

Lecture Notes in Computer Science 5710
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mario Bravetti Gianluigi Zavattaro (Eds.)

CONCUR 2009 -
Concurrency Theory
20th International Conference, CONCUR 2009
Bologna, Italy, September 1-4, 2009
Proceedings

13

Volume Editors

Mario Bravetti
University of Bologna, Department of Computer Science
Mura A. Zamboni 7, 40127 Bologna, Italy
E-mail: bravetti@cs.unibo.it

Gianluigi Zavattaro
University of Bologna, Department of Computer Science
Mura A. Zamboni 7, 40127 Bologna, Italy
E-mail: zavattar@cs.unibo.it

Library of Congress Control Number: 2009932911

CR Subject Classification (1998): D.1.3, D.4.1, F.1.2, H.2.4, D.3, C.2.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-04080-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04080-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12734689 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 20th Conference on Concurrency
Theory (CONCUR 2009), held in Bologna, September 1–4, 2009. The purpose of
the CONCUR conference is to bring together researchers, developers, and stu-
dents in order to advance the theory of concurrency and promote its applications.
This year the CONCUR conference was in its 20th edition, and to celebrate 20
years of CONCUR, the conference program included a special session organized
by the IFIP Working Groups 1.8 “Concurrency Theory” and 2.2 “Formal De-
scription of Programming Concepts” as well as an invited lecture given by Robin
Milner, one of the fathers of the concurrency theory research area.

This edition of the conference attracted 129 submissions. We wish to thank
all their authors for their interest in CONCUR 2009. After careful discussions,
the Program Committee selected 37 papers for presentation at the conference.
Each of them was accurately refereed by at least three reviewers (four reviewers
for papers co-authored by members of the Program Committee), who delivered
detailed and insightful comments and suggestions. The conference Chairs warmly
thank all the members of the Program Committee and all their sub-referees for
the excellent support they gave, as well as for the friendly and constructive
discussions. We would also like to thank the authors for having revised their
papers to address the comments and suggestions by the referees.

The conference program was enriched by the outstanding invited talks by
Martin Abadi, Christel Baier, Corrado Priami and, as mentioned above, Robin
Milner.

The conference this year was jointly organized with the 7th International
Conference on Computational Methods in Systems Biology (CMSB 2009) and the
6th International Workshop on Web Service and Formal Methods (WS-FM 2009)
emphasizing, on the one hand, the close connections and similarities between
concurrent, artificial systems, and biological, natural systems and, on the other
hand, the current pervasiveness of concurrent, distributed and mobile comput-
ing technologies. The invited talk by Corrado Priami, held in conjunction with
CMSB, and the one by Robin Milner, held in conjunction with WS-FM, were a
witness of the commonalities of interests of these conferences and of the corre-
sponding research communities. As additional co-located events, CONCUR 2009
included the following satellite workshops: 16th International Workshop on Ex-
pressiveness in Concurrency (EXPRESS), Second Interaction and Concurrency
Experience (ICE), 11th International Workshop on Verification of Infinite-State
Systems (INFINITY), Third Workshop on Membrane Computing and Biologi-
cally Inspired Process Calculi (MeCBIC), 7th International Workshop on Secu-
rity Issues in Concurrency (SecCo), 6th Workshop on Structural Operational
Semantics (SOS) and Young Researchers Workshop on Concurrency Theory
(YR-CONCUR).

VI Preface

We would like to thank all the people who contributed to the organization
of CONCUR 2009, and the generous support from the Alma Mater Studiorum
– Università degli Studi di Bologna and from Microsoft Research Cambridge.
We are also grateful to Andrei Voronkov, who allowed us to use the wonderful
free conference software system EasyChair, which we used for the electronic
submission of papers, the refereeing process and the Program Committee work.

September 2009 Mario Bravetti
Gianluigi Zavattaro

Organization

Steering Committee

Roberto Amadio Université Paris Diderot, France
Jos C.M. Baeten Eindhoven University of Technology,

The Netherlands
Eike Best Carl von Ossietzky University of Oldenburg,

Germany
Kim Larsen Aalborg University, Denmark
Ugo Montanari University of Pisa, Italy
Scott Smolka SUNY at Stony Brook, USA

Program Committee

Luca Aceto Reykjavik University, Iceland
Jos C.M. Baeten Eindhoven University of Technology,

The Netherlands
Michele Boreale University of Florence, Italy
Mario Bravetti (Co-chair) University of Bologna, Italy
Lúıs Caires Universidade Nova de Lisboa, Portugal
Philippe Darondeau INRIA Rennes - Bretagne Atlantique, France
Wan Fokkink Vrije Universiteit Amsterdam,

The Netherlands
Cédric Fournet Microsoft Research, Cambridge, UK
Robert J. van Glabbeek Kensington Res. Lab., Sydney, Australia
Matthew Hennessy Trinity College Dublin, Ireland
Holger Hermanns Saarland University, Germany
Thomas Hildebrandt IT University of Copenhagen, Denmark
Jane Hillston University of Edinburgh, UK
Barbara König University of Duisburg-Essen, Germany
François Laroussinie Université Paris Diderot-Paris 7, France
Ugo Montanari University of Pisa, Italy
Uwe Nestmann Technische Universität Berlin, Germany
Manuel Núñez Universidad Complutense de Madrid, Spain
Catuscia Palamidessi Ecole Polytechnique, Palaiseau, France
Joachim Parrow Uppsala University, Sweden
Shaz Qadeer Microsoft Research, Redmond, USA
Julian Rathke University of Southampton, UK
Philippe Schnoebelen Ecole Normale Superieure Cachan, France
Nobuko Yoshida Imperial College London, UK
Gianluigi Zavattaro

(Co-chair) University of Bologna, Italy

VIII Organization

Organizing Committee

Mario Bravetti (Co-chair)
Cinzia Di Giusto
Ivan Lanese (Workshops Chair)
Fabrizio Montesi
Jorge A. Perez
Sylvain Pradalier
Cristian Versari
Antonio Vitale
Gianluigi Zavattaro (Co-chair)

Additional Reviewers

Lucia Acciai
Luca de Alfaro
Austin Anderson
Suzana Andova
Jesus Aranda
Mohamed Faouzi Atig
Eric Badouel
Christel Baier
Massimo Bartoletti
Nick Benton
Beatrice Berard
Josh Berdine
Jasper Berendsen
Bernard Berthomieu
Nathalie Bertrand
Dietmar Berwanger
Karthikeyan Bhargavan
Christoph Blume
Frank de Boer
Benedikt Bollig
Filippo Bonchi
Johannes Borgstrom
Ahmed Bouajjani
Anne Bouillard
Patricia Bouyer
Laura Bozzelli
Andrea Bracciali
Aaron Bradley
Jeremy Bradley
Thomas Brihaye
Niklas Broberg

H.J. Sander Bruggink
Roberto Bruni
Michele Bugliesi
Mikkel Bundgaard
Marzia Buscemi
Diletta R. Cacciagrano
Silvio Capobianco
Arnaud Carayol
Marco Carbone
Franck Cassez
Diego Cazorla
Krishnendu Chatterjee
Konst. Chatzikokolakis
Han Chen
Taolue Chen
Stefano Chessa
Matteo Cimini
Gabriel Ciobanu
David Clark
Thomas Colcombet
Mario Coppo
Ricardo Corin
Pieter Cuijpers
Pedro D’Argenio
Arnaud Dacosta-Lopes
Mads Dam
Malo Danielou
Alexandre David
Christian Dax
Søren Debois
Giorgio Delzanno

Stéphane Demri
Yuxin Deng
Rocco De Nicola
Liliana D’Errico
Gregorio Diaz
Cinzia Di Giusto
Dino Distefano
Christian Eisentraut
Tayfun Elmas
Zoltan Esik
Azadeh Farzan
Carla Ferreira
Bernd Finkbeiner
Alain Finkel
Dana Fisman
Riccardo Focardi
Adrian Francalanza
Laurent Fribourg
Sibylle Fröschle
David de Frutos-Escrig
Murdoch Gabbay
Maurizio Gabbrielli
Fabio Gadducci
Vashti Galpin
Deepak Garg
Blaise Genest
Sonja Georgievska
Prodromos Gerakios
Nils Gesbert
Fatemeh Ghassemi
Stephen Gilmore

Organization IX

Hugo Gimbert
Stefania Gnesi
Jens Chr. Godskesen
Thomas Goethel
Ganesh Gopalakrishnan
Daniele Gorla
Carlos Gregorio-Rodriguez
Marcus Groesser
Davide Grohmann
Claudio Guidi
Aarti Gupta
Serge Haddad
Ernst Moritz Hahn
Magnús Halldórsson
Tingting Han
Arnd Hartmanns
Tobias Heindel
Löıc Hélouët
Tom Hirschowitz
Florian Horn
Mathieu Hoyrup
Mathias Huelsbusch
Atsushi Igarashi
Radu Iosif
Petr Jancar
Thierry Jeron
Mathias John
Bengt Jonsson
Marcin Jurdzinski
Vineet Kahlon
Joost-Pieter Katoen
Shin-ya Katsumata
Klaus Keimel
Nicholas Kidd
Martin Kot
Vasileios Koutavas
Lars Kristensen
Antońın Kučera
Orna Kupferman
Dietrich Kuske
Jim Laird
Akash Lal
Ivan Lanese
Diego Latella
Axel Legay

Jérôme Leroux
Cedric Lhoussaine
Luis Llana
Markus Lohrey
Natalia López
Michele Loreti
Michael Luttenberger
Bas Luttik
Tiejun Ma
Hermenegilda Macia
Sergio Maffeis
Rudolf Mak
Nicolas Markey
Richard Mayr
Larissa Meinicke
Hernan Melgratti
Massimo Merro
Antoine Meyer
Marino Miculan
Kees Middelburg
Paolo Milazzo
Alice Miller
Dale Miller
Samuel Mimram
Faron Moller
David Monniaux
Alberto Montresor
Arjan Mooij
Carroll Morgan
Remi Morin
Christophe Morvan
Dejan Ničković
Joachim Niehren
Johan Nordlander
Gethin Norman
Carlos Olarte
Luca Padovani
Nikolaos Papaspyrou
David Parker
Dirk Pattinson
Romain Pechoux
Fernando L. Pelayo
Wojciech Penczek
Kirstin Peters
Sophie Pinchinat

Nir Piterman
Nuno Preguiça
Cristian Prisacariu
Riccardo Pucella
Willard Thor Rafnsson
Michel Reniers
Arend Rensink
Bernhard Reus
Pierre-Alain Reynier
Ahmed Rezine
Ismael Rodriguez
Christian Rohner
Cristobal Rojas
Fernando Rosa-Velardo
Jan Rutten
Arnaud Sangnier
Vladimiro Sassone
Jens-Wolfhard Schicke
Ina Schieferdecker
Sven Schneider
Stefan Schwoon
Peter Sewell
Ali Sezgin
Natalia Sidorova
Marjan Sirjani
A. Prasad Sistla
Michael Smith
Pawel Sobocinski
Ana Sokolova
Michael Spear
Jeremy Sproston
Sam Staton
Rob van Stee
Grégoire Sutre
Nikhil Swamy
Grzegorz Szubzda
Tachio Terauchi
Francesco Tiezzi
Tayssir Touili
Nikola Trcka
Richard Trefler
Yih-Kuen Tsay
Emilio Tuosto
Frank Valencia
Miguel Valero

X Organization

Valentin Valero
Daniele Varacca
Enrico Vicario
Björn Victor
Hugo Vieira
Maria Grazia Vigliotti
Erik de Vink

Walter Vogler
Marc Voorhoeve
Edsko de Vries
Igor Walukiewicz
Andrzej Wasowski
Adam Welc
Tim Willemse

Ralf Wimmer
Dominik Wojtczak
Nicolas Wolovick
James Worthington
Hans Zantema
Lijun Zhang
Roberto Zunino

Table of Contents

Invited Papers

Perspectives on Transactional Memory . 1
Mart́ın Abadi and Tim Harris

The Effect of Tossing Coins in Omega-Automata . 15
Christel Baier, Nathalie Bertrand, and Marcus Größer

Bigraphical Categories . 30
Robin Milner

BlenX – Static and Dynamic Semantics . 37
Corrado Priami, Paola Quaglia, and Alessandro Romanel

Contributed Papers

Flow Policy Awareness for Distributed Mobile Code 53
Ana Almeida Matos

Volume and Entropy of Regular Timed Languages: Discretization
Approach . 69

Eugene Asarin and Aldric Degorre

A Logical Interpretation of the λ-Calculus into the π-Calculus,
Preserving Spine Reduction and Types . 84

Steffen van Bakel and Maria Grazia Vigliotti

Encoding Asynchronous Interactions Using Open Petri Nets 99
Paolo Baldan, Filippo Bonchi, and Fabio Gadducci

Distributed Asynchronous Automata . 115
Nicolas Baudru

Algebra for Infinite Forests with an Application to the Temporal Logic
EF . 131

Miko�laj Bojańczyk and Tomasz Idziaszek

Deriving Syntax and Axioms for Quantitative Regular Behaviours 146
Filippo Bonchi, Marcello Bonsangue, Jan Rutten, and
Alexandra Silva

Weighted Bisimulation in Linear Algebraic Form . 163
Michele Boreale

XII Table of Contents

A Logic-Based Framework for Reasoning about Composite Data
Structures . 178

Ahmed Bouajjani, Cezara Drǎgoi, Constantin Enea, and
Mihaela Sighireanu

Measuring Permissivity in Finite Games . 196
Patricia Bouyer, Marie Duflot, Nicolas Markey, and Gabriel Renault

Contracts for Mobile Processes . 211
Giuseppe Castagna and Luca Padovani

Power of Randomization in Automata on Infinite Strings 229
Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Probabilistic Weighted Automata . 244
Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger

Partially-Commutative Context-Free Processes . 259
Wojciech Czerwiński, Sibylle Fröschle, and S�lawomir Lasota

Testing Finitary Probabilistic Processes (Extended Abstract) 274
Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, and
Carroll Morgan

A Demonic Approach to Information in Probabilistic Systems 289
Josée Desharnais, François Laviolette, and Amélie Turgeon

HYPE: A Process Algebra for Compositional Flows and Emergent
Behaviour . 305

Vashti Galpin, Luca Bortolussi, and Jane Hillston

Variable Binding, Symmetric Monoidal Closed Theories, and
Bigraphs . 321

Richard Garner, Tom Hirschowitz, and Aurélien Pardon

Partial Order Reduction for Probabilistic Systems: A Revision for
Distributed Schedulers . 338

Sergio Giro, Pedro R. D’Argenio, and Luis Maŕıa Ferrer Fioriti

Model-Checking Games for Fixpoint Logics with Partial Order
Models . 354

Julian Gutierrez and Julian Bradfield

Reachability in Succinct and Parametric One-Counter Automata 369
Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and
James Worrell

Winning Regions of Pushdown Parity Games: A Saturation Method 384
Matthew Hague and C.-H. Luke Ong

Table of Contents XIII

Concurrent Kleene Algebra . 399
C.A.R. Tony Hoare, Bernhard Möller, Georg Struth, and
Ian Wehrman

Concavely-Priced Probabilistic Timed Automata . 415
Marcin Jurdziński, Marta Kwiatkowska, Gethin Norman, and
Ashutosh Trivedi

Compositional Control Synthesis for Partially Observable Systems 431
Wouter Kuijper and Jaco van de Pol

Howe’s Method for Calculi with Passivation . 448
Serguëı Lenglet, Alan Schmitt, and Jean-Bernard Stefani

On the Relationship between π-Calculus and Finite Place/Transition
Petri Nets . 463

Roland Meyer and Roberto Gorrieri

Modeling Radio Networks . 481
Calvin Newport and Nancy Lynch

Time-Bounded Verification . 496
Joël Ouaknine, Alexander Rabinovich, and James Worrell

Secure Enforcement for Global Process Specifications 511
Jérémy Planul, Ricardo Corin, and Cédric Fournet

On Convergence of Concurrent Systems under Regular Interactions 527
Pavithra Prabhakar, Sayan Mitra, and Mahesh Viswanathan

Computing Stuttering Simulations . 542
Francesco Ranzato and Francesco Tapparo

Weak Time Petri Nets Strike Back! . 557
Pierre-Alain Reynier and Arnaud Sangnier

A General Testability Theory . 572
Ismael Rodŕıguez

Counterexamples in Probabilistic LTL Model Checking for Markov
Chains . 587

Matthias Schmalz, Daniele Varacca, and Hagen Völzer

Query-Based Model Checking of Ad Hoc Network Protocols 603
Anu Singh, C.R. Ramakrishnan, and Scott A. Smolka

Strict Divergence for Probabilistic Timed Automata 620
Jeremy Sproston

Author Index . 637

Perspectives on Transactional Memory

Mart́ın Abadi1,2 and Tim Harris1

1 Microsoft Research
2 University of California, Santa Cruz

Abstract. We examine the role of transactional memory from two per-
spectives: that of a programming language with atomic actions and that
of implementations of the language. We argue that it is difficult to for-
mulate a clean, separate, and generally useful definition of transactional
memory. In both programming-language semantics and implementations,
the treatment of atomic actions benefits from being combined with that
of other language features. In this respect (as in many others), transac-
tional memory is analogous to garbage collection, which is often coupled
with other parts of language runtime systems.

1 Introduction

The name “transactional memory” [21] suggests that a transactional memory
(TM) is something similar to an ordinary memory, though perhaps with a slightly
different interface and different properties. In particular, the interface would
include means of initiating and committing transactions, as well as means of
performing memory accesses. These memory accesses may be within transac-
tions, and perhaps also outside transactions. The interface may provide other
operations for aborting transactions, for delaying their execution, or for nesting
them in various ways. As for the properties, we would expect certain guarantees
that differentiate TM from ordinary memory. These properties should include,
in particular, that all memory accesses within a successful transaction appear
atomic.

Some interesting recent research aims to define TM more precisely, along these
lines [9, 16–19,29, 32]. TM may be modeled as a shared object that supports op-
erations such as read, write, begin-transaction, and commit-transaction, with
requirements on the behavior of these operations. Some of this research also
examines particular implementations, and whether or not they satisfy those re-
quirements.

Another recent line of research studies programming-language constructs that
may be built over TM—typically atomic blocks [25] or other constructs for
atomic actions [3, 6, 22]. A variety of semantics have been provided at different
levels of abstraction. Some semantics model atomic actions that execute without
the interleaving of operations of other threads. We call these “strong” semantics.
Other semantics model low-level details of common implementations, such as
conflict-detection mechanisms and roll-backs.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 M. Abadi and T. Harris

Despite encouraging progress, much work remains. In particular, the research
to date does not fully explore the relation between the first style of definition
(where TM is a shared object) and the second style of definition (modeling
language constructs rather than TM per se).

In this paper, we argue that these gaps are not surprising, nor necessarily
bad. Indeed, we find limiting the view that a TM is something similar to a
memory, with a slightly different interface and properties. Although this view
can sometimes be reasonable and useful, in many settings a clear delineation of
TM as a separate, memory-like object is neither necessary nor desirable.

We consider TM from two perspectives: that of the programming language
with atomic actions and that of the implementation of the atomicity guarantees.

– From the former perspective, we are primarily interested in the possibility
of writing correct, efficient programs. The syntax and semantics of these
programs may reflect transactional guarantees (for instance, by including
atomic blocks), but they need not treat TM as a separate object. Indeed,
the language may be designed to permit a range of implementations, rather
than just those based on TM.

– From the latter perspective, we are interested in developing efficient im-
plementations of programming languages. Implementations may fruitfully
combine the TM with other aspects of a runtime system and with static
program analysis, thus offering stronger guarantees at a lesser cost.

These two perspectives are closely related, and some of the same arguments
appear from both perspectives.

Despite these reservations, we do recognize that, sometimes, a clear delin-
eation of TM is possible and worthwhile. We explore how this approach applies
in some simple language semantics, in Section 2. In Section 3, we consider the
difficulties of extending this approach, both in the context of more sophisticated
semantics and in actual implementations. We argue that it is best, and perhaps
inevitable, to integrate the TM into the semantics and the implementations. In
Section 4, we examine the question of the definition of TM through the lens of
the analogy with garbage collection. We conclude in Section 5.

2 Transactional Memory in Semantics: A Simple Case

In our work, we have defined various semantics with atomicity properties [3, 5, 6].
Some of the semantics aim to capture a programmer’s view of a language with
high-level atomicity guarantees. Other semantics are low-levelmodels that include
aspects of implementations, for instance logs for undoing eager updates made by
transactions and for detecting conflicts between concurrent transactions. Moore
and Grossman [25] have defined some analogous semantics for different languages.
Remarkably, although all these semantics specify the behavior of programs, none
of them includes a separate definition of TM. Rather, the TM is closely tied to the
rest of the semantics.

Perspectives on Transactional Memory 3

b ∈ BExp = . . .
e ∈ NExp = . . .

C, D ∈ Com = skip

| x := e (x ∈ Vars)
| C; D
| if b then C else D
| while b do C
| async C
| unprotected C
| block

Fig. 1. Syntax

In this section we illustrate, through a simple example, the style of those
semantics. We also consider and discuss a variant in which TM is presented
more abstractly and separately.

More specifically, we consider a simple imperative language and an implemen-
tation with transaction roll-back. This language omits many language features
(such as memory allocation) and implementation techniques (such as concurrent
execution of transactions). It is a fragment of the AME calculus [3], and a small
extension (with unprotected sections) of a language from our previous work [6].
Both the high-level semantics of the language (Section 2.2) and a first version
with roll-back (Section 2.3) treat memory as part of the execution state, with no
separate definition of what it means to be a correct TM. On the other hand, a
reformulation of the version with roll-back (Section 2.4) separates the semantics
of language constructs from the specification of TM.

2.1 A Simple Language

The language that we consider is an extension of a basic imperative language,
with a finite set of variables Vars, whose values are natural numbers, and with
assignments, sequencing, conditionals, and while loops (IMP [36]). Additionally,
the language includes constructs for co-operative multi-threading:

– A construct for executing a command in an asynchronous thread. Informally,
async C forks off the execution of C. This execution is asynchronous, and
will not happen if the present thread keeps running without ever yielding
control, or if the present thread blocks without first yielding control. The
execution of C will be atomic until C yields control, blocks, or terminates.

– A construct for running code while allowing preemption at any point. Infor-
mally, unprotected C yields control, then executes C without guaranteeing
C’s atomicity, and finally yields control again.

– A construct for blocking. Informally, block halts the execution of the entire
program.

We define the syntax of the language in Figure 1. We do not detail the usual
constructs on numerical expressions, nor those for boolean conditions.

4 M. Abadi and T. Harris

〈σ, T, E [x := e]〉 −→ 〈σ[x �→ n], T, E [skip]〉 if σ(e) = n
〈σ, T, E [skip; C]〉 −→ 〈σ, T, E [C]〉
〈σ, T, E [if b then C else D]〉 −→ 〈σ, T, E [C]〉 if σ(b) = true

〈σ, T, E [if b then C else D]〉 −→ 〈σ, T, E [D]〉 if σ(b) = false

〈σ, T, E [while b do C]〉 −→ 〈σ, T, E [if b then . . . else . . .]〉
〈σ, T, E [async C]〉 −→ 〈σ, T.C, E [skip]〉
〈σ, T, E [unprotected C]〉 −→ 〈σ, T.E [unprotected C], skip〉
〈σ, T, E [unprotected skip]〉 −→ 〈σ, T.E [skip], skip〉
〈σ, T.C, skip〉 −→ 〈σ, T, C〉

Fig. 2. Transition rules of the abstract machine

2.2 High-Level Strong Semantics

A first semantics for our language is given in terms of small-step transitions
between states. A state 〈σ, T, C〉 consists of the following components:

– a store σ, which is a mapping of the finite set Vars of variables to the set of
natural numbers;

– a finite multiset of commands T , which we call the thread pool;
– a distinguished active command C.

We write σ[x �→ n] for the store that agrees with σ except at x, which is mapped
to n. We write σ(b) for the boolean denoted by b in σ, and σ(e) for the natural
number denoted by e in σ. We write T .C for the result of adding C to T . As
usual, a context is an expression with a hole [], and an evaluation context is
a context of a particular kind. Given a context C and a command C, we write
C[C] for the result of placing C in the hole in C. We use the evaluation contexts
defined by the grammar:

E = [] | E ; C | unprotected E

Figure 2 gives rules that specify the transition relation (eliding straightforward
details for while loops). According to these rules, when the active command
is skip, a command from the pool becomes the active command. It is then
evaluated as such until it produces skip, yields, or blocks. No other computation
is interleaved with this evaluation. When the active command is not skip, each
evaluation step produces a new state, determined by decomposing the active
command into an evaluation context and a subexpression. Yielding happens
when this subexpression is a command of the form unprotected C.

This semantics is a strong semantics in the sense that any unprotected sec-
tions in the thread pool will not run while an active command is running and
does not yield.

2.3 A Lower-Level Semantics with Roll-Back

A slightly lower-level semantics allows roll-back at any point in a computation.
(Roll-back may make the most sense when the active command is blocked, but

Perspectives on Transactional Memory 5

〈S,σ, T, E [x := e]〉 −→ 〈S, σ[x �→ n], T, E [skip]〉 if σ(e) = n
〈S,σ, T, E [skip; C]〉 −→ 〈S, σ, T, E [C]〉
〈S,σ, T, E [if b then C else D]〉 −→ 〈S, σ, T, E [C]〉 if σ(b) = true

〈S,σ, T, E [if b then C else D]〉 −→ 〈S, σ, T, E [D]〉 if σ(b) = false

〈S,σ, T, E [while b do C]〉 −→ 〈S, σ, T, E [if b then . . . else . . .]〉
〈S,σ, T, E [async C]〉 −→ 〈S, σ, T.C, E [skip]〉
〈S,σ, T, E [unprotected C]〉 −→ 〈S, σ, T.E [unprotected C], skip〉
〈S,σ, T, E [unprotected skip]〉 −→ 〈S, σ, T.E [skip], skip〉
〈S,σ, T.C, skip〉 −→ 〈〈σ, T.C〉, σ, T, C〉
〈〈σ0, T0〉, σ, T, C〉 −→ 〈〈σ0, T0〉, σ0, T0, skip〉

Fig. 3. Transition rules of the abstract machine, with roll-back

it is convenient to allow roll-back at any point.) For this purpose, the semantics
relies on extended states 〈〈σ0, T0〉, σ, T, C〉 with two additional components: an
extra store σ0 and an extra thread pool T0. Basically, the current σ and T
are saved as σ0 and T0 when a transaction starts, and restored upon roll-back.
Figure 3 gives the rules of the semantics. Only the last two rules operate on the
additional state components.

Our work and that of Moore and Grossman include more elaborate semantics
with roll-back [3, 5, 25]. Those semantics model finer-grain logging; in them, roll-
back is not a single atomic step. Some of the semantics are weak, in the sense
that unprotected sections may execute while transactions are in progress, and
even during the roll-back of transactions. We return to this complication in
Section 3.2, where we also consider concurrency between transactions.

2.4 Separating the Transactional Memory

Figure 4 presents a reformulation of the semantics of Section 2.3. States are
simplified so that they consist only of a thread pool and an active command.
Memory is treated through labels on the transition relation. These labels indicate
any memory operations, and also the start and roll-back of atomic computations.
The labels for start and roll-back include a thread pool (which could probably
be omitted if thread pools were tracked differently). The commit-point of atomic
computations can remain implicit.

A separate definition can dictate which sequences µ of labels are legal in a
computation 〈T, skip〉 −→∗

µ 〈T ′, skip〉. This definition may be done axiomati-
cally. One of the axioms may say, for instance, that for each label backT in µ
there is a corresponding, preceding label startT , with the same T , and with no
intervening other start or back label. Another axiom may constrain reads and
writes, and imply, for example, that the sequence [x �→ 1][x = 2] is not legal.
Although such axiomatic definitions can be elegant, they are both subtle and
error-prone. Alternatively, the definition may have an operational style. For this
purpose we define a transition relation in Figure 5, as a relation on triples of the

6 M. Abadi and T. Harris

〈T, E [x := e]〉 −→[e=n][x �→n] 〈T, E [skip]〉
〈T, E [skip; C]〉 −→ 〈T, E [C]〉
〈T, E [if b then C else D]〉 −→[b=true] 〈T, E [C]〉
〈T, E [if b then C else D]〉 −→[b=false] 〈T, E [D]〉
〈T, E [while b do C]〉 −→ 〈T, E [if b then . . . else . . .]〉
〈T, E [async C]〉 −→ 〈T.C, E [skip]〉
〈T, E [unprotected C]〉 −→ 〈T.E [unprotected C], skip〉
〈T, E [unprotected skip]〉 −→ 〈T.E [skip], skip〉
〈T.C, skip〉 −→startT.C 〈T, C〉
〈T, C〉 −→backT ′ 〈T ′, skip〉

Fig. 4. Transition rules of the abstract machine, with roll-back, reformulated

〈σ0, T, σ〉 −→[e=n] 〈σ0, T, σ〉 if σ(e) = n
〈σ0, T, σ〉 −→[b=v] 〈σ0, T, σ〉 if σ(b) = v
〈σ0, T, σ〉 −→[x �→n] 〈σ0, T, σ[x �→ n]〉
〈σ0, T, σ〉 −→startT ′ 〈σ, T ′, σ〉
〈σ0, T, σ〉 −→backT

〈σ0, T, σ0〉

Fig. 5. Operational definition of legal sequences of memory operations

form 〈σ0, T, σ〉. Given an initial triple S, we say that the sequence of memory
operations µ is legal if there is another triple S′ such that S −→∗

µ S′.
Figures 4 and 5 amount to a decomposition of Figure 3, separating the def-

inition of TM from the language semantics. Having a clear delineation of TM
can be helpful for factoring semantics. Further, one may study how to imple-
ment memory systems that satisfy the definition in Figure 5—for instance, with
various forms of logging.

3 Difficulties in Separating Transactional Memory

In this section we discuss the difficulties of having a separate TM in the context of
more sophisticated semantics and in actual implementations. We have explored
several such semantics and implementations, particularly focusing on avoiding
conflicts between transactional and non-transactional memory accesses [2–5].
Recent research by others [8, 28] develops implementations with similar goals
and themes, though with different techniques. Our observations in this section
are drawn primarily from our experience on the implementation of atomic blocks
and the AME constructs.

In Section 3.1, we consider systems with memory allocation, for which the
difficulties appear somewhat interesting but mild. In Section 3.2, we consider
concurrency, and the important but delicate distinction between strong seman-
tics (of the kind presented in Section 2) and the property of strong atomicity [7]
that may be ensured by a TM. In Section 3.3, we identify areas where aspects

Perspectives on Transactional Memory 7

of the implementation of atomic actions can either be provided by a TM with
strong guarantees or be layered over a TM with weaker guarantees.

We conclude that, in such settings, it is beneficial and perhaps inevitable
to integrate TM with other parts of semantics and implementations (for in-
stance, with static analysis, garbage collection, scheduling, and virtual-memory
management).

3.1 Memory Allocation

In Section 2, as in some works in the literature, the operations on memory do
not include allocation. However, allocation must be taken into account in the
context of TM.

In particular, some semantic definitions say that roll-backs do not undo allo-
cations [3, 20,25]. This choice simplifies some of the theory, and it is also impor-
tant in practice: it helps ensure that—no matter what else happens—a dangling
pointer will not be dereferenced after a roll-back. Thus, this choice represents a
sort of defense in depth.

Adding allocation to the TM interface does not seem particularly challenging.
However, we may wonder whether allocation is the tip of an iceberg. Class load-
ing, initialization, finalization, exceptions, and perhaps other operations may
also have interesting interactions with transactions. A definition of TM that
considers them all may well become unwieldy.

Implementations vary a great deal in how allocation is treated inside transac-
tions. Some consider the memory-management work to be part of transactions—
for example, the memory manager may be implemented using transactional reads
and writes to its free-lists. In other cases, the memory manager is integrated with
the transactional machinery—for example, maintaining its own logs of tentative
allocations and de-allocations that can be made permanent when a transaction
commits and undone when a transaction aborts.

3.2 Concurrency, and Strong Atomicity vs. Strong Semantics

Much of the appeal of TM would not exist if it were not for the possibility
that transactions execute in parallel with one another and also possibly with
non-transactional code. We can extend the semantics of Section 2 to account
for such concurrency. The semantics do get heavier and harder, whether TM is
built into the semantics or is treated as a separate module. In the latter case,
the operations on transactions may include transaction identifiers, and the reads
and writes may be tied to particular transactions via those identifiers.

Such semantics may reflect the choice of particular implementation techniques
(for instance, the use of eager updates or lazy updates). Nevertheless, the defi-
nitions should guarantee that a class of “correctly synchronized” programs run
(or appear to run) with strong semantics. Researchers have explored various def-
initions of correct synchronization, for instance with static separation between
transactional and non-transactional data [3, 20, 25], dynamic separation with

8 M. Abadi and T. Harris

Thread 1 Thread 2

atomic {

ready = true;

data = 1;

}

tmp1 = ready;

if (tmp1 == true) {

tmp2 = data;

}

Fig. 6. Initially ready is false. Under strong semantics, if tmp1 is true then tmp2

must be 1.

operations for moving data between those two modes [1, 2, 5], and dynamic no-
tions of data races between transactional and non-transactional code [3, 10, 29].

If TM is a separate module, we should also make explicit its own guarantees
in the presence of concurrency. With this style of definition, if we wish to obtain
strong semantics for all programs in a language, the TM should probably ensure
strong atomicity, which basically means that transactions appear atomic not
only with respect to one another but also with respect to non-transactional
memory accesses. Unfortunately, the exact definition of strong atomicity is open
to debate, and the debate might only be settled in the context of a particular
language semantics. Stronger notions of strong atomicity might be needed to
provide strong semantics when the language implementation is aggressive, and
weaker notions of strong atomicity might suffice in other cases. The relation
between strong semantics (for a programming language) and strong atomicity
(for a TM) is particularly subtle.

Strong Semantics Without Strong Atomicity. Some languages have strong se-
mantics but do not rely upon a TM with strong atomicity. For instance, in
STM-Haskell, a type system guarantees that the same locations are not con-
currently accessed transactionally and non-transactionally [20]. In other sys-
tems, scheduling prevents transactional and non-transactional operations being
attempted concurrently [26]. These cases suggest that, at the very least, the TM
should be closely tied to program analysis and scheduling.

Strong Atomicity Without Strong Semantics. Strong atomicity does not suffice
for strong semantics, in particular because of program transformations. Figure 6
provides an example due to Grossman et al. [15]. After this code runs, under
strong semantics, if tmp1 is true then tmp2 must be 1. However, a conventional
optimizing compiler might perform Thread 2’s read from data before the thread’s
read from ready. (For instance, an earlier read from data may still be available
in a register.)

Arguments in favor of strong atomicity (in particular from a hardware per-
spective) often seem to overlook such examples. Unless these examples are re-
garded as racy, program transformations currently in use should be considered
incorrect. As these examples illustrate, strong atomicity does not remove the
need for a notion of “correct synchronization” in programs. For racy programs
that do not satisfy the correctness criterion, very few guarantees can be given
in the presence of transformations by optimizing compilers and weak processor
memory models.

Perspectives on Transactional Memory 9

3.3 Implementation Options at Multiple Layers

In practical implementations of language constructs, we encounter implementa-
tion options at multiple layers, and it would seem premature to fix a specific
TM interface that would mandate one option or another. We consider several
examples.

Implementing Strong Atomicity. In one of our implementations [4], we rely on
off-the-shelf memory protection hardware for detecting possible conflicts between
transactional accesses and normal (non-transactional) accesses. We organize the
virtual address space of a process so that its heap is mapped twice. One mapping
is used in transactions, while the other mapping is used in normal execution. This
organization lets us selectively prevent normal access to pages while they remain
accessible transactionally. We use this mechanism to detect possible conflicts
between transactional accesses and normal accesses at the granularity of pages;
we use an existing TM to detect conflicts between transactions at the granularity
of objects.

This design provides a foundation that is sound but slow on conventional
hardware. We introduce a number of optimizations. We allow the language run-
time system to operate without triggering access violations. We use static anal-
ysis to identify non-transactional operations that are guaranteed not to conflict
with transactions (these operations can bypass the page-level checks) and to
identify transactions that are guaranteed not to conflict with normal accesses
(these transactions need not revoke normal-access permissions on the pages
involved).

Both the design and the optimizations raise a number of questions on the no-
tion of TM. If a TM is a separate entity, should it know about virtual addresses,
physical addresses, or both? How should it relate to memory protection? How
can its guarantees be adjusted in the presence of program analysis?

Tolerating Inconsistent Views of Memory. With some TM implementations, a
transaction can continue running as a “zombie” [12] after experiencing a conflict.
Zombie transactions can have errant behavior that is not permitted by strong
semantics. Consider the example in Figure 7. This program is correctly synchro-
nized under all of the criteria that we have studied, so a correct implementation
must not loop endlessly. However, if the TM does not guarantee that Thread 1
will see a consistent view of memory, it is possible for temp1==0 and temp2==1,
and consequently for Thread 1 to loop.

This flaw can be corrected by modifying the TM to give stronger guaran-
tees (for instance, opacity [19]). Alternatively, the language runtime system can
sandbox the effects of zombie transactions by adding periodic validation work
to loops, and containing any side-effects from zombie transactions (for example,
not raising a NullReferenceException in response to an access violation from
a zombie transaction).

10 M. Abadi and T. Harris

Thread 1 Thread 2

atomic {

temp1 = x1;

temp2 = x2;

if (temp1 != temp2) {

while (1) { }

} }

atomic {

x1 ++;

x2 ++;

}

Fig. 7. Initially x1==x2==0. Under strong semantics, Thread 1 must not loop.

Thread 1 Thread 2

atomic {

x = 100;

x_initialized = true;

}

while (true) {

atomic {

if (x_initialized) break;

} }

Console.Out.Writeline(x);

Fig. 8. A publication idiom. Under strong semantics, if Thread 2 sees x initialized

true, then it must print 100.

Granular Safety. Some TM implementations present data granularity problems.
For instance, rolling back a write to a single byte might also roll back the contents
of other bytes in the same memory word.

There are several viable techniques for avoiding this problem. First, the TM
implementation may be strengthened to maintain precise access granularity (say,
at the cost of extra book-keeping by tracking reads and writes at a byte level).
Second, if correct synchronization is defined by static separation, then transac-
tional and non-transactional data can be allocated on separate machine words.
Third, various dynamic mechanisms can be used for isolating transactional and
non-transactional data.

Only the first of these options places granular-safety requirements on the TM
implementation. The other two options require that other parts of the language
implementation be aware of the particular granularity at which the TM operates.

OrderingAcrossThreads. Inprivatizationandpublication idioms [3, 12, 13, 31, 34],
a piece of data is accessed transactionally depending on the value of another piece
of data, as for example in Figure 8. These idioms are frequently considered to be
correctly synchronized. However, näıve implementations overTM maynot execute
them correctly. For the example in Figure 8, an implementation that uses lazy up-
dates may allow Thread 2’s non-transactional read of x to occur before Thread 1
has finished writing back its transactional update.

Such idioms require that if non-transactional code executes after an atomic
action, then the non-transactional code must see all the side effects of preced-
ing atomic actions. This guarantee is provided by TMs with strong atomicity.

Perspectives on Transactional Memory 11

Alternatively, it can be layered over a weaker TM by adding synchronization
barriers when transactions start and commit [24], or it can be provided by page-
based separation of transactional and non-transactional data [4]. The perfor-
mance trade-offs between these approaches are complicated, and there is no
clear approach to favor in defining a clean common TM interface.

4 The Garbage-Collection Analogy

Grossman has drawn a compelling analogy between TM and garbage collection,
comparing the programming problems that they aim to solve, and the features
and limitations of the techniques [14]. In this section we consider what this
analogy says about the problem of defining TM.

Garbage collection can be regarded as a tool for implementing “garbage-
collected memory”. A “garbage-collected memory” is simply an “infinite mem-
ory” over which one does not need to worry about freeing space. It is both
common and helpful to describe language semantics over such a memory.

On the other hand, there is no canonical definition of garbage collection.
Although language implementations may have internal interfaces that are defined
with various degrees of precision and generality, there seems to be no separate,
clean, portable garbage-collection interface.

Typically, garbage collection—much like TM—is coupled with a compiler and
other parts of a language implementation. Some collectors exploit virtual-memory
page-protection hardware (e.g., [23, 35]) and static analysis (e.g., [11, 33]). Much
like TM, also, garbage collection can interact with program transformations. For
instance, the trick of exchanging the contents of two reference-typed fields by using
three XOR operations is correct only if the garbage collector will not see the inter-
mediate non-reference values. Furthermore, program transformations can affect
when finalizers (which run when an object becomes unreachable) will be eligible
to run.

On this basis, garbage-collection machinery and TM machinery are indeed
analogous. In the world of TM, however, there is no easy counterpart to garbage-
collected memory, that is, to infinite memory. In our opinion the best candidate
is not TM, but rather the concept of atomic action. Both infinite memory and
atomic actions can be used in specifying language semantics, and both have a
wide range of concrete implementations.

5 Conclusion

In this paper we examine transactional memory from the perspectives of lan-
guage semantics and implementations. We believe that, from both perspectives,
it is often impractical to define a separate, clean, portable internal TM interface.

Nevertheless, it may be productive to study the definition of TM interfaces,
and to examine whether or not particular TM implementation techniques are
compatible with them.

12 M. Abadi and T. Harris

Furthermore, in some cases, programmers may use a TM interface directly,
rather than via atomic blocks (for instance, for manipulating data structures).
However, that TM interface need not coincide with one used internally by an
implementation of atomic blocks, nor with a hardware TM interface, since hard-
ware might provide lower-level primitives [27, 30]. Finally, a compiler framework
may usefully include a common interface for multiple TM implementations—but
this interface is likely to be specific to a particular framework, and much broader
than that of TM as a shared object.

In summary, the question of what is transactional memory seems to remain
open, and may well deserve further investigation. However, in our opinion, it is at
least as worthwhile to study languages and implementation techniques based on
transactional ideas, even without a separate definition of transactional memory.

Acknowledgements. We are grateful to Dan Grossman, Rachid Guerraoui,
Leslie Lamport, and Greg Morrisett for discussions on the subject of this paper.

References

1. Abadi, M., Birrell, A., Harris, T., Hsieh, J., Isard, M.: Dynamic separation for
transactional memory. Technical Report MSR-TR-2008-43, Microsoft Research
(March 2008)

2. Abadi, M., et al.: Implementation and use of transactional memory with dynamic
separation. In: de Moor, O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501,
pp. 63–77. Springer, Heidelberg (2009)

3. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. In: POPL 2008: Proc. 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, January 2008, pp.
63–74 (2008)

4. Abadi, M., Harris, T., Mehrara, M.: Transactional memory with strong atomic-
ity using off-the-shelf memory protection hardware. In: PPoPP 2009: Proc. 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
February 2009, pp. 185–196 (2009)

5. Abadi, M., Harris, T., Moore, K.F.: A model of dynamic separation for transac-
tional memory. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 6–20. Springer, Heidelberg (2008)

6. Abadi, M., Plotkin, G.D.: A model of cooperative threads. In: POPL 2009: Proc.
36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, January 2009, pp. 29–40 (2009)

7. Blundell, C., Lewis, E.C., Martin, M.M.K.: Deconstructing transactional seman-
tics: The subtleties of atomicity. In: WDDD 2005: Proc. 4th Workshop on Dupli-
cating, Deconstructing and Debunking, June 2005, pp. 48–55 (2005)

8. Bronson, N.G., Kozyrakis, C., Olukotun, K.: Feedback-directed barrier optimiza-
tion in a strongly isolated STM. In: POPL 2009: Proc. 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, January 2009,
pp. 213–225 (2009)

9. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: FMCAD 2007: Proc. 7th International Confer-
ence on Formal Methods in Computer-Aided Design, November 2007, pp. 37–44
(2007)

Perspectives on Transactional Memory 13

10. Dalessandro, L., Scott, M.L.: Strong isolation is a weak idea. In: TRANSACT 2009:
4th ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (February 2009)

11. Detlefs, D., Nandivada, V.K.: Compile-time concurrent marking write barrier re-
moval. Technical Report SMLI-TR-2004-142, Sun Microsystems (December 2004)

12. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

13. Dice, D., Shavit, N.: What really makes transactions faster? In: TRANSACT 2006,
1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (June 2006)

14. Grossman, D.: The transactional memory / garbage collection analogy. In:
OOPSLA 2007: Proc. 22nd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications, October 2007, pp. 695–706 (2007)

15. Grossman, D., Manson, J., Pugh, W.: What do high-level memory models mean
for transactions? In: MSPC 2006: Proc. 2006 Workshop on Memory System Per-
formance and Correctness, October 2006, pp. 62–69 (2006)

16. Guerraoui, R., Henzinger, T.A., Singh, V.: Completeness and nondeterminism in
model checking transactional memories. In: van Breugel, F., Chechik, M. (eds.)
CONCUR 2008. LNCS, vol. 5201, pp. 21–35. Springer, Heidelberg (2008)

17. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memo-
ries. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer,
Heidelberg (2008)

18. Guerraoui, R., Henzinger, T., Singh, V.: Model checking transactional memories.
In: PLDI 2008: Proc. 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 2008, pp. 372–382 (2008)

19. Guerraoui, R., Kapa�lka, M.: On the correctness of transactional memory. In:
PPoPP 2008: Proc. 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, February 2008, pp. 175–184 (2008)

20. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP 2005: Proc. 10th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, June 2005, pp. 48–60 (2005)

21. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA 1993: Proc. 20th International Symposium on Com-
puter Architecture, May 1993, pp. 289–301 (1993)

22. Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus.
Sci. Comput. Program. 57(2), 164–186 (2005)

23. Kermany, H., Petrank, E.: The compressor: concurrent, incremental, and parallel
compaction. In: PLDI 2006: Proc. 2006 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, June 2006, pp. 354–363 (2006)

24. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.-R., Hudson, R.,
Saha, B., Welc, A.: Practical weak-atomicity semantics for Java STM. In: SPAA
2008: Proc. 20th Symposium on Parallelism in Algorithms and Architectures, June
2008, pp. 314–325 (2008)

25. Moore, K.F., Grossman, D.: High-level small-step operational semantics for trans-
actions. In: POPL 2008: Proc. 35th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, January 2008, pp. 51–62 (2008)

26. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: SPAA 2009: Proc. 21st ACM Symposium on
Parallelism in Algorithms and Architectures (August 2009)

14 M. Abadi and T. Harris

27. Saha, B., Adl-Tabatabai, A.-R., Jacobson, Q.: Architectural support for software
transactional memory. In: MICRO 2006: Proc. 39th IEEE/ACM International
Symposium on Microarchitecture, June 2006, pp. 185–196 (2006)

28. Schneider, F.T., Menon, V., Shpeisman, T., Adl-Tabatabai, A.-R.: Dynamic op-
timization for efficient strong atomicity. In: OOPSLA 2008: Proc. 23rd ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications, October 2008, pp. 181–194 (2008)

29. Scott, M.L.: Sequential specification of transactional memory semantics. In:
TRANSACT 2006: 1st ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing (June 2006)

30. Shriraman, A., Dwarkadas, S., Scott, M.L.: Flexible decoupled transactional mem-
ory support. In: ISCA 2008: Proc. 35th International Symposium on Computer
Architecture, June 2008, pp. 139–150 (2008)

31. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques
for software transactional memory. Technical Report 915, CS Dept, U. Rochester
(February 2007)

32. Tasiran, S.: A compositional method for verifying software transactional memory
implementations. Technical Report MSR-TR-2008-56, Microsoft Research (April
2008)

33. Vechev, M.T., Bacon, D.F.: Write barrier elision for concurrent garbage collectors.
In: ISMM 2004: Proc. 4th International Symposium on Memory Management,
October 2004, pp. 13–24 (2004)

34. Wang, C., Chen, W.-Y., Wu, Y., Saha, B., Adl-Tabatabai, A.-R.: Code generation
and optimization for transactional memory constructs in an unmanaged language.
In: CGO 2007, International Symposium on Code Generation and Optimization,
March 2007, pp. 34–48 (2007)

35. Wegiel, M., Krintz, C.: The mapping collector: virtual memory support for gen-
erational, parallel, and concurrent compaction. In: ASPLOS 2008: Proc. 13th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, March 2008, pp. 91–102 (2008)

36. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press,
Cambridge (1993)

The Effect of Tossing Coins in Omega-Automata

Christel Baier1, Nathalie Bertrand2, and Marcus Größer1

1 Technische Universität Dresden, Faculty of Computer Science, Germany
2 INRIA Rennes Bretagne Atlantique, France

Abstract. In this paper we provide a summary of the fundamental properties
of probabilistic automata over infinite words. Such probabilistic automata are a
variant of standard automata with Büchi or other ω-regular acceptance conditions,
such as Rabin, Streett, parity or Müller, where the nondeterministic choices are
resolved probabilistically. Acceptance of an infinite input word can be defined
in different ways: by requiring that (i) almost all runs are accepting, or (ii) the
probability for the accepting runs is positive, or (iii) the probability measure of
the accepting runs is beyond a certain threshold. Surprisingly, even the qualitative
criteria (i) and (ii) yield a different picture concerning expressiveness, efficiency,
and decision problems compared to the nondeterministic case.

Introduction

Automata over infinite objects play a central role for verification purposes, reasoning
about infinite games and logics that specify nondeterministic behaviors. Many vari-
ants of ω-automata have been studied in the literature that can be classified according
to their inputs (e.g., words or trees), their acceptance conditions (e.g., Büchi, Rabin,
Streett, Muller or parity acceptance) and their branching structure (e.g., deterministic,
nondeterministic, or alternating). See, e.g., [9,18] for an overview of automata over
infinite objects.

Although probabilistic finite automata (PFA) have attracted many researchers, see
e.g. [8,12,13,15], probabilistic language acceptors for infinite words just have recently
been studied. The formal definition of probabilistic ω-automata is the same as for non-
deterministic ω-automata, the only difference being that all choices are resolved by
probabilistic distributions. Acceptance of an infinite word σ = a1 a2 a3 . . . can then be
defined by imposing a condition on the probability of the accepting runs for σ. We con-
sider here three types of accepted languages. The probable semantics requires positive
probability for the accepting runs, the almost-sure semantics requires that the accept-
ing runs for σ have probability 1, while the threshold semantics relies on some fixed
threshold λ ∈]0,1[and requires that the acceptance probability is greater than λ.

Given the well-known fact that PFA are more expressive that NFA and that many
relevant decision problems for PFA are undecidable, it is no surprise that PBA with the
threshold semantics are more powerful than NBA and that the emptiness problem and
other decision problems are undecidable for them. The definition of the accepted lan-
guage under the probable semantics via the criterion “the probability for the accepting
runs is > 0” appears to be the natural adaption of the definition of the accepted lan-
guage of a nondeterministic automaton which relies on the criterion “there is at least

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 15–29, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

16 C. Baier, N. Bertrand, and M. Größer

one accepting run”. One therefore might expect that probabilistic and nondeterministic
ω-automata are rather close and enjoy similar properties. This, however, is not the case.
The class of languages that are accepted by a PBA with the probable semantics strictly
subsumes the class of ω-regular languages and it is closed under union, intersection and
complementation. Furthermore, there are ω-regular languages that are recognizable by
probable PBA of linear size while the sizes of smallest NBA for these languages grow
exponentially. The price we have to pay for this extra power of probabilistic automata
is that basic problems like checking emptiness, universality or equivalence are undecid-
able for PBA under the probable semantics.

The almost-sure semantics of PBA is “weaker” in the sense that each almost-sure
PBA can be transformed into an equivalent PBA with the probable semantics, but not
vice versa. Moreover, the class of languages that are recognizable by PBA with the
almost-sure semantics does not cover the full class of ω-regular languages, it is not
closed under complementation and contains non-ω-regular languages. On the positive
side, the emptiness and universality problem for almost-sure PBA are decidable.

Organization. Section 1 recalls the definition of nondeterministic ω-automata with
Büchi, Rabin or Streett acceptance conditions and introduces their probabilistic variants.
Results on the expressiveness and efficiency of probabilistic Büchi automata are sum-
marized in Section 2. Composition operators for PBA and probabilistic automata with
Rabin and Streett acceptance are considered in Section 3. Decision problems for PBA
will be discussed in Section 4. Finally, Section 5 contains some concluding remarks.

The material of this paper is a summary of the results presented in the papers [2,3].
Further details can be found there and in the thesis by Marcus Größer [10].

1 Probabilistic ω-Automata

We assume some familiarity with classical nondeterministic automata over finite or
infinite words; see e.g. [9,18]. We just recall some basic concepts of nondeterministic
ω-automata, and then present the definition of probabilistic ω-automata.

Definition 1 (Nondeterministic ω-automata). A nondeterministic ω-automaton is a
tuple N = (Q,Σ,δ,Q0,Acc), where

– Q is a finite nonempty set of states,
– Σ is a finite nonempty input alphabet,
– δ : Q×Σ → 2Q is a transition function that assigns to each state q and letter a ∈ Σ

a (possibly empty) set δ(q,a) of states,
– Q0 ⊆ Q is the set of initial states,
– Acc is an acceptance condition (which will be explained later).

N is called deterministic if |Q0|= 1 and |δ(q,a)|= 1 for all q ∈ Q and a ∈ Σ.

Given an input word σ = a1 a2 a3 . . .∈Σω, a run for σ in N is a maximal state-sequence
π = q0 q1 q2 . . . such that q0 ∈ Q0, qi+1 ∈ δ(qi,ai+1) for all i ≥ 0. Maximality means
that either π is infinite or ends in state qn if δ(qn,an+1) = /0. Each finite run q0 q1 . . .qn

The Effect of Tossing Coins in Omega-Automata 17

is said to be rejecting. The acceptance condition Acc imposes a condition on infinite
runs and declares which of the infinite runs are accepting. We write inf(π) for the set
of states p ∈ Q such that p = qi for infinitely many indices i ≥ 0. Several acceptance
conditions are known for nondeterministic ω-automata. We will consider three types of
acceptance conditions:

Büchi: A Büchi acceptance condition Acc is a subset F of Q. The elements in F are
called final or accepting states. An infinite run π = q0 q1 q2 . . . is called (Büchi)
accepting if π visits F infinitely often, i.e., inf(π)∩F
= /0.

Streett: A Streett acceptance condition Acc is a finite set of pairs (Hl ,Kl) consisting
of subsets Hl,Kl of Q, i.e., Acc = {(H1,K1), . . . ,(H�,K�)}. An infinite run π =
q0 q1 q2 . . . is called (Streett) accepting if for each l ∈ {1, . . . , �} we have:

inf(π)∩Hl
= /0 or inf(π)∩Kl = /0.

Rabin: A Rabin acceptance condition Acc is syntactically the same as a Streett accep-
tance condition, i.e., a finite set Acc = {(H1,K1), . . . ,(H�,K�)} where Hl,Kl ⊆ Q
for 1≤ l ≤ �. An infinite run π = q0 q1 q2 . . . is called (Rabin) accepting if there is
some l ∈ {1, . . . , �} such that

inf(π)∩Hl = /0 and inf(π)∩Kl
= /0.

Note that the semantics of Streett and Rabin acceptance conditions are duals of each
other, i.e., for each infinite run π we have: π is accepting according to the Rabin con-
dition Acc iff π is rejecting (i.e., not accepting) according to the Streett condition Acc.
Furthermore, a Büchi acceptance condition F can be viewed as a special case of a Streett
or Rabin condition with a single acceptance pair, namely {(F,Q)} for the Streett condi-
tion and {(/0,F)} for the Rabin condition. The accepted language of a nondeterministic
ω-automaton N with the alphabet Σ, denoted L(N), is defined as the set of infinite
words σ ∈ Σω that have at least one accepting run in N .

L(N) =
{

σ ∈ Σω : there exists an accepting run for σ in N
}

In what follows, we write NBA to denote a nondeterministic Büchi automaton, NRA for
nondeterministic Rabin automata and NSA for nondeterministic Streett automata. Sim-
ilarly, the notations DBA, DRA and DSA are used to denote deterministic ω-automata
with a Büchi, Rabin or Streett acceptance condition.

It is well-known that the classes of languages that can be accepted by NBA, DRA,
NRA, DSA or NSA are the same. These languages are often called ω-regular and repre-
sented by ω-regular expressions, i.e., finite sums of expressions of the form αβω where
α and β are ordinary regular expressions (representing regular languages over finite
words) and the language associated with β is nonempty and does not contain the empty
word. In the sequel, we will identify ω-regular expressions with the induced ω-regular
language. In what follows, we write NBANBANBA for the class of ω-regular languages. While
deterministic ω-automata with Rabin and Streett acceptance (DRA and DSA) cover
the full class of ω-regular languages, DBA are less powerful as, e.g., the language
(a+b)∗aω cannot be recognized by a DBA. Hence, the class DBADBADBA of DBA-recognizable
languages is a proper subclass of NBANBANBA.

18 C. Baier, N. Bertrand, and M. Größer

The syntax of probabilistic ω-automata is the same as in the nondeterministic case,
except that the transition function specifies probabilities. That is, for any state p and
letter a ∈ Σ either p does not have any a-successor or there is a probability distribution
for the a-successors of p.

Definition 2 (Probabilistic ω-automata). A probabilistic ω-automaton is a tuple P =
(Q,Σ,δ,µ0,Acc), where

– Q is a finite nonempty set of states,
– Σ is a finite nonempty input alphabet,
– δ : Q×Σ×Q→ [0,1] is a transition probability function such that for all p ∈ Q

and a ∈ Σ either ∑q∈Q δ(p,a,q) = 1 or δ(p,a,q) = 0 for all q ∈ Q,
– µ0 is the initial distribution, i.e., a function µ0 : Q→ [0,1] such that ∑q∈Q µ0(q) = 1,
– Acc is an acceptance condition (as for nondeterministic ω-automata).

We refer to the states q0 ∈ Q where µ0(q0) > 0 as initial states. If p is a state such that
δ(q,a, p) > 0 then we say that q has an outgoing a-transition to state p.

Acceptance conditions can be defined as in the nondeterministic case. In this paper, we
just regard Büchi, Rabin and Streett acceptance and use the abbreviations PBA, PRA
and PSA for probabilistic Büchi automata, probabilistic Rabin automata, and proba-
bilistic Streett automata, respectively.

The intuitive operational behavior of a probabilistic ω-automaton P for a given input
word σ = a1a2 . . . ∈ Σω is as follows. Initially P chooses at random an initial state p0

according to the initial distribution µ0. If P has read the first i input symbols a1, . . . ,ai

and the current state is pi then P moves with probability δ(pi,ai+1, p) to state p and
tries to consume the next input symbol ai+2 in state p = pi+1. If there is no outgoing
ai+1-transition from the current state pi, then P rejects. As in the nondeterministic case,
the resulting state-sequence π = p0 p1 p2 . . . ∈ Q∗ ∪Qω is called a run for σ in P .
If P rejects in state pi, i.e., δ(pi,ai+1, ·) is the null function, then the obtained run is
finite (and ends in state pi). If the automaton never rejects while reading the letters ai

of the input word σ = a1a2a3 . . . ∈ Σω, the generated run is an infinite state-sequence
π = p0 p1 p2 . . . ∈ Qω. Acceptance of a run according to a Büchi, Rabin or Streett
acceptance condition is defined as in the nondeterministic setting.

Semantics of probabilistic ω-automata. We distinguish three semantics that differ
in the requirements on the acceptance probability. The formal definition of the accep-
tance probability relies on the view of an input word σ ∈ Σω as a scheduler when P
is treated as a Markov decision process, i.e., an operational model for a probabilistic
system where in each state q the letters that can be consumed in q are treated as actions
that are enabled in q. Given a word/scheduler σ = a1 a2 a3 . . . ∈ Σω, the behavior of P
under σ is given by a Markov chain Mσ where the states are pairs (q, i) where q ∈ Q
stands for the current state and i is a natural number ≥ 1 that denotes the current word
position. Stated differently, state (q, i) in the Markov chain Mσ stands for the configu-
ration that P might have reached after having consumed the first i−1 letters a1, . . . ,ai−1

of the input word σ. Assuming that δ(q,ai+1, ·) is not the null function, the transition
probabilities from state (q, i) are given by the distribution δ(q,ai+1, ·), i.e., from state

The Effect of Tossing Coins in Omega-Automata 19

(q, i) the Markov chain Mσ moves with probability δ(q,ai+1, p) to state (p, i + 1). In
case that δ(q,ai+1, ·) = 0 then (q, i) is an absorbing state, i.e., a state without any out-
going transition. The runs for σ in P correspond to the paths in Mσ. We can now apply
the standard concepts for Markov chains to reason about the probabilities of infinite
paths and define the acceptance probability PrP (σ) for the infinite word σ in P as the
probability measure of the accepting runs for σ in the Markov chain Mσ.

Probable semantics. A probabilistic ω-automaton P accepts an infinite input word σ
if the acceptance probability PrP (σ) is positive.

Almost-sure semantics. P accepts an infinite input word σ if almost all runs for σ are
accepting.1

Threshold semantics. Given a threshold λ ∈]0,1[, P accepts an infinite input word σ
if the acceptance probability PrP (σ) is greater than λ.

Thus, there are three versions of accepted language of a PBA P :

L>0(P) def=
{

σ ∈ Σω : PrP (σ) > 0
}

L=1(P) def=
{

σ ∈ Σω : PrP (σ) = 1
}

L>λ(P) def=
{

σ ∈ Σω : PrP (σ) > λ
}

Sometimes we will add the subscript “Büchi”, “Streett’ or “Rabin” to make clear which
type of acceptance condition is assumed and write, for instance, L>0

Büchi(P), L>0
Rabin(P)

or L>0
Streett(P) to denote the accepted language of a PBA, PRA or PSA, respectively,

under the probable semantics.

PBA>0PBA>0PBA>0 = class of languages L such that L = L>0(P) for some PBA P ,

PBA=1PBA=1PBA=1 = class of languages L such that L = L=1(P) for some PBA P ,

PBA>λPBA>λPBA>λ = class of languages L such that L = L>λ(P) for some PBA P

Analogous notations will be used for Rabin and Streett acceptance conditions. Equiv-
alence of ω-automata means that their accepted languages agree. The size of a Büchi
automaton is the number of states. The size of a Rabin or Streett automaton denotes the
number of states plus the number of acceptance pairs.

Example 1 (Probabilistic Büchi automata). In the pictures for probabilistic ω-automata,
the probability δ(q,a, p) is attached to the a-transition from q to p. If δ(q,a, p) = 1 then
the edge is simply labeled with a. Similarly, if there is a single initial state q0 (i.e.,
µ0(q0) = 1, while µ0(q) = 0 for all other states q) we simply depict an incoming ar-
row to q0. For PBA, we depict the accepting states (i.e., the states q ∈ F) by squares,
non-accepting states by circles.

The left part of Figure 1 shows a PBA P over the alphabet Σ = {a,b} and, e.g.,
δ(q0,a,q0) = δ(q0,a,q1) = 1

2 and δ(q0,b,q0) = 1. The initial distribution assigns prob-
ability 1 to state q0. The Büchi acceptance condition is given by F = {q1}. We have:

1 The formulation “almost all runs have property X” means that the probability measure of the
runs where property X does not hold is 0.

20 C. Baier, N. Bertrand, and M. Größer

L>0(P) = (a + b)∗aω, L=1(P) = b∗aω, L> 1
5 (P) = b∗ab∗ab∗aω

We briefly explain why L>0(P) agrees with the language (a + b)∗aω.

“⊇”: The behavior of P for an an infinite input word σ ∈ (a + b)∗aω is as follows.
With positive probability P stays in the initial state q0 until the last b in σ has been
read. From then on, P moves almost surely to the accepting state q1 and stays there
forever when reading the infinite suffix aω. Thus, PrP (σ) > 0 for all σ∈ (a+b)∗aω.
This yields that (a + b)∗aω ⊆ L>0(P).

“⊆”: If σ ∈ L>0(P) then the number of b’s that appear in σ is finite because only state
q1 is accepting and only letter a can be read in state q1. Hence, each accepted word
σ ∈ L>0(P) must have the suffix aω.

Given a word σ = c1c2 . . .c�baω with ci ∈ {a,b}, the precise acceptance probability is

PrP (σ) =
(1

2

)k
where k = |{i ∈ {1, . . . , �} : ci = a}|, while PrP (aω) = 1. This yields

L=1(P) = b∗aω and L> 1
5 (P) = b∗ab∗ab∗aω.

q0 q1
a, 1

2

aa, 1
2

b

PBA P

p0

p1 p2

a, 1
2 a, 1

2

b b,c

PBA P ′

Fig. 1. Examples for PBA P (left) and P ′ (right)

Obviously, for each PBA P all words in L>0(P) have at least one accepting run.
Thus, L>0(P) is always contained in the accepted language of the NBA that results by
ignoring the transition probabilities. For the PBA P in Figure 1, the language L>0(P)
even agrees with the language of the underlying NBA. This, however, does not ap-
ply to all PBA. For an example, we regard the PBA P ′ shown in the right part of
Figure 1 which has the alphabet Σ = {a,b,c}. The underlying NBA accepts the language(
(ac)∗ab

)ω
, while the accepted language of the PBA P ′ with the probable semantics is

L>0(P ′) = (ab + ac)∗(ab)ω.

Given an input word σ ∈ (ab + ac)∗(ab)ω, say σ = x(ab)ω where x ∈ (ab + ac)∗, then
with positive probability P ′ generates the run fragment p0 p2 p0 p2 . . . p0 p2 p0 when
reading x. For the remaining suffix (ab)ω, P ′ can always consume the next letter and
almost surely P ′ will visit p1 and p2 infinitely often. Thus, PrP ′(σ) > 0 and σ ∈ L(P ′).
Vice versa, we have to show that L>0(P ′) is a subset of (ab + ac)∗(ab)ω. It is obvious
that all accepted words σ∈L(P ′) belong to ((ac)∗ab)ω. Any word σ in (ab+ac)ω with
infinitely many c’s is rejected by P ′ as almost all runs for σ are finite and end in state
p1, where the next input symbol is c and cannot be consumed in state p1. �

The Effect of Tossing Coins in Omega-Automata 21

2 Expressiveness of Probabilistic Büchi Automata

Each DBA can be viewed as a PBA (we just have to assign probability 1 to all edges
in the DBA and deal with the initial distribution that assigns probability 1 to the unique
initial state). As shown in Example 1 there is a PBA for the language (a + b)∗aω

which cannot be accepted by DBA. As a consequence we obtain that the class of DBA-
recognizable languages is a subclass of PBA=1PBA=1PBA=1 and a proper subclass of PBA>0PBA>0PBA>0 (and
any threshold language PBA>λPBA>λPBA>λ).

In this section, we will study the expressiveness of PBA in more detail. We start with
the observation that the three semantics form a hierarchie:

Theorem 1 (Hierarchy of PBA-languages). For all λ,ν ∈]0,1[, we have:

PBA=1PBA=1PBA=1 ⊂ PBA>0PBA>0PBA>0 ⊂ PBA>λPBA>λPBA>λ = PBA>νPBA>νPBA>ν

Furthermore, the inclusions PBA=1PBA=1PBA=1 ⊂ PBA>0PBA>0PBA>0 and PBA>0PBA>0PBA>0 ⊂ PBA>λPBA>λPBA>λ are strict.

In the sequel, we will write TPBATPBATPBA for the threshold classes PBA>λPBA>λPBA>λ.

Proof sketch. Let us briefly sketch the proof ideas for Theorem 1. The inclusion PBA=1PBA=1PBA=1⊂
PBA>0PBA>0PBA>0 has been established in [2] by providing a transformation that constructs for a
given PBA P with the almost-sure semantics an equivalent PBA P ′ with the probable
semantics. The rough idea is that P ′ guesses probabilistically some word position i and
then checks whether, from position i on, P will never enter an accepting state p ∈ F .
Since the definition of P ′ relies on a certain powerset construction, this transformation
can yield an exponential blow-up.

To prove the inclusion PBA>0PBA>0PBA>0 ⊂ PBA>λPBA>λPBA>λ we start with a PBA P with the probable
semantics and turn P into an equivalent PBA T with threshold λ. T arises from P by
adding a fresh trap state pacc (i.e., δ(pacc,a, pacc) = 1 for all a ∈ Σ) which is declared to
be accepting. The initial distribution of T assigns probability λ to state pacc. With the
remaining probability 1−λ, T simulates P . Then, PrT (σ) = λ +(1−λ)PrP (σ) for all
words σ. Hence, L>0(P) = L>λ(T).

An analogous construction is applicable to prove that PBA>λPBA>λPBA>λ ⊆ PBA>νPBA>νPBA>ν if λ < ν.
Vice versa, suppose we are given a PBA T with threshold λ. An equivalent PBA T ′

with threshold ν where λ > ν arises from T by adding a fresh trap state p that is
non-accepting. T ′ enters p initially with probability 1− ν

λ and mimicks T with the

remaining probability ν
λ . Then, PrT ′(σ) = ν

λ ·PrT (σ) for all words σ, and therefore
L>λ(T) = L>ν(T ′).

Using results established by Paz [14] for probabilistic finite automata, one can show
that for each irrational threshold λ the language L over the alphabet {0,1,c} consisting
of all words b1b2 . . .bncω where ∑1≤i≤n bi ·2−i is strictly larger than λ can be recognized
by a PBA with threshold λ, while there is no PBA for L with the probable semantics.
An example for a language that is accepted by a PBA with the probable semantics, but
not by an almost-sure PBA will be provided in Theorem 2. �
Probabilistic finite automata (PFA) with the acceptance criterion “the accepting runs
have a positive probability measure” can be viewed as nondeterministic finite automata,

22 C. Baier, N. Bertrand, and M. Größer

and hence, they have exactly the power of regular languages. One might expect that an
analogous result can be established for PBA with the probable semantics and the class of
ω-regular languages. This, however, is not the case. PBA with the probable semantics
are more powerful than NBA. In the proof sketch of the following theorem we will
provide examples for a non-ω-regular language in PBA>0PBA>0PBA>0 that cannot be recognized by
an almost-sure PBA.

Theorem 2 (PBA versus ωωω-regular languages). NBANBANBA is strictly contained in PBA>0PBA>0PBA>0,
while NBANBANBA
⊆ PBA=1PBA=1PBA=1 and PBA=1PBA=1PBA=1
⊆ NBANBANBA.

Proof sketch. A transformation from NBA into an equivalent probable PBA is obtained
by using NBA that are deterministic-in-limit. These are NBA such that for each state
p that is reachable from some accepting state q ∈ F and each letter a ∈ Σ state p
has at most one outgoing a-transition. That is, as soon as an accepting state has been
reached, the behavior from then on is deterministic. Courcoubetis and Yannakakis [7]
presented an algorithm that turns a given NBA N into an equivalent NBA Ndet that is
deterministic-in-limit. A PBA P where L>0(P) agrees with the language of Ndet (and
N) is obtained by resolving the nondeterministic choices in Ndet via distributions that
assign non-zero probabilities to all transitions.

q0 q1

a,1−λ

b

a,λ

a

where λ ∈]0,1[

Fig. 2. PBA Pλ that accepts with the probable semantics the non-ω-regular language Lλ

The above shows that the class of ω-regular languages is contained in PBA>0PBA>0PBA>0. We
now provide an example for a language L ∈ PBA>0PBA>0PBA>0 which is not ω-regular. For L we
can take the language

Lλ
def=

{
ak1bak2bak3b . . . :

∞
∏
i=1

(
1−λki

)
> 0

}

where λ is an arbitrary real number in the open interval]0,1[. The convergence condi-
tion which requires the infinite product over the values 1−λki to be positive can easily
be shown to be non-ω-regular. Furthermore, it can be shown that there is no almost-
sure PBA that accepts Lλ. However, a PBA Pλ with the probable semantics is shown in
Figure 2. To see why Lλ = L>0(Pλ), let us first observe that all words in L>0(Pλ)
must contain infinitely many b’s. As Pλ cannot consume two consecutive b’s, all words
in L(Pλ) have the form ak1bak2bak3b . . . where k1,k2, . . . is a sequence of positive natu-
ral numbers. We now show that

PrPλ(ak1 bak2bak3b . . .) =
∞
∏
i=1

(
1−λki

)

The Effect of Tossing Coins in Omega-Automata 23

The factors 1−λki stand for the probability to move from state q0 to q1 when reading
the subword aki . With the remaining probability λki , the automaton Pλ stays in state
q0, but then letter b at position k1 + . . .+ ki + i of the input word ak1bak2bak3b . . . can-
not be consumed and Pλ rejects. Hence, the probability for run fragments of the form
q0 . . .q0q1 . . .q1 q0 that are generated while reading the subword akib is precisely 1−λki .
This yields that the infinite product of these values agrees with the acceptance proba-
bility for the input word ak1bak2bak3b

q2

q3

q1

q0

a,1−λ

a,λ

b

a,1−λ

a,λ b

a

a,1−λ

a,λ

Fig. 3. PBA P̃λ that accepts the non-ω-regular language L̃λ

It remains to show that NBANBANBA
⊆ PBA=1PBA=1PBA=1 and PBA=1PBA=1PBA=1
⊆NBANBANBA. An example for an ω-
regular language that is not recognizable by an almost-sure PBA is (a + b)∗aω. More-
over, for the PBA P̃λ in Figure 3 the acceptance probability of each word is either 0 or
1 and the accepted language L>0(P̃λ) = L=1(P̃λ) consists of all words

ak1bcak2bcak3bc . . . where k1,k2, . . .≥ 1 and
∞
∏
i=1

(1−λki) = 0.

As this language is clearly not ω-regular, this shows PBA=1PBA=1PBA=1
⊆NBANBANBA. �

Relevance of the concrete transition probabilities. For the threshold semantics it is
clear that the precise transition probabilities might be crucial for the accepted language.
That is, if we are given a PBA and modify the nonzero transition probabilities then also
the accepted threshold language might change, even for fixed threshold. However, one
might expect that the precise transition probabilities are irrelevant for the probable and
almost-sure semantics as they just rely on a qualitative criterion. Indeed, in the context
of finite-state Markov decision processes it is known that whether or not a given linear
time property holds with positive probability or almost surely just depends on the un-
derlying graph, but not on the concrete transition probabilities. However, the languages
of PBA under the probable and almost-sure semantics are sensitive to the distributions
for the successor states. Consider again the PBA Pλ and P̃λ of Figures 2 and 3 and
two values λ and ν ∈]0,1[with λ < ν. For any sequence (ki)i≥1 of natural numbers
ki where the infinite product over the values 1− νki converges to some positive value,

24 C. Baier, N. Bertrand, and M. Größer

also the infinite product over the values 1−λki is positive, as we have 1−νki < 1−λki .
In fact, whenever λ < ν then there are sequences (ki)i≥1 such that the product of the
values 1−λki converges to some positive real number, while the product of the values
1−νki has value 0. Thus, L>0(Pν) is a proper subset of L>0(Pλ) and L=1(P̃ν) a proper
superset of L=1(P̃λ).

PBA for ωωω-regular languages. Using a criterion that has some similarities with the
condition for isolated cutpoints for PFA, [3] presents a characterization of a subclass
of PBA with the probable semantics that covers exactly the ω-regular languages. An
alternative purely syntactic condition has been provided recently by Chadha, Sistla and
Viswanathan [5]. Concerning the efficiency of probable PBA as an automata-model for
ω-regular languages, it turns out that PBA are not comparable to their nondeterministic
counterparts. There are examples for families (Ln)n≥1 of ω-regular languages that are
accepted by NBA of linear size, while each PBA P with L>0(P) = Ln has Ω(2n) states.
An example for such a family of languages is

(
(a + b)∗a(a + b)nc

)ω
. Vice versa, the

languages Ln =
{

xyω : x,y ∈ {a,b}∗, |y| = n
}

can be recognized by probable PBA of
size O(n), while any NSA for Ln has Ω(2n/n) states. (See [3].)

For languages over finite words, “pumping lemmas” provide a useful tool to prove
that certain languages are not recognizable by some type of automata. Indeed also for
PBA with the probable semantics one can also establish such a pumping lemma:

Theorem 3 (Pumping lemma for PBA>0PBA>0PBA>0). For each PBA P and each word σ∈L>0(P)
and all n∈N there exist finite words u,v,w and an infinite word x such that (1) σ = uvwx,
(2) |u|= n, |vw| ≤ |P | and |w| ≥ 1 and (3) uvwkx ∈ L>0(P) for all k ∈N.

Using Theorem 3 one can, e.g., show that the ω-context-free language {anbnσ : σ ∈
(a + b)ω,n≥ 0} is not contained in PBA>0PBA>0PBA>0.

3 Composition Operators for PBA

The most important composition operators for any class of languages over infinite
words are the standard set operations union, intersection and complementation. We con-
sider here only the probable and almost-sure semantics. To the best of our knowledge,
composition operators for PBA with the threshold semantics have not been studied yet.

Theorem 4. PBA>0PBA>0PBA>0 is closed under union, intersection and complementation, while
PBA=1PBA=1PBA=1 is closed under union and intersection, but not under complementation.

Union. Given two PBA P1 and P2 with the probable semantics and initial distributions
µ1 and µ2, respectively, we consider the PBA P1�P2 that arises from the disjoint union
of P1 and P2 with the initial distribution µ(q) = 1

2 µi(q) if q is a state in Pi. If F1 and F2

are the sets of accepting states in P1 and P2, respectively, then P requires to visit F1∪F2

infinitely often. We then have L>0(P1 �P2) = L>0(P1)∪L>0(P2). For almost-sure
PBA P1, P2, we consider the product automaton P of P1 and P2 (which runs P1 and P2

in parallel) and declare all states 〈q1,q2〉 with q1 ∈ F1 or q2 ∈ F2 to be accepting. Then,
L=1(P) = L=1(P1)∪L=1(P2).

The Effect of Tossing Coins in Omega-Automata 25

Intersection. Given two PBA P1 and P2 with the probable semantics, we can reuse the
ideas of an intersection operator on NBA and use a product construction P1×P2 with
a generalized Büchi condition requiring that (i) an accepting state of P1 is visited in-
finitely often and (ii) an accepting state of P2 is visited infinitely often. This generalized
PBA can then be transformed into an equivalent PBA with the probable semantics as
in the nondeterministic case, using two copies of P1×P2. For PBA P1 and P2 with the
almost-sure semantics, intersection can be realized as union for PBA under the probable
semantics. That is, L=1(P1�P2) = L=1(P1)∩L=1(P2).

Complementation. In the proof of Theorem 2 we saw that (a + b)∗aω /∈ PBA=1PBA=1PBA=1, while
its complement (a∗b)ω is DBA-recognizable and therefore belongs to PBA=1PBA=1PBA=1. Thus,
PBA=1PBA=1PBA=1 is not closed under complementation.

Let us now address the question how to complement a given PBA P with the proba-
ble semantics. The rough idea is to transform the given PBA P into an equivalent PRA
PR (probabilistic automaton with Rabin acceptance). Complementation is then realized
by switching from PR to a PSA PS (probabilistic automaton with Streett acceptance)
for the complement language and finally transform PS into an equivalent PBA with the
probable semantics. For the transformation PR�PS we rely on the duality of Rabin and
Streett acceptance. However, complementing the acceptance condition does not com-
plement the accepted language if there are words with acceptance probability strictly
between 0 and 1. For this reason, in the first step we transform P into an equivalent
0/1-PRA PR which means a PRA such that PrPR(σ) ∈ {0,1} for all words σ. Hence,
L>0

Büchi(P) = L>0
Rabin(PR) = L=1

Rabin(PR). We can then deal with PR = PS to obtain
PrPS(σ) = 1−PrPR(σ) ∈ {0,1} and therefore

L>0
Streett(PS) = Σω \L>0

Rabin(PR)

The schema for the complementation of probable PBA semantics is sketched in
Figure 4. This rough schema has some similarities with the complementation of NBA
via Safra’s determinisation operator [16]. In this approach, one first switches from a
given NBA N to an equivalent DRA DR which yields a DSA DS for the complement
language. Finally DS can be transformed into an equivalent NBA.

The idea for the first step in Figure 4 is to design a 0/1-PRA PR that generates up to
n sample runs of P and checks whether at least one of them is accepting, where n is the
number of states in P . If so then PR accepts, otherwise it rejects. For the details of this
construction we refer to [2,10].

PBA P with
L>0(P) = L

� 0/1-PRA PR
for L � 0/1-PSA PS

for L � PBA P with
L>0(P) = L

Fig. 4. Complementation of a PBA under the probable semantics

26 C. Baier, N. Bertrand, and M. Größer

The last step of Figure 4 relies on the transformation from PSA to PBA. [3] presents
an algorithm to transform a given PSA PS with � acceptance pairs into an equivalent
PBA with the probable semantics of size O(�2|PS|). It is worth noting that there are
families (Ln)n≥0 of languages Ln⊆ Σω that are recognizable by nondeterministic Streett
automata of size O(n), while each nondeterministic Büchi automaton for Ln has 2n or
more states [17]. Thus, the polynomial transformation from Streett to Büchi acceptance
is specific for the probabilistic case.

In particular, the transformations between PBA, PRA and PSA show that for prob-
abilistic automata with Rabin or Streett acceptance, the probable semantics and the
almost-sure semantics have the same power. Thus:

Theorem 5. PBA>0PBA>0PBA>0 = PRA>0PRA>0PRA>0 = PSA>0PSA>0PSA>0 = PRA=1PRA=1PRA=1 = PSA=1PSA=1PSA=1

Remind that PBA=1PBA=1PBA=1 is a proper subclass of PBA>0PBA>0PBA>0. Thus, within the different types of
probabilistic ω-automata, almost-sure PBA play a similar role as DBA within the class
of (non)deterministic ω-automata.

The sketched transformation from probable PBA to 0/1-PRA relies on a certain pow-
erset construction and can cause an exponential blow-up. Vice versa, given a probable
PRA an equivalent probable PBA can be constructed using a similar construction as it
is known for the transformation of an NRA into an equivalent NBA. If the given PRA
PR has � acceptance pairs then the size of the constructed PBA is bounded by O(�|PR|).

4 Decision Problems for PBA

For many applications of automata-like models, it is important to have (efficient) deci-
sion algorithms for some fundamental problems, like checking emptiness or language
inclusion. For instance, the automata-based approach [19] for verifying ω-regular prop-
erties of a nondeterministic finite-state system relies on a reduction to the emptiness
problem for NBA.

Given the undecidability results for almost all relevant decision problems for PFA
(see e.g. [12]), it is clear that the emptiness problem and related problems are unde-
cidable for PBA with the threshold semantics. Unfortunately this also holds for the
probable semantics:

Theorem 6 (Undecidability of PBA with the probable semantics). The following
problems are undecidable:

emptiness: given a PBA P , does L>0(P) = /0 hold?
universality: given a PBA P with the alphabet Σ, does L>0(P) = Σω hold?
equivalence: given two PBA P1 and P2, does L>0(P1) = L>0(P2) hold?

To prove undecidability of the emptiness problem, we provided in [2] a reduction from
a variant of the emptiness problem for probabilistic finite automata (PFA) which has
been shown to be undecidable [12]. Undecidability of the universality problem then
follows by the effectiveness of complementation for PBA. Undecidability of the PBA-
equivalence problem is an immediate consequence of the undecidability of the empti-
ness problem (just consider P1 = P2 and P2 a PBA for the empty language).

The Effect of Tossing Coins in Omega-Automata 27

A consequence of Theorem 6 is that PBA are not appropriate for verification algo-
rithms. Consider, e.g., a finite-state transition system T and suppose that a linear-time
property p to be verified for T is specified by a PBA P in the sense that L(P) rep-
resents all infinite behaviors where property p holds. (Typically p is a language over
some alphabet Σ = 2AP where AP is a set of atomic propositions and the states in T are
labeled with subsets of AP.) Then, the question whether all traces of T have property p
is reducible to the universality problem for PBA and therefore undecidable. Similarly,
the question whether T has at least one trace where p holds is reducible to the empti-
ness problem for PBA and therefore undecidable too. Another important consequence
of Theorem 6 is that it yields the undecidability of the verification problem for partially
observable Markov decision processes against ω-regular properties (see [2]).

Theorem 7 (Decidability of PBA with the almost-sure semantics). The following
problems are decidable:
emptiness: given a PBA P , does L=1(P) = /0 hold?
universality: given a PBA P with the alphabet Σ, does L=1(P) = Σω hold?

Let us briefly sketch how the emptiness problem for almost-sure PBA can be solved by
a reduction to a certain variant of probabilistic reachability problems. Given an almost-
sure P = (Q,Σ,δ,µ0,F), then we may add an additional trap state pF which can be
entered from each accepting state in P with probability 1/2. That is, we regard P ′ =
(Q∪{pF},Σ,δ′,µ0,{pF}) where pF /∈ Q and for all p ∈ F , q ∈ Q and a ∈ Σ we have
δ′(pF ,a, pF) = 1, δ′(p,a, pF) = 1

2 , δ′(p,a,q) = 1
2 · δ(p,a,q), and δ′(·) = δ(·) in all

remaining cases. Then, L=1(P) = L=1(P ′) and the problem whether L=1(P ′) is empty
can be solved by checking whether there exists an infinite word σ such that almost all
runs for σ in P ′ will eventually enter state qF . This problem is solvable by means of a
certain powerset construction.

PBA>0PBA>0PBA>0 = PSA>0PSA>0PSA>0 = PSA=1PSA=1PSA=1 = PRA>0PRA>0PRA>0 = PRA=1PRA=1PRA=1

= PSA0/1PSA0/1PSA0/1 = PRA0/1PRA0/1PRA0/1

DBADBADBA

NBANBANBA

TPBATPBATPBA (threshold semantics)

PBA=1PBA=1PBA=1

(a+b)∗aω

{ak1 bak2 b · · · :
∞
∏
i=1

(1− (1
2)ki) > 0} {ak1 bak2 b. . . :

∞
∏
i=1

(1− (1
2)ki) = 0}

Fig. 5. Classes of languages recognizable by probabilistic ω-automata

28 C. Baier, N. Bertrand, and M. Größer

5 Conclusion

We gave a summary of the fundamental properties of probabilistic acceptors for infi-
nite words formalized by PBA, PRA or PSA. Figure 5 illustrates the presented results
on the hierarchy of languages accepted by probabilistic ω-automata. In this paper, we
mainly concentrated on the probable and almost-sure semantics and pointed out some
major differences to nondeterministic (or alternating) ω-automata concerning the ex-
pressiveness, efficiency and decidability, which makes PBA interesting at least from a
theoretical point of view.

The undecidability of the emptiness problem and related problems shows that PBA
with the probable semantics are not adequate for algorithmic purposes, e.g., the verifi-
cation of systems with nondeterministic behaviors. The situation changes if the system
to be verified is purely probabilistic (i.e., modelled by a Markov chain). In this case
some decidability results for the verification problem against PBA-specifications can
be established [3]. In [2] we showed that PBA can be regarded as special instances of
partially-observable Markov decision processes (POMDPs). Hence, all negative results
for PBA (undecidability) carry over from PBA to POMDP. Vice versa, for many al-
gorithmic problems for POMDPs, algorithmic solutions for PBA with the almost-sure
semantics can be combined with standard algorithms for (fully observable) Markov de-
cision processes to obtain an algorithm that solves the analogous problem for POMDPs.

In [4], special types of PBA have been considered in the context of probabilistic
monitors. Topological and other interesting properties of PBA have been studied in the
recent paper [5] in this volume.

Given the wide range of application areas of probabilistic finite automata, there might
be various other applications of probabilistic ω-automata. For instance, the concept of
probabilistic ω-automata is also related to partial-information games with ω-regular
winning objectives [6] or could serve as starting point for studying quantum automata
over infinite inputs, in the same way as PFA yield the basis for the definition of quantum
finite automata [11,1]. For these reasons, we argue that the concept of probabilistic
ω-automata is an interesting new research field with plenty of open questions (e.g.,
logical or algebraic characterizations of PBA>0PBA>0PBA>0 or PBA=1PBA=1PBA=1) that might lead to interesting
applications.

References

1. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and gen-
eralizations. In: Proc. of the 39th Symposium on Foundations of Computer Science (FOCS
1998). IEEE Computer Society Press, Los Alamitos (1998)

2. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi au-
tomata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer,
Heidelberg (2008)

3. Baier, C., Grösser, M.: Recognizing ω-regular languages with probabilistic automata.
In: Proc. of the 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
pp. 137–146. IEEE Computer Society Press, Los Alamitos (2005)

4. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of random-
ization in finite state monitors. In: Proc. of the 23rd IEEE Symposium on Logic in Computer
Science (LICS 2008), pp. 18–29. IEEE Computer Society Press, Los Alamitos (2008)

The Effect of Tossing Coins in Omega-Automata 29

5. Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata on infinite
strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243.
Springer, Heidelberg (2009)

6. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for ω-regular games
with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–302.
Springer, Heidelberg (2006)

7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of
the ACM 42(4), 857–907 (1995)

8. Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M.P. (eds.) MFCS
1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981)

9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

10. Größer, M.: Reduction Methods for Probabilistic Model Checking. PhD thesis, Technical
University Dresden, Faculty for Computer Science (2008)

11. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. of the 38th
Symposium on Foundations of Computer Science (FOCS 1997), pp. 66–75. IEEE Computer
Society Press, Los Alamitos (1997)

12. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and re-
lated stochastic optimization problems. Artificial Intelligence 147(1-2), 5–34 (2003)

13. Paz, A.: Some aspects of probabilistic automata. Information and Control 9 (1966)
14. Paz, A.: Introduction to probabilistic automata. Academic Press Inc., London (1971)
15. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
16. Safra, S.: On the complexity of ω-automata. In: Proc. of the 29th Symposium on Foun-

dations of Computer Science (FOCS 1988), pp. 319–327. IEEE Computer Society Press,
Los Alamitos (1988)

17. Safra, S., Vardi, M.Y.: On ω-automata and temporal logic. In: Proc. of the 21st ACM Sym-
posium on Theory of Computing (STOC 1989), pp. 127–137. ACM, New York (1989)

18. Thomas, W.: Languages, automata, and logic. Handbook of formal languages 3, 389–455
(1997)

19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verifica-
tion. In: Proc. of the 1st IEEE Symposium on Logic in Computer Science (LICS 1986),
pp. 332–345. IEEE Computer Society Press, Los Alamitos (1986)

Bigraphical Categories

Robin Milner

University of Cambridge, The Computer Laboratory,
J J Thomson Avenue, Cambridge CB3 0FD, UK

and
University of Edinburgh, Informatics Forum,
10 Crichton Street, Edinburgh EH8 9AB, UK

Abstract. Bigraphs are a candidate model that aims to provide a the-
oretical platform for ubiquitous computing systems. This short paper
summarises the categories, and the functors between them, that repre-
sent the structure of that theory.

Keywords: bigraph, category, process, ubiquitous computing.

1 Introduction

Bigraphs are an experimental model, aiming to provide a rigorous platform for
designing, simulating and analysing ubiquitous informatic systems. Such arti-
facts will increasingly become embedded in our natural and artificial
environments.

In a recently published book [1] I argue for the need for such a platform, and
I propose bigraphs to meet that need. The book has a full bibliography, and on
my website [2] the reader will find slides for a course of six lectures, notes that
correlate the lectures with the book, a collection of exercises with solutions, and
a commentary on the book that will grow with time, including corrections in
order of their discovery.

This note assumes some familiarity with bigraphs, but its main purpose is
to emphasize an important aspect of their theory: the essential part played by
various forms of category. This aspect is treated to a certain extent in the book.
By focussing upon it in this summary I hope to cast some of the theory in a
vivid form, free of many technical details.

2 Preliminaries

To introduce bigraphs informally, it is useful to see how they encode CCS. Recall
the familiar CCS reaction rule:

(x.P + A) | (x.Q + B) � P |Q .

Here the parameters P and Q stand for arbitrary processes, and A and B for
arbitrary alternations (essentially sums of prefix-guarded processes). The rule

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 30–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bigraphical Categories 31

asserts that a communication may occur on the channel x, discarding all the
alternatives for its two participants.

CCS and other process calculi have been embedded in the bigraph model,
which thus provides them with uniform behavioural theory. Here, we recall how
the CCS reaction rule is expressed bigraphically:

xR′R
x

alt alt

0

1

2

3

getsend
10

x | d0 | d2alt. (sendx.d0 | d1) | alt. (getx.d2 | d3)

The bigraph R, the redex, has sites (grey boxes) corresponding to the four pa-
rameters. In the reactum R′, the result of the reaction, two of these parameters
(indicated by the back pointing arrows) survive. Under the diagram is the alge-
braic form of the rule, in which the tensor product d = d0 ⊗ · · · ⊗ d3 represents
the four parameters. In the algebraic form it is worth noting that the operations
of parallel product (|) and nesting (.), considered primitive in process calculi,
are actually derived from the operators of a symmetric monoidal category.

For those not familiar with bigraphs, this example should give an idea of what
bigraphs are and how their dynamic reconfiguration can be defined. For the rest
of the paper we focus upon the static structure of bigraphs, only mentioning
dynamics when it imposes a requirement on that structure.

The following diagram is designed to illustrate the taxonomy of bigraphs,
which are so called because each bigraph has a placing structure and a linking
structure. G is an arrow in a certain kind of category, whose objects are interfaces
I = 〈m, X〉, where m is a finite ordinal and X a finite name-set.

1

2

y1 y2

M

x1

0

v1

x0

y0

site

node

control
port

edge

v0

0

K
K

e0

e1
v2

1

inner name

link = edge or outer name

point = port or inner name

root (region)
outer name

bigraph G : 〈3,X〉→〈2, Y 〉

place = root or node or site

32 R. Milner

Here we have G : I→J with I = 〈3, X〉 and J = 〈2, Y 〉. This reflects that G has
three sites (0,1,2) and two roots or regions (0,1); the name sets X = {x0, x1}
and Y = {y0, y1, y2} are clearly seen. Each node has a control such as K, which
determines its arity (number of ports). The placing of G is represented by nesting,
and its linking by (hyper)links (outer names or edges) connecting points (inner
names or ports); the links themselves are either closed (e.g. the edge e0) or open
(e.g. the outer name y0). Such a structure is called a bigraph because it combines
two constituents with the same node-set, here {v0, v1, v2}. These constituents are
called a place graph and a link graph. For G, they are denoted by GP : 3→ 2
(a forest) and GL : X→Y (a map from points to links), and pictured thus:

v0

0

v1

1

v2

0 1 2

v0 v2

y0 y1 y2

x0

e0

e1

x1

link graph GL : X→Y

v1

place graph GP : 3→ 2

We write the combination G = 〈GP, GL〉. Composition in the category Pg(K)
of place graphs over signature K is defined by coalescing each site of one with
the corresponding root of the other and erasing their ordinals; similarly in the
category Lg(K) of link graphs, coalescing inner with outer names. (The identities
are obvious.) Finally, composition in the category Bg(K) of bigraphs is defined
by

G ◦F
def= 〈GP ◦FP, GL ◦F L〉 .

Observe that we are dealing with abstract bigraphs; that is, equivalence classes
under bijection of nodes and edges. Thus, in forming a composition, we assume
that the node- and edge-sets of the two components are distinct.

The tensor product of two interfaces Ii = 〈mi, Xi〉 is defined by I0 ⊗ I1
def=

〈m0+m1, X0 �X1〉, when X0 and X1 are disjoint. When the interface products
are defined, the tensor product of both place and link graphs is defined simply
by juxtaposition, and then the product of bigraphs is defined by combination of
constituents.

Apart from the partiality of the product of link graphs we therefore have
that all three categories are symmetric and (partial-)monoidal; for short, spm
categories.

3 The Bigraphical Categories

Just as the structure of a bigraph can be usefully captured as a categorical arrow,
so bigraphical theory can be revealingly structured by functors between a variety
of categories. For the remainder of this short note we shall discuss the role played

Bigraphical Categories 33

by the functors in the following diagram, in which every square commutes. All
the categories are instances of a general class called wide s-categories, which we
define later.

Bg(Σ)

Bg(Σ′)

`Bg(Σ)

Bg

`Bg

Pg

Lg

`Bg(K)

Bg(K)

Bg(K′)

Ord

project
refine

support
forget

sorting
forget

signature
forget

width

We have already begun with Bg(K), in the middle of this diagram. There is an
obvious forgetful functor that forgets the signature; its target Bg is just bigraphs
without controls. Much theory can be done in Bg; it is then less cluttered, and
is often obviously preserved by retrofitting the controls. Since a bigraph is a
combination of a place graph and a link graph, there are two obvious functors
projecting bigraphs onto their constituents. Later we shall discuss the width
functor to Ord.

Moving to the left, Σ stands for a sorting, which – for a given signature
K – is usually an enrichment of interfaces coupled with a constraint upon the
admissible bigraphs over K. This enriched and constrained category is denoted
by Bg(Σ). Hitherto, almost every application of bigraphs has involved a sort-
ing. For example, in the simple case of CCS, the sorting Σccs requires that the
nesting of nodes should interleave send- and get-nodes with alt-nodes. In a built
environment, say a building, one would naturally require no room to contain
another room.

It is not clear what the general definition of sortings Σ should be, beyond
requiring that for each sorting Σ there be a forgetful functor from Bg(Σ) to
Bg(K) for some K. Birkedal et al [3] have proposed the broad definition that it
should consist of any functor that is both surjective on objects and faithful (i.e.
injective on each homset). This has the merit that it allows binding bigraphs, in
which certain links are required to be confined to a given place, to be expressed
as a sorting. Binding bigraphs have been used to encode both the λ-calculus and
the π-calculus.

In this note we are avoiding details of dynamics, but it is important that when
Bg(Σ) is equipped with dynamics then its reconfigurations preserve the sorting
condition.

Having dealt with the middle row of the diagram, consider now the bottom
row. Bigraphs may be used to model a system at different levels of detail. This

34 R. Milner

recalls the natural definition of a homomorphism of algebras, in which an algebra
A is refined to an algebra A′ by representing each single operator of A by
a compound operation built from the operators of A′. Here, then, we would
represent each K-ion of Σ (i.e. each elementary bigraph consisting of a single
K-node containing zero or more sites) by a compound bigraph in Bg(Σ′)1.

When Bg(Σ) and Bg(Σ′) are both equipped with dynamics, one expects that
the latter will correctly represent the former. This ‘respect’ can be defined in a
variety of ways; we avoid the details here.

We now come to the top row. Hitherto we have dealt with abstract bigraphs,
where we do not distinguish bigraphs that differ only in a bijection between their
nodes and edges. This can be expressed in another way: in an abstract bigraph
we choose not to distinguish between two ‘occurrences’ of the same control K.
However, there are situations in which we may wish to do so. For example, if the
control A represents human agents and R represents rooms, we may wish to an-
swer a question about the history of humans’ movement in a built environment,
such as “Has any agent entered the same room twice?”. This question cannot be
answered unless we can distinguish between different occurrences, or identities,
of people and rooms, so that they can be tracked throughout any sequence of
reactions.

Another need for node identity arises (again in dynamics) when we wish to ask
“how many ways does the redex R of a reaction rule occur in a given bigraph
G?”, or even “does only a part of R occur within G, so that a context H is
needed to supply the missing part, allowing H ◦G can perform the reaction?”.
The latter has been crucial in defining the behavioural equivalence of bigraphical
agents, since we want this equivalence to be a congruence – i.e. preserved by all
contexts.

In other computational models, notably the λ-calculus, occurrences are often
identified by the labelling or tagging of terms. Indeed one proof of the well-
known Church-Rosser theorem, via the so-called ‘parallel moves’ lemma, rests
upon tagging. In bigraphs, since we already have node-identities v0, v1, . . . (and
edge-identities e0, e1, . . .) it is natural to employ them for tagging.

The simplest – and a very effective – way to do this is to refine our notion of
category by no longer equating bigraphs that differ only by a bijection of nodes
and edges. The notion of precategory is standard; it is like a category except that
composition of F : a→ b and G : b→ c may not always be defined. With this
hint, we define an s-category to be an spm category except that each arrow F is
assigned a finite support set |F |, drawn from an infinite repertoire S of support
elements ; then for G ◦F or F ⊗ G to be defined we require that |F | ∩ |G| = ∅,
and then the construction has support |F | ∪ |G|2.

Let us say that a concrete bigraph is one whose support is its nodes and edges.
It is remarkable that we thus obtain all the ability needed to handle occurrences.
Also, for many purposes, s-categories behave just as spm categories. For example,
there is a notion of functor between them. In the top row of our diagram of

1 Ions typically have rank 1, i.e. a single site, but a sorting can give them any rank.
2 There are some simple auxiliary conditions that we ignore here.

Bigraphical Categories 35

bigraphical functors, we distinguish our s-categories of concrete bigraphs by the
tag in `Bg. All that we have said about forgetting sorting and signature applies
as before; we also have functors (shown vertically) that forget support. Indeed,
an spm category is just an s-category in which all support-sets are empty.

4 Activity

There is one final feature of our functor diagram to be explained: the role of
Ord, the category of finite ordinals and maps between them. Recall that each
finite ordinal m is the set of its predecessors, i.e. m = {0, 1, . . . , m−1}. The
objects in Pg are finite ordinals, and the functor width : Pg→Ord is defined
as the identity on objects, while for any place graph P : m→n we take width(P)
to be the map root : m→n, where root(i) ∈ n is the unique root (region) of P
that contains the site i ∈ m.

In introducing dynamics to bigraphs, we wish to define not only what can
happen, but where it can happen. A simple way to do this (there are more
subtle ways) is to enrich the signature by declaring whether or not each control
K is active – i.e. permits activity within any K-node. For example, the CCS
control alt is not active; it forbids internal reactions (but, as we have seen, it can
take part in activity and thereby activates its occupants). As another example,
consider a building in a built environment. It normally permits activity,i.e. its
control B is active. But a power-cut may cause its control to change its control
to B′, which is passive, preventing activity while the power is cut.

In studying behaviour, and behavioural equivalence, it is important to know
where action can or cannot occur. The structure of place graphs is such that,
for G : 〈m, X〉→〈n, Y 〉 and F with outer face 〈m, X〉, if an action of F occurs
in region i ∈ m, then we know it occurs in region j ∈ n of G ◦F , where j is
the unique root of G that lies above the site i.3 This property of place graphs
becomes essential in proving that behavioural equivalence is a congruence, i.e.
preserved by context.

On the other hand, we wish our behavioural theory to apply to as broad a
range of reactive systems as possible. We immediately ask: Can we develop a
behavioural theory for s-categories in general, not just for bigraphical ones? It
turns out that s-categories in general are not specific enough about locality. But
let us define a wide s-category to be one for which there is a functor to Ord. This
is more general than a bigraphical category (e.g. it has no notion of node) but
has exactly the structure required to yield non-trivial behavioural congruences,
which has always been a driving motive behind the bigraph model.

5 Conclusion

This short summary has attempted to reveal the importance of categorical no-
tions in behavioural models, and in particular in bigraphs. Two points stand
3 An action also be located in more that one place; this causes no difficulty.

36 R. Milner

out. First, categories can smoothly handle behaviour in a discrete space, which
is becoming increasingly important in the applications of informatics. Second,
the structure of the behavioural theory can rest firmly upon functors, which are
employed to correlate aspects of the theory that are best expressed in different
categories.

References

1. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University
Press, Cambridge (2009)

2. Milner, R.: http://www.cl.cam.ac.uk/~rm135
3. Birkedal, L., Debois, S., Hildebrandt, T.: Sortings for reactive systems. In:

Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 248–262.
Springer, Heidelberg (2006)

http://www.cl.cam.ac.uk/~rm135

BlenX
Static and Dynamic Semantics

Corrado Priami, Paola Quaglia, and Alessandro Romanel

CoSBi and Università di Trento, Italy

Abstract. We introduce a new programming language called BlenX. It
is strongly inspired to process calculi and it is an evolution of Beta-
binders. It has been specifically designed and implemented to model
and simulate biological systems, but it is general enough to handle core
computer science problems as well.

1 Introduction

Biological systems share many characteristics with distributed and mobile com-
puter systems. Biological systems are characterized by millions of simultaneously
interacting entities, by the absence of centralized points of control, by a spatial
structure that resembles administrative domains, and by the movement in space
of their components. The recent field of algorithmic systems biology [3] pro-
poses the use of programming languages to model biological systems enhancing
current modeling capabilities (richness of aspects that can be described as well
as easiness, composability and reusability of models) [4]. The metaphor which
inspires this idea is one where biological entities are represented as programs
being executed simultaneously and the interaction of two entities is represented
by the exchange of a message between the programs representing those entities
in the model [6]. The biological entities involved in the biological process and the
corresponding programs in the abstract model are in a 1:1 correspondence, thus
coping by construction with the combinatorial explosion of variables needed in
the mathematical approach to describe the whole set of states through which a
single component can pass.

The metaphor above explicitly refers to concurrency. Indeed concurrency is
endemic in nature, and we see this in examples ranging from atoms, molecules in
living organisms, organisms themselves and populations to astronomy. If we are
going to re-engineer artificial systems to match the efficiency, resilience, adapt-
ability and robustness of natural systems, then concurrency must be a core
design principle that, at the end of the day, will simplify the entire design and
implementation process. Concurrency must not be considered a tool to improve
the performance of sequential programming languages and architectures, which
is the standard practice in most actual cases. Some programming languages that
address concurrency as a core primitive issue and aim at modeling biological
systems are emerging (see, e.g., [1,7]) from the field of process calculi. These
concurrent programming languages are very promising for the establishment of

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 37–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 C. Priami, P. Quaglia, and A. Romanel

a link between artificial concurrent programming and natural phenomena, thus
contributing to the exposure of computer science to experimental, natural sci-
ences. Furthermore, concurrent programming languages are suitable candidates
for easily and efficiently expressing the mechanistic rules that propel algorithmic
systems biology. The suitability of these languages is reinforced by their clean
and formal definition that supports the verification of properties.

BlenX is a programming language designed explicitly to model biological sys-
tems. BlenX is an evolution of Beta-binders [5]. A program is a collection of
boxes (representing biological components) with typed and dynamically vary-
ing interfaces running in parallel. The status of an interface (binder) can be
free or complexed (when the binder is bound to the binder of another entity).
Binders are associated with two types describing what can flow along the in-
terface and the properties of the interfaces. Furthermore, there are primitives
that can change the values associated to the binder to change the status and the
properties of the interface.

The main step of computation for BlenX is the interaction between boxes
or their binding/unbinding. Interaction is sensitivity-based: values associated to
binders determine the possibility of interaction between two entities. We release
the key-lock interaction mechanism based on the notion, implemented in all pro-
cess calculi, of exact complementarity of channel names. This allows us to avoid
any global policy on the usage of names for interaction between components,
i.e. we do not need centralized authorities that decide how to name entities or
interfaces. No other process calculi-based tool supports compatibility of channel
names in the manner described above.

BlenX can also specify the dynamics of systems through events that are used
to remove or inject entities from/into the system, to join two entities into a single
one, or to split an entity in two entities.

Although BlenX has been designed to specifically address biological systems,
its main features are useful also to model computer science systems. This is
a consequence of being developed as an extension of process calculi that have
already proved themselves of being a core technology to design, implement and
verify concurrent systems.

Biological interactions are inherently stochastic, and the full-fledged version
of BlenX is indeed stochastic. Here we focus on the deterministic (vs stochastic)
basis of core BlenX, which is an enhancement of the language described in [1].
Below we present the syntax of BlenX (Sec. 2), its operational semantics (Sec. 3),
and its static semantics (Sec. 4), which is related to the dynamic one by a
soundness result.

2 Syntax and Notation

The syntax of BlenX is parametrized by three countable and pairwise disjoint
sets: the set N of names (ranged over by n,m,n′,m′,. . .), the set X of vari-
ables (ranged over by x,x′,. . .), and the set BV of basic values (ranged over by
v,v′,. . .). We assume BV ⊃ B∪ {unit}, where B = {true, false} is the set of the
basic boolean values. The metavariables w,w′,. . . range over N ∪ X .

BlenX Static and Dynamic Semantics 39

Table 1. Bio-processes syntax

B ::= Nil | I[P]n | B||B
I ::= K(n,V) | K(n,V)I
K ::= # | #c
V ::= n | v | (V,V)
P ::= P|P | rep <EXP>A.P | G
G ::= nil | <EXP>A.P | G+G
EXP ::= n | x | v | val(w) | check(w,K) | (EXP,EXP) |

EXP.1 | EXP.2
A ::= delay | w?PAT | w!EXP | ch(w,EXP) | new(n,EXP)
PAT ::= x | (PAT,PAT)

A BlenX system, written SYS=〈〈B; E; ENV〉〉, is a triple made up of a bio-
process B, a collection of events E, and an environment ENV.

Bio-processes are generated by the non-terminal symbol B of the grammar
reported in Tab. 1. A bio-process can be either the deadlocked process (Nil), or
a box (I[P]n), or the parallel composition of bio-processes (B||B). In I[P]n, I
represents the interface of the box, i.e. its interaction capabilities, while P is its
internal engine, and n is used as an identifier to address the box at hand.

An interface I is a non-empty string of binders of the form K(n,V), where K
denotes the state of the binder, which can be either free (#) or bound (#c), the
name n is the subject of the binder, and V is a value representing the structure
of the interface. We sometimes use active as synomimous of free, and complexed
as synonimous of bound. The value V of a binder can be either a name, or a
basic value, or a pair of values. The subject n of the binder K(n,V) of the box
K(n,V)I[P]n′ is a binding for the free occurrences of n in P. We write I = I1I2
to mean that I is the interface given by the juxtaposition of I1 and I2. The
metavariables I∗, I∗1, . . . stay for either an interface or the empty string, and
the above notation for juxtaposition is extended to these metavariables in the
natural way. Moreover, we use the functions subj(I) and val(I) to extract from
I the set of its subjects and the set of its values, respectively.

Values are generated by V. They can be names, or basic values, or pairs of
values. We call V the set of all these values, and let V be ranged over by V,V′,. . ..

The non-terminal symbol P generates processes. A process can be either the
parallel composition of two processes (P|P), or the replication of an action-
guarded process (rep <EXP>A.P), or the deadlocked process nil, or an action-
guarded process (<EXP>A.P), or the non-deterministic choice of guarded
processes (G+G). Guards of the shape <EXP>A extend the usual notion of ac-
tion prefix in process calculi. The intuition behind process <EXP>A.P is that the
expression EXP is a conditional control over the execution of the action A. If

40 C. Priami, P. Quaglia, and A. Romanel

Table 2. Function M for pattern-matching

M(a, b) =

⎧⎨
⎩

{V/x} if a = x and b = V

M(PAT1, V1) �M(PAT2, V2) if a = (PAT1, PAT2) and b = (V1, V2)
⊥ otherwise

Fig. 1. Graphical representation of BlenX systems

EXP is a boolean expression and evaluates to true, then A can fire and P gets
unblocked. Processes are ranged over by P, P′,

val(w) and check(w,K) are expressions, meaning respectively the value and
the status of the binder with subject w. Pairs of expressions are expressions, as
well as first and second projections of an expression (denoted EXP.1 and EXP.2,
respectively). Static checks ensure that projection operators are only applied to
pairs of expressions (see Tab. 9).

The actions that a process can perform are described by the syntactic cat-
egory A. The action delay, which is best understood in the stochastic version
of BlenX, here just represents a discrete passage of time; w?PAT and w!EXP de-
note, respectively, an input over w, and the output over w of the expression EXP;
ch(w,EXP) is a directive to change into EXP the value associated with the binder
named w; new(n,EXP) is a directive to expose a new binder with value EXP. In
either <EXP>w?PAT.P and <EXP>new(n,EXP).P, w and n act as binders for the
free occurrences of w and n in P. The free names of process P are denoted fn(P).

Patterns are either variables or pairs of patterns. As detailed in Sec. 3, the
expression EXP is pattern-matched against PAT in the communications triggered
by the complementary actions w?PAT and w!EXP. Pattern-matching is based on
the definition of the functionM reported in Tab. 2, where ⊥ is used to represent
failure of pattern-matching, and the symbol � denotes a special union operation
over substitutions that is defined only for operands which agree on the variables
in the intersection of their domains (e.g., {true/x, true/x′} agrees with {true/x}
but not with {false/x}). It is intended that when M(PAT1, V1) � M(PAT2, V2)
is not defined the pattern-matching of (PAT1, PAT2) with (V1, V2) fails. For ex-
ample, M((x, x), (true, false)) = ⊥ just like M((x, x′), true). Below we use the
metavariables σ, σ′, . . . to denote successful applications of pattern-matching.

BlenX Static and Dynamic Semantics 41

Table 3. Function CB for the description of the borders of complexes

CB(Nil, ENV) = ∅

CB(B||B′, ENV) = CB(B, ENV) ∪ CB(B′, ENV)

CB(I[P]m, ENV) = CI(I, ENV, m)

CI(K(n,V)I, ENV, m) = CI(K(n,V), ENV, m) ∪ CI(I, ENV, m)

CI(#(n,V), ENV, m) = ∅

CI(#c(n,V), ENV, m) =
{
V@m if
 ∃(a, b) ∈ ENV such that V@m = a or V@m = b
∅ otherwise

Boxes can be bound the one with the other through their interfaces to form
complexes which are best thought of as graphs with boxes as nodes. Intuitively,
the environment component ENV of the BlenX system 〈〈B; E; ENV〉〉 is used to
record these bindings. In detail, ENV is a set of pairs of the shape (V@n,V′@n′)
meaning that the two boxes addressed by n and n′ are bound together through
the interfaces with values V and V′, respectively. As an example, Fig. 1(a) shows
a complex formed by four boxes running in parallel which contain processes
P1, P2, P3, P4, and are addressed, respectively, by n1, n2, n3, and n4. In the
picture, each box has one or more complexed interfaces with associated values
V1, V2, An environment representing the complex in Fig. 1(a) is given by
ENV1 = {(V1@n1,V1′@n3), (V3@n3,V4@n4), (V2′@n4,V2@n2)}. In what follows,
we denote by names(ENV) the set of the names which are used as addresses in
the environment ENV. For instance, names(ENV1) = {n1, n2, n3, n4}.

The events component E of the system 〈〈B; E; ENV〉〉 is a set of directives
used to substitute bio-processes with other bio-processes. Since bio-processes
may be parts of complexes, the implementation of these substitutions may force
the modification of the structure of the complexes recorded in the environment
ENV. To this end we use an abstraction that, with respect to the interpretation
of environments in terms of graphs, amounts to state that a certain subgraph
g1 of a graph G1 has to be substituted by the subgraph g2 of the graph G2.
The abstraction is powerful enough to allow the encoding of a set of useful
operations on the global systems (e.g., deleting a box, joining two boxes in
one, injecting new boxes). Its implementation, however, requires some care in
ensuring that the edges at the border of g1 (those which could remain hangling,
with no node at one of their tips) are properly connected to nodes of g2. Given
a bio-process B and an environment ENV, the function CB defined in Tab. 3
is used to collect the identity of interfaces of boxes in B which are involved
in bindings outside ENV, i.e. outside the borders of B. For instance, referring

42 C. Priami, P. Quaglia, and A. Romanel

to Fig. 1(a), if B is the bio-process given by the parallel composition of the
boxes containing P3 and P4, then CB(B, {(V3@n3,V4@n4)}) = {V1′@n3, V2′@n4}.
In detail, the events component E of the system 〈〈B; E; ENV〉〉 is a set of phrases
of the shape sub(B1,ENV1,B2,ENV2) where sub(B1,ENV1,B2,ENV2) intuitively
drives the substitution of the bio-process B1, defined over the environment ENV1,
with the bio-process B2, defined over the environment ENV2.

Below, the typical post-fixed notation {a/b} is used to mean the substitution
of the entity b with the entity a, with the usual conventions about renaming
and α-conversion when the substitution is applied to processes. This notation is
naturally extended to other domains, e.g. to sets. For example, ENV{V@n/V@m}
denotes the substitution of the occurrences of V@m with V@n in ENV.

3 Dynamic Semantics

The dynamics of a system is formally specified by the reduction semantics re-
ported in Tab. 6. It makes use of the structural congruence≡ over BlenX systems,
whose definition is based on both a structural congruence over processes (≡p)
and a structural congruence over bio-processes (≡b). The needed congruences
are the smallest relations satisfying the laws in Tab. 4.

The laws defining ≡p are the typical axioms used in process calculi, with =α

used to denote α-equivalence.
The first axiom for ≡b serves two purposes. It declares that the actual order-

ing of binders within an interface is irrelevant, and states that the structural
congruence of processes is reflected at the level of boxes. The second law for ≡b

is a sort of α-conversion axiom for boxes. It states that the subject of binders
can be refreshed under the proviso that name clashes are avoided. The latest
laws are the monoidal axioms for the parallel composition of boxes.

The first law for ≡ states the possibility of refreshing names used as addresses.
The second axiom lifts the congruence of bio-processes at the level of systems
by also checking the equality of the sets used as events and as environment
components in the two systems.

A few auxiliary functions are used in stating the operational semantics of
BlenX. Function � � , which is adopted for the evaluation of expressions, is defined
in Tab. 5 where, as above, we use ⊥ to denote undefinedness. The definition of
� � is fairly usual, just notice that, due to expressions involving the definition
of interfaces (val(w) and check(w,K)), the evaluation is related to a specific
interface.

The reduction relation describing the operational semantics of BlenX is defined
by the axioms and rules collected in Tab. 6.

The very first rule (rd) states that a delay action can fire under the pro-
viso that its guarding expression EXP evaluates to true in the interface of the
containing box. The execution of the delay action leaves the environment ENV
unaffected.

