
Algebra for Infinite Forests with an Application

to the Temporal Logic EF�

Miko�laj Bojańczyk and Tomasz Idziaszek

University of Warsaw, Poland
{bojan,idziaszek}@mimuw.edu.pl

Abstract. We define an extension of forest algebra for ω-forests. We
show how the standard algebraic notions (free object, syntactic algebra,
morphisms, etc.) extend to the infinite case. To prove its usefulness, we
use the framework to get an effective characterization of the ω-forest
languages that are definable in the temporal logic that uses the operator
EF (exists finally).

1 Introduction

The goal of this paper is to explore an algebraic approach to infinite trees. We
have decided to take a two-pronged approach:

– Develop a concept of forest algebra for infinite trees, extending to infinite
trees the forest algebra defined in [8].

– Use the algebra to get an effective characterization for some logic (that is, an
algorithm that decides which regular languages can be defined in the logic).

A good effective characterization benefits the algebra. Effective characteriza-
tions are usually difficult problems, and require insight into to the structure of
the underlying algebra. We expected that as a byproduct of an effective charac-
terization, we would discover what are the important ingredients of the algebra.

A good algebra benefits effective characterizations. A good algebra makes
proofs easier and statements more elegant. We expected that an effective char-
acterization would be a good test for the quality of an algebraic approach. In
the previously studied cases of (infinite and finite) words and finite trees, some
of the best work on algebra was devoted to effective characterizations.

We hope the reader will find that these expectations have been fulfilled.

Why the logic EF? What tree logic should we try to characterize? Since we are
only beginning to explore the algebra for infinite trees, it is a good idea to start
with some logic that is very well understood for finite trees. This is why for
our case study we chose the temporal logic EF. For finite trees, this was one of
the first nontrivial tree logic to get an effective characterization, for binary trees
in [7], and for unranked trees [8]. Moreover, when stated in algebraic terms – as

� Work partially funded by the Polish government grant no. N206 008 32/0810.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 131–145, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

132 M. Bojańczyk and T. Idziaszek

in [8] – this characterization is simple: there are two identities h + g = g + h and
vh = vh + h (these will be explained later in the paper).

We were also curious how some properties of the logic EF would extend from
finite trees to infinite trees. For instance, for finite trees, a language can be de-
fined in the logic EF if and only if it is closed under EF-bisimulation (a notion
of bisimulation that uses the descendant relation instead of the child relation).
What about infinite trees? (We prove that this is not the case.) Another ex-
ample: for finite trees, a key proof technique is induction on the size of a tree.
What about infinite trees? (Our solution is to use only regular trees, and do the
induction on the number of distinct subtrees.)

Our approach to developing an algebra. Suppose you want to develop a new kind
of algebra. The algebra should be given by a certain number of operations and
a set of axioms that these operations should satisfy. For instance, in the case of
finite words, there is one operation, concatenation, and one axiom, associativity
(such a structure, of course, is called a semigroup). Given a finite alphabet A, the
set of all nonempty words A+ is simply the free semigroup. Regular languages
are those that are recognized by morphisms from the free semigroup into a finite
semigroup.

This approach was used in [8] to define forest algebra, an algebraic framework
for finite unranked trees. The idea was to develop operations and axioms such
that the free object would contain all trees. One idea was to have a two-sorted
algebra, where one sort described forests (sequences of unranked trees), and the
other sort described contexts (forests with a hole). Forest algebra has been suc-
cessfully applied in a number of effective characterizations, including fragments
of first-order logic [6,5] and temporal logics [3], see [4] for a survey. An im-
portant open problem is to find an effective characterization of first-order logic
with the descendant relation (first-order with the child relation was effectively
characterized in [1]).

When developing an algebraic framework for infinite words (and even worse,
infinite trees), we run into a problem. For an alphabet A with at least two letters,
the set Aω of all infinite words is uncountable. On the other hand, the free object
will be countable, as long as the number of operations is countable. There are
two solutions to this problem: either have an uncountable number of operations,
or have a free object that is different from Aω. The first approach is called an
ω-semigroup (see the monograph [10]). The second approach is called a Wilke
semigroup [11]. Like in forest algebra, a Wilke semigroup is a two-sorted object.
The axioms and operations are designed so that the free object will have all finite
words on the first sort, and all ultimately periodic words on the second sort. Why
is it possible to ignore words that are not ultimately periodic? The reason is that
any ω-regular language L ⊆ Aω is uniquely defined by the ultimately periodic
words that it contains. In this sense, a morphism from the free Wilke semigroup
into a finite Wilke semigroup contains all the information about an ω-regular
language.

