , 3

4 ].

Hence

α ∩�−1α = {A00, A01, A11, A10},

with

A00 = A0 ∩�−1A0 = [0, 1
4 ), A01 = A0 ∩�−1A1 = [ 1

4 , 1
2 ),

A11 = A1 ∩�−1A1 = [ 1
2 , 3

4 ], A10 = A1 ∩�−1A0 = ( 3
4 , 1].

The sets of α, α∩�−1α, and α∩�−1α∩�−2α are shown in Fig. 1.2. In general,

k⋂

i=0

�−iα = {Ab0b1...bk : b0, b1, . . . , bk ∈ {0, 1}} ,

where the 2k+1 disjoint sets
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Ab0b1...bk = Ab0 ∩�−1Ab1 ∩ · · · ∩�−kAbk (1.18)

build a family of ever-shorter intervals that covers uniformly the unit interval. As
a matter of fact, the sets Ab0b1...bk are a permutation of the dyadic intervals (1.10),
except eventually for the endpoints. It follows that

⋂k
i=0 �−iα converges to the point

partition of [0, 1], hence α is a one-sided generator for �. If λ denotes the Lebesgue
measure, λ(dx) = dx, then

hλ(�) = − lim
n→∞

1

n

∑

b0...bn−1∈{0,1}
λ(Ab0...bn−1 ) log λ(Ab0...bn−1 )

= − lim
n→∞

1

n

∑

b0...bn−1∈{0,1}
2−n log 2−n

= log 2.

A similar argument can be applied to other maps, like the logistic map g:[0, 1] →
[0, 1],

g(x) = 4x(1− x). (1.19)

In this case, the absolutely continuous measure4

μ(dx) = dx

π
√

x(1− x)
(1.20)

is g-invariant. This measure is called the natural or physical invariant measure of g
because it is the one obtained in numerical experiments [72].

Since (�,B, μ) is a probability space, dynamical complexity can be given a prob-
abilistic meaning. In this sense we can say that the entropy hμ(f ) (or other related
concepts, like the Lyapunov exponents greater than 1) measures the randomness or,
rather, the pseudo-randomness of the dynamic induced by the map f .

The complexity of continuous dynamical systems is usually measured by the
topological entropy. As we shall presently see, this quantity is related to the peri-
odic structure in some relevant systems. Rather than going into the definition of
topological entropy, which is quite technical (see Sect. B.3), we only recall here its
expression for a one-sided or two-sided Markov subshift �A. It can be shown [91]
that

htop(�A) = lim sup
n→∞

1

n
log+ Pn(�A),

4 Absolute continuity of measures will refer to the Lebesgue measure throughout this book.
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where htop(�A) is the topological entropy of �A (in general, htop(f ) stands for the
topological entropy of a continuous self-map f ), Pn(�A) is the number of periodic
points of period n of �A, and log+ x = log x if x ≥ 1, and 0 otherwise. To explicitly
calculate the right-hand side of this expression, we need the following two proper-
ties: (i) If B is a non-negative matrix, then there exists an eigenvalue λmax ≥ 0 such
that no other eigenvalue of B has absolute value greater than λmax (this is part of the
Perron–Frobenius theorem [202]) and (ii) the number of periodic points of period
p ∈ N of a Markov subshift �A is the trace of Ap (i.e., the sum of the diagonal
elements), denoted as tr Ap. For the full shift on k symbols, (An)ij = kn−1, for all
0 ≤ i, j ≤ k − 1, hence the trace of An is kn. This yields

htop(�) = log k.

In general, tr Ap = λ
p
1+· · ·+λ

p
k , where λi are the k eigenvalues (eventually repeated)

of the matrix A. It follows that [91]

htop(�A) = log+ λmax.

1.1.4 Computer Science

The origin of algorithmic complexity has to be sought in the efforts of R. Solomonoff,
A. Kolmogorov, and G. Chaitin to define the elusive concept of “randomness”
of finite-alphabet sequences [79, 133, 201]. The basic intuition is that random
sequences are “patternless,” hence there is no efficient way to describe them other
than giving the sequence itself. The algorithmic complexity of a string sn−1

0 =
s0s1 . . . sn−1, written as K(sn−1

0 ), can be consistently defined as the length of the
shortest binary program that, run on a universal prefix-free Turing machine, outputs
sn−1

0 and halts [59, 67, 138]. As in the case of information theory, this definition of
complexity is linked to the general concept of compressibility, this time with respect
to all possible algorithms that produce the sequence in question.

Somewhat paradoxically, algorithmic complexity is not a computable quantity.
Then suppose that Kn is claimed to be the complexity of a length-n string sn−1

0 . In
order to check this, we remove one bit from the hypothetically shortest program
and let it run. There are two possibilities: either the (Kn − 1)-bit program outputs a
string different from sn−1

0 and halts or else it runs longer than we have time to wait.
In the second case, there is no way to know whether the program will halt (this is
the famous Turing’s halting problem), eventually revealing the actual complexity to
be Kn − 1.

Any finite sequence sn−1
0 can be certainly output by the copy program: “PRINT

s0, . . . , sn.” Without loss of generality, we may restrict to binary sequences for the
time being. Since patternless n-bit sequences cannot be computed by any algorithm
significantly shorter than the copy program, their complexity is given by Kn ≤ n+C,
where C is a constant that accounts for the computational overhead (like the operat-
ing system). At the opposite end stands the sequences consisting of a repeated bit,
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say 0. The complexity of the program “PRINT 0, n TIMES” can be bounded as
Kn ≤ log2 n+ C′, where log2 n is the number of bits needed to specify the length n
and, again, C′ is the computational overhead. Observe that if these programs are
run on a computer other than a universal Turing machine, the constants C and
C′ may depend on the machine, but they are independent of the actual sequence
being calculated. In the limit of very long sequences, the algorithmic complexity
will practically range between log2 n and n. This being the case, one may state
that the binary sequence sn−1

0 is random if K(sn−1
0 ) � n. (In the non-binary case,

K(sn−1
0 ) � nb for random sequences, where b is the minimal number of bits needed

to code the symbols si, 0 ≤ i ≤ n − 1.) Formally, a sequence (sn) ∈ SN0 is said to
be incompressible when there exists a constant C such that

K(sn−1
0 ) ≥ n− C

for all n ≥ 1.
Randomness can also be defined as typicality, meaning that typical sequences

have no feature that makes them special in any sense. This was the path taken by
Martin-Löf to come to grips with the concept of random sequence. Rather than
addressing the technicalities of this approach, which are beyond the scope of this
book, we will proceed directly to the conclusions: random sequences are realizations
of stochastic processes.

Let (�,B, μ) be a probability space. The realizations of a stochastic process
{Xn}n∈N0 on (�,B, μ) with a finite number of possible outcomes can be identified
with the elements of a (one-sided) sequence space. Specifically, if Xn:� → S with
S = {s1, . . . , s|S|} for every n ∈ N0, then (Xn(ω))n∈N0 ∈ SN0 for every ω ∈ �.
The general method to place a probability m on SN0 induced by the probability μ

is explained in Sect. A.3. At present we only need to resort to the so-called (p, q)-
Bernoulli shifts or systems on two symbols, which are measure-preserving systems
(SN0 ,B, m, �), where

(i) S = {0, 1},
(ii) B is the sigma-algebra generated by the so-called cylinder sets,

Cs0...sn−1 = {ξ∞0 ∈ SN0 :ξ0 = s0, . . . , ξn−1 = sn−1},

(iii) the probability m of the binary string sn−1
0 = s0s1 . . . sn−1 is defined as

m(sn−1
0 ) = m(Cs0...sn−1 ) = pkqn−k,

where p+ q = 1, k is the number of 1’s in sn−1
0 , and n− k is the number of 0’s,

and
(iv) � is the shift transformation on SN0 .

In the language of probability theory, the cylinder sets correspond to the elementary
events; in the language of computer science, Cs0...sn−1 comprises all sequences with
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the prefix w = s0, . . . , sn−1. The (p, q)-Bernoulli system models an independent,
dichotomous process, one outcome (say, “success”) having probability p to occur
and the other (“failure”) probability q = 1 − p. Think, for example, of a random
experiment consisting in tossing forever a coin with the odds p for head and q for
tail. The shift � corresponds to the “time” translation n 	→ n + 1. The fact that �

preserves m (or, equivalently, that m is �-invariant) accounts for the probabilities
being the same in every draw.

In particular, the ( 1
2 , 1

2 )-Bernoulli system is a model for the tossing of a fair coin.
If 0.b0b1 . . . bn . . . is a binary expansion and �:[0, 1] → {0, 1}N0 is the map

�:0.b0b1 . . . bn . . . 	→ (b0, b1, . . . , bn, . . . )

we met already in (1.9), then

�([0.b0b1 . . . bn, 0.b0b1 . . . bn + 2−(n+1))) = Cb0b1...bn .

Thus, � allows to identify the cylinder set Cb0b1...bn of {0, 1}N0 with the interval
[0.b0b1. . . bn−1, 0.b0b1 . . . bn−1+ 2−n) of [0, 1]. But even more is true. If m denotes
the measure of the ( 1

2 , 1
2 )-Bernoulli system and λ the Lebesgue measure of [0, 1],

then

m(Cb0b1...bn−1 ) = 1

2n
= λ([0.b0b1 . . . bn−1, 0.b0b1 . . . bn−1 + 2−n)).

Since the cylinder sets generate the sigma-algebra of the Bernoulli systems and the
semi-open dyadic intervals do the same for the Borel sigma-algebra of [0, 1], we
conclude m = λ ◦ �−1, i.e., m corresponds to the Lebesgue (or uniform) measure
on [0, 1].

Levin, Schnorr, and Chaitin proved that a binary sequence is typical with respect
to the ( 1

2 , 1
2 )-Bernoulli measure (i.e., it can be considered the result of tossing a

fair coin indefinitely) if and only if it is incompressible. In this way, two seem-
ingly different concepts of randomness incompressibility and typicality are shown
to coincide in a natural setting.

Remarkably enough, this result is not the only achievement connecting concepts
related to complexity but stemming from different areas. Let us provide another one
in which algorithmic complexity and metric entropy are brought together.

Given a measure-preserving dynamical system (�,B, μ, f ), each x ∈ � generates
an infinitely long sequence under the action of f , namely, its (forward) orbit Of (x) =
{f n(x):n ∈ N0}. Let s∞0 = s∞0 (x, α) be the itinerary of x with respect to the partition
α = {A0, . . . , A|α|−1} of �, that is, sk = i iff f k(x) ∈ Ai, i ∈ {0, . . . , |α| − 1}.
The algorithmic complexity of Of (x), written as k(f , x), is measured by the largest
algorithmic complexity per symbol of s∞0 (x, α) over all possible finite partitions α:

k(f , x) = sup
α

lim sup
n→∞

1

n
K(sn−1

0 (x, α)).
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Of course, one expects that random-like trajectories are computationally more
difficult to reproduce than the regular ones. This expectation can be rigorously
proved under the proviso that f is ergodic with respect to the invariant measure
μ. In this case [39],

k(f , x) = hμ(f ) μ-almost everywhere.

1.1.5 Cellular Automata

A cellular automaton is a discrete-time dynamical system with discrete space and
discrete states. The state variables are defined on the sites of a D-dimensional regular
lattice (ZD)—the cells of the D-dimensional automaton—taking on values in a finite
alphabet S = {0, 1, . . . , k − 1}. The set of all possible states (formally the set of
all possible mappings Z

D → S) is called the configuration space. For numerical
simulations it is convenient that the lattice of sites is finite or has a non-trivial
topology, like a circle or a 2-torus; these requirements can be implemented with
quiescent cells or with periodic conditions, respectively. In order to accommodate
this disparity of possibilities, the configuration space will be denoted by a neutral
�. The states of the cells evolve synchronously in discrete time steps according to
identical rules. But what makes cellular automata special is the evolution rule: the
state of a particular cell is determined by the previous states of a neighborhood of
cells around it.

Cellular automata were introduced by Ulam [199] and von Neumann [161] as
simple models of universal computation and machine self-reproduction, respec-
tively. Indeed, a remarkable property of cellular automata is their ability to simulate
other symbol processors. Another one is self-organization, even when started from
disordered configurations. Two-dimensional cellular automata became quite popular
in the 1970s thanks to the article that Martin Gardner devoted to John Conway’s
Game of Life in his section “Mathematical Games” of Scientific American [84].
A purely mathematical approach was initiated by Hedlund and collaborators, who
studied the endomorphisms and automorphisms of the shift dynamical system [92].
Apart from the many subsequent papers on their dynamical and ergodic properties
from this point of view, cellular automata have also been the object of intensive
study in mathematical physics, computer science, biology, etc. [207]. Being at the
crossroads of symbolic dynamical systems and computation, it is not surprising that
the theory of cellular automata benefits from both areas, at the same time that cross-
pollinate them, as we try to show in the next lines. For a readable account on cellular
automata and their remarkable performance in physical modeling, see, e.g., [198].

For simplicity we will consider only one-dimensional cellular automata. In
this case, the configuration space is the two-sided sequence space SZ. One-sided
sequences or even finite sequences, corresponding to lattices adequately flanked by
quiescent cells, may also be considered along the same lines. A neighborhood of
size l ≥ 1 of the cell i ∈ Z, written as Ul(i), is the set of 2l+ 1 cells
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i− l, i− l+ 1, . . . , i, . . . , i+ l.

The state of cell i at time t ≥ 0 will be denoted as st(i). At each time step t + 1, the
previous state at each cell i, st(i) ∈ S, is updated according to the states of Ul(i) by a
local rule f :S2l+1 → S of the form

st+1(i) = f (st(i− l), st(i− l+ 1), . . . , st(i+ l)).

Note that f does not depend on i nor t, but only on the states of Ul(i); if f is allowed
to depend on i, then one speaks of hybrid cellular automata.

The local rule f leads to a global transition map of the configuration space,
F:�→ �, defined in the obvious way:

F( . . . , st(i), . . . ) = ( . . . , f (st(i− l), st(i− l+ 1), . . . , st(i+ l)), . . . )

= ( . . . , st+1(i), . . . ).

Observe that F is a block map from a full shift to itself of radius l. As pointed out in
Sect. 1.1.2, it follows that F is continuous and shift-commuting. (This characteriza-
tion generalizes to D-dimensional cellular automata just by replacing the sequence
space SZ by SZD

.)
As way of illustration, Fig. 1.3 depicts the time evolution of a one-dimensional,

binary cellular automaton with periodic boundary conditions: st(N + 1) = st(1)
and st(0) = st(N) for all t ≥ 0. Here N = 250, the horizontal axis represents
space (label i), and time (label t) elapses along the vertical direction, from top to
bottom. Once the initial configuration has been fixed, the global map F determines
the dynamics of the automaton on the configuration space.

The relation between the properties of the local rule f and the properties of the
global transition map F is one of the most important and difficult problems in the

Fig. 1.3 A typical space–time evolution diagram of a one-dimensional cellular automaton with
250 sites and periodic boundary conditions. Time elapses from top to bottom
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theory of cellular automata. This problem has been proved to be algorithmically
unsolvable for some properties (surjectivity and injectivity for dimension D > 1,
nilpotency for D ≥ 1, etc.), and it is believed to be unsolvable for others (ergodicity,
sensitivity, etc.).

On a more practical level, hybrid cellular automata with binary state variables
and null boundaries (i.e., the cells delimiting the site lattice are permanently in
the 0-state) have been explicitly shown to emulate linear feedback shift registers
(LFSRs), which are widely used in cryptography as pseudo-random bit generators
for stream ciphers. Specifically, given the primitive polynomial of an LFSR [151],
then the algorithm given in [48] allows to “synthesize” a null-boundary, hybrid
binary cellular automaton that emulates the said LFSR using only the local rules
f (p, q, r) = p+ r mod 2 ≡ p⊕ q and f (p, q, r) = p+ q+ r mod 2≡ p⊕ q⊕ r. Most
importantly, the same is true for the so-called self-shrunken LSFRs [149], which are
nonlinear structures featured in some designs of stream ciphers. Since the previous
local rules are linear, this fact allows to cryptanalize such ciphers using cellular
automata.

Suppose that the configuration space � is SZ. In the topology induced by the
cylinder sets

Cs−n,...,s0,...,sn = {ξ∞0 ∈ SZ:ξk = sk, |k| ≤ n},

the global transition map F:�→ � that updates the states of the cellular automaton
is continuous, which makes (�, F) a continuous dynamical system. Hence, we can
measure the complexity of its time evolution with the topological entropy htop(F);
see Sect. B.3 for different ways of calculating the topological entropy of a continu-
ous dynamical system. Alternatively, let R(w, t) be the number of distinct rectangles
of width w and height (temporal extent) t occurring in a space–time evolution dia-
gram of (�, F); see Fig. 1.4. Then [62]

htop(F) = lim
w→∞ lim

t→∞
1

t
log R(w, t). (1.21)

Fig. 1.4 Geometrical illustration of the rectangles R(w, t) used in (1.21)
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Therefore, the complexity of (�, F) can be measured by the number of distinct
words or patterns per time unit generated by the global transition map F as time
evolves. It follows that

htop(F) ≤ 2l log k,

where l is the neighborhood size of the automaton and k = |S|.
Topological entropy belongs also to the dynamical properties that cannot be algo-

rithmically computed for general cellular automata [101]. More generally, whether
metric and/or topological entropy is effectively computable (i.e., can be approxi-
mated with an arbitrary small error) is an open question for most dynamical systems.

1.2 Admissible and Forbidden Ordinal Patterns

The concept of ordinal pattern of length L only demands a totally ordered set
(�,≤ ). Let us caution the reader that there are several definitions of ordinal pat-
terns in the literature; the one used in this book follows Bandt et al. [28, 29]. In
the simplest setting, the ordinal pattern defined by the elements x0, . . . , xL−1 ∈ �

can be viewed as the permutation π of {0, 1, . . . , L− 1} that arrange those elements
according to their order in �: xπ0 < xπ1 < · · · < xπL−1 . In case xi = xj, we
agree that xi < xj if i < j. We write π = 〈π0, π1, . . . , πL−1〉 to summarize that
xπ0 is the smallest element, xπ1 is the second smallest element, etc., in the length-L
sequence x0, . . . , xL−1. For example, if � = R (endowed with the standard order),
and x0 =

√
3, x1 = e, x2 = 2, and x3 = −1.7, then π = 〈3, 0, 2, 1〉. In an extended

setting where we have a self-map f of �, the sets of points to be arranged by π are
naturally provided by the initial segments of the f -orbits: xn = f n(x), 0 ≤ n ≤ L−1.
In this case, one usually dispenses with periodic orbits of period smaller than L.
The set of ordinal L-patterns will be denoted by SL throughout this book. Ordinal
patterns are sometimes called permutations.

As a minor technical point, let us mention that a permutation τ :i 	→ τ (i), i ∈
{0, 1, . . . , L− 1}, is written in combinatorics as

(
0 1 . . . L− 1

τ (0) τ (1) . . . τ (L− 1)

)
=: [τ (0), τ (1), . . . , τ (L− 1)]. (1.22)

Observe that an ordinal pattern π = 〈π0, . . . , πL−1〉 does not correspond—as one
might think— to the permutation [π0, . . . , πL−1], but rather to its inverse: π0 	→
0,. . . , πL−1 	→ L− 1, i.e.,

〈π0, . . . , πL−1〉 =
(

π0 π1 . . . πL−1
0 1 . . . L− 1

)
= [π0, . . . , πL−1

]−1 . (1.23)

For example, the ordering x2 < x0 < x1 defines the ordinal pattern 〈2, 0, 1〉 but
the permutation 0 = π1 	→ 1, 1 = π2 	→ 2, and 2 = π0 	→ 0, which in the
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conventional notation reads

[1, 2, 0] = [2, 0, 1]−1.

In sum, an ordinal pattern π ∈ SL corresponds actually to the permutation πi 	→ i,
0 ≤ i ≤ L− 1, which will be denoted as [π ]−1 whenever needed:

[π ]−1 = [π0, π1, . . . , πL−1]−1. (1.24)

Furthermore, if π = 〈π0, . . . , πL−1〉 and π ′ = 〈π ′0, . . . , π ′L−1

〉
, a (non-commutative)

product π ◦ π ′ can be defined in SL via composition

π ◦ π ′ =
(

π0 π1 . . . πL−1
0 1 . . . L− 1

)(
π ′0 π ′1 . . . π ′L−1
0 1 . . . L− 1

)

=
(

π ′π0
π ′π1

. . . π ′πL−1

0 1 . . . L− 1

)

= 〈π ′π0
, π ′π1

, . . . , π ′πL−1
〉. (1.25)

Endowed with this product, SL becomes a non-Abelian group of order L!. The neu-
tral element of the group (SL, ◦) is the identity permutation 〈0, 1, . . . , L−1〉. Ordinal
patterns will be studied in detail in Chap. 3.

After these algebraic prolegomena, consider now a function f :I → I, where I is
a closed interval of R. Given the finite orbit {f n(x):0 ≤ n ≤ L − 1} of x ∈ I, we
say that x defines the ordinal pattern of length L (or ordinal L-pattern) π = π (x) =
〈π0, π1, . . . , πL−1〉 if

f π0 (x) < f π1 (x) < · · · < f πL−1 (x). (1.26)

We say also that π is realized by x or that x is of type π .
If, for example, I = [0, 1] and g is the logistic map, g(x) = 4x(1 − x), then we

find to four digit precision.

Og(0.6416) = 0.6416, 0.9198, 0.2951, 0.8320, 0.5590, 0.9861, . . .

hence x = 0.6416 is of the types

〈0, 1〉 , 〈2, 0, 1〉 , 〈2, 0, 3, 1〉 , 〈2, 4, 0, 3, 1〉 , 〈2, 4, 0, 3, 1, 5〉 , . . .

Instead of fixing x and varying L, we can do the opposite, as in the following illus-
tration with L = 3:
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Og(0.15) = 0.15, 0.51, 0.9996, . . . hence 0.15 is of type 〈0, 1, 2〉 ,
Og(0.30) = 0.30, 0.84, 0.5376, . . . hence 0.30 is of type 〈0, 2, 1〉 ,
Og(0.55) = 0.55, 0.99, 0.0396, . . . hence 0.55 is of type 〈2, 0, 1〉 ,
Og(0.80) = 0.80, 0.64, 0.9216, . . . hence 0.80 is of type 〈1, 0, 2〉 ,
Og(0.95) = 0.95, 0.19, 0.6156, . . . hence 0.95 is of type 〈1, 2, 0〉 .

Points and ordinal patterns provide complementary perspectives of the same pic-
ture. Thus, as in the first instance, one can be more interested in the ordinal patterns
defined by a given point or, as in the second instance, in the points that realize a
given pattern. In order to introduce the second point of view, we define following
[29] the sets

Pπ = {x ∈ I:x defines π ∈ SL}. (1.27)

If Pπ �= ∅, then π is said to be an allowed or admissible (ordinal) pattern for
f ; otherwise π is called a forbidden (ordinal) pattern for f . In words, π ∈ SL is
allowed or admissible if there exists x ∈ I such that x is of type π , whereas it is
forbidden if no x is of type π . We will see shortly that maps have forbidden patterns
(in fact, infinitely many of them) under quite general assumptions.

The properties of the sets Pπ �= ∅ are closely related to the properties of f . Thus,
Pπ is a union of open intervals if f is continuous or the union of intervals (including
none, one, or both endpoints) if f is piecewise continuous. The endpoints of Pπ are
determined by the periodic points of f . All these facts can be easily exposed via the
graphs of the map and their iterates. First of all, draw the graph of the identity (f 0)
in the square I × I ⊂ R

2, which is the diagonal y = x, x ∈ I, on the Cartesian plane
{(x, y) ∈ R× R}. Then draw the graphs of the functions y = f (x), . . . , y = f L−1(x),
x ∈ I. The components of the distinct Pπ ’s, π ∈ SL, are separated by the intersection
points of all those graphs. Indeed, if x ∈ Pπ “moves” leftward or rightward, it will
leave the current component of Pπ at the left or right endpoint, respectively, as soon
as the condition

f πi(x) = f πi+1 (x) (1.28)

holds for some i = 0, 1, . . . , L − 2, unless it leaves the interval I before. Note that
condition (1.28) implies that f min{πi,πi+1}(x) is a periodic point of period |πi − πi+1|,
thus x is a min{πi, πi+1}th preimage of such a point. In this case, min{πi, πi+1} +
|πi − πi+1| = max{πi, πi+1} ≤ L− 1. In particular, if πi = 0 or πi+1 = 0, then x is
a periodic point.

In short, the endpoints of the intervals Pπ �= ∅, π ∈ SL, are given by the periodic
points of f of periods p ≤ L − 1, and their preimages up to the order L − 2. We
conclude that the admissible ordinal patterns for f are determined by its periodic
structure.

As a simple illustration, consider again the logistic map g(x) = 4x(1 − x), 0 ≤
x ≤ 1. For L = 2 we have, see Fig. 1.5,
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P〈0,1〉 =
(

0, 3
4

)
, P〈1,0〉 =

(
3
4 , 1
)

.

The separating point x = 3
4 between P〈0,1〉 and P〈1,0〉 is given by the condition

gπ0 (x) = gπ1 (x), where π0, π1 ∈ {0, 1}, i.e.,

g(x) = x.

For L = 3 (g2(x) = −64x4 + 128x3 − 80x2 + 16x), Fig. 1.6 shows that

P〈0,1,2〉 =
(

0, 1
4

)
, P〈0,2,1〉 =

(
1
4 , 5−√5

8

)
, P〈2,0,1〉 =

(
5−√5

8 , 3
4

)
,

P〈1,0,2〉 =
(

3
4 , 5+√5

8

)
, P〈1,2,0〉 =

(
5+√5

8 , 1
)

.
(1.29)

The separating points of the intervals Pπ , π ∈ S3, are given now by the condi-
tions gπi (x) = gπi+1 (x), πi, πi+1 ∈ {0, 1, 2}, i.e.,

g(x) = x, g2(x) = x, g2(x) = g(x).

We conclude that the common endpoints of the intervals Pπ for π ∈ S3 are now the
points of period 1 (fixed points), period 2, and first preimages of period-1 points.
Moreover, when going from L = 2 to L = 3, we see that P〈0,1〉 splits into the
subintervals P〈0,1,2〉, P〈0,2,1〉, and P〈2,0,1〉 at the eventually period-1 point 1

4 (preimage

of the fixed point 3
4 ) and at the period-2 point 5−√5

8 . Likewise, P〈1,0〉 splits into

P〈1,0,2〉 and P〈1,2,0〉 at the period-2 point 5+√5
8 .

Ordinal patterns are the main ingredient of permutation entropy which, as the
standard concept of entropy, comes also in metric and topological versions.

Suppose that μ is an f -invariant measure. Then the definition of the metric per-
mutation entropy of f is formally similar to the definition of the Shannon entropy of
an information source:

h∗μ(f ) = − lim
L→∞

1

L

∑

π∈SL

μ(Pπ ) log μ(Pπ ), (1.30)

provided the limit exists. Note that μ(Pπ ) is the probability for the ordinal L-pattern
π to occur (while in the expression for the Shannon entropy, (1.1), the corresponding
probabilities refer to length-L blocks xL−1

0 ). Sometimes the factor 1/(L− 1) is used
instead of 1/L —of course, this is inconsequential in the limit L →∞.

As for the topological permutation entropy of f , one just counts distinct allowed
patterns:

h∗top(f ) = − lim
L→∞

1

L
log |{Pπ �= ∅:π ∈ SL}| , (1.31)
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0 0.2 0.4 0.6 0.8 1

1

01 10 

Fig. 1.5 Points in the interval (0, 3
4 ) are of type 〈0, 1〉 (shorthanded 01), while points in the interval

( 3
4 , 0) are of type 〈1, 0〉 (shorthanded 10)

0 0.2 0.4 0.6 0.8 1

1

012 021 201 102 120 

Fig. 1.6 The sets Pπ , π ∈ S3, are graphically obtained by raising vertical lines at the crossing
points of the curves y = x, y = f (x), and y = f 2(x). The three digits on the upper part of the figure
are shorthand for ordinal patterns (e.g., 012 stands for 〈0, 1, 2〉). Observe that P〈2,1,0〉 = ∅
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where |·| denotes here cardinality. We are assuming again that this limit converges,
otherwise h∗top(f ) is not defined.

An interval map f :I → I is called piecewise monotone if there is a finite partition
of I into intervals, such that f is continuous and monotone on each of those intervals.
A nice result of Bandt, Keller, and Pompe [29] states that if f is piecewise monotone,
then (i) the metric permutation entropy of f coincides with its metric entropy and
(ii) the topological permutation entropy of f coincides with its topological entropy.
In mathematical notation:

(i) h∗μ(f ) = hμ(f ) and (ii) h∗top(f ) = htop(f ). (1.32)

From (ii) and (1.31), it follows that if f is piecewise monotone and its topological
entropy is finite, then

|{Pπ �= ∅:π ∈ SL}| ∼ eLhtop(f ), (1.33)

where the symbol ∼ stands for “asymptotically as L →∞.” Hence, the number of
allowed L-patterns for f grows exponentially with L. On the other hand,

|{Pπ :π ∈ SL}| = L! ∼ eL( ln L−1)+1/2 ln 2πL, (1.34)

according to Stirling’s formula for the factorial of a positive integer. Comparison of
(1.33) and (1.34) not only does show that piecewise monotone maps have neces-
sarily forbidden L-patterns for L sufficiently large but also that their number grows
superexponentially with L.

From (1.29) we see that already for L = 3 there is one forbidden pattern for the
logistic map, namely, 〈2, 1, 0〉. But this is not the end of the story. The absence of
the ordinal pattern π = 〈2, 1, 0〉 triggers, in turn, an avalanche of longer missing
patterns. To begin with, all the patterns 〈∗, 2, ∗, 1, ∗, 0, ∗〉 (where the wildcard ∗
stands eventually for any other entries of the pattern) cannot be realized by any
x ∈ [0, 1] since the inequalities

· · · < g2(x) < · · · < g(x) < · · · < x < · · · (1.35)

cannot occur. By the same token, the patterns 〈∗, 3, ∗, 2, ∗, 1, ∗〉, 〈∗, 4, ∗, 3, ∗, 2, ∗〉,
and, more generally,

〈∗, n+ 2, ∗, n+ 1, ∗, n, ∗〉 ∈ SL, 0 ≤ n ≤ L− 3, (1.36)

cannot be realized either for the same reason (replace x by gn(x) in (1.35)). We con-
clude that each forbidden pattern generates an infinite trail of ever-longer forbidden
patterns. This issue will be revisited in full generality in Chap. 3.

Let us clarify this last point with the logistic map once more and L = 4. In
Fig. 1.7, which is Fig. 1.6 with the curve
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 1.7 The 12 allowed ordinal 4-patterns for the logistic map. Note the two components of
P〈0,3,1,2〉, P〈2,0,3,1〉, and P〈1,2,3,0〉

y = g3(x)

= −16 384x8 + 65 536x7 − 106 496x6 + 90 112x5

−42 240x4 + 10 752x3 − 1344x2 + 64x

superimposed, we can see the 12 allowed 4-patterns for the logistic map. Since there
are 24 possible patterns of length 4, we conclude that 12 of them are forbidden.
Seven forbidden 4-patterns belong to trail (1.36) of 〈2, 1, 0〉 (observe that 〈3, 2, 1, 0〉
is repeated):

(n = 0) 〈3, 2, 1, 0〉, 〈2, 3, 1, 0〉, 〈2, 1, 3, 0〉, 〈2, 1, 0, 3〉
(n = 1) 〈0, 3, 2, 1〉, 〈3, 0, 2, 1〉, 〈3, 2, 0, 1〉, 〈3, 2, 1, 0〉 . (1.37)

Therefore, the remaining five forbidden 4-patterns,

〈0, 2, 3, 1〉 , 〈1, 0, 2, 3〉 , 〈1, 0, 3, 2〉 , 〈1, 3, 0, 2〉 , 〈3, 1, 2, 0〉 , (1.38)

are seeds for new trails of forbidden patterns of lengths L ≥ 5 that eventually can
overlap.

In Fig. 1.7 one can also follow the first two splittings of the intervals Pπ :
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P〈0,1〉 →
⎧
⎨

⎩

P〈0,1,2〉 → P〈0,1,2,3〉, P〈0,1,3,2〉, P〈0,3,1,2〉, P〈3,0,1,2〉,
P〈0,2,1〉 → P〈0,2,1,3〉,
P〈2,0,1〉 → P〈2,0,1,3〉, P〈2,0,3,1〉, P〈2,3,0,1〉,

P〈1,0〉 →
{

P〈1,0,2〉 → P〈3,1,0,2〉,
P〈1,2,0〉 → P〈1,2,0,3〉, P〈1,2,3,0〉, P〈1,3,2,0〉.

The splitting of the intervals Pπ can be understood in terms of periodic points and
their preimages. Thus, the splitting of P〈0,1〉 is due to the points 1

4 (first preimage of

the period-1 point 3
4 ) and 5−√5

8 (a period-2 point); the second period-2 point, 5−√5
8 ,

is responsible for the splitting of P〈1,0〉. On the contrary, P〈0,2,1〉 and P〈1,0,2〉 do not
split because they contain neither period-3 point nor first preimages of period-2
points nor second preimages of fixed points.



Chapter 2
First Applications

In this chapter we present four applications of permutation entropy and ordinal
patterns: entropy estimation, complexity analysis, recovery of parameters from
itineraries, and synchronization analysis of time series. The scope is to give the
reader a multifaceted picture of ordinal analysis in action. Two more applications
(to determinism detection and to space–time chaos) will be discussed at length in
Chaps. 9 and 10, respectively.

2.1 Entropy Estimation

Real or numerical time series, say (xn)n∈N0 with xn ∈ R, can be produced in princi-
ple by discrete-time or continuous-time dynamical systems, which for convenience
we think as including also the corresponding stochastic systems. In the continuous-
time case, xn can be thought as readouts of an analogue signal at discrete times,
as it actually happens in practice. Formally, continuous-time dynamical systems
are constructed from the solutions of ordinary differential equations and are called
flows [98]. When solving differential equations numerically, the time variable is
discretized anyway [173].

Permutation entropy made its first appearance in the analysis of univariate time
series, i.e., sequences of real numbers—the only ones we will consider in this sec-
tion. Given a finite time series1 xN−1

0 = x0, x1, . . . , xN−1, take a sliding window of
size 2 ≤ L � N along the time series (each window comprising a symbol block
xn+L−1

n = xn, . . . , xn+L−1, 0 ≤ n ≤ N−L) and count the number of blocks realizing
a particular ordinal pattern π ∈ SL. The relative frequency of each π ∈ SL in the
sequence xN−1

0 is then

p̂(π ) =
∣∣{n : 0 ≤ n ≤ N − L, xn+L−1

n is of type π}∣∣
N − L+ 1

. (2.1)

1For notational simplicity, we assume that one symbol is output per time unit. In this way, a time
series can be labeled as a sequence.

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_2,
C© Springer-Verlag Berlin Heidelberg 2010
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This estimator of the probability of π converges with probability 1 to the true value
in the limit of infinitely long time series, under the proviso that the underlying
stochastic process is stationary or, at least, that the probability for xn < xn+k,
1 ≤ k ≤ L − 1, does not depend on n [28]. Let us mention in passing that the
ordinal pattern probability distributions have been calculated for some random pro-
cesses and pattern lengths, like Gaussian, fractional Brownian, and autoregressive
moving-average (ARMA) processes for L ≤ 4 [30, 213]; see also [190].

The permutation entropy per symbol of order L of xN−1
0 is then defined as

h∗L(xN−1
0 ) = −1

L

∑

π∈SL

p̂(π ) log p̂(π ). (2.2)

In the case of infinitely long sequences, one defines the permutation entropy of a
sequence x∞0 as

h∗(x∞0 ) = lim
L→∞ h∗L(x∞0 ), (2.3)

provided the limit exists.
The general procedure followed so far is well known to the practitioners of non-

linear time analysis: L is the embedding dimension and the delay time T is here 1
(since we take consecutive entries). As the window of size L slides along the time
series x∞0 , the vectors xn = xn+L−1

n ∈ R
L describe the so-called reconstructed

trajectory in the L-dimensional embedding space [1, 112, 166, 197]. The changes to
be done when the sequences

xn, xn+T , . . . , xn+(L−2)T , xn+(L−1)T , (2.4)

have a delay time T > 1, are merely a matter of form but not of concept. Note
that for deterministic sequences xn = f n(x0), n ≥ 0, subsequence (2.4) is an orbit
segment of f T .

In general, h∗L and h∗ are defined for arbitrary-alphabet sequences whose sym-
bols can be linearly ordered, while Shannon entropy applies to finite-alphabet
sequences.2 In practice all alphabets are finite because of the finite precision of the
observation device and/or the finite real number representation of the computers.
Such being the case, let X = {Xn}n∈N0 be the actual data source of the sequences
x∞0 , where now xi are “discretized” values drawn from a finite alphabet S, and

h(X) = − lim
n→∞

1

L

∑

x0, ..., xL−1∈S

p(x0, . . . , xL−1) log p(x0, . . . , xL−1),

2Real-valued data sources call for the concept of differential entropy [59].
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its Shannon entropy. Usually, h(X) is estimated by means of the so-called plug-in,
maximum likelihood, or naive estimator

ĥL(xN−1
0 ) = −1

L

∑
p̂(a0 . . . aL−1) log p̂(a0 . . . aL−1), (2.5)

where the summation is over all blocks aL−1
0 = a0 . . . aL−1 ∈ SL, and

p̂(a0 . . . aL−1) =
∣∣∣{n : 0 ≤ n ≤ N − L, xn+L−1

n = aL−1
0 }

∣∣∣
N − L+ 1

(2.6)

is the relative frequency of aL−1
0 in xN−1

0 .
Important for us is that if the process X is stationary and ergodic, then h∗(x∞0 ) =

h(X) for a “typical” sequence (Chap. 6, Theorem 8). Therefore, in such cases
h∗L(xN−1

0 ), with L � N, can be used as an estimator of h(X) instead of (2.5).
The numerical estimation of entropy via ordinal patterns will be discussed with
more detail in Sect. 6.4, once the theoretical underpinnings of metrical permutation
entropy of maps have been elucidated. At this point it suffices to advance that the
computation is fast but the convergence is in general slow.

The slow convergence of h∗L to the Shannon entropy seems to require great values
of L for an accurate estimation. On the other hand, the superexponential growth of
|SL| = L! makes exhaustive sampling computationally unfeasible for, say, L � 12,
even if there would be enough data at our disposal. In Chap. 7 we shall learn sam-
pling techniques that work pretty well in these cases. In practice, the estimation of
both Shannon entropy and permutation entropy (or, for that matter, of any quantity
involving the limit L → ∞) suffers from undersampling when L becomes suffi-
ciently large as compared to the length N of the sequence. Undersampling means
that the observed relative frequencies (of blocks or ordinal patterns) are no longer
good estimators of the corresponding probabilities, simply because the samples are
too small to be statistically significant. The following first-order correction due to
finite sample effects was proposed by Herzel [93]:

ĥL(xN−1
0 ) ←− ĥL(xN−1

0 )− M1

2M2
, (2.7)

where M1 is the number of words aL−1
0 with positive probabilities and M2 is the

number of samples (M2 = N − L + 1 when the sequence is sampled by means of
overlapping sliding windows, see (2.6)). In principle, the samples should be inde-
pendent, but as stated in [94], the results are also satisfactory when the words over-
lap. Other corrections have been discussed by Grassberger [88] (who generalizes
(2.7)) and Schmitt et al. [181] (who exploit Shannon–McMillan–Breiman’s theo-
rem of asymptotic equidistribution). Sometimes extrapolation techniques perform
fine when undersampling occurs. One of them [195, 6] calls for plotting the partial
entropies h∗L against 1/L; if the graph exhibits a distinctive linear part (showing
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Fig. 2.1 Extrapolating the linear part (if any) of h∗L vs 1/L, over the undersampled values. The
continuous lines correspond to entropy rates of finite order obtained from neurological time series

that h∗L/L has already converged), then one extrapolates with a straight line this
linear part till it intercepts the vertical axis (1/L → 0), Fig. 2.1. See [127] for
other methods to estimate the Shannon entropy and [167] for a review on entropy
estimation.

Summing up, permutation entropy (“counting ordinal patterns”) provides a con-
ceptually simple and computationally fast method to estimate Shannon entropy.
When compared to the usual block-based estimators (“counting blocks”), there is a
difference that can be important in applications: the number of ordinal L-patterns
does not depend on the alphabet. Specifically, the maximal number of length-
L blocks (Shannon entropy) and length-L ordinal patterns (permutation entropy)
grows with L as

|S|L = eL ln|S| and L! ∼ eL ln L,

respectively, where S is the alphabet. It follows that if |S| is very large, undersam-
pling might set in earlier for block-based estimation than for ordinal pattern-based
estimation. This occurs precisely with real-world or computer-generated data. Such
an advantage has been reported in the literature, also in the computation of the Rényi
entropy

hRα (X) = lim
L→∞

1

L

1

1− α
log

⎛

⎝
∑

x0,...,xL−1∈S

p(x0, . . . , xL−1)α

⎞

⎠ , (2.8)

where α ≥ 0, α �= 1 (limα→1 hRα (X) = h(X)), and the Tsallis entropy



2.2 Permutation Complexity 33

hTq (X) = lim
L→∞

1

L

1

q− 1

∑

x0,...,xL−1∈S

(
p(x0, . . . , xL−1)− p(x0, . . . , xL−1)q) , (2.9)

where q ∈ R, q �= 1 [213]. When p(x0, . . . , xL−1) is replaced in (2.8) and (2.9) by
p(π ), π ∈ SL (or estimated by the relative frequency p̂(π )), one speaks of the Rényi
permutation entropy and the Tsallis permutation entropy, respectively. To complete
the picture, let us add that the situation reverses when the alphabet comprises few
symbols. But in this case, Lempel–Ziv complexity (specifically, LZ-76) can be a
better choice than block counting [6]; see [82] for the entropy estimation in binary
sequences.

Although less used than the “Shannon permutation entropy” h∗, one can also
define the topological permutation entropy or permutation capacity,

h∗0(x∞0 ) = − lim
L→∞ h∗0,L(x∞0 ), (2.10)

provided the limit exists, where the rate of finite order is given as

h∗0,L(x∞0 ) = −1

L
log N(L), (2.11)

N(L) being the number of distinct ordinal patterns defined by sliding windows
xn+L−1

n of size L. That is, we just count now how many different L-patterns are
realized, instead of computing the relative frequency of those L-patterns. It follows
that h∗0 is an upper bound of h∗. When the sequences x∞0 are seen as outputs of
an information source X, then N(L) stands for the number of admissible L-patterns
in the messages that X can emit, and one speaks of the permutation capacity or
topological permutation entropy of X (Chap. 7).

The ordinal pattern-based approach to Shannon entropy can also be extended to
the metric and topological entropy of maps; see Chaps. 7 and 8. The situation is
specially simple for one-dimensional, piecewise monotone interval maps f :I → I.
In this case, we only need to numerically estimate the probabilities μ(Pπ ) of the
admissible L-patterns (Pπ �= ∅), or just the number of distinct admissible patterns,
to get an estimate of the metric or topological entropy of f , respectively (see (1.30),
(1.31), and (1.32)). Thus, the estimation of h∗μ(f ) and h∗top(f ) boils down again to
counting ordinal L-patterns. The computation of h∗top(f ) is also simpler than for
its standard counterpart. The higher dimensional case will also be considered in
Chaps. 6 and 7.

2.2 Permutation Complexity

Although complexity, (pseudo-)randomness, disorder, irregularity, typicality, etc.,
are terms that have been introduced eventually in different settings to mean more or
less the same dynamical behavior, complexity is the preferred one when there is no
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measure (or probability) involved. In fact, Bandt and Pompe introduced permutation
entropy in [28] via (2.1), (2.2), and (2.3) as a “natural complexity measure for time
series.” The time series can be the output of a random process or an orbit of a
dynamical system. By analyzing the complexity of a signal (if no other informa-
tion available), we are inquiring into the complexity of the source. An axiomatic
characterization of complexity was proposed in [163].

The measurement of complexity and its eventual time variation is an issue of
utmost important in the analysis of biomedical, economic, physical, and technical
time series. Think of the forecasting of transitions to abnormal health conditions,
financial crashes, severe weather, earthquakes, etc. Over the years, a battery of
methods has been proposed and developed with this purpose or adapted from other
fields like information theory and networks. Let us mention some of these methods
(see also the references therein):

• Cross-correlation sum analysis [111]
• Lempel–Ziv complexity [208, 196, 90, 6, 78]
• Mutual information [90]
• Nonlinear cross-prediction analysis [183]
• Recurrence plots [73, 144, 200] and recurrence quantification analysis [81]
• Relative entropy [180]
• Statistical complexity [56, 143] (statistical complexity was introduced by

Crutchfield and collaborators within a theory called computational mechanics
[60, 185, 24])

• Statistical tests in the reconstructed phase space [120]
• Topological methods [209]

Permutation entropy and other related quantities are specially well suited to mea-
sure the complexity of random and deterministic dynamical systems for several
reasons.

First of all, permutation entropy in its different variants involves counting ordinal
patterns. With the exception of a few cases, the number of ordinal L-patterns realized
by a map f increases with L. Therefore, the (logarithm of the) rate of this increasing
is a natural measure (as stated by Bandt and Pompe) for quantifying the complexity
of a deterministic time series or, more generally, of a dynamical system. In the met-
ric variant, each admissible L-pattern contributes to the entropy a term containing
its relative frequency or probability, respectively. In the topological variant, all such
patterns make the same contribution to the entropy; formally, they are assigned the
same probability. Since random, unconstrained processes have no forbidden patterns
with probability 1 (hence, they have a superexponential growth of admissible ordinal
patterns with length), their complexity, as measured by the permutation entropy, is
infinite. At the other end, a periodic or quasiperiodic dynamic has vanishing or neg-
ligible permutation entropy. Complex systems lie between order and randomness.
From a practical point of view, we can characterize them as having a positive, finite
permutation entropy. Both metric and topological permutation entropies increase as
the sequence “looks” more random.
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Second, unlike other proposals for complexity measures, permutation entropy
applies in principle both to finite-alphabet and arbitrary-alphabet sequences, albeit
it is more interesting in the second case.

Technically we are assuming that the limits involved in the corresponding defini-
tions (like (2.3) and (2.10)) converge. In practice, limits have to be estimated using a
finite number of terms—real sequences are finite anyway. What we mean is that the
actual tools of permutation complexity are going to be the permutation entropy rates
of finite order, like h∗L(xN−1

0 ) and h∗0,L(xN−1
0 ), and other related quantities based on

finite-length ordinal patterns, like probability distributions, information-theoretical
tools (relative entropy, mutual information, etc.), complexity functionals. More-
over, since the maximal value of h∗L(xN−1

0 ) and h∗0,L(xN−1
0 ) is log L!, we can even-

tually divide both entropy rates by log L! to obtain dimensionless quantities ranging
between the two non-complex extremes: 0 (order) and 1 (randomness).

Finally, permutation entropy rates of finite order are computationally fast for the
pattern lengths used in practice (3 ≤ L ≤ 7)—also for the Rényi (2.8) and Tsallis
(2.9) permutation entropies. This allows calculation in real time, which is a signifi-
cant advantage in applications. We come back to this point in the next chapters.

Application of ordinal patterns and permutation entropy to complexity analysis
of data has been reported in different fields. For instance

• biomedical series [116, 45, 118]
• financial series [146, 147]
• physical series [28]
• statistical series [30, 146, 147, 212]

Let us underline at this point that the application by Keller [116] of ordinal pat-
terns to electroencephalogram (EEG) data from children with epileptic disorders
dates from about the same time as permutation entropy was formulated [28].

Similarly, one of the first applications of permutation entropy was the detection of
dynamical changes in time series and, in particular, epileptic seizure detection from
EEGs by Cao et al. [45]. Regarding the second application, the authors analyzed
continuous EEG measurements recorded intracranially (also called depth EEG) with
typically 28 electrodes. Figure 2.2 shows the normalized permutation entropy rate
of order L = 5 for three different patients. Each signal is more than 5 h long, with a
sample frequency of 200 Hz and time delay 3 (i.e., only every third entry in the EEG
signal is taken into account, what amounts to sampling the signal with frequency
200/3 Hz). According to [45], the change of permutation complexity in all these
cases indicates that the dynamics of the brain first becomes more regular right after
the seizure, then its irregularity increases as it approaches the normal state.

Since these and other pioneering works, ordinal analysis of time series has remain
a popular technique. In some cases, ordinal analysis has been incorporated into more
general schemes, such as the method of recurrence plots, introduced by Eckmann
et al. [73] to visualize the recurrences of dynamical systems. This method, which
is being used to analyze virtually any natural data [144], is based on the recurrence
matrix of a scalar or vectorial trajectory (xi)

N−1
i=0 of a system in its state space S,

defined as
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Fig. 2.2 [Reproduced with permission from [45].] Variation of the normalized h∗5 with time for
EEG signals of (a) patient 1, channel 1, (b) patient 2, channel 1, and (c)–(e) patient 3, channels
1–3

Ri,j(ε) = H(ε − ∥∥xi − xj
∥∥ ), i, j = 0, . . . , N − 1, (2.12)

where ε is a threshold distance, H( · ) is the Heaviside function (H(x) = 0 if x < 0
and H(x) = 1 otherwise), and ‖·‖ is a norm in S. Instead of using spatial closeness
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as in (2.12), ordinal patterns recurrence plots are based on the ordinal patterns π (i)
realized by the sequences xi+L−1

i , 0 ≤ i ≤ N − L. If δ(π , π ′) = 1 for π = π ′ ∈ SL,
and δ(π , π ′) = 0 otherwise, set

Ri,j(L) = δ(π (i), π (j)), (2.13)

π (i), π (j) ∈ SL, 0 ≤ i, j ≤ N − L. According to [144], the main advantage of (2.13)
is its robustness against non-stationary data.

To distinguish the kind of complexity captured by the tools of ordinal analysis—
ordinal patterns, permutation entropy, permutation entropy rates of finite order, and
other quantities based on order relations—we propose to call it permutation com-
plexity. Therefore, permutation complexity has to do with the ordinal structure of
data obtained from deterministic or random dynamical systems. These also include
spatially extended systems, like the ones we shall consider in Chap. 10.

2.3 Estimation of Control Parameters from Symbolic Sequences

The basis of permutation complexity is the relation between order and dynamics.
This relation is specially strong on one-dimensional intervals, where order and met-
ric are intertwined, leading to such interesting results as Sarkovskii’s theorem [179,
150]. It is therefore not surprising that the study of the ordinal structure of time
series provides valuable information on the underlying dynamical system. In this
section we learn how to recover the “control” parameter of a unimodal map from
itineraries. The relationship between the itineraries of parametric unimodal maps
and the value of the parameter that controls a particular dynamics was shown in
[153, 203, 5].

Let U be the class of unimodal maps on an interval I = [a, b] ⊂ R. A map
f :I → I is unimodal if it is continuous, has a single turning point (called hereafter
the critical point) xc in I, and is monotone increasing on the left of xc and decreasing
on the right. The class U includes maps defined in a parametric way, say, fv(x) =
ϕ(v, x), where x ∈ I, v ∈ J ⊂ R will be called the control parameter, and ϕ is a map
on I × J.

The class U includes the logistic family gv:[0, 1] → [0, 1],

gv(x) = vx(1− x), (2.14)

where 0 ≤ v ≤ 4, and the tent family �v:[0, 1] → [0, 1],

�v(x) =
{

x/v if 0 ≤ x ≤ v,
(1− x)/(1− v) if v ≤ x ≤ 1,

(2.15)

where 0 < v < 1; see Fig. 2.3. In particular, g4 is the logistic map (1.19) and �1/2

the symmetric tent map (1.17). The critical point of gv does not depend on v: xc = 1
2
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Fig. 2.3 Graphs of the logistic map gv with v = 3 (left) and the tent map �v with v = 0.25 (right)

for all v. On the opposite side, the critical point of �v coincides with the parameter
value: xc = v. As usual in the literature, we will also refer to gv and �v just as the
logistic and tent maps, respectively, when the parameter v is thought to be fixed.
Note that �v preserves the Lebesgue measure for all v ∈ (0, 1).

For f ∈ U , let �(x) be the itinerary of x ∈ [a, b] with respect to the partition
{A0, A1}, with A0 = [a, xc) and A1 = [xc, b]. Specifically,

�(x) = �0(x), �1(x), . . . , �n(x), . . . = (�i(x))∞i=0, (2.16)

where

�n(x) =
{

0 if f n(x) < xc,
1 if f n(x) ≥ xc.

As a result, any orbit Of (x) can be encoded into a binary sequence. Whenever con-
venient, we will write �(f , x) instead of �(x) to make clear which unimodal map is
generating the itinerary of x.

An interesting aspect of the binary sequences �(x) is that they can be endowed
with a signed lexicographical order (sometimes called Gray ordering) ≤ that is
equivalent to the order in [a, b] in the following weakened sense:

(E1) If x < y, then �(x) ≤ �(y).
(E2) If �(x) < �(y), then x < y.

A sufficient condition for x < y if and only if �(x) ≤ �(y) is given in [57, Theorem
II.5.4]. The order between binary sequences is defined as follows. Given �(x) �=
�(y), let imin be the first index such that �i(x) �= �i(y), i ≥ 0. Depending on imin,
three cases can occur:

(O1) If imin = 0, then �(x) < �(y) iff �0(x) < �0(y).
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(O2) If imin > 0 and {�i(x):0 ≤ i < imin} contains an even number of 1’s, then
�(x) < �(y) iff �imin (x) < �imin (y).

(O3) If imin > 0 and {�i(x):0 ≤ i < imin} contains an odd number of 1’s, then
�(x) < �(y) iff �imin (x) > �imin (y).

Given x, fv(x), . . . , f L−1
v (x), suppose that their corresponding itineraries, namely,

(�i(x))∞i=0, (�i(x))∞i=1, . . . , (�i(x))∞i=L−1,

are all different. Then, according to (E1)–(E2),

f π0 (x) < · · · < f πL−1 (x) ⇔ (�i(x))∞i=π0
< · · · < (�i(x))∞i=πL−1

. (2.17)

Before proceeding further, let us point out that this setting can be extended to l-
modal maps, i.e., continuous and piecewise strictly monotone self-maps of compact
intervals with l local maxima, which map endpoints to endpoints. For the applica-
tions we will discuss, it is sufficient to consider only unimodal maps (l = 1).

In some applications, one is confronted with the following task: given the “sharp”
orbit Ofv (x0) of x0 ∈ [a, b] under fv ∈ U , find the value of the parameter v. In
practice, the exact values of Ofv (x0) are seldom known because of the finite pre-
cision of real number computation, so one has only access to a (finite segment
of a) “coarse-grained” orbit (x̂i)∞i=0, where x̂i is an approximation to xi = f i

v(x0).
In some chaos-based cryptosystems, the situation is even worse: the plaintext (i.e.,
the message to be encrypted prior to its transmission or storage) is encoded via the
symbolic sequences (2.16) of a chaotic map fv ∈ U , the value v being part of the
secret key of the cipher (see, e.g., [131]). Therefore, the cryptanalist has eventually
only access to the binary code �(fv, x) (via a so-called chosen-text attack) to recover
the control parameter v. D. Arroyo has shown how to recover v with the aid of the
ordinal patterns of fv and their itineraries �(fv, x), if fv is ergodic with respect to its
natural measure μv for all values of v [21].

For simplicity, the estimation of v from the symbolic sequences �(fv, x) will be
illustrated using the tent map �v, which is chaotic for all v ∈ (0, 1). Since the natural
invariant measure of �v is the Lebesgue measure, the probability that x is of type
π ∈ SL when drawn uniformly from [0, 1] equals the length of Pπ = {x ∈ [0, 1]:x
defines π} (as in (1.27)). By ergodicity, the relative frequency of π in an orbit of
�v coincides with the length of Pπ , except possibly for a set of initial conditions
with length zero. For the tent map, the length of the sets Pπ can be determined
analytically. The simplest case corresponds to the L-pattern 〈0, 1, . . . , L− 1〉:

P〈0,1,...,L−1〉 = (0, φL(v)),

where φL(v) is the leftmost intersection of �L−1
v and �L−2

v . Therefore, the length
of P〈0,1,...,L−1〉, hence the probability that x is of type 〈0, 1, . . . , L− 1〉 when drawn
uniformly from the interval [0, 1] is φL(v).
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In order to calculate φL(v), use

�n
v(x) =

{
x/vn if 0 ≤ x ≤ vn,
(vn−1 − x)/vn−1(1− v) if vn ≤ x ≤ vn−1.

Equating �L−1
v and �L−2

v , it follows

φL(v) = vL−2

2− v
. (2.18)

Note that this function is 1-to-1 in the interval 0 ≤ v ≤ 1 for L ≥ 2, with φ2(0) = 1
2 ,

φL(0) = 0 for L ≥ 3, and φL(1) = 1 for L ≥ 2. This fact allows to determine v from
φL(v). Furthermore, from the equation

d

dv
φL(v) = vL−3

(2− v)2
[2(L− 2)− (L− 3)v] =

{
0 if v = 0,
L− 1 if v = 1,

(2.19)

it follows that φL(v) is a ∪-convex map on 0 ≤ v ≤ 1 for L ≥ 2 that converges to 0
on 0 ≤ v < 1 (i.e., it “flattens”) as L → ∞. As a result, the higher the L the lower
the precision with which v can be numerically read off from φL(v). Consequently,
L = 3, 4 are the best choices for a quality estimation of v.

In more general terms, suppose that each fv ∈ U is ergodic for v ∈ J with the
same invariant measure μ. Furthermore assume for the time being that fv(a) = a and
fv(x) > x on a non-empty vicinity of a. Let (a, c) be the maximal interval in (a, xc)
such that fv(x) > x. We claim that the interval

Iv
L = (a, c) ∩ f−1

v (a, c) ∩ · · · ∩ f−(L−1)
v (a, c)

coincides with P〈0,1,...,L−1〉. Indeed, if x ∈ Iv
L, then f i

v(x) ∈ (a, c) for 0 ≤ i ≤ L − 1,
and

x < fv(x) ⇒ fv(x) < f 2
v (x) ⇒ · · · ⇒ f L−2

v (x) < f L−1
v (x).

Hence, Iv
L ⊂ P〈0,1,...,L−1〉. Conversely, if x ∈ P〈0,1,...,L−1〉, i.e.,

x < fv(x) < f 2
v (x) < · · · < f L−1

v (x),

then f i
v(x) ∈ (a, c) for 0 ≤ i ≤ L− 1. Thus, P〈0,1,...,L−1〉 ⊂ Iv

L. This proves

Iv
L = P〈0,1,...,L−1〉. (2.20)

If otherwise fv(a) = a but fv(x) < x on a non-empty vicinity of a, then let (a, c) be
the maximal interval in (a, xc) such that fv(x) < x. In this case, a similar reasoning
(reversing the inequalities) shows that

Iv
L = P〈L−1,L−2,...,1,0〉. (2.21)
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Since the tent map, our workhorse in this section, complies with (2.20), we restrict
attention to this case (similar arguments apply mutatis mutandis to case (2.21)).
Because of ergodicity, the relative frequency at which a typical trajectory visits Iv

L is
μ(Iv

L). If μ(Iv
L) happens to be different for each v, then μ(Iv

L) can be used to determine
or estimate the control parameter v. In this case, the relative frequency of the ordinal
pattern 〈0, 1, . . . , L− 1〉 in an orbit Ofv (x) is just the number of times that f i+j

v (x)
∈ (a, c) for i ∈ N0 and j = 0, 1, . . . , L− 1.