Rule (rc) says that three conditions have to be met for the firing of a
<EXP1>ch(m,EXP2) prefix within a box with interface I: the guarding expres-
sion EXP1 has to evaluate to true in I, the argument expression EXP2 has to

BlenX Static and Dynamic Semantics 43

Table 4. Structural congruence laws

P1 ≡p P2 provided P1 =α P2

P|nil ≡p P, P1|P2 ≡p P2|P1, P1|(P2|P3) ≡p (P1|P2)|P3

rep <EXP>A.P ≡p <EXP>A.(P|rep <EXP>A.P)

G+nil ≡p G, G1+G2 ≡p G2+G1, G1+(G2+G3) ≡p (G1+G2)+G3

I1I
∗
2[P1]n ≡b I

∗
2I1[P2]n provided P1 ≡p P2

B ≡b B
′ if

(B = K(n,V)I∗[P]m and B′ = K(n′,V)I∗[P{n′/n}]m) or
(B′ = K(n,V)I∗[P]m and B = K(n′,V)I∗[P{n′/n}]m)
with n′ fresh in P and in subj(I).

B||Nil ≡b B, B1||B2 ≡b B2||B1, B1||(B2||B3) ≡b (B1||B2)||B3

SYS ≡ SYS′ if
(SYS = 〈〈I[P]n||B; E; ENV〉〉 and SYS′ = 〈〈I[P]m||B; E; ENV{m/n}〉〉) or
(SYS′ = 〈〈I[P]n||B; E; ENV〉〉 and SYS = 〈〈I[P]m||B; E; ENV{m/n}〉〉)
with m fresh in B and in ENV

〈〈B; E; ENV〉〉 ≡ 〈〈B′; E′; ENV′〉〉
provided B ≡b B

′, E = E′, ENV = ENV′

Table 5. Function � � for the evaluation of expressions

�n�I = n �x�I = x �v�I = v

�val(n)�I =
{
V if I = I∗1K(n,V)I

∗
2 for some I∗1, K, V, I

∗
2

⊥ otherwise

�check(n,K)�I =
{

true if I = I∗1K(n,V)I
∗
2 for some I∗1, V, I

∗
2

false otherwise
�(EXP1,EXP2)�I = (�EXP1�I, �EXP2�I)

�(EXP1,EXP2).1�I = �EXP1�I �(EXP1,EXP2).2�I = �EXP2�I

evaluate to a value V1, and I must have an interface named m. Under the above
hypotheses, and if V1 does not clash with the values of the other interfaces in
I, then the value of m is turned to V1. Since the interface m could be involved
in a binding, the environment is consistently updated by possibly refreshing the
previous value of m with V1. Here notice that the requirement about the freshness
of V1 guarantess the freshness of V1@n in the updated environment.

Rule (rn) is used to add a new binder to a box. The prefix <EXP1>new(m,EXP2)
can fire only if the value resulting from the evaluation of EXP2 is fresh in the

44 C. Priami, P. Quaglia, and A. Romanel

Table 6. BlenX operational semantics

(rd)
�EXP�I = true

〈〈I[<EXP>delay.P+G|P1]n; E; ENV〉〉 → 〈〈I[P|P1]n; E; ENV〉〉

(rc)
�EXP1�I = true, �EXP2�I = V1

〈〈I[<EXP1>ch(m,EXP2).P+G|P1]n; E; ENV〉〉 → 〈〈I1[P|P1]n; E; ENV{V1@n/V@n}〉〉
where I = K(m,V)I∗ and I1 = K(m,V1)I

∗ and provided V1 /∈ val(I∗)

(rn)
�EXP1�I = true, �EXP2�I = V

〈〈I[<EXP1>new(m,EXP2).P+G|P1]n; E; ENV〉〉 → 〈〈K(m′,V)I[P{m′/m}|P1]n; E; ENV〉〉
provided m′ fresh in (P|P1) and V /∈ val(I)

(ra)
�EXP1�I = true, �EXP2�I = true, �EXP�I = V, M(PAT, V) = σ

〈〈I[P1+G1|P2+G2|P
′]n; E; ENV〉〉 → 〈〈I[P′1|P′2σ|P′]n; E; ENV〉〉

where P1 = <EXP1>m!EXP.P
′
1 and P2 = <EXP2>m?PAT.P

′
2

(rb)
αb(V1, V2) = true

〈〈B1||B2; E; ENV〉〉 → 〈〈B′1||B′2; E; ENV ∪ {(V1@n1,V2@n2)}〉〉
where Bj=#(mj,Vj)I

∗
j[Pj]nj and B′j=#c(mj,Vj)I

∗
j[Pj]nj for j = 1, 2

(ru)
αu(V1, V2) = true

〈〈B1||B2; E; ENV ∪ {(V1@n1,V2@n2)}〉〉 → 〈〈B′1||B′2; E; ENV〉〉
where Bj=#c(mj,Vj)I

∗
j[Pj]nj and B′j=#(mj,Vj)I

∗
j[Pj]nj for j = 1, 2

(ri)
αi(V1, V2) = true, �EXP1�I1

= true, �EXP2�I2
= true, �EXP�I1

= V, M(PAT, V) = σ

〈〈I1[<EXP1>n
′!EXP.P1+G1|P

′
1]n||I2[<EXP2>m

′?PAT.P2+G2|P
′
2]m; E; ENV〉〉 →

〈〈I1[P1|P
′
1]n||I2[P2σ|P

′
2]m; E; ENV〉〉

provided I1 = K(n′,V1)I
∗
1 and I2 = K(m′,V2)I

∗
2 with

(K=#c and ((V1@n,V2@m)∈ENV or (V2@m,V1@n)∈ENV)) or

(K=# and α(V1, V2) = (false, false, true))

(re)
map(CB(B1, ENV1), CB(B2, ENV2)) = σ, names(ENV) ∩ names(ENV2) = ∅

〈〈B1; E; ENV1 ∪ ENV〉〉 → 〈〈B2; E; ENV2 ∪ ENVσ〉〉
where sub(B1,ENV1,B2,ENV2) ∈ E

(rr)
〈〈B1; E; ENV〉〉 → 〈〈B2;E;ENV

′〉〉
〈〈B1||B; E; ENV〉〉 → 〈〈B2||B;E;ENV

′〉〉

(rs)
SYS1 ≡ SYS

′
1, SYS

′
1 → SYS

′
2, SYS

′
2 ≡ SYS2

SYS1 → SYS2

BlenX Static and Dynamic Semantics 45

interface of the box. If so, the name m declared in the new prefix is renamed to
avoid clashes with the names of the residual process.

Intra-communication, i.e. communication between processes within the same
box, is ruled by (ra). The pattern PAT carried by the output action is matched
against the expression EXP argument of the input action, and the resulting sub-
stitution is applied to the residual of the receiving process.

Boxes can interact the one with the other in various ways: they can bind
together, unbind, or just communicate. These interactions are based on the ex-
istence of an affinity function α : V × V → B

3 which returns a triple of boolean
values representing the binding, unbinding and inter-communication affinities
of the two argument values. We use αb(V, V′), αu(V, V′), and αi(V, V′) to mean,
respectively, the first, the second, and the third projection of α(V, V′).

Rules (rb) and (ru) describe the dynamics of binding and unbinding, respec-
tively, which can only take place if the binding/unbinding affinity of the values of
the involved interfaces is set to true. In both cases the modification of the bind-
ing state of the relevant interfaces is reflected in the interface markers, which
are changed either from # to #c or the other way round. Also, the association
(V1@n1,V2@n2) recording the actual binding is either added to the environment
or removed from it.

The third kind of interaction between boxes, called inter-communication, is
ruled by (ri). This involves an input and an output action firable in two distinct
boxes over binders with associated values V1 and V2. Information passes from
the box containing the sending action to the box enclosing the receiving process.
Here notice that inter-communication depends on the affinity of V1 and V2 rather
than on the fact that input and output actions occur over exactly the same name.
Indeed inter-communication is enabled only if αi(V1, V2) = true, and only under
the proviso that either the two binders are already bound together or they are
free and both αb(V1, V2) and αu(V1, V2) are set to false.

Given the system 〈〈B1; E; ENV1 ∪ ENV〉〉, rule (re) defines reductions corre-
sponding to the occurrence of events of the shape sub(B1,ENV1,B2,ENV2) when
there is no clash between the names of ENV and those of ENV2. The application
of the rule involves checking the possibility of substituting B1 and the portion of
environment ENV1 with the bio-process B2 and the sub-environment ENV2. The
function map defined in Tab. 7 serves this goal. Recall from Sec. 2 that the func-
tion CB(Bj , ENVj) allows the collection of data about interfaces of boxes in Bj

which are possibly involved in bindings outside ENVj . Function map is applied to
CB(B1, ENV1) and CB(B2, ENV2) to return a consistent mapping from the hangling
bindings of B1 over ENV1 to the hangling bindings of B2 over ENV2. When such a

Table 7. Function map

map(a, b) =

⎧⎨
⎩

∅ if a = ∅ and b = ∅
{V@m/V@n} � map(S, S′) if ∃V s.t. a = {V@n} ∪ S and b = {V@m} ∪ S′

⊥ otherwise

46 C. Priami, P. Quaglia, and A. Romanel

mapping exists, map returns a substitution that is applied to ENV to get a fully
updated environment after the substitution of B1 with B2.

Fig. 1 actually describes a reduction step of a BlenX system which can be
inferred by using (re). In fact, naming Bj the box containing Pj (j=1,. . .,7) and
setting:

ENV1 = {(V3@n3,V4@n4)}
ENV2 = {(V5@n5,V6@n6), (V6′@n6,V7@n7)}
E = {sub(B3||B4,ENV1,B5||B6||B7,ENV2)}
ENV = {(V1@n1,V1′@n3), (V2′@n4,V2@n2)}

by (re) we get:

〈〈B3||B4; E; ENV1 ∪ ENV〉〉 → 〈〈B5||B6||B7; E; ENV2 ∪ ENVσ〉〉

where σ = {V1′@n5/V1′@n3, V2′@n7/V2′@n4}.
We conclude the description of the rules in Tab. 6 by just observing that, as

usual in reduction semantics, the rules (rr) and (rs) are meant to lift reductions
over parallel compositions and over structural re-shufflings.

4 Static Semantics

In this section we define a type system for BlenX. It guarantees that well-typed
BlenX systems respect a number of constraints (e.g. complexes are described
consistently, binders are used in the right way in inter-communications) that we
will explain throughout this section.

We assume a set of basic types BT (with metavariables BT, BT′, ...) such that
Unit and Bool belongs to BT . Types are generated by the syntax reported
in Tab. 8. Basic types are types, chan(T) is the type associated to a channel
allowing communication of only type T values and binder(T,T′) is the type
associated to a binder with form K(x:T,V:T′). Finally, T×T′ is the product. We
call T the set of all these types and with T ⊂ T the set of all the types not
containing in their structure binder types.

We assume BV =
⋃
BT∈BT BVBT and

⋂
BT∈BT BVBT = ∅ where with BVBT

we indicate all the basic values of type BT.
Tab. 8 defines also three different signatures associated with bio-processes,

interfaces and environments, respectively. We assume N ⊂ N and C ⊂ V × N

Table 8. Definition of types and signatures

T ::= BT | chan(T) | binder(T,T) | T×T

S ::= (N, C) | (∆,C) | C

BlenX Static and Dynamic Semantics 47

Table 9. Type-checking expressions

(t1) ∅ e unit : Unit
(t2)

v ∈ BVBT
∅ e v : BT

(t3)
Ψ(w) = T

Ψ e w : T

(t4)
Ψ e EXP : T1×T2

Ψ e EXP.1 : T1

(t5)
Ψ e EXP : T1×T2

Ψ e EXP.2 : T2

(t6)
Ψ e n : binder(T1,T2)

Ψ e val(n) : T2

(t7)
Ψ e n : binder(T1,T2)

Ψ e check(n,K) : Bool
(t8)

Ψ e EXP1 : T1, Ψ e EXP2 : T2

Ψ e (EXP1,EXP2) : T1×T2

to be finite sets and Ψ to be a typing context. Typing contexts are finite maps
from variables and names to types, denoted also as sets of variables and names
bindings {wi : Ti}i∈I where all the wi’s are distinct. We denote with ∅ the empty
typing context and with Ψ/Ψ1 a typing context result of the combination of Ψ
and Ψ1 such that dom(Ψ/Ψ1) = dom(Ψ1)∪(dom(Ψ)\dom(Ψ1)); hence, Ψ/Ψ1(w) =
Ψ1(w) if w ∈ dom(Ψ1) and Ψ(w) otherwise. We call T C the set of all these typing
contexts and with T C ⊂ T C the set of typing contexts containing only bindings
between names and channel types.

We explicitly type BlenX by associating types to binders definitions, hence
modifying the interfaces syntax and the new action syntax:

I ::= K(n:T1,V:T2) | K(n:T1,V:T2)I A ::= · · · | new(n:T1,V:T2)

Moreover, since we want to guarantee that inter-communications happen only
through binders having subjects of the same type, we modify the definition of
the affinity function in the following way:

α(K(x:T1,V:T2), K
′(x′:T′1,V

′:T′2)) =

⎧⎨
⎩

α(V, V′) if T1 = T′1 and
T1 ∈ T

(false, false, false) otherwise

By using the affinity function α instead of α we guarantee that the type system
we define is sound w.r.t. the BlenX operational semantics.

Type judgments and rules for expressions are reported in Tab. 9. Judgment
(t1) says that the basic value unit is well-typed in the empty context and has
type Unit. Judgment (t2) instead says that any basic value in BVBT is well-
typed in the empty context with type BT, while judgment (t3) says that any
name or variable w in N ∪ X defined in a typing context Ψ is well-typed in Ψ
with type Ψ(w). Typing rules (t4) and (t5) states that given an expression EXP,
well-typed in a context Ψ with product type T1×T2, the projections EXP.1 and
EXP.2 are well-typed in Ψ and have types T1 and T2, respectively. Rules (t6) and
(t7) say that given a name a, well-typed in a typing context Ψ with binder type
binder(T1,T2), the operators val(a) and check(a,K) are well-typed in Ψ with

48 C. Priami, P. Quaglia, and A. Romanel

Table 10. Type-checking bio-processes and processes

(t9) ∅ 	b Nil : (∅, ∅)

(t10)
Ψ 	b B1 : (N1, C1), Ψ 	 B2 : (N2, C2)

Ψ 	 B1||B2 : (N1 ∪N2, C1 ∪ C2)
, N1 ∩N2 = ∅

(t11)
∅ 	i I : (Ψ1, V), Ψ/Ψ1 	p P : ok

Ψ 	b I[P]n : ({n}, {(V, n) | V ∈ V })

(t12)
Ψ 	e V : T2

, provided T2 ∈ T∅ 	i #(n:T1,V:T2) : ({n : binder(T1,T2)}, ∅)

(t13)
Ψ 	e V : T2

, provided T2 ∈ T∅ 	i #c(n:T1,V:T2) : ({n : binder(T1,T2)}, {V})

(t14)
∅ 	i K(n:T1,V:T2) : (Ψ2, V2), ∅ 	i I : (Ψ1, V1)

∅ 	i K(n:T1,V:T2)I : (Ψ1/Ψ2, V1 ∪ V2)
, n /∈ subj(I) and V /∈ val(I)

(t15) ∅ 	p nil : ok
(t16)

Ψ 	e EXP : Bool, Ψ 	p A.P : ok

<EXP>A.P : ok

(t17)
Ψ(w) = T1, Ψ 	e EXP′ : T, Ψ 	p P : ok

Ψ 	p w!EXP′.P : ok
, T1 = chan(T) or T1 = binder(T,T′)

(t18)
Ψ(w) = T1, M(PAT, T) = Ψ1, Ψ/Ψ1 	p P : ok

Ψ 	p w?PAT.P : ok
, T1 = chan(T) or T1 = binder(T,T′)

(t19)
Ψ 	p P : ok

Ψ 	p delay.P : ok
(t20)

Ψ(w) = binder(T,T′), Ψ 	e EXP : T′, Ψ 	p P : ok

Ψ 	p ch(w,EXP).P : ok

(t21)
Ψ 	e EXP : T′, Ψ/{n:binder(T,T′)} 	p P : ok

, provided T′ ∈ T
Ψ 	p new(n:T,EXP:T′).P : ok

(t22)
Ψ 	e EXP : Bool, Ψ 	p A.P : ok

rep <EXP>A.P : ok

(t23)
Ψ 	p P1 : ok, Ψ 	p P2 : ok

P1|P2 : ok
(t24)

Ψ 	p G1 : ok, Ψ 	p G2 : ok

G1+G2 : ok

types T2 and Bool, respectively; this means that the two operators are applied
correctly on names representing binder subjects. Rule (t8) states that given two
expression EXP1 and EXP2, well-typed in a typing context Ψ with respectively
types T1 and T2, the pair (EXP1,EXP2) has product type T1×T2.

Type judgments and rules for bio-processes, interfaces and processes are re-
ported in Tab. 10. A well-typed bio-process B is associated with a signature

BlenX Static and Dynamic Semantics 49

(N, C), where N contains the indexes of all the boxes defined in B and C con-
tains a pair (V, n) if and only if a binder with value V is declared as bound in
a box with index n. All the judgments and rules guarantee that no boxes with
identical indexes are defined. Rule (t9) says that the deadlock box Nil is well-
typed and has signature (∅, ∅) in any typing context. Rule (t10) states that given
two bio-processes B1 and B2, well-typed in a typing context Ψ with respectively
signatures (N1, C1) and (N2, C2) where N1 ∩ N2 = ∅, the bio-process obtained
by composing in parallel the two bio-processes is well-typed in Ψ with signature
(N1 ∪ N2, C1 ∪ C2). Notice that by controlling that the intersection of the two
set of boxes indexes is empty we guarantee that no boxes in B1 and B2 have the
same index. Rule (t11) controls the well-typedness of boxes. A box I[P]n well-
typed in a typing context Ψ is associated with a signature ({n}, {(V, n) | V ∈ V }),
where the first element is a set containing the index of the box and the second
element contains the values V ⊂ V of the bound binders in I, generated by the
premises of the typing rule. The premises indeed control the well-typedness of
the interface I, generating a signature (Ψ1, V), and the well-typedness of the
process P, which is verified in the typing context Ψ/Ψ1, containing all the entries
for the binder subjects.

The well-typedness of interfaces is verified by judgments and rules (t12-14).
These rules verify that all the subjects and values of the binders composing
an interface are distinct; generate a typing context containing the associations

Table 11. Type-checking environments, events and systems

(t25) ∅ en ∅ : ∅ (t26) , n �= m
∅ en (V1@n,V2@m) : {(V1, n), (V2, m)}

(t27)
∅ en ENV1 : C1, ∅ en ENV2 : C2

∅ en ENV1 ∪ ENV2 : C1 ∪ C2

, C1 ∩ C2 = ∅

(t28) ∅ ev ∅ : ok
(t29)

Ψ ev E1 : ok, Ψ ev E2 : ok

E1 ∪ E2 : ok

(t30)
Ψ b B1 : (N1, C1), Ψ b B2 : (N2, C2), ∅ en ENV1 : C′

1, ∅ en ENV2 : C′
2

Ψ ev sub(B1,ENV1,B2,ENV2) : ok

provided C′
1 ⊆ C1, C′

2 ⊆ C2 and

∀ V ∈ V. |{(V, n) ∈ C1 \ C′
1 | n ∈ N}| = |{(V, n) ∈ C2 \ C′

2 | n ∈ N}|

(t31)
Ψ b B : (N, C), Ψ ev E : ok, ∅ ENV : C′

, C = C′
Ψ 〈〈B; E; ENV〉〉 : ok

50 C. Priami, P. Quaglia, and A. Romanel

between the binder subjects and the corresponding binder types; generate a set
containing all the values of bound binders.

Rule (t15) says that the nil process is well-typed in any context. Rule (t16)
says that an expression guarding a process A.P has to be always well-typed in a
context Ψ with type Bool. Rules (t17) and (t18) control if outputs and inputs,
respectively, are well-typed in a typing context Ψ . We have to guarantee that the
output expression and the input pattern are consistent w.r.t. the type associated
in Ψ to the communication channel; for input patterns this control is performed
by the function M, a static matching function defined as follows:

M(a, b) =

⎧⎨
⎩
{x:T} if a = x and b = T
M(PAT1, T1) �M(PAT2, T2) if a = (PAT1, PAT2) and b = T1 × T2
⊥ otherwise

Obviously, for an input the well-typedness of its continuation process is veri-
fied in a typing context extended with the typing context result of the matching
between the input pattern and the type of the input channel. Rule (t19) is
straightforward, while rules (t20) and (t21) verify the well-typedness of actions
change and new in a typing context Ψ . A change action ch(w,EXP) is well-typed
in Ψ if w is a binder and the expression EXP is well-typed in Ψ with a type that
corresponds to the type of the binder value. A new action new(n:T,EXP:T′) is
well-typed in a typing context Ψ if the expression is well-typed in Ψ with the
type T′ explicitly annotated in the syntax of the action and if its continuation
process is well-typed in Ψ extended with a new association of name n to a binder
type binder(T,T′). Rule (t22) is similar to rule (t16). Rules (t23) and (t24) say
that operators | and + preserve well-typedness.

Type judgments and rules for environments, events and systems are in Tab. 11.
An environment is well-typed (t25-27) if it does not contain multiple V@n entries.
This guarantees that the environment is not ambiguous in terms of complex
bindings, i.e., we don’t have the specification of multiple bindings on the same
interface binder. Events are well-typed (t28-30) if all the substitutions are com-
posed by well-typed bio-processes Bi and environments ENVi, with i = 1, 2, and
the corresponding signatures (Ni, Ci) and C′

i guarantee that all the bindings
specified in the environments are contained in the corresponding bio-processes
and that the sets of pending binding values of B1 and B2 coincide. These two con-
trols are verified by checking that C′

i ⊆ Ci and that for each V ∈ V we have that
the cardinalities of sets {(V, n) ∈ C1 \C′

1 | n ∈ N} and {(V, n) ∈ C2 \C′
2 | n ∈ N}

coincide, respectively. Notice that we do not require here equality because in
events we can also specify bio-processes representing sub-complexes. Equality
is instead a requisite in rule (t31) because we want to ensure all the bindings
specified in the environments to be contained in the corresponding bio-processes
and vice-versa.

We end the presentation of the type system by stating two results proving,
respectively, that typing is invariant under structural congruence and sound with
respect to the operational semantics.

BlenX Static and Dynamic Semantics 51

Lemma 1. Let SYS and SYS′ be systems such that SYS ≡ SYS1 and let Ψ ∈ T C
be a typing context. Then Ψ � SYS : ok iff Ψ � SYS1 : ok.

Theorem 1. Let Ψ ∈ T C be a typing context. If Ψ � SYS : ok and SYS→ SYS1
then Ψ � SYS1 : ok.

5 Conclusions

The paper introduced a new programming language called BlenX. An opera-
tional semantics formally define the dynamics of BlenX programs. BlenX is also
equipped with a type system that is invariant under structural congruence and
sound with respect to the operational semantics. BlenX is an evolution of Beta-
binders [5] and hence is strongly based on process calculi, from which it inherits
the formal methods that allows verification and analysis of concurrent and dis-
tributed systems.

BlenX has been designed to model, simulate and analyse biological systems,
but it is not an ad hoc or domain-specific language because it can handle also
core computer science problems [2].

The main features of BlenX are

- typed and dynamically varying interfaces of boxes;
- sensitivity-based interaction decoupled from the complementarity of names

of channels;
- one-to-one correspondence between the components of the system to be mod-

eled and boxes specified in the BlenX system;
- description of complexes and dynamic generation of complexes as graphs and

graph manipulation primitives;
- usage of events as further primitives.

We presented here just the core part of BlenX. There are also other features (see
[1]), like the handling of functions within the expressions and the introduction of
conditional events that can help defining and performing in-silico experiments,
that we plan to introduce in the formal semantics in an extended version of this
paper.

References

1. Dematté, L., Priami, C., Romanel, A.: The BlenX Language: A Tutorial. In:
Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016,
pp. 313–365. Springer, Heidelberg (2008)

2. Prandi, D., Priami, C., Quaglia, P.: Communicating by compatibility. JLAP 75, 167
(2008)

3. Priami, C.: Algorithmic systems biology. CACM 52(5), 80–88 (2009)
4. Priami, C., Quaglia, P.: Modeling the dynamics of bio-systems. Briefings in Bion-

formatics 5(3) (2004)

52 C. Priami, P. Quaglia, and A. Romanel

5. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V.,
Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

6. Regev, A., Shapiro, E.: Cells as computations. Nature 419, 343 (2002)
7. Welch, P.H., Barnes, F.R.M.: Communicating mobile processes: Introducing occam-

pi. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, pp. 175–210. Springer, Heidelberg (2005)

Flow Policy Awareness for Distributed
Mobile Code

Ana Almeida Matos

SQIG-Instituto de Telecomunicações and Instituto Superior Técnico de Lisboa

Abstract. In the context of global computing, information flow security
must deal with the decentralized nature of security policies. This issue
is particularly challenging when programs are given the flexibility to
perform declassifying instructions. We point out potential unwanted be-
haviors that can arise in a context where such programs can migrate be-
tween computation domains with different security policies. We propose
programming language techniques for tackling such unwanted behaviors,
and prove soundness of those techniques at the global computation level.

1 Introduction

The new possibilities opened by global computing have brought information se-
curity issues to a new level of concern. Indeed, such possibilities can just as well
be exploited by parties with hazardous intentions. Many attacks arise at the
application level, and can be tackled by means of programming language design
and analysis techniques, such as static analysis and proof carrying code. For
instance, confidentiality can be violated by execution of programs that reveal
secret information. This kind of program behavior can be controlled using in-
formation flow analyses [16], by detecting dependencies in programs that could
encode flows of information from private to publicly available resources.

In information flow research, it has been a challenging problem to find an al-
ternative to the classical non-interference property [9] that is flexible enough to
allow for declassification to take place in a controlled manner [19]. So far, most
solutions have been directed towards local computation scenarios, thus over-
looking decentralization issues that are inherent to distributed settings. Indeed,
enforcement of confidentiality in networks must deal with distributed security
policies, since different computation domains (or sites) follow different security
orientations. For example, migrating programs that were conceived to comply
with certain flow policies don’t necessarily respect those of the computational
locations they might end up executing at. This problem seems to be beyond
the grasp of single declassification constructs that can restrict by whom, when,
what, or where in the program declassification can be performed [17], since now
the question is: in which context?

In this paper we show that the issue of enabling and controlling flexible in-
formation flow policies in computations that can spread out over sites that are
governed by different flow policies can be addressed at the programming language

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 53–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 A. Almeida Matos

level. We propose to remove some of the burden of restricting declassification
away from the declassification instruction itself, and transfer it to new program
constructs that provide awareness about the flow policy of the context in which
it is running. Given the appropriate tools to predict alternatives to the pieces of
code that contain potentially forbidden declassification operations, it becomes
realistic to write programs that can safely run under any flow policy.

Some security minded distributed network models have been proposed with
the purpose of controlling the migration of code in between computation sites,
such as by means of programmable domains [4] and type systems [14]. These
ideas can be applied to the proof-carrying code model [15], since it consists of a
particular instance of boundary transposition control that performs type checks
to incoming code [10]. We propose to apply migration control techniques to the
problem of controlling declassification by preventing programs from migrating
to sites if they would potentially violate that site’s flow policies. However, we
fall short of technical mechanisms that would allow, on one hand, for a site to
know what are the most flexible flow policies that a program sets up for its own
executions; on another hand, for a program to know how flexible is the flow
policy of the context in which it is running.

Setting. We follow the non-disclosure point of view of information flow analysis
[1,3]. The non-disclosure property is a generalization of non-interference. It uses
information provided by the program semantics describing which flow policies
are valid at different points of the computation, to ensure that, at each step,
all information flows comply with the valid flow policy. In order to enable local
dynamic changes to the valid flow policy, the programming language may be
enriched with a flow declaration construct (flow F in M) that simply declares
the flow policy F that is valid in its scope M within the program. It is then easy
to set up more flexible flow policy environments for delimited blocks of code, as
for instance the part of a program that is executed by authenticated users:

(if authenticated then (flow Fpermissive in M) else N)

This program declares that flows inM conform to a policy that is extended (made
more permissive) by Fpermissive (the N branch is of course not given this flexibil-
ity). In other words, M may contain declassifications that comply to Fpermissive.

Once the language is enriched with flow declarations (or any other means
for expressing declassification), some mechanism for controlling its usage is de-
sirable. This is particularly relevant in mobile code settings. For instance, a
computation domain d might want to impose a limit to the flexibility of the flow
declarations that it executes, and prevent incoming code from containing:

(flow Fall is allowed in M)

In the above example, the flow declaration validates any information flow that
might occur in M , regardless of what is considered acceptable by d. This mo-
tivates the notion of a domain’s allowed flow policy, which represents the flow
policy that should rule for all programs that are running at a certain domain.
We can then define the notion of confinement with respect to a flow policy as a

Flow Policy Awareness for Distributed Mobile Code 55

property of programs that can only perform steps that comply with that allowed
flow policy. We will see that this property can be formalized by making use of the
information about the declared flow policies that is provided by the semantics.

At the moment that a program is written, it might be hard to anticipate
which flow policies will be imposed at execution time by the domains where
the program will run. In a distributed context with code mobility, the problem
becomes more acute, since the computation site might change during execution,
along with the allowed flow policy with which the program must comply. In order
to provide programs with some awareness regarding the flow policy that is ruling
in the current computation domain, we introduce the allowed-condition, written
(allowed F then M else N), that tests whether the flow policy F is allowed by
the current domain and executes branches M or N accordingly. Programs can
then offer alternative behaviors to be taken in case the domains they end up at
do not allow declassifications of the kind they wished to perform:

(allowed Fdisclose secret then M else plan B)

The allowed-condition brings no guarantees that the “plan B” of the above pro-
gram does not disclose just as much as the M branch. However, misbehaving
programs can be rejected by the domains where they would like to execute, so
its chances of being allowed to execute are increased by adequately “protecting”
portions of code containing declassifications by appropriate allowed-conditions.

In the spirit of the proof carrying code model, domains can statically check
incoming code against their own flow policies, ideally assisted by certificates that
are carried by the program, and then decide upon whether those programs should
be “let in”. A certificate could consist of information about all the flow policies
that are declared in the program and do not appear within the “allowed” branch
of an allowed-condition. We call this flow policy the declassification effect of the
program, and provide a type system for obtaining it. Then, while the program

(allowed F1 then M else (flow F2 in N))

would have a declassification effect that includes F2 – meaning that it should
only be allowed to run in domains where F2 is allowed –, the program

(allowed F then (flow F in M) else N)

(assuming that M and N have no flow declarations) would have an empty declas-
sification effect – meaning that it could be safely allowed to run in any domain.

In order to formalize these ideas, it is useful to consider a concrete distributed
language with code mobility, where we use the declassification effect to control
migration according to the following rule: programs can only migrate to a site if
their declassification behaviors conform to that site’s flow policy. We can then
analyze the conditions under which the programs of this language comply with
a network level version of the information flow and confinement properties.

We start by presenting the language and giving some intuitions (Section 2).
Two main section follow, each presenting the security analysis for our information
flow property of non-disclosure (Section 3) and for the new confinement property
(Section 4). Finally we discuss related work and conclude (Section 5). Detailed
proofs may be found in [2].

56 A. Almeida Matos

2 Language

We consider a distributed imperative higher-order λ-calculus with reference and
thread creation, where we include flow policy declarations (for directly manipu-
lating flow policies [1,3]) and the new allowed flow policy condition that branches
according to whether a certain flow policy is allowed in the program’s comput-
ing context. We also add a notion of computation domain, to which we associate
an allowed flow policy, and a code migration primitive. Programs computing
in different domains are subjected to different allowed flow policies, and their
behavior is affected accordingly – this is the main novelty in this language.

Syntax. Security annotations and types are apparent in the syntax of the lan-
guage, though they do not play any role in the operational semantics (they will
be used at a later stage of the analysis). Security levels l, j, k are sets of princi-
pals, which are ranged over by p, q ∈ Pri . They are associated to references (and
reference creators), representing the set of principals that are allowed to read
the information contained in each reference. We also decorate references with the
type of the values that they can hold. The syntax of types τ, σ, θ is given in the
next section. In the following we may omit reference subscripts whenever they
are not relevant. A security level is also associated to each thread, and appears
as a subscript of thread names. This level can be understood as the set of prin-
cipals that are allowed to know about the location of the thread in the network.
Flow policies A, F, G are binary relations over Pri . A pair (p, q) ∈ F , most often
written p ≺ q, is to be understood as “information may flow from principal p to
principal q”. We denote, as usual, by F ∗ the reflexive and transitive closure of F .

The language of threads (defined in Fig. 1) is based on a call-by-value λ-
calculus extended with the imperative constructs of ML, conditional branching
and boolean values (here the (
x.W) construct provides for recursive values).
Variables x, references a, b, c, threads m, n and domains d are drawn from the
disjoint countable sets Var and Ref , Dom
= ∅ and Nam , respectively. Refer-
ence names can be created at runtime. The new feature is the allowed-condition
(allowed F then Nt else Nf) which tests the flow policy F and branches to Nt

or Nf accordingly. The flow declaration construct (flow F in M) extends the
current flow policy F within M ’s scope. Also worth mentioning are the thread

Variables x, y ∈ Var Thread Names m,n ∈ Nam
Reference Names a, b, c ∈ Ref Domain Names d ∈ Dom
Values V ∈ Val ::= () | x | al,θ | (λx.M) | tt | ff
Pseudo-values W ∈ Pse ::= V | (�x.W)
Expressions M, N ∈ Exp ::= W | (M N) | (M ; N) | (if M then Nt else Nf)

(refl,θ M) | (! N) | (M := N) | (threadl M) | (goto d) |
(flow F in M) | (allowed F then Nt else Nf)

Threads ::= Mmj (∈ Exp ×Nam × 2Pri)

Fig. 1. Syntax of threads

Flow Policy Awareness for Distributed Mobile Code 57

creator (threadl M), which spawns a concurrent thread M , to which a name and
the security level l is given, and the migration construct (goto d), which triggers
the migration of the thread that executes it to the domain d.

Networks are flat juxtapositions of domains, each containing a store and a
pool of threads, which are subjected to the flow policy of the domain. Threads
run concurrently in pools P : (Nam × 2Pri) → Exp, which are mappings from
decorated thread names to expressions (they can also be seen as sets of threads).
Stores S : (Ref ×2Pri ×Typ) → Val map decorated reference names to values.
To keep track of the locations of threads it suffices to maintain a mapping from
thread names to domain names. This is the purpose of the position-tracker T :
(Nam×2Pri)→ Dom , which is a mapping from a finite set of decorated thread
names to domain names. The pool P containing all the threads in the network,
the mapping T that keeps track of their positions, and the store S containing
all the references in the network, form configurations 〈P, T, S〉, over which the
evaluation relation is defined in the next subsection. The flow policies that are
allowed by each domain are kept by the policy-mapping W : Dom → 2Pri×Pri

from domain names to flow policies, which is considered fixed in this model.

Operational Semantics. We now define the semantics of the language as a small
step operational semantics on configurations. The call-by-value evaluation order
can be conveniently specified by writing expressions using evaluation contexts.
We write E[M] to denote an expression where the subexpression M is placed in
the evaluation context E, obtained by replacing the occurrence of [] in E by M .

Evaluation Contexts E ::= [] | (E N) | (V E) | (E; N) | (ref l,θ E) | (! E) |
(E := N) | (V := E) | (if E then Nt else Nf) | (flow F in E) |

We denote by �E� the flow policy that is enabled by the evaluation context E,
and consists of the union of all the policies that are declared by E:

[]� = ∅,
(flow F in E)� = F ∪
E�,

E′[E]� =
E�, if E′ does not contain flow declarations

We use some notations and conventions for defining transitions on configu-
rations. Given a configuration 〈P, T, S〉, we call the pair 〈T, S〉 its state. We
define dom(S) as the set of decorated reference names that are mapped by S;
similarly, the sets dom(W), dom(P) and dom(T), are the sets of domains and
decorated names of threads that are mapped by W , P and T . We say that a
thread or reference name is fresh in T or S if it does not occur, with any sub-
script, in dom(T) or dom(S), respectively. We denote by tn(P) and rn(P) the
set of decorated thread and reference names, respectively, that occur in the ex-
pressions of P (this notation is extended in the obvious way to expressions). We
let fv(M) be the set of variables occurring free in M . We restrict our attention
to well formed configurations 〈P, T, S〉 satisfying the following additional con-
ditions: rn(P) ⊆ dom(S); for any al,θ ∈ dom(S) we have rn(S(al,θ)) ⊆ dom(S)
dom(P) ⊆ dom(T); tn(dom(S)) ⊆ dom(T); all threads in a configuration have
distinct names, and also all occurrences of a name in a configuration have the
same subscripts. We denote by {x �→W}M the capture-avoiding substitution of

58 A. Almeida Matos

A�〈E[((λx.M) V)], S〉−−−→
�E�

〈E[{x 	→ V }M], S〉

A�〈E[(if tt then Nt else Nf)], S〉−−−→
�E�

〈E[Nt], S〉

A�〈E[(if ff then Nt else Nf)], S〉−−−→
�E�

〈E[Nf], S〉

A�〈E[(allowed F then Nt else Nf)], S〉−−→
�E�

〈E[Nt], S〉, where F ⊆ A∗

A�〈E[(allowed F then Nt else Nf)], S〉−−→
�E�

〈E[Nf], S〉, where F �⊆ A∗

A�〈E[(V ; N)], S〉−−−→
�E�

〈E[N], S〉

A�〈E[(�x.W)], S〉−−−→
�E�

〈E[({x 	→ (�x.W)} W)], S〉

A�〈E[(flow F in V)], S〉−−−→
�E�

〈E[V], S〉

A�〈E[(! al,θ)], S〉−−−→
�E�

〈E[V], S〉, where S(al,θ) = V

A�〈E[(al,θ := V)], S〉−−−→
�E�

〈E[()], [al,θ := V]S〉

A�〈E[(refl,θ V)], S〉−−−→
�E�

〈E[al,θ], [al,θ := V]S〉, where a fresh in S

W �〈{E[(threadl N)]mj }, T, S〉−−−→
�E�

〈{E[()]mj , Nnk}, [nk := T (mj)]T, S〉, where n fresh in T

W �〈{E[(goto d)]mj}, T, S〉−−→
�E�

〈{E[()]mj}, [mj :=d]T, S〉, if ∅�E[()] :s, τ and s⊆W (d)∗

W (T (mj))�〈M, S〉−→
F

〈M ′, S′〉

W �〈{Mmj }, T, S〉−→
F

〈{M ′mj }, T, S′〉

W �〈P, T, S〉−→
F

〈P ′, T ′, S′〉 〈P ∪ Q, T, S〉 well formed

W �〈P ∪ Q, T, S〉−→
F

〈P ′ ∪ Q, T ′, S′〉

Fig. 2. Operational semantics. See Fig. 4 on side condition of the migration rule.

W for the free occurrences of x in M . The operation of adding or updating the
image of an object z to z′ in a mapping Z is denoted [z := z′]Z.

The transitions of our small step semantics are defined in Fig. 2. In the local
computations rules, the ‘A �’ turnstile makes explicit the allowed flow policy
A of the computation domain. The semantics of local evaluation is embedded
in the distributed language by specifying the local flow policy A as W (T (mj)),
where T (mj) represents the location of the thread mj . The last rule establishes
that the execution of a pool of threads is compositional (up to the expected
restriction on the choice of new names). The semantics of global computations
introduces the rules for thread creation and for migration. The latter depends on
the type system of Section 4, similarly to a rule in [10]. The condition represents
the standard theoretical requirement of checking incoming code before allowing
it to execute in a given machine. For now, it is enough to know that s represents
an approximation of the flow policies that are used by the typed expression.

The labeled transition rules of our semantics are decorated with the flow
policy declared by the evaluation context where they are performed. This label
is added only for the purpose of the security analysis. In particular, the evaluation
of (flow F in M) simply consists in the evaluation of M , annotated with a flow
policy that comprises (in the sense of set inclusion) F . The lifespan of the flow
declaration terminates when the expression M in its scope terminates.

The allowed flow policy A of a site represents a restriction on the flow policies
that can be set up by programs running in that site. It determines the behavior
of the allowed-condition (allowed F then Nt else Nf), which tests whether it is
allowed to set up flow declarations enabling F in its “allowed” branch Nt. The
alternative branch Nf is executed otherwise. A typical usage could be:

Flow Policy Awareness for Distributed Mobile Code 59

(allowed {H ≺ L} then (flow {H ≺ L} in (xL := (! yH))) else plan B) (1)

The allowed flow policy is also used to determine whether or nota migration
instruction may be consummated. The idea is that a thread can only migrate to
another domain if it respects its allowed flow policy. E.g., the configuration

〈{E[((goto d); (flow F in M))]mj}, T, S〉 (2)

can only proceed if W (d) allows for F ; otherwise it gets stuck (this will become
clear in Section 4). The flow declaration does not imply checks to the allowed flow
policy of the site. Here we preserve the original semantics of the flow declaration
[3] as a construct that does not change the behavior of programs, and leave the
functionality of inspecting the allowed flow policy to the allowed-condition.

According to the chosen semantics, dereferencing and assigning to remote
references can be done transparently. One may wonder whether it is correct to
consider a system with a shared global state as distributed. We point out that
in this model, the flow policies are distributed, while the behavior of a program
fragment may differ on different machines. As an example, consider the thread

(allowed F then (yL := 1) else (yL := 2))mj (3)

running in a network 〈P, T, S〉 such that W (d1) = F1 and W (d2) = F2, where
F ⊆ F ∗

2 but F
⊆ F ∗
2 . The thread will perform different assignments depending on

whether T (mj) = d1 or T (mj) = d2. In Section 3 we will see that their behavior
is distinguishable by an information flow bisimulation relation. In other words,
the network does exhibit a distributed behavior. For a study of a similar model
with distributed and mobile references, see [1].

3 Information Flow Analysis

We start by briefly defining the underlying information flow policy that this work
is based on, non-disclosure for networks (we refer the reader to [1] for further
explanations). We will see that a new form of migration leaks appears due to the
new allowed-condition primitive that was introduced in our language. We then
present a type system for enforcing non-disclosure, and state its soundness.

Non-Disclosure for Networks. The study of confidentiality typically relies on a
lattice of security levels [8], corresponding to security clearances that are asso-
ciated to information containers in a programming language. Here, as in [3], we
will use a pre-lattice (a preordered set with least upper-bound and a greatest
lower-bound operations), a more general structure that is convenient for defining
a dynamic flow relation that accounts for runtime changes in the flow policy of
a program. More concretely, our security pre-lattices are derived from a lattice
where security levels are sets of principals representing read-access rights, par-
tially ordered by the reverse inclusion relation, which indicates allowed flows of
information: if l1 ⊇ l2 then information in a reference al1 may be transferred to
bl2 , since the principals allowed to read this value from b are also allowed to read
it from a. Flow policies, which are binary relations between principals, then rep-
resent additional directions in which information is allowed to flow. This leads to

60 A. Almeida Matos

the underlying preorder on security levels, given by l1 �F l2 iff (l1 ↑F) ⊇ (l2 ↑F),
where the F -upward closure l ↑F of a security level l, defined as {q|∃p ∈ l. pF ∗q},
contains all the principals that are allowed by the policy F to read the contents
of a reference labeled l. Notice that �F extends ⊇ in the sense that �F contains
⊇ and �∅ = ⊇. We choose l1 �F l2 = l1 ∪ l2 and l1 �F l2 = (l1 ↑F) ∩ (l2 ↑F) as
meet and join operations, from which � = ∅ and ⊥ = Pri .

Equipped with a flow relation between security levels, we define the notion
of low-equality between states with respect to a flow policy F and security level
l as pointwise equality between the low part of the position tracker and of the
store, i.e. 〈T1, S1〉 =F,l 〈T2, S2〉 def⇔ T1 �F,l= T2 �F,l and S1 �F,l= S2 �F,l, where
T �F,l def= {(nk, d) | (nk, d) ∈ T & k �F l} and S �F,l def= {(ak,θ, V) | (ak,θ, V) ∈
S & k �F l}. Intuitively, two states are “low-equal” if they have the same “low-
domain”, and if they give the same values to all objects (in this case, references
and threads) that are labeled with “low” security levels.

Since we are in a concurrent setting, it is natural to formulate our information
flow property in terms of a bisimulation [5]. Our bisimulation, which is based
on the small-step semantics defined in Section 2, relates two pools of threads if
they show the same behavior on the low part of two states. We denote by −→∗

the reflexive and transitive closure of the union of the transitions −→
F

, for all F .

Definition 1 (≈l). An l-bisimulation is a symmetric relation R on sets of
threads such that, for all T1, S1, T2, S2:

P1 R P2 and W 	 〈P1, T1, S1〉 −→
F
〈P ′

1, T
′
1, S

′
1〉 and 〈T1, S1〉 =F,l 〈T2, S2〉 implies

∃P ′
2, T

′
2, S

′
2 . W 	 〈P2, T2, S2〉 −→∗ 〈P ′

2, T
′
2, S

′
2〉 and 〈T ′

1, S
′
1〉 =∅,l 〈T ′

2, S
′
2〉 and P ′

1 R P ′
2

when: (dom(S1
′)− dom(S1)) ∩ dom(S2)=∅ and (dom(T1

′)− dom(T1)) ∩ dom(T2)=∅
The largest l-bisimulation is denoted by ≈l.

Note that for any l, the set of pairs of named values is an l-bisimulation. Fur-
thermore, the union of all l-bisimulations is the largest l-bisimulation.

Our bisimulation potentially relates more programs than one for Non-interfer-
ence thanks to the stronger premise S1 =F,l S2. By starting with pairs of memo-
ries that are low-equal “to a greater extent”, i.e. that coincide in a larger portion
of the memory, the condition on the behavior of the program P2 becomes weaker.

Note that the relation ≈l is not reflexive. In fact, a program is bisimilar to
itself, if the high part of the state never interferes with the low part, i.e., no
security leak can occur. This motivates the definition of our security property:

Definition 2 (Non-disclosure for Networks). A pool of threads P satisfies
Non-disclosure for Networks if it satisfies P ≈l P for all security levels l.

Intuitively, the above definition requires information flows occurring at any com-
putation step that can be performed by some thread in a network, to comply with
the flow policy that is declared by the context where the command is executed.

We are considering a simplistic memory model that is globally shared, thus
avoiding migration leaks that derive from synchronization behaviors on memory

Flow Policy Awareness for Distributed Mobile Code 61

[Nil] Γ � () : unit [BoolT] Γ � tt : bool [BoolF] Γ � ff : bool [Loc] Γ � al,θ : θ refl

[Var] Γ, x : τ � x : τ [Abs]
Γ, x : τ �j

F M : s, σ

Γ � (λx.M) : τ
s−−→

F,j
σ

[Rec]
Γ, x : τ �j

F W : s, τ

Γ � (�x.W) : τ

[Ref]
Γ �j

F M : s, θ s.r, s.t �F l

Γ �j
F (refl,θ M) : s � 〈⊥, l,⊥〉, θ refl

[Der]
Γ �j

F M : s, θ refl

Γ �j
F (! M) : s � 〈l,�,⊥〉, θ

[Ass]

Γ �j
F M : s, θ refl

Γ �j
F N : s′, θ

s.t �F s′.w
s.r, s′.r, s.t, s′.t �F l

Γ �j
F (M := N) : s � s′ � 〈⊥, l,⊥〉, unit

[Seq]

Γ �j
F M : s, τ

Γ �j
F N : s′, σ s.t �F s′.w

Γ �j
F (M ;N) : s � s′, σ

[Cond]
Γ �j

F M : s, bool Γ �j
F Nt : st, τ

Γ �j
F Nf : sf , τ

s.r, s.t �F st.w, sf .w

Γ �j
F (if M then Nt else Nf) : s � st � sf � 〈⊥,�, s.r〉, τ

[Allow]

Γ �j
F Nt : st, τ

Γ �j
F Nf : sf , τ

j �F st.w, sf .w

Γ �j
F (allowed F ′ then Nt else Nf) : st � sf � 〈⊥, �, j〉, τ

[Flow]
Γ �j

F∪F ′ N : s, τ

Γ �j
F (flow F ′ in N) : s, τ

[App]

Γ �j
F M : s, τ

s′−−→
F,j

σ

Γ �j
F N : s′′, τ

s.t �F s′′.w
s.r, s′′.r, s.t, s′′.t �F s′.w

Γ �j
F (M N) : s � s′ � s′′ � 〈⊥,�, s.r � s′′.r〉, σ

[Thr]
j �F l Γ �l

∅ M : s, unit

Γ �j
F (threadl M) : 〈⊥, j � s.w,⊥〉, unit

[Mig] Γ �j
F (goto d) : 〈⊥, j,⊥〉, unit

Fig. 3. Type and effect system for non-disclosure for networks

accesses [1]. However, in our setting, migration leaks can be encoded nonethe-
less. The idea is that a program can reveal information about the position of a
thread in a network by testing the flow policy that is allowed by that site:

(if !xH then (goto d1) else (goto d2)); (allowed F then (yL := 1) else (yL := 2)) (4)

In this example, the thread migrates to domains d1 or d2 depending on the tested
high value; then, if these domains have different allowed flow policies, different
low-assignments are performed, thus revealing high level information. Therefore,
the program is insecure with respect to non-disclosure for networks. The fact that
migration issues that are typical of distributed settings appear in spite of the
state being globally shared allows us to make the point that migration leaks are
not specific to distributed memory models. In fact, they can occur whenever the
semantics of a program fragment differs on different machines.

Type System. We now present a type and effect system that accepts programs
that satisfy non-disclosure for networks, as defined in Section 3. The judgments
of the type and effect system, presented in Fig. 3, have the form Γ �j

F M : s, τ ,
meaning that the expression M is typable with type τ and security effect s in the
typing context Γ :Var→Typ, which assigns types to variables. The turnstile has
two parameters: the flow policy F declared by the context, is the one that is valid
in the evaluation context in which the expression M is typed, and contributes to
the meaning of the flow relations between security levels; the security level j is
the confidentiality level associated to the position in the network of the thread

62 A. Almeida Matos

containing M . The security effect s is composed of three security levels: s.r is
the reading effect, an upper-bound on the security levels of the references that
are read by M ; s.w is the writing effect, a lower bound on the references that are
written by M ; s.t is the termination effect, an upper bound on the level of the
references on which the termination of expression M might depend. The reading
and termination levels are composed in a covariant way, whereas the writing
level is contravariant. Types have the following syntax (t is a type variable):

τ, σ, θ ∈ Typ ::= t | unit | bool | θ ref l | τ s−−→
F,j

σ

Typable expressions that reduce to a function that takes a parameter of type τ ,
that returns an expression of type σ, and with a latent [12] effect s, flow policy
F and security level j have the function type τ

s−−→
F,j

σ.

We use a (join) pre-semilattice on security effects, that is obtained from
the pointwise composition of the pre-lattices of the security effects. More pre-
cisely, s �F s′ iff s.r �F s′.r & s′.w �F s.w & s.t �F s′.t, and s �F s′ iff
〈s.r �F s′.r, s.w �F s′.w, s.t �F s′.t〉. Consequently, ⊥ = 〈Pri , ∅,Pri〉. We ab-
breviate Γ �j

F M : 〈⊥,�,⊥〉, τ by Γ � M : τ and we write s � s′ when s �∅ s′.
Our type and effect system enforces compliance of all information flows with

the current flow policy. This is achieved by imposing conditions of the kind “�F ”
in the premises of the rules, and by updating the security effects in the conclu-
sions. Apart from the parameterization of the flow relation with the current flow
policy, these are fairly standard in information flow type systems and enforce
syntactic rules of the kind “no low writes should depend on high reads”, both
with respect to the values that are read, and to termination behaviors that might
be derived. Notice that the Flow rule types the body of the flow declaration
under a more permissive flow policy.

The extra conditions that deal with the migration leaks that are introduced
by the allowed construct (see Example 4) deserve further attention: the security
level j that is associated to each thread, and represents the confidentiality level
of the position of the thread in the network, is used to update the writing effect
in the thread creation and migration rules, as well as the termination effect in the
allowed-condition rule; on the other hand, it is constrained not to “precede low
writes” in rule Allow, and to be a lower bound of runtime threads in rule Thr.
We refer the reader to [1] for further explanations on the remaining conditions.

One can prove that the proposed type system ensures non-disclosure, i.e. that
it constrains the usage of the new constructs introduced in this language in order
to prevent them from encoding information leaks. In fact, security of expressions
with respect to Non-disclosure is guaranteed by the type system:

Theorem 1 (Soundness for Non-disclosure for Networks)
Consider a pool of threads P . If for all Mmj ∈ P there exist Γ , s and τ such
that Γ �j

∅ M : s, τ , then P satisfies the Non-disclosure for Networks policy.

Notice that our soundness result for non-disclosure is compositional, in the sense
that it is enough to verify the typability of each thread separately in order to
ensure non-disclosure for the whole network.

Flow Policy Awareness for Distributed Mobile Code 63

4 Confinement Analysis

We now formally define Operational Confinement for Networks, a new security
property that specifies the restricted usage of declassification instructions. We
present a simple type system for obtaining the declassification effect of programs,
which can be used by the semantics of the language to control migration between
sites. We prove the soundness of the proposed migration control mechanism.

Operational Confinement. Here we will deal with relations between flow policies,
which leads us to define a (meet) pre-semilattice of flow policies. We introduce the
preorder on flow policies �, thus overloading the notation for the flow relations
on security levels. The meaning of relating two flow policies as in F1 � F2 is that
F1 is more permissive than F2, in the sense that F1 encodes all the information
flows that are enabled by F2, i.e. F1 � F2 if and only if F2 ⊆ F ∗

1 , where the meet
operation is given by F1 � F2 = F1 ∪ F2. Consequently, � = ∅.

The property of operational confinement is formulated abstractly for any dis-
tributed model whose semantics is decorated with the flow policies that are set
up at each step. The decorated semantics conveys the required information for
anticipating which flow policies are declared by a program at runtime. The prop-
erty is set up on pairs that carry information about the location of each thread.
The allowed flow policy of the current location of the thread is used to place a
restriction on the flow policies that decorate the transitions, step-by-step.

Definition 3 (Operationally Confined Located Threads). Given a fixed
policy-mapping W, a set C of pairs 〈d, Mmj〉 is a set of operationally confined
located threads if the following holds for any 〈d, Mmj〉∈C, T and S s.t. T (mj)=d:

W 	〈{Mmj}, T, S〉−→
F
〈{M ′mj}, T ′, S′〉 implies W (T (mj))F and 〈T ′(mj), M ′mj〉∈C and

W 	〈{Mmj}, T, S〉−→
F
〈{M ′mj , N ′nk}, T ′, S′〉 implies W (T (mj))F and

〈T ′(mj), M ′mj 〉, 〈T ′(nk), Nnk 〉 ∈ C
We say that a located thread is operationally confined if it belongs to the largest
set of operationally confined threads (this set exists, analogously to Definition 1).

Operational confinement means that for every execution step that is performed
by a program at a certain site, the declared flow policy always complies to that
site’s allowed flow policy. The above definition for individual threads leads to a
notion of network confinement by obtaining, from a pool of threads P and its cor-
responding position-tracker T , the set pair(P, T) defined as {〈d, Mmj〉 | Mmj ∈
P and T (mj) = d}. A network is then said to be operationally confined if all of
the pairs of threads and their location are operationally confined.

Type System. We now present a simple type and effect system that constructs a
declassification effect that can be used to enforce Confinement. The judgments
are now a lighter version of those that were used in Section 3. They have the
form Γ � M : s, τ , meaning that the expression M is typable with type τ and
security effect s in the typing context Γ : Var → Typ, which assigns types to
variables. Here, s is the declassification effect : a lower bound to the flow policies

64 A. Almeida Matos

Γ 	 N : s, τ

Γ 	 (flow F ′ in N) : s∪F ′, τ

Γ 	 Nt : st, τ Γ 	 Nf : sf , τ

Γ 	 (allowed F ′ then Nt else Nf) : st −F ′�sf , τ

Fig. 4. Fragment of the type and effect system for the declassification effect

that are declared in the typed expression, excluding those that are positively
tested by an allowed-condition. Types are analogous to those of Section 3:

τ, σ, θ ∈ Typ ::= t | unit | bool | θ ref l | τ s−→ σ

In Fig. 4 we only exhibit the typing rules that are relevant to the construction
of the declassification effect. The omitted rules simplify those in Fig. 3, where
typing judgments have no parameters, the updates of the security effects as well
as all side conditions involving �F are removed, and the meet operator � is used
instead of � because the declassification effect is contravariant.

The declassification effect of the program is constructed as follows: The new
effect is updated in rule Flow each time a flow declaration is performed, and
“grows” as the declassification effects of subterms are met (by union) to form
that of the parent command. However, in rule Allow, the declassification effect
of the “allowed” branch is not used entirely: the part that is tested by the
allowed-condition is omitted. The intuition is that the part that is removed (say,
F) is of no concern since the allowed branch will only be executed if F is allowed.

As we have mentioned, the declassification effect should give information
about the potential flow policy environments that are set up by the program.
It is easy to see that the proposed type system provides a rather naive solution
to this problem, since it does not take into consideration the migration instruc-
tions that appear in the code. This means that it might over-approximate the
declassification effect by counting in flow declarations that are not relevant to
the site where the program is arriving. Here we are not concerned with the pre-
cision of the type system, but rather with putting forward its idea. In spite of
the simplicity of the type system, notice that it does incorporate the effort of
“protecting” portions of code by means of allowed conditions, when building the
declassification effect of a program. This is achieved by discarding information
regarding the tested flow policy from the declassification effect of the “allowed”
branch. As a result, programs containing flow declarations that are too permis-
sive might still be authorized to execute in a certain domain, as long as they
occur in the “allowed” branch of our new construct.

In order to ensure that the declassifications that are enabled by flow dec-
larations never violate the allowed flow policy of the domain where they are
performed, we will check that if a program has a declassification effect s, and if
it performs an execution step while declaring a flow policy F , then F is stricter
than s. A site can then trust that the declassifications performed by an incom-
ing thread are not more permissive than what is declared in the type. Programs
whose type cannot guarantee respect for the allowed flow policy of the site can
be treated as insecure by that site – in our model, they are simply forbidden
to enter. This migration control mechanism allows us to formulate a network

Flow Policy Awareness for Distributed Mobile Code 65

level soundness result, guaranteeing that typable programs can roam over the
network, never violating the allowed flow policy of the sites where they execute:

Theorem 2 (Soundness of Typing Confinement for Networks). Con-
sider a fixed policy-mapping W , a pool of threads P and position tracker T ,
such that for all Mmj ∈ P there exist Γ , s and τ satisfying Γ � M : s, τ and
W (T (mj)) � s. Then pair(P, T) is a set of operationally confined located threads.

The above result might seem somewhat surprising at first, given that in the
typing rule of the allowed construct, the flow policy that is being tested is sub-
tracted from the declassification effect of the allowed branch. Notice however
that the allowed branch will only be taken if the tested flow policy is allowed
(by G) in the first place. This means that the part of the declassification effect
of the allowed branch that is omitted is known to be allowed by G. To illustrate
this idea, consider again Example 1, which has an empty declassification effect;
its transitions can however be decorated with the flow policy {H ≺ L} in case
the first branch is taken, which in turn can only happen if {H ≺ L} ⊆ G∗.

The proposed method for enforcing operational confinement combines a static
analysis technique for obtaining the declassification effect of a program with a
migration control technique that is built into the semantics of the language. It
does not offer a safety result, guaranteeing that programs never “get stuck”, as
a thread can be blocked at the point of performing a migration instruction:

(allowed F then ((goto d); (flow F in M1)) else M2) (5)

According to the type system of Fig. 4, the declassification effect of the con-
tinuation ((goto d); (flow F in M1)) includes F . This means that the migration
instruction will be performed only in the case that the allowed flow policy of d
allows for F ; otherwise, the program will get stuck. We notice, however, that in
order to avoid this situation, the program might have better been written

((goto d); (allowed F then (flow F in M1) else M2))

so that the flow declaration of F would not contribute to weaken the declassifi-
cation effect of the continuation (allowed F then (flow F in M1) else M2).

Here we follow the spirit of the proof carrying code scenario: When using the
type system to construct a declassification effect, we provide a way to build a
certificate that can be analyzed to conclude whether an incoming program should
be allowed to execute or not. In case the certificate is not trusted, programs could
also be statically checked to be “flow declaration safe”.

5 Related Work and Conclusions

We have motivated the need for controlling the usage of declassification in a
global computing context by pointing out that programs that were conceived
to comply with certain flow policies might not respect those of the computa-
tional locations they could end up executing at. We have addressed this issue by
studying techniques for ensuring that a thread can only migrate to a site if it

66 A. Almeida Matos

complies to its allowed flow policy. More concretely, we have proposed a security
property we call confinement to a flow policy, that ensures programs will respect
the allowed flow policies of the domains where they compute. In order to assist
the programmer to comply with confinement, we propose a language construct
– the allowed condition – that tests the flexibility of the allowed flow policy
imposed by the domain where it is currently located, and for programming al-
ternative behaviors, should it end up in a site where its declassification operations
are not permitted. The introduction of this construct in a language with code
mobility must be done with care, since it can give rise to a new form of migration
leaks, which we showed are not only the result of memory synchronization issues.
We show how these migration leaks can be controlled by means of a type system
that enforces the non-disclosure policy for networks. As to the enforcement of
the confinement property, we propose a new form of security effect, the declassi-
fication effect, that holds information about relevant declassifying environments
that can be established by a program. We show that it can be constructed by
means of a type and effect system. This information is useful when setting up a
migration control mechanism for controlling execution of programs at each site.

Among other few previous studies of information flow in distributed con-
texts [7, 13, 20], the only that considers declassification in a context with code
mobility is [1]. The main difference regards the memory model, which in [1]
is strictly distributed (i.e. accesses to remote references are restricted), while
threads own references that they carry during migration; in that setting, mem-
ory synchronization issues also give rise to migration leaks. Here we avoid such
synchronization issues, which we believe are orthogonal to the ideas presented
here, by assuming transparent remote accesses to references. We can then show
that migration leaks do not exclusively depend on the memory model. This point
motivates a better understanding of migration leaks in global computations.

The literature regarding the subject of declassification is examined in [17].
Most of the overviewed approaches implicitly assume local settings, where the
computation platform enforces a centralized policy, while the control of the us-
age of declassification operations are restricted to the declassifying operations
themselves. Here we separate the control of declassification from its encoding,
as both the allowed-construct and restricted version of migration are external to
the flow declaration construct. Previous works on forms of dynamic flow policy
testing consider settings where distribution and mobility are not explicitly dealt
with. In [18] and [21], testing is performed over security labels, while the under-
lying security lattice remains fixed. Closer to ours is the work by Hicks et al. [11],
where the global flow policy can be updated and tested. However, the language
that is considered is local and sequential, and updates to the global flow policy
are not meant as declassification operations. Furthermore, the security property
does not deal with updates, but rather with what happens in between them.
In [6] access control and declassification are combined to ensure that a program
can only declassify information that it has the right to read.

The network model we studied in this paper assumes that the allowed flow
policy of each domain is fixed. It would be interesting to generalize the model

Flow Policy Awareness for Distributed Mobile Code 67

in order to account for dynamic changes in these policies. However, combining
this more general scenario with the allowed-condition would lead to inconsisten-
cies, since the policies could potentially change after the branch of the allowed-
condition had been chosen. This motivates the study of other alternatives to the
allowed-condition for inspecting the current allowed flow policy of the context.

Acknowledgments. I thank Gérard Boudol and Tamara Rezk for insightful
discussions, as well as the anonymous reviewers who helped shape this paper.
This work was partially supported by FCT via KLog PTDC/MAT/68723/2006.

References

1. Almeida Matos, A.: Typing Secure Information Flow: Declassification and Mobility.
PhD thesis, École Nationale Supérieure des Mines de Paris (2006)

2. Almeida Matos, A.: Flow policy awareness for distributed mobile code (proofs).
Technical report, Instituto Superior Técnico de Lisboa (2008)

3. Almeida Matos, A., Boudol, G.: On declassification and the non-disclosure pol-
icy. In: 18th IEEE Computer Security Foundations Workshop, pp. 226–240. IEEE
Computer Society, Los Alamitos (2005)

4. Boudol, G.: A generic membrane model. In: Priami, C., Quaglia, P. (eds.) GC 2004.
LNCS, vol. 3267, pp. 208–222. Springer, Heidelberg (2005)

5. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread
systems. Theoretical Computer Science 281(1-2), 109–130 (2002)

6. Boudol, G., Kolundzija, M.: Access Control and Declassification. In: Computer
Network Security. CCIS, vol. 1, pp. 85–98. Springer, Heidelberg (2007)

7. Crafa, S., Bugliesi, M., Castagna, G.: Information flow security for boxed ambients.
In: Sassone, V. (ed.) Workshop on Foundations of Wide Area Network Computing.
ENTCS, vol. 66, pp. 76–97. Elsevier, Amsterdam (2002)

8. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

9. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symp. on Security and Privacy, pp. 11–20. IEEE Computer Society, Los Alamitos
(1982)

10. Gorla, D., Hennessy, M., Sassone, V.: Security policies as membranes in systems
for global computing. In: Foundations of Global Ubiquitous Computing, FGUC
2004. ENTCS, pp. 23–42. Elsevier, Amsterdam (2005)

11. Hicks, M., Tse, S., Hicks, B., Zdancewic, S.: Dynamic updating of information-flow
policies. In: Workshop on Foundations of Comp. Security, pp. 7–18 (2005)

12. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: 15th ACM Symp.
on Principles of Programming Languages, pp. 47–57. ACM Press, New York (1988)

13. Mantel, H., Sabelfeld, A.: A unifying approach to the security of distributed and
multi-threaded programs. Journal of Computer Security 11(4), 615–676 (2003)

14. Martins, F., Vasconcelos, V.T.: History-based access control for distributed pro-
cesses. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705,
pp. 98–115. Springer, Heidelberg (2005)

15. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, pp. 106–119. ACM, New York (1997)

16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

68 A. Almeida Matos

17. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of
Computer Security (2007) (to appear)

18. Tse, S., Zdancewic, S.: Run-time principals in information-flow type systems. In:
IEEE 2004 Symposium on Security and Privacy, pp. 179–193. IEEE Computer
Society Press, Los Alamitos (2004)

19. Zdancewic, S.: Challenges for information-flow security. In: 1st International Work-
shop on the Programming Language Interference and Dependence (2004)

20. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.: Secure program partitioning.
ACM Transactions on Computer Systems 20(3), 283–328 (2002)

21. Zheng, L., Myers, A.: Dynamic security labels and noninterference. In: Proc.
2nd Workshop on Formal Aspects in Security and Trust, pp. 27–40. Springer,
Heidelberg (2004)

Volume and Entropy of Regular Timed
Languages: Discretization Approach�

Eugene Asarin1 and Aldric Degorre2

1 LIAFA, Université Paris Diderot / CNRS
case 7014, 75205 Paris Cedex 13, France

Eugene.Asarin@liafa.jussieu.fr
2
VERIMAG,

Centre Equation, 2 av. de Vignate, 38610 Gières, France
Aldric.Degorre@imag.fr

Abstract. For timed languages, we define size measures: volume for lan-
guages with words having a fixed finite number of events, and entropy
(growth rate) as asymptotic measure for an unbounded number of events.
These measures can be used for quantitative comparison of languages,
and the entropy can be viewed as the information contents of a timed
language. For languages accepted by deterministic timed automata, we
give exact formulas for volumes. Next, for a large class of timed lan-
guages accepted by non-Zeno timed automata, we devise a method to
approximate the volumes and the entropy based on discretization. We
give an information-theoretic interpretation of the entropy in terms of
Kolmogorov complexity.

1 Introduction

Since early 90s timed automata and timed languages are extensively used for
modelling and verification of real-time systems, and thoroughly explored from
a theoretical standpoint. However, two important, and closely related, aspects
have never been addressed: quantitative analysis of the size of these languages
and of the information content of timed words. In this paper, we formalize and
partially solve these problems for large subclasses of timed languages.

Recall that a timed word describes a behaviour of a system, taking into ac-
count delays between events. For example, 2a3.11b means that an event a hap-
pened 2 time units after the system start, and b happened 3.11 time units after
a. A timed language, which is just a set of timed words, may represent all such
potential behaviours. Our aim is to measure the size of such a language. For a
fixed number n of events, we can consider the language as a subset of Σn × IRn

(that is of several copies of the space IRn). A natural measure in this case is just
the Euclidean volume Vn of this subset. When the number of events is not fixed,
we can still consider for each n all the timed words with n events belonging to the
language and their volume Vn. It turns out that in most cases Vn asymptotically
behaves as 2nH for some constant H that we call the entropy of the language.
� Support from French ANR project AMAES is gratefully acknowledged.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 69–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 E. Asarin and A. Degorre

The information-theoretic meaning of H can be stated as follows: for a small
ε, if the delays are measured with a finite precision ε, then using the words of a
language L with entropy H one can transmit H + log(1/ε) bits of information
per event (see Thms. 4-5 below for a formalization in terms of Kolmogorov
complexity).

There can be several potential applications of these notions:

– The most direct one is capacity estimation for an information transmission
channel or for a time-based information flow.

– When one overapproximates a timed language L1 by a simpler timed lan-
guage L2, e.g. using some abstractions as in [1], it is important to assess the
quality of the approximation. Comparing entropies of L1 and L2 provides
such an assessment.

– In model-checking of timed systems it is often interesting to know the size of
the set of all behaviours violating a property or of a subset of those presented
as a counter-example by a verification tool.

In this paper, we explore, and partly solve the following problems: given a prefix-
closed timed language accepted by a timed automaton, find the volume Vn of
the set of accepted words of a given length n and the entropy H of the whole
language.

Two Papers. In fact, we have developed two different and complementary
approaches (discretization based and analytical) to the computation of volumes
and entropy of timed languages. In this paper, we present for the first time
the main definitions, exact formulas for volumes, and a method to approximate
the volumes and the entropy using discretization. In [2] we propose methods
of computation of the entropy based on functional analysis of positive integral
operators. Our preprint [3] available on the Web presents both approaches with
more detailed proofs.

Related Work. Our problems and techniques are partly inspired by works
concerning the entropy of finite-state languages (cf. [4]). There the cardinality of
the set Ln of all elements of length n of a prefix-closed regular language L also
behaves as 2nH for some entropy H. This entropy can be found as logarithm
of the spectral radius of adjacency matrix of reachable states of A.1 In this
paper, we reduce our problem by discretization to entropy computation for some
discrete automata.

In [5,6] probabilities of some timed languages and densities in the clock space
are computed. Our formulae for fixed-length volumes can be seen as specializa-
tion of these results to uniform measures. As for unbounded languages, they use
stringent condition of full simultaneous reset of all the clocks at most every k
steps, and under such a condition, they provide a finite stochastic class graph
that allows computing various interesting probabilities. We use a much weaker
1 This holds also for automata with multiplicities, see [4].

Volume and Entropy of Regular Timed Languages 71

hypothesis (every clock to be reset at most every D steps, but these resets need
not be simultaneous), and we obtain only the entropy.

In [7] probabilities of LTL properties of one-clock timed automata (over in-
finite timed words) are computed using Markov chains techniques. It would be
interesting to try to adapt our methods to this kind of problems.

Last, our studies of Kolmogorov complexity of rational elements of timed
languages, relating this complexity to the entropy of the language, remind of
earlier works on complexity of rational approximations of continuous functions
[8,9], and those relating complexity of trajectories to the entropy of dynamical
systems [9,10].

Paper Organization. This paper is organized as follows. In Sect. 2, we define
volumes of fixed-length timed languages and entropy of unbounded-length timed
languages, identify some useful subclasses of automata and obtain exact formulas
for the volumes of languages of deterministic timed automata. In Sect. 3, we
devise a procedure that provides upper and lower bounds of the volumes and
the entropy by discretization of the timed automaton. In the next Sect. 4, and
using similar techniques, we give an interpretation of the entropy of timed regular
languages in terms of Kolmogorov complexity. We conclude the paper by some
final remarks in Sect. 5.

2 Problem Statement

2.1 Geometry, Volume and Entropy of Timed Languages

A timed word of length n over an alphabet Σ is a sequence w = t1a1t2 . . . tnan,
where ai ∈ Σ, ti ∈ IR and 0 ≤ ti (notice that this definition rules out timed
words ending by a time delay). Here ti represents the delay between the events
ai−1 and ai. With such a timed word w of length n we associate its untiming
η(w) = a1, . . . , an ∈ Σn (which is just a word), and its timing which is a point
θ(w) = (t1, . . . , tn) in IRn. A timed language L is a set of timed words. For a
fixed n, we define the n-volume of L as follows:

Vn(L) =
∑

v∈Σn

Vol{θ(w) | w ∈ L, η(w) = v},

where Vol stands for the standard Euclidean volume in IRn. In other words,
we sum up over all the possible untimings v of length n the volumes of the
corresponding sets of delays in IRn. In case of regular timed languages, these
sets are polyhedral, and hence their volumes (finite or infinite) are well-defined.

We associate with every timed language a sequence of n-volumes Vn. We will
show in Sect. 2.4 that, for languages of deterministic timed automata, Vn is
a computable sequence of rational numbers. However, we would like to find a
unique real number characterizing the asymptotic behaviour of Vn as n → ∞.
Typically, Vn depends approximately exponentially on n. We define the entropy
of a language as the rate of this dependence.

72 E. Asarin and A. Degorre

Formally, for a timed language L we define its entropy as follows:

H(L) = lim sup
n→∞

log2 Vn

n
,

where lim sup stands for upper limit2.

Remark 1. Many authors consider a slightly different kind of timed words: se-
quences w = (a1, d1), . . . , (an, dn), where ai ∈ Σ, di ∈ IR and 0 ≤ d1 ≤ · · · ≤ dn,
with di representing the date of the event ai. This definition is in fact isomorphic
to ours by a change of variables: t1 = d1 and ti = di − di−1 for i = 2..n. It is
important for us that this change of variables preserves the n-volume, since it is
linear and its matrix has determinant 1. Therefore, choosing date (di) or delay
(ti) representation has no influence on language volumes (and entropy). Due to
the authors’ preferences (justified in [11]), delays will be used in the sequel.

2.2 Three Examples

To illustrate the problem of determining volume and entropy, consider the lan-
guages recognized by three timed automata [12] of Fig. 1. The third one resists
naive analysis, and will be used to illustrate the discretization method at the
end of Sect. 3.

A1

p

a, x ∈ [2; 4]/x := 0

b, x ∈ [3; 10]/x := 0

A2

p q

a, x ∈ [0; 4]

b, x ∈ [2; 4]/x := 0

A3

p q

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

Fig. 1. Three simple timed automata A1,A2,A3

Rectangles. Consider the timed language defined by the expression

L1 = ([2; 4]a + [3; 10]b)∗ ,

recognized by A1 of Fig. 1.
For a given untiming w ∈ {a, b}n containing k letters a and n − k letters b,

the set of possible timings is a rectangle in IRn of a volume 2k7n−k (notice that
there are Ck

n such untimings). Summing up all the volumes, we obtain

Vn(L1) =
n∑

k=0

Ck
n2k7n−k = (2 + 7)n = 9n,

and the entropy H(L1) = log 9 ≈ 3.17.

2 In fact, due to Assumption A2 below, the languages we consider in the paper are
prefix-closed, and lim sup is in fact a lim.

Volume and Entropy of Regular Timed Languages 73

A Product of Trapezia. Consider the language defined by the automaton
A2 on Fig. 1, that is containing words of the form t1as1bt2as2b . . . tkaskb such
that 2 ≤ ti + si ≤ 4. Since we want prefix-closed languages, the last skb can be
omitted.

For an even n = 2k the only possible un-

s2 4

2

4
t

Fig. 2. Timings (ti, si) for A2

timing is (ab)k. The set of timings in IR2k is a
Cartesian product of k trapezia 2 ≤ ti + si ≤
4. The surface of each trapezium equals S =
42/2 − 22/2 = 6, and the volume V2k(L2) =
6k. For an odd n = 2k + 1 the same product
of trapezia is combined with an interval 0 ≤
tk+1 ≤ 4, hence the volume is V2k+1(L2) =
6k · 4. Thus the entropy H(L2) = log 6/2 ≈
1.29.

Our Favourite Example. The language recognized by the automaton A3 on
Fig. 1 contains the words of the form t1at2bt3at4b . . . with ti + ti+1 ∈ [0; 1].
Notice that the automaton has two clocks that are never reset together. The
geometric form of possible untimings in IRn is defined by overlapping constraints
ti + ti+1 ∈ [0; 1].

It is not so evident how to compute the volume of this polyhedron. A sys-
tematic method is described below in Sect. 2.4. An ad hoc solution would be
to integrate 1 over the polyhedron, and to rewrite this multiple integral as an
iterated one. The resulting formula for the volume is

Vn(L3) =
∫ 1

0
dt1

∫ 1−t1

0
dt2

∫ 1−t2

0
dt3 . . .

∫ 1−tn−1

0
dtn.

This gives the sequence of volumes:

1;
1
2
;
1
3
;

5
24

;
2
15

;
61
720

;
17
315

;
277
8064

; . . .

In the sequel, we will also compute the entropy of this language.

2.3 Subclasses of Timed Automata

In the rest of the paper, we compute volumes and entropy for regular timed
languages recognized by some subclasses of timed automata (TA). We assume
that the reader is acquainted with timed automata; otherwise, we refer her or
him to [12] for details. Here we only fix notations for components of timed
automata and state several requirements they should satisfy. Thus a TA is a
tuple A = (Q, Σ, C, ∆, q0). Its elements are respectively the set of locations,
the alphabet, the set of clocks, the transition relation, and the initial location
(we do not need to specify accepting states due to A2 below, neither we need
any invariants). A generic state of A is a pair (q,x) of a control location and

74 E. Asarin and A. Degorre

a vector of clock values. A generic element of ∆ is written as δ = (q, a, g, r, q′)
meaning a transition from q to q′ with label a, guard g and reset r. We spare
the reader the definitions of a run of A and of its accepted language.

Several combinations of the following Assumptions will be used in the sequel:

A1. The automaton A is deterministic3.
A2. All its states are accepting.
A3. Guards are rectangular (i.e. conjunctions of constraints Li ≤ xi ≤ Ui, strict

inequalities are also allowed). Every guard upper bounds at least one clock.
A4. There exists a D ∈ IN such that on every run segment of D transitions,

every clock is reset at least once.
A5. There is no punctual guards, that is in any guard Li < Ui.

Below we motivate and justify these choices:

A1: Most of known techniques to compute entropy of untimed regular languages
work on deterministic automata. Indeed, these techniques count paths in
the automaton, and only in the deterministic case their number coincides
with the number of accepted words. The same is true for volumes in timed
automata. Unfortunately, for timed automata, determinization is not always
possible, and A1 is restrictive.

A2: Prefix-closed languages are natural in the entropy context, and somewhat
easier to study. These languages constitute the natural model for the set of
behaviours of causal systems.

A3: If a guard of a feasible transition is infinite, the volume becomes infinite.
We conclude that A3 is unavoidable and almost not restrictive.

A4: We use this variant of non-Zenoness condition several times in our proofs
and constructions. As the automaton of Fig. 3 shows, if we omit this as-
sumption some anomalies can occur.

The language of this automaton is

a, x ∈ [0; 1]

Fig. 3. An automaton
without resets

L = {t1a . . . tna | 0 ≤
∑

ti ≤ 1},

and Vn is the volume of an n-dimensional sim-
plex defined by the constraints 0 ≤

∑
ti ≤ 1,

and 0 ≤ ti. Hence Vn = 1/n! which decreases
faster than any exponent, which is too fine to be

distinguished by our methods. Assumption A4 rules out such anomalies.
This assumption is also the most difficult to check. A possible way would
be to explore all simple cycles in the region graph and to check that all of
those reset every clock.

A5: While assumptions A1-A4 can be restrictive, we always can remove the
transitions with punctual guards from any automaton, without changing
the volumes Vn. Hence, A5 is not restrictive at all, as far as volumes are
considered. In Sect. 4 we do not make this assumption.

3 That is any two transitions with the same source and the same label have their
guards disjoint.

Volume and Entropy of Regular Timed Languages 75

2.4 Computing Volumes

Given a timed automatonA satisfying A1-A3, we want to compute n-volumes Vn

of its language. In order to obtain recurrent equations on these volumes, we need
to take into account all possible initial locations and clock configurations. For
every state (q,x), let L(q,x) be the set of all the timed words corresponding to
the runs of the automaton starting at this state, let Ln(q,x) be its sublanguage
consisting of its words of length n, and vn(q,x) the volume of this sublanguage.
Hence, the quantity we are interested in, is a value of vn in the initial state:

Vn = vn(q0, 0).

By definition of runs of a timed automaton, we obtain the following language
equations:

L0(q,x) = ε;

Lk+1(q,x) =
⋃

(q,a,g,r,q′)∈∆

⋃
τ :x+τ∈g

τaLk(q′, r(x + τ)).

Since the automaton is deterministic, the union over transitions (the first
⋃

in
the formula) is disjoint. Hence, it is easy to pass to volumes:

v0(q,x) = 1; (1)

vk+1(q,x) =
∑

(q,a,g,r,q′)∈∆

∫
τ :x+τ∈g

vk(q′, r(x + τ)) dτ. (2)

Remark that for a fixed location q, and within every clock region, as defined
in [12], the integral over τ : x + τ ∈ g can be decomposed into several

∫ u

l
with

bounds l and u either constants or of the form c− xi with c an integer and xi a
clock variable.

These formulas lead to the following structural description of vn(q,x), which
can be proved by a straightforward induction.

Lemma 1. The function vn(q,x) restricted to a location q and a clock region can
be expressed by a polynomial of degree n with rational coefficients in variables x.

Thus in order to compute the volume Vn one should find by symbolic integration
polynomial functions vk(q,x) for k = 0..n, and finally compute vn(q0, 0).

Theorem 1. For a timed automaton A satisfying A1-A3, the volume Vn is a
rational number, computable from A and n using the procedure described above.

3 Discretization Approach

In this section, we use an approach to volume/entropy computation based on
discretization of timed languages and timed automata. This discretization is
strongly inspired by [13,14,15].

76 E. Asarin and A. Degorre

3.1 ε-Words and ε-Balls

We start with a couple of preliminary definitions. Take an ε = 1/N > 0. A
timed word w is ε-timed if all the delays in this word are multiples of ε. Any
ε-timed word w over an alphabet Σ can be written as w = hε(v) for an untimed
v ∈ Σ ∪ {τ}, where the morphism hε is defined as follows:

hε(a) = a for a ∈ Σ, hε(τ) = ε.

The discrete word v with ticks τ (standing for ε delays) represents in this way
the ε-timed word w.

Example. Let ε = 1/5, then the timed word 0.6a0.4ba0.2a is ε-timed. Its repre-
sentation is τττaττbaτa.

The notions of ε-timed words and their representation can be ported straight-
forwardly to languages.

For a timed word w = t1a1t2a2 . . . tnan we introduce its North-East
ε-neighbourhood like this:

BNE
ε (w) = {s1a1s2a2 . . . snan | ∀i (si ∈ [ti; ti + ε])} .

For a language L, we define its NE-neighbourhood elementwise:

BNE
ε (L) =

⋃
w∈L

BNE
ε (w). (3)

The next simple lemma will play a key role in our algorithm (here #L stands
for the cardinality of L).

Lemma 2. Let L be some finite set of timed words of length n. Then

Vol(BNE
ε (L)) ≤ εn#L.

If, moreover, L is ε-timed, then

Vol(BNE
ε (L)) = εn#L.

Proof. Notice that for a timed word w of a length n the set BNE
ε (w) is a hyper-

cube of edge ε (in the delay space), and of volume εn. Notice also that neigh-
bourhoods of different ε-timed words are almost disjoint: the interior of their
intersections are empty. With these two remarks, the two statements are imme-
diate from (3). #$

3.2 Discretizing Timed Languages and Automata

Suppose now that we have a timed language L recognized by a timed automaton
A satisfying A2-A5 and we want to compute its entropy (or just the volumes Vn).

Volume and Entropy of Regular Timed Languages 77

Take an ε = 1/N > 0. We will build two ε-timed languages L− and L+ that under-
and over-approximate L in the following sense:

BNE
ε (L−) ⊂ L ⊂ BNE

ε (L+). (4)

The recipe is like this. Take the timed automaton A accepting L. Discrete au-
tomata Aε

+ and Aε
− can be constructed in two stages. First, we build counter

automata Cε
+ and Cε

−. They have the same states as A, but instead of every
clock x they have a counter cx (roughly representing x/ε). For every state add a
self-loop labelled by τ and incrementing all the counters. Replace any reset of x
by a reset of cx. Whenever A has a guard x ∈ [l; u] (or x ∈ (l; u), or some other
interval), the counter automaton Cε

+ has a guard cx ∈ [l/ε .−D; u/ε− 1] (always
the closed interval) instead, where D is as in assumption A4. At the same time
Cε
− has a guard cx ∈ [l/ε; u/ε−D]. Automata Cε

+ and Cε
− with bounded counters

can be easily transformed into finite-state ones Aε
+ and Aε

− .

Lemma 3. Languages L+ = hε(L(Aε
+)) and L− = hε(L(Aε

−)) have the required
property (4).

Proof (sketch).

Inclusion BNE
ε (L−) ⊂ L. Let a discrete word u ∈ L(Aε

−), let v = hε(u) be its
ε-timed version, and let w ∈ BNE

ε (v). We have to prove that w ∈ L. Notice
first that L(Aε

−) = L(Cε
−) and hence u is accepted by Cε

−. Mimic the run of
Cε
− on u, but replace every τ by an ε duration, thus, a run of A on v can

be obtained. Moreover, in this run every guard x ∈ [l, u] is respected with a
security margin: in fact, a stronger guard x ∈ [l, u−Dε] is respected. Now one
can mimic the same run of A on w. By definition of the neighbourhood, for
any delay ti in u the corresponding delay t′i in w belongs to [ti, ti + ε]. Clock
values are always sums of several (up to D) consecutive delays. Whenever a
narrow guard x ∈ [l, u−Dε] is respected on v, its “normal” version x′ ∈ [l, u]
is respected on w. Hence, the run of A on w obtained in this way respects
all the guards, and thus A accepts w. We deduce that w ∈ L. #$

Inclusion L ⊂ BNE
ε (L+). First, we define an approximation function on IR+ as

follows:

t =

⎧⎨
⎩

0 if t = 0
t− ε if t/ε ∈ IN+
ε%t/ε& otherwise.

Clearly, t is always a multiple of ε and belongs to [t − ε, t) with the only
exception that 0 = 0.

Now we can proceed with the proof. Let w = t1a1 . . . tnan ∈ L. We
define its ε-timed approximation v by approximating all the delays: v =
t1a1 . . . tnan. By construction w ∈ BNE

ε (v). The run of A on w respects all
the guards x ∈ [l; u]. Notice that the clock value of x on this run is a sum of
several (up to D) consecutive ti. If we try to run A over the approximating
word v, the value x′ of the same clock at the same transition would be a
multiple of ε and it would belong to [x−Dε; x). Hence x′ ∈ [l .−Dε, u− ε].

78 E. Asarin and A. Degorre

By definition of C+ this means that the word u = h−1
ε (v) is accepted by this

counter automaton. Hence v ∈ L+.
Let us summarize: for any w ∈ L we have constructed v ∈ L+ such that

w ∈ BNE
ε (v). This concludes the proof. #$

3.3 Counting Discrete Words

Once the automata Aε
+ and Aε

− constructed, we can count the number of words
with n events and its asymptotic behaviour using the following simple result.

Lemma 4. Given an automaton B over an alphabet {τ} ∪Σ, let

Ln = L(B) ∩ (τ∗Σ)n
.

Then (1) #Ln is computable; and (2) limn→∞(log #Ln/n) = log ρB with ρB a
computable algebraic real number.

Proof. We proceed in three stages. First, we determinize B and remove all the
useless states (unreachable from the initial state). These transformations yield
an automaton D accepting the same language, and hence having the same car-
dinalities #Ln. Since the automaton is deterministic, to every word in Ln cor-
responds a unique accepting path with n events from Σ and terminating with
such an event.

Next, we eliminate the tick transitions τ . As we are counting paths, we obtain
an automaton without silent (τ) transitions, but with multiplicities representing
the number of realizations of every transition. More precisely, the procedure is as
follows. Let D = (Q, {τ} ∪ Σ, δ, q0). We build an automaton with multiplicities
E = (Q, {e}, ∆, q0) over one-letter alphabet. For every p, q ∈ Q the multiplicity
of the transition p → q in E equals the number of paths from p to q in D over
words from τ∗Σ. A straightforward induction over n shows that the number of
paths in D with n non-tick events equals the number of n-step paths in E (with
multiplicities).

Let M be the adjacency matrix with multiplicities of E . It is well known (and
easy to see) that the #L(n) (that is the number of n-paths) can be found as the
sum of the first line of the matrix Mn

−. This allows computing #L(n). Moreover,
using Perron-Frobenius theorem we obtain that #L(n) ∼ ρn where ρ is the
spectral radius of M , the greatest (in absolute value) real root λ of the integer
characteristic polynomial det(M − λI). #$

3.4 From Discretizations to Volumes

As soon as we know how to compute the cardinalities of under- and over- ap-
proximating languages #L−(n) and #L+(n) and their growth rates ρ− and ρ+,
we can deduce the following estimates solving our problems.

Theorem 2. For a timed automaton A satisfying A2-A5, the n-volumes of its
language satisfy the estimates:

#L−(n) · εn ≤ Vn ≤ #L+(n) · εn.

Volume and Entropy of Regular Timed Languages 79

Proof. In inclusions (4) take the volumes of the three terms, and use Lemma 2.
#$

Theorem 3. For a timed automaton A satisfying A2-A5, the entropy of its
language satisfies the estimates:

log(ερ−) ≤ H(L(A)) ≤ log(ερ+).

Proof. Just use the previous result, take the logarithm, divide by n and pass to
the limit. #$

We summarize the algorithm in Table 1.

Table 1. Discretization algorithm: bounding H

1. Choose an ε = 1/N .
2. Build the counter automata Cε

− and Cε
+.

3. Transform them into finite automata Aε
− and Aε

+.
4. Eliminate τ transitions introducing multiplicities.
5. Obtain adjacency matrices M− and M+.
6. Compute their spectral radii ρ− and ρ+.
7. Conclude that H ∈ [log ερ−; log ερ+].

This theorem can be used to estimate the entropy. However, it can also be
read in a converse direction: the cardinality of L restricted to n events and
discretized with quantum ε is close to 2Hn/εn. Hence, we can encode H− log ε
bits of information per event. These information-theoretic considerations are
made more explicit in Sect. 4 below.

A Case Study. Consider the example L3 = {t1at2bt3at4b · · · | ti + ti+1 ∈ [0; 1]}
from Sect. 2.2. We need two clocks to recognize this language, and they are never
reset together. We choose ε = 0.05 and build the automata on Fig. 4 according
to the recipe (the discrete ones A+ and A− are too big to fit on the figure).

We transform C0.05
− and C0.05

+ , into A+ and A−, eliminate silent transitions
and unreachable states, and compute spectral radii of adjacency matrices (their

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

a, c ∈ [0; 18]/c := 0

b, d ∈ [0; 18]/d := 0

ττ a, c ∈ [0; 19]/c := 0

b, d ∈ [0; 19]/d := 0 ττ

Fig. 4. A two-clock timed automaton A3 and its approximations C0.05
− and C0.05

+ . All
τ -transitions increment counters c and d.

80 E. Asarin and A. Degorre

sizes are 38x38 and 40x40): #L0.05
− (n) ∼ 12.41n, #L0.05

+ (n) ∼ 13.05n. Hence
12.41n · 0.05n ≤ Vn ≤ 13.05n · 0.05n, and the entropy

H ∈ [log 0.62; log 0.653] ⊂ (−0.69;−0.61).

Taking a smaller ε = 0.01 provides a better estimate for the entropy:

H ∈ [log 0.6334; log0.63981] ⊂ (−0.659;−0.644).

We prove in [2,3] that the true value of the entropy is H = log(2/π) ≈
log 0.6366 ≈ −0.6515.

4 Kolmogorov Complexity of Timed Words

To interpret the results above in terms of information content of timed words
we state, using similar techniques, some estimates of Kolmogorov complexity of
timed words. Recall first the basic definition from [16], see also [17]. Given a par-
tial computable function (decoding method) f : {0; 1}∗ × B → A, a description
of an element x ∈ A knowing y ∈ B is a word w such that f(w, y) = x. The
Kolmogorov complexity of x knowing y, denoted Kf (x|y) is the length of the
shortest description. According to Kolmogorov-Solomonoff theorem, there exists
the best (universal) decoding method providing shorter descriptions (up to an
additive constant) than any other method. The complexity K(x|y) with respect
to this universal method represents the quantity of information in x knowing y.

Coming back to timed words and languages, remark that a timed word within
a “simple” timed language can involve rational delays of a very high complexity,
or even uncomputable real delays. For this reason we consider timed words with
finite precision ε. For a timed word w and ε = 1/N we say that a timed word v is
a rational ε-approximation of w if all delays in v are rational and w ∈ BNE

ε (v)4.

Theorem 4. Let A be a timed automaton satisfying A2-A4, L its language, H
its entropy. For any rational α, ε > 0, and any n ∈ IN large enough there exists
a timed word w ∈ L of length n such that the Kolmogorov complexity of all the
rational ε-approximations v of the word w is lower bounded as follows

K(v|n, ε) ≥ n(H+ log 1/ε− α). (5)

Proof. By definition of the entropy, for n large enough

Vn > 2n(H−α).

Consider the set S of all timed words v violating the lower bound (5)

S = {v | K(v|n, ε) ≤ n(H+ log(1/ε)− α)} .

4 In this section, we use such South-West approximations v for technical simplicity
only.

Volume and Entropy of Regular Timed Languages 81

The cardinality of S can be bounded as follows:

#S ≤ 2n(H+log(1/ε)−α) = 2n(H−α)/εn.

Applying Lemma 2 we obtain

Vol(BNE
ε (S)) ≤ εn#S ≤ 2n(H−α) < Vn.

We deduce that the set Ln of timed words from L of length n cannot be included
into BNE

ε (S). Thus, there exists a word w ∈ Ln \ BNE
ε (S). By construction, it

cannot be approximated by any low-complexity word with precision ε. #$
Theorem 5. Let A be a timed automaton satisfying A2-A4, L its language,
α > 0 a rational number. Consider a “bloated” automaton A′ which is like A, but
in all the guards each constraint x ∈ [l, u] is replaced by x ∈ [l .−α, u+α]. Let H′ be
the entropy of its language. Then the following holds for any ε = 1/N ∈ (0; α/D),
and any n large enough.

For any timed word w ∈ L of length n there exists its ε-approximation v
with Kolmogorov complexity upper bounded as follows:

K(v|n, ε) ≤ n(H′ + log 1/ε + α).

Proof. Denote the language of A′ by L′, the set of words of length n in this
language by L′

n and its n-volume by V ′
n. We remark that for n large enough

V ′
n < 2n(H′+α/2).

Let now w = t1a1 . . . tnan in Ln. We construct its rational ε-approximation as
in Lemma 3: v = t1a1 . . . tnan. To find an upper bound for the complexity of v
we notice that v ∈ U , where U is the set of all ε-timed words u of n letters such
that BNE

ε (u) ⊂ L′
n. Applying Lemma 2 to the set U we obtain the bound

#U ≤ V ′
n/εn < 2n(H′+α/2)/εn.

Hence, in order to encode v (knowing n and ε) it suffices to give its number in
a lexicographical order of U , and

K(v|n, ε) ≤ log #U + c ≤ n(H′ + log 1/ε + α/2) + c ≤ n(H′ + log 1/ε + α)

for n large enough. #$
Two theorems above provide close upper and lower bounds for complexity of
ε-approximations of elements of a timed language.

However, the following example shows that because we removed Assumption
A5, in some cases these bounds do not match and H′ can possibly not converge
towards H when α becomes small.

Example 1. Consider the automaton of Fig. 5. For this example, the state q does
not contribute to the volume, and H = log 3. But whenever we bloat the guards,
both states become “usable” and, for the bloated automaton H′ ≈ log 5. As for
Kolmogorov complexity, for ε-approximations of words from the sublanguage
1b([0; 5]a)∗ it behaves as n(log 5 + log(1/ε)). Thus, for this bothering example,
the complexity matches H′ rather than H.

82 E. Asarin and A. Degorre

p q

b, x = 1/x := 0

a, x ∈ [0; 5]/x := 0a, x ∈ [0; 3]/x := 0

Fig. 5. A pathological automaton

5 Conclusions and Further Work

In this paper, we have defined size characteristics of timed languages: volume
and entropy, and suggested a procedure to compute their approximations. Re-
search in this direction is very recent, and many questions need to be studied.
We are planning to explore practical feasibility of the procedure described here
and compare to the techniques from [2]. We will explore potential applications
mentioned in the introduction.

Many theoretical questions still require exploration. It would be interesting to
estimate the gap between our upper and lower bounds for the entropy (we believe
that this gap tends to 0 for strongly connected automata) and establish entropy
computability. We would be happy to remove some of Assumptions A1-A5, in
particular non-Zenoness. Kolmogorov complexity estimates can be improved, in
particular, as shows Example 1, it could be more suitable to use another variant
of entropy, perhaps H+ = maxHq, where the entropy is maximized with respect
to initial states q. Extending results to probabilistic timed automata is another
option. Our entropy represents the amount of information per timed event. It
would be interesting to find the amount of information per time unit. Another
research direction is to associate a dynamical system (a subshift) to a timed
language and to explore entropy of this dynamical system.

Acknowledgment. The authors are thankful to Oded Maler for motivating
discussions and valuable comments on the manuscript.

References

1. Ben Salah, R., Bozga, M., Maler, O.: On timed components and their abstraction.
In: SAVCBS 2007, pp. 63–71. ACM, New York (2007)

2. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Analytic
approach. In: FORMATS 2009. LNCS. Springer, Heidelberg (to appear, 2009)

3. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages. Preprint
(2009), http://hal.archives-ouvertes.fr/hal-00369812/

4. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding.
Cambridge University Press, Cambridge (1995)

5. Bucci, G., Piovosi, R., Sassoli, L., Vicario, E.: Introducing probability within state
class analysis of dense-time-dependent systems. In: QEST 2005, pp. 13–22. IEEE
Computer Society, Los Alamitos (2005)

http://hal.archives-ouvertes.fr/hal-00369812/

Volume and Entropy of Regular Timed Languages 83

6. Sassoli, L., Vicario, E.: Close form derivation of state-density functions over dbm
domains in the analysis of non-Markovian models. In: QEST 2007, pp. 59–68. IEEE
Computer Society, Los Alamitos (2007)

7. Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking
of one-clock timed automata under probabilistic semantics. In: QEST 2008,
pp. 55–64. IEEE Computer Society, Los Alamitos (2008)

8. Asarin, E., Pokrovskii, A.: Use of the Kolmogorov complexity in analyzing control
system dynamics. Automation and Remote Control (1), 25–33 (1986)

9. Rojas, C.: Computability and information in models of randomness and chaos.
Mathematical Structures in Computer Science 18(2), 291–307 (2008)

10. Brudno, A.: Entropy and the complexity of the trajectories of a dynamical system.
Trans. Moscow Math. Soc. 44, 127–151 (1983)

11. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM 49,
172–206 (2002)

12. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

13. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS,
vol. 1466, pp. 470–484. Springer, Heidelberg (1998)

14. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

15. Göllü, A., Puri, A., Varaiya, P.: Discretization of timed automata. In: CDC 1994,
vol. 1, pp. 957–958 (1994)

16. Kolmogorov, A.: Three approaches to the quantitative definition of information.
Problems of Information Transmission 1(1), 1–7 (1965)

17. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications,
3rd edn. Springer, Heidelberg (2008)

A Logical Interpretation of the λ-Calculus into the
π-Calculus, Preserving Spine Reduction and Types

Steffen van Bakel and Maria Grazia Vigliotti

Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK
svb@doc.ic.ac.uk, mgv98@doc.ic.ac.uk

Abstract. We define a new, output-based encoding of the λ-calculus into the
asynchronous π-calculus – enriched with pairing – that has its origin in math-
ematical logic, and show that this encoding respects one-step spine-reduction
up to substitution, and that normal substitution is respected up to similarity. We
will also show that it fully encodes lazy reduction of closed terms, in that term-
substitution as well as each reduction step are modelled up to similarity. We then
define a notion of type assignment for the π-calculus that uses the type construc-
tor →, and show that all Curry-assignable types are preserved by the encoding.

Introduction

In this paper we present a new encoding of terms of Church’s λ-calculus [7,11] into
Milner’s π-calculus [18] that respects reduction, and define a new notion of type as-
signment for π so that processes will become witnesses for the provable formulae.

Sangiorgi [21] states good reasons for obtaining an expressive encoding:

– From the process calculi point of view, to gain deeper insight into its theory.
– From the λ-calculus point of view, to provide the opportunity to study λ-terms in

different contexts than the sequential one.
– The λ-calculus is a model for functional language programming; these languages

have never been very efficient, and one way of improving efficiency is to use paral-
lel implementation.

So therefore, it is important to understand which relation is held between the two
paradigms. Research in the direction of encodings of λ-terms was started by Milner in
[18]; he defined an input-based encoding, and showed that the interpretation of closed
λ-terms respects lazy reduction up to substitution. Milner also defined another input-
based encoding that respects call-by-value reduction up to substitution, but the latter had
fewer followers. An input-based interpretation of the λ-calculus into the π-calculus has
also been studied by Sangiorgi [23], but in the context of the higher-order π-calculus,
by Honda et al. [17] with a rich type theory, and by Thielecke [25] in the context of
continuation passing style programming languages.

For many years, it seemed that the first and final word on the encoding of the λ-
calculus has been said by Milner; in fact, Milner’s encoding has set a milestone in the
comparison of the two paradigms, and all the above mentioned systems present variants
of Milner’s encoding. Sangiorgi [20] says:

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 84–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Logical Interpretation of the λ-Calculus into the π-Calculus 85

“ It seems established that [Milner’s encoding] is canonical, i.e. it is the ‘best’ or
‘simplest’ encoding of the lazy λ-calculus into π-calculus. Nevertheless, one
has to think carefully about it – in particular at the encoding of application –
to understand that it really does work. ”

We present in this paper a conceptually different encoding, that not only respects lazy
reduction, but also the (larger) notion of spine reduction, and is easier to understand.
Essentially following the structure of Milner’s proof, central to our approach is the
interpretation of the explicit substitution version of spine reduction, which allows us
to establish a clear connection between term-substitution in the λ-calculus, and the
simulation of this operation in the π-calculus via channel-name passing.

We also investigate our interpretation in relation to the type system presented in [4].
This system provides a logical view to the π-calculus, where π-processes can be wit-
nesses of formulae that are provable (within the implicative fragment) in classical logic,
as was shown in [4]. That system is different from standard type systems for π as it does
not contain any channel information, and in that it expresses implication. We show that
our encoding preserves types assignable to λ-terms in Curry’s system. Through this type
preservation result we show that our encoding also respects the functional behaviour of
terms, as expressed via assignable types. In this way we establish a deeper relationship
between sequential/applicative and concurrent paradigms.

The results on the type system that we present here determines the choice of π-
calculus used for the encoding: we use the asynchronous π-calculus enriched with pairs
of names [1]. In principle, our encoding could be adapted to the synchronous monadic
π-calculus, however we would not be able to achieve the preservation of assignable
types. Our encoding takes inspiration from, but it is a much improved version of, the
encoding of λ-terms in to the sequent calculus X [5,6] – a first variant was defined by
Urban [26,27]; X is a sequent calculus that enjoys the Curry-Howard correspondence
for Gentzen’s LK [13] – and the encoding of X into π-calculus as defined in [4].

Our work not only sheds new light on the connection between sequential and con-
current computation but also established a firm link between logic and process calculi.
The relation between process calculi and classical logic as first reported on in [4] is an
interesting and very promising area of research (similar attempts we made in the context
of natural deduction [17], and linear logic [9]). A preliminary interpretation of λ-terms
in to the π-calculus was shown in [4]; in this paper we improve the interpretation and
strengthen operational correspondence results, by establishing the relationship between
the π-calculus ad explicit substitution, and by considering spine reduction.

In summary, the main achievements of this paper are:

– an output-based encoding of the λ-calculus into the asynchronous π-calculus with
pairing is defined that preserves spine reduction with explicit substitution for all
terms up to contextual equivalence, and, by inclusion, for lazy reduction with
explicit substitution;

– our encoding also respects implicit substitution, and respects lazy reduction for
closed terms up to simulation;

– our encoding preserves assignable Curry types for λ-terms, with respect to the
context assignment system for π from [4].

86 S. van Bakel and M.G. Vigliotti

Paper outline. In Sec. 1, we repeat the definition of the asynchronous π-calculus with
pairing, and in Sec. 2 that of the λ-calculus, where we present the notion of explicit
spine reduction ‘→xS’ which takes a central role in this paper; in Sec. 3 we also briefly
discuss Milner’s interpretation result for the lazy λ-calculus. Then, in Sec. 4, we will
define an encoding where terms are interpreted under output rather than input (as in
Milner’s), and show that →xS is respected by our interpretation; we will also show a
simulation result for full β-reduction. Finally, in Sec. 5, we give a notion of (type) con-
text assignment on processes in π, and show that our interpretation preserves types. In
fact, this result is the main motivation for our interpretation, which is therefore logical.

1 The Asynchronous π-Calculus with Pairing

The notion of asynchronous π-calculus that we consider in this paper is the one used
also in [1,4], and is different from other systems studied in the literature [15] in a num-
ber of aspects: we add pairing, and introduce the let-construct to deal with inputs of
pairs of names that get distributed. The main reason for the addition of pairing [1]
lies in the fact that we want to preserve implicate type assignment. The π-calculus is an
input-output calculus, where terms have not just more than one input, but also more than
one output. This is similar to what we find in Gentzen’s LK, where right-introduction of
the arrow is represented by

(⇒R) :
Γ �LK ∆

(Γ = Γ′, A & ∆ = B, ∆′)
Γ′ �LK A⇒B, ∆′

where Γ and ∆ are multi-sets of formulae. Notice that only one of the possible for-
mulae is selected from the right context, and two formulae are selected in one step;
when searching for a Curry-Howard correspondence, this will have to be reflected in
the (syntactic) witness of the proof. So if we want to model this in π, i.e. want to ex-
press function construction (abstraction), we need to bind two free names, one as name
for the input of the function, and the other as name for its output. We can express that
a process P acts as a function only when fixing (binding) both an input and an output
simultaneously, i.e. in one step; we use pairing exactly for this: interfaces for functions
are modelled by sending and receiving pairs of names.

Below, we will use ‘◦’ for the generic variable, and introduce a structure over names,
such that not only names but also pairs of names can be sent (but not a pair of pairs);
this way a channel may pass along either a name or a pair of names.

Definition 1. Channel names and data are defined by:

a, b, c, d, x, y, z names p ::= a | a, b data

Notice that pairing is not recursive. Processes are defined by:

P, Q ::= 0 Nil
| P |Q Composition
| ! P Replication
| (νa) P Restriction

| a(x). P Input
| a〈p〉 (Asynchronous) Output
| let x, y = z in P Let construct

We abbreviate a(x). let y, z = x in P by a(y, z). P, and (νm) (νn) P by (νmn) P.
A (process) context is simply a term with a hole [·].

A Logical Interpretation of the λ-Calculus into the π-Calculus 87

Definition 2 (Congruence). The structural congruence is the smallest equivalence re-
lation closed under contexts defined by the following rules:

P | 0 ≡ P
P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)
(νn) 0 ≡ 0

(νm) (νn) P ≡ (νn) (νm) P
(νn) (P |Q) ≡ P | (νn) Q if n
∈ fn(P)

! P ≡ P | ! P
let x, y = a, b in R ≡ R[a/x, b/y]

Definition 3. The reduction relation over the processes of the π-calculus is defined by
following (elementary) rules:

(synchronisation) : a〈b〉 | a(x). Q →π Q[b/x]
(hiding) : P →π P′ ⇒ (νn) P →π (νn) P′

(composition) : P →π P′ ⇒ P |Q →π P′ |Q
(congruence) : P ≡ Q & Q →π Q′ & Q′ ≡ P′ ⇒ P →π P′

We write→∗
π for the reflexive and transitive closure of this relation.

Notice that a〈 b, c 〉 | a(x, y). Q →π Q[b/x, c/y] .

Definition 4. 1. We write P ↓ n (P outputs on n) if P ≡ (νb1 . . . bm) (n〈p〉 |Q) for
some Q, where n
= b1 . . . bm.

2. We write P ⇓ n (P will output on n) if there exists Q such that P →∗
π Q and Q ↓ n.

3. We write P ∼c Q (and call P and Q contextually equivalent) if, for all contexts
C[·], and for all n, C[P] ⇓ n ⇐⇒ C[Q] ⇓ n.

Definition 5 ([16]). Barbed contextual simularity is the largest relation π� such that
P π� Q implies:

– for each name n, if P ↓ n then Q ⇓ n;
– for any context C[·], if C[P] →π P′, then for some Q′, C[Q] →∗

π Q′ and P′ π� Q′.

2 The Lambda Calculus (and Variants Thereof)

We assume the reader to be familiar with the λ-calculus; we just repeat the definition
of the relevant notions.

Definition 6 (Lambda terms and β-contraction [7]).

1. The set Λ of λ-terms is defined by the grammar:

M, N ::= x | λx.M | MN
2. The reduction relation→β is defined by the rules:

(λx.M)N → M[N/x] M → N ⇒

⎧⎨
⎩

ML → NL
LM → LN
λx.M → λx.N

3. Lazy1 reduction [2]→L is defined by limiting the reduction relation to:

(λx.M)N → M[N/x] M → N ⇒ ML → NL

1 This reduction relation is sometimes also known as ‘Call-by-Name’; since this is an overloaded
concept, we stick to the terminology ‘lazy’; the definition here is the one used in [18].

88 S. van Bakel and M.G. Vigliotti

4. We define spine reduction2 →S by limiting reduction to:

(λx.M)N → M[N/x] M → N ⇒
{

ML → NL
λx.M → λx.N

Notice that spine reduction is aptly named, since all reductions take place on the spine
of the λ-tree (see [8]): searching for a redex, starting from the root, we can walk ‘down’
and turn ‘left’, but not turn ‘right’, so stay on the spine of the tree. This notion of
reduction is shown to be head-normalising in [8]; in fact, the normal forms for spine
reduction are exactly the head-normal forms for normal reduction [28].

Example 7. Spine reduction encompasses lazy reduction:

(λx.(λy.M)N)L →S

{
(λx.M[N/y])L
((λy.M)N)[L/x]

whereas only (λx.(λy.M)N)L →L ((λy.M)N)[L/x] .

In view of the importance of substitution also in Milner’s result (see Thm. 14), rather
than directly interpreting the spine calculus λS, in this paper we will treat λxS, a version
with explicit substitution, à la Bloo and Rose’s calculus λx [10].

Definition 8 (λxS). The syntax of λxS is an extension of that of the λ-calculus:

M, N ::= x | λx.M | MN | M〈x = N〉
The explicit variant→xS of spine reduction is now defined as follows. We take the basic
rules:

(λx.M)N → M〈x = N〉 M → N ⇒
{

ML → NL
λx.M → λx.N

(notice the use of 〈x = N〉 rather than [N/x] in the first rule). The ‘propagation rules’
for substitution are defined as:

M〈x = N〉 → M (x
∈ fv(M)) (λy.M)〈x = N〉 → λy.(M〈x = N〉)
(xM1· · ·Mn)〈x = N〉 → (NM1· · ·Mn)〈x = N〉

Remark 9. We deviate above from the original definition of reduction→x in [10], which
included the rules:

(ML)〈x = N〉 → M〈x = N〉L〈x = N〉
(λy.M)〈x = N〉 → λy.(M〈x = N〉)

x〈x = N〉 → N
y〈x = N〉 → y

Since spine reduction focusses on the head of a term, we postpone the substitution on
other parts, and only ‘work’ on the head.3

It is easy to show that M →xS N implies M →x N, and that if M →xS N, then there
exists a pure term L (not containing 〈·= ·〉) such that N →x L, and in this reduction
only the substitution rules of λx are applied. Since spine reduction reduces a term M to
head-normal form, if it exists, this implies that also →xS reduces to head-normal form,
albeit with perhaps some substitutions still pending.

2 In [14], essentially following [8], spine reduction is defined by “just contracting redexes that
are on the spine”; head spine reduction is mentioned, but not defined, in [24].

3 This appears to be the implicit approach of [18] (see Lem. 4.5, case 3).

A Logical Interpretation of the λ-Calculus into the π-Calculus 89

Example 10. Some terms leave substitutions after reducing: (λz.yz)N →xS yz〈z = N〉.
We can reduce (λx.(λz.(λy.M)x))N in two different ways:

(λx.(λz.(λy.M)x))N →xS

(λz.(λy.M)x)〈x = N〉 →xS

λz.((λy.M)x)〈x = N〉 →xS

λz.(M〈y = x〉〈x = N〉)

(λx.(λz.(λy.M)x))N →xS

(λx.(λz.(M〈y = x〉)))N →xS

λz.(M〈y = x〉)〈x = N〉 →xS

λz.(M〈y = x〉〈x = N〉)

3 Milner’s Input-Based Lazy Encoding

Milner defines an encoding of the λ-calculus into the (synchronous, monadic) π-calcu-
lus [18]4, and shows some correctness results. This encoding is inspired by the normal
semantics of λ-terms, which states for abstraction:

��λx.M&&ξ
M = G(λλd ∈M.��M&&Mξ(d/x))

Here the body of the abstraction is interpreted in the updated valuation, where now also
x is mapped to d, an arbitrary element of the domain. So, also in the encoding, instead
of executing M[N/x], M is executed in an environment that binds N to the variable x;
this leads to:

Definition 11 (Milner’s interpretation [18]). Input-based encoding of λ-terms into
the π-calculus is defined by:

[[x]] a =∆ x〈a〉 x
= a
[[λx.M]] a =∆ a(x). a(b). [[M]] b b fresh
[[MN]] a =∆ (νc) ([[M]] c | (νz) (c〈z〉. c〈a〉. [[z := N]])) c, z fresh

[[x := M]] =∆ ! x(w). [[M]] w w fresh

(Milner calls [[x := M]] an “environment entry”; it could be omitted from the defini-
tion above, but is of use separately.) Here a is the link along which [[M]] receives its
argument; this is used to communicate with the interpretation of the argument, as made
clear in the third case, were the input channel of the left-hand term is used to send the
name over on which the right-hand term will receive its input.

Milner’s initial approach has since become standard, and is also used in [20,21,22,17];
in fact, as mentioned in the introduction, Sangiorgi considers it canonical [20].

Notice that both the body of the abstraction (M) and the argument in an application
(N) get positioned under an input, and that therefore reductions inside these subterms
cannot be modelled, and the simulation via the encoding is limited to lazy reduction5.

Example 12. Using [[·]] ·, the interpretation of a β-redex (only) reduces as follows:

[[(λx.M)N]] a =∆

(νc) (c(x). c(b). [[M]] b | (νz) (c〈z〉. c〈a〉. [[z := N]])) →∗
π

(νz) ([[M[z/x]]] a | [[z := N]]) = (z
∈ [[M]] b)
(νx) ([[M]] a | [[x := N]]) =∆ (νx) ([[M]] a | ! x(w). [[N]] w)

4 [18] also deals with Call-By-Value, which we will not consider here.
5 It is possible to improve on this result by extending the notion of reduction or congruence on

π, by adding, for example, P →π Q ⇒ x(v). P →π x(v). Q, but that is not our intention
here; we aim just to compare our result with Milner’s.

90 S. van Bakel and M.G. Vigliotti

Now reduction can continue in (the interpretation of) M, but not in N that is still
guarded by the input on x, which will not be used until the evaluation of [[M]] a reaches
the point where output is generated over x.

In fact, Milner shows that all interpretations of closed λ-terms reduce to terms of this
shape (Thm. 14). Notice that the result (νx) ([[M]] a | [[x := N]]) is not the same as
[[M[N/x]]] a, and also does not reduce to that term, as illustrated by the following:

Example 13. [[(λx.xx)(λy.y)]] a =∆

(νc) (c(x). c(b). [[xx]] b | (νz) (c〈z〉. c〈a〉. [[z := λy.y]])) →∗
π

(νz) ([[zz]] a | [[z := λy.y]]) =∆

(νz) ((νc) (z〈c〉 | (νz1) (c〈z1〉. c〈a〉. [[z1 := z]])) | [[z := λy.y]]) ≡
(νzc) (z〈c〉 | (νz1) (c〈z1〉. c〈a〉. [[z1 := z]])

| z(w). [[λy.y]] w | [[z := λy.y]]) →π

(νzc) ((νz1) (c〈z1〉. c〈a〉. [[z1 := z]]) | [[λy.y]] c | [[z := λy.y]]) ≡
(νzcz1) (c〈z1〉. c〈a〉. [[z1 := z]] | c(y). c(b). y〈b〉 | [[z := λy.y]]) →∗

π

(νzz1) ([[z1 := z]] | z1〈a〉 | [[z := λy.y]]) →π

(νzz1) (z〈a〉 | [[z1 := z]] | [[z := λy.y]]) ≡
(νzc) (z〈a〉 | z(w). [[λy.y]] w | [[z := λy.y]]) →π

(νz) ([[λy.y]] a | [[z := λy.y]]) ≡ [[λy.y]] a

Notice that we executed the only possible communications, and that in the reduc-
tion path no term corresponds to (νc) ([[λy.y]] c | (νz) (c〈z〉. c〈a〉. [[z := λy.y]]))
(i.e. [[(λy.y)(λy.y)]] a). Of course reducing the term [[(λy.y)(λy.y)]] a will also yield
[[λy.y]] a, but we can only show that [[(λx.xx)(λy.y)]] a and [[(λy.y)(λy.y)]] a have a
common reduct, not that the first reduces to the second.