Our approach to infinite trees combines forest algebra and Wilke semigroups.
As in forest algebra, we have two sorts: forests and contexts. Both the forests

Algebra for Infinite Forests with an Application 133

and the contexts can contain infinite paths, although the hole in a context has
to be at finite depth (since there is no such thing as a hole at infinite depth). As
in a Wilke semigroup, the free object does not contain all forests or all contexts,
but only contain the regular ones (a forest or context is regular if it has a finite
number of nonisomorphic subtrees, which is the tree equivalent of ultimately
periodic words).

Organization of the paper. In Section 2 we present the basic concepts, such as
trees, forests, contexts and automata. The algebra is defined in Section 3. In
Section 4, we define the logic EF and present a characterization, which says that
a language can be defined in EF if and only if: (a) it is invariant under EF-
bisimulation; and (b) its syntactic algebra satisfies a certain identity. There are
three tasks: prove the characterization, decide condition (a), and decide condition
(b). Each of these tasks is nontrivial and requires original ideas. Due to a lack of
space, the algorithms for deciding (a) and (b) are relegated to the appendix. We
end the paper with a conclusions section. Apart from the usual ideas for future
work, we try to outline the limitations of our approach.

2 Preliminaries

2.1 Trees and Contexts

This paper mainly studies forests, which are ordered sequences of trees. Forests
and trees can have both infinite and finite maximal paths, but each node must
have finitely many siblings. Formally, a forest over finite alphabet A is a partial
map t : N

+ → A whose domain (the set of nodes) is closed under nonempty
prefixes, and such that for each x ∈ N

∗, the set {i : x · i ∈ dom(t)} is a finite
prefix of N. We use letters s, t for forests. An empty forest is denoted by 0. We use
the terms root (there may be several, these are nodes in N), leaf, child, ancestor
and descendant in the standard way. A tree is an forest with one root. If t is a
forest and x is a node, we write t|x for the subtree of t rooted in x, defined as
t|x(y) = t(xy).

A context is a forest with a hole. Formally, a context over an alphabet A is
a forest over the alphabet A ∪ {�} where the label �, called the hole, occurs
exactly once and in a leaf. We use letters p, q to denote contexts. A context is
called guarded if the hole is not a root.

Operations on forests and contexts. We define two types of operations on
forests and contexts: a (horizontal) concatenation operation, written additively,
and a (vertical) composition operation, written multiplicatively. In general, nei-
ther concatenation nor composition is commutative.

What objects can be concatenated? We can concatenate two forests s, t, the
result is a forest s + t that has as many roots as s and t combined. (We do
not assume that concatenation is commutative, so s + t need not be the same

134 M. Bojańczyk and T. Idziaszek

as t + s.) Since contexts can be interpreted as forests with a hole label, we can
also concatenate a forest s with a context p, with the being result is a context
s + p. There is also the symmetric concatenation p + s. In other words, we can
concatenate anything with anything, as long as it is not two contexts (otherwise
we could get two holes).

What objects can be composed? We can compose a context p with a forest t,
the result is a forest pt obtained by replacing the hole of p with the forest t. For
instance, if p is a context with a in the root and a hole below, written as a�, and t
is a forest (and also tree) with a single node labeled b, written as b, then p(t+ t) =
a(b + b) is a tree with the root labeled a and two children with label b. We can
also compose a context p with another context q, the resulting context pq satisfies
pqt = p(qt) for all forests t. We cannot compose a forest t with a context p, or
another forest s, since t has no hole.

Regular forests and recursion schemes. A forest is called regular if it has
finitely many distinct subtrees. Regular forests are important for two reasons: a)
they can be represented in a finite way; and b) regular languages are uniquely
determined by the regular forests they contain. One way of representing a regular
forest is as a forest with backward loops, as in the picture below.

The formal definition of forests with backward loops is presented below, under
the name of recursion schemes. Let Z = ZH ∪ZV be a set of label variables. The
set ZH represents forest-sorted variables and the set ZV represents context-
sorted variables. Let Y be a set of recursion variables. Recursion terms are built
in the following way:

1. 0 is a recursion term.
2. If τ1, . . . , τn are recursion terms, then so is τ1 + · · · + τn.
3. Every forest-sorted label variable z ∈ ZH is a recursion term.
4. If z ∈ ZV is a context-sorted label variable and τ is a recursion term, then

zτ is a recursion term.
5. Every recursion variable y ∈ Y is a recursion term.
6. If y ∈ Y a recursion variable and τ is a recursion term where y is guarded,

then νy.τ is a recursion term. We say a recursion variable y is guarded in a
recursion term τ if there is no decomposition τ = τ1 + y + τ2.

A recursion scheme is a recursion term without free recursion variables, i.e. a
recursion term where every recursion variable y occurs in as a subterm of a term
νy.τ . We denote recursion schemes and terms using letters τ, σ. We also assume
that each recursion variable is bound at most once, to avoid discussing scope of
variables.