Figure 2.4 shows the relative frequencies of the ordinal patterns (a) 〈0, 1, 2, 3〉, (b)
〈0, 1, 3, 2〉, (c) 〈0, 3, 1, 2〉, and (d) 〈3, 0, 1, 2〉 found in a numerical simulation with
the tent map. As expected, curve (a) approximates the function

φ4(v) = v2

2− v

with great precision. Observe that a 1-to-2 functional relation between frequency
and v, as it occurs in Fig. 2.4 (b)–(d), can also be acceptable, e.g., for cryptographic
applications since it implies a reduction of the secret key space.

So far we have shown the possibility of recovering the control parameter v from
the relative frequency of the pattern π = 〈0, 1, . . . , L− 1〉 (most conveniently for
L = 3, 4), in a statistically significant sample of orbits of �v. The ergodicity of �v

with respect to the Lebesgue measure on [0, 1] and the 1-to-1 relation between v and
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Fig. 2.4 Ordinal pattern frequencies for the tent map family. Here L = 4, and (a) π = 〈0, 1, 2, 3〉,
(b) π = 〈0, 1, 3, 2〉, (c) π = 〈0, 3, 1, 2〉, and (d) π = 〈3, 0, 1, 2〉
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the probability φL(v) of observing π were instrumental to achieve that goal. What
about if we have access only to coarse-grained orbits �(�v, x)?

Let bM−1
0 = b0b1 . . . bM−1, bi ∈ {0, 1}, be the initial segment of length M of the

symbolic sequence �(fv, x). Take a sliding window of size W < M along bM−1
0 . The

result is M −W + 1 consecutive blocks of length W:

bW−1
0 = b0 . . . bW−1, . . . , bi+W−1

i = bi . . . bi+W−1, . . . , bM−1
M−W = bM−W . . . bM−1.

The blocks bi+W−1
i , i = 0, 1, . . . , M −W − L + 1, define M −W − L + 2 ordinal

patterns of length L. That is, if

bi+π0+W−1
i+π0

< bi+π1+W−1
i+π1

< · · · < bi+πL−1+W−1
i+πL−1

, (2.22)

then bi+W−1
i is of type π = 〈π0, π1, . . . , πL−1〉. The order for finite sequences in

(2.22) is defined the same way as for infinite sequences in (O1)–(O3).
Each block bi+W−1

i = bi . . . bi+W−1 locates f i
v(x) up to an uncertainty interval

whose length goes to zero when W, M →∞:

f i
v(x) ∈ Abi ∩ f−1

v Abi+1 ∩ · · · ∩ f−(W−1)
v Abi+W−1 .

This being the case, the ordinal patterns defined by, say, x, fv(x), f 2
v (x), and bW−1

0 , bW
1 ,

bW+1
2 may be different as soon as two of the latter blocks overlap. Otherwise, those

ordinal patterns will be the same because of (2.17). In sum, the relative frequencies
of an ordinal L-pattern in the finite orbits (fv(x))M

i=0 and (bi+W−1
i )M−W−L+1

i=0 will
converge to each other in the limit M → ∞, W → ∞ (W < M). In practice,
we expect the latter to be a good approximation of the former, at least for L =
3, 4, and W large enough, so that a good estimation of the control parameter is
feasible.

Figure 2.5 shows the relative frequencies of the same 4-patterns as in Fig. 2.4 for
the itineraries of the tent map family. Here M = 10, 104 and W = 100. Except for
v � 0 (an uninteresting region for cryptographic applications), the approximation is
excellent. Some caveats related to the finite precision of the numerical simulations
are discussed in [21]. In practical cases, the error in the estimation of the control
parameter ranges between 10−3 and 10−4. From the viewpoint of cryptographic
applications, this amounts to a strong reduction of the key space, which compro-
mises the security of the cipher.

The tent map family is a specimen of a more general family: unimodal, piecewise
linear expanding Markov transformations (Annex A, Definition 9). Each topologi-
cally transitive transformation in this family (i.e., some power of its transition matrix
is strictly positive) has a unique ergodic invariant measure, which furthermore is
absolutely continuous with respect to the Lebesgue measure [134]. This measure can
be calculated or numerically estimated by a variety of methods (Perron–Frobenius
operator, Ulam’s method, or just computation of long time averages) [105]. For the
purpose envisaged in this chapter, an exact knowledge of the invariant measures is
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Fig. 2.5 Ordinal pattern frequencies of the tent map family using itineraries. Here L = 4,
W = 100, M = 10104, and (a) π = 〈0, 1, 2, 3〉, (b) π = 〈0, 1, 3, 2〉, (c) π = 〈0, 3, 1, 2〉, and
(d) π = 〈3, 0, 1, 2〉

not necessary, since the relative frequencies of the ordinal patterns can be calculated
with numerical simulations. The important features are ergodicity, so that the statis-
tical properties of the sharp and coarse-grained orbits do not depend on the initial
conditions, and the absolute continuity of the (unique) invariant measure, which
guarantees that it is accessible by numerical methods.

2.4 Characterizing Synchronization

As a last application, we are going to summarize the work of R. Monetti et al.
[159] on characterizing synchronization in time series using ordinal patterns (therein
called “symbols”) and some related probability distributions.

Remember that SL is a group with respect to the product of ordinal patterns
(1.25). This being the case, given π , π ′ ∈ SL there always exists a unique τ =
τ (π , π ′) ∈ SL, called transcription from the source pattern π to the target
pattern π ′, such that

τ ◦ π = π ′, (2.23)

where (see (1.25))
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τ ◦ π = 〈πτ0 , πτ1 , . . . , πτL−1

〉
.

It follows that τ is a transcription from π to π ′ if and only if τ−1 is a transcription
from π ′ to π .

As the source pattern π and the target pattern π ′ vary over SL, their transcription
varies according to τ (π , π ′) = π ′ ◦ π−1. Note that different pairs (π , π ′) can share
the same transcription. As an example in S3, τ (π , π ′) = 〈0, 2, 1〉 for

(π , π ′) = (012, 021), (021, 012), (120, 102), (102, 120), (201, 210), (210, 201)

(angular parentheses omitted for brevity). More generally, given τ ∈ SL, there exist
L! pairs (π , π ′) ∈ SL × SL such that τ is the transcript from π to π ′.

Another concept we need is that of order of an element. We say that the order
of π ∈ SL is ord (π ) ∈ N if ord (π ) is the minimal number of times we have to
multiply π by itself to obtain the identity permutation 〈0, 1, . . . , L − 1〉 (this is the
only permutation whose order is 1).

The group SL can be partitioned into non-overlapping sets of transcriptions
according to their order. In mathematical notation, SL = ∪1≤i≤L!Ci, where

Ci = Ci(L) = {τ ∈ SL:ord(τ ) = i}.

For obvious reasons, the sets Ci are called order classes. From ord(τ−1) = ord(τ ),
it follows that τ ∈ Ci if and only if τ−1 ∈ Ci. Note that C1(L) = {〈0, 1, . . . , L− 1〉}.
The authors of [159] propose to measure the complexity of a transcription between
a source and a target pattern by its order.

A permutation of the form i1 	→ i2 	→ · · · 	→ in 	→ i1 is called a cycle (or
cyclic permutation) of length n and denoted by (i1, i2, . . . , in). The order of a cycle
of length n is trivially n. It is also trivial that any permutation of {0, 1, . . . , L − 1}
can be written as the product of disjoint cyclic permutations. It follows that the
order of any transcription (or any permutation for that matter) is the least common
multiple (lcm) of the lengths of its decomposition into cycles. In particular, given
L there are ordinal patterns τ ∈ Ci(L) of orders 1 ≤ i ≤ L (just take τ = (0, . . . ,
i − 1)(i)(i + 1) · · · (L − 1)). For L + 1 ≤ i ≤ L!, a hypothetical decomposition
τ = (i1, . . . , in1 )(j1, . . . , jn2 ) · · · (k1, . . . , knp ), τ ∈ Ci(L), has to fulfill the constraints
(i) n1 + n2 + · · · + np = L and (ii) lcm {n1, n2, . . . , np} = i, which will not be the
case in general. For example, for L = 7 and i = 10 or 12, we can choose n1 = 2
and n2 = 5, or n1 = 3 and n2 = 4, respectively. But for L = 7 and i = 8, 9, or 11,
conditions (i) and (ii) cannot be simultaneously satisfied.

Let us next turn attention to the probability density of transcriptions. Consider
source and target ordinal patterns generated by the time series of a coupled dynam-
ics. Due to the symmetry property between source and target patterns pointed out
above, it is irrelevant which one refers to which subsystem, any of the two possible
assignments being fine. Let Ss

L and S t
L be the state spaces comprising the corre-

sponding admissible source and target patterns of length L, respectively, and let
�L(τ ) be the set of all pairs (πs, πt) ∈ Ss

L × S t
L such that τ ∈ SL is a transcription

from πs to πt, i.e.,
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�L(τ ) = {(πs, πt) ∈ Ss
L × S t

L:τ ◦ πs = πt}.

The probability density of transcriptions PL(τ ), τ ∈ SL, can be written as

PL(τ ) =
∑

(πs,πt)∈�L(τ )

PJ(πs, πt),

where PJ(πs, πt) is the joint probability density. Furthermore, let Ps(πs), Pt(πt) be
the marginal probability densities of the patterns πs ∈ Ss and πt ∈ St, respectively.
The matrix M(πs, πt) = Ps(πs)Pt(πt) is the probability density matrix of transcrip-
tions for two independent sequences of lengths L. In this case, the corresponding
probability density of transcriptions Pind

L (τ ) can be evaluated as follows:

Pind
L (τ ) =

∑

(πs,πt)∈�L(τ )

M(πs, πt).

A natural measure to assess how much PL(τ ) deviates from Pind
L (τ ) is provided

by the relative entropy or Kullback–Leibler distance (see Annex B, (B.3))

D(PL

∥∥∥Pind
L

)
=
∑

τ∈SL

PL(τ ) log
PL(τ )

Pind
L (τ )

.

To circumvent the asymmetry of the relative entropy with respect to its arguments,
one can take the harmonic mean of D(PL

∥∥Pind
L

)
and D(Pind

L ‖PL ),

SKL(L) = D(PL
∥∥Pind

L

)
D(Pind

L ‖PL )

D(PL
∥∥Pind

L

)+ D(Pind
L ‖PL )

.

In contrast to the symmetrization via the arithmetic mean, the bound

SKL(L) ≤ min{D(PL

∥∥∥Pind
L

)
, D(Pind

L ‖PL )}

furnishes more general conditions for the symmetrized Kullback–Leibler distance
to be finite. Moreover we shall write SCKL(L) when the Kullback–Leibler distance
is calculated using the probability densities PC of the order classes (see Fig. 2.7).
Finally, if PL(τ ) and Pind

L (τ ) are obtained using only transcriptions from an order
class Ci(L), then the notation will be Si

KL(L). The point in doing so is that the dynam-
ics of coupled systems may lead to the extinction of order classes, a feature referred
to as saturation in [159].

Let us apply the method to a bidirectionally coupled Rössler–Rössler system
[175] defined by the following set of equations:
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ẋ1,2 = −w1,2y1,2 − z1,2 + k(x2,1 − x1,2),

ẏ1,2 = w1,2x1,2 + 0.165y1,2,

ż1,2 = 0.2+ z1,2(x1,2 − 10).

Here w1 = 0.99 and w2 = 0.95 are the mismatch parameters and k is the cou-
pling constant. All the time series were generated using a fourth-order Runge–Kutta
method with time step �t = 10−3 and initial conditions: x1(0) = −0.4, y1(0) = 0.6,
z1(0) = 5.8, x2(0) = 0.8, y2(0) = −2, and z2(0) = −4. This chaotic system exhibits
a rich synchronization behavior that ranges from phase (k ≈ 0.036) to lag (k ≈ 0.14)
and finally to complete synchronization as k increases [175]. In [159] the authors
only study the x-components of the Rössler subsystems. Specifically, time series of
length 219 (about 775 orbits) were sampled with delay T = 150 and dimension L,
to obtain delay vectors

(x(n�t), x((n+ T)�t), . . . , x((n+ (L− 1)T)�t))

from either subsystem. Following [80] the delay was chosen so as to minimize the
mutual information (Annex B, (B.6)) of the coordinates x1(t) and x1(t + T�t) for
the uncoupled system (k = 0).

Figure 2.6(a) shows the symmetrized Kullback–Leibler distance SCKL(L) obtained
using the probability density PC of order classes for L = 6 and L = 7. Figure 2.6
(b)–(d) shows SKL(L) obtained with the probability density of transcriptions in all
non-empty order classes for L = 6 (C2–C6 in subfigure (b)) and L = 7 (C7, C10,
and C12 in subfigure (c) and C2–C6 in subfigure (d)). We comment first the salient
features of SCKL(6) and SCKL(7).

The increase of SCKL at k ≈ 0.036 is due to the transition from (almost) uncou-
pled dynamics to phase synchronization. For stronger coupling k, SCKL increases
rather monotonically until k ≈ 0.11. For k ∈ [0.11, 0.145], SCKL displays strong
fluctuations revealing the presence of “intermittent-lag synchronization.” This par-
ticular synchronization regime is characterized by synchronization periods inter-
rupted by bursts of non-synchronized activity [175, 34]. The strong fluctuations
sharply vanish at the onset of lag synchronization (k ≈ 0.145). Lag synchronization
is defined by the condition x1(t+ δt) = x2(t), i.e., the coincidence of the time series
when shifted in time by a constant time lag δt. Both curves, SCKL(6) and SCKL(7),
increase monotonically in the interval k ∈ [0.145, 0.30] reflecting stronger synchro-
nization. This trend is only interrupted within the range k ∈ [0.232, 0.256], where a
period-5 window occurs.

The periodic windows are better observed in Fig. 2.6(b)–(d). In fact, all curves
exhibit a peak at k ≈ 0.061 that corresponds to a period-3 window [175]. S6

KL(6)
and S12

KL(7) indicate a period-6 window at k ≈ 0.11. It seems that this window
was not reported before [159], probably due to its extremely small size (k ∈
[0.1094, 0.1096]). All curves show clear signatures of periodic behavior in the range
k ∈ [0.232, 0.256]. Intermittent-lag synchronization is particularly reflected by the
strong fluctuations observed in Fig. 2.6(b) and (c) for S6

KL(6) and S10
KL(7), which
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Fig. 2.6 [Reproduced with permission from [159].] (a) SC
KL obtained using the probability density

of the order classes for L = 6 (lower curve) and L = 7 (upper curve). (b)–(d) SKL calculated
with the probability density of transcriptions and sequence lengths shown in the plots. Vertical full
lines from left to right locate the transitions to phase synchronization (k ≈ 0.036), intermittent-lag
synchronization (k ≈ 0.11), and lag synchronization, respectively. The vertical dashed lines at
k ≈ 0.061 and k ≈ 0.11 as well as the hatched area (k ∈ [0.232, 0.256]) indicate periodic windows

abruptly disappear at k = 0.145. Observe that different order classes provide com-
plementary information of the coupled system. For instance, S5

KL(6) characterizes
the intermittent-lag synchronization and the onset of lag synchronization better than
S6

KL(6). In any case, these partial pieces of information add altogether to a global
picture of the various synchronization stages.

Figure 2.6 also reveals that the Kullback–Leibler distance of some higher order
classes saturates when the value of the coupling constant k increases. Indeed,
Fig. 2.6(b) and (c) shows that the coupled dynamics lead to the extinction of
order classes C5(6), C7(7), and C10(7) at k ≈ 0.145, k ≈ 0.09, and k ≈ 0.145,
respectively.

Figure 2.7(a) and (b) shows the probability density PC of the order classes for
L = 6 and L = 7, respectively. Note that Fig. 2.6(a) displays the contrast between
probability densities as in Fig. 2.7 and those of the independent processes. In par-
ticular, a vanishing contrast as for k ≈ 0.005 indicates that the corresponding
probability density PC (which is clearly non-uniform) is similar to the probabil-
ity density of transcriptions generated by two independent Rössler systems. In the
vicinity of the transition to phase synchronization, k ≈ 0.039, PC deviates from the
probability density of independent processes (Fig. 2.6(a)), and higher order classes
dominate the coupled dynamics (Fig. 2.7). This trend is reversed when increas-
ing k, and already at k ≈ 0.062 (resp. k ≈ 0.074), the class of order 2, C2(6)
(resp. C2(7)), is prevalent (except at k = 0.299 for L = 6, in which case C1(6)
prevails).
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Fig. 2.7 [Reproduced with permission from [159].] (a) Probability density PC of the feasible order
classes for L = 6 and different values of the coupling constant k. (b) Idem for L = 7. Classes of
orders 8, 9, and 11 are not allowed. Note that C1(L) = {〈0, 1, . . . , L− 1〉}

If following [159] we agree to measure the complexity of a transcription by
its order, then the probability density of order classes indicates how complex the
relationship between the time series is. Figure 2.7 demonstrates that higher order
transcriptions play an important role in the description of complex synchronization
states such as phase synchronization (k ≥ 0.036)—a regimen in which amplitudes
remain chaotic and uncorrelated. As k increases, the probability densities of higher
order classes decrease and some of them vanish, like C5(6), C7(7), and C10(7). In fact,
simpler synchronization states such as intermittent-lag and lag synchronizations
(k > 0.11) are predominantly described by lower order classes (C2(L) and C1(L)).
Clearly, the simplest synchronization state, namely complete synchronization, will
only be described by the identity (C1(L)).



Chapter 3
Ordinal Patterns

In this chapter we take a close look to the order relations and their consequences,
mostly for dynamical systems defined by self-maps of one-dimensional intervals.
More general situations will be considered and studied in detail in the following
chapters.

Order has some interesting consequences in discrete-time dynamical systems.
Just as one can derive sequences of symbol patterns from such a dynamic via coarse
graining of the phase space, so it is also straightforward to obtain sequences of
ordinal patterns if the phase space is linearly ordered. As we learnt in Sect. 1.2,
not all ordinal patterns can be materialized by the orbits of a given dynamic under
some mild mathematical assumptions. Furthermore, if an ordinal pattern of a given
length is “forbidden,” i.e., cannot occur, its absence pervades all longer patterns in
form of more missing ordinal patterns. This cascade of outgrowth forbidden patterns
grows super-exponentially (in fact, factorially) with the length, all its patterns shar-
ing a common structure. Of course, forbidden and admissible ordinal patterns can be
viewed as permutations; in combinatorial parlance, the admissible patterns are (the
inverses of) those permutations avoiding the so-called forbidden root patterns in
consecutive positions (see Sect. 3.4.2 for details). Let us mention that permutations
avoiding general or consecutive patterns is a popular topic in combinatorics (see,
e.g., [25, 74, 75]).

Forbidden ordinal patterns should not be mistaken for other sorts of forbidden
patterns that may occur in dynamics with constraints. Forbidden patterns in sym-
bol sequences occur, e.g., in Markov subshifts of finite type and, more generally,
in random walks on oriented graphs. On the contrary, the existence of forbidden
ordinal patterns does not entail necessarily any restriction on the patterns of the
corresponding symbolic dynamics; the variability of symbol patterns is given by the
statistical properties of the dynamics. As a matter of fact, the symbolic dynamics
of one-dimensional chaotic maps are used to generate pseudo-random sequences,
although all such maps have forbidden ordinal patterns.

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_3,
C© Springer-Verlag Berlin Heidelberg 2010
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3.1 Symbol Patterns

Before dealing with ordinal patterns, we are going to consider the symbol patterns
defined by a symbolic dynamics with respect to a partition. The scope is to show
that, under general conditions on the map, such symbol patterns have no restrictions,
in contrast with the situation we will encounter when studying ordinal patterns.

Thus, let f be a measure-preserving map from a probability space (�,B, μ) to
itself and α = {A0, . . . , A|α|−1} be a partition of (�,B, μ). Recall that the symbolic
dynamics with respect to α, Xα = {Xα

n }n∈N0 with Xα
n : �→ S = {0, . . . , |α| − 1}, is

defined as follows:

Xα
n (x) = in if f n(x) ∈ Ain , n ≥ 0

(see (1.6)). The resulting sequence (in)n∈N0 is called the coded orbit (or, sometimes,
the (α, f )-name) of x ∈ � .

In Sect. B.2.2 it is proven that if α is a generating partition for f , then (�,B, μ, f )
is isomorphic 1 via the coding map �α : �→ SN0 ,

(�α(x))n = Xα
n (x),

to the one-sided shift (SN0 ,B�(S), m, �) , where m = μ ◦ (�α)−1 and � ◦ �α =
�α ◦ f . Here B�(S) is the product sigma-algebra generated by the cylinder sets

Ci0,...,in = {s ∈ SN0 : s0 = i0, . . . , sn = in},

i0, . . . , in ∈ S (see Sect. A.2),

m(Ci0,i1,...,in ) = μ(Ai0 ∩ f−1Ai1 ∩ · · · ∩ f−nAin ,

and the partition

{�α(Ai) : i ∈ S} = {Ci:i ∈ S}

is trivially generating for �. It follows that the coded orbits of f contain any arbitrary
pattern. Indeed, given any symbol pattern of length L ≥ 1, iL−1

0 := i0, i1, . . . , iL−1,
where in ∈ S, choose

x ∈
L−1⋂

n=0

f−nAin = (�α)−1Ci0,...,iL−1 .

1 The general definition of (metric) isomorphy or conjugacy between measure-preserving dynam-
ical systems is given in Definition 12, Sect. A.1. The corresponding concept for continuous
dynamical systems, that usually goes by the name of topological conjugacy, is given in Defini-
tion 25, Sect. B.3.
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If the pattern has infinite length, i∞0 = i0, i1, . . ., then there exits a unique point
x ∈ � modulo 0 (i.e., possibly up to sets of measure 0), namely, x = (�α)−1(s) with
s = (i0, i1, . . . ) ∈ SN0 , such that its coded orbit is precisely s. Thus,

∞⋂

n=0

f−nAin = {x}.

This means that �α separates points: if x1 �= x2 then �α(x1) �= �α(x2).
We conclude that if α is a generating partition for f , then the coded orbits �α(x),

x ∈ �, define any finite or infinite symbol pattern (in the second case, modulo 0).
If f : � → � is an automorphism, all the above generalizes to two-sided

sequences. Sufficient conditions for f to have a generating partition in such a case
are given by Krieger’s theorem : ergodicity and a finite entropy.

Example 1 Take g : [0, 1] → [0, 1] to be the logistic map g(x) = 4x(1− x) and

α = {A0 = [0, 1
2 ), A1 = [ 1

2 , 1]}. (3.1)

(It is irrelevant whether the midpoint 1
2 belongs to the left or to the right partition

element.) Then α is a generating partition (use, for example, the conjugacy between
the logistic map and the symmetric tent map, Example 24). In this case, the coding
map �α : [0, 1] → {0, 1}N0 ,

(�α(x))n =
{

0 if gn(x) ∈ [0, 1
2 ),

1 if gn(x) ∈ [ 1
2 , 1],

is an isomorphism between ([0, 1],B, μ,g) and the ( 1
2 , 1

2 )-Bernoulli shift, where B is
the Borel sigma-algebra of [0, 1] and

μ([a, b]) =
∫ b

a

dx

π
√

x(1− x)
,

[a, b] ⊂ [0, 1]. For example,

m{C0,0} = μ {x ∈ [0, 1] : x ∈ A0, g(x) ∈ A0} =
∫ 1/2−√2/4

0

dx

π
√

x(1− x)
= 1

4
,

m{C0,1} = μ {x ∈ [0, 1] : x ∈ A0, g(x) ∈ A1} =
∫ 1/2

1/2−√2/4

dx

π
√

x(1− x)
= 1

4
,

m{C1,0} = μ {x ∈ [0, 1] : x ∈ A1, g(x) ∈ A0} =
∫ 1/2+√2/4

1/2

dx

π
√

x(1− x)
= 1

4
,

m{C1,1} = μ {x ∈ [0, 1] : x ∈ A1, g(x) ∈ A1} =
∫ 1

1/2+√2/4

dx

π
√

x(1− x)
= 1

4
.
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Exercise 1 Let E2 : [0, 1] → [0, 1] be the dyadic map x 	→ 2x mod 1 and φ : {0, 1}N0 →
[0, 1] the map

(x0, x1, . . . , xk, . . . ) 	→
∞∑

k=0

xk2−(k+1).

Check that φ is the inverse (modulo 0) of the coding map �α of E2 with respect to
partition (3.1).

Shift transformations have generating partitions (namely, the cylinder sets Ci0,...,in−1

of any given length n ≥ 1), hence their trajectories realize any possible symbol
sequence.

3.2 Order Relations

A relation ≤ defined on every pair of elements of a set � is said to be a total or
linear order if ≤ is reflexive, antisymmetric, and transitive. A set � endowed with a
total order≤ is called a totally or linearly ordered set and will be denoted by (�,≤).
As usual, x < y means henceforth x ≤ y and x �= y. The product of the totally
ordered sets (�1,≤ ), (�2,≤ ), . . . , (�n,≤ ) is also totally ordered via the product
order (also called lexicographical or dictionary order): if (x(1), x(2), . . . , x(n)) �=
(y(1), y(2), . . . , y(n)), then (x(1), x(2), . . . , x(n)) < (y(1), y(2), . . . , y(n)) if

(i) x(1) < y(1) or
(ii) x(i) = y(i) for i = 1, . . . , k ≤ n− 1 and x(k+1) < y(k+1).

Other conventions (e.g., the signed lexicographic order we considered in Sect. 2.3)
are of course possible. The product order generalizes straightforwardly to “infinite
products” (i.e., sequence spaces).

Suppose now that (xn)n∈N0 is a sequence whose elements (symbols, letters,. . . )
xn belong to a set (state space, alphabet, etc.) S endowed with a total ordering ≤.
We say that a length-L block (segment, word, etc.) xn+L−1

n = xn, xn+1, . . . , xn+L−1
defines the ordinal (L-)pattern π = 〈π0, . . . , πL−1〉 if

xn+π0 < xn+π1 < · · · < xn+πL−1 ,

where in case xi = xj, we agree to set xi < xj if, say, i < j.
Alternatively we also say that the block xn+L−1

n is of type π , or that π is realized
by xn+L−1

n , and write π = π (xn+L−1
n ). As in Sect. 1.2, the set of ordinal L -patterns

will be denoted by SL. Remember from Sect. 1.2 too that SL can be promoted to
a group of order L! if equipped with the product (1.25). Unlike in Sect. 2.4, the
algebraic structure of SL will not be exploited in the sequel.
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Example 2 Suppose that S = {a, b, c} with a < b < c, and that we observe the block
x2

0 = c, a, a. Then x2
0 defines the ordinal pattern 〈1, 2, 0〉 since x1 = x2 = a < c = x0

and 1 < 2. Observe that the following blocks of length 3 are also of type 〈1, 2, 0〉:
(i) c, b, b, (ii) c, a, b, and (iii) b, a, a.

In other words, π (xn+L−1
n ) is a permutation of {0, 1, . . . , L− 1} that encapsulates

the ups and downs of the elements xn, xn+1, . . . , xn+L−1 in the set S; in case that
two elements are equal, we take by convention the first one also as the smaller. This
qualitative information is shown in Fig. 3.1 for patterns of length 3.

Given the sequence (xn)n∈N0 , we say that π ∈ SL is an allowed or admissible
L-pattern if π is realized by some substring of length L of (xn)n∈N0 ; otherwise, π is
called a forbidden L-pattern.

Proposition 1 1. If π = 〈π0, . . . , πL〉 is an allowed (L+1)-pattern of (xn)n∈N0 , and
π̌ is the L-pattern obtained from π by deleting the entry L, then π̌ is an allowed
L-pattern of (xn)n∈N0 .

2. If π = 〈π0, . . . , πL−1〉 is a forbidden L-pattern of (xn)n∈N0 and π̂ is the (L+ 1)-
pattern obtained from π by adding the entry L at any place, then π̂ is a forbidden
(L+ 1)-pattern of (xn)n∈N0 .

Proof 1. If π ∈ SL+1 is allowed, this means that there exists a substring xn+L
n =

xn, xn+1, . . . , xn+L of the sequence (xn)n∈N0 such that

xn+π0 < xn+π1 < · · · < xn+πL . (3.2)

Delete then xn+L from (3.2) to show that the substring xn, xn+1, . . . , xn+L−1 is of
type π̌ ∈ SL.

2. Suppose by contradiction that the (L+ 1)-pattern π̂ = 〈π̂0, . . . , π̂L
〉
is allowed.

Then, part 1 implies that the L-pattern obtained by removing from π̂ the entry L,
namely π , is an allowed pattern. �

This general setting will crystallize in different ways as we move on. Let us
advance three of them at this point.

Fig. 3.1 Geometrical illustration of the six ordinal patterns of length 3
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• The sequence (xn)n∈N0 can be the output of a finite-state stationary stochastic
process. This corresponds to the usual information sources emitting a message
composed by letters of a finite alphabet.

• The set S can be an interval I ⊆ R
q, q ≥ 1, and (xn)n∈N0 the output of a univariate

(q = 1) or multivariate (q > 1) random process taking values in I.
• Still other possibility is that (xn)n∈N0 is the orbit of x0 under a map f :I → I, I

being as before a q-dimensional interval or a homeomorphic copy thereof. In this
case it is customary to neglect periodic points whose periods are shorter than the
pattern length L considered, so as all points in the block xn+L−1

n are different.

In the following sections and chapters we are going to dwell on all these settings.

3.3 Ordinal Patterns Defined by Maps

In Sect. 3.1 we saw that the symbolic dynamics of maps defines any symbol pattern
of any length, under rather general assumptions. In this section we shall see that the
situation is not quite the same when considering ordinal patterns.

Let (�,≤ ) be a totally ordered set and f : � → � a map. Given x ∈ �, set
xn = f n(x) for n ≥ 0. If x is not a periodic point of period less than L ≥ 2, we can
then associate with x an ordinal pattern of length L, as follows. We say that x defines
the ordinal pattern π = 〈π0, . . . , πL−1〉 ∈ SL, if π = π (xL−1

0 ), i.e.,

xπ0 < xπ1 < · · · < xπL−1 ,

or, equivalently,

f π0 (x) < f π1 (x) < · · · < f πL−1 (x). (3.3)

Set

Pπ = {x ∈ � : x defines π ∈ SL} (3.4)

as in Sect. 1.2 and

PL = {Pπ �= ∅ : π ∈ SL}. (3.5)

Therefore, |PL| is the number of distinct ordinal L-patterns realized by the points
of �.

Proposition 2 Let (�,B, μ, f ) be a measure-preserving dynamical system. Then PL

is a finite partition of � for all L ≥ 2 if and only if f is aperiodic.

We say that f : �→ � is aperiodic, if
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μ

⎛

⎝
⋃

n≥1

{x ∈ � : f n(x) = x}
⎞

⎠ = 0. (3.6)

Proof In order that PL fails to be a finite partition of �, it must happen that the
complement of the disjoint union ∪{Pπ ∈ PL}, which comprises all periodic points
of f of period p ≤ L, has a positive measure. But this possibility is excluded by
(3.6). �

In particular, if f is ergodic with respect to μ, then f is aperiodic unless � is a
finite set modulo 0 [202].

The family of sets PL has some elementary properties. In Sect. 1.2 we saw that
when going from PL to PL+1, each “mother set” Pπmother , πmother = 〈π0, . . . , πL−1〉,
decomposes into several “daughter sets” Pπdaughter ∈ PL+1, where

πdaughter ∈ {〈L, π0, . . . , πL−1〉, 〈π0, . . . , πk, L, πk+1, . . . , πL−1〉, 〈π0, . . . , πL−1, L〉} ,

0 ≤ k ≤ L − 2. Therefore, each mother set is the (disjoint) union of her daugh-
ter sets. Correspondingly, we speak of mother and daughter patterns. To go back
from πdaughter to πmother, just delete the entry L. In particular, two different mother
intervals cannot give birth to the same daughter interval.

Proposition 3 (1) PL+1 is a refinement of PL, i.e., each Pπ ∈ PL is the union of
elements of PL+1.

(2) For every Pπ ′ ∈ PL+1 there is a Pπ ∈ PL such that f (Pπ ′ ) ⊂ Pπ .

Proof Statement (1) is trivial because

Pπ = ∪{Pπ ′ ∈ PL+1:π ′ is a daughter pattern of π}.

To prove (2), let x ∈ f (Pπ ′), i.e., x = f (y) where y ∈ � satisfies

f π ′0 (y) < f π ′1 (y) < · · · < f π ′L (y). (3.7)

Let π ′nk
, 0 ≤ k ≤ L− 1, be an order-isomorphic relabeling of those L entries of the

ordinal pattern π ′ ∈ SL+1 which are positive. From (3.7) it follows that

f π ′n0
−1(x) < f π ′n1

−1(x) < · · · < f
π ′nL−1

−1(x),

hence x ∈ Pπ with π = 〈π ′n0
−1, . . . , π ′nL−1

−1〉 ∈ SL. In words, π is obtained from
π ′ after deleting the entry 0 and subtracting 1 from the remaining entries. Therefore,
f (Pπ ′) ⊂ Pπ . �

Example 3 To illustrate Proposition 3 (1)–(2), consider the logistic map g and the
intervals Pπ ∈ P3, (1.29). Then (see Figs. 1.5 and 1.6),
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g(P〈0,1,2〉) = g((0, 1
4 )) = (0, 3

4 ) = P〈0,1,2〉 ∪ P〈0,2,1〉 ∪ P〈2,0,1〉 = P〈0,1〉,

g(P〈0,2,1〉) = g(( 1
4 , 5−√5

8 )) = ( 3
4 , 5+√5

8 ) = P〈1,0,2〉 ⊂ P〈1,0〉,

g(P〈2,0,1〉) = g(( 5−√5
8 , 3

4 )) = ( 3
4 , 1) = P〈1,0,2〉 ∪ P〈1,2,0〉 ⊂ P〈1,0〉,

g(P〈1,0,2〉) = g(( 3
4 , 5+√5

8 )) = ( 5−√5
8 , 3

4 ) = P〈2,0,1〉 ⊂ P〈0,1〉,

g(P〈1,2,0〉) = g(( 5+√5
8 , 1)) = (0, 5−√5

8 ) = P〈0,1,2〉 ∪ P〈0,2,1〉 ⊂ P〈0,1〉.

Observe that P3 is a Markov partition for g (i.e., g(Pπ ) ⊃ Pσ , whenever g(Pπ ) ∩
Pσ �= ∅, Pπ , Pσ ∈ P3) with transition matrix

A =

⎛

⎜⎜⎜⎜⎝

1 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
1 1 0 0 0

⎞

⎟⎟⎟⎟⎠

(see Definition 9 and (A.2)). Needless to say, the partitions PL are not in general
Markovian.

Exercise 2 (1) Let f : [a, b] → [a, b] be a boundary-anchored unimodal map with
full range (i.e., f (a) = f (b) = a and f ([a, b]) = [a, b]). Show that P2 is a
Markov partition for f .

(2) Let � be the symmetric tent map. Using the information on P4 provided in
Example 13, Sect. 6.3, shows that �(P〈2,3,0,1〉) ∩ P〈1,2,3,0〉 �= ∅ but P〈1,2,3,0〉 �

�(P〈2,3,0,1〉).
A plain difference between symbol patterns and ordinal patterns of length L is

their cardinality: the former grow exponentially with L (exactly as NL, where N is
the number of symbols) while the latter do superexponentially,

|SL| = L! ∼ eL( ln L−1)+(1/2) ln 2πL, (3.8)

see (1.34). Although one can construct maps whose orbits realize any possible ordi-
nal pattern (more on this at the end of Sect. 4.2), numerical simulations support the
conjecture that the number of ordinal L-patterns realized in the orbits of maps, like
symbol patterns, grows only exponentially with L for “well-behaved” maps. In fact,
we saw in Sect. 1.2 that if I is a closed interval of R and f : I → I is piecewise
monotone, then (see (1.33))

|PL| ∼ eLhtop(f ), (3.9)

where htop(f ) is the topological entropy of f . From (3.8) and (3.9) we conclude the
following result.

Proposition 4 If f is a piecewise monotone self-map on a finite interval I ⊂ R, then
there exists L ≥ 2 such that Pπ = ∅ for some π ∈ SL.
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Ordinal patterns that do not appear in any orbit of f are called forbidden (ordinal)
patterns for f , at variance with the admissible or allowed patterns, for which there
are sets of points that realize them.

3.4 Properties of the Ordinal Patterns

We examine in this section three basic properties of ordinal patterns: invariance
under order isomorphism, superexponential growth of the forbidden patterns with
the length, and robustness against noise.

3.4.1 Invariance Under Order Isomorphism

Since ordinal patterns are not related to measure-theoretical or topological prop-
erties, metrically or topologically conjugate dynamical systems need not have the
same allowed (and hence forbidden) patterns, unless the conjugacy preserves linear
order—supposing that both state spaces are linearly ordered. In general, this will not
be the case.

For instance, we saw in Sect. 1.2 that the logistic map has the forbidden 3-pattern
〈2, 1, 0〉, i.e., there are no three consecutive points in any orbit of the logistic map,
forming a strictly decreasing trio (see Fig. 1.6). However, Fig. 3.2 shows that the
dyadic map E2 : x 	→ 2x (mod 1), 0 ≤ x ≤ 1, has no forbidden patterns of length
3, despite being isomorphic to the logistic map. The reason is simple: the isomor-
phism between these two maps is proved via the semi-conjugacy2 ϕ : [0, 1] → [0, 1],
ϕ(x) = sin2 πx, which does not preserve order on account of being increasing on
(0, 1

2 ) and decreasing on ( 1
2 , 1).

Definition 1 Given two totally ordered sets (�1,≤1) and (�2,≤2), two maps
f1 : �1 → �1 and f2 : �2 → �2, and an invertible map φ : �1 → �2 such that
φ ◦ f1 = f2 ◦ φ, we say that f1 and f2 are order isomorphic if φ is order-preserving
(i.e., x ≤1 y implies φ(x) ≤2 φ(y)). The map φ is called an order isomorphism.

It is trivial that if φ : �1 → �2 is an order isomorphism, then x ∈ �1 and
φ(x) ∈ �2 define the same ordinal L-patterns, for all L ≥ 2, under the f1- and
f2-dynamics, respectively. In other words, order-isomorphic maps have the same
allowed and forbidden patterns of any length. We conclude that ordinal patterns are
not invariants of metric nor topological conjugacy, but of order isomorphy.

Example 4 (1) The logistic map g (1.19) and the symmetric tent map � (1.17) are
not only isomorphic but also order isomorphic. Indeed, the isomorphism

φ : x 	→ sin2 (π
2 x),

2 Definition 25.



58 3 Ordinal Patterns

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

012 201 021 120 102 210

Fig. 3.2 All six 3-patterns are allowed for the shift map E2:x 	→ 2x (mod 1): P012 =
(

0, 1
4

)
,

P201 =
(

1
4 , 1

3

)
, P021 =

(
1
3 , 1

2

)
, P120 =

(
1
2 , 2

3

)
, P102 =

(
2
3 , 3

4

)
, P210 =

(
3
4 , 1
)

. A pattern

〈π0, π1, π2〉 has been shorthanded as π0π1π2. Note that ordinal patterns are mirrored with respect
to the central line x = 1

2

(see Example 24) is strictly increasing and, hence, order preserving. This entails
that allowed patterns for f correspond to allowed patterns for � in a one-to-one
way.

(2) The same happens with the dyadic map E2 : x 	→ 2x (mod 1), 0 ≤ x ≤ 1, and the
( 1

2 , 1
2 )-Bernoulli shift, since the isomorphism (modulo 0) φ2 : {0, 1}N0 → [0, 1],

φ2 : (x1, x2, . . . ) 	→
∞∑

k=1

xk2−k

is order-preserving ({0, 1}N endowed with the lexicographical order).
(3) The logistic map is isomorphic but not order isomorphic to the ( 1

2 , 1
2 )-Bernoulli

shift. Indeed, the corresponding isomorphy (actually, the coding map of Exam-
ple 1) �α : [0, 1] → {0, 1}N0 is not order preserving; e.g.,

�α
(

1
4

)
= (0, 1∞) < �α( 3

4 ) = (1∞),

where binary strings are ordered lexicographically, while

�α
(

1
2

)
= (1, 1, 0∞) > �α(1) = (1, 0∞).

The forbidden ordinal patterns of the shift systems will be studied in Chap. 4.
On the other hand, if φ : �1 → �2 is order preserving but not one-to-one, then

ordinal patterns are not necessarily invariant under φ. Let, for example, �1 = �2 =
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[0, 1] × [0, 1] =: [0, 1]2 endowed with lexicographical order, f : [0, 1]2 → [0, 1]2,
φ : [0, 1]2 → [0, 1] the projection onto the first coordinate, x0 = (x(1)

0 , x(2)
0 ) 	→ x(1)

0 ,
and

(x(1)
0 , x(2)

0 ) = x0 > f (x0) = (x(1)
1 , x(2)

1 ),

so that x0 is of type 〈1, 0〉. If x(1)
0 > x(1)

1 , then φ(x0) is also of type 〈1, 0〉. But

if x(1)
0 = x(1)

1 (and x(2)
0 > x(2)

1 ), then φ(x0) will be of type 〈0, 1〉 in virtue of the
lexicographical convention (Sect. 3.2).

Proposition 5 Given �1, �2 ⊂ R, let fi : �i → �i, i = 1, 2, be topologically con-
jugate via a (continuous) map φ : �1 → �2. If f1 is topologically transitive and,
for all x ∈ �1, both x and φ(x) define the same ordinal pattern, then φ is order
preserving.

Proof Pick x, x′ ∈ �1 such that x < x′. We must prove that φ(x) < φ(x′).
Because of continuity, for all ε > 0 there exists 0 < δ < x′−x

2 such that |y− x| <
δ ⇒ |φ(y)− φ(x)| < ε and

∣∣y′ − x′
∣∣ < δ ⇒ ∣∣φ(y′)− φ(x′)

∣∣ < ε. Moreover, topo-
logical transitiveness implies that, given x, x′ and δ as above, there exists x0 ∈ �1,
and positive integers N = N(x, δ), N′ = N′(x′, δ) such that

∣∣f N
1 (x0)− x

∣∣ < δ and∣∣∣f N′
1 (x0)− x′

∣∣∣ < δ. Suppose without restriction N < N′ = N + k, k > 0, and set

f N
1 (x0) = y, f N′

1 (x0) = y′, hence y′ = f k
1 (y). By assumption, y ∈ �1 and φ(y) ∈ �2

define the same ordinal (k + 1)-pattern, i.e.,

f π0
1 (y) < · · · < f πk

1 (y) ⇔ f π0
2 (φ(y)) < · · · < f πk

2 (φ(y)), (3.10)

where 0 ≤ πi ≤ k, and πi �= πj for i �= j. Since |y− x| < δ,
∣∣f k

1 (y)− x′
∣∣ < δ, and

δ < x′−x
2 , we have y < f k

1 (y) = y′. From (3.10) it follows

φ(y) < f k
2 (φ(y) = φ(f k

1 (y)) = φ(y′).

By continuity, φ(y) and φ(y′) can be made to lie arbitrarily close to φ(x) and φ(x′).
It follows φ(x) < φ(x′). �

Finally, observe that the setting we are considering is more general than the set-
ting of kneading theory [150] since our functions need not be continuous, but only
piecewise continuous. Under some assumptions, the so-called kneading invariants
completely characterize the order isomorphy of continuous, one-dimensional inter-
val maps.
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3.4.2 Growth of Forbidden Patterns with Length: Outgrowth
Patterns

Forbidden ordinal patterns come in two flavors: outgrowth patterns and root pat-
terns.

Outgrowth forbidden patterns appeared already in Sect. 1.2 when discussing the
ordinal patterns of the logistic map: they are the patterns on the “trail” of a given
forbidden pattern (see (1.36)). Consider now a general map f : � → �. That π =
〈π0, . . . , πL−1〉 is forbidden for f means that the order relations

f π0 (x) < f π1 (x) < · · · < f πL−1 (x) (3.11)

cannot occur. This implies that the following 2(L + 1) patterns of length L + 1 are
also forbidden for f :

Group I: 〈L, π0, . . . , πL−1〉, 〈π0, L, π1, . . . , πL−1〉, . . . , 〈π0, . . . , πL−1, L〉,
Group II: 〈0, π0 + 1, . . . , πL−1 + 1〉, 〈π0 + 1, 0, π1 + 1, . . . , πL−1 + 1〉,

. . . , 〈π0 + 1, . . . , πL−1 + 1, 0〉.
(3.12)

For suppose by contradiction that the pattern 〈π0, . . . , πi, L, πi+1, . . . , πL−1〉 is
allowed. Then the inequalities

f π0 (x) < · · · < f πi(x) < f L(x) < f πi+1 (x) < · · · < f πL−1 (x)

would hold for some x ∈ I, hence (3.11) would occur for the same x ∈ I, contra-
dicting the assumption that π is forbidden. Analogously, if x ∈ I would realize the
pattern 〈π0 + 1, . . . , πi + 1, 0, πi+1 + 1, . . . , πL−1 + 1〉, then f (x) would realize the
pattern π—again a contradiction.

A weak form of the converse holds also true: if 〈L, π0, . . . , πL−1〉, 〈π0, L, . . .,
πL−1〉, . . . , 〈π0, . . . , πL0−1, L〉 ∈ SL+1 are forbidden, then 〈π0, . . . , πL−1〉 ∈ SL is
also forbidden.

Assume for the time being that the forbidden patterns (3.12), belonging to the
“first generation,” are all different. Then, proceeding similarly as before, we would
find

2(L+ 1)× 2(L+ 2) = 22(L+ 1)(L+ 2)

forbidden patterns of length L+ 2 in the second generation and, in general,

2m(L+ 1) · · · (L+ m) = 2m (L+ m)!
L!

forbidden patterns of length L+m in the mth generation, provided that all forbidden
patterns up to (and including) the mth generation are different. Observe that all these
forbidden patterns generated by π have the form
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〈∗, π0 + n, ∗, π1 + n, ∗, . . . , ∗, πL−1 + n, ∗〉 ∈ SM . (3.13)

Here n = 0, 1, . . . , M − L, where M − L ≥ 1 is the number of wildcards ∗ ∈
{0, 1, . . . , n − 1, L + n, . . . , M − 1} (with ∗ ∈ {L, . . . , M − 1} if n = 0 and ∗ ∈
{0, . . . , M − L− 1} if n = M − L). Forbidden M-patterns of the form (3.13), where
π = 〈π0, . . . , πL−1〉 is a forbidden pattern for f and M > L, are called outgrowth
(forbidden) patterns of π . It is straightforward that if π ′ is an outgrowth pattern of
π and π ′′ is an outgrowth pattern of π ′, then π ′′ is an outgrowth pattern of π .

A better upper bound on the number of outgrowth forbidden patterns of length
M of π is obtained using the following reasoning. For fixed n, the number of out-
growth patterns of π of form (3.13) is M!/L!. This is because out of all possible
permutations of the numbers {0, 1, . . . , M − 1}, we only count those that have the
entries {π0 + n, π1 + n, . . . , πL−1 + n} in the required order. Next, note that we
have M − L + 1 choices for the value of n. Each choice generates a set of M!/L!
outgrowth patterns. These sets are not necessarily disjoint, but an upper bound on
the size of their union, i.e., the set of all outgrowth forbidden patterns of length M
of π , is given by

(M − L+ 1)
M!
L! .

Forbidden patterns that are not outgrowth patterns of other forbidden patterns of
shorter length are called root forbidden patterns. They can be viewed as the root
of the tree of forbidden patterns spanned by the outgrowth patterns they generate,
branching taking place when going from one length (or generation) to the next.
Therefore, they are instrumental in the study of the ordinal structure defined by a
transformation—the remaining patterns, whether forbidden or allowed, follow from
them. In view of (3.12), for proving that a forbidden L-pattern is a root pattern it
suffices to show that it does not belong to group I nor to group II of a forbidden
(L− 1)-pattern.

Example 5 Figure 3.3 depicts the graphs of the identity (main diagonal), the map
E2 : x → 2x mod 1, 0 ≤ x ≤ 1, and its second and third iterates. The vertical dashed
lines rise at the endpoints of the intervals Pπ �= ∅ of points x defining the allowed
patterns π ∈ S4. We conclude that E2 has 18 allowed 4-patterns, all consisting of a
single component, and hence 6 forbidden 4-patterns, namely

〈0, 2, 3, 1〉 , 〈1, 0, 2, 3〉 , 〈1, 3, 2, 0〉 , 〈2, 0, 1, 3〉 , 〈3, 1, 0, 2〉 , 〈3, 2, 0, 1〉 . (3.14)

Since E2 has no forbidden 3-patterns (see Fig. 3.2), we deduce that all these six
forbidden 4-patterns are root patterns. �

Given a permutation

σ =
(

0 1 . . . M − 1
σ0 σ1 . . . σM−1

)
= [σ0, . . . , σM−1],
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0123 0132 2301
2031

0213
3021

0321
1230

1203
3120

1302
2310 3210

3012 0312 2130 21031032

Fig. 3.3 The eighteen allowed 4-patterns of the map E2 : x 	→ 2x (mod 1). For clarity, the allowed
patterns have been written without angular parentheses nor separating commas. Note that the inter-
vals Pπ and the allowed patterns are mirrored with respect to the central line x = 1/2

we say that σ contains the consecutive pattern τ = [τ0, . . . , τL−1], L < M, if the
sequence σ0, . . . , σM−1 contains a consecutive subsequence order isomorphic to the
sequence τ0, . . . , τL−1. Alternatively, we say that σ avoids the consecutive pattern τ

if it contains no consecutive subsequence order isomorphic to τ [74]. For instance,
σ = [5, 2, 0, 1, 4, 3] contains the consecutive pattern τ = [0, 2, 1] because σ con-
tains the consecutive subsequence 1, 4, 3 which is order isomorphic to 0, 2, 1.

In order to apply results on pattern avoidance in combinatorics to forbidden
ordinal patterns, recall from Sect. 1.2 that any ordinal pattern π = 〈π0, . . . , πL−1〉
corresponds to the permutation [π ]−1 : πi 	→ i, 0 ≤ i ≤ L − 1, (1.23). Suppose
furthermore that π ′ = 〈π ′0, . . . , π ′M−1〉, L < M, is an outgrowth pattern of π , i.e.,
π ′ has the form (3.13). The permutation [π ′0, . . . , π ′M−1]−1 =: [π ′]−1 performs the
substitutions

. . . π0 + n 	→ i0, . . . π1 + n 	→ i1, . . . πL−1 + n 	→ iL−1, . . . ,

where n ∈ {0, 1, . . . , M − L} and 0 ≤ i0 < i1 < · · · < iL−1 ≤ M − 1. Thus the
sequence i0, i1,. . . , iL−1 is order isomorphic to 0, 1,. . . , L − 1. Note, furthermore,
that π0, . . . , πL−1 is a rearrangement of the consecutive sequence 0, . . . , L−1, hence
π0 + n, . . . , πL−1 + n is a rearrangement of the consecutive sequence n, . . . , n +
L − 1. It follows that 〈π ′0, . . . , π ′M−1〉 is an outgrowth pattern of 〈π0, . . . , πL−1〉 if
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and only if the permutation [π ′]−1 contains the permutation [π ]−1 as a consecutive
pattern. Therefore the allowed patterns for f are the permutations that avoid all such
consecutive subsequences for every forbidden root pattern of f .

Example 6 Take π = 〈2, 0, 1〉 to be a forbidden pattern for a certain function f .
Then π ′ = 〈4, 2, 1, 5, 3, 0〉 is an outgrowth pattern of π because it contains the
subsequence 4, 2, 3 (n = 2). Equivalently, the permutation [4, 2, 1, 5, 3, 0]−1 =
[5, 2, 1, 4, 0, 3] contains the consecutive pattern 1, 4, 0, which is order isomorphic
to [2, 0, 1]−1 = [1, 2, 0].

Let Sout(π ) denote the family of outgrowth patterns of the forbidden pattern π ,

Sout
M (π ) = Sout(π ) ∩ SM

= {π ′ ∈ SM:[π ′]−1 contains [π ]−1 as a consecutive pattern},

and

Savoid
M (π ) = SM\Sout

M (π )

= {π ′ ∈ SM:[π ′]−1 avoids [π ]−1 as a consecutive pattern}.

where \ stands for set difference. The fact that some of the outgrowth patterns of
a given length will be the same and that this depends on π makes the analytical
calculation of

∣∣Sout
M (π )

∣∣ extremely complicated. Yet, from [74] we know that there
are constants 0 < c, d < 1 such that

cMM! <
∣∣∣Savoid

M (π )
∣∣∣ < dMM!

(for the first inequality, L ≥ 3 is needed). This implies that

(1− dM)M! < ∣∣Sout
M (π )

∣∣ < (1− cM)M!. (3.15)

This factorial growth with M is one of the mechanisms that make forbidden pat-
terns a practical tool for detection of determinism in noisy time series. This topic
will be addressed in detail in Chap. 9.

3.4.3 Robustness Against Noise in Deterministic Time Series

Determinism means functional dependence between the “current” value of a uni-
variate or multivariate time series and some of its past values. In some theoretical
models this dependence can involve infinitely many values, but we shall limit our
attention to the more realistic processes with a finite number of dependent variables.
Multivariate time series appear not only when the data source is vectorial but also
when scalar deterministic processes are modeled as dynamical systems. Consider,
for instance, a time process yn+1 = g(yn, yn−1, . . . , yn−M+1), where g is a scalar
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self-map, the “memory” M ≥ 2, and (y0, y−1, . . . , y−M+1) ∈ R
M is the initial con-

dition. This process can be modeled as an M-dimensional dynamical system (or a
multivariate process with memory one) via the change of variables

x(1)
n = yn, x(2)

n = yn−1, . . . , x(M)
n = yn−M+1,

so as

yn+1 = g(yn, yn−1, . . . , yn−M+1) ⇔ xn+1 = f(xn),

where

xn = (x(1)
n , x(2)

n , . . . , x(M)
n ) ∈ R

M ,

and f : R
M → R

M with

f(xn) = (g(xn), x(1)
n , x(2)

n , . . . , x(M−1)
n ) ∈ R

M .

A similar strategy works out for vectorial maps. In sum, any deterministic time
series can be considered as the orbit of a dynamical system of adequate dimension-
ality.

Exercise 3 Write the evolution process

xn+1 = f (xn, xn−1, yn−1),
yn+1 = g(xn−1, yn−2),

as a five-dimensional dynamical system.

The perturbations that distort a deterministic time series during generation, trans-
mission, observation, and/or measurement are generically referred to as noise. We
elaborate next on the persistence of admissible and forbidden patterns when the
observed data are “noisy,” a property called robustness against noise. This property
is essential for the applications of ordinal analysis since noise is ubiquitous in real
data.

When modeling noise, there are two basic approaches:

• Dynamical noise is due to errors in the determination of the initial state and prop-
agates with the dynamic. Thus, if we observe y0 = x0 + η0 ∈ � ⊂ R

q instead of
the true initial state x0, then the dynamical noise (ηn)n∈N0 is defined as

yn = f n(y0) = f n(x0 + η0) = xn + ηn,

where ηn = f n(x0 + η0) − f n(x0) depends on x0 and η0. Dynamical noise is
detrimental to the predictability of the sequence (f n(x0))n∈N0 when f exhibits
sensitivity to initial conditions. This sensitivity is measured by its Lyapunov
exponent(s) with respect to the natural invariant measure.



3.4 Properties of the Ordinal Patterns 65

• Observational (or additive) noise adds a random fluctuation to the true value
xn = f n(x0) in each iteration, that is, the observed value at “time” n is

zn = xn + ζn,

where ζ = (ζn)n∈N0 is an R
q-valued random process that accounts for the dif-

ferent macroscopic and/or microscopic factors affecting the true value f n(x0).
If the random variables ζn are independent, then one says that ζ is white noise,
otherwise the noise is colored. Since ordinal patterns depend only on arithmetical
differences between observations close in time, the mean of the noise probability
distribution is irrelevant. By the same token, we also expect that observational
noises with similar variances and finite supports (or possibly thin-tailed distribu-
tions) will produce a similar structure of admissible and forbidden patterns. In
numerical simulations, the support of the random variables ζn will be certainly
bounded. White and colored noise are random time series, so random sequences
can be viewed as consisting only of noise.

Dynamical noise belongs only to deterministic time series and is important in
numerical simulations, whereas observational noise corrupts actual observations of
experimental deterministic and random sequences.

Given a deterministic or random time series x = (xn)n∈N0 , we say that an ordinal
pattern π = 〈π0, π1, . . . , πL−1〉 is observable or visible in x if x contains a length-L
block xk+L−1

k = xk, . . . , xk+L−1 of type π , i.e., if xk+π0 < xk+π1 < · · · < xk+πL−1 .
Otherwise, π is said to be unobservable or missing in x. If x has been determinis-
tically generated by f , then visible patterns are necessarily admissible for f , while
forbidden patterns for f cannot be visible in x (nor in any other orbit of f for that
matter). On the other hand, if π is missing in x, this does not necessarily mean
that π is forbidden for f —it might be visible in other orbit of f . Thus, forbidden
patterns are a subset of the missing patterns. The same considerations apply to real,
finite-length sequences.

We say that a visible (correspondingly, missing) ordinal L-pattern π in a deter-
ministic time series xn = f n(x0) is unconditionally robust against dynamical or
observational noise, if π is also visible (correspondingly, missing) in any perturbed
time series xn + ξn, n ∈ N0, where ξn is dynamical or observational noise, respec-
tively. Likewise, we say that a visible (correspondingly, missing) ordinal L-pattern
π in a deterministic time series xn = f n(x0) is conditionally robust against dynam-
ical or observational noise, if π is also visible (correspondingly, missing) in any
perturbed finite time series (or initial segment) xn + ξn, 0 ≤ n ≤ N, where ξn

is, respectively, dynamical or observational noise with sufficiently small amplitude
A = A(x0, N) = max0≤n≤N ‖ξn‖.
Lemma 1 Consider time series generated by a continuous self-map f of a closed
interval I ⊂ R.

(1) Forbidden patterns are unconditionally robust against dynamical noise. (This
is also true if f is not continuous.)
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(2) Visible patterns are conditionally robust against dynamical noise.
(3) Visible and missing patterns are conditionally robust against observational

noise.

Proof (1) If π = 〈π0, . . . , πL−1〉 is a forbidden pattern for f , then π will be not visi-
ble in the sequence (f n(x0))n∈N0 nor in the perturbed sequence (f n(x0+η0))n∈N0

for any η0 such that x0 + η0 ∈ I.
(2) An ordinal L-pattern π visible in (f n(x0))n∈N0 will remain visible in a finite

noisy sequence yn = f n(x0 + η0) = xn + ηn, 0 ≤ n ≤ N, only if |η0| is small
enough. The size of |η0| will depend on the Lyapunov exponent (with respect
to the natural invariant measure) of f .