Milner states the correctness for his interpretation with respect to lazy reduction as:

Theorem 14 ([18]). For all closed λ-terms M, either:

1. M →L λy.R[N/x], and [[M]] u →π (νx) ([[λy.R]] u | [[x := N]]), or
2. both M and [[M]] u diverge.

It is worthwhile to note that, although not mentioned in [18], in the proof of this result
Milner treats the substitution as explicit, not as implicit. In fact, although stated with
implicit substitution, Milner’s result does not show that lazy reduction (with implicit
substitution) is fully modelled, but only ‘up to substitution’; as shown in Ex. 13, it is
impossible to reduce the encoding of (λx.xx)(λy.y) to that of (λy.y)(λy.y).

We quickly found that we (also) could not model implicit substitution, and reverted
to explicit substitution; however, (λx.xx)(λy.y) →xS ((λy.y)x)〈x = (λy.y)〉, and we
can show that the encoding of (λx.xx)(λy.y) runs to that of ((λy.y)x)〈x = (λy.y)〉,
as shown in Ex. 23.

4 A Logical, Output-Based Encoding of λ-Terms

In this section, we will show that it is possible to deviate from Milner’s original encod-
ing, and actually making a gain in the process. Inspired by the relation between natural

A Logical Interpretation of the λ-Calculus into the π-Calculus 91

deduction and the sequent calculus [13], interpreting terms under output rather than
under input, and using the π-calculus with pairing, we can define a different encoding
of the λ-calculus into the π-calculus that preserves not just lazy reduction, but also the
larger notion of spine reduction.

Our encoding follows from – but is an improvement of – the concatenation of the
encoding of the λ-calculus into X (which established a link between natural deduction
and the sequent calculus), defined in [6], and the interpretation ofX into the π-calculus
as defined in [4]. The main objective of our encoding is to show the preservation of type
assignment; pairing is used in order to be able to effectively represent arrow types.

The idea behind our encoding originates from the observation that, in the lambda
calculus, all input is named, but output is anonymous. Input (i.e. a variable) is named
to serve as a destination for the substitution; output need not be named, since all terms
have only one result (represented by the term itself), which is used in sito6. Translating
into the (multi-output) π-calculus, this locality property no longer holds; we need to
specify the destination of a term, by naming its output: this is what the encoding does.

We explicitly convert ‘an output sent on a is to be received as input on b’ via
‘a(◦). b〈◦〉’ (call a forwarder in [16]), which for convenience is abbreviated into a=b.

Definition 15 (Output-based interpretation). The mapping ��·&&· is defined by7:

��x&&a =∆ x(◦). a〈◦〉 x
= a
��λx.M&&a =∆ (νxb) (��M&&b | a〈 x, b 〉) b fresh
��MN&&a =∆ (νc) (��M&&c | c(b, d). (!��N&&b | d=a)) b, c, d fresh

In particular: • we see a variable x as an input channel, and we need to retransmit its
input to the output channel a that we interpret it under;

• for an abstraction λx.M, we give the name b to the output of M; that M has input
x and output b gets sent out over a, which is the name of λx.M, so that a process
that wants to call on this functionality, knows which channel to send the input to,
and on which channel to pick up the result8;

• for an application MN, the output of M, transmitted over c, is received as a pair
b, d of input-output names in the right-hand side; the received input b name is

used as output name for N, enabling the simulation of substitution, and the received
output name d gets redirected to the output of the application a.

Notice that only one replication is used, on the argument in an application; this cor-
responds, as usual, to the implementation of the (distributive) substitution on λ-terms.

6 In terms of continuations, the continuation of a term is not mentioned, since it is the current.
7 We could have defined our encoding directly in the standard π-calculus:

��x&&′a =∆ ! x(◦). a〈◦〉
��λx.M&&′a =∆ (νxb) (��M&&′b | a〈x〉. a〈b〉)
��MN&&′a =∆ (νc) (��M&&′c | c(b). c(d). (!��N&&′b | d=a))

without losing any of the reduction results for our encoding, but this has additional replication,
and is less suited for type assignment (see Sect. 5).

8 This view of computation is exactly that of the calculus X .

92 S. van Bakel and M.G. Vigliotti

Also, every ��N&&a is a process that outputs on a non-hidden name a (albeit perhaps not
actively, as in the third case, where it will not be activated until input is received on the
channel c, in which case it is used to output the data received in on the channel d that
is passed as a parameter), and that this output is unique, in the sense that a is the only
output channel, is only used once, and for output only. The structure of the encoding of
application corresponds, in fact, to how Gentzen encodes modus ponens in the sequent
calculus [13]: see [6], Thm. 4.8, and the proof of Thm. 31 below.

Example 16. 1. ��(λy.P)Q&&a =∆

(νc) ((νyb1) (��P&&b1 | c〈 y, b1 〉) | c(b, d). (!��Q&&b | d=a)) →π

(νyb) (��P&&b | ! ��Q&&y | b=a)
In short, the encoding of the redex (λy.P)Q will yield a communication that re-
ceives on the input channel called y in the interpretation of P, and the interpretation
of Q being output on y.

2. ��λx.x&&a =∆ (νxb) (x(◦). b〈◦〉 | a〈 x, b 〉).

3. ��xN&&a = (νc) (��x&&c | c(b, d). (!��N&&b | d=a)) -π x(b, d). (! ��N&&b | d=a)
This term correctly expresses that computation is halted until on x we send the
input-output interface of a function, which will then communicate with the output
channel of N as its input channel.

Notice that the second term cannot input; it is easy to check that this is true for the the
interpretation of all closed λ-terms, since we can show the following:

Property 17. fn(��M&&a) = fv(M)∪{a}.

The following result, which states that we can safely rename the (hidden) output of an
encoded λ-term, is needed below:

Lemma 18. (νa) (a=e | ��N&&a) ∼c ��N&&e.

Using this result, we can show that

(νxb) (��M&&b | ! ��N&&x | b=a) ∼c (νx) (��M&&a | ! ��N&&x)
Following on from Ex. 16, we can now define

Definition 19. We extend our interpretation to λxS, adding

��M〈x = N〉&&a = (νx) (��M&&a | ! ��N&&x)

As in [18,21,23], we can show a reduction preservation result; however, not by just re-
stricting to (explicit) lazy reduction, but to the larger system for explicit spine reduction
for the λ-calculus. Notice that, essentially following Milner, by using the reduction rela-
tion→xS, we show that our interpretation respects reduction upto substitution; however,
we do not require the terms to be closed:

Theorem 20 (��·&&· preserves→xS). If M →xS N, then ��M&&a ∼c ��N&&a.

So, perhaps contrary to expectation, since abstraction is not encoded using input, we
can without problem model a reduction under a λ-abstraction. Moreover, the only ex-
tra property we use is the renaming of the output under which λ-terms are encoded
(Lem. 18).

Let us illustrate this result via a concrete example.

A Logical Interpretation of the λ-Calculus into the π-Calculus 93

Example 21. ��(λx.(λz.(λy.M)x))N&&a =∆ ,≡
(νcxb1) (��(λz.(λy.M)x)&&b1 | c〈 x, b1 〉 | c(b, d). (! ��N&&b | d=a)) →π

(νxb1) (��(λz.(λy.M)x)&&b1 | ! ��N&&x | b1=a) =∆ ,≡
(νxb1zb2c1yb3) (��M&&b3 | c1〈 y, b3 〉 |

c1(b, d). (! ��x&&b | d=b2) | b1〈 z, b2 〉 | ! ��N&&x | b1=a) →π (c1)
(νxb1zb2yb3) (��M&&b3 | ! ��x&&y | b3=b2 | b1〈 z, b2 〉 | ! ��N&&x | b1=a) →π (b1)
(νxzb2yb3) (��M&&b3 | ! ��x&&y | b3=b2 | a〈 z, b2 〉 | ! ��N&&x) ∼c (18)
(νxzb2y) (��M&&b2 | ! ��x&&y | a〈 z, b2 〉 | ! ��N&&x) ≡
(νzb) ((νx) ((νy) (��M&&b | ! ��x&&y) | ! ��N&&x) | a〈 z, b 〉) =∆

��λz.M〈y = x〉〈x = N〉&&a

In the proof of Thm. 20, in only two places do we perform a renaming via Lem. 18,
so use that (νa) (a=e | ��N&&a) ∼c ��N&&e. In both cases, the term we rename occurs at
the head, and – assuming the reduction terminates – either N reduces to an abstraction
λz.N′, and then (wlog)

(νa) (a=e | ��N&&a) →π

(νa) (a=e | (νzb) (��N′&&b | a〈 z, b 〉)) ≡
(νazb) (a=e | ��N′&&b | a〈 z, b 〉) →π

(νzb) (��N′&&b | e〈 z, b 〉)
or N reduces to a variable, and the renaming need not be executed. So when performing
a reduction on ��M&&a, where M has a normal form with respect to→xS (a head-normal
form with respect to →β), these renamings can be postponed.

Corollary 22. If M has a normal form N (wrt→xS), then ��M&&a →π ��N&&a.

Example 23. By Thm.20, ��(λx.xx)(λy.y)&&a ∼c (νx) (��xx&&a | ! ��λy.y&&x); but we
can run the π-process without using the equivalence relation:

��(λx.xx)(λy.y)&&a =∆ ,≡
(νcxb1) (��xx&&b1 | c〈 x, b1 〉 | c(b, d). (! ��λy.y&&b | d=a)) →π

(νxb1) (��xx&&b1 | ! ��λy.y&&x | b1=a) =∆ ,≡
(νxb1) (��xx&&b1 | (νyb) (y(◦). b〈◦〉 | x〈 y, b 〉) | ! ��λy.y&&x | b1=a) =∆ ,≡
(νxb1c1yb) (x(◦). c1〈◦〉 | c1(b2, d). (! ��x&&b2 | d=b1)

| ��y&&b | x〈 y, b 〉 | ! ��λy.y&&x | b1=a) →π (x)
(νxb1c1yb) (c1〈 y, b 〉 | c1(b2, d). (! ��x&&b2 | d=b1)

| ��y&&b | ! ��λy.y&&x | b1=a) →π (c1)
(νxb1yb) (! ��x&&y | b=b1 | ��y&&b | ! ��λy.y&&x | b1=a) ≡ (α)
(νxb1yb) (! ��x&&y | b=b1 | ��y&&b

| (νzb2) (��z&&b2 | x〈 z, b2 〉) | ! ��λy.y&&x | b1=a) ≡
(νxb1ybzb2) (x(◦). y〈◦〉 | ! ��x&&y | b=b1 | ��y&&b

| ��z&&b2 | x〈 z, b2 〉 | ! ��λy.y&&x | b1=a) →∗
π (x, y, b, b1)

(νxyzb2) (! ��x&&y | a〈 z, b2 〉 | ��z&&b2 | ! ��λy.y&&x) ≡
(νzb) (��z&&b | a〈 z, b 〉) =∆ ��λz.z&&a

Notice that we performed the two substitutions without resorting to the renaming of
outputs of encoded λ-terms, and that all those renamings take place at the end.

94 S. van Bakel and M.G. Vigliotti

Notice also that, because the encoding implements a limited notion of substitution,
the reduction does not run past

(νc) (��λy.y&&c | c(b, d). (!��λy.y&&b | d=a)) =∆ ��(λy.y)(λy.y)&&a.
The only expression that gets close is that in the sixth line, which corresponds to

(νxb1c1yb) (��λy.y&&c1 | c1(b2, d). (! ��x&&b2 | d=b1) | ! ��λy.y&&x | b1=a)
which is (up to renaming) ��((λy.y)x)〈x = (λy.y)〉&&a. In fact, this is as expected,
since:

(λx.xx)(λy.y) →xS xx〈x = (λy.y)〉 →xS ((λy.y)x)〈x = (λy.y)〉

We can also show that (νx) (��M&&a | ! ��N&&x) represents (implicit) term substitution
successfully, at least for closed N.

Theorem 24. For N a closed λ-term, and M any λ-term:

(νx) (��M&&a | ! ��N&&x) -π ��M[N/x]&&a.

In [21], a similar result is shown, but for the higher-order π-calculus, where substitution
is a primitive operation, so the encoding is easier.

That we had to limit the contraction of redexes (λx.M)N to those where N is
closed, might seem a strong restriction. However, notice that Milner’s simulation re-
sult is stated, not just for lazy reduction - which is a weaker notion than spine reduction
- but also only for closed λ-terms. Consider a reduction M →L M′, where M is closed,
then M = (λx.M1)NM2· · ·Mn; since M is closed, so is N, so our result is as strong
as need be in the context of Milner’s result.

Corollary 25. If M →L N, and M is a closed λ-term, then ��M&&a -π ��N&&a.

5 Context Assignment

The π-calculus is equipped with a rich type theory [23]: from the basic type system
for counting the arity of channels to sophisticated linear types in [17], which studies a
relation between Call-by-Value λµ and a linear π-calculus. Linearisation is used to be
able to achieve processes that are functions, by allowing output over one channel name
only, in a λ-calculus, natural deduction style. Moreover, the encoding presented in [17]
is type dependent, in that, for each term, different π-processes are assigned, depending
on the original type; this makes the encoding quite cumbersome.

The type system presented in this section differs quite drastically from the standard
type system presented in [23]: here input and output channels essentially have the type
of the data they are sending or receiving, and are separated by the type system by putting
all inputs with their types on the left of the sequent, and the outputs on the right. In our
system, types give a logical view to the π-calculus rather than an abstract specification
on how channels should behave. Our encoding is very simple and intuitive by inter-
preting the cut operationally as a communication. The idea of giving a computational
interpretation of the cut as a communication primitive is also used by [3] and [9]. In
both papers, only a small fragment of Linear Logic was considered, and the encoding
between proofs and π-calculus was left rather implicit.

A Logical Interpretation of the λ-Calculus into the π-Calculus 95

In this section, we define a notion of context assignment for processes in π that de-
scribes the ‘input-output interface’ of a process, by assigning a left-context, containing
the types for the input channels, and a right-context, containing the types for the out-
put channels; it was first presented in [4]. This notion is different from others in that it
assigns to channels the type of the input or output that is sent over the channel.

Context assignment was defined in [4] to establish preservation of assignable types
under the interpretation of the sequent calculus X , as presented in [6], into the π-
calculus. As for the notion of type assignment on X terms, in the typing judgements we
write names used for input on the left and names used for output on the right; this im-
plies that, if a name is both used to send and to receive, it will appear on both sides, with
the same type. Since X offers a natural presentation of the classical propositional cal-
culus with implication, and enjoys the Curry-Howard isomorphism for the implicative
fragment of Gentzen’s system LK [12], this implies that the notion of context assign-
ment as defined below is classical (i.e. not intuitionistic) in nature.

We now repeat the definition of (simple) type assignment; we first define types and
contexts.

Definition 26 (Types and Contexts)

1. The set of types is defined by the grammar: A, B ::= ϕ | A→B, where ϕ is a
basic type of which there are infinitely many.

2. An input context Γ is a mapping from names to types, denoted as a finite set of
statements a:A, such that the subject of the statements (a) are distinct. We write
Γ1, Γ2 to mean the compatible union of Γ1 and Γ2 (if Γ1 contains a:A1 and Γ2
contains a:A2, then A1 = A2), and write Γ, a:A for Γ, {a:A}.

3. Output contexts ∆, and the notions ∆1, ∆2, and n:A, ∆ are defined in a similar way.
4. If n:A ∈ Γ and n:B ∈ ∆, then A = B.

Definition 27 ((Classical) Context Assignment). Context assignment for the
π-calculus with pairing is defined by the following sequent system:

(0) : 0 : Γ �π ∆

(!) :
P : Γ �π ∆

! P : Γ �π ∆

(ν) :
P : Γ, a:A �π a:A, ∆

(νa) P : Γ �π ∆

(|) :
P : Γ �π ∆ Q : Γ �π ∆

P |Q : Γ �π ∆

(pair-out) : a〈 b, c 〉 : Γ, b:A �π a:A→B, c:B, ∆

(out) : (a
= b)
a〈b〉 : Γ, b:A �π a:A, b:A, ∆

(let) :
P : Γ, y:B �π x:A, ∆

let x, y = z in P : Γ, z:A→B �π ∆

(in) :
P : Γ, x:A �π x:A.∆

a(x). P : Γ, a:A �π ∆

The side-condition on rule (out) is there to block the derivation of a〈a〉 : �π a:A.

Example 28. Although we have no rule (pair-in), it is admissible, since we can derive

P : Γ, y:B �π x:A, ∆

let x, y = z in P : Γ, z:A→B �π ∆

a(z). let x, y = z in P : Γ, a:A→B �π ∆

96 S. van Bakel and M.G. Vigliotti

This notion of type assignment does not (directly) relate back to the logical calculus LK.
For example, rules (|) and (!) do not change the contexts, so do not correspond to any
rule in LK, not even to a λµ-style [19] activation step; moreover, rule (ν) just removes
a formula.

The weakening rule is admissible:

(W) :
P : Γ �π ∆

(Γ′ ⊇ Γ, ∆′ ⊇ ∆)
P : Γ′ �π ∆′

This result allows us to be a little less precise when we construct derivations, and
allow for rules to join contexts, by using, for example, the rule

(|) :
P : Γ1 �π ∆1 Q : Γ2 �π ∆2

P |Q : Γ1, Γ2 �π ∆1, ∆2

so switching, without any scruples, to multiplicative style, whenever convenient.
We have a soundness (witness reduction) result for our notion of type assignment for

π as shown in [4].

Theorem 29 (Witness reduction [4]). If P : Γ �π ∆ and P →π Q, then Q : Γ �π ∆.

We will now show that our interpretation preserves types assignable to lambda terms
using Curry’s system, which is defined as follows:

Definition 30 (Curry type assignment for the λ-calculus).

(Ax) : Γ, x:A �λ x : A (→I) :
Γ, x:A �λ M : B

Γ �λ λx.M : A→B

(→E) :
Γ �λ M : A→B Γ �λ N : A

Γ �λ MN : B

We can now show that typeability is preserved by ��·&&·:
Theorem 31. If Γ �λ M : A, then ��M&&a : Γ �π a:A.

Proof. By induction on the structure of derivations in �λ; notice that we use implicit
weakening.

(Ax) : Then M = x, and Γ = Γ′, x:A. Notice that x(◦). a〈◦〉 = ��x&&a, and that

a〈◦〉 : Γ, ◦:A �π a:A, ◦:A

x(◦). a〈◦〉 : Γ′, x:A �π a:A
(→I) : Then M = λx.N, A = C→D, and Γ, x:C �λ N : D. Then, by induction, a

derivationD :: ��N&&b : Γ, x:C �π b:D exists, and we can construct:

D
��N&&b : Γ, x:C �π b:D a〈 x, b 〉 : x:C �π a:C→D, b:D

��N&&b | a〈 x, b 〉 : Γ, x:C �π a:C→D, b:D

(νb)(��N&&b | a〈 x, b 〉) : Γ, x:C �π a:C→D

(νxb) (��N&&b | a〈 x, b 〉) : Γ �π a:C→D

Notice that (νxb) (��N&&b | a〈 x, b 〉) = ��λx.N&&a.

A Logical Interpretation of the λ-Calculus into the π-Calculus 97

(→E) : Then M = PQ, and there exists B such that Γ �λ P : B→A and Γ �λ Q : B.
By induction, there existD1 :: ��P&&c : Γ �π c:B→A andD2 :: ��Q&&b : Γ �π b:B, and
we can construct:

D1

��P&&c : Γ �π c:B→A

D2

��Q&&b : Γ �π b:B

!��Q&&b : Γ �π b:B

a〈◦〉 : Γ, ◦:A �π a:A, ◦:A, ∆

d=a : d:A �π a:A

!��Q&&b | d=a : Γ, d:A �π b:B, a:A

c(b, d). (!��Q&&b | d=a) : Γ, c:B→A �π a:A

��P&&c | c(b, d). (!��Q&&b) | d=a) : Γ, c:B→A �π c:B→A, a:A

(νc) (��P&&c | c(b, d). (!��Q&&b | d=a)) : Γ �π a:A

and ��PQ&&a = (νc) (��P&&c | c(b, d). (!��Q&&b | d=a)).

Notice that although, in the above proof, we are only interested in showing results with
one typed output (conclusion) – after all, we are interpreting the typed λ-calculus, an
intuitionistic system – we need the classical, multi-conclusion character of our type
assignment system for π to achieve this result.

6 Conclusions and Future Work

We have found a new, simple and intuitive encoding of λ-terms in π that respects our
definition of explicit spine reduction, is similar with normal reduction, and encom-
passes Milner’s lazy reduction on closed terms. We have shown that, for our context
assignment system that uses the type constructor → for π and is based on classical
logic, assignable types for λ-terms are preserved by our interpretation as typeable π-
processes. We managed this without having to linearise the calculus as done in [17].

The classical sequent calculus X has two natural, dual notions of sub-reduction,
called Call-by-Name and Call-by-Value; we will investigate if the interpretation of these
systems in to the π-calculus gives natural notions of CBN of CBV reduction on π-
processes, and if this enables CBN or CBV logical encodings of the λ-calculus.

Acknowledgements

We would like to thank Jan Willem Klop, Fer-Jan de Vries, and Vincent van Oostrom
for their willingness to instruct, and Martin Berger for useful comments.

References

1. Abadi, M., Gordon, A.: A Calculus for Cryptographic Protocols: The Spi Calculus. In:
CC&CS 1997, pp. 36–47 (1997)

2. Abramsky, S.: The lazy lambda calculus. In: Research topics in functional programming,
pp. 65–116 (1990)

3. Abramsky, S.: Proofs as Processes. TCS 135(1), 5–9 (1994)

98 S. van Bakel and M.G. Vigliotti

4. van Bakel, S., Cardelli, L., Vigliotti, M.G.: From X to π; Representing the Classical Sequent
Calculus in π-calculus. In: CL&C 2008 (2008)

5. van Bakel, S., Lengrand, S., Lescanne, P.: The language formula image: Circuits, computa-
tions and classical logic. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS,
vol. 3701, pp. 81–96. Springer, Heidelberg (2005)

6. van Bakel, S., Lescanne, P.: Computation with Classical Sequents. MSCS 18, 555–609
(2008)

7. Barendregt, H.: The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam
(1984)

8. Barendregt, H.P., Kennaway, R., Klop, J.W., Sleep, M.R.: Needed Reduction and Spine
Strategies for the Lambda Calculus. I&C 75(3), 191–231 (1987)

9. Bellin, G., Scott, P.J.: On the pi-Calculus and Linear Logic. TCS 135(1), 11–65 (1994)
10. Bloo, R., Rose, K.H.: Preservation of Strong Normalisation in Named Lambda Calculi with

Explicit Substitution and Garbage Collection. In: CSN 1995 – Computer Science in the
Netherlands, pp. 62–72 (1995)

11. Church, A.: A note on the entscheidungsproblem. JSL 1(1), 40–41 (1936)
12. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Pa-

pers of Gerhard Gentzen, p. 68, 1935. North Holland, Amsterdam (1969)
13. Gentzen, G.: Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift 39,

176–210, 405–431 (1935)
14. Goubault-Larrecq, J.: A Few Remarks on SKInT. RR-3475, INRIA Rocquencourt (1998)
15. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America,

P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)
16. Honda, K., Yoshida, N.: On the Reduction-based Process Semantics. TCS 151, 437–486

(1995)
17. Honda, K., Yoshida, N., Berger, M.: Control in the π-Calculus. In: CW 2004 (2004)
18. Milner, R.: Function as processes. MSCS 2(2), 269–310 (1992)
19. Parigot, M.: An algorithmic interpretation of classical natural deduction. In: Voronkov, A.

(ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)
20. Sangiorgi, D.: Expressing Mobility in Process Algebra: First Order and Higher order

Paradigms. PhD thesis, Edinburgh University (1992)
21. Sangiorgi, D.: An Investigation into Functions as Processes. In: Main, M.G., Melton, A.C.,

Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 143–159.
Springer, Heidelberg (1994)

22. Sangiorgi, D.: Lazy functions and processes. RR2515, INRIA, Sophia-Antipolis (1995)
23. Sangiorgi, D., Walker, D.: The Pi-Calculus. Cambridge University Press, Cambridge (2003)
24. Sestoft, P.: Standard ML on the Web server. Department of Mathematics and Physics, Royal

Veterinary and Agricultural University, Denmark (1996)
25. Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis, University

of Edinburgh (1997)
26. Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge (2000)
27. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical logic. FI

45(1,2), 123–155 (2001)
28. de Vries, F.-J.: Böhm trees, bisimulations and observations in lambda calculus. In: FLP 1997,

pp. 230–245 (1997)

Encoding Asynchronous Interactions
Using Open Petri Nets�

Paolo Baldan1, Filippo Bonchi2,3, and Fabio Gadducci3

1 Dipartimento di Matematica Pura e Applicata, Università di Padova
2 Centrum voor Wiskunde en Informatica, Amsterdam

3 Dipartimento di Informatica, Università di Pisa

Abstract. We present an encoding for (bound) processes of the
asynchronous CCS with replication into open Petri nets: ordinary Petri
nets equipped with a distinguished set of open places. The standard
token game of nets models the reduction semantics of the calculus; the
exchange of tokens on open places models the interactions between
processes and their environment. The encoding preserves strong and
weak CCS asynchronous bisimilarities: it thus represents a relevant step
in establishing a precise correspondence between asynchronous calculi
and (open) Petri nets. The work is intended as fostering the technology
transfer between these formalisms: as an example, we discuss how some
results on expressiveness can be transferred from the calculus to nets
and back.

Keywords: Asynchronous calculi, bisimilarity, decidability, open Petri
nets.

1 Introduction

Distributed systems often rely on asynchronous communication, where the oper-
ation of sending messages is non-blocking: a process may send a message without
any agreement with the receiver, and continue its execution while the message
travels to destination. After the introduction of the asynchronous π-calculus
[1, 2], many process calculi have been proposed that embody some asynchronous
communication mechanism (see [3–5], among others). Due to the asymmetry be-
tween sending and receiving, behavioural equivalences for asynchronous systems
(see e.g. [4, 6–9]) exhibit subtle differences with respect to their synchronous
counterparts. Indeed, since sending is non-blocking, an external observer (inter-
acting with a system by message exchanges) cannot know if a message has been
received and thus message reception is considered, to some extent, unobservable.

In this paper we aim at establishing a formal correspondence between asyn-
chronous calculi and Petri nets [10]. Perhaps due to their longevity, Petri nets
are the best known and most widely used formalism for the visual specification
of distributed systems. Besides being used in countless verification tools, suitable
� Partly supported by the EU FP6-IST IP 16004 SEnSOria and carried out during

the second author’s tenure of an ERCIM “Alain Bensoussa” Fellowship Programme.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 99–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

100 P. Baldan, F. Bonchi, and F. Gadducci

net instances have been successfully adopted as a specification domain in many
areas: for their relevance, we mention web services and workflow nets [11].

Petri nets exhibit both synchronous and asynchronous features in their be-
haviour. On the one hand, a transition having more than one place in its pre-set
can be seen as a synchronisation point: it can be executed only if all the needed
tokens are available in its pre-set at the same time. On the other hand, a to-
ken is first produced by a transition and it then remains available until another
transition consumes it, in an asynchronous fashion.

The correspondence between synchronous calculi and Petri nets has been thor-
oughly investigated (see e.g. [12–16]). Typically, a set of operations is identified
on a class of nets, and used for a denotational mapping of the calculus. The
archetypal example is maybe the simple calculus of nets [13]: each occurrence
of a CCS prefix in a process is mapped into a net transition, labelled by the
name of the corresponding channel; and basic transitions are used for the par-
allel and non-deterministic operators. The resulting encodings are often quite
syntactical, and forced to restrict their attention to the finite fragment of a cal-
culus. More set-theoretical encodings, basically mapping each process onto a net
whose places represent its sub-processes, whilst transitions simulate the control
flow of the process, were considered [17]. The dichotomy is denoted [18] as label
vs location oriented encoding, where it is argued that nets with inhibitor arcs
should be considered for calculi equipped with both sums and restrictions.

Here we focus on the relation between asynchronous calculi and Petri nets.
We propose an approach to process encoding which differs from those outlined
above, as it relies on reduction semantics [19, 20] and open nets [21–23]. Open
nets are ordinary P/T Petri nets equipped with a set of open places, i.e., a
set of places visible from the environment: a net may then interact with the
environment by exchanging tokens on these places. Open nets are closely related
to previous approaches to reactivity and compositionality for Petri nets (see,
e.g., [24–27], to mention a few), which, interestingly enough, have been often
inspired by the search of encodings of calculi into nets or, more generally, by the
investigation of the relation between Petri nets and process calculi.

Specifically, we encode an asynchronous variant of CCS [7] into open nets,
in such a way that each process reduction corresponds to a transition firing in
the net, and vice versa. The key idea is to exploit openness of places in order to
account for name restriction. The free names of a process correspond to the open
places of the associated net, and message exchanging between a process and the
environment on a channel corresponds to token exchanging on open places. As
the set of places in a net is fixed, the encoding applies to bound processes, i.e.,
processes where no restriction operator occurs under the scope of a replication
(thus avoiding the generation of an unbounded number of restricted names).

Summarizing, the main features of our encoding are

1. it preserves the structural congruence of processes,

2. a bijective relation holds between process reductions and net firings,

Encoding Asynchronous Interactions Using Open Petri Nets 101

3. the interaction between processes and environment is naturally modeled by
the built-in interaction mechanism of open nets, thus formalising the fact
that net interaction on open places is eminently asynchronous ;

4. it preserves and reflects both strong and weak asynchronous bisimilarity.

As far as we know, the latter is the first result of this kind, raising the corre-
spondence between reductions and firing steps up-to the level of asynchronous
observational equivalences. Furthermore, it seems noteworthy that, while we con-
sider the asynchronous equivalences for the calculus, the equivalences for open
nets exploit the standard (either weak or strong) bisimulation game.

We believe that our encoding and its properties establish the fundamental
correspondence between asynchronous calculi and open nets, thus paving the
way for a fruitful “technology transfer” between the two formalisms.

In this paper, we exploit the encoding of (bound) asynchronous CCS pro-
cesses into open nets in order to answer some questions about expressiveness of
(fragments of) the two models. In an independent work, the recent paper [16],
building upon [28], offers some results concerning the expressive power of restric-
tion and its interplay with replication in synchronous calculi. Here we prove that
analogous results can be given for asynchronous calculi. We first show that for
bound asynchronous CCS processes strong and weak asynchronous bisimilarities
(as well as many other behavioural equivalences) are undecidable. Exploiting the
encoding, we immediately obtain that these bisimilarities are undecidable also
for open nets. This fact falls outside the known undecidability of bisimilarity for
Petri nets [29], as we only observe the interaction with the environment: internal
transitions are indistinguishable for strong equivalences and unobservable for
weak equivalences (e.g., all standard, closed Petri nets are weakly bisimilar in
our setting). In the other direction, using the fact that reachability is decidable
for Petri nets, through the encoding we prove that reachability and convergence
are decidable for bound asynchronous CCS (which, thus, is not Turing powerful).

As mentioned before, in the study of the relation between Petri nets and pro-
cess calculi, asynchronous calculi has received less attention than synchronous
ones. In general terms, most of the proposals we are aware of put their emphasis
on the preservation of the operational behaviour, while behavioural equivalences
are seldom studied. This is e.g. the pattern followed in [30], which considers pos-
sible encodings of the join calculus, where communication is asynchronous, into
Petri nets. In particular, the fragment of the join calculus with no name passing
and process generation is shown to correspond to ordinary P/T Petri nets, while,
in order to encode wider classes of join processes, high-level Petri nets, ranging
from coloured nets to dynamic nets must be considered. The encoding share some
ideas with ours, e.g., the fact that Petri net places are partitioned into public
and private places, even if it does not tackle the relations between process and
net behavioural equivalences. Some related work has been done in the direction
of encoding several brands of coordination languages, where processes commu-
nicate through shared dataspaces, as Petri nets. The papers [30, 31] exploit the
encoding to compare the expressiveness of Linda-like calculi with various com-
munication primitives. In [32] an encoding of KLAIM, a Linda-like language

102 P. Baldan, F. Bonchi, and F. Gadducci

with primitives for mobile computing, into high-level Petri nets is provided. The
long-term goal there is to reuse in the context of KLAIM the techniques avail-
able for Petri net verification. Concrete results in this direction are obtained
in [33], where finite control π-calculus processes are encoded as safe Petri nets
and verified using an unfolding-based technique.

The paper is structured as follows. In Section 2 we recall the syntax and the
reduction semantics of asynchronous CCS, further presenting the strong and
weak (barbed) bisimilarities for the calculus. Section 3 recalls open nets and
their equivalences. Section 4 is the core of the paper: it presents the encoding
from bound processes of asynchronous CCS into open nets, proving that the
encoding preserves and reflects the operational as well as the observational se-
mantics of the calculus. Section 5 discusses some expressiveness issues for the
considered models, taking advantage from the encoding. Finally, Section 6 draws
some conclusions and provides pointers to future works.

2 Asynchronous CCS

Differently from synchronous calculi, where messages are simultaneously sent
and received, in asynchronous communication the messages are sent and travel
through some media until they reach destination. Thus sending is not blocking
(i.e., a process may send even if the receiver is not ready to receive), while re-
ceiving is (processes must wait until a message becomes available). Observations
reflect the asymmetry: since sending is non-blocking, receiving is unobservable.

This section introduces asynchronous CCS as a fragment of asynchronous π-
calculus (with no name passing). We adopt the presentation in [6] that allows
non-deterministic choice for input prefixes (a feature missing in [4, 7]).

Definition 1 (processes). Let N be a set of names, ranged over by a, b, c, . . .,
and τ
∈ N . A process P is a term generated by the (mutually recursive) syntax

P ::= M, ā, (νa)P, P1 | P2, !a.P M ::= 0, µ.P, M1 + M2

for µ ranging over {τ} ∪ N . We let P, Q, R, . . . range over the set Proc of pro-
cesses, and M, N, O . . . range over the set Sum of summations.

The main difference with standard CCS [34] is the absence of output prefixes.
The occurrence of an unguarded ā indicates a message that is available on some
communication media named a, and it disappears whenever it is received.

We assume the standard definitions for the set of free names of a process P ,
denoted by fn(P). Similarly for α-convertibility w.r.t. the restriction operators
(νa)P : the name a is restricted in P , and it can be freely α-converted. Structural
equivalence (≡) is the smallest congruence induced by the axioms in Figure 1.
The behaviour of a process P is then described as a relation over processes up
to ≡, obtained by closing a set of rules under structural congruence.

Definition 2 (reduction semantics). The reduction relation for processes is
the relation RA ⊆ Proc× Proc inductively defined by the following set of rules

a.P + M | ā → P τ.P + M → P !a.P | ā→ P |!a.P

Encoding Asynchronous Interactions Using Open Petri Nets 103

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P

M+N = N+M M+(N+O) = (M+N)+O M+0 = M N+N = N

(νa)(νb)P = (νb)(νa)P (νa)(P | Q) = P | (νa)Q for a �∈ fn(P) (νa)0 = 0

(νa)(M + µ.P) = M + µ.(νa)P for a �∈ fn(M + µ.0)

Fig. 1. The set of structural axioms

P → Q

(νa)P → (νa)Q
P → Q

P | R → Q | R
and closed under ≡, where P → Q means that 〈P, Q〉 ∈ RA. As usual, we let ⇒
denote the reflexive and transitive closure of −→.

The first rule denotes the reception of a message, possibly occurring inside a non-
deterministic context: the process a.P is ready to receive a message along channel
a; it then receives message ā and proceeds as P . The second rule represents an
internal computation, while on the third rule the replication of a process P
occurs after a message is received on a. The latter rules state the closure of the
reduction relation w.r.t. the operators of restriction and parallel composition.

A difference w.r.t. the standard syntax of the asynchronous calculus proposed
in [6] is the use of guarded input replication !a.P instead of pure replication !M
(see, e.g., [35] which shows that for the synchronous π-calculus, this restriction
does not affect the expressiveness of the calculus). Since we plan to later use our
encoding to study the concurrency properties of asynchronous interactions, this
choice appears more reasonable. Indeed, unguarded replication has an (unrealis-
tic) infinitely branching behaviour when considering concurrent semantics: just
think of process !τ.ā. We also remark that, at the price of a slight complication of
the presentation, the results in the paper could be easily extended to a calculus
with replication for guarded sums, i.e., allowing for terms of the kind !Σi∈Iai.Pi.

As for the structural axioms, we added sum idempotency and an axiom schema
for distributing the restriction under the sum: neither of them is changing the
reduction relation, whilst they simplify our encoding of processes into nets.

2.1 Behavioural Equivalences

The main difference with the synchronous calculus lies in the notion of observa-
tion. Since sending messages is non-blocking, an external observer can just send
messages to a system without knowing if they will be received or not. For this
reason receiving should not be observable and thus barbs, i.e., basic observations
on processes, take into account only outputs.

Definition 3 (barb). Let P be a process. We say that P satisfies the strong
barb ā, denoted P ↓ ā, if there exists a process Q such that P ≡ ā | Q.

Similarly, P satisfies the weak barb ā, denoted P ⇓ ā, if P ⇒ Q and Q ↓ ā.

Now, strong and weak barbed bisimulation can be defined as in the synchronous
case [20], but taking into account only output barbs.

104 P. Baldan, F. Bonchi, and F. Gadducci

Definition 4 (barbed bisimulation). A symmetric relation R ⊆ Proc×Proc
is a strong barbed bisimulation if whenever (P, Q) ∈ R then

1. if P ↓ ā then Q ↓ ā,
2. if P → P ′ then Q → Q′ and (P ′, Q′) ∈ R.

Strong barbed bisimilarity ∼ is the largest strong barbed bisimulation.
Weak barbed bisimulation and weak barbed bisimilarity ≈ are defined analo-

gously by replacing ↓ ā with ⇓ ā and → with ⇒.

Strong (weak) barbed bisimilarities are not congruences. Indeed, a.b̄ ∼ 0 (and
a.b̄ ≈ 0), since neither process can perform any transition, but when inserted
into the context − | ā, the former can perform a transition, while the latter
cannot. Behavioural equivalences which are congruences are obtained as follows.

Definition 5 (barbed equivalence). Let P , Q be processes. They are strongly
barbed equivalent, denoted P ∼b Q, if P | S ∼ Q | S for all processes S.

Similarly, they are weakly barbed equivalent, denoted P ≈b Q, if P | S ≈ Q |
S for all processes S.

An alternative characterization of barbed equivalence considers output transi-
tions and the closure w.r.t. the parallel composition with outputs in the bisim-
ulation game. Strong and weak output transitions are defined as follows: we
respectively write P

ā−→ Q if P ≡ ā | Q, and P
ā⇒ Q if P ⇒ P ′ ā−→ Q′ ⇒ Q.

Definition 6 (1-bisimulation). A symmetric relation R ⊆ Proc × Proc is a
strong 1-bisimulation if whenever (P, Q) ∈ R then

1. ∀a ∈ N . (P | ā, Q | ā) ∈ R,
2. if P → P ′ then Q → Q′ and (P ′, Q′) ∈ R,
3. if P

ā−→ P ′ then Q
ā−→ Q′ and (P ′, Q′) ∈ R.

Strong 1-bisimilarity ∼1 is the largest strong 1-bisimulation.
Weak 1-bisimulation and weak 1-bisimilarity ≈1 are defined analogously by

replacing → with ⇒ and ā−→ with ā⇒.

Proposition 1 ([6]). ∼b=∼1 and ≈b=≈1.

Example 1. Consider the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) + τ.(d̄ | d.c̄)))
and Q = (νd)(τ.(d.c̄ | d.ē | d̄)). It is not difficult to see that P ∼1 Q. First
consider their internal steps: P −→ (νd)(!d.ē | d̄ | d.c̄), while Q −→ (νd)(d.c̄ | d.ē |
d̄). Notice that (νd)(!d.ē | d̄ | d.c̄) ∼1 (νd)(d.c̄ | d.ē | d̄), since after one execution
the replication operator is stuck.

The process P can also receive on the channel a. Instead of observing the input
transitions a−→, in the 1-bisimulation game this behaviour is revealed plugging the
processes into − | ā. The process P | ā can choose one of the two branches of +,
but in any case it performs an internal transition becoming (νd)(!d.ē | ā | d̄ | d.c̄).
On the other hand, Q | ā performs an internal transition to (νd)(d.c̄ | d.ē | d̄ | ā),
and clearly the resulting states are 1-bisimilar.

Furthermore, consider the process a.ā: it is one of the idiosyncratic features
of the asynchronous communication that the equivalence a.ā ≈1 0 holds.

Encoding Asynchronous Interactions Using Open Petri Nets 105

e

a

c

d

P2

P3

P4 t4

t2

t′2

t3

P = (νd)(

P1︷ ︸︸ ︷
!d.ē︸︷︷︸
P3

| (a.(ā | d̄ |
P4︷︸︸︷
d.c̄)︸ ︷︷ ︸

M

+ τ.(d̄ |
P4︷︸︸︷
d.c̄)︸ ︷︷ ︸

M′

)

︸ ︷︷ ︸
P2

)

t2 = (P2, M) t3 = P3

t′2 = (P2, M
′) t4 = (P4, P4)

Fig. 2. An open net encoding a process P

3 Open Nets

Differently from process calculi, standard Petri nets do not exhibit an interac-
tive behaviour, i.e., they are intended to model concurrent systems considered
as standalone. This section reviews open nets, i.e., ordinary P/T nets with a
distinguished set of open places : they represent the interfaces through which the
environment interacts with a net, by putting and removing tokens (see [21–23])1.

Given a set X , let X⊕ denote the free commutative monoid over X . An
element m ∈ X⊕, called a multiset over X , is often viewed as a function from
X to N (the set of natural numbers) that associates a multiplicity with every
element of X . We write m1 ⊆ m2 if ∀x ∈ X , m1(x) ≤ m2(x). If m1 ⊆ m2,
the multiset m2 .m1 is defined as ∀x ∈ X m2 .m1(x) = m2(x) −m1(x). The
symbol 0 denotes the empty multiset.

Definition 7 (Open P/T Petri net). An open (P/T Petri) net is a tuple
N = (S, T,• (.), (.)•, O) where S is the set of places, T is the set of transitions,
•(.), (.)• : T → S⊕ are functions mapping each transition to its pre- and post-set,
and O ⊆ S is the set of open places.

Example 2. Figure 2 shows an open net: as usual, circles represent places and
rectangles transitions. Arrows from places to transitions represent function •(.),
while arrows from transitions to places represent (.)•. An open net is enclosed in
a box and open places are on the border of such a box. Additionally, any open
place has a name which is placed inside the corresponding circle: in this example
these are chosen from the set N . Also transitions and closed places are provided
with an identifier, yet positioned outside of the corresponding circle or square:
their precise meaning, as well as an explanation of the process on the right, is
provided later on. The open place identified by a and the closed place identified
by P2 form e.g. the pre-set of transition t2; its post-set is formed by a, P4 and d.

Given an open net N , we consider the set of interactions (ranged over by i)
IN = {s+, s− | s ∈ O}. The set of labels (ranged over by l) consists in {τ} � IN .
1 Differently from [21], yet with no loss of generality, we do not distinguish between

input and output open places, tailoring equivalences accordingly.

106 P. Baldan, F. Bonchi, and F. Gadducci

Table 1. Operational Semantics of open nets

(tr) t ∈ T
•t⊕ c

τ−→ t• ⊕ c
(in) s ∈ O

m
s+−→ m⊕ s

(out) s ∈ O

m
s−−→ m� s

The operational semantics of open nets is expressed by the rules on Table 1,
where we write •t and t• instead of •(t) and (t)•. The rule (tr) is the standard
rule of P/T nets (seen as multiset rewriting) modelling internal transitions. The
other two rules model interactions with the environment: in any moment a token
can be inserted in (rule (in)) or removed from (rule (out)) an open place.

Weak transitions are defined as usual, i.e., τ⇒ denotes the reflexive and tran-
sitive closure of τ−→ and i⇒ denotes τ⇒ i−→ τ⇒.

Definition 8 (Strong and weak bisimilarity). Let N1, N2 be open nets with
the same interface i.e., O1 = O2. A strong bisimulation between N1 and N2 is
a relation over markings R ⊆ S⊕

1 × S⊕
2 such that if (m1, m2) ∈ R then

– if m1
l−→ m′

1 in N1 then m2
l−→ m′

2 in N2 and (m′
1, m

′
2) ∈ R;

– if m2
l−→ m′

2 in N2 then m1
l−→ m′

1 in N1 and (m′
1, m

′
2) ∈ R.

Two markings m1 ∈ S⊕
1 and m2 ∈ S⊕

2 are bisimilar, written m1 ∼ m2, if
(m1, m2) ∈ R for some strong bisimulation R.

Weak bisimilarity ≈ is defined analogously by replacing strong transitions l−→
by weak transitions l⇒.

In order to ease the intuition behind net bisimilarity, nets must be thought of
as black boxes, where only the interfaces (i.e., the open places) are visible. Two
nets are weak bisimilar if they cannot be distinguished by an external observer
that may only insert and remove tokens in open places. For strong bisimilarity
the observer can also see the occurrence of internal transitions.

4 From Processes to Nets

Our encoding is restricted to bound processes, i.e., processes where restrictions
never occur under replications. Any bound process is structurally equivalent to
a process of the shape (νX)P , for P a restriction-free process and X ⊆ fn(P).
In the following, we implicitly assume that bound processes are always in this
shape. Moreover, we call basic processes those bound processes described by the
following syntax (where P must be restriction-free)

B ::= ā, !a.P, M

Observe that any restriction-free process is just the parallel composition of sev-
eral basic processes. In our net encoding, basic processes become places, marked
with a number of tokens equal to the number of occurrences of the correspond-
ing basic process in the parallel composition. Hereafter, we use [P] to denote the
equivalence class of process P w.r.t. structural equivalence.

Encoding Asynchronous Interactions Using Open Petri Nets 107

Pl(P1 | P2) = Pl(P1) ∪ Pl(P2)
Pl(!a.P) = {a} ∪ {[!a.P]} ∪ Pl(P)

Pl(M) =
{ ∅ ifM ≡ 0
{[M]} ∪ Pls(M) otherwise

Pl(ā) = {a}
Pls(a.P) = {a} ∪ Pl(P)
Pls(τ.P) = Pl(P)
Pls(M1 + M2) = Pls(M1) ∪ Pls(M2)

Fig. 3. The place functions

Definition 9 (places). The (mutually recursive) functions Pl(P) and Pls(M),
associating to each restriction-free process and summation, respectively, a set of
places, are defined by structural induction according to the rules in Figure 3.

The set of places associated with a restriction-free process P thus consists in
the set of names of P together with the set of equivalence classes of basic sub-
processes of P of shape !a.P and M , for M
≡ 0. Notice that a basic process
ā is simply encoded by a token in the place corresponding to name a. We use
m(P) to denote the marking associated with a restriction-free process P , which,
assuming m(0) to be the empty marking, is defined by

m(P1 | P2) = m(P1)⊕m(P2) m(ā) = a m(M) = [M] m(!a.P) = [!a.P]

Definition 10 (transitions, pre- and post-conditions). Let M be a sum-
mation. The set of atoms of M , denoted Atom(M), is inductively defined as:

Atom(0) = ∅, Atom(µ.P) = {[µ.P]}, Atom(M1 + M2) = Atom(M1)∪Atom(M2)

for µ ∈ N ∪ {τ}. Now, let P be a restriction-free process. The set of transitions
of P , denoted T (P), is inductively defined as:

T (0) = ∅ T (P1 | P2) = T (P1) ∪ T (P2)
T (ā) = ∅ T (!a.P) = {[!a.P]} ∪ T (P)

T (M) = ({[M]} ×Atom(M)) ∪
⋃

[µ.P]∈Atom(M) T (P)

The pre- and post-conditions •(.)P , (.)•P : T (P)→ Pl(P)⊕ are defined as follows.

•tP =
{ {[M]} ⊕ fn(µ.0) if t = 〈[M], [µ.P]〉
{[!a.P]} ⊕ {a} if t = [!a.P] t•P =

{
m(P) if t = 〈[M], [µ.P]〉
{[!a.P]} ⊕m(P) if t = [!a.P]

Intuitively, transitions mimic the control flow of a process, passing the token
between its sequential components (its basic processes).

We next introduce the net encoding for bound processes. In order to get
a full correspondence between behavioural equivalences, we need to encode our
processes parametrically w.r.t. a set of names Γ , as usually necessary in graphical
encodings of process calculi (based e.g. on DPO rewriting [36] or bigraphs [37]).

Definition 11. Let P be a restriction-free process and X, Γ disjoint sets of
names such that fn((νX)P) ⊆ Γ . Then, the open net [[(νX)P]]Γ is the tuple

(Pl(P) ∪ Γ, T (P),• (.)P , (.)•P , Γ)

108 P. Baldan, F. Bonchi, and F. Gadducci

First we take the net associated with P , consisting of those places and transi-
tions as given in Definitions 9 and 10. Then the set of places is extended with
those names belonging to Γ (the assumption Γ ∩X = ∅ avoids that by chance
a restricted name in X is overlapped). Finally, we take as open those places
corresponding to a name in Γ (by hypothesis this includes the free names of
(νX)P).

Example 3. The net in Example 2 is the encoding [[P]]Γ of the process P in
Example 1, with Γ = {a, c, e}. The places identified by a, c, and e correspond
to the free names of the process, while place d corresponds to the restricted
name d. The remaining places correspond to (equivalence classes of) the basic
sub-processes of P : for example, the place P2 corresponds to the sub-process
[a.(ā | d̄ | d.c̄)+ τ.(d̄ | d.c̄)], while the place P4 to [d.c̄]. The transition t2 encodes
the pair (P2, M), for M the atom [a.(ā | d̄ | d.c̄)]. It may fire in presence of a
token in a and P2: it roughly represents the reduction P2 | ā → ā | d̄ | d.c̄.

We close this section by establishing a first correspondence result.

Proposition 2. Let P , Q be bound processes and Γ a set of names such that
fn(P)∪fn(Q) ⊆ Γ . Then P ≡ Q iff the open nets [[P]]Γ and [[Q]]Γ are isomorphic.

4.1 Relating Asynchronous CCS and Open Nets

This section shows that our encoding preserves and reflects process reductions,
as well as strong and weak behavioural equivalences. In order to state these
results, we must define a correspondence between the set of processes reachable
from P , hereafter denoted by reach(P), and markings over the net [[P]]Γ . For
this, we need a technical lemma concerning reductions for bound processes.

Lemma 1. Let P be a restriction-free process and X a set of names. Then,

1. (νX)P → Q iff Q ≡ (νX)Q1 and P → Q1;
2. if P → Q then Q ≡ B1 | . . . | Bn, for Bi’s basic sub-processes of P .

The above lemma tells us that each process Q reachable from a bound process
(νX)P can be seen as a (possibly empty) marking over the net [[(νX)P]]Γ . In
fact, the set of places of [[(νX)P]]Γ contains all the basic sub-processes of P .

Definition 12. Let P be a bound process and X, Γ disjoint sets of names such
that P ≡ (νX)P1 (for P1 restriction-free) and fn(P) ⊆ Γ . The function mX,P1

Γ :
reach(P) → (Pl(P1) ∪ Γ)⊕ maps any process Q ≡ (νX)Q1 (for Q1 restriction-
free) reachable from P into the marking m(Q1) over the net [[P]]Γ .

Example 4. Recall P = (νd)P1, for P1 =!d.ē | (a.(ā | d̄ | d.c̄) + τ.(d̄ | d.c̄)),
from Example 1. Let X = {d} and Γ = {a, c, e}. The function mX,P1

Γ maps the
processes reachable from P into markings of [[P]]Γ , that is, the net in Figure 2.
E.g., P is mapped to P2 ⊕ P3; (νd)(!d.ē | d̄ | d.c̄) is mapped to P3 ⊕ d ⊕ P4;
(νd)(!d.ē | c̄) is mapped to P3 ⊕ c and (νd)(ē | d.c̄) to e⊕ P4.

Encoding Asynchronous Interactions Using Open Petri Nets 109

Once established that any process reachable from a bound process P identifies
a marking in the net [[P]]Γ , we can state the main correspondence results.

Theorem 1. Let P be a bound process, and X, Γ disjoint sets of names such
that P ≡ (νX)P1 (for P1 restriction-free) and fn(P) ⊆ Γ . Moreover, let Q be a
process reachable from P . Then,

1. if Q→ R then mX,P1
Γ (Q) τ−→mX,P1

Γ (R) in [[P]]Γ ;
2. if mX,P1

Γ (Q) τ−→ m in [[P]]Γ , then Q→ R for m = mX,P1
Γ (R).

The result establishes a bijection between the reductions performed by any pro-
cess Q reachable from P , and the firings in [[P]]Γ from the marking mX,P1

Γ (Q),
for any restriction-free P1 such that P ≡ (νX)P1.

Such a bijection can then be lifted to a fundamental correspondence between
the observational semantics in the two formalisms.

Theorem 2. Let P , Q be bound processes and X, Y, Γ sets of names (with X ∩
Γ = Y ∩Γ = ∅) such that P ≡ (νX)P1 and Q ≡ (νY)Q1 (for P1, Q1 restriction-
free) and fn(P) ∪ fn(Q) ⊆ Γ . Then,

1. P ∼1 Q iff mX,P1
Γ (P) ∼mY,Q1

Γ (Q);
2. P ≈1 Q iff mX,P1

Γ (P) ≈mY,Q1
Γ (Q).

Please note that the markings mX,P1
Γ (P) and mX,Q1

Γ (Q) live in the open nets
[[P]]Γ and [[Q]]Γ , respectively.

Example 5. Consider the net on the left of Figure 4: it corresponds to [[Q]]Γ , for
Γ = {a, c, e}, Q = (νd)Q1 and Q1 = τ.(d.c̄ | d.ē | d̄) as in Example 1. Note
the presence of the isolated place a: it says that name a does not occur in Q.
Now, the left-most place represents the (equivalence class of the) sub-process
Q1; the left-most transition, identified by t, the pair (Q1, Q1); and its firing is
the execution of the internal transition Q1 → d.c̄ | d.ē | d̄, putting a token on
the three places representing the restricted name d and the basic sub-processes
Q2 = d.c̄ and Q3 = d.ē.

It is easy to see that mX,P1
Γ (P) = P2 ⊕ P3 in [[P]]Γ is strongly bisimilar to

the marking mX,Q1
Γ (Q) = Q1 in [[Q]]Γ : they clearly induce the same internal

behaviour; moreover when the environment inserts a token into a, P2 ⊕ P3 ⊕ a
may fire also transition t2 producing a ⊕ P4 ⊕ d ⊕ P3, but this is equivalent to
the firing of the other internal transition t′2. From this, it follows that P ∼b Q.

Consider now the net in the right of Figure 4: it corresponds to the encoding of
[[a.ā]]{a}. It is weakly bisimilar to the encoding [[0]]{a}, represented by a net having
only an open place, identified by a. In fact, in both cases the only observable
action is either placing or removing a token on the open place a, while the
execution of the transition (a.ā, a.ā), consuming and producing a, is unobservable
from the environment. It thus holds that a.ā ≈b 0.

110 P. Baldan, F. Bonchi, and F. Gadducci

a

t

d

e

c
Q1

Q3

Q2

a

Fig. 4. The net encodings [[Q]]Γ for Γ = {a, c, e} (left) and [[a.ā]]{a} (right)

5 Technology Transfer on Expressiveness

In this section we discuss some expressiveness issues for asynchronous CCS and
open nets, taking advantage from the encoding presented before.

More specifically, we first show that strong and weak bisimilarity of bound
processes of asynchronous CCS are undecidable, thus answering a question faced
for the synchronous case in the recent [16]. By using Theorem 2, we can deduce
that the same result holds for open nets, a fact which was previously unknown.

On the other hand, using the fact that reachability and convergence are de-
cidable for Petri nets, through the encoding we can prove that the same holds
for bound asynchronous CCS (which, thus, is not Turing powerful).

5.1 Undecidability of Bisimilarity

The undecidability of bisimilarity for bound CCS processes is proved by reduc-
tion to the halting problem for Minsky’s two-register machines, adapting a proof
technique originally proposed in [29].

Definition 13 (two-register machine). A two-register machine is a triple
〈r1, r2, P 〉 where r1 and r2 are two registers which can hold any natural num-
ber, and the program P = I1 . . . Is consists of a sequence of instructions. An
instruction Ii can be one of the following: for x ∈ {r1, r2}, j, k ∈ {1, . . . , s + 1}
– s(x, j): increment the value of register x and jump to instruction Ij

– zd(x, j, k): if x is zero, then jump to Ij else decrement x and jump to Ik

The execution of the program starts from instruction I1, with r1 = 0, r2 = 0 and
possibly terminate when the (s + 1)st instruction is executed.

The idea consists in defining, for any two-register machine program P , a bound
process γ(P) which “non-deterministically simulates” the computations of the
program (starting with null registers). Some “wrongful” computations are pos-
sible in the process γ(P), not corresponding to a correct computation of the
program P (due to the absence of zero-tests in the considered fragment of CCS).
Still, this can be used to prove undecidability of (strong and weak) bisimilarity.
In fact, given P , a second process γ′(P) can be built such that γ(P) ∼ γ′(P) iff
program P does not terminate. Therefore, deciding bisimilarity for bound CCS
processes would allow to decide the termination of two-register machines. As
two-register machines are Turing powerful, we conclude.

Encoding Asynchronous Interactions Using Open Petri Nets 111

Theorem 3. Strong (weak) 1-bisimilarity of bound processes is undecidable.

From the properties of the encoding (Theorem 2) we can deduce the same un-
decidability results for open nets.

Corollary 1. Strong (weak) bisimilarity is undecidable for open nets.

In the same way, one can easily prove that various other behavioural equiva-
lences, including failure equivalence (the notion of equivalence considered in [16])
and language equivalence, are undecidable.

5.2 Decidability of Reachability and Convergence

It is immediate to see that for open nets the reachability problem, i.e., the
problem of determining whether a given marking is reachable by means of a firing
sequence starting from the initial marking, is decidable. In fact, reachability in an
open net N can be reduced to reachability in a standard P/T net obtained from
N by adding, for any open place s, two transitions t−s and t+s which, respectively,
freely remove and add tokens from s, i.e., •t−s = t+s

• = s and t−s
• =• t+s = 0.

By exploiting the encoding, we may transfer the result to bound asynchronous
CCS, showing that reachability in an open environment, providing any needed
message, is decidable.

Proposition 3. Let P, Q be bound processes. Then the problem of establishing
whether there exists an environment R, consisting of the (possibly empty) parallel
composition of output messages, such that P |R ⇒ Q is decidable.

In particular, the problem P ⇒ Q is decidable. In fact, if X = fn(P)∪ fn(Q), it
is easy to see that P ⇒ Q iff (νX)P ⇒ (νX)Q, and this is in turn equivalent to
the existence of a suitable process R such that R|(νX)P ⇒ (νX)Q.

Another property which is often considered when studying the expressiveness
of process calculi is convergence, i.e., the existence of a terminating computation.
We recall such notion below, according to [28].

Definition 14 (convergence). A process P is called convergent if there exists
Q such that P ⇒ Q
→.

Convergence is clearly decidable for an open net N , as it can be reduced to the
existence of a deadlock in the standard P/T net obtained from N by closing all
the open places, and this property is known to be decidable for P/T nets [38].

As a consequence the same holds for bound asynchronous CCS.

Proposition 4. Convergence is decidable for bound processes.

The paper [16] shows that, in the synchronous case, adding priorities to the
language radically changes the situation: bound CCS becomes Turing complete
and convergence is thus undecidable. It is easy to show that the same applies
to the asynchronous case. The fact that adding priorities makes bound asyn-
chronous CCS Turing complete can be proved by noting that using priorities
the encoding of two-counter machines into bound asynchronous CCS can be
made deterministic. This is not surprising as, on the Petri net side, priorities are
strictly connected to inhibitor arcs, which make Petri nets Turing powerful [39].

112 P. Baldan, F. Bonchi, and F. Gadducci

6 Conclusions and Further Work

We believe that the relevance of our paper lies in establishing the fundamental
correspondence between asynchronous calculi and open nets, as stated by the
theorems of Section 4. Indeed, even if our presentation has been tailored over a
variant of standard CCS, we feel confident that it can be generalized to other
asynchronous calculi as well, at least to those based on a primitive notion of
communication, i.e., without either value or name passing. As suggested by the
work in [15, 30, 32], the generalisation to calculi with value or name passing
looks feasible if one considers more expressive variants of Petri nets, ranging
from high-level to reconfigurable/dynamic Petri nets.

We consider such a correspondence quite enlightening, since most of the en-
codings we are aware of focus on the preservation of some variants of reachability
or of the operational behaviour [30–32,40], while ours allow to establish a cor-
respondence at the observational level.

As a remark, note that the encoding of CCS processes into open nets could
be defined in a compositional way, either via a more syntactical presentation
(thus losing the preservation of structural congruence) or by the exploiting the
composition operation available for open nets. The latter would require to view
open nets as cospans (with complex interfaces) in a suitable category [23, 36]. In
order to keep the presentation simpler we adopted a direct definition.

We believe that the tight connection between Petri nets and asynchronous
calculi allows for a fruitful “technology transfer”. We started by showing the
undecidability of bisimilarity for bound processes which, through the encoding,
is used to prove undecidability of bisimilarity for open nets (where all internal
transitions are considered indistinguishable in the strong case and unobservable
in the weak case), a previously unknown fact. Analogously, decidability of reach-
ability and convergence for open nets is transferred, through the encoding, to
bound asynchronous CCS processes.

We are currently investigating the concurrent semantics for asynchronous
CCS. The idea is to consider the step semantics for our nets, i.e., where many
transitions may fire simultaneously, and then try to distill an adequate equiva-
lence for bound process. Indeed, our initial results are quite encouraging. On the
longer run, our hope would then be to lift these equivalences to richer calculi,
such as the paradigmatic asynchronous π-calculus [6] and to different behavioural
equivalences, including, e.g., failure and testing equivalences [7].

Acknowledgments. We are grateful to Barbara König for enlightening discus-
sions on a preliminary version of this paper and to the anonymous reviewers for
their inspiring comments.

References

1. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

Encoding Asynchronous Interactions Using Open Petri Nets 113

2. Boudol, G.: Asynchrony and the π-calculus. Technical Report 1702, INRIA, Sophia
Antipolis (1992)

3. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

4. Castellani, I., Hennessy, M.: Testing theories for asynchronous languages. In:
Arvind, V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 90–102.
Springer, Heidelberg (1998)

5. Ferrari, G., Guanciale, R., Strollo, D.: Event based service coordination over dy-
namic and heterogeneous networks. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 453–458. Springer, Heidelberg (2006)

6. Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. TCS 195(2), 291–324 (1998)

7. Boreale, M., De Nicola, R., Pugliese, R.: Asynchronous observations of processes.
In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 95–109. Springer,
Heidelberg (1998)

8. Boreale, M., De Nicola, R., Pugliese, R.: A theory of “may” testing for asyn-
chronous languages. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578,
pp. 165–179. Springer, Heidelberg (1999)

9. Rathke, J., Sobocinski, P.: Making the unobservable, unobservable. In: ICE 2008.
ENTCS. Elsevier, Amsterdam (2009) (to appear)

10. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985)

11. van der Aalst, W.: Pi calculus versus Petri nets: Let us eat “humble pie” rather
than further inflate the “Pi hype”. BPTrends 3(5), 1–11 (2005)

12. Goltz, U.: CCS and Petri nets. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469,
pp. 334–357. Springer, Heidelberg (1990)

13. Gorrieri, R., Montanari, U.: SCONE: A simple calculus of nets. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 2–31. Springer, Heidelberg
(1990)

14. Busi, N., Gorrieri, R.: A Petri net semantics for pi-calculus. In: Lee, I., Smolka, S.A.
(eds.) CONCUR 1995. LNCS, vol. 962, pp. 145–159. Springer, Heidelberg (1995)

15. Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of
general pi-calculus terms. Formal Asp. Comput. 20(4-5), 429–450 (2008)

16. Aranda, J., Valencia, F., Versari, C.: On the expressive power of restriction and
priorities in CCS with replication. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS,
vol. 5504, pp. 242–256. Springer, Heidelberg (2009)

17. Olderog, E.: Nets, terms and formulas. Cambridge University Press, Cambridge
(1991)

18. Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on Petri
nets with inhibitor arcs. Journal of Logic and Algebraic Programming 78, 138–162
(2009)

19. Berry, G., Boudol, G.: The chemical abstract machine. TCS 96, 217–248 (1992)
20. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.

LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)
21. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open

Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(1), 1–35 (2004)

22. Milner, R.: Bigraphs for Petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.)
Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer,
Heidelberg (2004)

114 P. Baldan, F. Bonchi, and F. Gadducci

23. Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Ehrig, H., Padberg,
J., Rozenberg, G. (eds.) PNGT 2004. ENTCS, vol. 127, pp. 107–120. Elsevier,
Amsterdam (2005)

24. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)

25. Nielsen, M., Priese, L., Sassone, V.: Characterizing behavioural congruences for
Petri nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962,
pp. 175–189. Springer, Heidelberg (1995)

26. Koutny, M., Esparza, J., Best, E.: Operational semantics for the Petri box calculus.
In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 210–225.
Springer, Heidelberg (1994)

27. Kindler, E.: A compositional partial order semantics for Petri net components. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997)

28. Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and it-
eration in process calculi. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)

29. Jancar, P.: Undecidability of bisimilarity for Petri nets and some related problems.
TCS 148(2), 281–301 (1995)

30. Buscemi, M., Sassone, V.: High-level Petri nets as type theories in the join calculus.
In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 104–120.
Springer, Heidelberg (2001)

31. Busi, N., Zavattaro, G.: A process algebraic view of shared dataspace coordination.
J. Log. Algebr. Program. 75(1), 52–85 (2008)

32. Devillers, R., Klaudel, H., Koutny, M.: A Petri net semantics of a simple process
algebra for mobility. In: Baeten, J., Phillips, I. (eds.) EXPRESS 2005. ENTCS,
vol. 154, pp. 71–94. Elsevier, Amsterdam (2006)

33. Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification
of mobile systems using net unfoldings. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 327–347. Springer, Heidelberg (2008)

34. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

35. Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Com-
puter Science 8(5), 447–479 (1998)

36. Gadducci, F.: Graph rewriting and the π-calculus. Mathematical Structures in
Computer Science 17, 1–31 (2007)

37. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computa-
tion 204, 60–122 (2006)

38. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Journal In-
form. Process. Cybernet. EIK 30(3), 143–160 (1994)

39. Agerwala, T., Flynn, M.: Comments on capabilities, limitations and “correctness”
of Petri nets. Computer Architecture News 4(2), 81–86 (1973)

40. Busi, N., Zavattaro, G.: Expired data collection in shared dataspaces. TCS 3(298),
529–556 (2003)

Distributed Asynchronous Automata

Nicolas Baudru

Laboratoire d’Informatique Fondamentale de Marseille — eRISCS group
Aix-Marseille Universités, 163, avenue de Luminy, F-13288 Marseille Cedex 9, France

nicolas.baudru@lif.univ-mrs.fr

Abstract. Asynchronous automata are a model of communication processes with
a distributed control structure, global initializations and global accepting condi-
tions. The well-known theorem of Zielonka states that they recognize exactly
the class of regular Mazurkiewicz trace languages. In this paper we study the
particular case of distributed asynchronous automata, which require that the ini-
tializations and the accepting conditions are distributed as well: every process
chooses an initial local state and stops in a final local state independently from
each other. We characterize effectively the regular trace languages recognized by
these automata. Also, we present an original algorithm to build, if it is possible,
a non-deterministic distributed asynchronous automaton that recognizes a given
regular trace language. Surprisingly, this algorithm yields a new construction for
the more general problem of the synthesis of asynchronous automata from regular
trace languages that subsumes all existing ones in terms of space complexity.

Introduction

Asynchronous automata [17] modelize concurrent systems that use a mechanism based
on shared variables to communicate. They consist of a set of processes with a distributed
control structure, global initializations and global accepting conditions. During an exe-
cution the processes synchronize on shared variables, which are called simply actions in
our setting: all actions a are associated with a subset of processes which agree jointly on
a move on reading a. On the other hand, the theory of Mazurkiewicz traces [4] provides
mathematical tools for the formal study of concurrent systems. In this theory, the ac-
tions of a concurrent system are equipped with an independent relation between actions
that do not share any process.

One of the major contributions in the theory of Mazurkiewicz traces characterizes
regular trace languages by means of asynchronous automata [17]. This result, known as
Zielonka’s theorem, and related techniques are fundamental tools in concurrency theory.
For instance they are useful to compare the expressive power of classical models of
concurrency such as Petri nets, asynchronous systems, and concurrent automata [12,16].
These methods have been also adapted to the construction of communicating finite-state
machines from regular sets of message sequence charts [1,7,8].

For twenty years, several constructive proofs of Zielonka’s theorem have been de-
veloped. All these constructions, which build asynchronous automata from regular trace
languages, are quite involved and yield an exponential explosion of the number of states
in each process [6,13]. To our knowledge, the complexity of this problem is still un-
known, and it was asked in [5] whether a simpler construction could be designed.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 115–130, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

116 N. Baudru

In this paper, we are interested in the particular case of distributed asynchronous
automata (DAA for short). In a DAA, the initializations and the accepting conditions are
also distributed: each process chooses a local initial state and stops in a local final state
independently from other processes. We introduce them as an interesting tool to de-
velop alternative proofs of Zielonka’s result. In particular, we present a technique based
on simple compositions/decompositions of DAAs that results in the construction of a
“small” non-deterministic asynchronous automaton from any regular trace language
given by means of a trace automaton A. The size of each process built by our method is
then polynomial in the size of A and only exponential in the number of processes and
actions of the system. So our method reduces significantly the explosion of the number
of states in each process

Contrary to asynchronous automata, non-deterministic DAAs and deterministic DAAs
do not recognize the same class of trace languages. Moreover, some regular trace lan-
guages are recognized by no DAA. Therefore we characterize the trace languages that
correspond precisely to the behaviours of non-deterministic DAAs: these are the ones
that satisfy the condition of distributivity. We explain how to verify whether or not a
regular trace language is distributed. If so, we show that our method gives directly a
DAA recognizing this language. However it is still an open question to decide whether
a regular trace language is recognizable by a deterministic DAA .

Overview of the Paper. The basic notions and definitions are presented in Section 1.
Section 2 introduces the model of distributed asynchronous automata and a short com-
parison with the classical asynchronous automata. In particular, we show that these two
models are not equivalent. In Section 3, a tool is introduced to compose hierarchically
DAAs into a high-level DAA. The key results presented in this section will be used all
along the paper. Then we define in Section 4 the concept of roadmaps and their as-
sociated located trace languages. Our first main result, Theorem 4.4, states that any
located trace language is recognized by some DAA. We explain how to build this DAA

by using high-level DAAs and present a first complexity result about our construction
at the end of this section. Also, Theorem 4.4 yields a new construction for the syn-
thesis of classical asynchronous automata that subsumes all existing ones in terms of
complexity. This construction and a comparison with related works are presented in
Section 5. Finally, Section 6 contains the second main result of the paper: Theorem 6.5
shows that distributed regular trace languages correspond precisely to the behaviours of
non-deterministic distributed asynchronous automata.

1 Background

1.1 Mazurkiewicz Traces

In this paper we fix a finite alphabet Σ whose elements are called actions. A word u
over Σ is a sequence of actions of Σ; the empty word is denoted by ε. The alphabet
alph(u) of a word u ∈ Σ� consists of all actions that appear in u. It is inductively
defined by alph(ε) = ∅ and alph(ua) = alph(u) ∪ {a} for all u ∈ Σ� and all a ∈ Σ.

In addition to Σ, we fix an independence relation I over Σ, that is, a binary relation
I ⊆ Σ ×Σ that is irreflexive and symmetric. We also define the dependence relation D

Distributed Asynchronous Automata 117

as the complementary relation of I: D = Σ×Σ \ I. The trace equivalence ∼ associated
with the independence alphabet (Σ, I) is the least congruence over the free monoid
Σ� such that ab ∼ ba for all pairs of independent actions aIb. For a word u ∈ Σ�,
the (Mazurkiewicz) trace [u] collects all words that are equivalent to u: [u] = {v ∈
Σ� | v ∼ u}. We extend this notation to sets of words: for all L ⊆ Σ�, [L] = {v ∈
Σ� | ∃u ∈ L : v ∼ u}. Finally a set of words L is called a trace language if [L] = L.

1.2 Trace Automata

An automaton A is a quadruple (Q,→, I, F) where Q is a finite set of states, →⊆
Q × (Σ ∪ {ε}) × Q is a set of transitions, and I, F ⊆ Q are respectively a subset of
initial states and a subset of final states. We write q

a→ q′ to denote (q, a, q′) ∈→. Then
the automatonA is deterministic if it satisfies the three next conditions: I is a singleton;
if q

ε→ q′ then q = q′; if q
a→ q′ and q

a→ q′′ then q′ = q′′.
An execution of A of length n ≥ 1 is a sequence of transitions (qi

ai→ q′i)i∈[1,n] such
that q′i = qi+1 for each i ∈ [1, n − 1]. An execution of length 0 is simply a state of A.
For any word u ∈ Σ�, we write q

u→ q′ if there is some execution (qi
ai→ q′i)i∈[1,n] such

that q = q1, q′ = q′n and u = a1 · · ·an. The language L(A) accepted by an automaton
A consists of all words u ∈ Σ� such that q

u→ q′ for some q ∈ I and some q′ ∈ F . A
set of words L ⊆ Σ� is regular if it is accepted by some automaton.

Definition 1.1. An automaton A = (Q,→, I, F) is called a trace automaton if for all
states q, q′ ∈ Q and all words u, v ∈ Σ� such that u ∼ v, q

u→ q′ implies q
v→ q′.

Clearly the language accepted by a trace automaton is a regular trace language. Con-
versely for any regular trace language L the minimal deterministic automaton that
accepts L is a trace automaton.

1.3 Synthesis of Asynchronous Automata

We present next the model of asynchronous automata [17]. At first we introduce some
additional notations. A finite family δ = (Σp)p∈P of subsets of Σ is called a distri-
bution of (Σ, I) if we have D =

⋃
p∈P(Σp × Σp). We fix an arbitrary distribution

δ = (Σp)p∈P in the rest of this paper and call processes the elements of P . The loca-
tion Loc(a) of an action a ∈ Σ consists of all processes p ∈ P such that a ∈ Σp. We
extend this notation to set of actions T ⊆ Σ and to words u ∈ Σ� in a natural way:
Loc(T) =

⋃
a∈T Loc(a) and Loc(u) = Loc(alph(u)).

Definition 1.2. An asynchronous automaton (AA for short) S consists of

– a family of local states (Qp)p∈P ;
– a set of initial global states I ⊆

∏
p∈P Qp;

– a set of final global states F ⊆
∏

p∈P Qp;
– a family of mute transitions (τp)p∈P where τp ⊆ Qp × Qp for all p ∈ P;
– and a family of transition relations (∂a)a∈Σ where for all a ∈ Σ,

∂a ⊆
∏

p∈Loc(a)

Qp ×
∏

p∈Loc(a)

Qp

118 N. Baudru

We stress here that the mute transitions have been introduced to simplify the different
constructions presented throughout this paper. They can be removed without loss of
generality and without increasing the number of local states. For each process p ∈ P ,
we define τ�

p as the reflexive and transitive closure of τp: for all q0, q ∈ Qp, (q0, q) ∈ τ�
p

iff q0 = q or else there exists a sequence of states q1, . . . , qn such that (qi, qi+1) ∈ τp

for all 0 ≤ i < n and qn = q.
The global automaton AS of S is the automaton (Q,→, I, F) where Q is the set

of global states
∏

p∈P Qp and the set of global transitions →⊆ Q × (Σ ∪ {ε}) × Q

is defined by the two next rules: for all a ∈ Σ, (xp)p∈P
a→ (yp)p∈P if xp = yp for

all p
∈ Loc(a) and ((xp)p∈Loc(a), (yp)p∈Loc(a)) ∈ ∂a; (xp)p∈P
ε→ (yp)p∈P if there

is some p ∈ P such (xp, yp) ∈ τp and xk = yk for all k
= p. For convenience, an
execution of the global automaton AS of S is simply called an execution of S.

The language recognized by an asynchronous automaton S is simply the language
of its global automaton AS : L(S) = L(AS). Notice that AS is a trace automaton.
Then L(S) is a regular trace language. In [17], Zielonka shows that any regular trace
language is recognized by an asynchronous automaton. Furthermore, this asynchronous
automaton is deterministic, which means its global automaton is deterministic.

Theorem 1.3 (Zielonka [17]). For all trace automata A there exists a deterministic
asynchronous automaton S such that L(S) = L(A).

2 Distributed Asynchronous Automata

Distributed asynchronous automata (DAA for short) differ slightly from asynchronous
automata since we consider a local definition of initial and final states rather than
a global one. We will show in Example 2.2 that the two models are not semanti-
cally equivalent: some regular trace languages are not recognizable by distributed asyn-
chronous automata.

Definition 2.1. An asynchronous automaton ((Qp)p∈P , I, F, (τp)p∈P , (∂a)a∈Σ) is dis-
tributed if there exist two families (Ip)p∈P and (Fp)p∈P such that Ip, Fp ⊆ Qp for all
p ∈ P , I =

∏
p∈P Ip and F =

∏
p∈P Fp.

For convenience we will denote a DAA H as ((Qp, Ip, Fp, τp)p∈P , (∂a)a∈Σ) where Ip

and Fp represent the set of initial local states and the set of final local states of the pro-
cess p, respectively. For next purpose, we also define the notion of local executions of
H. Let p be a process. Then a local execution of H for p is a sequence (qi, ai, q

′
i)i∈[1,n]

of tuples of Qp × (Σp ∪ {ε})) × Qp that satisfies the following statements: q1 ∈ Ip;
q′n ∈ Fp; q′i = qi+1 for all i ∈ [1, n − 1]; and for all i ∈ [1, n], either (qi, q

′
i) ∈ τp and

ai = ε, or there is ((xk)k∈P , (yk)k∈P) ∈ ∂ai with xp = qi and yp = q′i. For any word
u ∈ Σ�

p , we write q
u�p q′ if there is some local execution (qi, ai, q

′
i)i∈[1,n] for p such

that q1 = q, q′n = q′ and a1 · · · an = u.

Example 2.2. Consider the regular trace language L = [aab] ∪ [abb] over the
alphabet {a, b} with aIb. L is recognized by the asynchronous automaton that con-
sists of two processes pa and pb with Σpa = {a}, Σpb

= {b}, Qpa = {qa, q′a, q′′a},

Distributed Asynchronous Automata 119

Qpb
= {qb, q

′
b, q

′′
b }, I = {(qa, q′b), (q

′
a, qb)}, F = {(q′′a , q′′b)}, ∂a = {(qa, q′a), (q′a, q′′a)}

and ∂b = {(qb, q
′
b), (q

′
b, q

′′
b)}. However L is recognized by no DAA. Indeed, suppose for

the sake of contradiction that such a DAA H exists, that is L(H) = L. Then H consists
of two processes pa and pb. Since L = [aab] ∪ [abb] and aIb, pa is able to locally per-
form a and aa, and pb is able to locally perform b and bb. Because initial and final states
are local in a DAA, the process pa carries out a or aa independently of the choice of the
process pb. Then the words ab and aabb belong to L(H). This contradicts L(H) = L.

This example shows that some regular trace languages are not recognizable by DAAs.
Since DAAs are a particular case of AAs, and because Theorem 1.3 states that any regular
trace language is recognized by AAs, we conclude that DAAs are less expressive than
AAs. Noteworthy the expressive power of asynchronous automata does not change if
only the initializations or else only the accepting conditions are distributed.

Another interesting remark follows from Theorem 1.3. Let L be a regular trace lan-
guage. Then L is recognized by some AA S = ((Qp)p∈P , IS , FS , (τp)p∈P , (∂a)a∈Σ).
For each pair (ı, f) of initial and final states of IS × FS , we can build another AA Sı,f

that is identical to S except that the set of initial states and the set of final states are
restricted to the singletons {ı} and {f}, respectively. Clearly, these new AAs are DAAs
as well. Then the next corollary holds:

Corollary 2.3. Let L be a regular trace language. There exists a finite set of DAAs
H1, . . . ,Hn such that L =

⋃
i∈[1,n] L(Hi).

Thus, any regular trace language is the finite union of the languages of DAAs. The
expressive power of DAAs will be studied in Section 6.

3 High-Level Distributed Asynchronous Automata

In this section, we introduce a natural operation to compose DAAs similar to HMSC [8].
We show that the language of the DAA associated to a high-level DAA can be expressed
in terms of the languages of its DAA components under some assumptions. As example,
we show that some natural and intuitive operations over DAAs like concatenation and
choice can be seen as particular high-level DAAs. The different results of this section
constitute the heart of this paper. They will be used in Sections 4 and 6.

A high-level DAA G is a structure (V, E, I, F, Ψ) where V is a finite and nonempty
set of vertices, E ⊆ V × V is a set of edges and I, F ⊆ V are respectively a set of
initial vertices and a set of final vertices. The function Ψ maps all vertices v ∈ V to a
DAA Ψ(v), which is denoted by ((Qv,p, Iv,p, Fv,p, τv,p)p∈P , (∂v,a)a∈Σ). Moreover, we
require that the sets of states Qv,p and Qv′,p are disjoint for all v, v′ ∈ V and all p ∈ P .
A path π of G is a sequence (v0, . . . , vn) such that v0 ∈ I , vn ∈ F and (vi−1, vi) ∈ E
for i ∈ [1, n]. We denote by ΠG the set of all paths of G. We say that G has no self-loop
if (v, w) ∈ E ⇒ v
= w. This assumption will be useful for Proposition 3.5 to avoid
some synchronization problems as presented in Remark 3.6.

Now we define the DAA 〈G〉 associated with a high-level DAA G. Roughly speaking,
〈G〉 consists of putting the DAAs Ψ(v) all together, and adding mute transitions from
their final local states to their initial local states in accordance with the edges of G.

120 N. Baudru

Definition 3.1. The DAA 〈G〉 = ((Qp, Ip, Fp, τp)p∈P , (∂a)a∈Σ) associated with a high-
level DAA G = (V, E, I, F, Ψ) is defined by

– Qp =
⋃

v∈V Qv,p for each process p ∈ P ,
– Ip =

⋃
v∈I Iv,p for each process p ∈ P ,

– Fp =
⋃

v∈F Fv,p for each process p ∈ P ,
– ∂a =

⋃
v∈V ∂v,a for each action a ∈ Σ,

– τp =
⋃

v∈V τv,p ∪
⋃

(v,w)∈E(Fv,p × Iw,p) for each process p ∈ P .

To illustrate this definition, we pay attention to the particular case of a high-level DAA

with two vertices and one edge, which leads to the definition of the concatenation of
two DAAs. The related Proposition 3.3 will be useful for the proof of Proposition 3.5.

Definition 3.2. Let H1 and H2 be two DAAs and let G be the high-level distributed
asynchronous automaton (V, E, I, F, Ψ) where V = {v1, v2}, (v1, v2) ∈ E, I = {v1},
F = {v2}, Ψ(v1) = H1 and Ψ(v2) = H2. Then the concatenation H1 �H2 is 〈G〉.

Intuitively, H1 � H2 behaves as follows: each process p of H1 � H2 starts to behave
like the process p of H1 until it reaches a final local state of H1. Thereafter it behaves
like the process p of H2. So, it should be clear that the following proposition holds:

Proposition 3.3. L(H1 �H2) is the trace language [L(H1) · L(H2)].

We come to the key result of the paper. The next proposition shows that, under some
assumptions, the language of the DAA associated with a high-level DAA G can be ex-
pressed in terms of the languages of the DAA components of G. This result requires
that G has no self-loop and relies on the synchronization condition defined below. The
latter uses the notion of local executions introduced in Section 2. We recall that local
executions always start in an initial local state and end in a final local state.

Definition 3.4. Let T ⊆ Σ. A DAA H is T -synchronizable if for all processes p ∈ P
and all local executions q

u�p q′ of H, we have (Σp ∩ T) = alph(u).

For a distributed asynchronous automaton H, the T -synchronization condition will im-
ply the next fact: if the dependence graph (T, D) is connected, then all processes of
Loc(T) always synchronize with each other along any execution of H that leads its
processes from local initial states to final ones. Thus, whenever we compose several
T -synchronizable DAAs in a high-level DAA G, all processes of Loc(T) are forced to
travel along the same sequence of DAA components. Consequently, the behaviours of
the associated DAA 〈G〉 can easily be characterized as unions and compositions of the
languages of the DAA components.

Proposition 3.5. Let G be a high-level DAA with Ψ as labelling function and T ⊆ Σ. If
G has no self-loop, Ψ maps all vertices of G to T -synchronizable DAAs and the depen-
dence graph (T, D) is connected, then 〈G〉 is a T -synchronizable DAA that recognizes

L(〈G〉) =
⋃

(v0,...,vn)∈ΠG

[L(Ψ(v0)) · . . . · L(Ψ(vn))] .

Distributed Asynchronous Automata 121

Proof. Let G = (V, E, I, F, Ψ) be a high-level DAA. First, 〈G〉 is T -synchronizable
because any process has to travel along at least one T -synchronizable DAA component
to reach a final local state from an initial local state. Then the processes of P \ Loc(T)
take part in mute transitions of 〈G〉 only. For this reason, we suppose without loss of
generality than P = Loc(T). It is not hard to prove that

⋃
(v0,...,vn)∈ΠG [L(Ψ(v0)) · . . . ·

L(Ψ(vn))] ⊆ L(〈G〉). So, we prove only the backward inclusion. From now on, we fix
an execution s of 〈G〉 that leads the global automaton A〈G〉 from some global initial
state to some global final state and we let u the word yielded by s. Then u ∈ L(〈G〉).

We start with some additional notations. Let p be any process of Loc(T). By con-
struction of 〈G〉, along s, there are some vertices v1, . . . , vn ∈ V � such that: p starts
from some initial state ı1 ∈ Iv1,p from which it reaches some state f1 ∈ Fv1,p by using
exclusively τv1,p or (∂v1,a)a∈Σp transitions; then an added τp-transition leads p from
f1 to some state ı2 ∈ Iv2,p from which it reaches some f2 ∈ Fv2,p by using exclusively
τv2,p or (∂v2,a)a∈Σp transitions; and so on, until p reaches a local final state of Fvn,p.
We denote by νp(s) this sequence of vertices (v1, . . . , vn) relied on p along s. In ad-
dition, for all 1 ≤ i ≤ n and all a ∈ T , we denote by |s, p|i,a the number of ∂vi,a

transitions in which p takes part when it goes from ıi to fi along s.
Two remarks are useful for the rest of this proof. Let p ∈ P and νp(s) = (v1, . . . , vn).

First, it should be clear that |s, p|i,a > 0 for all a ∈ Σp∩T and all i ∈ [1, n] because all
the Ψ(vi) are T -synchronizable. Secondly, two consecutive vertices of νp(s) are always
distinct because there is no self-loop in G: vi
= vi+1 for all 1 ≤ i < n.

Let a ∈ T and p, k ∈ Loc(a). Let νp(s) = (v1, . . . , vn) and νk(s) = (w1, . . . , wm)
with n ≤ m. We prove by contradiction that the following property (P) holds:

(P) for all i ∈ [1, n], vi = wi and |s, p|i,a = |s, k|i,a
Suppose that (P) fails. Then we denote by i the least integer of [1, n] such that vi
= wi or
|s, p|i,a
= |s, k|i,a. Let c = 1 +

∑i−1
j=1 |s, p|j,a. By hypothesis, c = 1 +

∑i−1
j=1 |s, k|j,a

as well. This means that the c-th a-transition in which p takes part results from the
transition relation ∂vi,a whereas the c-th a-transition in which k takes part results from
the transition relation ∂wi,a. This implies that vi = wi. Since we have supposed that
(P) fails for i, we should have |s, p|i,a
= |s, k|i,a. We prove it is impossible. Assume
that |s, p|i,a < |s, k|i,a and let c′ = c + |s, p|i,a. If i = n then p takes part in c′ − 1 a-
transitions along s whereas k takes part in at least c′ a-transitions, which is impossible
because p and k must synchronize on all a-transitions. So i < n. However in this
case the c′-th transition in which p takes part results from the transition relation ∂vi+1,a

whereas the c′-th transition in which k takes part results from the transition relation
∂wi,a . Hence vi = wi = vi+1, which is impossible because there is no self-loop in G.

Since (P) holds for each a ∈ T and since each process of Loc(a) takes part in the
same number of a-transitions along s, we deduce that for all p, k ∈ Loc(a), νp(s) =
νk(s). Then, step by step, considering all actions of T together with similar arguments,
we conclude that for all processes p, k of Loc(T) we have νk(s) = νp(s) because
(T, D) is connected. Consequently s is an execution of the DAA Ψ(v1) � . . . � Ψ(vn)
as well. To conclude, Proposition 3.5 implies that u ∈ [L(Ψ(v1) · . . . · L(Ψ(vn)].

Remark 3.6. We stress here the importance of the absence of self-loop in G. Consider
the {a, c}-synchronizable DAA H that consists of two processes p1 and p2 such that:
Σp1 = {a, c} and Σp2 = {c}; Qpi = {qi, q

′
i}, Ipi = {qi}, Fpi = {q′i} and τpi = ∅ for

122 N. Baudru

all i ∈ {1, 2}; ((q1, q2), (q1, q
′
2)) ∈ ∂c and (q1, q

′
1) ∈ ∂a. Clearly H accepts only the

word ca. Now, consider the high-level DAA G that consists of a single vertex v, which
is both initial and final, a single edge from v to v and a labelling function Ψ that maps
v to H. Then 〈G〉 accepts the word cca, so that L(〈G〉) cannot be expressed in terms
of a rational expression that uses exclusively L(H). The problem with the presence
of self-loops is the following. In spite of the T -synchronization condition of H, some
processes (p2 in our example) can travel along the DAA H several times, without the
other processes (p1 in our example) being informed of it. This kind of problem justifies
why we require that a high-level DAA has no self-loop.

To illustrate Proposition 3.5, we introduce a second natural operation based on high-
level DAA. Let H1 and H2 be two DAAs. The choice operation H1 ⊕H2 yields a DAA

where each process p of H1 ⊕H2 can choose, independently from the other processes,
to behave either like the process p of H1 or else like the process p of H2. Formally:

Definition 3.7. The choice H1 ⊕H2 of H1 and H2 is the DAA 〈G〉 where G consists of
exactly two vertices, which are both initial and final, and no edges. As for the labelling
function, it maps these vertices to H1 and H2.

In this definition, G has no self-loop. So Proposition 3.5 can be applied as follows:

Corollary 3.8. Let H1 andH2 be two T -synchronizable DAAs. If the dependence graph
(T, D) is connected, then H1⊕H2 is T -synchronizable and recognizes L(H1)∪L(H2).

4 Located Trace Languages

In this section we fix a trace automaton A = (Q,→, I, F) over (Σ, I). We show in
Theorem 4.4 that any located trace language of A (Definition 4.1) corresponds to the
language of a synchronizable DAA.

An analogy can be drawn between our technique of proof and the technique used by
McNaughton and Yamada in [10] in the framework of the free monoid. In this paper,
the authors define languages RK

i,j that correspond to the set of words that label a path
from the state i ∈ Q to the state j ∈ Q and that use the states in K ⊆ Q as intermediate
states. Then they use a recursive algorithm on the size of K to build rational expressions
that correspond to the languages RK

i,j . Here we have adapted this method for the trace
monoid (Σ, I), that is, to care of concurrency. The defined languages are called located
trace languages. They are based on roadmaps instead of intermediate states. Then we
use a recursive algorithm on the size n of the roadmaps to build, by using high-level
DAAs, the DAAs that correspond to the located trace languages on roadmaps of size n.

4.1 Roadmaps and Located Trace Languages

From now on, we fix a total order � over the actions of Σ. This order is naturally
extended to sets of actions: for T1, T2 ⊆ Σ, T1 � T2 if the least action in T1 is smaller
than the least action in T2 w.r.t. �.

Let T ⊆ Σ. We denote by #cc(T) the number of connected components of the
dependence graph (T, D) and by cc(T) the sequence (T1, . . . , T#cc(T)) of the #cc(T)

Distributed Asynchronous Automata 123

q0

q1 q2

q3

q4 q5

q6 q7

q8 q9

a

a

b

b
a

a

b

b

b

a

a
b

b

a

Fig. 1. L(A) is recognized by no DAA

connected components of (T, D) sorted according to �: Ti � Ti+1 for all 1 ≤ i <
#cc(T). Note that #cc(T) = 1 if and only if (T, D) is connected.

Definition 4.1. A roadmap r of the trace automaton A consists of a subset of actions
T ⊆ Σ together with a vector q of #cc(T) + 1 states of A.

The located trace language Lr(A) on a roadmap r = (T, q) of A with cc(T) =
(T1, . . . , Tn) and q = (q1, . . . , qn+1) comprises all the words contained in any trace
[u1 · · ·un] such that alph(ui) = Ti and qi

ui→ qi+1 for all 1 ≤ i ≤ n, i.e.:
Lr(A) = [{u1 · · ·un ∈ Σ� | ∀i ∈ [1, n], alph(ui) = Ti ∧ qi

ui→ q′i+1}].

Given a roadmap r = (T, q), start(r) is the first component of q, stop(r) is the last
component of q and alph(r) is T . Then we denote byR(A) the set of all roadmaps ofA,
and by Rf (A) the subset of roadmaps r of R(A) such that start(r) ∈ I , stop(r) ∈ F
and Lr(A)
= ∅.

Example 4.2. Consider the automaton A over {a, b} with aIb and a � b depicted in
Fig. 1, in which q0 and q3 are respectively the single initial state and the single final
state. There are exactly two roadmaps r in Rf (A), that is, such that start(r) = q0,
stop(r) = q3 and Lr(A)
= ∅: r1 = ({a, b}, q0, q2, q3) and r2 = ({a, b}, q0, q8, q3).
The corresponding located trace languages are Lr1(A) = [aab] and Lr2(A) = [abb].
We can check that A describes the trace language [aab] ∪ [abb] of Example 2.2.

As illustrated by Example 4.2, any regular trace language can be represented as the
finite union of all the located trace languages on roadmaps of Rf (A):

Proposition 4.3. L(A) =
⋃

r∈Rf (A) Lr(A).

Now we turn to our first main result. The latter states that any located trace language is
recognized by a DAA. Its constructive proof is detailed in Section 4.2.

Theorem 4.4. Let A be a trace automaton and r be a roadmap of A. There exists a
alph(r)-synchronizable DAA that recognizes Lr(A).

Note that Proposition 4.3 together with Theorem 4.4 give another proof of Corol-
lary 2.3: any regular trace language can be seen as a finite union of languages of DAAs.

124 N. Baudru

4.2 Constructive Proof of Theorem 4.4

We devote this subsection to the proof of Theorem 4.4. Our proof is constructive, that
is, given a located trace language Lr(A) of A, we build a alph(r)-synchronizable DAA

and show that it recognizes L. To do this, we use an induction over the size of alph(r).
The base case is simple. Let r be a roadmap with alph(r) = ∅. Either Lr(A) is the

empty language. Then it is recognized by the ∅-synchronized DAA where each process
consists of one initial and non-final state and no transition. Or else Lr(A) consists of the
empty word ε only. So, it is recognized by the ∅-synchronized DAA where each process
consists of one state, both initial and final, and all transition relations are empty.

We distinguish two inductive cases according to whether the dependence graph
(alph(r), D) is connected or not.

Inductive Case 1. Let r be a roadmap of R(A) such that alph(r)
= ∅ and (alph(r), D)
is unconnected. Let r = (T, q) with cc(T) = (T1, . . . , Tn) and q = (q1, . . . qn+1).
Then we set ri = (Ti, (qi, qi+1)) for all 1 ≤ i ≤ n. We can easily check that for all
1 ≤ i ≤ n, ri is a roadmap of R(A) and that Lr(A) = [Lr1(A) · . . . · Lrn(A)]. By
inductive hypothesis, for every Lri(A) there exists a alph(ri)-synchronizable DAA Hi

such that L(Hi) = Lri(A). Then Theorem 4.4 follows from Lemma 4.5. Note that
Proposition 3.3 implies immediately that L(H1 � · · · � Hn) = Lr(A).

Lemma 4.5. H1 � · · · � Hn is alph(r)-synchronizable and recognizes Lr(A).

Inductive Case 2. Let r be a roadmap with alph(r) = T
= ∅ such that (alph(r), D)
is connected. We denote by Sr the set of all roadmaps s such that alph(s) � T
and stop(s) = stop(r). For s ∈ Sr, s̄ denotes the roadmap (T, start(r), start(s))
and Rs consists of all the words u in Ls̄(A) that are also contained in some trace
[u1a1 · · ·unan] such that n ∈ N, ai ∈ T and alph(ui) = T \ {ai} for all 1 ≤ i ≤ n:
Rs = Ls̄(A) ∩ [{u1a1 · · ·unan ∈ Σ� | n ∈ N ∧ ∀i ∈ [1, n], (ai ∈ T ∧ alph(ui) ∈
T \ {ai})}]. Clearly the following Lemma holds:

Lemma 4.6. Lr(A) =
⋃

s∈Sr
[Rs · Ls(A)].

Then we express each Rs as a high-level DAA Gs = (Vs, Es, Is, Fs) defined below:

– Vs = V ×{0, 1} where V is the set of all roadmaps v of R(A) such that alph(v) =
T \ {av} for some action av ∈ T .

– for all (v, i) ∈ Vs, (v, i) ∈ Is if start(v) = start(r).
– for all (v, i) ∈ Vs, (v, i) ∈ Fs if stop(v) av→ start(s) is a transition of A.
– for all (v, i), (w, j) ∈ Vs, ((v, i), (w, j)) ∈ Es if stop(v) av→ start(w) is a transi-

tion of A and i
= j.

It remains to define the labelling function Ψs. Let (v, i) be a vertex of Gs. By defi-
nition of Gs, alph(v) is the set T \ {av} for some action av ∈ T . Clearly, the sin-
gleton {av} is recognized by the {av}-synchronizable DAA Hav that consists of one
state (both initial and final) for each process p
∈ Loc(av), two states qp (which is ini-
tial) and q′p (which is final) for all processes p ∈ Loc(av), and one unique transition

Distributed Asynchronous Automata 125

((qp)p∈Loc(av), (q′p)p∈Loc(av)) ∈ ∂av . Then, using the inductive hypothesis on the lo-
cated trace language Lv(A), there is a alph(v)-synchronizable DAA Hv that recognizes
Lv(A). Together with Proposition 3.3, we get a T -synchronizable DAA Hv �Hav that
recognizes [Lv(A) · {av}]. So, we set Ψs(v, i) = Hv �Hav .

Remark 4.7. At this step of the proof, we have the following facts: Gs as no self-loop
because of the definition of Es; each Ψ(v, i) is a T -synchronizable DAA; we have as-
sumed that the dependence graph (T, D) is connected. Then, all the hypotheses are
satisfied to apply Proposition 3.5 on Gs, which is useful to get the next result.

Lemma 4.8. 〈Gs〉 is alph(r)-synchronizable and recognizes Rs.

We come to the last step of the proof. First we recall that Lr(A) describes the trace
language

⋃
s∈Sr

[Rs · Ls(A)] (Lemma 4.6). Furthermore, for any s ∈ Sr, Rs is rec-
ognized by the T -synchronizable DAA 〈Gs〉 (Lemma 4.8), and there is some alph(s)-
synchronizable DAA Hs that recognizes Ls(A) (by the inductive hypothesis). Then
Proposition 3.3 and Corollary 3.8 yield the next lemma from which Theorem 4.4
results.

Lemma 4.9. ⊕s∈Sr(〈Gs〉 � Hs) is alph(r)-synchronizable and recognizes Lr(A).

4.3 Complexity Analysis of the Construction

Theorem 4.4 shows that any located trace language is the language of some DAA. We
explained in Subsection 4.2 how to build inductively this DAA. Here we analyse the
complexity of our construction. In the next proposition, k denotes the number of pro-
cesses in P and q denotes the number of states of the trace automaton A.

Proposition 4.10. Let A be a trace automaton, r be a roadmap ofA with |alph(r)| = n
and Hr be the DAA built by the algorithm described at Subsection 4.2. Then the number
of local states in each process p of Hr is in 2O(n2) for q fixed, and O(q2nk) for n fixed.

Proof. For all roadmaps r of A, Hr denotes the DAA inductively built by the con-
struction presented along Subsection 4.2. We write qr,p to refer to the number of lo-
cal states in the process p of Hr. Then, cp(n) corresponds to the size of the biggest
process p among all the DAAs Hr such that |alph(r)| ≤ n: cp(n) = max{qr,p | r ∈
R(A)∧|alph(r)| ≤ n}. Clearly we have cp(n1) ≥ cp(n2) as soon as n1 ≥ n2. We will
compute an upper bound for cp(n). From now on, we fix a roadmap r = (T, q) ∈ R(A)
such that |T | = n and a process p ∈ P . We proceed in two cases according to whether
the dependence graph (T, D) is connected.

Suppose that (T, D) is unconnected and let cc(T) = (T1, . . . , Tl). Clearly the num-
ber l of connected components of (T, D) is less than min{n, k}. By Lemma 4.5,
Hr = Hr1 � · · · � Hrl

where each ri is some roadmap with alph(ri) = Ti � T .
Therefore, we have qr,p ≤ ncp(n − 1).

Suppose now that (T, D) is connected. By Lemma 4.9, Hr = ⊕s∈Sr (〈Gs〉 � Hs).
Let s ∈ Sr. Then alph(s) � T , which implies that |alph(s)| < n. Consequently,
cp(|alph(s)|) ≤ cp(n − 1). We now compute the number of local states in the pro-
cess p of 〈Gs〉. The latter is built from the graph Gs = (Vs, Es, Is, Fs, Ψs) where

126 N. Baudru

Vs = V × {0, 1} and V consists of all roadmaps v such that alph(v) = T \ {av}
for some av ∈ T . Then Vs contains at most 2nqk vertices. Each vertex v of Gs is la-
belled by the DAA Hv � Hav . The number of local states in the process p of Hv is at
most cp(n−1) (by inductive hypothesis) and the one of Hav is at most 2. Consequently
the number of local states in the process p of Hv � Hav is at most cp(n − 1) + 2 and
the one of 〈Gs〉 is at most 2nqk(cp(n − 1) + 2). Finally, we can compute the num-
ber of local states in the process p of Hr: since the number of roadmaps in Sr is less
than 2nqk, we have that qr,p ≤ 2nqk(2nqk(cp(n − 1) + 2) + cp(n − 1)), that is,
qr,p < n2n+3q2kcp(n − 1).

In both cases, for all roadmaps r ∈ R(A) such that |alph(r)| = n, the number qr,p

of local states in the process p of Hr is at most n2n+3q2kcp(n − 1). In other words,
cp(n) < n2n+3q2kcp(n− 1). Since cp(0) = 1, we get cp(n) < n!2(n+4)(n+3)/2q2kn.

5 Back to Zielonka’s Theorem

Zielonka’s theorem presented in Section 1 states that any regular trace automaton is
recognized by an asynchronous automaton (AA). However, all known constructions of
asynchronous automata from regular trace languages are quite involved and yield an
exponential state explosion. In this section, we discuss how to apply Proposition 4.3
and Theorem 4.4 to get immediately a new algorithm for the construction of non-
deterministic asynchronous automata that reduces significantly the state explosion.

Indeed, Theorem 4.4 yields for every r ∈ Rf (A) a DAA Hr that recognizes
Lr(A). We denote by Ir,p and Fr,p the set of initial local states and the set of fi-
nal local states of the process p of Hr, respectively. Now, consider the asynchronous
automaton S that is identical to ⊕r∈Rf (A)Hr except that the set of global initial
states is IS =

⋃
r∈Rf (A)(

∏
p∈P Ir,p) and the set of global final states is FS =⋃

r∈Rf (A)(
∏

p∈P Fr,p). Then, by Proposition 4.3, it should be clear that S recog-
nizes L(A). This leads us to the next corollary where the complexity result follows
from Proposition 4.10 together with the fact that Rf (A) contains at most 2|Σ||Q||P|

roadmaps.

Corollary 5.1. Let A be a trace automaton over (Σ, I) with Q as set of states. There
exists an asynchronous automatonS that recognizes L(A) such that the number of local
states in each process is in 2O(|Σ|2) for |Q| fixed, and O(|Q|2·|Σ|·|P|+1) for |Σ| fixed.

Comparison with Existing Approaches. We mention the approaches that lead to de-
terministic AAs first. In [13] a complexity analysis of Zielonka’s construction [17] is
detailed. The number of local states |Qp| built by Zielonka’s technique for each process

p ∈ P is |Qk| ≤ 2O(2|P||Q| log(|Q|)). The simplified construction by Cori et al. in [3]
also suffers from this exponential state-explosion [4]. More recently in [6], Genest and
Muscholl improve the construction of [17]. To do this, they add to this construction the
concept of zones to reduce the amount of information to store in each process. This new
algorithm, that yields a deterministic AA still, is thus exponential in |Q| and |P|.

As for the non-deterministic approaches, the construction of Pighizzini [15] build
non-deterministic AAs from particular rational expressions. This simpler approach gives

Distributed Asynchronous Automata 127

AAs whose number of local states in each process is exponential in the length of the ra-
tional expression. Another construction of non-deterministic asynchronous automata is
presented in [2]. In this paper the number of local states built for each process is poly-
nomial in |Q| and double-exponential in |Σ|. In comparison, our construction builds
non-deterministic AAs that are also polynomial in |Q|, but only exponential in |Σ|.

6 Expressive Power of Distributed Asynchronous Automata

In Corollary 2.3, we have shown that any regular trace language can be expressed as a
finite union of languages of DAAs. However, as illustrated in Example 2.2, some of them
are the language of no DAA. In this section, we characterize effectively in Theorem 6.5
those that correspond to the behaviours of non-deterministic DAAs: these are the ones
that are distributed. Interestingly, for any given distributed regular trace language, the
construction presented in Subsection 4.2 yields directly a DAA recognizing it.

Let L be a regular trace language and T be a nonempty subset of Σ. A word u is a
T -independent prefix of L if there exists a word uv ∈ L such that alph(u) = T and
Loc(T) ∩ Loc(v) = ∅. We denote by L‖T the set of all T -independent prefixes of L.
Then L‖T is a regular trace language. Note that, for a DAA H recognizing L, the set
L‖T represents all the words u with alph(u) = T that can lead all the processes of
Loc(T) to final local states, independently from the behaviours of the other processes.

The next definition characterizes the trace languages that are recognizable by DAAs.

Definition 6.1. Let L be a regular trace language over (Σ, I). L is distributed if one of
the two following conditions holds for all nonempty T ⊆ Σ with cc(T) = (T1, . . . , Tn):

C1: ∃p
∈ Loc(T), ∀v ∈ L : p ∈ Loc(v);
C2:

∏
i∈[1,n] L‖Ti ⊆ L.

Let L be a regular trace language that is not distributed. Then Conditions C1 and C2 fail
for some subset of actions T with cc(T) = (T1, . . . Tn). Suppose that there exists a DAA

H that recognizes L. Since C2 fails for T there are words u1 ∈ L‖T1, . . . , un ∈ L‖Tn

such that u = u1 · · ·un
∈ L. For each ui ∈ L‖Ti, the processes of Loc(Ti) can
perform ui and reach final local states. Then, all together, the processes of Loc(T) can
perform the word u and reach final local states, and this because Loc(Ti) and Loc(Tj)
are disjoint for all i
= j, . Since Condition C1 fails for T , the other processes can reach
final local states without producing any action. In conclusion, u belongs to L(H) while
it doesn’t belong to L, which contradicts that H recognizes L. This leads immediately
to the following lemma:

Lemma 6.2. The language recognized by a DAA is distributed.

Example 6.3. Consider again the regular trace language L = [aab] ∪ [abb] of Ex-
ample 2.2 that is recognized by no DAA. Now heed of the independent prefixes of
L: L‖{a} = {a, aa}, L‖{b} = {b, bb} and L‖{ab} = L. We can see that ab ∈
L‖{a} · L‖{b} while ab
∈ L, which means that Condition C2 fails for T = {a, b}.
Moreover, it is clear that Condition C1 fails for T as well. Then L is not distributed.

128 N. Baudru

On the other hand, the next lemma shows that any distributed regular trace language is
the language of some non-deterministic high-level DAA. Recall here that Theorem 4.4
states that any located trace language is recognized by a alph(r)-synchronizable DAA.

Lemma 6.4. Let A be a trace automaton. For all r ∈ Rf (A), we denote by Hr

the alph(r)-synchronizable DAA that recognizes the located trace language Lr(A).
If L(A) is distributed, then ⊕r∈Rf(A)Hr recognizes L(A).

Proof. In this proof, we denote ⊕r∈Rf (A)Hr by H. It is not hard to prove that L(A)
is included in L(H). So we prove only the backward inclusion. Let u ∈ L(H), T =
alph(u) and cc(T) = (T1, . . . , Tn). By definition of cc(T), Loc(Ti) ∩ Loc(Tj) = ∅
for all 1 ≤ i < j ≤ n. Since alph(u) = T , u is equivalent (w.r.t. ∼) to some word
u1 · · ·un where alph(ui) = Ti for each i ∈ [1, n]. Moreover u1 · · ·un belongs to L(H)
as well, because the latter is a trace language. So, there is an execution s of H that yields
u1 · · ·un and leads all processes of P from initial states to final states.

Now consider any process p
∈ Loc(T). Then, along s, p takes part in mute transitions
only. By construction of H and because each DAA Hr is alph(r)-synchronizable, the
only way for p to do only mute transitions is to start in an initial local state of some
DAA componentHrp with p
∈ Loc(alph(rp)). Moreover the definition of Rf (A) gives
that L(Hrp) = Lrp(A)
= ∅. Then there exists some vp ∈ Lrp(A) such that p
∈
Loc(vp). Since similar facts hold for all processes that are not in Loc(T) and Lrp(A) ⊆
L(A), Condition C1 of Def. 6.1 fails for T . However we have supposed that L(A) is
distributed. Then Condition C2 holds for T , that is

∏
i∈[1,n] L(A)‖Ti ⊆ L(A).

Let i ∈ [1, n]. We know that alph(ui) = Ti, (Ti, D) is connected (by def. of cc(T))
and each DAA component Hr of H is alph(r)-synchronizable. Then, along s, all pro-
cesses of Loc(Ti) (those that take part in ui) are forced to travel all together some DAA

component Hri such that Ti appears in cc(alph(ri)). Furthermore, L(Hri) = Lri(A)
and the definition of Rf (A) gives that Lri(A)
= ∅. So, there is some word vi such
that uivi ∈ Lri(A) and Loc(vi) ∩ Loc(Ti) = ∅. In other words, ui ∈ Lri(A)‖Ti. By
Prop. 4.3, L(A) =

⋃
r∈Rf (A) Lr(A). It follows that ui ∈ L(A)‖Ti.

To conclude, we have just shown that
∏

i∈[1,n] L(A)‖Ti ⊆ L(A) and ui ∈ L(A)‖Ti

for all i ∈ [1, n]. In consequence, u1 · · ·un belongs to L(A). Since L(A) is a trace
language, u belongs to L(A) as well.

We come to our main result that follows immediately from the two previous lemmas.
Again, for each roadmap r in Rf (A), Hr refers to the alph(r)-synchronizable DAA

that recognizes the located trace language Lr(A).

Theorem 6.5. Let L be a regular trace language. The next statements are equivalent:

1. L is recognized by some DAA ;
2. L is distributed;
3. L = L(⊕r∈Rf(A)Hr) for all trace automata A such that L(A) = L.
4. L = L(⊕r∈Rf(A)Hr) for some trace automaton A such that L(A) = L.

As corollary we can check effectively whether a given regular trace language is dis-
tributed. For instance it suffices to check whether L(⊕r∈Rf(A)Hr) = L(A) for the
minimal trace automaton A such that L(A) = L.

Distributed Asynchronous Automata 129

Discussion

In this paper, we have paid attention to the particular case of non-deterministic dis-
tributed asynchronous automata. We have shown that they correspond to the regular
trace languages that are distributed. Interestingly, we can verify whether or not a lan-
guage is distributed. However we do not know the complexity of this problem, yet.

Another question is to determine how to verify whether a regular trace language is
recognized by a deterministic DAA. Indeed, the class of regular trace languages recog-
nized by deterministic DAAs is different from the one recognized by non-deterministic
DAAs. For instance, consider the regular trace language L = [c�a]∪ [c�b] over {a, b, c}
where Loc(a) = {i}, Loc(b) = {j} and Loc(c) = {i, j}. It is not hard to see that L is
distributed. Then Theorem 6.5 ensures that L is recognized by some DAA. However, no
deterministic DAA recognizes L.

Acknowledgment. The author would like to thank Rémi Morin for fruitful discussions
and comments. We are grateful to the referees for their constructive criticism.

References

1. Baudru, N., Morin, R.: Safe Implementability of Regular Message Sequence Charts Specifi-
cations. In: Proc. of the ACIS 4th Int. Conf. SNDP, pp. 210–217 (2003)

2. Baudru, N., Morin, R.: Unfolding synthesis of asynchronous automata. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 46–57. Springer,
Heidelberg (2006)

3. Cori, R., Métivier, Y., Zielonka, W.: Asynchronous mappings and asynchronous cellular au-
tomata. Inform. and Comput. 106, 159–202 (1993)

4. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)
5. Diekert, V., Muscholl, A.: Construction of asynchronous automata, ch. 5(4) (1995)
6. Genest, B., Muscholl, A.: Constructing Exponential-size Deterministic Zielonka Automata.

In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052,
pp. 565–576. Springer, Heidelberg (2006)

7. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for
existentially bounded communicating automata. I&C 204, 902–956 (2006)

8. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A Theory
of Regular MSC Languages. I&C 202, 1–138 (2005)

9. Klarlund, N., Mukund, M., Sohoni, M.: Determinizing Asynchronous Automata. In: Shamir,
E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 130–141. Springer, Heidelberg
(1994)

10. McNaughton, R., Yamada, H.: Regular Expressions and State Graphs for Automata J. Sym-
bolic Logic 32, 390–391 (1967)

11. Métivier, Y.: An algorithm for computing asynchronous automata in the case of acyclic
non-commutation graph. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 226–236.
Springer, Heidelberg (1987)

12. Morin, R.: Concurrent Automata vs. Asynchronous Systems. In: Jedrzejowicz, J.,
Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 686–698. Springer, Heidelberg
(2005)

130 N. Baudru

13. Mukund, M., Sohoni, M.: Gossiping, Asynchronous Automata and Zielonka’s Theorem Re-
port TCS-94-2, SPIC Science Foundation Madras, India (1994)

14. Muscholl, A.: On the complementation of Büchi asynchronous cellular automata. In:
Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 142–153. Springer,
Heidelberg (1994)

15. Pighizzini, G.: Synthesis of Nondeterministic Asynchronous Automata. Algebra, Logic and
Applications 5, 109–126 (1993)

16. Thiagarajan, P.S.: Regular Event Structures and Finite Petri Nets: A Conjecture. In:
Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing.
LNCS, vol. 2300, pp. 244–256. Springer, Heidelberg (2002)

17. Zielonka, W.: Notes on finite asynchronous automata. RAIRO, Theoretical Informatics and
Applications 21, 99–135 (1987)

Algebra for Infinite Forests with an Application
to the Temporal Logic EF�

Miko�laj Bojańczyk and Tomasz Idziaszek

University of Warsaw, Poland
{bojan,idziaszek}@mimuw.edu.pl

Abstract. We define an extension of forest algebra for ω-forests. We
show how the standard algebraic notions (free object, syntactic algebra,
morphisms, etc.) extend to the infinite case. To prove its usefulness, we
use the framework to get an effective characterization of the ω-forest
languages that are definable in the temporal logic that uses the operator
EF (exists finally).

1 Introduction

The goal of this paper is to explore an algebraic approach to infinite trees. We
have decided to take a two-pronged approach:

– Develop a concept of forest algebra for infinite trees, extending to infinite
trees the forest algebra defined in [8].

– Use the algebra to get an effective characterization for some logic (that is, an
algorithm that decides which regular languages can be defined in the logic).

A good effective characterization benefits the algebra. Effective characteriza-
tions are usually difficult problems, and require insight into to the structure of
the underlying algebra. We expected that as a byproduct of an effective charac-
terization, we would discover what are the important ingredients of the algebra.

A good algebra benefits effective characterizations. A good algebra makes
proofs easier and statements more elegant. We expected that an effective char-
acterization would be a good test for the quality of an algebraic approach. In
the previously studied cases of (infinite and finite) words and finite trees, some
of the best work on algebra was devoted to effective characterizations.

We hope the reader will find that these expectations have been fulfilled.

Why the logic EF? What tree logic should we try to characterize? Since we are
only beginning to explore the algebra for infinite trees, it is a good idea to start
with some logic that is very well understood for finite trees. This is why for
our case study we chose the temporal logic EF. For finite trees, this was one of
the first nontrivial tree logic to get an effective characterization, for binary trees
in [7], and for unranked trees [8]. Moreover, when stated in algebraic terms – as

� Work partially funded by the Polish government grant no. N206 008 32/0810.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 131–145, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

132 M. Bojańczyk and T. Idziaszek

in [8] – this characterization is simple: there are two identities h+ g = g +h and
vh = vh + h (these will be explained later in the paper).

We were also curious how some properties of the logic EF would extend from
finite trees to infinite trees. For instance, for finite trees, a language can be de-
fined in the logic EF if and only if it is closed under EF-bisimulation (a notion
of bisimulation that uses the descendant relation instead of the child relation).
What about infinite trees? (We prove that this is not the case.) Another ex-
ample: for finite trees, a key proof technique is induction on the size of a tree.
What about infinite trees? (Our solution is to use only regular trees, and do the
induction on the number of distinct subtrees.)