Algebra for Infinite Forests with an Application 135

Let η be a function (called a valuation) that maps forest-sorted label vari-
ables to forests and context-sorted label variables to guarded contexts. We define
unfoldτ [η] to be the (possibly infinite) forest obtained by replacing the label z
with their values η(z), and unfolding the loops involving the recursion variables.
The formal definition is in the appendix. If the recursion scheme uses only m
forest-sorted variables z1, . . . , zm and n context-sorted variables z′1, . . . , z

′
n (we

call this an (m, n)-ary recursion scheme), then only the values of η on these vari-
ables are relevant. In such a case, we will interpret unfoldτ as a function from
tuples of m forests and n contexts into forests.

For instance, suppose that z′ is a context-sorted variable and z1, z2 are forest
sorted variables. For τ = z′z1 + z2, unfoldτ (t1, t2, p) = pt1 + t2, and if τ =
νy.z′z′y then unfoldτ (p) is the infinite forest ppp · · · . Note that the notation
unfoldτ (t1, t2, p) uses an implicit order on the label variables.
Note 1. Why only allow guarded contexts as inputs for the unfolding? For the
same reason as restricting the binding νy.τ to terms τ where y is guarded.
Take, for instance a recursion scheme τ = νy.zy. What should the result of
unfoldτ (a + �) be, for the unguarded context a + �? We could say that this is
the a forest a + a + · · · that is infinite to the right. But then, in a similar way,
we could generate the forest · · · + a + a that is infinite to the left. What would
happen after concatenating the two forests? In order to avoid such problems, we
only allow contexts where the hole is not in the root. Another solution would be
to suppose that the order on siblings is an arbitrary linear ordering.

Lemma 2.1. Regular forests are exactly the unfoldings of recursion schemes.

2.2 Automata for Unranked Infinite Trees

A (nondeterministic parity) forest automaton over an alphabet A is given by a set
of states Q equipped with a monoid structure, a transition relation δ ⊆ Q×A×Q,
an initial state qI ∈ Q and a parity condition Ω : Q → {0, . . . , k}. We use additive
notation + for the monoid operation in Q, and we write 0 for the neutral element.

A run of this automaton over a forest t is a labeling ρ : dom(t) → Q of forest
nodes with states such that for any node x with children x1, . . . , xn,

(ρ(x1) + ρ(x2) + · · · + ρ(xn), t(x), ρ(x)) ∈ δ.

Note that if x is a leaf, then the above implies (0, t(x), ρ(x)) ∈ δ.
A run is accepting if for every infinite path π ⊆ dom(t), the highest value of

Ω(q) is even among those states q which appear infinitely often on the path π.
The value of a run over a forest t is the obtained by adding, using +, all the
states assigned to roots of the forest. A forest is accepted if it has an accepting
run whose value is the initial state qI . The set of trees accepted by an automaton
is called the regular language recognized by the automaton.

Theorem 2.2
Languages recognized by forest automata are closed under boolean operations and
projection. Every nonempty forest automaton accepts some regular forest.

136 M. Bojańczyk and T. Idziaszek

Two consequences of the above theorem are that forest automata have the
same expressive power as the logic MSO, and that a regular forest language is
determined by the regular forests it contains. We can also transfer complexity
results from automata over binary trees to forest automata.

3 Forest Algebra

In this section we define ω-forest algebra, and prove some of its basic properties.
Usually, when defining an algebraic object, such as a semigroup, monoid,

Wilke semigroup, or forest algebra, one gives the operations and axioms. Once
these operations and axioms are given, a set of generators (the alphabet) deter-
mines the free object (e.g. nonempty words in the case of semigroups). Here, we
use the reverse approach. We begin by defining the free object. Then, we choose
the operations and axioms of ω-forest algebra so that we get this free object.

Let A be an alphabet. Below, we define a structure A�. The idea is that A�

will turn out to be the free ω-forest algebra generated by A. The structure A�

is two-sorted, i.e. it has two domains HA and VA. The first domain HA, called
the forest sort, consists of all (regular) forests over the alphabet A. The second
domain VA, called the context sort consists of all (regular) guarded contexts over
the alphabet A. From now on, when writing forest, tree or context, we mean a
regular forest, regular tree, or regular guarded context, respectively.

What are the operations? There are eight basic operations, as well as infinitely
many recursion operations.

Basic operations. There is a constant 0 ∈ HA and seven binary operations

s, t ∈ HA �→ s + t ∈ HA

p, q ∈ VA �→ pq ∈ VA

p ∈ VA, s ∈ HA �→ ps ∈ HA

p ∈ VA, s ∈ HA �→ p + s ∈ VA

p ∈ VA, s ∈ HA �→ s + p ∈ VA

p ∈ VA, s ∈ HA �→ p(� + s) ∈ VA

p ∈ VA, s ∈ HA �→ p(s + �) ∈ VA

If we had all contexts, instead of only guarded contexts, in the context sort, we
could replace the last four operations by two unary operations s �→ s + � and
s �→ � + s. However, having unguarded contexts would cause problems for the
recursion operations.