(3) Consider the segment xn = f n(x0), 0 ≤ n ≤ N, of the time series (f (x0))n∈N0 ,
and suppose that

f π0 (xk) < f π1 (xk) < · · · < f πL−1 (xk)

for some k ∈ {0, 1, , . . . , N − L+ 1}. Then

f π0 (xk)+ ζ0 < f π1 (xk)+ ζ1 < · · · < f πL−1 (xk)+ ζL−1

holds also true as long as the perturbations ζi satisfy

ζi < f πi+1 (xk)− f πi(xk)+ ζi+1

for i = 0, 1, . . . , L− 2.
From the result that visible patterns are robust against small observational noise,

it follows that missing patterns (in particular, forbidden patterns) are likewise robust
against small observational noise. �

We conclude from Lemma 1 that visible patterns in univariate time series are con-
ditionally robust however the kind of noise, whereas forbidden patterns are uncon-
ditionally robust against dynamical noise but conditionally robust against observa-
tional noise.

In case of multivariate time sequences (I ⊂ R
q with q ≥ 2), property (1) of

Lemma 1 remains the same, since the dimensionality of I does not enter in the
proof. The situation is different with the conditional robustness. For example, sup-
pose that R

q is lexicographically ordered, x(1)
k = x(1)

k+1 and x(2)
k < x(2)

k+1, hence

xk := (x(1)
k , x(2)

k ) < (x(1)
k+1, x(2)

k+1) =: xk+1. Then xk+ζk, xk+1+ζk+1 will not define the

pattern π = 〈0, 1〉 if ζ
(1)
k > ζ

(1)
k+1, however, small their sizes are. A corresponding

result holds for dynamical noise if, in the example above, the first component of
f k(x0) can be made to increase or decrease by varying x0. In real cases though, in
which time series are finite and maps have random-like properties, the coincidence
of components is highly unlikely, at least if real numbers are represented with a high
enough precision. We may infer that, although visible and missing patterns in mul-
tivariate sequences are not, in general, robust against observational nor dynamical
noise, in practice they may be considered conditionally robust (as in the univariate
case).
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Conditional robustness has to do with the amplitude of the perturbation. What
about the dependence of visible and missing patterns on the length N of the initial
segment (zn)N−1

n=0 of a noisy time series (zn)n∈N0 of either type? Since an increase of
N eventually transforms missing patterns of length L < N into visible L-patterns,
while visible patterns remain visible, it is clear that the number of missing L-patterns
in time series contaminated by dynamical or observational noise will decrease with
N. In other words, the longer the sequence, the higher the odds that some block
zn+L−1

n defines π . In the case of white noise only, (zn)n∈N0 = (ζn)n∈N0 , one can
show that the decrease of missing ordinal L-patterns goes exponentially with N (see
also Fig. 9.7).

If forbidden patterns were not robust against noise, they would be not useful
in time-series analysis. The sort of applications we have in mind belong in the
detection of determinism in univariate and multivariate time-series analysis, since
(unconstrained) random real-valued time series have no forbidden patterns with
probability 1. These and related issues will be discussed in Chap. 9.



Chapter 4
Ordinal Structure of the Shifts

Shift systems are dynamical systems which are used as universal models in informa-
tion theory and stochastic processes. Besides they are interesting on its own because,
in spite of their conceptual simplicity, they exhibit some of the intricacies of low-
dimensional chaos, like sensitivity to initial conditions, strong mixing, and a dense
set of periodic points.

In the last chapter we studied some general properties of the allowed and for-
bidden patterns associated with a dynamical system whose state space is linearly
ordered. In this chapter we will be more specific and study the ordinal structure
of the shift transformations. By ordinal structure we mean such properties as the
length and number of the root forbidden patterns. Contrary to the generality of
maps, we shall see that these issues can be ascertained with great detail for the
shifts.

4.1 Ordinal Patterns and the Shift Maps

Let EN : [0, 1] → [0, 1], N ∈ {2, 3, . . . }, be the shift or sawtooth map

EN (x) = Nx (mod 1) (4.1)

(Fig. 4.1). Observe that if

x =
∞∑

n=0

xn · N−(n+1) =: 0. x0 x1 . . . xn . . . ,

0 ≤ xn ≤ N − 1, is an N-ary expansion of x ∈ [0, 1], then

Nx =
∞∑

n=0

x n · N−n = x 0 +
∞∑

n=1

x n · N−n = x 0 . x 1 x 2 . . . x n+1 . . .

and

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_4,
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0 1/N k/N (k+1)/N (N−1)/N 1

1

Fig. 4.1 The function EN (x) = Nx mod 1. The figure shows only the first, the kth, and the last laps
of the graph

E N (0. x 0 x 1 . . . x n . . . ) = 0. x 1x 2 . . . x n+1 . . . . (4.2)

In other words, if we write EN (0. x 0x 1 . . . x n . . . ) = 0. y 0 y 1 . . . y n . . ., then y n =
x n+1 for n ∈ N 0. This justifies the name “shift map” for E N since it shifts the digits
of the representation of x in base N, one position to the left (the first digit is deleted).
Let us recall an N-ary expansion is not unique for some x ∈ [0, 1] since

0. x 0 . . . x n−110∞ = 0. x 0 . . . x n−10 (N − 1)∞,

where (as in Sect. 1.1.2) the upper symbol “∞” stands for indefinite repetition. But
the set of points x ∈ [0, 1] whose N - ary expansion ends with 10∞ or 0 (N − 1)∞
has zero Lebesgue measure, so such points can eventually be thought to have been
removed from [0, 1].

If we identify now an N - ary expansion 0. x 0x 1 . . . x n . . . of x ∈ [0, 1] with the
one-sided sequence (x 0 , x 1, . . . , x n, . . . ) ∈ SN 0 , S = {0, . . . , N − 1}, then action
(4.2) translates into the action of the one-sided shift � on S N0 . Formally, if φN :
S N0 → [0, 1] is the map defined by

φN : (x n) n∈N 0 	→
∞∑

n= 0

x nN − (n+1), (4.3)

then φN is an order isomorphism modulo 0 between E N and the one-sided shift �

on SN0 , i.e.,
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φN ◦� = EN ◦ φN , (4.4)

the order of SN0 being given by the lexicographical rule:

x < x′ ⇔
⎧
⎨

⎩

x 0 < x ′0,
or
x 0 = x ′0, . . . , x n−1 = x ′n−1 and x n < x ′n (n ≥ 1),

(4.5)

where x = (x n) n∈N0 and x′ = (x ′n) n∈N0 . Observe that φN maps the cylinder set
Ci 0... in = { (x n)n∈N0 : x 0 = i 0, . . . , x n = i n} (i 0, . . . , i n ∈ S) to the interval

[
i 0 N n + · · · + i n

N n+1
,

i 0N n + · · · + in + 1

N n+1

]
.

Exercise 4 Let B be the Borel sigma-algebra on [0, 1], λ the corresponding Lebesgue
measure, and EN the sawtooth map (4.1). Prove that the dynamical system ([0, 1],B,
λ, EN) and the ( 1

N , . . . , 1
N )-Bernoulli one-sided shift are isomorphic (modulo 0).

Once we know that EN and the one-sided shift � on N symbols are order-
isomorphic (up to sets measure 0), it follows that they have the same forbidden
patterns (see Sect. 3.4.1).

In general it is very difficult to work out the specifics of the forbidden patterns
of a given map; the graphical methods can only help for small values of L. But we
shall see next that the shifts and the signed shifts (to be defined in Chap. 5.) are
an important exception. In particular, owing to the simple structure of one-sided
and two-sided shifts, the structure of their admissible and forbidden patterns can be
analyzed with great detail. By order isomorphy these conclusions will hold also for
the sawtooth map family EN (one-sided shifts), the baker map (two-sided shifts),
and the logistic and symmetric tent maps (one-sided signed shifts), among others.

4.2 Forbidden Patterns for One-Sided Shifts

In Sect. 1.1.2 we saw that one-sided shifts � are continuous maps on the compact
metric spaces ({ 0 , 1, . . . , N − 1}N0 , d), N ≥ 2. Furthermore, if { 0, 1, . . . , N−1}N0

is lexicographically ordered (see (4.5)), then � is order-isomorphic (modulo 0) to
EN via map (4.3).

What is the structure of the allowed ordinal patterns for �? It is easy to convince
oneself (see Example 7) that, given x = (x 0, . . . , x L− 1, . . . ) ∈ { 0, 1, . . . , N −
1}N0 of type π ∈ SL, π can be decomposed into at most N blocks (separated by
semicolons),

〈π0, . . . , πk0−1; πk0 , . . . , πk0+ k1−1; . . . ; πk0+ ···+kN−2 , . . . , πk0+ ···+ kN−2+ k N−1−1〉,
(4.6)
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where ks ≥ 0 is the number of times the symbol s ∈ {0, 1, . . . , N − 1} appears in
the segment xL−1

0 = x0, . . . , xL−1 of x (ks = 0 if none, with the corresponding block
empty) and k0 + · · · + kN−1 = L. The entries π0, . . . , πk0−1 are the locations of the
symbol 0 in xL−1

0 , the entries πk0 , . . . , πk0+k1−1 are the locations of the symbol 1
in xL−1

0 , etc. For this reason, the first block will also be called the 0-block, and, in
general, the (s+ 1)th block,

πk0+···+ks−1 , . . . , πk0+···+ks−1+ks−1, (4.7)

1 ≤ s ≤ N − 1, will also be called the s-block. Decomposition (4.6) is sometimes
called the decomposition of an allowed ordinal pattern π ∈ SL in s-blocks.

A (finite) subsequence of components of π of the form πi, . . . , πi + 1, . . . , πi +
2, . . . (respectively, πi, . . . , πi − 1, . . . , πi − 2, . . . ) will be called an increasing
(respectively, decreasing) subsequence. Increasing or decreasing subsequences will
be collectively called monotone. Observe that we use these concepts in a restrictive
way.

We will see next that from the fact that allowed patterns for the one-sided shift
must be decomposable as in (4.6), it is possible to deduce their structure.

Lemma 2 The blocks in decomposition (4.6) obey the following basic restrictions.

R1 The first (leftmost) block, π0, . . . , πk0−1, contains the locations of the 0’s in
xL−1

0 . Each 0-run (i.e., a segment of two or more consecutive 0’s contained

in or intersected by xL−1
0 ), if any, contributes an increasing subsequence of

the same length as the 0-run. Solitary symbols 0’s in xL−1
0 , if any, contribute

components to the first block that do not form monotone subsequences.
R2 The last (rightmost) block, πk0+···+kN−2 , . . . , πk0+···+kN−2+kN−1−1, contains the

locations of the (N−1)’s in xL−1
0 . Each (N−1)-run contained in or intersected

by xL−1
0 , if any, contributes a decreasing subsequence of the same length as

the (N − 1)-run. Solitary symbols 1’s in xL−1
0 , if any, contribute components

to the last block that do not form monotone subsequences.
R3 Every intermediate block, πk0+···+kj−1 , . . . , πk0+···+kj−1+kj−1, 1 ≤ j ≤ N − 2,

contains the locations of the j’s in xL−1
0 . Each j-run contained in or inter-

sected by xL−1
0 , if any, contributes a subsequence of the same length as the

j-run that is increasing if the run is followed by a symbol > j, or decreasing
if the run is followed by a symbol < j. Isolated symbols j’s in xL−1

0 , if any,
contribute components to the corresponding block that do not form monotone
subsequences.

R4 If the entries πm ≤ L − 2 and πn ≤ L − 2 belong to the same block of π ∈ SL

and πm appears on the left of πn (i.e., 0 ≤ m < n ≤ L − 1), then πm + 1
appears also on the left of πn + 1 (i.e., πm + 1 = πm′ , πn + 1 = πn′ and
0 ≤ m′ < n′ ≤ L− 1), not necessarily in the same block.
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Proof R1) Consider a 0-run of length l in x:

i = n− 1 n n+ 1 . . . n+ l− 1 n+ l
x = a 0 0 . . . 0 b

with 0 ≤ n, n + l ≤ L, and a, b > 0. Hence the 0-block of π (x) contains the
increasing subsequence

. . . , n, . . . , n+ 1, . . . , n+ l− 1, . . . ,

The “. . .” stands for entries proceeding from other 0-runs in x.
R2) Consider an (N − 1)-run of length l in x:

i = n− 1 n n+ 1 . . . n+ l− 1 n+ l
x = c N − 1 N − 1 . . . N − 1 d

with 0 ≤ n, n+ l ≤ L, and c, d < N − 1. Hence the (N − 1)-block of π (x) contains
the decreasing subsequence

. . . , n+ l− 1, . . . , n+ 1, . . . , n, . . . ,

The “. . .” allows for entries proceeding from other (N − 1)-runs in x.
R3) This restriction follows similarly to R1 for s-runs, 0 < s < N−1, terminated

with b > s (increasing subsequences), and similarly to R2 for s-runs terminated with
d < s (decreasing subsequences).

R4) Since πm and πn belong to the same block and �πm(x) < �πn(x) for some
x ∈ {0, 1, . . . , N − 1}N0 , there exists k ∈ {0, 1, . . . , N − 1} such that

�πm(x) = (k, xπm+1 . . . ) < (k, xπn+1, . . . ) = �πn (x).

By the definition of lexicographical order, there are two possibilities: (i) xπm+1 <

xπn+1 and (ii) xπm+κ = xπn+κ for 1 ≤ κ ≤ l− 1, l ≥ 2, and xπm+l < xπn+l. In both
cases,

�πm+1(x) = (xπm+1 . . . ) < (xπn+1, . . . ) = �πn+1(x)

and, hence, the entry πm + 1 appears on the left of πn + 1. �
Example 7 Consider in {0, 1, 2}N0 the sequence

x = (20, 11, 12, 13, 24, 25, 06, 07, 18, 19, 010, 011, 212, 213, 2, 1, . . . ), (4.8)

where ak indicates that the entry a ∈ {0, 1, 2} is at place k. Then x defines the ordinal
pattern

π = 〈6, 10, 7, 11;9, 8, 1, 2, 3;5, 0, 4, 13, 12〉 ∈ S14.
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The 0-block, π3
0 = 6, 10, 7, 11, codifies the k0 = 4 times the symbol 0 appears in

x13
0 , grouped in two runs, x7

6 and x11
10 (note the two increasing subsequences 6, 7 and

10, 11 in this block). The order results from

�6
3(x) = (0, 0, 1, . . . ) < �10

3 (x) = (0, 0, 2, . . . )

< �7
3(x) = (0, 1, 1, . . . ) < �11

3 (x) = (0, 2, . . . ).

The 1-block, π8
4 = 9, 8, 1, 2, 3, codifies the k1 = 5 times the symbol 1 appears in

x13
0 , grouped also in two runs: x3

1, followed by the symbol 2 > 1, and x9
8, followed

by the symbol 0 < 1 (note the corresponding increasing subsequence 1, 2, 3, and
decreasing subsequence 9, 8, in this block). The order results from

�9
3(x) = (1, 0, 0, . . . ) < �8

3(x) = (1, 1, 0, . . . ) < �1
3(x) = (1, 1, 1, . . . ) < · · ·

etc. Finally, the 2-block π13
9 = 5, 0, 4, 13, 12 codifies the k2 = 5 appearances of the

symbol 2 in x13
0 . The decreasing subsequences 5, 4 and 13, 12 come from the runs

x5
4 and x13

12, respectively, where x13
12 is the intersection within x13

0 of a longer 2-run.
The order results from

�5
3(x) = (2, 0, 0, . . . ) < �0

3(x) = (2, 1, 1, . . . ) < �4
3(x) = (2, 2, 0, . . . ) < · · · .

The restriction R4 is easily checked to be fulfilled.

Observe that two sequences x, x′ with xL−1
0 �= x′L−1

0 may define the same ordinal
L-pattern, while two sequences y, y′ with yL−1

0 = y′L−1
0 may define different ordinal

L-patterns (depending on yL−2, . . . and y′L−2, . . .).
The restriction R4 implies some simple consequences for the relative locations

of increasing and decreasing subsequences within the same block and their contin-
uations (if any) outside the block.

Corollary 1 In an allowed ordinal pattern π ∈ SL, the following relations among
its components hold.

(A) If πi, πi+ 1, . . . , πi+ l− 1, 1 ≤ l ≤ L− 1, is an increasing subsequence within
the same block of π ∈ SL with πi+ l < L, then πi+ l is on the right of πi+ l−1
(i.e., πi + l− 1 = πm, πi + l = πn, and m < n).

(B) If πi, πi − 1, . . . , πi − l+ 1, 1 ≤ l ≤ L− 1, is a decreasing subsequence within
the same block of π ∈ SL with πi < L− 1, then πi + 1 is on the left of πi (i.e.,
πi + 1 = πj with j < i).

(C) If πi, πi ± 1, . . . , πi ± l ∓ 1 and πj, πj ± 1, . . . , πj ± h ∓ 1, 1 ≤ l, h ≤ L − 1,
are two subsequences with the same monotonicity (upper signs for increasing,
lower signs for decreasing subsequences) within the same block of π ∈ SL,
then they are fully separated or, if intertwined, then it may not happen that two
or more entries of one of them are between two entries of the other.

The proof is left as an easy exercise.



4.2 Forbidden Patterns for One-Sided Shifts 75

Theorem 1 The one-sided shift on N ≥ 2 symbols has no forbidden patterns of
length L ≤ N + 1.

Proof If L ≤ N and π = 〈π0, π1, . . . , πL−1〉, then any “point” x ∈ {0, 1, . . . , N −
1}N0 with xπn = n, 0 ≤ n ≤ L− 1 ≤ N − 1, is trivially of type π :

�π0 (x) = (0, . . . ) < �π1 (x) = (1, . . . ) < · · · < �πL−1 (x) = (L− 1, . . . ).

Thus, suppose L = N + 1 and note if x = (x0, x1, x2, . . . ) is of type π =
〈π0, π1, . . . , πN〉, then the sequence x̄ = (N − 1− x0, N − 1− x1, N − 1− x2, . . . )
is of type πmirrored = 〈πN , πN−1, . . . , π1, π0〉.

Given π = 〈π0, π1, . . . , πN〉, we can therefore assume, without loss of generality,
that π0 < πN . Consider two cases.

• If πN �= N, then there is some l ∈ {1, 2, . . . , N−1} such that πl = N. In this case,
the point x = (x0, x1, . . . ) ∈ {0, 1, . . . , N − 1}N0 , where

xπ0 = 0, xπ1 = 1, . . . , xπl−1 = l− 1, xπl = l− 1, xπl+1 = l, . . . ,

xπN−1 = N − 2, xπN = N − 1, xN+1 = xN+2 = N − 1

is of type π . Indeed, it is enough to note that

�πl−1 (x) = (l− 1, xπl−1+1, . . . ) < (l− 1, N − 1, N − 1, . . . )

= �N(x) = �πl (x).

• If πN = N, let us first assume that π0 �= 0. Then there is k ∈ {1, 2, . . . , N−1} such
that πk + 1 = π0. In this case, the point x = (x0, x1, . . . ) ∈ {0, 1, . . . , N − 1}N0 ,
where

xπ0 = 0, . . . , xπk = k, xπk+1 = k, xπk+2 = k + 1, . . . ,

xπN−1 = N − 2, xπN = N − 1, xN+1 = N − 1

is of type π . This is clear because

�πk (x) = (k, 0, . . . ) < (k, xπk+1+1, . . . ) = �πk+1 (x).

In the case that π0 = 0, then there is l ∈ {1, 2, . . . , N − 1} such that πl = N − 1.
Now the sequence x = (x0, x1, . . . ) ∈ {0, 1, . . . , N − 1}N0 , where

xπ0 = 0, xπ1 = 1, . . . , xπl−1 = l− 1, xπl = l− 1, xπl+1 = l, . . . ,

xπN−1 = N − 2, xπN = N − 1

is of type π , since
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�πl−1 (x) = (l− 1, xπl−1+1, . . . )

< (l− 1, N − 1, . . . ) = �N−1(x) = �πl(x). �

Next we are going to show that the one-sided shift on N symbols has forbidden
patterns (more specifically, forbidden root patterns) of any length L ≥ N + 2. In
order to construct explicit instances, we need first to introduce some notation and
definitions.

Consider a partition of the sequence 0, 1, . . . , L− 1 of the form

−→p1 ,−→p2 , . . . ,−→pd , . . . ,−→pD, (4.9)

where

−→pd = ed, ed + 1, . . . , ed + hd − 1, (4.10)

1 ≤ d ≤ D, D ≥ 2, with (i) hd ≥ 1, h1 + · · · + hD = L, (ii) e1 = 0, eD + hD − 1 =
L− 1, and (iii) ed + hd = ed+1 for 1 ≤ d ≤ D− 1, i.e., the follower of −→pd , ed + hd,
d ≤ D − 1, is the first element of pd+1, namely, ed+1. We call (4.9) a partition of
0, 1, . . . , L−1 in D segments, (4.10) being an increasing segment, and denote by←−pd

the decreasing or reversed segment

←−pd = ed + hd − 1, . . . , ed + 1, ed.

We also call ed the first element of←−pd and ed+1 the follower of←−pd .
Since increasing and decreasing segments are nothing else but special cases of

increasing and decreasing subsequences, respectively, the consequences (A)–(C) of
restriction R4 apply as well. In the proof of the existence of forbidden root patterns
below (Lemmas 3 and 4 and Theorem 2) we are going to use (A) and (B) in the
following, particularized version (that will be also referred to as R4): the follower
(if any) of an increasing segment −→pn (correspondingly, decreasing segment ←−pn ) in
an allowed pattern π appears always to the right of −→pn (correspondingly, to the left
of ←−pn ).

Definition 2 Consider partition (4.9) of 0, 1, . . . , L− 1 in segments.

1. We call

π = 〈−→p1 ,−→p3 , . . . ,←−p4 ,←−p2〉 and πmirrored = 〈−→p2 ,−→p4 , . . . ,←−p3 ,←−p1〉 (4.11)

a tent pattern of length L.
2. We call

π = 〈. . . ,←−p3 ,←−p1 ,−→p2 ,−→p4 , . . .〉 and πmirrored = 〈. . . ,←−p4 ,←−p2 ,−→p1 ,−→p3 , . . .〉
(4.12)

a spiraling pattern of length L.
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Observe that the relation between partitions of 0, 1, . . . , L − 1 in segments and
spiraling patterns of length L is one-to-one except when −→p1 = 0 (h1 = 1). In this

case, ←−p1 ,−→p2 = 0, 1, . . . , e2 + h2 − 1 can be taken for
−→
p′1 := 0, 1, . . . , e2 + h2 − 1

(h′1 = h2 + 1).

Lemma 3 If N ≥ 2 is the number of symbols and π is a tent pattern with D seg-
ments, then π is forbidden if and only if D ≥ N + 2.

Proof Consider the tent pattern π = 〈−→p1 ,−→p3 , . . . ,←−p4 ,←−p2〉. To begin with, the last
entry h1−1 of−→p1 and the first entry e3 of−→p3 may not be in the same block, otherwise
the R4 would be violated (e2 = h1 should be on the left of e3 + 1 if h3 ≥ 2 or on
the left of e4 if h3 = 1). Thus we separate them with a first semicolon:

π = 〈−→p1 ;−→p3 , . . . ,←−p4 , ←−p2〉.

Observe that the resulting leftmost block, −→p1 , complies with R1. Consider now the
followers of←−p2 and←−p4 to conclude similarly that we need to separate these segments
by a second semicolon:

π = 〈−→p1 ;−→p3 , . . . ,←−p4 ;←−p2〉.

The resulting rightmost block satisfies R2.
The procedure continues along the same lines. In the kth step, R4 requires a kth

semicolon between the segments −→pk and −−→pk+2, so that, if D ≥ N + 1, the (N −
1)th semicolon will separate −−→pN−1 and −−→pN+1. All these intermediary blocks trivially
fulfill R3.

In the particular case D = N+1, the “central” block−→pN
←−−pN+1 (N odd) or−−→pN+1

←−pN

(N even) complies with R3 and R4, and hence π is allowed. A further segment−−→pN+2
would require an Nth semicolon to separate −→pN and −−→pN+1 in order not to violate R4.

The proof for πmirrored is completely analogous. �

Lemma 4 If N ≥ 2 is the number of symbols, π is a spiraling pattern with D seg-
ments, and h1 ≥ 2 (i.e., −→p1 = 0, 1, . . .), then

1. π is forbidden if and only if (a) D = N and hD ≥ 2 or (b) D ≥ N + 1;
2. π is allowed if and only if (a′) D < N or (b′) D = N and hD = 1.

Part 2 of Lemma 4, which is the logical negation of part 1, has been explicitly
formulated for further references.

Proof Consider the spiraling pattern (4.12). To begin with, the entries h1 − 1 and
h1 − 2 of←−p1 = h1 − 1, . . . , 1, 0 may not be in the same block, otherwise R4 would
be violated (e2 should be on the left of h1 − 1). Thus we separate them with a first
semicolon:

π = 〈. . . ,←−p3 , h1 − 1; h1 − 2, . . . , 1, 0,−→p2 ,−→p4 , . . .〉.
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From here on, three possibilities can occur that we illustrate in a general step of even
order. (i) If −→p2ν consists of more than one element (i.e., h2ν ≥ 2), then we apply R4
to−→p2ν to conclude that we need a semicolon between e2ν +h2ν −2 and e2ν +h2−1
(since the follower of −→p2ν , i.e., the first entry of ←−−−p2ν+1, is on the wrong side). (ii) If−→p2ν consists of one element (h2ν = 1) and −−−→p2ν−2 consists of more than one element
(h2ν−2 ≥ 2), then we apply R4 to the pair −→p2ν = e2ν and e2ν−2 + h2ν−2 − 1, the
last element of −−−→p2ν−2, which has been separated with a semicolon from the rest of
elements in −−−→p2ν−2 two steps earlier. (iii) If both −→p2ν and −−−→p2ν−2 consist of a single
element (h2ν = h2ν−2 = 1), apply R4 to the pair −−−→p2ν−2 = e2ν−2 <

−→p2ν = e2ν to
infer the need for a semicolon separating them (since e2ν−2 + 1 = e2ν−1, the first
element of ←−−−p2ν−1, is on the right of e2ν + 1 = e2ν+1, the first element of ←−−−p2ν+1).
As a general rule, we need one semicolon per segment −→p2ν or←−−−p2ν+1 as long as there
are still a posterior segment←−−−p2ν+1 or−−−→p2ν+2, respectively, on the “wrong” side. Note
that all (intermediary) blocks ensued so far comply with R3.

Following this way, we run out of the N−1 semicolons we may use (correspond-
ing to the N symbols), after having considered the segment −−→pN−1. Yet if D = N and
hN ≥ 2, then −→pN will violate R1 if N is odd or R2 if N is even. If D ≥ N + 1, then
the segment −−→pN+1 will be on the wrong side of −→pN and the pattern will not comply
with R4.

The proof for πmirrored is completely analogous. �

The constructive, stepwise procedure used in the proofs of Lemmas 3 and 4 can
be used mutatis mutandis in general to decompose any ordinal pattern into well-
formed (i.e., complying with R1–R4) blocks. For instance, one could start from
the leftmost entry and move on rightward one entry at a time, inserting a semi-
colon between the current and the previous entry whenever necessary to enforce the
restrictions R1–R4. Reciprocally, given a decomposition of an ordinal pattern π in
s-blocks, one can easily construct a sequence x ∈ {0, . . . , N − 1}N0 of type π .

Theorem 2 The following patterns of length L ≥ N + 2, together with their corre-
sponding mirrored patterns, are forbidden root patterns.

1. The tent patterns with N + 2 segments

〈0,−→p3 , . . . ,−→pN , L− 1,←−−pN+1, . . . ,←−p2〉 (4.13)

if N is odd or

〈0,−→p3 , . . . ,−−→pN+1, L− 1,←−pN , . . . ,←−p2〉 (4.14)

if N is even. Here −→p1 = 0 and −−→pN+2 = L− 1.
2. The spiraling pattern with N + 1 segments

〈L− 2,←−−pN−2, . . . ,←−p3 , 1, 0,−→p2 , . . . ,−−→pN−1, L− 1〉 (4.15)

if N is odd or
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〈L− 1,←−−pN−1, . . . ,←−p3 , 1, 0,−→p2 , . . . ,−−→pN−2, L− 2〉, (4.16)

if N is even. Here −→p1 = 0, 1, −→pN = L− 2, and −−→pN+1 = L− 1.
3. The spiraling pattern with N segments

〈L− 1, L− 2,←−−pN−2, . . . ,←−p3 , 1, 0,−→p2 , . . . ,−−→pN−1〉 (4.17)

if N is odd or

〈←−−pN−1, . . . ,←−p3 , 1, 0,−→p2 , . . . ,−−→pN−2, L− 2, L− 1〉, (4.18)

if N is even. Here −→p1 = 0, 1, and −→pN = L− 2, L− 1.

Of course, cases 2 and 3 are related to the two possibilities in Lemma 4.

Proof First of all, remember from Sect. 3.4.2, (3.12), that given a forbidden pattern

〈π0, . . . , πL−2〉 ∈ SL−1,

its outgrowth patterns of length L have the form (group I)

〈L− 1, π0, . . . , πL−2〉, 〈π0, L− 1, . . . , πL−2〉, . . . , 〈π0, . . . , πL−2, L− 1〉

or the form (group II)

〈0, π0+ 1, . . . , πL−2+ 1〉, 〈π0+ 1, 0, . . . , πL−2+ 1〉, . . . , 〈π0+ 1, . . . , πL−2+ 1, 0〉.

1. This case is trivial. Any tent pattern made out of N + 2 segments is forbidden
according to Lemma 3. Moreover, since the entries L−1 and 0 in patterns (4.13) and
(4.14) are segments on their own, the number of segments D of these tent patterns
will fall below the threshold value D = N + 2 once L − 1 (group I) or 0 (group II)
are deleted.

2. Only (4.15) will be considered here, the proof for (4.16) and their mirrored
patterns being completely analogous. That (4.15) is forbidden follows readily from
Lemma 4 (b). To prove that π is also a root pattern, we need to show that it is not
the outgrowth of any forbidden pattern of shorter length.

There are two possibilities. Suppose first that π is an outgrowth forbidden pattern
of group I. Deletion of the entry L− 1 yields then the spiraling pattern

〈L− 2,←−−pN−2, . . . ,←−p3 , 1, 0,−→p2 , . . . ,−−→pN−1〉,

which is allowed on account of having N segments, h1 = 2, and a last segment−→pN = L− 2 of length 1 (Lemma 4 (b′)).
Thus, suppose that π is an outgrowth forbidden pattern of group II. In this case,

after removing the entry 0 and subtracting 1 from the remaining entries we are left
with the pattern
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〈L− 3,
←−−
p′N−2, . . . ,

←−
p′3 , 0,

−→
p′2 , . . . ,

−−→
p′N−1, L− 2〉, (4.19)

where
−→
p′d = ed−1, . . . , ed+hd−2, 2 ≤ d ≤ N+1. Since

−→
p′1 = 0 (h′1 = h1−1 = 1)

and
−→
p′2 = 1, . . . (h′2 = h2 ≥ 1), we can merge

−→
p′1 and

−→
p′2 into the new segment−→

p′′1 := 0, 1, . . ., so that (4.19) is a spiraling pattern with h′′1 ≥ 2 and the following

N segments:
−→
p′′1 ,
−→
p′3 , . . . ,

−−→
p′N−1,

−→
p′N = L− 3,−−→pN+1 = L− 2. According to Lemma 4

(b′), the ordinal pattern (4.19) is allowed.
3. This case uses Lemma 4 (a)–(a′) instead. The proof proceeds similar to

case 2. �

Example 8 For N = 2n+1, Theorem 2 provides the following six forbidden patterns
of minimal length L = N + 2:

〈0, 2, . . . , 2n, 2n+ 2, 2n+ 1, . . . , 3, 1〉,
〈2n+ 1, 2n− 1, . . . , 1, 0, 2, . . . , 2n, 2n+ 2〉,
〈2n+ 2, 2n+ 1, . . . , 1, 0, 2, . . . , 2n− 2, 2n〉,

and their mirrored patterns. For N = 2n, the six forbidden patterns of minimal
length L = N + 2 provided by Theorem 2 are

〈0, 2, . . . , 2n, 2n+ 1, . . . , 3, 1〉,
〈2n+ 1, 2n− 1, . . . , 1, 0, 2, . . . , 2n− 2, 2n〉,
〈2n− 1, 2n− 3 . . . , 1, 0, 2, . . . , 2n, 2n+ 1〉,

and their mirrored patterns. In particular, for N = 2 we obtain the following
minimal-length forbidden patterns:

〈0, 2, 3, 1〉 〈1, 3, 2, 0〉,
〈3, 1, 0, 2〉 〈2, 0, 1, 3〉,
〈1, 0, 2, 3〉 〈3, 2, 0, 1〉.

Needless to say, these are the six 4-patterns we got in (3.14) by graphical means.

It was proven in [76] that the shift �N has exactly six root forbidden L-patterns
for each L ≥ N + 2, namely, those delivered by Theorem 2 after setting −→pk = k− 1
(respectively, −→pk = k) in those segments not explicitly given in the tent patterns
(4.13) and (4.14) (respectively, in the spiraling patterns (4.15), (4.16), (4.17), and
(4.18)).

Corollary 2 For every K ≥ 2 there are self-maps on the interval [0, 1] without
forbidden patterns of length L ≤ K.

Proof Let EN : [0, 1] → [0, 1] be the shift map x 	→ Nx (mod 1), N = 2, 3, . . .. We
know that EN and � have the same allowed and forbidden patterns because they are
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order isomorphic (see (4.4)). Therefore if N + 1 ≤ K, then EN has no forbidden
patterns of length L ≤ K because of Theorem 1. �

It follows that there exist n-dimensional interval maps without forbidden pat-
terns. For example, see Fig. 4.2, one can decompose [0, 1] in infinite many half-open
intervals (of vanishing length), [0, 1] = ∪∞N=2IN and define on each IN a properly
scaled version of EN , ẼN : IN → IN . In R

2 one can repeat the said decomposition
along the 1-axis and define on IN× [0, 1] the function (ẼN , Id), where Id denotes the
identity. Proposition 4 shows that adding some natural assumption, like piecewise
monotonicity, can make all the difference.

Fig. 4.2 A map with infinitely many monotonicity intervals and no forbidden patterns

4.3 Forbidden Patterns for Two-Sided Shifts

Consider now the bisequence space, {0, 1, . . . , N−1}Z, equipped with the following
lexicographical order. With the notation x− for the left sequence (x−n)n∈N of x ∈
{0, 1, . . . , N − 1}Z and x+ for the right sequence (xn)n∈N0 , we set

x < x′ ⇔
⎧
⎨

⎩

x+ < x′+
or
x− < x′− if x+ = x′+

, (4.20)

where x = (x−, x+), x′ = (x′−, x′+), and < between right (respectively, left)
sequences denote lexicographical order in {0, 1, . . . , N − 1}N0 (respectively, {0, 1,
. . . , N − 1}N). If we map {0, 1, . . . , N − 1}Z onto [0, 1]× [0, 1] ≡ [0, 1]2 via
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(x−, x+) 	→
( ∞∑

n=1

x−nN−n,
∞∑

n=0

xnN−(n+1)

)
, (4.21)

we find that the lexicographical order (4.20) in {0, 1, . . . , N − 1}Z corresponds to
the usual lexicographical order in [0, 1]2. In order for this map to be one-to-one, we
have to dispose of the usual ambiguities in either direction.

In relation with the ordinal patterns defined by the orbits of two-sided sequences,

�i(x) < �j(x)

⇔
⎧
⎨

⎩

(xi, xi+1, . . . ) < (xj, xj+1, . . . )
or
(xi−1, xi−2, . . . ) < (xj−1, xj−2, . . . ) if (xi, xi+1, . . . ) = (xj, xj+1, . . . ),

where i, j ≥ 0, i �= j. It follows that the “exceptional” condition (xi, xi+1, . . . ) =
(xj, xj+1, . . . ) occurs if and only if �|i−j|(x+) = x+, i.e., when the right sequence
x+ of x ∈ {0, 1, . . . , N − 1}Z is periodic from the entry min{i, j} on with period
p = |i− j|.
Lemma 5 One-sided and two-sided shifts on N symbols have the same admissible
and forbidden ordinal patterns.

Proof (i) Suppose that the one-sided sequence x+ ∈ {0, 1, . . . , N − 1}N0 defines an
ordinal L-pattern π , i.e.,

�π0 (x+) < �π1 (x+) < · · · < �πL−1 (x+).

Then, the two-sided sequences x = (x−, x+), with x− ∈ {0, 1, . . . , N−1}N arbitrary,
define the same ordinal pattern.

(ii) Suppose now that the two-sided sequence x = (x−, x+) ∈ {0, 1, . . . , N − 1}Z
defines an ordinal L-pattern π ,

�π0 (x) < �π1 (x) < · · · < �πL−1 (x). (4.22)

If x+ is not eventually periodic, then (4.22) implies

�π0 (x+) < �π1 (x+) < · · · < �πL−1 (x+),

hence the pattern π is realized by the one-sided sequence x+. If x+ is eventually
periodic, say

x+ = (x0, . . . , xk−1, (xk, . . . , xk+p−1)∞),

i.e., (x+)k+np = (x+)k for k ≥ 0 and every n ∈ N, then there are two subcases.
(ii-a) If L ≤ k+ 2p, then the periodicity of x+ is not visible in the segment xL−1

0 ,
so the pattern π is realized by the one-sided pattern x+.
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(ii-b) If L = k+np+ν with n ≥ 2 and ν ≥ 1, then �k+p+i(x) = · · · = �k+np+i(x)
for i = 0, . . . , ν − 1, so their negative sequences (�k+p+i(x))−, . . ., (�k+np+i(x))−
have to be compared before ordering them. In this case, the pattern π is realized by
the one-sided sequence

x̃+ = (x0, . . . , xk+np+ν−1, (�k+np+ν−1(x))−)

= (x0, . . . , xk+np+ν−1, xk+np+ν−2, . . . , x0, x−1, . . . ).

From (i) and (ii) we deduce that one-sided and two-sided shifts on N ≥ 2 symbols
have the same admissible ordinal patterns, hence they have also the same forbidden
patterns. �

As a corollary of Lemma 5, together with Theorems 1 and 2, we obtain the fol-
lowing result.

Theorem 3 The two-sided shift on N symbols has no forbidden patterns of length
L ≤ N + 1 and has forbidden root patterns for L ≥ N + 2.

Example 9 Let I2 = [0, 1] × [0, 1] endowed with the Lebesgue measure, and let
B : I2 → I2 be the baker map,

B(ξ , η) =
{

(2ξ , 1
2η), 0 ≤ ξ < 1

2 ,
(2ξ − 1, 1

2η + 1
2 ), 1

2 ≤ η ≤ 1.

A generating partition of B is A0 = [0, 1
2 ) × [0, 1] and A1 = [ 1

2 , 1] × [0, 1]. For

� take the two-sided
(

1
2 , 1

2

)
-Bernoulli shift. Then B and � are isomorphic (mod 0)

via the coding map � : I2 → {0, 1}Z, given by

�(ξ , η) = ( . . . , x−1, x0, x1, . . . ),

where xn = in if Bn(ξ , η) ∈ Ain , n ∈ Z. Since � preserves order (in fact, � is the
inverse of the order-preserving map (x−, x+) 	→ (

∑∞
n=0 x−n2−(n+1),

∑∞
n=1 xn2−n)),

we conclude that the baker transformation has no forbidden patterns of length ≤ 3.
The forbidden 4-patterns of the baker map are the same as those of the one-sided
shift, see (3.14).



Chapter 5
Ordinal Structure of the Signed Shifts

Shift transformations are a special case of a more general family: signed shift
transformations—a sort of state-dependent shifts. The tent map is the simplest and
perhaps most popular representative of the signed shifts. In this chapter we are going
to show that most of the results on the ordinal structure of the shifts can be gener-
alized to the signed shifts. By order isomorphy, these results apply also to more
interesting cases, like the signed sawtooth maps.

5.1 Ordinal Patterns and the Tent Map

In this section we mimic the strategy used in the previous chapter, in order to get a
handle on the ordinal patterns of the symmetric tent map. We will also address an
issue pointed out in Fig. 1.7, namely, the interval structure of the sets Pπ defining
the allowed ordinal patterns of the logistic map.

5.1.1 A State-Dependent Shift Approach to the Tent Map

Just as some important dynamical properties of the sawtooth map EN (like density
of periodic points, sensitivity to initial conditions, topological transitivity, and the
structure of its admissible and forbidden ordinal patterns) can be easily studied in the
sequence space with the help of the relevant order isomorphisms, the same happens
with the symmetric tent map. Remember from Sect. 1.1.3 that the symmetric tent
map �:[0, 1] → [0, 1] is given by

�(x) = 1− |1− 2x| =
{

2x 0 ≤ x ≤ 1
2

2(1− x) 1
2 ≤ x ≤ 1

. (5.1)

For x ∈ [0, 1], write

x =
∞∑

n=0

xn2−(n+1) = 0.x0x1 . . . xn . . . ,
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Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_5,
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xn ∈ {0, 1}. If 0 ≤ x < 1/2, then

�(x) = 2x = 0.x1x2 . . . xn+1 . . . ,

hence the action of � coincides with the action of the sawtooth map E2. Otherwise,
if 1/2 ≤ x ≤ 1, then

�(x) = 2− 2x ≡ 1− 2x mod 1

= 1− 0.x2x3 . . . xn+1 . . .

Introducing the dual bit

x∗ = 1− x =
{

1 if x = 0
0 if x = 1

(5.2)

(thus, (x∗)∗ = x), we have

�(x) = 0.x∗1x∗2 . . . x∗n+1 . . .

because

0.x1x2 . . . xn+1 + · · · + 0.x∗1x∗2 . . . x∗n+1 · · · = 0.11 . . . 1 . . . = 1.

All in all,

�(0.x0x1 . . . xn . . . ) =
{

0.x1x2 . . . xn+1 . . . if x0 = 0,
0.x∗1x∗2 . . . x∗n+1 . . . if x0 = 1.

(5.3)

Identify now the binary representation 0. x0 x1 . . . xn . . ., xn ∈ {0, 1}, of a number
x ∈ [0, 1], with the sequence

(x0, x1, . . . , xn, . . . ) ∈ {0, 1}N0 ,

via the map φ2:{0, 1}N0 → [0, 1] defined as in (4.3) with N = 2. Then action (5.3)
translates into the following zeroth-state-dependent shift on {0, 1}N0 :

�(+,−)(x0, x1, . . . , xn, . . . ) =
{

(x1, x2, . . . , xn+1, . . . ) if x0 = 0
(x∗1, x∗2, . . . , x∗n+1, . . . ) if x0 = 1

(5.4)

(the subscripts (+,−) will be explained later). Observe that if we write

x∗ = (x∗0, x∗1, . . . , x∗n, . . . ),
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then

�(+,−)(x) =
{

�2(x) if x0 = 0,
�2(x∗) if x0 = 1,

where �2 is the usual one-sided shift on sequences of two symbols.
A method of visualizing how the orbits of x are generated by �(+,−) is the fol-

lowing. Take as way of illustration

x = (0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, . . . ), (5.5)

so as

�1
(+,−)(x) = (1 1 0 0 0 1 0 1 1 0 0 1 . . . ) = �1

2(x)
�2

(+,−)(x) = (0 1 1 1 0 1 0 0 1 1 0 0 . . . ) = �2
2(x∗)

�3
(+,−)(x) = (1 1 1 0 1 0 0 1 1 0 0 0 . . . ) = �3

2(x∗)
�4

(+,−)(x) = (0 0 1 0 1 1 0 0 1 1 1 0 . . . ) = �4
2(x)

�5
(+,−)(x) = (0 1 0 1 1 0 0 1 1 1 0 1 . . . ) = �5

2(x)
�6

(+,−)(x) = (1 0 1 1 0 0 1 1 1 0 1 0 . . . ) = �6
2(x)

�7
(+,−)(x) = (1 0 0 1 1 0 0 0 1 0 1 1 . . . ) = �7

2(x∗)
�8

(+,−)(x) = (1 1 0 0 1 1 1 0 1 0 0 1 . . . ) = �8
2(x)

�9
(+,−)(x) = (0 1 1 0 0 0 1 0 1 1 0 0 . . . ) = �9

2(x∗)
�10

(+,−)(x) = (1 1 0 0 0 1 0 1 1 0 0 1 . . . ) = �10
2 (x∗)

etc., that is,

�i
(+,−)(x) =

{
�i

2 (x) for i = 0, 1, 4, 5, 6, 8, . . . ,
�i

2 (x∗) for i = 2, 3, 7, 9, 10, . . . .

Write now x∗ directly under x, and mark (for example, with an underline) the initial
digit of �i

(+,−)(x), i ≥ 0:

i = 0 1 2 3 4 5 6 7 8 9 10 11 12
x = 0 1 1 0 0 0 1 0 1 1 0 0 1
x∗ = 1 0 0 1 1 1 0 1 0 0 1 1 0

(5.6)

That is, we set out from x0, which is always underlined. If x0 = 0, then go over to
x1 and underline it. If x0 = 1, then go down to x∗1 and underline it. In general, if
xi = 0 or x∗i = 0, go one step rightward on the same row and underline xi+1 or x∗i+1,
respectively. On the other hand, if xi = 1 or x∗i = 1, we go one step rightward on
the other row and underline x∗i+1 or xi+1, respectively. The L-pattern π defined by
x can be found now by ordering all the sequences on the x-row and x∗-row starting
with an underlined bit, for 0 ≤ i ≤ L− 1.

If x is sequence (5.5), then the ordinal L-patterns of x under �(+,−) are obtained
by comparing the shifts �i (x) for i = 0, 1, 4, 5, 6, 8, . . . with the shifts �j( x∗) for
j �= i. In particular, x is of type



88 5 Ordinal Structure of the Signed Shifts

π = 〈4, 5, 9, 0, 2;7, 6, 10, 1, 8, 3〉 ∈ S11 (5.7)

under the action of �(+,−).
Rather than deriving at this point the structure of the allowed ordinal patterns for

�(+,−) (or the tent map � for this matter), which follows from the general results of
the next section, let us prove here a particular property of the allowed patterns for
�(+,−).

Lemma 6 The subsequence n+ 2, . . . , n+ 1, . . . , n (0 ≤ n ≤ L− 3) cannot appear
in the entries of an allowed L-pattern for �(+,−). Thus, the allowed ordinal patterns
of �(+,−) cannot contain decreasing subsequences of length 3.

Proof We prove by contradiction that the order relation

�2
(+,−)(x) < �(+,−)(x) < x (5.8)

cannot hold true. If x0 = 0 there is no way that �(+,−)(x) ≡ �2(x) < x. Hence
x = (1, x1, x2, . . . ) and

�(+,−)(x) ≡ �2(x∗) = (x∗1, x∗2, . . . ).

By the same token, if x∗1 = 0 there is no way that �(+,−)(�(+,−)(x)) ≡ �2
(+,−)(x)

< �(+,−)(x). Hence

x = (1, 0, x2, . . . ), �(+,−)(x) = (1, x∗2, x∗3, . . . ), �2
(+,−)(x) = (x2, x3, . . . ).

From �(+,−)(x) < x it follows x∗2 = 0. In turn, from �2
(+,−)(x) = (1, x3, . . . )

< �(+,−)(x) = (1, 0, x∗3, . . . ) it follows x3 = 0. So far, we found that x =
(1, 0, 1, 0, x4, . . . ) (thus �(+,−)(x) = (1, 0, 1, x∗4, . . . ) and �2

(+,−)(x) = (1, 0, x4, . . . )).
A straightforward induction along these lines yields

x = (1, 0, 1, 0, . . . , 1, 0, . . . ) = ((1, 0)∞),

which is the binary expansion of the rational number 2/3. Since �2
(+,−)(x) =

�(+,−)(x) = x for this particular sequence (in other words, 2/3 is a fixed point
of �(+,−)), the statement follows by contradiction. �

Exercise 5 Prove, using representation (5.4) that the symmetric tent map has dense
periodic points, sensitive dependence on initial conditions, and is topologically tran-
sitive.
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5.1.2 The Interval Structure of the Sets Pπ

The points in state space � defining an ordinal L-pattern π under the action of a map
f :�→ � build the set Pπ , (3.4). The sets Pπ �= ∅, π ∈ SL, build in turn the set PL,
which build a finite partition of � under the condition set by Proposition 2. In this
section we examine the “topology” of Pπ ∈ PL for some one-dimensional interval
maps. For continuous maps, those sets are clearly open sets (hence, an enumerable
union of disjoint open intervals), but no further dissection can be made. For the
sawtooth map family x 	→ Nx mod 1, N ≥ 2, it is easy to convince oneself that Pπ

consists of a single open or half-open interval for all admissible patterns π ∈ SL,
L ≥ 2 (see Figs. 3.2 and 3.3). For the logistic map, Figs. 1.5 and 1.6 show that all
Pπ ∈ PL with L = 2, 3 consist of a single open interval, but from Fig. 1.7 it can be
read that

P〈0,3,1,2〉 ≈ (0.09549, 0.11698) ∪ (0.18826, 0.25),

P〈2,0,3,1〉 ≈ (0.34549, 0.41318) ∪ (0.61126, 0.65451),

P〈1,2,3,0〉 ≈ (0.93301, 0.95048) ∪ (0.96985, 1).

We claim the following.

Proposition 6 For the logistic map and the symmetric tent map, all Pπ �= ∅ consist
of one or two components.

As stated in Example 4 (1), the logistic map g and the symmetric tent map �

are order isomorphic. Specifically, g(φ(x)) = φ(�(x)), where φ(x) = sin2 (π
2 x),

0 ≤ x ≤ 1, so that

gn(φ(x)) = gm(φ(x)) ⇔ φ(�n(x)) = φ(�m(x)) ⇔ �n(x) = �m(x).

Thus, the curves y = gn(x) and y = gm(x) cross at x0 if and only if the piecewise
straight lines y = �n(x) and y = �m(x) cross at φ−1(x0). Moreover, the iterates of �

have not only a simple graphical representation (triangular waves with frequencies
increasing as powers of 2) but also a scaling property that makes � handier for the
proof of Proposition 6:

�n(x) = �n−1(2x), 0 ≤ x ≤ 1
2 ,

�n(x) = �n−1(2(1− x)), 1
2 ≤ x ≤ 1.

(5.9)

Therefore, the left-half part of the graphs (x, �0(x)), (x, �1(x)), . . . , (x, �L(x)) is a
“squeezed” copy of the graphs (x, x

2 ), (x, �0(x)), . . . , (x, �L−1(x)) on the interval
0 ≤ x ≤ 1

2 ; indeed, upon rescaling the X-axis by a factor 1
2 , we have (x, x

2 ) 	→ ( x
2 , x

2 )
and (x, �l(x)) 	→ ( x

2 , �l(x)) = ( x
2 , �l+1( x

2 )). The corresponding right-half parts
require the squeezed copy of the graphs (x, 1 − x

2 ), (x, �0(x)), . . . , (x, �L−1(x)) on
0 ≤ x ≤ 1

2 to be further mirrored with respect to the line x = 1
2 (this is the transfor-

mation (x, y) 	→ (x, 1− x)); see Fig. 5.1 for further insights.
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0 1/3 1/2 2/3 1

1

Fig. 5.1 If this figure is “opened” at the right side as a book put upside down, with the line y = x/2
only on the left page, the (dashed) line y = 1−x/2 only on the right page, and the triangular waves
y = �(x), y = �2(x) on both, and the resulting graph is shrunk by a factor 1/2 along the X-axis,
then we get the graphs of y = �n(x), 0 ≤ n ≤ 3. Alternatively, we can go from P∗3 to P∗4 just by
going first rightward on the bottom page (containing y = x/2) of the closed book and then leftward
on the top page (containing y = 1− x/2)

Proof Proposition 6 follows from the considerations prior to Proposition 3 (remem-
ber the terminology mother and daughter intervals, here shortened to mother and
daughter), together with the following facts.

The decomposition of a mother Pπmother ∈ PL into several daughters includ-
ing two or more twins (disjoint subintervals with the same ordinal label) can only
happen in intervals containing “vertex” or “bouncing-off” points xv. As their name
indicates, these points correspond to projections onto the X-axis of points at the
bottom (y = 0) or at the ceiling (y = 1) of the unit square at which incom-
ing (left) and outgoing (right) lines y = �l(x) meet, like ( 1

2 , 0) and ( 1
4 , 1) in

Fig. 5.1. Possibly the most intuitive way to follow the growth of twins around
vertex points uses the scaling property (5.9). If 0 < xv < 1

2 , consider the graphs
of y = x

2 , y = �0(x), . . . , y = �L−1(x) around x = 2xv. If 2xv ∈ P〈π0,...,πL−1〉, then
the straight line y = x

2 generates (left to right) daughters of Pπmother (after squeezing)
with labels πleft = 〈π0+1, . . . , 0, πk+1, . . . , πL−1+1〉, πcentral = 〈π0+1, . . . , πk+
1, 0, . . . , πL−1 + 1〉 and πright = 〈π0 + 1, . . . , 0, πk + 1, . . . , πL−1 + 1〉 = πleft,
with xv ∈ Pπcentral ∈ PL+1. Here k depends on the number of lines meeting at
(xv, 0); if k = 0 or L − 1, then 0 is the first or last entry of the label, respec-
tively. Hence, the set Pπleft ∪ Pπright ∈ PL+1 (πleft = πright) consists of two
disjoint interval components, one on each side of Pπcentral . If, on the other hand,
1
2 < xv < 1, consider the graphs of y = 1 − x

2 , y = �0(x), . . . , y = �L−1(x)
around x = 2(1 − xv). If 2(1 − xv) ∈ P〈π0,...,πL−1〉, then the straight line y = 1 − x

2
generates daughters of Pπmother (after squeezing and mirroring) with labels πleft =
〈π0+1, . . . , πk+1, 0, . . . , πL−1+1〉, πcentral = 〈π0+1, . . . , 0, πk+1, . . . , πL−1+1〉,
and πright = 〈π0 + 1, . . . , πk + 1, 0, . . . , πL−1 + 1〉 = πleft. As before, Pπleft ∪ Pπright

consists of two disjoint interval components, one on each side of Pπcentral . Finally, for
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xv = 1
2 the first set of graphs produces πleft and πcentral, while the second produces

πcentral and πright = πleft, with xv ∈ Pπcentral . This mechanism repeats again and again
over all generations. After the step L → L + 1, only the one-component daughters
Pπcentral , all of which contain some xv, can in turn generate twins (two-component
grand daughters); the corresponding two-component sisters Pπleft ∪ Pπright cannot
generate twins because they contain no vertex point. As a result, only one- or two-
component intervals are possible, the latter forming a nested structure around some
vertex points. From Fig. 5.1 it is clear that all such vertex points originate from
x = 1

2 , 1 by squeezing and from x = 1
4 by squeezing and mirroring. �

Exercise 6 Discuss the interval structure of the sets Pπ for the map E−2:x 	→ −2x
mod 1.

5.2 Ordinal Patterns and the Signed Shifts

The results of Sect. 5.1.1 can be generalized to a particular case of piecewise linear
maps. Partition the unit interval [0, 1] in N ≥ 2 equal subintervals,

Ik =
[

k

N
,

k + 1

N

)
, 0 ≤ k ≤ N − 2 and IN−1 =

[
N − 1

N
, 1

]

(other choices regarding the endpoints are of course possible), and raise over Ik a
“/-lap” of slope +N,

f (x) = Nx− k, x ∈ Ik,

or a “\-lap” of slope −N,

f (y) = k + 1− Nx, x ∈ Ik.

A map of the unit interval whose graph consists of /-laps and \-laps of slopes ±N,
respectively, over the intervals Ik, 0 ≤ k ≤ N − 1, will be called a signed saw-
tooth map, the term “signed” referring to the fact that its laps can have positive or
negative slope (see Fig. 5.2). We say that a signed sawtooth map f has signature
σ = (σ0, σ1, . . . , σN−1), where σk ∈ {+,−}, 0 ≤ k ≤ N − 1, to summarize that (the
graph of) f has a /-lap over Ik whenever σk = + and a \-lap whenever σk = −.
In other words, the kth component of the signature gives the slope sign of the
kth lap.

We have already met two important representatives of the signed sawtooth map
family: the sawtooth map EN : x 	→ Nx mod 1 (σ = (+, . . . ,+)) and the symmetric
tent map � (σ = (+,−)).

Given a signature σ , define the signed shift �σ :{0, . . . , N − 1}N0 → {0, . . . , N −
1}N0 as follows:
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0 j/N (j+1)/N k/N (k+1)/N 1

1

Fig. 5.2 The graph of a generic signed sawtooth map with slopes ±N. The figure only depicts the
jth lap, with positive slope, and the kth slope, with negative slope

�σ (x0, . . . , xn, . . . ) =
{

(x1, . . . , xn+1, . . . ) if x0 = k, σk = +,
(N − 1− x1, . . . , N − 1− xn+1, . . . ) if x0 = k, σk = −.

Therefore, if we define the dual digit of k ∈ {0, 1, . . . , N − 1} as

k∗ = N − 1− k, (5.10)

(thus (k∗)∗ = k), then

�σ (x) =
{

�N(x) if x0 = k and σk = +,
�N(x∗) if x0 = k and σk = −,

(5.11)

where

x∗ = (x∗0, . . . , x∗n, . . . ) = (N − 1− x0, . . . , N − 1− xn, . . . )

is the dual sequence to x = (x0, . . . , xn, . . . ) ∈ {0, 1, . . . , N − 1}N0 . In particular, if

N = 2ν + 1,

then ν = (N−1)/2 is “self-dual”: ν∗ = ν. Note that (5.10) generalizes the definition
of dual bit, (5.2).

Important for us is that if f is a signed sawtooth map with signature σ , then f and
�σ are order isomorphic via the map φN :{0, 1, . . . , N − 1}N0 → [0, 1] defined in
(4.3). Observe that φN(0∞) = 0, φN(1∞) = 1, and

k

N
≤ φN(x) ≤ k + 1

N
iff x0 = k.
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The technique described in Sect. 5.1 to keep track of the orbits of x under �(+,−)
can be used for �σ too. The number of symbols N goes in the definition of x∗,
while σk tells whether we have to jump from the current entry xi = k to x∗i+1 or from
the current entry x∗i = k to xi+1 (σk = −), instead of remaining on the same line
(σk = +), when underlining the entries of x in table (5.6).

Exercise 7 Check that

f (φN(x)) = φN(�σ x) =
{∑∞

n=1 xnN−n if x0 = k and σk = +,
1−∑∞

n=1 xnN−n if x0 = k and σk = −.

We turn now to the ordinal patterns realized by a signed shift �σ . Completely
analogous to the case �(+,...,+) ≡ �N , Chap. 4, the allowed ordinal patterns for �σ

can also be decomposed into s-blocks, (4.6), where now the s-block (4.7) contains
the locations of the symbol s ∈ {0, . . . , N − 1} in the segments xL−1

0 := x0, . . . , xL−1

of x and (x∗)L−1
0 := x∗0, . . . , x∗L−1 of x∗, such that the zeroth component of �i

σ x,
0 ≤ i ≤ L − 1, is s (i.e., the locations of the symbol s which are underlined in
the x- or x∗-row of table (5.6)). We shall presently see that each s-block consists
basically of two kinds of subsequences: monotone (σs = +) or spiraling (σs = −),
eventually intertwined by other subsequences of the same kind. Entries in an s-block
not belonging to a subsequence will be referred to as solitary or single components
or entries.