Our approach to developing an algebra. Suppose you want to develop a new kind
of algebra. The algebra should be given by a certain number of operations and
a set of axioms that these operations should satisfy. For instance, in the case of
finite words, there is one operation, concatenation, and one axiom, associativity
(such a structure, of course, is called a semigroup). Given a finite alphabet A, the
set of all nonempty words A+ is simply the free semigroup. Regular languages
are those that are recognized by morphisms from the free semigroup into a finite
semigroup.

This approach was used in [8] to define forest algebra, an algebraic framework
for finite unranked trees. The idea was to develop operations and axioms such
that the free object would contain all trees. One idea was to have a two-sorted
algebra, where one sort described forests (sequences of unranked trees), and the
other sort described contexts (forests with a hole). Forest algebra has been suc-
cessfully applied in a number of effective characterizations, including fragments
of first-order logic [6,5] and temporal logics [3], see [4] for a survey. An im-
portant open problem is to find an effective characterization of first-order logic
with the descendant relation (first-order with the child relation was effectively
characterized in [1]).

When developing an algebraic framework for infinite words (and even worse,
infinite trees), we run into a problem. For an alphabet A with at least two letters,
the set Aω of all infinite words is uncountable. On the other hand, the free object
will be countable, as long as the number of operations is countable. There are
two solutions to this problem: either have an uncountable number of operations,
or have a free object that is different from Aω. The first approach is called an
ω-semigroup (see the monograph [10]). The second approach is called a Wilke
semigroup [11]. Like in forest algebra, a Wilke semigroup is a two-sorted object.
The axioms and operations are designed so that the free object will have all finite
words on the first sort, and all ultimately periodic words on the second sort. Why
is it possible to ignore words that are not ultimately periodic? The reason is that
any ω-regular language L ⊆ Aω is uniquely defined by the ultimately periodic
words that it contains. In this sense, a morphism from the free Wilke semigroup
into a finite Wilke semigroup contains all the information about an ω-regular
language.

Our approach to infinite trees combines forest algebra and Wilke semigroups.
As in forest algebra, we have two sorts: forests and contexts. Both the forests

Algebra for Infinite Forests with an Application 133

and the contexts can contain infinite paths, although the hole in a context has
to be at finite depth (since there is no such thing as a hole at infinite depth). As
in a Wilke semigroup, the free object does not contain all forests or all contexts,
but only contain the regular ones (a forest or context is regular if it has a finite
number of nonisomorphic subtrees, which is the tree equivalent of ultimately
periodic words).

Organization of the paper. In Section 2 we present the basic concepts, such as
trees, forests, contexts and automata. The algebra is defined in Section 3. In
Section 4, we define the logic EF and present a characterization, which says that
a language can be defined in EF if and only if: (a) it is invariant under EF-
bisimulation; and (b) its syntactic algebra satisfies a certain identity. There are
three tasks: prove the characterization, decide condition (a), and decide condition
(b). Each of these tasks is nontrivial and requires original ideas. Due to a lack of
space, the algorithms for deciding (a) and (b) are relegated to the appendix. We
end the paper with a conclusions section. Apart from the usual ideas for future
work, we try to outline the limitations of our approach.

2 Preliminaries

2.1 Trees and Contexts

This paper mainly studies forests, which are ordered sequences of trees. Forests
and trees can have both infinite and finite maximal paths, but each node must
have finitely many siblings. Formally, a forest over finite alphabet A is a partial
map t : N

+ → A whose domain (the set of nodes) is closed under nonempty
prefixes, and such that for each x ∈ N

∗, the set {i : x · i ∈ dom(t)} is a finite
prefix of N. We use letters s, t for forests. An empty forest is denoted by 0. We use
the terms root (there may be several, these are nodes in N), leaf, child, ancestor
and descendant in the standard way. A tree is an forest with one root. If t is a
forest and x is a node, we write t|x for the subtree of t rooted in x, defined as
t|x(y) = t(xy).

A context is a forest with a hole. Formally, a context over an alphabet A is
a forest over the alphabet A ∪ {�} where the label �, called the hole, occurs
exactly once and in a leaf. We use letters p, q to denote contexts. A context is
called guarded if the hole is not a root.

Operations on forests and contexts. We define two types of operations on
forests and contexts: a (horizontal) concatenation operation, written additively,
and a (vertical) composition operation, written multiplicatively. In general, nei-
ther concatenation nor composition is commutative.

What objects can be concatenated? We can concatenate two forests s, t, the
result is a forest s + t that has as many roots as s and t combined. (We do
not assume that concatenation is commutative, so s + t need not be the same

134 M. Bojańczyk and T. Idziaszek

as t + s.) Since contexts can be interpreted as forests with a hole label, we can
also concatenate a forest s with a context p, with the being result is a context
s + p. There is also the symmetric concatenation p + s. In other words, we can
concatenate anything with anything, as long as it is not two contexts (otherwise
we could get two holes).

What objects can be composed? We can compose a context p with a forest t,
the result is a forest pt obtained by replacing the hole of p with the forest t. For
instance, if p is a context with a in the root and a hole below, written as a�, and t
is a forest (and also tree) with a single node labeled b, written as b, then p(t+ t) =
a(b + b) is a tree with the root labeled a and two children with label b. We can
also compose a context p with another context q, the resulting context pq satisfies
pqt = p(qt) for all forests t. We cannot compose a forest t with a context p, or
another forest s, since t has no hole.

Regular forests and recursion schemes. A forest is called regular if it has
finitely many distinct subtrees. Regular forests are important for two reasons: a)
they can be represented in a finite way; and b) regular languages are uniquely
determined by the regular forests they contain. One way of representing a regular
forest is as a forest with backward loops, as in the picture below.

The formal definition of forests with backward loops is presented below, under
the name of recursion schemes. Let Z = ZH ∪ZV be a set of label variables. The
set ZH represents forest-sorted variables and the set ZV represents context-
sorted variables. Let Y be a set of recursion variables. Recursion terms are built
in the following way:

1. 0 is a recursion term.
2. If τ1, . . . , τn are recursion terms, then so is τ1 + · · · + τn.
3. Every forest-sorted label variable z ∈ ZH is a recursion term.
4. If z ∈ ZV is a context-sorted label variable and τ is a recursion term, then

zτ is a recursion term.
5. Every recursion variable y ∈ Y is a recursion term.
6. If y ∈ Y a recursion variable and τ is a recursion term where y is guarded,

then νy.τ is a recursion term. We say a recursion variable y is guarded in a
recursion term τ if there is no decomposition τ = τ1 + y + τ2.

A recursion scheme is a recursion term without free recursion variables, i.e. a
recursion term where every recursion variable y occurs in as a subterm of a term
νy.τ . We denote recursion schemes and terms using letters τ, σ. We also assume
that each recursion variable is bound at most once, to avoid discussing scope of
variables.

Algebra for Infinite Forests with an Application 135

Let η be a function (called a valuation) that maps forest-sorted label vari-
ables to forests and context-sorted label variables to guarded contexts. We define
unfoldτ [η] to be the (possibly infinite) forest obtained by replacing the label z
with their values η(z), and unfolding the loops involving the recursion variables.
The formal definition is in the appendix. If the recursion scheme uses only m
forest-sorted variables z1, . . . , zm and n context-sorted variables z′1, . . . , z

′
n (we

call this an (m, n)-ary recursion scheme), then only the values of η on these vari-
ables are relevant. In such a case, we will interpret unfoldτ as a function from
tuples of m forests and n contexts into forests.

For instance, suppose that z′ is a context-sorted variable and z1, z2 are forest
sorted variables. For τ = z′z1 + z2, unfoldτ (t1, t2, p) = pt1 + t2, and if τ =
νy.z′z′y then unfoldτ (p) is the infinite forest ppp · · · . Note that the notation
unfoldτ (t1, t2, p) uses an implicit order on the label variables.
Note 1. Why only allow guarded contexts as inputs for the unfolding? For the
same reason as restricting the binding νy.τ to terms τ where y is guarded.
Take, for instance a recursion scheme τ = νy.zy. What should the result of
unfoldτ (a + �) be, for the unguarded context a +�? We could say that this is
the a forest a + a + · · · that is infinite to the right. But then, in a similar way,
we could generate the forest · · · + a + a that is infinite to the left. What would
happen after concatenating the two forests? In order to avoid such problems, we
only allow contexts where the hole is not in the root. Another solution would be
to suppose that the order on siblings is an arbitrary linear ordering.

Lemma 2.1. Regular forests are exactly the unfoldings of recursion schemes.

2.2 Automata for Unranked Infinite Trees

A (nondeterministic parity) forest automaton over an alphabet A is given by a set
of states Q equipped with a monoid structure, a transition relation δ ⊆ Q×A×Q,
an initial state qI ∈ Q and a parity condition Ω : Q → {0, . . . , k}. We use additive
notation + for the monoid operation in Q, and we write 0 for the neutral element.

A run of this automaton over a forest t is a labeling ρ : dom(t) → Q of forest
nodes with states such that for any node x with children x1, . . . , xn,

(ρ(x1) + ρ(x2) + · · · + ρ(xn), t(x), ρ(x)) ∈ δ.

Note that if x is a leaf, then the above implies (0, t(x), ρ(x)) ∈ δ.
A run is accepting if for every infinite path π ⊆ dom(t), the highest value of

Ω(q) is even among those states q which appear infinitely often on the path π.
The value of a run over a forest t is the obtained by adding, using +, all the
states assigned to roots of the forest. A forest is accepted if it has an accepting
run whose value is the initial state qI . The set of trees accepted by an automaton
is called the regular language recognized by the automaton.

Theorem 2.2
Languages recognized by forest automata are closed under boolean operations and
projection. Every nonempty forest automaton accepts some regular forest.

136 M. Bojańczyk and T. Idziaszek

Two consequences of the above theorem are that forest automata have the
same expressive power as the logic MSO, and that a regular forest language is
determined by the regular forests it contains. We can also transfer complexity
results from automata over binary trees to forest automata.

3 Forest Algebra

In this section we define ω-forest algebra, and prove some of its basic properties.
Usually, when defining an algebraic object, such as a semigroup, monoid,

Wilke semigroup, or forest algebra, one gives the operations and axioms. Once
these operations and axioms are given, a set of generators (the alphabet) deter-
mines the free object (e.g. nonempty words in the case of semigroups). Here, we
use the reverse approach. We begin by defining the free object. Then, we choose
the operations and axioms of ω-forest algebra so that we get this free object.

Let A be an alphabet. Below, we define a structure A�. The idea is that A�

will turn out to be the free ω-forest algebra generated by A. The structure A�

is two-sorted, i.e. it has two domains HA and VA. The first domain HA, called
the forest sort, consists of all (regular) forests over the alphabet A. The second
domain VA, called the context sort consists of all (regular) guarded contexts over
the alphabet A. From now on, when writing forest, tree or context, we mean a
regular forest, regular tree, or regular guarded context, respectively.

What are the operations? There are eight basic operations, as well as infinitely
many recursion operations.

Basic operations. There is a constant 0 ∈ HA and seven binary operations

s, t ∈ HA �→ s + t ∈ HA

p, q ∈ VA �→ pq ∈ VA

p ∈ VA, s ∈ HA �→ ps ∈ HA

p ∈ VA, s ∈ HA �→ p + s ∈ VA

p ∈ VA, s ∈ HA �→ s + p ∈ VA

p ∈ VA, s ∈ HA �→ p(�+ s) ∈ VA

p ∈ VA, s ∈ HA �→ p(s +�) ∈ VA

If we had all contexts, instead of only guarded contexts, in the context sort, we
could replace the last four operations by two unary operations s �→ s + � and
s �→ � + s. However, having unguarded contexts would cause problems for the
recursion operations.

Recursion operations. For each (m, n)-ary recursion scheme τ , there is an
(m + n)-ary operation

s1, . . . , sm ∈ HA

p1, . . . , pn ∈ VA
�→ unfoldτ (s1, . . . , sm, p1, . . . , pn) ∈ HA.

We use p∞ as syntactic sugar for unfoldνy.zy(p).

Algebra for Infinite Forests with an Application 137

Generators. The operations are designed so that every forest and context over
alphabet A can be generated from single letters in A. It is important however,
that the alphabet, when treated as a generator for A�, is considered as part of
the context sort.

More formally, for an alphabet A, we write A� for the set of contexts {a� :
a ∈ A}. By Lemma 2.1, the domain HA is generated by A� ⊆ VA. It is also
easy to see that every context in VA is also generated by this set, it suffices to
construct the path to the hole in the context and generate all remaining subtrees.
Therefore A� is generated by A�.

Definition of ω-forest algebra. We are now ready to define what an ω-forest
algebra is. It is a two sorted structure (H, V). The operations are the same
as in each structure A�: eight basic operations and infinitely many recursion
operations. The axioms that are required in an ω-forest algebra are described in
the appendix. These axioms are designed so as to make the following theorem
true. Homomorphisms (also called morphisms here) are defined in the appendix.

Theorem 3.1
Let A be a finite alphabet, and let (H, V) be an ω-forest algebra. Any function
f : A�→ V uniquely extends to a morphism α : A� → (H, V).

Recognizing Languages with an ω-Forest Algebra

A set L of A-forests is said to be recognized by a surjective morphism α : A� →
(H, V) onto a finite ω-forest algebra (H, V)f membership t ∈ L depends only on
the value α(t). The morphism α, and also the target ω-forest algebra (H, V), are
said to recognize L.

The next important concept is that of a syntactic ω-forest algebra of a forest
language L. This is going to be an ω-forest algebra that recognizes the language,
and one that is optimal (in the sense of 3.3) among those that do.

Let L be a forest language over an alphabet A. We associate with a forest
language L two equivalence relations (à la Myhill-Nerode) on the free ω-forest
algebra A�. The first equivalence, on contexts is defined as follows. Two contexts
p, q are called L-equivalent if for every forest-valued term φ over the signature
of ω-forest algebra, any valuation η : X → A� of the variables in the term, and
any context-sorted variable x, either both or none of the forests

φ[η[x �→ p]] and φ[η[x �→ q]]

belong to L. Roughly speaking, the context p can be replaced by the context
q inside any regular forest, without affecting membership in the language L.
The notion of L-equivalence for forest s, t is defined similarly. We write ∼L for
L-equivalence. Using universal algebra, it is not difficult to show:

Lemma 3.2. L-equivalence, as a two-sorted equivalence relation, is a congru-
ence with respect to the operations of the ω-forest algebra A�.

138 M. Bojańczyk and T. Idziaszek

The syntactic algebra of a forest language L is the quotient (HL, VL) of A�

with respect to L-equivalence, where the horizontal semigroup HL consists of
equivalence classes of forests over A, while the vertical semigroup VL consists of
equivalence classes of contexts over A. The syntactic algebra is an ω-forest alge-
bra thanks to Lemma 3.2. The syntactic morphism αL assigns to every element
of A� its equivalence class under L-equivalence. The following proposition shows
that the syntactic algebra has the properties required of a syntactic object.

Proposition 3.3. A forest language L over A is recognized by its syntactic
morphism αL. Moreover, any morphism α : A� → (H, V) that recognizes L can
be extended by a morphism β : (H, V) → (HL, VL) so that β ◦ α = αL.

Note that in general the syntactic ω-forest algebra may be infinite. However,
Proposition 3.3 shows that if a forest language is recognized by some finite forest
algebra, then its syntactic forest algebra must also be finite. In the appendix we
show that all regular forest languages have finite ω-forest algebras, which can
furthermore be effectively calculated (since there are infinitely many operations,
we also specify what it means to calculate an ω-forest algebra).

We use different notation depending on whether we are dealing with the free
algebra, or with a (usually finite) algebra recognizing a language. In the first
case, we use letters s, t for elements of H and p, q, r for elements of V , since
these are “real” forests and contexts. In the second case, we will use letters
f, g, h for elements of H and u, v, w for elements of V , and call them forest types
and context types respectively.

4 EF for Infinite Trees

In this section we present the main technical contribution of this paper, which is
an effective characterization of the forest and tree languages that can be defined
in the temporal logic EF. We begin by defining the logic EF. Fix an alphabet A.

– Every letter a ∈ A is an EF formula, which is true in trees with root label a.
– EF formulas admit boolean operations, including negation.
– If ϕ is an EF formula, then EFϕ is an EF formula, which is true in trees that

have a proper subtree where ϕ is true. EF stands for Exists Finally.

A number of operators can be introduced as syntactic sugar:

AGϕ = ¬EF¬ϕ, AG∗ϕ = ϕ ∧ AGϕ, EF∗ϕ = ϕ ∨ EFϕ.

Since we deal with forest languages in this paper, we will also want to define
forest languages using the logic. It is clear which forests should satisfy the formula
EF∗a (some node in the forest has label a). It is less clear which forests should
satisfy EFa (only non-root nodes are considered?), and even less clear which
forests should satisfy a (which root node should have label a?). We will only use
boolean combinations of formulas of the first kind to describe forests. That is, a
forest EF formula is a boolean combination of formulas of the form EF∗ϕ.

For finite forests, the logic EF was characterized in [8]. The result was:

Algebra for Infinite Forests with an Application 139

Theorem 4.1
Let L be a language of finite forests. There is a forest formula of EF that is
equivalent, over finite forests, to L if and only if the syntactic forest algebra
(HL, VL) of L satisfies the identities

vh = vh + h for h ∈ HL, v ∈ VL, (1)

h + g = g + h for g, h ∈ HL. (2)

A corollary to the above theorem is that, for finite forests, definability in EF is
equivalent to invariance under EF-bisimulation. This is because two finite trees
that are EF-bisimilar can be rewritten into each other using the identities (1)
and (2).

Our goal in this paper is to test ω-forest algebra by extending Theorem 4.1
to infinite forests. There are nontrivial properties of infinite forests that can be
expressed in EF. Consider for example the forest formula AG∗(a ∧ EFa). This
formula says that all nodes have label a and at least one descendant. Any forest
that satisfies this formula is bisimilar to the tree (a�)∞. In this paper, we will
be interested in a weaker form of bisimilarity (where more forests are bisimilar),
which we will call EF-bisimilarity, and define below.

EF game. We define a game, called the EF game, which is used to test the
similarity of two forests under forest formulas of EF. The name EF comes from
the logic, but also, conveniently, is an abbreviation for Ehrenfeucht-Fräıssé.

Let t0, t1 be forests. The EF game over t0 and t1 is played by two players:
Spoiler and Duplicator. The game proceeds in rounds. At the beginning of each
round, the state in the game is a pair of forests, (t0, t1). A round is played as
follows. First Spoiler selects one of the forests ti (i = 0, 1) and its subtree si,
possibly a root subtree. Then Duplicator selects a subtree s1−i in the other tree
t1−i. If the root labels a0, a1 of s0, s1 are different, then Spoiler wins the whole
game. Otherwise the round is finished, and a new round is played with the state
updated to (r0, r1) where the forest ri is obtained from the tree si by removing
the root node, i.e si = airi.

This game is designed to reflect the structure of EF formulas, so the following
theorem, which is proved by induction on m, should not come as a surprise.

Fact 4.2. Spoiler wins the m-round EF game on forests t0 and t1 if and only if
there is a forest EF formula of EF-nesting depth m that is true in t0 but not t1.

We will also be interested in the case when the game is played for an infinite
number of rounds. If Duplicator can survive for infinitely many rounds in the
game on t0 and t1, then we say that the forests t0 and t1 are EF-bisimilar. A
forest language L is called invariant under EF-bisimulation if it is impossible to
find two forests t0 ∈ L and t1
∈ L that are EF-bisimilar.

Thanks to Fact 4.2, we know that any language defined by a forest formula
of EF is invariant under EF-bisimulation. Unlike for finite forests, the converse

140 M. Bojańczyk and T. Idziaszek

does not hold1. Consider, for instance the language “all finite forests”. This
language is invariant under EF-bisimulation, but it cannot be defined using a
forest formula of EF, as will follow from our main result, stated below.

Theorem 4.3 (Main Theorem: Characterization of EF)
A forest language L can be defined by a forest formula of EF if and only if

– It is invariant under EF-bisimulation;
– Its syntactic ω-forest algebra (HL, VL) satisfies the identity

vωh = (v + vωh)∞ for all h ∈ HL, v ∈ VL. (3)

Recall that we have defined the ∞ exponent as syntactic sugar for unfolding the
context infinitely many times. What about the ω exponent in the identity? In
the syntactic algebra, VL is a finite monoid (this is proved in the appendix). As
in any finite monoid, there is a number n ∈ N such that vn is an idempotent, for
any v ∈ VL. This number is written as ω. Note that identity (3) is not satisfied
by the language “all finite forests”. It suffices to take v to be the image, in the
syntactic algebra, of the forest a�. In this case, the left side of (3) corresponds
to a finite forest, and the right side corresponds to an infinite forest.

In the appendixwe show that the two conditions (invariance and the identity)
are necessary for definability in EF. The proof is fairly standard. The more
interesting part is that the two conditions are sufficient, this is done in following
section.

Corollary 4.4 (of Theorem 4.3). The following problem is decidable. The
input is a forest automaton. The question is: can the language recognized by the
forest automaton be defined by a forest formula of EF.

Proof
In appendix we show how to decide property (3) (actually, we show more: how
to decide any identity). In appendix we show how to decide invariance under
EF-bisimulation. An ExpTime lower bound holds already for deterministic au-
tomata over finite trees, see [7], which can be easily adapted to this setting.
Our algorithm for (3) is in ExpTime, but we do not know if invariance un-
der EF-bisimulation can also be tested in ExpTime (our algorithm is doubly
exponential). �

Note 2. Theorem 4.3 speaks of forest languages defined by forest EF formulas.
What about tree languages, defined by normal EF formulas? The latter can be
reduced to the former. The reason, not difficult to prove, is that a tree language
L can be defined by a normal formula of EF if and only if for each label a ∈ A,
the forest language {t : at ∈ L} is definable by a forest formula of EF. A tree
version of Corollary 4.4 can also be readily obtained.

1 In the appendix, we show a weaker form of the converse. Namely, for any fixed
regular forest t, the set of forests that are EF-bisimilar to t can be defined in EF.

Algebra for Infinite Forests with an Application 141

Note 3. In Theorem 4.3, invariance under EF-bisimulation is used as a property
of the language. We could have a different statement, where invariance is a
property of the syntactic algebra (e.g. all languages recognized by the algebra
are invariant under EF-bisimulation). The different statement would be better
suited towards variety theory, à la Eilenberg [9]. We intend to develop such a
theory.

Invariance under EF-bisimulation and (3) are sufficient

We now show the more difficult part of Theorem 4.3. Fix a surjective morphism
α : A� → (H, V) and suppose that the target ω-forest algebra satisfies con-
dition (3) and that the morphism is invariant under EF-bisimulation (any two
EF-bisimilar forests have the same image). For a forest t, we use the name type
of h for the value α(h). We will show that for any h ∈ H , the language Lh of
forests of type h is definable by a forest formula of EF. This shows that the two
conditions in Theorem 4.3 are sufficient for definability in EF, by taking α to be
the syntactic morphism of L.

The proof is by induction on the size of H . The induction base, when H has
only one element, is trivial. In this case all forests have the same type, and the
appropriate formula is true.

We now proceed to the induction step. We say that an element h ∈ H is
reachable from g ∈ H if there is some v ∈ V with h = vg.

Lemma 4.5. The reachability relation is transitive and antisymmetric.

We say that an element h ∈ H is minimal if it is reachable from all g ∈ H . (The
name minimal, instead of maximal, is traditional in algebra. The idea is that
the set of elements reachable from h is minimal.) There is at least one minimal
element, since for every v ∈ V an element v(h1 + · · ·+hn) is reachable from each
hi. Since reachability is antisymmetric, this minimal element is unique, and we
will denote it using the symbol ⊥. An element h
= ⊥ is called subminimal if the
elements reachable from h are a subset of {h,⊥}.

h h

F

⊥

h g1 g2

⊥

h

g1 g2

⊥
Recall that our goal is to give, for

any h ∈ H , a formula of EF that de-
fines the set Lh of forests with type
h. Fix then some h ∈ H . We consider
four cases (shown on the picture):

1. h is minimal.
2. h is subminimal, and there is exactly one subminimal element.
3. h is subminimal, but there are at least two subminimal elements.
4. h is neither minimal nor subminimal.

Note that the first case follows from the remaining three, since a forest has type
⊥ if and only if it has none of the other types. Therefore the formula for h = ⊥ is
obtained by negating the disjunction of the formulas for the other types. Cases 3
and 4 are treated in the appendix. The more interesting case is 2, which is treated
below.

142 M. Bojańczyk and T. Idziaszek

Case 2. We now consider the case when h is a unique subminimal element.
Let F be the set of all elements different from h, from which h is reachable.

In other words, F is the set of all elements from H beside h and ⊥. Thanks to
cases 3 and 4, for every f ∈ F we have a formula ϕf that defines the set Lf of
forests with type f . We write ϕF for the disjunction

∨
f∈F ϕf .

Let t be a forest. We say two nodes x, y of the forest are in the same component
if the subtree t|x is a subtree of the subtree t|y and vice versa. Each regular forest
has finitely many components. There are two kinds of component: connected
components, which contain infinitely many nodes, and singleton components,
which contain a single node. Since any two nodes in the same component are
EF-bisimilar (i.e. their subtrees are EF-bisimilar), we conclude that two nodes
in the same component have the same type. Therefore, we can speak of the type
of a component. A tree is called prime if it has exactly one component with a
type outside F . Note that the component with a type outside F must necessarily
be the root component (the one that contains the root), since no type from F is
reachable from types outside F . Depending on the kind of the root component,
a prime tree is called a connected prime or singleton prime.

a c
a b

f1

f1f3

f2

f2

The profile of a prime tree t is a pair in P (F) ×
(A ∪ P (A)) defined as follows. On the first coordinate,
we store the set G ⊆ F of types of components with
a type in F . On the second coordinate, we store the
labels that appear in the root component. If the tree is
connected prime, this is a set B ⊆ A of labels (possibly
containing a single label), and if the tree is singleton
prime, this is a single label b ∈ A. In the first case, the
profile is called a connected profile, and in the second case the profile is called
a singleton profile. The picture shows a connected prime tree with connected
profile ({f1, f2, f3}, {a, b, c}).

In the appendix, we show that all prime trees with the same profile have the
same type. Therefore, it is meaningful to define the set profh of profiles of prime
trees of type h.

Proposition 4.6. Let π be a profile. There is an EF formula ϕπ such that
– Any prime tree with profile π satisfies ϕπ.
– Any regular forest satisfying ϕπ has type h if π ∈ profh and ⊥ otherwise.

The above proposition is shown in the appendix. We now turn our attention
from prime trees to arbitrary forests. Let t be a forest. The formula which says
when the type is h works differently, depending on whether t has a prime subtree
or not. This case distinction can be done in EF, since not having a prime subtree
is expressed by the formula AG∗ϕF .

There is no prime subtree. We write
∑

{g1, . . . , gn} for g1+· · ·+gn. By invariance
under EF-bisimulation, this value does not depend on the order or multiplicity
of elements in the set. Suppose

∑
G = ⊥ and t has subtrees with each type in

G. Thanks to (1), the type of t satisfies α(t)+
∑

G = α(t), and hence α(t) = ⊥.

Algebra for Infinite Forests with an Application 143

Therefore, a condition necessary for having type h is

¬
∨

G⊆F,
∑

G=⊥

∧
g∈G

EF∗ϕg. (4)

By the same reasoning, a condition necessary for having type h is∨
G⊆F,

∑
G=h

∧
g∈G

EF∗ϕg. (5)

It is not difficult to show that conditions (4) and (5) are also sufficient for a
forest with no prime subtrees to have type h.

There is a prime subtree. As previously, a forest t with type h cannot satisfy (4).
What other conditions are necessary? It is forbidden to have a subtree with type
⊥. Thanks to Proposition 4.6, t must satisfy:

¬
∨

π �∈profh

EF∗ϕπ . (6)

Since t has a prime subtree, its type is either h or ⊥. Suppose that t has a subtree
with type f ∈ F such that f + h = ⊥. By (1), we would have α(t) + f = α(t),
which implies that the type of t is ⊥. Therefore, t must satisfy∧

f∈F, f+h=⊥
¬EF∗ϕf . (7)

Let us define C to be the labels that preserve h, i.e. the labels a ∈ A such that
α(a)h = h. If a forest has type h then it cannot have a subtree as where a
∈ C
and s has type h or ⊥. This is stated by the formula:

AG∗
∧
c �∈C

(c → AGϕF). (8)

As we have seen, conditions (4) and (6)–(8) are necessary for a forest with a prime
subtree t having type h. In the following lemma, we show that the conditions are
also sufficient. This completes the analysis of Case 2 in the proof of Theorem 4.3,
since it gives a formula that characterizes the set Lh of forests whose type is the
unique subminimal element h.

Lemma 4.7. A forest with a prime subtree has type h if it satisfies condi-
tions (4) and (6)–(8).

5 Concluding Remarks

We have presented an algebra for infinite trees, and used it to get an effective
characterization for the logic EF. In the process, we developed techniques for
dealing with the algebra, such as algorithms deciding identities, or a kind of

144 M. Bojańczyk and T. Idziaszek

Green’s relation (the reachability relation). It seems that an important role is
played by what we call connected components of a regular forest.

There are some natural ideas for future work. These include developing a
variety theory, or finding effective characterizations for other logics. Apart from
logics that have been considered for finite trees, there are some new interesting
logics for infinite trees, which do not have counterparts for finite trees. These
include weak monadic-second order logic, or fragments of the µ-calculus with
bounded alternation.

However, since we are only beginning to study the algebra for infinite trees,
it is important to know if we have the “right” framework (or at least one of the
“right” frameworks). Below we discuss some shortcomings of ω-forest algebra,
and comment on some alternative approaches.

Shortcomings of ω-forest algebra. A jarring problem is that we have an infinite
number of operations and, consequently, an infinite number of axioms. This poses
all sorts of problems.

It is difficult to present an algebra. One cannot, as with a finite number of
operations, simply list the multiplication tables. Our solution, as presented in
the appendix, is to give an algorithm that inputs the name of the operation and
produces its multiplication table. In particular, this algorithm can be used to test
validity of identities, since any identity involves a finite number of operations.

It is difficult to prove that something is an ω-forest algebra, since there are
infinitely many axioms to check. Our solution is to define algebras as homomor-
phic images of the free algebra, which guarantees that the axioms hold. We give
an algorithm that computes the syntactic algebra of a regular forest language.

We have proved that any regular language is recognized by a finite ω-forest
algebra. A significant shortcoming is that we have not proved the converse. We
do not, however, need the converse for effective characterizations, as demon-
strated by our proof for EF. The effective characterization begins with a regular
language, and tests properties of its syntactic algebra (therefore, algebras that
recognize non-regular languages, if they exist, are never used).

An important advantage of using algebra is that properties can be stated in
terms of identities. Do we have this advantage in ω-forest algebra? The answer is
mixed, as witnessed by Theorem 4.3. One of the conditions is an identity, namely
(3). However, for the other condition, invariance under EF-bisimulation, we were
unable to come up with an identity (or a finite set of identities). This contrasts
the case of finite trees, where invariance under EF-bisimulation is characterized
by two identities. Below we describe an idea on to modify the algebra to solve
this problem.

A richer algebra? In preliminary work, we have tried to modify the algebra. In
the modified algebra, the context sort is richer, since contexts are allowed to
have multiple occurrences of the hole (we still allow only one type of hole). This
abundance of contexts changes the interpretation of identities, since the context
variables quantify over a larger set. Preliminary results indicate that invariance

Algebra for Infinite Forests with an Application 145

under EF-bisimulation is described by the identities (1) and (2) – but with the
new interpretation – as well as the following two identities:

(v(u + w))∞ = (vuw)∞, (vuw)∞ = (vwu)∞.

We intend to explore this richer algebra in more detail. However, allowing a
richer context sort comes at a cost. First, it seems that the size of the context
sort is not singly exponential, as here, but doubly exponential. Second, there are
forest languages definable in first-order logic that are not aperiodic, i.e. do not
satisfy vω = vω+1.

Where is the Ramsey theorem? An important tool in algebra for infinite words
is the Ramsey theorem, which implies the following fact: for every morphism
α : A∗ → S into a finite monoid, every word w ∈ Aω has a factorization w =
w0w1w2 · · · such that all the words w1, w2, . . . have the same image under α. This
result allows one to extend a morphism into a Wilke algebra from ultimately
periodic words to arbitrary words.

It would be very nice to have a similar theorem for trees. This question has
been independently investigated by Blumensath [2], who also provides an al-
gebraic framework for infinite trees. Contrary to our original expectations, we
discovered that a Ramsey theorem for trees is not needed to provide effective
characterizations.

Acknowledgement. We thank Wojciech Czerwiński for many helpful discussions.

References

1. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO. In:
Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 327–339.
Springer, Heidelberg (2005); A revised version, correcting an error from the con-
ference paper, www.lsv.ens-cachan.fr/~segoufin/Papers/

2. Blumensath, A.: Recognisability for algebras of infinite trees (unpublished, 2009)
3. Bojańczyk, M.: Two-way unary temporal logic over trees. In: Logic in Computer

Science, pp. 121–130 (2007)
4. Bojańczyk, M.: Effective characterizations of tree logics. In: PODS, pp. 53–66 (2008)
5. Bojańczyk, M., Segoufin, L.: Tree languages defined in first-order logic with one

quantifier alternation. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 233–245. Springer, Heidelberg (2008)

6. Bojańczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. In:
Logic in Computer Science, pp. 442–451 (2008)

7. Bojańczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theoretical
Computer Science 358(2-3), 255–273 (2006)

8. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Automata and Logic: History
and Perspectives, pp. 107–132. Amsterdam University Press (2007)

9. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press,
New York (1976)

10. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)
11. Wilke, T.: An algebraic theory for languages of finite and infinite words. Inf. J.

Alg. Comput. 3, 447–489 (1993)

www.lsv.ens-cachan.fr/~segoufin/Papers/

Deriving Syntax and Axioms for Quantitative Regular
Behaviours�

Filippo Bonchi2, Marcello Bonsangue1,2, Jan Rutten2,3, and Alexandra Silva2

1 LIACS - Leiden University
2 Centrum voor Wiskunde en Informatica (CWI)

3 Vrije Universiteit Amsterdam (VUA)

Abstract. We present a systematic way to generate (1) languages of (gener-
alised) regular expressions, and (2) sound and complete axiomatizations thereof,
for a wide variety of quantitative systems. Our quantitative systems include wei-
ghted versions of automata and transition systems, in which transitions are as-
signed a value in a monoid that represents cost, duration, probability, etc. Such
systems are represented as coalgebras and (1) and (2) above are derived in a mod-
ular fashion from the underlying (functor) type of these coalgebras.

In previous work, we applied a similar approach to a class of systems (without
weights) that generalizes both the results of Kleene (on rational languages and
DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many
other systems such as Mealy and Moore machines.

In the present paper, we extend this framework to deal with quantitative sys-
tems. As a consequence, our results now include languages and axiomatizations,
both existing and new ones, for many different kinds of probabilistic systems.

1 Introduction

Kleene’s Theorem [22] gives a fundamental correspondence between regular expres-
sions and deterministic finite automata (DFA’s): each regular expression denotes a lan-
guage that can be recognized by a DFA and, conversely, the language accepted by a DFA
can be specified by a regular expression. Languages denoted by regular expressions are
called regular. Two regular expressions are (language) equivalent if they denote the
same regular language. Salomaa [32] presented a sound and complete axiomatization
(later refined by Kozen in [23]) for proving the equivalence of regular expressions.

The above programme was applied by Milner in [26] to process behaviours and la-
belled transition systems (LTS’s). Milner introduced a set of expressions for finite LTS’s
and proved an analogue of Kleene’s Theorem: each expression denotes the behaviour
of a finite LTS and, conversely, the behaviour of a finite LTS can be specified by an ex-
pression. Milner also provided an axiomatization for his expressions, with the property
that two expressions are provably equivalent if and only if they are bisimilar.

Coalgebras provide a general framework for the study of dynamical systems such
as DFA’s and LTS’s. For a functor G:Set → Set, a G-coalgebra or G-system is a pair

� This work was carried out during the first author’s tenure of an ERCIM “Alain Bensous-
san” Fellowship Programme. The fourth author is partially supported by the Fundação para
a Ciência e a Tecnologia, Portugal, under grant number SFRH/BD/27482/2006.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 146–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Deriving Syntax and Axioms for Quantitative Regular Behaviours 147

(S , g), consisting of a set S of states and a function g :S → GS defining the “transitions”
of the states. We call the functor G the type of the system. For instance, DFA’s can be
readily seen to correspond to coalgebras of the functor G(S) = 2× SA and image-finite
LTS’s are obtained by G(S) = Pω(S)A, where Pω is finite powerset.

Under mild conditions, functors G have a final coalgebra (unique up to isomorphism)
into which every G-coalgebra can be mapped via a unique so-called G-homomor-phism.
The final coalgebra can be viewed as the universe of all possible G-behaviours: the
unique homomorphism into the final coalgebra maps every state of a coalgebra to a
canonical representative of its behaviour. This provides a general notion of behavioural
equivalence: two states are equivalent iff they are mapped to the same element of the
final coalgebra. In the case of DFA’s, two states are equivalent when they accept the
same language; for LTS’s, behavioural equivalence coincides with bisimilarity.

For coalgebras of a large but restricted class of functors, we introduced in [7] a lan-
guage of regular expressions; a corresponding generalisation of Kleene’s Theorem; and
a sound and complete axiomatization for the associated notion of behavioural equiva-
lence. We derived both the language of expressions and their axiomatization, in a mod-
ular fashion, from the functor defining the type of the system.

In recent years, much attention has been devoted to the analysis of probabilistic be-
haviours, which occur for instance in randomized, fault-tolerant systems. Several differ-
ent types of systems were proposed: reactive [24, 29], generative [16], stratified [36, 38],
alternating [18, 39], (simple) Segala [34, 35], bundle [12] and Pnueli-Zuck [28], among
others. For some of these systems, expressions were defined for the specification of their
behaviours, as well as axioms to reason about their behavioural equivalence. Examples
include [1, 2, 4, 13, 14, 21, 25, 27, 37].

Our previous results [7] apply to the class of so-called Kripke-polynomial functors,
which is general enough to include the examples of DFA’s and LTS’s, as well as many
other systems such as Mealy and Moore machines. However, probabilistic systems,
weighted automata [15, 33], etc. cannot be described by Kripke-polynomial functors. It
is the aim of the present paper to identify a class of functors (a) that is general enough to
include these and more generally a large class of quantitative systems; and (b) to which
the methodology developed in [7] can be extended.

To this end, we give a non-trivial extension of the class of Kripke-polynomial func-
tors by adding a functor type that allows the transitions of our systems to take values in a
monoid structure of quantitative values. This new class, which we shall call quantitative
functors, now includes all the types of probabilistic systems mentioned above. We show
how to extend our earlier approach to the new setting. As it turns out, the main techni-
cal challenge is due to the fact that the behaviour of quantitative systems is inherently
non-idempotent. As an example consider the expression 1/2 · ε⊕ 1/2 · ε′ representing a
probabilistic system that either behaves as ε with probability 1/2 or behaves as ε′ with
the same probability. When ε is equivalent to ε′, then the system is equivalent to 1 · ε
rather than 1/2 · ε. This is problematic because idempotency played a crucial role in our
previous results to ensure that expressions denote finite-state behaviours. We will show
how the lack of idempotency in the extended class of functors can be circumvented by
a clever use of the monoid structure. This will allow us to derive for each functor in
our new extended class everything we were after: a language of regular expressions;

148 F. Bonchi et al.

Table 1. All the expressions are closed and guarded. The congruence and the α-equivalence
axioms are implicitly assumed for all the systems. The symbols 0 and + denote, in the case of
weighted automata, the empty element and the binary operator of the commutative monoid S

while, for the other systems, denote the ordinary 0 and sum of real numbers. With a slight abuse
of notation, we write

⊕
i∈1···n pi · εi for p1 · ε1 ⊕ · · · ⊕ pn · εn .

Weighted automata – S× (SId)A

ε:: = ∅ | ε⊕ ε | µx .ε | x | s | a(s · ε) where s ∈ S and a ∈ A

(ε1 ⊕ ε2)⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 ε⊕ ∅ ≡ ε
a(s · ε)⊕ a(s ′ · ε) ≡ a((s + s ′) · ε) s ⊕ s ′ ≡ s + s ′ a(0 · ε) ≡ ∅
ε[µx .ε/x] ≡ µx .ε γ[ε/x] ≡ ε ⇒ µx .γ ≡ ε 0 ≡ ∅

Stratified systems – Dω(Id) + (B × Id) + 1
ε:: = µx .ε | x | 〈b, ε〉 | i∈1···n pi · εi | ↓ where b ∈ B , pi ∈ (0, 1] and i∈1...n pi = 1

(ε1 ⊕ ε2)⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 (p1 · ε)⊕ (p2 · ε) ≡ (p1 + p2) · ε
ε[µx .ε/x] ≡ µx .ε γ[ε/x] ≡ ε ⇒ µx .γ ≡ ε

Segala systems – Pω(Dω(Id))A

ε:: = ∅ | ε� ε | µx .ε | x | a({ε′}) where a ∈ A, pi ∈ (0, 1] and i∈1...n pi = 1
ε′:: = i∈1···n pi · εi

(ε1 � ε2)� ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε� ∅ ≡ ε ε� ε ≡ ε
(ε′1 ⊕ ε′2)⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε)⊕ (p2 · ε) ≡ (p1 + p2) · ε
ε[µx .ε/x] ≡ µx .ε γ[ε/x] ≡ ε ⇒ µx .γ ≡ ε

Pnueli-Zuck systems – PωDωPω(Id)A

ε:: = ∅ | ε� ε | µx .ε | x | {ε′} where a ∈ A, pi ∈ (0, 1] and i∈1...n pi = 1
ε′:: = i∈1···n pi · ε′′i
ε′′:: = ∅ | ε′′ � ε′′ | a({ε})

(ε1 � ε2)� ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε� ∅ ≡ ε ε� ε ≡ ε
(ε′1 ⊕ ε′2)⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε′′)⊕ (p2 · ε′′) ≡ (p1 + p2) · ε′′
(ε′′1 � ε′′2)� ε′′3 ≡ ε′′1 � (ε′′2 � ε′′3) ε′′1 � ε′′2 ≡ ε′′2 � ε′′1 ε′′ � ∅ ≡ ε′′ ε′′ � ε′′ ≡ ε′′

ε[µx .ε/x] ≡ µx .ε γ[ε/x] ≡ ε ⇒ µx .γ ≡ ε

a corresponding Kleene Theorem; and a sound and complete axiomatization for the
corresponding notion of behavioural equivalence.

In order to show the effectiveness and the generality of our approach, we apply it
to four types of systems: weighted automata; and simple Segala, stratified and Pnueli-
Zuck systems. For simple Segala systems, we recover the language and axiomatization
presented in [14]. For weighted automata and stratified systems, languages have been
defined in [9] and [38] but, to the best of our knowledge, no axiomatization was ever
given. Applying our method, we obtain the same languages and, more interestingly, we
obtain novel axiomatizations. We also present a completely new framework to reason
about Pnueli-Zuck systems. Table 1 summarizes our results.

Deriving Syntax and Axioms for Quantitative Regular Behaviours 149

2 Background

In this section, we present the basic definitions for polynomial functors and coalgebras.
We recall, from [7], the language of expressions ExpG associated with a functor G, the
analogue of Kleene’s theorem and a sound and complete axiomatization of ExpG .

Let Set be the category of sets and functions. Sets are denoted by capital letters X ,Y , . . .

and functions by lower case f , g , . . . The collection of functions from a set X to a set Y

is denoted by Y X . We write g◦f for function composition, when defined. The product of

two sets X ,Y is written as X×Y , with projection functions X X × Y
π1�� π2 �� Y .

The set 1 is a singleton set written as 1 = {∗}. We define X +Y as the set X�Y �{⊥,�},
where � is the disjoint union of sets, with injections X

κ1 �� X � Y Y
κ2�� . Note

that the set X + Y is different from the classical coproduct of X and Y, because of the
two extra elements ⊥ and �. These extra elements are used to represent, respectively,
underspecification and inconsistency in the specification of systems.

Polynomial functors. In our definition of polynomial functors we will use constant
sets equipped with an information order. In particular, we will use join-semilattices. A
(bounded) join-semilattice is a set B endowed with a binary operation ∨B and a constant
⊥B ∈ B . The operation ∨B is commutative, associative and idempotent. The element⊥B

is neutral w.r.t. ∨B . Every set S can be transformed into a join-semilattice by taking B

to be the set of all finite subsets of S with union as join.
We are now ready to define the class of polynomial functors. They are functors

G : Set → Set, built inductively from the identity and constants, using ×, + and
(−)A. Formally, the class PF of polynomial functors on Set is inductively defined by
putting:

PF � G:: = Id | B | G1 + G2 | G1 ×G2 | GA

with B a finite join-semilattice and A a finite set. For a set S , Id(S) = S , B(S) = B ,
(G1 × G2)(S) = G1(S) × G2(S), (G1 + G2)(S) = G1(S) + G2(S) and GA(S) = {f |
f : A → G(S)} and, for a function f : S → T , Gf : GS → GT is defined as usual [31].

Typical examples of polynomial functors are D = 2 × IdA, M = (B × Id)A and
St = A× Id . These functors represent, respectively, the type of deterministic automata,
Mealy machines, and infinite streams.

Our definition of polynomial functors slightly differs from the one of [19, 30] in
the use of a join-semilattice as constant functor and in the definition of +. This small
variation plays an important technical role in giving a full coalgebraic treatment of the
language of expressions which we shall introduce later. The intuition behind these ex-
tensions becomes clear if one recalls that the set of classical regular expressions carries
a join-semilattice structure. Since ordinary polynomial functors can be naturally embed-
ded into our polynomial functors above (because every set can be naturally embedded
in the generated free join semilattice), one can use the results of Section 5 to obtain
regular expressions (and axiomatization) for ordinary polynomial functors.

Next, we give the definition of the ingredient relation, which relates a polynomial
functor G with its ingredients, i.e. the functors used in its inductive construction. We
shall use this relation later for typing our expressions. Let � ⊆ PF×PF be the least
reflexive and transitive relation, written infix, such that

G1 � G1 ×G2, G2 � G1 ×G2, G1 � G1 + G2, G2 � G1 + G2, G � GA.

150 F. Bonchi et al.

If F �G, then F is said to be an ingredient of G. For example, 2, Id , 2×Id , and 2×IdA

are the ingredients of the deterministic automata functor D .

Coalgebras. For an endofunctor G on Set, a G-coalgebra is a pair (S , f) consisting
of a set of states S together with a function f : S → GS . The functor G, together with
the function f , determines the transition structure of the G-coalgebra [31]. Examples of
coalgebras include deterministic automata, Mealy machines and infinite streams, which
are, respectively, coalgebras for the functors D , M and St given above.

A G-homomorphism from a G-coalgebra (S , f) to a G-coalgebra (T , g) is a function
h : S → T preserving the transition structure, i.e., such that g ◦ h = Gh ◦ f .

A G-coalgebra (Ω, ω) is said to be final if for any G-coalgebra (S , f) there exists a
unique G-homomorphism behS : S → Ω. For every polynomial functor G there exists
a final G-coalgebra (ΩG , ωG) [31]. The notion of finality plays a key role in defining
bisimilarity. For G-coalgebras (S , f) and (T , g) and s ∈ S , t ∈ T , we say that s and t

are (G-)bisimilar, written s ∼ t , if and only if behS(s) = behT (t).
Given a G-coalgebra (S , f) and a subset V of S with inclusion map i : V → S

we say that V is a subcoalgebra of S if there exists g : V → GV such that i is a
homomorphism. Given s ∈ S , 〈s〉 ⊆ S denotes the subcoalgebra generated by s [31],
i.e. the set consisting of states that are reachable from s. We will write Coalglf (G) for
the category of G-coalgebras that are locally finite: objects are G-coalgebras (S , f) such
that for each state s ∈ S the generated subcoalgebra 〈s〉 is finite; maps are the usual
homomorphisms of coalgebras.

2.1 A Language of Expressions for Polynomial Coalgebras

In order to be able to formulate the generalization of our previous work [7], we first
have to recall the main definitions and results concerning the language of expressions
associated to a polynomial functor G. Note that in [7] we actually treated Kripke poly-
nomial functors, as mentioned also in the present introduction. In order to give a more
uniform and concise presentation, we omit in this section the case of the finite powerset
Pω (thus, we only present polynomial functors), which can be recovered as a special
instance of the monoidal valuation functor (Section 3). We start by introducing an un-
typed language of expressions and then we single out the well-typed ones via an appro-
priate typing system, thereby associating expressions to polynomial functors. Then, we
present the analogue of Kleene’s theorem.

Let A be a finite set, B a finite join-semilattice and X a set of fixpoint variables. The
set of all expressions is given by the following grammar (where a ∈ A, b ∈ B):

ε :: = ∅ | ε⊕ ε | x | µx .ε | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)

An expression is closed if it has no free occurrences of fixpoint variables x . We denote
the set of closed expressions by Exp.

Intuitively, expressions denote elements of final coalgebras. The expressions ∅, ε⊕ ε

and µx . ε will play a role similar to, respectively, the empty language, the union of lan-
guages and the Kleene star in classical regular expressions for deterministic automata.
The expressions l(ε), r(ε), l [ε], r [ε] and a(ε) denote the left and right hand-side of prod-
ucts and sums and function application, respectively.

Deriving Syntax and Axioms for Quantitative Regular Behaviours 151

Next, we present a typing assignment system that will allow us to associate with each
functor G the expressions ε that are valid specifications of G-coalgebras. The typing
proceeds following the structure of the expressions and the ingredients of the functors.
We type expressions ε using the ingredient relation, for a ∈ A, b ∈ B and x ∈ X , as
follows:

	 ∅ : F � G 	 b : B � G 	 x : Id � G

	 ε : G � G

	 µx .ε : G � G

	 ε1 : F � G 	 ε2 : F � G

	 ε1 ⊕ ε2 : F � G

	 ε : G � G

	 ε : Id � G

	 ε : F � G

	 a(ε) : FA � G

	 ε : F1 � G

	 l(ε) : F1 × F2 � G

	 ε : F2 � G

	 r(ε) : F1 × F2 � G

	 ε : F1 � G

	 l [ε] : F1 + F2 � G

	 ε : F2 � G

	 r [ε] : F1 + F2 � G

Most of the rules are self-explanatory. The rule involving Id � G reflects the isomor-
phism of the final coalgebra: ΩG

∼= G(ΩG). It is interesting to note that the rule for the
variable x guarantees that occurrences of variables in a fixpoint expression are guarded:
they occur under the scope of expressions l(ε), r(ε), l [ε], r [ε] and a(ε). For further de-
tails we refer to [7].

The set of G-expressions of well-typed expressions associated with a polynomial
functor G is defined by ExpG = ExpG�G , where, for F an ingredient of G:

ExpF�G = {ε ∈ Exp | 	 ε : F � G} .

To illustrate this definition we instantiate it for the functor D = 2× IdA.

Example 1 (Deterministic expressions). Let A be a finite set and let X be a set of fix-
point variables. The set ExpD of well-typed D-expressions is given by the BNF:

ε:: = ∅ | x | l(0) | l(1) | r(a(ε)) | ε⊕ ε | µx .ε

where a ∈ A, x ∈ X , ε is closed and occurrences of fixpoint variables are within the
scope of an input action, as can be easily checked by structural induction on the length
of the type derivations.

Our derived syntax for this functor differs from classical regular expressions in the use
of action prefixing and fixpoint instead of sequential composition and star, respectively.
However, as we will soon see (Theorem 1), the expressions in our syntax correspond
to deterministic automata and, in that sense, they are equivalent to classical regular
expressions.

The language of expressions induces an algebraic description of systems. In [7],
we showed that such language is a coalgebra. More precisely, we defined a function
λF�G : ExpF�G → F (ExpG) and then set λG = λG�G , providing ExpG with a coalgebraic
structure. The function λF�G is defined by double induction on the maximum number of
nested unguarded occurrences of µ-expressions in ε and on the length of the proofs for
typing expressions. For every ingredient F of a polynomial functor G and ε ∈ ExpF�G ,

152 F. Bonchi et al.

Table 2. The function PlusF�G : F (ExpG) × F (ExpG) → F (ExpG) and the constant
EmptyF�G ∈ F (ExpG)

EmptyId�G = ∅
EmptyB�G = ⊥B

EmptyF1+F2�G = ⊥
EmptyF1×F2�G = 〈EmptyF1�G ,EmptyF2�G〉
EmptyFA�G = λa.EmptyF�G

PlusId�G(ε1, ε2) = ε1 ⊕ ε2

PlusB�G(b1, b2) = b1 ∨B b2

PlusF1+F2�G(x ,�) = PlusF1+F2�G(�, x) = �
PlusF1+F2�G(x ,⊥) = PlusF1+F2�G(⊥, x) = x
PlusF1+F2�G(κi(ε1), κi(ε2)) = κi(PlusFi�G(ε1, ε2)), i ∈ {1, 2}
PlusF1+F2�G(κi(ε1), κj (ε2)) = � for i , j ∈ {1, 2} and i �= j
PlusF1×F2�G(〈ε1, ε2〉, 〈ε3, ε4〉) = 〈PlusF1�G(ε1, ε3),PlusF2�G(ε2, ε4)〉
PlusFA�G(f , g) = λa. PlusF�G(f (a), g(a))

the mapping λF�G(ε) is given by :

λF�G(∅) = EmptyF�G

λF�G(ε1 ⊕ ε2)
= PlusF�G(λF�G(ε1), λF�G (ε2))

λG�G(µx .ε) = λG�G(ε[µx .ε/x])
λId�G(ε) = ε for G �= Id
λB�G(b) = b

λF1×F2�G(l(ε)) = 〈λF1�G(ε),EmptyF2�G〉
λF1×F2�G(r(ε)) = 〈EmptyF1�G , λF2�G(ε)〉
λF1+F2�G(l [ε]) = κ1(λF1�G(ε))
λF1+F2�G(r [ε]) = κ2(λF2�G(ε))

λFA�G(a(ε)) = λa ′.
{

λF�G(ε) a = a ′

EmptyF�G otherwise

Here, ε[µx .ε/x] denotes syntactic substitution, replacing every free occurrence of x in
ε by µx .ε. The auxiliary constructs Empty and Plus are defined in Table 2. Note that
we use λ in the right hand side of the equation for λFA�G(a(ε)) to denote lambda ab-
straction. This overlap of symbols is safe since when we use it in λF�G it is always
accompanied by the type subscript. It is interesting to remark that λG is the generaliza-
tion of the well-known notion of Brzozowski derivative [8] for regular expressions and,
moreover, it provides an operational semantics for expressions.

We now present the generalization of Kleene’s theorem.

Theorem 1 ([7, Theorem 4]). Let G be a polynomial functor.

1. For every locally finite G-coalgebra (S , g) and for any s ∈ S there exists an expres-
sion εs ∈ ExpG such that εs ∼ s.

2. For every ε ∈ ExpG , we can construct a coalgebra (S , g) such that S is finite and
there exists s ∈ S with ε ∼ s.

Note that εs ∼ s means that the expression εs and the (system with initial) state s have
the same behaviour. For instance, for DFA’s, this would mean that they denote and
accept the same regular language. Similarly for ε and s in item 2..

In [7], we presented a sound and complete axiomatization wrt bisimilarity for ExpG .
We will not recall it here because this axiomatization can be recovered as an instance
of the one presented in Section 4.

Deriving Syntax and Axioms for Quantitative Regular Behaviours 153

3 Monoidal Valuation Functor

In the previous section we introduced polynomial functors and a language of expres-
sions for specifying coalgebras. Coalgebras for polynomial functors cover many inter-
esting types of systems, such as deterministic and Mealy automata, but not quantitative
systems. For this reason, we recall the definition of the monoidal valuation functor [17],
which will allow us to define coalgebras representing quantitative systems. In the next
section, we will provide expressions and an axiomatization for these.

A monoid M is an algebraic structure consisting of a set with an associative binary
operation + and a neutral element 0 for that operation. A commutative monoid is a
monoid where + is also commutative. Examples of commutative monoids include 2,
the two-element {0, 1} boolean algebra with logical “or”, and the set R of real numbers
with addition.

A property that will play a crucial role in the rest of the paper is idempotency: a
monoid is idempotent, if the associated binary operation + is idempotent. For example,
the monoid 2 is idempotent, while R is not. Notice that an idempotent commutative
monoid is a join-semilattice.

Given a function ϕ from a set S to a monoid M, we define support of ϕ as the set
{s ∈ S | ϕ(s) �= 0}.
Definition 1 (Monoidal valuation Functor). Let M be a commutative monoid. The
monoidal valuation functor M

−
ω :Set → Set is defined as follows. For each set S , M

S
ω

is the set of functions from S to M with finite support. For each function h : S → T ,
M

h
ω:MS

ω → M
T
ω is the function mapping each ϕ ∈ M

S
ω into ϕh ∈ M

T
ω defined, for every

t ∈ T , as
ϕh(t) =

∑
s′∈h−1(t)

ϕ(s ′)

Proposition 1. The functor M
−
ω has a final coalgebra.

Note that the (finite) powerset functor Pω(−) coincides with 2−
ω . This is often used

to represent non-deterministic systems. For example, (image-finite) LTS’s (with labels
over A) are coalgebras for the functor Pω(−)A. In the following, to simplify the notation
we will always write M

− instead of M
−
ω .

By combining the monoidal valuation functor with the polynomial functors, we can
model quantitative systems as coalgebras. As an example, we mention weighted au-
tomata.

Weighted Automata. A semiring S is a tuple 〈S, +,×, 0, 1〉 where 〈S, +, 0〉 is a com-
mutative monoid and 〈S,×, 1〉 is a monoid satisfying certain distributive laws.

Weighted automata [15, 33] are transition systems labelled over a set A and with
weights in a semiring S. Moreover, each state is equipped with an output value1 in
S. From a coalgebraic perspective weighted automata are coalgebras for the functor
S× (SId)A, where we use S to denote, the commutative monoid of the semiring S. More
concretely, a coalgebra for S × (SId)A is a pair (Q , 〈o, t〉), where Q is a set of states,

1 In the original formulation also an input value is considered. To simplify the presentation and
following [10] we omit it.

154 F. Bonchi et al.

o : Q → S is the function that associates an output weight to each state q ∈ Q and
t : Q → (SQ)A is the transition relation that associates a weight to each transition:
q

a,s→ q ′ ⇐⇒ t(q)(a)(q ′) = s.
Bisimilarity for weighted automata has been studied in [9] and it coincides with the

coalgebraic notion of bisimilarity. (For a proof, see [6].)

Proposition 2. Bisimilarity for S× (SId)A coincides with the weighted automata bisim-
ilarity defined in [9].

4 A Non-idempotent Algebra for Quantitative Regular Behaviours

In this section, we will extend the framework presented in Section 2 in order to deal with
quantitative systems, as described in the previous section. We will start by defining an
appropriate class of functors H , proceed with presenting the language ExpH of expres-
sions associated with H together with a Kleene like theorem and finally we introduce a
sound and complete axiomatization of ExpH .

Formally, the set QF of quantitative functors on Set is defined inductively by putting:

QF � H :: = G | M
H | (MH)A | MH1

1 ×M
H2
2 | M

H1
1 + M

H2
2

where G is a polynomial functor, M is a commutative monoid and A is a finite set. Note
that we do not allow mixed functors, such as G + M

H or G ×M
H . The reason for this

restriction will become clear later in this section when we discuss the proof of Kleene’s
theorem. In Section 5, we will show how to deal with such mixed functors.

Every definition we presented in Section 2 needs now to be extended to quantitative
functors. We start by observing that taking the current definitions and replacing the
subscript F �G with F �H does most of the work. In fact, having that, we just need to
extend all the definitions for the case M

F � H .
We start by introducing a new expression m · ε, with m ∈ M, extending the set of

untyped expressions, which is now given by:

ε :: = ∅ | ε⊕ ε | x | µx .ε | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε) | m · ε
The intuition behind the new expression is that there is a transition between the current
state and the state specified by ε with weight m .

The ingredient relation is extended with the rule H �M
H , the type system and λ

MF �H

with the following rules:

ε : F � H

m · ε : M
F � H

EmptyMF �H = λε′.0
PlusMF �H (f , g) = λε′.f (ε′) + g(ε′)

λMF �H (m · ε) = λε′.
{

m if λF�H (ε) = ε′

0 otherwise

where 0 and + are the neutral element and the binary operation of M. Recall that the
function λH = λH�H provides an operational semantics for the expressions. We will
soon illustrate this for the case of expressions for weighted automata (Example 2).

Finally, we introduce an equational system for expressions of type F�H . We will use
the symbol ≡⊆ ExpF�H × ExpF�H , omitting the subscript F � H , for the least relation
satisfying the following:

Deriving Syntax and Axioms for Quantitative Regular Behaviours 155

(Idempotency) ε⊕ ε ≡ ε, ε ∈ ExpF�G

(Commutativity) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1

(Associativity) ε1 ⊕ (ε2 ⊕ ε3) ≡ (ε1 ⊕ ε2)⊕ ε3

(Empty) ∅ ⊕ ε ≡ ε

(FP) γ[µx .γ/x] ≡ µx .γ
(Unique) γ[ε/x] ≡ ε ⇒ µx .γ ≡ ε

(B − ∅) ∅ ≡ ⊥B (B −⊕) b1 ⊕ b2 ≡ b1 ∨B b2

(×− ∅ − L) l(∅) ≡ ∅ (×−⊕− L) l(ε1 ⊕ ε2) ≡ l(ε1)⊕ l(ε2)
(×− ∅ − R) r(∅) ≡ ∅ (×−⊕− R) r(ε1 ⊕ ε2) ≡ r(ε1)⊕ r(ε2)
(−A − ∅) a(∅) ≡ ∅ (−A −⊕) a(ε1 ⊕ ε2) ≡ a(ε1)⊕ a(ε2)
(M− − ∅) (0 · ε) ≡ ∅ (M− −⊕) (m · ε)⊕ (m ′ · ε) ≡ (m + m ′) · ε
(+−⊕− L) l [ε1 ⊕ ε2] ≡ l [ε1]⊕ l [ε2] (+−⊕− R) r [ε1 ⊕ ε2] ≡ r [ε1]⊕ r [ε2]
(α− equiv) µx .γ ≡ µy .γ[y/x] (+−⊕−�) l [ε1]⊕ r [ε2] ≡ l [∅]⊕ r [∅]

if y not free in γ

(Cong) If ε ≡ ε′ then ε⊕ ε1 ≡ ε′ ⊕ ε1, µx .ε ≡ µx .ε′, l(ε) ≡ l(ε′), r(ε) ≡ r(ε′),
l [ε] ≡ l [ε′], r [ε] ≡ r [ε′], a(ε) ≡ a(ε′), and m · ε ≡ m · ε′.

We shall write Exp/≡ for the set of expressions modulo ≡.
Note that (Idempotency) only holds for ε ∈ ExpF�G . The reason why it cannot hold

for the remaining functors comes from the fact that a monoid is, in general, not idem-
potent. Thus, (Idempotency) would conflict with the axiom (M− −⊕), which allows us
to derive, for instance, (2 · ∅)⊕ (2 · ∅) ≡ 4 · ∅. In the case of an idempotent commutative
monoid M, (Idempotency) follows from the axiom (M− −⊕).

Lemma 1. Let M be an idempotent commutative monoid. For every expression ε ∈
Exp

MF �H , one has ε⊕ ε ≡ ε.

Example 2 (Expressions for weighted automata). The syntax automatically derived from
our typing system for the functor W = S× (SId)A is the following.

ε :: = ∅ | ε⊕ ε | x | µx .ε | l(s) | r(ε′)
ε′ :: = ∅ | ε′ ⊕ ε′ | a(ε′′)
ε′′ :: = ∅ | ε′′ ⊕ ε′′ | s · ε

where s ∈ S, a ∈ A and all the occurrences of x are guarded. The semantics of these ex-
pressions is given by the function λW�W (hereafter denoted by λW) which is an instance
of the general λF�H defined above. It is given by:

λW (∅) = 〈0, λa.λε.0〉
λW (ε1 ⊕ ε2) = 〈s1 + s2, λa.λε.(f (a)(ε) + g(a)(ε))

where 〈s1, f 〉 = λW (ε1) and 〈s2, g〉 = λW (ε2)
λW (µx .ε) = λW (ε[µx .ε/x])
λW (l(s)) = 〈s, λa.λε.0〉
λW (r(ε′)) = 〈0, λ(SId)A�W (ε′)〉

λ(SId)A�W (∅) = λa.λε.0
λ(SId)A�W (ε1 ⊕ ε2) = λa.λε.(f1(a)(ε) + f2(s)(ε))

where fi = λ(SId)A�W (εi), i ∈ {1, 2}
λ(SId)A�W (a(ε′′)) = λa ′.

{
λSId�W (ε′′) a = a ′

λε.0 oth.

λ(SId)�W (∅) = λε.0
λ(SId)�W (ε1 ⊕ ε2) = λε.(f1(ε) + f2(ε))

where fi = λ(SId)�W (εi), i ∈ {1, 2}
λ(SId)�W (s · ε) = λε′.

{
s ε = ε′

0 oth.

156 F. Bonchi et al.

The function λW assigns to each expression ε a pair 〈s, t〉, consisting of an output
weight s ∈ S and a function t : A → S

ExpW . For a concrete example, let S = R and
consider ε = µx .r(a(2 · x ⊕ 3 · ∅)) ⊕ l(1) ⊕ l(2). The semantics of this expression,
obtained by λW is described by the weighted automaton below.

ε

a,2

��

��

a,3 �� ∅
��

3 0

In Table 1 a more concise syntax for expressions for weighted automata is presented.
To derive that syntax from the one automatically generated, we first write ε′ as

ε′ :: = ∅ | ε′ ⊕ ε′ | a(s · ε)
using the axioms a(∅) ≡ ∅ and a(ε′′

1 ⊕ ε′′
2) ≡ a(ε′′

1) ⊕ a(ε′′
2). Similarly, using r(∅) = ∅

and r(ε′
1 ⊕ ε′

2) ≡ r(ε′
1)⊕ r(ε′

2), we can write ε as follows.

ε :: = ∅ | ε⊕ ε | x | µx .ε | l(s) | r(a(s · ε))
In Table 1, we abbreviate l(s) to s and r(a(s ·ε)) to a(s ·ε), without any risk of confusion.
Note that the axioms presented in Table 1 also reflect the changes in the syntax of the
expressions.

We are now ready to formulate the analogue of Kleene’s theorem for quantitative
systems.

Theorem 2 (Kleene’s theorem for quantitative functors). Let H be a quantitative
functor.

1. For every locally finite H -coalgebra (S , h) and for every s ∈ S there exists an
expression εs ∈ ExpH such that s ∼ εs .

2. For every ε ∈ ExpH , there exists a finite H -coalgebra (S , h) with s ∈ S such that
s ∼ ε.

The proof of the theorem can be found in [6], but let us explain what are the technical
difficulties that arise when compared with Theorem 1, where only polynomial functors
are considered.

In the proof of item 2. in Theorem 1, we start by constructing the subcoalgebra gen-
erated by ε, using the fact that the set ExpG has a coalgebra structure given by λG . Then,
we observe that such subcoalgebra might not be finite and, following a similar result
for classical regular expressions, we show that finiteness can be obtained by taking the
subcoalgebra generated modulo (Associativity), (Commutativity) and (Idempotency)
(ACI).

Consider for instance the expression ε = µx .r(a(x ⊕ x)) of type D = 2 × IdA. The
subcoalgebras generated with and without applying ACI are the following:

ε

a

��
ε

a �� ε⊕ ε
a �� (ε⊕ ε)⊕ (ε⊕ ε) a �� . . .

Deriving Syntax and Axioms for Quantitative Regular Behaviours 157

We cannot apply ACI in the quantitative setting, since the idempotency axiom does
not hold anymore. However, surprisingly enough, in the case of the functor M

H , we
are able to prove finiteness of the subcoalgebra 〈ε〉 just by using (Commutativity) and
(Associativity). The key observation is that the monoid structure will be able to avoid
the infinite scenario described above. In fact, for the functor M H one can prove that, if
ε ⊕ ε is one of the successors of ε then the successors of ε ⊕ ε will all be contained in
the set of direct successors of ε, which we know is finite . What happens is concisely
captured by the following example. Take the expression ε = µx .2·(x⊕x) for the functor
R

Id . Then, the subcoalgebra generated by ε is depicted in the following picture:

ε
2 �� ε⊕ ε

4

��

In this manner, we are able to deal with the base cases G (polynomial functor) and
M

H of the inductive definition of the set of quantitative functors. Moreover, the functors
M

H×M
H and M

H +M
H inherit the above property from M

H and do not pose any problem
in the proof of Kleene’s theorem. The syntactic restriction that excludes mixed functors
is needed because of the following problem. Take as an example the functor M

Id × IdA.
A well-typed expression for this functor would be ε = µx .r(a(x ⊕x ⊕ l(2 ·x)⊕ l(2 ·x))).
It is clear that we cannot apply idempotency in the subexpression x⊕x⊕ l(2 ·x)⊕ l(2 ·x)
and hence the subcoalgebra generated by ε will be infinite:

ε
a �� ε′ a ��

4

�� ε′ ⊕ ε′ a ��

8

�� (ε′ ⊕ ε′)⊕ (ε′ ⊕ ε′) a ��

16

�� . . .

with ε′ = ε ⊕ ε ⊕ l(2 · ε) ⊕ l(2 · ε). We will show in the next section how to overcome
this problem.

Let us summarize what we have achieved so far: we have presented a framework
that allows, for each quantitative functor H ∈ QF , the derivation of a language ExpH .
Moreover, Theorem 2 guarantees that for each expression ε ∈ ExpH , there exists a
finite H -coalgebra (S , h) that contains a state s ∈ S bisimilar to ε and, conversely,
for each locally finite H -coalgebra (S , h) and for every state in s there is an expression
εs ∈ ExpH bisimilar to s. The proof of Theorem 2, which can be found in [6], shows how
to compute the H -coalgebra (S , h) corresponding to an expression ε and vice-versa.

The axiomatization presented above is sound and complete:

Theorem 3 (Soundness and Completeness). Let H be a quantitative functor and let
ε1, ε2 ∈ ExpH . Then, ε1 ∼ ε2 ⇐⇒ ε1 ≡ ε2.

The proof of this theorem follows a similar strategy as in [7, 20] and can be found in [6].

5 Extending the Class of Functors

In the previous section, we introduced regular expressions for the class of quantitative
functors. In this section, by employing standard results from the theory of coalgebras,

158 F. Bonchi et al.

we show how to use such regular expressions to describe the coalgebras of many more
functors, including the mixed functors we mentioned in Section 4.

Given F and G two endofunctors on Set, a natural transformation α:F ⇒ G is a
family of functions αS :F (S) → G(S) (for all sets S), such that for all functions h:T →
U , αU ◦ F (h) = G(h) ◦ αT . If all the αS are injective, then we say that α is injective.

Proposition 3. An injective natural transformation α:F ⇒ G induces a functor α ◦
(−) : Coalglf (F)→ Coalglf (G) that preserves and reflects bisimilarity.

This result (proof can be found in [6]) allows us to extend both regular expressions and
axiomatization to many functors. Indeed, consider a functor F that is not quantitative,
but that has an injective natural transformation α into some quantitative functor H . A
(locally finite) F -coalgebra can be translated into a (locally finite) H -coalgebra via the
functor α◦(−) and then it can be characterized by using expressions in ExpH (as we will
show soon, for the converse some care is needed). The axiomatization for ExpH is still
sound and complete for F -coalgebras, since the functor α ◦ (−) preserves and reflects
bisimilarity.

However, notice that Kleene’s theorem does not hold anymore, because not all the
expressions in ExpH denote F -regular behaviours or, more precisely, not all expressions
of ExpH are equivalent to H -coalgebras that are in the image of α◦(−). Thus, in order to
retrieve Kleene’s theorem, one has just to exclude such expressions. In many situations,
this is feasible by simply imposing some syntactic constraints on ExpH .

As an example, we recall the definition of the probability functor that, in the next
section, will allow us to derive regular expressions for probabilistic systems.

Definition 2 (Probability functor). A probability distribution over a set S is a function
d : S → [0, 1] such that

∑
s∈S

d(s) = 1. The probability functorDω:Set→ Set is defined
as follows. For all sets S , Dω(S) is the set of probability distributions over S with finite
support. For all functions h : S → T , Dω(h) maps each d ∈ Dω(S) into d h as defined in
Definition 1.

Now recall the functor R
Id from Section 3. Note that for any set S , Dω(S) ⊆ R

S since
probability distributions are also functions from S to R. Let ι be the family of inclusions
ιS :Dω(S) → R

S . It is easy to see that ι is a natural transformation between Dω and R
Id

(the two functors are defined in the same way on arrows). Thus, in order to specify Dω-
coalgebras, we can use ε ∈ Exp

RId which are the closed and guarded expressions given
by ε :: = ∅ | ε⊕ε | x | µx .ε | r ·ε, for r ∈ R. However, this language allows us to specify
R

Id-behaviours that are not Dω-behaviours, such as for example, µx .2 · x and µx .0 · x .
In order to obtain a language that specifies all and only the regular Dω-behaviours, it is
enough to restrict the syntax of Exp

RId , as follows:

ε :: = x | µx .ε |
⊕

i∈1...n

pi · εi for pi ∈ (0, 1] such that
∑

i∈1...n

pi = 1

where, with a slight abuse of notation,
⊕

i∈1...n
pi · εi denotes p1 · ε1 ⊕ · · · ⊕ pn · εn .

In the next section, we will use this kind of syntactic restrictions for defining regular
expressions of probabilistic systems.

For another example, consider the functors Id and Pω(Id). Let τ be the family of
functions τS : S → Pω(S) mapping each s ∈ S in the singleton set {s}. It is easy to see

Deriving Syntax and Axioms for Quantitative Regular Behaviours 159

that τ is an injective natural transformation. With the above observation, we can also get
regular expressions for the functor M

Id × IdA that, as discussed in Section 4, does not
belong to our class of quantitative functors. Indeed, by extending τ , we can construct
an injective natural transformation M

Id × IdA ⇒ M
Id × Pω(Id)A.

In the same way, we can construct an injective natural transformation from the func-
tor Dω(Id)+(A×Id)+1 (that is the type of stratified systems) into R

Id +(A×Pω(Id))+1.
Since the latter is a quantitative functor, we can use its expressions and axiomatization
for stratified systems. But since not all its expressions define stratified behaviours, we
again have to restrict the syntax.

The procedure of appropriately restricting the syntax usually requires some inge-
nuity. We shall see that in many concrete cases, as for instance Dω above, it is fairly
intuitive which restriction to choose.

6 Probabilistic Systems

Many different types of probabilistic systems have been defined in literature: reactive,
generative, stratified, alternating, (simple) Segala, bundle and Pnueli-Zuck. Each type
corresponds to a functor, and the systems of a certain type are coalgebras for the cor-
responding functor. A systematic study of all these systems as coalgebras was made in
[5]. In particular, Fig.1 of [5] provides a full correspondence between types of systems
and functors. By employing this correspondence, we can use our framework in order
to derive regular expressions and axiomatizations for all these types of probabilistic
systems.

In order to show the effectiveness of our approach, we have derived expressions
and axioms for three different types of probabilistic systems: simple Segala, stratified
and Pnueli-Zuck. Table 1 shows the expressions and the axiomatizations that we have
obtained, after some simplification of the canonically derived syntax (which is often
verbose and redundant).

•

a ��
�� b

����������
a

�������

1/2

��
1/2

��
1/3

��
2/3

�� 1��
• • • • •

•
1/2

����
�� 1/2

���
��

�

•
1/3

����
�� 2/3

���
��

� •
a
��

•
a
��

•
b��

•

• •

•

�
�

����

1/3 2/3
1

a

���
��

�
a

����
�� a

��	
		

	
b

����
�� b ��

• • • • •

(i) (ii) (iii)

Fig. 1. (i) A simple Segala system, (ii) a stratified system and (iii) a Pnueli-Zuck system

Simple Segala systems. Simple Segala systems are coalgebras of type Pω(Dω(Id))A

(recall that Pω is the functor 2−). These are like labelled transition systems, but each
labelled transition leads to a probability distribution of states instead of a single state.
An example is shown in Fig.1(i).

160 F. Bonchi et al.

Table 1 shows expressions and axioms for simple Segala systems. In the following
we show how to derive these. As described in Section 5, we can derive the expressions
for Pω(RId)A instead of Pω(Dω(Id))A, and then impose some syntactic constraints on
ExpPω(RId)A in order to characterize all and only thePω(Dω(Id))A behaviours. By simply
applying our typing systems to Pω(RId)A, we derive the expressions:

ε :: = ∅ | ε⊕ ε | x | µx .ε | a(ε′)
ε′ :: = ∅ | ε′ ⊕ ε′ | 1 · ε′′ | 0 · ε′′

ε′′ :: = ∅ | ε′′ ⊕ ε′′ | p · ε
where a ∈ A, p ∈ R and 0 and 1 are the elements of the boolean monoid 2.

Now, observe that the syntax for ε′, due to the axiom 0 · ε′′ ≡ ∅ can be reduced to

ε′ :: = ∅ | ε′ ⊕ ε′ | 1 · ε′′

which, because of a(ε′
1)⊕a(ε′

2) ≡ a(ε′
1⊕ε′

2) and a(∅) ≡ ∅ is equivalent to the simplified
syntax:

ε :: = ∅ | ε⊕ ε | x | µx .ε | a({ε′′})
Here, and in what follows, {ε′′} abbreviates 1 · ε′′. Note that the axiomatization would
have to include the axiom a({ε′′})⊕ a({ε′′}) ≡ a({ε′′}), as a consequence of (M−−⊕)
and (−A − ⊕). However, this axiom is subsumed by the (Idempotency) axiom, which
we add to the axiomatization, since it holds for expressions ε ∈ ExpPω (RId)A . This,
combined with the restrictions to obtain Dω out of R

Id , leads to the expressions and the
axiomatization in Table 1 where, in order to avoid confusion, we use � instead of ⊕,
making a clear distinction between the idempotent and non-idempotent sums.

As an example, the expression a({1/2 · ∅⊕1/2 · ∅})� a({1/3 · ∅⊕2/3 · ∅})� b({1 · ∅})
describes the simple Segala system in Fig.1(i).

Stratified systems. Stratified systems are coalgebras of the functor Dω(Id)+(B×Id)+
1. Each state of these systems either performs unlabelled probabilistic transitions or one
B-labelled transition or it terminates. To get the intuition for the syntax presented in
Table 1, note that the stratified system in Fig.1.(ii) would be specified by the expression
1/2 · (1/3 · 〈a, ↓〉 ⊕ 2/3 · 〈b, ↓〉)⊕ 1/2 · 〈a, ↓〉. Again, we added some syntactic sugar to
our original regular expressions: ↓, denoting termination, corresponds to our expression
r [r [1]], while 〈b, ε〉 corresponds to r [l [l(b) ⊕ r({ε})]]. The derivation of the simplified
syntax and axioms follows a similar strategy as in the previous example and thus is
omitted here. As described in Section 5, we first derive expressions and axioms for
R

Id + (B × Pω(Id)) + 1 and then we restrict the syntax to characterize only Dω(Id) +
(B × Id) + 1-behaviours.

Pnueli-Zuck systems. These systems are coalgebras of the functor PωDω(Pω(Id))A.
Intuitively, the ingredient Pω(Id)A denotes A-labelled transitions to other states. Then,
Dω(Pω(Id))A corresponds to a probability distribution of labelled transitions and then,
each state of a PωDω(Pω(Id))A-coalgebra performs a non deterministic choice amongst
probability distributions of labelled transitions. The expression {1/3 ·a({∅})� a({∅})⊕
2/3 ·(b({∅})�a({∅}))}�{1 ·b({∅})} specifies the Pnueli-Zuck system in Fig.1 (iii). No-
tice that we use the same symbol� for denoting two different kinds of non-deterministic
choice. This is safe, since they satisfy the same axioms. Again, the derivation of the
simplified syntax and axioms is omitted here.

Deriving Syntax and Axioms for Quantitative Regular Behaviours 161

7 Conclusions

We presented a general framework to canonically derive expressions and axioms for
quantitative regular behaviours. To illustrate the effectiveness and generality of our ap-
proach we derived expressions and equations for weighted automata, simple Segala,
stratified and Pnueli-Zuck systems.

We recovered the syntaxes proposed in [10, 14, 38] for the first three models and
the axiomatization of [14]. For weighted automata and stratified systems we derived
new axiomatizations and for Pnueli-Zuck systems both a novel language of expressions
and axioms. It should be remarked that [10, 14, 38] considered process calculi that are
also equipped with the parallel composition operator and thus they slightly differ from
our languages, which are more in the spirit of Kleene and Milner’s expressions. Also
[4, 13, 37] study expressions without parallel composition for probabilistic systems.
These provide syntax and axioms for generative systems, Segala systems and alternating
systems, respectively. For Segala systems our approach will derive the same language
of [13], while the expressions in [37] differ from the ones resulting from our approach,
since they use a probabilistic choice operator +p . For alternating systems, our approach
would bring some new insights, since [4] considers only expressions without recursion.

Acknowledgments. The authors are grateful to Catuscia Palamidessi for interesting dis-
cussions and pointers to the literature.

References

1. Aceto, L., Ésik, Z., Ingólfsdóttir, A.: Equational axioms for probabilistic bisimilarity. In:
Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 239–253. Springer,
Heidelberg (2002)

2. Baeten, J., Bergstra, J., Smolka, S.: Axiomization probabilistic processes: Acp with genera-
tive probabililties (extended abstract). In: Cleaveland [11], pp. 472–485

3. Baeten, J., Klop, J. (eds.): CONCUR 1990. LNCS, vol. 458. Springer, Heidelberg (1990)
4. Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F.,

Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer,
Heidelberg (2001)

5. Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types. TCS
327(1-2), 3–22 (2004)

6. Bonchi, F., Bonsangue, M., Rutten, J., Silva, A.: Deriving syntax and axioms for quantitative
regular behaviours. CWI technical report (2009)

7. Bonsangue, M., Rutten, J., Silva, A.: An algebra for Kripke polynomial coalgebras. In: LICS
(to appear, 2009)

8. Brzozowski, J.: Derivatives of regular expressions. Journal of the ACM 11(4), 481–494 (1964)
9. Buchholz, P.: Bisimulation relations for weighted automata. TCS 393(1-3), 109–123 (2008)

10. Buchholz, P., Kemper, P.: Quantifying the dynamic behavior of process algebras. In:
de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001.
LNCS, vol. 2165, pp. 184–199. Springer, Heidelberg (2001)

11. Cleaveland, R. (ed.): CONCUR 1992. LNCS, vol. 630. Springer, Heidelberg (1992)
12. D’Argenio, P., Hermanns, H., Katoen, J.-P.: On generative parallel composition. ENTCS 22

(1999)
13. Deng, Y., Palamidessi, C.: Axiomatizations for Probabilistic Finite-State Behaviors. In:

Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005)

162 F. Bonchi et al.

14. Deng, Y., Palamidessi, C., Pang, J.: Compositional reasoning for probabilistic finite-state
behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.)
Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 309–337.
Springer, Heidelberg (2005)

15. Droste, M., Gastin, P.: Weighted Automata and Weighted Logics. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 513–525. Springer, Heidelberg (2005)

16. Giacalone, A., Jou, C., Smolka, S.: Algebraic reasoning for probabilistic concurrent systems.
In: Broy, Jones (eds.) Proc. of IFIP TC 2 (1990)

17. Gumm, H., Schröder, T.: Monoid-labeled transition systems. ENTCS 44(1) (2001)
18. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp.

Comp. 6(5), 512–535 (1994)
19. Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. ITA 35(1), 31–59

(2001)
20. Jacobs, B.: A Bialgebraic Review of Deterministic Automata, Regular Expressions and Lan-

guages. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Com-
putation. LNCS, vol. 4060, pp. 375–404. Springer, Heidelberg (2006)

21. Jou, C., Smolka, S.: Equivalences, congruences, and complete axiomatizations for proba-
bilistic processes. In: Baeten, Klop [3], pp. 367–383

22. Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies,
3–42 (1956)

23. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events.
In: Logic in Computer Science, pp. 214–225 (1991)

24. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comp. 94(1), 1–28 (1991)
25. Larsen, K., Skou, A.: Compositional verification of probabilistic processes. In: Cleaveland

[11], pp. 456–471
26. Milner, R.: A complete inference system for a class of regular behaviours. J. Comp. Syst.

Sci. 28(3), 439–466 (1984)
27. Mislove, M., Ouaknine, J., Worrell, J.: Axioms for probability and nondeterminism.

ENTCS 96, 7–28 (2004)
28. Pnueli, A., Zuck, L.: Probabilistic verification by tableaux. In: LICS, pp. 322–331. IEEE,

Los Alamitos (1986)
29. Rabin, M.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
30. Rößiger, M.: Coalgebras and modal logic. ENTCS 33 (2000)
31. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)
32. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J. ACM 13(1),

158–169 (1966)
33. Schützenberger, M.: On the definition of a family of automata. Information and Control

4(2-3), 245–270 (1961)
34. Segala, R.: Modeling and verification of randomized distributed real-time systems. PhD the-

sis, MIT (1995)
35. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B.,

Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)
36. Smolka, S., Steffen, B.: Priority as extremal probability. In: Baeten, Klop [3], pp. 456–466
37. Stark, E., Smolka, S.: A complete axiom system for finite-state probabilistic processes. In:

Plotkin, et al. (eds.) Proof, Language, and Interaction, pp. 571–596. MIT Press, Cambridge
(2000)

38. van Glabbeek, R., Smolka, S., Steffen, B.: Reactive, generative and stratified models of prob-
abilistic processes. Inf. Comput. 121(1), 59–80 (1995)

39. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS,
pp. 327–338. IEEE, Los Alamitos (1985)

Weighted Bisimulation in Linear
Algebraic Form�

Michele Boreale

Università di Firenze
Dipartimento di Sistemi e Informatica, Viale Morgagni 65, I-50134, Firenze

boreale@dsi.unifi.it

Abstract. We study bisimulation and minimization for weighted au-
tomata, relying on a geometrical representation of the model, linear
weighted automata (lwa). In a lwa, the state-space of the automaton is
represented by a vector space, and the transitions and weighting maps
by linear morphisms over this vector space. Weighted bisimulations are
represented by sub-spaces that are invariant under the transition mor-
phisms. We show that the largest bisimulation coincides with weighted
language equivalence, can be computed by a geometrical version of par-
tition refinement and that the corresponding quotient gives rise to the
minimal weighted-language equivalence automaton. Relations to Larsen
and Skou’s probabilistic bisimulation and to classical results in Automata
Theory are also discussed.

1 Introduction

We study bisimulation [17, 18], quotients and minimization in finite-state
weighted automata over the field of real numbers. The motivation of this study
is twofold. In the past two decades, bisimulation has been adapted to several
flavours of probabilistic and stochastic systems. There is a large body of lit-
erature on the subject, see e.g. [1, 4, 5, 11, 15] and references therein. These
definitions are presented in different formats and notations and give rise, in gen-
eral, to different equivalences, whose mutual relationships are difficult to asses.
At the same time, one wonders if any alternative, linear-time equivalence ex-
ists that might replace bisimulation-based equivalences in certain situations. On
ordinary lts’s, language equivalence, aka may testing [9], is known to be more
generous than bisimulation and appropriate to reason on certain classes of prop-
erties, like safety ones. Unfortunately, it is also much more complex to decide
than bisimilarity [16]. In practice, one often uses bisimulation as an incomplete
proof technique for language equivalence. One wonders to what extent this state
of things carries over to the weighted setting.

In an ordinary automaton, each state is associated with a recognized lan-
guage. Likewise, in a weighted automaton, each state q is associated with a rec-
ognized weighted language σ(q), that is, a set of words each coming with a weight

� Work partially supported by eu within the fet-GC2 initiative, project Sensoria.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 163–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

164 M. Boreale

(probability/multiplicity/cost...). Classically, weighted languages are known as
formal power series [2]. Two states q and q′ are weighted language equivalent
if σ(q) = σ(q′). It is worth to notice that, in the case of probabilistic automata,
σ(q) has a very natural interpretation: the weight of a word x = a1 · · ·an in σ(q) is
just the probability of observing the word x if the execution of the system starts
from q. Or, to phrase it in the testing equivalence jargon [9], it is the probabil-
ity that the system passes the test a1. · · ·an.ω starting its execution from q. In
other weighted settings, like the counting automata of [19], language equivalence
enjoys an equally natural interpretation. Now, on ordinary automata, one way
of computing the minimal language equivalent automaton is to first make the
original automaton deterministic and then quotient the result of this operation
by the largest bisimulation. It is also known that the first operation, Kleene
powerset construction, takes exponential time. One wonders what is an equiv-
alent construction in the weighted setting. Or, in other words, what is, if any,
the form of bisimulation underpinned by language-preserving minimization in
weighted automata. Note that a polynomial weighted-language-preserving min-
imization procedure for weighted automata has been known for more than forty
years [22]. This leads us to the second motivation for our study, that is, to clar-
ify the connections of bisimulation for weighted transition systems and similar
structures to classical results in Automata and Language Theory.

We undertake our study by first introducing a linear algebraic representation
of weighted automata, linear weighted automata (lwa, Section 2). In the familiar
representation, transitions of a weighted automaton can be viewed as maps taking
each individual state into a set of states, each having its own weight. It is useful to
view this set as a formal linear combination of states. It is then natural to extend
the transition maps so that they take linear combinations to linear combinations
(of states). This leads to the notion of lwa, where the state-space of an automaton
is a vector space – the set of linear combinations of states – and the transitions are
linear maps. In this formulation, it is natural to define a linear weighted bisimu-
lation (Section 3) as a sub-space that is invariant under the transition maps and
is included in the kernel of the weight function. This definition retains the nice
coinductive proof technique found in ordinary bisimulation: to prove two stated
related, it is sufficient to exhibit a “small”bisimulation relation containing them
as a pair. We show that the largest linear weighted bisimulation equivalence exists
and coincides with coincides with weighted language equivalence. Moreover, it can
be effectively computed by a geometrical version of the partition refinement algo-
rithm (Section 4). Or, more accurately, a basis of the corresponding sub-space can
be effectively computed. The resulting algorithm is polynomial in the dimension,
i.e. the number of states, of the underlying weighted automaton. We next show
that taking the quotient of a lwa by a bisimulation corresponds, geometrically, to
projecting the original state-space onto the (orthogonal) complement of the sub-
space representing the bisimulation (Section 5). When the chosen bisimulation is
the largest one, this operation results into a practical method for constructing the
minimal language-equivalent lwa out of a given one.

Weighted Bisimulation in Linear Algebraic Form 165

The overall construction resembles that for ordinary automata, with deter-
minization corresponding to building the lwa. The important difference is that
here there is no exponential blow-up involved. When we specialize this construc-
tion to automata with an initial state (Section 7), we re-discover essentially
the original minimization algorithm proposed by Schützenberger [22]. The min-
imal form is canonical, in the sense that minimal lwa’s representing the same
weighted language are isomorphic. We also compare linear weighted bisimilarity
to the probabilistic bisimulation of Larsen and Skou [15] and find the latter to
be to be strictly finer than the former (Section 6).

Our work is related to recent and less recent work by Buchholz and Kemper
[5, 6], by Rutten [19–21] and by Stark [24], who have studied some of the issues
we consider here (see Section 8).

In the paper, we will make use of a few concepts from elementary Linear
Algebra, whose description can be found in any introductory textbook, such as
[14]. Due to lack of space, most proofs have been omitted in this short version:
they can be found in the full version available online [3].

2 Linear Weighted Automata

In the sequel, we fix a finite, non-empty alphabet A of actions. V will denote a
finite-dimensional inner product space, that is a vector space over R equipped
with a inner product 〈· , ·〉 : V×V→R (in fact, inner product will not come into use
until Section 4). We will often refer to elements of a vector space as“vectors”; the
null vector will be always denoted by 0, as the context will be always sufficient to
avoid confusion with the zero scalar. We shall often omit brackets surrounding
function arguments, writing e.g. Tv rather than T (v), unless this jeopardizes
readability. “Homomorphism” is shortened as “morphism”.

Definition 1 (weighted automaton in linear form). A linear weighted au-
tomaton (lwa, for short) is a triple L= (V, {Ta}a∈A,φ), where V is a inner product
space over R, and Ta : V → V, for each a ∈ A, and φ : V → R are morphisms. The
dimension of L is dim(L)

�
= dim(V).

The three elements of a lwa L are referred to as: the state-space V, the transition
functions Ta, a ∈ A, and the (final) weight function φ, respectively. We do not
consider yet initial distributions on states, that will be the subject of Section 7.
In the rest of the section, L will denote a generic lwa (V, {Ta}a∈A,φ). A family of
morphisms indexed over A, {Ta}a∈A, induces a family of morphisms indexed over
A∗, {Tx}x∈A∗ , defined as follows: for each v ∈ V, Tεv

�
= v, Taxv

�
= TxTav. Recall that

a formal power series (fps for short) over A and R is a function σ : A∗ → R. We
view a fps as the same thing as a weighted language, a generalization of the usual
notion of language where which word comes with a real multiplicity, possibly 0
to indicate absence.

Definition 2 (weighted language semantics). The weighted language asso-
ciated by L to any v ∈ V is the fps σL(v) : A∗ →R defined by: σL(v)(x)

�
= φ(Txv) for

each x ∈ A∗. We say u and v are weighted-language equivalent if σL(u) = σL(v).

166 M. Boreale

q1

q2 q3

1

1 1

a,1 a,−1

a,1 a,1

q1 +q2

q2 +q3 q1 +q3

2

2

2

a, 3
2

a, 1
2 a,− 3

2

a,1 a, 1
2

a, 1
2

a,− 1
2

Fig. 1. Two weighted automata representing the same linear weighted automaton

Weighted automata are often represented in matrix form. Ignoring for the
moment initial states, a weighted automaton (wa, for short) W is often defined as
a triple (Q, {Ma}a∈A, f), where: Q = (q1, ...,qn) is an ordered finite set of states; each
Ma ∈Rn×n is a real-valued square matrix, with Ma(i, j) specifying the weight of the
a-transition from q j to qi; and f ∈R1×n is a real-valued row vector, describing the
final weights assigned to the qi’s (see e.g. [5]). The weighted language semantics
of W can be described as follows. Given an initial distribution on states specified
by a column vector s ∈Rn×1, the fps associated to s by W is given by: σW (s)(x)

�
=

f Mx s, where for x = a1 · · ·ak, Mx is the product matrix Man · · ·Ma1 (with Mε =

I). The matrix representation corresponds, up to the ordering of states, to the
familiar graphical representation (see the next example).

It should be evident that the matrix formulation is equivalent to the one
given in Definition 1. More precisely, given a lwa L, by fixing an ordered basis
Q = (e1, ...,en) of V one determines a wa WL,Q = (Q, {Ma}a∈A, f), where Ma (resp.
f) is the matrix (resp. row vector) representing Ta (resp. φ) in the basis Q. This
correspondence preserves weighted-language semantics, that is, for each v ∈ V,
σL(v)=σWL,Q (s), where s is the column vector of coordinates of v in Q. Conversely,
a wa W = (Q, {Ma}a∈A, f) determines a lwa LW = (RQ, {Ta}a∈A,φ), by considering
R

Q as the (free) vector space with the expected inner product (g ·h �=∑q∈Q g(q) ·
h(q)), and taking Ta (resp. φ) to be the linear morphism on RQ represented by
the matrix Ma (resp. row-vector f) in the basis1 Q. Again, this correspondence
preserves the weighted-language semantics. The two constructions are inverse of
one another, e.g. one has WLW ,Q =W.

Example 1. Let A = {a} be a singleton alphabet and Q = (q1,q2,q3). Consider the
wa W = (Q, {Ma}, f) represented by the graph in Fig. 1, on the left. Transitions
having weight 0 are not displayed. The standard convention is adopted to spec-
ify final weights: qi r means that fi = r (this graphical representation alone
actually determines the matrix representation up to the ordering of the states
q1,q2,q3). The wa W gives rise to the lwa L = LW = (RQ, {Ta},φ). Another repre-
sentation of the same lwa L, this time w.r.t. the basis Q′ = (q1+q2,q2+q3,q1+q3),

1 As customary, we identify each q ∈ Q with δq ∈ RQ defined as: δq(q′) = 1 if q′ = q,
δq(q′) = 0 otherwise. Under this identification, we have Q ⊆ RQ.

Weighted Bisimulation in Linear Algebraic Form 167

is given by the automaton W′ in Fig. 2 on the right. That is, we have that
L = LW = LW′ . Note that, in general, wa’s derived from of the same lwa by fix-
ing different bases have similar transition matrices [14]. The difference between
them may only be relevant for computational purposes. As an example one will
generally prefer to work with the representation on the left rather than with the
one on the right above. More discussion on similarity can be found in [3].

3 Linear Weighted Bisimulation

We first show how to represent binary relations over V as sub-spaces of V, fol-
lowing [24].

Definition 3 (linear relations). Let U be a sub-space of V. The binary relation
RU over V is defined by: u RU v if and only if u− v ∈ U. A relation R is linear if
there is a subspace U such that R = RU.

Note that a linear relation is a total equivalence relation on V. Let now R be
any binary relation over V. There is a canonical way of turning R into a lin-
ear relation, which we describe in the following. The kernel of R is defined
by: ker(R)

�
= {u− v |uRv}. The linear extension of R, denoted R�, is defined by:

uR� v if and only if (u− v) ∈ span(ker(R)). The following lemma summarizes two
useful facts about linear relations.

Lemma 1. (1) Let U be a sub-space of V, then ker(RU) = U. (2) Given any
binary relation R, R� is the smallest linear relation containing R.

According to the first part of the above lemma, a linear relation R is completely
described by its kernel, which is a sub-space, that is

uRv if and only if (u− v) ∈ ker(R) . (1)

Conversely, to any sub-space U ⊆ V there corresponds, by definition, a linear
relation RU whose kernel is U. Hence, without loss of generality, we can identify
linear relations on V with sub-spaces of V. For example, by slight abuse of nota-
tion, we can write uU v instead of uRU v; and conversely, we will sometime denote
by R the sub-space ker(R), for a linear relation R. The context will be sufficient
to tell whether we are actually referring to a linear relation or to the correspond-
ing sub-space (kernel). Note that the sub-space {0} corresponds to the identity
relation on V, that is R{0} = IdV . In fact: u IdV u iff u = v iff u−v = 0. Similarly, the
space V itself corresponds the universal relation on V. Another consequence of
the preceding lemma, part (2), is that it is not restrictive to confine ourselves,
as we do below, to relations over V that are linear. Note that, again by virtue of
(2), R� = R if R is linear, hence (·)� is idempotent: (R�)� = R�.

We are now set to define linear weighted bisimulation. The definition relies on
the familiar step-by-step game on transitions, plus an initial condition requiring
that two related states have the same weight. We christen this form of bisimula-
tion linear to stress the difference with other forms of bisimulation proposed for
wa’s [5]. In the rest of the section, we let L denote a generic lwa (V, {Ta}a∈A,φ).

168 M. Boreale

Definition 4 (linear weighted bisimulation). Let L be a lwa. A linear re-
lation R over V is a linear weighted L-bisimulation (L-bisimulation, for short)
if whenever uRv then: (a) φ(u) = φ(v) and (b) Tau R Tav for each a ∈ A.

That a largest L-bisimulation, denoted ∼L, exists, is quite obvious: in analogy
with the ordinary case, one takes the span of the union of all L-bisimulations,
and checks that it is in turn a L-bisimulation, the largest one. Note that the
mentioned union is non-empty, as e.g. the identity relation is a L-bisimulation.
We shall give two characterizations of ∼L, one in terms of language equivalence
(Theorem 1) and one in algorithmic terms (Theorem 2). A useful property of
bisimulation on ordinary transition systems is that, to prove two states related,
exhibiting a “small” relation containing the given pair is sufficient. This property
is preserved in the present setting, despite the fact that Definition 4 mentions
linear, hence total, relations on V.

Lemma 2. Let L be a lwa and R be a binary relation over V satisfying clauses
(a) and (b) of Definition 4. Then R� is the smallest weighted L-bisimulation
containing R.

The following lemma provides a somewhat handier characterization of linear
weighted bisimulation. Let us say that a sub-space U is T -invariant if T (U)⊆U.
Bisimulations are transition-invariant relations that refine the kernel of φ.

Lemma 3. Let L be a lwa and R be linear relation over V. R is a L-bisimulation
if and only if (a) ker(φ) ⊇ R, and (b) R is Ta-invariant for each a ∈ A.

The largest L-bisimulation ∼L coincides with the weighted-language equivalence.

Theorem 1. For any u,v ∈ V, we have that u ∼L v if and only if σL(u) = σL(v).

4 Partition Refinement

”Two well-known concepts from Linear Algebra, orthogonal complements and
transpose morphisms, are used to describe geometrically two basic operations of
the algorithm, relation complementing and “arrows reversing”, respectively.”

Let U,W be sub-spaces of V. We recall that the orthogonal complement
U⊥ enjoys the following properties: (i) U⊥ is a sub-space of V; (ii) (·)⊥ re-
verses inclusions, i.e. if U ⊆ W then W⊥ ⊆ U⊥; (iii) (·)⊥ is an involution, that
is (U⊥)⊥ =U. These three properties suggest that U⊥ can be regarded as a com-
plement, or negation, of U seen as a relation. Another useful property is: (iv)
dim(U⊥)+ dim(U) = dim(V). Concerning transpose morphisms, we have the fol-
lowing definition. The need for ortho-normal bases is explained in the remark
below.

Definition 5 (transpose morphism). Let T : V→V be any endomorphism on
V. Fix any ortho-normal basis of V and let M be the square matrix representing T
in this basis. We let the transpose of T , written tT , be the endomorphism V → V
represented by tM in the given basis.

Weighted Bisimulation in Linear Algebraic Form 169

Remark 1. It is easy to check that the definition of tT does not depend on the
choice of the ortho-normal basis: this is a consequence of fact that the change
of basis matrix N between two ortho-normal bases is unitary (N−1 = tN). The
transpose operator is of course an involution, in the sense that t(tT) = T .

Transpose morphisms and orthogonal spaces are connected via the following
property, which is crucial to the development of the partition refinement algo-
rithm. It basically asserts that T -invariance of R corresponds to tT -invariance of
the complementary relation R⊥.

Lemma 4. Let U be a sub-space of V and T be an endomorphism on V. If U is
T -invariant then U⊥ is tT -invariant.

An informal preview of the algorithm is as follows. Rather than computing di-
rectly the sub-space representing ∼L, the algorithm computes the sub-space rep-
resenting the complementary relation. To this end, the algorithm starts from
a relation R0 that is the complement of the relation identifying vectors with
equal weights, then incrementally computes the space of all states that are
backward reachable from R0. The largest bisimulation is obtained by taking the
complement of this space. Geometrically, “going backward”means working with
the transpose transition functions tTa rather than with Ta. Taking the comple-
ment of a relation actually means taking its orthogonal complement. Recall that
U +W

�
= span(U ∪W).

Theorem 2 (partition refinement). Let L be a lwa. Consider the sequence
(Ri)i≥0 of sub-spaces of V inductively defined by: R0 = ker(φ)⊥ and Ri+1 = Ri +∑

a∈A
tTa(Ri). Then there is j ≤ dim(L) s.t. R j+1 = R j. The largest L-bisimulation

is ∼L= R⊥j .

Proof. Since R0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ V, the sequence of the dimensions of these
spaces is non-decreasing. As a consequence, for some j ≤ dim(V), we get dim(R j)=
dim(R j+1). Since R j ⊆ R j+1, this implies R j = R j+1.

We next show that R⊥j is a L-bisimulation. Indeed, by the properties of the
orthogonal complement: (a) ker(φ)⊥ ⊆ R j implies (ker(φ)⊥)⊥ = ker(φ) ⊇ R⊥j . More-
over: (b) for any action a, tTa(R j) ⊆ tTa(R j)+R j ⊆ R j+1 = R j implies, by Lemma 4,
that t(tTa(R⊥j)) = Ta(R⊥j) ⊆ R⊥j ; by (a), (b) and Lemma 3, we conclude that R⊥j is
an L-bisimulation.

We finally show that any L-bisimulation S is included in R⊥j . We do so by
proving that for each i, S ⊆ R⊥i , thus, in particular S ⊆ R⊥j . We proceed by in-
duction on i. Again by Lemma 3, we know that R⊥0 = ker(φ) ⊇ S . Assume now
S ⊆ R⊥i , that is, S ⊥ ⊇ Ri. For each action a, by Lemma 3 we have that Ta(S) ⊆ S ,
which implies tTa(S ⊥) ⊆ S ⊥ by Lemma 4. Hence S ⊥ ⊇ tTa(S ⊥) ⊇ tTa(Ri), where
the last inclusion stems from S ⊥ ⊇ Ri. Since this holds for each a, we have that
S ⊥ ⊇∑a

tTa(Ri)+Ri = Ri+1. Taking the orthogonal complement on both sides re-
verses the inclusion and yields the wanted result.

Remark 2. What is being “refined” in the algorithm above are not, of course, the
sub-spaces Ri, but their orthogonal complements: R⊥0 ⊇ R⊥1 ⊇ · · · ⊇ R⊥j =∼L. One

170 M. Boreale

could also devise a version of the above algorithm that starts from ker(φ) and
refines it working forward, operating with intersections of sub-spaces rather than
with sums. This “forward”version appears to be less convenient computationally
as ker(φ) is a large sub-space: since φ : V → R with dim(R) = 1, by virtue of the
fundamental identity relating the dimensions of the kernel and of the image of
a morphism, we have that dim(ker(φ)) ≥ dim(V)−1.

By virtue of (1), checking u ∼L v, for any pair of vectors u and v, is equivalent to
checking u− v ∈ ker(∼L). This can be done by first computing a basis of ∼L and
then checking for linear (in)dependence of u− v from this basis. Alternatively,
and more efficiently, one can check whether u−v is in the orthogonal complement
of R j, by showing that u− v is orthogonal to each element of a basis of R j. Thus,
our task reduces to computing one such basis. To do so, we fix any orthonormal
basis B of V: all the computations are carried out representing coordinates in
this basis. Let f and Ma (a ∈ A) be the row-vector and matrices, respectively,
representing the weight and transition functions of the lwa in this basis. Then a
sequence of basis B0, ...,B j for the sub-spaces R0, ...,R j can be iteratively computed
starting with B0 = {v0}, where v0 is the vector represented by f , which is a basis
for ker(φ)⊥. The resulting algorithm requires a polynomial (cubic) number of
floating point operations in the dimension of the automaton. The algorithm is
illustrated below.

Example 2. Consider the lwa L = (V, {Ta},φ), with V = RQ and Q = (q1,q2,q3),
given in Example 1. The wa describing L w.r.t. Q is the one depicted in Fig. 1,
on the left. Q is an ortho-normal basis, so that it is easy to represent the transpose
transitions tTa. According to the above outline of the algorithm, since f = (1,1,1)
represents φ in Q, we have that R0 = ker(φ)⊥ is spanned by v0 = q1 + q2 + q3.
Next, we apply the algorithm to build the Bi’s as described above. Manually, the
computation of the vectors tTav can be carried out by looking at the transitions
of the wa with arrows reversed. Since tTa(q1+q2+q3) = q1+q2−q1+q3 = q2+q3

and tTa(q1 + q2 + q3) = q2 + q3, we obtain B0 = {q1 + q2 + q3}, then B1 = {q1 + q2 +

q3, q2+q3} and finally B2 = B1. Hence B1 is a basis of (∼L)⊥. As an example, let
us check that q1 ∼L q1+q2−q3. To this purpose, note that the difference vector
(q1+q2−q3)−q1 = q2−q3 is orthogonal to each elements of B1, which is equivalent
to q1 ∼L q1+q2+q3.

5 Quotients

The purpose of the quotient operation is to obtain a reduced automaton that
has the same semantics as the original one. Let us make the notions of reduction
and minimality precise first.

Definition 6 (reduction, minimality). Let L and L′ be two lwa’s having V
and V′, respectively, as underlying state-spaces. Let h : V → V′ be a morphism.
We say (h,L′) is a reduction of L if dim(L′) ≤ dim(L) and for each v ∈ V, σL(v) =
σL′ (hv). We say L is minimal if for every reduction (h,L′) of L we have dim(L) =
dim(L′).

Weighted Bisimulation in Linear Algebraic Form 171

q1

q2 +q3

1

2

a,1

Fig. 2. A minimal weighted automaton

We now come to the actual construction of the minimal automaton. This is ba-
sically obtained by quotienting the original space by the largest bisimulation. In
inner product spaces, there is a canonical way of representing quotients as or-
thogonal complements. Let U be any sub-space of V. Then V can be decomposed
as the direct sum of two sub-spaces: V = U ⊕U⊥ and dim(V) = dim(U)+dim(U⊥).
This means that any element v ∈ V can be written in a unique way as a sum
v = u+w with u ∈ U and w ∈ U⊥. The orthogonal projection of V onto U⊥ is the
morphism π : V → U⊥ defined as π(u+w)

�
= w. The following lemma says that

taking the quotient of V by a linear relation (whose kernel is) U amounts to
“collapsing”vectors of V along the U-direction. Or, in other words, to projecting
vectors of V onto U⊥, the sub-space orthogonal to U (this is a well known result
in Linear Algebra).

Lemma 5. Let U be a sub-space of V and π : V→U⊥ be the projection onto U⊥.
Then for each u,v ∈ V: (a) u U v if and only if πu = πv; (b) u U πu.

In view of the above lemma, we will sometimes denote the orthogonal comple-
ment of U w.r.t. V as “V/U”. In what follows, L denotes a lwa (V, {Ta}a∈A,φ). We
shall make use of the morphisms (πT)a

�
= π ◦Ta, for a ∈ A.

Definition 7 (quotient automaton). Let R be a L-bisimulation and let π
be the projection function onto V/R. We let the quotient automaton L/R be
(V/R, {T q

a }a∈A,φ
q) where T q

a = (πTa)|V/R and φq = φ|V/R.

Theorem 3 (minimal automaton). Let R be a L-bisimulation and π be the
projection function from V onto V/R. Then (π,L/R) is a reduction of L such
that: (a) dim(L/R) = dim(L)− dim(R), and (b) for each u,v ∈ V, u ∼L v if and
only if πu ∼L/R πv. Moreover, if R is ∼L, then L/R is minimal and the following
coinduction principle holds: for each u,v ∈ V, u ∼L v if and only if πu = πv.

It is well-known that, when B is an orthogonal basis, for each v ∈ V, the projection
of v onto the space spanned by B, πv, can be written as

πv =
∑

e∈B

〈v,e〉
〈e,e〉e . (2)

One can give a (concrete) representation of the minimal lwa in terms of a wa,
by first computing an orthogonal basis of the quotient space V/ ∼L and then
representing the transition T q

a and and final weight φq functions in this basis
using the above formula. This is illustrated in the example below.

172 M. Boreale

Example 3. Let us consider again the lwa in Example 2. We give a represen-
tation of L/ ∼L as a wa. From Example 2, we know that a basis of V/ ∼L is
B = {q1 + q2 + q3,q2 + q3}. It is convenient to turn B into an orthogonal basis,
applying an the Gram-Schmidt’s [14] orthogonalizing method. We find that
B′ = {q1,q2 + q3} is an orthogonal basis of V/ ∼L. We now represent the tran-
sition function in B′. That is, for any e ∈ B′, we express each T q

a e as a linear
combination of elements of B′. Applying the identity (2), we find that

T q
a q1 = π(q2−q3) = 0

T q
a (q2+q3) = π(q2+q3) = q2+q3 .

Concerning the weight function, we have: φq(q1) = 1 and φq(q2 + q3) = 2. The
resulting wa, which represents the lwa L/ ∼L w.r.t. the basis B′, is graphically
represented in in Fig. 2. According to Theorem 3, the projection function π turns
pairs of bisimilar elements of L into identical ones of L/ ∼L. As an example, the
relation q1 ∼L q1+q2−q3 becomes an identity once projected onto V/ ∼L: indeed,
πq1 = q1 and π(q1+q2−q3) = π(q1)+π(q2−q3) = q1+0 = q1.

6 Probabilistic Bisimulation

The notion of probabilistic bisimulation was introduced by Larsen and Skou
[15], as a generalization to probabilistic transition systems of the older notion
of lumpability for Markov chains, due to Kemeny and Snell [13]. The notion of
probabilistic transition system itself can be found in a number of variations in
the literature; see e.g. [1, 11] and references therein. Below, we deal with the
the one called reactive probabilistic transition system. We comment on another
version, the generative one, at the end of this section.

In this section, for any finite set Q, f ∈ RQ and X ⊆ Q, we let | f |X �=∑q∈X f (q).
We abbreviate | f |Q just as | f |. A probabilistic transition system is just a weighted
automaton with all final weights implicitly set to 1, and where the weights of
arcs outgoing a node satisfy certain restrictions.

Definition 8 (probabilistic bisimulation). A (finite, reactive) probabilistic
transition system (ptt, for short) is a pair P = (Q, {ta}a∈A), where Q is finite set
of states and {ta}a∈A is a family of functions Q→ (R+)Q, such that for each a ∈ A
and q ∈Q, |ta(q)| equals 1 or 0. An equivalence relation S over Q is a probabilistic
bisimulation on P if whenever q S q′ then, for each equivalence class C ∈ Q/S
and each a ∈ A, |ta(q)|C = |ta(q′)|C.

It is not difficult to see that a largest probabilistic bisimulation on P, denoted
∼P, exists. Let P= (Q, {ta}a∈A) be a probabilistic transition system. Any transition
function ta, being defined over Q, which is a basis of RQ seen as a free vector
space, is extended linearly to an endomorphism on the whole RQ: we denote this
extension by the same name, ta. With this notational convention, every ptt P
determines a lwa P̂= (RQ, {ta}a∈A,φ), where φ takes on the value 1 on each element
of Q and is extended linearly to the whole space. Note that the semantics of a

Weighted Bisimulation in Linear Algebraic Form 173

q1 q′1

q2 q′21 q′22

q31 q32 q′31 q′32

q41 q42 q′41 q′42

a,1 a, 1
2 a, 1

2

b, 1
2 b, 1

2 b,1 b,1

c,1 d,1 c,1 d,1

Fig. 3. A probabilistic transition system

ptt is independent of final weights on states; we achieve the same effect here by
setting φ(q) = 1, the neutral element of product.

We establish below that, over Q, the largest linear weighted bisimulation, ∼P̂,
is coarser than the largest probabilistic bisimulation, ∼P. A similar result was
already proven by Stark in [24], building on an alternative characterization of
probabilistic bisimulation due to Jonsson and Larsen [12]. Our proof is more
direct and relies on the following lemma.

Lemma 6. Let S be a probabilistic bisimulation on the ptt (Q, {ta}a∈A). Let f ,g ∈
R

Q s.t. for each C ∈ Q/S, | f |C = |g|C. Then for each C ∈ Q/S and a ∈ A, |ta f |C =
|tag|C.

Theorem 4. Let P = (Q, {ta}a∈A,φ) be a ptt. If q ∼P q′ in P then q ∼P̂ q′ in P̂.

Proof. (Sketch) It is shown that that the linear relation ∼�P over RQ defined by:
f ∼�P g if and only if (i) | f | = |g|, and (ii) for all a ∈ A and all equivalence classes
C ∈ Q/ ∼P, |ta f |C = |tag|C, is a linear weighted bisimulation. Lemma 6 is used to
check requirement (b) of the definition.

To show that ∼P makes less identifications than ∼P̂, we consider the following
example.

Example 4. The wa P in Fig. 3, with final weights all implicitly set to 1, is a
ptt. Let L = LP be the corresponding lwa. It is easy to check that q1 ∼L q′1.
Indeed, consider the “small” relation R, defined thus
R=
{
(q1,q

′
1), (q2,

1
2

(q′21+q′22)), (
1
2

(q31+q32),
1
2

(q′31+q′32)), (
1
2

(q41+q42),
1
2

(q′41+q′42)), (0,0)
}
.

One checks that this relation satisfies the clauses of bisimulation. Applying
Lemma 2, one thus finds that R� is a linear weighted bisimulation, hence q1 ∼L q′1.
In an even more direct fashion, one just checks that σL(q1) = σL(q′1) and applies
Theorem 1. On the other hand, q1 and q′1 are not related by any probabilistic
bisimulation. In fact, any such relation should group e.g. q31 and q32 in the same
equivalence class: but this is impossible, because q31 has a c-transition, whereas
q32 has not.

174 M. Boreale

The above example highlights the fundamental difference between probabilis-
tic and linear weighted bisimulations. After each step, linear weighted bisimula-
tion may relate“point” states to linear combinations of states: e.g., starting from
q1 and q′1 and taking an a-step, q2 and 1

2 (q′21+q′22) are related. This is not possi-
ble, by definition, in probabilistic bisimulation. A practical consequence of these
results is that quotienting by the largest linear weighted bisimulation yields a
minimal automaton that may be smaller than the one obtained when quotienting
by probabilistic bisimilarity.

As hinted at the beginning of this section, a different version of probabilistic
transition systems exists, the generative one. In this version, the requirement
“for each a ∈ A and q ∈ Q, |ta(q)| equals 1 or 0” is replaced by “for each q ∈ Q,
∑

a∈A |ta(q)| equals 1 or 0”2. The results discussed in this section carry over to this
class of transition systems.

7 Weighted Automata with an Initial State

wa’s are sometimes presented as featuring an initial distribution on states, see
e.g. Buchholz’s [5]. wa’s with an initial distribution are also known as linear
representations in Automata Theory [2]. In terms of lwa’s, assuming an initial
distribution on states is equivalent to choosing a distinguished initial vector,
or root, so that we can define a rooted lwa as a pair (v,L), where v ∈ V. When
minimizing, now one has now to take care of preserving only the semantics of the
root. In particular, states that are not reachable from the root can be discarded
right away, thus allowing for a potentially smaller reduced automaton.