Recursion operations. For each (m, n)-ary recursion scheme τ , there is an
(m + n)-ary operation

s1, . . . , sm ∈ HA

p1, . . . , pn ∈ VA
�→ unfoldτ (s1, . . . , sm, p1, . . . , pn) ∈ HA.

We use p∞ as syntactic sugar for unfoldνy.zy(p).

Algebra for Infinite Forests with an Application 137

Generators. The operations are designed so that every forest and context over
alphabet A can be generated from single letters in A. It is important however,
that the alphabet, when treated as a generator for A�, is considered as part of
the context sort.

More formally, for an alphabet A, we write A� for the set of contexts {a� :
a ∈ A}. By Lemma 2.1, the domain HA is generated by A� ⊆ VA. It is also
easy to see that every context in VA is also generated by this set, it suffices to
construct the path to the hole in the context and generate all remaining subtrees.
Therefore A� is generated by A�.

Definition of ω-forest algebra. We are now ready to define what an ω-forest
algebra is. It is a two sorted structure (H, V). The operations are the same
as in each structure A�: eight basic operations and infinitely many recursion
operations. The axioms that are required in an ω-forest algebra are described in
the appendix. These axioms are designed so as to make the following theorem
true. Homomorphisms (also called morphisms here) are defined in the appendix.

Theorem 3.1
Let A be a finite alphabet, and let (H, V) be an ω-forest algebra. Any function
f : A� → V uniquely extends to a morphism α : A� → (H, V).

Recognizing Languages with an ω-Forest Algebra

A set L of A-forests is said to be recognized by a surjective morphism α : A� →
(H, V) onto a finite ω-forest algebra (H, V)f membership t ∈ L depends only on
the value α(t). The morphism α, and also the target ω-forest algebra (H, V), are
said to recognize L.

The next important concept is that of a syntactic ω-forest algebra of a forest
language L. This is going to be an ω-forest algebra that recognizes the language,
and one that is optimal (in the sense of 3.3) among those that do.

Let L be a forest language over an alphabet A. We associate with a forest
language L two equivalence relations (à la Myhill-Nerode) on the free ω-forest
algebra A�. The first equivalence, on contexts is defined as follows. Two contexts
p, q are called L-equivalent if for every forest-valued term φ over the signature
of ω-forest algebra, any valuation η : X → A� of the variables in the term, and
any context-sorted variable x, either both or none of the forests

φ[η[x �→ p]] and φ[η[x �→ q]]

belong to L. Roughly speaking, the context p can be replaced by the context
q inside any regular forest, without affecting membership in the language L.
The notion of L-equivalence for forest s, t is defined similarly. We write ∼L for
L-equivalence. Using universal algebra, it is not difficult to show:

Lemma 3.2. L-equivalence, as a two-sorted equivalence relation, is a congru-
ence with respect to the operations of the ω-forest algebra A�.

138 M. Bojańczyk and T. Idziaszek

The syntactic algebra of a forest language L is the quotient (HL, VL) of A�

with respect to L-equivalence, where the horizontal semigroup HL consists of
equivalence classes of forests over A, while the vertical semigroup VL consists of
equivalence classes of contexts over A. The syntactic algebra is an ω-forest alge-
bra thanks to Lemma 3.2. The syntactic morphism αL assigns to every element
of A� its equivalence class under L-equivalence. The following proposition shows
that the syntactic algebra has the properties required of a syntactic object.

Proposition 3.3. A forest language L over A is recognized by its syntactic
morphism αL. Moreover, any morphism α : A� → (H, V) that recognizes L can
be extended by a morphism β : (H, V) → (HL, VL) so that β ◦ α = αL.

Note that in general the syntactic ω-forest algebra may be infinite. However,
Proposition 3.3 shows that if a forest language is recognized by some finite forest
algebra, then its syntactic forest algebra must also be finite. In the appendix we
show that all regular forest languages have finite ω-forest algebras, which can
furthermore be effectively calculated (since there are infinitely many operations,
we also specify what it means to calculate an ω-forest algebra).

We use different notation depending on whether we are dealing with the free
algebra, or with a (usually finite) algebra recognizing a language. In the first
case, we use letters s, t for elements of H and p, q, r for elements of V , since
these are “real” forests and contexts. In the second case, we will use letters
f, g, h for elements of H and u, v, w for elements of V , and call them forest types
and context types respectively.