Theorem 4 The non-empty blocks πk0+···+ks−1 , . . . , πk0+···+ks−1+ks−1, 0 ≤ s ≤
N − 1, of π (x) ∈ SL fulfill the following basic restrictions:

R*1 If σs = +, 0 < s < N − 1, then the s-block is built by increasing subse-
quences,

n, . . . , n+ 1, . . . , n+ l− 1 (5.12)

(l ≥ 2) and/or decreasing subsequences,

n+ l− 1, . . . , n+ 1, . . . , n (5.13)

(l ≥ 2) and/or solitary components (l = 1). If σ0 = +, then the 0-block
consists of increasing subsequences (5.12) and/or solitary components. If
σN−1 = +, then the (N−1)-block consists of decreasing subsequences (5.13)
and/or solitary components.

R*2 If σs = −, 0 < s < N− 1, then the s-block is built by even-length spiraling
subsequences

n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1 (5.14)

with the entry n + 2l on an anterior block (if n + 2l ≤ L − 1) and/or the
mirrored subsequences
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n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2 (5.15)

with the entry n+2l on a posterior block (if n+2l ≤ L−1) and/or odd-length
spiraling subsequences

n+ 2l, . . . , n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1
(5.16)

with the entry n+ 2l+ 1 on a posterior block (if n+ 2l+ 1 ≤ L− 1) and/or
the mirrored subsequences

n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2, . . . , n+ 2l
(5.17)

with the entry n+ 2l+ 1 on an anterior block (if n+ 2l+ 1 ≤ L− 1) and/or
solitary components. If σ0 = −, then the first block consists of spiraling
subsequences of the form (5.15) and/or (5.16) and/or solitary components. If
σN−1 = −, then the last block consists of spiraling subsequences of the form
(5.14) and/or (5.17) and/or solitary components.

R*3 If (i) σs = +, (ii) the entries m, n ≤ L−2 belong to the s-block of π (x), and
(iii) m appears on the left of n, then m + 1 appears also on the left of n + 1
(not necessarily in the same block). If, on the other hand, (i) σs = −, (ii) the
entries m, n ≤ L − 2 belong to the s-block of π (x), and (iii) m appears on
the left of n, then m+ 1 appears on the right of n+ 1 (not necessarily in the
same block).

Proof R*1) Let s ∈ {0, 1, . . . , N − 1} and consider an s-run of length l ≥ 2 in the
segment xL−1

0 of x:

i = . . . n n+ 1 . . . n+ l− 1 n+ l . . .

x = . . . s s . . . s r . . .

x∗ = . . . N − 1− s N − 1− s . . . N − 1− s N − 1− r . . .

where r ∈ {0, 1, . . . , N − 1} and r �= s. If (i) s < N − 1 and (ii) xn+l = r > s, then
this s-run contributes the increasing subsequence

n, . . . , n+ 1, . . . , n+ l− 1 (5.18)

to the s-block of π (x). If, on the other hand, (i) s > 0 and (ii) xn+l = r < s, then the
s-run contributes the decreasing subsequence

n+ l− 1, . . . , n+ 1, . . . , n. (5.19)

The “. . .” between the entries of these subsequences allow for entries eventually
proceeding from other s-runs in x or x∗ (see Example 7).
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It follows that the 0-block can contain only increasing subsequences (and single
entries not belonging to subsequences in the block), whereas the (N − 1)-block can
contain only decreasing subsequences (and single entries not belonging to subse-
quences in the block).

R*2) Consider an s-run of even length 2l in the segment xL−1
0 of x. Thus,

i = n n+ 1 . . . n+ 2l− 2 n+ 2l− 1 n+ 2l
x = s N − 1− 1 . . . s N − 1− s r
x∗ = N − 1− s s . . . N − 1− s s N − 1− r

where r ∈ {0, 1, . . . , N − 1} and r �= s. Therefore, if (i) s > 0 and (ii) xn+2l−1 =
N − 1− s < x∗n+2l = N− 1− r, i.e., r < s, then the s-block of π (x) will contain the
spiraling subsequence

n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1. (5.20)

Hence the entry n+ 2l will appear in the r-block (provided n+ 2l ≤ L− 1), which
precedes the s-block in π (x) because r < s. If, on the other hand, (i) s < L − 1
and (ii) xn+2l−1 = N − 1 − s > x∗n+2l = N − 1 − r, i.e., r > s, then we obtain the
mirrored, spiraling subsequence

n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2, (5.21)

with the symbol n + 2l in a posterior block (provided n + 2l ≤ L − 1), namely, on
the r-block.

Consider now an s-run of odd length 2l+ 1 in the segment xL−1
0 of x. Thus,

i = n n+ 1 . . . n+ 2l− 1 n+ 2l n+ 2l+ 1
x = s N − 1− s . . . N − 1− s s N − 1− r
x∗ = N − 1− s s . . . s N − 1− s r

where r ∈ {0, 1, . . . , N − 1} and r �= s. Therefore, if (i) s > 0 and (ii) x∗n+2l =
N − 1− s < xn+2l+1 = N − 1− r, i.e., r < s, then the s-block of π (x) will contain
the spiraling subsequence

n+ 2l− 1, . . . , n+ 3, . . . , n+ 1, . . . , n, . . . , n+ 2, . . . , n+ 2l− 2, . . . , n+ 2l.

The entry n+ 2l + 1 will appear on the r-block (provided n+ 2l + 1 ≤ L − 1),
which is on the left of the s-block because r < s. If, on the other hand, (i) s < L− 1
and (ii) x∗n+2l = N − 1 − s > xn+2l+1 = N − 1 − r, i.e., r > s, then we obtain the
mirrored, spiraling subsequence

n+ 2l, . . . , n+ 2l− 2, . . . , n+ 2, . . . , n, . . . , n+ 1, . . . , n+ 3, . . . , n+ 2l− 1,

with the entry n+ 2l+ 1 in a block on the right of the s-block (provided n+ 2l+ 1
≤ L− 1).
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The corresponding results for the first (s = 0) and last (s = N− 1) blocks follow
readily from these general results.

R*3) If m and n belong to the s-block, σs = +, and �m
σ (x) < �n

σ (x) for x ∈
{0, 1, . . . , N − 1}N0 , then

�m
σ (x) = (s, xm+1, . . . ) < (s, xn+1, . . . ) = �n

σ (x).

By the definition of lexicographical order, there are two possibilities: (i) xm+1
< xn+1 or (ii) xm+k = xn+k for 1 ≤ k ≤ l − 1, l ≥ 2, and xm+l < xn+l. In
both cases,

�m+1
σ (x) = (xm+1, . . . ) < (xn+1, . . . ) = �n+1

σ (x)

and, hence, the entry m+ 1 appears on the left of n+ 1 in π (x).
If, on the other hand, m and n belong to the s-block, σs = −, and �m

σ (x) < �n
σ (x),

then

�m
σ (x) = (s, xm+1, . . . ) < (s, xn+1, . . . ) = �n

σ (x).

As before, there are two possibilities: (i) xm+1 < xn+1 and (ii) xm+k = xn+k for
1 ≤ k ≤ l− 1, l ≥ 2, and xm+l < xn+l. In both cases,

�m+1
σ (x) = (N − 1− xm+1, . . . ) > (N − 1− xn+1, . . . ) = �n+1

σ (x)

and, hence, the entry m+ 1 appears on the right of n+ 1 in π (x). �
Conditions R*1–R*3 are not only necessary for an ordinal pattern to be allowed

for �σ , σ = (σ0, . . . , σN−1), but also sufficient. Indeed, given the s-block decom-
position of π ∈ SL with each block satisfying the pertinent restrictions, then it is a
simple matter to construct sequences x ∈ {0, . . . , N − 1}N0 of type π . Furthermore,
it is obvious that all L-patterns with L ≤ N are allowed for �σ .

Corollary 3 If π = 〈π0, π1, . . . , πL−1〉 is allowed (correspondingly, forbidden) for
�σ , σ = (σ0, σ1, . . . , σN−1), then πmirrored = 〈πL−1, πL−2, . . . , π0〉 is allowed (cor-
respondingly, forbidden) for �σmirrored , where

σmirrored := (σN−1, σN−2, . . . , σ0).

In the particular case σ = σmirrored, it follows that π is allowed (correspondingly,
forbidden) for �σ , iff πmirrored is also allowed (correspondingly, forbidden) for �σ .
These statements hold also true if “forbidden pattern” is replaced by “root forbid-
den pattern.”

Proof The s-block structure of an allowed ordinal pattern is preserved under the
transformation π 	→ πmirrored. Indeed, monotone subsequences transform into
monotone subsequences (in particular, increasing subsequences of the 0-block
transform in decreasing subsequences of the (N − 1)-block and vice versa), and
spiraling subsequences go over to spiraling subsequences.
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By the same token, mirrored outgrowth forbidden patterns for �σ will be out-
growth forbidden patterns for �σmirrored . It follows that π ∈ SL is a root forbidden
pattern for �σ in the case σ = σmirrored, iff πmirrored is also a root forbidden pattern
for �σ . �
Remark 1 If the first or last element of a monotone subsequence appearing in an
s-block is assigned to the anterior or posterior block, respectively (if any), then
the remaining subsequence preserves its increasing or decreasing character—or it
becomes a single entry. If the leftmost or the rightmost element of a spiraling sub-
sequence is assigned to the anterior or posterior block (if any), then the remaining
subsequence preserves its spiraling character, eventually appearing also a new single
entry in the same block. This implies that, when carrying out a decomposition of an
ordinal L-pattern into s-blocks, L ≥ N, we may assume without loss of generality
that all s-blocks are non-empty.

For σk = +, 0 ≤ k ≤ N−1, we recover from Theorem 4 the restrictions fulfilled
by the allowed patterns for �N (Lemma 2). In the case σ = (+,−), considered in
Sect. 5.1.1, there are only two symbols and two blocks in the decomposition of the
ordinal patterns. Restrictions R*1 and R*2 entail then that π = 〈2, 1, 0〉 is forbidden
for �(+,−) (Lemma 6). Indeed, π0, π1 = 2, 1 cannot occur in the 0-block because
it is a decreasing sequence (R*1), hence π = 〈2;1, 0〉; but then the entry 2 should
appear on the right of π1, π2 = 1, 0 in order to form a spiraling subsequence (R*2);
the restriction R*3 is also violated.

The five root forbidden 4-patterns for the logistic map (hence, for � and �(+,−))
were found graphically in Sect. 1.2, (1.38). We check here that they do fail to satisfy
the restrictions R*1–R*3:

• 〈0;2, 3, 1〉 violates R*2; 〈0, 2;3, 1〉 and 〈0, 2, 3;1〉 violate R*3.
• 〈1;0, 2, 3〉 violates R*3; 〈1, 0;2, 3〉 and 〈1, 0, 2;3〉 violate R*1.
• 〈1;0, 3, 2〉 violates R*3; 〈1, 0;3, 2〉 and 〈1, 0, 3;2〉 violate R*1.
• 〈1;3, 0, 2〉 violates R*3; 〈1, 0;3, 2〉 and 〈1, 0, 3;2〉 violate R*1.
• 〈3;1, 2, 0〉 violates R*2; 〈3, 1;2, 0〉 violates R*3 and 〈3, 1, 2;0〉 violates R*1.

Exercise 8 Check that the allowed patterns for the logistic map, Fig. 1.7, comply
with the restrictions (R*1)–(R*4).

Finally, let us prove that �(+,−) has root forbidden L-patterns for L ≥ 5.

Theorem 5 The patterns

π = 〈3, . . . , L− 2, 0, 1, 2, L− 1〉 ∈ SL, (5.22)

L ≥ 5, are root forbidden patterns for �(+,−).

Proof Let us check that (5.22) is a forbidden pattern. First of all, πL−5, πL−4 =
L− 2, 0 cannot belong to the 0-block because πL−5+ 1 = L− 1 is not on the left of
πL−4 + 1 = 1 (R*3). Hence

π = 〈3, . . . , L− 2;0, 1, 2, L− 1〉 .
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But πL−4, πL−3, πL−2 = 0, 1, 2 is not a spiraling subsequence, hence it violates R*2.
Furthermore, we claim that (5.22) is a root forbidden pattern. Otherwise, see

(3.12), (i) π would be an outgrowth pattern of group I, i.e., the (L − 1)-pattern
obtained from π after removing the entry L− 1,

〈3, . . . , L− 2, 0, 1, 2〉 ∈ SL−1, (5.23)

would be forbidden or (ii) π would be an outgrowth pattern of group II, i.e., the
(L − 1)-pattern obtained from π after removing the entry 0 and subtracting 1 from
each remaining entry,

〈2, . . . , L− 3, 0, 1, L− 2〉 ∈ SL−1, (5.24)

would be forbidden. But (5.23) admits the s-block decompositions

〈3, . . . , L− 2, 0;1, 2〉 and 〈3, . . . , L− 2, 0, 1;2〉 ,

while (5.24) admits the decomposition

〈2, . . . , L− 3;0, 1, L− 2〉 .

�
Exercise 9 Consider the eight cylinder sets Ci0i1i2 of {0, 1}N0 . Check that the sequences
of these sets are of the following types under �(+,−):

(i) The sequences of C000 are of type 〈0, 1, 2〉.
(ii) The sequences of C001 are also of type 〈0, 1, 2〉.

(iii) The sequences (0, 1, 0, 0, . . . ) ∈ C010 are of type 〈0, 1, 2〉, while the sequences
(0, 1, 0, 1, . . . ) ∈ C010 are of type 〈0, 2, 1〉.

(iv) The sequences of C011 are of type 〈0, 2, 1〉 or 〈2, 0, 1〉.
(v) The sequences of C100 are of type 〈2, 0, 1〉.

(vi) The sequences of C101 are of type 〈1, 0, 2〉 or 〈2, 0, 1〉.
(vii) The sequences of C110 are of type 〈1, 0, 2〉 or 〈1, 2, 0〉.

(viii) The sequences of C111 are of type 〈1, 2, 0〉.

Among the signed sawtooth maps, those with signatures of alternating signs (we
call them alternating signatures) have the special property of being continuous. The
tent map is one of the two possibilities for N = 2. The next theorem generalizes the
result that the tent map has a forbidden pattern already for L = 3.

Theorem 6 Let �σ be a shift with alternating signature σ = (σ0, . . . , σN−1).

1. If N is even, then �σ has forbidden L-patterns for L ≥ N + 1.
2. If N is odd and σ = (+,−, . . . ,−,+), then �σ has forbidden L-patterns for

L ≥ N + 1.
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3. If N is odd and σ = (−,+, . . . ,+,−), then (i) all ordinal (N + 1)-patterns are
allowed for �σ and (ii) �σ has forbidden L-patterns for L ≥ N + 2.

In cases 2 and 3, along with a forbidden pattern π ∈ SL, πmirrored will also be a
forbidden pattern (Corollary 3).

Proof Remember that if �σ has a forbidden pattern of length L0, then its outgrowth
patterns provide forbidden L-patterns for every L ≥ L0. Hence, we need only to
exhibit forbidden patterns of the minimal lengths claimed in each case of Theorem 6.

1. Let N ≥ 2 be even. There are two possibilities: (a) σ0 = + and σN−1 = − and
(b) σ0 = − and σN−1 = +. Since the signatures of these cases are mirrored from
each other, we need to consider only one of them (Corollary 3), say (b).

A forbidden pattern of length L = N + 1 can be constructed attending to the
positive signs of σ , together with the first and last negative signs, as follows. Take
the entry π0 = 0 for σ0 = −,

π = 〈0, . . .〉 ,

the decreasing subsequence π2k−1, π2k = 2k, 2k − 1 for σ2k−1 = +, 1 ≤ k
≤ N/2− 1,

π = 〈0, 2, 1, . . . , 2k, 2k − 1, . . . , N − 2, N − 3, . . .〉 ,

and the increasing subsequence πN−1, πN = N − 1, N for σN−1 = −,

π = 〈0, 2, 1, . . . , 2k, 2k − 1, . . . , N − 2, N − 3, N − 1, N〉 ∈ SN+1.

(For N = 2, π = 〈0, 1, 2〉 ∈ S3.) Then R*3 requires a first semicolon between
π0 = 0 and π1 = 2, a second semicolon between π1 = 2 and π2 = 1, . . . , and an
(N − 1)th semicolon (the maximal number allowed) between πN−2 = N − 3 and
πN−1 = N − 1. Still the increasing subsequence πN−1, πN = N − 1, N in the last
block (σN−1 = +) violates R*1.

2. Let N ≥ 3 be odd and σ0 = σN−1 = +. A forbidden pattern of length L =
N + 1 can then be constructed attending to positive signs of σ . Take the decreasing
subsequence π0, π1 = 1, 0 for σ0 = +,

π = 〈1, 0, . . .〉 ,

the decreasing subsequence π2k, π2k+1 = 2k+1, 2k for σ2k = +, 1 ≤ k ≤ (N−1)/2,

π = 〈1, 0, 3, 2, . . . , 2k + 1, 2k, . . . , N − 2, N − 3, . . .〉 ,

and the increasing subsequence πN−1, πN = N − 1, N for σN−1 = +,

π = 〈1, 0, 3, 2, . . . , 2k + 1, 2k, . . . , N − 2, N − 3, N − 1, N〉 ∈ SN+1.
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(For N = 3, π = 〈1, 0, 2, 3〉 ∈ S4.) Then, R*3 requires a first semicolon between
π0 = 1 and π1 = 0, a second semicolon between π1 = 0 and π2 = 3, . . . , and an
(N − 1)th semicolon (the maximal number allowed) between πN−2 = N − 3 and
πN−1 = N − 1. Hence we are left with the increasing subsequence πN−1, πN =
N − 1, N in the last block (σN−1 = +), what violates R*1.

3. Finally, let N ≥ 3 be odd and σ0 = σN−1 = −.
(i) Let us prove that all ordinal (N + 1)-patterns are allowed for �(−,+,...,+,−).

Given π ∈ SN+1, there are three possibilities: (a) N = π0, (b) N = πn with
1 ≤ n ≤ N − 1, or (c) N = πN . In the first case, π admits the allowed
decomposition

π = 〈N, π1; π2; . . . ; πk; . . . ; πN〉 .

In the second case, π admits the decomposition

π = 〈π0; π1; . . . ; πn−1; N, πn+1; . . . ; πN〉

both if σn = + or σn = −. In the third case, π admits the decomposition

π = 〈π0;π1; . . . ;πk; . . . ;πN−1, N〉 .

(ii) A forbidden pattern of length L = N + 2 can be constructed attending to the
blocks with negative sign. Let first N = 5 mod 4, so that the central sign of σ is
σ(N−1)/2 = −. Take the increasing subsequence π0, π1 = 0, 1 for σ0 = −,

π = 〈0, 1, . . .〉 ,

the decreasing subsequence πN , πN+1 = 3, 2 for σN−1 = −,

π = 〈0, 1, . . . , 3, 2〉 ,

the increasing subsequence π2, π3 = 4, 5 for σ2 = −,

π = 〈0, 1, 4, 5, . . . , 3, 2〉 ,

the decreasing subsequence πN−2, πN−1 = 7, 6 for σN−3 = −,

π = 〈0, 1, 4, 5, . . . , 7, 6, 3, 2〉 ,

and so on until arriving at the central block, σ(N−1)/2 = −, for which we take
π(N−1)/2,π(N+1)/2,π(N+3)/2 = N − 1, N + 1, N,
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π = 〈0, 1, 4, 5, . . . , N − 1, N + 1, N, . . . , 7, 6, 3, 2〉 ∈ SN+2.

(For N = 5, π = 〈0, 1, 4, 6, 5, 3, 2〉 ∈ S7.) Then, R*3 requires a first semicolon
between π0 = 0 and π1 = 1, a second semicolon between π1 = 1 and π2 =
4, . . . , an ((N+1)/2)th semicolon between π(N−1)/2 = N−1 and π(N+1)/2 = N+1
or between π(N+1)/2 = N + 1 and π(N+3)/2 = N (since the central subsequence
N − 1, N + 1, N is not spiraling), . . ., and an (N − 1)th semicolon (the maximal
number allowed) between πN−1 = 6 and πN = 3. But the sequence πN , πN+1 = 3, 2
in the last block (σN−1 = −) violates R*3 because πN + 1 = 4 is not on the right of
πN+1 + 1 = 3.

In the case N = 3 mod 4, the central sign of σ is σ(N−1)/2 = +. The construction
of a forbidden pattern of length L = N+2 follows the same assignment of entry pairs
as before for σ0, σN−1, σ2, . . . , σ(N−3)/2, but takes π(N+1)/2, π(N+3)/2, π(N+5)/2 =
N + 1, N, N − 1 for σ(N+1)/2 = −:

π = 〈0, 1, 4, 5, . . . , N − 2, N + 1, N, N − 1, . . . , 7, 6, 3, 2〉 ∈ SN+2.

(For N = 3, π = 〈0, 1, 4, 3, 2〉 ∈ S5.) Then, R*3 requires a first semicolon
between π0 = 0 and π1 = 1, a second semicolon between π1 = 1 and π2 = 4,
. . . , an ((N + 1)/2)th semicolon between π(N−1)/2 = N − 2 and π(N+1)/2 =
N + 1 or between π(N+1)/2 = N + 1 and π(N+3)/2 = N (since the subsequence
π(N−1)/2,π(N+1)/2,π(N+3)/2 = N − 2, N + 1, N cannot belong to an s-block with
positive sign because π(N−1)/2+1 = N−1 is not on the left of π(N+3)/2+1 = N+1),
. . ., and an (N − 1)th semicolon (the maximal number allowed) between πN−1 = 6
and πN = 3. But the sequence πN , πN+1 = 3, 2 in the last block (σN−1 = −)
violates R*3 because πN + 1 = 4 is not on the right of πN+1 + 1 = 3. �

A further signature with general features is σ = (−,−, . . . ,−).

Theorem 7 The shift �σ with σ0 = · · · = σN−1 = −, N ≥ 2, has

1. allowed L-patterns for L ≤ N + 1 and
2. root forbidden L-patterns for L ≥ N + 2.

Since σ = (−, . . . ,−) = σmirrored, the number of root forbidden patterns for �σ

will be even (Corollary 3).

Proof 1. We need to consider only the case L = N + 1, since all L-patterns with
L ≤ N are trivially allowed. Given π ∈ SN+1, there are three possibilities: (i)
N = π0, (ii) N = πn with 1 ≤ n ≤ N − 1, or (iii) N = πN . The decompositions (i)

π = 〈N, π1;π2; . . . ;πk; . . . ;πN〉 ,

(ii)

π = 〈π0; π1; . . . ; πn−1; N, πn+1; . . . ; πN〉 or 〈π0; π1; . . . ; πn−1, N;πn+1; . . . ; πN〉
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(since πn−1, πn, πn+1 = πn−1, N, πn+1 does not form a spiraling subsequence),
and (iii)

π = 〈π0; π1; . . . ; πk; . . . ; πN−1, N〉 ,

show that any π ∈ SN+1 is allowed for �σ , σ0 = · · · = σN−1 = −.
2. Consider

π = 〈0, 1, 2, . . . , N − 1, N, N + 1〉 ∈ SN+2.

Then R*2 requires a first semicolon between 0 and 1, a second semicolon between
1 and 2, and an (N − 1)th semicolon (the maximal number allowed) between N − 2
and N − 1. This leads to a last block πN−1, πN , πN+1 = N − 1, N, N + 1, which is
not a spiraling subsequence. Hence π is forbidden.

The assumption that π is not a root forbidden pattern leads to the fact that π is
outgrowth of the forbidden pattern

〈0, 1, 2, . . . , N − 1, N〉 ∈ SN+1,

whether π belongs to group I or II (3.12). But clearly this pattern admits the decom-
position

〈0;1;2; . . . ;N − 1, N〉 ,

with N − 1 semicolons (the maximal number allowed). This contradiction shows
that π is not an outgrowth forbidden pattern. Needless to say (Corollary 3),

πmirrored = 〈N + 1, N, N − 1, . . . , 2, 1, 0〉

is also a root forbidden pattern. �

To conclude this chapter, we consider briefly the existence of root forbidden
patterns for the signed shifts on N ≥ 3 symbols. For σ = (+, . . . ,+) and
σ = (−, . . . ,−) we know that there exist root forbidden patterns for every L ≥ N+2
(Theorems 2 and 7, respectively). The structure of the forbidden ordinal patterns
depends, of course, on the signature of the signed shift envisaged, thus the con-
struction of root forbidden patterns can only be done, in general, on a case-by-case
basis.

To illustrate this point, consider the signed shifts (with mixed signs) on three
symbols. Because of the relation between the allowed/forbidden patterns for �σ

and �σmirrored , only the following four cases are really distinct:

Case a: σ = (+,+,−), Case b: σ = (+,−,+),
Case c: σ = (+,−,−), Case d: σ = (−,+,−).
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These four cases were studied in [17]. There it is proven that all the signed shifts (a)–
(d) have root forbidden L-patterns for L ≥ 5. Furthermore, �(+,−,+) has two (root)
forbidden 4-patterns, �(+,−,−) has one (root) forbidden 4-pattern, while �(+,+,−),
�(−,+,−) have no forbidden 4-patterns. Of course, the same holds for any map order
isomorphic to those signed shifts, in particular for the corresponding signed saw-
tooth maps.

Exercise 10 Check the following statements on root forbidden patterns for �σ in
the four cases a–d.

(a)The patterns

π = 〈0, L− 1, 2, 3, . . . , L− 2, 1〉 ∈ SL,

L ≥ 5, are root forbidden patterns for �(+,+,−).
(b)The patterns

π = 〈L− 2, 0, L− 4, . . . , 3, 1, 2, 4, . . . , L− 3, L− 1〉 ∈ SL

if L ≥ 5 is odd and

π = 〈L− 1, L− 3, . . . , 3, 1, 2, 4, . . . , L− 4, 0, L− 2〉 ∈ SL

if L ≥ 6 is even, together with their corresponding mirrored patterns, are root
forbidden patterns for �(+,−,+). (If L = 5, then π = 〈3, 0, 1, 2, 4〉; if L = 6, then
π = 〈5, 3, 1, 2, 0, 4〉.)

(c)The patterns

π = 〈2, 1, 0, 3, 4〉 ∈ S5,

π = 〈L− 3, . . . , 4, 2, 1, 0, 3, 5, . . . , L− 4, L− 2, L− 1〉 ∈ SL

for L ≥ 7 odd, and

π = 〈L− 1, L− 2, L− 4, . . . , 4, 2, 1, 0, 3, 5, . . . , L− 3〉 ∈ SL

for L ≥ 6 even, are root forbidden patterns for �(+,−,−). Although σ =
(+,−,−) �= σmirrored = (−,−,+), the mirrored patterns of these patterns are
also root forbidden patterns for �(+,−,−).

(d)The patterns

π = 〈0, 1, 4, 3, 2〉 ∈ S5,

π = 〈0, 1, L− 1, L− 2, . . . , 3, 2, 4, . . . , L− 3〉 ∈ SL

if L ≥ 7 is odd and
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π = 〈0, 1, L− 1, L− 2, . . . , 4, 2, 3, . . . , L− 3〉 ∈ SL

if L ≥ 6 is even, together with the corresponding mirrored patterns, are root
forbidden patterns for �(−,+,−).

Exercise 11 Using signed sawtooth maps with alternating signature, construct a
continuous map whose orbits realize all possible ordinal patterns (hint: the con-
struction is similar to Fig. 4.2).



Chapter 6
Metric Permutation Entropy

The word “entropy” was coined by the German physicist R. Clausius (1822–1888),
who introduced it in thermodynamics in 1865 to measure the amount of energy
in a system that cannot produce work. The fact that the entropy of an isolated
system never decreases constitutes the second law of thermodynamics and clearly
shows the central role of entropy in many-particle physics. The direction of time
is then explained as a consequence of the increase of entropy in all irreversible
processes. Later on the concept of entropy was given a microscopic interpretation in
the foundational works of L. Boltzmann (1844–1906) on gas kinetics and statistical
mechanics [184]. The celebrated Boltzmann’s equation reads in the usual physical
notation

S = kB ln �, (6.1)

where here S is the entropy of the thermodynamical system, kB is a physical constant
(called Boltzmann’s constant, kB = 1.3806504(24)× 10−23 J/K) and � is the num-
ber of microscopic states consistent with the macroscopic constraints. In this realm,
the entropy is a measure of the microscopic disorder of the system, the entropy
being higher the more disordered the system.

In 1948 the word entropy came to the fore in the new context of information
theory, coding theory, and cryptography through the seminal papers of C.E. Shan-
non1 (1916–2001) [186]. This time, entropy measures the average uncertainty about
the outcome of a random variable. More generally, the entropy rate measures the
uncertainty per symbol (time unit, channel use, etc.) of a stationary stochastic pro-
cess, eventually modeling an information source. Instead of associating entropy with
uncertainty, one can alternatively speak of the average information gained by per-
forming a random experiment. Entropy plays a paramount role in all information-
related fields, being at the heart of the fundamental results.

1 According to [64] “When Shannon had invented his quantity and consulted von Neumann on
what to call it, von Neumann replied: ‘Call it entropy. It is already in use under that name and
besides, it will give you a great edge in debates because nobody knows what entropy is anyway.’ ”

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_6,
C© Springer-Verlag Berlin Heidelberg 2010
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Shannon’s ideas, properly transformed, were incorporated by A.N. Kolmogorov
(1903–1987) into ergodic theory in 1958 [126] to measure the randomness of deter-
ministic dynamical systems. Kolmogorov’s proposal was improved a short time later
by Sinai [189]. The result became the most important invariant in the theory of
discrete and continuous dynamical systems.

Since then the concept of entropy has evolved along different ways: Rényi
entropy, topological entropy, sequence entropy, Tsallis entropy, directional entropy,
permutation entropy, epsilon–tau entropy, etc. The basics of Shannon entropy, met-
ric (Kolmogorov–Sinai or measure-theoretical) entropy, and topological entropy are
systematized in Annex B.

Permutation entropy, both in the metric version (this chapter) and in the topolog-
ical version (next chapter), was introduced by Bandt, Keller, and Pompe in [29] (see
[28] as well). The main ingredient of permutation entropy is the ordinal patterns we
studied in Chap. 3. As we shall see below, the definition of the metric permutation
entropy of an information source is formally the same as Shannon’s entropy, except
for the fact that now probabilities refer not to length-L blocks of symbols but to the
length-L ordinal patterns realized by them (assuming, of course, that those symbols
can be ordered).

On defining the metric permutation entropy of maps, we depart from [29] to fol-
low basically Kolmogorov’s strategy: coarse-grain the state space with a partition,
apply the definition of (in our case, permutation) entropy to the resulting symbolic
dynamics, and then refine successively the original partition into the partition into
separate points. Moreover, the partitions used may be taken to be product, uniform
partitions, making possible the numerical estimation of metric permutation entropy
under rather general conditions. Most importantly, we shall show that metric permu-
tation entropy converges to the conventional metric entropy for ergodic self-maps
of n-dimensional intervals.

6.1 The Metric Permutation Entropy of a Finite-State Process

Let X = {Xn}n∈N0 be a random process with finite state space S (see Annex A.3).
We take without restriction S = {1, 2, . . . , |S|}. As noted in Example 2, the relation
between length-L words and length-L ordinal patterns is in general many-to-one.
This is due to the fact that ordinal patterns do not take into account the sizes of the
elements being compared, but only their relative order. The same happens with the
ranks or rank variables, which are the outputs of a random process R = {Rn}n∈N0

subsidiary of X, defined as follows:

Rn = |{Xi, 0 ≤ i ≤ n:Xi ≤ Xn}| =
n∑

i=0

δ(Xi ≤ Xn),

where as usual the δ-function of a proposition is 1 if it holds and 0 otherwise. By def-
inition, Rn is a discrete random variable with range {1, . . . , n+1}, and the sequence
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R = {Rn}n∈N0 builds a discrete-time, non-stationary stochastic process. The point
about introducing rank variables is that the relation between length-L ordinal pat-
terns π (xn+L−1

n ) and length-L ranks rn+L−1
n = rn, rn+1, . . ., rn+L−1 is one-to-one.

The many-to-one relation between XL−1
0 and RL−1

0 will be written as

RL−1
0 = rank (XL−1

0 ). (6.2)

Ranks are specially useful in proofs.

Example 10 If, as in Example 2, S = {a, b, c} with a < b < c and x2
0 = c, a, a,

then r2
0 = 1, 1, 2. All other words defining the same ordinal pattern π (x2

0) = 〈1, 2, 0〉
define also the same rank variables:

r2
0 = 1, 1, 2 = rank (c, b, b) = rank (c, a, b) = rank (b, a, a).

Having defined the sibling concepts of ordinal patterns and rank variables of
finite-alphabet sequences, we can proceed now very much the same way as we
did when defining Shannon’s entropy (rate) of stochastic processes or information
sources in Sect. 1.1.1 (see also Annex B.1), this time though bookkeeping ordinal
patterns instead of symbol blocks.

In this spirit, the metric permutation entropy of a stochastic process X =
{Xn}n∈N0 is defined as

h∗(X) = lim
L→∞ h∗(XL−1

0 ), (6.3)

provided the limit exists, where

h∗(XL−1
0 ) = −1

L

∑

x0,..., xL−1

p(π (xL−1
0 )) log p(π (xL−1

0 ))

is the metric permutation entropy of order L ≥ 2 of X. Here p(π (xL−1
0 )) is the

probability for the length-L block xL−1
0 = x0, . . . , xL−1 to be of type π (xL−1

0 ) ∈ SL.
Alternatively,

h∗(XL−1
0 ) = −1

L

∑

r0,...,rL−1

p(rL−1
0 ) log p(rL−1

0 ) = h(RL−1
0 ), (6.4)

where p(rL−1
0 ) is the probability for the block xL−1

0 to define the rank vector rL−1
0 =

r0, . . . , rL−1 (remember that the relation between π (XL−1
0 ) and RL−1

0 = rank(XL−1
0 )

is one-to-one). In both cases,

h∗(X) = h(π (X)) = h(R),

where h( · ) denotes the Shannon entropy of the corresponding stochastic process.
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In case that the random process X is stationary, there is still a third way to look
at its metric entropy permutation. If (SN0 ,B�(S), m, �) is the sequence space model
of X (see Annex A.3), then the non-empty cylinder sets

Cπ = {(xn) ∈ SN0 :xL−1
0 is of type π ∈ SL}

build a partition of (SN0 ,B�(S), m) with m(Cπ ) = Pr{π (XL−1
0 ) = π} = Pr{RL−1

0 =
rL−1

0 }, where RL−1
0 = rank (XL−1

0 ), and 1 ≤ rk ≤ k + 1 for k = 0, . . . , L − 1.
Therefore

h∗(XL−1
0 ) = −1

L

∑

π∈SL

m(Cπ ) log m(Cπ ). (6.5)

As a result, the permutation entropy is sensitive to the measures of non-trivial
order relationships observed in a word, as the Shannon entropy is sensitive to the
measures of the different word values themselves.

When stationarity is important, as in (6.5), we call X an information source or
just a source.

In the next lemma we use the conditional entropy of a random variable Y given
another random variable X, H(Y |X), which is the expected value of the entropies
of the conditional distributions averaged over the conditioning variable X (see
Annex B, (B.5)).

Lemma 7 Given an ergodic source X = {Xn}n∈N0 , the equality

lim
k→∞H(Rk+l

k |Xk−1
0 ) = lim

k→∞H(Xk+l
k |Xk−1

0 )

holds for all l ≥ 0.

That is, given a sufficiently long tail of previously observed symbols, the later
ranks can be predicted virtually as well as the symbols themselves. Heuristically,
this is because the rank of a late variable is sensitive effectively to the cumulative
distribution function of the source, approximated by the normalized sum of Xk−1

0 . In
turn, this means that the information contained in Rk is the same as the information
in Xk.

Proof Consider Rk =∑k
i=0 δ(Xi ≤ Xk). For a ∈ S = {1, . . . , |S|} define the sample

frequency of the letter a in the word xk
0, k ≥ 0, to be

ϑk(a) = 1

k + 1

k∑

i=0

δ(Xi = a).

With the help of ϑk(a) we may express Rk in terms of Xi, 0 ≤ i ≤ k, namely,

Rk(Xk) = (k + 1)
Xk∑

a=1

ϑk(a),
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where we assume the outcomes X0, . . . , Xk to be known. Then, the identity

Pr{Rk = y} =
|S|∑

q=1

Pr{Xk = q}δ (Rk(q) = y) (6.6)

gives us the probability for observing some Rk with value y ∈ {1, . . . , k + 1} by
means of Pr{Xk = q}, 1 ≤ q ≤ |S|. Since, given Xk−1

0 (k ≥ 1), Rk is a deterministic
function of the random variable Xk, i.e., Pr{Rk = y|Xk = q} = δ(Rk(q) = y), (6.6)
can be seen as an application of the law of total probability.

Without loss of generality, we may first rearrange the sum in (6.6) to consider
only those symbol values q with non-zero Pr{Xk = q}, summing to N ≤ |S|. Expand
the sum,

Pr {Rk = y} = Pr{Xk = 1}δ [y = (k + 1)ϑk(1)
]

+Pr{Xk = 2}δ [y = (k + 1)(ϑk(1)+ ϑk(2))
]

+ · · · + Pr{Xk = N}δ [y = (k + 1)(ϑk(1)+ · · · + ϑk(N))
]

.

Suppose all the relevant sample frequencies ϑk(1), . . . , ϑk(N) are greater than zero.
This means that for any y, only a single one of the δ-functions can be non-zero,
and hence we have a one-to-one transformation taking non-zero elements from
the distribution Pr{Xk} without change into some bin for Pr{Rk}. Since entropy
is invariant to a renaming of the bins, and the remaining zero probability bins
add nothing to the entropy, we conclude that, if ϑk(a) > 0 for all a where the
true probability Pr{Xk = a} > 0 (i.e., a = 1, . . . , N after a hypothetical rear-
rangement), then H(Rk|Xk−1

0 ) = H(Xk|Xk−1
0 ) for k ≥ 1. Because of the assumed

ergodicity, we can make the probability that ϑk(a) = 0 when Pr{Xk = a} > 0
to be arbitrarily small by taking k to be sufficiently large, and the claim follows
for l = 0.

This construction can be extended without change to words Xk+l
k of arbitrary

length l+ 1 ≥ 1 via

Pr{Rk+l
k = y0 . . . yl}

=
N∑

q0,...,ql=1

Pr{Xk+l
k = q0 . . . ql}δ(Rk(q0) = y0) . . . δ(Rk+l(ql) = yl).

Observe that if ϑk(a) > 0 for 1 ≤ a ≤ N, then the same happens with ϑk+1(a),. . . ,
ϑk+l(a) and H(Rk+l

k |Xk−1
0 ) = H(Xk+l

k |Xk−1
0 ) follows. Again, ergodicity guarantees

that there exist realizations of Xk+l
0 with sufficiently large k, whose sample frequen-

cies fulfill the said condition. �

Example 11 As way of illustration, suppose that Xn = 0, 1 are independent ran-
dom variables with probability Pr{Xn = 0} = Pr{Xn = 1} = 1

2 . Given xk−1
0 =
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x0 . . . xk−1 ∈ {0, 1}k, set N0 =
∣∣∣{i:xi = 0 in xk−1

0 }
∣∣∣, 0 ≤ N0 ≤ k. Consider the case

l = 1 in Lemma 1. There are two possibilities:

(i) 0 ≤ N0 ≤ k − 1. Then

xk+1
k = 0, 0 ⇒ rk+1

k = N0 + 1, N0 + 2,
xk+1

k = 0, 1 ⇒ rk+1
k = N0 + 1, k + 2,

xk+1
k = 1, 0 ⇒ rk+1

k = k + 1, N0 + 1,
xk+1

k = 1, 1 ⇒ rk+1
k = k + 1, k + 2.

Each of these events has the joint probability

Pr{N0 = ν, Rk+1
k = rk+1

k } =
(k
ν

)

2k
· 1

4
= 1

2k+2

(
k

ν

)

and conditional probability

Pr{Rk+1
k = rk+1

k |N0 = ν} = 1

4
,

where 0 ≤ ν ≤ k − 1 and rk+1
k = (ν + 1, ν + 2), (ν + 1, k + 2), (k + 1, ν + 1),

or (k + 1, k + 2).
(ii) N0 = k. Then

xk+1
k = 0, 0 & xk+1

k = 0, 1 & xk+1
k = 1, 1 ⇒ rk+1

k = k + 1, k + 2,
xk+1

k = 1, 0 ⇒ rk+1
k = k + 1, k + 1.

These events have the joint probabilities

Pr
{

N0 = k, Rk+1
k = (k + 1, k + 2)

}
= 1

2k
· 1

4
· 3 = 3

2k+2
,

Pr
{

N0 = k, Rk+1
k = (k + 1, k + 1)

}
= 1

2k
· 1

4
= 1

2k+2

and conditional probabilities

Pr
{

Rk+1
k = (k + 1, k + 2)|N0 = k

}
= 3

4
,

Pr
{

Rk+1
k = (k + 1, k + 1)|N0 = k

}
= 1

4
.
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From Annex (B.5) and (i)–(ii), we get

H(Rk+1
k |Xk−1

0 ) = −4×
k−1∑

ν=0

1

2k+2

(
k

ν

)
log

1

4
− 3

2k+2
log

3

4
− 1

2k+2
log

1

4

= 4× 2

2k+2
(2k − 1)+ 8

2k+2
− 3

2k+2
log 3

= 2

(
1− 3

2k+3
log 3

)
.

On the other hand, since the random variables Xn are independent,

H(Xk+1
k |Xk−1

0 ) = H(Xk+1
k ) = 2.

It follows that H(Rk+1
k |Xk−1

0 ) and H(Xk+1
k |Xk−1

0 ) coincide in the limit k → ∞, as
guaranteed by Lemma 7.

With Lemma 7 in hand, we turn to the main result.

Theorem 8 For a finite-alphabet ergodic source X, the permutation entropy exists
and equals the metric entropy: h∗(X) = h(X).

Proof We prove inequalities in both directions.

(a) lim supL→∞ h∗(XL−1
0 ) ≤ h(X). Given XL−1

0 , the corresponding rank variables
are uniquely determined via RL−1

0 = rank (XL−1
0 ). By [59, Chap. 2, Exercise

5], H(ϕ(Z)) ≤ H(Z) for any discrete random variable Z and function ϕ, so
H(RL−1

0 ) ≤ H(XL−1
0 ) and thus (see (6.4)),

lim sup
L→∞

h∗(XL−1
0 ) = lim sup

L→∞
h(RL−1

0 ) ≤ lim sup
L→∞

h(XL−1
0 ) = h(X).

(b) lim infL→∞ h∗(XL−1
0 ) ≥ h(X). There are several ways to prove this inequality.

Consider, for instance,

lim inf
L→∞ h∗(XL−1

0 )

= lim inf
L→∞

1

L
H(RL−1

0 )

= lim inf
L→∞

1

L

([
H(RL−1|RL−2

0 )+ · · · + H(RL∗+1|RL∗
0 )
]
+ H(RL∗

0 )
)

for any L∗ < L− 1, where we have applied the chain rule for entropy (B.9). As
Rk

1 = rank (Xk
1) we apply the data processing inequality H(Y|ϕ(Z)) ≥ H(Y|Z)

[59] to all elements of the first term on the right-hand side:

lim inf
L→∞ h(XL−1

0 )

≥ lim inf
L→∞

1

L

([
H(RL−1|XL−2

0 )+ · · · + H(RL∗+1|XL∗
0 )
]
+ H(RL∗

0 )
)

.
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By Lemma 7 with l = 0, for any ε > 0 there exists some L∗ such that

∣∣∣H(XL|XL−1
0 )− H(RL|XL−1

0 )
∣∣∣ < ε

for L > L∗, so

lim inf
L→∞ h(XL−1

0 )

> lim inf
L→∞

(
1

L

[
H(XL−1|XL−2

0 )+ · · · + H(X1|X0)+ H(X0)
]

+1

L

[
H(RL∗

0 )− H(XL∗
0 )
]
−
(

L− L∗ − 1

L

)
ε

)

= h(X)− ε,

since H(XL∗
0 ) = H(X0)+ H(X1|X0)+ · · · + H(XL∗ |XL∗−1

0 ) (B.9).
The existence of the limit and equality follows from (a) and (b). �

Observe in the proof of Theorem 8 that the ergodicity hypothesis was used only
in part (b) via Lemma 7, while part (a) is completely general. We highlight this
particular result in the following corollary for further reference.

Corollary 4 For finite-alphabet sources X,

lim sup
L→∞

h∗(XL−1
0 ) ≤ h(X)

holds.

In order to deal further with the general, nonergodic case, we appeal to the
theorem on ergodic decompositions [114]: if � is a compact metrizable space
and T:(�,B, μ) → (�,B, μ) is a continuous transformation, then there is a par-
tition of � into T-invariant subsets �w, each equipped with a sigma-algebra Bw

and a probability measure μw, such that T acts ergodically on each probability
space (�w,Bw, μw), the indexing set being another probability space (W,F , ν).
Furthermore,

μ(E) =
∫

W

∫

E
dμwdν(w) =

∫

W
μw(E)dν(w) (E ∈ B).

The family {μw:w ∈ W} is called the ergodic decomposition of μ.
If � is the shift on the (compact, metric) sequence space (SN0 ,B�(S), m), the

indexing set can be taken to be SN0 , i.e.,

m(C) =
∫

SN0

∫

C
dmsdm(s) =

∫

SN0
ms(C)dm(s) (C ∈ B�(S)), (6.7)
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where m�(s) = ms [89]. This result shows that any source which is not ergodic can
be represented as a mixture of ergodic subsources. The next lemma states that such
a decomposition holds also for the entropy.

Lemma 8 (Ergodic Decomposition of the Entropy) [89] Let (SN0 ,B�(S), m, �) be
the sequence space model of a stationary finite-alphabet random process X =
{Xn}n∈N0 . Let {ms:s ∈ SN0} be the ergodic decomposition of m. If hms (X) is
m-integrable, then

h(X) =
∫

SN0
hms (X)dm(s). (6.8)

Theorem 9 Under the assumptions of Lemma 8,

lim inf
L→∞ h∗(XL−1

0 ) ≥ h(X) (6.9)

for any finite-alphabet source X.

Proof Fix L ≥ 2. From (6.5) and (6.7),

h∗(XL−1
0 ) = −1

L

∑

π∈SL

(∫

SN0
ms(Cπ )dm(s)

)
log

(∫

SN0
ms(Cπ )dm(s)

)

≥ −1

L

∑

π∈SL

(∫

SN0
ms(Cπ ) log ms(Cπ )dm(s)

)
(6.10)

=
∫

SN0

⎛

⎝−1

L

∑

π∈SL

ms(Cπ ) log ms(Cπ )

⎞

⎠ dm(s)

=
∫

SN0
h∗ms

(XL−1
0 )dm(s),

where in (6.10) we have used Jensen’s inequality,

�

(∫

SN

fdμ

)
≤
∫

SN

� ◦ fdμ,

with �(t) = t log t convex in [0,∞) and f (s) = ms(Cπ ) ≥ 0.
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Therefore,

lim inf
L→∞ h∗(XL−1

0 ) ≥ lim inf
L→∞

∫

SN0
h∗ms

(XL−1
0 )dm(s)

≥
∫

SN0

(
lim inf
L→∞ h∗ms

(XL−1
0 )

)
dm(s) (6.11)

=
∫

SN0
h∗ms

(X)dm(s),

where we have applied Fatou’s lemma in (6.11) to the sequence of positive and
(by hypothesis) m-measurable functions h∗ms

(XL−1
0 ). Observe that h∗ms

(X) exists for

all s ∈ SN0 (and is m-integrable as a function of s) since h∗ms
(X) = hms (X) by

Theorem 8 (X is ergodic with respect to ms). Therefore,

lim
L→∞ inf h∗(XL−1

0 ) ≥
∫

SN0
hms (X)dm(s) = h(X)

by (6.8). �

Corollary 4 and Theorem 9 yield the following result.

Corollary 5 Under the assumptions of Lemma 8, h∗(X) = h(X) holds for any finite-
alphabet source X.

6.2 Permutation Metric Entropy of Maps

In this section we shall use the previous results on finite-alphabet stochastic pro-
cesses to show that the equality between permutation and metric entropies holds
also for ergodic self-maps on domains homeomorphic to q-dimensional compact
intervals.

We say that a set D ⊂ R
q is a (q-dimensional) simple domain if it is homeo-

morphic to a q-dimensional compact interval (hence D is compact). In particular,
one-dimensional simple domains are close intervals. As a subset of R

q, D is also
ordered. Let D be a q-dimensional simple domain and f :D → D a μ-preserving
map, with μ being a probability measure on (D,B ∩ D) and B being the Borel
sigma-algebra of R

q. In order to define the permutation entropy of f , consider a
q-dimensional compact interval I ⊃ D and product partitions

ι =
q∏

k=1

{I1,k, . . . , INk ,k} (6.12)

of I into |ι| = N1 · · ·Nq subintervals of lengths �j,k, 1 ≤ j ≤ Nk, in each coordinate
k. As for the norm of ι (see (1.13)), the perhaps most popular are the Euclidean
norm,
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‖ι‖ = max
j1,...,jq

( q∑

k=1

�2
jk ,k

)1/2

=: ‖ι‖2 (6.13)

(i.e., ‖ι‖2 is the longest diagonal of the bins Ij1,1× · · ·× Ijq,q ∈ ι) and the supremum
norm,

‖ι‖ = max
j,k

�j,k =: ‖ι‖∞ . (6.14)

For definiteness, the intervals are lexicographically ordered in each dimension, that
is, points in Ij,k are smaller than points in Ij+1,k and, for the multiple dimensions,
Ij,k < Ij,k+1, so there is an order relation between all the N partition elements, and
we can enumerate them with a single index i ∈ {1, . . . , |ι|}:

ι = {Ii:1 ≤ i ≤ |ι|}, Ii < Ii+1

(i.e., points in Ii are smaller than points in Ii+1).
Below we shall consider refinements of product and general partitions. As usual

we write α ≤ β to mean that the partition β is a refinement of the partition α

(of (D,B ∩ D) or of any other measurable space for that matter), meaning that
the elements of α are unions of the elements of β. By an increasing sequence of
partitions we mean therefore a sequence of partitions, (αn)n∈N, such that αn ≤ αn+1
for all n. If, as in the present case, the state space is a product space, then by a
product refinement of partition (6.12) we mean any product partition of I obtained
by subdividing some or all of the intervals {I1,k, . . . , INk ,k}, 1 ≤ k ≤ q.

Furthermore, let κ be the partition of D defined as

κ = ι ∩ D = {Ii ∩ D �= ∅:1 ≤ i ≤ |ι|} = {Kj:1 ≤ j ≤ |κ|}.

In words, κ consists of all subintervals Ii ∈ ι contained in the interior of D, together
with the overlaps with D of those Ii that intersect the boundary of D. Partitions κ of
the form κ = ι ∩ D, where ι is a product partition and D a simple domain, will be
called quasi-product partitions; if, moreover, ι is a box (i.e., uniform) partition, κ

will be called a quasi-box partition. For simplicity, we set ‖κ‖ = ‖ι‖.
Next let Xκ = {Xκ

n }n∈N0 be the symbolic dynamics associated with f :D → D
with respect to the partition κ:

Xκ
n (x) = j if f n(x) ∈ Kj, n = 0, 1, . . . .

Hence Xκ is a stationary, |κ|-state random process on (D,B ∩ D, μ) with alphabet
Sκ = {1, . . . , |κ|}.
Example 12 If I = [0, 1] and κ = {Kj:1 ≤ j ≤ 10k}, with Kj = [(j− 1)10−k, j10−k)
for 1 ≤ j ≤ 10k − 1 and K10k = [1 − 10−k, 1], then Xκ can be written as follows:
Xκ

n (x) = ⌊f n(x) · 10k
⌋+ 1 for 0 ≤ x < 1 and Xκ

n (1) = 10k.
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According to (B.16) (with α = κ), the entropy of the symbolic dynamics Xκ

equals the metric entropy of f with respect to κ:

hμ(f , κ) = hμ(Xκ ). (6.15)

If we take now an increasing sequence of product refinements κ ≡ κ0 ≤ κ1 ≤ · · ·
such that ‖κn‖ → 0, then we deduce from Theorem 25 that hμ(f ) = limn→∞ hμ(Xκn).
This suggests to define the metric permutation of f as h∗μ(f ) = limn→∞ h∗μ(Xκn ). The
fact that the limit n → ∞ proceeds by successive refinements of κ0 and the way
product partitions are being numbered guarantees that the order relations are pre-
served. This means, in particular, that if Xκn

k (x) = i < j = Xκn
k+1(x) (1 ≤ i, j ≤ |κn|),

then Xκn+1
k (x) = i′ < j′ = Xκn+1

k+1 (x) (1 ≤ i′, j′ ≤ |κn+1|) for all x ∈ D and k ∈ N0.
Thus h∗μ(f ) has a good chance to exist.

Definition 3 Given a measure-preserving dynamical system (D,B ∩ D, μ, f ), and a
lexicographically ordered, quasi-product partition κ0 of (D,B ∩ D, μ), the metric
permutation entropy of f with respect to the measure μ is defined by

h∗μ(f ) = lim
n→∞ h∗μ(Xκn) (6.16)

(provided the limit exists), where (κn)n∈N is a sequence of successive product refine-
ments of κ0 such that ‖κn‖ → 0 and Xκn is the symbolic dynamics of f with respect
to κn.

It is plain that this definition is independent from the auxiliary interval I ⊃ D
used to construct κ0 and also independent from the particular collection of product
refinements κn used, as long as ‖κn‖ → 0. This being the case, we may take quasi-
box partitions in (6.16).

One practical reason for using product partitions is that they make numerical cal-
culations much easier. But most importantly, we claim that lim‖αn‖→0 h∗μ(Xαn ) does
not depend on the particular increasing sequence (αn)n∈N0 of successive refinements
of a general finite partition α0 of (D,B ∩ D, μ), as long as (i) they converge to the
point partition of D, ε = {{x}:x ∈ D}, and (ii) the numbering of the elements of
α1, α2, . . . preserves the order relations through the process of refinement. Condi-
tion (i) requires that αn consists of connected sets for all n and limn→∞ ‖A‖ = 0
for all A ∈ αn. Condition (ii) means that if Ai, Aj ∈ αn and i < j, then i′ < j′
whenever Ai ⊃ A′i′ ∈ αn+1 and Aj ⊃ A′j′ ∈ αn+1 (this is automatically satisfied by
the lexicographically ordered, product refinements ιn).

Lemma 9 Let (D,B∩D, μ, f ) be a measure-preserving dynamical system, α0 a finite
partition of (D,B ∩ D, μ), and (αn)n∈N a sequence of successive refinements of α0
preserving the order relations and converging to the point partition. Then

h∗μ(f ) = lim
n→∞ h∗μ(Xαn ),

where Xαn is the symbolic dynamics of f with respect to the partition αn.
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Proof Roughly speaking, the increasing sequences · · · ≤ κn ≤ κn+1 ≤ · · · and
· · · ≤ αn ≤ αn+1 ≤ · · · are equivalent in the sense that, given κn there is a partition
αm with ‖αm‖ � ‖κn‖ which can resolve the orbits of f with the same precision as
κn does—and reciprocally. Of course, the ordinal patterns of length L = 2, 3, . . . of
a given orbit will be, in general, different, depending on the partitions used. Never-
theless, there will be a one-to-one relation between the ordinal L-patterns realized
by Xαn and Xκn in the limit n → ∞, and the same holds for the corresponding
probabilities. Therefore,

lim
n→∞ h∗μ(Xαn ) = lim

n→∞ h∗μ(Xκn) = h∗μ(f ).

�

The partitions PL, Eq. (3.5) build a sequence of successive refinements, but they
do not preserve in general the order relations because their elements eventually
decompose into different components. For the same reason, they cannot converge
in general to the partition of D into separate points, ε, nor are their norms otherwise
expected to vanish as L →∞.

Having shown that the metric permutation entropy does not depend on the par-
titions used in its calculation (with the provisos stated in Lemma 9), we turn to the
main result of this chapter.

Theorem 10 Let f :D → D be ergodic with respect to the measure μ, and suppose
that h∗μ(f ) exists. Then h∗μ(f ) = hμ(f ).

Proof Let κ0 be a quasi-box partition of (D,B ∩ D, μ) and (κn)n∈N a sequence of
successive product refinements of κ0. Then,

hμ(f , κn) = hμ(Xκn )

by (6.15), where Xκn = {Xκn
k }k∈N0 is the symbolic dynamics of f with respect to the

partition κn. Furthermore, hμ (Xκn) = h∗μ (Xκn) by Theorem 8, since Xκ is ergodic
with respect to the measure μ if f is ergodic with respect to μ. Putting together, we
have so far

h∗μ(f ) = lim
n→∞ h∗μ(Xκn ) = lim

n→∞ hμ(Xκn) = lim
n→∞ hμ(f , κn).

From Theorem 25 (Annex B) it follows then

lim
n→∞ hμ(f , κn) = hμ(f )

and we are done. �

If instead of Theorem 8, we use Corollary 5 in the previous proof for every pro-
cess Xκ , we conclude also h∗μ(f ) = hμ(f ) for μ-preserving maps. This requires

the technical assumption that hms (X
κ ) is m-integrable, where {ms:s ∈ SN0}, S =
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{1, . . . , |κ|}, is the ergodic decomposition of m, and m the shift-invariant measure of
the sequence space model (SN0 ,B�(S), m, �) of Xκ—and this for every partition κ .

Theorem 11 Let f : D → D be μ-preserving, and suppose that h∗μ(f ) = limn→∞ h∗μ
(Xκn ) exists. Under the assumptions of Lemma 8 for each Xκn , the equality h∗μ(f ) =
hμ(f ) holds.

6.3 On the Definition of Metric Permutation Entropy for Maps

The original definition of permutation entropy by Bandt, Keller, and Pompe [29]
was presented in Sect. 1.2. Recall that it involves closed one-dimensional intervals
I, maps f :I → I, and sets of the form

Pπ =
{
x ∈ I:f π0 (x) < f π1 (x) < · · · < f πL−1 (x)

}
,

where π = 〈π0, . . . , πL−1〉 ∈ SL, L ≥ 2. Recall once again that

PL = {Pπ �= ∅:π ∈ SL}.

In most situations of interest, PL will be a partition of (I,B ∩ I, μ), where B is the
Borel sigma-algebra of R and μ is an f -invariant measure. This is going to be our
setting throughout this section.

Bandt, Keller, and Pompe define then the metric permutation entropy of order L
as2

h∗BKP
μ (f , L) = − 1

L− 1

∑

π∈SL

μ(Pπ ) log μ(Pπ ) (6.17)

and the permutation entropy of f to be

h∗BKP
μ (f ) = lim

L→∞ h∗BKP
μ (f , L), (6.18)

provided the limit exists.
As compared to conventional entropy, h∗BKP

μ (f ) has at least one remarkable
feature: it involves only one infinite limit over the length of the word, while
hμ(f ) involves additionally a second infinite process, namely, a supremum over
partitions—unless a generating partition is known. This fact can be rephrased by
saying that the sequence PL builds a “generator” for h∗BKP

μ .
Let us highlight at this point the main result concerning h∗BKP

μ (f ):

Theorem 12 [29] If f :I → I is piecewise monotone, then h∗BKP
μ (f ) = hμ(f ).