We give here only a brief outline the minimization procedure, which is ex-
plained in detail in the full version [3]. The algorithm now consists of two
steps: first, the sub-space reachable from the root is computed; second, the
sub-automaton obtained by restricting the original one to this sub-space is mini-
mized, according to the method described in Section 5. The second step is clearly
a quotient operation involving bisimulation. But in fact, also the first step can be
seen as a quotient operation. Indeed, if one looks at the minimization algorithm
described in Theorem 2, one sees that computing the sub-space reachable from
the root v, and spanned by the vectors {Txv|x ∈ A∗}, is equivalent to comput-
ing the largest bisimulation of a lwa with transitions reversed and with a final
weight function ψ such that span(v) = ker(ψ)⊥. Let us denote by ∼op

L the largest
bisimulation in this reverse lwa. More formally, we have the following

Theorem 5 (minimal rooted lwa). Let (v,L) be a rooted lwa with L =
(V, {Ta}a,φ). Let π be the projection function V → V/ ∼L. Consider the rooted
lwa (v∗,L∗), where v∗ = πv and L∗ = (V∗, {T∗a}a,φ∗) is given by V∗ = π(V/ ∼op

L),
T∗a = (πTa)|V∗ and φ∗ = φ|V∗. Then (v∗,L∗) is a minimal reduct of (v,L).

2 Modulo the addition of self-loops to sink states, generative and reactive transition
systems correspond to Markov Chains and to Markov Decision Processes, respec-
tively.

Weighted Bisimulation in Linear Algebraic Form 175

This construction can be seen essentially as the original two-phase minimiza-
tion algorithm given by Schützenberger [22], modulo the fact that here the two
phases (computing the reachable sub-space and then reducing it) are both de-
scribed in terms of bisimulation quotients.

When we apply this procedure to the rooted lwa (q1,L), where L is the lwa

of Example 1, we get a minimal rooted lwa that can be represented by the
following wa: q1

1

Finally, one can show that any two minimal lwa’s representing the same fps

are isomorphic, in particular they have the same dimension. This shows that the
(minimal) dimension is a feature of fps’s rather than of rooted lwa’s. We omit
the details here.

8 Related and Further Work

Our formulation of linear weighted bisimulation is primarily related to the defi-
nition of Σ-congruence put forward by Stark [24]. Σ-congruence is introduced in
order to provide a simple formulation of behavioural equivalence in a model of
stochastic systems, Probabilistic Input/Output Automata, and relate this notion
to standard probabilistic bisimulation. In the form studied by Stark, weighted
automata do not feature final (nor initial) weights. This form is subsumed by
ours once we assign the final weight 1 to all elements of the basis. In this special
case, Σ-congruence and linear weighted bisimulation coincide. The representation
of linear relations in terms of their kernels is already present in [24]. Partition
refinement and quotient/minimization are not tackled, though. A related equiv-
alence for stochastic systems, under the name behaviour equivalence, is studied
in [25, 26] (while weighted equivalence indicates there yet another equivalence).

Buchholz and Kemper have put forward a definition of bisimulation for
weighted automata over a generic semiring [5, 6]. A largest such bisimulation
can be computed by a partition refinement algorithm that works on a matrix
representation of the automata [5]; both a forward and a backward version of the
equivalence and of the algorithm are investigated. A definition of “aggregated”
automaton, corresponding to a quotient, is presented, but a notion of canonical
representation is not put forward. Akin to the probabilistic one of Larsen and
Skou, and differently from ours and Stark’s, Buchholz and Kemper’s bisimula-
tions never relate a “point” state to a linear combinations of states. As a conse-
quence, when instantiating the semiring in their framework to R, their notion of
equivalence is stricter than ours – and than weighted language equivalence – for
the same reasons discussed in Example 4.

Weighted automata and formal power series play a central role in a few re-
cent and less recent papers of Rutten [19–21] on coinduction and (multivariate)
streams – another name for fps’s. In [20], weighted automata are used to provide
a more compact representation for streams than deterministic (Moore) automata
do. Closely related to ours is also [21], where linear representations very similar
to our lwa’s are considered. Bisimulation is defined over streams – seen as deter-
ministic Moore automata – and two states of a weighted automaton are related

176 M. Boreale

iff they generate the same stream. This approach is also taken in [19], where it is
shown that infinite weighted automata can be used to enumerate a wide class of
combinatorial objects. The stream-based definition can be used to prove an in-
finite automaton equivalent to a “small” one. The latter can be directly mapped
to a closed expressions for the generating function of the enumerated objects.

Weighted automata were first introduced in Schützenberger’s classical paper
[22], where a minimization algorithm was also discussed. This algorithm has been
reformulated in a more algebraic fashion in Berstel and Reutenauer’s book [2].
Other descriptions of the algorithm can be found in [7, 10]. Here we explicitly
connect this algorithm to the notion of bisimulation. Hopefully, this connection
will make the algorithm itself accessible to a larger audience.

Due to lack of space, we have not presented results concerning composition of
automata. Indeed, it is quite easy to prove that both direct sum (juxtaposition)
and tensor product (synchronization) of lwa’s preserve bisimulation equivalence
(see also Stark’s [24, Section 3]). Also, the results presented here can be extended
to the case of vector spaces over a generic field, relying on the concept of dual
space (see [3]).

There are several possible directions for future work. One would like to ex-
tend the present approach to the case of infinite wa’s. This would provide proof
techniques, if not effective algorithms, that could be used to reason in a more
systematic manner on the counting automata of [19]. Also, it would be interest-
ing to cast the present results in a more explicit co-algebraic setting: this would
put them in a deeper perspective and possibly help to explain certain aspects
not clear at moment, such as, why the blow up of the ordinary case goes away.
It would also be practically relevant to identify classes of properties preserved
by linear weighted bisimilarity on probabilistic systems: a preliminary investiga-
tion shows that reachability is one such class. The relations of linear weighted
bisimilarity to other notions of equivalences/preorders [8, 23] that also relate
distributions, rather than individual states, deserves further attention.

References

1. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding Bisimilarity and Simi-
larity for Probabilistic Processes. Journal of Computer and System Sciences 60(1),
187–231 (2000)

2. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graph Series. Springer, Heidelberg (1988); New edition, Noncommutative Rational
Series With Applications (2008),
http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html

3. Boreale, M.: Weighted bisimulations in linear algebraic form. Full version of the
present paper (2009), http://rap.dsi.unifi.it/~boreale/papers/WBG.pdf

4. Buchholz, P.: Exact Performance Equivalence: An Equivalence Relation for
Stochastic Automata. Theoretical Computer Science 215(1-2), 263–287 (1999)

5. Buchholz, P.: Bisimulation relations for weighted automata. Theoretical Computer
Science 393(1-3), 109–123 (2008)

http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html
http://rap.dsi.unifi.it/~boreale/papers/WBG.pdf

Weighted Bisimulation in Linear Algebraic Form 177

6. Buchholz, P., Kemper, P.: Quantifying the dynamic behavior of process algebras.
In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and
PAPM 2001. LNCS, vol. 2165, pp. 184–199. Springer, Heidelberg (2001)

7. Cardon, A., Crochemore, M.: Determination de la representation standard d’une
serie reconnaissable. RAIRO Theor. Informatics and Appl. 14, 371–379 (1980)

8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising test-
ing preorders for finite probabilistic processes. Logical Methods in Computer Sci-
ence 4(4:4) (2008)

9. De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Com-
pututer Science 34, 83–133 (1984)

10. Flouret, M., Laugerotte, E.: Noncommutative minimization algorithms. Inform.
Process. Lett. 64, 123–126 (1997)

11. van Glabbeek, R.J., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, Generative,
and Stratified Models of Probabilistic Processes. In: LICS 1990, pp. 130–141 (1990)

12. Jonsson, B., Larsen, K.G.: Specification and Refinement of Probabilistic Processes.
In: LICS 1991, pp. 266–277 (1991)

13. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)
14. Lang, S.A.: Introduction to Linear Algebra, 2/e. Springer, Heidelberg (1997)
15. Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Information

and Compututation 94(1), 1–28 (1991)
16. Meyer, A.R., Stockmeyer, L.J.: Word problems requiring exponential time. In:

STOC 1973, pp. 1–9 (1973)
17. Milner, R.: A Calculus of Communicating Systems. Prentice-Hall, Englewood Cliffs

(1989)
18. Park, D.: Concurrency and Automata on Infinite Sequences. Theoretical Computer

Science, 167–183 (1981)
19. Rutten, J.J.M.M.: Coinductive counting with weighted automata. Journal of Au-

tomata, Languages and Combinatorics 8(2), 319–352 (2003)
20. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of

streams, automata, and power series. Theoretical Computer Science 308(1-3), 1–53
(2003)

21. Rutten, J.J.M.M.: Rational streams coalgebraically. Logical Methods in Computer
Science 4(3) (2008)

22. Schützenberger, M.P.: On the Definition of a Family of Automata. Information and
Control 4(2-3), 245–270 (1961)

23. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT (1995)

24. Stark, E.W.: On Behavior Equivalence for Probabilistic I/O Automata and its
Relationship to Probabilistic Bisimulation. Journal of Automata, Languages and
Combinatorics 8(2), 361–395 (2003)

25. Stark, E.W., Cleaveland, R., Smolka, S.A.: Probabilistic I/O Automata: Theories
of Two Equivalences. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 343–357. Springer, Heidelberg (2006)

26. Wu, S.-H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic
I/O automata. Theoretical Computer Science 176(1-2), 1–38 (1997)

A Logic-Based Framework for Reasoning about
Composite Data Structures�

Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

LIAFA, University Paris Diderot and CNRS, 75205 Paris 13, France
{abou,cezarad,cenea,sighirea}@liafa.jussieu.fr

Abstract. We define a logic, called CSL, for the specification of complex data
structures, and we show its use in program verification. Our framework allows to
handle programs with dynamic linked structures and arrays carrying unbounded
data, as well as the composition of these structures. The formulas in CSL allow a
limited form of alternation between existential and universal quantifiers and they
can express (1) constraints on reachability between positions in the heap follow-
ing some pointer fields, (2) linear constraints on the lengths of the lists and the in-
dexes of the arrays, and (3) constraints on the values of the data attached to these
positions. For data constraints, the logic CSL is parameterized by a first-order
logic over the considered data domain. We prove that the satisfiability problem of
CSL is decidable whenever the underlying data logic is decidable and that CSL
is closed under the computation of the strongest post-condition in the considered
class of programs.

1 Introduction

Program verification requires reasoning about complex, unbounded size structures that
may carry data ranging over infinite domains. Examples of such structures are multi-
linked data structures, arrays, as well as compositions of these structures (e.g., lists of
doubly linked lists of arrays of ... integers). Programs manipulating such structures can
perform operations that may modify the shape of these structures (due to dynamic cre-
ation and destructive updates) as well as the data attached to their elements. An impor-
tant issue is the design of logic-based frameworks allowing to express assertions about
program configurations (at given control points), and then to check automatically the
validity of these assertions, for all computations. This leads to the challenging problem
of finding compromises between expressiveness and decidability.

Concerning expressiveness, it is important in the context we consider, to be able to
use (1) some form of reachability predicates (or ordering predicates) between positions
in the structures, and (2) constraints on the data attached to these positions. It is also
important to have a framework which allows to handle data structures beyond words
and trees. For instance, logics on words do not allow to reason in a natural way about
transformations (such as destructive updates) of linked lists. Similarly, transformations
of linked tree structures may lead in intermediary steps to structures which are not trees.
Furthermore, many of the commonly used data structures are composite and combine
several kinds of linked structures and arrays, containing data as well as pointers to
elements in different substructures.
� Partially supported by the french ANR project AVERISS and the RNTL project AVERILES.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 178–195, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Logic-Based Framework for Reasoning about Composite Data Structures 179

From the point of view of decidability, the problem is that, regardless of the un-
bounded data issue, beyond tree-like structures, the use of reachability predicates may
lead to undecidability when quantification over positions is not restricted. Moreover,
when unbounded data domains are considered, even for relatively simple structures
such as words, the obtained logics are undecidable in general.

In this paper, we propose a logic called CSL (for Composite Structures Logic) which,
we believe, offers such a good compromise we are seeking. The logic CSL is param-
eterized by a first-order logic over some data domain. Models of CSL are graphs (of
arbitrary size and shape) where each vertex has a type. Types correspond to a fixed
number of data fields and a fixed number of pointer fields. Pointers define successor
relations in the structure (they correspond to edges in the graph). They are also typed
in the sense that their origins and their targets are always vertices of some fixed types.
Special pointer fields are used to encode arrays. These fields are supposed to define
distinct acyclic paths.

Location variables (which can be existentially or universally quantified) are used to
refer to positions (vertices) in the models. Formulas in CSL allow to express that two po-
sitions are related by a path following (forward and/or backward) some specific pointer
fields. For instance, saying that positions u and v are related by a doubly linked path

can be written u
{ f ,b}−−−−→v where f (resp. b) is the forward (resp. backward) successor

field. Also, we can represent the address of an array element by a term of the form a[i]
where a is an array variable which is assigned to a position representing the first ele-
ment of the array and i is an index variable representing the distance to that position on
a path that uses the distinguished array field. These terms can be used to specify linked
structures containing elements from different arrays. Array and index variables can be
existentially or universally quantified.

Putting arithmetical constraints on index variables allows to reason about distances
between positions of elements in the arrays. This can be generalized to linked structures

using formulas of the form u
{ f ,b},�−−−−−→v, where � is an index variable representing the

length of the path between u and v. Then, our logic allows to use linear constraints on the
set of existential index variables and order constraints on the universal index variables
(we can compare two universal variables or we can compare a universal variable to an
expression built using existential variables).

Moreover, the data attached to the location variables in the formula can be con-
strained using formulas in the underlying (first-order) data logic.

The quantification over positions (location, array, and index variables) in CSL for-
mulas is restricted according to an ordered partition on the vertex types. This partition
decomposes the graph into classes and assigns to each vertex in the graph a level. (No-
tice, that we do not require that the induced graph by this partition be a tree.) Then,
roughly speaking, by associating a level to positions and quantifiers over them, the
quantification part of CSL formulas has the form ∃∗k ∀∗k ∃∗k−1 ∀∗k−1 . . . ∃∗1 ∀∗1. (A precise
definition is given later in the paper.) Here it is important to notice that we allow some
form of alternation between existential and universal quantifiers on positions, but this
alternation is restricted according to the considered ordered partition of the structure.
Allowing such quantifier alternation is important for the definition of (1) initial condi-
tions, and of (2) precise invariants. Indeed, to define a (potentially infinite) family of

180 A. Bouajjani et al.

possible initial structures, we need to require the existence of some links/elements. (For
instance, that each element in some array points to a nonempty list with at least some
number of elements carrying distinct/equal data.) Similarly, while in many cases invari-
ants are universally quantified formulas, there are cases where the existence of some
links/elements is important. For instance, a program which inserts an element in a list
assuming that it contains at least some elements is prone to errors although it satisfies a
weaker invariant where this assumption (on the minimal length) is not specified.

We prove that the satisfiability problem of CSL can be reduced to the satisfiability
problem of its underlying data logic. The proof is based, roughly, on computing a finite
number of minimal-size models for the given formula, and on interpreting universal
quantifiers on the positions of these models. Defining such minimal models is nontriv-
ial in presence of shape constraints (reachability predicates), of list and array length
constraints, as well as of nesting of data structures.

Another important fact we prove is that CSL is effectively closed under the compu-
tation of post images (i.e., strongest post condition). We show how this result, together
with the decidability of the satisfiability problem can be used in pre-post condition
reasoning and invariant checking. In [8], we illustrate our framework on a nontrivial ex-
ample of a program manipulating composite data structures. For lack of space, detailed
proofs are omitted here and can be found in [8].

2 Modeling Programs with Dynamic Heap

2.1 Programs

We consider strongly typed, heap-manipulating programs. The types used in these pro-
grams are either basic or user defined types. Basic types (boolean, integers, etc.) are
represented by an abstract domain/type D on which are defined a set O of operations
and a set P of predicates. User defined types are either references to records or ar-
rays of records, where a record is a finite set of typed fields. Programs manipulate the
heap using memory allocation/deallocation statements (new/free), record field updates
(x->f:=...), variable assignments (x:=...), and array cell updates (a[i]:=...). The
only operations allowed on references are the field access (x->f) and the array access
(a[i]); no arithmetics on references is allowed. The control is changed by sequential
composition, conditionals, and “while” loops. A program configuration is given by the
state of the heap and by the valuation of the program variables either to values in D or
to addresses in the heap.

Example 1. The program in Figure 1 declares, using a C syntax, two record types defin-
ing an array of doubly linked lists. The record a ty (lines 2–6) stores an integer (field
id) and a reference to a record of type dll ty (field dll). The record dll ty (lines
1 and 7–11) defines doubly linked lists storing a boolean (field flag) and a reference
to an a ty record (field root). The variable v is declared (line 12) as an array of a ty
records. Figure 1 also gives a possible heap configuration for this program.

2.2 Heaps as Graphs

We model a program heap by a labeled oriented graph called heap graph. Vertices in this
graph represent values of record types. Labeled edges represent the relations between

A Logic-Based Framework for Reasoning about Composite Data Structures 181

1: typedef struct _dll_ty dll_ty;
2: typedef struct _a_ty a_ty;
3: struct _a_ty {
4: int id;
5: dll_ty* dll;
6: };
7: struct _dll_ty {
8: a_ty* root;
9: bool flag;
10: dll_ty* next, prev;
11: };
12: a_ty v[N];

root flag:1
nextprev

0:

1: dll

id:3 dll

root flag:1
nextprev

root flag:0
nextprev

root flag:1
nextprev

id:6 dll_ty

a_ty

N−1:

v

Fig. 1. A program declaring an array of doubly linked lists v and a heap for v

records defined by their fields: an edge v
f−→v′ models the field f in the record modeled

by v which stores a reference to the record modeled by v′. To represent fields of basic
type in records, we label the vertices of the graph by a valuation of these fields. Also, an
array of records is modeled using an edge, labeled by a special field called array field,
to relate two successive cells of the array.

The vertices of the heap graphs are typed using the program type system Σ which is
defined by a set of types T , a set of (data/pointer) field symbols, and a typing function
τ mapping each symbol into a (functional) type defined over T . The components of Σ
are detailed in Table 1. The set T contains the basic type D as well as the user defined
records. The field symbols belong to several classes detailed in the column Components,
depending on their typing given in the column Typing. For example, τ associates with a
data field g in a record R ∈ RT the type R → D (i.e., g represents a mapping from R to
D). Generic notations for representatives of these sets are given in the column Elements.
The last column illustrates each notion with elements from Example 1.

To represent “inverse pointers” we introduce a new field symbol f for every field f ∈
PF \AF , and we assume that f = f . We extend the “inverse” notation to set of fields,
i.e., F = { f | f ∈ F} for any set F ⊆ PF \AF . We denote by PF ∗ = PF ∪PF \AF .

Table 1. Type system associated with programs

Σ Components Elements Typing ... in Example 1
Types D basic domain d int

RT record types R,R′, . . . D
∈ RT a ty, dll ty
DF data fields g,g1,g2, . . . τ(g) = R → D τ(id) = a ty→ int

τ(flag) = dll ty→ int
PF pointer fields a, f ,h, . . . τ(h) = R → R′ τ(dll) = a ty→ dll ty,

Field DF ∩PF = /0 τ(root) = dll ty→ a ty
Symbols PFr recursive fields f , f 1, f 2, . . . τ(f) = R → R τ(next) = dll ty→ dll ty,

PFr ⊆ PF τ(prev) = dll ty→ dll ty
AF array fields a, . . . τ(a) = R → R τ(a) = a ty→ a ty

AF ⊆ PFr

182 A. Bouajjani et al.

Then, a heap graph over the type system Σ is an oriented labeled graph G =
(V,E,Lab,L,P,D), where
– V is a finite set of vertices,
– E ⊆V ×V is a finite set of directed edges,
– Lab is a finite set of vertex labels,
– L : V → 2Lab is a labeling function for vertices with sets of vertex labels,
– P : E → 2PF ∗

is a labeling function for edges with sets of pointer fields, and
– D : V → [DF ⇀ D] is a labeling function for vertices with a data field valuation.

We extend the typing function τ of Σ to vertices in G, i.e., we consider that τ asso-
ciates a type τ(v) ∈ RT with each vertex v ∈V . A heap graph is well typed in Σ, if the
labeling functions P and D are consistent with the typing of the vertices and the field
symbols by τ. A heap graph G is well formed if it satisfies the following constraints:
– determinism: For all v1,v2,v3 ∈ V , we have that (1) if {(v1,v2),(v1,v3)} ⊆ E
and P(v1,v2) ∩ P(v1,v3) ∩ PF
= /0 then v2 = v3, (2) if {(v1,v2),(v3,v1)} ⊆ E and
P(v1,v2) ∩ P(v3,v1)\AF ∩ PF
= /0 then v2 = v3, (3) if {(v2,v1),(v3,v1)} ⊆ E and
P(v2,v1)∩P(v3,v1)∩PF \AF
= /0 then v2 = v3;
– array well-formedness: array fields create acyclic distinct paths in G.

{root}

id:6a aid:3

{dll,root} {dll,root}

flag:0

flag:1 flag:1

flag:1

{next,prev}
{next,prev} {root}

Fig. 2. A heap graph for Ex. 1

From now on, we consider that heap graphs
are well typed and well formed.

Example 2. The heap graph model corre-
sponding to Example 1 is given in Figure 2.
We use different shapes for the vertices in
order to point out their different types: cir-
cles for vertices representing a ty records
and boxes for vertices representing dll ty
records. Vertices are labeled only by the val-
ues of the data fields since we consider Lab =
/0. The edges labeled by the array field a rep-
resent the relation between successive cells in
the array v. The labels prev and root repre-

sent the inverse of the relations defined by prev and root respectively.

2.3 Reasoning about Programs

Our aim is to define a logic-based framework for checking assertions on program con-
figurations at given control locations. For that, a basic operation is the computation of
post images of configurations for given program statements. Given a program config-
uration C (i.e., a heap graph and a valuation of the program variables), and given a
program statement S, let post(S,C) denote the configuration obtained by executing S
on C. This definition can be generalized as usual to sets of configurations.

Then, we are interested in inductive invariant checking and pre/post-condition check-
ing. The first problem consists in, given a set of initial configurations Init, and a set of
configurations Inv, deciding whether (1) Init ⊆ Inv, and (2) for every statement S of
the program, post(S, Inv) ⊆ Inv. Pre/post-condition checking consists in, given two sets
of configurations PreCond and PostCond, and given a statement S, checking whether

A Logic-Based Framework for Reasoning about Composite Data Structures 183

post(S,PreCond) ⊆ PostCond. Therefore, the issue we are addressing is to provide a
logic which allows to:

– carry out automatically the kind of reasoning mentionned above. For that, it must
have closure properties under (some) boolean operations and under post-image
computation, and it must also have a decidable satisfiability/validity problem.

– express relevant assertions about heap manipulating programs. These properties
may refer to several aspects such as the structure of the heap graph, the data attached
to the elements of the heap, and the sizes of some parts of the heap.

Example 3. Consider the heap of Example 1. Assertions one can be interested to ex-
press on this heap are:
Structure: “the array v contains in each cell a reference to an acyclic doubly linked

list” (doubly-ll), “each cell in the doubly linked lists stores in the field root a
reference to the entry of the array referencing the list” (root-fld), or “doubly
linked lists are cyclic” (doubly-cll).

Data: “the array v is sorted w.r.t. the values of the field id” (sorted-id), or “it exists
a list with all fields flag set to 1” (flag-1).

Sizes: “each doubly-linked list has at least two elements” (dll-len2), or “the array v
is sorted in decreasing order of lengths of lists stored” (dll-len).

3 Generalized Composite Structures Logic

We introduce hereafter a logic on program heaps called Generalized Composite Struc-
tures Logic (gCSL). The logic we are seeking for, i.e., which satisfies the expressive-
ness, closure, and decidability properties mentioned in the end of the last section, will
be defined as a fragment of gCSL in the next section.

Given a type system Σ = (D,RT ,DF ,PF ,PFr ,AF ,τ), a finite set of (heap location)
labels Lab, and a first-order logic FO(D,O,P) on data, the set of formulas of gCSL is
defined in Figure 3. As usual, conjunction (∧), implication (=⇒), and universal quan-
tification (∀) can be defined in terms of ¬, ∨, and ∃. Intuitively, an atomic formula

v
A,B,ind−−−−−→v′ is a reachability predicate expressing the fact that there is a nonempty path

in the heap graph relating the locations designated by v and v′ such that (1) all its ver-
tices are distinct, except maybe for the extremal points, (2) all its edges are labeled by
a set which includes A, (3) all its vertices are not in B, and (4) its length (i.e., the num-
ber of its edges) is ind which is either an index variable, or a constant. (The formula

v
A,B−−−→v′ is similar but it does not allow to refer to the length of the path.) Index vari-

ables can also appear in terms of the form a[ind] designating locations in arrays (i.e.,
the location reachable from the initial position of the array after ind array edges). Index
variables can be used in linear arithmetical constraints. The logic gCSL allows quantifi-
cation over all kinds of variables. We assume w.l.o.g. that each variable is quantified at
most once.

Using formulas of the form v = t, gCSL allows terms of the form a[Exp]: a formula
φ containing a[Exp] can be seen as the formula Exp− i = 0∧φ(a[i]/a[Exp]) where i
is a fresh index variable. Similarly, gCSL allows data terms of the form g(a[Exp]) and

g(f (v)). Also, formulas of the form a[i] A,B,ind−−−−−→b[j] are abbreviations of v1 = a[i]∧v2 =

184 A. Bouajjani et al.

b[j]∧v1
A,B,ind−−−−−→v2 for some fresh location variables v1 and v2. Finally, we allow writing

Exp < Exp′ instead of Exp−Exp′ < 0.
We extend the typing function τ of Σ to the variables of the logic, and then to terms,

and we assume that formulas are type consistent. For instance, τ associates records in
RT with location variables, and then (1) for every location term h(v), if τ(h) = R → R′

for some R,R′ ∈ RT , then we must have τ(v) = R and τ(h(v)) = R′, and (2) for every

formula of the form v
A,B,ind−−−−−→v′, we require that τ(v) = τ(v′) = τ(z) for every z ∈ B,

and that for every f ∈ A, τ(f) = τ(v) → τ(v).

v,v′ ∈ Loc location variable a ∈ Arr array variable
d ∈ Data data variable i ∈ Ind index variable
� ∈ Lab label ind ∈ Ind∪N index
p ∈ P predicate over D ct ∈ N integer constant
o ∈ O operator over D h ∈ PF \PFr, g ∈ DF

Location terms: t ::= v | a[ind] | h(v)

Data terms: dt ::= d | o(dt, . . . ,dt) | g(v)

Index expressions: Exp ::= i | ct | Exp+Exp | Exp−Exp

Formulas: ϕ ::= �(v) | v = t |

v A,B,ind−−−−−→v′ | v A,B−−−→v′ |
p(dt, . . . ,dt) | Exp < ct | Exp = ct |
∃v. ϕ | ∃a. ϕ | ∃d. ϕ | ∃i. ϕ | ¬ϕ | ϕ∨ϕ,
where A
= /0, A ⊆ (PFr \AF)∪PFr \AF , and B ⊆ Loc.

Fig. 3. Syntax of gCSL

A gCSL formula is interpreted over a heap graph G = (V,E,Lab,L,P,D) w.r.t type
preserving valuations of free variables. Let µ : Loc ⇀ V , ν : Ind ⇀ N, and δ : Data ⇀ D

be a valuation of location, index, and data variables, respectively. Array variables are
mapped to array vertices. These vertices have no incoming edge labeled by an array
field, i.e., they are first elements of (possibly singleton) arrays in G. For any array vertex
w, let Dom(w) (the domain of w) be the length of the maximal path starting in w where
all the edges are labeled by some a ∈ AF (this array field should be unique by the well-
formedness of G). Let AV denote the set of array vertices in V and θ : Arr ⇀ AV be the
valuation of array variables.

The interpretation of a location term is either a vertex in G or ⊥. It is defined as
follows: (1) 〈〈v〉〉G,µ,θ,ν = µ(v); (2) for any f ∈ PF \PFr, 〈〈 f (v)〉〉G,µ,θ,ν = w, where
f ∈ P(µ(v),w) or f ∈ P(w,µ(v)), if such a vertex w exists, or ⊥ otherwise; (3) for
any a ∈ Arr and i ∈ Ind, if ν(i) > Dom(θ(a)) then 〈〈a[i]〉〉G,µ,θ,ν = ⊥, otherwise,
〈〈a[i]〉〉G,µ,θ,ν is the vertex v reachable from θ(a) by a path of ν(i) edges labeled by
an array field. Data terms are interpreted in D as follows: (1) 〈〈d〉〉G,µ,δ = δ(d); (2) for
any g ∈ DF , 〈〈g(v)〉〉G,µ,δ = D(µ(v))(g); (3) for any o ∈ O, 〈〈o(dt1, . . . ,dtn)〉〉G,µ,δ =
o(〈〈dt1〉〉G,µ,δ, . . . ,〈〈dtn〉〉G,µ,δ). The interpretation 〈〈Exp〉〉ν of an index expression as an
integer is defined as usual.

A Logic-Based Framework for Reasoning about Composite Data Structures 185

Then, the interpretation [[ϕ]]G,µ,θ,ν,δ of a gCSL formula ϕ is a value in {0,1,⊥}.
Boolean operators are interpreted as usual on {0,1}, and the boolean composition of ⊥
with any value leads to ⊥. Then, for every formula ϕ, if there exists a sub-term t of ϕ
such that 〈〈t〉〉G,µ,θ,ν = ⊥ then [[ϕ]]G,µ,θ,ν,δ =⊥. Otherwise, [[ϕ]]G,µ,θ,ν,δ = 1 iff G |=µ,θ,ν,δ
ϕ and [[ϕ]]G,µ,θ,ν,δ = 0 iff G
|=µ,θ,ν,δ ϕ, where the relation |= is defined as follows (only
interesting cases are considered):

G |=µ,θ,ν,δ �(v) iff � ∈ L(µ(v))

G |=µ,θ,ν,δ v = t iff µ(v) = 〈〈t〉〉G,µ,θ,ν

G |=µ,θ,ν,δ v
A,B,ind−−−−−→v′ iff there exists a path µ(v) = w0,w1, . . . ,wm = µ(v′) s.t. m = ν(ind) ≥ 1,

w j
= w j′ if j
= j′ and (j, j′) /∈ {(0,m),(m,0)},and for any j ≥ 1,

A ⊆ P(w j,w j+1) or A ⊆ P(w j+1,w j) and for any x ∈ B, w j
= µ(x),

G |=µ,θ,ν,δ Exp < ct iff 〈〈Exp〉〉ν < ct,

G |=µ,θ,ν,δ p(dt1, ..,dtn) iff p(〈〈dt1〉〉G,µ,δ, . . . ,〈〈dtn〉〉G,µ,δ)

G |=µ,θ,ν,δ ∃v. ϕ iff there exists w ∈V with τ(w) = τ(v) such that G |=µ[v←w],θ,ν,δ ϕ

G |=µ,θ,ν,δ ∃i. ϕ iff there exists m ∈ N such that G |=µ,θ,ν[i←m],δ ϕ.

We omit the subscripts of [[·]] and |= when they are clear from the context.

d:5b b

d:3 d:3

d:4 d:4

a

Fig. 4. A heap graph with arrays

Remark: Recall that given a heap graph G
and some valuations of the variables, the
value of a term a[i] is well-defined (
= ⊥) if
the value of i is in the domain of the array
associated with a. Then, the interpretation
of a formula ∃i. ϕ (resp. ∀i. ϕ) is 1 if the
interpretation of ϕ is 1 for some value

(resp. for all values) of i in the domains of all arrays a such that a[i] occurs in ϕ.
For example, on the heap graph of Figure 4, [[∃i. (d(a[i]) = 3∧d(b[i]) = 4)]] = 1,
[[∃i. (d(a[i]) = 3∧d(b[i]) = 5)]] = 0, and [[∃i. (d(a[2]) = 3∨d(b[i]) = 5)]] = ⊥.
Notice also that the formula [[∃i. (d(a[i]) = 4∨d(b[i]) = 5)]] = 0 whereas
[[(∃i. d(a[i]) = 4)∨ (∃i. d(b[i]) = 5)]] = 1. This shows that ∨ (resp. ∧) does not
distribute, in general, w.r.t. ∃ (resp. ∀). However, these distributivity properties hold in
the fragment of gCSL without arrays.

Example 4. Consider the heap graph of Figure 2 and its properties given in Example 3.
These properties can be expressed in gCSL (assuming as data logic the first order linear
arithmetics over integers, for instance) as follows:
Structure

doubly-ll(v) ≡ ∀i. ∃dli.
(

dli = dll(v[i])∧
(
dli = null∨ (dli

{next}, /0,1−−−−−−−→null∧dli
{prev}, /0,1−−−−−−−→null) ∨

∃dl. (dli
{next,prev}, /0−−−−−−−−−→dl ∧dl

{next}, /0,1−−−−−−−→null∧dli
{prev}, /0,1−−−−−−−→null)

)
root-fld(v) ≡ ∀i. ∀vi,dl. (v[i] = vi ∧dll(vi)

{next}, /0−−−−−−→dl) =⇒ root(dl) = vi

doubly-cll(v) ≡ ∀i. ∀dli. (dli = dll(v[i]) =⇒ dli
{next,prev}, /0−−−−−−−−−→dli)

186 A. Bouajjani et al.

where we assume that null is a free location variable of type dll ty, and that

null
{next,prev}, /0,1−−−−−−−−−−→null holds.

Data

sorted-id(v) ≡ ∀i, j.
(
i < j =⇒ id(v[i]) < id(v[j])

)
flag-1(v) ≡ ∃i. ∃dli.

(
dli = dll(v[i])∧∀y. (dli

{next}, /0−−−−−−→y =⇒ flag(y) = 1)
)

Sizes
dll-len2(v) ≡ ∀i. ∃dli,dl′i . (dli = dll(v[i])∧dli
= dl′i ∧dl′i
= null∧

dli
{next,prev},{null}−−−−−−−−−−−−→dl′i)

dll-len(v) ≡ ∀ j, j′.
(

j < j′ =⇒ ∃dl j,dl′j, l, l
′.
(
dl j = dll(v[j])∧dl′j = dll(v[j′])∧

dl j
= null∧dl j
{next}, /0,l−−−−−−→null∧dl′j

{next}, /0,l′−−−−−−−→null∧ l′ ≤ l
))

By existing results shown, e.g., in [11,9], it can be easily deduced that the satisfiability
problem of gCSL is undecidable already for the fragment ∀∗∃∗ even if the considered
heap structures are linear (i.e., one dimensional arrays or singly-linked lists) and the
data logic is simply (N,=) (i.e., an enumerable data domain with only equality). When
the data domain is finite, the satisfiability problem of gCSL is undecidable in general
since it subsumes the first-order logic on graphs with reachability [6].

4 The Logic CSL

We define hereafter the Composite Structures Logic (CSL) as a fragment of gCSL. We
show in the end of the section that CSL is closed under post-image computation for
all statements in the class of programs considered in Section 2.1. We prove in the next
section that CSL has a decidable satisfiability problem.

To get the decidability result, we must restrict the use of the formulas involving
quantifier alternation of the form ∀∗∃∗ (see the end of the last section). On the other
hand, it is important to allow some forms of these formulas since they may correspond
to natural assertions (such as doubly-ll, dll-len, and dll-len2 in Example 4). To
introduce the restriction on these formulas, let us consider a gCSL formula of the form
∃∗∀∗∃∗∀∗ . . .∃∗∀∗. φ where φ is quantifier free. Then, we impose basically that if a
variable v is existentially quantified within the scope of a universal quantification of
some variable v′, then the type of v′ must be different from the one of v and from the
types of all the variables which are (universally or existentially) quantified after (under
the scope of) v. This restriction is defined through the introduction of a notion of ordered
partition of the set of types.

Ordered partitions of types: Let N be a natural number such that 1 ≤ N ≤ |RT |. Then,
an ordered partition over the set of types RT is a mapping σ : RT → {1, . . . ,N}. A type
R ∈ RT is of level k, for some k ∈ {1, . . . ,N}, iff σ(R) = k.

We extend an ordered partition σ to D and we assume that it associates level 0 to all
elements of D. Ordered partitions of the set of types induce ordered partitions on heap
graphs: the notion of level is transfered from types to vertices in heap graphs. These

A Logic-Based Framework for Reasoning about Composite Data Structures 187

partitions correspond to natural decompositions of heap structures into sub-structures
according to the type definitions in the program. For example, in the data structure of
Example 1, we may consider two levels: the first level contains the doubly-linked lists
(i.e., σ(dll ty) = 1) and the second level contains the array (i.e., σ(a ty) = 2). Notice
that the quotient graph induced by this partition is cyclic: the edges labeled by dll go
from level 2 to level 1, and edges labeled by root go from level 1 to level 2.

k-stratified formulas: Given an ordered partition σ over RT , we consider that σ(v) =
σ(τ(v)) for any location or array variable v. For an index variable i, we let the level σ(i)
to be fixed arbitrarily. Then, for each level k, with 1 ≤ k ≤ N, let Qk be a sequence of
quantifiers over variables of level k defined as follows:

Qk = ∃ak ∃x≤k ∃ik ∃dk ∀bk ∀yk ∀jk

where ak and bk are sets of array variables of level k, x≤k is a set of location variables
of level less than or equal to k, yk is a set of location variables of level k, ik and jk are
sets of index variables of level k, and dk is a set of data variables. (There is no level
restriction on data variables.)

A gCSL formula is k-stratified if it is of the form Qk Qk−1 . . .Q1 Q. φ, where Q is a
set of quantifiers over data variables and φ is a quantifier-free formula.

The fragment CSLk: To define CSL formulas, we consider in addition to stratification
some restrictions on the occurrences of universally quantified location, array, and in-
dex variables. These restrictions are necessary for our proof technique for showing the
decidability of the satisfiability problem, which is based on establishing a small model
property. We define the fragment CSLk to be the smallest set of formulas which is closed
under disjunction and conjunction, and which contains the set of all k-stratified formulas
satisfying the following constraints:
UNIVIDX: two universally quantified index variables j and j′ can not be used in any

linear expression but only in atomic formulas j− j′ < 0, and j− j′ = 0;

REACH1: in the reachability sub-formula v
A,B,ind−−−−−→v′ or v

A,B−−−→v′, the set of forbidden
locations B contains only free or existentially quantified location variables;

REACH2: in the reachability sub-formula v
A,B,ind−−−−−→v′, the location variables v and v′,

and the index variable ind, are free or existentially quantified;
LEV: the constraints on lengths of lists and array indexes must involve only one level,

that is: (1) for any atomic formula v
A,B,i−−−→v′, σ(i) = σ(v), (2) for any term a[i],

σ(i) = σ(a), and (3) for any atomic formulas Exp < ct or Exp = ct, all index
variables in Exp have the same level.

The set of formulas of CSL is the union of the fragments CSLk for all k ∈ {1, . . . ,N}.
Despite the syntactical restrictions in CSL, the logic is still quite powerful. It extends
several existing decidable logics (see Section 6). Notice for instance that all formulas
given in Example 4 are in CSL (for the ordered partition defined above).

Closure under post image computation: We call basic statement any program statement
of the class of programs defined in Section 2.1 that is different from a “while” loop.
Then, we can prove the following fact. (The proof is technical and it is omitted here)

Theorem 1. For any basic statement S and any CSL formula ϕ, post(S,ϕ) is CSL-
definable and it can be computed in linear time.

188 A. Bouajjani et al.

The theorem above is important for carrying out pre/post-condition reasoning (assum-
ing we have an annotated program with assertions and loop invariants) and for inductive
invariance checking.

A fragment for expressing invariants: The logic CSL is closed under disjunction and
conjunction, but not under negation. For checking inductive invariance (in particular
that post(S, Inv)⊆ Inv which is equivalent to post(S, Inv)∩Inv = /0), we need a fragment
which is closed under negation. We introduce hereafter such a fragment.

For each level k, let ICSLk be the smallest fragment of CSL which is closed under all
boolean operations and which contains formulas of the form:

Sk Sk−1 . . .S1 S. φ

where Sk ∈ {∃ak∃ik ∃xk,∀bk ∀yk∀jk}, S is a set of quantifiers over data variables and φ
is a quantifier-free formula in CSL such that:

BOUNDIDX: two quantified index variables i and i′ can not be used in any linear ex-
pression but only in atomic formulas i− i′ < 0, and i− i′ = 0;

REACH3: in any reachability sub-formula v
A,B,ind−−−−−→v′, v, v′ and ind are free variables.

Then, let ICSL =
⋃

1≤k≤N ICSLk. Notice that ICSL allows alternation between quantifiers
provided that they concern different levels.

Examples of ICSL formulas are those given in Example 4, except doubly-ll and
dll-len. Actually, it is possible to give an equivalent formula to doubly-ll which
is in ICSL (see [8]). The CSL formula dll-len can be used to constrain the initial
condition of the program.

5 Deciding the Satisfiability Problem for CSL

We prove that CSL has a decidable satisfiability problem. For the sake of readability,
we present the proof of this result in two steps. First, we prove it for the fragment CSL1

(i.e., all location/array variables are in the same class of the considered ordered partition
of the types), and then we show the extension to the full CSL.

5.1 The Case of CSL1

This subsection presents a sketch of the proof of the following fact:

Theorem 2. The satisfiability problem for closed CSL1 formulas is decidable provided
that the satisfiability problem of FO(D,O,P) is decidable.

Let ϕ be a closed CSL1 formula. We reduce its satisfiability to the satisfiability of a
FO(D,O,P) formula. The reduction is in three steps: (1) we prove that if ϕ has a model
(i.e., a heap graph), then it must have a model of bounded size where the bound can
be effectively computed from the syntax of ϕ, (2) for any given finite model G of ϕ,
we construct an equi-satisfiable formula without universal quantification over location,
array, and index variables, and finally (3) we construct an equi-satisfiable formula with-
out existential quantification over location, array, and index variables. The so obtained
formula is in FO(D,O,P).

A Logic-Based Framework for Reasoning about Composite Data Structures 189

The last two steps of the reduction do not present any difficulties. By fixing a finite
model, the interpretation domain of the universally quantified variables is also fixed,
and therefore universal quantification can be eliminated. Then, existential quantifiers
over location, index, and array variables can be eliminated by replacing in the formula
the terms of the form g(v) and g(a[i]) by fresh data variables dg,v and dg,a,i respectively,
and by quantifying existentially these new data variables.

We now describe the first (and main) step of the reduction. Let us introduce the
problem on an example. Consider the formula (defined over natural numbers):

ψ1 = ∃x,q,z.
(

q
= z∧ x
{ f}, /0−−−−→q∧ x

{ f}, /0−−−−→z ∧ g(x) = 0∧g(q) = 2 ∧

∀y,y′.
(
x

{ f}, /0−−−−→y
{ f}, /0−−−−→y′ ∧ y
= y′ ⇒ g(y) < g(y′)

)) (1)

which says that there is an f -path from x to q and an f -path from x to z, the data
attached with x (resp. q) is 0 (resp. 2), and the data are ordered along f -paths. It can be
checked that ψ1 is satisfiable and has two minimal models of size three, either the graph

x
f−→q

f−→z, or the graph x
f−→z

f−→q (here we identify vertices with the variables they
represent). Notice that the three vertices corresponding to x, q, and z must be part of a
same f -path since heap graphs are deterministic by definition. So, in this case the size
of a minimal model is the number of existentially quantified variables. Consider now a
new formula obtained from ψ1 by constraining the lengths of the paths relating x to q
and to z.

ψ2 = ∃x,q,z. ∃l1, l2.
(

q
= z∧ x
{ f}, /0,l1−−−−−→q∧ x

{ f}, /0,l2−−−−−→z ∧ g(x) = 0∧g(q) = 2 ∧

l1 + l2 ≥ 8 ∧ ∀y,y′.
(
x

{ f}, /0−−−−→y
{ f}, /0−−−−→y′ ∧ y
= y′ ⇒ g(y) < g(y′)

)) (2)

Again, since x, q, and z must be part of a same f -path, there are two different possible
“heap graph templates” to consider:

x
f ,l1−−−→q

f ,l−−→ z (3)

x
f ,l2−−−→ z

f ,l−−→q (4)

where each edge represents an f -path (of some length denoted l1, l2, or l), and we
need to determine the minimal lengths of each of these paths, taking into account
the constraints imposed by the formula ψ2. First, it can be seen that with the first
(resp. second) template above there is an associated constraint on the lengths which
is l1 + l = l2 ∧ l1 + l2 ≥ 8 (resp. l2 + l = l1 ∧ l1 + l2 ≥ 8). For the first (resp. second)
template, the set of minimal solutions (w.r.t. the usual ordering on vectors of natu-
ral numbers) for the constraints on l1, l2, and l is {(3,5,2),(2,6,4),(1,7,6)} (resp.
{(5,3,2),(6,2,4),(7,1,6)}). However, not all of these minimal solutions lead to mini-
mal models of the formula. This is due to the fact that data constraints can also impose
constraints on the path lengths. Here for instance, it is clear that l1 must be at most 2.
This means that if the formula ψ2 has a model, a minimal model of it should corre-
spond to the first template with either l1 = 2, l2 = 6, and l = 4, or l1 = 1, l2 = 7, and
l = 6. In the first case, the minimal model is obtained from the template by inserting
new vertices, one vertex between x and q, and five vertices between q and z.

190 A. Bouajjani et al.

In fact, our proof shows that we can build from ψ2 an equivalent formula ψ′
2 such

that, if ψ2 has a model, then it must have a model of size less or equal than the number
of existentially quantified variables in ψ′

2. The construction of ψ′
2 is based on the con-

sideration of all possible minimal models built out of the templates as shown above. We
give now the construction in more details. We proceed again in several steps.
Heap graph templates: A template defines a set of heap graphs. It is given by (1) a graph
where vertices correspond to some distinguished vertices in the defined heap graphs,
and edges correspond to paths between these vertices, and (2) a constraint relating the
lengths of these paths. Given a CSL1 formula, templates are built by considering as
distinguished vertices positions in heap graphs corresponding to existentially quantified
location, array, or index variables (i.e., positions which are imposed by the formula), and
by considering the different ways these positions may or may not be equal, as well as
the different ways these positions should or should not share the same paths (due to the
determinism assumption on heap graphs).

Formally, let ϕ = ∃a ∃i ∃x ∃d ∀b ∀j ∀y {∃d,∀d}∗. φ be a closed CSL1 for-
mula (φ is quantifier-free). We denote by Pos(ϕ) the set of existential positions used
in φ, i.e., Pos(ϕ) = x ∪ {a[i] | a ∈ a, i ∈ N ∪ i, a[i] is a term in φ} ∪ {a[iExp]|Exp
∈
i, Exp is a maximal index expression over i in φ}. Moreover, we suppose that Pos(ϕ)
contains for each array a in a the position a[0]. We denote by iPos(ϕ) the set of fresh
index variables iExp associated with index expressions Exp of φ in the definition of
Pos(ϕ). Then, a template for ϕ is a labeled directed graph T = (V,E,LV ,LE ,C) where

– V is a set of vertices, E is a multi-set of edges over V ,
– LV : V → 2Pos(ϕ)×2Lab is a labeling of vertices,
– LE : E → 2PF ∗ × iT , where iT ⊆ Ind, is a labeling of edges such that (1) T is determin-
istic, i.e., LE(e1)|1 ∩LE (e2)|1 = /0, for any edges e1 and e2 starting in the same vertex,
and (2) LE(e1)|2
= LE(e2)|2 for any two edges e1
= e2,
– C is a conjunction of quantifier free constraints over variables in i∪ iT corresponding
to the constraints on i in ϕ.

The set of templates built as above is denoted by Tϕ,∃. We associate with each tem-
plate a CSL1 formula which characterizes the set of heap graphs defined by the template.
Given T = (V,E,LV ,LE ,C) ∈ Tϕ,∃, the characteristic formula of T is the quantifier free
formula in CSL1 with free variables in a∪x∪ i∪ iT ∪ iPos(ϕ) defined by:

ρT =
∧

e = (v1,v2) ∈ E,LE (e) = (A, i′),
x ∈ LV (v1)|1,y ∈ LV (v2)|1

x
A, /0,i′−−−→y ∧

∧
v ∈V

a,b ∈ LV (v)|1

a = b ∧
∧

iExp∈Pos(ϕ)

iExp = Exp ∧ C

Proposition 1. For every model G of ϕ there exists a template T ∈ Tϕ,∃ and valuations
µ,θ,ν,δ for the free variables in ρT s.t. G |=µ,θ,ν,δ ρT .

This proposition implies obviously that if Tϕ,∃ = /0 then ϕ is unsatisfiable. Notice that
the converse is false. Then, we can prove the following fact:

Lemma 1. The formula ϕ is equivalent to

ϕ1 =
∨

T∈Tϕ,∃

∃a ∃i′ ∃x ∃d ∀b ∀j ∀y {∃d,∀d}∗. φ∧ρT

where i′ = i∪ iT ∪ iPos(ϕ).

A Logic-Based Framework for Reasoning about Composite Data Structures 191

Computing a set of bounds: Given a template T ∈ Tϕ,∃ we compute a finite set of
solutions, denoted MT , for the index constraints in T . These solutions are all Pareto
optimal w.r.t. the values of the index variables iT that label edges in T . Pareto optimality
means that for any m ∈ MT there is no solution of the constraints which is smaller or
equal than m with respect to every variable, and strictly smaller than m with respect
to at least one variable. We need to consider all the Pareto optimal solutions because
minimizing only some of the variables in iT does not lead necessarily to a model of ϕ
since data constraints may impose upper bounds on the path lengths. For instance, for
the formula ψ2 given in (2), if we consider the first template whose graph is given in
(3), the minimization according to l2 (alone) leads to the solution (3,5,2) which does
not correspond to a model of ψ2. (In that example, the right solutions to consider are
(2,6,4) and (1,7,6) as we said earlier.)

The set MT is computed using a multi-objective integer linear program (MOILP, for
short) of the following form: minimize {l | l ∈ LE|2} subject to C.

Template expanding: Given a T ∈ Tϕ,∃ and an m ∈ MT , we define a set of expanded
templates Tϕ,T,m where each element is obtained by:
– replacing each edge in T by a path of the length specified in m. For this, new vertices
are introduced, each of them being labeled with a fresh location variable, and moreover,
each edge in these paths is labeled with a fresh index variable. Let xm and im be the sets
of these new location and index variables respectively.
– guessing labels in Lab for each new vertex, and guessing some additional edges in-
volving the new vertices (while preserving determinism).

Proposition 2. For every model G of the formula ϕ, there is a template T ∈ Tϕ,∃, a
solution m ∈ MT , a template T ′ ∈ Tϕ,T,m, and some valuations µ,θ,ν,δ for the free
variables in ρT ′ such that G |=µ,θ,ν,δ ρT ′ .

Then, we can prove the following fact:

Lemma 2. The formula ϕ1 is equivalent to

ϕ2 =
∨

T∈Tϕ,∃

∨
m∈MT

∨
T ′∈Tϕ,T,m

∃a ∃i′ ∃x ∃d ∃im ∃xm ∀b ∀y ∀j {∃d,∀d}∗. φ∧ρT ′

where xm and im denote the newly added location and index variables in T ′.

A small model property: The formula ϕ2 above is an expanded form of the original
formula ϕ for which we can prove the following fact (the proof is omitted here):

Lemma 3. Let ϕT,m,T ′ = ∃a ∃i′ ∃x ∃d ∃im ∃xm ∀b ∀y ∀j {∃d,∀d}∗. φ∧ρT ′ be a dis-
junct of ϕ2. Then, if ϕT,m,T ′ is satisfiable, it must have a model of size less than or equal
to the number of its existentially quantified index, array, and location variables.

Then, having determined a bound on the models, for checking the satisfiability of ϕ, the
two last steps can be done as described in the beginning of the section (i.e., elimination
of the universal and then of the existential quantification over location, array, and index
variables), leading to a formula in FO(D,O,P).

192 A. Bouajjani et al.

Complexity: Let us define the size of a CSL formula to be the number of variables, op-
erators, and predicates, plus the integer constants. Then, the reduction presented above
is a nondeterministic procedure where all the choices can be done in polynomial time
with respect to the size of the formula. Also, it has access to an oracle with the same
complexity as the complexity of solving MOILPs. All we know about the complexity of
the MOILP problem is that it is NP-hard [12] and that it is polynomial when the num-
ber of variables is fixed [5]. Therefore, if we fix the number of universally quantified
variables, the overall complexity of the procedure is NPMOILP .

5.2 Extension to the Full CSL

We show briefly in this section the generalization of Theorem 2 to CSL.

Theorem 3. The satisfiability of a CSL formula can be reduced to the satisfiability of
a formula in the underlying data logic FO(D,O,P).

The reduction is defined inductively on the quantifier level. It uses the fact that CSL0 is
FO(D,O,P) and the following lemma:

Lemma 4. For every k ≥ 1, the satisfiability of a CSLk formula can be reduced to the
satisfiability of a CSLk−p formula, for some 0 < p ≤ k.

We sketch hereafter the proof of the lemma above. Let ϕ =
∃ak ∃ik ∃x≤k ∃dk ∀bk ∀jk ∀yk Qk−1 . . .Q1Q. φ be a CSLk formula. It can be ob-
served that φ can relate vertices of different levels only by atomic formulas of the form
f (x) = y or by data constraints. Using this fact, we can build heap graph templates by
considering each level independently from the others. We define, for the level k, a set
of templates Tk,ϕ,∃, and then, a set of bounds is computed leading to a set of expanded
templates, following the same lines as the ones followed in the proof of Theorem 2.
Then, an expanded formula w.r.t. these templates can be constructed, allowing to
establish a small property w.r.t. level k: Given a fixed model of the formula, it is
possible to define a model whose size at level k is bounded by the number of vertices in
the considered expanded templates. Based on this small model property, it is possible
to build an equi-satisfiable formula without universally quantified location, array, and
index variables of level k. It remains to eliminate the existentially quantified variables
of level k. Let k− p be the second greatest level (after k) of variables in ϕ. Then, the
elimination of existential variables can be done as in the case of CSL1 formulas, but
here, we need also to deal with the variables appearing in atomic formulas of the form
(1) f (y) = x, where y is of level k and x is of level less than k, or of the form (2)
f (x) = y, where y is of level k and x is of level less than k. A formula of the first kind
is replaced by an equality zy, f = x where zy, f is a fresh variable of the same type as x,
and a formula of the second kind is replaced by a formula l f ,y(x) where l f ,y is a fresh
label in Lab (all the vertices that had up-going edges labeled by f towards the vertex
denoted by y are labeled by l f ,y).

The complexity of the reduction is similar to the one for CSL1.

A Logic-Based Framework for Reasoning about Composite Data Structures 193

6 Related Work

Various approaches have been developed for the analysis of programs with dynamic
data structures including works based on abstraction techniques, e.g., [1,3,17], on logics
for reasoning about graph structures, e.g., [11,13,18,14,16], and on automata-theoretic
techniques, e.g. [7,10,15]. Only a few of them are able to handle composite data struc-
tures. The approach in [3] introduces an abstraction domain composed of separation
logic formulas. These formulas use a class of higher-order predicates which define re-
cursively the composite data structure. The focus in that work is on the heap shape
properties, assuming that data have been abstracted away. In contrast, our approach al-
lows precise invariant checking to reason about the same type of structures, taking into
account constraints on data and sizes: CSL allows (1) to specify (a finite number of)
shared locations, (2) to reason about the lengths of lists and arrays, and (3) to model
explicitly data over infinite domains. In [14] the logic LISBQ for reasoning about com-
posite data structures is introduced. The definition of LISBQ is based on a partial order
on the types of the program which forbids having links going from a smaller type to
a greater one, whereas in CSL, although we use an ordered partition of the types, we
do not impose constraints on the fields of the linked structures (we allow having edges
going from one class to another one, and other edges going back). Formulas in LISBQ
may contain only universal quantifiers, and the restrictions on LISBQ formulas do not
allow to reason completely about doubly-linked lists as it is possible in CSL (or even
in CSL1). For example, doubly-ll(v) or dll-len2(v) are not expressible in LISBQ.
Our logic allows to specify multi-linked lists and arrays, to express constraints on the
lengths of the lists, and formulas in CSL may contain alternations of universal and exis-
tential quantifiers. (In fact, LISBQ can be seen as a strict fragment of CSL1.) In LISBQ,
the underlying data logic must be Presburger arithmetics or equality with uninterpreted
functions, whereas it is possible to use in CSL any decidable logic.

Decidable logics for reasoning about memory heaps have been proposed in, e.g.,
[1,2,4,18]. These logics focus mainly on shape constraints and assume that the data
domain is finite. Our logic allows an infinite data domain and it is incomparable w.r.t.
the class of handled structures. For example, LRP [18] can specify unbounded trees
but it cannot specify arrays of doubly linked lists (property doubly-ll(v)) which is
possible in CSL.

Recently, several works have addressed the issue of reasoning about programs ma-
nipulating structures with unbounded data, e.g. [9,11,13,14]. The logic in [9] allows
to reason about words but it is not closed under strongest postcondition computation
for pointer manipulation operations. Then, the approaches from [11,13] allow to reason
about arrays. If we restrict CSL1 to arrays, we obtain a fragment which is incomparable
to the Array Property Fragment in [11]. CSL1 does not allow to compare data in the ar-
rays with indexes. On the other hand, CSL1 allows strict inequalities between universal
index variables (see sorted-id(v)). When data are not integers (it is not possible to
compare data with indexes) dealing in CSL1 with strict inequalities between universal
index variables solves an open problem stated in Section 5 of [11]. The approach in
[13] allows for more expressive constraints on index variables due to the fact that it
considers only arrays with integer data.

194 A. Bouajjani et al.

7 Conclusions and Future Work

We have introduced an expressive logic for reasoning about programs manipulating
composite data structures storing data values. Our main result is the decidability of its
satisfiability problem which is established using a reduction to the satisfiability problem
of the underlying data logic. This allows in practice to use SMT solvers to implement
the decision procedure.

The definition of CSL is based on syntactical restrictions allowing to prove a small
model property for the logic. This property is lost if any of these restrictions is relaxed
(in the sense that the size of the minimal models cannot be computed from the syntax
of the formula, regardless of the considered data domain; it can rather be arbitrarily
large depending on this domain). Nevertheless, it could be possible that some of these
restrictions be relaxed without loss of decidability. For instance, on could adopt an alter-
native approach such as the one used in [13] which consists in reducing the satisfiability
problem to the reachability problem in a class of extended automata.

Future work includes also (1) efficient techniques and heuristics for universal quan-
tifier elimination (2) defining abstraction techniques based on expressing predicates in
CSL, (3) developing techniques for automatic generation of invariants in CSL, (4) de-
veloping techniques for checking termination using CSL formulas for reasoning about
ranking functions, etc.

References

1. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps. In: Cook, B.,
Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91–105. Springer, Heidelberg (2007)

2. Benedikt, M., Reps, T.W., Sagiv, S.: A decidable logic for describing linked data structures.
In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 2–19. Springer, Heidelberg (1999)

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer,
Heidelberg (2004)

5. Blanco, V., Puerto, J.: Short rational generating functions for multiobjective linear integer
programming. arXiv:0712.4295v3 (2008)

6. Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives of Math-
ematical Logic. Springer, Heidelberg (1997)

7. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with
lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 517–531. Springer, Heidelberg (2006)

8. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: A logic-based framework for reasoning
about composite data structures. Technical report. LIAFA, University Paris 7 & CNRS

9. Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with data. In:
Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22. Springer, Heidelberg
(2007)

10. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model check-
ing of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 52–70. Springer, Heidelberg (2006)

A Logic-Based Framework for Reasoning about Composite Data Structures 195

11. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer,
Heidelberg (2005)

12. Ehrgott, M.: A survey and annotated bibliography of multiobjective combinatorial optimiza-
tion. OR Spectrum 22(4), 425–460 (2000)

13. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: Amadio,
R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Heidelberg (2008)

14. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification using
SMT solvers. In: POPL, pp. 171–182. ACM, New York (2008)

15. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: PLDI, pp. 221–231.
ACM, New York (2001)

16. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS,
pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

17. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24(3), 217–298 (2002)

18. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable
patterns in linked data-structures. J. Log. Algebr. Program. 73(1-2), 111–142 (2007)

Measuring Permissivity in Finite Games

Patricia Bouyer1,�, Marie Duflot2, Nicolas Markey1,�, and Gabriel Renault3

1 LSV, CNRS & ENS Cachan, France
{bouyer,markey}@lsv.ens-cachan.fr

2 LACL, Université Paris 12, France
duflot@univ-paris12.fr

3 Département Informatique, ENS Lyon, France
gabriel.renault@ens-lyon.fr

Abstract. In this paper, we extend the classical notion of strategies in
turn-based finite games by allowing several moves to be selected. We
define and study a quantitative measure for permissivity of such strate-
gies by assigning penalties when blocking transitions. We prove that for
reachability objectives, most permissive strategies exist, can be chosen
memoryless, and can be computed in polynomial time, while it is in
NP ∩ coNP for discounted and mean penalties.

1 Introduction

Finite games. Finite games have found numerous applications in computer sci-
ence [Tho02]. They extend finite automata with several players interacting on
the sequence of transitions being fired. This provides a convenient way for reason-
ing about open systems (subject to uncontrollable actions of their environment),
and for verifying their correctness. In that setting, correctness generally means
the existence of a controller under which the system always behaves according to
a given specification. A controller, in that terminology, is nothing but a strategy
in the corresponding game, played on the automaton of the system, against the
environment.
Our framework. In this paper, we propose a new framework for computing per-
missive controllers in finite-state systems. We assume the framework of two-
player turn-based games (where the players are Player � and Player �, with
the controller corresponding to Player �). The classical notion of (determinis-
tic) strategy in finite (turn-based) games is extended into the notion of multi-
strategy, which allows several edges to be enabled. The permissivity of such a
multi-strategy is then measured by associating penalties to blocking edges (each
edge may have a different penalty). A strategy is more permissive than an other
one if its penalty is weaker, i.e., if it blocks fewer (or less expensive) edges.

We focus on reachability objectives for the controller, that is, the first aim of
Player � will be to reach a designated set of winning states (whatever Player �
� These authors were partly supported by the French project DOTS (ANR-06-SETI-

003), by the European project QUASIMODO (FP7-ICT-STREP- 214755), and by
the ESF project GASICS.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 196–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

{bouyer,markey}@lsv.ens-cachan.fr
duflot@univ-paris12.fr
gabriel.renault@ens-lyon.fr

Measuring Permissivity in Finite Games 197

does). The second aim of Player � will be to minimize the penalty assigned to
the set of outcomes generated by the multi-strategy.

Formally we consider weighted (finite) games, which are turn-based finite
games with non-negative weights on edges. In each state, the penalty assigned
to a multi-strategy is the sum of the weights of the edges blocked by the multi-
strategy. Several ways of measuring the penalty of a strategy can then be consid-
ered: in this paper, we consider three ways of counting penalties along outcomes
(sum, discounted sum, and mean value) and then set the penalty of a multi-
strategy as the maximal penalty of its outcomes.

We will be interested in several problems: (i) does Player � have a win-
ning multi-strategy for which the penalty is no more than a given threshold?
(ii) compute the infimal penalty that Player � can ensure while reaching her
goal; (iii) synthesize (almost-)optimal winning multi-strategies, and character-
ize them (in terms of memory and regularity).

Our results. We first prove that our games with penalties can be transformed
into classical weighted games [ZP96, LMO06] with an exponential blowup, and
that the converse reduction is polynomial.

Then, we prove that we can compute optimal and memoryless multi-strategies
for optimal reachability in PTIME. The proof is in three steps: first, using our
transformation to weighted games and results of [LMO06], we obtain the exis-
tence of optimal memoryless multi-strategies; we then propose a polynomial-time
algorithm for computing an optimal winning multi-strategy with memory; finally,
we show how we can get rid of the memory in such a multi-strategy, which yields
the expected result.

We then focus on two other ways of computing penalties, namely the dis-
counted sum and the mean value, and we prove that optimal multi-strategies
may not exist, or may require memory. We further prove that we can compute
the optimal discounted penalty in NP∩coNP, and that we can search for almost-
optimal winning multi-strategies as a pair (σ1, σ2) of memoryless multi-strategies
and that we need to play σ1 for some time before following σ2 in order to reach
the goal. The longer we play σ1, the closer we end up to the optimal discounted
penalty. The same holds for the mean penalty before reaching the goal.

As side-results, we obtain the complexity of computing strategies in weighted
games with a combined objective of reaching a goal state and optimizing the
accumulated cost. This can be seen as the game version of the shortest path
problem in weighted automata. Regarding accumulated costs, this was already
a by-product of [LMO06]; we show here that for discounted and mean costs,
optimal or memoryless optimal strategies do not necessarily exist, but almost-
optimal strategies can be obtained as a “pair” of memoryless strategies.

Related work. This quantitative approach to permissivity is rather original, and
does not compare to either of the approaches found in the literature [BJW02,
PR05]. Indeed classical notions of permissivity imply the largest sets of gener-
ated plays. This is not the case here, where an early cut of a branch/edge of the
game may avoid a large penalty later on for blocking many edges. However our

198 P. Bouyer et al.

notion of multi-strategy coincides with the non-deterministic strategies of
[BJW02] and [Lut08].

Our work also meets the problem proposed in [CHJ05] of considering mixed
winning objectives, one which is qualitative (parity in their special case), and
one which is quantitative (mean-payoff in their special case). The same kind
of mixed objectives is considered when extending ATL with quantitative con-
straints [LMO06, HP06].

The rest of this paper is organized as follows. In the next section, we introduce
our formalism of multi-strategies and penalties. We also explain the link with the
classical framework of games with costs. Section 3 is devoted to our polynomial-
time algorithm for computing most permissive strategies. Section 4 deals with
the case of discounted and mean penalty. By lack of space, several proofs are
omitted.

2 Weighted Games with Reachability Objectives

2.1 Basic Definitions

Weighted games. A (finite) weighted game is a tuple G = (V�, V�, E,weight)
where V� and V� are finite sets of states (said to belong to Player � and Player �,
resp.); writing V = V�∪V�∪{�,�} where � and � are two distinguished states
not belonging to V� ∪ V�, E ⊆ V × V is a finite set of edges; and weight : E →
� is a function assigning a weight to every edge. We assume (w.l.o.g.) that
the states � and � have no outgoing edges (they are respectively the winning
and losing states). If v ∈ V , we write vE (resp. Ev) for E ∩ ({v} × V) (resp.
E ∩ (V × {v})) for the set of edges originating from (resp. targetting to) v.

A run � in G is a finite or infinite sequence of states (vi)0≤i≤p (for some
p ∈ �∪{∞}) such that ei = (vi−1, vi) ∈ E when 0 < i ≤ p. We may also write for
such a run � = (v0 → v1 → v2 · · ·), or � = (ei)i≥1

1, or the word � = v0 v1 v2 . . .
The length of �, denoted by |�|, is p+ 1. For finite-length runs, we write last(�)
for the last state vp. Given r < |�|, the r-th prefix of � = (vi)0≤i≤p is the run
�≤r = (vi)0≤i≤r. Given a finite run � = (vi)0≤i≤p and a transition e = (v, v′)
with v = vp, we write � e−→, or � → v′, for the run � = (vi)0≤i≤p+1 with vp+1 = v′.

We write Runs<ω
G (resp. Runsω

G) for the set of finite (resp. infinite) runs in G,
and RunsG = Runs<ω

G ∪ Runsω
G. In the sequel, we omit the subscript G when no

ambiguity may arise.

Multi-strategies. A multi-strategy for Player � is a function

σ :
{
� ∈ Runs<ω | last(�) ∈ V�}→ 2E

such that, for all � ∈ Runs<ω, we have σ(�) ⊆ vE with v = last(�). A multi-
strategy is memoryless if σ(�) = σ(�′) as soon as last(�) = last(�′). A memoryless

1 These notations are equivalent since we assume that there can only be one edge
between two states.

Measuring Permissivity in Finite Games 199

multi-strategy σ can be equivalently represented as a mapping σ′ : V� → 2E , with
σ(�) = σ′(last(�)).

Multi-strategies extend the usual notion of strategies by selecting several pos-
sible moves (classically, a strategy is a multi-strategy σ such that for every
� ∈ Runs<ω with last(�) ∈ V�, the set σ(�) is a singleton). The aim of this
paper is to compare multi-strategies and to define and study a quantitative no-
tion of permissivity of a multi-strategy.

Given a multi-strategy σ for Player �, the set of outcomes of σ, denoted
Out(σ) ⊆ Runs, is defined as follows:

– for every state v ∈ V , the run v is in Out<ω(σ);
– if � ∈ Out<ω(σ) and σ(�) is defined and non-empty, then for every e ∈ σ(�),

the run �
e−→ is in Out<ω(σ);

– if � ∈ Out<ω(σ) and last(�) = v ∈ V�, then for every edge e ∈ vE, the run
�

e−→ is in Out<ω(σ);
– if � ∈ Runsω and if all finite prefixes �′ of � are in Out<ω(σ), then � ∈

Outω(σ).

We write Out(σ) = Out<ω(σ)∪Outω(σ). A run � in Out(σ) is maximal whenever
it is infinite, or it is finite and either σ(�) = ∅, or last(�) has no outgoing edge
(i.e., the set vE, with v = last(�), is empty). If �0 is a finite outcome of σ,
we write Out(σ, �0) (resp. Outmax(σ, �0)) for the set of outcomes (resp. maximal
outcomes) of σ having �0 as a prefix. A multi-strategy σ is winning after �0
if every run � ∈ Outmax(σ, �0) is finite and has last(�) = �. A finite run �0 is
winning if it admits a winning multi-strategy after �0. Last, a strategy is winning
if it is winning from any winning state (seen as a finite run).

Penalties for multi-strategies. We define a notion of permissivity of a multi-
strategy by counting the weight of transitions that the multi-strategy blocks
along its outcomes. If σ is a multi-strategy and �0 is a finite run, the penalty
of σ after �0, denoted penalty(σ, �0), is defined as sup{penaltyσ,�0

(�) | � ∈
Outmax(σ, �0)} where penaltyσ,�0

(�) is defined inductively, for every finite run
� ∈ Out(σ, �0), by:

– penaltyσ,�0
(�0) = 0;

– if last(�) /∈ V� and (last(�), v) ∈ E, then penaltyσ,�0
(� → v) = penaltyσ,�0

(�);
– if last(�) ∈ V� and (last(�), v) ∈ σ(�), then

penaltyσ,�0
(� → v) = penaltyσ,�0

(�) +
∑

(last(�),v′)∈(E�σ(�))

weight(last(�), v′);

– if � ∈ Out(σ, �0) ∩ Runsω, then penaltyσ,�0
(�) = lim

n→+∞
penaltyσ,�0

(�≤n).

The first objective of Player � is to win the game (i.e., reach �), and her second
objective is to minimize the penalty. In our formulation of the problem, Player �
has no formal objective, but her aim is to play against Player � (this is a zero-
sum game), which implicitly means that Player � tries to avoid reaching �, and
if this is not possible, she tries to maximize the penalty before reaching �.

200 P. Bouyer et al.

We write opt penalty(�0) for the optimal penalty Player � can ensure after �0
while reaching �:

opt penalty(�0) = inf{penalty(σ′, �0) | σ′ winning multi-strategy after �0}.

It is equal to +∞ if and only if Player � has no winning multi-strategy after �0.
The following lemma is rather obvious, and shows that we only need to deal

with the optimal penalty from a state.

Lemma 1. Let G be a weighted game, let � and �′ be two runs in G such that
last(�) = last(�′). Then opt penalty(�) = opt penalty(�′).

Given ε ≥ 0, a winning multi-strategy σ is ε-optimal after �0 if penalty(σ, �0) ≤
opt penalty(�0) + ε. It is optimal after �0 when it is 0-optimal after �0. If σ is
ε-optimal from any winning state, then we say that σ is ε-optimal.

Classical weighted games. This way of associating values to runs and (multi-)
strategies is rather non-standard, and usually it is rather a notion of accumulated
cost along the runs which is considered. It is defined inductively as follows:

– cost(v) = 0 for single-state runs;
– cost(� e−→) = cost(�) + weight(e) otherwise.

Then again, if σ is a multi-strategy and �0 is a finite outcome, cost(σ, �0) =
sup{cost(�)−cost(�0) | � ∈ Outmax(σ, �0)}, and notions of (ε-)optimal strategies
are defined in the expected way.

Example 1. A weighted game is depicted on Fig. 1. For this example, it can be
easily seen that the optimal strategy w.r.t. costs from state a consists in going
through b, resulting in a weight of 6.

Regarding penalties and multi-strate-

a

b

c

d
�
�5

1

0

8

0
1

6

1

2

Fig. 1. A weighted game

gies, the situation is more difficult. From
state b, there is only one way of win-
ning, with penalty 6 (because the strat-
egy must block the transition to the
losing state). From d, we have two
possible winning multi-strategies: either
block the transition to b, with penalty 2,
or keep it; in the latter case, we will then
have penalty 6 in state d, as explained
above. In d, the best multi-strategy thus
amounts to blocking the transition to b, so that we can win with penalty 2. Now,
from a, it seems natural to try to go winning via d. This requires blocking both
transitions to b and c, and results in a global penalty of 8(= 5+1+2) for winning.
However, allowing both transitions to b and d is better, as the global (worst case)
penalty in this case is 7(= 1 + 6). Note that in that case, it is also possible to
allow transition to c for some time, since the loop between a and c will add no
extra penalty. But if we allow it forever, it will not be winning, this transition
to c has thus to be blocked at some point in order to win.

Measuring Permissivity in Finite Games 201

Computation and decision problems. We let G = (V�, V�, E,weight) be
a weighted game. Given v ∈ V , we will be interested in computing the value
opt penalty(v), and if an optimal winning multi-strategy exists, in computing it.
We will also be interested in computing for every ε > 0, an ε-optimal winning
multi-strategy.

Formally, the optimal reachability problem with penalty we consider is the fol-
lowing: given a weighted game G, a rational number c and a state v ∈ V , does
there exist a multi-strategy σ for Player � such that penalty(σ, v) ≤ c.

2.2 From Penalties to Costs, and Back

Penalties and costs assume very different points of view: in particular, cost-
optimality can obviously be achieved with “deterministic” strategies (adding
extra outcomes can only increase the overall cost of the strategy), while penalty-
optimality generally requires multi-strategies. Still, there exists a tight link be-
tween both approaches, which we explain on two examples (Figs. 2 and 3).

Lemma 2. For every weighted game G = (V�, V�, E,weight), we can construct
an exponential-size weighted game G′ = (V ′�, V ′�, E′,weight′) such that V� ⊆ V ′�,
V� ⊆ V ′� and, for any state v ∈ V� ∪ V� and any bound c, Player � has a
winning multi-strategy with penalty c from v in G iff she has a winning strategy
with cost c from v in G′.

a b

�
�

2

1

1

6

G G′

a b

�
�

0

1
0

2

0

0

0

6

0

1

0

0

0

0

3 7

(a, {a, b})

(a, {b})
(a, ∅)

(b, {�})

(b, {�})
(b, ∅)

Fig. 2. From penalties (and multi-strategies) to costs (and strategies)

Lemma 3. For every weighted game G′ = (V ′�, V ′�, E′,weight′), we can construct
a polynomial-size weighted game G = (V�, V�, E,weight) such that V ′� ⊆ V�,
V ′� ⊆ V�, and for any state v ∈ V ′� ∪ V ′� and any value c, Player � has a
winning strategy with cost c from v in G′ iff she has a winning multi-strategy
with penalty c from v in G.

3 Optimal Reachability in Penalty Games

Classical weighted games are known to admit memoryless optimal strategies
(see e.g. [LMO06]). Hence, applying Lemma 2 we know that we can solve the
optimal reachability problem with penalty in NP: memoryless multi-strategies are

202 P. Bouyer et al.

a

b

c

�
3

2
2

2

0

G′ G

a

b

c

�� �
0

0

0

3

0

2 0

0

0

2
0

0
0

0

2

v(a,b) v(b,�)

v(a,c) v(c,�)

Fig. 3. From costs (and strategies) to penalties (and multi-strategies)

sufficient to win optimally, and we can thus guess a memoryless multi-strategy
and check, in polynomial time, that it is winning and has penalty less than the
given threshold. This section is devoted to the two-step proof of the following
(stronger) result:

Theorem 4. The optimal reachability problem with penalty can be solved inPTIME.

In the sequel, we let G = (V�, V�, E,weight) be a weighted game.

3.1 Construction of an Optimal Winning Multi-strategy

In this section, we give a polynomial-time algorithm for computing an optimal
winning multi-strategy (which requires memory). The idea is to inductively com-
pute the penalty for winning in j steps, for each j less than the number of
states. This will be sufficient as we know that there exists a memoryless optimal
multi-strategy, which wins in |V | from the winning states.

Due to the transformation presented in Lemma 2, there is a priori an expo-
nential blowup for computing the best move in one step (because Player � can
select any subset of the outgoing edges of the current state, and will choose ‘the
best’ subset), but we will show that choices satisfy some monotonicity property
that will help making the best choice in polynomial time.

For any integer k, we say that a multi-strategy σ is k-step if, for every run � of
length (strictly) larger than k with last(�) ∈ V�, we have σ(�) = ∅. For instance,
a memoryless winning multi-strategy σ′ naturally induces winning multi-strategy
(all outcomes of σ′ have length no more than |V | and for all the other (useless)
runs we can set σ(�) = ∅). We say that a state v is winning in k steps if there
is a k-step multi-strategy which is winning from v.

The algorithm will proceed as follows: for every 0 ≤ j ≤ |V |, we build a j-step
multi-strategy σj which will be winning from all states that are winning in j steps,
and optimal among all those winning j-step multi-strategies. We also compute,
for each state v ∈ V , a value cv,j which is either the penalty of strategy σj from v
(i.e. penalty(σj , v)), or +∞ in case σj is not winning from v.

Since we know that memoryless multi-strategies suffice to win optimally, we
conclude that there exists a |V |-step multi-strategy, which is winning and opti-
mal, and the multi-strategy σ|V | which we build will then be optimal and winning.
It follows that cv,|V | will be equal to opt penalty(v).

Measuring Permissivity in Finite Games 203

When j = 0, we let σ0(�) = ∅ for any � ending in a V�-state. It is the only 0-
step multi-strategy, so that it clearly is optimal among these. Clearly, cv,0 = +∞
for all v
= �, c�,0 = 0, and � is the only state from which we can win with a
0-step multi-strategy.

We assume we have built σj (0 ≤ j < |V |), and we now define σj+1. Let � =
v0 → v1 → v2 . . . → vk be a run ending in V�. If k ≥ j + 1, we let σj+1(�) = ∅.
Otherwise, if k ≥ 1, we let σj+1(v0 → v1 → v2 . . . → vk) = σj(v1 → v2 . . . →
vk). Finally, when k = 0 and � = v, we let {u1, . . . , up} be the set of successors
of v, assuming that they are ordered in such a way that cur ,j ≤ cus,j if r ≤ s.
Now, let

fv,j+1 : I ⊆ �1, p� �→
∑
s/∈I

weight(v, us) + max
s∈I

cus,j ,

and let I
= ∅ be a subset of �1, p� realizing the minimum of fv,j+1 over the
non-empty subsets of �1, p�. Assume that there exist two integers l < m in �1, p�
such that l /∈ I and m ∈ I. Since ul ≤ um, we have

fv,j+1(I ∪ {l}) − fv,j+1(I) = −weight(v, ul).

This entails that I ∪ {l} is also optimal. By repeating the process, we can prove
that there exists an interval �1, q� realizing the minimum of fv,j+1. As a con-
sequence, finding the minimum of fv,j+1 can be done in polynomial time (by
checking all intervals of the form �1, q�). We write Tv,j+1 for a correspond-
ing set of states, whose indices realize the minimum of fv,j+1. We then de-
fine σj+1(v) = {(v, v′) | v′ ∈ Tv,j+1}, and cv,j+1 = fv,j+1(Tv,j+1) for all v ∈ V�.
It is easy to check that cv,j+1 = penalty(σj+1, v) if σj+1 is winning from v, and
cv,j+1 = +∞ otherwise.

We now prove that for every 0 ≤ j ≤ |V |, σj is optimal among all j-step
winning multi-strategies. Assume that, for some 0 ≤ j ≤ |V |, there is a j-step
multi-strategy σ′ that is winning and strictly better than σj from some winning
state v. We pick the smallest such index j. We must have j > 0 since σ0 is optimal
among the 0-step multi-strategies. Consider the set of successors {u1, . . . , up} of v
ordered as above, and let T be the set of indices such that σ′(v) = {(v, ut) | t ∈
T }. Then after one step, the multi-strategy σ′ is (j−1)-step and winning from any
ut satisfying (v, ut) ∈ σ′(v), and its penalty is thus not smaller than that of the
multi-strategy σj−1 (by minimality of j, we have penalty(σ′, v → ut) ≥ cut,j−1).
Hence:

penalty(σ′, v) ≥
∑
s/∈T

weight(v, us) + max
t∈T

cut,j−1 = fv,j(T)

On the other hand, as σ′ is strictly better than σj we must have

penalty(σ′, v) < cv,j = fv,j(Tv,j) ≤ fv,j(T)

because Tv,j achieves the minimum of fv,j . This is a contradiction, and from
every state v from which there is a j-step winning multi-strategy, σj is winning
optimally (in j steps).

204 P. Bouyer et al.

As stated earlier, due to the existence of memoryless optimal winning multi-
strategies, |V |-step multi-strategies are sufficient and σ|V | is optimal winning.

�

3.2 Deriving a Memoryless Winning Multi-strategy

In this section we compute, from any winning multi-strategy σ, a memoryless
winning multi-strategy σ′ which has lower penalty for Player �. The idea is
to represent σ as a (finite) forest (it is finite because σ is winning) where a
node corresponds to a finite outcome, and to select a state v for which σ is not
memoryless yet. This state should be chosen carefully2 so that we will be able to
“plug” the subtree (i.e., play the multi-strategy) rooted at some node ending in v
at all nodes ending in v while keeping all states winning and while decreasing
(or at least leaving unchanged) the penalty of all states. This transformation will
be repeated until the multi-strategy is memoryless from all states. That way, if
σ was originally optimal, then so will σ′ be.

Let Σ be a finite alphabet. A Σ-forest is a tuple T = (T,R) where T ⊆ Σ+ is
a set of non-empty finite words on Σ (called nodes) such that, for each t · a ∈ T
with a ∈ Σ and t ∈ Σ+, it holds t ∈ T (T is closed by non-empty prefix) ;
R ⊆ Σ ∩ T is the set of roots. Given a ∈ Σ, a node t such that t = u · a is called
an occurrence of a. Given a node t ∈ T , the depth of t is |t| − 1 (where |t| is the
length of t seen as a word on Σ), and its height, denoted heightT (t), is

sup{|u| | u ∈ Σ∗ and t · u ∈ T }.

In particular, heightT (t) = +∞ when t is the prefix of an infinite branch in T .
A Σ-tree is a Σ-forest with one single root. Given a forest T = (T,R) and a

node t ∈ T , the subtree of T rooted at t is the tree S = (S, {n}) where n = last(t)
and s ∈ S iff t · s ∈ T .

Let G = (V�, V�, E,weight) be a weighted game. A winning multi-strategy
σ for Player � in G and a winning state v ∈ V naturally define a finite V -
tree Tσ,v with root v: given a state s, a word t = u · s is in Tσ,v iff u ∈ Tσ,v

and, seeing u as a finite run, we have either last(u) = v′ ∈ V� and (v′, s) ∈ σ(u),
or last(u) = v′ ∈ V� and (v′, s) ∈ E. In this tree, the height of the root coincides
with the length of a longest run generated by the multi-strategy σ from v. Since
the multi-strategy σ is winning from v, all branches are finite, and all leaves of
Tσ,v are occurrences of �. The union of all trees Tσ,v (for v a winning state)
defines a forest Tσ.

Conversely, every V -forest T = (T,W) with W ⊆ V satisfying the following
conditions naturally defines a winning multi-strategy σT (viewing each node t ∈
T as a run of G):

– if last(t) = v′ ∈ V�, t · s ∈ T iff (v′, s) ∈ E;
– if last(t) = v′ ∈ V� and t · s ∈ T , then (v′, s) ∈ E. In that case we set
σT (t) = {(v′, s) ∈ E | t · s ∈ T };

– if t is maximal, then last(t) = �.
2 An appropriate measure will be assigned to every node of the forest.

Measuring Permissivity in Finite Games 205

Lemma 5. Assume that we are given an optimal winning multi-strategy σ. We
can effectively construct in polynomial time a memoryless multi-strategy σ′, which
is winning and optimal.

Proof. Assume that W is the set of winning states. Let T be the forest repre-
senting the multi-strategy σ (its set of roots is W). Since σ is winning from every
state in W , all branches of the forest are finite. For every node t of T , we define
γT (t) as the residual penalty of σ after prefix t. Formally, γT (t) = penalty(σ, t).
Obviously, for all v ∈ V , we have penalty(σ, v) = γT (v).

We will consider a measure µT on the set of nodes of the forest T as follows:
if t is a node of T , we let µT (t) = (γT (t), heightT (t)).

We say that no memory is required for state v in T if, for every two nodes t
and t′ that are occurrences of v, the subtree of T rooted at t and the subtree
of T rooted at t′ are identical. Note that in that case, µT (t) = µT (t′).

For every 0 ≤ i ≤ |W |, we inductively build in polynomial time a forest T i

and a set Mi ⊆ W containing i elements, such that:

(a) T i represents an optimal winning multi-strategy from all the states of W ;
(b) for every v ∈ Mi, no memory is required for v in T i, and for every node t′

which is a descendant of some node that is an occurrence of v, letting v′ =
last(t′), it holds v′ ∈ Mi.

Intuitively, each T i will be the forest of a winning optimal multi-strategy σi, and
each Mi will be a set of states from which σi is memoryless (i.e., σi is memoryless
from the states in Mi, and from the states that occur in the outcomes from
these states). In the end, the forest T |W | represents a multi-strategy σ′ which is
memoryless, optimal and winning from every state of the game. �

4 Discounted and Mean Penalty Games

4.1 Discounted and Mean Penalties of Multi-strategies

We have proposed a way to measure the permissivity of winning strategies in
games, by summing penalties for blocking edges in the graph. It can be inter-
esting to consider that blocking an edge early in a run is more restrictive than
blocking an edge later. A classical way to represent this is to consider a discounted
version of the penalty of a multi-strategy, which we now define.

Discounted penalties of multi-strategies. Let G = (V�, V�, E,weight) be a
weighted game, σ be a winning (w.r.t. the reachability objective) multi-strategy,
and �0 be a finite outcome of σ. Given a discount factor λ ∈ (0, 1), the dis-
counted penalty of σ after �0 (w.r.t. λ), denoted penaltyλ(σ, �0), is defined as
sup{penaltyλ

σ,�0
(�) | � ∈ Outmax

G (σ, �0)}, where penaltyλ
σ,�0

(�) is inductively de-
fined for all � ∈ OutG(σ, �0) as follows:

– penaltyλ
σ,�0

(�0) = 0;
– if last(�) /∈ V� and (last(�), v) ∈ E, then penaltyλ

σ,�0
(� → v) = penaltyλ

σ,�0
(�);

206 P. Bouyer et al.

– if last(�) ∈ V� and (last(�), v) ∈ σ(�), then penaltyλ
σ,�0

(� → v) is defined as

penaltyλ
σ,�0

(�) + λ|�|−|�0| ·
∑

(last(�),v′)∈(E�σ(�))

weight(last(�), v′).

We also define the discounted penalty along infinite runs, as being the limit
(which necessarily exists as λ < 1) of the penalties along the finite prefixes.

We write opt penaltyλ(�0) for the optimal discounted penalty (w.r.t. λ) Player�
can ensure after �0 while reaching �:

opt penaltyλ(�0) = inf{penaltyλ(σ, �0) | σ winning multi-strategy after �0}.

Given ε ≥ 0 and λ ∈ (0, 1), a multi-strategy σ is said ε-optimal for discount
factor λ after �0 if it is winning after �0 and

penaltyλ(σ, �0) ≤ opt penaltyλ(�0) + ε.

Again, optimality is a shorthand for 0-optimality. Finally, a multi-strategy is
ε-optimal for discount factor λ if it is ε-optimal for λ from any winning state.

Discounted cost in weighted games. As in Section 2.1, we recall the usual
notion costλ of discounted cost of runs in a weighted game [ZP96]3:

– costλ(v) = 0;
– costλ(� e−→) = costλ(�) + λ|�|−1 · weight(e);

Then we define costλ(σ, �0) = sup{costλ(�) | � ∈ Outmax
G (σ, �0)}. Those games

are symmetric, and later we will sometimes take the point-of-view of Player �
whose objective will be to maximize the discounted cost: given a strategy σ for
Player �, we then define costλ(σ, �0) = inf{costλ(�) | � ∈ Outmax

G (σ, �0)}.
Computation and decision problems. As in the previous section, our aim is
to compute (almost-)optimal multi-strategies. The optimal reachability problem
with discounted penalty is the following: given a weighted game G, a rational
number c, a discount factor λ ∈ (0, 1), and a state v ∈ V , does there exist a
multi-strategy σ for Player � such that penaltyλ(σ, v) ≤ c. The transformations
between penalties and costs depicted in Section 2.2 are still possible in the dis-
counted setting. The only point is that in both cases, each single transition gives
rise to two consecutive transitions, so that we must consider

√
λ as the new

discounting factor4.

4.2 Some Examples

As far as the existence of an optimal multi-strategy is concerned, the discounted
case is more challenging as the results of the previous section do not hold. In par-
ticular, we exemplify on Figures 4 and 5 the fact that optimal multi-strategies do
not always exist, and when they exist, they cannot always be made memoryless.
3 Note that we have dropped the normalization factor (1−λ), which is only important

to relate λ-discounted values to mean values (by making λ tend to 1) [ZP96].
4 For the reduction of Lemma 3, the penalty is also multiplied by

√
λ.

Measuring Permissivity in Finite Games 207

a �
1

1

Fig. 4. No optimal discounted
multi-strategy

a

b

�
�

0

0

1

1

2

3

Fig. 5. No memoryless optimal discounted
multi-strategy

4.3 A Pair of Memoryless Strategies Is Sufficient

We prove here that there always exist ε-optimal multi-strategies that are made
of two memoryless multi-strategies. Roughly, the first multi-strategy aims at
lengthening the path (so that the coefficient λ|�| will be small) without increasing
the penalty, and the second multi-strategy aims at reaching the final state.

To this aim, we need to first study the multi-strategy problem in the setting
where there is no reachability objective. Let G be a finite weighted game, λ ∈
(0, 1), and c ∈ �. The optimal discounted-penalty problem consists in deciding
whether there is a multi-strategy for Player � for which the λ-discounted penalty
along any maximal (finite or infinite) outcome is less than or equal to c.

Theorem 6. The optimal discounted-penalty problem is in NP ∩ coNP, and is
PTIME-hard.

The proof of this theorem relies on known results in classical discounted games
[ZP96, Jur98], uses the transformation of Lemma 2 and monotonicity properties
already used in the proof given in section 3.1.

Proof. We let G = (V�, V�, E,weight) be a finite weighted game with no incoming
transitions to �, and let c ∈ �. Applying the transformation of Lemma 2 to
the discounted case, we get an exponential-size weighted game G′ = (V ′�, V ′�,
E′,weight′) with V� ⊆ V ′� and V� = V ′� such that for every v ∈ V� ∪ V�,
Player � has a winning multi-strategy from v in G with discounted penalty no
more than c (for discount λ) iff Player � has a winning strategy from v in G′

with discounted cost no more than c (for discount
√
λ).

From [ZP96], Player � has a memoryless optimal strategy in G′. The NP
algorithm is then as follows: guess such a memoryless strategy σ� for Player �,
i.e. for every v ∈ V� guess a subset F ⊆ vE and set σ�(v) = (v, F). Removing
from G′ transitions that have not been chosen by σ� yields a polynomial-size
graph G′′, in which we can compute in polynomial time the maximal discounted
cost, which corresponds to cost

√
λ(σ�, v). The graph G′′ can be computed from G

without explicitly building G′, so that our procedure runs in polynomial time.
Membership in coNP is harder, and we only give a sketch of proof here.

The game G′ is memoryless determined [ZP96], which means that for every
c ∈ �, for every state v ∈ V ′� ∪ V ′�, either Player � has a memoryless strat-
egy σ� with cost

√
λ(σ�, v) ≤ c, or Player � has a memoryless strategy σ�

with cost
√

λ(σ�, v) > c. Our coNP algorithm consists in guessing a

208 P. Bouyer et al.

memoryless strategy for Player � that achieves cost larger than c. However,
Player � controls exponentially many states in G′, so that we will guess a suc-
cinct encoding of her strategy, based on the following observation: there is a
(preference) order on the states in V� ∪ V�5 so that, in states of the form (v, F),
the optimal strategy for Player � consists in playing the “preferred” state of F
(w.r.t. the order). In other words, the strategy in those states can be defined in
terms of an order on the states, which can be guessed in polynomial time.

Once such a strategy has been chosen non-deterministically, it then suffices to
build a polynomial-size graph G′′ in which the cost of the strategy σ� corresponds
to the minimal discounted cost of Player � in G′.

Hardness in PTIME directly follows from Lemma 3. �

Remark 1. This problem could be extended with safety condition: the aim is
then to minimize the discounted penalty while avoiding some bad states. An easy
adaptation of the previous proof yields the very same results for this problem.

Definition 7. Let σ1 and σ2 be two memoryless multi-strategies, and k ∈ �.
The multi-strategy σ = σk

1 · σ∗2 is defined, for each � such that last(�) ∈ V�, as:

– if |�| < k, then σ(�) = σ1(�);
– if |�| ≥ k, then σ(�) = σ2(�).

Theorem 8. Let G = (V�, V�, E,weight) be a finite weighted game with a reach-
ability objective, and λ ∈ (0, 1). Then there exist two memoryless multi-strategies
σ1 and σ2 such that, for any ε > 0, there is an integer k such that the multi-
strategy σk′

1 · σ∗2 is ε-optimal (w.r.t. λ-discounted penalties) for any k′ ≥ k.

Proof. This is proved together with the following lemma:

Lemma 9. Let G = (V�, V�, E,weight) be a finite weighted game with a reach-
ability objective, λ ∈ (0, 1), and c ∈ �. Then (G, λ, c) is a positive instance of
the optimal discounted-penalty problem iff for any ε > 0, (G, λ, c+ ε) is a positive
instance of the optimal reachability problem with discounted penalty

Proof. From the remark following the proof of Theorem 6, there is a memory-
less optimal multi-strategy σ1 all of whose maximal outcomes have λ-discounted
penalty less than or equal to c, and never visit losing states. Let σ2 be a mem-
oryless winning multi-strategy for the reachability objective, and let c2 be the
maximal penalty accumulated along an outcome of σ2. Let ε > 0, and k ∈ �
such that λk · c2 ≤ ε. Then for any k′ > k, the multi-strategy σk′

1 · σ∗2 is winning,
and the λ-discounted penalty of any outcome is at most c+ λk′ · c2 ≤ c+ ε.

Conversely, let ε > 0, and σ be a winning multi-strategy achieving discounted
penalty no more than c + ε. Then in particular, σ achieves discounted penalty
less than or equal to c + ε along all of its outcomes, so that (G, λ, c + ε) is a
positive instance of the optimal discounted-penalty problem (for any ε > 0). From

5 Which will be given by ordering the values given by the classical optimality equa-
tions [Jur98] in G′.

Measuring Permissivity in Finite Games 209

Theorem 6, this problem admits a (truly) optimal memoryless multi-strategy, so
that there must exist a multi-strategy achieving discounted penalty less than or
equal to c along all of its outcomes. �

Theorem 10. The optimal reachability problem with discounted penalty is in
NP ∩ coNP, and is PTIME-hard.

Remark 2. It can be observed that the results of this section extend to discounted-
cost games with reachability objectives (without the exponential gap due to the
first transformation of weighted games with penalties). In particular, those games
admit almost-optimal strategies made of two memoryless strategies, and the cor-
responding decision problem is equivalent to classical discounted-payoff games.

4.4 Extension to the Mean Penalty of Multi-strategies

We also define the mean penalty of a multi-strategy σ from state v, denoted
mean penalty(σ, v), as sup{mean penaltyσ(�) | � ∈ OutG(σ, v), �maximal}, where

mean penaltyσ(�) =

⎧⎨
⎩

penaltyσ(�)
|�| if |�| < ∞

lim sup
n→+∞

mean penaltyσ(�|≤n) otherwise

where �|≤n is the prefix of length n of �. The notion of ε-optimality, for ε ≥ 0,
is defined as previously. Using the same lines of arguments as earlier, we get:

Theorem 11. Let G = (V�, V�, E,weight) be a finite weighted game with reach-
ability objectives, in which all states in V� ∪ V� are winning. There exist two
memoryless multi-strategies σ1 and σ2 such that, for any ε > 0, there exists k so
that the multi-strategy σk′

1 ·σ∗2 is ε-optimal (w.r.t. mean penalties) for any k′ ≥ k.

Theorem 12. The optimal reachability problem with mean-penalty is in NP ∩
coNP and is PTIME-hard.

Remark 3. Again, this result extends to mean-cost games with reachability ob-
jectives, which thus admit almost-optimal strategies made of two memoryless
strategies. Surprisingly, the same phenomenon has been shown to occur in mean-
payoff parity games [CHJ05], but the corresponding strategy can be made fully
optimal thanks to the infiniteness of the outcomes.

5 Conclusion and Future Work

We have proposed an original quantitative approach to the permissivity of
(multi-)strategies in two-player games with reachability objectives, through a
natural notion of penalty given to the player for blocking edges. We have proven
that most permissive strategies exist and can be chosen memoryless in the case
where penalties are added up along the outcomes, and proposed a PTIME al-
gorithm for computing such an optimal strategy. When considering discounted
sum or mean penalty, we have proved that we must settle for almost-optimal

210 P. Bouyer et al.

strategies, which are built from two memoryless strategies. The resulting algo-
rithm is in NP ∩ coNP. This is rather surprising as the natural way of encoding
multi-strategies in classical weighted games entails an exponential blowup.

Besides the naturalness of multi-strategies, our initial motivation underly-
ing this work (and the aim of our future works) is in the domain of timed
games [AMPS98, BCD+07]: in that setting, strategies are often defined as func-
tions from executions to pairs (t, a) where t is a real number and a an action.
This way of defining strategies goes against the paradigm of implementabil-
ity [DDR04], as it requires infinite precision. We plan to extend the work re-
ported here to the timed setting, where penalties would depend on the precision
needed to apply the strategy. Also, as stated in [CHJ05], we believe that games
with mixed objectives are interesting on their own, which gives another direction
of research for future work. This catches up with related works on quantitative
extensions of ATL.

References

[AMPS98] Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. In: Proc. IFAC Symposium on System Structure and Control,
pp. 469–474. Elsevier, Amsterdam (1998)

[BCD+07] Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

[BJW02] Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: From parity
games to safety games. Inf. Théor. et Applications 36(3), 261–275 (2002)

[CHJ05] Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games.
In: Proc. 20th Annual Symposium on Logic in Computer Science (LICS
2005). IEEE Computer Society Press, Los Alamitos (2005)

[DDR04] De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From
timed models to timed implementations. In: Alur, R., Pappas, G.J. (eds.)
HSCC 2004. LNCS, vol. 2993, pp. 296–310. Springer, Heidelberg (2004)

[HP06] Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In:
Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17.
Springer, Heidelberg (2006)

[Jur98] Jurdziński, M.: Deciding the winner in parity games is in UP ∩ coUP. In-
formation Processing Letters 68(3), 119–124 (1998)

[LMO06] Laroussinie, F., Markey, N., Oreiby, G.: Model-checking timed ATL for
durational concurrent game structures. In: Asarin, E., Bouyer, P. (eds.)
FORMATS 2006. LNCS, vol. 4202, pp. 245–259. Springer, Heidelberg (2006)

[Lut08] Luttenberger, M.: Strategy iteration using non-deterministic strategies for
solving parity games. Research Report cs.GT/0806.2923, arXiv (2008)

[PR05] Pinchinat, S., Riedweg, S.: You can always compute maximally permis-
sive controllers under partial observation when they exist. In: Proc. 24th
American Control Conf. (ACC 2005), pp. 2287–2292 (2005)

[Tho02] Thomas, W.: Infinite games and verification (Extended abstract of a tuto-
rial). In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
pp. 58–64. Springer, Heidelberg (2002)

[ZP96] Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs.
Theoretical Computer Science 158(1-2), 343–359 (1996)

Contracts for Mobile Processes

Giuseppe Castagna1 and Luca Padovani2

1 CNRS, Laboratoire Preuves, Programmes et Systèmes, Université Paris Diderot – Paris 7
2 Istituto di Scienze e Tecnologie dell’Informazione, Università di Urbino

Abstract. Theories identifying well-formed systems of processes—those that
are free of communication errors and enjoy strong properties such as deadlock
freedom—are based either on session types, which are inhabited by channels, or
on contracts, which are inhabited by processes. Current session type theories im-
pose overly restrictive disciplines while contract theories only work for networks
with fixed topology. Here we fill the gap between the two approaches by defining
a theory of contracts for so-called mobile processes, those whose communica-
tions may include delegations and channel references.

1 Introduction
Research on communicating processes has recently focused on the study of static anal-
ysis techniques for characterizing those systems that enjoy desirable properties such as
the conformance to specifications, the absence of communication errors, and progress.
By progress we mean the guarantee that the system will either evolve into a so-called
successful state, in which all of its components have completely carried out their task,
or that the system will continue to evolve indefinitely, without ever getting stuck.

Two approaches have been studied in great depth: those based on session types, and
those based on behavioral contracts. Session types arise in a type theoretic framework
as an evolution of standard channel types [29], by taking into account the fact that the
same channel can be used at different times for sending messages of different kind and
type. For example, session types defined in [21] describe potentially infinite, dyadic
conversations between processes as sequences of messages that are either sent or re-
ceived. The same approach has been applied to multi-threaded functional programming
languages [30], as well as to object-oriented languages [3, 15]. Behavioral contracts
arise in a process algebraic framework where the behavior of the component of a sys-
tem is approximated by means of some term in a process algebra. The contract does
not usually reveal how the component is implemented, but rather what its observable
behavior is. Theories of contracts for Web services have been introduced in [12] and
subsequently extended in [14, 25, 28]. Independently, theories of contracts have been
developed for reasoning on Web service choreographies in [6, 7].

Traditionally, the approaches based on session types have always allowed the de-
scription of systems where channels and opened sessions can be communicated and
delegated just as plain messages. Conversely, all of the works on contracts mentioned
above rely on CCS-like formalisms, which makes them suitable for describing systems
whose topology is fixed and where the role of each component does not change over
time. This work aims at being a first step in filling the gap that concerns the expressive-
ness of the two approaches and in defining a contract language to describe processes
that collaborate not only by exchanging messages, but also by delegating tasks, by dy-
namically initiating new conversations, by joining existing conversations.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 211–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 G. Castagna and L. Padovani

Since we want to describe conversations where exchanged messages may include
channels, it is natural to propose a contract language based on the π-calculus. However,
quite a few aspects force us to depart from standard presentations. The first aspect re-
gards the interpretation of actions. A contract should permit to describe not only the
communication of channels, but also of other kinds of messages. Thus we will have
actions of the form c?Int or c!String for denoting the ability to receive (resp. send)
a value of type Int (resp. String). In fact, we will generalize input and output ac-
tions so that their subjects are possibly structured patterns describing all and only the
messages that can be exchanged on a channel at a given time. Since we are interested
in describing the observable behavior of a process rather than its internal structure, we
will mostly focus on two operators + and ⊕ representing external and internal choices
respectively. This is consistent with the works on session types and is also the approach
taken in some presentations of CCS [17, 20] and of π-calculus [26]. For example, the
contract c?Int.T + d?String.S describes a process that behaves as T if it receives a
number on the channel c, and that behaves as S if it receives a string on the channel d.
Dually, the contract c!Int.T ⊕ d!String.S describes a process that internally decides
whether to send an integer or a string, and that behaves as T or as S accordingly. Addi-
tionally, we let branching be dependent also on the (type of) exchanged messages, not
just on the channel on which communication occurs. This allows us to model behaviors
that are affected by the actual values that are communicated, which is just what hap-
pens in session type theories with branching and selection constructs whose behavior is
driven by labels. For instance, the contract c?Int.T + c?String.S describes a process
that behaves either as T if it receives an integer value on the channel c or as S if it
receives a string value on the same channel. Unlike the π-calculus and along the lines
of [1], we distinguish several “terminal” behaviors: 0 represents a deadlock process that
cannot make any further progress; 1 represents successful termination; Ω represents an
autonomous process that is capable of making indefinite progress.

With respect to current literature on session types we innovate also from the method-
ological point of view. Current presentations of session type theories begin by defining
the semantics of types and then prove that well-typed processes enjoy certain proper-
ties. We embrace a testing approach [5, 17, 20] and go the other way round: we start by
defining the properties we are interested in and then study the types that ensure them.
More precisely, we start from the concept of well-formed system, which is a parallel
composition of participants—each one abstracted by means of its contract—that mutu-
ally satisfy each other: no participant ever gets stuck waiting for messages that are never
sent or trying to send messages that no one else is willing to receive. Well-formedness
gives us the one essential notion that drives the whole theory: a component T is viable
if there is a well-formed system that includes T . Viability roughly corresponds to the
notion of well-typed process in session type theories. Also, well-formedness gives us
a semantic way of relating contracts: T and S are equivalent if they yield well-formed
systems when combined with the same components. The equivalence relation induced
by well-formedness can be used for verifying whether a participant respects its speci-
fication given as a contract, or for understanding when two participants are equivalent
by comparing their contracts, or for querying a database of participants by means of
their contract, along the lines of what has been done in the CCS context. Additionally,

Contracts for Mobile Processes 213

the very same equivalence relation can be used for assessing properties of participants
and systems: a contract T is viable if and only if it is not equivalent to 0; a system S is
well-formed if S � 1 + S; a system S has indefinite progress if S � Ω + S.

We can identify three main contributions of this work. First, we propose a natu-
ral extension of the contract language presented in [12, 14, 25] for describing pro-
cesses that communicate channels in addition to plain messages. Second, we define
a notion of well-formed system as a system whose stable states, those not allowing
any further progress, are such that all components have terminated successfully. The
resulting equivalence relation is inspired to the classical must preorder for mobile pro-
cesses [5, 26], except that we shift the attention from the success of a particular pro-
cess (the “test” in the classical framework), to the success of all the components in the
system. Well-formedness extends the notion of correct composition in [6, 7] to a name-
passing scenario. Finally, we show how contracts provide an alternative and somehow
naı̈ve approach to the typing of processes. Indeed we believe that the increasing com-
plexity of session type systems comes from the fact that they are used for guaranteeing
properties they were not originally designed for. Session types, which characterize chan-
nels, are types with a behavioral flavor. We say “flavor” because, as a matter of facts,
channels (like any other value) do not expose any behavior per se. Session types do not
characterize the behavior of the channels they type; they just reflect the behavior of the
processes that use those channels. This is evident in the inference rules of every session
type system, where a process is not associated with a type that abstracts its behavior, but
with a set of type assignments that provides a partial and distributed description of how
the process independently uses each of its channels. It is thus unsurprising that session
types systems guaranteeing global properties—most notably progress—must necessar-
ily rely on draconian restrictions on the usage of sessions (see [4, 13, 18] for a showcase
of such conditions). Conversely, contracts faithfully capture the behavior of processes
and the temporal dependencies between communications occurring on different chan-
nels. This significantly widens the spectrum of systems that are declared well formed.

Overview. We develop our theory of contracts in §2 and put it at work on a core session
calculus in §3, where we encode various examples, most of which from existing bibli-
ography. §4 discusses differences between our approach and those with session types,
presents more related work and hints at future research. For space reasons proofs, alter-
native characterizations, decidability, and deduction systems for the relations defined in
§2 are omitted and can be found in the extended version available online.

2 Contracts
The syntax of contracts makes use of an infinite set N of channel names ranged over by
a,b,c, . . . and of an infinite set X of channel variables ranged over by x,y,z, . . . ; let V
be the set of basic values ranged over by v,u, . . . ; we let α,β , . . . range over elements
of N ∪X and m,n, . . . range over messages, namely elements of N ∪V . Contracts,
ranged over by T,S, . . . , action prefixes, ranged over by π ,π ′, . . . , and patterns, ranged
over by f ,g, . . . are defined by the rules below:

T ::= 0 | 1 | Ω | π .T | T + T | T ⊕T | T |T | (νa)T
π ::= α? f | α! f | α!(a)
f ::= � | x | m | B | (x) | f ∨ f | f ∧ f | ¬ f

214 G. Castagna and L. Padovani

The syntax of patterns makes use of a fixed set of basic types ranged over by B such
as Int,Bool,Real, Patterns describe the (possibly infinite) set of messages that are
sent or received by an action occurring in a contract. Their semantics is fairly standard
and pattern matching rules, described below, derive matching relations of the form m ∈
f � σ where σ : X → N is a substitution whose domain dom(σ) is always finite:

m ∈ m � /0 a ∈ (x) � {a/x}

v : B

v ∈ B � /0

m ∈ f � σ
m ∈ f ∨g � σ

m ∈ f � σ m ∈ g � σ ′

m ∈ f ∧g � σσ ′
m
∈ f

m ∈ ¬ f � /0

The empty pattern � is the one that matches no message. The singleton pattern m
matches the message m. The type pattern B matches all and only basic values of type B.
The variable pattern x represents a singleton pattern that is going to be instantiated (x
must be bound at some outer scope), whereas the capture pattern (x) binds the variable x
and matches every channel. The disjunction, conjunction, and negation patterns imple-
ment the standard boolean operators and must obey the standard syntactic constraints:
the two branches of a disjunction must bind the same variables and the two branches
of a conjunction must bind disjoint variables. We write fv(f) and bv(f) for the sets
of free and bound variables occurring in a pattern. Their definition is standard, here we
just recall that bv(¬ f) = /0 regardless of f . Also, we write f \ g for f ∧¬g. Let f be a
closed pattern, namely a pattern such that fv(f) = /0; the semantics of f , notation � f �,
is the set of messages that are matched by f , that is � f � = {m | ∃σ : m ∈ f � σ}. We
impose an additional constraint on patterns occurring in output actions, which we call
output patterns from now on. An output pattern f is valid if it matches a finite number
of names, that is � f �∩N is finite. Basically this means that a process cannot “guess”
channel names. If it sends a channel, then either it is a public channel, or a channel it
has received earlier, or it is a fresh channel (pattern validity is formalized in the long
version of the paper).

Contracts include three terminal behaviors: 0 is the behavior of a deadlocked process
that executes no further action; 1 is the behavior of the successfully terminated process;
Ω is the behavior of a process that can autonomously evolve without any further inter-
action with the environment. A contract π .T describes a process that executes an action
π and then behaves according to T . There are three kinds of actions: an input action
α? f describes the ability to input any message that matches f on the channel α; out-
put actions α! f —i.e., free outputs—describe a similar output capability. Actions of the
form α!(a)—i.e., bound outputs—describe the creation and extrusion of a fresh, private
channel a, namely the establishment of a connection between the sender of the message
and the receiver of the message. The contracts T + S and T ⊕ S respectively describe
the external and internal choices between the behaviors described by T and S. In an
external choice, the process will behave as either T or S according to the environment.
In an internal choice, the process will internally and autonomously decide to behave as
either T or S. We also include two static operators for combining contracts, but only as
a convenient way of describing systems as terms (νa1) · · · (νan)(T1 |T2 | · · · |Tm) where
Ti is a description of the i-th participant, which is essentially a sequential process, the
ai’s are the private channels used by the participants to communicate with each other,
and the participants execute in parallel. It can be shown that restriction and parallel

Contracts for Mobile Processes 215

composition are redundant and their effects can be expressed by suitable combinations
of actions (including bound output actions) and the two choice operators.

To cope with infinite behaviors we use a technique we introduced in [14] and allow
contracts (but not patterns) to be infinite, provided that they satisfy the following con-
ditions: (1) their syntax tree must be regular, namely it must be made of a finite number
of different subtrees; (2) the syntax tree must contain a finite number of occurrences of
the parallel composition operator and of the restriction operator. The reason of such a
choice is that we want to account for infinite behaviors in a syntax-independent way. In
process algebra literature infinite behaviours are obtained by adding syntax for defining
recursive processes: usually these appear in the form of recursively defined processes
rec X .T , or of starred processes T ∗, or of a separate set of mutually recursive declara-
tions. These are nothing but finite representations of the infinite (syntax) trees obtained
by unfolding or expanding them. We believe that it is far simpler and enlightening to get
rid of syntactic constraints and work directly on infinite trees by relying on the theory
developed by Bruno Courcelle [16]. In our theory we do not consider every possible
infinite tree but just those that satisfy the two conditions above. The first condition –
regularity – powers down the expressiveness of the language to include only and all
contracts that can be generated by the rec-expressions or mutually recursive declara-
tions customary in the process algebra literature (it is well-known that in a nondetermin-
istic setting the ∗ operator is not as expressive as recursive definitions). Nevertheless all
results stated in this work hold also for non regular trees, except the decidability ones
of course. The second condition, which requires that only finitely many restrictions and
parallel compositions occur in a contract, ensures that every contract describes a finite-
state system (and, incidentally, keeps the whole theory decidable). Once the results are
established for infinite trees, then it is straightforward to transpose them to any con-
crete syntax chosen and verify the consequences of this choice (see [13, 14] for a more
detailed discussion on similar restrictions).

We give contracts the labeled operational semantics defined by the rules below, plus
the symmetric of the rules for the binary operators. Labels are generated by the grammar
µ ::= � | c?m | c!m | c!(a) and we use standard definitions bn(·) and fn(·) of bound
and free names for labels and contracts:

Ω −→ Ω 1
�−→ 1 T ⊕S −→ T c!m.T

c!m−→ T
m ∈ f � /0 m
= f

c! f .T −→ c!m.T

a
= c

c!(a).T
c!(a)−→ T

m ∈ f � σ

c? f .T
c?m−→ T σ

T
µ−→ T ′

T +S
µ−→ T ′

T −→ T ′

T +S −→ T ′ +S

T −→ T ′

T |S −→ T ′ |S

T
µ−→ T ′ µ
=� bn(µ)∩fn(S) = /0

T |S µ−→ T ′ |S

T
�−→ T ′ S

�−→ S′

T |S �−→ T ′ |S′

T
c!m−→ T ′ S

c?m−→ S′

T |S −→ T ′ |S′
T

c!(a)−→ T ′ S
c?a−→ S′ a
∈ fn(S)

T |S −→ (νa)(T ′ |S′)
T

µ−→ T ′ a
∈ fn(µ)∪bn(µ)

(νa)T
µ−→ (νa)T ′

T
c!a−→ T ′ a
= c

(νa)T
c!(a)−→ T ′

T −→ T ′

(νa)T −→ (νa)T ′

216 G. Castagna and L. Padovani

The contract Ω provides an unbound number of internal transitions, while no tran-
sition stems from 0. The contract 1 emits a label � denoting successful termination
and reduces to itself. The internal choice T ⊕S may silently reduce to either T or S. A
contract c! f .T first silently chooses one particular message m that matches f , and then
emits it. The operational semantics requires that no name is captured (the substitution
resulting from matching must be /0) but this follows from validity of output patterns.
A contract c!(a).T emits a fresh (a
= c) channel name a and reduces to T . A contract
c? f .T is capable of receiving any message m that matches f and reduces to T where
all the captured channel names in m are substituted for the corresponding capture vari-
ables. We omit the precise definition of substitution, which is standard except that it
applies also to free variables occurring in patterns. An external choice T + S offers all
visible actions that are offered by either T or S. Both the external choice and the parallel
composition are preserved under internal choices of their component contracts. In par-
ticular, the rule for + indicates that this operator is a truly external choice. Any visible
action emitted by either T or S is also emitted by their parallel composition, provided
that the action is different from� and that no capture of free names occurs. The parallel
composition of two contracts is successfully terminated only if both contracts are. Then
we have the usual synchronization rules for parallel composition, where pairs of dual
actions react and give rise to an internal action. Finally, visible transitions whose labels
have names that differ from a restricted one are propagated outside restrictions, and so
are invisible transitions. The output of a channel name becomes a connection whenever

it escapes its restriction. In the following we write T �−→ (respectively T �
µ−→) if there is

no T ′ such that T −→ T ′ (respectively T
µ−→ T ′); if T �−→, then we say that T is stable;

we write =⇒ for the reflexive, transitive closure of −→; we write
µ

=⇒ for =⇒ µ−→=⇒.