4 EF for Infinite Trees

In this section we present the main technical contribution of this paper, which is
an effective characterization of the forest and tree languages that can be defined
in the temporal logic EF. We begin by defining the logic EF. Fix an alphabet A.

– Every letter a ∈ A is an EF formula, which is true in trees with root label a.
– EF formulas admit boolean operations, including negation.
– If ϕ is an EF formula, then EFϕ is an EF formula, which is true in trees that

have a proper subtree where ϕ is true. EF stands for Exists Finally.

A number of operators can be introduced as syntactic sugar:

AGϕ = ¬EF¬ϕ, AG∗ϕ = ϕ ∧ AGϕ, EF∗ϕ = ϕ ∨ EFϕ.

Since we deal with forest languages in this paper, we will also want to define
forest languages using the logic. It is clear which forests should satisfy the formula
EF∗a (some node in the forest has label a). It is less clear which forests should
satisfy EFa (only non-root nodes are considered?), and even less clear which
forests should satisfy a (which root node should have label a?). We will only use
boolean combinations of formulas of the first kind to describe forests. That is, a
forest EF formula is a boolean combination of formulas of the form EF∗ϕ.

For finite forests, the logic EF was characterized in [8]. The result was:

Algebra for Infinite Forests with an Application 139

Theorem 4.1
Let L be a language of finite forests. There is a forest formula of EF that is
equivalent, over finite forests, to L if and only if the syntactic forest algebra
(HL, VL) of L satisfies the identities

vh = vh + h for h ∈ HL, v ∈ VL, (1)

h + g = g + h for g, h ∈ HL. (2)

A corollary to the above theorem is that, for finite forests, definability in EF is
equivalent to invariance under EF-bisimulation. This is because two finite trees
that are EF-bisimilar can be rewritten into each other using the identities (1)
and (2).

Our goal in this paper is to test ω-forest algebra by extending Theorem 4.1
to infinite forests. There are nontrivial properties of infinite forests that can be
expressed in EF. Consider for example the forest formula AG∗(a ∧ EFa). This
formula says that all nodes have label a and at least one descendant. Any forest
that satisfies this formula is bisimilar to the tree (a�)∞. In this paper, we will
be interested in a weaker form of bisimilarity (where more forests are bisimilar),
which we will call EF-bisimilarity, and define below.

EF game. We define a game, called the EF game, which is used to test the
similarity of two forests under forest formulas of EF. The name EF comes from
the logic, but also, conveniently, is an abbreviation for Ehrenfeucht-Fräıssé.

Let t0, t1 be forests. The EF game over t0 and t1 is played by two players:
Spoiler and Duplicator. The game proceeds in rounds. At the beginning of each
round, the state in the game is a pair of forests, (t0, t1). A round is played as
follows. First Spoiler selects one of the forests ti (i = 0, 1) and its subtree si,
possibly a root subtree. Then Duplicator selects a subtree s1−i in the other tree
t1−i. If the root labels a0, a1 of s0, s1 are different, then Spoiler wins the whole
game. Otherwise the round is finished, and a new round is played with the state
updated to (r0, r1) where the forest ri is obtained from the tree si by removing
the root node, i.e si = airi.

This game is designed to reflect the structure of EF formulas, so the following
theorem, which is proved by induction on m, should not come as a surprise.

Fact 4.2. Spoiler wins the m-round EF game on forests t0 and t1 if and only if
there is a forest EF formula of EF-nesting depth m that is true in t0 but not t1.

We will also be interested in the case when the game is played for an infinite
number of rounds. If Duplicator can survive for infinitely many rounds in the
game on t0 and t1, then we say that the forests t0 and t1 are EF-bisimilar. A
forest language L is called invariant under EF-bisimulation if it is impossible to
find two forests t0 ∈ L and t1 �∈ L that are EF-bisimilar.

Thanks to Fact 4.2, we know that any language defined by a forest formula
of EF is invariant under EF-bisimulation. Unlike for finite forests, the converse

140 M. Bojańczyk and T. Idziaszek

does not hold1. Consider, for instance the language “all finite forests”. This
language is invariant under EF-bisimulation, but it cannot be defined using a
forest formula of EF, as will follow from our main result, stated below.

Theorem 4.3 (Main Theorem: Characterization of EF)
A forest language L can be defined by a forest formula of EF if and only if

– It is invariant under EF-bisimulation;
– Its syntactic ω-forest algebra (HL, VL) satisfies the identity

vωh = (v + vωh)∞ for all h ∈ HL, v ∈ VL. (3)

Recall that we have defined the ∞ exponent as syntactic sugar for unfolding the
context infinitely many times. What about the ω exponent in the identity? In
the syntactic algebra, VL is a finite monoid (this is proved in the appendix). As
in any finite monoid, there is a number n ∈ N such that vn is an idempotent, for
any v ∈ VL. This number is written as ω. Note that identity (3) is not satisfied
by the language “all finite forests”. It suffices to take v to be the image, in the
syntactic algebra, of the forest a�. In this case, the left side of (3) corresponds
to a finite forest, and the right side corresponds to an infinite forest.