2 Bandt, Keller, and Pompe chose the factor 1/(L − 1) instead of 1/L (see (1.30)) because π (x0
0)

contributes nothing to the entropy. Of course, either choice yields the same limit when L →∞.
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Example 13 For the symmetric tent map (1.17), the elements of P2 are

P〈0,1〉 = (0, 2
3 ), P〈1,0〉 = ( 2

3 , 1) ;

the elements of P3 are

P〈0,1,2〉 = (0, 1
3 ), P〈0,2,1〉 = ( 1

3 , 2
5 ), P〈2,0,1〉 = ( 2

5 , 2
3 ),

P〈1,0,2〉 = ( 2
3 , 4

5 ), P〈1,2,0〉 = ( 4
5 , 1);

and the elements of P4 are

P〈0,1,2,3〉 = (0, 1
6 ), P〈0,1,3,2〉 = ( 1

6 , 1
5 ), P〈0,3,1,2〉 = ( 1

5 , 2
9 ) ∪ ( 2

7 , 1
3 ),

P〈3,0,1,2〉 = ( 2
9 , 2

7 ), P〈0,2,1,3〉 = ( 1
3 , 2

5 ), P〈2,0,3,1〉 = ( 2
5 , 4

9 ) ∪ ( 4
7 , 3

5 ),

P〈2,3,0,1〉 = ( 4
9 , 4

7 ), P〈2,0,1,3〉 = ( 3
5 , 2

3 ), P〈3,1,0,2〉 = ( 2
3 , 4

5 ),

P〈1,3,2,0〉 = ( 4
5 , 5

6 ), P〈1,2,0,3〉 = ( 6
7 , 8

9 ), P〈1,2,3,0〉 = ( 5
6 , 6

7 ) ∪ ( 8
9 , 1).

See Fig. 6.1 and compare with Fig. 1.7; owing to the order isomorphy of the sym-
metric tent map and the logistic map, there is a one-to-one relation between their
admissible ordinal L-patterns. Computation of the metric permutation entropies of
orders 2, 3, and 4 of the symmetric tent map � (the invariant measure μ is here the
Lebesgue measure) yields the following results:

0 0.2 0.4 0.6 0.8 1

1

Fig. 6.1 Graphs of the identity, �, �2, and �3. The vertical, dashed lines separate different Pπ ,
π ∈ S4
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h∗BKP
μ (�, 2) = 2

3 log 3
2 + 1

3 log 3 = 0.9183 bit/symbol,

h∗BKP
μ (�, 3) = 1.0746 bit/symbol,

h∗BKP
μ (�, 4) = 1.1807 bit/symbol.

By Theorem 12,

h∗BKP
μ (�) = hμ(�) = log 2 = 1 bit/symbol.

But in the case of general maps, it seems that only inequality (6.19) below (for-
mally similar to (6.9)) can be proved. Comparing such one-dimensional results with
the dimensional generality of Theorem 10, we may conclude that the definition
(6.16) of permutation entropy offers some advantages.

Note that the central distinction, which makes formulation (6.16) easier and more
natural, is that (6.16) takes the limit of infinite long conditioning (L →∞) first and
the discretization limit (‖κn‖ → 0) last, similar to Kolmogorov–Sinai entropy, and
as opposed to (6.18), where an explicit discretization is not taken. Thus we have two
limits to take (while h∗BKP

μ (f ) involves only one limit), but the second, ‖κn‖ → 0,
is harmless and, in principle, can be numerically approximated. We conjecture that
for “non-pathological” dynamical systems of the sort one might observe in nature,
the two formulations are equivalent, but there are likely to be some non-trivial tech-
nicalities involved in a rigorous analysis. More on this, in the next chapter.

Transformations with an infinite number of monotonicity segments are not
unusual in ergodic theory.

Example 14 The Gauss transformation, f :[0, 1) → [0, 1) with

f (x) =
{

0 if x = 0
1
x (mod 1) if x �= 0

,

is an ergodic map [52, Chap. 5] with infinitely many monotonicity segments, see
Fig. 6.2.

The next theorem shows that, in general, h∗BKP
μ (f ) can only be expected to be an

upper bound of hμ(f ).

Theorem 13 [29] If f :I → I is a μ-preserving map with hμ(f ) <∞, then

lim inf
L→∞ h∗BKP

μ (f , L) ≥ hμ(f ). (6.19)

It follows h∗BKP
μ (f ) ≥ hμ(f ), provided h∗BKP

μ (f ) exists.

Proof Let ι = {Ij, 1 ≤ j ≤ |ι|} be a partition of (I,B ∩ I, μ), where Ij ⊂ I are
intervals. This being the case, let c1 < c2 < · · · < c|ι|−1 be the points that subdivide
the interval I = [a, b] into the |ι| intervals Ij of the partition ι. We consider a fixed
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0 1/51/4 1/3 1/2 1

1

Fig. 6.2 Some monotony intervals of the Gauss transformation

Pπ ∈ PL and show that it can intersect at most (L + 1)|ι|−1 sets of the partition
ιL−1
0 := ∨L−1

i=0 f−i(Iji) with Ij0 , . . . , IjL−1 ∈ ι. For x ∈ Pπ , let �L[x] denote the set in
ιL−1
0 that contains x. Thus, �L[x] can be written as Ij0 ∩ f−1(Ij1 )∩· · ·∩ f−(L−1)(IjL−1 )

with Ij0 , . . . , IjL−1 ∈ ι, so that it can be specified by the n-tupel j[x] = (j0, . . . , jL−1) ∈
{1, . . . , |ι|}L.

Now, π is given by inequalities xk1 < · · · < xkL with {k1, . . . , kL} = {0, . . . , L−1}
and xk = f k(x). For each x ∈ Pπ we can extend these inequalities so that they give
the common order of the cr and the xkl , where 1 ≤ r ≤ |ι| − 1 and 1 ≤ l ≤ L.
It follows that there are at most (L + 1)|ι|−1 possible extended orders since each cr

has L+ 1 possible bins to go among the xkl . Moreover, when we know the common
order of the cr and xkl , then j[x] is uniquely determined (since cj−1 < xk < cj

implies xk ∈ Ij and thus x ∈ f−k(Ij), with 1 ≤ j ≤ |ι|, c0 = a, and c|ι| = b).
Each Pπ ∈ PL is then the union of at most (L+ 1)|ι|−1 sets Vk ∈ ιL−1

0 ∨ PL with
total measure μ(Pπ ). Hence,

−
(L+1)|ι|−1∑

k=1

μ(Vk) log μ(Vk)

≤ −
(L+1)|ι|−1∑

k=1

μ(Pπ )

(L+ 1)|ι|−1
log

μ(Pπ )

(L+ 1)|ι|−1

= −μ(Pπ ) log μ(Pπ )+ ( |ι| − 1)μ(Pπ ) log (L+ 1)

and summing over all π ∈ SL,

Hμ(ιL−1
0 ) ≤ Hμ(ιL−1

0 ∨ PL) ≤ Hμ(PL)+ ( |ι| − 1) log (L+ 1). (6.20)



122 6 Metric Permutation Entropy

It follows that

1

L− 1
Hμ(PL) ≥ 1

L− 1

[
Hμ(ιL−1

0 )− ( |ι| − 1) log (L+ 1)
]

and

lim inf
L→∞

1

L− 1
Hμ(PL) ≥ lim inf

L→∞
1

L− 1
Hμ(ιL−1

0 ), (6.21)

since 1
L−1 log (L+ 1) → 0 as L →∞.

On the other hand, the sequence 1
L−1 Hμ(ιL−1

0 ) converges to hμ(f , ι) when
L →∞, hence

lim inf
L→∞ h∗BKP

μ (f , L) = lim
L→∞ inf

1

L− 1
Hμ(PL) ≥ hμ(f , ι),

for any partition ι. Finally,

lim inf
L→∞ h∗BKP

μ (f , L) ≥ sup
ι

hμ(f , ι) = hμ(f ).

�

6.4 Numerical Issues

Our way to the metric permutation entropy of maps was paved by partitions of the
state space and the corresponding symbolic dynamics, very much the same way as
it happens with the Kolmogorov–Sinai entropy. Therefore, calculating the metric
permutation entropy of maps and information sources turns out to be essentially the
same task, except for the fact that in the first case this calculation has, in principle, to
be repeated with ever finer partitions. In practice, one estimates the true value of the
permutation entropy by taking a “sufficiently” fine partition once and for all. This
corresponds, by the way, to the numerical practice, as we shall presently explain. If,
furthermore, the map (and hence the ensuing source) is ergodic, then it suffices to
consider one or a small sample of coarse-grained orbits.

As a by-product of the previous results on metric permutation entropy, the prac-
titioner of time-series analysis will find an alternative way to envision or, eventu-
ally, numerically estimate the Kolmogorov–Sinai entropy of real sources. It is worth
reminding (see Chap. 1) that the entropy of information sources can be measured
by a variety of techniques that go beyond counting word statistics and comprise
different definitions of “complexities” such as, for example, counting the patterns
along a digital (or digitalized) data sequence [137, 211, 6]. Bandt and Pompe refer
in [28] to the permutation entropy of time series as complexity. That the entropy
can also be computed by counting ordinal patterns shows once again that it is a so
general concept that can be captured with different and seemingly blunt approaches.
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3.5 3.6 3.7 3.8 3.9 4
–1

– 0.5

0

0.5

1

1.5

A (dimensionless)

h 
(b

its
)

Fig. 6.3 Lyapunov exponent (black thick line) of the logistic map gA, 3.5 ≤ A ≤ 4, and metric
permutation entropy (rate) estimates ĥ = h∗(X13

0 ) in bits/symbol for N = 106 length time series
from the map (black thin lines). The metric permutation entropy estimate tracks changes in the
Lyapunov exponent well, with a nearly constant bias. Periodic orbits give a finite permutation
entropy, but the rate estimate would tend to zero given a sufficiently long word

We demonstrate numerical results on time series xn+1 = gA(xn) from the logistic
map gA(x) = Ax(1 − x), where 0 ≤ A ≤ 4 and 0 ≤ x ≤ 1. Figure 6.3 shows
an estimate of the metric permutation entropy on noise-free data as a function of
A, comparing the Lyapunov exponent Lμ(gA) (computed from the orbit knowing
the equation of motion) to the metric permutation entropy of gA for 3.5 ≤ A ≤ 4.
To be precise, we are estimating h∗μ(X) with X discretized from the logistic map
iterated at the discretization of double-precision numerical representation, i.e., X is
the output of a standard numerical iteration and μ is the natural invariant measure
with density dμ/dx = 1

π
√

x(1−x)
. The entropy estimator of the block ranks was

the plug-in estimator (substituting observed frequencies for probabilities) plus the
classical bias correction, first order in 1/N, N being here the number of samples
(which can be taken, for instance, from sliding windows of fixed length L along the
orbit/orbits considered) [167]. Let us remind that

hμ(g4) = Lμ(g4) =
∫ 1

0
log
∣∣g′4(x)

∣∣ dμ(x) = log 2.

Thus, in practice the BKP approach (Sect. 6.3) and our approach (Sect. 6.2)
boil down to the same recipe: generate orbits and count ordinal patterns in sliding
windows of increasing sizes; for more details, see Chap. 9. The most intriguing
characteristic of order relations is that they define, on their own, partitions PL for
the mapping from continuous values (as the discretization level ‖κn‖ goes to zero)
to a lower precision symbolic representation which has the natural structure for
entropy. When estimating entropy from the discrete information source induced
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from a fixed discretization, the entropy of the symbol stream will not generally equal
the Kolmogorov–Sinai entropy unless a generating partition is used, and that can be
difficult to find, especially for observed data alone, although some recent works
show progress in this direction (e.g., [40] and references therein). The “magic” in
using ordinal patterns is that the self-defined partitions PL give the Kolmogorov–
Sinai entropy, at least asymptotically. Permutation entropy may offer a significant
opportunity to advance analytical computations of entropies for various dynamical
systems, where generating partitions might be too difficult to find rigorously.

It turns out that using metric permutation entropy to accurately estimate the
Kolmogorov–Sinai entropy is more difficult than using it as a very rapid and easy-
to-compute relative quantification of entropy or complexity which can be computed
without requiring a fixed partition (see, e.g., [45]). The key issue in using permuta-
tion entropy for empirical data analysis as an entropy estimator is the same as with
standard Shannon entropy estimation: balancing the tension between larger word
lengths L, to capture more dependencies, and the loss of sufficient sampling for
good statistics in the ever larger discrete space. Extracting permutation entropies is
rapid and easy—but taking the limits is not at all simple numerically. The finite L
performance and convergence rate and bias of any specific computational method
are major issues when it comes to accurately estimating the entropy of a source
from observed data. It is now appreciated that numerically estimating the Shannon
block entropy from finite data and, especially, the asymptotic entropy can be sur-
prisingly tricky [195, 127, 6, 121, 122]. The theoretical definitions of entropy do
not necessarily lead to good statistical methods, and superior alternatives have been
developed over the many years since Shannon. We believe that some of these ideas
may similarly be applicable to the permutation entropy situation, either in terms
of using some of the superior entropy estimation methods for block entropies or
developing algorithms based on more sophisticated data compression principles to
extract the entropy itself.

Also important for practical time-series analysis is the usual situation where
observations of a predominantly deterministic source is contaminated with a small
level of observational noise. Here, we recommend that the user fix some discretiza-
tion level ‖κn‖ characteristic of the noise and evaluate the permutation entropies via
entropies of rank words evaluated from the discretized observables.

In regard to vector-valued sources, we used (without restriction) lexicographic
ordering in the theoretical part because of definiteness and simplicity. For analyzing
chaotic observed data, however, it may be acceptable to still use but one scalar
projection subject to the traditional caveats of time-delay embedology. We would
expect that for appropriately mixing sources and generic observation functions, the
Kolmogorov–Sinai entropy estimated through that scalar still equals the true value,
and likewise so might permutation entropy. We have found that numerically this
appears to work in practice. Moreover, the lexicographic ordering will effectively
reduce to this case anyway except for the few cases where the symbols on the dom-
inant coordinate match, which will be less frequent as L increases. More on this in
Chaps. 7 and 9.



Chapter 7
Topological Permutation Entropy

Permutation entropy, as conventional entropy, comes in the metric version (Chap. 6)
and in the topological version (this chapter). Topological permutation entropy was
also introduced by Bandt et al. [29], together with metric permutation entropy. Let us
stress once more that the concept of metric permutation entropy of a map introduced
in the last chapter differs from the original one, the difference consisting basically
in the order of an iterated limit (first the length of the orbit, then the precision of the
measurement, as in the definition of the Kolmogorov–Sinai entropy). This technical
change made possible to generalize one of the main results of [29], namely, the
equality of metric entropy and metric permutation entropy for piecewise monotone
maps on one-dimensional intervals to higher dimensions at the expense of requiring
ergodicity (Theorem 10).

In this chapter we will apply the same approach to topological entropy with the
parallel result that the equality of topological entropy and topological permutation
entropy for piecewise monotone maps on one-dimensional intervals (the other main
result of [29]) can also be generalized to higher dimensions, this time requiring the
map to be expansive (Theorem 15). The possibility of going higher dimensional is
an advantage of the definitions of metric and topological permutation entropies used
in this book.

7.1 Topological Permutation Entropy of Sources

Let X = {Xn}n∈N0 be an information source with finite alphabet S. We define the
topological entropy of order L of X as

htop(XL−1
0 ) = 1

L
log N(X, L), (7.1)

where XL−1
0 is shorthand for the block of random variables X0, . . . , XL−1 and

N(X, L) is the number of sequences (words, blocks, etc.) of length L, xL−1
0 =

x0, . . . , xL−1, that X can output. Put in a different way, N(X, L) is the number of
words of length L, built by consecutive letters, that are allowed or admissible in

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_7,
C© Springer-Verlag Berlin Heidelberg 2010
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the messages of X (since X is stationary, we may restrict ourselves to an initial
segment). The topological entropy of X is then defined as

htop(X) = lim
L→∞ htop(XL−1

0 ), (7.2)

provided the limit exists. In an information-theoretical framework, htop(X) is called
the capacity of X [186]. If, furthermore,

hμ(XL−1
0 ) = −1

L

∑

x0,...,xL−1∈S

p(x0, . . . , xL−1) log p(x0, . . . , xL−1) (7.3)

is the Shannon (or metric) entropy of order L of X, then clearly hμ(XL−1
0 ) ≤

htop(XL−1
0 ) (for any logarithm base > 1). Therefore

hμ(X) = lim
L→∞ hμ(XL−1

0 ) ≤ htop(X), (7.4)

where hμ(X) is the Shannon (or metric) entropy of X. Also

hμ(X) = htop(X) ⇔ p(x0, . . . , xL−1) = 1

N(X, L)
∀L ≥ 1.

Suppose now that the alphabet S of the source X is endowed with a total ordering
≤, so that one can also define the corresponding permutation entropies of order L
via the ordinal patterns realized by the words of finite lengths L ≥ 2. Then the
topological permutation entropy of an information source is defined analogous to
the topological entropy, using rank variables.

Thus, the topological permutation entropy of X, h∗top(X), is defined as

h∗top(X) = lim
L→∞ h∗top(XL−1

0 ), (7.5)

provided the limit exists, with

h∗top(XL−1
0 ) ≡ htop(RL−1

0 ) = 1

L
log N(R, L). (7.6)

Analogous to (7.1), N(R, L) stands for the number of allowed words of length L of
the process R = {Rn}n∈N0 (see Sect. 6.1). Note that

N(R, L) ≤ N(X, L), (7.7)

since several finite symbol sequences may produce the same sequence of rank vari-
ables (i.e., xL−1

0 	→ rL−1
0 = rank (xL−1

0 ) is many-to-one).
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As in (7.4), the metric permutation entropy,

h∗μ(X) = − lim
L→∞

1

L

∑
p(r0, . . . , rL−1) log p(r0, . . . , rL−1),

is upper bounded by the topological permutation entropy,

h∗μ(X) ≤ h∗top(X) (7.8)

and, moreover,

h∗μ(X) = h∗top(X) ⇔ p(r0, . . . , rL−1) = 1

N(R, L)
∀L ≥ 2.

From these definitions and (7.7), it follows that

h∗top(X) ≤ htop(X). (7.9)

Therefore, the topological permutation entropy is always a lower bound of the topo-
logical entropy for information sources.

Remark 2 The topological permutation entropy of sources can also be introduced
using ordinal patterns instead of rank variables:

h∗top(XL−1
0 ) = 1

L
log N∗(X, L), (7.10)

where N∗(X, L) is the number of admissible ordinal L-patterns in the messages pro-
duced by X.

7.2 Constrained Sequences

Let N(X, L) be as before the number of allowed sequences of length L of a source X
with finite alphabet. If all possible sequences of length L are allowed, i.e., N(X, L) =
|S|L, then

htop(X) = lim
L→∞

1

L
log |S|L = log |S| .

To calculate h∗top(X) for an unconstrained source X, we assume for simplicity a

binary alphabet. Remember from Example 11, that, given the length-L word xL−1
0 ,

L ≥ 1, then

xL = 0 ⇒ rL = N0 + 1,
xL = 1 ⇒ rL = L+ 1,



128 7 Topological Permutation Entropy

where N0 is the number of 0’s in xL−1
0 (remember also that 1 ≤ rL ≤ L + 1). How

many distinct ranks of length L+ 1, rL
0 , can produce a word xL

0?
The case rL = 1 is only possible if x0 = x1 = · · · = xL−1 = 1 (i.e., N0 = 0) and

xL = 0.
The case rL = 2 requires N0 = 1 and xL = 0. If xi = 0, 0 ≤ i ≤ L − 1,

(otherwise1), then

rL
0 = 1, 2, . . . , i, 1, i+ 2, . . . , L, 2.

This case contributes L = (L1
)

distinct rank blocks of length L+ 1.
The case rL = 3 requires N0 = 2 and xL = 0. If xi = xj = 0, 0 ≤ i < j ≤ L− 1,

(otherwise 1), then

rL
0 = 1, 2, . . . , i, 1, i+ 2, . . . , j, 2, j+ 2, . . . , L, 3.

This case contributes
(L

2

)
distinct rank blocks of length L+ 1.

Proceeding further in this way, we conclude that the case rL = k, 1 ≤ k ≤ L
contributes

( L
k−1

)
distinct rank blocks of length L+ 1.

Finally, the case rL = L + 1 requires N0 = L and xL = 0, or 0 ≤ N0 ≤ L and
xL = 1. There are 1+ 2L such cases. Therefore, for L ≥ 1,

N(R, L+ 1) = 1+
(

L

1

)
+ · · · +

(
L

L− 1

)
+ 1+ 2L = 2L+1

and

h∗top(X) = lim
L→∞

1

L+ 1
log N(R, L+ 1) = lim

L→∞
1

L+ 1
log 2L+1

= log |S| .

In general, the information source X has forbidden words. In this case, one speaks
also of constrained sequences or constrained sources [186]. Constrained sequences
are very important in information theory, where the constrains are imposed by tech-
nological feasibility or convenience. For example, to ensure proper synchronization
in magnetic recording, it is often necessary to limit the length of runs of 0’s between
two 1’s when reading and recording bits. Also to reduce intersymbol interference, it
may be required at least one 0 between any two 1’s [59].

Alternatively, a constrained source can be defined as the set of sequences gen-
erated by walks on a labeled, oriented graph G. Formally, an oriented graph G is
an ordered pair of sets, G = (V , E), where E is a subset of ordered pairs of V .
The elements of V are called vertices, and will be denoted as i, j, etc.; the elements
(i, j) ∈ E are called (oriented or directed) edges, with initial vertex i and terminal
vertex j, and will denoted by eij. Without restriction we take V = {1, 2, . . . , |V|}.
The vertices i of the graph represent “states” and the directed edges eij show the
state transitions allowed to the system. The system outputs the letter attached to
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each oriented edge when performing the corresponding transition. Depending on
how the transition probabilities pij are defined, we have different kinds of stochastic
processes: Markovian, finite type, etc.

Example 15 [59] Suppose that in the example mentioned above, borrowed from
magnetic recording, we are required to have at least one 0 and at most two 0’s
between any pair of 1’s in a sequence. The forbidden words are 11 and any word of
the form 10 . . . 01 containing more than two 0’s. Show that the set of constrained
sequences is the same as the set of allowed paths on the state diagram in Fig. 7.1.

Fig. 7.1 Allowed paths between the nodes 1, 2, and 3

Given an oriented graph G, the connection matrix of G is a |V| × |V| matrix AG

whose entries (AG)i,j, 1 ≤ i, j ≤ |V|, are defined as follows:

(AG)i,j =
{

1 if (j, i) ∈ E,
0 otherwise.

A path P of length l is a graph of the form

V(P) = {i0, i1, . . . , il}, E(P) = {ei0i1 , ei1i2 , . . . , eil−1il}.

An oriented graph is irreducible if, given any two vertices, there exists a path from
the first vertex to the second. If Ni(L) is the number of valid paths of lengths L
ending at node (or state) i and N(L) is the column vector

N(L) = (N1(L), N2(L), . . . , N|V|(L))),

where the upper index ) stands for “transposed,” then

N(L) = AGN(L− 1),

and by induction,

N(L) = AL−1
G N(1),

where the entries in AL
G correspond to paths in G of length L.

By the Perron–Frobenius theorem [202] for non-negative matrices, there is an
eigenvalue λ ≥ 0 such that no other eigenvalue of AG has absolute value greater
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than λ. Corresponding to λ there is a non-negative left (row) eigenvector u =
(u1, . . . , u|V|) and a non-negative right (column) eigenvector v = (u1, . . . , u|V|)).
Moreover, if AG is irreducible (i.e., for any pair i, j there is some n > 0 such that
(An

G)i,j > 0), then λ > 0 (in fact, mini
∑|V|

j=1 (AG)i,j ≤ λ ≤ maxi
∑|V|

j=1 (AG)i,j), λ

is a simple eigenvalue, and the corresponding eigenvectors are strictly positive (i.e.,
ui > 0, vi > 0 for all i).

The connection matrix AG is irreducible and aperiodic if there exists n ≥ 1 such
that (An

G)i,j > 0 for all i, j. In this case [202],

lim
n→∞

1

λn
(An

G)i, j = ujvi = (v⊗ u)i, j,

where v⊗ u denotes the tensor product of the vectors v and u. This means that the
matrices An

G and λn(v⊗ u) have the same limit when n →∞.
Lastly,

lim
L→∞

1

L
log Ni(L)

= lim
L→∞

1

L
log

|V|∑

j=1

(AL−1
G )i,jNj(1)

= lim
L→∞

1

L
log λL−1

|V|∑

j=1

(v⊗ u)i,jNj(1)

= lim
L→∞

1

L
log λL−1 + lim

L→∞
1

L
log

|V|∑

j=1

(v⊗ u)i,jNj(1)

= log λ.

This shows that the number of allowed sequences of length L grows as λL for large
L and provides sufficient conditions for the limit htop(X) to exist.

Proposition 7 [186] If X is a constrained source such that the connection matrix
AG of its oriented graph is irreducible and aperiodic, then

htop(X) = log ρ(AG),

where ρ(AG) is the spectral radius of the matrix AG,

ρ(AG) = max{|λ| :λ is an eigenvalue of AG}.
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7.3 Topological Permutation Entropy of Maps

Once more let D be a simple domain of R
q endowed with the Borel sigma-algebra

B, and let f be a map from D to itself. Furthermore, consider a quasi-box partition

κ0 = {Kj:1 ≤ i ≤ |κ0|}, Kj < Kj+1,

of D and an increasing sequence (κn)n∈N of refinements of κ0 with ‖κn‖ → 0 (see
Sect. 6.2).

Analogous to the definition of the metric permutation entropy of f with respect
to an f -invariant measure μ on (D,B ∩ D) (6.16),

h∗μ(f ) = lim
n→∞ h∗μ(Xκn ),

where Xκn is the symbolic dynamics of f with respect to the partition κn, we define
now the topological permutation entropy of f as

h∗top(f ) = lim
n→∞ h∗top(Xκn ). (7.11)

Note that limit (7.11) exists or diverges to +∞, since h∗top(Xκn ) is non-decreasing
with ever finer partitions κn. Moreover, as shown in the proof of Lemma 9, this limit
does not depend on the particular initial partition α0 and its successive refinements
αn as long as (αn)n∈N converges to the partition of D into separated points, and
the order relations are preserved when going from αn to αn+1. This implies the
following result.

Theorem 14 Let D1, D2 be two simple domains of R
q, and suppose that the maps

fi : Di → Di, i = 1, 2, are order isomorphic by means of a homeomorphism φ:D1 →
D2. If the topological permutation entropy exists for one of the maps, then it also
exists for the other map, and in this case

h∗top(f1) = h∗top(f2).

Proof Let κ be a quasi-box partition of D1. Then φ(κ) is a partition of D2 which,
furthermore, generates an increasing sequence of partitions preserving the order
relations and converging to the partition of D2 into separate points as ‖κ‖ → 0.

Let Xκ be the symbolic dynamics of f1 with respect to the partition κ = {Kj:1 ≤
j ≤ |κ|} and Yφ(κ) be the symbolic dynamics of f2 with respect to the partition
φ(κ) = {φ(Kj):1 ≤ j ≤ |κ|}. Then

Xκ
n (x) = j ⇔ f n

1 (x) ∈ Kj

⇔ φ−1 ◦ f n
2 ◦ φ(x) ∈ Kj

⇔ f n
2 ◦ φ(x) ∈ φ(Kj)

⇔ Yφ(κ)(φ(x)) = j.
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It follows that Xκ and Yφ(κ) have the same admissible ordinal patterns of any length,
hence

h∗top(f1) = lim‖κ‖→0
h∗top(Xκ ) = lim‖φ(κ)‖→0

h∗top(Yφ(κ)) = h∗top(f2). �

Note for further reference that (7.8) implies

h∗μ(f ) ≤ h∗top(f ). (7.12)

Therefore, the topological permutation entropy is always an upper bound of the
topological entropy for maps, as it happens with the conventional metric and topo-
logical entropies.

Since the (conventional) topological entropy is usually defined for continuous
maps (see Sect. B.3.1), we shall assume continuity in the following propositions. In
dimension 1, continuity may be replaced by piecewise monotonicity.

Lemma 10 Let f : D → D be a continuous map. Then

htop(f ) ≤ h∗top(f ). (7.13)

Proof From Theorem 10, hμ(f ) = h∗μ(f ) holds for all μ ∈ E(D, f ), the set of
f -invariant, ergodic measures on (D,B ∩ D). Thus, in virtue of the variational prin-
ciple (B.27),

htop(f ) = sup
μ∈E(D, f )

h∗μ(f ) ≤ h∗top(f ), (7.14)

where the last inequality follows from (7.12). �

Observe from (7.14) that if a variational principle like (B.27) would also hold for
the metric and topological permutation entropies, that is,

sup
μ∈E(D, f )

h∗μ(f ) = h∗top(f ), (7.15)

then htop(f ) = h∗top(f ) would follow.

Proposition 8 Let f : D → D be a continuous map. Then the variational principle
(7.15) holds if and only if htop(f ) = h∗top(f ).

Another equivalent condition for the variational principle (7.15) to hold follows
from the inequality (7.9) applied to the sources Xκn in (7.11):

h∗top(Xκn ) ≤ htop(Xκn).
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Letting n →∞, we conclude

h∗top(f ) ≤ lim
n→∞ htop(Xκn), (7.16)

provided limn→∞ h∗top(Xκn ) converges.

Proposition 9 Let f : D → D be a continuous map. Then the variational principle
(7.15) holds if and only if limn→∞ htop(Xκn ) = htop(f ).

Proof If limn→∞ htop(Xκn) = htop(f ), then (7.16) implies h∗top(f ) ≤ htop(f ). On
the other hand, htop(f ) ≤ h∗top(f ) holds true in general (Lemma 10). Apply now
Proposition 8. �

7.4 Relation Between Topological Entropy and Topological
Permutation Entropy

One of the main interests of h∗top(f ) is that, under some assumptions on f , it coincides
with htop(f ), the topological entropy of f , thus eventually providing an estimator
of it.

Lemma 11 Let D ⊂ R
q, q ≥ 2, be a simple domain and f :D → D a positively

expansive map. Then

lim
n→∞ htop(Xκn) = htop(f ), (7.17)

where (κn)n∈N is an increasing sequence of quasi-box partitions of D and Xκn is the
symbolic dynamics of f with respect to κn.

Intuitively speaking, a self-map is positively expansive if every pair of suffi-
ciently close points eventually separate by a finite distance under iteration of the
map. Expansive and positively expansive maps are defined in Sect. B.3.1, Defini-
tion 26. Typical examples of positively expansive maps are the one- and two-sided
shifts. The condition q ≥ 2 recalls that one-dimensional closed intervals do not
admit expansive maps. To establish a connection between htop(Xκn ) and htop(f ), we
will use (n, ε)-separated sets (Definition 23).

Proof For definiteness we will take the metric d in R
q to be the Euclidean distance

(any other equivalent distance would do as well). Let A ⊂ D be (n, ε)-separated with
respect to f , i.e., x, y ∈ A, x �= y, implies dn(x, y) > ε, where

dn(x, y) = max
0≤i≤n−1

d(f i(x), f i(y)).

Lay on D a quasi-box partition κ = {Kj:1 ≤ j ≤ |κ|} such that

‖κ‖ < ε,

so as points lying at a distance greater than ε belong necessarily to different bins of
κ . Then,
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dn(x, y) > ε ⇔ d(f i(x), f i(y)) > ε for some 0 ≤ i ≤ n− 1
⇒ (Xκ )n−1

0 (x) �= (Xκ )n−1
0 (y).

Thus, every point x ∈ A ∩ Kj0 , 1 ≤ j0 ≤ |κ|, generates a different sequence
(Xκ )n−1

0 (x) = j0, . . . of length n. Of course, there can be points x′ ∈ Kj0 , x′ /∈ A,
such that (Xκ )n−1

0 (x′) = j0, . . . �= (Xκ )n−1
0 (x) for all x ∈ A ∩ Kj0 , but the number of

such points will vanish when n → ∞ if ε ≤ δ, δ being an expansiveness constant
for f (see Definition 26). In this limit (and ε ≤ δ) we also have A ∩ Kj �= ∅ for ∀j,
1 ≤ j ≤ |κ|, hence there is a one-to-one relation between points in A and outputs
(xκ )∞0 of Xκ . If, as in Definition 23, sn(ε, D) denotes the largest cardinality of any
(n, ε)-separated subset of D with respect to f and N(Xκ , n) denotes the number of
distinct symbolic sequences of length n, it follows that

lim sup
n→∞

1

n
log N(Xκ , n) = lim sup

n→∞
1

n
log sn(ε, D),

for ε ≤ δ, and thus (see (7.11) and (B.25))

lim‖κ‖→0
htop(Xκ ) = lim‖κ‖→0

lim sup
n→∞

1

n
log N(Xκ , n)

= lim
ε→0

lim sup
n→∞

log sn(ε, I)

= htop(f ). �
Theorem 15 Let D be a q-dimensional simple domain, q ≥ 2, and f : D → D a
positively expansive map. Then

h∗top(f ) = htop(f ) (7.18)

and

sup
μ∈E(D, f )

h∗μ(f ) = h∗top(f ).

Proof Apply Lemma 11 and Propositions 8 and 9. �
From the proof of Lemma 11, it should be clear where the need for expansiveness

comes from: it can otherwise happen that points x of the (n, ε)-separated subset
A ⊂ D have neighboring points x′ε that shadow their trajectories at arbitrarily close
distance (hence x′ε /∈ A) but define symbolic sequences Xκ (x′ε) �= Xκ (x). This
will be certainly the case when, for instance, x belongs to the stable manifold of
a hyperbolic fixed point p ∈ D or, more generally, whenever the state space have
lower dimensional manifolds whose points are not sensitive to initial conditions.
The good news for the practitioner is that, since such local manifolds have Lebesgue
measure zero, at least for sufficiently smooth dynamics, equality (7.18) will hold in
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numerical calculations for smooth maps with sensitivity to initial conditions almost
everywhere (with respect to the Lebesgue measure). The bad news is that expansive
maps are difficult to approximate numerically: small errors in computations (like
those due to round-off) get magnified upon iteration.

From Theorems 14 and 27 (Sect. B.3) it follows:

Corollary 6 Let D1, D2 be simple domains of R
q, and fi : Di → Di, i = 1, 2, pos-

itively expansive maps. Suppose that φ : D1 → D2 is a homeomorphism such that
φ ◦ f1 = f2 ◦ φ . Then

h∗top( f1) = h∗top( f2).

Thus topological conjugacy is a sufficient condition for two positively expansive
self-maps of simple domains to have the same topological permutation
entropy.

Let us remark at this point that the original definition of the topological permuta-
tion entropy of a self-map f of a closed one-dimensional interval I, given by Bandt,
Keller, and Pompe in [29], is

h∗BKP
top (f ) = lim

n→∞ h∗BKP
top (f , L), (7.19)

where

h∗BKP
top (f , L) = 1

L− 1
log |PL| (7.20)

is the topological permutation entropy of f of order L, and remember from (3.4) and
(3.5),

|PL| = |{Pπ �= ∅:π ∈ SL}| (7.21)

gives the number of ordinal patterns realized by the orbits of length L, (f n(x))L−1
n=0

with x ∈ I. The following result holds.

Theorem 16 [29] If I is a closed one-dimensional interval and f : I → I is piecewise
monotone, then h∗BKP

top (f ) = htop(f ), where htop(f ) is the topological entropy of f .

On the other hand, Misiurewicz proved that this result is not true if the map is not
piecewise monotone [157]. His counterexample is a continuous map with infinite
monotonicity segments that has zero topological entropy but positive topological
permutation entropy. He also shows in [157] that for piecewise monotone interval
maps, the topological entropy can be computed by counting the permutations exhib-
ited by the periodic orbits.

Example 16 For the symmetric tent map �, the partitions P2, P3, and P4 have cardi-
nalities 2, 5, and 12 (Example 13), respectively. Hence, the topological permutation
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entropies of orders 2, 3, and 4 are the following:

h∗BKP
top (�, 2) = log |P2| = log 2 = 1 bit/symbol,

h∗BKP
top (�, 3) = 1

2
log |P3| = 1

2
log 5 = 1.1610 bit/symbol,

h∗BKP
top (�, 4) = 1

3
log |P4| = 1

3
log 12 = 1.1950 bit/symbol.

By Theorem 16,

h∗BKP
top (�) = htop(�) = log 2 = 1 bit/symbol.

To conclude, it was pointed out in Sect. 3.4.1 that order-isomorphic maps have
the same admissible and forbidden ordinal patterns of any length. This fact together
with Theorem 16 lead to the following results.

Corollary 7 Let I1, I2 be two closed intervals of R, and suppose that the maps
fi : Ii → Ii, i = 1, 2, are order isomorphic. Then,

(1) h∗BKP
top (f1) = h∗BKP

top (f2), provided one of them exists.

(2) Furthermore, if f1 and f2 are piecewise monotone, then htop(f1) = htop(f2).

7.5 Estimating Topological Entropy

Estimation of topological entropies from naive numerical simulation of long orbits
is notoriously difficult. Metric entropy by itself can be quite tricky and difficult,
requiring very long data sets for increasing L, but topological entropy is worse
yet, because it weighs each pattern equally. This means that patterns which are
exceptionally infrequent on the natural measure of the attractor can still have
a significant influence on the result. Attempting to estimate the same quanti-
ties using empirical occurrences of ordinal patterns is even more difficult, requir-
ing more data than would a good, low-alphabet generating partition for ordinary
symbolic dynamics.

For the present purpose, we consider a continuous system in greater than one
dimension, with a chaotic attractor, and whose topological entropy can be found by
independent rigorous means. The Lozi map,

xi+1 = yi,

yi+1 = 1+ bxi − a|yi|,

with parameters a, b ∈ R, b �= 0, satisfies all these criteria. A mathematical proof
for the existence of an attractor for the Lozi map was given by Misiurewicz [156]. In
particular, a = 6/5, b = −2/15 yield a low-entropy chaotic attractor (roughly 0.3
bits/iteration) and for those parameters, the topological entropy has been bounded



7.5 Estimating Topological Entropy 137

rigorously with computer-assisted analytical computations [102, 178], and we use
their results.

We found that the best numerical procedure was to look at the “outgrowth ratio”
of ordinal patterns of a given length L. The outgrowth ratio for some pattern of
length L is the cardinality of the set of distinct ordinal patterns of length L + 1
which have the given length-L pattern as a prefix. More concretely, we find vectors
of length L + 1 from an orbit of the map. The ordinal pattern on the first L points
is the prefix pattern. Regardless of the dynamics, there can be at most L+ 1 ordinal
patterns of length L+ 1 conditioned on the length-L ordinal pattern, since the single
new element belongs to the alphabet {1, . . . , L+ 1}.

Indeed, according to definitions (7.11), (7.5), and (7.6), the topological permu-
tation entropy h∗top(f ) is the scaling rate of the logarithm of the number of patterns
with L of the “coarse-grained” dynamics X ≡ Xκ for κ sufficiently fine, i.e.,

log N(R, L) ≈ Lh∗top(X),

(RL−1
0 are the rank variables defined by XL−1

0 ), so

log
N(R, L+ 1)

N(R, L)
≈ h∗top(X).

Therefore, a reasonable estimator for h∗top(f ) is the logarithm of the outgrowth ratio
averaged uniformly over all extant prefix patterns. This value, for sufficiently large
L and sufficiently large simulation sets, ought to be h∗top(f ) on average. Note that
independent white noise would give an estimate of log (L + 1), i.e., not converging
with L.

Figure 7.2 shows the numerical result of estimating h∗top(f ) on long orbits of
the Lozi map with a = 6/5, b = −2/15, using two specific instantiations of the
outgrowth method. The dotted lines are the bounds on the true topological entropy.

The first strategy involves computing N1 = 50 × 106 ordinal patterns of length
L + 1 and their length L prefix. For every element in the prefix set we accumulate
the number of distinct elements in the conditioning set and average the logarithm of
the number of distinct occurrences over the observed length-L ordinal patterns—as
long as each of those ordinal patterns had at least two successors. This method will
typically have a bias downward for large L on account of undersampling the space.

The second strategy starts by computing N2 = 106 ordinal patterns of length L+1
from orbits of the map. The set of distinct order-L prefixes forms the “conditioning”
set. The N2 length L + 1 ordinal patterns from these are accumulated, and then the
map is iterated and ordinal patterns computed, until there have been (K−1)N2 more
observations of length-L ordinal patterns which were in the prefix, so that there are
KN2 = N1 with K = 50 observations, all of whose order L prefixes are in the
conditioning set. Then similarly the logarithm of the outgrowth ratio is estimated
over the conditioning set for all conditioning patterns with at least two observations.
This method has positive and negative biases due to finiteness of observations. First,
because of finite K there is a downward bias, as the number of observed outgrowths
is a strict lower bound on the number of allowed outgrowths in the dynamical
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Fig. 7.2 Logarithmic outgrowth ratios for the Lozi map vs L. The dotted lines represent rigorous
bounds on the topological entropy rate, computed by computer-assisted analytical methods. The
outgrowth ratio approximates the topological permutation entropy rate, is practical for computing,
and can scale to significant L

system. There is a more subtle upward bias, which changes with L as well. It is
because the ordinal patterns which were selected as conditioning states came from
an ergodic sample on the natural measure which does not sample the support uni-
formly. More frequently occurring patterns are more likely to occur in the condition-
ing set—and we have observed heuristically that in chaotic systems the outgrowth
ratio tends to be roughly correlated in the same direction as the frequency of the
conditioning pattern. The measure on the allowable patterns does vary very widely
hence it can take very long simulations to find more of the allowable conditioning
patterns even though their total number is far smaller than the number of samples
from the map. This effect is also present in the first method as well, but appears to
be dominated by the downward bias.

7.6 Existence of Forbidden Ordinal Patterns

We turn to the study of forbidden patterns for self-maps of q-dimensional simple
domains and, more specifically, to the issue of finding sufficient conditions that
guarantee forbidden patterns of any length. The existence of one-dimensional inter-
val maps with no forbidden patterns (Fig. 4.2) shows that this question is pertinent.

Let D be a q-dimensional simple domain and f : D → D a map with h∗top(f ) <∞.
According to the definition of h∗top(f ), (7.11), given ε > 0 arbitrarily small there
exists a quasi-box partition κ0 of D such that

∣∣∣h∗top(f )− h∗top(Xκ )
∣∣∣ <

ε

2
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whenever the quasi-box partition κ is a refinement of κ0. Furthermore, according
to the definition of h∗top(Xκ ) ((7.5) and (7.10) with Xκ instead of X), there exists a
length L0 such that

∣∣∣∣h
∗
top(Xκ )− 1

L
log N∗(Xκ , L)

∣∣∣∣ <
ε

2

whenever L ≥ L0, where N∗(Xκ , L) is the number of admissible ordinal L-patterns
of the symbolic dynamics Xκ with respect to κ . Therefore, with κ sufficiently fine
and L sufficiently large we have

∣∣∣∣h
∗
top(f )− 1

L
log N∗(Xκ , L)

∣∣∣∣ < ε,

hence,

N∗(Xκ , L) = eLh∗top(f ) +OL(ε), (7.22)

where the term OL(ε) depends also on L, as indicated by the subindex, and OL(ε) →
0 when ε → 0 (or ‖κ‖ → 0).

On the other hand, we already know that the number of possible ordinal
L-patterns, |SL| = L!, grows superexponentially with L, (3.8). We conclude from
(7.22) that the symbolic dynamics Xκ has forbidden patterns whenever h∗top(f ) exists
and is finite. Then, the same must happen with maps, since their dynamic can be
approximated by symbolic dynamics.

Theorem 17 Let D ⊂ R
q be a simple domain and f : D → D a map. Then

lim‖κ‖→0
N∗(Xκ , L) = |PL| ,

where we use the notation |PL| as in (7.21) for the number of admissible ordinal
L-patterns for f .

Proof We claim that the admissible L-patterns for f will coincide with the admissi-
ble L-patterns for the corresponding symbolic dynamics Xκ with respect to a quasi-
box partition κ = {Kj}1≤j≤|κ| in the limit ‖κ‖ → 0. Indeed, if x ∈ D is of type
π ∈ SL, the only way that the length-L word x, f (x), . . . , f L−1(x) does not define π

when observed with the precision set by κ is that at least two letters, say f i1 (x) and
f i2 (x), 0 ≤ i1 < i2 ≤ L − 1, fall in the same bin Kj0 ∈ κ , since then we cannot
discern the order relation between both letters. But this will not happen when κ is
so fine that x, f (x), . . . , f L−1(x) fall in different bins. We conclude that the number
of such discrepancies will diminish as the partition κ gets finer, and finally vanish
in the limit ‖κ‖ → 0. �

Theorem 17 and (7.22) imply the following result.
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Corollary 8 The number of allowed L-patterns of self-maps f of q-dimensional
simple domains grows asymptotically with L as

|PL| ∼ eLh∗top(f ), (7.23)

provided h∗top(f ) exists and is finite.

The same conclusion follows directly from (7.19) when h∗top(f ) is replaced by
h∗BKP

top (f ) in (7.23) for one-dimensional interval maps. Since calculating h∗top(f )
requires in practice the calculation of the growth rate with L of the allowed
L-patterns for f , we use Theorems 15 and 16 to provide more natural conditions
for (7.23).

Corollary 9 Let D ⊂ R
q be a simple domain and f : D → D a map with

htop(f ) < ∞. (i) If q = 1 and f is piecewise monotone or (ii) q ≥ 2 and f is
positively expansive, then

|PL| ∼ eLhtop(f ).

Corollary 9 provides sufficient conditions for the existence of forbidden ordinal
patterns since, as already pointed out in some previous passages, the number of
possible ordinal L-patterns grows superexponentially with L: |SL| = L!. In more
quantitative terms, forbidden patterns proliferate in these two cases as (see (3.8))

|{Pπ = ∅:π ∈ SL}| ∼ L! − eLhtop(f ) = eL ln L
(

1− e−L( ln L−htop(f ))
)

.

It is an open problem to find a more general condition than expansiveness in higher
dimensional dynamics for the existence of forbidden pattern. Numerical simula-
tions support the existence of forbidden patterns also for non-expansive multi-
dimensional maps (see next section).

Apart from the superexponential scaling law with L, it is quite difficult to make
more specific statements on the forbidden patterns for a map like, for instance, the
minimal length of its forbidden patterns or the lengths of its root forbidden patterns.
One important exception is the shift and signed shift transformations (and all order-
isomorphic maps) we studied in Chaps. 4 and 5.

Last but not the least, forbidden patterns, be in one-dimensional dynamics or in
higher dimensional dynamics, have the properties discussed in Sect. 3.4.

7.7 Numerical Simulations

We demonstrate numerical evidence for the existence of forbidden ordinal pat-
terns in multi-dimensional maps. Of course, direct simulation of dynamical sys-
tems directly yields only allowed ordinal patterns. The failure to observe any given
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ordinal pattern in any finite time series does not mean of course that it is forbid-
den (probability zero) but only that its probability is sufficiently low in the natural
measure induced by the dynamics that it has not yet been seen.

However, with reasonable L (as effort and memory increases radically with L)
and robust computational ability we can infer in many cases, the existence of forbid-
den patterns by examining the convergence of allowed patterns with N, the number
of data emitted by the source. In particular, we suggest examining the logarith-
mic ratio of the cardinality of all L-patterns to the number of observed L-patterns
log (L!/Pobs) vs log N. If a system has a “core” of forbidden patterns, as with deter-
ministic systems, then we expect that this ratio will decline with N and eventually
level off with increasing N, assuming the asymptotic behavior can be observed.
Here, Pobs is the naive, biased-downward, estimator of the unknown Pallowed, the
number of allowed L-patterns.

When N is much larger than Pallowed, Pobs is likely to be a good estimator, assum-
ing most patterns have a reasonable probability of occurring. With increasing L,
however, this is difficult to achieve practically because of memory limitations, as
the identities and counts of each observed patterns (a subset of the allowed patterns)
must be retained. The number of allowed patterns increases exponentially with L in
deterministic chaos and faster than exponentially with noise, and therefore one must
increase N, the number of iterates, substantially to permit a commensurately large
number of distinct patterns to be actually observed.

This motivates using a superior statistical estimator of Pallowed. This equivalent
problem has a significant history, motivated especially from the ecology community.
Consider a situation where one can observe a finite sample of individual organ-
isms, from a presumably large population. What is the estimated number of distinct
species, the biodiversity, and how can we estimate this given the individual counts of
observed species? (For reviews of approaches to this problem, see [41, 100].) This is
analogous to our situation where we can distinguish individual ordinal patterns but
each observation is drawn from the natural distribution induced by typical orbits of
the dynamical system. For our needs we wish to go reasonably deep into the under-
sampled regime and impose few probabilistic priors. We adopt the non-parametric
estimator of Chao [49], motivated by comments in the reviews and our experience,
as a simple but reasonably effective improvement:

PChao = Pobs + c2
1

2c2
2

, (7.24)

where ck are the “meta-counts” of observations, i.e., c1 is the number of distinct
ordinal patterns which were observed exactly once in the sample, c2 the number
which were observed exactly twice, etc. In practice this is accomplished by count-
ing frequencies of observed patterns through a hash table and in a second phase,
counting the frequencies of such frequencies with a similar hash table. Note that if
the sample size is particularly small (relative to what is necessary to see a substantial
fraction of allowed patterns), PChao will still be an underestimate. Consider that its
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maximum value is obtained with c1 = N − 1 and c2 = 1, i.e., one doubleton and
all remaining observations being unique (all unique naturally leads to an undefined
estimate), and so PChao is bounded by (P2

obs + 1)/2. Bunge and Fitzpatrick [41]
call PChao to be an “estimated lower bound.” We believe that no statistical estimator
can perform well in the extremely undersampled regime and there is no substitute
for substantial computational effort when L becomes sufficiently large; however, we
will see an improvement over the naive estimator.

Our first numerical example is Arnold’s cat map:

xi+1 = xi + yi mod 1,
yi+1 = xi + 2yi mod 1.

As a hyperbolic toral automorphism, this is an expansive transformation [115]. We
start with initial conditions drawn uniformly in [0, 1) × [0, 1) and iterate. Ordinal
patterns are computed using order relations on the x-coordinate only; since coin-
cidences in the x-coordinate are unlikely, this amounts in practice to using lexico-
graphic order in [0, 1) × [0, 1). Figure 7.3 shows the strong numerical evidence for
forbidden patterns characteristic of deterministic systems. As a demonstration of
the genericity of the results, Fig. 7.4 shows the equivalent except that the observable
upon which ordinal patterns were computed is 3x3 − y. Results are nearly identical,
as one expects.
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Fig. 7.3 Convergence of estimated forbidden patterns with N, cat map. Circles (o) are for Pallowed
estimated by Pobs, asterisks (*) have Pallowed estimated by PChao. Top, L = 10, bottom L = 14.
Both figures show clear evidence of convergence to a constant, evidence of true forbidden patterns
as N →∞. In the lower figure especially, the improved estimator PChao “senses” the approach to
a convergence earlier than the naive counting estimator. Note the differing scales on the y-axes
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Fig. 7.4 Convergence of estimated forbidden patterns with N, cat map, alternative observable.
Circles (o) are for Pallowed = Pobs, asterisks (*) have Pallowed = PChao. Top, L = 10, bottom
L = 14. Both figures show clear evidence of convergence to a constant, evidence of true forbidden
patterns as N → ∞. In the lower figure especially, the improved estimator PChao “senses” the
approach to a convergence earlier than the naive counting estimator. Note the differing scales on
the y-axes

By comparison, consider Fig. 7.5, generated by an i.i.d. noise source (ordinal
patterns are insensitive to changes in distribution). Here, the observed patterns imply
convergence to zero forbidden patterns with increasing N. More remarkably, the
estimator PChao senses this long before and predicts zero forbidden patterns with
orders of magnitude lower than N, apparently because the assumptions made by the
estimator of equiprobable patterns for both observed and unobserved are exactly
fulfilled.

As an example of a non-expansive map, we turn to a chaotic system, the Hénon
map,

xi+1 = 1− ax2
i + byi,

yi+1 = xi,

with a = 1.4, b = 0.3, observable being the x-coordinate. This map is not uni-
formly hyperbolic (it has two fixed points, one attractive and one repellent), more
characteristic of real dynamics seen in nature. (The Hénon map is non-expansive
for “almost all” values of the parameter a [154].) In Fig. 7.6, we see convergence
to a finite core of forbidden patterns with larger N. Note that the performance of
PChao is still improved over the naive estimator but it is not as good as with noise,
because with real dynamics there is a wide variation in the probability of the various
allowed patterns, and so larger N feels the “tail” of the distribution of rare patterns.
By comparison consider Fig. 7.7, which shows results from the same dynamics but
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Fig. 7.5 Convergence of estimated forbidden patterns with N, i.i.d. noise. Circles (o) are for
Pallowed = Pobs, asterisks (*) have Pallowed = PChao. Top, L = 8, bottom L = 10. Pobs shows
convergence to zero forbidden patterns; PChao estimates zero forbidden patterns well before con-
vergence of naive estimator
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Fig. 7.6 Convergence of estimated forbidden patterns with N, Hénon map. Circles (o) are for
Pallowed estimated by Pobs, asterisks (*) have Pallowed estimated by PChao. Top, L = 12, bottom
L = 19. Both naive and improved estimators show convergence to a finite number

each observable was contaminated with uniform i.i.d. noise η ∈ [0, 0.2). This time,
increasing N clearly shows increasing allowed/decreasing forbidden patterns, pro-
portional to N as expected with noise. As a matter of fact, arbitrarily small noise
will eventually lead to noise-like scaling, but the size of the word necessary to
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Fig. 7.7 Lack of convergence of estimated forbidden patterns with N, Hénon map with additive
i.i.d. noise. Circles (o) are for Pallowed = Pobs, asterisks (*) have Pallowed = PChao. Top, L = 12,
bottom L = 14. Both naive and improved estimators show continued increase in allowed patterns
(decrease in forbidden patterns) with increasing N

see this (and consequently the size of the data set necessary to see the effect) will
grow astronomically. If the noise support is bounded (or, we conjecture, thin-tailed),
then fairly small noise levels will not be visible in the ordinal patterns if they are
substantially smaller than typical sizes of xi − xj for 1 ≤ j ≤ L, and hence will
not change the patterns. The behavior with N clearly distinguishes low-dimensional
dynamics from noise.

As a philosophical point it is true that the “noise” generator in a computer soft-
ware is but a deterministic dynamical system on its own, but in practice it has an
extremely long period and virtually no correlation, and hence if one wanted to see
ordinal pattern scaling different from true noise, one would need exceptionally long
L and impractically astronomical memory requirements. We use a validated high-
quality random number generator [148] from the Boost C++ library.



Chapter 8
Discrete Entropy

From a mathematical point of view, entropy made its first appearance in continuous-
time dynamical systems (more exactly, in Hamiltonian flows), and from there it
was extended to quantum mechanics by von Neumann, to information theory by
Shannon, and to discrete-time dynamical systems by Kolmogorov and Sinai. In all
these cases we observe that (i) if the state space is discrete and/or finite (like in
quantum mechanics and finite-alphabet information sources), then the evolution is
random and (ii) if the evolution is deterministic (like in continuous- and discrete-
time dynamical systems), then the state space is infinite. Still today one speaks of
random dynamical systems in the first case and of deterministic dynamical systems
in the second case. But not all dynamical systems of interest fall under one of the
previous categories. An important example of a deterministic physical system where
both state space and dynamics are discrete is a digital computer; this entails that
any dynamical trajectory in computer becomes eventually periodic—a well-known
effect in the theory and practice of pseudo-random number generation. Dynamical
systems with discrete and even with a finite number of states have been considered
by a number of authors, in particular in the development of discrete chaos [125]—an
attempt to formalize the idea that maps on finite sets may have different diffusion
and mixing properties. From this perspective, it seems desirable to export some
concepts and tools from the general theory to this new setting. This is the rationale
behind, e.g., the discrete Lyapunov exponent [124, 125].

The topic of this chapter is precisely the extension of entropy to maps on finite
sets—a concept we call discrete entropy. When going from the conventional frame-
work to considering maps F on sets S with cardinality |S| < ∞ (and, eventually,
an atomic measure), one main difficulty arises at the very beginning: the entropy
of F with respect to any partition of S vanishes, rendering null entropy. It is not
clear how to modify the concept of entropy while still gauging the “randomness”
generated by F on S in the limit |S| → ∞. Thanks to its combinatorial nature, per-
mutation entropy lends itself especially well to the methods of discrete mathematics,
allowing in fact to define a discrete entropy concept (Sect. 8.1). The definition of
discrete entropy can then be justified by showing that, for a large class of maps, the
discrete entropy converges to the measure-theoretic entropy in the “infinite” limit
(Sect. 8.2). More precisely, let f :Id → Id be a d-dimensional interval map, which
is ergodic with respect to a measure μ, and let FM be a permutation on M elements

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_8,
C© Springer-Verlag Berlin Heidelberg 2010
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obtained from f via discretization and orbit truncation (see Sect. 8.2 for details).
Then limM→∞ hδ(FM) = hμ(f ), where hδ(FM) is the discrete entropy of FM , and
hμ(f ) is the metric entropy of f with respect to μ. An alternative approach using
topological entropy is also possible and will be discussed in Sect. 8.3.

Apart from their role as entropy-like tools of discrete chaos, metric and topolog-
ical discrete entropy can be viewed also as estimators of the corresponding “contin-
uous” counterpart, thanks to the infinite limit mentioned above. This more practical
side of discrete entropy is somewhat hampered by the fact that discrete entropy
requires large amounts of data to converge—albeit a property shared with most of
the entropy estimators.

8.1 Discrete Entropy

Let A = {a1, . . . , aL} be a finite set endowed with a linear ordering ≤, F:A → A a
bijection, and π = 〈π0, . . . , πn−1〉 ∈ Sn, 2 ≤ n ≤ L. Define

Qπ (n) = {a ∈ A:Fπ0 (a) < · · · < Fπn−1 (a)
}

(8.1)

and

qπ (n) = |Qπ (n)|∑
τ∈Sn

|Qτ (n)| (8.2)

if
∑

τ∈Sn
|Qτ (n)| �= 0 (in which case,

∑
π∈Sn

qπ (n) = 1) and qπ (n) = 0 otherwise.
We shall drop the argument n of Qπ and qπ when it is clear from the context that
π ∈ Sn. We say that a ∈ A defines the ordinal pattern π ∈ Sn if s ∈ Qπ .

Without restriction we take A = {0, . . . , L − 1} with the natural order inherited
from N0. Then we write the permutation F as in (1.22),

F = [F(0), F(1), . . . , F(L− 1)].

On the other hand, F can also be written as a product of cycles. As in Sect. 2.4, we
denote by (i1, i2, . . . , in) the cycle i1 	→ F(i1) = i2 	→ · · · 	→ F(in−1) = in 	→
F(in) = i1 of length n. If F = (i1, . . . , iL) (i.e., a cycle of maximal length), we say
that F is irreducible, otherwise it is reducible.

In view of (6.17), we introduce the following concept.

Definition 4 The discrete entropy of F of order n ≥ 2, is

h(n)
δ (F) = − 1

n− 1

∑

π∈Sn

qπ log qπ .

The subscript δ stands for “discrete” but also for “Dirac measure” on A. Observe
that (i) a ∈ Qπ (n) as long as n ≤Per(a), the period of a and (ii) alternatively, one
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can take the truncated orbits orb(a) = {a, F(a), . . . , Fp−1(a)}, with p =Per(a), and
normalize the count of a’s defining the ordinal pattern π ∈ Sn for n = 2, . . . , pmax =
maxa∈A{Per(a)}.