Remark 1. Our syntax is redundant insofar as 0 and Ω can be encoded respectively
as the infinite processes (solution of the equations) X = X + X and X = X ⊕X . Both
are regular and finite state and, according to the LTS, the former cannot perform any
transition while the latter can only perform internal transitions and rewrite to itself. �

Remark 2. Patterns allow us to capture different flavors of the π-calculus: standard π-
calculus is obtained by using variable and singleton patterns in outputs and capture
patterns in inputs. Adding singleton patterns in inputs gives us the π-calculus with
matching ([x = y]T can be encoded as (νc)(c!x | c?y.T) for c not free in T); negation
adds mismatch (([x
= y]T ≡ (νc)(c!x |c?¬y.T)); the polyadic π-calculus is obtained by
adding the product constructor to patterns. �

Example 1. The contract

TSeller
def= store?(x).x?String.(x!error.1⊕ x!Int.(x?ok.ship!x.1 + x?quit.1))

describes the behavior of a “seller” process that accepts connections on a public channel
store. The conversation continues on the private channel x sent by the “buyer”: the
seller waits for the name of an item, and it sends back either the value error indicating
that the item is not in the catalog, or the price of the item. In this case the seller waits for
a decision from the buyer. If the buyer answers ok, the seller delegates some “shipper”

Contracts for Mobile Processes 217

process to conclude the transaction, by sending it the private channel x via the public
channel ship. If the buyer answers quit, the transaction terminates immediately. �

We now formalize the notion of well-formed system and we do so in two steps. First
we characterize the compliance of a component T with respect to another component
S, namely the fact that the component T is capable of correct termination if composed
with another component that behaves according to S; then, we say that a system is well
formed if every component of the system is compliant with the rest of the system.

Definition 1 (compliance). Let # be the least symmetric relation such that�#�, c!m#
c?m, and c!(a) # c?a. Let [T | S] stand for the system T | S possibly enclosed within
restrictions. We say that T is compliant with S, notation T � S, if T |S =⇒ [T ′ |S′] and

T ′ �−→ implies that there exist µ1 and µ2 such that µ1 # µ2 and T ′ µ1−→ and S′
µ2=⇒.

According to the definition, T is compliant with S if every computation of T |S leading
to a state where the residual of T is stable is such that either the residual of T has suc-
cessfully terminated and the residual of S will eventually terminate successfully, or the
two residuals can eventually synchronize. The transition labeled by µ2 is weak because
the synchronization may only be available after some time. Notwithstanding this, the
availability of µ2 is guaranteed because compliance quantifies over every possible com-
putation. Observe that Ω is compliant with every S (but not viceversa). This is obvious,
since Ω denotes indefinite progress without any support from the environment.

Compliance roughly corresponds to the notion of “passing a test” in the classical
testing framework [5, 20, 26]: T compliant with S is like saying that S must pass the
test T . There is an important difference though: in the classical framework, divergence
is a catastrophic event that may prevent the test from reaching a successful state. This
is sometimes justified as the fact that a diverging component may eat up all the com-
putational power of a system, making the rest of the system starve for progress. In a
setting where processes run on different machines/cores this justification is not appli-
cable. Actually, divergence turns out to characterize good systems, those that do have
progress. In particular, divergence of the test T is ignored, since it implies that T is
making progress autonomously; divergence of the contract S being tested is ignored, in
the sense that all the visible actions it provides are guaranteed. For example, we have
c?a.1 � c!a.1 + Ω. In this sense, + is a “strongly external” choice (if compared to the
external choice in [20, 26]) since it guarantees the visible actions in the converging
branches.

Definition 2 (well-formed system). Let ∏i∈{1,...,n} Ti stand for the system T1 | · · · |Tn,
where ∏i∈ /0 = 1 by definition. Let S ≡ ∏i∈{1,...,n} Ti. We say that the system S is well
formed if Tk � ∏i∈{1,...,n}\{k}Ti for every 1 ≤ k ≤ n. We say that T and S are dual,
notation T 	� S, if T |S is a well-formed system.

For example, we have that c?a.1+c?b.1 |c!a.1⊕c!b.1 is well formed but c?a.1 |c!a.1⊕
c!b.1 is not. Similarly, c!Int.1 | c?Int.1 + c?¬Int.0 is well formed but c!Int∨ a.1 |
c?Int.1 + c?¬Int.0 is not because c!Int∨ a.1 | c?Int.1 + c?¬Int.0 =⇒ 1 | 0. The
systems 1 and Ω are trivially well formed: the former has terminated, and hence is
compliant with the rest of the system, which is empty and consequently terminated as
well; the latter is compliant with every system, and thus with the empty system as well.

218 G. Castagna and L. Padovani

Duality is the symmetric version of compliance, namely it considers the success of
the test as well as of the contract being tested. Technically this corresponds to restricting
the set of tests (or observers) of a contract T to those contracts that not only are satisfied
by T but that additionally satisfy T .

Example 2. The contracts

TBuyer
def= store!(c).c!String.(c?error.1 + c?Int.c!ok.c!String.1)

TShipper
def= ship?(x).x?String.1

describe the behavior of a client that is always willing to buy the requested item re-
gardless of its price, and of a shipper that asks the buyer’s address before terminating
successfully. The system TBuyer |TShipper |TSeller is well formed since the only maximal
computation starting from these contracts ends up in 1 |1 |1. �

Well-formedness is a property of whole systems, but it is of little help when we want to
reason about the single components of a system. For example, the contract Ω by itself
is a well-formed system and any system in which one of its components has contract 0
is clearly ill formed. The contract TBuyer in Example 2 is not a well-formed system by
itself, yet it is very different from 0: there exist components that, combined with TBuyer,
make a well-formed system, while this is impossible for 0. In this sense we say that
TBuyer is viable and 0 is not.

Definition 3 (viability). We say that T is viable, notation T 	�, if T 	� S for some S.

Our notion of viability roughly corresponds to the notion of well-typed process in the-
ories of session types. There is a fundamental difference though: a locally well-typed
process (in the sense of session types) yields a well-typed system when completed by
any context that is itself well-typed, whereas for a contract to be viable it suffices to find
one particular context that can yield a well-formed system. This intuition suggests that
well-typedness of a process is a much stricter requirement than viability, and explains
why the guarantee of global properties such as system well-formedness comes at the
cost of imposing severe constraints on the behavior of the single components. As an
example that shows the difference between well-typedness and viability, consider the

contracts T
def= c?a.1+c?b.0 and S

def= c?a.0+c?b.1. Both are viable when taken in isola-
tion, but their composition is not: an hypothetical third component interacting with T |S
cannot send c!b because T might read it and reduce to 0, and symmetrically it cannot
send c!a because S might read it and reduce to 0.

Duality induces a semantic notion of equivalence between contracts. Informally, two
contracts are equivalent if they have the same duals.

Definition 4 (subcontract). We say that T is a subcontract of S, notation T � S, if
T 	� R implies S 	� R for every R. Let ≈ be the equivalence relation induced by �.

For example T ⊕S � T , namely it is safe to replace a process with a more deterministic
one. Then we have T � 1 + T and T � Ω + T , namely it is safe to replace a process
with another one that, in addition to exposing the behavior of the original process, is also

Contracts for Mobile Processes 219

able to immediately terminate with success or is immediately able to make autonomous
progress. Observe that 0, 1, and Ω are pairwise different: 0 is the least element of � and
T ≈ 0 means that there is no context that can guarantee progress to T , hence the process
with contract T is ill-typed; 1
≈ Ω because 1 	� 1 but 1
	� Ω. Indeed 1 denotes eventual
termination, while Ω denotes indefinite progress.

Just as for the π-calculus, it is easy to see that � is a precongruence for action
prefixes without bound variables, and we have that Tσ � Sσ for every σ such that
dom(σ) = bv(f) implies c? f .T � c? f .S. Additionally, � is a precongruence with re-
spect to ⊕: it suffices to observe that R 	� T ⊕ S if and only if R 	� T and R 	� S. It is
equally easy to see however that � is not a precongruence with respect to +, because of
the relation 0 � T . For example 0 � c?a.0, but c?a.1 + 0
� c?a.1 + c?a.0. This makes
it difficult to axiomatize �, since it is not possible to replace equals for equals in arbi-
trary contexts. Furthermore, the usefulness of the relation 0 � T is questionable, since
it allows the replacement of a deadlocked process with anything else. But if the process
is already deadlocked, for sure the system it lives in is ill-formed from the start and it
makes little sense to require that the system behaves well after the upgrade. Thus, we
will also consider the closure of � with respect to external choice.

Definition 5 (strong subcontract relation). Let � be the largest relation included in

� that is a precongruence with respect to +, namely T � S
def⇐⇒ T + R � S + R for

every R. We write � for the equivalence relation induced by �.

Unlike �, we have 0
� T in general, but π .0 � π .T does hold. In fact, it is interesting
to investigate whether the loss of the law 0 � T in particular, and the use of � instead
of � in general, have any significant impact on the theory. The following result shows
that this is not the case:

Theorem 1. If T 	� and T � S, then T � S.

Namely, � and � may differ only when the �-smaller contract is not viable. In practice,
the use of � over � has no impact: the relation T � 0 completely characterizes non-
viable contracts and upgrading, specialization, and searching based on the subcontract
relation make sense only when the smaller contract is viable. In fact, � allows us to
reason on the properties of a process by means of its contract:

Proposition 1. The following properties hold: (1) T 	� iff T
� 0; (2) 1+T � T iff T =⇒
T ′ implies T ′ �=⇒; (3) Ω + T � T iff T =⇒ T ′ implies T ′ −→.

Item (1) characterizes viable contracts, and hence describe processes that are well typed.
Item (2) characterizes those contracts that, when reaching a stable state, are in a success-
ful state; consequently, the property gives us a sufficient (but not necessary) condition
for well-formedness. Item (3) characterizes those contracts that never reach a stable
state, and hence describe processes that are capable of making indefinite progress.

3 Typing a Core Language of Sessions

One possible way to assess the expressiveness of the contract language would be to
provide a contract-based type system for one of the latest session type calculi in the

220 G. Castagna and L. Padovani

literature. Unfortunately, this would spoil the simplicity of our approach: existing ses-
sion type calculi are of increasing complexity and include ad-hoc operators designed to
adapt session types to new usage scenarios. Typing such operators with our types would
require twisted encodings, bringing back that very kind of complexity that our contracts
aim to avoid. For these reasons we prefer to introduce yet another session core calcu-
lus, use it to encode examples defined in other papers to motivate the introduction of
restrictions and specialized constructs, and finally show that our types allow us to prove
progress for these examples (and for more complex ones that escape current session
type systems) without resorting to ad-hoc linguistic constructions.

The calculus we propose here—just as a proof-of-concept, not as an object of study—
is a streamlined version of several calculi introduced in the literature (eg, [4, 18, 21])
and is defined by the following productions, where t is either Bool or Int and e ranges
over unspecified expressions on these types:

P ::= 0 | α!(a).P | α!〈e〉.P | α?(x : t).P | α!�α�.P | α?�x�.P
| α � �.P | α 	 {�i : Pi}i∈I | P |P | (νa)P | if e then P else P

For a reader knowledgeable of session types literature the syntax above needs no
explanation. It boils down to a π-calculus that explicitly differentiates (channel) names,
ranged over by a,b,c, . . . from variables, ranged over by x,y,z, . . . (only the former can
be restricted, only the latter can be abstracted) and enriched with specific constructions
for sessions, namely actions α!�α� and α?�x� for session delegation1 and actions α � �
and α 	 {�i : Pi}i∈I for label-based session branching. The calculus also includes both
bound and free outputs, the former being used for session connection, the latter for
communication. Infinite behaviour is obtained by considering terms coinductively gen-
erated by the productions, in the same way as we did for contracts and with the same
restrictions.The semantics of the calculus is defined by an LTS whose most important
rules are (see the online extended version for all rules):

c!�a�.P
c!a−→ P c?�x�.P

c?a−→ P{a/x} c��.P
c!�−→ P

a
= c

c!(a).P
c!(a)−→ P

e ↓ v

c!〈e〉.P c!v−→ P

v : t

c?(x : t).P
c?v−→ P{v/x}

k ∈ I

c	{�i : Pi}i∈I
c?�k−→ Pk

The typing relation for the process calculus is coinductively defined by the following
rules (where Ch≡¬¬(x) is the type of all channel names and the various �’s are reserved
names that cannot be restricted or appear as subject of a communication).

END
Γ ! 0 : 1

NAME
Γ ! a : Ch

VAR
Γ ! x : Γ (x)

F-OUTPUT
Γ ! α : Ch Γ ! e : t Γ ! P : T

Γ ! α!e.P : α!t.T

INPUT
Γ ! α : Ch Γ ,x : t ! P : T

Γ ! α?(x : t).P : α?t.T
B-OUTPUT
Γ ! α : Ch Γ ! P : T

Γ ! α!(a).P : α!(a).T

C-SEND
Γ ! α,β : Ch Γ ! P : T

Γ ! α!�β �.P : α!β .T

C-RECV
Γ ! α : Ch Γ ,x : Ch ! P : T

Γ ! α?�x�.P : α?(x).T

1 In our case one should rather speak of “session forwarding” or “session sharing” since, con-
trarily to session type systems, we do not enforce channel bi-linearity.

Contracts for Mobile Processes 221

CHOICE
Γ ! α : Ch Γ ! P : T

Γ ! α ��.P : α!�.T

BRANCH
Γ ! α : Ch Γ ! Pi : Ti

Γ ! α 	{�i : Pi}i∈I : ∑
i∈I

α?�i.Ti

NEW
Γ ! P : T

Γ ! (νa)P : (νa)T

PAR
Γ ! P : T Γ ! Q : S

Γ ! P |Q : T |S

IF
Γ ! e : Bool Γ ! P : T Γ ! Q : S

Γ ! if e then P else Q : T ⊕S

The rules are straightforward since they perform a very simple abstraction on the con-
tent of communications. Although this typing permits a quite liberal usage of channels,
it is sufficient to verify the progress property, as stated by the following theorem:

Theorem 2 (progress). We say that a process has succeeded whenever it contains no
action. If ! P : T and 1 + T � T and P

τ=⇒ Q �
τ−→, then Q has succeeded.

In words, for any residual Q of a process whose contract T satisfies 1 + T � T , if Q
cannot make further progress (Q �

τ−→), then it contains no further actions (i.e., it is a
possibly restricted parallel composition of null processes 0) that is to say that all its
components have successfully terminated.

We devote the rest of the section to the encoding of a few examples in our process
language, some are taken from existing bibliography, others are new. The motivating
example of [18] is (in our syntax) the following pair of processes

P = a?�x�.b?�y�.x!3.x?(z : Int).y!true.0
Q = a!(c).b!(d).c?(z : Int).d?(z′ : Bool).c!5.0

The two processes initiate two sessions on (public) channels a and b and they ex-
change two integers over the former and a boolean value over the latter. The paral-
lel composition of these two processes deadlocks. This composition type-checks in
simple session type theories that verify the order of messages in each single session.
The system in [18] ensures progress and thus rejects this composition. Progress is
enforced by establishing a partial order on sessions and requiring that the usage of
session channels respects this order. So in [18] the process P can be composed with
Q′ = a!(c).b!(d).c?(z : Int).c!5.d?(z′ : Bool).0 since in both processes the communi-
cation on b follows all communications on a. In our system the two processes have
respectively type:

TP = a?(x).b?(y).x!Int.x?Int.y!Bool.1 TQ = a!(c).b!(d).c?Int.d?Bool.c!Int.1

We have TP | TQ � 0, hence the composition does not satisfy progress. In fact we can
tell something more: TP | TQ is not viable, namely there is no process, that composed
with P and Q, allows us to obtain a well-formed system. As in [18] our system detects
that P |Q′ is well formed, since 1 + (TP | TQ′) � TP | TQ′ (we let the reader figure out
TQ′). Furthermore while the system in [18] rejects the composition of Q with P′ =
a?�x�.b?�y�.x!3.y!true.x?(z : Int).0, since it is not possible to order the actions of the
two sessions, our system instead proves progress for this composition too.

Other restrictions introduced for session types to enforce progress are useless in our
framework. In particular, we do not require linearity of session channels: a process can
still use a channel that it has “delegated” without necessarily jeopardizing progress.

222 G. Castagna and L. Padovani

Consider the following two processes P′ = a?�x�.b?�y�.x!�y�.x?(z : Int).y!true.0 and
Q′ = a!(c).b!(d).c?�z�.c!5.z?(z′ : Bool).0. Although P′ uses y after having delegated
it, the contract T of P′ |Q′ satisfies 1 + T � T . This freedom from linearity constraints
instantly enables multi-party sessions, without the need of any dedicated syntax. Con-
sider for instance the “Two Buyers” protocol of [22], which describes a conversation
between a seller and two buyers, the first buyer being the initiator of the multi-party
session. It can be rendered in our language as follows

Seller = a?�x�.x?(title : String).x!〈quote〉.x!〈quote〉.
x	 {ok : x?(addr : String).x!〈date〉.0, quit : 0}

Buyer1 = a!(c).a!�c�.c!〈“War and Peace”〉.c?(quote : Int).b!(d).d!〈quote/2〉.0
Buyer2 = a?�x�.x?(quote : Int).b?�y�.y?(contrib : Int).if quote− contrib ≤ 99

then x�ok.x!〈address〉.x?(d : Date).0 else x�quit.0

Buyer1 initiates the session on the public channel a by broadcasting twice the session
channel c. This channel is received by Seller and Buyer2, used by Buyer1 to request a
title to Seller, and used by Seller to send the price to both buyers and to conclude the
transaction with Buyer2. As for [22] the communication between the two buyers takes
place on a separate private channel y initiated on the public channel b. The three agents
are really the same as the corresponding ones in [22] except that (i) connections are
dyadic and do not have to explicitly state the name of the intended partner and (ii) Seller
is not aware of the private channel used by the buyers to communicate together. As [22]
our type system: (1) it ensures that the composition of the above agents is well typed
since their contracts are

Seller : a?(x).x?String.x!Int.x!Int.(x?ok.x?String.x!Date.1 + x?quit.1)
Buyer1 : a!(c).a!�c�.c!String.c?Int.b!(d).d!Int.1
Buyer2 : a?(x).x?Int.b?(y).y?Int.(x!ok.x!String.x?Date.1⊕ x!quit.1)

and the parallel composition T of these contracts satisfies the law 1 + T � T and (2) it
would reject the protocol if the channel c were also used for the inter-buyer communi-
cation. Of course the property 1 + T � T ensures that the system formed by the three
agents has also progress, as does the system of [4] which extends [22] with progress.

The full expressive power of contracts emerges when specifying recursive protocols.
To illustrate the point we encode a well-known variant of the Diffie-Hellman protocol,
the Authenticated Group Key Agreement protocol A-GDH.2, defined in [2]. This proto-
col allows a group of n processes P1 . . .Pn to share a common authenticated key sn. The
protocol assumes the existence of n channels c1 . . .cn each ci being shared between Pi−1

and Pi (for the sake of the simplicity we use a bootstrapping process P0 absent in the
original presentation). The original algorithm also assumes that the process Pn shares a
secret key Ki with process Pi for i ∈ [0,n). We spice up the algorithm so that the sharing
of these keys is implemented via a private channel that is delegated at each step along
the participants:

P0 = c1!〈d〉.c1?�y�.y�ok.0

Pi = ci?(x : data).ci+1!〈 f (x)〉.ci+1?�y�.y�key.y!〈Ki〉.y?(s : Int).ci!�y�.0 i∈[1,n)

Pn = cn?(x : data).cn!(c).Q with Q = c	 {ok : 0 , key : c?(k : Int).c!〈g(x,k)〉.Q}

Contracts for Mobile Processes 223

In a nutshell, P0 starts the protocol by sending some data d to P1; each intermediate
process Pi receives some data x from Pi−1, uses this data to compute new data f (x) that it
forwards to Pi+1; the terminal process Pn receives the data x from Pn−1, generates a new
private channel c used for retrieving from every process Pi the key Ki and sending back
an integer g(x,Ki) (from which Pi can deduce the key sn). Each intermediate process
delegates the channel y to its predecessor and P0 notifies to Pn the successful termination
of the protocol (refer to Figures 2 and 3 of [2] for precise definitions of f and g).

The algorithm is quite complex to analyse for at least two reasons: (i) Pn is recur-
sively defined since it does not know a priori how many processes take part in the
protocol (actually it statically knows just the existence of channel cn), and (ii) all the
shared keys are transmitted over the same channel c (generated in the second action of
Pn) which constitutes a potential source of interference that may hinder progress.

All the session type systems that enforce progress we are aware of fail to type check
the above protocol. In particular the progress type systems for dyadic sessions [18] and
multi-party ones [4] fail to type Pi because, as long as the ci are considered private
channels, it performs an output on a channel ci in the continuation of the reception of a
delegation; also, the protocol ends by emitting ok on the channel y, but every Pi process
uses ci before and after a synchronization on y, so it is not possible to find a well-
founded order on y and the various ci’s since there is a double alternation of actions on
y and ci. Likewise, conversation types [11] can type all the processes of the protocol
but progress cannot be ensured because there is no well-founded order for channels. As
a matter of facts, in all these works progress is enforced by the techniques introduced
by Kobayashi [23, 24] where types are inhabited by channels on which a well-founded
usage (capability/obligation, in Kobayashi’s terminology) order can be established. By
inhabiting types by processes we escape the need of such an order and thus can type the
processes of the protocol.

Classical Sessions Typing. The type system presented earlier in the section is enough
to ensure the progress property stated in Theorem 2. However, in some contexts it
may be desirable to enforce a stricter typing discipline in order to impose a particular
communication model. Let us clarify this point with an example. Consider the system
c?(x : Int).0 |c?(x : Bool).0 |c!〈3〉.0 |c!〈true〉.0 which is composed of four processes,
two of which are sending on the channel c messages with different types (Int and
Bool) while the remaining processes are waiting for two messages on the channel c (of

type Int and Bool). Its contract is S
def= c?Int.1 | c?Bool.1 | c!Int.1 | c!Bool.1 which

satisfies 1 + S � S. Namely, the above system is free from communication errors de-
spite it contains processes that are sending and receiving messages of different types
on the same channel at the same time. Technically this happens because the operational
semantics of contracts (and of processes) does not distinguish between communication
and matching. In practice, the typing rules we have given reflect a particular communi-
cation model: a receiver waits until a message of the expected type is available. Thus, a
well-formed system is such that any process that is blocked waiting for a message will
eventually read a message of the expected type, and any process that is blocked trying
to send a message will eventually deliver it to someone who is able to handle it.

This communication model is not the only reasonable one, especially in a distributed
setting where asynchrony decouples communication from the ability to inspect the

224 G. Castagna and L. Padovani

content of messages. In this setting, it could be reasonable to assume that a process
waiting for messages sent on some channel c should be ready to handle any message
sent on that channel at that particular time. Somewhat surprisingly, this communication
model can be implemented without any change to the operational semantics of con-
tracts and processes, but merely adjusting a few typing rules, those that deal with input
actions:

INPUT
Γ ! α : Ch Γ ,x : t ! P : T

Γ ! α?(x : t).P : α?t.T +α?¬t.0

C-RECV
Γ ! α : Ch Γ ,x : Ch ! P : T

Γ ! α?�x�.P : α?(x).T +α?¬Ch.0

BRANCH
Γ ! α : Ch Γ ! Pi : Ti

Γ ! α 	{�i : Pi}i∈I : ∑
i∈I

α?�i.Ti +α?
∧
i∈I

¬�i.0

Intuitively, the contract of a process waiting for messages states that the process is
capable of receiving any message, but only those of some particular type will allow the
process to continue. If the process receives a message that it is not able to handle, the
process deadlocks, therefore compromising well-formedness of the system it belongs
to. With these typing rules in place, we are making the assumption that at each step of a
computation any channel is implicitly associated with a unique type of its messages (i.e.,
a set of labels, a set of values, a finite set of channel names, or a combination of these in
case the language provides for boolean operators over types) and that every process that
at that step waits for messages on that channel must be able to handle every message
that is or may be sent on it. With the modified typing rules, the above system is typed

by the contract S′
def= c?Int.1 + c?¬Int.0 | c?Bool.1 + c?¬Bool.0 | c!Int.1 | c!Bool.1

and it is immediate to see that this system no longer enjoys progress, since S′ � 0.
Interestingly, this modified typing discipline gives rise to the same subtyping rela-

tion as the one defined by Gay and Hole for session types [19]. In particular, we have
contravariance for outputs, covariance for inputs, and width subtyping for branching.
More precisely if we define the subtyping relation for patterns (and thus for types) as

f ≤ g
def= � f � ⊆ �g�, then it is not difficult to verify the soundness of the rules

f ≤ g T � S

c!g.T � c! f .S

f ≤ g T � S

c? f .T + c?¬ f .0 � c?g.S + c?¬g.0

The two rules state that the implicit type of a channel (in the sense of session types:
we do not assign any type to channels) can be contravariantly specialized for emission
actions (F-OUTPUT), (C-SEND), (CHOICE) and covariantly specialized for reception
actions (INPUT), (C-RECV), (BRANCH). For instance, when in the system above we
deduce for the process c?(x : t).P the contract c?t.T +c?¬t.0 we are implicitly assuming
that the channel c in the system of Gay and Hole would have type ?[t].T ′ for some T ′

(which would be the projection of T over c); the rule on the right hand side states that it
can be safely replaced by a channel whose (implicit) type is ?[s].T ′, provided that t ≤ s.

The language proposed in this section is just an example of how our contracts can
be used. But one can, and indeed should, imagine to use them to type advanced pro-
cess calculi with, for instance, type driven synchronization (e.g., the language PiST for

Contracts for Mobile Processes 225

sessions defined in [13]) or first-class processes (contracts being assigned to processes,
a typed calculus with higher-order processes looks as a natural next step).

4 Related Work and Conclusions

The latest works on session types witness a general trend to use more and more informa-
tive types, a trend that makes these approaches closer to the techniques of specification
refinement. Here we push this trend to an extreme. Contracts are behavioral types that
accurately capture the behavior of participants in a conversation by providing a rela-
tively shallow abstraction over processes that respect them. We are at the edge between
behavioral types, specification refinements, and abstract interpretation: contracts record
the flow of communications only when channels are passed around and they abstract
communication content into patterns; values are abstracted into possibly infinite set of
values (i.e., types) and names into finite sets of names (i.e., valid output patterns). Inas-
much as shallow this abstraction is, it is enough to define a theory of contracts (whose
comparison with testing theories was discussed in Sections 1 and 2) that allows us to
reason effectively (see the online extended version for decidability results) about the
correctness of systems and about the safe substitutability and well-typedness of com-
ponents of a system: it makes us switch from undecidability to decidability. A similar
approach is followed by [9], where the content of messages can be made opaque and
thus abstracted; this is closer to, though grosser than, the refinement approach. The cru-
cial difference between our approach and all other theories of contracts, [9] included, is
that we keep track of names passed around in communications.

We discussed technical differences between contracts and session types all the pre-
sentation long. The key point is that contracts record the overall behavior of a process,
while session types project this behavior on the various private channels the process
uses. Providing partial views of the behavior makes session types more readable and
manageable. At the same time it hinders their use in enforcing global properties—
notably, progress—whence the need for awkward restrictions such as channel linearity,
controlled nesting, scarce session interleaving, and global order on channel usage. In
practice, the two approaches have both pros and cons. The contract approach is “op-
timistic” in that a process is considered well typed as long as there exists at least one
context that composed with it yields a well-formed system; session types, instead, ac-
count for the nastier possible context. Thus, the contract-based approach widens the
spectrum of well-typed (viable) processes but, as we have seen, the composition of vi-
able processes is not necessarily viable. This implies that to prove viability of a parallel
composition of processes our approach requires a global system analysis that effectively
enumerates all control-flow paths, whereas session types allow each process component
to be verified independently. However, if a process is not viable, then it is easy to ex-
hibit a trace of actions that leads the process into an error state by looking at its contract.
The session-based approach restricts the set of well-typed processes, but makes it easy
to compose them. However, if the type checker detects an ill-typed process, it may be
unable to provide any sensible information to help the programmer fix the problem.

An interesting, related approach is the one of Conversation Types [11]. Conversation
Types are close to contracts, inasmuch as types provide a global and unique description

226 G. Castagna and L. Padovani

of the processes involved in a composition. The difference resides mainly in the formal-
ism used to describe the behavior: contracts stick as close as possible to the π-calculus,
while Conversation Types draw their inspiration from the structural features of spatial
logic [10] and Boxed Ambients [8] by organizing behavior around places of conversa-
tion (which thus generalize sessions) and describing communications relatively to them
(local vs. external). As in our case the approach of Conversation Types is optimistic
and does not require awkward usage conditions: for instance Conversation Types allow
processes to still use a channel after having delegated it, as for contracts. Conversation
Types do not ensure progress, which is instead enforced via an auxiliary deduction sys-
tem that exploits an order relation on channels. In this respect Conversation Types seem
more basic than contracts. The authors say that the Conversation Calculus they type can
be seen as a π-calculus with labels and patterns, as our calculus is. It will be interest-
ing to check whether/how contracts can type the conversation calculus and deduce an
in-depth comparison of the two approaches. We leave this as future work.

A problem that is connected with but orthogonal to the ones studied here is the global
specification of choreographies. Contracts are subjective descriptions of (components
of) systems, but cannot be used to give a global specification of a choreography to
which every acceptable implementation (decomposition) must conform. As a matter
of facts, in our theory a closed, well-formed system is typed by either 1 or Ω. There
exist two main proposals of languages for high-level specification of the structure of
conversation within a choreography against which the components of the choreography
must be validated. The first proposal, issued from the literature of session types, is
based on the definition of “global types” that describe the structure of conversation by
listing for each session the sender, receiver and content of each communication [22, 27].
The second proposal is directly embedded into conversation types, since they describe
the global structure of the conversation by providing a set of traces in which internal
transitions are labeled by the synchronization that generated them. Whether these two
approaches fit our setting is matter of future research.

Alternative characterizations of viability and of the subcontract relations, as well as
the proof system for �, shed light on important aspects of the theory, yet we had to omit
them because of the page limit: they can be found in the online extended version. We are
currently extending the completeness proof of the deduction system to an algorithm for
deciding �. In this respect, the constraint of working with regular (hence finite-state)
contracts plays a crucial role and may prove fundamental in comparing the expressive
power of our theory with alternative theories that share common goals. The exact im-
plications of this constraint are currently unclear and subject of in-depth investigations.

Acknowledgments. Work partially supported by the project ANR-08-EMER-004-04.
We thank Mariangiola Dezani-Ciancaglini, Hugo Vieira, and Nobuko Yoshida for in-
sightful discussions.

References

1. Aceto, L., Hennessy, M.: Termination, deadlock, and divergence. J. ACM 39(1) (1992)
2. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key agreement and friends. In:

CCS 1998: 5th ACM conference on Computer and Communications Security (1998)

Contracts for Mobile Processes 227

3. Bettini, L., Capecchi, S., Dezani-Ciancaglini, M., Giachino, E., Venneri, B.: Session and
Union Types for Object Oriented Programming. In: Degano, P., De Nicola, R., Meseguer,
J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 659–680. Springer,
Heidelberg (2008)

4. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg
(2008)

5. Boreale, M., De Nicola, R.: Testing equivalence for mobile processes. Inf. Comput. 120(2),
279–303 (1995)

6. Bravetti, M., Zavattaro, G.: Contract based multi-party service composition. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer, Heidelberg (2007)

7. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and
contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829,
pp. 34–50. Springer, Heidelberg (2007)

8. Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: The Calculus of
Boxed Ambients. ACM TOPLAS 26(1), 57–124 (2004)

9. Buscemi, M.G., Melgratti, H.: Abstract processes in orchestration languages. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 301–315. Springer, Heidelberg (2009)

10. Caires, L.: Spatial-behavioral types for concurrency and resource control in distributed sys-
tems. TCS 402(2-3), 120–141 (2008)

11. Caires, L., Vieira, H.: Conversation types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

12. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A Formal Account of Contracts for
Web Services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

13. Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Foundation of session
types (unpublished manuscript) (available on line) (January 2009)

14. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for Web Services. ACM
TOPLAS 31(5) (2009)

15. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous Session Types and Progress
for Object-Oriented Languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, Springer, Heidelberg (2007)

16. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 95–169
(1983)

17. De Nicola, R., Hennessy, M.: CCS without τ’s. In: Ehrig, H., Levi, G., Montanari, U. (eds.)
CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 138–152. Springer, Heidelberg (1987)

18. Dezani-Ciancaglini, M., de’ Liguoro, U., Yoshida, N.: On progress for structured commu-
nications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 257–275.
Springer, Heidelberg (2008)

19. Gay, S., Hole, M.: Subtyping for session types in the π-calculus. Acta Inf. 42(2-3) (2005)
20. Hennessy, M.: Algebraic Theory of Processes. Foundation of Computing. MIT Press,

Cambridge (1988)
21. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type discipline for structured

communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381,
p. 122. Springer, Heidelberg (1998)

22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL
2008: the 35th annual ACM Symp. on Principles of Programming Languages (2008)

23. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159 (2002)
24. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.

(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)

228 G. Castagna and L. Padovani

25. Laneve, C., Padovani, L.: The must preorder revisited – An algebraic theory for web ser-
vices contracts. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 212–225. Springer, Heidelberg (2007)

26. Hennessy, M.: A fully abstract denotational semantics for the pi-calculus. Theor. Comput.
Sci. 278(37), 53–89 (2002)

27. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commutative
asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 316–332.
Springer, Heidelberg (2009)

28. Padovani, L.: Contract-directed synthesis of simple orchestrators. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 131–146. Springer, Heidelberg
(2008)

29. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathematical Struc-
tures in Computer Science 6(5), 409–453 (1996)

30. Vasconcelos, V.T., Ravara, A., Gay, S.J.: Session types for functional multithreading. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 497–511. Springer,
Heidelberg (2004)

Power of Randomization in Automata on Infinite Strings

Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

1 Univ. of Illinois, Urbana-Champaign
2 Univ. of Illinois, Chicago

Abstract. Probabilistic Büchi Automata (PBA) are randomized, finite state au-
tomata that process input strings of infinite length. Based on the threshold chosen
for the acceptance probability, different classes of languages can be defined. In
this paper, we present a number of results that clarify the power of such machines
and properties of the languages they define. The broad themes we focus on are
as follows. We precisely characterize the complexity of the emptiness, universal-
ity, and language containment problems for such machines, answering canoni-
cal questions central to the use of these models in formal verification. Next, we
characterize the languages recognized by PBAs topologically, demonstrating that
though general PBAs can recognize languages that are not regular, topologically
the languages are as simple as ω-regular languages. Finally, we introduce Hierar-
chical PBAs, which are syntactically restricted forms of PBAs that are tractable
and capture exactly the class of ω-regular languages.

1 Introduction

Automata on infinite (length) strings have played a central role in the specification,
modeling and verification of non-terminating, reactive and concurrent systems [8, 10,
17, 20, 21]. However, there are classes of systems whose behavior is probabilistic in
nature; the probabilistic behavior being either due to the employment of randomization
in the algorithms executed by the system or due to other uncertainties in the system,
such as failures, that are modeled probabilistically. While Markov Chains and Markov
Decision Processes have been used to model such behavior in the formal verification
community [15], both these models do not adequately capture open, reactive probabilis-
tic systems that continuously accept inputs from an environment. The most appropriate
model for such systems are probabilistic automata on infinite strings, which are the
focus of study in this paper.

Probabilistic Büchi Automata (PBA) have been introduced in [3] to capture
such computational devices. These automata generalize probabilistic finite automata
(PFA) [12, 14, 16] from finite length inputs to infinite length inputs. Informally, PBA’s
are like finite-state automata except that they differ in two respects. First, from each
state and on each input symbol, the PBA may roll a dice to determine the next state.
Second, the notion of acceptance is different because PBAs are probabilistic in nature
and have infinite length input strings. The behavior of a PBA on a given infinite input
string can be captured by an infinite Markov chain that defines a probability measure on
the space of runs/executions of the machine on the given input. Like Büchi automata,
a run is considered to be accepting if some accepting state occurs infinitely often, and

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 229–243, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 R. Chadha, A.P. Sistla, and M. Viswanathan

therefore, the probability of acceptance of the input is defined to be the measure of all
accepting runs on the given input. There are two possible languages that one can as-
sociate with a PBA B [2, 3] — L>0(B) (called probable semantics) consisting of all
strings whose probability of acceptance is non-zero, and L=1(B) (called almost sure
semantics) consisting all strings whose probability of acceptance is 1. Based on these
two languages, one can define two classes of languages — L(PBA>0), and L(PBA=1)
which are the collection of all languages (of infinite length strings) that can be accepted
by some PBA with respect to probable, and almost sure semantics, respectively. In this
paper we study the expressive power of, and decision problems for these classes of
languages.

We present a number of new results that highlight three broad themes. First, we
establish the precise complexity of the canonical decision problems in verification,
namely, emptiness, universality, and language containment, for the classes L(PBA>0)
and L(PBA=1). For the decision problems, we focus our attention on RatPBAs which
are PBAs in which all transition probabilities are rational. First we show the problem
of checking emptiness of the language L=1(B) for a RatPBA B is PSPACE-complete,
which substantially improves the result of [2] where it was shown to be decidable in
EXPTIME and conjectured to be EXPTIME-hard. This upper bound is established by
observing that the complement of the language L=1(B) is recognized by a special PBA
M (with probable semantics) called a finite state probabilistic monitor (FPM) [4, 6]
and then exploiting a result in [6] that shows that the language of an FPM is non-
empty if and only if there is an ultimately periodic word in the language. This obser-
vation of the existence of ultimately periodic words does not carry over to the class
L(PBA>0). However, we show that L>0(B), for a RatPBA B, is non-empty iff it con-
tains a strongly asymptotic word, which is a generalization of ultimately periodic word.
This allows us to show that the emptiness problem for L(PBA>0), though undecidable
as originally shown in [2], is Σ0

2-complete, where Σ0
2 is a set in the second level of

the arithmetic hierarchy. Next we show that the universality problems for L(PBA>0)
and L(PBA=1) are also Σ0

2 -complete and PSPACE-complete, respectively. Finally, we
show that for both L(PBA>0) and L(PBA=1), the language containment problems are
Σ0

2 -complete. This is a surprising observation — given that emptiness and universality
are both in PSPACE for L(PBA=1), one would expect language containment to be at
least decidable.

The second theme brings to sharper focus the correspondence between nondeter-
minism and probable semantics, and between determinism and almost sure semantics,
in the context of automata on infinite words. This correspondence was hinted at in [2].
There it was observed that L(PBA=1) is a strict subset of L(PBA>0) and that while
Büchi, Rabin and Streett acceptance conditions all yield the same class of languages un-
der the probable semantics, they yield different classes of languages under the almost
sure semantics. These observations mirror the situation in non-probabilistic automata
— languages recognized by deterministic Büchi automata are a strict subset of the class
of languages recognized by nondeterministic Büchi automata, and while Büchi, Rabin
and Streett acceptances are equivalent for nondeterministic machines, Büchi acceptance
is strictly weaker than Rabin and Streett for deterministic machines. In this paper we

Power of Randomization in Automata on Infinite Strings 231

further strenghten this correspondence through a number of results on the closure prop-
erties as well as the topological structure of L(PBA>0) and L(PBA=1).

First we consider closure properties. It was shown in [2] that the class L(PBA>0)
is closed under all the Boolean operations (like the class of languages recognized by
nondeterministic Büchi automata) and that L(PBA=1) is not closed under comple-
mentation. We show that L(PBA=1) is, however, closed under intersection and union,
just like the class of languages recognized by deterministic Büchi automata. We also
show that every language in L(PBA>0) is a Boolean combination of languages in
L(PBA=1), exactly like every ω-regular language (or languages recognized by non-
deterministic Büchi machines) is a Boolean combination of languages recognized by
deterministic Büchi machines. Next, we characterize the classes topologically. There is
natural topological space on infinite length strings called the Cantor topology [18]. We
show that, like ω-regular languages, all the classes of languages defined by PBAs lie in
very low levels of this Borel hierarchy. We show that L(PBA=1) is strictly contained
in Gδ , just like the class of languages recognized by deterministic Büchi is strictly con-
tained in Gδ . From these results, it follows that L(PBA>0) is in the Boolean closure of
Gδ much like the case for ω-regular languages.

The last theme identifies syntactic restrictions on PBAs that capture regularity. Much
like PFAs for finite word languages, PBAs, though finite state, allow one to recognize
non-regular languages. It has been shown [2, 3] that both L(PBA>0) and L(PBA=1)
contain non-ω-regular languages. A question initiated in [3] was to identify restric-
tions on PBAs that ensure that PBAs have the same expressive power as finite-state
(non-probabilistic) machines. One such restriction was identified in [3], where it was
shown that uniform PBAs with respect to the probable semantics capture exactly the
class of ω-regular languages. However, the uniformity condition identified by Baier et.
al. was semantic in nature. In this paper, we identify one simple syntactic restriction
that capture regularity both for probable semantics and almost sure semantics. The re-
striction we consider is that of a hierarchical structure. A Hierarchical PBA (HPBA)
is a PBA whose states are partitioned into different levels such that, from any state q,
on an input symbol a, at most one transition with non-zero probability goes to a state
at the same level as q and all others go to states at higher level. We show that HPBA
with respect to probable semantics define exactly the class of ω-regular languages, and
with respect to almost sure semantics define exactly the class of ω-regular languages
in L(PBA=1), namely, those recognized by deterministic Büchi automata. Next, HP-
BAs not only capture the notion of regularity, they are also very tractable. We show
that the emptiness and universality problems for HPBA with probable semantics are
NL-complete and PSPACE-complete, respectively; for almost sure semantics, empti-
ness is PSPACE-complete and universality is NL-complete. This is interesting because
this is the exact same complexity as that for (non-probabilistic) Büchi automata. In con-
trast, the emptiness problem for uniform PBA has been shown to be in EXPTIME and
co-NP-hard [3]; thus, they seem to be less tractable than HPBA.

The rest of the paper is organized as follows. After discussing closely related work,
we start with some preliminaries (in Section 2) before introducing PBAs. We present
our results about the probable semantics in Section 3, and almost sure semantics in

232 R. Chadha, A.P. Sistla, and M. Viswanathan

Section 4. Hierarchical PBAs are introduced in Section 5, and conclusions are presented
in Section 6. In the interest of space, some proofs have been deferred to [5].

Related Work. Probabilistic Büchi automata (PBA), introduced in [3], generalize the
model of Probabilistic Finite Automata [12, 14, 16] to consider inputs of infinite length.
In [3], Baier and Größer only considered the probable semantics for PBA. They also in-
troduced the model of uniform PBAs to capture ω-regular languages and showed that
the emptiness problem for such machines is in EXPTIME and co-NP-hard. The al-
most sure semantics for PBA was first considered in [2] where a number of results were
established. It was shown that L(PBA>0) are closed under all Boolean operations,
L(PBA=1) is strictly contained in L(PBA>0), the emptiness problem for L(PBA>0)
is undecidable, and the emptiness problem of L(PBA=1) is in EXPTIME. We extend
and sharpen the results of this paper. In a series of previous papers [4, 6], we considered
a special class of PBAs called FPMs (Finite state Probabilistic Monitors) whose accept-
ing set of states consists of all states excepting a rejecting state which is also absorbing.
There we proved a number of results on the expressiveness and decidability/complexity
of problems for FPMs. We draw on many of these observations to establish new results
for the more general model of PBAs.

2 Preliminaries

We assume that the reader is familiar with arithmetical hierarchy. The set of natural
numbers will be denoted by N, the closed unit interval by [0, 1] and the open unit interval
by (0, 1). The power-set of a set X will be denoted by 2X .

Sequences. Given a finite set S, |S| denotes the cardinality of S. Given a sequence
(finite or infinite) κ = s0, s1, . . . over S, |κ| will denote the length of the sequence
(for infinite sequence |κ| will be ω), and κ[i] will denote the ith element si of the
sequence. As usual S∗ will denote the set of all finite sequences/strings/words over S,
S+ will denote the set of all finite non-empty sequences/strings/words over S and Sω

will denote the set of all infinite sequences/strings/words over S. Given η ∈ S∗ and
κ ∈ S∗ ∪Sω, ηκ is the sequence obtained by concatenating the two sequences in order.
Given L1 ⊆ Σ∗ and L2 ⊆ Σω, the set L1L2 is defined to be {ηκ | η ∈ L1 and κ ∈ L2}.
Given natural numbers i, j ≤ |κ|, κ[i : j] is the finite sequence si, . . . sj , where sk =
κ[k]. The set of finite prefixes of κ is the set Pref (κ) = {κ[0, j] | j ∈ N, j ≤ |κ|}.

Languages of infinite words. A language L of infinite words over a finite alphabet Σ is
a subset of Σω. (Please note we restrict only to finite alphabets). A set of languages of
infinite words over Σ is said to be a class of languages of infinite words over Σ. Given
a class L, the Boolean closure of L, denoted BCl(L), is the smallest class containing L
that is closed under the Boolean operations of complementation, union and intersection.

Automata and ω-regular Languages. A finite automaton on infinite words, A, over a
(finite) alphabet Σ is a tuple (Q, q0, F,∆), where Q is a finite set of states, ∆ ⊆ Q ×
Σ ×Q is the transition relation, q0 ∈ Q is the initial state, and F defines the accepting
condition. The nature of F depends on the type of automaton we are considering; for a
Büchi automaton F ⊆ Q, while for a Rabin automaton F is a finite subset of 2Q × 2Q.

Power of Randomization in Automata on Infinite Strings 233

If for every q ∈ Q and a ∈ Σ, there is exactly one q′ such that (q, a, q′) ∈ ∆ then A
is called a deterministic automaton. Let α = a0, a1, . . . be an infinite string over Σ.
A run r of A on α is an infinite sequence s0, s1, . . . over Q such that s0 = q0 and for
every i ≥ 0, (si, ai, si+1) ∈ ∆. The notion of an accepting run depends on the type of
automaton we consider. For a Büchi automaton r is accepting if some state in F appears
infinitely often in r. On the other hand for a Rabin automaton, r is accepting if it satisfies
the Rabin acceptance condition— there is some pair (Bi, Gi) ∈ F such that all the
states in Bi appear only finitely many times in r, while at least one state in Gi appears
infinitely many times. The automatonA accepts the stringα if it has an accepting run on
α. The language accepted (recognized) by A, denoted by L(A), is the set of strings that
A accepts. A language L ⊆ Σω is called ω-regular iff there is some Büchi automata A
such that L(A) = L. In this paper, given a fixed alphabet Σ, we will denote the class of
ω-regular languages by Regular. It is well-known that unlike the case of finite automata
on finite strings, deterministic Büchi automata are less powerful than nondeterministic
Büchi automata. On the other hand, nondeterministic Rabin automata and deterministic
Rabin automata have the expressive power and they recognize exactly the class Regular.
Finally, we will sometimes find it convenient to consider automata A that do not have
finitely many states. We will say that a language L is deterministic iff it can be accepted
by a deterministic Büchi automaton that does not necessarily have finitely many states.
We denote by Deterministic the collection of all deterministic languages. Please note
that the class Deterministic strictly contains the class of languages recognized by finite
state deterministic Büchi automata. The following are well-known results [13, 18].

Proposition 1. L ∈ Regular ∩ Deterministic iff there is a finite state deterministic
Büchi automaton A such that L(A) = L. Furthermore, Regular ∩ Deterministic �

Regular and Regular = BCl(Regular ∩ Deterministic).

Topology on infinite strings. The set Σω comes equipped with a natural topology called
the Cantor topology. The collection of open sets is the collection G = {LΣω | L ⊆
Σ+}1. The collection of closed sets, F , is the collection of prefix-closed sets — L is
prefix-closed if for every infinite string α, if every prefix of α is a prefix of some string
in L, then α itself is in L. In the context of verification of reactive systems, closed sets
are also called safety languages [1, 11]. One remarkable result in automata theory is
that the class of languages Gδ coincides exactly with the class of languages recognized
by infinite-state deterministic Büchi automata [13, 18]. This combined with the fact that
the class of ω-regular languages is the Boolean closure of ω-regular deterministic Büchi
automata yields that the class of ω-regular languages is strictly contained in BCl(Gδ)
which itself is strictly contained in Gδσ ∩ Fσδ [13, 18].

Proposition 2. Gδ = Deterministic, and Regular � BCl(Gδ) � Gδσ ∩ Fσδ.

2.1 Probabilistic Büchi Automata

We shall now recall the definition of probabilistic Büchi automata given in [3]. Infor-
mally, PBA’s are like finite-state deterministic Büchi automata except that the transition

1 This topology is also generated by the metric d : Σω × Σω → [0, 1] where d(α, β) is 0 iff
α = β; otherwise it is 1

2i where i is the smallest integer such that α[i] �= β[i].

234 R. Chadha, A.P. Sistla, and M. Viswanathan

function from a state on a given input is described as a probability distribution that deter-
mines the probability of the next state. PBAs generalize the probabilistic finite automata
(PFA) [12, 14, 16] on finite input strings to infinite input strings. Formally,

Definition: A finite state probabilistic Büchi automata (PBA) over a finite alphabet Σ
is a tuple B = (Q, qs, Qf , δ) where Q is a finite set of states, qs ∈ Q is the initial state,
Qf ⊆ Q is the set of accepting/final states, and δ : Q×Σ×Q → [0, 1] is the transition
relation such that for all q ∈ Q and a ∈ Σ,

∑
q′∈Q δ(q, a, q′) = 1. In addition, if

δ(q, a, q′) is a rational number for all q, q′ ∈ Q, a ∈ Σ, then we say that M is a rational
probabilistic Büchi automata (RatPBA).

Notation: The transition function δ of PBA B on input a can be seen as a square matrix
δa of order |Q| with the rows labeled by “current” state, columns labeled by “next state”
and the entry δa(q, q′) equal to δ(q, a, q′). Given a word u = a0a1 . . . an ∈ Σ+, δu is
the matrix product δa0δa1 . . . δan . For an empty word ε ∈ Σ∗ we take δε to be the
identity matrix. Finally for any Q0 ⊆ Q, we say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q′).
Given a state q ∈ Q and a word u ∈ Σ+, post(q, u) = {q′ | δu(q, q′) > 0}.

Intuitively, the PBA starts in the initial state qs and if after reading a0, a1 . . . , an results
in state q, then it moves to state q′ with probability δai+1(q, q′) on symbol ai+1. Given
a word α ∈ Σω, the PBA B can be thought of as a infinite state Markov chain which
gives rise to the standard σ-algebra defined using cylinders and the standard probability
measure on Markov chains [9, 19]. We denote this measure by µB,α. A run of the PBA
B is an infinite sequence ρ ∈ Qω. A run ρ is accepting if ρ[i] ∈ Qf for infinitely many
i. A run ρ is said to be rejecting if it is not accepting. The set of accepting runs and
the set of rejecting runs are measurable [19]. Given a word α, the measure of the set
of accepting runs is said to be the probability of accepting α and is henceforth denoted
by µacc

B, α; and the measure of the set of rejecting runs is said to be the probability of

rejecting α and is henceforth denoted by µrej
B, α. Clearly µacc

B, α + µrej
B, α = 1. Following,

[2, 3], a PBA B on alphabet Σ defines two semantics:

– L>0(B) = {α ∈ Σω |µacc
B, α > 0}, henceforth referred to as the probable semantics

of B, and
– L=1(B) = {α ∈ Σω |µacc

B, α = 1}, henceforth referred to as the almost-sure seman-
tics of B.

This gives rise to the following classes of languages of infinite words.

Definition: Given a finite alphabet Σ, L(PBA>0) = {L ⊆ Σω | ∃PBA B. L =
L>0(B)} and L(PBA=1) = {L ⊆ Σω | ∃PBA B. L = L=1(B)}.

Remark: Given x ∈ [0, 1], one can of course, also define the languages L>x(B) =
{α ∈ Σω | µacc

B, α > x} and L≥x(B) = {α ∈ Σω | µacc
B, α ≥ x}. The exact value of x is

not important and thus one can also define classes L(PBA> 1
2) and L(PBA≥ 1

2).

Probabilistic Rabin automaton. Analogous to the definition of a PBA and RatPBA,
one can define a Probabilistic Rabin automaton PRA and RatPRA [2, 7]; where instead
of using a set of final states, a set of pairs of subsets of states is used. A run in that

Power of Randomization in Automata on Infinite Strings 235

case is said to be accepting if it satisfies the Rabin acceptance condition. It is shown in
[2, 7] that PRAs have the same expressive power under both probable and almost-sure
semantics. Furthermore, it is shown in [2, 7] that for any PBA B, there is PRA R such
that a word α is accepted by R with probability 1 iff α is accepted by B with probability
> 0. All other words are accepted with probability 0 by R.

Proposition 3 ([2]). For any PBA B there is a PRA R such that L>0(B) = L>0(R) =
L=1(R) and L=0(B) = L=0(R). Furthermore, if B is a RatPBA then R can be taken
to be RatPRA and the construction of R is recursive in this case.

Finite probabilistic monitors (FPM)s. We identify one useful syntactic restriction of
PBAs, called finite probabilistic monitors (FPM)s. In an FPM, all the states are accept-
ing except a special absorbing reject state. We studied them extensively in [4, 6].

Definition: A PBA M = (Q, qs, Qf , δ) on Σ is said to be an FPM if there is a state
qr ∈ Q such that qr
= qs, Qf = Q \ {qr} and δ(qr , a, qr) = 1 for each a ∈ Σ. The
state qr said to be the reject state of M. If in addition M is a RatPBA, we say that M
is a rational finite probabilistic monitor (RatFPM).

3 Probable Semantics

In this section, we shall study the expressiveness of the languages contained in
L(PBA>0) as well as the complexity of deciding emptiness and universality of L>0(B)
for a given RatPBA B. We assume that the alphabet Σ is fixed and contains at least two
letters.

3.1 Expressiveness

It was already shown in [3] that the class of ω-regular languages is strictly contained
in the class L(PBA>0) and that L(PBA>0) is closed under the Boolean operations
of complementation, finite intersection and finite union. We will now show that even
though the class L(PBA>0) strictly containsω-regular languages, it is not topologically
harder. More precisely, we will show that for any PBA B, L>0(B) is a BCl(Gδ)-set. The
proof of this fact relies on two facts. The first is that just as the class of ω-regular
languages is the Boolean closure of the class of ω-regular recognized by deterministic
Büchi automata, the class L(PBA>0) coincides with the Boolean closure of the class
L(PBA=1). This is the content of the following theorem whose proof is of independent
interest and shall be used later in establishing that the containment of languages of two
PBAs under almost-sure semantics is undecidable (see Theorem 4).

Theorem 1. L(PBA>0) = BCl(L(PBA=1)).

Proof. First observe that it was already shown in [2] that L(PBA=1) ⊆ L(PBA>0).
Since L(PBA>0) is closed under Boolean operations, we get that BCl(L(PBA=1)) ⊆
L(PBA>0). We have to show the reverse inclusion.

It suffices to show that given a PBA B, the language L>0(B) ∈ BCl(L(PBA=1)).
Fix B. Recall that results of [2, 7] (see Proposition 3) imply that there is a probabilis-
tic Rabin automaton (PRA) R such that 1) L>0(B) = L=1(R) = L>0(R) and 2)

236 R. Chadha, A.P. Sistla, and M. Viswanathan

L=0(B) = L=0(R). Let R = (Q, qs, F, δ) where F ⊆ 2Q × 2Q is the set of the Rabin
pairs. Assuming that F consists of n-pairs, let F = ((B1, G1), . . . , (Bn, Gn)).

Given an index set I ⊆ {1, . . . , n}, let GoodI = ∪r∈IGr. Let RI be the PBA
obtained from R by taking the set of final states to be GoodI . In other words, RI =
(Q, qs,GoodI , δ). Given I ⊆ {1, . . . , n} and an index j ∈ I, let BadI,j = Bj ∪
∪r∈I,r �=jGr. Let Rj

I be the PBA obtained from R by taking the set of final states to be
BadI,j , i.e., Rj

I = (Q, qs,BadI,j, δ). The result follows from the following claim.

Claim:
L>0(B) =

⋃
I⊆{1,...,n},j∈I

L=1(RI) ∩ (Σω \ L=1(Rj
I)).

The proof of the claim is detailed in [5]. "#

The second component needed for showing that L(PBA>0) ⊆ BCl(Gδ) is the fact that
for any PBA B and x ∈ [0, 1], the language L≥x(B) is a Gδ-set.

Lemma 1. For any PBA B and x ∈ [0, 1], L≥x(B) is a Gδ set.

Using Lemma 1, one immediately gets that L(PBA>0) ⊆ BCl(Gδ). Even though PBAs
accept non-ω-regular languages, they cannot accept all the languages in BCl(Gδ).

Lemma 2. Regular � L(PBA>0) � BCl(Gδ).

Remark: Please note that Lemma 1 can be used to show that the classes L(PBA> 1
2)

and L(PBA≥ 1
2) are also contained within the first few levels of Borel hierarchy. How-

ever, we can show that no version of Theorem 1 holds for those classes. More precisely,
L(PBA> 1

2)
⊆ L(PBA≥ 1
2) and L(PBA≥ 1

2)
⊆ L(PBA> 1
2). These results are out of

the scope of this paper.

3.2 Decision Problems

Given a RatPBA B, the problems of emptiness and universality of L>0(B) are known to
be undecidable [2]. We sharpen this result by showing that the problem is Σ0

2 -complete.
This is interesting in the light of the fact that problems on infinite string automata that
are undecidable tend to typically lie in the analytical hierarchy, and not in the arithmetic
hierarchy.

Before we proceed with the proof of the upper bound, let us recall an important
property of finite-state Büchi automata [13, 18]. The language recognized by a finite-
state Büchi automata A is non-empty iff there is a final state qf of A, and finite words
u and v such that qf is reachable from the initial state on input u, and qf is reachable
from the state qf on input v. This is equivalent to saying that any non-empty ω-regular
language contains an ultimately periodic word. We had extended this observation to
FPMs in [4, 6]. In particular, we had shown that the language L>x(M)
= ∅ for a
given M iff there exists a set of final states C of M and words u and v such that the
probability of reachingC from the initial state on input u is> x and for each state q ∈ C
the probability of reaching C from q on input v is 1. This immediately implies that if
L>x(M) is non-empty then L>x(M) must contain an ultimately periodic word. In

Power of Randomization in Automata on Infinite Strings 237

contrast, this fact does not hold for non-empty languages in L(PBA>0). In fact, Baier
and Größer [3], construct a PBA B such that L>0(B) does not contain any ultimately
periodic word.

However, we will show that even though the probable semantics may not contain an
ultimately periodic, they nevertheless are restrained in the sense that they must contain
strongly asymptotic words. Given a PBA B = (Q, qs, Qf , δ) and a set C of states of
B, a word α ∈ Σω is said to be strongly asymptotic with respect to B and C if there
is an infinite sequence i1 < i2 < such that 1) δα[0:i1](qs, C) > 0 and 2) all j > 0,
for all q ∈ C, the probability of being in C from q after passing through a final state
on the finite input string α[ij , ij+1] is strictly greater than 1 − 1

2j . A word α is said
to be strongly asymptotic with respect to B if there is some C such that α is strongly
asymptotic with respect to B and C . The following notations shall be useful.

Notation: Let B = (Q, qs, Qf , δ). Given C ⊆ Q, q ∈ C and a finite word u ∈
Σ+, let δQf

u (q, C) be the probability that the PBA B, when started in state q, on the
input string u, is in some state in C at the end of u after passing through a final state.
Let Reach(B, C, x) denote the predicate that for some finite non-empty input string
u, the probability of being in C having started from the initial state qs is > x, i.e.,
Reach(B, C, x) = ∃u ∈ Σ+.δu(qs, C) > x.

The asymptotic sequence property is an immediate consequence of the following
Lemma.

Lemma 3. Let B = (Q, qs, Qf , δ). For any x ∈ [0, 1), L>x(B)
= ∅ iff ∃C ⊆ Q such
that Reach(B, C, x) is true and ∀j > 0 there is a finite non-empty word uj such that

∀q ∈ C. δ
Qf
uj (q, C) > (1 − 1

2j).

Proof. The (⇐)-direction is proved in [5]. We outline here the proof of (⇒)-direction.
The missing parts of the proof will be cast in terms of claims which are proved in [5].

Assume that L>x(B)
= ∅. Fix an infinite input string γ ∈ L>x(B). Recall that the
probability measure generated by γ and B is denoted by µB,γ . For the rest of this proof
we will just write µ for µB,γ .

We will call a non-empty set of states C good if there is an ε > 0, a measurable set
Paths ⊆ Qω of runs, and an infinite sequence of natural numbers i1 < i2 < i3 < . . .
such that following conditions hold.

– µ(Paths) ≥ x+ ε;
– For each j > 0 and each run ρ in Paths, we have that

1. ρ[0] = qs, ρ[ij] ∈ C and
2. at least one state in the finite sequence ρ[ij , ij+1] is a final state.

We say that a good set C is minimal if C is good but for each q ∈ C, the set C \ {q} is
not good. Clearly if there is a good set of states then there is also a minimal good set of
states.

Claim:

– There is a good set of states C.

238 R. Chadha, A.P. Sistla, and M. Viswanathan

– Let C be a minimal good set of states. Fix ε,Paths and the sequence i1 < i2 < . . .
which witness the fact that C is good set of states. For each q ∈ C and each j > 0,
let Pathsj,q be the subset of Paths such that each run in Paths passes through q at
point ij , i.e., Pathsj,q = {ρ ∈ Paths | ρ[ij] = q}. Then there exists a p > 0 such
that µ(Pathsj,q) ≥ p for each q ∈ C and each j > 0.

Now, fix a minimal set of good states C. Fix ε,Paths and the sequence i1 < i2 < . . .
which witness the fact that C is a good set of states. We claim that C is the required
set of states. As µ(Paths) ≥ x + ε and for each ρ ∈ Paths, ρ[i1] ∈ C, it follows
immediately that Reach(B, C, x). Assume now, by way of contradiction, that there
exists a j0 > 0 such that for each finite word u, there exists a q ∈ C such that
δ

Qf
u (q, C) ≤ 1 − 1

2j0 . Fix j0. Also fix p > 0 be such that µ(Pathsj,q) ≥ p for each j
and q ∈ C, where Pathsj,q is the subset of Paths such that each run in Pathsj,q passes
through q at point ij; the existence of p is guaranteed by the above claim.

We first construct a sequence of sets Li ⊆ Q+ as follows. Let L1 ⊆ Q+ be the set of
finite words on states ofQ of length i1+1 such that each word in L1 starts with the state
qs and ends in a state inC. FormallyL1 = {η ⊆ Q+ ||η| = i1+1, η[0] = qs and η[i1] ∈
C}. Assume that Lr has been constructed. Let Lr+1 ⊆ Q+ be the set of finite words
on states of Q of length ir+1 + 1 such that each word in Lr+1 has a prefix in Lr,
passes through a final state in between ir and ir+1, and ends in a state in C. Formally,
Lr+1 = {η ⊆ Q+ | |η| = ir+1 + 1, η[0 : ir] ∈ Lr, ∃i.(ir < i < ir+1 ∧ ρ[i] ∈ Qf)}.

Note that LrΣ
ω is a decreasing sequence of measurable subsets and Paths ⊆

∩r>1LrΣ
ω. Now, it is easy to see from the choice of j0 and p that µ(Lr+1Σ

ω) ≤
µ(LrΣ

ω) − p
2j0 . This, however, implies that there is a r0 such that µ(Lr0Σ

ω) < 0. A
contradiction. "#

Lemma 3 implies that checking the non-emptiness of L>0(B) for a given a RatPBA
B is in Π0

2 . We can exhibit that non-emptiness checking is Π0
2 -hard also. Since the

class L(PBA>0) is closed under complementation and the complementation procedure
is recursive [2] for RatPBAs, we can conclude that checking universality of L>0(B)
is also Σ0

2-complete. The same bounds also apply to checking language containment
under probable semantics. Note that these problems were already shown to undecidable
in [2], but the exact complexity was not computed therein.

Theorem 2. Given a RatPBA, B, the problems 1) deciding whether L>0(B) = ∅ and
2) deciding whether L>0(B) = Σω, are Σ0

2 -complete. Given another RatPBA, B′, the
problem of deciding whether L>0(B) ⊆ L>0(B′) is also Σ0

2-complete.

Remark: Lemma 3 can be used to show that emptiness-checking of L> 1
2
(B) for a

given RatPBA B is in Σ0
2 . In contrast, we had shown in [6] that the problem of deciding

whether L> 1
2
(M) = Σω for a given FPM M lies beyond the arithmetical hierarchy.

4 Almost-Sure Semantics

The class L(PBA=1) was first studied in [2], although they were not characterized
topologically. In this section, we study the expressiveness and complexity of the class

Power of Randomization in Automata on Infinite Strings 239

L(PBA=1). We will also demonstrate that the class L(PBA=1) is closed under finite
unions and intersections. As in the case of probable semantics, we assume that the
alphabet Σ is fixed and contains at least two letters.

4.1 Expressiveness

Lemma 1 already implies that topologically, the class L(PBA=1) ⊆ Gδ . Recall that
Gδ coincides exactly with the class of languages recognizable with infinite-state de-
terministic Büchi automata (see Section 2). Thanks to Theorem 1 and Lemma 2, it
also follows immediately that the inclusion L(PBA=1) ⊆ Gδ is strict (otherwise we
will have L(PBA>0) = BCl(L(PBA=1)) = BCl(Gδ)). The fact that every language
L(PBA=1) is contained in Gδ implies immediately that there are ω-regular languages
not in L(PBA=1). That there are ω-regular languages not in L(PBA=1) was also
proved in [2], although the proof therein is by explicit construction of an ω-regular
language which is then shown to be not in L(PBA=1). Our topological characteriza-
tion of the class L(PBA=1) has the advantage that we can characterize the intersection
Regular∩L(PBA=1) exactly: Regular∩L(PBA=1) is the class of ω-regular languages
that can be recognized by a finite-state deterministic Büchi automaton.

Proposition 4. For any PBA B, L=1(B) is a Gδ set. Furthermore, Regular ∩
L(PBA=1) = Regular∩Deterministic and Regular∩Deterministic � L(PBA=1) �

Gδ = Deterministic.

An immediate consequence of the characterization of the intersection Regular ∩
Deterministic is that the class L(PBA=1) is not closed under complementation as the
class of ω-regular languages recognized by deterministic Büchi automata is not closed
under complementation. That the class L(PBA=1) is not closed under complementa-
tion is also observed in [2], and is proved by constructing an explicit example. However,
even though the class L(PBA=1) is not closed under complementation, we have a “par-
tial” complementation operation— for any PBA B there is another PBA B′ such that
L>0(B′) is the complement of L=1(B). This also follows from the results of [2] as they
showed that L(PBA=1) ⊆ L(PBA>0) and L(PBA>0) is closed under complemen-
tation. However our construction has two advantages: 1) it is much simpler than the
one obtained by the constructions in [2], and 2) the PBA B′ belongs to the restricted
class of finite probabilistic monitors FPMs (see Section 2 for definition of FPMs). This
construction plays a critical role in our complexity analysis of decision problems.

Lemma 4. For any PBA B, there is an FPM M such that L=1(B) = Σω \ L>0(M).

Proof. Let B = (Q, qs, Qf , δ). We construct M as follows. First we pick a new state
qr, which will be the reject state of the FPM M. The set of states of M would be
Q ∪ {qr}. The initial state of M will be qs, the initial state of B. The set of final states
of M will be Q, the set of states of B. The transition relation of M would be defined
as follows. If q is not a final state of B then the transition function would be the same as
for B. If q is an final state of B then M will transit to the reject state with probability 1

2
and with probability 1

2 continue as in B. Formally, M = (Q ∪ {qr}, qs, Q, δM) where
δM is defined as follows. For each a ∈ Σ, q, q′ ∈ Q,

240 R. Chadha, A.P. Sistla, and M. Viswanathan

– δM(q, a, qr) = 1
2 and δM(q, a, q′) = 1

2δ(q, a, q
′) if q ∈ Qf ,

– δM(q, a, qr) = 0 and δM(q, a, q′) = δ(q, a, q′) if q ∈ Q \Qf ,
– δM(qr, a, qr) = 1.

It is easy to see that a word α ∈ Σω is rejected with probability 1 by M iff it is accepted
with probability 1 by B. The result now follows. "#
The “partial” complementation operation has many consequences. One consequence is
that the class L(PBA=1) is closed under union. The class L(PBA=1) is easily shown
to be closed under intersection. Hence for closure properties, L(PBA=1) behave like
deterministic Büchi automata. Please note that closure properties were not studied in
[2].

Corollary 1. The class L(PBA=1) is closed under finite union and finite intersection.

4.2 Decision Problems

The problem of checking whether L=1(B) = ∅ for a given RatPBA B was shown to
be decidable in EXPTIME in [2], where it was also conjectured to be EXPTIME-
complete. The decidability of the universality problem was left open in [2]. We can
leverage our “partial” complementation operation to show that a) the emptiness problem
is in fact PSPACE-complete, thus tightening the bound in [2] and b) the universality
problem is also PSPACE-complete.

Theorem 3. Given a RatPBA B, the problem of deciding whether L=1(B) = ∅ is
PSPACE-complete. The problem of deciding whether L=1(B) = Σω is also PSPACE-
complete.

Proof. (Upper bounds.) We first show the upper bounds. The proof of Lemma 4 shows
that for any RatPBA B, there is a RatFPM M constructed in polynomial time such that
L=1(B) = Σω\L>0(M).L=1(B) is empty (universal) iffL>0(M) is universal (empty
respectively). Now, we had shown in [4, 6] that given a RatFPM M, the problems of
checking emptiness and universality of L>0(M) are in PSPACE, thus giving us the
desired upper bounds.
(Lower bounds.) We had shown in [4, 6] that given a RatFPM M, the problems of
deciding the emptiness and universality of L>0(M) are PSPACE-hard respectively.
Given a RatFPM M = (Q, qs, Q0, δ) with qr as the absorbing reject state, consider
the PBA M = (Q, qs, {qr}, δ) obtained by considering the unique reject state of M
as the only final state of M. Clearly we have that L>0(M) = Σω \ L=1(M). Thus
L>0(M) is empty (universal) iff L=1(M) is universal (empty respectively). The result
now follows. "#
Even though the problems of checking emptiness and universality of almost-sure se-
mantics of a RatPBA are decidable, the problem of deciding language containment
under almost-sure semantics turns out to be undecidable, and is indeed as hard as the
problem of deciding language containment under probable semantics (or, equivalently,
checking emptiness under probable semantics).

Theorem 4. Given RatPBAs, B1 and B2, the problem of deciding whether L=1(B1) ⊆
L=1(B2) is Σ0

2-complete.

Power of Randomization in Automata on Infinite Strings 241

5 Hierarchical PBAs

We shall now identify a simple syntactic restriction on PBAs which under probable
semantics coincide exactly with ω-regular languages and under almost-sure semantics
coincide exactly with ω-regular deterministic languages. These restricted PBAs shall be
called hierarchical PBAs.

Intuitively, a hierarchical PBA is a PBA such that the set of its states can be stratified
into (totally) ordered levels. From a state q, for each letter a, the machine can transition
with non-zero probability to at most one state in the same level as q, and all other
probabilistic transitions go to states that belong to a higher level. Formally,

Definition: Given a natural number k, a PBA B = (Q, qs, Q, δ) over an alphabet
Σ is said to be a k-level hierarchical PBA (k-PBA) if there is a function rk : Q →
{0, 1, . . . , k} such that the following holds.

Given j ∈ {0, 1, . . . , k}, let Qj = {q ∈ Q | rk(Q) = j}. For every q ∈ Q and
a ∈ Σ, if j0 = rk(q) then post(q, a) ⊆ ∪j0≤≤kQ and |post(q, a)∩Qj0 | ≤ 1.

The function rk is said to be a compatible ranking function of B and for q ∈ Q the
natural number rk(q) is said to be the rank or level of q. B is said to be a hierarchical
PBA (HPBA) if B is k-hierarchical for some k. If B is also a RatPBA, we say that B is
a rational hierarchical PBA (RatHPBA).

We can define classes analogous to L(PBA>0) and L(PBA=1) ; and we shall call them
L(HPBA>0) and L(HPBA=1) respectively.

Before we proceed to discuss the probable and almost-sure semantics for HPBAs, we
point out two interesting facts about hierarchical HPBAs. First is that for the class of
ω-regular deterministic languages, HPBAs like non-deterministic Büchi automata can
be exponentially more succinct.

Lemma 5. Let Σ = {a, b, c}. For each n ∈ N, there is a ω-regular deterministic prop-
erty Ln ⊆ Σω such that i) any deterministic Büchi automata for Ln has at least O(2n)
number of states, and ii) there are HPBAs Bn s.t. Bn has O(n) number of states and
Ln = L=1(Bn).

The second thing is that even though HPBAs yield only ω-regular languages under
both almost-sure semantics and probable semantics, we can recognize non-ω-regular
languages with cut-points.

Lemma 6. There is a HPBA B such that both L≥ 1
2
(B) and L> 1

2
(B) are not ω-regular.

Remark: We will see shortly that the problems of deciding emptiness and universality
for a HPBA turn out to be decidable under both probable and almost-sure semantics.
However, with cut-points, they turn out to be undecidable. The latter, however, is out of
scope of this paper.

5.1 Probable Semantics

We shall now show that the class L(HPBA>0) coincides with the class of ω-regular
languages under probable semantics. In [3], a restricted class of PBAs called uniform

242 R. Chadha, A.P. Sistla, and M. Viswanathan

PBAs was identified that also accept exactly the class of ω-regular languages. We make
a couple of observations, contrasting our results here with theirs. First the definition of
uniform PBA was semantic (i.e., the condition depends on the acceptance probability
of infinitely many strings from different states of the automaton), whereas HPBA are a
syntactic restriction on PBA. Second, we note that the definitions themselves are incom-
parable in some sense; in other words, there are HPBAs which are not uniform, and vice
versa. Finally, HPBAs appear to be more tractable than uniform PBAs. We show that
the emptiness problem for L(HPBA>0) is NL-complete. In contrast, the same problem
was demonstrated to be in EXPTIME and co-NP-hard [3].

Our main observation is the Hierarchical PBAs capture exactly the class of ω-regular
languages.

Theorem 5. L(HPBA>0) = Regular.

We will show that the problem of deciding whether L>0(B) is empty for hierarchical
RatPBA’s is NL-complete while the problem of deciding whether L>0(B) is univer-
sal is PSPACE-complete. Thus “algorithmically”, hierarchical PBAs are much “sim-
pler” than both PBAs and uniform PBAs. Note that the emptiness and universality
problem for finite state Büchi-automata are also NL-complete and PSPACE-complete
respectively.

Theorem 6. Given a RatHPBA, B, the problem of deciding whether L>0(B) = ∅ is
NL-complete. The problem of deciding whether L>0(B) = Σω is PSPACE-complete.

5.2 Almost-Sure Semantics

For a hierarchical PBA, the “partial” complementation operation for almost-sure se-
mantics discussed in Section 4 yields a hierarchical PBA. Therefore using Theorem 5,
we immediately get that a language L ∈ L(HPBA=1) is ω-regular. Thanks to the topo-
logical characterization of L(HPBA=1) as a sub-collection of deterministic languages,
we get that L(HPBA=1) is exactly the class of languages recognized by deterministic
finite-state Büchi automata.

Theorem 7. L(HPBA=1) = Regular ∩ Deterministic.
The “partial” complementation operation also yields the complexity of emptiness and
universality problems.

Theorem 8. Given a RatHPBA, B, the problem of deciding whether L=1(B) = ∅ is
PSPACE-complete. The problem of deciding whether L=1(B) = Σω is NL-complete.

6 Conclusions

In this paper, we investigated the power of randomization in finite state automata on in-
finite strings. We presented a number of results on the expressiveness and decidability
problems under different notions of acceptance based on the probability of acceptance.
In the case of decidability, we gave tight bounds for both the universality and empti-
ness problems. As part of future work, it will be interesting to investigate the power of
randomization in other models of computations on infinite strings such as pushdown
automata etc. Since the universality and emptiness problems are PSPACE-complete for
almost-sure semantics, their application to practical systems needs further enquiry.

Power of Randomization in Automata on Infinite Strings 243

Acknowledgements

Rohit Chadha was supported in part by NSF grants CCF04-29639 and NSF CCF04-
48178. A. Prasad Sistla was supported in part by NSF CCF-0742686. Mahesh
Viswanathan was supported in part by NSF CCF04-48178 and NSF CCF05-09321.

References

1. Alpern, B., Schneider, F.: Defining liveness. Information Processing Letters 21, 181–185
(1985)

2. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi au-
tomata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer,
Heidelberg (2008)

3. Baier, C., Größer, M.: Recognizing ω-regular languages with probabilistic automata. In: Pro-
ceedings of the IEEE Symposium on Logic in Computer Science, pp. 137–146 (2005)

4. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of random-
ization in finite state monitors. In: LICS 2008- 23rd Annual IEEE Symposium on Logic in
Computer Science, pp. 18–29. IEEE Computer Society, Los Alamitos (2008)

5. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of random-
ization in finite state monitors. Journal of the ACM (to appear), http://www.cs.uiuc.
edu/homes/rch/TechReports/MonitoringTechReport.pdf

6. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended
abstract). In: 30th Annual Symposium on Foundations of Computer Science, pp. 462–467
(1989)

7. Groesser, M.: Reduction Methods for Probabilistic Model Checking. PhD thesis, TU
Dresden (2008)

8. Holzmann, G.J., Peled, D.: The state of spin. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102. Springer, Heidelberg (1996)

9. Kemeny, J., Snell, J.: Denumerable Markov Chains. Springer, Heidelberg (1976)
10. Kurshan, R.P.: Computer Aided Verification of the Coordinated Processes: The Automata

Theoretic Approach. Princeton University Press, Princeton (1994)
11. Lamport, L.: Logical foundation, distributed systems- methods and tools for specification,

vol. 190. Springer, Heidelberg (1985)
12. Paz, A.: Introduction to Probabilistic Automata. Academic Press, London (1971)
13. Perrin, D., Pin, J.-E.: Infinite Words: Automata, Semigroups, Logic and Games. Elsevier,

Amsterdam (2004)
14. Rabin, M.O.: Probabilitic automata. Information and Control 6(3), 230–245 (1963)
15. Rutten, J.M., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Ana-

lyzing Concurrent and Probabilistic Systems. AMS (2004)
16. Salomaa, A.: Formal Languages. Academic Press, London (1973)
17. Sistla, A.P.: Theoretical Issues in the Design and Verification of Distributed Systems. PhD

thesis, Harvard University (1983)
18. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,

vol. B, pp. 133–192 (1990)
19. Vardi, M.: Automatic verification of probabilistic concurrent systems. In: 26th annual Sym-

posium on Foundations of Computer Science, pp. 327–338. IEEE Computer Society Press,
Los Alamitos (1985)

20. Vardi, M., Wolper, P.: An automata theoretic approach to automatic program verification. In:
Proceedings of the first IEEE Symposium on Logic in Computer Science (1986)

21. Vardi, M., Wolper, P., Sistla, A.P.: Reasoning about infinite computation paths. In: Proceed-
ings of the 24th IEEE Symposium on Foundations of Computer Science (1983)

http://www.cs.uiuc.edu/homes/rch/TechReports/MonitoringTechReport.pdf
http://www.cs.uiuc.edu/homes/rch/TechReports/MonitoringTechReport.pdf

Probabilistic Weighted Automata�

Krishnendu Chatterjee1, Laurent Doyen2,��, and Thomas A. Henzinger3

1 Institute of Science and Technology (IST), Austria
2 Université Libre de Bruxelles (ULB), Belgium

3 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. Nondeterministic weighted automata are finite automata
with numerical weights on transitions. They define quantitative lan-
guages L that assign to each word w a real number L(w). The value of
an infinite word w is computed as the maximal value of all runs over w,
and the value of a run as the supremum, limsup, liminf, limit average,
or discounted sum of the transition weights.

We introduce probabilistic weighted automata, in which the transi-
tions are chosen in a randomized (rather than nondeterministic) fashion.
Under almost-sure semantics (resp. positive semantics), the value of a
word w is the largest real v such that the runs over w have value at least
v with probability 1 (resp. positive probability).

We study the classical questions of automata theory for probabilistic
weighted automata: emptiness and universality, expressiveness, and clo-
sure under various operations on languages. For quantitative languages,
emptiness and universality are defined as whether the value of some (resp.
every) word exceeds a given threshold. We prove some of these questions
to be decidable, and others undecidable. Regarding expressive power, we
show that probabilities allow us to define a wide variety of new classes
of quantitative languages, except for discounted-sum automata, where
probabilistic choice is no more expressive than nondeterminism. Finally,
we give an almost complete picture of the closure of various classes of
probabilistic weighted automata for the following pointwise operations
on quantitative languages: max, min, sum, and numerical complement.

1 Introduction

In formal design, specifications describe the set of correct behaviors of a system.
An implementation satisfies a specification if all its behaviors are correct. If we
view a behavior as a word, then a specification is a language, i.e., a set of words.
Languages can be specified using finite automata, for which a large number of
results and techniques are known; see [20, 24]. We call them boolean languages
� This research was supported in part by the Swiss National Science Foundation under

the Indo-Swiss Joint Research Programme, by the European Network of Excellence
on Embedded Systems Design (ArtistDesign), by the European projects Combest,
Quasimodo, and Gasics, by the PAI program Moves funded by the Belgian Federal
Government, and by the CFV (Federated Center in Verification) funded by the
F.R.S.-FNRS.

�� Postdoctoral researcher of the F.R.S.-FNRS.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 244–258, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Probabilistic Weighted Automata 245

q0

q1

q2

sen
d, 1

9
10

send, 1

1
10

ack, 2

ack, 5

(a) Low reliability but cheap.

q′0

q′1

q′2

sen
d, 5

99
100

send, 5

1
100

ack, 1

ack, 20

(b) High reliability but expensive.

Fig. 1. Two specifications of a channel

because a given behavior is either good or bad according to the specification.
Boolean languages are useful to specify functional requirements.

In a generalization of this approach, we consider quantitative languages L,
where each word w is assigned a real number L(w). The value of a word can be
interpreted as the amount of some resource (e.g., memory or power) needed to
produce it, or as a quality measurement for the corresponding behavior [5, 6].
Therefore, quantitative languages are useful to specify nonfunctional require-
ments such as resource constraints, reliability properties, or levels of quality
(such as quality of service). Note that a boolean language L is a special case of
quantitative language that assigns value 1 to the words in L and value 0 to the
words not in L.

Quantitative languages can be defined using nondeterministic weighted au-
tomata, i.e., finite automata with numerical weights on transitions [13, 17]. In [7],
we studied quantitative languages of infinite words and defined the value of an
infinite word w as the maximal value of all runs of an automaton over w (if
the automaton is nondeterministic, then there may be many runs over w). The
value of a run r is a function of the infinite sequence of weights that appear
along r. There are several natural functions to consider, such as Sup, LimSup,
LimInf, limit average, and discounted sum of weights. For example, peak power
consumption can be modeled as the maximum of a sequence of weights repre-
senting power usage; energy use, as a discounted sum; average response time, as
a limit average [4, 5].

In this paper, we present probabilistic weighted automata as a new model
defining quantitative languages. In such automata, nondeterministic choice is
replaced by probability distributions on successor states. The value of an infinite
word w is defined to be the maximal value v such that the set of runs over w with
value at least v has either positive probability (positive semantics), or probabil-
ity 1 (almost-sure semantics). This simple definition combines in a general model
the natural quantitative extensions of logics and automata [7, 14, 15], and the
probabilistic models of automata for which boolean properties have been stud-
ied [2, 3, 22]. Note that the probabilistic Büchi and coBüchi automata of [2] are
a special case of probabilistic weighted automata with weights 0 and 1 only (and

246 K. Chatterjee, L. Doyen, and T.A. Henzinger

the value of an infinite run computed as LimSup or LimInf, respectively). While
quantitative objectives are standard in the branching-time context of stochastic
games [5, 11, 16, 18, 19, 23], we are not aware of any model combining probabil-
ities and weights in the linear-time context of words and languages, though such
a model is very natural for the specification of quantitative properties. Consider
the specification of two types of communication channels given in Fig. 1. One
has low cost (sending costs 1 unit) and low reliability (a failure occurs in 10%
of the cases and entails an increased cost for the operation), while the second
is expensive (sending costs 5 units), but the reliability is high (though the cost
of a failure is prohibitive). In the figure, we omit the self-loops with cost 0 in
state q0 and q′0 over ack, and in q1, q2, q

′
1, q

′
2 over send. Natural questions can be

formulated in this framework, such as whether the average cost of every word
w ∈ {send, ack}ω is really smaller in the low-cost channel, or to construct a prob-
abilistic weighted automaton that assigns to each infinite word w ∈ {send, ack}ω

the minimum of the average cost of the two types of channels (the answers are
yes for both the questions for Fig. 1). In this paper, we attempt a comprehen-
sive study of such fundamental questions, about the expressive power, closure
properties, and decision problems for probabilistic weighted automata. We focus
on the positive and the almost-sure semantics. In future work, we will consider
another semantics where the value of a word w is defined to be the expectation
of the values of the runs over w.

First, we compare the expressiveness of the various classes of probabilistic and
nondeterministic weighted automata over infinite words. For LimSup, LimInf,
and limit average, we show that a wide variety of new classes of quantitative
languages can be defined using probabilities, which are not expressible using
nondeterminism. Our results rely on reachability properties of closed recurrent
sets in Markov chains. For discounted sum, we show that probabilistic weighted
automata under the positive semantics have the same expressive power as non-
deterministic weighted automata, while under the almost-sure semantics, they
have the same expressive power as weighted automata with universal branch-
ing, where the value of a word is the minimal (instead of maximal) value of all
runs. The question of whether the positive semantics of weighted limit-average
automata is more expressive than nondeterminism remains open.

Second, we give an almost complete picture of the closure of probabilistic
weighted automata under the pointwise operations of maximum, minimum, and
sum for quantitative languages. We also consider the numerical complement Lc

of a quantitative language L defined by Lc(w) = 1−L(w) for all words w.1 Note
that maximum and minimum provide natural generalization of the classical union
and intersection operations on boolean languages, and they define the least upper
bound and greatest lower bound for the pointwise natural order on quantitative
languages (where L1 ≤ L2 if L1(w) ≤ L2(w) for all words w). The numerical
complement applied to boolean languages also defines the usual complement
operation.

1 One can define Lc(w) = k − L(w) for any constant k without changing our results.

Probabilistic Weighted Automata 247

Closure under max trivially holds for the positive semantics, and closure un-
der min for the almost-sure semantics. Only LimSup-automata under positive
semantics and LimInf-automata under almost-sure semantics are closed under
all four operations; these results extend corresponding results for the boolean
case [1]. To establish the closure properties of limit-average automata, we char-
acterize the expected limit-average reward of Markov chains. Our characteriza-
tion answers all closure questions except for the language sum in the case of
positive semantics, which we leave open. Note that expressiveness results and
closure properties are tightly connected. For instance, because they are closed
under max, the LimInf-automata with positive semantics are no more expressive
than to LimInf-automata with almost-sure semantics and to LimSup-automata
with positive semantics; and because they are not closed under complement, the
LimSup-automata with almost-sure semantics and LimInf-automata with positive
semantics have incomparable expressive powers.

Third, we investigate the emptiness and universality problems for probabilis-
tic weighted automata, which ask to decide if some (resp. all) words have a value
above a given threshold. Using our expressiveness results, as well as [1, 9], we es-
tablish some decidability and undecidability results for Sup, LimSup, and LimInf
automata; in particular, emptiness and universality are undecidable for LimSup-
automata with positive semantics and for LimInf-automata with almost-sure se-
mantics, while the question is open for the emptiness of LimInf-automata with
positive semantics and for the universality of LimSup-automata with almost-
sure semantics. We also prove the decidability of emptiness for probabilistic
discounted-sum automata with positive semantics, while the universality prob-
lem is as hard as for nondeterministic discounted-sum automata, for which no
decidability result is known. We leave open the case of limit average. Due to lack
of space, we omit detailed proofs; they can be found in [10].

2 Definitions

A quantitative language over a finite alphabet Σ is a function L : Σω → R. A
boolean language (or a set of infinite words) is a special case where L(w) ∈ {0, 1}
for all words w ∈ Σω. Nondeterministic weighted automata define the value of
a word as the maximal value of a run [7]. In this paper, we study probabilistic
weighted automata as generator of quantitative languages.
Value functions. We consider the following value functions Val : Q

ω → R to
define quantitative languages. Given an infinite sequence v = v0v1 . . . of rational
numbers, define

– Sup(v) = sup{vn | n ≥ 0};
– LimSup(v) = lim sup

n→∞
vn = lim

n→∞
sup{vi | i ≥ n};

– LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

– LimAvg(v) = lim inf
n→∞

1
n
·

n−1∑
i=0

vi;

248 K. Chatterjee, L. Doyen, and T.A. Henzinger

– for 0 < λ < 1, Discλ(v) =
∞∑

i=0

λi · vi.

Given a finite set S, a probability distribution over S is a function f : S →
[0, 1] such that

∑
s∈S f(s) = 1. We denote by D(S) the set of all probability

distributions over S.
Probabilistic weighted automata. A probabilistic weighted automaton is a
tuple A = 〈Q, ρI , Σ, δ, γ〉, where

– Q is a finite set of states;
– ρI ∈ D(Q) is the initial probability distribution;
– Σ is a finite alphabet;
– δ : Q×Σ → D(Q) is a probabilistic transition function;
– γ : Q×Σ ×Q → Q is a weight function.

The automaton A is deterministic if ρI(qI) = 1 for some qI ∈ Q, and for all
q ∈ Q and σ ∈ Σ, there exists q′ ∈ Q such that δ(q, σ)(q′) = 1.

A run of A over a finite (resp. infinite) word w = σ1σ2 . . . is a finite (resp.
infinite) sequence r = q0σ1q1σ2 . . . of states and letters such that (i) ρI(q0) > 0,
and (ii) δ(qi, σi+1)(qi+1) > 0 for all 0 ≤ i < |w|. We denote by γ(r) = v0v1 . . .
the sequence of weights that occur in r where vi = γ(qi, σi+1, qi+1) for all 0 ≤ i <
|w|. The probability of a finite run r = q0σ1q1σ2 . . . σkqk over a finite word w =
σ1 . . . σk is P

A(r) = ρI(q0).
∏k

i=1 δ(qi−1, σi)(qi). For a finite run r, let Cone(r)
denote the set of infinite runs r′ such that r is a prefix of r′. The set of cones
forms the basis for the Borel sets for runs. For each w ∈ Σω, the function P

A(·)
defines a unique probability measure over Borel sets of runs of A over w.

Given a value function Val : Q
ω → R, we say that the probabilistic

Val-automaton A generates the quantitative languages defined for all words
w ∈ Σω by L=1

A (w) = sup{η | P
A({r ∈ RunA(w) such that Val(γ(r)) ≥

η}) = 1} under the almost-sure semantics, and L>0
A (w) = sup{η | P

A({r ∈
RunA(w) such that Val(γ(r)) ≥ η}) > 0} under the positive semantics. In clas-
sical (non-probabilistic) semantics, the value of a word is defined either as the
maximal value of the runs (i.e., Lmax

A (w) = sup{Val(γ(r)) | r ∈ RunA(w)} for
all w ∈ Σω) and the automaton is then called nondeterministic, or as the mini-
mal value of the runs, and the automaton is then called universal [8]. Note that
the above four semantics coincide for deterministic weighted automata (because
then every word has exactly one run), and that Büchi and coBüchi automata [2]
are special cases of respectively LimSup- and LimInf-automata, where all weights
are either 0 or 1.
Reducibility. A class C of weighted automata is reducible to a class C′
of weighted automata if for every A ∈ C there exists A′ ∈ C′ such that
LA = LA′ , i.e., LA(w) = LA′(w) for all words w. Reducibility relationships
for (non)deterministic weighted automata are given in [7].
Composition. Given two quantitative languages L,L′ : Σω → R, we denote by
max(L,L′) (resp. min(L,L′) and L+L′) the quantitative language that assigns
max{L(w), L′(w)} (resp. min{L(w), L′(w)} and L(w) + L′(w)) to each word

Probabilistic Weighted Automata 249

w ∈ Σω. The language 1 − L is called the complement of L. The max, min
and complement operators for quantitative languages generalize respectively the
union, intersection and complement operator for boolean languages. The closure
properties of (non)deterministic weighted automata are given in [9].
Notation. The first letter in acronyms for classes of automata can be
N(ondeterministic), D(eterministic), U(niversal), Pos for the language in the
positive semantics, or As for the language in the almost-sure semantics. For
X,Y ∈ {N, D, U, Pos, As}, we sometimes use the notation X

Y for classes of
automata where the X and Y versions are reducible to each other. For Büchi
and coBüchi automata, we use the classical acronyms NBW, DBW, NCW, etc.
When the type of an automaton A is clear from the context, we often denote its
language simply by LA(·) or even A(·), instead of L=1

A , Lmax
A , etc.

Remark. We sometimes use automata with weight functions γ : Q → Q that
assign a weight to states instead of transitions. This is a convenient notation for
weighted automata in which from each state, all outgoing transitions have the
same weight. In pictorial descriptions of probabilistic weighted automata, the
transitions are labeled with probabilities, and states with weights.

3 Expressive Power of Probabilistic Weighted Automata

We complete the picture given in [7] about reducibility for nondeterministic
weighted automata, by adding the relations with probabilistic automata. The
results for LimInf, LimSup, and LimAvg are summarized in Fig. 2s, and for Sup-
and Disc-automata in Theorems 1 and 6.

As for probabilistic automata over finite words, the quantitative languages
definable by probabilistic and (non)deterministic Sup-automata coincide.

Theorem 1. DSup is as expressive as PosSup and AsSup.

In many of our results, we use the following definitions and properties related
to Markov chains. A Markov chain M = (S,E, δ) consists of a finite set S of
states, a set E of edges, and a probabilistic transition function δ : S → D(S).
For all s, t ∈ S, there is an edge (s, t) ∈ E iff δ(s)(t) > 0. A closed recurrent
set C of states in M is a bottom strongly connected set of states in the graph
(S,E). The proof of the Lemma 1 relies on the following basic properties [21].
Lemma 1 will be used in the proof of some of the following results.

1. Property 1. Given a Markov chain M , and a start state s, with probability 1,
the set of closed recurrent states is reached from s in finite time. Hence for
any ε > 0, there exists k0 such that for all k > k0, for all starting state s,
the set of closed recurrent states are reached with probability at least 1 − ε
in k steps.

2. Property 2. If a closed recurrent set C is reached, and the limit of the expec-
tation of the average weights of C is α, then for all ε > 0, there exists a k0
such that for all k > k0 the expectation of the average weights for k steps is
at least α− ε.

250 K. Chatterjee, L. Doyen, and T.A. Henzinger

AsLimInf PosLimSup

AsLimAvg PosLimAvg NLimAvg PosLimInf NLimSup AsLimSup

DLimAvg
D

NLimInf DLimSup NBW

DBW
D

NSup
As

PosSup

D

NCW

?

quantitative

boolean

Fig. 2. Reducibility relation. C is reducible to C′ if C → C′. Classes that are not
connected by an arrow are incomparable. Reducibility for the dashed arrow is open.
The Disc-automata are incomparable with the automata in the figure. Their reducibility
relation is given in Theorem 6.

Lemma 1. Let A be a probabilistic weighted automaton with alphabet Σ =
{a, b}. Consider the Markov chain arising from A on input bω (we refer to this
as the b-Markov chain) and the a-Markov chain is defined symmetrically. The
following assertions hold:

1. If for all closed recurrent sets C in the b-Markov chain, the expected limit-
average value is at least 1, then there exists j such that for all closed recurrent
sets arising from A on input (bj · a)ω the expected limit-average reward is
positive.

2. If for all closed recurrent sets C in the b-Markov chain, the expected limit-
average value is at most 0, then there exists j such that for all closed recurrent
sets arising from A on input (bj · a)ω the expected limit-average reward is
strictly less than 1.

3. If for all closed recurrent sets C in the b-Markov chain, the expected limit-
average value is at most 0,and if for all closed recurrent sets C in the a-
Markov chain, the expected limit-average value is at most 0, then there exists
j such that for all closed recurrent sets arising from A on input (bj ·aj)ω the
expected limit-average reward is strictly less than 1/2.

Proof. We present the proof of the first part. Let β be the maximum absolute
value of the weights of A. From any state s ∈ A, there is a path of length at
most n to a closed recurrent set C in the b-Markov chain, where n is the number
of states of A. Hence if we choose j > n, then any closed recurrent set in the
Markov chain arising on the input (bj · a)ω contains closed recurrent sets of the
b-Markov chain. For ε > 0, there exists kε such that from any state s ∈ A, for
all k > kε, on input bk from s, the closed recurrent sets of the b-Markov chain
is reached with probability at least 1 − ε (by property 1). If all closed recurrent

Probabilistic Weighted Automata 251

q0

γ = 0

q1

γ = 1

sink

γ = 0

a, b, 1
2

a, b, 1
2

b, 1

a, 1

a, b, 1

Fig. 3. PosLimAvg for Lemma 2

q0

γ = 0

sink

γ = 1

b, 1 a, 1
2

a, 1
2

a, b, 1

Fig. 4. AsLimAvg for Lemma 3

sets in the b-Markov chain have expected limit-average value at least 1, then by
property 2 it follows that for all ε > 0, there exists lε such that for all l > lε,
from all states s of a closed recurrent set on the input bl the expected average
of the weights is at least 1 − ε, (i.e., expected sum of the weights is l − l · ε).
Consider 0 < ε ≤ min{1/4, 1/(20 · β)}, we choose j = k + l, where k = kε > 0
and l > max{lε, k}. Observe that by our choice j + 1 ≤ 2l. Consider a closed
recurrent set in the Markov chain on (bj ·a)ω and we obtain a lower bound on the
expected average reward as follows: with probability 1 − ε the closed recurrent
set of the b-Markov chain is reached within k steps, and then in the next l steps
at the expected sum of the weights is at least l − l · ε, and since the worst case
weight is −β we obtain the following bound on the expected sum of the rewards:

(1 − ε) · (l − l · ε) − ε · β · (j + 1) ≥ l

2
− l

10
=

2l
5

Hence the expected average reward is at least 1/5 and hence positive. �

3.1 Probabilistic LimAvg-Automata

We consider the alphabet Σ = {a, b} and we define the boolean language LF of
finitely many a’s, i.e., LF (w) = 1 if w ∈ Σω consists of finitely many a’s, and
LF (w) = 0 otherwise. We also consider the language LI of words with infinitely
many a’s, i.e., the complement of LF .

Lemma 2. Consider the language LF of finitely many a’s. The following asser-
tions hold.

1. There is no NLimAvg that specifies LF .
2. There exists a PosLimAvg that specifies LF (see Fig. 3).
3. There is no AsLimSup that specifies LF .

Proof. We present the proof of the third part. Assume that there exists an
AsLimAvg automaton A that specifies LF . Consider the Markov chain M that
arises from A if the input is only b (i.e., on bω), we refer to it as the b-Markov
chain. If there is a closed recurrent set C in M that can be reached from the
starting state in A (reached by any sequence of a and b’s in A), then the expected
limit-average reward in C must be at least 1 (otherwise, if there is a closed

252 K. Chatterjee, L. Doyen, and T.A. Henzinger

q0

γ = 1

q1

γ = 1

sink

γ = 0

a, 1
2

a, 1
2

b, 1

a, 1

b, 1

a, b, 1

Fig. 5. A probabilistic weighted automaton (PosLimAvg, PosLimSup, or PosLimInf)
for Lemma 4

recurrent set C in M with limit-average reward less than 1, we can construct a
finite word w that will reach C with positive probability in A, and then follow
w by bω yielding A(w · bω) < 1). Thus any closed recurrent set in M has limit-
average reward at least 1 and by Lemma 1 there exists j such that the A((bj ·
a)ω) > 0. It follows that A cannot specify LF . �

Lemma 3. Consider the language LI of infinitely many a’s. The following
assertions hold.

1. There is no NLimAvg that specifies LI .
2. There is no PosLimAvg that specifies LI .
3. There exists an AsLimAvg that specifies LI (see Fig. 4).

Lemma 4. There exists a language L such that: (a) there exists a PosLimAvg,
a PosLimSup and a PosLimInf that specifies L (see Fig. 5); and (b) there is
no NLimAvg, no NLimSup and no NLimInf that specifies L.

The next theorem summarizes the results for limit-average automata obtained
in this section.

Theorem 2. AsLimAvg is incomparable in expressive power with PosLimAvg

and NLimAvg, and NLimAvg is not as expressive as PosLimAvg.

Open question. Whether NLimAvg is reducible to PosLimAvg or NLimAvg

is incomparable to PosLimAvg (i.e., whether there is a language expressible by
NLimAvg but not by PosLimAvg) remains open.

3.2 Probabilistic LimInf- and LimSup-Automata

To compare the expressiveness of probabilistic LimInf- and LimSup-automata, we
use and extend results from [1, 7], Lemma 3 and 4, and the notion of determinism
in the limit [12, 25]. A nondeterministic weighted automaton A is deterministic
in the limit if for all states s of A with weight greater than the minimum weight,
all states t reachable from s have deterministic transitions.

Lemma 5. For every NLimSup A, there exists a NLimSup B that is determin-
istic in the limit and specifies the same quantitative language.

Probabilistic Weighted Automata 253

Lemma 5 is useful to translate a nondeterministic automaton into a probabilistic
one with positive semantics. The next lemma presents the results about reducibil-
ity of liminf automata.

Lemma 6. The following assertions hold: (a) both AsLimInf and PosLimInf

are as expressive as NLimInf; (b) there exists an AsLimInf that specifies the
language LI, there is no NLimInf and there is no PosLimInf that specifies LI;
(c) AsLimInf is as expressive as PosLimInf.

As a corollary of Lemma 4 and Lemma 6, we get the following theorem.

Theorem 3. AsLimInf is strictly more expressive than PosLimInf; and
PosLimInf is strictly more expressive than NLimInf.

The following lemma presents the results about reducibility of limsup automata.

Lemma 7. The following assertions hold: (a) NLimSup and PosLimSup are
not as expressive as AsLimSup; (b) PosLimSup is as expressive as NLimSup;
(c) PosLimSup is as expressive as AsLimSup; (d) AsLimSup is not as expres-
sive as NLimSup.

Theorem 4. AsLimSup and NLimSup are incomparable in expressive power,
and PosLimSup is strictly more expressive than AsLimSup and NLimSup.

The above theorem summarizes the reducibility results for limsup automata.
Finally, we establish the reducibility relation between probabilistic LimSup- and
LimInf-automata.

Theorem 5. AsLimInf and PosLimSup have the same expressive power;
AsLimSup and PosLimInf have incomparable expressive power.

Proof. This result is an easy consequence of the fact that an automaton in-
terpreted as AsLimInf specifies the complement of the language of the same
automaton interpreted as PosLimSup (and similarly for AsLimSup and
PosLimInf), and from the fact that AsLimInf and PosLimSup are closed
under complement, while AsLimSup and PosLimInf are not (see Lemma 13).

�

3.3 Probabilistic Disc-Automata

For probabilistic discounted-sum automata, the nondeterministic and the posi-
tive semantics have the same expressive power. Intuitively, this is because the
run with maximal value can be approached arbitrarily close by a finite run, and
therefore the set of infinite runs sharing that finite run as a prefix has posi-
tive probability. This also shows that the positive semantics does not depend
on the actual values of the probabilities, but only on whether they are positive
or not. Analogous results hold for the universal semantics and the almost-sure
semantics.

254 K. Chatterjee, L. Doyen, and T.A. Henzinger

Theorem 6. The following assertions hold: (a) NDisc and PosDisc have the
same expressive power; (b) UDisc and AsDisc have the same expressive power.

Proof. (a) Let A = 〈Q, ρI , Σ, δA, γ〉 be a NDisc, and let vmin, vmax be
its minimum and maximum weights respectively. Consider the PosDisc B =
〈Q, ρI , Σ, δB, γ〉 where δB(q, σ) is the uniform probability distribution over the
set of states q′ such that (q, σ, {q′}) ∈ δA. Let r = q0σ1q1σ2 . . . be a run of A
(over w = σ1σ2 . . .) with value η. For all ε > 0, we show that P

B({r ∈ RunB(w) |
Val(γ(r)) ≥ η − ε}) > 0}. Let n ∈ N such that λn

1−λ · (vmax − vmin) ≤ ε, and
let rn = q0σ1q1σ2 . . . σnqn. The discounted sum of the weights in rn is at least
η− λn

1−λ ·(vmax). The probability of the set of runs over w that are continuations of
rn is positive, and the value of all these runs is at least η− λn

1−λ ·(vmax−vmin), and
therefore at least η − ε. This shows that LB(w) ≥ η, and thus LB(w) ≥ LA(w).
Note that LB(w) ≤ LA(w) since there is no run in A (nor in B) over w with
value greater than LA(w). Hence LB = LA.

Now, we prove that PosDisc is reducible to NDisc. Given a PosDisc B =
〈Q, ρI , Σ, δB, γ〉, we construct a NDisc A = 〈Q, ρI , Σ, δA, γ〉 where (q, σ, {q′}) ∈
δA if and only if δB(q, σ)(q′) > 0, for all q, q′ ∈ Q, σ ∈ Σ. By analogous arguments
as in the first part of the proof, it is easy to see that LB = LA.

(b) The complement of the quantitative language specified by an UDisc (resp.
AsDisc) can be specified by a NDisc (resp. PosDisc). Then, the result follows
from Part a) (essentially, given an UDisc, we obtain easily a NDisc for the
complement, then an equivalent PosDisc, and finally an AsDisc for the com-
plement of the complement, i.e., the original quantitative language). �

4 Closure Properties of Probabilistic Weighted Automata

We consider the closure properties of the probabilistic weighted automata under
the operations max, min, complement, and sum.
Closure under max and min. The closure under max holds for the pos-
itive semantics (and under min for the almost-sure semantics) using initial
non-determinism (Lemma 8), while a synchronized product can be used for
AsLimSup and PosLimInf (Lemma 9). In Lemma 10, we use the closure under
intersection of probabilistic Büchi automata [2], and the closure under max of
PosLimSup.

Lemma 8. PosLimSup, PosLimInf, and PosLimAvg are closed under max;
and AsLimSup, AsLimInf, and AsLimAvg are closed under min.

Lemma 9. AsLimSup is closed under max; PosLimInf is closed under min.

Lemma 10. PosLimSup is closed under min; AsLimInf is closed under max.

The closure properties of LimAvg-automata in the positive semantics rely on the
following lemma.

Probabilistic Weighted Automata 255

Table 1. Closure properties and decidability of emptiness and universality

max min comp. sum emptiness universality

p
os

it
iv

e
PosSup � � × � � �
PosLimSup � � � � × ×
PosLimInf � � × � � �
PosLimAvg � × × ? ? ?
PosDisc � × × � � ? (1)

al
m

os
t-

su
re

AsSup � � × � � �
AsLimSup � � × � � �
AsLimInf � � � � × ×
AsLimAvg × � × × ? ?
AsDisc × � × � ? (1) �

The universality problem for NDisc can be reduced to (1).
It is not known whether this problem is decidable.

Lemma 11. Consider the alphabet Σ = {a, b}, and consider the languages La

and Lb that assign the long-run average number of a’s and b’s, respectively. Then
the following assertions hold:

1. There is no PosLimAvg that specifies the language Lm = min{La, Lb}.
2. There is no PosLimAvg that specifies the language L∗ = 1 − max{La, Lb}.

Lemma 12. PosLimAvg is not closed under min, and AsLimAvg is not closed
under max.

Proof. The result for PosLimAvg follows from Lemma 11. We show that
AsLimAvg is not closed under max. Consider the alphabet Σ = {a, b} and
the quantitative languages La and Lb that assign the long-run average number
of a’s and b’s, respectively. There exist DLimAvg (and hence AsLimAvg) to
specify La and Lb. We show that Lm = max(La, Lb) cannot be specified by an
AsLimAvg. By contradiction, assume that A is an AsLimAvg with set of states
Q that specifies Lm. Consider any closed recurrent set of the a-Markov chain of
A. The expected limit-average of the weights of the recurrent set must be 1, as
if we consider the word w∗ = wC · aω where wC is a finite word to reach C in
A, the value of w∗ in Lm is 1. Hence, the limit-average of the weights of all the
reachable a-closed recurrent set C in A is 1.

Given ε > 0, there exists jε such that the following properties hold:

1. from any state of A, given the word ajε with probability 1 − ε an a-closed
recurrent set is reached (by property 1 for Markov chains);

2. once an a-closed recurrent set is reached, given the word ajε , (as a conse-
quence of property 2 for Markov chains) we can show that the following
properties hold: (a) the expected average of the weights is at least jε · (1− ε),
and (b) the probability distribution of the states is with ε of the probability
distribution of the states for the word a2·jε (this holds as the probability
distribution of states on words aj converges to the probability distribution
of states on the word aω).

256 K. Chatterjee, L. Doyen, and T.A. Henzinger

Let β > 1 be a number that is greater than the absolute maximum value of
weights in A. We chose ε > 0 such that ε < 1

40·β . Let j = 2 · jε (such that jε
satisfies the properties above). Consider the word (aj · b3j)ω and the answer by
A must be 3

4 , as Lm((aj · b3j)ω) = 3
4 . Consider the word ŵ = (a2j · b3j)ω and

consider a closed recurrent set in the Markov chain obtain from A on ŵ. We
obtain the following lower bound on the expected limit-average of the weights:
(a) with probability at least 1 − ε, after j/2 steps, a-closed recurrent sets are
reached; (b) the expected average of the weights for the segment between aj and
a2j is at least j · (1 − ε); and (c) the difference in probability distribution of the
states after aj and a2j is at most ε. Since the limit-average of the weights of
(aj · b3j)ω is 3

4 , the lower bound on the limit-average of the weights is as follows

(1 − 3 · ε) · (3·j+j·(1−ε)
5j) − 3 · ε · β = (1 − ε) · (4

5 − ε
5) − 3 · ε · β

≥ 4
5 − ε− 3 · ε · β ≥ 4

5 − 4 · ε · β
≥ 4

5 − 1
10 ≥ 7

10 > 3
5 .

It follows that A((a2j · b3j)ω) > 3
5 . This contradicts that A specifies Lm. �

Closure under complement and sum. We now consider closure under
complement and sum.

Lemma 13. PosLimSup and AsLimInf are closed under complement; all other
classes of probabilistic weighted automata are not closed under complement.

Proof. We give the proof for limit average. The fact that PosLimAvg is not
closed under complement follows from Lemma 11. We now show that AsLimAvg

is not closed under complement. Consider the DLimAvg A over alphabet Σ =
{a, b} that consists of a single self-loop state with weight 1 for a and 0 for b. Notice
that A(w.aω) = 1 and A(w.bω) = 0 for all w ∈ Σ∗. To obtain a contradiction,
assume that there exists a AsLimAvg B such that B = 1 − A. For all finite
words w ∈ Σ∗, let B(w) be the expected average weight of the finite run of B
over w. Fix 0 < ε < 1

2 . For all finite words w, there exists a number n such that
the average number of a’s in w.bn is at most ε, and there exists a number m
such that B(w.am) ≤ ε (since B(w.aω) = 0). Hence, we can construct a word
w = bn1am1bn2am2 . . . such that A(w) ≤ ε and B(w) ≤ ε. Since B = 1−A, this
implies that 1 ≤ 2ε, a contradiction. �

Lemma 14. The Sup-, LimSup-, LimInf-, and Disc-automata are closed under
sum under both the positive and almost-sure semantics. AsLimAvg is not closed
under sum.

Theorem 7. The closure properties for probabilistic weighted automata under
max, min, complement, and sum are summarized in Table 1.

Open question. Whether PosLimAvg is closed under sum remains open.

Probabilistic Weighted Automata 257

5 Decision Problems

We conclude the paper with some decidability and undecidability results for clas-
sical decision problems about quantitative languages (see Table 1). Most of them
are direct corollaries of the results in [1]. Given a weighted automaton A and a
rational number ν ∈ Q, the quantitative emptiness problem asks whether there
exists a word w ∈ Σω such that LA(w) ≥ ν, and the quantitative universality
problem asks whether LA(w) ≥ ν for all words w ∈ Σω.

Theorem 8. The emptiness and universality problems for PosSup, AsSup,
AsLimSup, and PosLimInf are decidable.

Theorem 9. The emptiness and universality problems for PosLimSup and
AsLimInf are undecidable.

Finally, by Theorem 6 and the decidability of emptiness for NDisc, we get the
following result.

Theorem 10. The emptiness problem for PosDisc and the universality prob-
lem for AsDisc are decidable.

Note that by Theorem 6, the universality problem for NDisc (which is not know
to be decidable) can be reduced to the universality problem for PosDisc and to
the emptiness problem for AsDisc.
Language inclusion. Given two weighted automata A and B, the quantita-
tive language-inclusion problem asks whether for all words w ∈ Σω we have
LA(w) ≥ LB(w) and the quantitative language-equivalence problem asks whether
for all words w ∈ Σω we have LA(w) = LB(w). It follows from our results that
the language-inclusion problem is decidable for PosSup and AsSup, and is un-
decidable for PosLimSup and AsLimInf. The decidability of language inclusion
for PosLimInf and AsLimSup remains open; the problem is also open for the
respective boolean cases (i.e., for PosCW and AsBW). The decidability of
language inclusion for PosLimAvg, AsLimAvg, PosDisc, and AsDisc also re-
mains open as either the universality or the emptiness problem (or both) remain
open in the respective cases. The situation for language equivalence is the same
as for language inclusion.

References

1. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi
automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301.
Springer, Heidelberg (2008)

2. Baier, C., Größer, M.: Recognizing omega-regular languages with probabilis-
tic automata. In: Proc. of LICS: Logic in Comp. Science, pp. 137–146. IEEE,
Los Alamitos (2005)

3. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of
fixed dimension. Theory Comput. Syst. 36(3), 231–245 (2003)

258 K. Chatterjee, L. Doyen, and T.A. Henzinger

4. Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.:
Verifying quantitative properties using bound functions. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 50–64. Springer, Heidelberg (2005)

5. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

6. Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga,
M.: Compositional quantitative reasoning. In: Proc. of QEST, pp. 179–188. IEEE
Computer Society Press, Los Alamitos (2006)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski,
M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer,Heidelberg
(2008)

8. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In:
Kuty�lowski, M., Charatonik, W., Gȩbala, M. (eds.) FCT 2009. LNCS, vol. 5699,
pp. 3–13. Springer, Heidelberg (2009)

9. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. In: Proc. of LICS: Logic in Computer Science. IEEE
Comp. Soc. Press, Los Alamitos (to appear, 2009)

10. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata
(2009), http://infoscience.epfl.ch/record/133665

11. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: Proc. of SODA, pp. 114–123. ACM Press, New York (2004)

12. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

13. Culik II, K., Karhumäki, J.: Finite automata computing real functions. SIAM J.
Comput. 23(4), 789–814 (1994)

14. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quan-
titative transition systems. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)

15. Droste, M., Kuske, D.: Skew and infinitary formal power series. Theor. Comput.
Sci. 366(3), 199–227 (2006)

16. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int.
Journal of Game Theory 8(2), 109–113 (1979)

17. Ésik, Z., Kuich, W.: An algebraic generalization of omega-regular languages. In:
Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 648–
659. Springer, Heidelberg (2004)

18. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(1997)

19. Gimbert, H.: Jeux positionnels. PhD thesis, Université Paris 7 (2006)
20. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.

LNCS, vol. 2500. Springer, Heidelberg (2002)
21. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. D. Van

Nostrand Company (1966)
22. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
23. Shapley, L.S.: Stochastic games. Proc. of the National Acadamy of Science USA 39,

1095–1100 (1953)
24. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,

F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

25. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proc. of FOCS, pp. 327–338. IEEE, Los Alamitos (1985)

http://infoscience.epfl.ch/record/133665

Partially-Commutative Context-Free Processes�

Wojciech Czerwiński1, Sibylle Fröschle2, and S�lawomir Lasota1

1 Institute of Informatics, University of Warsaw
2 University of Oldenburg

Abstract. Bisimulation equivalence is decidable in polynomial time for
both sequential and commutative normed context-free processes, known
as BPA and BPP, respectively. Despite apparent similarity between the
two classes, different techniques were used in each case. We provide one
polynomial-time algorithm that works in a superclass of both normed
BPA and BPP. It is derived in the setting of partially-commutative context-
free processes, a new process class introduced in the paper. It subsumes
both BPA and BPP and seems to be of independent interest.

We investigate the bisimulation equivalence of the context-free processes, i.e.,
the process graphs defined by a context-free grammar in Greibach normal form.
In process algebra, there are two essentially different ways of interpreting such
grammars, depending on whether the concatenation is understood as the sequen-
tial or parallel composition of processes. These two process classes are known as
BPA (Basic Process Algebra) and BPP (Basic Parallel Processes) [1].

The bisimulation equivalence is decidable both in BPA and BPP [2,7]. Under
the assumption of normedness the polynomial-time algorithms exist [5,6]. These
surprising results were obtained basing on the strong unique decomposition prop-
erty enjoyed by both classes. Despite the apparent similarity of BPA and BPP,
the algorithms are fundamentally different; cf. [1] (Chapt. 9, p. 573):

“These algorithms are both based on an exploitation of the decomposition
properties enjoyed by normed transition systems; however, despite the appar-
ent similarity of the two problems, different methods appear to be required.”

In [4] a decision procedure was given for normed PA, a superclass of both BPA
and BPP. It is however very complicated and has doubly exponential complexity.
In [8] a polynomial-time algorithm was proposed for the normed BPA vs. BPP
problem. It transforms a BPP process into BPA, if possible, and then refers to
a BPA algorithm.

This paper contains a polynomial-time algorithm for a superclass of normed
BPA and BPP. The algorithm simultaneously applies to BPA and BPP, thus
confirming the similarity of the two classes. Our contributions are as follows.

In Section 1 we introduce a new class of partially-commutative context-free
processes, called BPC, build on the underlying concept of (in)dependence of

� The first and the last author acknowledge a partial support by Polish government
grants no. N206 008 32/0810 and N N206 356036.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 259–273, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

260 W. Czerwiński, S. Fröschle, and S. Lasota

elementary processes. BPA (no independence) and BPP (full independence) are
special cases. Our main motivation was to introduce a common setting for both
BPA and BPP; however, the BPC class seems to be of independent interest and
may be applied, e.g., as an abstraction in program analysis.