In the appendixwe show that the two conditions (invariance and the identity)
are necessary for definability in EF. The proof is fairly standard. The more
interesting part is that the two conditions are sufficient, this is done in following
section.

Corollary 4.4 (of Theorem 4.3). The following problem is decidable. The
input is a forest automaton. The question is: can the language recognized by the
forest automaton be defined by a forest formula of EF.

Proof
In appendix we show how to decide property (3) (actually, we show more: how
to decide any identity). In appendix we show how to decide invariance under
EF-bisimulation. An ExpTime lower bound holds already for deterministic au-
tomata over finite trees, see [7], which can be easily adapted to this setting.
Our algorithm for (3) is in ExpTime, but we do not know if invariance un-
der EF-bisimulation can also be tested in ExpTime (our algorithm is doubly
exponential). �

Note 2. Theorem 4.3 speaks of forest languages defined by forest EF formulas.
What about tree languages, defined by normal EF formulas? The latter can be
reduced to the former. The reason, not difficult to prove, is that a tree language
L can be defined by a normal formula of EF if and only if for each label a ∈ A,
the forest language {t : at ∈ L} is definable by a forest formula of EF. A tree
version of Corollary 4.4 can also be readily obtained.

1 In the appendix, we show a weaker form of the converse. Namely, for any fixed
regular forest t, the set of forests that are EF-bisimilar to t can be defined in EF.

Algebra for Infinite Forests with an Application 141

Note 3. In Theorem 4.3, invariance under EF-bisimulation is used as a property
of the language. We could have a different statement, where invariance is a
property of the syntactic algebra (e.g. all languages recognized by the algebra
are invariant under EF-bisimulation). The different statement would be better
suited towards variety theory, à la Eilenberg [9]. We intend to develop such a
theory.

Invariance under EF-bisimulation and (3) are sufficient

We now show the more difficult part of Theorem 4.3. Fix a surjective morphism
α : A� → (H, V) and suppose that the target ω-forest algebra satisfies con-
dition (3) and that the morphism is invariant under EF-bisimulation (any two
EF-bisimilar forests have the same image). For a forest t, we use the name type
of h for the value α(h). We will show that for any h ∈ H , the language Lh of
forests of type h is definable by a forest formula of EF. This shows that the two
conditions in Theorem 4.3 are sufficient for definability in EF, by taking α to be
the syntactic morphism of L.

The proof is by induction on the size of H . The induction base, when H has
only one element, is trivial. In this case all forests have the same type, and the
appropriate formula is true.

We now proceed to the induction step. We say that an element h ∈ H is
reachable from g ∈ H if there is some v ∈ V with h = vg.

Lemma 4.5. The reachability relation is transitive and antisymmetric.

We say that an element h ∈ H is minimal if it is reachable from all g ∈ H . (The
name minimal, instead of maximal, is traditional in algebra. The idea is that
the set of elements reachable from h is minimal.) There is at least one minimal
element, since for every v ∈ V an element v(h1 + · · ·+hn) is reachable from each
hi. Since reachability is antisymmetric, this minimal element is unique, and we
will denote it using the symbol ⊥. An element h �= ⊥ is called subminimal if the
elements reachable from h are a subset of {h,⊥}.

h h

F

⊥

h g1 g2

⊥

h

g1 g2

⊥
Recall that our goal is to give, for

any h ∈ H , a formula of EF that de-
fines the set Lh of forests with type
h. Fix then some h ∈ H . We consider
four cases (shown on the picture):

1. h is minimal.
2. h is subminimal, and there is exactly one subminimal element.
3. h is subminimal, but there are at least two subminimal elements.
4. h is neither minimal nor subminimal.

Note that the first case follows from the remaining three, since a forest has type
⊥ if and only if it has none of the other types. Therefore the formula for h = ⊥ is
obtained by negating the disjunction of the formulas for the other types. Cases 3
and 4 are treated in the appendix. The more interesting case is 2, which is treated
below.

142 M. Bojańczyk and T. Idziaszek

Case 2. We now consider the case when h is a unique subminimal element.
Let F be the set of all elements different from h, from which h is reachable.

In other words, F is the set of all elements from H beside h and ⊥. Thanks to
cases 3 and 4, for every f ∈ F we have a formula ϕf that defines the set Lf of
forests with type f . We write ϕF for the disjunction

∨
f∈F ϕf .