So to speak, h(n)
δ (F) senses the mixing properties of F in the short run 1 ≤

n ≤ pmax—before periodicity sets in on the whole “phase space” A. This is the
timescale we are interested in. This explains also why we do not allow for repetition
of symbols and use strict order in (8.1) instead of ranks. In the infinite limit L →∞
(Sect. 8.2) it makes no difference, but for finite L we want to switch off periodicities.

Let us tackle this discretization of entropy by considering first some special cases.
Case 1. If F = (i1, i2, . . . , iL), then each a ∈ A defines permutations π ∈ Sn

for 2 ≤ n ≤ L, the corresponding sets Qπ (n) building thus partitions of A, and
we can write down a whole hierarchy of entropies of orders 2, . . . , L. In particular,
qπ (L) = 1/L if Qπ �= ∅, so

h(L)
δ (F) = 1

L− 1
log L.

As a result, h(L)
δ (F) and possibly other entropies of lower orders cannot discriminate

two permutations of the same maximal length L.

Example 17 For the right shift modulo L − 1, defined as θL(i) = i + 1 for i =
0, 1, . . . , L− 2 and θL(L− 1) = 0, i.e.,

θL = (0, 1, . . . , L− 1), (8.3)

we get

h(n)
δ (θL) = L− n+ 1

L(n− 1)
log

L

L− n+ 1
+ 1

L
log L (8.4)

for 2 ≤ n ≤ L. In particular, for L = 4 we have

h(2)
δ (θ4) = 0.811, h(3)

δ (θ4) = 0.750, h(4)
δ (θ4) = 0.667,

in bit/symbol.
Case 2. On the opposite (non-trivial) end, let F = (i1, i2)(j1, j2) · · · (k1, k2) with,

say, i1 < i2, j1 < j2, . . . , k1 < k2. In this case, every a ∈ A defines only one
ordinal pattern of order 2, the symbols i1, . . . , k1 belonging to Q〈0,1〉 and the symbols

i2, . . . , k2 to Q〈1,0〉. Hence, q〈0,1〉 = q〈1,0〉 = 1/2 and h(2)
δ (F) = 1; entropies of higher

order are not defined (Qπ (n) = ∅ for n ≥ 3).
In general, F = (i1, . . . , ip1 )(j1, . . . , jp2 ) . . . (k1, . . . , kpr ) with 1 ≤ p1, . . . , pr ≤ L

(pi = 1 for the fixed points), p1 + · · · + pr = L and pmax := max{p1, . . . , pr} ≥ 2
(otherwise, F is the identity). If the symbol a ∈ A appears in a cycle of length p,
then a defines ordinal patterns of order 2, 3, . . . , p. Hence, F has entropies of order
2, 3, . . . , pmax, although from some order on (depending on F), both the number and
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cardinality of the sets Qπ (n) will decrease with n, rendering their contribution less
and less significant.

Let us mention in passing that the normalized expected maximum cycle length
of a random permutation of L symbols tends to 0.62432 . . . as L →∞, a result first
observed experimentally by Golomb [86] and proved by Shepp and Lloyd [187]. So,
we expect on average

hpmax
δ (F) ≈ 1

0.6L− 1
log 0.6L.

Remark 3 By definition, the discrete entropy of order n and, thus, the discrete
entropy do not sense the presence of fixed points. For example, θL = (0, 1, . . . , L−1)
(Example 17) and FL+1 = (0, 1, . . . , L−1)(L) or FL+2 = (0, 1, . . . , L−1)(L)(L+1)
have the same entropies (8.4).

Example 18 Given a permutation FL of {0, 1, .., L− 1}, we call

λFL =
1

L− 1

L−2∑

i=0

log |FL(i+ 1)− FL(i)| ,

the discrete Lyapunov exponent [125] of FL. If L = 2l, it can be proved [13, Thm.
II.2] that λF2l is maximal for the permutation

�2l = [l, 0, l+ 1, 1, l+ 2, 2, . . . , 2l− 1, l− 1], (8.5)

in which case

λF2l ≤ λ�2l =
l

2l− 1
ln l+ l− 1

2l− 1
ln (l+ 1).

For l = 2 we get

h(2)
δ (�4) = 1, h(3)

δ (�4) = 1, h(4)
δ (�4) = 0.667,

in bit/symbol. Comparison with Example 17 shows that h(n)
δ (θ4) ≤ h(n)

δ (�4) for n =
2, 3, 4. In particular, the smaller orders n = 2, 3 show that �4 is more “random”
than θ4.

The possibly simplest way to encapsulate in a single number the information
contained in the whole hierarchy h(2)

δ (F),. . . , h(nmax)
δ (F), nmax = max{n:h(n)

δ (F) �= 0},
without having to dissect F into cycles, is taking the arithmetic mean of it.

Definition 5 We call

hδ(F) = 1

nmax − 1

nmax∑

n=2

h(n)(F) (8.6)

the discrete entropy (or just the entropy) of F.
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Hence, hδ(F) takes into account both high and, most importantly, low and mid-
dle orders on an equal footing. Indeed, although the number of summands in
h(n)
δ (F) grows as n!, the sum of the non-zero terms (before getting multiplied by

1/(n − 1)) actually scales linearly in n, rendering the different h(n)
δ (F) of compa-

rable magnitudes. Moreover, if we let formally nmax → ∞ (the limit of ordered
sets with arbitrary cardinality), we recover the usual definition of entropy, hδ(F) =
limn→∞ h(n)

δ (F), since a convergent sequence and the arithmetic mean of their suc-
cessive terms (Césaro mean) have the same limit.

Example 19 In cryptography, any substitution on n-bit blocks is called an n×n S-box
(for “substitution box” ). The cryptographic security of S-boxes can be analyzed
with a variety of tools. Consider, for instance, the 4 × 4 S-boxes defined by the
permutations

F1 = [15, 12, 2, 1, 9, 7, 10, 4, 6, 8, 5, 11, 0, 3, 13, 14]

= (0, 15, 14, 13, 3, 1, 12)(2)(4, 9, 8, 6, 10, 5, 7)(11)

and

F2 = [8, 2, 4, 13, 7, 14, 11, 1, 9, 15, 6, 3, 5, 0, 10, 12]

= (0, 8, 9, 15, 12, 5, 14, 10, 6, 11, 3, 13)(1, 2, 4, 7).

The action of the corresponding S-box on the binary block b1b2b3b4 is identified
with the action of F1 or F2 on the number b123 + b222 + b321 + b4 ∈ Z16. F1
and F2 share some standard properties of secure S-boxes, like being 0/1 balanced,
nonlinear, and fulfilling the maximum entropy criterion [172]. But from the dis-
crete entropy point of view, they are quite different. The discrete entropies of F1 in
bit/symbol are

h(2)
δ (F1) = 0.99, h(3)

δ (F1) = 1.04, h(4)
δ (F1) = 0.96,

h(5)
δ (F1) = 0.84, h(6)

δ (F1) = 0.70, h(7)
δ (F1) = 0.58,

and hδ(F1) = 0.85. The discrete entropies of F2 in bits/symbol are

h(2)
δ (F2) = 0.99, h(3)

δ (F2) = 1.08, h(4)
δ (F2) = 1.17,

h(n)
δ (F2) = 3.59/(n− 1) for n = 5, . . . , 12

and hδ(F2) = 0.68. Thus F1, with a more even cycle decomposition than F2, has
a higher discrete entropy. Whether discrete entropy is useful for S-box design is an
open problem in discrete chaos [125].

Exercise 12 A primitive root for a modulo m is a cyclic generator of Z
∗
m, the multi-

plicative group built by the residues modulo m coprime to m. Prove that the permu-
tation �2l, (8.5), is irreducible if and only if 2l + 1 is a prime with primitive root 2
(i.e., Z

∗
2l+1 is cyclic and generated by 2). The primes under 100 with primitive root

2 are the following [2, Table 24.8]:
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3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, and 83.

(Hint: consider the permutation �̃2l:{1, 2, . . . , 2l} → {1, 2, . . . , 2l} defined as �̃2l(i) =
�2l(i− 1)+ 1 and show that

orb(1) = {2k mod (2l+ 1):0 ≤ k ≤ 2l− 1}

under the permutation (�̃2l)−1).

8.2 The Infinite Limit

Next we want to establish a more quantitative link between “continuous” and dis-
crete entropies. The transition from the former to the latter proceeds over the dis-
cretization and truncation of orbits.

For simplicity, we will consider an ergodic map f on the unit interval I = [0, 1]
endowed with the Borel sigma-algebra, preserving a measure μ. Without loss of
generality, let ι = {Ii:0 ≤ i ≤ 10k − 1}, with Ii = [i10−k, (i + 1)10−k) for 0 ≤
i ≤ 10k − 2 and I10k−1 = [1 − 10−k, 1], be a box partition of I with norm ‖ι‖ =
10−k. Therefore, the alphabet of the ensuing ergodic symbolic dynamic Xι of f with
respect to the partition ι is S = {0, 1, . . . , 10k − 1}. Furthermore, let {xj = f j(x0):j ≥
0} be a generic trajectory. Given x0 and ‖ι‖, there is a maximal M ≤ |S| = 10k such
that all points in the initial segment {xj = f j(x0):0 ≤ j ≤ M−1} fall in different bins
Ii of the partition ι, hence Sι

i(x0) �= Sι
j(x0) for all 0 ≤ i, j ≤ M − 1 and i �= j. This

allows us to define a permutation (actually, a cycle) FM on SM = {0, 1, . . . , M − 1}
in the following way. First, arrange the symbols sn = Xι

n(x0) ∈ S, 0 ≤ n ≤ M − 1,
according to their sizes,

sn0 < sn1 < · · · < snM−1 . (8.7)

Then define

FM(i) = j ⇔
{

(i) ni �= M − 1 and sni+1 = snj or
(ii) ni = M − 1 and n = M − 1.

By construction, FM is order isomorphic (Definition 1) to the permutation F̃M:S →
S defined as

F̃M(sn) =
{

sn+1 for n = 0, . . . , M − 2,
s0 for n = M − 1.

Note that F̃M is a coarse-grained version of f , conveniently “short circuited” at the
last orbit point by sending it back to the first one. Let φ:(S, < ) → (SM , < ) be the
order isomorphism sni 	→ i (so, F̃M = φ−1 ◦FM ◦φ). In particular, if si = snk(i) then

si and nk(i) define the same ordinal patterns of lengths l = 2, . . . , M under f̃M and
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FM , respectively. With ‖ι‖ → 0, it follows that xi ∈ I, si ∈ S, and nk(i) ∈ SM define
the same ordinal patterns π ∈ Sl for arbitrarily long l.

On the other hand, since the map f :I → I is ergodic with respect to the measure
μ, its entropy and permutation entropy can be determined from a typical trajectory,
i.e., except for a set of initial conditions of measure zero. To be specific, let (i) SN0

be the sample path space of the ergodic process Xι, (ii) mι the measure induced by
μ on SN0

m = μ ◦�−1

(see (B.22)), where �:I → SN0 is the coding map (1.6) with respect to the partition
ι, and (iii) � the shift transformation (1.8). Furthermore, for L ≤ M and π ∈ SL set

Pπ = {s∞0 ∈ SN0 :sπ0 < sπ1 < · · · < sπL−1} ∈ PL

(notation as in (3.4) and (3.5)), and

Qπ = {i ∈ SM:Fπ0
M (i) < · · · < FπL−1

M (i)}

(notation as in (8.1)). Observe that in virtue of the order isomorphy φ between the
permutations F̃M and FM , s∞0 ∈ Pπ if and only if φ(s0) ∈ Qπ .

More generally, consider the shift � on the sequences s∞0 ∈ SN0 . Then �n(s∞0 ) =
(sn, sn+1, . . . ) ∈ Pπ , 0 ≤ n ≤ M−L, if and only if φ(sn) ∈ Qπ , π ∈ SL. Apply now
the ergodic theorem (Theorem 21) to the dynamical system (SN0 ,B�(S), mι, �) to
conclude that, for any ε1 > 0, there exists a uniform partition ι0 of I such that

∣∣∣∣∣mι(Pπ )−
∣∣{�n(s∞0 ) ∈ Pπ :0 ≤ n ≤ M − L}∣∣

M − L+ 1

∣∣∣∣∣ < ε1

for all π ∈ SL and almost all s∞0 ∈ SN0 , if ‖ι‖ ≤ ‖ι0‖ (and, consequently, M ≥ M0).

The greater the window size L, the greater the sample size M − L + 1 (hence, the
greater M) we need to estimate mι(Pπ ) with the same precision. Furthermore,

∣∣∣∣∣qπ (L)−
∣∣{�n(s∞0 ) ∈ Pπ :0 ≤ n ≤ M − L}∣∣

M − L+ 1

∣∣∣∣∣ < ε2, (8.8)

where, similar to (8.2),

qπ (L) = |Qπ (L)|∑
π∈SL

|Qπ (L)| =
|Qπ (L)|

M
(8.9)

(since FM is a cycle of length M), and the error ε2 = O(1/(M − L)) stems from
the different denominators in (8.8) and (8.9), and also from the last L − 1 points
sM−L+1, . . . , sM−1, whose size-L windows stretch outside the orbit segment sM−1

0 .
All in all,
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∣∣∣h∗((Xι)L−1
0 )− h(L)

δ (FM)
∣∣∣

= 1

L− 1

∣∣∣∣∣∣

∑

π∈SL

mι(Pπ ) log mι(Pπ )−
∑

π∈SL

qπ log qπ

∣∣∣∣∣∣

≤ 1

L− 1

(
ε1 |PL| log |PL| + O

(
1

M − L

)
|PL| log |PL|

)

+ terms of higher order in M and L,

i.e., the permutation entropy of order L � M of the process Xι coincides approxi-
mately with the discrete entropy of order L of FM , the permutation of {0, 1, . . . , M− 1}
obtained from f in the way explained before.

The first term of the error,

e1 = ε1

L
|PL| log |PL| ,

can be made arbitrarily small by taking M sufficiently large. In fact, since |PL| =
O(LL+1/2e−L) = O(eL( ln L−1)+(1/2) ln L) (in general, a rough estimate), it suffices to
take (a) M ≥ max{M0,− ln ε1/ ln L} to derive e1 = o(L−(M−L)). As for the second
term,

e2 = 1

L− 1
O

(
1

M − L

)
|PL| log |PL| ,

we need (b) M−L > O(LL+1/2e−L ln L), i.e., M−L > O(eL( ln L−1)+(1/2) ln L+ln ln L),
to make e2 vanish when M, L →∞. Therefore if we set, say, M = CeL ln L =: ϑ−1(L)
with C > 0 large enough so that (a) is also fulfilled, then

1

ϑ(M)− 1

ϑ(M)∑

n=2

∣∣∣h∗((Xι)n−1
0 )− h(n)

δ (FM)
∣∣∣ ≤ e(M, ϑ(M)),

where e(M, L) = e1 + e2 + terms of higher order in M and L, and e(M, ϑ(M) → 0
when M →∞. Letting now ‖ι‖ → 0 (hence M →∞), we get

h∗μ(f ) = lim‖ι‖→0
h∗(Xι) = lim

M→∞ hδ(FM),

provided h∗μ(f ) exists. Since f is ergodic by assumption, Theorem 10 implies

lim
M→∞ hδ(FM) = hμ(f ). (8.10)



8.2 The Infinite Limit 155

A final caveat. We have supposed that Of (x0) was generic for μ. In order to avoid
that different orbits lead to (8.10) with different (ergodic) measures, we suppose
furthermore that f is uniquely ergodic (i.e., f is continuous and it has only one
invariant measure, see Sect. A.1).

This proves the one-dimensional version of the following theorem.

Theorem 18 Let I ⊂ R be a closed interval and f :I → I a uniquely ergodic map.
Furthermore, let FM be the permutation of {0, 1, . . . , N − 1} obtained from f in
the way explained above. Then limM→∞ hδ(FM) = hμ(f ), where μ is the only f -
invariant Borel measure on I and hμ(f ) is the metric entropy of f with respect to μ.

The proof of the general case is analogous to the one-dimensional case.
Theorem 18 justifies calling hδ discrete entropy.

Example 20 In the following numerical simulations, we have used M = 500, 000
and 2 ≤ L ≤ 9. Figure 8.1 compares the discrete entropy with the Lyapunov expo-
nent for the one-dimensional quadratic maps

fa(x) = ax(1− x), 0 ≤ x ≤ 1, 3.5 ≤ a ≤ 4.0. (8.11)

Figure 8.2 compares the discrete entropy with the largest Lyapunov exponent for
the two-dimensional quadratic maps

Fig. 8.1 Discrete entropy (dashed line) for the one-dimensional quadratic maps (8.11). The dis-
crete entropy tracks the positive part of the Lyapunov exponent (bold line) with a uniform bias over
the parameter values
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Fig. 8.2 Discrete entropy (dashed line) for the two-dimensional quadratic maps (8.12). The dis-
crete entropy traces the positive part of the largest Lyapunov exponent (bold line) with a uniform
bias over the parameter values

fa(x, y) = (1− ax2 + 0.3y, x), 0 ≤ x, y ≤ 1, 1 ≤ a ≤ 1.4. (8.12)

We observe that in both cases, the discrete entropy follows the profile of the pos-
itive part of the corresponding Lyapunov exponent with an approximately constant
bias, due to the slow (and seemingly uniform) convergence of discrete entropy to its
continuous counterpart.

8.3 Discrete Topological Entropy

As a matter of fact, the previous approach to discrete entropy admits some vari-
ations, in both concept and implementation. We shall elaborate here only on one
of them, based on the topological permutation entropy of a piecewise monotone
one-dimensional interval map f :I → I (Sect. 7.4).

Given a permutation F on SM = {0, 1, . . . , M − 1}, define the partition of SM

Qn = {Qπ �= ∅:π ∈ Sn},
with Qπ = {s ∈ SM:Fπ0 (s) < · · · < Fπn−1 (s)} as in (8.1). Similar to (7.20) and
(7.19), we propose the following definition.

Definition 6 We call

h(n)
δ,top(F) = 1

n− 1
log |Qn|
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the discrete topological entropy of the permutation F of order n, and

hδ,top(F) = 1

nmax − 1

nmax∑

n=2

h(n)
δ,top(F)

(nmax = max{n:Qn �= ∅}) the discrete topological entropyof F.

In order to treat hδ(F), (8.6), and hδ,top(F) on the same footing, one could refer
to the first as discrete permutation entropy and write hδ,per(F) instead.

Let FM:SM → SM be the permutation obtained from f as explained in Sect. 8.2.
The analogue of Theorem 18 for discrete topological entropy holds as well.

Theorem 19 Let f :I → I be a uniquely ergodic and piecewise monotone map. Then
limM→∞ hδ,top(FM) = htop(f ).

Proof From the proof of Theorem 18, it follows that qπ → mι(Pπ ) for every π ∈
SL as ‖ι‖ → 0 (or M → ∞). Therefore, |Qn| = |Pn| in that limit, and we get
limM→∞ hδ,top = h∗top(f ) = htop(f ), the last equality following from Theorem 16. �

From

h(n)
δ,per(F) = − 1

n− 1

∑

π∈Sn

qπ log qπ ≤ 1

n− 1
log |Qn| = h(n)

δ,top(F)

for n = 2, 3, . . . , nmax, we deduce that the discrete topological entropy is an upper
bound of the discrete (permutation) entropy—the same as for their “continuous”
counterparts.

Example 21 For the permutation

F = [3, 5, 1, 7, 0, 6, 2, 4] = (0, 3, 7, 4)(1, 5, 6, 2),

we get

h(2)
δ,top(F) = log 2 = 1 bit/symbol,

h(3)
δ,top(F) = 1

2
log 6 = 1.2925 bit/symbol,

h(4)
δ,top(F) = 1

3
log 8 = 1 bit/symbol,

so that hδ,top(F) = 1.0975 bit/symbol. As for

�8 = [4, 0, 5, 1, 6, 2, 7, 3] = (0, 4, 6, 7, 3, 1)(2, 5),

permutation (8.5) on S8 = {0, 1, . . . , 7} with maximal discrete Lyapunov exponent,
we find
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h(2)
δ,top(�8) = log 2 = 1 bit/symbol,

h(3)
δ,top(�8) = 1

2
log 4 = 1 bit/symbol,

h(4)
δ,top(�8) = 1

3
log 6 = 0.8617 bit/symbol,

h(5)
δ,top(�8) = 1

4
log 6 = 0.6462 bit/symbol,

h(6)
δ,top(�8) = 1

5
log 6 = 0.5170 bit/symbol,

and hδ,top(�8) ≈ 0.8050 bit/symbol. Thus hδ,top(�8) < hδ,top(F). The same is true
for the discrete permutation entropy: hδ,per(�8) = 0.7968 bit/symbol < hδ,per(F) =
1.0833 bit/symbol.



Chapter 9
Detection of Determinism

In Chap. 2 we have illustrated the applications of ordinal patterns with four exam-
ples. In this chapter we present a further application, this time to the detection
of determinism in noisy time series. Following the common usage of the term in
applied science, “determinism” is meant here as the opposite to statistical indepen-
dence, hence it includes colored noise as well. This application hinges on two basic
properties of ordinal patterns: existence of forbidden patterns in the orbits of maps
(Sects. 1.2, 3.3, and 7.7) and robustness to observational noise (Sects. 3.4.3, and
9.1). We shall actually present two detection methods.

Method I is based on the number of missing ordinal patterns. It proceeds by
(i) counting the number of missing ordinal patterns in sliding, overlapping windows
of size L along the data sequence, (ii) randomizing the sequence, and (iii) repeat-
ing (i) with the randomized sequence. Is the result of step (iii) clearly greater than
the result of step (i), so may we conclude that the original noisy sequence has a
deterministic component.

Method II is based on the distribution of the visible ordinal patterns. This method
proceeds by (i) counting the number of ordinal patterns in sliding, non-overlapping
windows of size L along the data sequence and (ii) performing a χ2 test based
on the results of (i), the null hypothesis being that the data are white noise. Hold
the null hypothesis, so should all possible ordinal L-patterns be visible and evenly
distributed over sufficiently many windows, at variance with what happens in the
case of noisy deterministic data. In the latter case, the number of missing ordinal
patterns is higher, its decay rate with L is slower, and the distribution of patterns is
not necessarily uniform.

Both methods, as other applications of permutation entropy, are conceptually
simple and computationally fast for moderate values of L. But not only this: Method
II compares favorably to the popular Brock–Dechert–Scheinkman (BDS) indepen-
dence test when applied to time series projected from the attractors of the Lorenz
map and the time-delayed Hénon map. The bottom line is that determinism in noisy
multivariate time series can be detected by observing a single component, a possi-
bility that can come in handy in experimental situations.

Noisy univariate and multivariate time series have been intensively studied in the
last few decades [1, 112]. Depending on the noise level of the data, one can expect to
recover the full deterministic dynamics, to reconstruct the geometry of the noise-free
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signal in some appropriate space, or just to ascertain the existence of an underlying
determinism. The ordinal pattern-based methods described in this chapter falls in
the third category. As a compensation for such a seemingly modest accomplish-
ment, it has a remarkable success even with very high levels of noise. Besides the
BDS method, which is based on the correlation dimension, other detection methods
for determinism use the smoothness of the measure along reconstructed trajectories
[164], functionals of probabilistic distributions [176], or the Higuchi fractal dimen-
sion on Poincaré sections [85].

9.1 Dynamical Robustness Against Observational Noise

Ordinal patterns are robust against small additive perturbations on account of
being defined by inequalities. This property was called conditional robustness in
Sect. 3.4.3. Yet, this property alone would not explain the persistence of forbidden
patterns in the very noisy deterministic sequences that we are going to study in the
next section. It turns out that, in deterministic sequences, there is a second mecha-
nism for robustness, also in case of multi-dimensional maps—the dynamics itself.
The result is an enhancement of the robustness of ordinal patterns against additive
noise, which we call dynamical robustness. A simple explanation follows.

In the sequel we deal with a time series of the form

ξn = f n(x0)+ wn = xn + wn (9.1)

(n ∈ N0, or in practice 0 ≤ n ≤ N − 1), where f is a self-map of the interval
[a, b] ⊂ R and wn are independent and uniformly distributed random variables
(i.e., uniform white noise) in the interval [−η, η]. In order that the noise destroys a
given allowed or forbidden pattern π = 〈π0, . . . , πL−1〉 of the noise-free sequence
(xn)n∈N0 , it must happen that

xπi < xπi+1

but

xπi + wπi > xπi+1 + wπi+1

for some 0 ≤ i ≤ L − 2 and wπi , wπi+1 ∈ [−η, η]. If η is small, this will be
only possible if xπi ≈ xπi+1 , i.e., if f min{πi, πi+1}(x0) is an “approximately” periodic
point with period |πi − πi+1|. We conclude that, indeed, the dynamics imposes an
extra condition on xπi , xπi+1 so that a small amplitude perturbation can reverse their
order.

To put some numbers on this argument, take f (x) = 4x(1 − x), 0 ≤ x ≤ 1,
the logistic map. We know that for η = 0 this map has one forbidden 3 -pattern,
namely, 〈2, 1, 0〉 (Fig. 1.6). In other words, there exists no x ∈ [0, 1] such that
f 2(x) < f (x) < x. The pattern 〈2, 1, 0〉 can appear in the noisy sequence (9.1) by
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a single order reversal if the noise changes the order of xn, xn+1 or the order of
xn+1, xn+2 in the allowed patterns

xn+2 < xn < xn+1 or xn+1 < xn+2 < xn,

respectively. In the first case, this requires xn ≈ xn+1 = f (xn), i.e., xn must be close
to any of the two fixed points of the map: x = 0 or x = 3

4 (see Fig. 1.5). In the
second case, the same applies to xn+1 and xn+2 = f (xn+1). Therefore, it suffices to
discuss the first case.

Consider the fixed point x = 0 and take xn = δ > 0. Then xn+1 = f ′(0)δ +
Rδ2, where R can be estimated with the remainder of the Taylor series. Since ξn ∈
[xn− η, xn+ η] =: In, the inequality ξn+1 < ξn can be fulfilled only if the intervals
In and In+1 overlap, i.e., if

δ ≤ δ0(η) = 1− f ′(0)+√(1− f ′(0))2 + 8Rη

2R
. (9.2)

One can analogously estimate δ+(η) > 0 and δ−(η) > 0 such that if xn ∈ [ 3
4 −

δ−(η), 3
4 + δ+(η)], then xn is sufficiently close to x = 3

4 again in the sense that the
inequality ξn+1 < ξn can hold for η small.

Thus, the probability Pr (η) for two consecutive orbit points (xn, xn+1 or xn+1,
xn+2) to lie sufficiently close to either fixed point so as the pattern 〈2, 1, 0〉 becomes
observable in a noisy orbit of the logistic map by means of a single order reversal is

Pr (η) = μ([0, δ0(η)])+ μ([ 3
4 − δ−(η), 3

4 + δ+(η)]),

where μ is the natural invariant measure for the logistic map,

μ([c, d]) =
∫ d

c

dx

π
√

x(1− x)

(see (1.20)). To make the argument even simpler, observe that once two consecutive
orbit points in xn, xn+1, xn+2 are close to a fixed point, we may assume that the third
one is around as well. In this case, the type of ξn, ξn+1, ξn+2 is going to depend
basically on the type of wn, wn+1, wn+2.

Consider now a string of length N, ξN−1
0 = ξ0, ξ1, . . . , ξN−1, along with the

⌊N
3

⌋

independent random vectors ξn+2
n = ξn, ξn+1, ξn+2, n = 0, 3, 6, . . .. If we pick one

of those vectors, the probability Pr ( 〈2, 1, 0〉 ) that ξn+2 < ξn+1 < ξn holds is then

Pr (〈2, 1, 0〉) ≈ Pr (η) Pr {wn+2 < wn+1 < wn} )

= Pr (η) · 1

6
.

In order to verify these results, the probability P of finding at least once the
pattern 〈2, 1, 0〉 in any of the

⌊N
3

⌋
windows ξ3n, ξ3n+1, ξ3n+2 of the noisy time
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series (ξn)N−1
n=0 , (9.1), was calculated numerically. From the reasoning above, this

probability should be close to 1 − (1 − Pr (η)/6)
⌊N

3

⌋
for the logistic map contami-

nated with additive, uniform white noise of small amplitude η, whereas it should be

1− (1− 1/6)
⌊ N

3

⌋
for uniform white noise only (i.e., ξn = wn in (9.1)). Clearly, the

former probability is greater than the latter because Pr (η) is going to be very small.
This is confirmed by Fig. 9.1.

0 100 200 300 400 500
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0.2
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N

P

Fig. 9.1 Numerical computation (continuous line) and analytical estimation (dashed) of the prob-
ability P of finding the pattern 〈2, 1, 0〉 in any of the

⌊N
3

⌋
windows ξ3n, ξ3n+1, ξ3n+2 of a time

series of length N generated with the logistic map. The noise amplitude is η = 0.0001 (light gray),
η = 0.01 (gray), η = 0.1 (dark gray). The top curve corresponds to uniform white noise. Clearly
the probability P is smaller for a noisy, deterministic time series than for uniform white noise

9.2 Detection of Determinism I: Number of Missing Ordinal
Patterns

We already know (Sect. 1.2) that if (xn)n∈N0 is a univariate time series generated
by a piecewise monotone interval map f , then there exist ordinal patterns which are
forbidden for f . The theoretical situation in higher dimensions is less satisfactory
in that the existence of forbidden patterns has been proved so far only under the
somewhat restrictive condition of expansiveness (Sect. 7.6). There is nevertheless
numerical evidence that forbidden ordinal patterns are also a general feature of
higher dimensional dynamics. Since, on the other hand, univariate and multivariate
random sequences have no forbidden patterns with probability 1, we conclude that
the existence of forbidden patterns can be used as a fingerprint of deterministic orbit
generation. Here “random sequence” means generated by an unconstrained, stochas-
tic process taking on values in an interval. In summary, the difference between
deterministic and random time series is clear-cut from an ordinal-theoretical point
of view: the former have forbidden patterns while the latter have not.

However, when it comes to exploit this forbidden pattern-based strategy to detect
determinism, two important practical issues arise: finiteness and noise contamination.
Finiteness produces false forbidden patterns, that is, ordinal patterns which are
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missing in a finite (segment of a) random sequence without constraints. Noise
destroys forbidden patterns; for instance, a forbidden pattern of the “clean” sequence
can turn visible because of additive random fluctuations. Let us mention in passing
that were not for the observational noise, determinism could be easily ascertained,
for example, with graphical methods. It is therefore interesting that ordinal patterns
themselves provide the remedy to the two said issues. First of all, the number of false
forbidden patterns of a fixed length always decreases with the length of the time
series. Second, “true” forbidden patterns (i.e., forbidden patterns for an underlying
deterministic dynamics) possess an additional dynamical robustness against additive
noise (Sect. 9.1). This translates into a greater number of missing ordinal patterns in
a noisy deterministic sequence than in a random one, and also to a slower decay rate
with the length of the sequence. We shall shortly present numerical evidence that
forbidden patterns persist in very noisy deterministic data—so noisy that the tradi-
tional methods [1, 112, 152] fail to uncover the underlying deterministic dynamics.
But before coming to this point, let us dwell on some practical issues.

In practice one uses sliding windows of size L to comb a finite sequence (xn)N
n=0

for visible ordinal L-patterns. Note that a sequence of length N allows N − L + 1
windows of size L, for 2 ≤ L ≤ N. Thus, in order to allow every possible ordinal
pattern of length L to occur in a time series of length N, the condition L! ≤ N−L+1
must hold. Moreover, in cases where undersampling might occur, N , L! + L − 1
should also hold. As a rule of thumb we chose (L + 1)! ≤ N in the numerical
simulations below, although L! ≤ N would do also in our case (very noisy data).
Furthermore, (xn)N

n=0 will be initial segments of variable length N ≤ Nmax = 8000,

taken from a sequence (xn)Nmax
n=0 . All these constraints leave L = 4, 5, 6 as interesting

choices for L. In general one takes also moderate values for L, not least because of
the sharp increase of the function L!.

Under these provisos, suppose now that the ordinal pattern π ∈ SL is missing in
a finite noise-free time series. Of course, the odds that a false forbidden pattern per-
sists in a random or deterministic sequence (or sample of sequences) will decrease
exponentially with the number of data (see, e.g., Sect. 9.1). As a result, the number
of false forbidden patterns in (xn)N

n=0 will decay as N increases up to Nmax, the

number of data at our disposal. Otherwise, if (xn)Nmax
n=0 is a deterministic noise-free

time series and π is a forbidden pattern, then π will be missing in (xn)N
n=0 for all

N ≤ Nmax. In other words, the number of true forbidden patterns in (xn)N
n=0 does

not depend on N.
Consider a fixed initial condition x and suppose that πforb = 〈π0, . . . , πL−1〉 is

a forbidden pattern for f . Suppose furthermore that we switch on a discrete-time
random perturbation wk, |wk| ≤ wmax, such that πforb is still missing in the finite

sequence
(
f k(x)+ wk

)N−1
k=0 (due to robustness). Observe that the noisy time series

ξk = f k(x)+wk can be viewed both as a perturbation of an underlying deterministic
dynamics and as a random process correlated with the deterministic dynamics1 f .

1 Sometimes colored noise (i.e., a random process whose variables are statistically dependent) is
numerically simulated in this way. For other methods, see, e.g., [113, 83].
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If the orbit of x would be infinitely long, then the noisy time series had no missing
patterns and πforb would be visible with probability 1. In the finite-length case we are
considering, this is in general not the case; rather, there is a threshold θ = θ (N) (the
greater N, the smaller θ ) such that πforb will do appear in (ξk)

N−1
k=0 only if wmax > θ .

We conclude that amplifying a random perturbation destroys progressively the for-
bidden patterns of the underlying deterministic dynamic.

In the following we are going to test numerically one of the properties discussed
above, namely, the robustness of true forbidden patterns against additive random
perturbations. In order to estimate the average number 〈n(L, N)〉 of missing ordinal
L-patterns in a finite, noisy sequence of length N,

ξk = xk + wk, 0 ≤ k ≤ N − 1,

with xk+1 = f (xk) and wk a random process, we generate 100 samples of length
Nmax = 8000 and normalize the corresponding count of missing patterns of lengths
4 ≤ L ≤ 6. To check the decay of 〈n(L, N)〉 with N, this parameter is allowed to
vary in the range (L + 1)! ≤ N ≤ Nmax. We highlight next a few results obtained
with f being the logistic map and wk being white noise uniformly distributed in the
interval [−wmax, wmax], 0 ≤ wmax ≤ 1.

Figure 9.2 shows 〈n(L, N)〉 when (a) wmax = 0.25, (b) wmax = 0.50, and (c)
wmax = 1 and f k(x) = 0 (noise only), respectively. Note the different orders of
magnitude of the vertical scales. Needless to say, 〈n(L, N)〉 decays with increasing N
because the greater the N, the more unlikely that an L-pattern is missing in a noisy or
random sequence of length N; this is a statistical effect. The important features for us
are the magnitude of 〈n(L, N)〉 and its decay rate with N, since these two properties
are tightly related to the forbidden patterns of the underlying deterministic dynamic
via robustness: the smaller the wmax, the closer we are to the deterministic case,
therefore, the more missing ordinal patterns and the slower their decrease with N.
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Fig. 9.2 Average number of missing ordinal patterns of length L found in a time series of length
N, 〈n(L, N)〉, for noisy series of the logistic map with wmax = 0.25 (a), wmax = 0.5 (b), and for a
series of uniformly distributed noise (c)

Figure 9.3 depicts ξk+1 vs ξk in the previous cases (a) and (b). The higher order
of magnitude of, e.g., 〈n(6, N)〉 in Fig. 9.2(b) as compared to Fig. 9.2(c) signalizes
an underlying deterministic law, in spite of the fact that Fig. 9.3(b) hardly gives any
clue about this.
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Fig. 9.3 Return map for noisy time series from the logistic map with wmax = 0.25 (a) and
wmax = 0.5 (b). In the latter case, the high noise level does not allow to recognize the underlying
deterministic dynamics. However, the number of missing ordinal patterns is sensibly higher than
in the purely random case
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Fig. 9.4 Number of missing ordinal patterns of length L found in a noisy time series of the logistic
map with length 6000 vs the uniform noise amplitude wmax

Finally, Fig. 9.4 nicely illustrates the resistance of the true forbidden patterns to
disappear with increasing noise levels. In this figure, N = 6000, L = 5, 6, and
0 ≤ wmax ≤ 0.5.

These numerical simulations suggest the following simple-minded, three-step
method to discriminate noisy, deterministic, finite time series from random ones,
at least when the noise is white.

(a) Compute the number of missing ordinal L-patterns of adequate length (say
(L + 1)! ≤ N) in sliding windows along the sequence. It is convenient to
use segments of variable length N and to draw the corresponding curves, as
in Fig. 9.2.

(b) Randomize the sequence, i.e., change the temporal structure of the data in a
random way.

(c) Proceed as in step (a) with the randomized sequence.
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If the results of (a) and (c) are about the same, the sequence is very likely not
deterministic (or the observational noise is so strong as compared to the determin-
istic signal that the latter has been completely masked). Otherwise, the sequence
stems from a deterministic one. Needless to say, the method is more reliable if a sta-
tistically significant sample of sequences can be obtained, for instance, by cutting a
long sequence into shorter pieces. In the next section we discuss a more quantitative
method.

9.3 Detection of Determinism II: Distribution of Visible Ordinal
Patterns

Consider once more a univariate or multivariate time series of the form

ξn = f n(x0)+ wn, (9.3)

(0 ≤ n ≤ N − 1) where wn is white noise, i.e., outcomes of an independent and
identically distributed (i.i.d.) random process. In order to differentiate white noise
from a noisy deterministic time series of form (9.3), the perhaps simplest tool con-
sists in counting visible ordinal patterns before and after randomizing the time series
under scrutiny; depending on whether the number of visible patterns remains about
the same or decreases significantly, we may conclude that the series is random or
deterministic, respectively. This is the method discussed in Sect. 9.2.

A more quantitative method calls for performing a chi-square test based on the
count of visible ordinal patterns. The null hypothesis reads

H0: the ξn are i.i.d. (9.4)

From a statistical point of view, this method is going to be a test of independence
since the alternative to H0 includes also colored noise.

The method goes as follows. Take sliding windows of size L ≥ 2, overlapping at
a single point (i.e., the last point of a window is the first point of the next one) down
the sequence ξN−1

0 = ξ0, . . . , ξN−1. For brevity, we call them “non-overlapping”
windows. The number of such windows is

K =
⌊

N − 1

L− 1

⌋
, (9.5)

each comprising the entries

ek = ξkL−k, . . . , ξ(k+1)L−(k+1), 0 ≤ k ≤ K − 1.

Notice that if the variables ξ0, ξ1, . . . , ξN−1 are independently drawn from the same
probability distribution, then the ordinal L-patterns defined by the components of
ek ∈ R

L, which we denote by π (ek) ∈ SL, will also be independent and, moreover,
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uniformly distributed random variables. Therefore, if one or several ordinal patterns
are missing in a sample obtained using non-overlapping windows, this might be a
statistically significant signal that independence and/or the equality of the distribu-
tion are/is not fulfilled.

Given the non-overlapping windows {ek ∈ R
L : k ≥ 0} corresponding to an arbi-

trarily long time series {ξn : n ≥ 0}, suppose that some ordinal patterns of length L
are missing in the initial segment ξ0, ξ1, . . . , ξN−1. Let νπ be the number of ek’s
such that ek is of type π ∈ SL (i.e., π (ek) = π ). Thus, νπ = 0 means that the
L-pattern π has not been observed.

In order to accept or reject the null hypothesis H0, (9.4), based on our observa-
tions, we apply a chi-square goodness-of-fit hypothesis test with statistic [135]

χ2(L) =
∑

π∈SL

(νπ − K/L!)2

K/L!

= L!
K

⎛

⎝
∑

π∈SL

ν2
π − 2

K

L!
∑

π∈SL

νπ +
(

K

L!
)2 ∑

π∈SL

1

⎞

⎠

= L!
K

∑

π∈SL

ν2
π − 2K + K

= L!
K

∑

π∈SL : visible

ν2
π − K, (9.6)

since (i)
∑

π∈SL
νπ = K and (ii) νπ = 0 if π is missing. Here K/L! is the expected

relative frequency of an ordinal L-pattern, if H0 holds true. In the affirmative case,
χ2 = χ2(L) converges in distribution (as K →∞) to a chi-square distribution with
L! − 1 degrees of freedom. Thus, for large K, a test with approximate level α is
obtained by rejecting H0 if χ2 > χ2

L!−1, 1−α
, where χ2

L!−1, 1−α
is the upper 1 − α

critical point for the chi-square distribution with L! − 1 degrees of freedom [135].
In our case, the hypothetical convergence of χ2 to the corresponding chi-square
distribution may be considered sufficiently good if νπ > 10 for all visible L-patterns
π , and

K

L! > 5. (9.7)

Notice that since this test is based on distributions, it could happen that a deter-
ministic map has no forbidden L-patterns, thus νπ �= 0 for all π ∈ SL; however, the
null hypothesis be rejected because those νπ ’s are not evenly distributed.



168 9 Detection of Determinism

9.4 A Benchmark

A well-known benchmark for independence in time series is the Brock–Dechert–
Scheinkman (BDS) test [38, 193], which is based on the correlation dimension.
Since the numerical simulations below use the algorithm provided in [136], we
follow this reference for the basics of the BDS test.

Let Xt, t ≥ 1, be i.i.d. random variables, and

Iε(x, y) =
{

1 if |x− y| < ε,
0 otherwise.

The probability that two length-m vectors are within ε can be estimated by the cor-
relation sum

Cm, n(ε) = 2

n(n− 1)

n∑

s=1

n∑

t=s+1

m−1∏

j=0

Iε(Xs−j, Xt−j).

It is shown in [38] that

Wm, n(ε) = √n
Cm, n(ε)− Cm

1, n(ε)

σm, n(ε)

converges in distribution to a standard normal distribution. The normalization
σm, n(ε) is given by

σ 2
m, n(ε) = 4

⎡

⎣Bm + 2
m−1∑

j=1

Bm−jC2j + (m− 1)2C2m − m2BC2m−2

⎤

⎦ ,

where C is consistently estimated by C1, n(ε) and B can be estimated by

Bn(ε) = 6

n(n− 1)(n− 2)

n∑

t=1

n∑

s=t+1

n∑

r=s+1

hε(Xt, Xs, Xr),

hε(i, j, k) = 1

3

[
Iε(i, j)Iε(j, k)+ Iε(i, k)Iε(k, j)+ Iε(j, i)Iε(i, k)

]
.

A statistically significant non-zero value of Wm, n(ε) is evidence for determinism
in the univariate time series {Xt : t ≥ 1}.

This method relies on the selection of the parameters m and ε. Following the
usual procedure [140], we take ε = 0.9j with j = 0, 1 , 2, . . .. The criterion to say
whether a combination of m and ε is “adequate” call for evaluating if a random time
series is accepted as deterministic using this test the number of cases prescribed by
the significance level of the test α.
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9.5 Numerical Simulations

As underlying deterministic time series we use projections on the first coordinate of
orbits generated by the Lorenz and time-delayed Hénon maps (this amounts in prac-
tice to using the standard lexicographical order). The additive noise wn is modeled
as Gaussian white noise,

E(wm · wn) = σ 2δmn

(E stands for expectation value), with different standard deviations σ . Simulations
with uniformly distributed noise yield similar results.

Two kinds of results are going to be presented in the two next sections: (i) Plots of
the number of missing ordinal patterns as in Sect. 9.2 and (ii) plots of the distribution
of the χ2 statistic. Although the first ones provide only qualitative information, they
can eventually complement the information provided by the second ones, as we shall
see in the case of the Lorenz map. The specifics of plots (i) and (ii) are as follows.

(i) Let Nmax denote the length of the data sequence under scrutiny and let n(L, N)
be the number of missing L-patterns in the initial segment ξ0, ξ1, . . . , ξN−1 of
variable length N ≤ Nmax. The numbers n(L, N) are determined with over-
lapping sliding windows of sizes 4 ≤ L ≤ 7. In order to make the most of
sequences of length Nmax = 8000, we take this time

L! � N ≤ Nmax.

An average number 〈n(L, N)〉 is then estimated from 100 sequences.
(ii) Non-overlapping windows are used for the chi-square test of independence

based on the distributions of ordinal L-patterns, with statistic (9.6)

χ2 = χ2(L) = L!
K

∑

π∈SL : visible

ν2
π − K. (9.8)

Here, K =
⌊

N−1
L−1

⌋
is the number of non-overlapping windows of size L in a data

sequence of length N, (9.5). The window sizes in the simulations are L = 4, 5.
For L = 4, the acceptance/rejection thresholds of the null hypothesis (9.5) at levels
α = 0.10, 0.05 are

χ2
23, 0.90 = 32.01, χ2

23, 0.95 = 35.17, (9.9)

respectively. For L ≥ 5, corresponding to degrees of freedom over 100, the follow-
ing approximation for the thresholds χ2

L!−1, 1−α
is used [135]:

χ2
L!−1, 1−α ≈ (L! − 1)

(
1− 2

9(L! − 1)
+ z1−α

√
2

9(L! − 1)

)3

,
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where z1−α is the upper 1 − α critical point for the standard normal distribution,
N (0, 1); in particular, z0.90 = 1.282 and z0.95 = 1.645. Thus,

χ2
119, 0.90 = 139.15, χ2

119, 0.95 = 145.46. (9.10)

Remember from (9.7) that 5L! � K should hold for the chi-square test to be statis-
tically significant. Therefore

5L! � N

L− 1
,

i.e., N � 5(L − 1)L!. In consequence we take sequences of length N = 1000 for
L = 4 and N = 8000 for L = 5. To plot the χ2-value distribution, a sample of
10, 000 sequences was used.

The numerical results are summarized in the following two sections.

9.5.1 The Lorenz Map

The Lorenz map [193] is defined as

xn+1 = xnyn − zn, yn+1 = xn, zn+1 = yn. (9.11)

It has an attractor with Kaplan–Yorke dimension DKY = 2 [193]. Assuming the
well-tested Kaplan–Yorke conjecture DKY = D1, where D1 is the information
dimension, then the fractal dimension D0 satisfies

D0 ≥ D1 = 2.

Figure 9.5 shows the return map ξn+1 = xn+1 + wn+1 vs ξn = xn + wn for a
typical orbit of the Lorenz map on its attractor and additive Gaussian white noise
wn with σ = 0.25 (SNR2� 10 dB). The geometry of the attractor has been com-
pletely washed out by the noise, but the underlying determinism can still be detected
because of the different count of missing ordinal patterns before (Fig. 9.6) and after
(Fig. 9.7) switching off the deterministic signal. Not only the count of missing ordi-
nal patterns is different in these two cases, but also their decay rate with N. The
different behavior in Fig. 9.6 of the curve L = 4, on the one hand, and the curves
L ≥ 5, on the other hand, strongly indicates that the Lorenz map has no forbidden
4-patterns.

Figure 9.8 shows the distribution of the statistic χ2, (9.8), obtained from 10,000
projections xN−1

0 of orbits of the Lorenz map, contaminated with additive Gaussian
noise with σ = 0.25, 0.50 (SNR� 10, 4.0 dB, respectively). Since the rejection

2 SNR is short for “signal-to-noise ratio” and dB is short for “decibel.”
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Fig. 9.5 Return map for a time series of the Lorenz map contaminated with Gaussian white noise
with σ = 0.25 (SNR� 10 dB). The structure of the underlying chaotic attractor has been totally
blurred. However, the count of missing ordinal patterns is sensibly higher than in the purely random
case
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Fig. 9.6 Average number of missing ordinal patterns of length L found in a time series of
length N, 〈n(L, N)〉 (in logarithmic scale), for a noisy series of the Lorenz map with σ = 0.25
(SNR� 10 dB)

threshold of the null hypothesis H0 (9.4) at level α = 0.05 is χ2
23, 0.95 = 35.17 in

(a) and χ2
119, 0.95 = 145.46 in (b), see (9.9), the χ2 test clearly detects determinism.

It is worth noticing that the rejection of H0 in case (a) is due to the non-uniform
distribution of νπ since, according to Fig. 9.6, all 4-patterns are visible in noisy time
series generated by the Lorenz map with N � 500 and σ = 0.25.

Finally, the comparison with the BDS test is shown in Fig. 9.9. There we show
the probability P of rejecting the null hypothesis (9.4) for the 27 possible adequate
BDS tests on a time series ξN−1

0 = (xn + wn)N−1
n=0 of length N = 1000, where

now wn is Gaussian white noise with 0 ≤ σ ≤ 2. In the same figure it is also
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Fig. 9.7 Average number of missing ordinal patterns of length L found in a time series of
length N, 〈n(L, N)〉 (in logarithmic scale), for time series of Gaussian white noise with σ = 0.25

Fig. 9.8 Distribution N(χ2) of χ2 for 10, 000 noisy sequences generated with the Lorenz map, for
L = 4, N = 1000, σ = 0.25 (continuous line) and σ = 0.50 (dashed line) (SNR� 10, 4.0 dB,
respectively) (a) and for L = 5, N = 8000, σ = 0.25 (continuous line) and σ = 0.50 (dashed line)
(SNR� 10, 4.0 dB, respectively) (b)

plotted the probability P of rejecting the null hypothesis using the chi-square test
with the same level α = 0.05. Notice that the chi-square test correctly rejects the
null hypothesis with higher probability than the BDS test in the high-noise regime
(σ ≥ 1), and its performance is comparable to the best one of the BDS test in the
low-noise regime (σ ≤ 1). Put in a different way, the probability of a false positive
is higher with the BDS test. We conclude also from Fig. 9.9 that the BDS test per-
formance strongly depends on the combinations of ε and m; for some combinations,
this method wrongly accepts the null hypothesis even for small values of σ .

9.5.2 The Delayed Hénon Map

The time-delayed Hénon map [194] is defined as

xn = 1− ax2
n−1 + bxn−d, (9.12)
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Fig. 9.9 The continuous lines indicate the probability of rejecting the null hypothesis H0 (“the
time series is i.i.d.”) for a time series projected from the Lorenz map’s attractor, contaminated with
Gaussian white noise with σ up to σ = 2, when applying the BDS test with level α = 0.05. In
total, 27 tests for different combinations of ε and m were performed. The lighter the gray color is,
the bigger is the value of ε used (see text for details). The dashed line indicates the probability of
rejecting H0 when using the chi-square test based on missing ordinal patterns, with the same level
α = 0.05. The chi-square test correctly rejects the null hypothesis more often than the BDS test

where a, b are real constants and d ≥ 1. For d = 1, the time-delayed Hénon map is
equivalent to the logistic map xn+1 = Axn−1(1− xn−1), with [194]

A = b− 1

2a
± 1

2a

√
(b− 1)2 + 4a.

For d = 2 and a = 1.4, b = 0.3, we recover the familiar two-dimensional dissipative
Hénon map.

For a = 1.6 and b = 0.1, Sprott [194] finds the following linear relation between
DKY and d over the range 1 ≤ d ≤ 100:

DKY ∼= 0.192d + 0.699.

The Kaplan–Yorke conjecture implies now

D0 ≥ D1 = DKY ∼= 0.192d + 0.699

for the fractal dimension D0 of the attractor, 1 ≤ d ≤ 100. In particular, D0 ≥
1.083 for d = 2, D0 ≥ 10.299 for d = 50, and D0 ≥ 19.899 for d =
100. Thus, this family of maps provides attractors with a wide range of fractal
dimensions.

Figure 9.10 shows the return map ξn+1 vs ξn for a typical orbit on the attractor
of the time-delayed Hénon map with d = 50, both in the absence of noise, ξn = xn

(a) and corrupted with Gaussian white noise, ξn = xn + wn, with σ = 0.5 (SNR�
1.3 dB) (b). Again, the geometry of the attractor has been completely blurred by the
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Fig. 9.10 Return map for a time series of the time-delayed Hénon map with d = 50 in the absence
of noise (a) and contaminated with Gaussian white noise with σ = 0.5 (SNR� 1.3 dB) (b).
The structure of the underlying chaotic attractor has been totally blurred. Here again the count of
missing ordinal patterns is sensibly higher than in the purely random case

Fig. 9.11 Average number of missing ordinal patterns of length L found in a time series of
length N, 〈n(L, N)〉 (in logarithmic scale), for a noisy series of the time-delayed Hénon map with
σ=0.5 (SNR � 1.3 dB)

presence of the noise. However, it can be seen in Fig. 9.11 that also in this case, the
number of missing ordinal L-patterns found in a time series of length N, 〈n(L, N)〉,
is sensibly larger than in the white noise-only case, Fig. 9.7.

Figure 9.12(a)–(c) depicts the comparison of the chi-square test with the BDS
test for d = 2, d = 50, and d = 100, respectively. Again, the probability of a
false positive is higher with the BDS test. Since we are interested in the detection of
determinism, we may conclude that the chi-square test, based on the distribution of
visible ordinal patterns, is more reliable.

In conclusion, the (conditional+ dynamical) robustness against additive noise of
the forbidden patterns makes them a practical tool to distinguish deterministic, noisy
time series from white noise. It is in this sense that we claim that forbidden patterns
can be used to detect determinism in noisy time series—determinism as opposite to
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Fig. 9.12 Comparison of the chi-square test and the BDS test applied to projections of the time-
delayed Hénon map with d = 2 (a), d = 50 (b), d = 100 (c), and Gaussian white noise with
0 ≤ σ ≤ 2. The continuous lines indicate the probability of rejecting the null hypothesis H0
(“the time series is i.i.d.”) when applying the BDS test with level α = 0.05. In total, 27 tests with
different combinations of ε and m were performed. The lighter the gray color is, the bigger is the
value of ε. The dashed line indicates the probability of rejecting H0 when using the chi-square test
with the same level α = 0.05. Clearly, the chi-square test rejects the null hypothesis more often
than the BDS for all noise values and for the three values of d

statistical independence. In fact, determinism is usually equated to statistical depen-
dence among the observations in applications. On the other hand, the discrimination
of deterministic, noisy time series from colored noise seems problematic, although
some interesting methods have been proposed; see, e.g., [119] for a method based
on nonlinear predictability.



Chapter 10
Space–Time Dynamics

All applications of ordinal analysis hitherto had to do with time series analysis or
abstract dynamical systems. A remaining challenge is to expand the applications to
physical systems.

In order to tackle the viability of this program, we are going to study the per-
mutation complexity of two simple models of spatially extended physical systems:
cellular automata (CA) and coupled map lattices (CMLs). CA were presented in
Sect. 1.5. CMLs can be considered as a generalization of the CA; they retain the
space coarse graining of the CA, but the state variable take on real values. Despite
their apparent simplicity, these are the preferred models when studying the emer-
gence of collective phenomena (such as turbulence, space–time chaos, symmetry
breaking, ordering) in systems of many particles interacting nonlinearly. Indeed,
their ability to reproduce complex phenomena in, say, fluid dynamics and solid state
physics, is impressive. For this reason, they are the ideal choice for our purpose.

10.1 Spatially Extended Systems

Dynamical systems discrete in time as well as in space have been studied to under-
stand physical phenomena while keeping the technical burden at a minimum. The
discrete space can be an infinite lattice of dimension 1 (which can be identified with
Z) or a finite lattice with periodic or fixed boundary conditions. At each site i of the
lattice there is a local variable xt(i) taking on values in a set S called the state space,
at every time t ∈ {0, 1, . . .} = N0. The change of the state variable xt(i) from time t
to time t + 1 depends only on the variables in some fixed vicinity of i at time t.

Unless otherwise explicitly stated, we assume in this chapter the following
restrictions for simplicity and computational convenience.

(i) Periodic boundary conditions:

xt(0) = xt(N) and xt(N + 1) = xt(1) (10.1)

for all t ≥ 0. These conditions amount to the N sites lying on a ring.

J.M. Amigó, Permutation Complexity in Dynamical Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-04084-9_10,
C© Springer-Verlag Berlin Heidelberg 2010

177
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(ii) Nearest neighbors interaction, i.e.,

xt+1(i) = f (xt(i− 1), xt(i), xt(i+ 1)), (10.2)

where 1 ≤ i ≤ N.
Depending on the state space S, there are two well-known instances of such

space–time systems: one-dimensional cellular automata (CA) if S is finite and one-
dimensional coupled map lattices (CMLs) if S is an interval of R. Given the formal
similarity between both systems (see below for details), it comes as no surprise that
they exhibit similar dynamical phenomena, like coherent traveling structures and
space–time chaos [58, 110, 46, 47]. Perhaps more surprisingly is the fact that one-
dimensional CMLs can be completely described in terms of symbolic dynamical
concepts [170, 171]. Along similar lines, we are going to show that CA and CMLs
can be handled in a satisfactory way with techniques based on ordinal patterns.
In particular, (i) two so-called regularity parameters to be defined below seem to
be useful for discriminating Wolfram’s complexity classes in the case of CA and
(ii) the number of admissible ordinal patterns in the configurations of CMLs sepa-
rates space–time chaos from regular pattern dynamics.

CA and CMLs are not only related with each other but, in turn, are also related
to networks—a subject of much interest in current research [162]. The main differ-
ence is the connectivity: while CA and CMLs feature near-neighbor interactions,
networks allow also for long-range interactions. For a multidisciplinary introduc-
tion to dynamics on complex networks, see [132]. Networks of coupled maps have
been studied, e.g., in [145, 104] with reference to synchronization. Whether ordinal
analysis is also useful in this more general spatially extended systems is an open
question as yet. Nevertheless, in view of the results reported in Sect. 2.4 on syn-
chronization, we conjecture that ordinal analysis will be helpful to characterize the
different synchronization regimes.

10.1.1 Cellular Automata

We refer to Sect. 1.1.5 for the generalities on cellular automata (CA). According
to restriction (10.2), we consider local maps f with a neighborhood of size 1; fur-
thermore, the state space will be S = {0, 1}, thus f :{0, 1}3 → {0, 1}. Technically,
CA correspond to continuous, shift-commuting maps F from a full shift to itself;
F is the global transition map induced by f on the configuration space �. Thus
(�, F) is a continuous dynamical system. More generally one can also consider con-
tinuous, shift-commuting maps between subshifts of finite type (i.e., shift-invariant
subsets of a full shift obtained after excluding a finite set of fixed blocks of symbols)
[92, 123].

For brevity, one-dimensional binary CA with a neighborhood of size 1 will be
called elementary. Elementary CA can be labeled as follows. Given the local rule

f (p, q, r) = β,
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where p, q, r, β ∈ {0, 1}, order lexicographically the eight different configurations
in the neighborhood U1(i) = {i− 1, i, i+ 1}, to wit:

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), . . . , (1, 1, 1).

If β0, β1, . . . , β7 ∈ {0, 1} are the corresponding values of β, then the cellular
automaton with the local rule f can be unambiguously identified by the number

ID =
7∑

i=0

βi2
i ∈ {0, 1, . . . , 255}.

In other words, there are 256 different elementary CA.
Alternatively, one can argue as follows. To define a local rule, one must spec-

ify the update state of the central cell given all possible configurations of its local
neighborhood. Since there are eight such configurations and two update states, the
number of possible assignments is 28 = 256.

For example, the cellular automaton with local rule

f (0, 0, 0) = 0, f (1, 0, 0) = 0,
f (0, 0, 1) = 1, f (1, 0, 1) = 1,
f (0, 1, 0) = 1, f (1, 1, 0) = 1,
f (0, 1, 1) = 1, f (1, 1, 1) = 0

is coded as the decimal number

ID = 0× 20 + 1× 21 + 1× 22 + 1× 23 + 0× 24 + 1× 25 + 1× 26 + 0× 27

= 110.