Our first main result is the proof of the unique decomposition property for
normed BPC with a transitive dependence relation (Thm 1 in Section 2).

Then in Sections 3–5 we work out our second main result: a polynomial-time
algorithm for the bisimulation equivalence in the feasible fragment of normed
BPC, to be explained below. It clearly subsumes both normed BPA and BPP
but allows also for expressing, e.g., a parallel composition of inter-dependent
BPA processes. It seems thus suitable for applications, e.g., for modeling of
multi-core recursive programs. We sketch the main technical points below.

Recall the classical idea of approximating the bisimulation equivalence from
above, by consecutive refinements R �→ R ∩ exp(R), where exp(R) denotes the
bisimulation expansion wrt. the relation R. The crucial idea underlying the BPP
algorithm [6] was to ensure that the approximant R is always a congruence, and
to represent it by a finite base; the latter requires a further additional refinement
step. Our starting point was an insight of [3] that this latter step yields the
greatest norm-reducing bisimulation contained in R ∩ exp(R).

The feasibility condition requires the bisimulation expansion to preserve con-
gruences. It appears sufficient for the above scheme to work, after a suitable
adaptation, in the general setting of BPC. Roughly speaking, we demonstrate
in particular that the BPP algorithm works, surprisingly, for BPA just as well!

Our algorithm efficiently processes both multisets and strings over the set of
elementary processes, of pessimistically exponential size. One of technical con-
tributions of this paper is to devise a way of combining the BPP base refinement
of [6] with the BPA procedure based on compressed string algorithms [10].

1 Partially Commutative Context-Free Processes

BPA and BPP are defined by a context-free grammar in Greibach normal form.
The former class is built on sequential composition of processes, while the lat-
ter one on parallel composition. Thus BPA processes are elements of the free
monoid generated by non-terminal symbols; and BPP processes correspond to
the free commutative monoid. Our aim in this section is to define a process class
corresponding to the free partially-commutative monoid.

A grammar in Greibach normal form consists of a set of non-terminal symbols
V, which we call variables or elementary processes, and a finite set of productions,
which we call rules, of the form

X
a−→ α, (1)

where α ∈ V∗, X ∈ V, and a is an alphabet letter. Additionally assume a symmet-
ric irreflexive relation I ⊆ V×V, called the independence relation. For convenience
we will also use the dependence relation D ⊆ V × V defined as D = (V × V) \ I. D
is thus symmmetric and reflexive.

Partially-Commutative Context-Free Processes 261

The independence induces an equivalence in V∗ in a standard way: two strings
over V are equivalent, if one can transform one into another by a sequence of
transpositions of independent variables. Formally, the equivalence ∼I ⊆ V∗×V∗ is
the reflexive-transitive closure of the relation containing all pairs (wXY v,wY Xv),
for w, v ∈ V∗, (X,Y) ∈ I; or equivalently, ∼I is the smallest congruence in V∗ re-
lating all pairs (XY, YX) where (X,Y) ∈ I. We work in the monoid V♦I = V∗/∼I

from now on; we call V♦I the free partially-commutative monoid generated by I.
The subscript is usually omitted when I is clear from the context. Elements
of V ♦ will be called partially-commutative processes, or processes in short, and
usually denoted by Greek letters α, β, Composition of α and β in V♦ is
written αβ. Empty process (identity in V♦) will be written as ε. Our develop-
ment is based on the decision to interpret right-hand sides α of productions (1)
as elements of V♦, instead of as words or multisets over V. The induced class of
processes we will call BPC (Basic Partially-Commutative algebra).

Formally, a BPC process definition ∆ consists of a finite set V of variables, a
finite alphabet A, an independence relation I ⊆ V×V, and a finite set of rules (1),
where α ∈ V♦, X ∈ V, and a ∈ A. The induced transition system has processes
as states, and transitions derived according to the following rule:

Xβ
a−→ αβ whenever (X a−→ α) ∈ ∆, β ∈ V♦.

Note that when (X,Y) ∈ I it may happen that Xβ = Y β′ in V♦. In such case
the rules of both X and Y contribute to the transitions of Xβ = Y β′. Particular
special cases are BPA (I is empty), and BPP (D is the identity relation).

Example 1. Let I contain the pairs (B,C), (T,C), (B,U), (T, U), and the sym-
metric ones. In the transition system induced by the rules:

P
a−→ WBCT W

a−→ WBC T
t−→ ε B

b−→ ε

W
s−→ U U

u−→ ε C
c−→ ε

there are, among the others, the following transitions:

P
a3

−→ W (BC)3T s−→ U(BC)3T ∼I B
3TUC3 b3−→ TUC3 tu−→ C3 c3

−→ ε.

Definition 1. A bisimulation is any binary relation R over processes such that
R ⊆ exp(R), where exp(R), the bisimulation expansion wrt. R, contains all pairs
(α, β) of processes such that for all a ∈ A:

1. whenever α a−→ α′, there is β′ with β
a−→ β′ and (α′, β′) ∈ R,

2. the symmetric condition holds,

The bisimulation equivalence, written as ∼, is the union of all bisimulations.

An equivalence ≈⊆ V♦ × V♦ is a congruence if it is preserved by composition:
α ≈ α′ and β ≈ β′ implies αβ ≈ α′β′. Bisimulation equivalence is a congruence
both in BPA and BPP; however it needs not be so in BPC, as the following
simple example shows:

262 W. Czerwiński, S. Fröschle, and S. Lasota

Example 2. Consider D = {(A,B), (B,A)} (plus identity pairs) and the rules
below; AB
∼ A′B′, despite that A ∼ A′ and B ∼ B′:

A
a−→ ε A′ a−→ ε B

b−→ ε B′ b−→ ε.

2 The Unique Decomposition for Normed Processes

Assume that ∆ is normed, i.e., for every variable X ∈ V, there is a sequence of
transitions X a1−→ α1 . . .

ak−→ αk = ε leading to the empty process ε. The length
of the shortest such sequence is the norm of X , written |X |. Norm extends
additively to all processes. By the very definition of norm, a transition may
decrease norm by at most 1. Those transitions that do decrease norm will be
called norm-reducing (n-r-transitions, in short). The rules of ∆ that induce such
transitions will be called norm-reducing as well.

We will need a concept of norm-reducing bisimulation (n-r-bisimulation, in
short), i.e., a bisimulation over the transition system restricted to only norm-
reducing transitions. The appropriate norm-reducing expansion wrt. R will be
written as n-r-exp(R). Every bisimulation is a n-r-bisimulation (as a norm-
reducing transition must be matched in a bisimulation by a norm-reducing one)
but the converse does not hold in general.

Proposition 1. Each n-r-bisimulation, and hence each bisimulation, is norm-
preserving, i.e., whenever α and β are related then |α| = |β|.

Assume from now on that variables V = {X1, . . . , Xn} are ordered according to
non-decreasing norm: |Xi| ≤ |Xj | whenever i < j. We write Xi < Xj if i < j.
Note that |X1| is necessarily 1, and that norm of a variable is at most exponential
wrt. the size of ∆, understood as the sum of lengths of all rules.

We write X♦, for a subset X ⊆ V of variables, to mean the free partially-
commutative monoid generated by X and the independence relation restricted
to pairs from X . Clearly, X♦ inherits composition and identity from V♦.

Let ≡ be an arbitrary norm-preserving congruence in V♦. Intuitively, an ele-
mentary process Xi is decomposable if Xi ≡ αβ for some α, β
= ε. Note that |α|,
|β| < |Xi| then. For technical convenience we prefer to apply a slightly different
definition. We say that Xi is decomposable wrt. ≡, if Xi ≡ α for some process
α ∈ {X1, . . . , Xi−1}♦; otherwise, Xi is called prime wrt. ≡. In particular, X1 is
always prime.

Denote by P the set of primes wrt. ≡. It is easy to show by induction on
norm that for each process α there is some γ ∈ P♦ with α ≡ γ; in such case γ
is called a prime decomposition of α. Note that a prime decomposition of Xi is
either Xi itself, or it belongs to {X1, . . . , Xi−1}♦. We say that ≡ has the unique
decomposition property if each process has precisely one prime decomposition.
While the set P of primes depends on the chosen ordering of variables (in case
Xi ≡ Xj , i
= j), the unique decomposition property does not.

In general ∼, even if it is a congruence, needs not to have the unique decom-
position property, as the following example shows:

Partially-Commutative Context-Free Processes 263

Example 3. Let I = {(B,C), (C,B)} and the rules be as follows:

A
a−→ B A′ a−→ C B

b−→ ε C
c−→ ε.

Consider two equivalent processes AC ∼ A′B. As all four variables are prime
wrt. ∼, we have thus a process with two different prime decompositions wrt. ∼.

The situation is not as bad as Example 3 suggests. We can prove the unique
decomposition property (Thm 1 below) assumed that D is transitive (hence D is
an equivalence). Abstraction classes of D we call threads. Intuitively, a process
(i.e., an abstraction class of ∼I) may be seen as a collection of strings over V,
one for each thread. For convenience, each of the strings will be called thread as
well. This concrete representation will be extensively exploited in the sequel.

For α, γ ∈ V♦ we say that α masks γ if any thread nonempty in γ is also
nonempty in α. A binary relation ≈ is called:

– strongly right-cancellative if whenever αγ ≈ βγ then α ≈ β;
– right-cancellative if whenever αγ ≈ βγ and both α and β mask γ then α ≈ β.

Proposition 2. If a congruence has the unique decomposition property then it
is strongly right-cancellative.

Proposition 3. If ≈ is strongly right-cancellative then exp(≈) and n-r-exp(≈)
are right-cancellative.

A counterexample to the unique decomposition property of ≡, if any, is a pair
(α, β) of processes from P♦ with α ≡ β, α
= β. If there is a counterexample, there
is one of minimal norm; we call it a minimal ≡-counterexample. A congruence
≡ is weakly right-cancellative if whenever αγ ≡ βγ and both α and β mask γ
and (αγ, βγ) is a minimal ≡-counterexample then α ≡ β.

Theorem 1. Assume D to be transitive. Then each weakly right-cancellative con-
gruence that is a n-r-bisimulation has the unique decomposition property.

It is a generalization of the unique decomposition in BPA and BPP (cf. [5]
and [6], resp.), in two respects. Firstly, we consider a wider class of processes.
Secondly, we treat every n-r-bisimulation that is a weak right-cancellative con-
gruence, while in the two cited papers the result was proved only for the bisim-
ulation equivalence ∼ (cf. Prop. 10 in Section 3.2, where we consider the unique
decomposition property of ∼). The rest of this section is devoted to the proof.

Proof of Thm 1. Fix a weakly right-cancellative congruence ≡ that is a n-r-bi-
simulation; ≡ is thus norm-preserving. Let P ⊆ V denote primes wrt. ≡, ordered
consistently with the ordering ≤ of V. For the sake of contradiction, suppose
that the unique decomposition property does not hold, and consider a minimal
≡-counterexaple (α, β).

We say that a transition of one of α, β is matched with a transition of the other
if the transitions are equally labelled and the resulting processes are related by ≡.

264 W. Czerwiński, S. Fröschle, and S. Lasota

Clearly, each norm-reducing transition of one of α, β may be matched with a tran-
sition of the other. Due to the minimality of the counterexample (α, β), any prime
decompositions of the resulting processes, say α′ and β′, are necessarily identical.
For convenience assume that each right-hand side of ∆ was replaced by a prime
decomposition wrt. ≡. Thus α′, β′ must be identical.

Let t be the number of threads and let V = V1 ∪ . . . ∪ Vt be the partition of
V into threads. A process α restricted to the ith thread we denote by αi ∈ Vi

∗.
Hence α = α1 . . . αt and the order of composing the processes αi is irrelevant.

A (n-r-)transition of α, or β, is always a transition of the first variable in some
αi, or βi; such variables we call active. Our considerations will strongly rely on
the simple observation: a n-r-transition of an active variable X may ’produce’
only variables of strictly smaller norm than X , thus smaller than X wrt. ≤.

In Claims 1–6, to follow, we gradually restrict the possible form of (α, β).

Claim 1. For each i ≤ t, one of αi, βi is a suffix of the other.

Proof. Suppose that some thread i does not satisfy the requirement, and consider
the longest common suffix γ of αi and βi. Thus γ is masked in α and β. As ≡
is weakly right-cancellative, γ must be necessarily empty – otherwise we would
obtain a smaller counterexample. Knowing that the last letters of αi and βi, say
Pα, Pβ , are different, we perform a case-analysis to obtain a contradiction. The
length of a string w is written ‖w‖.
case 1: ‖αi‖ ≥ 2, ‖βi‖ ≥ 2. After performing any pair of matching n-r-
transitions, the last letters Pα, Pβ will still appear in the resulting processes
α′, β′, thus necessarily α′
= β′ – a contradiction to the minimality of (α, β).
case 2: ‖αi‖ = 1, ‖βi‖ ≥ 2 (or a symmetric one). Thus αi = Pα. As Pα is prime,
some other thread is necessarily nonempty in α. Perform any n-r-transition from
that other thread. Irrespective of a matching move in β, the last letters Pα and
Pβ still appear in the resulting processes – a contradiction.
case 3: ‖αi‖ = ‖βi‖ = 1. Thus αi = Pα, βi = Pβ . Similarly as before, some
other thread must be nonempty both in α and β. Asssume wlog. |Pα| ≥ |Pβ |.
Perform any n-r-transition in α from a thread different than i. Irrespective of a
matching move in β, in the resulting processes α′, β′ the last letter Pα in α′i is
different from the last letter (if any) in β′i – a contradiction. "#

Claim 2. For each i ≤ t, either αi = βi, or αi = ε, or βi = ε.

Proof. By minimality of (α, β). If αi, say, is a proper suffix of βi, then a n-r-
transition of αi may not be matched in β. "#

A thread i is called identical if αi = βi
= ε.

Claim 3. A n-r-transition of one of α, β from an identical thread may be matched
only with a transition from the same thread.

Proof. Consider an identical thread i. A n-r-transition of αi decreases |αi|. By
minimality of (α, β), |βi| must be decreased as well. "#

Claim 4. There is no identical thread.

Partially-Commutative Context-Free Processes 265

Proof. Assume thread i is identical. Some other thread j is not as α
= β; wlog.
assume |αj | > |βj |, using Claim 1. Consider a n-r-transition of the active variable
in αi = βi that maximises the increase of norm on thread j. This transition,
performed in α, may not be matched in β, due to Claim 3, so that the norms of
αj and βj become equal. "#

Claim 5. One of α, β, say α, has only one nonempty thread.

Proof. Consider the greatest (wrt. ≤) active variable and assume wlog. that it
appears in α. We claim α has only one nonempty thread. Indeed, if some other
thread is nonempty, a n-r-transition of this thread can not be matched in β. "#

Let αi be the only nonempty thread in α, and let Pi be the active variable in
that thread, αi = Piγi. The process γi is nonempty by primality of Pi.

Claim 6. |Pi| is greater than norm of any variable appearing in γi.

Proof. Consider any thread βj = Pjγj nonempty in β. We know that |Pi| ≥ |Pj |.
As the thread i is empty in β, the norm of Pj must be sufficiently large to
”produce” all of γi in one n-r-transition, i.e., |Pj | > |γi|. Thus |Pi| > |γi|. "#

Now we easily derive a contradiction. Knowing that Pi has the greatest norm in
α, consider the processes Piα ≡ Piβ, and an arbitrary sequence of |Pi|+1 norm-
reducing transitions from Piβ. We may assume that this sequence does not touch
Pi as |β| = |α| > |Pi|. Let β′ be the resulting process, and let α′ denote the pro-
cess obtained by performing some matching transitions from Piα = PiPiγi. The
variable Pi may not appear in α′ while it clearly appears in β′. Thus α′ ≡ β′,
α′
= β′ and |α′| = |β′| is smaller than |α| = |β| – a contradiction to the mini-
mality of the counterexample (α, β). This completes the proof of the theorem.

3 The Algorithm

From now on we only consider normed BPC process definitions ∆ with a tran-
sitive dependence relation D. Such ∆ is called feasible if it satifies the following:

Assumption 1 (Feasibility). Whenever ≡ is a congruence, then the relations
≡ ∩ exp(≡) and ≡ ∩ n-r-exp(≡) are congruences as well.

Clearly, not all normed BPC process definitions are feasible (cf., e.g., Example 2
and the smallest congruence ≡ such that A ≡ A′ and B ≡ B′).

Proposition 4. Every normed BPA or BPP process definition is feasible.

We prefer to separate description of the algorithm from the implementation
details. In this section we provide an outline of the algorithm only. In Section 4
we explain how each step can be implemented. Without further refinement, this
would give an exponential-time procedure. Finally, in Section 5 we provide the
polynomial-time implementation of crucial subroutines. Altogether, Sections 3–5
contain the proof of our main result:

266 W. Czerwiński, S. Fröschle, and S. Lasota

Theorem 2. The bisimulation equivalence ∼ is decidable in polynomial time
for feasible BPC process definitions.

The algorithm will compute a finite representation of ∼. From now on let ∆ be
a fixed feasible process definition with variables V and dependence D; we also fix
an ordering of variables V = {X1, . . . , Xn}.

3.1 Bases

A base will be a finite representation of a congruence having the unique decom-
position property. A base B = (P, E) consists of a subset P ⊆ V of variables, and
a set E of equations (Xi = α) with Xi /∈ P, α ∈ (P ∩ {X1, . . . , Xi−1})♦ and
|Xi| = |α|. We assume that there is precisely one equation for each Xi /∈ P.

An equation (Xi = α) ∈ E is thought to specify a decomposition of a variable
Xi /∈ P in P♦. Put dB(Xi) = α if (Xi = α) ∈ E and dB(Xi) = Xi if Xi ∈ P.
We want dB to unambiguously extend to all processes as a homomorphism from
V♦ to P♦. This is only possible when, intuitively, decompositions of independent
variables are independent. Formally, we say that a base B is I-preserving if
whenever (Xi, Xj) ∈ I, and dB(Xi) = α, dB(Xj) = β, then αβ = βα in P♦.

The elements of P are, a priori, arbitrarily chosen, and not to be confused
with the primes wrt. a given congruence. However, an I-preserving base B nat-
urally induces a congruence =B on V♦: α =B β iff dB(α) = dB(β). It is easy to
verify that primes wrt. =B are precisely variables from P and that =B has the
unique decomposition property. Conversely, given a congruence ≡ with the latter
property, one easily obtains a base B: take primes wrt. ≡ as P, and the (unique)
prime decompositions of decomposable variables as E. B is guaranteed to be I-
preserving, by the uniqueness of decomposition of XY ≡ Y X , for (X,Y) ∈ I.
As these two transformations are mutually inverse, we have just shown:

Proposition 5. A norm-preserving congruence in V♦ has unique decomposition
property iff it equals =B, for an I-preserving base B.

This allows us, in particular, to speak of the base of a given congruence, if it
exhibits the unique decomposition property; and to call elements of P primes.

3.2 Outline of the Algorithm

For an equivalence ≡ over processes, let gnrb(≡) denote the greatest n-r-bisi-
mulation that is contained in ≡, defined as the union of all n-r-bisimulations
contained in ≡. It admits the following fix-point characterization:

Proposition 6. (α, β) ∈ gnrb(≡) iff α ≡ β and (α, β) ∈ n-r-exp(gnrb(≡)).

Proposition 7. (i) if ≡ is a congruence then gnrb(≡) is a congruence as well.
(ii) if ≡ is right-cancellative then gnrb(≡) is weakly right-cancellative.

Partially-Commutative Context-Free Processes 267

Proof. (i) gnrb(≡) is the intersection of the descending chain of relations ≡1 :=
≡ ∩ n-r-exp(≡), ≡2 := ≡1 ∩ n-r-exp(≡1), Due to Assumption 1 each ≡i is
a congruence, hence gnrb(≡) is a congruence too.

(ii) Consider a minimal gnrb(≡)-counterexample (αγ, βγ) such that γ is masked
both by α and β. Hence each n-r-transition of α (β) is matched by a transi-
tion of β (α); the resulting processes have the same prime decompositions, due
to minimality of (αγ, βγ), and thus are related by gnrb(≡). This proves that
(α, β) ∈ n-r-exp(gnrb(≡)). Due to right-cancellativity of ≡ we have also α ≡ β.
Now by the if implication of Prop. 6 we deduce (α, β) ∈ gnrb(≡). "#

Here is the overall idea. We start with the initial congruence =B that re-
lates processes of equal norm, and then perform the fixpoint computation by
refining =B until it finally stabilizes. The initial approximant has the unique
decomposition property. To ensure that all consecutive approximants also have
the property, we apply the refinement step: =B �→ gnrb(=B ∩ exp(=B)). By
Assumption 1, =B ∩ exp(=B) is a congruence, and by Prop. 2 and 3 it is right-
cancellative. Thus Prop. 7 applies to gnrb(=B ∩ exp(=B)) and in consequence of
Thm. 1 we get:

Proposition 8. gnrb(=B ∩ exp(=B)) is a congruence with the unique decompo-
sition property.

Outline of the algorithm:

(1) Compute the base B of ’norm equality’.
(2) If =B is a bisimulation then halt and return B.
(3) Otherwise, compute the base of the congruence gnrb(=B ∩ exp(=B)).
(4) Assign this new base to B and go to step (2).

This scheme is a generalization of the BPP algorithm [6]. As our setting is more
general, the implementation details, to be given in the next sections, will be
necessarily more complex than in [6]. However, termination and correctness may
be proved without inspecting the details of implementation:

Proposition 9 (termination). The number of iterations is smaller than n.

Proof. In each iteration the current relation =B gets strictly finer (if B did not
change in one iteration, then =B would necessarily be a bisimulation). Therefore
all prime variables stay prime, and at least one non-prime variable becomes
prime. To prove this suppose the contrary. Consider the smallest Xi wrt. ≤
such that its prime decomposition changes during the iteration. Xi has thus two
different prime decompositions (wrt. the ’old’ relation =B), a contradiction. "#

Proposition 10 (correctness). The algorithm computes the base of ∼.

Proof. The invariant ∼⊆=B is preserved by each iteration. The opposite inclu-
sion =B⊆∼ follows when =B is a bisimulation. "#

268 W. Czerwiński, S. Fröschle, and S. Lasota

The unique decomposition property of ∼ is thus only a corollary, as we did not
have to prove it prior to the design of the algorithm! A crucial discovery is that
the unique decomposition must only hold for the relations gnrb(=B ∩ exp(=B))
and that these relations play a prominent role in the algorithm (cf. [3]).

4 Implementation

Step (1) is easy: recalling that |X1| = 1, initialize B by P := {X1}, E := {Xi =
X1

|Xi| : i = 2 . . . n}. On the other hand implementations of steps (2) and (3) re-
quire some preparation. We start with a concrete characterization of I-preserving
bases B = (P, E). Distinguish monic threads as those containing precisely one
prime variable. B is called pure if for each decomposition (Xi = α) ∈ E, α
contains only variables from the thread of Xi and from (other) monic threads.

Proposition 11. A base B is I-preserving if and only if it is pure.

Proof. The if implication is immediate: if B is pure and the decompositions
α = dB(Xi), β = dB(Xj) of independent variables Xi, Xj both contain a prime
from some thread, then the thread is necessarily monic. Thus αβ = βα. This
includes the case when any of Xi, Xj is prime. The only if implication is shown
as follows. Consider a decomposition (Xi = α) ∈ E and any prime Xj , appearing
in α, from a thread different than that of Xi. As B is I-preserving, Xjα = αXj .
Hence α, restricted to the thread of Xj , must be a monomial Xj

k. As Xj was
chosen arbitrary, we deduce that this thread must be a monic one. "#

Let B = (P, E) be a pure base. Two variables Xi, Xj /∈ P are compatible if either
they are independent, or (Xi, Xj) ∈ D, (Xi = α), (Xj = β) ∈ E and α and β
contain primes from the same threads. That is, α contains a prime from a thread
iff β contains a prime from that thread. Note that it must be the same prime
only in case of a (necessarily monic) thread different from the thread of Xi and
Xj . B is compatible if all pairs of non-prime variables are compatible.

Proposition 12. Let B be pure. If =B is a n-r-bisimulation then B is compatible.

Proof. Assume (Xi, Xj) ∈ D, (Xi = α) and (Xj = β) ∈ E. For the sake of con-
tradiction, suppose that some thread t is nonempty in α but empty in β: αt
= ε,
βt = ε. We know that (XjXi, βα) ∈ n-r-exp(=B). Hence a norm-reducing transi-
tion of (βα)t = αt is matched by a transition of Xj , so that the decompositions
of the two resulting processes are equal. In the decomposition of the left process
the norm of thread t is at least |αt|, as Xi was not involved in the transition.
On the right side, the norm decreased due to the fired transition, and is thus
smaller than |αt| – a contradiction. "#

Step (2) may be implemented using the fact stated below. It is essentially
an adaptation of the property of Caucal base [1] to the setting of partially-
commutative processes, but the proof requires more care than in previously
studied settings.

Partially-Commutative Context-Free Processes 269

Proposition 13. Let B = (P, E) be pure and compatible. Then =B is a bisimu-
lation if and only if (X,α) ∈ exp(=B) for each (X = α) ∈ E.

Proof. We only need to consider the if direction. For any pair α, β of processes
such that α =B β, we should show that (α, β) ∈ exp(=B). Let γ := dB(α) = dB(β)
be the prime decomposition of α and β. It is sufficient to prove that (α, γ) ∈
exp(=B), as exp(=B) is symmetric and transitive. We will analyse the possible
transitions of α and γ, knowing that all decompositions in E are pure.

First consider the possible transitions of α. Let Xi be an active variable in
α, i.e., α = Xiα

′ for some α′, and let δ := dB(Xi). Then γ may be also split
into γ = δγ′, where γ′ = dB(α′). Thus, any transition of α may be matched by
a transition of γ, as we know, by assumption, that (Xi, δ) ∈ exp(=B).

Now we consider the possible transitions of γ. Let a prime Xj be active in γ.
Choose a variable Xi such that Xj appears in the decomposition δ = dB(Xi).
Due to compatibility of B we may assume that the chosen Xi is active in α, i.e.,
α = Xiα

′, for some α′. Similarly as above we have γ = δγ′. A transition of Xj

is necessarily a transition of δ, hence may be matched by a transition of Xi, by
the assumption that (Xi, δ) ∈ exp(=B). "#

Proposition 14. The base B is pure and compatible in each iteration.

Proof. Initially B is pure and compatible. After each iteration B, being the base
of gnrb(=B ∩ exp(=B)), is pure by Prop. 11, 8 and 5, and compatible by Prop. 12.

"#

Therefore in step (2), the algorithm only checks the condition of Prop. 13.

Implementation of step (3). We compute the base B′ = (P′, E′) of the greatest
n-r-bisimulation contained in =B ∩ exp(=B). As only norm-reducing transitions
are concerned, the base is obtained in a sequence of consecutive extensions, by
inspecting the variables according to their ordering, as outlined below.

In the following let ≡ denote the relation =B ∩ exp(=B). The algorithm below
is an implementation of the fix-point characterization of gnrb(≡) (cf. Prop. 6).

Implementation of step (3):

Start with the set P′ = {X1} of primes and the empty set E′ of decom-
positions. Then for i := 2, . . . , n do the following:

Check if there is some α ∈ P′♦ such that

(a) (Xi, α) ∈ n-r-exp(=B′), and (b) Xi ≡ α.

If one is found, add (Xi = α) to E′. Otherwise, add Xi to P′ and
thus declare Xi prime in B′.

Before explaining how searching for a decomposition α of Xi is implemented, we
consider the correctness issue.

270 W. Czerwiński, S. Fröschle, and S. Lasota

Proposition 15 (correctness of step (3)). The base B′ computed in step (3)
coincides with the base of gnrb(≡).

Now we return to the implementation of step (3). Seeking α ∈ (P′)♦ appropriate
for the decomposition of Xi is performed by an exhaustive check of all ’candi-
dates’ computed according to the procedure described below. The computation
implements a necessary condition for (a) to hold: if (Xi, α) ∈ n-r-exp(=B′) then
α is necessarily among the candidates.

Computing candidates α:

Fix an arbitrarily chosen norm-reducing rule Xi
a−→ β (hence β ∈

{X1, . . . , Xi−1}♦) and let β′ := dB′(β) be a decomposition of β wrt. B′

(hence β′ ∈ (P′)♦). For any j < i such that Xj ∈ P′, for any norm
reducing rule Xj

a−→ γ, do the following: let γ′ := dB′(γ); if β′ = γ′γ′′,
for some γ′′, then let α := Xjγ

′′ ∈ (P′)♦ be a candidate.

We will write γ ≤B′ β to mean that dB′(γ) is a prefix of dB′(β).

5 Polynomial-Time Implementation

The algorithm performs various manipulations on processes. The most important
are the following ’subroutines’, invoked a polynomial number of times:

(i) Given α, β ∈ V♦ and B, check if α =B β.
(ii) Given α, β ∈ V♦ and B, check if α ≤B β. If so, compute γ such that αγ =B β.

Recall that the processes involved in the algorithm are tuples of strings over
prime variables, one string for each thread, of pessimistically exponential length
and norm. We need thus to consider two inter-related issues:

– a succint representation of processes in polynomial space; and
– polynomial-time implementations of all manipulations, including subroutines

(i) and (ii), that preserve the succint representation of manipulated data.

The special case of BPP is straightforward: the commutative processes are es-
sentially multisets, may be thus succintly represented by storing exponents in
binary, and effectively manipulated in polynomial time.

In the general case of BPC, and even in BPA, we need a more elaborate ap-
proach. To get a polynomial-time implementation, we need to use a method of
‘compressed’ representation of strings. Moreover, all the operations performed
will have to be implemented on compressed representations, without ‘decom-
pressing’ to the full exponential-size strings. After preparatory Section 5.1, in
Section 5.2 we explain how to implement steps (1)–(3) in polynomial time.

Partially-Commutative Context-Free Processes 271

5.1 Compression by an Acyclic Morphism

Let A be a finite alphabet and S = {z1, . . . , zm} a finite set of non-terminal
symbols. An acyclic morphism is a mapping h : S → (S ∪ A)∗ such that

h(zi) ∈ (A ∪ {z1, . . . , zi−1})∗.
We assume thus a numbering of symbols such that in string h(zi), only zj with
smaller index j < i are allowed. Due to this acyclicity requirement, h induces a
monoid morphism h∗ : S∗ → A∗, as the limit of compositions h, h2 = h ◦ h,
Formally, h∗(zi) = hk(zi), for the smallest k with hk(zi) ∈ A∗. Then the extension
of h∗ to all strings in S∗ is as usual. Therefore each symbol zi represents a
nonempty string over A. Its length ‖h∗(zi)‖ may be exponentially larger than
the size of h, defined as the sum of lengths of all strings h(zi).

Action of h∗ on a symbol z may be presented by a finite tree, that we call the
derivation tree of z. The root is labeled by z. If a node is labeled by some z′,
then the number of its children is equal to the length of h(z′). Their labels are
consecutive letters from h(z′) and their ordering is consistent with the ordering
of letters in h(z′). Nodes labeled by an alphabet letter are leaves. By acyclicity
of h the tree is necessarily finite; the labels of its leaves store h∗(z).

Lemma 1 ([9]). Given an acyclic morphism h and two symbols z, z′ ∈ S, one
may answer in polynomial-time (wrt. the size of h) the following questions:
– is h∗(z) = h∗(z′)?
– is h∗(z) a prefix of h∗(z′)?

A relevant parameter of a symbol z, wrt. an acyclic morphism h, is its depth,
written depthh(z), and defined as the longest path in the derivation tree of z.
A depth of h, depth(h), is the greatest depth of a symbol.

An acyclic morphism h is binary if ‖h(zi)‖ ≤ 2, for all zi ∈ S. Any acyclic
morphism h may be transformed to the equivalent binary one: replace each h(zi)
of length greater than 2 with a balanced binary tree, using ‖h(zi)‖− 2 auxiliary
symbols. Note that the depth d of h may increase to d log d.

Lemma 2. Given a binary acyclic morphism h, a symbol z ∈ S, and k <
‖h∗(z)‖, one may compute in polynomial-time an acyclic morphism h′ extending
h, such that one of new symbols of h′ represents the suffix of h∗(z) of length k,
and size(h′) ≤ size(h) + O(depthh(z)) and depth(h′) ≤ depth(h).

Proof. By inspecting the path in the derivation tree of z leading to the “cutting
point”, that is, to the first letter of the suffix of length k. For each symbol y
appearing on this path, we will add its copy ỹ to S. Our intention is that ỹ
represents a suitable suffix of h∗(y). This is achieved as follows. Assume that
h(y) = y1y2. If the path to the cutting point traverses y and y1, we define h for
ỹ as: h(ỹ) = ỹ1y2. Otherwise, if the path traverses y2, we put h(ỹ) = ỹ2.

The total overhead in increase of size of h is constant. Hence by repeating this
procedure along the whole path from the root, labelled by z, to the cutting point,
the size of h will increase by O(depthh(z)). Clearly, z̃ represents the required
suffix of h∗(z). The new acyclic morphism is an extension of h, in the sense that
value of h∗ is preserved for all symbols that were previously in S. "#

272 W. Czerwiński, S. Fröschle, and S. Lasota

5.2 Representation of a Base by an Acyclic Morphism

We focus on the case of BPA first, V♦ = V∗. Extension to BPC, being straight-
forward, is discussed at the end of this section. The complexity considerations
are wrt. the size N of ∆, i.e., the sum of lengths of all rules. The subroutines (i)
and (ii) may be implemented in polynomial time due to Lemma 1 and 2.

In each iteration of the algorithm, a base B = (P, E) will be represented suc-
cinctly by a binary acyclic morphism h. For each Xi /∈ P, the right-hand side
of its decomposition (Xi = αi) ∈ E will be represented by a designated symbol
xi ∈ S. Thus dB(Xi) = αi = h∗(xi). The set P of primes will be the alphabet.

In the initial step (1), cf. Section 4, it is easy to construct such h of size O(N)
and depth O(N logN). Implementation of step (2) will be similar to checking
the conditions (a) and (b) in step (3) (cf. Sect. 4), to be described now.

Given a ’compressed’ representation h of B, we now show how to construct a
representation h′ of B′ in each execution of step (3) of the algorithm; h′ will be
of size O(N2 logN) and depth O(N logN). The alphabet A will be P′.

We construct h′ by consecutive extensions, according to step (3) of the algo-
rithm. Initially, h′ is empty and A = {X1}. For the extension step, suppose that
each non-prime Xj /∈ P′, j < i, has already a designated symbol xj in h′ that
represents αj , where (Xj = αj) ∈ E′. The most delicate point is the size of the
representation of a ’candidate’ α in step (3), as the decomposition αi of Xi, if
any, is finally found among the candidates.

Let Xi
a−→ β be a chosen norm-reducing rule. Replace occurences of non-

prime Xj ’s in β by the corresponding xj ’s. Extend h′ by h′(yi) = β, for a fresh
auxiliary symbol yi, and transform h′ to the binary form (we say that we encode
the rule in h′). This increases the size of h′ by O(N) and its depth by at most
logN . To compute a representation of a candidate α, we extend h′ similarly as
above, to encode a rule Xj

a−→ γ, by h′(yj) := γ. Then we apply Lemma 1 to
check whether h∗(yj) is a prefix of h∗(yi), and if so, apply Lemma 2 to yi, so
that the newly added symbol ỹi represents the required suffix of h∗(xi). This
increases the size of h′ by O(depth(h′)) and keeps its previous depth. Finally,
we compose Xj , represented by xj , with ỹi: h(xi) = xj ỹi, according to step (3)
of the algorithm. The cumulative increase of size and depth, after at most N
repetitions of the above procedure, fits the required bounds, O(N2 logN) and
O(N logN), on the size and depth of h′, respectively.

To test the conditions (a) and (b) we invoke the subroutine (i) for the suc-
cessors of Xi and the candidate α. This involves encoding the rules of Xi and
Xj in h′, in the similar way as above. The condition (b) refers to B, so we need
to merge h′ with h. As the total number of candidates is polynomial, it follows
that the whole algorithm runs in polynomial time.

Remark 1. The input process definition may be well given in a compressed form,
i.e., by an acyclic morphism representing the right-hand sides of all rules.

Implementation for BPC. The only difference is that there may be more
threads than one. Hence instead of single symbol xi, representing decomposition

Partially-Commutative Context-Free Processes 273

of Xi, we need to have a tuple of symbols, x1
i , . . . , x

t
i, where t is the number of

threads, to represent the content of each thread separately. The overall idea is
that the algorithm should work thread-wise, i.e., process separately the strings
appearing in each thread. E.g., the subroutines (i) and (ii) may be implemented
analogously as for BPA, by referring to Lemma 1 and 2 for each thread.

6 Conclusions

We have provided an evidence that the bisimulation equivalence in both normed
BPA and BPP can be solved by essentially the same polynomial-time algorithm.

The algorithm works correctly in a feasible fragment of normed BPC. An in-
teresting open question remains whether the procedure may be extended to work
for all of BPC with transitive D. This would probably require a quite different
method, as the core ingredient of the approach of this paper is that the bisimula-
tion equivalence is a congruence, which is not the case in general. Another open
question is whether our setting can solve the normed BPA vs. BPP problem
(disjoint union of normed BPA and BPP needs not be feasible, cf. Example 2).

It also remains to investigate possible applications of the BPC framework as an
abstraction of programs, e.g., of multi-core computations.

Concerning the expressibility, normed BPC class and normed PA seem to be in-
comparable, even with respect to the trace equivalence (e.g., the process in
Example 1 is not expressible in normed PA).

References

1. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification of infinite structures.
In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)

2. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for
all context-free processes. Inf. Comput. 121(2), 143–148 (1995)

3. Fröschle, S., Lasota, S.: Normed processes, unique decomposition, and complexity
of bisimulation equivalences. In: Proc. INFINITY 2006. ENTCS (2006) (to appear)

4. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process
algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

5. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilar-
ity of normed context-free processes. Theor. Comput. Sci. 158(1-2), 143–159 (1996)

6. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial time algorithm for deciding
bisimulation equivalence of normed Basic Parallel Processes. Mathematical Struc-
tures in Computer Science 6, 251–259 (1996)

7. Jančar, P.: Bisimilarity of Basic Parallel Processes is PSPACE-complete. In: Proc.
LICS 2003, pp. 218–227 (2003)

8. Jančar, P., Kot, M., Sawa, Z.: Normed BPA vs. Normed BPP revisited. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 434–446. Springer, Heidelberg (2008)

9. Karpiński, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nord. J. Comput. 4(2), 172–186 (1997)

10. Lasota, S., Rytter, W.: Faster algorithm for bisimulation equivalence of normed
context-free processes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 646–657. Springer, Heidelberg (2006)

Testing Finitary Probabilistic Processes
(Extended Abstract)

Yuxin Deng1,�, Rob van Glabbeek2,4, Matthew Hennessy3,��,
and Carroll Morgan4,���

1 Shanghai Jiao Tong University, China
2 NICTA, Sydney, Australia

3 Trinity College Dublin, Ireland
4 University of New South Wales, Sydney, Australia

Abstract. We provide both modal- and relational characterisations of may- and
must-testing preorders for recursive CSP processes with divergence, featuring
probabilistic as well as nondeterministic choice. May testing is characterised in
terms of simulation, and must testing in terms of failure simulation. To this end we
develop weak transitions between probabilistic processes, elaborate their topolog-
ical properties, and express divergence in terms of partial distributions.

1 Introduction

It has long been a challenge for theoretical computer scientists to provide a firm math-
ematical foundation for process-description languages that incorporate both nonde-
terministic and probabilistic behaviour in such a way that processes are semantically
distinguished just when they can be told apart by some notion of testing.

In our earlier work [1, 3] a semantic theory was developed for one particular language
with these characteristics, a finite process calculus called pCSP: nondeterminism is
present in the form of the standard choice operators inherited from CSP [7], that is
P " Q and P � Q, while probabilistic behaviour is added via a new choice operator
P p⊕ Q in which P is chosen with probability p and Q with probability 1−p. The
intensional behaviour of a pCSP process is given in terms of a probabilistic labelled
transition system [3, 14], or pLTS, a generalisation of labelled transition systems [12].
In a pLTS the result of performing an action in a given state results in a probability
distribution over states, rather than a single state; thus the relations s α−→ t in an LTS
are replaced by relations s α−→ ∆, with ∆ a distribution. Closed pCSP expressions P
are interpreted as probability distributions �P � in the associated pLTS. Our semantic
theory [1, 3] naturally generalises the two preorders of standard testing theory [5] to
pCSP:

– P �pmay Q indicates that Q is at least as good as P from the point of view of
possibly passing probabilistic tests; and

– P �pmust Q indicates instead that Q is at least as good as P from the point of view
of guaranteeing the passing of probabilistic tests.

� Deng was supported by the National Natural Science Foundation of China (60703033).
�� Hennessy gratefully acknowledges the financial support of Science Foundation Ireland.

��� Morgan acknowledges the support of ARC Discovery Grant DP0879529.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 274–288, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Testing Finitary Probabilistic Processes 275

The most significant result of [1] was an alternative characterisation of these preorders
as particular forms of coinductively defined simulation relations, �S and �FS , over the
underlying pLTS. We also provided a characterisation in terms of a modal logic.

The object of the current paper is to extend the above results to a version of pCSP
with recursive process descriptions: we add a construct recx. P for recursion, and
extend the intensional semantics of [1] in a straightforward manner. We restrict our-
selves to finitary pCSP processes, those having finitely many states and displaying finite
branching.

1/2 1/2

1/2 1/2

a

τ
τ

τ

(b)

a

τ

1/2 1/2

τ

(a)

Fig. 1. The pLTSs of processes Q1 and Q2

The simulation relations
�S and �FS in [1] were
defined in terms of weak
transitions τ̂=⇒ between dis-
tributions, obtained as the
transitive closure of a rela-
tion τ̂−→ between distribu-
tions that allows one part
of a distribution to make a
τ -move with the other part
remaining in place. This
definition is however inade-
quate for processes that can
do an unbounded number
of τ -steps. The problem is
highlighted by the process
Q1 = recx. (τ.x 1

2
⊕ a. 0) illustrated in Figure 1(a). Process Q1 is indistinguishable,

using tests, from the simple process a. 0: we have Q1 �pmay a. 0 and Q1 �pmust a. 0.
This is because the process Q1 will eventually perform the action a with probability 1.
However, the action �a. 0 � a−→ �0 � can not be simulated by a corresponding move
�Q1�

τ̂=⇒ a−→. No matter which distribution ∆ we obtain from executing a finite se-
quence of internal moves �Q1�

τ̂=⇒ ∆, still part of it is unable to subsequently perform
the action a.

To address this problem we propose a new relation ∆ =⇒ Θ, that indicates that Θ
can be derived from ∆ by performing an unbounded sequence of internal moves; we
call Θ a weak derivative of ∆. For example �a. 0 � will turn out to be a weak derivative
of �Q1�, �Q1� =⇒ �a. 0 �, via the infinite sequence of internal moves

�Q1�
τ−→ �Q1 1

2
⊕ a. 0 � τ−→ �Q1 1

22
⊕ a. 0 � τ−→ . . . �Q1 1

2n
⊕ a. 0 � τ−→

One of our contributions here is the significant use of “sub distributions” that sum to no
more than one [8, 11]. For example, the empty subdistribution ε elegantly represents the
chaotic behaviour of processes that in CSP and in must-testing semantics is tantamount
to divergence, because we have ε α−→ ε for any action α, and a process like recx. x
that diverges via an infinite τ path gives rise to the weak transition recx. x =⇒ ε.
So the process Q2 = Q1 1

2
⊕ recx. x illustrated in Figure 1(b) will enable the weak

transition �Q2� =⇒ 1
2 �a. 0 �, where intuitively the latter is a proper subdistribution

mapping the state a. 0 to the probability 1
2 . Our weak transition relation =⇒ can be

276 Y. Deng et al.

regarded as an extension of the weak hyper-transition from [10] to partial distributions;
the latter, although defined in a very different way, can be represented in terms of ours
by requiring weak derivatives to be total distributions.

We end this introduction with a brief glimpse at our proof strategy. In [1] the char-
acterisations for finite pCSP processes were obtained using a probabilistic extension of
the Hennessy-Milner logic [12]. Moving to recursive processes, we know that process
behaviour can be captured by a finite modal logic only if the underlying LTS is finitely
branching, or at least image-finite [12]. Thus to take advantage of a finite probabilistic
HML we need a property of pLTSs corresponding to finite branching in LTSs: this is
topological compactness, whose relevance we now sketch.

Subdistributions over (derivatives of) finitary pCSP processes inherit the standard
(complete) Euclidean metric. One of our key results is that

Theorem 1. For every finitary pCSP process P , the set {∆ | �P � =⇒ ∆ } is convex
and compact.

Indeed, using techniques from Markov Decision Theory [13] we can show that the
potentially uncountable set {∆ | �P � =⇒ ∆ } is nevertheless the convex closure of a
finite set of subdistributions, from which Theorem 1 follows.

This key result allows an inductive characterisation of the simulation preorders �S

and �FS , here defined using our novel weak derivation relation =⇒. We first construct
a sequence of approximations �k

S for k ≥ 0 and, using Theorem 1, we prove

Theorem 2. For every finitary pCSP process P , and for every k ≥ 0, the set {∆ |
�P � �k

S ∆ } is convex and compact.

This in turn enables us to use the Finite Intersection Property of compact sets to prove

Theorem 3. For finitary pCSP processes we have P �S Q iff P �k
S Q for all k ≥ 0.

Our main characterisation results can then be obtained by extending the probabilistic
modal logic used in [1], so that for example

– it characterises �k
S for every k ≥ 0, and therefore it also characterises �S

– every probabilistic modal formula can be captured by a may-test.

Similar results accrue for must testing and the new failure simulation preorder �FS :
details are given in Section 6.

Due to lack of space, we omit proofs, and most examples: they are reported in [2].

2 The Language pCSP

Let Act be a set of visible actions which a process can perform, and let Var be an
infinite set of variables. The language pCSP of probabilistic CSP processes is given by
the following two-sorted syntax, in which p ∈ [0, 1], a∈Act and A ⊆ Act:

P ::= S | P p⊕ P
S ::= 0 | x ∈ Var | a.P | P " P | S � S | S |A S | recx. P .

This is essentially the finite language of [1, 3] plus the recursive construct recx. P
in which x is a variable and P a term. The notions of free- and bound variables are

Testing Finitary Probabilistic Processes 277

a.P a−→ �P � rec x. P τ−→ �P [x �→ rec x. P]�

P � Q τ−→ �P � P � Q τ−→ �Q�

s1
a−→ ∆

s1 � s2
a−→ ∆

s2
a−→ ∆

s1 � s2
a−→ ∆

s1
τ−→ ∆

s1 � s2
τ−→ ∆ � s2

s2
τ−→ ∆

s1 � s2
τ−→ s1 � ∆

s1
α−→ ∆ α �∈A

s1 |A s2
α−→ ∆ |A s2

s2
α−→ ∆ α �∈A

s1 |A s2
α−→ s1 |A ∆

s1
a−→ ∆1, s2

a−→ ∆2 a∈A

s1 |A s2
τ−→ ∆1 |A ∆2

Fig. 2. Operational semantics of pCSP

standard; by Q[x �→ P] we indicate substitution of term P for variable x in Q, with
renaming if necessary. We write pCSP for the set of closed P -terms defined by this
grammar, and sCSP for its state-based subset of closed S-terms.

Following [1, 3], we interpret the language as a probabilistic labelled transition sys-
tem. A (discrete) probability subdistribution over a set S is a function ∆ : S → [0, 1]
with

∑
s∈S ∆(s) ≤ 1; the support of such a ∆ is $∆% := { s∈S | ∆(s) > 0 }, and its

mass |∆| is
∑

s∈�∆�∆(s). A subdistribution is a (total, or full) distribution if |∆| = 1.
The point distribution s assigns probability 1 to s and 0 to all other elements of S, so
that $s% = {s}. With Dsub(S) we denote the set of subdistributions over S, and with
D(S) its subset of full distributions.

Let {∆k | k ∈ K} be a set of subdistributions, possibly infinite. Then
∑

k∈K ∆k is
the real-valued function in S → � defined by (

∑
k∈K ∆k)(s) :=

∑
k∈K ∆k(s). This

is a partial operation on subdistributions because for some state s the sum of ∆k(s)
might exceed 1. If the index set is finite, say {1..n}, we often write ∆1 + . . . + ∆n.
For p a real number from [0, 1] we use p ·∆ to denote the subdistribution given by
(p ·∆)(s) := p ·∆(s). Finally we use ε to denote the everywhere-zero subdistribution
that thus has empty support. These operations on subdistributions do not readily adapt
themselves to distributions; yet if that

∑
k∈K pk = 1 for some collection of pk ≥ 0,

and the ∆k are distributions, then so is
∑

k∈K pk ·∆k. In general when 0≤p≤1 we
write xp⊕ y for p ·x+(1−p)·y where that makes sense, so that for example ∆1 p⊕ ∆2
is always defined, and is full if ∆1 and ∆2 are.

The expected value
∑

s∈S ∆(s)·f(s) over a distribution∆ of a bounded non-negative
function f to the reals or tuples of them is written Exp∆(f), and the image of a distri-
bution ∆ through a function f is written Imgf (∆) — the latter is the distribution over
the range of f given by Imgf (∆)(t) :=

∑
f(s)=t ∆(s).

Definition 1. A probabilistic labelled transition system (pLTS) is a triple 〈S,L,→〉,
where

(i) S is a set of states,
(ii) L is a set of transition labels,

(iii) relation → is a subset of S × L×D(S).

278 Y. Deng et al.

A (non-probabilistic) labelled transition system (LTS) may be viewed as a degenerate
pLTS — one in which only point distributions are used. As with LTSs, we write s α−→ ∆
for (s, α,∆)∈→, as well as s α−→ for ∃∆ : s α−→ ∆ and s→ for ∃α : s α−→. A pLTS is
finitely branching if the set {∆ | s α−→ ∆, α∈L} is finite for all states s; if moreover
S is finite, then the pLTS is finitary. A subdistribution ∆ in an arbitrary pLTS is finitary
if restricting the state set to the states reachable from ∆ yields a finitary sub-pLTS.

The operational semantics of pCSP is defined by a particular pLTS 〈sCSP,Actτ ,→〉
in which sCSP is the set of states and Actτ := Act∪{τ} is the set of transition labels; we
let a range over Act and α over Actτ . We interpret pCSP processes P as distributions
�P � ∈ D(sCSP) via the function � � : pCSP → D(sCSP) defined by

�s� := s for s∈ sCSP, and �P p⊕ Q� := �P �p⊕ �Q� .

The relations α−→ are defined in Figure 2 which extends the rules used in [1, 3] for
finite processes with a new rule for recursion. External choice and parallel composition
use an abbreviation for distributing an operator over a distribution: for example ∆ � s
is the distribution given by (∆ � s)(t) := ∆(s′) if t is s′ � s and 0 otherwise. We
sometimes write τ.P for P " P , thus giving τ.P τ−→ �P �.

Note that this pLTS is finitely branching and for each P ∈ pCSP the distribution �P �
has finite support. However, it is possible for there to be infinitely many states reachable
from �P �. If only finitely many states are reachable from �P �, then P is called finitary.

3 Testing Probabilistic Processes

We follow the approach of [1, 3] to the testing of probabilistic processes. A test is simply
a process from the language pCSP except that it may use extra visible actions ωi
∈Actτ ,
which are assumed to be fresh, for reporting success. Given a set of test actions Ω,
we write pCSPΩ for the set of pCSP expressions using actions from Ω ∪ Actτ , and
sCSPΩ for the set of state-based pCSPΩ expressions. To apply test T to process P we
form the process T |Act P in which all visible actions except the ωi must synchronise,
leaving only actions τ and ωi, and as in [1, 3] we extract testing outcomes from them.
However, as processes T |Act P are in general not of finite depth, we can no longer do
this inductively. Below we outline two alternative methods that for finitary systems will
turn out to be equivalent. The first one is slightly easier to explain, whereas the second
one extends the work of [4, 14, 15] and is needed in establishing our results.

3.1 Extremal Testing

For the first method we assume that tests may use only a single success action ω. We
view the unit interval [0, 1] ordered in the standard manner as a complete lattice; this
induces a complete lattice on the set of functions sCSPΩ → [0, 1]. Now consider the
function Rmin : (sCSPΩ→[0, 1]) → (sCSPΩ→[0, 1]) defined by

Rmin(f)(s) :=

⎧⎪⎨
⎪⎩

1 if s ω−→
0 if s
→
min{Exp∆(f) | s α−→ ∆ } otherwise.

Testing Finitary Probabilistic Processes 279

In a similar fashion we define the function Rmax which uses max in place of min. Both
these functions are monotonic, and therefore have least fixed points which we call Vmin,
Vmax respectively.

Now for a test T and a process P we have two ways of defining the outcome of the
application of T to P : Ae

min(T, P) := Exp�T |ActP�
(Vmin)

Ae
max(T, P) := Exp�T |ActP�

(Vmax) .

Here Ae
min(T, P) returns a single probability p, estimating the minimum probability of

success; it is a pessimistic estimate. On the other hand Ae
max(T, P) is optimistic, in that

it gives the maximum probability of success.

Definition 2. The may- and must preorders are given by
– P �e

pmay Q if for every test T we have Ae
max(T, P) ≤ Ae

max(T,Q)
– P �e

pmust Q if for every test T we have Ae
min(T, P) ≤ Ae

min(T,Q).

3.2 Resolution-Based Testing

In the second method we use Ω-tests for any given collection Ω of success actions
disjoint from Actτ ; here ω will be a variable ranging over the individual success actions
of Ω. We calculate the result of applying test T to process P in terms of the resolutions
of the combined process T |Act P , where intuitively a resolution represents a run of a
process and, as such, gives exactly one probability for each success action. So in general
the application of T to P will yield a set of vectors of probabilities.

We define the resolutions of a process T |Act P in terms of the distribution �T |Act P �
in the pLTS 〈sCSPΩ |Act sCSP,Ωτ ,→〉 obtained by restricting attention to states of
the form t |Act s with t∈ sCSPΩ and s∈ sCSP. Note that all transitions in this pLTS
have labels τ or ω ∈Ω. Following [1, 3, 5, 15], and unlike [4, 14], this paper employs
state-based testing [1, 4], meaning that transitions s ω−→ ∆ are merely expedients to
mark the state s as an ω-success state — the target distribution ∆ is wholly ignored.
Hence the pLTS can also be regarded as having just τ -labels and moreover state markers
ω∈Ω. Intuitively, a resolution of a distribution in such a pLTS is obtained by pruning
away multiple τ -transitions from a state until only a single choice remains, possibly
introducing some linear combinations in the process.

Definition 3. A pLTS 〈R,L,→〉 is deterministic if for every r∈R and every α∈L
there is at most one Θ ∈Dsub(R) such that r α−→ Θ.

A resolution of a subdistribution ∆∈Dsub(S) in a pLTS 〈S,Ωτ ,→〉 is a triple
〈R,Θ,→′〉 where 〈R,Ωτ ,→′〉 is a deterministic pLTS andΘ∈Dsub(R), such that there
exists a resolving function f ∈ R → S satisfying
1. Imgf (Θ) = ∆
2. if r α−→′ Θ′ for α ∈ Ωτ then f(r) α−→ Imgf (Θ′)
3. if f(r) α−→ for α ∈ Ωτ then r α−→′ .

By analogy with the functions Rmin and Rmax of Section 3.1, we define the function
R : (R→[0, 1]Ω) → (R→[0, 1]Ω) for a deterministic pLTS 〈R,Ωτ ,→〉 as

R(f)(r)(ω) :=

⎧⎪⎨
⎪⎩

1 if r ω−→
0 if r
ω−→ and r
τ−→
Exp∆(f)(ω) if r
ω−→ and r τ−→ ∆.

280 Y. Deng et al.

Once more this function has a least fixed point, which we denote by V〈R,Ωτ ,→〉.
Now let AΩ(T, P) denote the set of vectors

{ExpΘ(V〈R,Ωτ ,→〉) | 〈R,Θ,→〉 is a resolution of �T |Act P � } .

We compare two vectors of probabilities component-wise, and two sets of vectors of
probabilities via the Hoare- and Smyth preorders:

X ≤Ho Y iff ∀x ∈ X : ∃y ∈ Y : x ≤ y
X ≤Sm Y iff ∀y ∈ Y : ∃x ∈ X : x ≤ y .

Definition 4. Given two pCSP processes P and Q,

– P �Ω
pmay Q if for every Ω-test T , we have AΩ(T, P) ≤Ho AΩ(T,Q)

– P �Ω
pmust Q if for every Ω-test T , we have AΩ(T, P) ≤Sm AΩ(T,Q).

These preorders are abbreviated to P �pmay Q and P �pmust Q when |Ω|= 1.

3.3 Equivalence of Testing Methods

In this section we compare the two approaches of testing introduced in the previous
two subsections. First of all, we recall the result from [4] which says that when testing
finitary processes it suffices to use a single success action rather than multiple ones1.

Theorem 4. For finitary processes:

P �Ω
pmay Q iff P �pmay Q and P �Ω

pmust Q iff P �pmust Q.

The following theorem states that, for finitary processes, extremal testing yields the
same preorders as resolution-based testing with a single success action.

Theorem 5. For finitary processes

P �e
pmay Q iff P �pmay Q and P �e

pmust Q iff P �pmust Q.

Neither result in Theorem 5 is true in the general (non-finitary) case, as counterexamples
in [2, App. A] demonstrate. Although Theorem 4 suggests that we could have avoided
multiple success actions in the resolution-based definition of testing, our completeness
proof (Theorem 15) makes essential use of a countable set of them.

4 A Novel Approach to Weak Derivations

In this section we develop a new definition of what it means for a recursive process
to evolve by silent activity into another process; it allows the simulation and failure-
simulation preorders of [1] to be adapted to characterise the testing preorders for at least

1 The result in [4] is stated for action-based testing, meaning that it is the actual execution of a
success action rather than reaching a success state that constitutes success, but, as mentioned
in the conclusion of [4], it also holds in our current state-based setting.

Testing Finitary Probabilistic Processes 281

finitary probabilistic processes. The key technical generalisation is the subdistributions
that enable us to express divergence very conveniently2.

In a pLTS actions are only performed by states, in that actions are given by relations
from states to distributions. But pCSP processes in general correspond to distributions
over states, so in order to define what it means for a process to perform an action we
need to lift these relations so that they also apply to (sub)distributions.

Definition 5. Let (S,L,→) be a pLTS and R ⊆ S ×Dsub(S) be a relation from states
to subdistributions. Then R ⊆ Dsub(S) ×Dsub(S) is the smallest relation that satisfies

(1) s R Θ implies s R Θ, and
(2) (Linearity) ∆i R Θi for i∈ I implies (

∑
i∈I pi ·∆i) R (

∑
i∈I pi ·Θi) for any

pi ∈ [0, 1] with
∑

i∈I pi ≤ 1.

This applies when the relation is α−→ for α ∈ Actτ , where we also write α−→ for α−→.
Thus as source of a relation α−→ we now also allow distributions, and even subdistri-
butions. A subtlety of this approach is that for any action α, we have ε α−→ ε simply
by taking I = ∅ or

∑
i∈I pi = 0 in Definition 5. That will turn out to make ε espe-

cially useful for modelling the “chaotic” aspects of divergence, in particular that in the
must-case a divergent process can mimic any other.

We now formally define the notation of weak derivatives.

Definition 6. Suppose we have subdistributions ∆,∆→
k , ∆×

k , for k ≥ 0, with the
following properties:

∆ = ∆→
0 +∆×

0

∆→
0

τ−→ ∆→
1 +∆×

1...

∆→
k

τ−→ ∆→
k+1 +∆×

k+1

Then we call ∆′ :=
∑∞

k=0 ∆
×
k a weak derivative of ∆, and write ∆ =⇒ ∆′ to mean

that ∆ can make a weak τ move to its derivative ∆′.

It is easy to check that
∑∞

k=0 ∆
×
k is indeed a subdistribution, whereas in general it is not

a full distribution: for instance we have �recx. x� =⇒ ε. By setting appropriate ∆×
k ’s

to ε we see that ∆(τ−→)∗Φ, where ∗ denotes reflexive and transitive closure, implies
∆ =⇒ Φ. It is also easy to check that on recursion-free pCSP the relation =⇒ agrees
with the one defined in [1, 3] by means of transitive closure. Moreover the standard
notion of divergence, the ability of a subdistribution ∆ to perform an infinite sequence
of τ transitions, is neatly captured by the relation ∆ =⇒ ε.

Example 1. Consider the (infinite) collection of states sk and probabilities pk for k ≥ 2
such that

sk
τ−→ �a. 0 �pk

⊕ sk+1 ,

2 Subdistributions’ nice properties with respect to divergence are due to their being equivalent
to the discrete probabilistic powerdomain over a flat domain [8].

282 Y. Deng et al.

where we choose pk so that starting from any sk the probability of eventually taking a
left-hand branch, and so reaching �a. 0 � ultimately, is just 1/k in total. Thus pk must
satisfy 1/k = pk +(1−pk)/(k+1), whence by arithmetic we have that pk := 1/k2 will
do. Therefore in particular s2 =⇒ 1

2 �a. 0 �, with the remaining 1
2 lost in divergence.

Definition 7. Let ∆ and its variants be subdistributions in a pLTS 〈S,Actτ ,→〉.
– For a ∈ Act write ∆ a=⇒ ∆′ whenever ∆ =⇒ ∆pre a−→ ∆post =⇒ ∆′. Extend this

to Actτ by allowing as a special case that τ=⇒ is simply =⇒, i.e. including identity
(rather than requiring at least one τ−→).

– For A ⊆ Act and s∈S write s
A−→ if s
α−→ for every α∈A ∪ {τ}; write ∆
A−→ if
s
A−→ for every s∈$∆%.

– More generally write ∆ =⇒
A−→ if ∆ =⇒ ∆pre for some ∆pre such that ∆pre
A−→.

For example, in Figure 1 we have �Q1�
a=⇒ � 0 �, because �Q1� =⇒ �a. 0 � a−→ �0 �.

5 Some Properties of Weak Derivations in Finitary pLTSs

In this section we expose some less obvious properties of weak derivations from states
in finitary pLTSs, relating to their behaviour at infinity; they underpin many results
in the next section. One important property is that the set of weak derivations from
a single starting point is compact in the sense (from analysis) of being bounded and
containing all its limit points, where, in turn, limits depend on a Euclidean-style metric
defining the distance between two distributions in a straightforward way. The other
property is “distillation of divergence”, allowing us to find in any weak derivation that
partially diverges (by no matter how small an amount) a point at which the divergence
is “distilled” into a state which wholly diverges.

Both properties depend on our working within finitary pLTSs — that is, ones in
which the state space is finite and the (unlifted) transition relation is finite-branching.

5.1 Finite Generability and Closure

In a finitary pLTS, by definition the sets {∆ | s α−→ ∆} are finite, for every s and α.
This of course is no longer true for the lifted relations α−→ over subdistributions; nev-
ertheless, the sets {∆ | s α−→ ∆} and their weak counterparts {∆ | s α=⇒ ∆} can be
finitely represented. Below, we focus on the set {∆ | s =⇒ ∆}.

Definition 8. A static derivative policy (SDP) for a pLTS 〈S,Actτ ,→〉 is a partial
function pp : S ⇀D(S) such that if pp is defined at s then s τ−→ pp(s).

Intuitively a policy pp decides for each state, once and for all, which of the available τ -
choices to take, if any: since it either chooses a specific transition, or inaction (by being
undefined), it does not interpolate via a convex combination of two different transitions;
and since it is a function of the state, it makes the same choice on every visit.

The great importance for us of SDP’s is that they give a particularly simple charac-
terisation of weak derivatives, provided the state-space is finite and the pLTS is finitely
branching. This is essentially a result of Markov Decision Processes [13], which we
translate into our context. We first introduce a notion of SDP-derivatives by adapting
Definition 6.

Testing Finitary Probabilistic Processes 283

Definition 9 (SDP-derivatives). Let pp be a SDP. We write ∆ =⇒pp ∆
′ if ∆ =⇒ ∆′

and the following holds (using the notation of Def. 6 and writing ∆k for ∆→
k +∆×

k):

∆×
k (s) =

{
0 if pp defined at s
∆k(s) otherwise

∆k+1 =
∑

{∆k(s)· pp(s) | s ∈ $∆k% and pp defined at s}.

Intuitively, ∆ =⇒pp ∆′ means that ∆′ is the single derivative of ∆ that results from
using policy pp to construct the weak transition ∆ =⇒ ∆′. Note that, for a given SDP
pp, the relation =⇒pp is actually a function; moreover in a finitary pLTS the set of all
possible SDPs is finite, due to the constraints of Definition 8.

Theorem 6 (Finite generability). Let s be a state in a finitary pLTS 〈S,Actτ ,→〉.
Then s =⇒ ∆ for some ∆∈Dsub(S) iff there is a finite index set I , probabilities pi

summing to 1 and static derivative policies ppi with s =⇒ppi
∆i for each i, such that

∆ =
∑

i∈I pi ·∆i.

Since the convex closure of a finite set of points is always compact, we obtain

Corollary 1. For any state s in a finitary pLTS the set {∆ | s =⇒ ∆} is convex and
compact.

A similar result is obtained by Desharnais, Gupta, Jagadeesan & Panagaden [6].
Although the pLTS 〈sCSP,Actτ ,→〉 is not finitary, the interpretation �P �∈D(sCSP)

of a finitary pCSP process P can also be understood to be a distribution in a fini-
tary pLTS, namely the restriction of 〈sCSP,Actτ ,→〉 to the states reachable from �P �.
Using this, Corollary 1 leads to the essential Theorem 1, referred to in the introduction.

5.2 Distillation of Divergence

Although it is possible to have processes that diverge with some probability strictly
between zero and one, in a finitary pLTS we can distill divergence in the sense that for
many purposes we can limit our analyses to processes that either wholly diverge (can
do so with probability one) or wholly converge (can diverge only with probability zero).
This property is based on the zero-one law for finite-state probabilistic systems, relevant
aspects of which we present in this sub-section.

We first note that static derivative policies obey the following zero-one law.

Theorem 7 (Zero-one law). If for a static derivative policy pp over a finite-state pLTS
there is for some s a derivation s =⇒pp ∆ with |∆| < 1 then in fact for some (possibly
different) state sε we have sε =⇒pp ε.

Based on Theorems 6 and 7, the following property of weak derivations can now be
established.

Theorem 8 (Distillation of divergence). For any s,∆ in a finitary pLTS with s=⇒∆
there is a probability p and full distributions ∆1, ∆ε such that s =⇒ (∆1 p⊕ ∆ε) and
∆ = p ·∆1 and ∆ε =⇒ ε.

284 Y. Deng et al.

6 Failure Simulation Is Sound and Complete for Must Testing

In this section we define the failure-simulation preorder and show that it is sound and
complete for the must-testing preorder. The following presentation is an enhancement
of our earlier definition in [1].

Definition 10 (Failure-Simulation Preorder). Define &FS to be the largest relation
in Dsub(S) ×Dsub(S) such that if ∆ &FS Θ then
1. whenever ∆ α=⇒ (

∑
i pi∆

′
i), for α∈Actτ and certain pi with (

∑
i pi) ≤ 1, then

there are Θ′
i ∈Dsub(S) with Θ α=⇒ (

∑
i piΘ

′
i) and ∆′

i &FS Θ′
i for each i

2. and whenever ∆ =⇒
A−→ then also Θ =⇒
A−→.
Naturally Θ �FS ∆ just means ∆ &FS Θ. For pCSP processes P and Q and any
preorder � ⊆ Dsub(sCSP) ×Dsub(sCSP) we write P � Q for �P � � �Q�.

Although the regularity of Definition 10 is appealing — for example it is trivial to see
that �FS is reflexive and transitive, as it should be — in practice, for specific processes,
it is easier to work with a characterisation of the failure-simulation preorder in terms of
a relation between states and subdistributions.

Definition 11 (Failure Similarity). Let �FS be the largest relation in S×Dsub(S) such
that if s �FS Θ then
1. whenever s =⇒ ε then also Θ =⇒ ε,
2. whenever s α−→ ∆′, for α∈Actτ , then there is a Θ′ with Θ α=⇒ Θ′ and ∆′ �FS Θ

′

3. and whenever s
A−→ then Θ =⇒
A−→.

As an example, in Figure 1 it is straightforward to exhibit failure simulations to prove
both �Q1� �FS �a. 0 � and the converse �a. 0 � �FS �Q1�, the essential ingredient being
the weak move �Q1�

a=⇒ � 0 �. Likewise, we have a. 0 �FS �Q1 1
2
⊕ recx. x�, the

additional ingredient being 0 �FS
ε.

The next result shows how the failure-simulation preorder can alternatively be de-
fined in terms of failure similarity. This is actually how we defined it in [1].

Theorem 9. For finitary ∆,Θ∈Dsub(S) we have ∆ &FS Θ just when there is a Θ�

with Θ =⇒ Θ� and ∆ �FS Θ
�.

The proof of this theorem depends crucially on Theorems 1 and 8. The restriction to
finitary subdistributions is essential, as in [2, App. A] we provide a counterexample
to the general case. It is in terms of this characterisation that we establish soundness
and completeness of the failure-simulation preorder with respect to the must-testing
preorder; consequently we have these results for finitary processes only.

Theorem 10 (Precongruence). If P1, P2, Q1 and Q2 are finitary pCSP processes with
P1 &FS Q1 and P2 &FS Q2 then we have α.P1 &FS α.Q1 for any α∈Actτ , as well
as P1 � P2 &FS Q1 �Q2 for � any of the operators ", �, p⊕ and |A.

The proof of this precongruence property involves a significant complication: in order
to relate two processes we have to demonstrate that if the first diverges then so does the
second. This affects particularly the proof that &FS is preserved by the parallel operator
|A. The approach we use involves first characterising divergence coinductively and then
applying a novel coinductive proof technique.

Testing Finitary Probabilistic Processes 285

Theorem 11 (Soundness and Completeness). For finitary pCSP processes P and Q
we have P �FS Q iff P �pmust Q.

Soundness, that �FS ⊆ �pmust, is a relatively easy consequence of �FS being a pre-
congruence (Theorem 10). The completeness proof (that �pmust ⊆ �FS) is much more
complicated and proceeds in three steps, which we detail below. First we provide a
characterisation of the preorder relation �FS by finite approximations. Secondly, using
this, we develop a modal logic which can be used to characterise the failure-simulation
preorder on finitary processes. Finally, we adapt the results of [1] to show that the modal
formulae can in turn be characterised by tests. From this, completeness follows.

6.1 Inductive Characterisation

The relation �FS of Definition 11 is given coinductively: it is the largest fixpoint of an
equationR= F(R). An alternative approach is to use that F(−) to define �FS as a limit
of approximants:

Definition 12. For every k ≥ 0 we define the relations �k
FS ⊆ S ×Dsub(S) as follows:

(i) �0
FS := S ×Dsub(S)

(ii) �k+1
FS := F(�k

FS)
Finally let �∞

FS :=
⋂∞

k=0 �k
FS. Furthermore, for every k ≥ 0 let ∆ &k

FS Θ if there exists
a Θ =⇒ Θ� with ∆ �k

FS Θ
�, and let &∞

FS denote
⋂∞

k=0 &k
FS .

Theorem 12. For finitary pCSP processes P and Q we have P &∞
FS Q iff P &FS Q.

To show this theorem, we need to use two key results, Propositions 1 and 2 below. We
say a relation R ⊆ S ×D(S) is convex (resp. compact) whenever the set {∆ | s R ∆}
is convex (resp. compact) for every s ∈ S.

Proposition 1. In a finitary pLTS, the relation �k
FS is convex and compact, for every

k ≥ 0.

The proof of this property heavily relies on Corollary 1.

Proposition 2. Suppose Rk ⊆ S × Dsub(S) is a sequence of convex and compact
relations such that Rk+1 ⊆ Rk. Then (

⋂∞
k=0 Rk) ⊆ (

⋂∞
k=0 Rk).

This proposition is proved using the Finite Intersection Property of compact sets [9].

6.2 A Modal Logic

Let F be the set of modal formulae defined inductively as follows:

– div,' ∈ F
– ref(A) ∈ F when A ⊆ Act,
– 〈a〉ϕ ∈ F when ϕ∈F and a∈Act,
– ϕ1 ∧ ϕ2 ∈ F when ϕ1, ϕ2 ∈ F ,
– ϕ1 p⊕ ϕ2 ∈ F when ϕ1, ϕ2 ∈ F and p ∈ [0, 1].

286 Y. Deng et al.

This generalises the modal language used in [1] by the addition of the new constant
div, representing the ability of a process to diverge.

Relative to a given pLTS 〈S,Actτ ,→〉 the satisfaction relation |=⊆ Dsub(S)×F is
given by:

– ∆ |= ' for any ∆ ∈ Dsub(S),
– ∆ |= div iff ∆ =⇒ ε,
– ∆ |= ref(A) iff ∆ =⇒
A−→,
– ∆ |= 〈a〉ϕ iff there is a ∆′ with ∆ a=⇒ ∆′ and ∆′ |= ϕ,
– ∆ |= ϕ1 ∧ ϕ2 iff ∆ |= ϕ1 and ∆ |= ϕ2,
– ∆ |= ϕ1 p⊕ ϕ2 iff there are ∆1, ∆2 ∈ Dsub(S) with ∆1 |= ϕ1 and ∆2 |= ϕ2, such

that ∆ =⇒ ∆1 p⊕ ∆2.

We write ∆ &FΘ when ∆ |= ϕ implies Θ |= ϕ for all ϕ∈F , and can verify that &FS

is sound for &F. In establishing the converse, we mimic the development in Section
7 of [1] by designing characteristic formulae which capture the behaviour of states in
a pLTS. But here the behaviour is not characterised relative to �FS, but rather to the
sequence of approximating relations �k

FS.

Definition 13. In a finitary pLTS 〈S,Actτ ,→〉, the kth characteristic formulaeϕk
s , ϕk

∆

of states s∈S and subdistributions ∆∈Dsub(S) are defined inductively as follows:

– ϕ0
s = ' and ϕ0

∆ = ',
– ϕk+1

s = div, provided s =⇒ ε,
– ϕk+1

s = ref(A)∧
∧

s
a−→∆〈a〉ϕk

∆ where A = {a∈Act | s
a−→}, provided s
τ−→,
– ϕk+1

s =
∧

s
a−→∆〈a〉ϕk

∆ ∧
∧

s
τ−→∆ ϕk

∆ otherwise,

– and ϕk+1
∆ = (

⊕
s∈�∆�

∆(s)
�∆� ·ϕk+1

s) �∆�⊕ (div) .

The next result relates the kth characteristic formulae to the kth failure similarity.

Proposition 3. For k ≥ 0 we have

(i) Θ |= ϕk
s implies s �k

FS Θ,
(ii) Θ |= ϕk

∆ implies Θ &k
FS ∆.

Using Proposition 3 we obtain a logical characterisation of &∞
FS (and hence of &FS):

Theorem 13. For finitary pCSP processes P and Q we have P &FQ iff P &∞
FS Q.

6.3 Characteristic Tests for Formulae

The import of Theorems 12 and 13 is that we can obtain completeness of the failure-
simulation preorder with respect to the must-testing preorder by designing for each
formula ϕ a test which in some sense characterises the property that a process satisfies
ϕ. This was achieved for the pLTS generated by the recursion-free fragment of pCSP
in Section 8 of [1]. Here we have generalised this technique to the pLTS generated by
the set of finitary pCSP terms. The crucial property is stated as follows.

Theorem 14. For every formula ϕ ∈ F there exists a pair (Tϕ, vϕ) with Tϕ an Ω-test
and vϕ ∈ [0, 1]Ω such that ∆ |= ϕ if and only if ∃o ∈ AΩ(Tϕ, ∆) : o ≤ vϕ. Test Tϕ is
called a characteristic test of ϕ and vϕ is its target value.

Testing Finitary Probabilistic Processes 287

This property can be shown by exploiting several characteristics of the testing function
AΩ(−,−); unlike in [1] these cannot be obtained inductively. The most complicated
one is the following.

Proposition 4. If o ∈ AΩ(T1 " T2, ∆) then there are a q ∈ [0, 1] and ∆1, ∆2 ∈
Dsub(sCSP) such that ∆ =⇒ q ·∆1 + (1−q)·∆2 and o = q ·o1 + (1−q)·o2 for certain
oi ∈ AΩ(Ti, ∆i).

From Theorem 14 we obtain that the must-testing preorder is at least as discriminating
as the logical preorder:

Theorem 15. Let P and Q be pCSP processes. If P &Ω
pmust Q then P &FQ.

The completeness result in Theorem 11 follows by combining Theorems 15, 13 and 12.

7 Simulation Is Sound and Complete for May Testing

We define a simulation preorder that can be shown sound and complete for may testing
following the same strategy as for failure simulation and must testing, except that we
restrict our treatment to full distributions, a simpler domain. This is possible because in
may testing an infinite τ -path is not treated specially — it engages in no visible actions;
in must testing, infinite τ -paths potentially can do anything (chaos).

Definition 14 (Simulation Preorder). Let �S be the largest relation in D(S) ×D(S)
such that if ∆ �S Θ then

whenever ∆ α=⇒ (
∑

i pi∆
′
i), for α∈Actτ and certain pi with (

∑
i pi) ≤ 1,

then there are Θ′
i ∈D(S) with Θ α=⇒ (

∑
i piΘ

′
i) and ∆′

i �S Θ′
i for each i.

The technical development from this point on is similar to that given in Section 6. For
the modal logic, we use the set of formulae obtained from F by skipping the div and
ref(A) clauses. However the satisfaction relation used for this sub-logic is radically
different from that given in Section 6.2, because here the interpretation is relative to full
distributions. Nevertheless we still obtain the counterparts of Theorems 12, 13 and 15.

Theorem 16 (Soundness and Completeness). For finitary pCSP processes P and Q
we have P �pmay Q if and only if P �S Q.

8 Conclusion and Related Work

In this paper we continued our previous work [1, 3, 4] in our quest for a testing theory
for processes which exhibit both nondeterministic and probabilistic behaviour. We have
generalised our results in [1] of characterising the may preorder as a simulation relation
and the must preorder as a failure-simulation relation, from finite processes to finitary
processes. To do this it was necessary to investigate fundamental structural properties
of derivation sets (finite generability) and similarities (infinite approximations), which
are of independent interest. The use of Markov Decision Processes and Zero-One laws
was essential in obtaining our results.

288 Y. Deng et al.

Segala [14] defined two preorders called trace distribution precongruence (�TD) and
failure distribution precongruence (�FD). He proved that the former coincides with an
action-based version of �Ω

pmay and that for “probabilistically convergent” systems the
latter coincides with an action-based version of �Ω

pmust. The condition of probabilis-
tic convergence amounts in our framework to the requirement that for ∆∈D(S) and
∆ =⇒ ∆′ we have |∆′| = 1. In [10] it has been shown that �TD coincides with a
notion of simulation akin to �S . Other probabilistic extensions of simulation occurring
in the literature are reviewed in [1, 3].

References

1. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising testing preorders
for finite probabilistic processes. Logical Methods in Computer Science 4(4:4) (2008)

2. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Testing finitary probabilistic
processes. Full version of this extended abstract (2009),
http://www.cse.unsw.edu.au/˜rvg/pub/finitary.pdf

3. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks on testing
probabilistic processes. ENTCS 172, 359–397 (2007)

4. Deng, Y., van Glabbeek, R.J., Morgan, C.C., Zhang, C.: Scalar outcomes suffice for finitary
probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 363–378.
Springer, Heidelberg (2007)

5. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Sci-
ence 34, 83–133 (1984)

6. Desharnais, J., Gupta, V., Jagadeesan, R., Panagaden, P.: Weak bisimulation is sound and
complete for PCTL*. In: Brim, L., Jančar, P., Křetı́nský, M., Kucera, A. (eds.) CONCUR
2002. LNCS, vol. 2421, pp. 355–370. Springer, Heidelberg (2002)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
8. Jones, C.: Probabilistic Non-determinism. Ph.D. Thesis, University of Edinburgh (1990)
9. Lipschutz, S.: Schaum’s outline of theory and problems of general topology. McGraw-Hill,

New York (1965)
10. Lynch, N., Segala, R., Vaandrager, F.W.: Observing branching structure through probabilistic

contexts. SIAM Journal on Computing 37(4), 977–1013 (2007)
11. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic Systems.

Springer, Heidelberg (2005)
12. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
13. Puterman, M.: Markov Decision Processes. Wiley, Chichester (1994)
14. Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.) CONCUR

1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)
15. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proc. PSTV

1992. IFIP Transactions C-8, pp. 47–61. North-Holland, Amsterdam (1992)

http://www.cse.unsw.edu.au/~rvg/pub/finitary.pdf

A Demonic Approach to Information in
Probabilistic Systems

Josée Desharnais, François Laviolette, and Amélie Turgeon

Dép. d’informatique et de génie logiciel, Université Laval
Québec Canada G1V 0A6

{Firstname.Lastname}@ift.ulaval.ca

Abstract. This paper establishes a Stone-type duality between spec-
ifications and infLMPs. An infLMP is a probabilistic process whose
transitions satisfy super-additivity instead of additivity. Interestingly, its
simple structure can encode a mix of probabilistic and non-deterministic
behaviors. Our duality shows that an infLMP can be considered as a
demonic representative of a system’s information. Moreover, it carries
forward a view where states are less important, and events, or proper-
ties, become the main characters, as it should be in probability theory.
Along the way, we show that bisimulation and simulation are naturally
interpreted in this setting, and we exhibit the interesting relationship
between infLMPs and the usual probabilistic modal logics.

1 Introduction

The analysis of probabilistic systems has been the subject of active research in
the last decade, and many formalisms have been proposed to model them: Prob-
abilistic Labelled Transition Systems [1], Probabilistic Automata [2], Labelled
Markov Processes (LMPs) [3]. In all these models, states are the central focus,
even if the analysis must rely on probability theory, where one usually deals with
events, or sets of states. A recent investigation [4] showed that bisimulation, the
usual notion of equivalence between probabilistic processes, could be defined in
terms of events. Moreover, it is well known that bisimulation (for LMPs, let say)
is characterized by a simple logic L∨ (Section 2.2): two states are bisimilar if
and only if they satisfy exactly the same formulas of that logic. Since formulas
can be seen as sets of states, they are ideal candidates for events. More precisely,
any LMP with σ-algebra Σ can be associated to a morphism

[[·]] : L∨ → Σ

where the image of a formula is the (measurable) set of states that satisfy it. We
are interested in what we can say of the converse: can a probabilistic process be
defined by the set of its logical properties only? Indeed even if Σ is a structure
of sets, we can abstract it as a σ-complete Boolean algebra and we can ask
the question: when is it the case that a given function µ̂ : L∨ → A for an
arbitrary σ-complete Boolean algebra A corresponds to some LMP whose σ-
algebra is isomorphic to A and whose semantics accords with µ̂? This opens the
way to working with probabilistic processes in an abstract way, that is, without

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 289–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

290 J. Desharnais, F. Laviolette, and A. Turgeon

any explicit mention of the state space, manipulating properties only. In other
words, this opens the way to a Stone-type duality theory for these processes.

Kozen [5] has already discussed such a duality for probabilistic programs.
Duality notions appear in a variety of areas, allowing one to get back and forth
from a concrete model to an “abstract version” of it. In this paper we propose
a notion of “abstract” pointless probabilistic processes that can be viewed as
the probabilistic counterpart of the theory of Frames (or Locales), that is, the
theory of “pointless” topological spaces [6]. In the latter, topological spaces are
abstracted by complete Boolean algebras (more precisely by complete Heyting
algebras), whereas, in our framework, the probabilistic processes state spaces
will be abstracted by σ-complete Boolean algebras. The encoding of transition
probabilities will be done through the logic properties.

Consequently, we will define an abstract probabilistic process as a morphism
µ̂ : L∨ → A. This idea has been proposed for LMPs by Danos, Panangaden and
two of us [4]. Unfortunately, it is very difficult to obtain a duality for LMPs.
One of the problems is the reconstruction function that, from an abstract LMP,
should output a “concrete” one. More specifically, we do not know any category
of abstract LMPs that would be functorially linked to the concrete one. LMPs
are not the adequate level of generality because they carry, through their prob-
abilistic transition functions, more information than just the properties that
they satisfy. In this paper, we introduce infLMPs which happen to be essen-
tially partial specifications of LMPs, and therefore represent the suitable level
of generality for a Stone-type duality theory.

InfLMPs are obtained from standard probabilistic transition systems, like
LMPs, by relaxing the standard σ-additivity axiom of probability measures with
a super-additivity axiom: p(s,A ∪ B) ≥ p(s,A)+p(s,B) for disjoint A,B. This
allows us to give a demonic interpretation of information because infLMPs are
underspecified. Indeed, a state s from which we only know that with action l
either event A or B will happen (with A, B disjoint), can be encoded as an
infLMP by pl(s,A) = pl(s,B)=0 and pl(s,A∪B)=1. It is widely acknowledged
that it is not appropriate to model this situation by giving equal probabilities
to A and B. Indeed, no justification allows one to choose a particular distri-
bution. The super-additivity relaxation permits to easily maintain all possible
distributions, by leaving unknown information unspecified. We are in presence
of a demonic approach to information in probabilistic systems: for example, even
if pl(s,B) = 0, it does not necessarily mean that B is impossible to reach, but
rather that in the presence of a demonic adversary, it will indeed be impossible.
The notion of bisimulation smoothly transfers from LMPs to infLMPs. Logical
characterization theorems do not transfer directly because, as we will show, in-
fLMPs can encode both probabilistic and non-deterministic processes. This was
a pleasing surprise that was awaiting us along the way.

2 Background

A measurable space is a pair (S,Σ) where S is any set and Σ ⊆ 2S is a σ-algebra
over S, that is, a set of subsets of S containing S and closed under countable

A Demonic Approach to Information in Probabilistic Systems 291

intersection and complement. Well-known examples are [0, 1] and R equipped
with their respective Borel σ-algebras, written B, generated by intervals. When
we do not specify the σ-algebra over R or one of its intervals, we assume the Borel
one. For R ⊆ S × S, a set A ⊆ S is R-closed if R(A) := {s ∈ S | ∃a ∈ A.(a, s) ∈
R} ⊆ A. A map f between two measurable spaces (S,Σ) and (S′, Σ′) is said
to be measurable if for all A′ ∈ Σ′, f−1(A′) ∈ Σ. A necessary and sufficient
criterion for measurability of a map p : (S,Σ) → ([0, 1],B) is that the condition
be satisfied for [r, 1], for any rational r. Finally, countable suprema of real valued
measurable functions are also measurable [7].

A subprobability measure on (S,Σ) is a map p : Σ → [0, 1], such that for any
countable collection (An) of pairwise disjoint sets, p(∪nAn) =

∑
n p(An).

2.1 Labelled Markov Processes (LMPs)

LMPs are probabilistic processes whose state space can be uncountable. In the
finite case, they are also known as Probabilistic Labelled Transition Systems [1].
We fix a finite alphabet of actions L.

Definition 1 ([3]). A labelled Markov process (LMP) is a triple S = (S,Σ, h :
L×S×Σ → [0, 1]) where (S,Σ) is a measurable space and for all a ∈ L, s ∈ S,
A ∈ Σ: ha(s, ·) is a subprobability on (S,Σ), and ha(·, A) : (S,Σ) → ([0, 1],B)
is measurable.

The category LMP has LMPs as objects and zigzag morphisms as morphisms.
A measurable surjective map f : S � S′ is called a zigzag morphism if ∀a ∈ L,
s ∈ S, A′ ∈ Σ′: ha(s, f−1(A′)) = h′a(f(s), A′).

ha(s,A) is the probability that being at s and receiving action a, the LMP
will jump in A. Examples of finite LMPs are T1 and T2 of Fig. 1. Alternatively,
LMPs can be expressed as coalgebras of the Giry monad [8,3]. We will assume the
structure of any LMP S to be (S,Σ, h), letting primes and subscripts propagate.

LMPs depart from usual Markov chains in that transitions also depend on
an auxiliary set of actions, but most importantly, because one thinks of them
differently. They are interactive processes and therefore one is interested in what
an interacting user can deduce about them, as in non-deterministic process alge-
bras [9]. The following observational relation is a natural extension of the usual
notion of bisimulation that one encounters in non probabilistic processes as well
as in finite probabilistic processes. Following Danos et al. [4], we call it state
bisimulation, a denomination that emphasizes the fact that the relation is based
on states, as opposed to events.

Definition 2 ([10]). Given an LMP S, a state bisimulation relation R is a
binary relation on S such that whenever (s, t) ∈ R and C ∈ Σ is R-closed, then
for all a ∈ L, ha(s, C) = ha(t, C). We say that s and t are state bisimilar if
there is a bisimulation R such that (s, t) ∈ R. A state bisimulation between two
LMPs S and S′ is a state bisimulation between their disjoint union S + S′.

This definition is intuitive, but event bisimulation has a better probability theory
taste, where states are often irrelevant and where one focusses on events instead.

292 J. Desharnais, F. Laviolette, and A. Turgeon

Note that for countable or analytic processes, these definitions are equivalent [11].
We say that C ⊆ Σ is stable if for all C ∈ C, a ∈ L, q ∈ [0, 1]∩Q, 〈a〉qC := {s ∈
S | ha(s, C) ≥ q} ∈ C. By measurability of h, this is always in Σ.

Definition 3 ([11]). An event bisimulation on an LMP (S,Σ, h) is a stable
sub-σ-algebra Λ of Σ, or equivalently, (S,Λ, h) is an LMP. An event bisimula-
tion between two LMPs is one on their disjoint union. Equivalently, an event
bisimulation on S is a morphism in the category LMP to some S′. An event
bisimulation between S1 and S2 is a cospan S1 � S′ 	 S2.

Co-simulation morphisms, a relaxation of zigzag morphisms, send any state to a
state that it simulates. We elide the general definition of simulation [10] because
we only need the particular one obtained through co-simulation morphisms.
Intuitively, a state simulates another one if it can mimic its behaviour with
greater or equal probability. Co-simulation morphisms differ from simulation
morphisms [10], by the direction of the inequation and the surjectivity require-
ment. They are useful when one wants to establish that a process obtained by
some quotient operation is simulated by another one.

Definition 4 ([12]). A co-simulation morphism is a surjective map q : S → S′

such that ∀a ∈ L, s ∈ S, A′ ∈ Σ′: ha(s, q−1(A′)) ≥ h′a(q(s), A′).

In Fig. 1, there is an obvious co-simulation morphism from T2 to S1.

2.2 Temporal Properties

The following well-known logic grammars will define properties of LMPs:

L : ϕ := ' | ϕ ∧ ϕ | 〈a〉qϕ
L∨ : ϕ := L | ϕ ∨ ϕ L¬ : ϕ := L | ¬ϕ L∞ : ϕ := L¬ | ∨∞

i=1ϕi

with q ∈ Q ∩ [0, 1]. Note that the three first logics are countable.

Definition 5. Given an LMP S, the semantics of L is inductively defined as
the map [[.]]S : L → Σ as follows: [[']]S := S, [[ϕ0 ∧ ϕ1]]S := [[ϕ0]]S ∩ [[ϕ1]]S ,
[[〈a〉rϕ]]S := 〈a〉r[[ϕ]]S = {s ∈ S | ha(s, [[ϕ]]S) ≥ r}.

This map is easily shown to be measurable by structural induction [3] (and hence
writing ha(s, [[ϕ]]S) is indeed legal). The semantics of L∨, L¬ and L∞ are easily
derived. Note the abuse of notation 〈a〉qX which is used both as a formula if X
is one, and as an operation returning a set when X is a set.

Logics induce an equivalence on states and processes, as follows.

Definition 6. Let L∗ be some logic: two states are L∗-equivalent, if they satisfy
exactly the same formulas of L∗Two LMPs are L∗-equivalent if every state of
any of them is L∗-equivalent to some state of the other.

Despite the fact that L is a very simple logic, two states of any LMPs are event
bisimilar if and only if they satisfy exactly the same formulas. Indeed, one can

A Demonic Approach to Information in Probabilistic Systems 293

S1 s0

s1 s2 s3

a[2
3
] a[2

3
]

a

b
cb c

T1

a

cb

T2

b

a[1
3
] a[1

3
] a[1

3
]

cb c

Fig. 1. A typical infLMP S1 and two LMP implementations of S1. An arrow labelled
with action l and value r represents an l-transition of probability r; in picture represen-
tations, we omit r when it is 1 and we omit transitions of zero probability. For example,
state s0 is pictured to be able to jump with probability 1 to the three middle states
(represented by the biggest ellipse), with probability 2

3
to the first two and also to the

last two. The probability from s0 to any single state is 0. We also omit transitions to sets
whose value is governed by super additivity, like ha(s0, S1) ≥ ha(s0, {s1, s2, s3}) = 1.

decide whether two states are bisimilar and effectively construct a distinguish-
ing formula in case they are not [3]. This theorem is refered to as the logical
characterization theorem, and, for state bisimulation, it works only when the
state space is an analytic space. This is one situation where event bisimulation
appears to be more natural since its logical characterization has no restriction.

3 InfLMPs

In our quest for a Stone-type duality, we needed a model that would be in cor-
respondence with sets of properties. It turns out that the appropriate one is
very simple; we call it infLMP because, as we will see, it encodes infimum re-
quirements. InfLMPs are LMPs whose transition functions are super-additive,
a weaker condition than additivity. Thus, LMPs are infLMPs. Recall that a
set function p is super-additive if p(A ∪ B) ≥ p(A) + p(B) for disjoint A,B.
Super-additivity implies p(∅) = 0 and monotonicity: A ⊆ B ⇒ p(A) ≤ p(B).

Definition 7. An infLMP is a triple S = (S,Σ, h : L × S ×Σ → [0, 1]) where
(S,Σ) is a measurable space, and for all a ∈ L, s ∈ S, A ∈ Σ: ha(·, A) is mea-
surable and ha(s, ·) is super-additive. The category infLMP is a super category
of LMP : it has infLMPs as objects and morphisms are defined as in LMP.

Many known results on LMPs do not use additivity and hence they carry on
for infLMPs trivially. Event and state bisimulation are defined exactly as for
LMPs, and hence, LMPs viewed as infLMPs are related in the same way through
bisimulation. Definition of logics semantics are also unchanged.

Example 1. A typical example of infLMP is process S1 of Fig. 1. One can check
that ha(s0, ·) is super-additive, but it is not a subprobability measure, as 0 =
ha(s0, {s1}) + ha(s0, {s2}) is strictly less than ha(s0, {s1, s2}) = 2

3 .

Such a weakening of the subprobability condition is not dramatic. Transitions can
still be composed using Choquet integral, which only requires monotonicity of

294 J. Desharnais, F. Laviolette, and A. Turgeon

the set functions involved [13,14]. We prefer super-additivity over monotonicity
because we want to interpret the values of transitions as probabilities.

The following example shows how infLMPs can be interpreted as underspeci-
fied processes, or as specifications of LMPs. We will prove later on (Theorem 6)
that indeed, any set of positive formulas can be represented by an infLMP.

Example 2. In S1 of Fig. 1, some exact probabilities are not known: how the 2
3

probability would distribute between s1 and s2 is not specified. The two LMPs
T1 and T2 of Fig. 1 are possible implementations of S1. In the first one, the
value of 2

3 is sent in full to the state that can make both a b-transition and a
c-transition. In the other one a minimal probability is sent to this state and the
remaining is distributed to the left-most and right-most states. A reader familiar
with simulation can check that S1 is simulated by both processes, as both can
perform transitions with equal or higher probabilities to simulating states.

This example exhibits two important points. The first one is that when we say
that an infLMP represents properties for an LMP, we have in mind positive
properties, that is, properties of L or L∨, involving no negation. Consequently,
probability transitions are interpreted as lower bound requirements: a probability
of zero in an infLMP could possibly be positive in a realization of this infLMP.
The second point is that, as we claimed in the introduction, infLMPs can model
not only underspecified LMPs, but also a kind of non deterministic processes.
Indeed, state s0 of process S1 is a non-deterministic state: the super-additive
set function ha(s0, ·) models all subprobability measures that are greater than
or equal to it on every set. Any distribution giving probability q ∈ [13 , 1] for the
transition to s2 and at least max(2

3 − q, 0) to s1 and to s3 in such a way that
the probability to {s1, s2, s3} is 1, would implement this specification.

An implementation should be defined as an LMP that simulates the infLMP
specification. However, since we do not want to enter the details of simulation,
and since interpreting infLMPs is not the primary goal of this paper, we prefer
to keep the notion of implementation or realization at an informal level.

The two following results show that zigzag morphisms link processes in a
strong way. The second implies that bisimilar processes satisfy the same formulas.

Proposition 1. Let f : S � S′ be a morphism of infLMPs. If S is an LMP, so
is S′.

Proposition 2 ([3]). Let f : S � S′ be a morphism of infLMPs, then for all
φ ∈ L∞, s ∈ S: s ∈ [[φ]]S ⇔ f(s) ∈ [[φ]]S′ or equivalently: [[φ]]S = f−1([[φ]]S′).

An interesting feature of infLMPs is the relation between logical equivalence and
bisimulation. It is quite different from what happens on LMPs for which even
the simplest logic L characterizes bisimulation.

Theorem 1. The L∗-equivalences on infLMPs for L∗ ∈ {L,L∨,L¬} are strictly
weaker than bisimulation, but L∞ characterizes event bisimulation for infLMPs.

A Demonic Approach to Information in Probabilistic Systems 295

s0 t0
a a

b

s1 t1

1 · · · i · · ·

x

[1
2
] [1

2i]

Fig. 2. For infLMPs, ¬ and ∨∞ are necessary for bisimulation

Proof (Sketch). The second claim is trivial because {[[φ]] | φ ∈ L∞} is a stable σ-
algebra. States s0 and t0 of Fig. 2 prove that negation is necessary. They satisfy
the same formulas of L∨, but they are distinguished by formula 〈a〉1(¬〈b〉 1

2
').

The right part of Fig. 2 shows that infinite disjunction is necessary. The state
space is IN+∪{s1, t1, x}. States s1 and t1 both have probability 1 to IN+∪{x}, and
s1 also has probability 1 to IN+. States s1 and t1 are L¬-equivalent but they are
distinguished by 〈a〉1(∨∞

i=1〈a〉 1
2i
').

This result is not surprising since infLMPs encode non determinism: it is well
known that logical characterization of bisimulation needs negation and infinite
disjunction when non determinism and probabilities cohabite. However, since all
mentioned logics characterize bisimulation for LMPs, we have the following.

Corollary 1. Every equivalence class of infLMPs with respect to each of the
logics L, L∨ and L¬ contains at most one LMP, up to event bisimulation.

Although quite natural, this result raises one question: if only one LMP is in the
same equivalence class as an infLMP, how can the latter be realized by more than
one LMP? The answer is: because a specification is a lower bound requirement,
and hence a realization is not necessarily equivalent to its specification. There
are specifications that cannot be realized exactly, such as process S1 of Fig. 1.
In this process, s0 has probability 0 to s2, but any LMP implementation, which
has to satisfy additivity, will have a probability of at least 1

3 to some state that
can make both a b and a c-transition. Thus, any realization of s0 will satisfy the
formula 〈a〉 1

3
(〈b〉1' ∧ 〈c〉1'), as do T1 and T2.

3.1 Related Models

Abstractions. In order to combat the state explosion problem, Fecher et al. [16]
and Chadha et al. [17] propose to abstract probabilistic processes by grouping
states. In the former, this is done by giving intervals to probability transitions,
whereas in the latter, a tree-like partial order is chosen on top of the state
space. With intervals, one looses the link between individual transitions which
is preserved in our setting. Abstract processes of Chadha et al. are closer to
infLMPs but they carry less information since they do not rely on satisfied
properties but on the quality of the chosen partial order.

296 J. Desharnais, F. Laviolette, and A. Turgeon

PreLMPs InfLMPs have a structure close to the one of preLMPs; these emerged
as formula based approximations of LMPs [12]: given an LMP and a set of
formulas, the goal was to define an approximation of the LMP that satisfied
the given formulas. This looks close to what we want since infLMPs represent
the properties that an LMP satisfies. However the set functions of preLMPs
must not only be super-additive, but also co-continuous: ∀ ↓An ∈ Σ : p(∩An) =
infn p(An). Such a condition is too strong in our context: co-continuity cannot be
obtained from a set of formulas only, and it is incompatible with lower bounds. In
the work we mention above, the transition functions of the preLMP are defined
using the subprobability measure of the LMP (which are already co-continuous,
of course), and this is crucial in obtaining their co-continuity nature.

Non determinism. When investigating on the duality presented in Section 5,
we first thought that preLMPs would be our abstract processes. It turns out
that not only infLMPs are the right framework, but they represent a promising
alternative to processes mixing non determinism and probabilities, because of
their simplicity and expressiveness.

We briefly show how infLMPs compare to existing models, but we leave for fu-
ture work a deeper investigation of related questions. Models of non-deterministic
probabilistic processes a la Segala ([2,15]) usually describe transitions as a sub-
set of S×L×Distr(S), where Distr(S) is a set of probability distributions over
S. Thereafter, a scheduler, which aims at resolving non determinism, is defined
as a map that, when given an execution from the initial state to some state s,
returns a distribution on the transitions at s. More specifically, this describes
a randomized scheduler. In our model, given an execution ending in s and an
action, the scheduler could simply pick up one distribution among the ones that
are greater than or equal to the super-additive set function at s (and in addition,
give a distribution on the action label set). InfLMPs thus appear to be quite sim-
pler since a simple super-additive set function encode an uncountable number of
possible distributions (as does s0 of S1). Of course, a deeper understanding has
to be undertaken to properly compare those models with regards to their power
and efficiency. Note yet that by taking the infimum over transitions of a process
a la Segala, we obtain an infLMP that encodes at least all the behaviours of the
original processes.

4 Abstract Processes

There is a strong correspondence between σ-algebras and σ-complete Boolean
algebras. A Boolean algebra A is called a σ-algebra of sets if A ⊆ P(X) for
some X ∈ A (the greatest element), and A is closed under complementation and
countable intersections. Every Boolean algebra carries an intrinsic partial order
defined as A
 B ⇔ A∧B = A. Thus, a σ-algebra is just a σ-complete Boolean
algebra of sets, where
 is set inclusion ⊆.

As announced in the introduction, we now propose a generalization of our
notion of infLMPs to a more abstract, purely algebraic setting, without any
references to the notion of states. Hence, instead of referring to a set of states and

A Demonic Approach to Information in Probabilistic Systems 297

a σ-algebra, the underlying space of an abstract infLMP will be some σ-complete
Boolean algebra A (we say a σ-BA from now on). Any infLMP can be associated
to a morphism [[·]] : L∨ → A. However, what can we say of the converse? When is
it the case that a given function µ̂ : L∨ → A for an arbitrary σ-BA A corresponds
to some infLMP whose σ-algebra is isomorphic to A and whose semantics accords
with µ̂? In other words, do we have a Stone-type duality between infLMPs and
their abstract counterparts? To obtain this notion of duality, we need in the
infLMP framework to construct an axiomatization of abstract objects µ̂ : L∨ →
A that guarantees that :

(1) a representation theorem ensures that each A is isomorphic to a σ-algebra;
(2) µ̂ is coherent with logic operators and induces a super-additive set function.

4.1 A Suitable Representation Theorem

Recall that the well-known Stone’s representation theorem asserts that any
Boolean algebra is isomorphic to an algebra of sets (consisting of the clopen
sets of a topological space). This is not true for σ-BA (when considered with
homomorphisms that preserve countable meet and join). The generalization of
Stone’s theorem for σ-BA is known as the Loomis-Sikorski’s theorem [18], and
states that for any σ-BA A, there is a σ-ideal N such that A/N is isomorphic
to an algebra of sets. Such a result is very difficult to use here, for two reasons.
First, the construction of the algebra of sets that arises from Loomis-Sikorski’s
theorem is not unique and far from being as simple as the construction asso-
ciated to Stone’s theorem. Second, the ideal N is difficult to interpret in the
concrete counterpart. One possibility would be to introduce the notion of negli-
gible events and to relax accordingly the notion of bisimulation (see [4]), but it
is not enough and we prefer to keep the structure simple. Indeed, as we will show
below in Corollary 2, we are able to circumvent all those difficulties by simply
restricting the possible A to ω-distributive σ-BA.

Definition 8. A σ-BA A is ω-distributive if, for any countable set I and for
every family (aij)i∈I,j=1,2 in A, ∧i∈I(ai1 ∨ ai2) = ∨{∧i∈Iaif(i) : f ∈ 2I}.

Note that if we restrict I to finite sets only, we retrieve the standard distributivity
law, and that a σ-algebra is always ω-distributive.

The two following results will provide the essential link between ω-distributi-
vity and the representation we are seeking.

Theorem 2 ([18, 24.5]). For A a σ-BA generated by at most ω elements, the
following conditions are equivalent:

– A is isomorphic to a σ-algebra
– A is ω-distributive
– A is atomic.

Theorem 3 ([18, 24.6]). For A a σ-BA, A, is ω-distributive if and only if
every sub-σ-BA generated by at most ω elements is isomorphic to a σ-algebra.

298 J. Desharnais, F. Laviolette, and A. Turgeon

Corollary 2. A σ-BA A is ω-distributive if and only if for any µ̂ :L∨→A, the
sub-σ-BA of A generated by µ̂(L∨), noted σ(µ̂(L∨)), is isomorphic to a σ-algebra
Σ̂. Moreover, the underlying set of Σ̂ is the set of all atoms of σ(µ̂(L∨)).

This result shows that, provided that our logic is countable (as is L∨), the
condition of ω-distributivity is not only sufficient to get a representation theorem,
but also necessary. The following Lemma will be useful in Section 5.

Lemma 1. Let (S,Σ) and (S′, Σ′) be two measurable spaces. If Σ′ is ω-genera-
ted and separates points of S′, then for any σ-BA morphism ρ : Σ′ → Σ, there
exists a unique measurable function f : (S,Σ) → (S′, Σ′) such that f−1 = ρ.

4.2 A Suitable Axiomatic for µ̂

As for the guaranty of our Condition (2), note that to ease intuition, it is useful
to think of the image of µ̂(φ) as a set of states that satisfy φ since we are indeed
looking for the existence of an infLMP that accords with µ̂. In the following, we
extract the desired necessary conditions.

From now on, we fix A = (A,∨,∧,−,0,1). By analogy with set theory, we say
that µ̂(φ) and µ̂(ψ) are disjoint if µ̂(φ) ∧ µ̂(ψ) = 0 and we denote by σ(µ̂(L∨))
the smallest σ-BA that contains {µ̂(φ) | φ ∈ L∨}.

We begin by defining a condition on µ̂ that will represent super-additivity.

Definition 9. We say that µ̂ : L∨ → A is super-additive if for all countable
families of pairwise disjoint µ̂(φi) such that ∧µ̂(〈a〉qi

φi)
= 0, then
∑

qi ≤ 1 and
for all ϕ ∈ L∨ where ∨µ̂(φi)
 µ̂(ϕ) we have ∧µ̂(〈a〉qi

φi)
 µ̂(〈a〉∑ qi
ϕ).

The condition of super-additivity makes sure that we will not have a superset
with a smaller value than the sum of its disjoint subsets; it is illustrated in Fig. 3.
The condition

∑
i qi ≤ 1 is for the formula 〈a〉∑ qi

ϕ to exist in L∨.

Theorem 4. Let µ̂ : L∨ → A where µ̂ := [[·]]S for an infLMP S. Then
1. µ̂ respects ', ∧ and ∨
2. if r ≤ q, then µ̂(〈a〉rφ) � µ̂(〈a〉qφ)
3. µ̂ is super-additive as per Definition 9.

We now have conditions on A and µ̂ that are satisfied by the semantic map [[·]]
of any infLMP. We claim that these conditions will be sufficient to generate an
infLMP, and hence we use them to define the category of abstract infLMPs.

∧µ̂(〈a〉qi
φi)

µ̂(φ1)

µ̂(φ2)

µ̂(φ3)

q1

q2

q3

∑
i qi

µ̂(ϕ)

µ̂(〈a〉∑
i qi

ϕ)

Fig. 3. Super-additivity of µ̂

A Demonic Approach to Information in Probabilistic Systems 299

L∨
µ̂ ��

µ̂′ 		

 σ(µ̂(L∨))

σ(µ̂′(L∨))
� �

ρ

 ⊆ A

⊆ A′

A

L∨

µ̂A ��������

µ̂B ��������
µ̂X �� X�

�

� �

��������

B

Fig. 4. Commutative diagrams for definition of ρ and bisimulation

Definition 10. An abstract infLMP is a function µ̂ : L∨ → A where A is an ω-
distributive σ-BA and where µ̂ respects the conditions of Theorem 4. The category
infLMPa has abstract infLMP as objects and a morphism from L∨ → A′ to
L∨ → A is a monomorphism ρ : σ(µ̂′(L∨)) ↪→ σ(µ̂(L∨)) of σ-BA that makes the
left diagram of Fig. 4 commute.

The commutativity condition ensures that ρ will respect the logic. Thinking of
members of A and A′ as sets of states, this means that for any formula, states
that satisfy a formula are sent to states that satisfy the same formula.

These ideas could be extended to other equivalences, by replacing L∨ by other
suitable logics like L and L¬. We rejected L¬ because we are basically interested
in infLMPs as underspecifications of LMPs. We choose L∨ because definitions
are smoother and it keeps more information than L.

5 From infLMP to infLMPa and Back

We will define functors between categories infLMP and infLMPa.

Definition 11. The contravariant functor F : infLMP → infLMPa is:
– F(S,Σ, h) = [[·]]S : L∨ → Σ.
– for f : (S,Σ, h)�(S′, Σ′, h′), F(f) is the restriction of f−1 to σ([[L∨]]S′).

Recall that we defined bisimulation between infLMP as cospans of morphisms.
The image of this cospan in infLMPa becomes a span, as F is contravariant.
This motivates the definition of bisimulation between abstract infLMPs as spans
of morphisms instead of cospans.

Definition 12. Two abstract infLMPs are bisimilar if they are related by a span
of morphisms. In other words, a bisimulation between µ̂A and µ̂B is represented
by the commutativity of the right diagram of Fig. 4.

Bisimulation is easily shown to be an equivalence.
The following corollary shows that abstract infLMP objects are a generaliza-

tion of ordinary infLMP objects. It is a direct consequence of the fact that F is
a functor.

Corollary 3. If infLMPs S and S′ are bisimilar then F(S) and F(S′) also are.

We will show later on that the converse is also true for LMPs.
We now define the functor that builds a concrete model from an abstract one.

300 J. Desharnais, F. Laviolette, and A. Turgeon

Definition 13. The contravariant functor G : infLMPa→ infLMP is:

– G(µ̂ : L∨ → A) = (Ŝ, Σ̂, ĥ) where Ŝ is the set of atoms of σ(µ̂(L∨)), Σ̂ is
defined by an isomorphism i : σ(µ̂(L∨)) → Σ̂ as in Corollary 2. Moreover,
for s ∈ Ŝ and A ∈ Σ̂, writing ha,φ(s) := sup{q : s ∈ i(µ̂(〈a〉qφ))}, we define

ĥa(s,A) := sup
i(µ̂(φ))⊆A

ha,φ(s) ;

– for ρ : A′ ↪→ A, G(ρ) : Ŝ � Ŝ′ is the unique measurable map such that
(G(ρ))−1 = i ρ (i′)−1.

Proof (that G is a functor). Since A is ω-distributive, the sub-σ-BA generated
by µ̂(L∨) is isomorphic to a σ-algebra Σ̂. We denote by i the isomorphism from
σ(µ̂(L∨)) to Σ̂. We define Ŝ as the greatest element in Σ̂.
— Definition of ĥ: The ha,φ’s are well-defined, and they are measurable. Indeed,

h−1
a,φ([q, 1])= {s ∈ S : ha,φ(s) ≥ q}

= {s : sup{r : s ∈ i(µ̂(〈a〉rφ))} ≥ q}
= ∩r<q,r∈Q i(µ̂(〈a〉rφ)) ∈ Σ̂.

The only non trivial step is the third equality. Let s be such that sup{r : s ∈
i(µ̂(〈a〉rφ))} ≥ q. Then ∀r < q, there is some r′ ≥ r such that s ∈ i(µ̂(〈a〉r′φ)).
By Condition 2 of Theorem 4, we have µ̂(〈a〉rφ) � µ̂(〈a〉r′φ), and hence s ∈
i(µ̂(〈a〉rφ)) for all r < q. Thus s ∈ ∩r<q,r∈Q {s ∈ i(µ̂(〈a〉rφ))}. Conversely, if
s ∈ i(µ̂(〈a〉rφ)) for all r < q, then sup{r : s ∈ i(µ̂(〈a〉rφ))} ≥ q, as wanted.

We have that the functions ĥa are well-defined, and since they are defined as
the supremum of countably many measurable functions, they are measurable.
We also have that if A = [[φ]], then ĥa(s,A) = ha,φ(s), because of the super-
additivity condition on µ̂ (Definition 9). This condition also implies that ĥ is
super additive and has value between 0 and 1. Indeed, let A,B ∈ Σ̂ be disjoint
sets. We have that ĥa(s,A∪B) ≥ ĥa(s,A)+ ĥa(s,B) because ĥa(s,−) is defined
as a supremum and because ha,−(s) is super-additive.

— Definition of G(ρ): since Σ̂′ clearly separates points of Ŝ′, Lemma 1 implies
that G(ρ) is measurable, G(idA) = id(S,Σ) and G(ρ◦ρ′) = G(ρ′)◦G(ρ). Moreover,
since ρ is a monomorphism, G(ρ) is surjective because (G(ρ))−1(X)
= ∅ for any
X
= ∅. To finish the proof, we want to show that, given any s ∈ Ŝ, a ∈ L and
B′ ∈ Σ̂′, we have ĥa(s, (G(ρ))−1(B′)) = ĥ′a(G(ρ)(s), B′) or, in other words, that

sup
i(µ̂(φ))⊆(G(ρ))−1(B′)

ĥa,φ(s) = sup
i′(µ̂′(φ))⊆B′

ĥa,φ(G(ρ)(s)).

This is a straightforward consequence of the fact that for each φ ∈ L∨, we have
1. ha,φ(s) = h′a,φ(G(ρ)(s))
2. i(µ̂(φ)) ⊆ (G(ρ))−1(B′) ⇔ i′(µ̂′(φ)) ⊆ B′

Proof of 1. Since ha,φ(s) := sup{q|s ∈ i(µ̂(〈a〉qφ))}, we only have to show that
for any q ∈ [0, 1] ∩ Q, we have G(ρ)(s) ∈ i′(µ̂′(〈a〉qφ)) ⇔ s ∈ i(µ̂(〈a〉qφ)).

G(ρ)(s) ∈ i′(µ̂′(〈a〉qφ)) ⇔ s ∈ (G(ρ))−1(i′(µ̂′(〈a〉qφ)))

A Demonic Approach to Information in Probabilistic Systems 301

S2

b

a[1
2
] a[1

2
]

S3

a

b

a[1
2
]

a

b

a[1
2
]

Fig. 5. Two infLMPs S2 and S3, and their image under G ◦ F

⇔ s ∈ i ◦ ρ ◦ (i′)−1 ◦ i′ ◦ µ̂′(〈a〉qφ)

⇔ s ∈ i ◦ ρ ◦ µ̂′(〈a〉qφ)
⇔ s ∈ i ◦ µ̂(〈a〉qφ) (1)

where (1) follows from the fact that ρ being a morphism of infLMPa, we have
ρ ◦ µ̂′(ψ) = µ̂(ψ) for any ψ ∈ L.
Proof of 2. i′µ̂′(φ) ⊆ B′ ⇔ µ̂′(φ)
 (i′)−1(B′)

⇔ ρ ◦ µ̂′(φ)
 ρ((i′)−1(B′)) (2)
⇔ µ̂(φ)
 ρ((i′)−1(B′))
⇔ i ◦ µ̂(φ) ⊆ i ◦ ρ ◦ (i′)−1(B′) (3)
⇔ i ◦ µ̂(φ) ⊆ (G(ρ))−1(B′)

in (2) (resp (3)), “⇒” follows from the fact that ρ (resp. i) is a morphism of
σ-BA and “⇐” from the fact that it is a monomorphism (resp. isomorphism).

Since G is a functor, we have a result similar to Corollary 3.

Corollary 4. If µ̂ and µ̂′ are bisimilar, then G(µ̂) and G(µ̂′) also are.

Example 3. Fig. 5 shows an LMP S2 and an infLMP S3 that have the same image
under G ◦ F . We can note a loss of information for S2. However, both processes
simulate their image through a co-simulation morphism, (see Proposition 4).

It is easy to see that F and G are not inverse of one another. They are not quite
adjunct either, but they are when restricted to LMPs, as we will show below.
The following result shows that an abstract infLMP is isomorphic to its double
dual. It is followed by a direct corollary.

Proposition 3. F ◦ G(µ̂A) ∼= µ̂A with isomorphism i given by Definition 13.

Corollary 5. G ◦ F ◦ G(µ̂A) ∼= G(µ̂A) and F ◦ G ◦ F(S) ∼= F(S).

The following result shows that an infLMP always simulates its double dual.

Proposition 4. The map ηS : S � G ◦ F(S) that sends each state of S to its
L∨-equivalence class is a co-simulation morphism.

302 J. Desharnais, F. Laviolette, and A. Turgeon

Proof (sketch). Let ηS be the unique measurable map such that η−1
S = i−1

(where i is the isomorphism given in definition of G) (it exists by Lemma 1). This
map clearly sends any state s ∈ Ŝ := G ◦ F(S) to the atoms of σ([[L∨]]S) that
correspond to the L∨-equivalence class of s. Moreover, ηS is surjective because,
for any atom b ∈ σ([[L∨]]S), b
= 0, which implies that there exists an s ∈ b and
thus that there exists an s ∈ S such that ηS(s) = b. To finish the proof, we have
to show that ha(s, η−1

S (Â)) ≥ ĥa(ηS(s), Â), for Â ∈ Σ̂. This is obtained from
monotonicity of ha, the fact that s ∈ ηS(s) and that ∀s′ ∈ ηS(s), ∀B ∈ σ([[L∨]]S),
s ∈ B ⇔ s′ ∈ B.