Let t be a forest. We say two nodes x, y of the forest are in the same component
if the subtree t|x is a subtree of the subtree t|y and vice versa. Each regular forest
has finitely many components. There are two kinds of component: connected
components, which contain infinitely many nodes, and singleton components,
which contain a single node. Since any two nodes in the same component are
EF-bisimilar (i.e. their subtrees are EF-bisimilar), we conclude that two nodes
in the same component have the same type. Therefore, we can speak of the type
of a component. A tree is called prime if it has exactly one component with a
type outside F . Note that the component with a type outside F must necessarily
be the root component (the one that contains the root), since no type from F is
reachable from types outside F . Depending on the kind of the root component,
a prime tree is called a connected prime or singleton prime.

a c
a b

f1

f1f3

f2

f2

The profile of a prime tree t is a pair in P (F) ×
(A ∪ P (A)) defined as follows. On the first coordinate,
we store the set G ⊆ F of types of components with
a type in F . On the second coordinate, we store the
labels that appear in the root component. If the tree is
connected prime, this is a set B ⊆ A of labels (possibly
containing a single label), and if the tree is singleton
prime, this is a single label b ∈ A. In the first case, the
profile is called a connected profile, and in the second case the profile is called
a singleton profile. The picture shows a connected prime tree with connected
profile ({f1, f2, f3}, {a, b, c}).

In the appendix, we show that all prime trees with the same profile have the
same type. Therefore, it is meaningful to define the set profh of profiles of prime
trees of type h.

Proposition 4.6. Let π be a profile. There is an EF formula ϕπ such that
– Any prime tree with profile π satisfies ϕπ.
– Any regular forest satisfying ϕπ has type h if π ∈ profh and ⊥ otherwise.

The above proposition is shown in the appendix. We now turn our attention
from prime trees to arbitrary forests. Let t be a forest. The formula which says
when the type is h works differently, depending on whether t has a prime subtree
or not. This case distinction can be done in EF, since not having a prime subtree
is expressed by the formula AG∗ϕF .

There is no prime subtree. We write
∑{g1, . . . , gn} for g1+· · ·+gn. By invariance

under EF-bisimulation, this value does not depend on the order or multiplicity
of elements in the set. Suppose

∑
G = ⊥ and t has subtrees with each type in

G. Thanks to (1), the type of t satisfies α(t) +
∑

G = α(t), and hence α(t) = ⊥.

Algebra for Infinite Forests with an Application 143

Therefore, a condition necessary for having type h is

¬
∨

G⊆F,
∑

G=⊥

∧

g∈G

EF∗ϕg. (4)

By the same reasoning, a condition necessary for having type h is
∨

G⊆F,
∑

G=h

∧

g∈G

EF∗ϕg. (5)

It is not difficult to show that conditions (4) and (5) are also sufficient for a
forest with no prime subtrees to have type h.

There is a prime subtree. As previously, a forest t with type h cannot satisfy (4).
What other conditions are necessary? It is forbidden to have a subtree with type
⊥. Thanks to Proposition 4.6, t must satisfy:

¬
∨

π
∈profh

EF∗ϕπ . (6)

Since t has a prime subtree, its type is either h or ⊥. Suppose that t has a subtree
with type f ∈ F such that f + h = ⊥. By (1), we would have α(t) + f = α(t),
which implies that the type of t is ⊥. Therefore, t must satisfy

∧

f∈F, f+h=⊥
¬EF∗ϕf . (7)

Let us define C to be the labels that preserve h, i.e. the labels a ∈ A such that
α(a)h = h. If a forest has type h then it cannot have a subtree as where a �∈ C
and s has type h or ⊥. This is stated by the formula:

AG∗ ∧

c
∈C

(c → AGϕF). (8)

As we have seen, conditions (4) and (6)–(8) are necessary for a forest with a prime
subtree t having type h. In the following lemma, we show that the conditions are
also sufficient. This completes the analysis of Case 2 in the proof of Theorem 4.3,
since it gives a formula that characterizes the set Lh of forests whose type is the
unique subminimal element h.

Lemma 4.7. A forest with a prime subtree has type h if it satisfies condi-
tions (4) and (6)–(8).

5 Concluding Remarks

We have presented an algebra for infinite trees, and used it to get an effective
characterization for the logic EF. In the process, we developed techniques for
dealing with the algebra, such as algorithms deciding identities, or a kind of

144 M. Bojańczyk and T. Idziaszek

Green’s relation (the reachability relation). It seems that an important role is
played by what we call connected components of a regular forest.

There are some natural ideas for future work. These include developing a
variety theory, or finding effective characterizations for other logics. Apart from
logics that have been considered for finite trees, there are some new interesting
logics for infinite trees, which do not have counterparts for finite trees. These
include weak monadic-second order logic, or fragments of the μ-calculus with
bounded alternation.