Conversely, the local rule f (p, q, r) = β of an elementary cellular automaton can
be obtained from its identification number ID in a recursive form:

β0 = ID mod 2,

βi = ID− β0 − · · · − βi−12i−1

2i
mod 2,

1 ≤ i ≤ 7. Let us emphasize that in order to determine the evolution of these CA,
all we need are the eight bits βi—no closed formula for f is necessary. An explicit
eight-parameter rule to construct a map f :{0, 1}3 → {0, 1} delivering the right update
states βi for each local configuration can be found in [54, Table 4].

Stephen Wolfram studied exhaustively the asymptotic behavior of all 256 ele-
mentary CA. For each local rule and each initial configuration, he calculated the
time evolution of the cellular automaton till it exhibited a stable pattern of behavior.
Out of all these simulations, Wolfram proposed to classify the elementary cellular
automata in four classes [206, 207]. In order of increasing complexity, these classes
are the following:
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Fig. 10.1 Typical trajectories of elementary CA belonging to the complexity classes W1 (a), W2
(b), W3 (c), and W4 (d). The number of cells represented is N = 250. Time elapses top to bottom
(T = 250 iterations represented)

(W1) The configurations converge to a fixed point; Fig. 10.1(a).
(W2) Time evolution yields a sequence of simple stable or periodic structures;

Fig. 10.1(b).
(W3) The behavior is “chaotic”; Fig. 10.1(c).
(W4) Time evolution yields localized structures that move around and interact with

each other in very complicated ways; Fig. 10.1(d).

A word of caution for the CA practitioners. Real cellular automata are finite
deterministic machines, so their configuration space is finite. This means that their
evolution is periodic, albeit the period can be very large—so large that this fact may
be ignored in simulations.

10.1.2 Coupled Map Lattices

A CML is a discrete-time dynamical system with discrete space and continuous
states. So one can think of CMLs as generalizations of CA [50], or rather as an
intermediate between CA and partial differential equations. CMLs were introduced
by Kaneko [106, 107] as a simple test bed for spatiotemporal complexity (turbu-
lence, convection, etc.). For the theoretical aspects of CMLs the reader is referred
to the papers of Bunimovich and Sinai, e.g., [42–44].
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In dimension 1 the most common choices for the evolution rule (10.2) are

xt+1(i) = (1− ε)f (xt(i))+ εf (xt(i− 1))

and

xt+1(i) = (1− ε)f (xt(i))+ ε

2

[
f (xt(i− 1))+ f (xt(i− 1))

]
, (10.3)

which correspond to the so-called one-way and diffusive CMLs, respectively. Here
0 ≤ ε ≤ 1 so as all coupling coefficients are positive, i = 1, . . . , N label the sites,
and f is a self-map of the state space I ⊂ R. When the coupling constant ε is small,
the oscillators will be practically independent of each other, hence the CML will
behave similar to an ensemble of uncoupled oscillators. At the other end, strongly
coupled oscillators will evolve more or less in a synchronized fashion. Between
both cases, we expect to see a variety of behaviors as, so to speak, locally organized
dynamics percolates along the lattice. It is the interplay between simple local prop-
erties (in our case, the coupling between neighboring oscillators) and the emergence
of a complex dynamics on a global scale, what makes the study of CMLs, cellular
automata, and the like, so rewarding (Fig. 10.2). For more general evolution rules,
see e.g., [192].

The diffusive CML—the only one we consider henceforth— is the discrete ana-
logue of the reaction–diffusion equation with a symmetrical interaction. Additional
complexity can be added by allowing the map f to depend on a parameter. Following
[108], we shall take the nonlinear ansatz

f (x) = 1− ax2, x ∈ [− 1, 1] (10.4)

and call a ∈ (0, 2] the nonlinearity of f . Observe that if x0(i) ∈ [− 1, 1] for 1 ≤ i ≤
N, then xt(i) ∈ [− 1, 1] for all t ≥ 1 and 1 ≤ i ≤ N.

Researchers on this field use to borrow terms from continuum physics like
ordered or unordered phase, phase transition, local of global defects. According
to [108], the logistic coupled lattice (10.3) (10.4) exhibits six major “phases”:

(K1) Frozen random patterns; Fig. 10.3(a)
(K2) Pattern selection and suppression of chaos; Fig. 10.3(b)
(K3) Brownian motion of defects; Fig. 10.3(c)
(K4) Defect turbulence; Fig. 10.3(d)
(K5) Pattern competition intermittency; Fig. 10.3(e)
(K6) Fully developed turbulence; Fig. 10.3(f)

These six phases are shown on an a–ε diagram in Fig. 10.2; see [108] for details.
Two-dimensional CMLs have been investigated, e.g., in [210, 23, 71].
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Fig. 10.2 [Reproduced with permission from [108].] Phase diagram of the coupled logistic map
(10.4) (a varies along the horizontal axis, ε along the vertical). Here BD, DT, PCI, and FDT are the
abbreviations of Brownian motion of defect, defect turbulence, pattern competition intermittency,
and fully developed turbulence, respectively. The numbers such as 1,2,3 represent the selected
domain sizes

10.2 Applications of Permutation Complexity to Spatiotemporal
Dynamics

In this section we are going to show that the ordinal pattern-based approach to time
series analysis and abstract dynamical systems works out also with one-dimensional
binary cellular automata and one-dimensional coupled logistic lattices. This is a first
step to extend ordinal analysis to space–time dynamics.

10.2.1 Topological Entropy of CA

The spatiotemporal complexity of a cellular automaton can be measured by the
topological entropy. In Sect. 1.1.5 we mentioned that

htop(F) = lim
w→∞ lim

t→∞
1

t
log R(w, t), (10.5)
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Fig. 10.3 CML space–time plots for (a) frozen random patterns (a = 1.44, ε = 0.1), (b) pattern
selection and suppression of chaos (a = 1.65, ε = 0.1), (c) Brownian motion of defects (a = 1.86,
ε = 0.1, (d) defect turbulence (a = 1.89, ε = 0.1), (e) pattern competition intermittency (a = 1.8,
ε = 0.3), and (f) fully developed turbulence (a = 2, ε = 0.3). Each black line shows the CML
state at time n = 500, the grey background is the superposition of states at 1≤ n ≤ 499
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where F:SZ → SZ and R(w, t) is the number of distinct rectangles of width w and
height (temporal extent) t occurring in a space–time evolution diagram of (SZ, F);
see (1.21) and Fig. 1.4.

Another possibility consists in using the topological permutation entropy h∗top(F)
instead. We shall shortly claim that, under some provisos, the result is going to be
the same. But even in a general situation we might wish to link the spatiotemporal
complexity of a cellular automaton to the permutation complexity of its time evo-
lution as measured by the topological permutation entropy (in practice, by one or
several entropy rates of finite order), or by other quantities based on ordinal pat-
terns. Examples of the latter eventuality are provided by the parameters χ2

time(L)
and χ2

space(L) presented below, absolute and relative frequency distributions of ordi-
nal patterns, and any probability functional whose value is estimated by means of
ordinal patterns.

Theorem 15 states that h∗top(f ) = htop(f ) for any positively expansive self-map f
of an n-dimensional simple domain. We could argue at this point that the proof of
Theorem 15 does not rely on any particular property of compact sets in R

n, in order
to infer

htop(F) = h∗top(F) (10.6)

for any positively expansive map F on a compact metric space, in particular when
F is the global transition map of a one-dimensional cellular automaton. But for
our purposes it will suffice to equate htop(F) with the topological entropy of a
topologically conjugate interval map. A cellular automaton is said to be expansive
(correspondingly, positively expansive) when its global transition map F is expan-
sive (correspondingly, positively expansive). It is interesting to point out that (i)
positively expansive CA only exist in dimension 1 [188] (while expansive interval
maps only exist in dimensions greater than 1 [19, Thm. 2.2.31]) and (ii) positively
expansive CA are topologically conjugate to one-sided full shifts [62].

So, let us show how to calculate htop(F) by means of the topological entropy of
a two-dimensional interval map. Set � = SZ, where S = {0, 1, . . . , |S| − 1} in the
case of a one-dimensional cellular automaton with |S| states, and define similar to
(4.20) the map φ|S| = (φ−|S|, φ+|S|) : SZ → [0, 1]2,

φ|S| : xt 	→ (φ−|S|(x
−
t ), φ+|S|(x

+
t )), (10.7)

where xt = (xt(i))n∈Z, x−t = (xt(− i))i∈N is the left sequence of xt, x+t = (xt(i))i∈N0

is the corresponding right sequence, the component maps φ−|S| : SN → [0, 1],

φ+|S| : SN0 → [0, 1] are given by

φ−|S|(x
−
t ) =

∞∑

i=1

xt(− i)

|S|i , φ+|S|(x
+
t ) =

∞∑

i=0

xt(i)

|S|i+1
, (10.8)
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and the bisequences xt = (x−t , x+t ) are lexicographically ordered as in (4.19). We
already know (Sect. 4.3) that the map φ|S| is an order isomorphism ([0, 1]2 being
lexicographically ordered), up to a measure zero set N which comprises those bise-
quences whose left and/or right sequences terminate in 1, 0∞ or 0, ( |S| − 1)∞. Fur-
thermore, it is easy to check that φ|S| is a homeomorphism from SZ\N to its range.
In other words, the continuous dynamical systems (�, F) and ([0, 1]2, φ|S| ◦F ◦φ−1

|S| )
are topologically conjugate (modulo 0), hence

htop(F) = htop(F̃). (10.9)

where F̃ := φ|S| ◦ F ◦ φ−1
|S| : [0, 1]2 → [0, 1]2 is an interval map.

Suppose, moreover, that F is positively expansive. In this case the same holds for
F̃ since positive expansiveness is a topological conjugacy invariant (Sect. B.3.1).
Then

htop(F̃) = h∗top(F̃) (10.10)

according to Theorem 15. The bottom line from (10.9) and (10.10) is

htop(F) = h∗top(F̃) (10.11)

for positively expansive (one-dimensional) CA (�, F). Finally, to go from (10.11) to
(10.6), we only need to invoke that topological permutation entropy is an invariant
of order isomorphy (here embodied by the homeomorphism φ|S|); see Theorem 14.

A convenient shortcut in actual calculations is the following. The lexicographical
order of bisequences x ∈ SZ and points (x, y) ∈ [0, 1]2 is determined by the right
sequences x+ and ordinates y, respectively. This means that if the right sequences of
a finite orbit Ft(x0), 0 ≤ t ≤ T , are all different (as usual in numerical simulations),
then we may restrict attention to the ordinates of the order-isomorphic orbit φ|S| ◦
Ft(x0) = φ|S|(xt). From (10.7) we learn that the ordinate of φ|S| ◦ Ft(x0) is

φ+|S|(F
t(x0)+) = φ+|S|(x

+
t ) =

∞∑

i=0

xt(i)

|S|i+1
. (10.12)

To check numerically the coincidence of topological permutation entropy and
topological entropy for positively expansive CA, we resort to linear automata. A
one-dimensional CA is said to be linear if its local rule is of the form

f (st(i− l), st(i− l+ 1), . . . , st(i+ l)) =
j=l∑

j=−l

λjst(i+ j) mod |S| . (10.13)

For a one-dimensional linear CA, (10.5) yields a closed formula for the topological
entropy [62]: if pm1

1 · · · pmh
h is the prime factor decomposition of |S|, and
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Pi = {0} ∪ {j: gcd (λj, pi) = 1}, Li = min Pi, Ri = max Pi,

then

htop(F) =
h∑

i=1

mi(Ri − Li) log pi. (10.14)

Furthermore, it can be proved [141, Theorem 3.2] that a one-dimensional linear
CA (10.13) is positively expansive if and only if

gcd ( |S| , λ−l, . . . , λ−1) = gcd ( |S| , λ1, . . . , λl) = 1. (10.15)

From (10.15) it follows that the local rule f :{0, 1}3 → {0, 1} with

f (st(i− 1), st(i), st(i+ 1)) = st(i− 1)+ st(i+ 1) mod 2

= st(i− 1)⊕ st(i+ 1) (10.16)

(λ−1 = λ1 = 1, |S| = 2) defines a positively expansive CA. According to (10.14),

htop(F) = 2 log 2 = 2 bit/symbol.

The topological permutation entropy of the automaton defined by the local rule
(10.16) can be now estimated via the ordinal patterns of its global map F:{0, 1}Z →
{0, 1}Z or alternatively via the ordinal patterns of the interval map F̃ = φ2 ◦ F ◦
φ−1

2 :[0, 1]2 → [0, 1]2. As explained above, it suffices to keep account of the ordinal
patterns defined by the ordinates of φ2 ◦ Ft(x), namely, φ+2 (x+t ), (10.12).

Figure 10.4 shows different aspects of the cellular automaton (10.16): (a) the
time evolution of cells 1 ≤ i ≤ 250; (b) the ordinates φ+2 (x+t ) of the finite orbit
φ2(Ft(x0)) = F̃t(φ2(x0)), 0 ≤ t ≤ 250, where x0(1), . . . , x0(250) were chosen ran-
domly and extended periodically in both directions; (c) the return map φ+2 (x+t ) vs
φ+2 (x+t+1) (this graph has seemingly a fractal structure); and (d) the convergence of
the topological permutation entropy rates of order L,

h∗top(L, F̃) = −1

L
log |{π ∈ SL:Pπ �= ∅}| ,

to htop(F) = 2 bit/symbol, with the length of the ordinal patterns. This convergence
is fast, also in computation.

10.2.2 Complexity Classes of Elementary CA

Elementary CA with periodic boundary conditions were also extensively studied in
a series of papers by Chua and collaborators. According to [55],
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Fig. 10.4 Different aspects of a positively expansive CA (see text). Plot (d) shows the convergence
of the topological permutation entropy of the automaton to its topological entropy

(1) the cellular automaton with local rule

f (p, q, r) = 1

2
[1+ sign(2p+ 4q+ 2r − 5)], (10.17)

ID = 200, is an instance of class W1;
(2) the cellular automaton with local rule

f (p, q, r) = p (10.18)

(corresponding to the right shift on {0, 1}Z), ID = 240, belongs to class W2;
(3) the cellular automaton with local rule

f (p, q, r) = p+ q+ r + qr mod 2, (10.19)

ID = 30, is class W3; and
(4) the cellular automaton with local rule

f (p, q, r) = (1+ p)qr + q+ r mod 2, (10.20)

ID = 110, belongs to class W4. Moreover, this automaton is surely universal in
the sense that it can emulate a universal Turing machine [207, p. 1115].
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In order to discriminate these four classes, we propose two parameters inspired
in the statistic χ2, used in Sects. 9.3 and 9.5 for detecting determinism in noisy time
series. The rationale is as follows. Since the statistic χ2 is based on ordinal pattern
distribution, being small for i.i.d. random processes and large for deterministic pro-
cesses, we expect that it can also discriminate irregular from regular configurations
as time evolves. For this reason, we call them regularity parameters.

(a) Temporal regularity parameter χ2
time(L). In numerical simulations, let

xt = (xt(i))
N
i=1 = xt(1), xt(2), . . . , xt(N)

be the configuration of cells 1 ≤ i ≤ N at time t, 0 ≤ t ≤ T . Calculate now
χ2(L), (9.8), for the multivariate time series

x0, x1, . . . , xT (10.21)

using, say, lexicographical order. Alternatively, transform each xt into a dyadic
rational,

φ(xt) =
N∑

i=1

xt(i)

2i
∈ [0, 1), (10.22)

and calculate χ2(L) for the univariate time series

φ(x0), φ(x1), . . . , φ(xT ), (10.23)

since sequences (10.21) and (10.23) are order isomorphic. Call χ2
time(L) the

result.
(b) Spatial regularity parameter χ2

space(L). We want now to calculate the regularity
of the univariate time series consisting of the state variables at time t,

xt(1), xt(2), . . . , xt(N),

and average the results over all times, 0 ≤ t ≤ T . There is a catch though.
Statistic (9.8) correspond to i.i.d. random variables taking on real values. In the
finite-state case we are considering now, some symbols will necessarily repeat
as soon as the length of the sequence exceeds the number of states. For binary
variables this implies that not all 2L ordinal patterns of an i.i.d. binary sequence
are equiprobable. Indeed, all the L+ 1 words of length L

(0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1), (0, 0, . . . , 1, 1), . . . , (0, 1, . . . ., 1, 1), (1, 1, . . . , 1, 1)

are of type π0 = 〈0, 1, 2, . . . , L− 1〉, while each of the remaining 2L − L − 1
words defines a distinct ordinal pattern. Therefore, the chi-square statistic χ2 for
windows of size L takes the following form for binary sequences:
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χ2(L) =
(
ν0 − L+1

2L

)2

(L+ 1)/2L
+ (2L − L− 1)

(
ν1 − 1

2L

)2

1/2L
(10.24)

=
(
2Lν0 − L− 1

)2

2L(L+ 1)
+
(

1− L+ 1

2L

)
(2Lν1 − 1)2,

where ν0 is the number of times the pattern π0 = 〈0, 1, 2, . . . , L− 1〉 has been
observed in the sequence and ν1 is the number of patterns π ∈ SL, π �= π0,
observed in the same sequence, when using non-overlapping sliding windows.
In sum, in order to obtain the spatial regularity χ2

space(L), calculate the parameter

χ2(L), (10.24), of the univariate time series (xt(i))N
i=1 for each time 0 ≤ t ≤ T

and average over them:

χ2
space(L) =

〈
χ2(L)

〉
.

In our numerical simulations we chose N = 250. To avoid too small samples,
we take L ≤ 4 for χ2

space(L). For χ2
time(L) we may choose L larger, provided that T

is sufficiently long. Furthermore, in order to let transients die out, we forgo the first
5000 iterations.

For the four representatives of the complexity classes W1–W4 given above
(ID = 200, 240, 30, and 110), we have simulated their time evolution, starting from
100 randomly chosen initial configurations. When the resulting values of χ2

time(5)
are plotted against χ2

space(4) we see, Fig. 10.5, that they cluster in different, non-
overlapping regions.

Fig. 10.5 Values of χ2
time(5) and χ2

space(4) for four CA of different complexity classes and 100
random initial configurations. Symbol assignment: Classes W1 (�), W2 (♦), W3 (∇), and W4 (/)
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We have repeated the same exercise with a few more CA and the results are
similar, although the clusters of different CA belonging to the same complexity
class may lie in different parts of the χ2

time–χ2
space diagram. All this hints that reg-

ularity parameters capture the basic features of the different complexity classes of
elementary CA.

For the study of the complexity of CA rules by other methods, see, e.g., [103].

10.2.3 Phases of CMLs

The basic difference between CA and CMLs concerns the state space and eventually
the appearance of free parameters in the second case (e.g., the nonlinearity a in
(10.4)). Therefore, we expect that the same tools used in the last section to study
the spatiotemporal complexity of CA will also be useful for CMLs. We shall use the
logistic coupled lattice as study case.

So, consider a one-dimensional logistic coupled lattice with N sites (extended
periodically in both directions), pick an initial configuration (x0(i))N

i=1, x0(i) ∈ [0, 1],
and let it evolve during T0 = 5000 time steps according to the diffusive rule (10.3)–
(10.4). From T0 on we assume that the lattice exhibits its asymptotic dynamics.

A first proposal to quantify the complexity of a CML, inspired in the calculation
of the topological entropy of positively expansive CA, is the following. At each
iteration of the CML, define the symbolic sequence

(st(i))
N
i=1 = st(1), st(2), . . . , st(N) ≡ st, (10.25)

where

st(i) =
{

0 if xt(i) ≤ 0,
1 if xt(i) > 0.

(10.26)

In this way we get a finite multivariate binary sequence s0, s1, . . . , sT ; alternatively,
we might prefer to work with the order-isomorphic sequence φ(s0), φ(s1), . . . , φ(sT ),
of the dyadic rationals

φ(st) =
N∑

i=1

st(i)

2i
∈ [0, 1). (10.27)

At this point we could count the number of visible ordinal patterns of length L, N(L),
of the sequence s0, s1, . . . , sT or, equivalently, φ(s0), φ(s1), . . . , φ(sT ), and estimate
their metric or topological permutation entropy. Other even simpler possibility con-
sists in representing N(L) on the (a-ε)-plane. This has been done in Fig. 10.6 for
L = 5 and N = 250. As for the nonlinearity a and the coupling constant ε, they
are allowed throughout to take 75 values uniformly distributed in similar ranges as
in Fig. 10.2, namely, [1.4, 2] and [0, 0.5], respectively. Remarkably, there are two
zones of dark/light gray colors in Fig. 10.6 that roughly correspond with the zones
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Fig. 10.6 Number of visible ordinal 5-patterns for the logistic coupled lattice as a function of a
and ε, obtained from the symbolic sequence {φ(st)}Tt=1

of space–time chaos and regularity sketched in Fig. 10.2. Note that higher values of
N(L) correspond to more complex dynamics.

One further possibility out of many others is to calculate the number of visible
ordinal patterns, N(L), in each univariate sequence xt = (xt(i))N

i=1 and to average the
T+1 results. In our case, the value of L has to be small because of the condition L! �
N = 250 (so as every ordinal L-pattern has a chance to appear in sliding windows
along xt). The result is shown in Fig. 10.7; note that this figure gives information
complementary to that provided by Fig. 10.6. A global increase of regularity (thus a
decrease of N(L)) is observed as the strength of the coupling ε grows, as expected,
but drastic transitions are also observed, corresponding to changes in the dynamics
observed previously.

As a benchmark we consider next plots of Lyapunov exponents; these have been
used to study various features of CMLs, like synchronization [18]. Figure 10.8

Fig. 10.7 Number of visible ordinal 5-patterns for the logistic coupled lattice as a function of a
and ε, obtained from xt and averaged over t
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Fig. 10.8 Calculation of the largest Lyapunov exponent of a CML as a function of a and ε

shows a plot of the largest Lyapunov exponent λ calculated for the logistic cou-
pled lattice (10.3)–(10.4) using Wolf’s algorithm [204]. It can be observed there
that the boundaries between the different phases of the CML sketched by Kaneko
coincide roughly with abrupt changes in the value of λ. These results are coher-
ent with the results observed in our calculations of N(L) in Figs. 10.6 and 10.7.
Let us point out that the separation between the domains of fully developed tur-
bulence and the rest of phases can be distinguished more clearly in the N(L)
plots.

For the sake of completeness we consider also a chain of 60 coupled oscillators,

u̇i = 0.5− 4vi + κ(ui+1 + ui−1 − 2ui),
v̇i = −vi + 2 max{ui − 8 cos t − 16, 0}, (10.28)

with periodic boundary conditions. If we make a stroboscopic map of the vari-
able ui and plot ui(2πn) against ui(2π (n + 1)), points lie approximately on a one-
dimensional curve with a critical point at uc ≈ 6.6 (Fig. 10.9). Thus, each period
2π we assign to the stroboscopic map of system (10.28), {ui(2πn)}60

i=1, a string of
symbols following the usual procedure (si(n) = 0 if ui(2πn) < uc, and si(n) = 1
otherwise), and count the number of visible ordinal patterns of the ensuing binary
multivariate time series sn = (s1(n), . . . , s60(n)). Figure 10.10 represents the number
of ordinal 4-patterns, N(4), of such series as a function of the coupling constant κ .
The inlets in this figure are space–time plots of {ui(2πn)}60

i=1 for n = 1, .., 200 and
three values of κ: κ = 0.008, κ = 0.1, and κ = 0.18 (left to right). Observe that
the decrease of N(L) with κ parallels the diminution of dynamical complexity, in
particular the regularization of the dynamics and/or the reduction of chaotic domains
(i.e., the number of consecutive sites with chaotic dynamics). We conclude that
ordinal analysis might also be suitable to characterize the complexity of oscillator
chains.
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Fig. 10.9 Return map observed by plotting ui(n2π ) against ui((n+ 1)2π ) for any of the oscillators
of the chain with κ = 0. Its unimodal appearance allows using symbolic sequences

Fig. 10.10 Number of ordinal patterns of length L = 4, N(4), found in a time series of length 200.
The numbers are actually averages over the results for 20 initial conditions. The decrease of N(4) is
consistent with the decrease in complexity of the space–time dynamics shown in the inlets, which
are space–time plots {ui(π2n)}60

i=1 for n = 1, .., 200 and three values of κ: κ = 0.008, κ = 0.1, and
κ = 0.18 (left to right)

Needless to say, the tools that can be chosen to measure the complexity of a CML
are manifold. In the next section we study the use of regularity parameters.

10.2.4 Spatiotemporal Regularity of CMLs

Lastly, we consider the same temporal and spatial regularity parameters proposed
for CA. But since the entries of the time series are now real numbers, the parameter
χ2(L) is given by (9.8) also when calculating χ2

space(L).
Similarly as in Sect. 10.2.2, we have simulated the evolution of six logistic cou-

pled lattices with N = 250 sites, each starting from 100 different random initial
configurations. The corresponding parameters a and ε were chosen as in Fig. 10.3,
so each lattice was in one of the six phases listed in Sect. 10.1.2. Figure 10.11
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Fig. 10.11 Values of χ2
time(5) and χ2

space(4) for six logistic coupled lattices in different phases
and 100 random initial configurations. Symbol assignment: frozen random patterns (�), pattern
selection and suppression of chaos (♦), Brownian motion of defects (∇), defect turbulence /,
pattern competition intermittency (+), and fully developed turbulence (×). Different colors in the
symbols are used when convenient

summarizes the results again on the plane χ2
time(5) vs χ2

space(4). The values cluster
in different zones, but this time they overlap. The results are coherent with the types
of dynamics described by Kaneko [108]. In some cases, overlapping might be due
to multistability, i.e., depending on the initial conditions the type of dynamics may
greatly vary.



Chapter 11
Conclusion and Outlook

Ordinal (or permutation-based) analysis of dynamical systems originates from the
properties of the order relations and order isomorphisms. Thereby it is assumed that
the state space of the systems is equipped with a total ordering. The order rela-
tions among consecutive elements in the orbits of deterministic or random dynam-
ical systems are then codified in the form of ordinal patterns. The ordinal patterns
themselves—whether admissible or forbidden—together with other “higher level”
tools based on them, like permutation entropy rates, discrete entropy, frequency or
probability distributions, regularity parameters, build the main repertoire of ordinal
analysis. Since the sort of properties addressed by ordinal analysis and captured
by its tools are not the same as in the usual measure-theoretical and topological
approaches, we proposed the term “permutation complexity” to distinguish them.

In the foregoing chapters we have reviewed the theoretical and practical aspects
of ordinal analysis. Among the first ones, let us highlight the study of metric
(Chap. 6) and topological (Chap. 7) permutation entropies, together with the rela-
tion to their standard counterparts. Among the applications, some of them are well
established, like the estimation of entropy (Sect. 2.1), complexity analysis of time
series (Sect. 2.2), or detection of determinism (Chap. 9). Others like the complexity
analysis of spatially extended systems (Chap. 10) are still in an initial stage. An
important message to keep regarding all ordinal pattern-based applications is their
robustness against observational noise—an asset when analyzing real systems. In
particular, deterministic generation is responsible for the persistence of forbidden
patterns in very noise data, as shown in Sect. 9.1. Robustness makes ordinal analysis
a practical tool.

The reader might be tempted to dismiss ordinal analysis of dynamics as an unin-
teresting equivalent to well-known symbolic dynamics. In fact, ordinal patterns of
dynamical systems do maintain equivalent results with symbolic dynamics, such
as the metric and topological entropies we discussed in Chaps. 6 and 7, respec-
tively, but in other ways, there are major distinctions, which are just starting to be
explored for permutations. For instance, the canonical tent map and the Bernoulli
shift (f (x) = 2x mod 1) are isomorphic under a conventional analysis and in sym-
bolic dynamics are equivalent to an i.i.d. source of white bits. However, under
permutation-based analysis, once the state is imbued with total ordering, the class of
order isomorphisms is different. Both conventional symbolic dynamics, assuming a
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generating partition of a map, and ordinal analysis are useful discrete representations
of what would otherwise be a dynamical system in continuous space. However, the
symbolic dynamics which results from a conventional partitioning is not fundamen-
tally distinguishable from a noisy system; both result in conventional information
sources on a discrete alphabet with a positive Shannon entropy. By contrast, the
ordinal analysis does show a fundamental distinction between deterministic chaos
and noisy systems. With chaos there is a rich structure of forbidden patterns among
the ordinal patterns of different length and a hierarchy of consequent derived for-
bidden patterns (Chap. 3), the nature of which is not shared with conventional sym-
bolic dynamics. More closely impacting the present work, the number of allowed
permutations can scale superexponentially, which is fundamentally faster than the
exponential scaling which must eventually happen with a noise-free deterministic
chaotic system.

As in any research field, work on theory and applications of ordinal analysis
is in progress, meaning that the picture is far from complete. In the course of the
exposition, we have pointed out different questions which are waiting for answers.
I summarized next the most important ones.

One of the basic open problems refers to the relation between a map and the
structure of its forbidden patterns. Some natural questions that arise in this context
are the following:

• Understand how the allowed or forbidden ordinal patterns (especially the root
patterns) depend on the map.

• Given a map, determine the length of its shortest forbidden pattern.
• Describe and/or enumerate (exactly or asymptotically) any of the above classes

of ordinal patterns.
• Given a finite or infinite set of, say, root forbidden patterns, find a map with the

corresponding ordinal pattern structure.
• More generally, characterize those hierarchies of ordinal patterns for which there

exist maps realizing them.

Of course, some of these questions can be answered graphically for simple maps
and short pattern lengths. What we seek though are general results, possibly ema-
nating from the structure of periodic points. We reported partial successes along
this line for the shifts (Chap. 4) and signed shifts (Chap. 5), but the general case
seems exceedingly hard. Even the ordinal structure of a general subshift of finite
type (order isomorphic to some piecewise linear maps) seems to be beyond the tech-
niques used in those chapters. A list of more advanced research topics would include
the relation of forbidden patterns with the kneading invariants of one-dimensional
interval maps or, say, with the directional entropy of cellular automata.

Other interesting (albeit theoretical) problem is the exact relation between the
original definition of permutation entropy by Bandt et al. [29], and the definition
given in Chaps. 6 and 7. Technically, the difference boils down to the order of two
limiting processes (ever longer ordinal patterns and ever finer partitions) in a double
limit. In particular, the results of Sects. 6.2 and 6.3 show that both definitions of
metric permutation entropy overlap for one-dimensional, piecewise ergodic maps,
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and numerical simulations advocate a more general coincidence. In any case, the
usual computations, with an arithmetic precision fixed by default or by the numerical
format chosen, implement our “Kolmogorov-like” approach to permutation entropy.

For practical applications, the numerical tools of the type we discussed in Chap. 9
serve as a way of distinguishing chaos-like dynamics from noise, at least in simula-
tions. This may be useful in the detection of emergent “coherent structures” similar
to low-dimensional chaos in what otherwise might be a high degree of freedom
system which could be rather noise-like. We comment on the unique property of
permutations having a discrete “algebraic” nature permitting some rapid compu-
tational methods, without the requirement of estimating a generating partition for
each dynamics. We feel that the appropriate tools for analysis of the typically short
observed time series will require more sophisticated statistical thinking and meth-
ods still, just as high-quality estimation of entropies from low-alphabet information
sources can be a difficult problem despite the apparent simplicity of the definitions
themselves.

In Chap. 9 we also showed that the forbidden pattern-based technique outper-
forms one of the standard methods for detecting statistical dependence. Similar
conclusions were reached in the ordinal analysis of synchronization in [159], see
Sect. 2.4. This exercise—comparing a pattern-based technique with the traditional
methods—is missing in other applications of ordinal analysis to time series like
entropy estimation or complexity study. If the applications refer to natural sys-
tems, then the possibilities are virtually unlimited. Real time series appeared only
in Sect. 2.2 (“Permutation complexity”), where we considered biomedical data, a
recurrent topic in the literature. But, of course, other kinds of real data have also
been studied (see Sect. 2.2).

Apart from the future lines of research related to the above-mentioned open
problems, other lines of research refer to more recent topics and other follow-up
investigations. In Chap. 10 we showed that ordinal analysis provides quantitative
tools for and insights into the dynamics of space–time dynamics. This brief account
was meant as a corroboration of performances shown in other contexts, as well
as a stimulus to further research. Clearly, a survey of permutation complexity in
cellular automata and coupled map lattices is a broad field that will require time and
ingenuity, especially in the unexplored dimensions 2 and higher. Add to this general
networks of coupled map lattices, and you get a long-term research program! But the
great challenge is the complexity analysis of physical systems. Simple models, like
cellular automata and coupled map lattice, provide a bridge to this more ambitious
objective, in that they model non-trivial physical phenomena while being amenable
to discrete methods. The situation resembles the study of complex dynamical sys-
tems via symbolic dynamics—a quite remarkable technique. The author believes
that the interplay between complex dynamical systems and discrete methods is a
promising approach also in the case of physical systems. Chapter 10 reported on
progress in this direction from the ordinal front. New chapters will follow.



Annex A
Mathematical Framework

This annex is a summary of the mathematical background needed for this book.

A.1 Dynamical Systems

In this book we only consider two kinds of “discrete-time” dynamical systems: con-
tinuous and measure-preserving systems. Roughly speaking, the first are the basic
objects of topological dynamics and the second ones play a major role in the study
of statistical properties.

Definition 7 A continuous (or topological) dynamical system is a pair (M, f ), where
M is a topological space and f :M → M a continuous map.

Let � be a non-empty set, B a sigma-algebra of subsets of �, and μ:B →
R ∪ {+∞} a positive measure on the measurable space (�,B). A typical example
of measurable space is a topological space endowed with the Borel sigma-algebra,
i.e., the sigma-algebra generated by the open sets. The measure space (�,B, μ) is
called a finite-measure space if μ(�) < ∞. A measurable map (function, trans-
formation) f :� → � is said to preserve the measure μ, or to be μ-preserving,
if μ(f−1(B)) = μ(B) for all B ∈ B. Equivalently, the measure μ is said to be
f -invariant. Sometimes (�,B, μ) is called the state space of the dynamic f .

Definition 8 Let (�,B, μ) be a finite-measure space and f :� → � a μ-preserving
map. Then (�,B, μ, f ) is called a measure-preserving dynamical system.

If (�,B, μ, f ) is a measure-preserving dynamical system, we can assume without
loss of generality that μ(�) = 1, i.e., that (�,B, μ) is a probability space. In this
light, � is the space of elementary events, B comprises all outcomes we might be
interested in, and μ(B) is the probability of the outcome B ∈ B.

Given a measurable map f :� → �, it is very difficult in practice to prove that
f preserves the measure μ since, in general, not all elements B ∈ B are explicitly
known. In general, all we know is a semi-algebra S generating B. For example, if B
is the Borel sigma-algebra of the interval [0, 1] ⊂ R with the standard topology, then
S can be taken to be the collection of all subintervals of [0, 1], or just the collection
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of subintervals of the forms [0, b] and (a, b], 0 ≤ a < b ≤ 1. It can be proved
[202] that if (i) S is a semi-algebra which generates B and (ii) for every A ∈ S,
f−1(A) ∈ B and μ(f−1(A)) = μ(A), then f preserves the measure μ.

Exercise 13 Prove that S = {[a, b):0 ≤ a < b < 1} is a semi-algebra of subsets of
the interval [0, 1) that generates the Borel sigma-algebra of [0, 1).

Example 22 Suppose � = [0, 1), B is the Borel sigma-algebra of [0, 1), and λ is
the Lebesgue measure on [0, 1). Furthermore, let f :� → � be the map given by
f (x) = Nx mod 1, where N ∈ Z, |N| ≥ 2. Then f preserves λ. Indeed, for every
half-open interval [a, b) ⊂ [0, 1),

f−1([a, b)) =
N−1⋃

i=0

[
a+ i

N
,

b+ i

N

)

if N ≥ 2 and

f−1([a, b)) =
|N|⋃

i=1

(
i− b

|N| ,
i− a

|N|
]

if N ≤ −2. Hence,

λ
(

f−1[a, b)
)
=

N−1∑

i=0

b− a

N
=

|N|∑

i=1

b− a

|N| = b− a = λ([a, b)).

Example 23 Let the measure space (�,B, μ) be as in the previous example and
f :� → � be given now by f (x) = x + r mod 1, with r > 0. This transformation
preserves also the Lebesgue measure λ since, for every [a, b) ⊂ [0, 1),

f−1([a, b)) = [a− r, b− r) if a ≥ r,
f−1([a, b)) = [a+ 1− r, b+ 1− r) if b ≤ r,
f−1([a, b)) = [0, b− r) ∪ [a+ 1− r, 1) if a < r < b.

In any case,

λ
(

f−1([a, b))
)
= b− a = λ([a, b)).

A perhaps more natural way of dealing with this example views f as a rotation on
the circle. The f -invariance of λ is then straightforward.

More generally, the Lebesgue measure on R
n is invariant under translations and

rotations in R
n. More sophisticated examples of invariant measures include the Haar

measure on a locally compact topological group, the map being the action of the
group. In the next section we will meet invariant measures on product spaces.
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Exercise 14 Let f :[0, 1) → [0, 1) be the Gauss transformation,

f (x) =
{

0 if x = 0,
1
x (mod 1) if x �= 0.

Show that f preserves the measure

μ(B) = 1

ln 2

∫

B

dx

1+ x
, (A.1)

where B is a Borel set of [0, 1). Hint:

f−1([a, b)) =
∞⋃

n=1

(
1

b+ n
,

1

a+ n

]
.

Krylov and Bogolioubov showed that invariant measures exist under quite gen-
eral conditions.

Theorem 20 [202] Let � be a compact metric space and f :� → � a continuous
map. Then there exists an f -invariant probability measure μ on (�,B), where B is
the Borel sigma-algebra of �.

In general, there can exist more than one f -invariant measure and, besides, some
of them can be rather “pathological.” For instance, if δp is the Dirac measure at p,
i.e.,

δp(B) =
{

1 if p ∈ B
0 if p /∈ B

,

B ∈ B, and x is a period-n point for f , then

μ(B) = 1

n

n−1∑

k=0

δf k(x)(B)

(f 0(x) := x and f i(x) = f (f i−1(x)) for i ≥ 1) is an atomic measure supported on the
points {x, f (x), . . . , f n−1(x)}. A set E ⊂ � is said to be the (unique) support of μ if
(i) E is closed in �, (ii) μ(E ∩ U) > 0 if E ∩ U �= ∅ and U is open in �, and (iii)
μ(E′) = 0, where E′ = �\E is the complement of E.

In general, the ordered set {f i(x):i ≥ 0} is called the orbit or trajectory of the
point (state, initial condition, etc.) x ∈ � under the “discrete-time” dynamic f and
denoted by Of (x). In the case of invertible maps, one writes O+f (x) = {f i(x):i ≥ 0}
for the “forward” orbit, while orbit means Of (x) = {f i(x):i ∈ Z}.

It can happen that for almost all x in a set U ⊂� with positive Lebesgue measure,
its orbit is bounded and, moreover, the sequences of probability measures
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1

n

n−1∑

k=0

δf k(x)

converge weakly to a measure μ, i.e., for almost all x ∈ U and any continuous map
ϕ:�→ �,

lim
k→∞

1

n

n−1∑

k=0

ϕ(f k(x)) =
∫

�

ϕdμ

holds. Then μ is an f -invariant measure that is usually called the natural or physical
measure for its relevance in physics and computer simulations [72].

An important issue in measure-preserving dynamical systems is the existence of
absolutely continuous invariant measures. A measure μ on a topological space �

is said to be absolutely continuous (with respect to the Lebesgue measure dx), if
μ(dx) = ρ(x)dx = : dμ, where the density function ρ:� → � (also called the
Radon–Nikodym derivative of μ with respect to the Lebesgue measure, dμ/dx) is
continuous. For example, if μ is measure (A.1) on the interval [0, 1) endowed with
the Borel sigma-algebra, then

μ(dx) = 1

ln 2

dx

1+ x
or

dμ

dx
= 1

ln 2

1

1+ x
.

In general there are few results on the existence of absolutely continuous invariant
measures. In the case of self-maps of one-dimensional intervals, there are some
general conditions that appear in the usual theorems on existence of such measures.

Recall that a partition of a measure space (�,B, μ) is a disjoint collection of
elements of B whose union is �.

Definition 9 Let α = {Ii}di=1 be a partition of the interval I = [a, b] ⊂ R into
subintervals Ii. Given the map f :I → I, assume that f |Ii

is Ck (k ≥ 1) for each i.

(a) f is said to be Ck piecewise expanding if there exists λ > 1 such that
∣∣f ′(x)

∣∣ > λ

for all x ∈ Ii and each i.
(b) f is said to be Ck Markov if f (I̊i) ⊃ I̊j whenever f (I̊i) ∩ I̊j �= ∅ (“Markov prop-

erty”), where I̊i stands for the interior of Ii, 1 ≤ i ≤ d. In this case, α is called a
Markov partition for f . The matrix A = (Aij)1≤i, j≤d with

Ai, j =
{

1 if f (I̊i) ⊃ I̊j,

0 if f (I̊i) ∩ I̊j = ∅,

}
(A.2)

is called the transition matrix for f .
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See, for instance, [37, Chap. 5] and [105] for results concerning the existence of
absolutely continuous invariant measures for piecewise expanding and/or Markov
transformations (complying with additional conditions).

Exercise 15 Prove that the logistic map g(x) = 4x(1−x), 0 ≤ x ≤ 1, has an invariant
measure with density function

ρ(x) = 1

π
√

x(1− x)
, (A.3)

i.e.,
∫ 1

0 ρ(x)dx = 1, and

∫

[a,b]
ρ(x)dx =

∫

g−1[a,b]
ρ(x)dx,

for all 0 ≤ a < b ≤ 1. Figure A.1 shows the plot of the function ρ(x). Is g(x)
piecewise expanding? Is g(x) Markovian?

0 1

10

x

ρ(
x)

Fig. A.1 The density ρ(x), (A.3)

Once we know that invariant measures are rather abundant objects, suppose that
f :� → � is such that f−1(B) = B for some B ∈ B. Then f−1(�\B) = �\B and the
action of f on � can be decomposed into two disjoint pieces: f |B and f |�\B. If f is
indecomposable in the previous sense, one says that f is ergodic.

Definition 10 Let (�,B, μ, f ) be a measure-preserving dynamical system. The map
f is said to be ergodic if

f−1(B) = B, B ∈ B⇒ μ(B) = 0 or μ(B) = 1
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Alternatively, μ is said to be an ergodic measure for f . Also, the dynamical system
(�,B, μ, f ) is said to be ergodic.

Thus an ergodic measure cannot be decomposed as a (properly weighted or “con-
vex”) sum of invariant measures. It might seem that this definition is a far cry from
the original Boltzmann’s Ergodenhypothese, which states that the trajectory of a
closed thermodynamic system in the phase space (spanned by the coordinates and
conjugate canonical momenta of its constituent particles) covers densely and uni-
formly the “energy shell,” that is, the hypersurface in phase space defined by the
restriction that the energy of the system is constant. But it was on the way to lying
Boltzmann’s proposal on a mathematically sound basis that G. Birkhoff introduced
the concept of ergodicity in its modern version. Birkhoff’s seminal ergodic theorem
states the following.

Theorem 21 [202] If (�,B, μ, f ) is an ergodic dynamical system, then

lim
n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) =
∫

�

ϕdμ a.e. (A.4)

for all ϕ ∈ L1(μ).

As usual, “a.e.” is shorthand for “almost everywhere” with respect to the relevant
measure (μ here) and L1(μ) is the space of μ-integrable functions. The property
assumed by the Ergodenhypothese goes by the name of topological transitivity in
the theory of discrete dynamical systems. A continuous self-map f of a compact
metric space � is called topologically transitive if there exists some x ∈ � such
that Of (x) is dense in � (if f is invertible, then Of (x) also includes the “backward”
iterates f−n(x), n ∈ N).

Let χB denote the characteristic function of the set B ∈ B,

χB(x) =
{

1 if x ∈ B
0 if x /∈ B

.

The substitution ϕ = χB in (A.4) yields then

1

n

n−1∑

i=0

χB(f i(x)) → μ(B) a.e.,

when n → ∞. This means that if (�,B, μ, f ) is ergodic, then the orbit of almost
every initial condition x ∈ � visits the region B of the state space with asymptotic
frequency μ(B). This resembles the law of large numbers in statistics and, in fact,
there are plenty of deep relations between ergodic theory and statistics [31, 67].

Let � be a compact metrizable space �, and B the Borel sigma-algebra on �. A
continuous map f :�→ � is called uniquely ergodic if there is only one f -invariant
Borel probability measure on �. A map f is uniquely ergodic if and only if it has
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exactly one invariant measure. If f is uniquely ergodic and μ is its invariant measure,
then (A.4) holds for all continuous transformations ϕ and all x ∈ � [202].

Ergodicity is just but the first step in a series of notions measuring the statistical
properties of the orbits generated by the dynamic: ergodicity, mixing, completely
positive entropy, etc. Here we will recall only the definition of strong mixing.

Definition 11 The measure-preserving dynamical system (�,B, μ, f ) is called (strong)
mixing if

lim
n→∞μ(f−n(A) ∩ B) = μ(A)μ(B) (A.5)

for all A, B ∈ B.

In contrast to (A.5), f is ergodic if and only if

lim
n→∞

1

n

n−1∑

i=0

μ(f−i(A) ∩ B) = μ(A)μ(B) (A.6)

for all A, B ∈ B. Hence mixing is a stronger condition than ergodicity. In practice it
suffices to check (A.6) and (A.5) for A, B ∈ S, a semi-algebra that generates B.

Sufficient conditions for the existence of ergodic absolutely continuous invariant
measures can be found, e.g., in [52, Chap. 5] . Mixing piecewise C2 expanding
Markov maps have unique ergodic invariant measures [105].

As in any other area of mathematics, the notion of isomorphism is central. It
specifies when two dynamical systems are to be considered equivalent from the
point of view of the properties that matter in this theory.

Definition 12 Given the measure-preserving dynamical systems (�1,B1, μ1, f1) and
(�2,B2, μ2, f2), we say that f1 is (metrically) isomorphic to f2 if there exist B1 ∈ B1,
B2 ∈ B2 with μ1(B1) = μ2(B2) = 1 such that (i) f1(B1) ⊂ B1, f2(B2) ⊂ B2 and (ii)
there is an invertible, measure-preserving map φ:B1 → B2 with φ ◦ f1(x) = f2 ◦φ(x)
for all x ∈ B1.

The dynamical systems (�1,B1, μ1, f1) and (�2,B2, μ2, f2) are said to be iso-
morphic. Sometimes φ is called an isomorphism “modulo 0” or just “mod 0” (short-
hand for modulo measure zero sets), but usually we dispense with measure zero
sets without stating it explicitly. In the more general case that φ is measure pre-
serving but only surjective, (�2,B2, μ2, f2) is called a factor of (�1,B1, μ1, f1) (or
(�1,B1, μ1, f1) a cover of (�2,B2, μ2, f2)) via the factor map φ. Two isomorphic
maps are obtained from each other by a change of coordinates, so that properties
that are independent of such changes of coordinates are invariant. Isomorphism
invariants include ergodicity and mixing.

There is a broader (and more technical) concept called conjugacy that embraces
isomorphism. Both concepts are though equivalent in virtually all probability spaces
that one encounters in applications (e.g., compact metric spaces). Indeed, as it turns
out, there is essentially only one type of probability space, called a Lebesgue space,
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which is characterized as being measure-theoretically isomorphic to the union of an
interval of R endowed with Lebesgue measure, with at most countably many points
of positive measure (called atoms) [177, 202]. In a Lebesgue space, set maps are
always induced by point maps. Conjugacy and isomorphy coincide for a Lebesgue
space, so both terms can be used interchangeably in that case.

Example 24 The symmetric tent map �:[0, 1] → [0, 1],

�(x) =
{

2x 0 ≤ x ≤ 1
2

2− 2x 1
2 ≤ x ≤ 1

, (A.7)

preserves the Lebesgue measure λ(dx) = dx. If, furthermore, μ(dx) = 1
π
√

x(1−x)
dx is

the natural invariant measure of the logistic map g:[0, 1] → [0, 1], g(x) = 4x(1− x)
(see (A.3)), then φ:([0, 1], λ) → ([0, 1], μ) given by

φ(x) = sin2 (π
2 x) (A.8)

is invertible, measure preserving, and it satisfies g ◦ φ = φ ◦�. Hence, � and g are
conjugate.

Exercise 16 Show that

xk = sin2 (2kξ ),

ξ ∈ R, is a solution of the logistic recursion (or finite difference equation)

xk+1 = 4xk(1− xk), k ≥ 0,

xk ∈ [0, 1], with initial condition x0 = sin2 ξ .

A.2 Shift Systems

Shift systems are dynamical systems which due to their importance as models and
prototypes are considered separately in this section. In the simplest and most usual
version, the elements of the shift spaces are one-sided or two-sided sequences of
N symbols or “letters”. Sometimes one has to consider also sequences with ele-
ments from an arbitrary (countable or uncountable) “alphabet,” and this requires
some degree of sophistication. We set out from this more general situation.

First of all, let us recall the definition of a product measurable space. For our
purposes it is sufficient to consider products of countably many copies of a measur-
able space (�,B). As index set K we take without restriction K = N0 := {0} ∪N or
K = Z. Then, �k∈K(�,B) = (�K,B�(�)), where

�K = {(ωk)k∈K:ωk ∈ �}
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is the set of all one-sided sequences

(ωk)k∈N0 = ω0, . . . , ωk, . . .

if K = N0, or the set of all two-sided sequences (also called bisequences or doubly
infinite sequences)

(ωk)k∈Z = . . . , ω−k, . . . , ω0, . . . , ωn, . . .

if K = Z, and B�(�) is the sigma-algebra generated by the semi-algebra S of cylin-
der sets

∏

j∈F

Aj ×
∏

k/∈F

� = {(ωk)k∈K:ωj ∈ Aj for j ∈ F}, (A.9)

where F ⊂ K is finite and Aj ∈ B for j ∈ F. If K = N0 (correspondingly, K = Z),
then we can take F = {0, 1, . . . , n} (correspondingly, F = {−n, . . . , 0, . . . , n}),
n ∈ N0, in (A.9) without restriction.

In most applications we have in mind (for instance, to information theory),
(�,B) = (S, 2S) with S = {0, . . . , N–1}, N ≥ 2, and 2S denoting as usual the family
of all subsets of S. In this case, the set of all one-sided sequences of the symbols
0, 1, . . . , N–1,

SN0 = {(sn)n∈N0 :sn ∈ S}, (A.10)

is called the (one-sided) sequence space on N symbols. Depending on the con-
text, the set of symbols S may receive different names. In the setting of informa-
tion theory, S is called an alphabet, its elements are called letters, and sequences
s = (sn)n∈N0 are called messages. In dynamics, S is sometimes called the state
space and its elements, states. Segments (or words) of symbols of length L, like
sk, sk+1, . . . , sk+L−1, will be shortened as sk+L−1

k .
If S is thought to be a topological space (eventually endowed with the discrete

topology), then SN0 can be promoted to a topological space by means of the product
topology, which is generated by the corresponding cylinder sets

Ca0,...,an = {s ∈ SN0 :sk = ak, 0 ≤ k ≤ n}, (A.11)

where a0, . . . , an ∈ S. (The general definition (A.9) with Aj = {aj} leads to the same
topology.) The product topology makes SN0 compact, perfect (i.e., it is closed and
all its points are accumulation points), and totally disconnected. Such topological
spaces are sometimes called Cantor sets because they are homeomorphic to Cantor’s
ternary set in the unit interval. By definition, the product sigma-algebra, B�(S), is
generated by the cylinder sets (A.11) and comprises all Borel sets of SN0 .

Moreover, SN0 is a metrizable space. In fact, there are several (non-equivalent)
metrics compatible with the topology of SN0 , the perhaps most popular being
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dK(s, s′) =
∞∑

n=0

δ(sn, s′n)

Kn
, (A.12)

where δ(sn, s′n) = 1 if sn �= s′n, δ(sn, sn) = 0 and K > 2. Observe that given
s ∈ Ca0,...,an , then dK(s, s′) < 1

Kn if s′ ∈ Ca0,...,an , and dK(s, s′) ≥ 1
Kn if s′ /∈ Ca0,...,an ,

thus Ca0,...,an = BdK (s; 1
Kn ), the open ball of radius K−n and center s in the metric

space (SN0 , dK). Moreover, every point in BdK (s; 1
Kn ) is a center, a property known

from non-Archimedean normed spaces (e.g., the rational numbers with p-adic norms
[115]).

Exercise 17 1. Prove that the cylinder sets (thus the open balls) are also closed in
the product topology. Open and closed sets are sometimes called clopen sets.

2. Prove that the cylinder sets are not connected (i.e., they can be written as a dis-
joint union of open sets).

Shifting all the symbols of a one-sided sequence to the left one place and drop-
ping the first symbol define a self-map of one-sided sequence spaces which plays
an important role in both theory and applications. Formally, the (one-sided) shift
�:SN0 → SN0 is defined as

�(s0, s1, s2, . . . ) = (s1, s2, s3, . . . ), (A.13)

that is, �(s) = s′ with s′n = sn+1. Since �−1Ca0,...,an = ∪a∈SCa,a0,...,an , � is con-
tinuous on (SN0 , dK), each point s ∈ SN0 having exactly N preimages under �.
Furthermore, � has N fixed points: s = a∞0 , 0 ≤ a ≤ N − 1.

In order to make a measure-preserving dynamical system out of SN0 , B�(S), and
�, only a �-invariant measure is missing. All probability measures on (SN0 ,B�(S))
that make � a measure-preserving transformation are obtained in the following way
[202]. For any n ≥ 0 and ai ∈ S, 0 ≤ i ≤ n, let a real number pn(a0, . . . , an) be given
such that (i) pn(a0, . . . , an) ≥ 0, (ii)

∑
a0∈S p0(a0) = 1, and (iii) pn(a0, . . . , an) =∑

an+1∈S pn+1(a0, . . . , an, an+1). If we define now

m(Ca0,...,an) = pn(a0, . . . , an),

then m can be extended to a probability measure on (SN0 ,B�(S)). The resulting
dynamical system (SN0 ,B�(S), m, �) is called the one-sided shift system.

If instead of considering (one-sided) sequences s = (sn)n∈N0 , sn ∈ S =
{0, . . . , N − 1}, we consider two-sided sequences s = (sn)n∈Z, we are in the realm
of the two-sided sequence spaces on N symbols,

SZ = {(sn)n∈Z:sn ∈ S}.

The corresponding (invertible) two-sided shift on SZ is defined as �:s 	→ s′ with
s′n = sn+1, n ∈ Z. (Although not strictly correct, we use the same letter � for
one-sided and two-sided shifts.) The cylinder sets are given now as
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Ca−n,...,a0,...,an = {s ∈ SZ:sk = ak, |k| ≤ n}

and

dK(s, s′) =
∑

n∈Z

δ(sn, s′n)

K|n|
,

K > 3, is a metric for SZ. The dynamical system (SZ,B�(S), m, �) is called the
two-sided shift system.

Exercise 18 Prove that the cylinder set Ca−n,...,a0,...,an of SZ coincides with the open
ball BdK (s;K1−n), where s is any point of Ca−n,...,a0,...,an .

Example 25 (a) Let p = (p0, p1, . . . , pN−1), N ≥ 2, be a probability vector with
non-zero entries (i.e., pi > 0 and

∑N−1
i=0 pi = 1). Set

pn(a0, a1, . . . , an) = pa0 pa1 · · · pan .

The resulting measure on (SK,B�(S)) is called the Bernoulli measure defined by
p. The dynamical system (SK,B�(S), m, �), where m is the Bernoulli measure
defined by the probability vector p, is called a one-sided (if K = N0) or two-sided
(if K = Z) p-Bernoulli shift.

(b) Let p = (p0, p1, . . . , pN−1) be a probability vector as in (a) and P = (pij)0≤i,j≤N−1

an N × N stochastic matrix (i.e., pij ≥ 0 and
∑N−1

j=0 pij = 1) such that
∑N−1

i=0 pipij = pj. Set then

pn(a0, a1, . . . , an) = pa0 pa0a1 pa1a2 · · · pan−1an .

The resulting measure on (SK,B�(S)) is called the Markov measure defined by
(p, P). The dynamical system (SK,B�(S), m, �), where m is the Markov measure
defined by the probability vector p and the stochastic matrix P, is called a one-
sided (if K = N0) or two-sided (if K = Z) (p, P)-Markov shift. A p-Bernoulli
shift can be considered as a (p, P)-Markov shift by taking pij = pj.

Simple as they might seem, one-sided and two-sided shifts exhibit most of the
basic properties of ergodic theory, like ergodicity and strong mixing. In particular,
they are easily shown to be chaotic in the sense of Devaney [69], i.e., they are
sensitive to initial conditions, are strong mixing, and their periodic points are dense.
Let us recall at this point the notion of sensitivity to initial conditions.

Definition 13 Given a metric space (M, d), a map f :M → M is said to be sensitive
to initial conditions if there exists δ > 0, called a sensitivity constant, such that for
every x ∈ � and ε > 0 there exists y ∈ � with d(x, y) < ε and d(f n(x), f n(y)) ≥ δ

for some n ∈ N.

Equivalently, a continuous self-map of a compact metric space is said to be
chaotic if it is topologically transitive (that is, it has a dense orbit) and its periodic
points are dense [91].
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Exercise 19 Prove that the one- and two-sided shifts on N symbols are sensitive to
initial conditions, are topological transitive, and their periodic points are dense.

Example 26 Let � = [0, 1], B the Borel sigma-algebra of [0, 1], λ the correspond-
ing Lebesgue measure, and E2:x 	→ 2x (mod 1) the so-called dyadic map. The
dynamical system ([0, 1],B, λ, E2) is then isomorphic (up to a measure zero set) to
the one-sided ( 1

2 , 1
2 )-Bernoulli shift on the symbols {0, 1} = S. An isomorphism

φ:SN0 → [0, 1] is given by

(x0, x1, . . . , xk, ..) 	→
∞∑

k=0

xk2−(k+1). (A.14)

Of course, the map φ is not injective in strict sense because the sequences
(x0, . . . , xn−1, 0, 1∞) and (x0, . . . , xn−1, 1, 0∞) are sent to the same point (the upper
label “∞” means indefinite repetition); indeed,

n−1∑

k=0

xk2−(k+1) +
∞∑

k=n+1

2−(k+1) =
n−1∑

k=0

xk2−(k+1) + 2−(n+1).

However, since the set of sequences eventually terminating in an infinite string of
0’s or 1’s is countable, we conclude that (SN0 ,B�(S), m, �) and ([0, 1],B, λ, E2) are
conjugate modulo 0, i.e., the diagram

�:{0, 1}N0 → {0, 1}N0

φ ↓ ↓ φ

E2:[0, 1] → [0, 1]

is commutative almost everywhere: E2 = φ◦�◦φ−1. Observe that there is otherwise
a topological obstruction that prevents SN0 and [0, 1] from being homeomorphic: the
first is (homeomorphic to) a Cantor set while, certainly, the second is not.

Exercise 20 Prove that the map φ:SN0 → [0, 1] defined in (A.14) is measure pre-
serving, i.e., m(φ−1(I)) = λ(I) for any interval I ⊂ [0, 1]. It suffices to con-
sider “dyadic” intervals, i.e., intervals of the forms [0, k2/2n] and (k1/2n, k2/2n],
0 ≤ k1 < k2 ≤ 2n, n ∈ N.