However, since we are only beginning to study the algebra for infinite trees,
it is important to know if we have the “right” framework (or at least one of the
“right” frameworks). Below we discuss some shortcomings of ω-forest algebra,
and comment on some alternative approaches.

Shortcomings of ω-forest algebra. A jarring problem is that we have an infinite
number of operations and, consequently, an infinite number of axioms. This poses
all sorts of problems.

It is difficult to present an algebra. One cannot, as with a finite number of
operations, simply list the multiplication tables. Our solution, as presented in
the appendix, is to give an algorithm that inputs the name of the operation and
produces its multiplication table. In particular, this algorithm can be used to test
validity of identities, since any identity involves a finite number of operations.

It is difficult to prove that something is an ω-forest algebra, since there are
infinitely many axioms to check. Our solution is to define algebras as homomor-
phic images of the free algebra, which guarantees that the axioms hold. We give
an algorithm that computes the syntactic algebra of a regular forest language.

We have proved that any regular language is recognized by a finite ω-forest
algebra. A significant shortcoming is that we have not proved the converse. We
do not, however, need the converse for effective characterizations, as demon-
strated by our proof for EF. The effective characterization begins with a regular
language, and tests properties of its syntactic algebra (therefore, algebras that
recognize non-regular languages, if they exist, are never used).

An important advantage of using algebra is that properties can be stated in
terms of identities. Do we have this advantage in ω-forest algebra? The answer is
mixed, as witnessed by Theorem 4.3. One of the conditions is an identity, namely
(3). However, for the other condition, invariance under EF-bisimulation, we were
unable to come up with an identity (or a finite set of identities). This contrasts
the case of finite trees, where invariance under EF-bisimulation is characterized
by two identities. Below we describe an idea on to modify the algebra to solve
this problem.

A richer algebra? In preliminary work, we have tried to modify the algebra. In
the modified algebra, the context sort is richer, since contexts are allowed to
have multiple occurrences of the hole (we still allow only one type of hole). This
abundance of contexts changes the interpretation of identities, since the context
variables quantify over a larger set. Preliminary results indicate that invariance

Algebra for Infinite Forests with an Application 145

under EF-bisimulation is described by the identities (1) and (2) – but with the
new interpretation – as well as the following two identities:

(v(u + w))∞ = (vuw)∞, (vuw)∞ = (vwu)∞.

We intend to explore this richer algebra in more detail. However, allowing a
richer context sort comes at a cost. First, it seems that the size of the context
sort is not singly exponential, as here, but doubly exponential. Second, there are
forest languages definable in first-order logic that are not aperiodic, i.e. do not
satisfy vω = vω+1.

Where is the Ramsey theorem? An important tool in algebra for infinite words
is the Ramsey theorem, which implies the following fact: for every morphism
α : A∗ → S into a finite monoid, every word w ∈ Aω has a factorization w =
w0w1w2 · · · such that all the words w1, w2, . . . have the same image under α. This
result allows one to extend a morphism into a Wilke algebra from ultimately
periodic words to arbitrary words.

It would be very nice to have a similar theorem for trees. This question has
been independently investigated by Blumensath [2], who also provides an al-
gebraic framework for infinite trees. Contrary to our original expectations, we
discovered that a Ramsey theorem for trees is not needed to provide effective
characterizations.

Acknowledgement. We thank Wojciech Czerwiński for many helpful discussions.

References

1. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO. In:
Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 327–339.
Springer, Heidelberg (2005); A revised version, correcting an error from the con-
ference paper, www.lsv.ens-cachan.fr/~segoufin/Papers/

2. Blumensath, A.: Recognisability for algebras of infinite trees (unpublished, 2009)
3. Bojańczyk, M.: Two-way unary temporal logic over trees. In: Logic in Computer

Science, pp. 121–130 (2007)
4. Bojańczyk, M.: Effective characterizations of tree logics. In: PODS, pp. 53–66 (2008)
5. Bojańczyk, M., Segoufin, L.: Tree languages defined in first-order logic with one

quantifier alternation. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 233–245. Springer, Heidelberg (2008)

6. Bojańczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. In:
Logic in Computer Science, pp. 442–451 (2008)

7. Bojańczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theoretical
Computer Science 358(2-3), 255–273 (2006)

8. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Automata and Logic: History
and Perspectives, pp. 107–132. Amsterdam University Press (2007)

9. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press,
New York (1976)

10. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)
11. Wilke, T.: An algebraic theory for languages of finite and infinite words. Inf. J.

Alg. Comput. 3, 447–489 (1993)

www.lsv.ens-cachan.fr/~segoufin/Papers/

	Algebra for Infinite Forests with an Applicationto the Temporal Logic EF
	Introduction
	Preliminaries
	Trees and Contexts
	Automata for Unranked Infinite Trees

	Forest Algebra
	EF for Infinite Trees
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