Let us mention in passing the dyadic map x 	→ 2x (mod 1) is just the first member
of the family of expanding maps of the circle:

EN :x 	→ Nx (mod 1),

where N is an integer of absolute value greater than 1. In a way similar to Exam-
ple 26 one can show that ([0, 1],B, λ, EN) and the ( 1

N , . . . , 1
N )-Bernoulli shift are

conjugate for N ≥ 2. In this case, map (A.14) is replaced by (x0, x1, . . . ) 	→∑∞
k=0 xkN−(k+1).
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Exercise 21 What transformation induces on the sequence space {0, 1}N0 the expand-
ing map E−2 via map (A.14)?

A.3 Stochastic Processes and Sequence Spaces

A stochastic (or random) process is a mathematical model for the occurrence of
random phenomena as time goes on. This is the case, for example, when a random
experiment is repeated over and over again. Put in a formal way, a stochastic process
is a collection of random variables X = {Xt}t∈T on a common probability space
(�,B, μ), called the sample space, taking on values in a measurable space (S,A),
called the state space. Technically this means that Xt:� → S is a measurable map
for all t ∈ T , i.e., X−1

t (A) ∈ B for all A ∈ A. The index t ∈ T is conveniently
interpreted as time, the usual choices for T being (i) T = R or R+ = [0,∞], in
which case X is called a continuous-time stochastic process or (ii) T = N0 or Z, in
which case X is called a discrete-time stochastic process. The map t 	→ Xt(ω) is the
realization (sample path, trajectory, etc.) of the process X associated with the fixed
sample point ω ∈ �. As usual in probability theory and statistics, a realization of a
random variable X will be denoted by the same letter in small caps: X(ω) = x.

The stochastic process X is characterized by its joint (finite-dimensional) proba-
bility distributions

μ{ω ∈ �:Xt1 (ω) ∈ A1, . . . , Xtr (ω) ∈ Ar} = Pr{Xt1 ∈ A1, . . . , Xtr ∈ Ar},

where r ≥ 1, t1, . . . , tr ∈ T and A1, . . . , Ar ∈ A. If, furthermore, T is such that
T + t ∈ T for any t ∈ T (think of T = [0,∞) or T = N0) and the distri-
bution of the random vector (Xt1+t, Xt2+t, . . . , Xtr+t) does not depend on t for any
r ≥ 1, t1, . . . , tr ∈ T , then the process X is called stationary. Stationary stochastic
processes are also called information sources because they are used in information
theory to model data sources.

In this book we consider mostly discrete-time, finite-state, one-sided stochastic
processes modeling, say, finite-alphabet information sources or arising as symbolic
dynamics after dividing the state space of a dynamical system. In this case we use
the following notation for the joint probability distributions of the discrete random
variables X0, . . . , Xn with states in (without restriction) S = {0, 1, . . . , N − 1}:

μ {ω ∈ �:X0(ω) = x0, . . . , Xn(ω) = xn} = Pr {X0 = x0, . . . , Xn = xn}
= p(x0, . . . , xn), (A.15)

and the corresponding notations for the conditional probabilities, etc. Occasionally,
these finite-state processes will arise as discretizations or quantizations X� of pro-
cesses X taking values in a finite interval I ⊂ R

q endowed with the Lebesgue
measure. Formally this means that there exists a (usually uniform) partition δ =
{�1, . . . , �|δ|} of I into a finite number of Lebesgue-measurable subsets (say,
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subintervals), such that X�
n = aj if X�

n ∈ �j, where aj ∈ �j is usually set by
the precision with which the outputs of X are measured.

Example 27 A finite-state stochastic process X = {Xn}n∈N0 is called a Markov pro-
cess or Markov chain if

Pr {Xn = xn|Xn−1 = xn−1, . . . , X0 = x0} = Pr {Xn = xn|Xn−1 = xn−1},

n ≥ 1, where x0, . . . , xn ∈ S = {0, . . . , N − 1}. If, moreover, the conditional proba-
bility Pr {Xn = xn|Xn−1 = xn−1} does not depend on n, then the Markov process X
is called time homogeneous or time invariant. In this case,

Pi,j := Pr {Xn = j|Xn−1 = i},

0 ≤ i, j ≤ N − 1, is called the transition matrix. We call a probability vector p =
(p0, . . . , pN−1) an invariant, stationary, or equilibrium probability for X if p = pP,
that is, if p is a left eigenvector of P with eigenvalue 1.

Any stationary discrete-time stochastic process X = {Xn}n∈K on a probabil-
ity space (�,B, μ) with state space (S,A) corresponds in a standard way to a
shift system (SK,B�(S), m, �), where (SK,B�(S)) is the product measurable space
�k∈K(S,A), via the map �:� → SK defined by (�(ω))n = Xn(ω). Here the mea-
sure m is the induced or transported probability on the space of possible outputs,
B�(S), of the random process X:

m(B) = μ(�−1B), B ∈ B�(S), (A.16)

that is, m = μ ◦�−1 (note that �−1B ∈ B because each Xn is measurable). More-
over, because of the stationarity of X, the probability measure m is shift invariant on
cylinder sets and hence on all of B�(S).

We will also refer to the shift systems (SK,B�(S), m, �) as the (sequence space)
model of the stochastic process or information source X; if S is finite, then we may
speak of a sequence space model. Models allow to focus on the random process
itself as given by the probability distribution of its outputs, dispensing with a perhaps
complicated underlying probability space. Depending on the setting or the process
being modeled, some particular choices for S and/or K may be more convenient. For
instance, one-sided random processes (i.e., K = N0) provide better models than the
two-sided processes {Xn}n∈Z for physical information sources that must be turned
on at some time. Also, if the source is digital, a finite state space S is the right choice.

Finally, since each information source has associated a dynamical system—
its sequence space model—we can eventually assign dynamical properties to the
sources. Thus, we say that a source X is ergodic, mixing, etc., if its sequence space
model (SK,B�(S), m, �) possesses those properties.



Annex B
Entropy

In this annex we review only the Shannon, Kolmogorov–Sinai, and topological
entropies. Standard references include [91, 169, 202].

B.1 Shannon Entropy

One of the most important characterizations one can attach to a random variable
and to a stochastic process is its entropy and entropy rate, respectively. We refer to
Annex A, Sect. A.3, for the basics of random processes.

B.1.1 The Entropy of a Discrete Random Variable

Let X be a random variable with sample space (�,B, μ) and finite state space S. If
ϕ is a real-valued map on S, ϕ:S → R, then ϕ ◦ X = ϕ(X) is a random variable
with finitely many states ϕ(S) ⊂ R. The expectation value or average of ϕ(X) will
be denoted by Eϕ(X),

Eϕ(X) =
∑

x∈S

p(x)ϕ(x),

where p(x) is the probability function of X (see (B.21) with n = 0).

Definition 14 The (Shannon) entropy of a discrete random variable X on a proba-
bility space (�,B, μ) is defined by

H(X) = −
∑

x∈S

p(x) log p(x) = E log
1

p(X)
. (B.1)

Whenever convenient, we will write Hμ(X) to make clear which measure enters
into the definition of entropy. Alternatively, one may write H(p) since the entropy
depends actually on the probability function p(x) and not on the values taken by X.

213
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(The previous observations hold also for the definitions of different kinds of entropy
we will encounter in the sequel.) The logarithm in (B.1) may be taken to any base
greater than 1. If the base 2 is used, the entropy comes in units of bits (shorthand
for “binary digits”). Another usual choice for the logarithm base is Euler’s number
e ≈ 2.7182818 . . ., in which case the units of the entropy are called nats. Unless
otherwise stated, we will henceforth assume the entropy to be in units of bits. Recall
that one can change from one logarithmic base a to another base b by means of the
formula logb p = logb a loga p. By convention, 0 × log 0 := limx→0+ x log x = 0.
Note that H(X) ≥ 0 because 0 < p(x) ≤ 1 implies− log p(x) = log 1

p(x) ≥ 0. On the
other hand if |S| denotes the cardinality of the state space S, then H(X) ≤ log |S|,
as can be easily proved, e.g., using Lagrange multipliers, the highest entropy corre-
sponding to random variables with equiprobable outcomes, that is, p(x) = 1/ |S| for
all x ∈ S. Observe that Boltzmann’s equation (6.1) is nothing else but the entropy
for such a flat probability function, H(X) = log |S|, except for the notation (S means
entropy in (6.1), while we use S to denote the state space throughout the book) and
the physical constant kB.

Example 28 Suppose that a random variable X takes values 0, 1 with probabilities
p(0) = p, p(1) = 1− p(0) = 1− p. Then

H(X) = −p log p− (1− p) log (1− p) = H(p). (B.2)

The function H(p) is plotted in Fig. B.1. We see that H(p) vanishes when p = 0 or
p = 1, i.e., when the outcome is certain, and it is maximal when p = 1/2, i.e., when
the uncertainty about the outcome is maximal: H(1/2) = log 2 = 1 bit.

The entropy of a discrete random variable can be given different meanings;
see [22] for three interesting interpretations. In information theory one defines

0 1

1

p

H
(p

)

Fig. B.1 The function H(p), (B.2)
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I(X) = − log p(X) to be the information of a random variable X with probability
function p(x), − log p(x) being the information conveyed by the outcome X = x.
Observe that the more rare the event x (that is, the more unlikely the observation of
the event x), the more information is gained from its occurrence; one can argue that
the most probable events are the less informative ones since their occurrence comes
as no surprise. According to Definition 14, H(X) is then the expected value of the
information of X: H(X) = EI(X). Furthermore, if we agree that uncertainty means
lack of information, then the entropy can be interpreted as the average uncertainty
associated with a random variable or random experiment. In this light, equiprobable
events correspond to maximal uncertainty about the outcome.

We turn now to the problem of characterizing the uncertainty associated with
more than one random variable.

The relative entropy or Kullback–Leibler distance between two probability mass
functions p(x) and q(x), x ∈ S, is defined as

D(p ‖ q) =
∑

x∈S

p(x) log
p(x)

q(x)
. (B.3)

In this definition, the convention (based on continuity arguments) that 0 log 0
q = 0

and p log p
0 = ∞ is used. From definition (B.3) it follows that D(p ‖ q) ≥ 0 and

D(p ‖ q) = 0 if and only if p = q [59]. On the other hand (and despite of its
name), D(p ‖ q) is not symmetric in p, q and does not satisfy the triangle inequal-
ity. Nonetheless, it is often useful to think of D(p ‖ q) as a “distance” between the
distributions p and q. The relative entropy D(p ‖ q) is a measure of the inefficiency
of assuming that the distribution of the random variable X is q when the true dis-
tribution is p. For example, if we knew the true distribution p of X, then we could
construct a code with average code-word length H(p) (see Sect. 1.1.1, (1.2)). If,
instead, we use the code for a distribution q, we would need H(p)+D(p ‖ q) bits on
the average to describe the random variable X.

Let X and Y be two random variables on a common sample space (�,B, μ) but, in
general, with different finite state spaces S1 and S2, respectively. This corresponds to
a situation where two different observations or measurements (with finite precision)
are made at the same random experiment. If X and Y have the joint probability
function

p(x, y) = μ{ω ∈ �:X(ω) = x, Y(ω) = y} = Pr (X = x, Y = y)

(x ∈ S1, y ∈ S2), then the joint entropy of X and Y is defined as

H(X, Y) = −
∑

x∈S1

∑

y∈S2

p(x, y) log p(x, y) = E log
1

p(X, Y)
. (B.4)

It is easy to prove that
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H(X, Y) ≤ H(X)+ H(Y).

The generalization of (B.4) to n ≥ 2 random variables is straightforward and needs
no further elaboration.

The joint probability function p(x, y) and the conditional probability function

p(y |x) = p(x, y)

p(x)

allow the definition of two instrumental concepts in information theory: the condi-
tional entropy and the mutual information. The conditional entropy of Y given X
is

H(Y |X) = −
∑

x∈S1

∑

y∈S2

p(x, y) log p(y |x) = E log
1

p(Y |X)
, (B.5)

and the mutual information of X and Y is

I(X;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

= H(X)+ H(Y)− H(X, Y)

= I(Y;X), (B.6)

where we have used the so-called chain rule [59]:

H(X, Y) = H(X)+ H(Y |X) . (B.7)

Note that H(Y |X) is the average of the uncertainties

H(Y |X = x) = −
∑

y∈S2

p(y |x) log p(y |x)

weighted with the probabilities p(x), x ∈ S1. As for the mutual information of two
random variables, I(X;Y) is the information about X conveyed by Y (i.e., the infor-
mation about the realization of X knowing the realization of Y), which is the same
as the information about Y conveyed by X, (B.6). Alternatively,

I(X;Y) = E log
p(X, Y)

p(X)p(Y)
.

Let us mention in passing that the capacity of a discrete memoryless channel with
input X, output Y , and transition probability p(Y |X) is defined as

C = max
p(x)

I(X;Y),
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where the maximum is taken over all possible input distributions p(x).
Again, the generalization of these concepts to n1 + n2 random variables X0, . . . ,

Xn1−1 and Y0, . . . , Yn2−1 is straightforward. In particular, the (joint) entropy of the
random vector Xn−1

0 = X0, . . . , Xn−1, where, say, all components can take the same
states xi ∈ S, is given by

H(X0, . . . , Xn−1) = −
∑

x0,...,xn−1∈S

p(x0, . . . , xn−1) log p(x0, . . . , xn−1)

= E log
1

p(X0, . . . , Xn−1)
,

where p(x0, . . . , xn−1) is the joint probability function of X0, . . . , Xn−1.

Exercise 22 By iteration of the two-variable rules p(X, Y) = p(X)p(Y |X) and (B.7)
prove the general chain rule for the joint entropy: given the random variables
X0, . . . , Xn−1 with a joint probability function p(x0, . . . , xn−1), then

p(X0, . . . , Xn−1) =
n−1∏

i=0

p(Xi |Xi−1, . . . , X0) (B.8)

and

H(X0, . . . , Xn−1) =
n−1∑

i=0

H(Xi |Xi−1, . . . , X0) , (B.9)

with the conventions p(X0 |X−1) := p(X0) and H(X0 |X−1) := H(X0).

B.1.2 The Entropy Rate of a Discrete-Time Finite-State Stochastic
Process

Definition 15 The entropy rate of a finite-state random process X = {Xn}n∈N0 on a
probability space (�,B, μ) is defined by

h(X) = lim
n→∞

1

n
H(X0, . . . , Xn−1), (B.10)

provided the limit exists.

Sometimes the terms

h(X0, . . . , Xn−1) = 1

n
H(X0, . . . , Xn−1)

(n ≥ 2) are called the entropy rates of order n of X. Hence, h(X0, . . . , Xn−1) or, more
compactly written, h(Xn−1

0 ) is the average uncertainty per symbol (time unit, channel
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use, etc. depending on the interpretation of n) about n consecutive outcomes of the
random experiment modeled by X. If we repeat the experiment an arbitrarily long
number of times, these average uncertainty rates eventually converge to a limit—
Shannon’s entropy rate h(X).

Although h(Xn−1
0 ) and, consequently, h(X) are actually entropy rates, the term

“rate” is generally omitted—also in other types of entropy. We follow sometimes
this common usage, since this does not lead to misunderstandings.

Lemma 12 For a stationary stochastic process X = {Xn}n∈N0 , the sequence of con-
ditional entropies H(Xn |Xn−1, . . . , X0) is decreasing.

Proof Indeed,

H(Xn+1 |Xn, . . . , X1, X0) ≤ H(Xn+1 |Xn, . . . , X1)

= H(Xn |Xn−1, . . . , X0) ,

where the inequality follows from the fact that conditioning reduces uncertainty, and
the equality follows from the stationarity of X. �
Theorem 22 For a stationary stochastic process X = {Xn}n∈N0 ,

h(X) = lim
n→∞H(Xn |Xn−1, . . . , X0) . (B.11)

Proof First of all, limit (B.11) converges because, according to Lemma 12, the pos-
itive sequence H(Xn |Xn−1, . . . , X0) is decreasing. Furthermore, by the chain rule
(B.9),

h(X0, . . . , Xn) = 1

n+ 1

n∑

i=0

H(Xi |Xi−1, . . . , X0) .

By Cesáro’s mean theorem (“If an → a and bn = 1
n+1

∑n
i=0 ai, then bn → a”),

h(X) = lim
n→∞ h(X0, . . . , Xn) = lim

n→∞H(Xn |Xn−1, . . . , X0) .

�
From Lemma 12 it follows that the convergence of the entropy rates of order n,

h(X0, . . . , Xn−1), to h(X) is monotonically decreasing:

h(X0) ≥ h(X0, X1) ≥ · · · ≥ h(X0, . . . , Xn−1) ≥ · · · . (B.12)

Thus, when estimating the entropy rate of a stationary random process by its entropy
rate of order n, the estimation always exceeds the true value. Intuitively speak-
ing, with increasing n we see more and more correlations among the variables
X0, . . . , Xn−1 and this reduces our uncertainty about the next observation Xn. We
turn back to this point in Example 31.
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In an information-theoretical setting and in applications (Sect. A.3), one can
think of a stationary stochastic process X = {Xn}n∈N0 as a data source. Its real-
izations are then the messages output by the source. This is illustrated in Fig. B.2.
Here x0 can be considered the current and last letter of the message, the other letters
having been output in the past, the greater the index, the earlier in time.

... xn ... x1x0 X

Fig. B.2 A data source X outputs a message x∞0

B.2 Kolmogorov–Sinai Entropy

B.2.1 Deterministic Systems

A partition of a probability space (�,B, μ) is a collection α = (Ai)i∈J of disjoint
sets Ai ∈ B, with a countable index set J, such that

⋃
i∈J μ(Ai) = 1. If J is finite, α

is called a finite partition. If α is a finite partition of (�,B, μ), then the collection of
all elements of B which are unions of elements of α is a finite sub-sigma-algebra of
B which we denote by B(α). We write α ≤ β, where α, β are two finite partitions of
(�,B, μ), to mean that each element of α is a union of elements of β. In this case,
β is called a refinement of α. We have α ≤ β iff B(α) ⊂ B(β).

Definition 16 Let α = {A1, . . . , A|α|} be a finite partition of (�,B, μ). The entropy
of the partition α is the number

Hμ(α) = −
|α|∑

i=1

μ(Ai) log μ(Ai).

The same considerations concerning the base of the logarithm we made after
the definition of Shannon’s entropy, Definition 14, apply here as well. By the
same token, H(α) is a measure of the information gained (or the uncertainty
removed) by performing a random experiment whose outcomes have probabilities
μ(A1), . . . , μ(A|α|).

Sometimes it is convenient to quantify the “coarseness” of a partition. Roughly
speaking, if we assign a “size” to each A ∈ α, then we can take the maximum of
those sizes as the coarseness of α. The resulting parameter is called the norm of
the partition α and denoted by ‖α‖. In metric spaces (X, d), one can take ‖α‖ =
maxA∈αdiam(A), where diam(A) = sup{d(x, y):x, y ∈ A} is called the “diameter”
of A.

If f :�→ � is a measure-preserving function on the probability space (�,B, μ),
we denote by f−nα the partition {f−nA1, . . . , f−nA|α|}. Furthermore, given two finite
partitions α = {A1, . . . , A|α|} and β = {B1, . . . , B|β|} of (�,B, μ), we denote by
α ∨ β their least common refinement,
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α ∨ β = {A ∩ B:A ∈ α, B ∈ β, μ(A ∩ B) > 0}.

More general refinements, like

α ∨ f−1α ∨ · · · ∨ f−(n−1)α =
n−1∨

i=0

f−iα,

are defined recursively.

Definition 17 Let (�,B, μ, f ) be a measure-preserving dynamical system. If α is a
finite partition of (�,B, μ), then

hμ(f , α) = lim
n→∞

1

n
Hμ

(
n−1∨

i=0

f−iα

)
(B.13)

is called the metric entropy of f with respect to α.

In this setting, consider now a finite-state random process Xα = {Xα
n }n∈N0 , with

Xα
n :�→ S = {0, . . . , |α| − 1}, defined as follows:

Xα
n (ω) = i iff f n(ω) ∈ Ai ∈ α. (B.14)

Note that Xn+1 = Xn ◦ f , thus Xn = Xn ◦ f n. Then

Pr
{
Xα

0 = i0, . . . , Xα
n = in

} = μ
{
ω ∈ �:ω ∈ Ai0 , f (ω) ∈ Ai1 , . . . , f n(ω) ∈ Ain

}

= μ
{
Ai0 ∩ · · · ∩ f−nAin

}
, (B.15)

n ≥ 0, and similarly,

Pr
{
Xα

k = i0, . . . , Xα
n+k = in

} = μ
{

f−k(Ai0 ∩ · · · ∩ f−nAin )
}

= Pr
{
Xα

0 = i0, . . . , Xα
n = in

}

because of the f -invariance of μ. We conclude that Xα is a stationary process, which
is called the symbolic dynamics of (�,B, μ, f ) with respect to the partition (“coarse
graining” or “quantization”) α. Depending on the context, Xα is also called a coding
map (dynamical systems) or a collection of simple observations with respect to f
with precision ‖α‖ (information theory). Moreover, it follows from (B.15) that

hμ(f , α) = hμ(Xα). (B.16)

This not only proves that limit (B.13) does exist but also that the entropy rates of
order n of f with respect to α,
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h(n)
μ (f , α) = 1

n
Hμ

(
n−1∨

i=0

f−iα

)
,

decrease to hμ(f , α) when n →∞ (remember (B.12)).

Definition 18 Let (�,B, μ, f ) be a measure-preserving dynamical system and α a
finite partition of (�,B, μ). Then,

hμ(f ) = sup
α

hμ(f , α) (B.17)

is called the metric entropy (or just, the entropy) of the map f with respect to μ.

Sometimes hμ(f ) is called the Kolmogorov–Sinai entropy or the measure-theoretic
entropy too. To streamline the notation, the subscript μ may be dropped from Hμ(α),
hμ(f , α), and hμ(f ), as we generally do, if the probability measure is clear from the
context.

The isomorphic invariance is one of the fundamental properties of entropy.

Theorem 23(a) If the dynamical systems (�1,B1, μ1, f1) and (�2,B2, μ2, f2) are
isomorphic, then h(f1) = h(f2).

(b) If (�2,B2, μ2, f2) is a factor of (�1,B1, μ1, f1), then h(f2) ≤ h(f1).

It should be obvious from definitions (B.13) and (B.17) that the exact calculation
of h(f ) from scratch is, in general, unfeasible. There are though a few results that,
depending on the specifics of the dynamical system in question, can come to the
rescue. We mention a few next.

A finite partition α of (�,B, μ) is called a generating partition or a generator for
a μ-preserving transformation f :�→ � if (i)

∞∨

n=−∞
f−nB(α) = B (modulo μ-zero sets) (B.18)

when f is invertible (i.e., f is an automorphism ) or (ii)

∞∨

n=0

f−nB(α) = B (modulo μ-zero sets) (B.19)

when f is non-invertible (i.e., f is an endomorphism ). This means that for any
B ∈ B, there is a B′ ∈ ∨∞n=−∞ f−nB(α) or B′ ∈ ∨∞n=0 f−nB(α), respectively, such
that μ(B/ B′) = 0. If f is invertible and the stronger condition (B.19) holds, then α

is called a strong or one-sided generator for f . Equivalent definitions of generators
and one-sided generators by means of partition refinements converging to the point
partition ε = {{x}:x ∈ �} were given in Sect. 1.3.

Example 29 Since the sigma-algebra B�(S) of the one-sided and two-sided shift
spaces are generated by the cylinder sets
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Ca0,...,ak = {s = (sn)n∈N0 :s0 = a0, . . . , sk = ak} =
k⋂

i=0

�−iCai

and

Ca−k ,...,a0,...,ak = {s = (sn)n∈Z:s−k = a−k, . . . , sk = ak} =
k⋂

i=−k

�−iCai ,

respectively, it follows that the partition

γ = {Ca:a ∈ S}

is a generator of both the one-sided and two-sided shifts.

Generating partitions can be found numerically; see, e.g., [40] for a general
method based on relaxation algorithms. For higher dimensional maps, numerical
techniques have been proposed for the dissipative Henón map [87], the standard
map [53], two-dimensional hyperbolic maps [26], etc. A method based on unsta-
ble period orbits was proposed in [63]. The construction of one-dimensional maps
possessing generating partitions was studied in [99].

Theorem 24 (Kolmogorov–Sinai Theorem ) Let (�,B, μ, f ) be a dynamical system.

(a) If f is an automorphism and α is a generator or a one-sided generator for f , then
h(f ) = H(f , α).

(b) If f is an endomorphism and α is a generator for f , then h(f ) = H(f , α).

The case of automorphisms with one-sided generators is uninteresting since then
one can show that h(f ) = 0 [202]. More interestingly, Krieger’s theorem states that if
f is an ergodic automorphism with h(f ) <∞, then f has a generator [67, 130, 169].
Although Krieger’s proof is non-constructive, Smorodinsky [191] and Denker [65]
provided methods to construct a two-sided generator for ergodic and aperiodic auto-
morphisms. Denker’s construction could even be extended by Grillenberger [66] to
all aperiodic automorphisms. The existence of generators for endomorphisms was
proved by Kowalski under different assumptions [128, 129]. At variance with the
previous case, the construction of one-sided generators for endomorphisms remains
an open problem till this very day; see [182] for some progress in this issue.

Example 30 Using the fact that the cylinder sets Ca are generators for the one-sided
and two-sided (p, P)-Markov shifts � on N symbols, one can prove

hμ(�) = −
N∑

i,j=1

piPij log Pij, (B.20)
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where μ is the Markov measure defined by (p, P) (see Example 25 (b)). Upon sub-
stituting Pij = pj in (B.20), we get for p-Bernoulli shifts

hμ(�) = −
N∑

j

pj log pj,

where μ is the Bernoulli measure defined by p (see Example 25 (a)).

A second practical way of calculating (or, at least, estimating) the entropy is
provided by the following theorem.

Theorem 25 [169, Ch. 5, Prop. 3.6] Let (�,B, μ, f ) be a measure-preserving dynam-
ical system. If α0 ≤ α1 ≤ · · · is an increasing sequence of finite partitions of
(�,B, μ) and ∨∞n=0A(αn) = B up to sets of measure 0, then

lim
n→∞ hμ(f , αn) = hμ(f ).

A third practical method calls for Pesin’s theorem and Lyapunov exponents.
Since this topic would take us too far away, we refer the interested reader to the spe-
cialized literature [142, 52, 72]. Due to the important role that the Lyapunov expo-
nent(s) play in nonlinear dynamics, several numerical schemes have been developed
to calculate them [193]. On the other hand, Pesin’s theorem and its generalizations
require the invariant measure to possess some properties—but invariant measures
are in many interesting cases unknown. This fact limits the application of this
method. For the calculation of the metric entropy in some one-dimensional systems,
see [105].

B.2.2 Random Systems

Let X = {Xn}n∈N0 be a stationary stochastic process on a probability space
(�,B, μ), taking on values in S = {0, . . . , N − 1}. In Sect. A.3 it is shown that X
can be associated in a canonical way with a shift system (SN0 ,B�(S), m, �), called
its sequence space model, via �:� → SN0 , (�(ω))n = Xn(ω). The joint probabil-
ity function p(x0, . . . , xn−1) of the random process X is related to the measure of
the cylinder sets Cx0,...,xn−1 , x0, . . . , xn−1 ∈ S, of the sequence space model in the
following way:

p(x0, . . . , xn−1) = μ {ω ∈ �:X0(ω) = x0, . . . , Xn−1(ω) = xn−1}
= μ

{
�−1

{
s ∈ SN0 :s0 = x0, . . . , sn−1 = xn−1

}}

= m
{
Cx0,...,xn−1

}

= m{Cx0 ∩ · · · ∩�−(n−1)Cxn−1}.

Since the partition γ = {Cx0 :x0 ∈ S} is a generator of � (Example 29), we have
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hμ(X) = − lim
n→∞

1

n

∑

x0,...,xn−1∈S

p(x0, . . . , xn−1) log p(x0, . . . , xn−1)

= − lim
n→∞

1

n
Hm

(
n−1∨

i=0

�−iγ

)

= hm(�, γ )

= hm(�)

by Theorem 24 (b). In words, the Shannon entropy rate of a stochastic process
X = {Xn}n∈N0 coincides with the Kolmogorov–Sinai entropy rate of its sequence
space model.

An important property of ergodic processes is the so-called asymptotic equipar-
tition property or Shannon–McMillan–Breiman theorem.

Theorem 26 (Shannon–McMillan–Breiman) If X = {Xn}n∈N0 is a finite-valued sta-
tionary ergodic process, then− 1

n log p(X0, . . . , Xn−1) converges in probability to the
entropy rate h(X).

Example 31 The sequence space model of a finite-state, time-homogeneous Markov
chain X = {Xn}n∈N0 (Example 27) with transition matrix Pi,j, 0 ≤ i, j ≤ N − 1, and
stationary probability vector p is the one-sided (p, P)-Markov shift �p,P. Therefore,

h(X) = h(�p,P) = −
N−1∑

i,j=0

piPij log Pij.

For the specific case

P =
(

1− p01 p01
p10 1− p10

)
=
(

0.9 0.1
0.1 0.9

)
,

the stationary probability is

p =
(

p10

p01 + p10
,

p01

p01 + p10

)
=
(

1

2
,

1

2

)
.

The upper curve in Fig. B.3 shows the entropy rates of order n, h(X0, . . . , Xn−1),
closing in on the true value h(X) = 0.469 bits/symbol (horizontal line). The lower
curve shows what happens in practice when h(X) is estimated numerically in a naive
way. Here the probabilities p(x0, . . . , xn−1) were estimated by the frequencies of the
word x0, . . . , xn−1 in a sequence of 10,000 draws. In the left part of the experimental
curve, we see the entropy rates of successive order n = 1, 2, . . . converging from
above to the true value. For n ≈ 20, the numerical values provide accurate estimates
of the entropy. For greater lengths, the estimates tend toward zero along the parabola
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h(n) = log (N − n+ 1)

n

due to undersampling.
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Fig. B.3 The upper dotted line shows the convergence of the entropy rate of order n to the true
value, 0.469 bits/symbol (horizontal line), for an arbitrarily long sequence generated by a two-state
Markov chain with transition probabilities p01 = p10 = 0.1. The lower dotted line shows what
happens in practice due to undersampling

A particular case is of interest. Consider now not a general stationary stochastic
process but the symbolic dynamics Xα = {Xα

n }n∈N0 of the system (�,B, μ, f ) with
respect to a partition α = {A1, . . . , A|α|} (see (B.14)), and let (SN0 ,B�(S), m, �) be
the sequence space model of Xα; hence S = {1, . . . , |α|} and

m(Ca0,a1,...,an ) = μ(Aa0 ∩ f−1Aa1 ∩ · · · ∩ f−nAan

for any cylinder set Ca0,...,an = {s ∈ SN0 :s0 = a0, . . . , sn = an}, with a0, . . . , an ∈ S.
In this setting, the following question arises. When are the dynamical systems
(�,B, μ, f ) and (SN0 ,B�(S), m, �) isomorphic (via �α:� → SN0 , (�α(ω))n =
Xα

n (ω))? Since {Ca:a ∈ S} is a generator for � and (�α)−1Ca = Aa for every
a ∈ S, we need clearly that

{(�α)−1Ca:1 ≤ a ≤ |α|} = {Aa:1 ≤ a ≤ |α|} = α

is also a generator for f . In other words, a generator for f gives a natural isomorphism
between (�,B, μ, f ) and the sequence space model associated with its symbolic
dynamics. By Krieger’s theorem we conclude that any ergodic, invertible dynamical
system with finite entropy can be represented as a two-sided shift system. This result
is useful in that it provides prototypes of ergodic, finite-entropy systems.
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B.3 Topological Entropy

Topological entropy for continuous self-maps of compact topological spaces was
introduced by Adler, Koheim, and McAndrews by means of open covers [3]. Later
Dinaburg [70] and Bowen [36] found alternative approaches via separating and
spanning sets in (not necessarily compact) metric spaces.

B.3.1 Generalities

Recall that a continuous or topological dynamical system is a pair (M, f ), where
M is a topological space and f :M → M is a continuous map. As compared
to measure-theoretical dynamical systems, there is here no measurable structure
involved (although M can be thought to be endowed with the Borel sigma-algebra);
instead, continuity enters the scenario. Sometimes, continuity is weakened to piece-
wise continuity, especially in conjunction with other properties like piecewise
monotonicity.

Furthermore, in this section (M, d) denotes a metric space and f :M → M a
uniformly continuous map. If, moreover, M is compact, then f needs only to be
continuous (since every continuous self-map of a compact space is uniformly con-
tinuous).

Definition 19 Let K be a compact topological space, α an open cover of K, and N(α)
the number of sets in a finite subcover of α with smallest cardinality. The entropy of
the cover α is then defined as H(α) = log N(α).

If α is an open cover of K and f :K → K is continuous, then f−1α is the open
cover consisting of all sets f−1A, A ∈ α.

Definition 20 If α is an open cover of the compact space K and f :K → K is contin-
uous, then the entropy of f relative to α is given by

h(f , α) = lim
n→∞

1

n
H

(
n−1∨

i=0

f−iα

)
(B.21)

and the topological entropy of f is given by

h(f ) = sup
α

h(f , α). (B.22)

It can be proved that the limit in (B.21) exists and the supremum in (B.22) can
be taken over finite open covers of K.

In a metric space (M, d), the alternative definitions of topological entropy via
spanning and separating sets may be more useful.

Definition 21 Let n ∈ N, ε > 0, and K ⊂ M compact. A subset A ⊂ M is said to
(n, ε)-span K with respect to f :M → M if for each x ∈ K there exists y ∈ A such
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that

max
0≤i≤n−1

d(f i(x), f i(y)) ≤ ε.

Furthermore, let rn(ε, K) denote the smallest cardinality of any (n, ε)-spanning set
for K with respect to f .

Definition 22 The topological entropy of f :M → M is

hd(f ) = sup
K

lim
ε→0

lim sup
n→∞

1

n
log rn(ε, K), (B.23)

where the supremum is taken over all compact subsets of M.

The definition of topological entropy by means of separating sets is as follows.

Definition 23 Let n ∈ N, ε > 0, and K ⊂ M compact. A subset A ⊂ K is said to be
(n, ε)-separated with respect to f :M → M if x, y ∈ A, x �= y, implies

max
0≤i≤n−1

d(f i(x), f i(y)) > ε.

Furthermore, let sn(ε, K) denote the largest cardinality of any (n, ε)-separated subset
of K with respect to f .

Thus, an (n, ε)-separated subset of � is a kind of microscope that allows us to
distinguish orbits of length n up to a precision ε.

Definition 24 The topological entropy of f :M → M is

hd(f ) = sup
K

lim
ε→0

lim sup
n→∞

1

n
log sn(ε, K), (B.24)

where the supremum is taken over all compact subsets of M.

If M is compact, then hd(f ) can be shown [202] not to depend on the metric d
(thus, it will be denoted by htop(f )) and, moreover, definitions (B.23) and (B.24) can
be simplified to

htop(f ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε, M) = lim

ε→0
lim sup

n→∞
1

n
log sn(ε, M). (B.25)

Both rn(ε, M) and sn(ε, M) can be interpreted as the number of orbits of length n up
to an error ε. For ε � 1,

enh(f ) ∼ rn(ε, M) and enh(f ) ∼ sn(ε, M),

where ∼ stands for “asymptotically as n → ∞” (assuming the convergence of
1
n log rn(ε, M) and 1

n log sn(ε, M) in this limit), so the topological entropy measures
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the asymptotic exponential growth rate with n of the number of orbits of length n,
up to error ε.

Definition 25 Let f1:M1 → M1 and f2:M2 → M2 be continuous maps of metric
spaces and suppose that there exists a continuous surjective map φ:M1 → M2 such
that φ ◦ f1 = f2 ◦φ. Then we say that f1 is topologically semiconjugate to f2 or that f2
is a factor of f1 via the topological semi-conjugacy or factor map φ. In the case that
φ is a homeomorphism, then f1 and f2 are said to be topologically conjugate and φ

is said to be a topological conjugacy.

In particular, if two maps are metrically conjugate via a (measure-preserving)
homeomorphism, then they are also topologically conjugate. Such is the case of the
logistic and symmetric tent maps via the homeomorphism A.8 (Example 24). The
qualifiers “topological” and “topologically” may be dropped if it is clear that they
refer to a topological system.

Thus, conjugate maps are obtained from each other by a continuous change of
coordinates. Therefore, properties that are independent of such changes of coordi-
nates will be invariant under topological conjugacy, e.g., sensitivity to initial condi-
tions, topological transitivity, number of periodic orbits of a given period.

Just as metric entropy is an invariant of metric conjugacy, so is topological
entropy an invariant of topological conjugacy.

Theorem 27 Let f1 and f2 be continuous self-maps of compact spaces. If f1 and f2
are topologically conjugate, then h(f1) = h(f2). More generally, if f2 is a factor of
f1, then h(f2) ≤ h(f1).

Exercise 23 Show that the quadratic transformations f1(x) = vx(1 − x) on [0, 1],
0 < v ≤ 4, and

f2(y) = 1
2 (y2 − v2 + 2v)

on [− v, v] are topologically conjugate via the homeomorphism

φ(x) = v(1− 2x) = f ′1(x).

In spite of not involving a measure-theoretical structure, topological entropy is
tightly related to metric entropy through the following variational principle.

Theorem 28 Let M be a compact metric space endowed with the Borel sigma-
algebra B, and f :M → M a continuous map. Then

htop(f ) = sup hμ(f ), (B.26)

where the supremum is taken over all f -invariant measures μ on the measurable
space (M,B).

Note that the set of f -invariant measures invoked in the variational principle
(B.26) is non-empty by Theorem 20. Moreover, the supremum in (B.26) can be
restricted to ergodic measures [202],
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htop(f ) = sup
μ∈E(M,f )

hμ(f ), (B.27)

where E(M, f ) is the set of f -invariant, ergodic measures on (M,B). Measures μ

such that htop(f ) = hμ(f ) are called measures with maximal entropy for obvious
reasons.

In Sect. A.1 we defined the concept of generator of a measure-preserving trans-
formation. In topological dynamics, there is also a concept of generator that plays a
similar role with respect to the topological entropy. Given a compact metric space
M and a map f :M → M, a finite open cover α = {A1, . . . , A|α|} of M is said to be a
generator for f if

(a) in case f is invertible, for any bisequence (ai)i∈Z, 1 ≤ ai ≤ |α|, the intersection

∞⋂

i=−∞
f−iAai

contains at most one point or
(b) in case f is non-invertible, for any sequence (ai)i∈N0 , 1 ≤ ai ≤ |α|, the intersec-

tion

∞⋂

i=0

f−iAai

contains at most one point.

The topological dynamical systems that admit a generator have a simple charac-
terization.

Definition 26 Let M be a compact metric space. A homeomorphism (correspond-
ingly, a continuous map) f :M → M is said to be expansive if there exists δ > 0,
called an expansivity constant for f , such that

d(f n(x), f n(y)) ≤ δ

for all n ∈ Z (correspondingly, n ∈ N0) implies x = y. Expansive non-invertible
maps and homeomorphisms for which the expansiveness condition holds already
for non-negative iterates are collectively called positively expansive maps.

Alternatively, if x �= y and δ is an expansivity constant for f , then there exists
n ∈ Z (correspondingly, n ∈ N0 ) with d(f n(x), f n(y)) > δ. Notice that expansive-
ness differs from sensitive dependence in that all nearby points eventually separate
by at least δ (for sensitive dependence it suffices this to occur for a single point in
each neighborhood of the other). Intuitively, the orbits of an expansive map f can
be resolved to any desired precision by taking n sufficiently large. Expansive maps
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f have some nice properties like having a countable number of periodic points, and
at least one invariant measure with maximal entropy [202]. Examples of expansive
maps include the shift transformations and the hyperbolic toral automorphisms. On
the other hand, there are no expansive maps of closed one-dimensional intervals
[19, Thm. 2.2.31] nor expansive homeomorphisms of the circle [202]. Expansive-
ness and positively expansiveness are topological conjugacy invariants.

Theorem 29 Let f :M → M be a map of the compact metric space (M, d). Then f is
expansive if and only if f has a generator.

Observe that the cylinder sets Ca are generators both in the measure-theoretical
and in the topological senses because, among other considerations, they build a par-
tition and an open cover at the same time. Therefore, shifts on sequence spaces are
expansive transformations. Expansiveness is an invariant of topological conjugacy.

Theorem 30 If f :M → M be an expansive map of the compact metric space (M, d)
and α is a generator for f , then htop(f ) = h(f , α).

Example 32 Let S = {0, . . . , k − 1} and � be the shift on the bisequence space
SZ = {(sn)n∈Z}. Then � has topological entropy log N. Indeed, apply Theorem 30
with α comprising the cylinder sets Cj = {(xn)n∈Z:x0 = j} to obtain

htop(�) = lim
n→∞

1

n
log N

(
n−1∨

i=0

�−iα

)
= lim

n→∞
1

n
log kn = log k.

Thus, if μ0 is the Bernoulli measure on (SZ,B�(S)) defined by the probability vector
p0 = ( 1

k , . . . , 1
k ), we have

hμ0 (�) = log k = htop(�).

This illustrates the existence of (in this case, unique) measures of maximal entropy.
The result in the one-sided case is the same.

Example 33 Let S = {0, . . . , k − 1}, A = (aij)
k−1
i,j=0 be a k × k matrix whose entries

aij are either 0’s or 1’s, and

�A = {ω ∈ SZ:aωnωn+1 = 1 for ∀n ∈ Z}.

The space �A is closed and shift invariant. The restriction

�A := �|�A

is called the two-sided topological Markov chain determined by the matrix A, a
Markov subshift, or a subshift of finite type (see Sect. 1.1.2). One-sided topological
Markov chains are defined analogously over SN0 . The matrix A is said to be irre-
ducible if for any pair i, j there is n > 0 such that a(n)

ij > 0, where a(n)
ij are the entries
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of An. If A is irreducible and �A is a one-sided or two-sided topological Markov
chain, then [202]

htop(�A) = log λ, (B.28)

where λ is the largest positive eigenvalue of A. A topological Markov chain �A has
a unique measure (called its Parry measure ) of maximal topological entropy.

It can be proved [31, Sect. 4.3] that a C2 piecewise expanding Markov map f is
topologically conjugate (modulo 0) to the one-sided topological Markov chain �A,
where A is the transition matrix for f . Therefore, piecewise expanding Markov maps
admit a symbolic description.

Example 34 Consider the rooftop map f defined by

f (x) =
{

ax+ c if 0 ≤ x ≤ c,
(1− b)x if c ≤ x ≤ 1,

a > 1, b > 1, and c = 1
1+a ; see Fig. B.4. Set I1 = [0, c) and I2 = [c, 1]. Then f is

C∞ on I1 and I2 (lateral derivatives at the endpoints),

∣∣f ′(x)
∣∣ =

{
a if x ∈ I1,
b if x ∈ I2,

and

f (I̊ 1) = I̊ 2, f (I̊ 2) ⊃ I̊ 1 ∪ I̊ 2.

It follows that f is a smooth piecewise expanding Markov map with transition matrix

A =
(

0 1
1 1

)
,

see (B.2). Finally, from (B.28) we get

htop(f ) = htop(�A) = log 1+√5
2 .

B.3.2 Topological Entropy of One-Dimensional Maps

Topological entropy, as metric entropy, is in general difficult to calculate and even to
estimate. An exception worth mentioning because of its importance in applications
is the case of one-dimensional interval maps.
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0 c 1

1

Fig. B.4 Rooftop map

Definition 27 Given an interval I ⊂ R, a map f :I → I is said to be piecewise
monotone if there is a finite partition of I into subintervals, such that f is continuous
and monotone on each of those subintervals.

If f :I → I is piecewise monotone, there are different expressions for its topolog-
ical entropy htop(f ) that allow calculating it analytically in many cases. For instance
[4, 155],

htop(f ) = lim
n→∞

1

n
log lap(f n) (B.29)

and

htop(f ) = lim
n→∞

1

n
log
∣∣{x ∈ I:f n(x) = x}∣∣ , (B.30)

where lap(f n) is the number of pieces of monotonicity of f n (called laps of f n) and
|·| stands for the cardinality.

Other expressions of h(f ) are related to the notion of variation [4, 155]:

htop(f ) = lim
n→∞

1

n
log+ var(f n), (B.31)

where, as usual, log+ x = max{0, log x}. Let us recall that the variation of a function
ϕ:I → R is given as

var(ϕ) = sup

{
s∑

i=1

|ϕ(xi)− ϕ(xi−1)|
}

,
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where the supremum is taken over all finite sequences x0 < x1 < · · · < xs of
elements of I. If ϕ is piecewise monotone, then (i) var(ϕ) < ∞, (ii) ϕ has finite
derivative ϕ′ almost everywhere on I, and (iii) ϕ′ is integrable on I [95]. In this case,

var(ϕ) =
∫

I

∣∣ϕ′(x)
∣∣ dx. (B.32)

Note that, for a piecewise monotone map ϕ, var(ϕ) is closely related to the length
of the graph of ϕ,

len(ϕ) =
∫

I

√
1+ |ϕ′(x)|2dx.

Indeed, since

∣∣ϕ′(x)
∣∣ <

√
1+ |ϕ′(x)|2 ≤ ∣∣ϕ′(x)

∣∣+ 1 (B.33)

for all x ∈ I, we have

var(ϕ) < len(ϕ) ≤ var(ϕ)+ len(I), (B.34)

upon integration of (B.33) over the interval I (len(I) denotes the length of I). It
follows

lim
n→∞

1

n
log+ len(f n) = lim

n→∞
1

n
log+ var(f n) = h(f ), (B.35)

since limn→∞ 1
n log+ len(I) = 0.

Corollary 10 If f is a continuous, piecewise monotone interval map of constant
slopes ±s, then

htop(f ) = log+ s.

This result is very interesting for the following reason. If f is a continuous, piece-
wise monotone interval map and htop(f ) = log β > 0, then f is semiconjugate to
some continuous, piecewise monotone interval map of constant slopes ±β (via a
non-decreasing map) [4]. If, moreover, f is topologically transitive, then “semicon-
jugate” can be replaced by “conjugate” in the previous statement (and the condition
htop(f ) > 0 can be dropped because it is automatically satisfied).

Finally, let us mention that there are efficient algorithms for the numerical esti-
mation of the topological entropy of piecewise monotone interval maps; see, for
example, [27] for an algorithm that converges rapidly and provides both upper and
lower bounds.
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Algorithmic complexity, 15

orbit, 17
Alphabet, 1, 207
Alternating signature, 98
Asymptotic equipartition property, 224
Atom of a partition, 10
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Average, see Expectation value

B
BDS test, see Brock-Dechert-Sheinkman test
Bernoulli shift, 16
Bernoulli system, see Bernoulli shift, 17
Bit, 214
Block map, 9
Borel sigma-algebra, 199
Brock-Dechert-Scheinkman test, 168

C
Cantor set, 207
Capacity of a source, 126
Cellular automata, 18

elementary, 178
expansive, 184
hybrid, 19
identification number, 179
positively expansive, 184

Chain rule for the joint entropy, 216, 217
Channel capacity, 216
Chao’s estimator, 141
Characteristic function of a set, 204
Coded orbit, 50
Coding map, 220
Colored noise, 65, 163, 175
Conditional robustness, 65
Conjugacy, 205
Connection matrix, 129
Constrained source, 128

Constrained system, sequence, 128
Control parameter, 37
Coupled map lattice

diffusive, 181
one-way, 181

Critical point of a unimodal map, 37
Cycle of length n, 44, 148
Cylinder set, 16, 20, 50, 207

D
Data compression, 2
Decomposition in s-blocks, 72
Decreasing subsequence, 72
Delay time, 30
Density function of a measure, 202
Diameter of a partition, see Norm of a partition
Dictionary order, see Lexicographical order
Discrete chaos, 147
Discrete entropy, 150

of order n, 148
Discrete Lyapunov exponent, 150
Discrete permutation entropy, 157
Discrete topological entropy

of order n, 157
Dual bit, 86
Dual digit, 92
Dual sequence, 92
Dyadic rational, 7
Dynamical noise, 64
Dynamical robustness, 160
Dynamical system

continuous, 9, 199, 226
measure-preserving, 9
measure-theoretical, 9
topological, 9, 199, 226

E
Embedding dimension, 30
Endomorphism, 10, 221
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conditional, 216
joint, 215
metric, 12
of a map relative to a cover, 226
of an open cover, 226
of order n of a map, 220
of order n of a random process, 217
of a random process, 217
relative, 215
Shannon, 213
topological, 226, 227

Entropy joint, 217
Entropy of a source

Shannon entropy, 2
Entropy rate, see Entropy
Ergodenhypothese, 204
Ergodic decomposition, 112
Ergodic Theorem, 204
Euclidean norm, 114
Expectation value, 213

F
False forbidden pattern, 162
Finite partition, 219
Flow, 29
Forward orbit, 201
Fractal dimension, 170

G
Gauss transformation, 120, 201
Generator, 221, 229

one-sided, 12, 221
strong, 221
two-sided, 12

Global transition map of a cellular automaton,
19

Gray ordering, 38

H
Heaviside function, 36

I
Increasing sequence of partitions, 115
Increasing subsequence, 72
Information dimension, 170
Information of a random variable,

215
Information source, 1, 211

ergodic, 212
memoryless, 2
mixing, 212

Irreducible and aperiodic matrix, 130
Irreducible matrix, 130

Irreducible permutation, 148
Itinerary, 5

J
Joint probability distribution, 211

K
Kaplan-Yorke conjecture, 170
Kaplan-Yorke dimension, 170
Kolmogorov-Sinai entropy, 12, 221
Komogorov-Sinai Theorem, 222
Kullback-Leibler distance, see Relative entropy

L
Least common refinement, 219
Lebesgue space, 205
Left sequence, 81
Lempel-Ziv algorithm, 3

LZ76, 3
LZ78, 3

Lempel-Ziv complexity, 3
Letter, 2, 207
Lexicographical order, 52

one-sided sequences, 71
two-sided sequences, 81

Linearly ordered set, 52
Linear order, 52
Local rule of a cellular automaton, 19
Lorenz map, 170
Lyapunov exponent, 123, 223

M
Map(s)

Aperiodic map, 54
baker map, 83
Cat map, 142
chaotic, 209
coding, 5
dyadic, 6, 210
ergodic, 203
expanding of the circle, 210
factor, 205, 228
Hénon map, 143
isomorphic, 205
l-modal, 39
logistic, 14, 22
logistic family, 37
Lozi, 136
Markov, 202
measure-preserving, 9
order-isomorphic, 57
piecewise expanding, 202
piecewise monotone, 26, 232
positively expansive, 229
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Rooftop map, 231
sawtooth, 6, 69
sensitive to initial conditions, 209
shift, 6, 69
signed sawtooth, 91
symmetric tent, 12, 85
tent family, 37
topologically conjugate, 228
topologically semiconjugate, 228
topologically transitive, 9, 204, 209
unimodal, 37
uniquely ergodic, 204

Markov chain, see Stochastic process, Markov
topological, 8, 230

Markov process, see Stochastic process,
Markov

Matrix
irreducible, 230
transitive, 9

Measure
absolutely continuous, 202
Bernouilli, 209
Dirac, 201
ergodic, 204
invariant, 199
Markov, 209
natural, 202
natural invariant, 14
non-singular, 9
Parry, 231
physical, 202
physical invariant, 14
with maximal entropy, 229

Measure-preserving dynamical system,
199

cover, 205
ergodic, 204
factor, 205
isomorphic, 205
mixing, 205

Measure-preserving map, 199
Measure space, 199
Measure-theoretical entropy, see metric

entropy
Message, 2, 207
Metric entropy of a source

Shannon entropy, 126
Metric entropy with respect to a partition,

11
Metric permutation entropy of a map, 116,

118
Metric permutation entropy of a random

process, 107

Metric permutation entropy of order L, 118
of a random process, 107

Monotone subsequence, 72
Mutual information, 216

N
Nat, 2, 214
Neighborhood of a cellular automaton,

18
Noise, 64
Noisy time series, 163
Non-visible ordinal pattern, see Unobservable

ordinal pattern
Norm of a partition, 10,

219

O
Observable ordinal pattern, 65
Observational noise, 65
One-sided sequence, 207
Orbit, 4

forward, 4
Orbit of a point, 201
Order isomorphism, 57
Order of a permutation, 44
Ordinal pattern, 21, 52

admissible, 23, 53, 57
allowed, 23, 53, 57
defined by a point, 22
forbidden, 23, 53, 57
recurrence plot, 37

Oriented graph, 128
Outgrowth forbidden pattern, 61

P
Partition, 10, 202, 219

finite partition, 10
generating, 12, 221
Markov, 202
point partition, 10, 221

Pattern avoidance, 62
Pattern containment, 62
Permutation capacity, 33
Permutation complexity, 37
Permutation entropy

metric, 24
of a sequence, 30
Rényi, 33
topological, 24
Tsallis, 33

Perron-Frobenius Theorem, 129
Point partition, 116
Primitive root, 151
Probability space, 199
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Product measurable space, 206
Product order, see Lexicographical order
Product refinement, 115

Q
Quasi box partitions, 115
Quasi product partitions, 115

R
Radius of a block map, 8
Radon-Nikodym derivative of a measure, see

Density function of a measure
Random process, see Stochastic process
Rank variable, 106
Reconstructed trajectory, 30
Recurrence

matrix, 35
plots, 35

Refinement of a partition, 11, 115, 219
Regularity parameters, 188
Relative entropy, 215
Rényi entropy, 32
Right sequence, 81
Root forbidden pattern, 61

S
Sample space, 211
Semi-algebra, 199
Separating set, 227
Sequence

admissible, 8
incompressible, 16
one-sided, 1, 5
two-sided, 5
typical, 16

Sequence space, 5, 207
two-sided, 208

Sequence space model, 212
Shannon entropy, 2, 126
Shift, 5

Bernoulli, 209
Markov, 209
one-sided, 208
two-sided, 208

Shift system
one-sided, 208
two-sided, 209

Shift transformation, see Shift
Signed lexicographical order, 38
Signed shift, 91
Simple domain, 114
Simple observations, 220
Source pattern

ordinal, 43

Spanning set, 226
Spatial regularity parameter, 188
Spectral radius, 130
Spiralling pattern, 76
State space, 4, 211
Stochastic process, 211

continuous time, 211
discrete time, 211
Markov, 212
stationary, 211
time-homogeneous Markov, 212

Subshift, 8
Markov, 8, 230
of finite order, 230
of finite type, 8

Substitution box, 151
Supremum norm, 115
Symbolic dynamics, 4, 220
Symbolic space, 5

T
Target pattern

ordinal, 43
Temporal regularity parameter, 188
Tent pattern, 76
Theorem

Krieger, 51, 222
Krylov-Bogolioubov, 201
Pesin, 223
Shannon-MacMillan-Breiman, 224

Time-delayed Hénon map, 172
Topological conjugacy, 228
Topological entropy of a source, 126

order L, 125
Topological permutation entropy

of a map, 131, 135
of order L, 135

Topological semiconjugacy, 228
Topological transitivity, 204
Total order, see Linear order
Totally ordered set, see Linearly ordered set
Trajectory, see Orbit
Trajectory of a point, 201
Transcription, 43
Transition matrix for a Markov map, 202
True forbidden pattern, 163
Tsallis entropy, 32
Two-sided sequence, 207

U
Unbservable ordinal pattern, 65
Unconditional robustness, 65
Universal compressor, 3



Index 249

V
Variational principle, 228
Visible ordinal pattern, see Observable ordinal

pattern

W

White noise, 65

Word, 2, 207


	to 1  What Is This All About? 
	1.1  Patterns, Complexity, and Entropy
	1.1.1  Information Theory
	1.1.2  Symbolic Dynamics
	1.1.3  Dynamical Systems
	1.1.4  Computer Science
	1.1.5  Cellular Automata

	1.2  Admissible and Forbidden Ordinal Patterns

	to 2  First Applications 
	2.1  Entropy Estimation
	2.2  Permutation Complexity
	2.3  Estimation of Control Parameters from Symbolic Sequences
	2.4  Characterizing Synchronization

	to 3  Ordinal Patterns 
	3.1  Symbol Patterns
	3.2  Order Relations
	3.3  Ordinal Patterns Defined by Maps
	3.4  Properties of the Ordinal Patterns
	3.4.1  Invariance Under Order Isomorphism
	3.4.2  Growth of Forbidden Patterns with Length: Outgrowth Patterns
	3.4.3  Robustness Against Noise in Deterministic Time Series


	to 4  Ordinal Structure of the Shifts 
	4.1  Ordinal Patterns and the Shift Maps
	4.2  Forbidden Patterns for One-Sided Shifts
	4.3  Forbidden Patterns for Two-Sided Shifts

	to 5  Ordinal Structure of the Signed Shifts 
	5.1  Ordinal Patterns and the Tent Map
	5.1.1  A State-Dependent Shift Approach to the Tent Map
	5.1.2  The Interval Structure of the Sets P

	5.2  Ordinal Patterns and the Signed Shifts

	to 6  Metric Permutation Entropy 
	6.1  The Metric Permutation Entropy of a Finite-State Process
	6.2  Permutation Metric Entropy of Maps
	6.3  On the Definition of Metric Permutation Entropy for Maps
	6.4  Numerical Issues

	to 7  Topological Permutation Entropy 
	7.1  Topological Permutation Entropy of Sources
	7.2  Constrained Sequences
	7.3  Topological Permutation Entropy of Maps
	7.4  Relation Between Topological Entropy and Topological Permutation Entropy
	7.5  Estimating Topological Entropy
	7.6  Existence of Forbidden Ordinal Patterns
	7.7  Numerical Simulations

	to 8  Discrete Entropy 
	8.1  Discrete Entropy
	8.2  The Infinite Limit
	8.3  Discrete Topological Entropy

	to 9  Detection of Determinism 
	9.1  Dynamical Robustness Against Observational Noise
	9.2  Detection of Determinism I: Number of Missing Ordinal Patterns
	9.3  Detection of Determinism II: Distribution of Visible Ordinal Patterns
	9.4  A Benchmark
	9.5  Numerical Simulations
	9.5.1  The Lorenz Map
	9.5.2  The Delayed Hénon Map


	to 10  Space--Time Dynamics 
	10.1  Spatially Extended Systems
	10.1.1  Cellular Automata
	10.1.2  Coupled Map Lattices

	10.2  Applications of Permutation Complexity to Spatiotemporal Dynamics
	10.2.1  Topological Entropy of CA
	10.2.2  Complexity Classes of Elementary CA
	10.2.3  Phases of CMLs
	10.2.4  Spatiotemporal Regularity of CMLs


	to 11  Conclusion and Outlook 
	to A  Mathematical Framework 
	A.1  Dynamical Systems
	A.2  Shift Systems
	A.3  Stochastic Processes and Sequence Spaces

	to B  Entropy 
	B.1  Shannon Entropy
	B.1.1  The Entropy of a Discrete Random Variable
	B.1.2  The Entropy Rate of a Discrete-Time Finite-State Stochastic Process

	B.2  Kolmogorov--Sinai Entropy
	B.2.1  Deterministic Systems
	B.2.2  Random Systems

	B.3  Topological Entropy
	B.3.1  Generalities
	B.3.2  Topological Entropy of One-Dimensional Maps


	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