Corollary 6. S and G ◦ F(S) are L∨-equivalent.

Proof. By Corollary 5, we have F ◦ G ◦ F = F which, because of the definition
of F , implies the results.

Corollary 5 seems to indicate that F is the left adjoint of S. Unfortunately, this
will be true only if we replace L∨ by L∞ in the definition of infLMPa. Nev-
ertheless, if we restrict ourselves to LMPs, (which is the case we are ultimately
interested in) we do have adjunction.

In the following, LMPa is the full subcategory of infLMPa that is induced
by {F(S) | S is an LMP}.

Theorem 5. Let FLMP (resp. GLMPa) be the restriction of F to the category
LMP (resp. of G to the category LMPa) and let η : ILMP

•−→ (GLMPa ◦
FLMP) such that ηS is the co-simulation morphism defined in Proposition 4.
Then (FLMP ,GLMPa) is an adjunction pair whose natural transformation is η.

We can now prove one of the main motivation for this work, that any set of
positive formulas can be represented as an infLMP.

Theorem 6. For any countable set of formulas of L∨, there is a state of some
infLMP that satisfies exactly these formulas (and all those that they imply).

We therefore have the following result which, as stated before, shows that when
restricted to LMPs, we have the reciprocal of Corollary 3.

Corollary 7. Two LMPs S and S′ are bisimilar iff F(S) and F(S′) also are.

Proof. (⇐) By Corollaries 4 and 6, we have that S and S′ are L∨-equivalent,
and since they are LMPs, then they are bisimilar.

6 Conclusion

We have introduced processes with a simple structure, infLMPs, that encode
both non determinism and probabilistic behavior. We showed that they are a
suitable abstraction for probabilistic processes properties like LMPs in the sense
that there is an adjunction between them and their abstract representatives. This

A Demonic Approach to Information in Probabilistic Systems 303

is a first step to a Stone-type duality theory that allows to manipulating prop-
erties only and stop considering states as a central concept. The two proposed
functors allow to go back and forth between the concrete and abstract worlds.

It is easier to build an approximation theory when working only with prop-
erties (without states). For example one cannot have in general a concrete rep-
resentation (with states) of a system that satisfies only the property φ ∨ φ′; the
concrete system will have a state that has property φ or a state that has property
φ′, or will even satisfy φ∧ φ′. It will never satisfy φ∨ φ′ and not more. The fact
that there always exists an infLMP that satisfies any countable set of proper-
ties of L∨ (Theorem 6) indicates that infLMPs are a good level of generality if
one wants to approximates stochastic processes. Approximating processes using
properties has already been proposed for LMPs by Danos and Desharnais [12].
They showed that such approximations are not always LMPs. We propose an
even weaker structure and hence endorse the use of an underspecified structure.

As future work, we plan to construct algorithms that will deal with infLMPs
and their abstractions. Moreover, we want to generalize these ideas to the re-
inforcement learning (RL) framework. In RL, people are dealing with a kind of
LMPs with rewards (called MDP). We think that a theory of approximations
based on properties will be of interest there, especially because the main problem
encountered in RL is the size of the model. Finally, we will study more deeply
the use of infLMPs as encoders of a mix of probabilistic and non deterministic
choice, in particular by analysing the associated demonic schedulers.

References

1. Larsen, K.G., Skou, A.: Bisimulation through probablistic testing. Information and
Computation 94, 1–28 (1991)

2. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In:
Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496.
Springer, Heidelberg (1994)

3. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled
Markov processes. In: Proc. of LICS 1997, Warsaw, Poland (1997)

4. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Almost sure bisimula-
tion in labelled Markov processes, 38 pages (2005), http://www2.ift.ulaval.ca/
~jodesharnais/Publications/almostSureDDLP05.pdf

5. Kozen, D.: A probabilistic PDL. Journal of Computer and Systems Sciences 30(2),
162–178 (1985)

6. Johnstone, P.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3.
Cambridge University Press, Cambridge (1982)

7. Billingsley, P.: Probability and Measure. Wiley-Interscience, Hoboken (1995)
8. Rutten, J.J.M.M., de Vink, E.: Bisimulation for probabilistic transition systems: a

coalgebraic approach. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)
ICALP 1997. LNCS, vol. 1256, pp. 460–470. Springer, Heidelberg (1997)

9. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I and II. Infor-
mation and Computation 100, 1–41, 42–78 (1992)

10. Desharnais, J.: Labelled Markov Processes. PhD thesis. McGill University (2000)
11. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocon-

gruence for probabilistic systems. Information and Computation, 22 pages (2005)

http://www2.ift.ulaval.ca/~jodesharnais/Publications/almostSureDDLP05.pdf
http://www2.ift.ulaval.ca/~jodesharnais/Publications/almostSureDDLP05.pdf

304 J. Desharnais, F. Laviolette, and A. Turgeon

12. Danos, V., Desharnais, J.: Labeled Markov Processes: Stronger and faster approx-
imations. In: Proc. of LICS 2003, Ottawa. IEEE, Los Alamitos (2003)

13. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953)
14. Goubault-Larrecq, J.: Continuous capacities on continuous state spaces. In:

Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 764–776. Springer, Heidelberg (2007)

15. Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition sys-
tems for continuous state spaces and non-determinism. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 125–139. Springer, Heidelberg (2005)

16. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg
(2006)

17. Chadha, R., Viswanathan, M., Viswanathan, R.: Least upper bounds for probabil-
ity measures and their applications to abstractions. In: van Breugel, F., Chechik, M.
(eds.) CONCUR 2008. LNCS, vol. 5201, pp. 264–278. Springer, Heidelberg (2008)

18. Sikorski, R.: Boolean Algebras, 3rd edn. Springer, New York (1969)

HYPE: A Process Algebra for Compositional
Flows and Emergent Behaviour

Vashti Galpin1, Luca Bortolussi2, and Jane Hillston1

1 Laboratory for Foundations of Computer Science, University of Edinburgh
Vashti.Galpin@ed.ac.uk, Jane.Hillston@ed.ac.uk

2 Department of Maths and Computer Science, University of Trieste
luca@dmi.units.it

Abstract. Several process algebras for modelling hybrid systems have
appeared in the literature in recent years. These all assume that contin-
uous variables in the system are modelled monolithically, often with the
differential equations embedded explicitly in the syntax of the process al-
gebra expression. In HYPE an alternative approach is taken which offers
finer-grained modelling with each flow or influence affecting a variable
modelled separately. The overall behaviour then emerges as the com-
position of these flows. This approach is supported by an operational
semantics which distinguishes states as collections of flows and which is
supported by an equivalence which satisfies the property that bisimilar
HYPE models give rise to the same sets of continuous behaviours.

1 Introduction

HYPE is a novel process algebra for modelling hybrid systems. A hybrid system
exhibits both discrete and continuous behaviour. It can be viewed as a system
consisting of values which change continuously over time with respect to specific
dynamics. Discrete events can cause discontinuous jumps in these values after
which different dynamics may come into effect. These events can be triggered
by conditions on the continuously changing values. The novelty of HYPE lies
in how it captures the continuous dynamics of a system, and the separation
of a discrete controller considered in parallel to the system under study. Un-
like existing process algebras for hybrid systems, HYPE captures behaviour at a
fine-grained level, composing distinct flows or influences. The dynamic behaviour
then emerges, via the semantics of the language, from these compositional ele-
ments. We are inspired by the fluid flow semantics of PEPA models [15] which
approximates the behaviour of large numbers of discrete components with a set
of ordinary differential equations (ODEs).

Hybrid behaviour arises in a variety of systems, both engineered and natural.
Consider a thermostatically controlled heater. The continuous variable is air
temperature, and the discrete events are the switching on and off of the heater
by the thermostat in response to the air temperature. Another example would be
a genetic regulatory network, such as the Repressilator [9], in which genes can be
switched on or off by interactions with their environment (more precisely, with

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 305–320, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

306 V. Galpin, L. Bortolussi, and J. Hillston

transcription factor proteins). The behaviour of such systems can be regarded as
a collection of sets of ODEs, the discrete events shifting the dynamic behaviour
from the control of one set of ODEs to another. This is the approach taken with
hybrid automata [13].

Process algebras have the advantage of being compositional hence models are
built out of subcomponents and we aim to fully exploit this feature in HYPE.
Existing process algebras for hybrid systems include ACP srt

hs [3], hybrid χ [22],
φ-calculus [20] and HyPA [6]. In [16], Khadim shows substantial differences in
the approaches taken by these process algebras relating to syntax, semantics,
discontinuous behaviour, flow-determinism, theoretical results and availability
of tools. However, they are all similar in their approach in that the dynamic
behaviour of each subcomponent must be fully described with the ODEs for the
subcomponent given explicitly in the syntax of the process algebra, before the
model can be constructed.

We aim for a finer-grained approach where each subcomponent is built up
from a number of flows and hence the ODEs are only obtained once the model is
constructed. By flow, we mean something that has an influence on a quantity of
interest. For example, in a tank with two inlets and an outlet, both the inlets and
the outlet influence the tank level, hence here we would identify three separate
flows. The continuous part of the system is represented by the appropriate vari-
ables and the change over time of a given variable is determined by a number of
active influences which represent flows and are additive in nature. Our approach
also differs in that we explicitly require a controller that consists only of events.

We believe that the use of flows as the basic elements of model construction has
advantages such as ease and simplification of modelling. This approach assists
the modeller in allowing them to identify smaller or local descriptions of the
model and then to combine these descriptions to obtain the larger system. The
explicit controller also helps to separate modelling concerns.

The structure of the rest of the paper is as follows. In the next section we
introduce our syntax for hybrid systems, explaining its components. In the fol-
lowing sections, we present the operational semantics and how we go from the
notion of state to the ODEs which describe the system. We then discuss how this
gives rise to a hybrid automaton. We consider a notion of bisimulation and our
main result is that bisimilar systems have identical ODEs and finally we discuss
related work.

2 HYPE Definition

This section will present HYPE by way of a running example of the temperature
control system of an orbiting space vehicle. As the orbiter travels around the
earth, it needs to regulate its temperature to remain within operational limits.
It has insulation but needs to use a heater at low temperatures and at high
temperatures it can erect a shade to reduce temperatures. The modelling spirit
of HYPE focusses on flows. In our example, we identify four flows affecting the
temperature. One is due to thermodynamic cooling, one is due to the heater,

HYPE: A Process Algebra for Compositional Flows 307

one is due to the heating effect of the sun and one is due to the cooling effect
of the shade. The strength and form of a flow are modified by events. We first
define the heater which can be on or off.

Heat
def= on:(h, rh, const).Heat+ off:(h, 0, const).Heat+ init:(h, 0, const).Heat

This is a summation of prefixes. Each prefix consists of two actions. Events
(a ∈ E) are actions which happen instantaneously and trigger discrete changes.
They can be caused by a controller or happen randomly and can depend on the
global state of the system, specifically values of variables. In the example, the
events are on, switching on; off, switching off and init, the initialisation event.

Activities (α ∈ A) are influences on the evolution of the continuous part of
the system and define flows. An activity is defined as a triple and can be pa-
rameterised by a set of variables, α(

−→
X) = (ι, r, I (

−→
X)). This triple consists of an

influence name ι, a rate of change (or influence strength) r and an influence
type name I (

−→
X) which describes how that rate is to be applied to the variables

involved, or the actual form of the flow1. In Heat, there are two distinct activi-
ties, (h, rh, const) and (h, 0, const). The first one captures the effect of the heater
being off. It affects influence h which represents the influence from the heater on
the orbiter’s temperature, it has strength 0 and it is associated with the function
called const . The second gives the effect of the heater being on: the influence
name is again h, rh is the strength of the heater, and the form it takes is const .
The interpretation of influence types will be specified separately, so that experi-
mentation with different functional forms of the heating flow can occur without
modifying the subcomponent. Hence, in HYPE we separate the description of
the logical structure of flows from their mathematical interpretation. We now
describe the other flows for the example.

Shade
def= up:(d,−rd, const).Shade+ down:(d, 0, const).Shade+

init:(d, 0, const).Shade
Sun

def= light:(s, rs, const).Sun+ dark:(s, 0, const).Sun+ init:(s, 0, const).Sun
Cool(X) def= init:(c,−1, linear(X)).Cool(X)
The only event in the last definition is the initialisation event, as once cooling is
in effect it does not change. The influence name is c and its strength is −1. The
type linear (X) will be interpreted as a linear function of its formal variable X .
We also need to model the change in sunlight. We do this by keeping track of
time with the following component (which is kept simple for reasons of space).

T ime
def= light:(t, 1, const).T ime+dark:(t, 1, const).T ime+init:(t, 1, const).T ime

These subcomponents can be combined and the formal variable X can be in-
stantiated with the actual variable K to give the overall uncontrolled system.

Sys
def= (((Heat ��{init}Shade) ��{init}Sun) ��{init}Cool(K)) ��

{init,light,dark}T ime

Here ��
L

represents parallel synchronisation. L is the set of events over which
synchronisation must occur. Events not in L can occur independently. Sys is
called the uncontrolled system because all events are possible and no causal or

1 For convenience, we will use I for I (
−→
X) when

−→
X can be inferred.

308 V. Galpin, L. Bortolussi, and J. Hillston

temporal constraints have been imposed yet. For instance, we need to specify
that the heater can only be switched off after it has been switched on. We now
give controllers/sequencers for the heater, the shade and the effect of the sun.

Conh
def= on.off.Conh Cond

def= up.down.Cond Cons
def= light.dark.Cons

Con def= Conh ��∅ Cond ��∅ Cons

Controllers only have event prefixes. Their behaviour is affected by the state of
the system through event conditions which determine when events occur. The
controlled system is constructed from synchronisation of the controller and the
uncontrolled system and the controller must be prefixed by the initialisation
event init. For the example, the controlled system is described by
TempCtrl def= Sys��

M
init.Con with M = {init, on, off, up, down, light, dark}.

This has defined the structure of our system but we require additional definitions
to capture further details. We need to link each influence with an actual variable.
This is done using the function iv . For the example, iv (h)= iv (s)= iv (d)= iv (c)=
K whereK is the actual variable for the temperature of the orbiter, and iv (t)=T ,
the variable for time. Note that an influence can only be associated with one
variable, in agreement with the interpretation of influences as flows. This does
not mean that only one variable can be affected by an event. For another variable
Y that was also affected by the heater being on (power consumption, say), we
could define a subcomponent with a prefix on:(p, r, I) and set iv (p) = Y .

We define the influence types as �const� = 1 and �linear (X)� = X . The
influence types are used to describe influences are affected by variables in the
system. The type const is used when there is no effect and linear (X) is used
when the value of the variable X modifies an influence. Mass action can also be
defined through this mechanism.

Finally, we define what triggers an event, and how it affects variables, with
the function ec. Each event condition consists of an activation condition which
is a positive boolean formula containing equalities and inequalities on system
variables or the symbol ⊥, and a variable reset which is a conjunction of equality
predicates on variables V and V ′ where V ′ denotes the new value that V will
have after the reset, while V denotes the previous value. Resets of the form
V = V ′ can be left implicit. For the example, the function ec and associated
event conditions are

ec(init) = (true, (K ′ = t0 ∧ T ′ = 0))
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

ec(light) = (T = 12, true) ec(dark) = (T = 24, T ′ = 0)
where the ti(1 ≤ i ≤ 4) are fixed temperature values. Most events are urgent –
the event must occur as soon as its event condition is satisfied. For events that
can happen randomly such as breakdowns, we introduce a special event condition
⊥ which means that the event can happen at some point in the future2. In the
example, the init event has an associated event condition of true and so this

2 We have not done so here but probabilistic resets can be used. Tuffin et al [21] use
a value drawn from a exponential distribution for the time until the next event.

HYPE: A Process Algebra for Compositional Flows 309

must happen immediately and light happens when 12 hours have passed. The
event init has a reset that defines the values of the variables and on has a reset
of true meaning that no values are changed.

In the preceding informal discussion, we have introduced the main constituents
of a HYPE model including the combination of flow components with a controller
component, formal and actual variables, association between influences and vari-
ables, conditions that specify when events occur, and definitions for the influence
type functions. To understand the dynamics of this system, we need to derive
ODEs to describe how the variables change over time. To do this we present
operational semantics that define the behaviour of our controlled system. Before
that we present the formal definition of HYPE.

Definition 1. A controlled system is constructed as follows.

– Subcomponents are defined by Cs(
−→
X) = S, where Cs is the subcomponent

name and S satisfies the grammar S′ ::= a : α.Cs | S′ + S′ (a ∈ E, α ∈ A),
with the free variables of S in

−→
X .

– Components are defined by C(
−→
X) = P , where C is the component name

and P satisfies the grammar P ′ ::= Cs(
−→
X) | C(

−→
X) | P ′ ��

L
P ′, with the free

variables of P in
−→
X and L ⊆ E.

– An uncontrolled system Σ is defined according to the grammar Σ′ ::=
Cs(

−→
V) | C(

−→
V) | Σ′ ��

L
Σ′, where L ⊆ E and

−→
V is a set of system vari-

ables, instantiating the formal variables of C or Cs.
– Controllers only have events: M ::= a.M | 0 | M +M with a ∈ E and L ⊆ E

and Con ::= M | Con ��
L

Con.
– A controlled system is ConSys ::= Σ ��

L
init.Con where L ⊆ E. The set of

controlled systems is CSys .

A controlled system together with the appropriate sets and functions, gives a
HYPE model.

Definition 2. A HYPE model is a tuple
(ConSys ,V ,X , IN , IT , E ,A, ec, iv ,EC , ID) where

– ConSys is a controlled system as defined above.
– V is a finite set of variables and X is a finite set of formal variables.
– IN is a set of influence names and IT is a set of influence type names.
– E is a set of events of the form a and ai.
– A is a set of activities of the form α(

−→
X) = (ι, r, I (

−→
X)) ∈ (IN × R × IT).

– ec : E → EC maps events to event conditions. Event conditions are pairs of
formulas, the first with free variables in V and the second with free variables
in V ∪ V ′.

– iv : IN → V maps influence names to variable names.
– EC is a set of event conditions.
– ID is a collection of definitions consisting of a real-valued function for each

influence type name �I (
−→
X)� = f(

−→
X) where the variables in

−→
X are from X .

– E, A, IN and IT are pairwise disjoint.

310 V. Galpin, L. Bortolussi, and J. Hillston

Prefix with
influence:

〈
a : (ι, r, I).E,σ

〉 a−→ 〈
E, σ[ι �→ (r, I)]

〉

Prefix without
influence:

〈
a.E, σ

〉 a−→ 〈
E,σ

〉

Choice:

〈
E, σ

〉 a−→ 〈
E′, σ′〉

〈
E + F, σ

〉 a−→ 〈
E′, σ′〉

〈
F, σ

〉 a−→ 〈
F ′, σ′〉

〈
E + F, σ

〉 a−→ 〈
F ′, σ′〉

Parallel without
synchronisation:

〈
E, σ

〉 a−→ 〈
E′, σ′〉

〈
E ��

M
F, σ

〉 a−→ 〈
E′ ��

M
F, σ′〉 (a �∈M)

〈
F, σ

〉 a−→ 〈
F ′, σ′〉

〈
E ��

M
F, σ

〉 a−→ 〈
E ��

M
F ′, σ′〉 (a �∈ M)

Parallel with
synchronisation:

〈
E, σ

〉 a−→ 〈
E′, τ

〉 〈
F, σ

〉 a−→ 〈
F ′, τ ′〉

〈
E ��

M
F, σ

〉 a−→ 〈
E′ ��

M
F ′, Γ (σ, τ, τ ′)

〉 (a ∈ M, Γ defined)

Constant:

〈
E, σ

〉 a−→ 〈
E′, σ′〉

〈
A, σ

〉 a−→ 〈
E′, σ′〉 (A def= E)

Fig. 1. Operational semantics for HYPE

When referring to a HYPE model, a term for the controlled system will be used,
such as P , and the tuple will be implied. In the case of two HYPE models
P and Q without reference to the tuple, we will assume two implied tuples
with identical elements except for the first elements. The syntax of HYPE is
moderately complex because hybrid systems are complex structures displaying
continuous and discrete behaviour. The example shows how it is straightforward
to construct a HYPE model once flows and the controller are identified.

3 Operational Semantics

To define the operational semantics, a notion of state is required.

Definition 3. A state of the system is a function σ : IN → (R × IT). The set
of all states is S. A configuration consists of a controlled system together with a
state

〈
ConSys , σ

〉
and the set of configurations is F .

For convenience, states may be written as a set of triples of the form (ι, r, I (
−→
X)).

This is the same form as an activity to reflect the fact that the state captures the
activities that are currently in effect. The notion of state here is not a valuation
of system variables but rather a collection of flows that occur in the system.

HYPE: A Process Algebra for Compositional Flows 311

The operational semantics give a labelled transition system over configurations
(F , E ,→ ⊆ F × E ×F). We write F

a−→ F ′ for (F, a, F ′) ∈ →. In the following,
E,F ∈ CSys . The rules are given in Figure 1 and are fairly standard. In Choice,
Prefix without influence, Parallel without synchronisation and Constant, states
are not changed by the application of the rule. For Prefix with influence, the
state needs to be updated, and for Parallel with synchronisation, the two new
states in the premise of the rule need to be merged using the function Γ .

The updating function σ[ι �→ (r, I)] is defined by σ[ι �→ (r, I)](x) = (r, I) if
x = ι and σ[ι �→ (r, I)](x) = σ(x) otherwise. The notation σ[u] will also be used
for an update, with σ[u1 . . . un] denoting σ[u1] . . . [un].

The partial function Γ : S × S × S → S is defined as follows.

(Γ (σ, τ, τ ′))(ι) =

⎧⎪⎨
⎪⎩
τ(ι) if σ(ι) = τ ′(ι),
τ ′(ι) if σ(ι) = τ(ι),
undefined otherwise.

When synchronisation occurs, two states must be merged and the function uses
the previous state and the new states to determine which values have changed
and then puts these changed values into the new state. Γ will be undefined if
both the second and third argument differ from the first argument, namely if
the values in the new state both differ from the old state since this represents
conflicting updates.

The next two definitions will be useful in referring to the states of the model.

Definition 4. The derivative set of a controlled system P , ds(P) is defined as
the smallest set satisfying

– if 〈P, σ〉 init−→〈P ′, σ′〉 then 〈P ′, σ′〉 ∈ ds(P)
– if 〈P ′, σ′〉 ∈ ds(P) and 〈P ′, σ′〉 a−→〈P ′′, σ′′〉 then 〈P ′′, σ′′〉 ∈ ds(P).

Definition 5. The set of states of the derivative set of a controlled system P
is defined as st(P) = {σ | 〈Q, σ〉 ∈ ds(P)}.

In the TempCntl model, there are eight states of interest (we have omitted the
state before the init event) given in Figure 2. Each state captures the influences
that are currently active. Since the influence strengths and types of c and t do
not change, and each of h, d and s have two possible strengths, there are eight
states. Here k abbreviates const and l(X), linear (X). For example, σ3 reflects
that the heater (h) is off (and has no effect), the shade (d) is up, the sun (s) is
shining, cooling (c) is happening, and time (t) is passing.

4 Hybrid Semantics

We extract a set of ODEs for each state which appears in a configuration in
the labelled transition system. We will label this set as CSσ where CS is the
constant used for the controlled system and σ is the state.

312 V. Galpin, L. Bortolussi, and J. Hillston

σ0 = {h �→ (0, k), d �→ (0, k), s �→ (0, k), c �→ (−1, l(K)), t �→ (1, k)}
σ1 = {h �→ (0, k), d �→ (0, k), s �→ (rs, k), c �→ (−1, l(K)), t �→ (1, k)}
σ2 = {h �→ (0, k), d �→ (−rd, k), s �→ (0, k), c �→ (−1, l(K)), t �→ (1, k)}
σ3 = {h �→ (0, k), d �→ (−rd, k), s �→ (rs, k), c �→ (−1, l(K)), t �→ (1, k)}
σ4 = {h �→ (rh, k), d �→ (0, k), s �→ (0, k), c �→ (−1, l(K)), t �→ (1, k)}
σ5 = {h �→ (rh, k), d �→ (0, k), s �→ (rs, k), c �→ (−1, l(K)), t �→ (1, k)}
σ6 = {h �→ (rh, k), d �→ (−rd, k), s �→ (0, k), c �→ (−1, l(K)), t �→ (1, k)}
σ7 = {h �→ (rh, k), d �→ (−rd, k), s �→ (rs, k), c �→ (−1, l(K)), t �→ (1, k)}

Fig. 2. The states of the orbiter temperature control system

Given a controlled system CS, and a derivative 〈CS′, σ〉 ∈ ds(CS), the ODEs
associated with the state σ are defined as follows.

CSσ =
{dV

dt
=
∑{

r × �I (
−→
W)�

∣∣ iv (ι) = V and σ(ι) = (r, I (
−→
W))

} ∣∣∣ V ∈ V
}

So for each state, we have a collection of ODEs, one for each variable V . We
obtain the following ODE from σ3.

TempCntlσ3 =
{dK

dt
= rs − rd −K,

dT
dt

= 1
}

Therefore, this process enables us to obtain ODEs describing how the continu-
ous part of the system evolves, and we have different sets of ODEs to describe
the different dynamics that can be in operation. We wish to combine this in-
formation with the event conditions already defined and an obvious way to do
this is to translate this information into a hybrid automaton. Therefore, this
well-supported formalism provides a powerful back-end for HYPE.

Hybrid automata are dynamic systems presenting both discrete and continu-
ous evolution. They consist of variables evolving continuously in time, subject to
abrupt changes induced by discrete instantaneous control events. When discrete
events happen the automaton enters its next mode, where the rules governing
the flow of continuous variables change. See [13] for further details.

Definition 6. A hybrid automaton is a tuple
H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent), where:

– X = {X1, . . . , Xn} is a finite set of real-valued variables. The time derivative
of Xj is Ẋj, and the value of Xj after a change of mode is X ′

j.
– the control graph G = (V,E) is a finite labelled graph. Vertices v ∈ V are the

(control) modes, while edges e ∈ E are called (control) switches and model
the happening of a discrete event.

– Associated with each vertex v ∈ V there is a set of ordinary differential equa-
tions Ẋ = flow(v) referred to as the flow conditions. Moreover, init(v) and
inv(v) are two formulae on X specifying the admissible initial conditions and

HYPE: A Process Algebra for Compositional Flows 313

some invariant conditions that must be true during the continuous evolution
of variables in v.

– Edges e ∈ E of the control graph are labelled by an event event(e) ∈ E
and by jump(e), a formula on X stating for which values of variables each
transition is active, and by reset(e), a formula on X ∪ X′ specifying the
change of the variables’ values after the transition has taken place. Moreover,
each edge e ∈ E can be declared urgent, by setting to true the boolean flag
urgent(e), meaning that the transition is taken at once when jump(e) becomes
true. Otherwise, the transition can be taken nondeterministically whenever
jump(e) is true.

Consider a HYPE model (P0,V ,X , IN , IT , E ,A, ec, iv ,EC , ID) and suppose its
initial configuration is 〈P0, σ0〉 ∈ F . For P0 the only possible transition is
the event init. Let 〈P, σ〉 be the configuration reached after its occurrence,
〈P0, σ0〉

init−→〈P, σ〉. Moreover, we denote by acta and resa the activation con-
ditions and the resets associated with an event a ∈ E , so ec(a) = (acta, resa).

Definition 7. The hybrid automaton
H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent) can be obtained from
the HYPE model (P0,V ,X , IN , IT , E ,A, ec, iv ,EC , ID) as follows.

– The set of modes V is the set of configurations reachable in 0 or more steps
from 〈P, σ〉, namely ds(P0).

– The edges E of the control graph connect two modes (v1, v2) iff v1 = 〈P1, σ1〉,
v2 = 〈P2, σ2〉 and 〈P1, σ1〉

a−→〈P2, σ2〉 is a derivation for some a.
– X = V is the set of variables of the HYPE system.
– E is the set of events E of P0.
– Let vj = 〈Pj , σj〉, then

flow (vj)[Xi] =
∑

{r�I (
−→
W)� | iv(ι) = Xi and σj(ι) = (r, I (

−→
W))}

– init(v) =
{
resinit, if v = 〈P, σ〉
false, otherwise

with primes removed from variables3.

– inv(v) = true.
– Let e = (〈P1, σ1〉, 〈P2, σ2〉) with 〈P1, σ1〉

a−→〈P2, σ2〉. Then event(e) = a
and reset(e) = resa. Moreover, if acta
= ⊥, then jump(e) = acta and
urgent(e) = true, otherwise jump(e) = true and urgent(e) = false.

Figure 3 shows the HYPE model from the example as a hybrid automaton. Note
that which states are visited is determined by the values of the ti(0 ≤ i ≤ 4).

5 Equivalence Semantics

We define equivalent behaviour with respect to the labelled transition system
given in Section 3 thereby focussing on the configuration of the system rather
than evaluations of continuous variables.
3 resinit is a reset so uses primed variables to refer to the new values of variables

whereas init(v) is an initialization condition and refers to variables without primes.

314 V. Galpin, L. Bortolussi, and J. Hillston

TCσ1

TCσ3

TCσ5

TCσ0

TCσ2

TCσ7

TCσ4

TCσ6

init
K=t0,T=0

K≥
t3 ; up

K≤
t4 ; down

K≤t2; on

K≥t1; off

T=
24

; d
ar

k;
T
′=0

T=
12

; li
gh

t

T=24; dark; T ′=0

T=12; light

K≥t3; up

K≤t4; down

K≤t2; on

K≥t1; off

K
≤t2

; onK
≥t1

; off

T=
24

; da
rk;

T
′=0

T=
12

; li
ght

K≥
t3 ; up

K≤
t4 ;dow

n K
≤t2

; o
n

K
≥t1

; o
ff

K≥
t3 ; up

K≤
t4 ; down

T=24; dark; T ′=0

T=12; light

Fig. 3. Hybrid automaton of the orbiter temperature control system

Definition 8. A relation B ⊆ CSys × CSys is a system bisimulation if for all
(P,Q) ∈ B whenever

1. 〈P, σ〉 a−→ 〈P ′, σ′〉, there exists 〈Q′, σ′〉 with 〈Q, σ〉 a−→ 〈Q′, σ′〉, (P ′, Q′) ∈ B.
2. 〈Q, σ〉 a−→ 〈Q′, σ′〉, there exists 〈P ′, σ′〉 with 〈P, σ〉 a−→ 〈P ′, σ′〉, (P ′, Q′) ∈ B.

P and Q are system bisimilar, P ∼s Q if they are in a system bisimulation.

System bisimulation is a congruence for our operators.

Theorem 1. ∼s is a congruence for Prefix, Choice and Parallel.

Proof sketch. Straightforward. Let P1 ∼s P2. Interesting cases are Prefix with in-
fluence and Parallel with synchronisation. For the former, 〈a : (ι, r, I).P1, σ〉

a−→
〈P1, σ[ι �→ (r, I)]〉 and likewise 〈a : (ι, r, I).P2, σ〉

a−→〈P2, σ[ι �→ (r, I)]〉 as re-
quired. For the latter, we need to show that B = {(P1 ��

L
Q,P2 ��

L
Q)|P1 ∼s P2}

is a system bisimulation. If 〈P1 ��
L
Q, σ〉 a−→〈P ′

1 ��L Q′, Γ (σ, σ′, σ′′)〉 and a ∈ L
then 〈P1, σ〉

a−→〈P ′
1, σ

′〉 and 〈Q, σ〉 a−→〈Q′, σ′′〉. Since P1 ∼s P2, 〈P2, σ〉
a−→〈P ′

2, σ
′〉

with P ′
1 ∼s P

′
2, and hence 〈P2 ��

L
Q, σ〉 a−→〈P ′

2 ��L Q′, Γ (σ, σ′, σ′′)〉 as required. �

We are interested in the link between the ODEs obtained from bisimilar systems.
Before we can consider this, some definitions and lemmas are required.

As we saw in the example, the init event in the controlled system allows for the
initialisation of variables. Typically subcomponents are defined as a number of
simple loops, reflecting events that can occur and the associated changes in the
continuous part of the system. These requirements can be formalised as follows.

HYPE: A Process Algebra for Compositional Flows 315

Definition 9
A well-defined controlled system has the following properties.

1. For each subcomponent Cs(
−→
X) def= S, the only subcomponent name that can

appear in S is Cs(
−→
X).

2. In each subcomponent Cs(
−→
X), the event a can only appear once.

3. In each subcomponent Cs(
−→
X), each ι that appears, must also appear in a

prefix with init.
4. Across all subcomponents, each pair a and ι must appear at most once to-

gether in a prefix.
5. In any component C(

−→
X), any event that appears in more than one subcom-

ponent must be synchronised on.
6. In the controlled system Σ and Con must have the same events and these

must all appear in L.

The example is a well-defined controlled system. For such systems, we can show
that the current state in a configuration does not determine which future events
happen (only the controller can influence this) and hence the state can be dis-
counted in certain settings. Note that Condition 4 guarantees that Γ is always
defined. Consider a prefix a : (ι, r, I (

−→
X)). On the occurrence of a, the value of ι

in the state will be updated exactly once and hence Γ is always defined. If we did
not have Condition 4 and event and influence names appeared multiple times,
Γ could be undefined which is not a desired feature of modelling in HYPE. We
now consider properties of well-defined HYPE systems.

Lemma 1. In a well-defined controlled system, if 〈P ′, σ[u1 . . . un]〉 is a deriva-
tive of 〈P, σ〉, then 〈P ′, τ [u1 . . . un]〉 is a derivative of 〈P, τ〉.
Proof sketch. It can be shown by induction on the derivation of transitions that
if 〈P ′, σ′〉 is a n-step derivative of 〈P, σ〉, 〈P ′, τ ′〉 is a n-step derivative of 〈P, τ〉.
Moreover, σ′ = σ[u1 . . . un] and τ ′ = τ [u1 . . . un] for appropriate u1, . . . , un. �

We can also consider what happens to a system after the first init event. The
first transition must be an init event since Con is prefixed by init and all actions
are synchronised. The following result shows that the starting state is irrelevant
since the init action will set every value in the state.

Lemma 2. Let P be a well-defined controlled system. If 〈P, σ〉 init−→〈P ′, σ′〉 and
〈P, τ〉 init−→〈P ′, τ ′〉 then σ′ = τ ′.

Proof sketch. Since there is exactly one init : (ι, r, I) prefix for every ι, the oc-
currence of an init event will update every ι value in the state and the previous
value of ι is irrelevant. �

The following result shows that it is the prefixes which determine the behaviour
of the controlled systems because of the restrictions imposed on well-defined
controlled systems.

Definition 10. The set of prefixes of an uncontrolled system Sys, pre(Sys) is
defined structurally as follows.

316 V. Galpin, L. Bortolussi, and J. Hillston

– pre(a : (ι, r, I (
−→
X)).S) = {a : (ι, r, I (

−→
X))}

– pre(S1 + S2) = pre(S1) ∪ pre(S2)
– pre(P ��

L
Q) = pre(P) ∪ pre(Q)

Theorem 2. Let Σ1 ��
L

init.Con and Σ2 ��
L

init.Con be two well-defined con-
trolled systems. If pre(Σ1) = pre(Σ2) then Σ1 ��

L
init.Con ∼s Σ2 ��

L
init.Con.

Proof sketch. We need to show that {(Σ1, Σ2)} is a system bisimulation. Since
the two systems are well-defined, any event can always occur and events ap-
pearing in more than one component are synchronised. Hence Σ1

a−→Σ1 and
Σ2

a−→Σ2 for each event a ∈ pre(Σ1). By congruence, we have the result. �

This result allows us to tell whether two HYPE models are bisimilar by inspect-
ing the prefixes in the model description to see if they are the same. Hence
bisimulation can be checked syntactically. The next two results show that bisim-
ilar HYPE models have the same ODEs.

Lemma 3. Let P and Q be well-defined controlled systems. If P ∼s Q then
their states are equal, st(P) = st(Q).

Proof sketch. Consider 〈P ′, σ′〉 a derivative of 〈P, σ〉 then σ′ ∈ st(P). Since
P ∼s Q, we can find 〈Q′, σ′〉 with σ′ ∈ st(Q). Hence st(P) ⊆ st(Q) and vice
versa. �

Theorem 3. Let P and Q be well-defined controlled systems. If P ∼s Q then
for every state σ ∈ st(P), Pσ = Qσ.

Proof sketch. The well-defined systems are (P,V ,X , IN , IT , E ,A, ec, iv ,EC , ID)
and (Q,V ,X , IN , IT , E ,A, ec, iv ,EC , ID). By Lemma 3, σ ∈ st(P) implies σ ∈
st(Q). Hence

Pσ =
{

dV
dt

=
∑{

r�I (
−→
W)�

∣∣ iv(ι) = V and σ(ι) = (r, I (
−→
W))

} ∣∣∣ V ∈ V
}

and

Qσ =
{

dV
dt

=
∑{

r�I (
−→
W)�

∣∣ iv (ι) = V and σ(ι) = (r, I (
−→
W))

} ∣∣∣ V ∈ V
}

which are clearly the same. �

The converse of Theorem 3 does not hold. It is possible for two states to be
the same and hence give identical ODEs, but this does not mean that their
associated derivatives are system bisimilar.

6 Related Work

As mentioned in the introduction, HYPE takes a finer grained, less monolithic
approach than the other process algebras for hybrid systems [3, 6, 20, 22] because
it enables the modelling of individual flows. In [16] the comparison of these other
process algebras is based on a train gate controller example and in each case,
the train, gate and controller components have to be fully, sequentially described
and then composed in parallel. This would also be necessary for the modelling

HYPE: A Process Algebra for Compositional Flows 317

of our orbiter example. For each of these process algebras, somewhere in the
syntactic description of the system, a term such as K̇ = rs − rd −K, as well as
terms for each of the other seven ODEs for the variable K, would need to appear
to describe the continuous behaviour that can occur. By comparison, a modeller
using HYPE would only need to model the individual flows, and not construct
the ODEs explicitly. This could allow non-experts to model hybrid systems more
easily.

A classical formalism for expressing hybrid systems is hybrid automata [13].
They are usually specified by defining explicitly both the control graph and the
dynamical conditions within each mode, in terms of differential equations or,
more generally, differential inclusions. Two hybrid automata can be composed
in parallel by synchronizing transitions on shared events in the control graph [13].
Flow conditions are combined by taking the logical conjunction of the predicates
defining them. Where flows are defined by differential equations, the equation for
each variable X must be defined only in one component, otherwise a logical in-
consistency may arise. However, the variable may depend explicitly on variables
governed by other components.

The modelling style of HYPE is quite different. Activities are identified with
atomic flows acting on system variables. ODEs are then derived for an individual
state by adding the different atomic flows acting on each variable. Activities can
change in response to the happening of discrete events, which are controlled not
by components but by an external controller and triggered by event conditions.
This results in a separation of the description of the response of the system to
events from the discrete control structure imposing causality on the happening of
events. In contrast to hybrid automata, HYPE allows the separate description of
flow conditions, event conditions, and the control graph, making easier the task
of modifying the controller or the interactions with the environment. Further-
more, the fact that influence types are defined separately from the structure of
the model also separates modelling concerns. In addition, compositionality of
HYPE manifests on the set of activities (the state of the system) rather than
on ODEs, hence we can allow different components of the system to influence
the same continuous variable: the combined effect is obtained by superimposing
flows, namely by addition on the right hand side of ODEs. Since a HYPE model
can be expressed as a hybrid automaton, when using HYPE to model one gets
the advantages of HYPE together with the formalism of hybrid automata. This
is a distinct advantage over languages such as Charon [1], Shift [8], and Hy-
Charts [11]. These are all compositional formalisms describing hybrid systems
which do not map so readily to hybrid automata. They differ from HYPE in
that they do not have the simple syntax and structured operational semantics
of a process algebra.

Another formalism which has a mechanism to combine flows is hybrid action
systems [19]. This language is based on Dijkstra’s guarded command language
and has predicate transformer semantics. Differential actions consist of guards
before ODEs, and parallel composition of these actions is defined as a linear
combination of functions with the addition of functions over any shared domains.

318 V. Galpin, L. Bortolussi, and J. Hillston

This differs from our approach where we associate influence names with a specific
variable and then sum over all influences for a given variable to obtain the ODE.

Physical systems can also be modelled by constitutive equations and bond
graphs [18]. This is a modelling technique in which a system’s components are
described by means of equations relating main physical quantities of interest.
Components are then glued together by imposing suitable conservation laws.
This results in a set of differential equations with algebraic constraints, which
after an algebraic manipulation, can be simplified by removing variables and
constraints. There are also hybrid extensions of the bond graph method which
have been represented in a hybrid process algebra [5], to deal with discontinuities
in physical systems (such as a bouncing ball).

In HYPE, instead, the modelling activity concentrates around the notion of
flow or influence, which is not explicitly connected with physical quantities or
with conservation laws, and components are described by specifying the way
they react to external events through flows modifications. This may be less
natural for certain physical systems, as one has to identify the different influences
acting on each variable of interest (without relying on the implicit derivation
mechanism provided by conservation laws). However, HYPE’s modelling style
is straightforwardly applicable to a wider class of systems, at different levels of
abstraction.

6.1 Bisimulations on Hybrid Systems

Other process algebras for hybrid systems use a hybrid transition system with
two types of transition: one type represents discrete events and the other con-
tinuous evolution of the system [16]. By comparison, our transition system only
has transitions for events. This gives a smaller transition system on which it is
possible to consider simpler notions of equivalence.

Bergstra and Middelburg [3] present two bisimulations for their process alge-
bra for hybrid systems, defined over a hybrid transition system. One bisimulation
fits with their axiomatic definition, and the other gives congruence with respect
to the parallel operator. Recast for our transition system and for our language
these two bisimulations equate the same controlled systems and are the same as
our system bisimulation.

The standard notion of bisimulation of hybrid automata is defined for a tran-
sition system encoding the dynamical evolution. Both continuous transitions
and discrete transitions are used. These two relations are combined (usually in-
terleaving discrete and continuous transitions) into one relation which defines
the behaviour of the system. The hybrid automata bisimulation is defined on
this relation in the usual way [7, 12, 13]. Most of the research into these bisim-
ulations focusses on finding restrictions on hybrid automata syntax implying
the existence of a finite bisimulation quotient thus guaranteeing decidability of
reachability and of model checking, such as [17].

The transition relation defined for HYPE is very different. It does not encode
any notion of time-dynamics and hence it acts at the level of the system de-
scription, identifying equivalent modes. In this sense, it is closer to the notion of

HYPE: A Process Algebra for Compositional Flows 319

U -bisimulation for hybrid automata which acts on the control graph [2]. If we
consider a simplified form of U -bisimulation, we can show that any HYPE mod-
els that are system bisimilar, are also equated by this bisimulation. The converse
does not hold since different states can lead to the same ODEs. Hence bisimu-
lation for hybrid automata is coarser than that for HYPE. In a HYPE model
we make explicit the source of each single flow of the system, while in a hybrid
automaton flows are merged together in differential equations, and they cannot
be separated out into single influences. Stated otherwise, in hybrid automata
ODEs lose information about the logic of the system.

7 Conclusions and Further Work

We have presented a process algebra for hybrid systems with novel features that
include a fine-grained approach to modelling flows and an explicit controller.
Since a HYPE model can be expressed as a hybrid automaton, tools such as the
model checker HyTech [14] can be used to explore these systems.

As well as the orbiter temperature control example, we have successfully mod-
elled a dual-tank system (as described by [21]), a bottling line (as described by
[3]) and the abstract view of the repressilator [10] (as described by [4]).

Considering further work, we wish to investigate bisimulation between models
which differ in more than the description of the controlled system. This would
involve the use of bijections or surjections between models. We also wish to
consider a more general definition of bisimulation which allows an equivalence
over states yet ensures that the same ODEs are produced. Related to the idea
of equivalence is axiomatisation and this will also be investigated.

Our models currently give rise to hybrid automata with invariants which are
always true (see Definition 7) and we will investigate relaxing this condition.
We have focussed on the embedding of HYPE models in hybrid automata; in
future we wish to identify the class of hybrid automata to which HYPE models
correspond as a way to understand how to solve HYPE models.

Acknowledgements. Thanks to Stephen Gilmore and Pieter Cuijpers for their
helpful comments. Vashti Galpin is supported by the EPSRC SIGNAL Project,
Grant EP/E031439/1. Luca Bortolussi is supported by GNCS and FIRB LIBi.
Jane Hillston is supported by the EPSRC under ARF EP/c543696/01.

References

1. Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional modeling and refine-
ment for hierarchical hybrid systems. Journal of Logic and Algebraic Programming
68(1-2), 105–128 (2006)

2. Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., Simeoni, M.: Modeling cellular
behavior with hybrid automata: Bisimulation and collapsing. In: Priami, C. (ed.)
CMSB 2003. LNCS, vol. 2602, pp. 57–74. Springer, Heidelberg (2003)

3. Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theoretical
Computer Science 335(2-3), 215–280 (2005)

320 V. Galpin, L. Bortolussi, and J. Hillston

4. Bortolusssi, L., Policriti, A.: Hybrid approximation of stochastic process algebras
for systems biology. In: IFAC World Congress, Seoul, South Korea (July 2008)

5. Cuijpers, P., Broenink, J., Mosterman, P.: Constitutive hybrid processes: a process-
algebraic semantics for hybrid bond graphs. Simulation 8, 339–358 (2008)

6. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Journal of Logic and Al-
gebraic Programming 62(2), 191–245 (2005)

7. Davoren, J.M., Tabuada, P.: On simulations and bisimulations of general flow
systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 145–158. Springer, Heidelberg (2007)

8. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming
language for dynamic networks of hybrid automata. In: Antsaklis, P.J., Kohn, W.,
Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 113–133. Springer,
Heidelberg (1997)

9. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-
lators. Nature 403, 335–338 (2000)

10. Galpin, V., Hillston, J., Bortolussi, L.: HYPE applied to the modelling of hybrid
biological systems. Electronic Notes in Theoretical Computer Science 218, 33–51
(2008)

11. Grosu, R., Stauner, T.: Modular and visual specification of hybrid systems: An
introduction to HyCharts. Formal Methods in System Design 21(1), 5–38 (2002)

12. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynami-
cal, control, and hybrid systems. Theoretical Computer Science 342(2-3), 229–261
(2005)

13. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)
14. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid

systems. International Journal on Software Tools for Technology Transfer 1(1-2),
110–122 (1997)

15. Hillston, J.: Fluid flow approximation of PEPA models. In: Second International
Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 33–43.
IEEE Computer Society, Los Alamitos (2005)

16. Khadim, U.: A comparative study of process algebras for hybrid systems. Computer
Science Report CSR 06-23, Technische Universiteit Eindhoven (2006),
http://alexandria.tue.nl/extra1/wskrap/publichtml/200623.pdf

17. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics
of Control, Signals, and Systems 13(1), 1–21 (2000)

18. Paynter, H.: Analysis and Design of Engineering Systems. MIT Press, Cambridge
(1961)

19. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoretical Computer
Science 290(1), 937–973 (2003)

20. Rounds, W.C., Song, H.: The Φ-calculus: A language for distributed control of
reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003.
LNCS, vol. 2623, pp. 435–449. Springer, Heidelberg (2003)

21. Tuffin, B., Chen, D.S., Trivedi, K.S.: Comparison of hybrid systems and fluid
stochastic Petri nets. Discrete Event Dynamic Systems: Theory and Applica-
tions 11, 77–95 (2001)

22. van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and con-
sistent equation semantics of hybrid χ. Journal of Logic and Algebraic Program-
ming 68(1-2), 129–210 (2006)

http://alexandria.tue.nl/extra1/wskrap/publichtml/200623.pdf

Variable Binding, Symmetric Monoidal Closed
Theories, and Bigraphs

Richard Garner1, Tom Hirschowitz2, and Aurélien Pardon3

1 Cambridge University
2 CNRS, Université de Savoie

3 ENS Lyon

Abstract. This paper investigates the use of symmetric monoidal closed
(smc) structure for representing syntax with variable binding, in partic-
ular for languages with linear aspects. In this setting, one first specifies
an smc theory T , which may express binding operations, in a way remi-
niscent from higher-order abstract syntax (hoas). This theory generates
an smc category S(T) whose morphisms are, in a sense, terms in the
desired syntax. We apply our approach to Jensen and Milner’s (abstract
binding) bigraphs, in which processes behave linearly, but names do not.
This leads to an alternative category of bigraphs, which we compare to
the original.

1 Introduction

How to rigorously handle variable binding? The recent amount of research on
this issue attests its delicacy [10, 9, 15]. A main difficulty is perhaps to reconcile
α-conversion with initial algebra semantics: α-conversion equates terms up to
renaming of bound variables; initial algebra semantics requires that terms form
the free, or initial, model specified by a given signature.

We here investigate an approach sketched by Coccia et al. [4], based on smc

theories, which they called GS·Λ theories. In this setting, one first specifies an
smc theory T , which may express binding operations, in a way reminiscent
from hoas [27, 8, 17]. This theory freely generates an smc category S(T) whose
morphisms are, in a sense, terms in the desired syntax. The known presentations
of S(T) mainly fall into two classes: syntactic or graphical. Our emphasis in this
paper is on a graphical presentation of S(T) and example applications.

We start in Section 2 with an expository account of smc theories and our
construction of S(T). This construction yields a monadic adjunction, and hence
provides an initial algebra semantics for variable binding. The morphisms of
S(T) look like abstract syntax, e.g., in the sense of Wadsworth’s λ-graphs [33].
Technically, they are a variant of proof nets in intuitionistic multiplicative linear
logic [13] (imll): they are equivalence classes of special graphs called linkings,
which must satisfy a certain correctness condition. Linkings compose by “glue-
ing” the graphs together, and correctness is stable under composition. Finally, a
standard issue in variable binding is induction. We propose a general induction
principle derived from Girard’s sequentialisation theorem [13, 6].

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 321–337, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 R. Garner, T. Hirschowitz, and A. Pardon

We continue with a few examples in Section 3, to demonstrate the use of S(T)
as a representation for syntax with variable binding. In languages with variable
binding, there is a standard notion of term with a hole, or context, and an asso-
ciated operation of hole-filling, or substitution with capture. Morphisms of S(T)
and their composition are very close to contexts and hole-filling, except that
hole-filling is generally total, while composition only concerns, well, composable
morphisms. And moreover, contexts are here generalised to be multi-hole and
higher-order (holes with holes, and so on). This kind of substitution would show
up with any closed structure, e.g., cartesian closed categories, but is not di-
rectly available in more traditional approaches [9, 15, 10]. Conversely, non-linear
capture-avoiding substitution requires a bit more work in our setting. We only
sketch it here, and briefly discuss alternatives to the general induction principle
of Section 2. Along the way, we prove a decomposition result showing the flexi-
bility of our approach, and we observe that the use of smc structure facilitates
the cohabitation of linear and non-linear aspects in a common language.

To further support this latter claim, Section 4 studies Jensen and Milner’s
bigraphs [20] in our setting, in which processes behave linearly, but names do
not. We translate each bigraphical signature K into an smc theory TK, and
show that bigraphs over K essentially embed into S(TK), the free smc category
generated by TK. Furthermore, although S(TK) is much richer than the original,
the embedding is surjective on whole programs.

2 Symmetric Monoidal Closed Theories

In this section, we provide an overview of the construction of S(T). A more
technical presentation may be found in our work [11], which itself owes much to
Trimble [32] and Hughes [19].

2.1 Signatures

Roughly, an smc category is a category with a tensor product ⊗ on objects and
morphisms, symmetric in the sense that A⊗B and B ⊗ A are isomorphic, and
such that (− ⊗ A) has a right adjoint (A −), for each object A. We do not
give further details, since we are interested in describing the free such category,
which is easier. Knowing that there is a category SMCCat of smc categories and
strictly structure-preserving functors should be enough to grasp the following.

An smc signature Σ consists of a set X of sorts, equipped with a (directed)
graph whose vertices are imll formulae over X , as defined by:

A,B, . . . ∈ F(X) ::= x | I | A⊗B | A B x ∈ X ,

where ⊗ is tensor and is (linear) implication.

Example 1. Consider the π-calculus: we will see in Section 3 that the correspond-
ing signature has one sort v for names and one sort t for processes, and among
others two operations send and get of types:

(v ⊗ v ⊗ t)
s� t (v ⊗ (v t))

g� t.

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 323

A morphism of signatures (X,Σ) � (Y,Σ′) is a function X
f� Y , equipped

with a morphism of graphs, whose vertex component is “F(f)”, i.e., the func-
tion sending any formula A(x1, . . . , xn) to A(f(x1), . . . , f(xn)). This defines a
category SMCSig of signatures.

There is a forgetful functor SMCCat
U� SMCSig sending each smc category

C to the graph with as vertices formulae in F(ob(C)), and as edges A � B
the morphisms �A� � �B� in C, where �A� is defined inductively to send each
syntactic connective to the corresponding function on ob(C).

We will now construct an smc category S(Σ) from any signature Σ, and
extend this to a functor SMCSig

S� SMCCat, left adjoint to U . How does S(Σ)
look like? Under the Curry-Howard-Lambek correspondence, an smc signature
amounts to a set of imll axioms, and the free smc category S(Σ) over a signature
Σ has as morphisms imll proofs under the corresponding axioms, modulo cut
elimination. Or, equivalently, morphisms are a variant of proof nets, which we
introduce gradually in the next sections.

2.2 The Free Symmetric Monoidal Closed Category over a Set

In the absence of axioms, i.e., given only a set of sorts, or propositional variables,
say X , Hughes [19] has devised a simple presentation of S(X). Consider for a
guiding example the two endomorphisms of ((a I) I) I:

((a I) I) I

((a I) I) I

((a I) I) I

((a I) I) I

(domain on top for the whole paper, the right-hand morphism is the identity).
First, the ports of a formula, i.e., occurrences of sorts or of I, are given po-

larities: a port is positive when it lies to the left of an even number of ’s in
the abstract syntax tree, and negative otherwise1. For example, in the above for-
mula, a and the middle I are negative, the other occurrences of I being positive.
When constructing morphisms A � B, the ports in A and B will be assigned a
global polarity, or a polarity in the morphism: the ports of B have their polarity
in B, while those of A have the opposite polarity. For example, in the above
examples, the occurrence of a in the domain is positive.

A linking is a partial function f from negative ports to positive ports, such
that for each sort a, f maps negative a ports to positive a ports, bijectively. We
observe that this allows to connect I ports to ports of any type. This last bit
does not appear in the above example; it does in (1) below. Clearly from the
example, linkings are kind of graphs, and we call their edges wires.

A linking is then correct when (i) it is a total function, and (ii) it satisfies the
Danos-Regnier (dr) criterion [6]. The latter roughly goes as follows. An imll

formula may be translated to a classical formula, as defined by the grammar:
1 The sign of a port in A is directly apparent viewing A is a classical LL formula, see

the next paragraph.

324 R. Garner, T. Hirschowitz, and A. Pardon

((a I) I) I

((a I) I) I

⊗
�

⊗

�

⊗
�

((a I) I) I

((a I) I) I

⊗
�

⊗

�

⊗
�.

Fig. 1. Example switching

A,B, . . . ::= x | I | A⊗B
| x⊥ | ⊥ | A�B.

The de Morgan dual A⊥ of A is defined as usual (by swapping connectives,
vertically in the above grammar). We have removed A B, now encoded as
A⊥�B; some classical formulae are not expressible in imll, such as ⊥, or x�x.
The classical formulation of our above example is ((a⊥ � I) ⊗⊥)� I.

Then, a switching of a classical formula is its abstract syntax tree, minus
exactly one argument edge of each �. A switching of a linking A

f� B is a
graph obtained by glueing (in the sense of pushouts in the category of undirected
graphs) along ports the (undirected) wires of f with switchings of A⊥ and B.
The linking then satisfies dr iff all its switchings are acyclic and connected. On
our above examples, sample switchings are depicted in Fig. 1.

Correct linkings compose by glueing along ports in the middle formula, which
yields a category S0(X). For example, pre and postcomposing the structural
isomorphism ρ with its obvious candidate inverse yields:

a⊗ I

a

a⊗ I

=

a⊗ I

a⊗ I

and

a

a⊗ I

a

=

a

a .

(1)

The former is not an identity. And indeed, correct linkings do not form an smc

category. Instead, they form the free split smc category over X [19]. A split smc

category is like an smc category, where λ and ρ are only required to have left
inverses, as exemplified with ρ in (1).

Here is the final step: let a rewiring of some correct linking f be any link-
ing obtained by changing the target of exactly one wire from some occurrence
of I in f , without breaking correctness. A first example is that the left-hand

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 325

morphism of (1) rewires to the identity; a hopefully more intuitive example is
in Section 3.1. Then S(X) is the result of quotienting S0(X) by the equivalence
relation generated by rewiring.

2.3 The Free Symmetric Monoidal Closed Category over a
Signature

We now extend S to smc signatures Σ: we have a set of sorts X , plus a set
of operations. We enrich linkings with, for each operation A

c� B, a formal
morphism, pictured by a cell, in the style of interaction nets [21].

Example 2. The π-calculus send and get operations yield cells

v⊗ v⊗ t

t

s and

v ⊗(v t)

t

g

.

We then extend linkings A � B to include cells in a suitable way — a glance at
Fig. 2 might help. We consider linking equivalent modulo the choice of support,
i.e., the choice of cells. Linkings compose as before. The question is then: what
is a switching in the extended setting? The answer is that taking a switching of
a cell A

c� B is replacing the cell with a switching of A⊗ B⊥. For example,
consider the send and get operations, and a contraction operation v

c� v⊗ v.
Their respective switchings are:

v⊗ v⊗ t

t

⊗
⊗

⊗

v ⊗(v t)

t

�
⊗

⊗

v ⊗(v t)

t

�
⊗

⊗
and

v

v ⊗ v

�

⊗

v

v ⊗ v

�

⊗

.

To understand why this is right, observe that smc categories have a functional
completeness property, in the sense of Lambek and Scott [22]. Roughly, this
means that any morphism C � D using a cell A

c� B may be parameterised
over it, i.e., be decomposed as

C
∼= � I ⊗ C

�c�⊗ C � (A B) ⊗ C
f� D, (2)

where �c� is the currying of c. An example such decomposition is pictured (left)
in Fig. 4 below. This rightly suggests that an operation A

c� B should have
the same switchings as A B in the domain, i.e., A ⊗B⊥. Quotienting under
rewiring as before yields the expected functor S:

326 R. Garner, T. Hirschowitz, and A. Pardon

Theorem 1. The functors S and U yield a monadic adjunction

SMCSig
S �
⊥�
U

SMCCat.

2.4 The Free Symmetric Monoidal Closed Category over a Theory

That gives the construction for signatures. We now extend it to smc theories:
define a theory T to be given by a signature Σ, together with a set EA,B of
equations between morphisms in S(Σ)(A,B), for all A,B. The free smc category
S(T) generated by such a theory is then the quotient of S(Σ) by the equations.
Constructing S(T) graphically is more direct than could have been feared: we

first define the binary predicate f1 ∼ f2 relating two morphisms C
f1,f2�� D in

S(Σ) as soon as each fi decomposes (remember (2) and the left-hand part of
Fig. 4) as

C
∼= � I ⊗ C

�gi�⊗ C � (A B) ⊗ C
f� D

with a common f , with (g1, g2) ∈ EA,B. The smallest equivalence relation by
this relation ∼ is stable under composition, and we define S(T) by quotienting
S(Σ) under it.

Finally, S(T) is initial in the following sense. Let the category of representa-
tions of T be the full subcategory of the comma category Σ↓U whose objects are
the morphisms Σ � U(C), for which C is an smc category satisfying the equa-

tions in E. Now consider the morphism Σ
η � US(Σ)

q� US(T), where
q is the quotient by the equations in E.

Theorem 2. This morphism is initial in the category of representations of T .

2.5 Commutative Monoid Objects

We finally slightly tune the above construction to better handle the special case
of commutative monoids. In a given theory T = (Σ,E), assume that a sort
t is equipped with two operations t ⊗ t

m� t and I
e� t, with equations

making it into a commutative monoid (m is associative and commutative, e is
its unit). Further assume that m and e do not occur in other equations. In this
case, we sketch (for lack of space) an alternative, more economic description of
morphisms in S(T).

Start from the original definition, relax the bijection condition on linkings,
i.e., allow them to map negative t ports to positive t ports non-bijectively, and
then replace m and e as follows:

m

t⊗ t

t

and

I

t

e become

t⊗ t

t

and

I

t .

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 327

For a commutative comonoid (c, w), the dual trick does not work so easily,
because of problems with weakening (weakening has an output I port, which
cannot be left unattached, as opposed to the input I port of e). But still, a non-
empty tree of c’s may be represented by several arrows leaving its root. Observe
that while m has as only switching the complete graph, c has two switchings
(the formula is v ⊗ (v⊥ � v⊥)).

2.6 Modularity and Sequentialisation as Induction

Melliès [24] convincingly explains the need for modular models of programming
languages and calculi. In a slightly different sense, we argue that smc categories
provide a modular model of syntax. Namely, we obtain, for any theory T :

Proposition 1. For any (representative of a) proof net A
f� B in S(T) with

a set C of cells, and any partition of C into C1 and C2, f decomposes as f2 ◦ f1,
where each fi contains exactly the cells in Ci.

The proof is by inductively applying the decomposition (2). Intuitively, Propo-
sition 1 says that, thinking of operations in Σ as atomic building blocks, each
morphism may be obtained by plugging such blocks together by composition
(see the left-hand part of Fig. 4). In a sense, this is an induction principle (a
morphism only has finitely many cells). But it does not prevent wires to have a
complex structure in the obtained components. We thus need a more powerful
induction principle.

Let us fix a theory T = (Σ,E) for the rest of this section. A first, gen-
eral induction principle on S(T) is given by sequentialisation, in the sense of
Girard [13, 6], as follows. Pick your preferred syntactic presentation of imll,
e.g., the original sequent calculus [13] for concreteness. There is a well-known
mapping from axiom-free proofs to proof nets, say p �→ [p]. Observe that by
understanding the operations A

c� B in Σ as axioms c : A ! B, this mapping
extends to proofs with axioms in Σ, by mapping any such c to a corresponding
cell. We then have:

Theorem 3. Any morphism A
f� B in S(T) has an antecedent proof p in

imll plus axioms in Σ, such that [p] = f .

This provides an easy induction scheme over the morphisms of S(T). However,
this scheme has deficiencies: for example, the antecedent proofs it provides do not
have to be cut-free; moreover, morphisms may not be decomposed downwards
as with standard induction schemes. For an example of the latter, assume you
have a λ-term starting with a λ-abstraction; the induction scheme might reveal
this only after a few decompositions.

3 First Examples

In this section, we explain how to build the λ-calculus in stages, starting from the
linear λ-calculus, and passing through a kind of λ-calculus with sharing of terms.

328 R. Garner, T. Hirschowitz, and A. Pardon

(t t)⊗ t

t

λ

·

t⊗(t t)

t

λ

·

t⊗ . . .⊗ t

t

f

·

. . .

t⊗ . . .⊗ t

t

f f

·

.

Fig. 2. Examples: linearity and sharing

We briefly discuss induction principles in this particular case. We then proceed
with a π-calculus example, which we will use as our main example in Section 4.
We end by a few example uses of higher order and modularity (Proposition 1),
notably related to reduction and labelled transition rules.

3.1 Lambda-Calculus, Linearity, Induction

We start with the easiest application: the untyped λ-calculus. If we naively
mimick hoas to guess a signature for the λ-calculus, we obtain one sort t and
operations t⊗ t

·� t and (t t)
λ� t. However, the free smc category on

this signature is the linear λ-calculus, as shown by the following standard result:

Proposition 2. Morphisms I � t are in bijection with closed linear λ-terms.

Composition in our category is like context application in λ-calculus. A context
is a term with (possibly several, numbered) holes, and context application is re-
placement of the hole with a term (or another context), possibly capturing some
variables. The correspondence is tedious to formalise though, because contexts
do not have enough information. For example, consider the context λx.(�0 ·�1)
with two holes �0 and �1. Exactly one of �0 and �1 may use x, but this infor-
mation is not contained in the context, which makes context application partial.
In our setting, each possibility corresponds to one of the two morphisms on the
left of Fig. 2.

A first attempt to recover the full λ-calculus is to add a contraction and a
weakening t

c� t⊗ t and t
w� I to our signature, with the equations making

(c, w) into a commutative comonoid. The free smc category on this theory is
close to Wadsworth’s λ-graphs [33], which are a kind of λ-terms with a fine
representation of sharing. For example, the two morphisms on the right of Fig. 2
are different, because contraction is not natural.

To obtain the standard λ-calculus without sharing, we now consider two sorts:
a sort t for terms, and a sort v for variables, an idea that has been explored
independently in weak hoas and tile logic [8, 17, 18, 2]. The theory then contains:

t⊗ t
·� t (v t)

λ� t v
c� v ⊗ v v

w� I v
d� t,

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 329

where the latter is instantiation of a variable as a term, plus the equations making
(c, w) into a commutative comonoid. We obtain:

Proposition 3. Morphisms I � t are in bijection with closed λ-terms. Mor-
phisms not using c nor w are in bijection with closed linear λ-terms.

The commutative comonoid structure on v, and Trimble rewiring are crucial to
this result. Intuitively, the latter allows a weakened variable to be indifferently
linked anywhere under its scope. For example, the term λx.λy.y has linkings

t

λ

λ

d

w

t

λ

λ

d

w

t

λ

λ

d

w

,

which all equivalent under Trimble rewiring.
Beyond Proposition 3, we also may recover open terms as follows. Mimicking

the standard construction of a monad from an operad using coends [23], for
any set X , let T (X) contain triples of a natural number n, a function from the
ordinal n to X , and a morphism t⊗n � t, where t⊗0 = I and t⊗n+1 = t⊗n ⊗ t.
Two such triples (n, u, f) and (n, v, g) are considered equivalent when there is a
permutation σ : n � n such that g = f ◦ σ and v = u ◦ σ (finite ordinals and
permutations form a subcategory of S(T) through the embedding n �→ t⊗n).

Theorem 4. The function T extends to a monad on Set, isomorphic to the
monad sending each set X to the set of λ-terms with variables in X modulo
α-conversion.

Multiplication for this monad, i.e., substitution, works as follows: for any triple
of a number n, a morphism t⊗n f� t, and a function n

u� T (X), let each
ui = (ni, vi, fi), and m = Σni. Multiplication maps (n, u, f) to m, the morphism

t⊗Σni

⊗
fi � t⊗n f � t

and the coproduct function Σni
[v0, . . . , vn−1] � X.

We may derive from Theorem 4 an analogue of the standard induction scheme
on λ-terms. We also expect to derive it directly, but for now defer a full treatment
for further work. Also, it seems worth investigating sufficient conditions on the
signature for such a general induction scheme to be derived. For instance, it is
not at all obvious which induction scheme should be derived from the signature
we choose in the next section for the π-calculus.

330 R. Garner, T. Hirschowitz, and A. Pardon

v ((v t) ⊗ (v t))

v t

s
g

s ν

.

Fig. 3. A π-calculus example

3.2 Pi-Calculus Example

A reasonable theory T for the π-calculus could have at least the operations s
and g specified above, plus commutative comonoid structure (c, w) on v, plus
commutative monoid structure (|,0) on t. Consider furthermore a name restric-
tion operation I

ν� v, with the equation w ◦ ν = idI . We do not claim that
this theory T is the right one for the π-calculus, but it is relevant for bigraphs.
(An alternative type for ν is (v t) � t [2, 18].)

Consider the π-calculus term with holes (a(x).(�0 | x̄〈x〉)) | νb.(ā〈b〉.�1). This
term may have many different interpretations as a morphism in S(T). A first
possibility is depicted in Fig. 3. Recall: several arrows leaving a v port mean
a tree of contractions; several arrows entering a t port mean a tree of parallel
compositions; a positive t port with no input arrow means a 0.

The holes �0 and �1 are represented by the occurrences of t in the domain
formula, in order. The free variable a of the term is represented by the occurrence
of v in the codomain. It is used three times: twice following the term, and once
more for transmitting it to �0 and �1.

But the language of smc categories allows additional flexibility w.r.t. syntax.
For example, we could choose to impose that �0 and �1 may not use a. That
would mean changing the domain for (v t) ⊗ (v t), and removing the
leftmost wire. Or, we could, e.g., only allow �0 to use a, and not �1. That
would only mean change the domain to ((v ⊗ v) t) ⊗ (v t) (the leaves do
not change, so the wires may remain the same).

3.3 Higher Order and Modularity

We now give an example decomposition as in Proposition 1, in the λ-calculus.
Consider the context with numbered holes (�0 · �1) · �2. The decomposition
obtained by Proposition 1 for C1 containing exactly the outermost application
is depicted left in Fig. 4. Such a decomposition is not possible in bigraphs, mainly
because it makes use of a higher-order formula, namely (t⊗ t) t.

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 331

t⊗ t⊗ t

t

·

·
=

t⊗ t⊗ t

((t⊗ t) t)⊗ t⊗ t⊗ t

t

·

·

.

(v ⊗ t) t

(v ⊗ t⊗ t) t

[·]

.

Fig. 4. Examples: modularity and higher order

A possible use of such decompositions and higher order is in specifying reduc-
tion rules parametrically, as opposed to ground reduction rules. For example,
the π-calculus rule a(x).�0 |ā〈x〉.�1 � �0 |�1 may be represented as a rule
between morphisms looking like Fig. 3, which we omit for lack of space. Another
possible use is in specifying transitions using second-order contexts, in the style
of [28, 12]. An example, using Cardelli and Gordon’s Mobile Ambients [3], is the

transition rule in a.P
λQ.(a[Q] | �)� a[P |Q], whereby the process in a.P , in

the presence of a process of the shape a[Q], migrates inside the location a, to
yield a[P |Q]. A possible representation using smc theories would take as states
of the labelled transition system morphisms I

f� A in the free smc category
generated by the obvious smc theory for Mobile Ambients, with as transitions
f

� g certain morphisms A
� B such that � ◦ f = g. In the above exam-

ple, in a.P is represented a morphism I � (v ⊗ t) t obtained by currying
the operation v ⊗ t

in� t from the signature, and the label is the morphism
depicted right in Fig. 4.

4 Binding Bigraphs

In this section, we consider (abstract binding) bigraphs [20]. They are a frame-
work for reasoning about distributed and concurrent programming languages,
designed to encompass both the π-calculus [26] and the Mobile Ambients cal-
culus [3]. We are here only concerned with bigraphical syntax: any so-called
bigraphical signature K generates a pre-category, and then a category M(K),
whose objects are bigraphical interfaces, and whose morphisms are bigraphs.

Its main features are (i) the presence of relative pushouts (RPOs) in the
pre-category, which makes it well-behaved w.r.t. bisimulations, and that (ii) in
both the pre-category and the category, the so-called structural equations be-
come equalities. Also, bigraphs follow a scoping discipline ensuring that, roughly,
bound variables are only used below their binder.

332 R. Garner, T. Hirschowitz, and A. Pardon

We now recall bigraphs and sketch our interpretation in terms of smc theories,
which we compare to the original (see our preprint [16] for a more technical
account).

4.1 Bigraphs

We work with a slightly twisted definition of bigraphs, in two respects. First, we
restrict Jensen and Milner’s scope rule by adding a binding rule to be respected
by bigraphs. This rule rectifies a deficiency of the scope rule, which prevented
bigraphs to be stable under composition in the original paper [20]2. It was added
in later work [25]. Our second twist is to take names in a fixed, infinite, and
totally ordered set, say X . This helps relating our approach with the original.

A bigraphical signature is a set of operations, or controls k ∈ K, with arity
given by a pair of natural numbers ak = (Bk, Fk) = (n,m), where Bk = n
is the number of binding ports of k, Fk = m being its number of free ports.
Additionally, a signature specifies a set A ⊆ K of atomic controls, whose binding
arity has to be 0.

Typically, send and get have arities: as = (0, 2) and ag = (1, 1). They are
not atomic (send would be atomic in the asynchronous π-calculus). The other
operations of the π-calculus are all kind of built into bigraphical structure, as
we will see shortly.

Bigraphs form a category, whose objects are interfaces. An interface is a triple
U = (n,X, �), where n is a natural number, X ⊆ X is a finite set of names, and
X

� n+{⊥} is a locality map (n is identified with the set {0, . . . , n−1}, i.e.,
the ordinal n). Names x with �(x) = i ∈ n are located at i; others are global.

Introducing the morphisms, i.e., bigraphs, themselves seems easier by exam-
ple. We thus continue with an example bigraph in Fig. 5, which will correspond
to the proof net in Fig. 3. The codomain of this bigraph, which is graphically
its upper, outer face, is W = (1, {a}, {a �→ ⊥}): the element 0 ∈ 1 represents
the (only) outer box, which we accordingly marked 0. The global name a is the
common end of the group of three wires reaching the top side of the box.

The domain of our example bigraph, which is graphically its inner face when
the grey parts are thought of as holes (plus a′), is U = (2, {a′, x, b}, {x �→ 0, b �→
1, a′ �→ ⊥}). Comparing this to the domain of our morphism in Fig. 3, we observe
that the elements 0 and 1 of 2 correspond to �0 and �1. Furthermore, the name
a′ being global corresponds to the domain v ((v t) ⊗ (v t)) of Fig. 3
having both t’s under the scope of the first v (i.e., there is an implication with
the t’s on its right, v on its left, and no other implication on the paths from it
to them). Finally, the locality map sending x to 0 corresponds to the second v
having only the first t under its scope, and similarly for b being sent to 1.

The morphism itself is a compound of two graphical structures. The first
structure, the place graph, is a forest (here a tree), whose leaves are the inner

2 Being peers only involves inner names or ports by definition, not outer names. Thus,
binding ports may be linked to them. It is then easy to show that the scope rule is
not stable under composition. The binding rule [25] is the straightforward fix.

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 333

0

g

s0

s

1b

a

a′

x

.

Fig. 5. An example bigraph

0 and 1, the sites, and whose root is the outer 0. (Atomic controls would have
to be leaves.) Following Milner and Jensen, we represent nodes by regions in
the plane, the parent of a region being the immediately enclosing region. The
second structure, the link graph, is a bit more complicated to formalise. First,
each internal (i.e., non leaf, non root) node v is labelled with an operation kv ∈ K.
We then compute the set of ports P : it is the set of pairs (v, i), where v is a
node, and i ∈ Bkv +Fkv is in either component of the arity of v. The link graph
is then a function P + X

link� E + Y, where X = {a′, x, b} is the set of inner
names, Y = {a} is the set of outer names, and E is the set of edges. In our
morphism, a′ and both occurrences of a (i.e., the black dots connected to a in
the picture) are mapped to the outer name a by the link map. Furthermore, E
is a two-element set, say {x′, b′}. The edge x′ acts as a link from the name x
received by the get node g to its three occurrences (the three dots connected to
it in the picture). Formally, the three involved ports and the name x are all sent
to x′ by the link map. The edge b′ represents the νb in the term; formally, both
b and the involved port of the right-hand s node are sent to b′ by the link map.

Until now, there is not much difference between the edge representing the
bound name x received on a and the bound name b created by νb. The difference
comes in when we check the scope and binding rules. The binding rule requires
that each binding port (such as the one marked with a circle in Fig. 5) be sent to
an edge, as opposed to a name in the codomain. The scope rule further requires
that its peers, i.e., the ports and names connected to the same edge, lie strictly
below it in the place graph. For ports, this should be clear. For inner names, this
means that they should be located at some site below it. In our example, the
inner 0 node indeed lies below the get node, for instance. This all ensures that
bound names are only used below their binder.

Remark 1. An edge is connected to at most one binding port, by acyclicity of
the place graph. An edge connected to one binding port is called bound.

Composition g◦f in the category of bigraphsM(K) is by plugging the outer boxes
of f into the inner boxes of g, in order, and connecting names straightforwardly.
This only works if we quotient out bigraphs by the natural notion of isomorphism,
i.e., modulo choice of nodes and edges. We actually consider a further quotient:

334 R. Garner, T. Hirschowitz, and A. Pardon

removing an edge from E which was outside the image of link . The whole is
called lean support equivalence by Jensen and Milner.

4.2 Bigraphs as Symmetric Monoidal Closed Theories

We now describe our intepretation for bigraphs, starting with signatures. Con-
sider any signature (K, B, F,A). We translate it into the following smc signature
TK, which has two sorts {t, v}, standing for terms and variables (or names), and
whose operations consist of structural operations and equations, plus logical op-
erations. The structural part, accounting for the built-in structure of bigraphs, is
as in Section 3.2, i.e., it consists of: a commutative monoid structure (|,0) on t,
a commutative comonoid structure (c, w) on v, and a name restriction I

ν� v,
such that w ◦ ν = idI .

The logical part consists, for each control k ∈ K with ak = (n,m), of an

operation v⊗m k� t if k is atomic (and n = 0), and (v⊗n t) ⊗ v⊗m k� t
otherwise. For example, recall send and get, defined above to have arities (1, 1)
and (0, 2), this gives (up to isomorphism) the operations (v ⊗ v ⊗ t)

s� t and
(v ⊗ (v t))

g� t from Section 2.3. An asynchronous send operation in the
style of the asynchronous π-calculus, would have bigraphical arity (0, 2), which

would be translated into v ⊗ v
s′
� t because of atomicity.

Now, on objects, we define our functor T by:

T(n,X, �) = v⊗ng
⊗
i∈n

(v⊗ni t), (3)

where ng = |�−1(⊥)| and for all i ∈ n, ni = |�−1(i)|. The ordering on X induces
a bijection between X and v leaves in the formula, which the translation of
morphisms exploits. On our main example, this indeed maps the domain and
codomain of Fig. 5 to those of Fig. 3.

We will here only describe the translation of morphisms on Fig. 5, for read-
ability. The full translation is available in the companion preprint [16]. Starting
from Fig. 5, a first step is to represent the place graph more traditionally, i.e.,
as usual with trees. But in order to avoid confusion between the place and link
graphs, we represent each node as a cell, and adopt the convention that edges
from the place graph relate a principal port (i.e., the vertex of a cell) to a right-
most auxiliary port (i.e., a rightmost point in the opposed segment). Wires from
the link graph thus leave from other auxiliary ports.

Finally, edges in E in the bigraph are pointed to by ports and inner names.
We now represent them as (nullary) ν cells with pointers to their principal port.
We obtain the hybrid picture in Fig. 6, where we have drawn the connectives
to emphasise the relationship with Fig. 3. And indeed we have almost obtained
the desired proof net. A first small problem is the direction of wires in the link
graph which, intuitively, go from occurrences of names to their creator (be it a ν
or an outer name). So we start by reversing the flow of the link graph (implicitly
introducing trees of contractions).

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 335

a′ ((x 0) ⊗ (b 1))

a 0

s
g

s ν

ν

,

Fig. 6. A hybrid picture between bigraphs and proof nets

This does not completely correct the mismatch, however, because in the case
of bound edges like x′ in our example bigraph, the ν cell is absent from Fig. 3.
But by Remark 1, the name in question has a unique binding occurrence, and the
ν cell may be understood as an indirection between this binding occurrence and
the others. Contracting this indirection (and fixing the orientation accordingly)
yields exactly the desired proof net in Fig. 3.

The procedure sketched on our example generalises, up to some subtleties
with unused names (where should the weakenings point to?), and we have

Theorem 5. The function T extends to a functor M(K)
T� S(TK), faithful,

essentially injective on objects, and neither full nor surjective on objects.

The functor is not strictly injective on objects, because any two interfaces equal
up to their (ordered) choice of names have the same image. A counterexample
to fullness is the canonical morphism (v I t) � (I v t): it amounts
to making a global variable local, which is forbidden in bigraphs.

Despite non-fullness, the overall scoping discipline of bigraphs is maintained,
in the sense that T is full on whole programs, i.e., bigraphs with neither sites
nor names in their interfaces. More generally, it is full on ground bigraphs, i.e.,
bigraphs in M(K)((∅, 0, ∅), U), for some interface U :

Theorem 6. For any such U , we have S(TK)(I,T(U)) ∼= M(K)((∅, 0, ∅), U).

So, S(TK) has as many whole programs as M(K), but more program fragments.

5 Conclusions

Related work. Various flavours of closed categories have long been known to be
closely related to particular calculi with variable binding [22, 1]. As mentioned
in the introduction, our approach may be considered as an update and further

336 R. Garner, T. Hirschowitz, and A. Pardon

investigation of Coccia et al. [4]. Also, the relation between our approach and
Tanaka’s work on variable binding in a linear setting [31] remains unclear to us.

A number of papers have been devoted to better understanding (various kinds
of) bigraphs, be it as sortings [7], as cospans over graphs [30], through directed
bigraphs [14], or as a language with variable binding [5]. We appear to be the first
to reconcile a full treatment of scope (Theorem 6) with initial algebra semantics.

Future work. We should further investigate induction principles in our setting
(see Section 3.1). We should also try to use our approach in an actual imple-
mentation.

On the bigraphical side, it might be useful to understand the scope rule in-
duced by our functor T in bigraphical terms. Also, we should study RPOs in our
approach, possibly by investigating (any form of) concrete bigraphs [20, 29].

Another natural research direction from this paper concerns the dynamics of
bigraphs. Our hope is that Bruni et al.’s [2] very modular approach to dynamics
may be revived, and work better with smc structure than with cartesian closed
structure. Specifically, with smc structure, there is no duplication at the static
level, which might simplify matters.

References

[1] Barber, A., Gardner, P., Hasegawa, M., Plotkin, G.: From action calculi to linear
logic. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414. Springer, Heidelberg (1998)

[2] Bruni, R., Montanari, U.: Cartesian closed double categories, their lambda-
notation, and the pi-calculus. In: LICS 1999. IEEE Computer Society,
Los Alamitos (1999)

[3] Cardelli, L., Gordon, A.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, p. 140. Springer, Heidelberg (1998)

[4] Coccia, M., Gadducci, F., Montanari, U.: GS·Λ theories: A syntax for higher-order
graphs. In: CTCS 2002. ENTCS, vol. 69. Elsevier, Amsterdam (2003)

[5] Damgaard, T., Birkedal, L.: Axiomatizing binding bigraphs. Nordic Journal of
Computing 13(1-2) (2006)

[6] Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28 (1989)

[7] Debois, S.: Sortings & bigraphs. PhD thesis, IT University of Copenhagen (2008)
[8] Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq.

In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp.
124–138. Springer, Heidelberg (1995)

[9] Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: LICS
1999. IEEE Computer Society, Los Alamitos (1999)

[10] Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: LICS 1999. IEEE Computer Society, Los Alamitos (1999)

[11] Garner, R.H.G., Hirschowitz, T., Pardon, A.: Graphical presentations of symmet-
ric monoidal closed theories. CoRR, abs/0810.4420 (2008)

[12] Di Gianantonio, P., Honsell, F., Lenisa, M.: RPO, second-order contexts, and
λ-calculus. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 334–
349. Springer, Heidelberg (2008)

[13] Girard, J.-Y.: Linear logic. Theoretical Comput. Sci. 50 (1987)

Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 337

[14] Grohmann, D., Miculan, M.: Directed bigraphs. ENTCS 173 (2007)
[15] Hirschowitz, A., Maggesi, M.: Modules over monads and linearity. In:

Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 218–237.
Springer, Heidelberg (2007)

[16] Hirschowitz, T., Pardon, A.: Binding bigraphs as symmetric monoidal closed the-
ories. CoRR, abs/0810.4419 (2008)

[17] Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: LICS 1999.
IEEE Computer Society, Los Alamitos (1999)

[18] Honsell, F., Miculan, M., Scagnetto, I.: Pi-calculus in (co)inductive-type theory.
Theor. Comput. Sci. 253(2) (2001)

[19] Hughes, D.J.D.: Simple free star-autonomous categories and full coherence. ArXiv
Mathematics e-prints, math/0506521 (June 2005)

[20] Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical Re-
port TR580, University of Cambridge (2004)

[21] Lafont, Y.: Interaction nets. In: POPL. ACM, New York (1990)
[22] Lambek, J., Scott, P.: Introduction to Higher-Order Categorical Logic. Cambridge

University Press, Cambridge (1986)
[23] Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate

Texts in Mathematics, vol. 5. Springer, Heidelberg (1998)
[24] Melliès, P.-A.: Double categories: a modular model of multiplicative linear logic.

Mathematical Structures in Computer Science 12 (2002)
[25] Milner, R.: Bigraphs whose names have multiple locality. Technical Report TR603,

University of Cambridge (2004)
[26] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information

and Computation 100(1) (1992)
[27] Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: PLDI 1988. ACM,

New York (1988)
[28] Rathke, J., Sobocinski, P.: Deconstructing behavioural theories of mobility. In:

TCS 2008. Springer, Heidelberg (2008)
[29] Sassone, V., Sobociński, P.: Deriving bisimulation congruences using 2-categories.

Nordic Journal of Computing 10(2) (2003)
[30] Sassone, V., Sobociński, P.: Reactive systems over cospans. In: LICS 2005. IEEE

Press, Los Alamitos (2005)
[31] Tanaka, M.: Abstract syntax and variable binding for linear binders. In: Nielsen,

M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 670. Springer, Heidelberg
(2000)

[32] Trimble, T.: Linear logic, bimodules, and full coherence for autonomous categories.
PhD thesis, Rutgers University (1994)

[33] Wadsworth, C.: Semantics and pragmatics of the lambda calculus. PhD thesis,
University of Oxford (1971)

Partial Order Reduction for Probabilistic
Systems: A Revision for Distributed Schedulers�

Sergio Giro, Pedro R. D’Argenio, and Luis Maŕıa Ferrer Fioriti

FaMAF, Universidad Nacional de Córdoba - CONICET
Ciudad Universitaria - 5000 Córdoba - Argentina
{sgiro,dargenio,ferrer}@famaf.unc.edu.ar

Abstract. The technique of partial order reduction (POR) for proba-
bilistic model checking prunes the state space of the model so that a
maximizing scheduler and a minimizing one persist in the reduced sys-
tem. This technique extends Peled’s original restrictions with a new one
specially tailored to deal with probabilities. It has been argued that not
all schedulers provide appropriate resolutions of nondeterminism and
they yield overly safe answers on systems of distributed nature or that
partially hide information. In this setting, maximum and minimum prob-
abilities are obtained considering only the subset of so-called distributed
or partial information schedulers. In this article we revise the technique
of partial order reduction (POR) for LTL properties applied to proba-
bilistic model checking. Our reduction ensures that distributed schedulers
are preserved. We focus on two classes of distributed schedulers and show
that Peled’s restrictions are valid whenever schedulers use only local in-
formation. We show experimental results in which the elimination of the
extra restriction leads to significant improvements.

1 Introduction

Markov decision processes (MDPs) are widely used in diverse fields ranging
from ecology to computer science. They are useful to model and analyse systems
in which both probabilistic and nondeterministic choices interact. Particularly,
composition oriented versions of MDPs like probabilistic automata [21] or prob-
abilistic modules [12] are aimed to model concurrent and distributed systems.

In the area of system verification, model checking stands out as a model analy-
sis technique for MDPs [22,3]. Moreover, probabilistic model checkers have been
developed, notably PRISM [20] and LiQuor [7]. Probabilistic model checking is
a push-button technique to calculate maximum and minimum probability values
of the satisfaction of a temporal formula in a given model. To obtain these values,
the technique requires to universally quantify on all possible resolutions of the
inherent nondeterminism of the MDP. The resolution of such nondeterminism
is carried out by the so-called schedulers (called also adversaries or policies, see
e.g. [22,3,21]). Schedulers transform MDPs into Markov chains by selecting one

� Supported by ANPCyT project PICT 26135 and CONICET project PIP 6391.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 338–353, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Partial Order Reduction for Probabilistic Systems 339

h! t!
1/2 1/2

gh?gt? gt?

initT
initGgh? gt?

gh?

ch! ct!

gh! gt!

T G

Fig. 1. T tosses a coin, G guesses heads or tails

init‖

gh! gt!

1/2 1/2

ch! ct!

h! t!

Fig. 2. A dubious scheduling

1/21/2

init‖

h! t!
ch! ct!

ch!ct!

t!
1/2

h!
1/2 t!

1/2
h!

1/2

ch! ct!

gh!

gh!

gt!

gt!

gt!gh!

Fig. 3. The product of T and G

̂init‖
ch! ct!

t!
1/2

h!
1/2 t!

1/2
h!

1/2

gh! gt! gh! gt!

gt!gh!

Fig. 4. A POR based reduction

of the enabled transitions at every step in the execution of the system. Therefore,
the goal of probabilistic model checking is to find the maximum (or minimum)
probability value of a formula over all possible schedulers. Since nondeterminism
is an abstraction of deterministic choices in the implementation, concurrent be-
haviour, or even unknown probabilistic behaviour of the system, such maximum
and minimum values are only safe bounds on the actual probability that the
formula holds.

In several previous works, it has been argued that quantifying over all possible
schedulers yields overly pessimistic bounds in case the components of the system
do not share all information [11,12,6,5,13,15,14]. This can be seen in the follow-
ing example. Consider two persons: one of them tosses a coin and the other one
guesses heads or tails. This can be modelled as two processes, respectively de-
picted as T and G in Fig. 1. (Actions are written in an I/O fashion, with suffixes
? and ! representing input and output respectively.) Process T first tosses a coin
that may land heads (h!) or tails (t!) with probability 1

2 each. If, after tossing
heads, T is notified of a guessed heads (gh?), then T looses the game (repre-
sented with �

�¨); if instead it is notified of a guessed tails (gt?), then T wins the
game. The case in which T tossed tails is dual. In addition, if T is notified too
early (before tossing the coin), the game is aborted. (Since we deal with input
enabled systems, this modelling choice turns to be a convenient simplification.)
Process G is simpler: it proceeds to guess by choosing heads (ch!) or tails (ct!)
and then it notifies its guess by producing outputs gh! and gt!, respectively. We
take gh and gt to be the only two actions shared between T and G. In this way,
G does not have any means to know the outcome of the coin toss, nor T to
know the guess of G, until they synchronise on gh or gt. The composed system is
depicted by the product automaton in Fig. 3. Notice, however, that an almighty

340 S. Giro, P.R. D’Argenio, and L.M. Ferrer Fioriti

scheduler may let G guess the correct answer with probability 1, as follows. It
first lets T toss the coin and then it lets G choose transition ch! or ct! depending
on whether T tossed heads (i.e. T output h!) or it tossed tails (i.e. T output t!),
respectively. Such scheduler is depicted in Fig. 2. Therefore, by quantifying over
all possible schedulers, the maximum probability of G guessing heads or tails
(i.e. of reaching �

�¨) is 1, disregarding the fact that G has no information about
the coin. This “total information” assumption underlies all probabilistic model
checkers existing today. In conclusion, probabilistic model checkers produce safe
upper and lower bounds for the actual probabilities, but they may result too
conservative. Needless to say that, in this example, in which T and G do not
share all information, we expect the maximum probability of guessing to be 1

2 .
The above observation is fundamental in distributed systems in which com-

ponents share little information with each other, as well as in security protocols,
where the possibility of information hiding is a fundamental assumption (a well-
known example of these systems being the dining cryptographers problem [4]).
The phenomenon we illustrated has been first observed in [21] from the point of
view of compositionality, and has been studied on partial information settings
in [11,12,5,13,15,14].

In order to limit the variety of behaviours introduced by arbitrary schedulers,
classes of schedulers that only consider partial information were proposed in the
literature. In particular, we are interested in the class of so-called distributed
schedulers. Such schedulers were studied in [12] in a synchronous setting and
in [5,14] in an asynchronous setting. A distributed scheduler is constructed from
local schedulers, which are schedulers for single components of the system de-
fined in the usual way, and a mechanism to combine them. Such mechanism
could be related to a projection function [12], a passing token [6,5], execution
rates of the components [15], or schedulers that define the way in which com-
ponents interleave [14]. These approaches result in different types of distributed
schedulers. We remark that the scheduler of Fig. 2 would not be a valid scheduler
in this new setting since the choice for G depends only on information which is
external to (and not observed by) G. In fact, a local scheduler for G yielding
such a behaviour would not be definable, since the local scheduler depends only
on the local history of G, which is certainly the same as long as G does not
execute any transition.

As a consequence, a question arises of whether it is possible to do probabilistic
model checking under a class of distributed schedulers, i.e., byuniversallyquantify-
ing on such subset of schedulers. Unfortunately, in [13] we showed that the bounds
for the probability of properties cannot be calculated nor even approximated if the
schedulers are restricted to be distributed. Actually, the framework in [13] is the
same synchronous setting of [12]. We later extended these undecidability results to
other classes of schedulers [16].

In this paper, we take advantage of the fact that not all schedulers are needed
and revise the partial order technique for probabilistic model checking. Partial
order reduction (POR) [18,9] is a well-known technique to cope with the state
explosion problem. This technique exploits the structure of the product model

Partial Order Reduction for Probabilistic Systems 341

naturally introduced when interleaving the components. The idea is to eliminate
redundant states and transitions but keeping some representative ones. Such
states and transitions are representative in the sense that, if a given path of
the original system is relevant to the property being checked, then an equivalent
path should be found in the reduced system. To ensure that representative states
and transitions remain in the reduced model, the reduced model must comply
with certain conditions [9].

POR for probabilistic model checking was simultaneously introduced in [2]
and [10]. These works were oriented to model check LTL properties on MDPs
and showed that the reduced model should meet one extra condition apart from
those of the non-probabilistic case. This extra condition (call it A5) can be
stated as follows: for all states in which a probabilistic transition can be reached
without executing a transition from the ample set, the set of transitions enabled
in the reduced model (called the ample set) is required to either have only
one transition or coincide with the original enabled transitions. This technical
and non-intuitive condition has been introduced precisely to not eliminate the
behaviour introduced by schedulers like the one of Fig. 2.

In this paper we study POR techniques for two classes of distributed sched-
ulers and show that condition A5 can be relaxed for one class and eliminated for
the other. Therefore, while the composed system of Fig. 3 is irreducible under
condition A5, it can be reduced to the one of Fig. 4 in any of our settings.

The way in which we have conceived our technique further exploits the struc-
ture of product models and, in particular, the fact that not all information is
shared. Moreover, it paves the way for the application of POR to probabilistic
symbolic model checking. In fact, we are currently busy implementing the tech-
nique into PRISM. In this article, we report preliminary promising results of
such implementation.

2 Interleaved Probabilistic Input/Output Automata

First, we briefly recall the standard framework of Markov Decision Processes
(MDP), just to establish the terminology used in the paper. Later on, we present
the framework of Interleaved Probabilistic Input/Output Automata (IPIOA)
and show that they are a particular case of MDPs.

A Markov decision process consists of a set of states S, a set of transitions Trans
and a function enabled : S → P(Trans). Each α ∈ Trans is a function α : S× S →
[0, 1] such that

∑
s′ α(s, s′) = 1 for all s ∈ S, α ∈ enabled(s). A path is a sequence

σ = s1.α1. · · · .αn−1.sn such that αi ∈ enabled(si) and αi(si, si+1) > 0 for all
1 ≤ i < n. Paths can be finite or infinite. Let Pathsfin denote the set of all finite
paths. Given a finite path σ, the last state of σ is denoted by last(σ), and the set
of all infinite paths having σ as a prefix is denoted by σ↑.

The probability of a set of (infinite) paths depends on how the nondeterminism
is resolved. So, we define the probability of a set of paths under a given scheduler.
At every step in the execution of the system, the scheduler chooses one of the
enabled transitions. Given a system and a scheduler, the probability of a set of
paths is thus completely determined.

342 S. Giro, P.R. D’Argenio, and L.M. Ferrer Fioriti

In the standard approach, the choice of the next transition is based on the
complete history of the system. So, arbitrary schedulers are defined as functions
mapping finite paths to transitions. A scheduler is then a function η : Pathsfin →
Trans such that η(σ) ∈ enabled(last(σ)) for all σ ∈ Pathsfin . The set of all
schedulers for an MDP P is denoted by Sched(P).

For all finite path σ, the probability of the set σ↑ under scheduler η is∏n−1
i=1 αi(si, si+1), where αi = η(s1.α1. · · · .αi−1.si) for all i, 1 ≤ i < n. The

probability of every set of infinite paths considered in this paper is uniquely
defined by such probabilities since, in the standard way (namely, by resorting to
the Carathéodory extension theorem), the probability of the cylinders σ↑ can be
extended to the least σ-field containing all cylinders.

Next, we present a framework based on the Switched PIOA introduced by
Cheung et al. [6]. It uses reactive and generative structures (see [17]). Genera-
tive transitions model both communication and state change. The component
executing a generative transition chooses both a label a to output (e.g. in Fig. 1,
h, t) and a new state s according to a given distribution. Reactive transitions
specify how a component reacts to a given input. Since the input is not chosen, re-
active transitions are simply distributions on states. For a finite set S, we denote
by Prob(S) the set of all discrete probability distributions over the set S. Given a
set ActLab of action labels and a set S of states, the set of generative transitions
TG on (S,ActLab) is Prob(S×ActLab), and the set TR of reactive transitions
is Prob(S). A generative structure on (S,ActLab) is a function G : S → P(TG)
and a reactive structure on (S,ActLab) is a function R : S×ActLab → P(TR).
For g ∈ TG, the set of labels a such that g(s, a) > 0 for some s is denoted
by ActLab(g). Given a state s, Dirac(s) is the reactive transition r such that
r(s) = 1.

In our framework, a system is obtained by composing several probabilistic I/O
atoms.

Definition 1. A probabilistic I/O atom is a 5-tuple (S,ActLab,G,R, init), where
S is a finite set of states, ActLab is a finite alphabet of actions labels, and G (R,
resp.) is a generative (reactive, resp.) structure in (S,ActLab). init ∈ S is the
initial state. We require the atoms to be input-enabled, so R(s, a)
= ∅ for every
s ∈ S, a ∈ ActLab.

We often write Si to denote the set of states of an atom Ai and similarly for the
other elements of the 5-tuple. In addition, we write TGi (TRi, resp.) for the set
of generative (reactive, resp.) transitions on (Si,ActLabi).

An interleaved probabilistic I/O system P is a set Atoms(P) of probabilistic
I/O atoms A1, · · · , AN . The set of states of the system is

∏
i Si, and the initial

state of the system is init = (init1, · · · , initN).
In order to define how the system evolves, we define compound transitions,

which are the transitions performed by the system as a whole. In such compound
transitions, one of the atoms executes a generative transition, and the other
atoms execute reactive transitions in case the label generated is in their alphabet.
The generative transition gi involved in this compound transition may output
different labels (i.e. the set ActLab(gi) may contain more than one action label).

Partial Order Reduction for Probabilistic Systems 343

Moreover, the same label may lead to different states, i.e. it is possible that
gi(si, a) > 0 and gi(s′i, a) > 0 for two different (local) states si and s′i. Therefore,
we have to ensure that each of this equally labelled outputs is matched by the
same reactive transition in every atom capable of observing such a label. To this
end, we introduce input choice functions fj. An input choice function fj for gi

maps each label in ActLabj ∩ActLab(gi) to a reactive transition. The intended
meaning is that fj(a) is executed by atom Aj in case label a is output by gi.
Formally, a compound transition is a tuple α = (gi, f1, · · · , fi−1, fi+1, · · · , fN)
where gi is a generative transition in the atom Ai (the active atom) and fj :
ActLabj ∩ActLab(gi) → TRj for all j
= i. The atom Ai that executes the gen-
erative transition is denoted by GenAtom(α). The set of all compound transi-
tions is denoted by Trans(P). A compound transition α is enabled in a given
state (s1, · · · , sN) if gi ∈ Gi(si) and fj(a) ∈ Rj(sj , a) for all j
= i and a ∈
ActLabj ∩ActLab(gi). We denote by enabled(s) the set of all compound transi-
tions enabled in state s. In case a
∈ ActLabj and a is output by a generative
transition, the atom Aj can only remain in its actual state. In order to re-
flect this fact, given input choice functions fj for gi, we define the functions
f∗j,sj

:
⋃

i ActLabi → TRi such that f∗j,sj
(a) = fj(a) if a ∈ ActLabj ∩ActLab(gi)

and f∗j,sj
(a) = Dirac(sj), otherwise.

Once a compound transition α is fixed, the probability α(s, s′) of reach-
ing a state s′ = (s′1, · · · , s′N) from a state s = (s1, · · · , sN) is

∑
a gi(s′i, a) ·∏N

j=1 f
∗
j,s′

j
(a)(s′j) for all s in which α is enabled. Using the definition of gen-

erative and reactive transitions and simple arithmetic, it can be proven that∑
s′ α(s, s′) = 1 for all s and α enabled in s. In consequence, IPIOA are MDPs

in which the set of MDP transitions corresponds to IPIOA compound transitions.
In order to ease some definitions, we introduce a fictitious “stutter” compound

transition ς. Intuitively, this transition is executed iff the system has reached a
state in which no atom is able to generate a transition. The probability ς(s, s′)
of reaching s′ from s using ς is 1, if s = s′, or 0, otherwise.

The atoms involved in a compound transition α are the active atom and every
atom capable of engaging in a communication with labels output by the active
atom when α is executed. Let gi be the generative transition in α, then

Inv(α) = {Aj | ∃a ∈ ActLabj , si ∈ Si • g(a, si) > 0} .
No atom is involved in ς.

In the following, we suppose that input-enabled atoms A1, . . . , AN are given,
and we consider the system P comprising all the atoms Ai. We call this system
“the compound system”. The states (paths, resp.) of the compound system are
called global states (global paths, resp.) and the states (paths, resp.) of each
atom are called local states (local paths, resp.).

As we have seen, it may be unrealistic to assume that the schedulers are able
to see the full history of all the components in the system. In the following, we
define restricted classes of schedulers in order to exclude unrealistic behaviours.

For the sake of simplicity, the framework in this paper considers only non-
randomized schedulers. However, all of our results also hold for randomized
schedulers (see [16]).

344 S. Giro, P.R. D’Argenio, and L.M. Ferrer Fioriti

Distributed schedulers. Distributed schedulers were introduced in [6] but
we use the revised definition of [14]. In a distributed setting as the one we have
introduced, different kinds of nondeterministic choices need to be resolved. An
atom needs an output scheduler to choose the next generative transition. In
addition, it may be the case that many reactive transitions are enabled for a
single label in the same atom. So, for each atom we need an input scheduler
in order to choose a reactive transition for each previous history and for each
label. Similar types of scheduler have been defined by Cheung et al. [6]. Such
schedulers are able to make decisions based only on the local history of the atom.
Therefore we need to extract the local history out of the global execution for
which we define the notion of projection.

Given a path σ, the projection [σ]i of the path σ over an atom Ai is defined
inductively as follows: (1) [(init1, · · · , initN)]i = initi , (2) [σ.α.s]i = [σ]i if
Ai
∈ Inv(α), (3) [σ. (gj , · · ·) .s]i = [σ]i.gi.πi(s) if j = i (where πi is the usual
projection on tuples) and (4) [σ. (gj , · · · , fi, · · ·) .s]i = [σ]i.fi.πi(s) if i ∈ Inv(α)
and j
= i. The set of all the projections over an atom Ai is denoted by Proji(P).

An output scheduler for the atom Ai is a function Θi : Proji(P) → TGi

such that, if Gi(last([σ]i))
= ∅ then Θi([σ]i) = g =⇒ g ∈ Gi(last([σ]i)). An
input scheduler for an atom Ai is a function Υi : Proji(P) × ActLabi → TRi s.t.
Υi([σ]i, a) = r =⇒ r ∈ Ri(last([σ]i), a). Note that, if the output scheduler Θi

fixes a generative transition for a given local path [σ]i, then the actions in the
generative transition can be executed in every global path σ′ s.t. [σ′]i = [σ]i,
since we require the atoms to be input-enabled.

An important modification with respect to the framework in [6,5] is the ad-
dition of an interleaving scheduler that selects the active component to perform
the next output. We first consider arbitrary interleaving schedulers that take
decisions based on the complete history of the whole system.

An interleaving scheduler is a map that, for a given (global) history, chooses
an active atom that will be the next to execute an output transition (according
to its output scheduler). Formally, an interleaving scheduler is a function I :
Paths(P) → {A1, · · · , AN} such that, if there exists i with Gi(last([σ]i)) > 0
(that is, if there is some atom being able to generate a transition) then I(σ) =
Ai =⇒ Gi(last([σ]i))
= ∅.

A distributed scheduler for the compound system results by the appropriate
composition of the interleaving scheduler and the output and input schedulers
of each atom.

Definition 2. Given an interleaving scheduler I, input schedulers Υi and output
schedulers Θi for each atom i, the distributed scheduler η obtained by composing
I, Θi and Υi is defined as η(σ) = (gi, f1, · · · , fi−1, fi+1, · · · , fN) where I(σ) =
Ai, gi = Θi([σ]i), and fj(a) = Υj([σ]j , a) for all j
= i and a ∈ ActLabj. In
case there is no generative transition enabled, we require η(σ) = ς. The set of
distributed schedulers of P is denoted by Dist(P).

Note that, even when interleaving schedulers are unrestricted, compound sched-
ulers for the compound system are still restricted, since the local schedulers can
only see the portion of the history corresponding to the component.

Partial Order Reduction for Probabilistic Systems 345

Strongly distributed schedulers. Strongly distributed schedulers were in-
troduced in [14] as a smaller but yet meaningful class of distributed schedulers.

Distributed schedulers provide an accurate model in case the interleaving
scheduler has access to all information. As an example, suppose that the atoms
represent processes running on the same computer, and the interleaving sched-
uler plays the role of the operating system scheduler. In case such a scheduler
assigns priorities to the processes by gathering information from all processes
states, a total information interleaving scheduler is a natural model.

On the contrary, if we are analysing an agreement protocol and each atom
models an independent node in a network, then the order in which two nodes
execute cannot change according to information that is not available to them.
A simple toy example suffices to show how the worst-case probability is affected
by the information available to the interleaving scheduler.

GH GTT

initT

1/2 1/2

gh?gt? gt?gh?

h! t!

gh? gt?

ch?ct? ct!ch!

gt!gh!
sh st

initGH
initGT

Fig. 5. Motivating strongly distributed
schedulers

The atoms in Fig. 5 represent a
game in which T plays against GH

and GT . Atom T loses if it receives a
gh! and the coin has landed heads, and
similarly for gt! and tails. Atoms GH

and GT take the guess in the follow-
ing fashion: in case GH believes that
the coin landed heads, it outputs ch!
and then gh!. Conversely, in case GT

believes that the coin landed tails, it
outputs ct! and then gt!. Note that, as soon as one of the players chooses an
option, the other one accepts it and stays quiet. Following the intuition given
by the example in the introduction, there is no way that GH and GT can make
an arrangement in such a way that they win all the times. However, the in-
terleaving scheduler that selects T in init, and then GH for the path σheads =
init .h!.(sh, initGH , initGT) and GT for the path σtails = init .t!.(st, initGH , initGT)
leads T to �

�¨ with probability 1.
This scheduler is distributed according to Def. 2, since distributed schedulers

restrict the resolution of internal nondeterministic choices, and these atoms have
no such choices. In particular, the interleaving scheduler can arrange the execu-
tion of GH and GT according to the hidden information in T .

The compound model for T , GH and GT is very similar to the one in Fig. 3.
In fact, since in the graphical representation we omit information concerning the
structure of the states, the graphical representation is the same. The unrealistic
scheduler in which T losses all the time is also very similar to the unrealistic
scheduler in Fig. 2.

The information available to atoms A and B can be defined as [σ]A,B =
([σ]A, [σ]B). Note that [σheads]GH ,GT = [σtails]GT ,GT = (initGH , initGT). In ad-
dition, in the unrealistic scheduler we have I(σheads) = GH and I(σtails) = GT .
Generalizing GH and GT to be two atoms A, B, and σheads, σtails to be two
paths σ, σ′, we obtain the following condition: for all atoms A
= B there cannot

346 S. Giro, P.R. D’Argenio, and L.M. Ferrer Fioriti

be two paths σ, σ′ such that: (1) [σ]A,B = [σ′]A,B and (2) atom A is scheduled
in σ and (3) atom B is scheduled in σ′. Formally:

∀A,B • A
= B =⇒ ∀σ •
 ∃σ′ • [σ]A,B = [σ′]A,B ∧ I(σ) = A ∧ I(σ′) = B . (1)

Definition 3. A scheduler η is strongly distributed iff η is distributed and (1)
holds on the interleaving scheduler I that defines η. The set of strongly distributed
schedulers of P is denoted by SDist(P).

In [14] (where strongly distributed schedulers are introduced for the first time) we
prove some properties to further support the fact that (1) is a natural restriction
whenever the interleaving nondeterminism is resolved a distributed fashion. In
particular, we prove that (1) implies a more general condition in which A and
B are replaced with two disjoint sets of atoms A and B. Strongly distributed
schedulers also generalize the rate schedulers of [15].

3 Partial Order Reduction under Distributed Schedulers

In this section, we develop two variants of POR for probabilistic systems (each
variant corresponding to a class of schedulers) using the ample sets construction
of [9]. Such variants exploit the distributedness assumptions on schedulers in
order to improve the reduction.

Partial order reduction for LTL\{next}. Given a system and a property, the
technique of partial order reduction yields another system with less transitions.
The reduced system is constructed by traversing the state space. When expand-
ing a given state, not all the transitions enabled are considered. An ample set
ample(s) must be calculated for each state s, and only transitions in the ample
set are considered during the search. POR techniques impose restrictions on the
ample sets to ensure that, for each property, the reduced system complies with
the property iff the original system does.

We focus on the case where LTL properties do not contain the next operator.
Given a set AP of atomic propositions and a labelling function L : S → P(AP),
the set of LTL\{next} formulae are generated by the following grammar.

φ ::= True | l | ¬φ |φ1 ∧ φ2 |φ1Uφ2 ,
where True is a constant and l ∈ AP. Intuitively, an infinite path ρ satisfies
φ1Uφ2 (denoted by ρ |= φ1Uφ2) iff there is position in ρ in which φ2 holds,
and φ1 holds in all intermediate positions of ρ from the beginning until the
position in which φ2 holds. As usual, we write Fφ for True Uφ, and Prη(φ) for
Prη({ρ | ρ |= φ}).

Restrictions to the ample sets are based on the notion of independence. We say
that two transitions α, β are independent iff (∃s : {α, β} ⊆ enabled(s)) =⇒
Inv(α) ∩ Inv(β) = ∅. So, two transitions are independent only if the execution
of one of them does not interfere with the execution of the other one. Note that
the order of execution is irrelevant and that neither of them can disable the other.
Notice also that this definition is of a more structural nature than the one in [2].
This is no surprise, since our improvements profit from the structure of the model.

Partial Order Reduction for Probabilistic Systems 347

We need some additional definitions before presenting the restrictions for
POR. A compound transition α is stutter iff α(s, s′) = 0 for all s such that
α ∈ enabled(s) and s′ such that L(s)
= L(s′). An end component (EC) is
a pair (T,A) where A : T → P(Trans) and T is a set of states such that:
(1) ∅
= A(s) ⊆ enabled(s) for all s ∈ T , (2) α(s, t) > 0 implies t ∈ T , for all
s∈T , α ∈ A(s) (3) for every s, t ∈ T there exists a path from s to t.

The restrictions for the ample sets of [2] to preserve LTL\{next} properties
under unrestricted full-history dependent schedulers are listed below. Ŝ denotes
the set of reachable states in the reduced system P̂ , which is constructed by
taking ample(s) to be the set of enabled transitions in s ∈ Ŝ.

(A1) For all states s ∈ S, ∅
= ample(s) ⊆ enabled(s),
(A2) If s ∈ Ŝ and ample(s)
= enabled(s), then each transition α ∈ ample(s) is
stutter,
(A3) For each path σ = s.α1.s1.α2. · · · .αn.sn.γ · · · in P where s ∈ Ŝ and γ is
dependent on ample(s) there exists an index 1 ≤ i ≤ n such that αi ∈ ample(s),
(A4) If (T,A) is an EC in P̂ and α ∈

⋂
t∈T enabled(t), then α ∈

⋃
t∈T ample(t)

(A5) If s.α1.s1.α2.s2. · · · .αn.sn.γ.sn+1 is a path in P where s ∈ Ŝ, α1, · · · , αn,
γ
∈ ample(s) and γ is probabilistic (i.e. 0 < γ(s′, t′) < 1 for some s′, t′) then
|ample(s)| = 1.

Conditions A1–A3 are original for POR on non-probabilistic systems [9]. A1
ensures that the reduced model is a submodel of the original one, and that it
does not have terminal states (since the original model does not have either).
A3 enforces that any finite sequence of transitions leaving a state s that does
not contain a transition in ample(s) can be extended with such transition. To-
gether with A2, they ensure that any execution in the original system can be
mimicked by an observational equivalent trace in the reduced system. Besides,
notice that A3 is the only condition that is concretely related to the notion of
(in)dependence. Condition A4 is a probabilistic variant of Peled’s cycle condi-
tion on non-probabilistic models. In such models this condition enforces that,
if a transition is enabled indefinitely along a path in the original system, then
the transition is enabled in the reduced system in at least one state in such a
path. Therefore, condition A4 ensures that all fair paths are also represented
in the reduced system. This variant is somewhat weaker than the original one:
since the restriction does not concern cycles, but end components, some cycles
are not required to comply with the restriction. Condition A5 is particular for
probabilistic models. Contrarily to the other conditions, A5 is technical and
non-intuitive and has been introduced precisely to not eliminate the behaviour
introduced by (non-distributed!) schedulers like the one of the example in Fig. 2.
We remark that if the model P is non-probabilistic, condition A5 has no effect
and condition A4 reduces to Peled’s original cycle condition. As a consequence,
conditions A1–A5 behave exactly in the same way as Peled’s original conditions
for POR on non-probabilistic models.

348 S. Giro, P.R. D’Argenio, and L.M. Ferrer Fioriti

In case we assume that the schedulers are distributed, we can replace A5 by
(A5′) If s.α1.s1.α2.s2 · · ·αn.sn.γ.sn+1 is a path in P where s ∈ Ŝ, α1,· · ·,αn,γ
∈
ample(s) and γ is a probabilistic transition, then either ample(s) = enabled(s)
or GenAtom(β) = GenAtom(β′), for all β, β′ ∈ ample(s).

Condition A5′ relaxes condition A5 in the sense that if a probabilistic transi-
tion can be reached from state s without executing a transition from the ample
set, all transitions enabled in the reduced model (i.e. in ample(s)) are generated
by the same atom. Contrarily to A5, A5′ does not requires ample(s) to be a
singleton; ample(s) may contain several transitions as long as they are generated
by a single atom.

The result is formalized in the following theorem.

Theorem 1. Let φ be an LTL\{next} formula and P be an IPIOA. Let P̂ be a
reduction of P complying with conditions A1–A4, A5′. Then,

supη∈Dist(P) Prη(φ) ≤ supη∈Sched(P̂) Prη(φ) .

In case we assume strongly distributed schedulers, A5 can be disregarded.

Theorem 2. Let φ, P be as in Theorem 1. Let P̂ be a reduction of P complying
with conditions A1–A4. Then, supη∈SDist(P) Prη(φ) ≤ supη∈Sched(P̂) Prη(φ).

As an example, recall atoms T and G in Fig. 1 and the non-distributed scheduler
ηw in Fig. 2. According to Theorem 1 the reduction in Fig. 4 is correct in case
distributed schedulers are assumed. However, in the original system P we have
Prηw

(F �
�¨) = 1, while in P̂ we have Prη(F �

�¨) ≤ 1
2 for all η. This is due to

the fact that ηw is not distributed. In fact, the supremum over all distributed
schedulers in P is 1

2 , which coincides with supη∈Sched(P̂) Prη(F ��¨). Recall now the
example in Fig. 5 with atoms T , GH and GT . We mentioned that the scheduler
of Fig. 2 is distributed in this setting. Call this scheduler ηd. If we assume
strongly distributed schedulers, the reduction in Fig. 4 is allowed, and there is
no scheduler yielding probability 1 in the reduced system. This is correct, since
the scheduler ηd is not strongly distributed. However, if we want to preserve
all distributed schedulers (even those that are not strongly distributed) then
condition A5′ prevents the reduction in Fig. 4, since ch! and ct! are generated
by atoms GH and GT , resp. This is exactly what we want, since the scheduler
ηd is a valid distributed scheduler for T , GH and GT , and so a corresponding
scheduler yielding probability 1 must exist in the reduced system.

Correctness of our techniques. The proofs of Theorems 1 and 2 are quite
technical and several details are involved. However, these proofs rely on the same
principle as in the non-probabilistic case. Our aim is to give an explanation so
that the reader can have proper insight on the validity of our techniques. For
fully detailed proofs, see [16].

In the non-probabilistic case, the standard argument is as follows. For every
property φ, we need to prove that φ is satisfied in all paths in P if and only if
φ is satisfied in all paths in P̂ . Since P̂ is a subgraph of P , one implication is
trivial. For the other implication, the conditions on the reduction are used to
prove that, if some path ρ in P does not satisfy φ, then ρ̂
|=P̂ φ for some ρ̂.

Partial Order Reduction for Probabilistic Systems 349

Similarly, in our case it is sufficient to prove that, for each scheduler η in the
original system, there exists a corresponding η̂ in the reduced system. The prob-
ability values for η and η̂ must coincide for all paths relevant to φ. We prove that,
for each distributed (strongly distributed, resp.) scheduler, there is a correspond-
ing scheduler in the reduced system that yields the same probability value. As a
consequence, it may be the case that, for some non-distributed schedulers, there
are no corresponding schedulers in the reduced system. However, this causes no
harm since schedulers are assumed to be distributed.

Given a non-probabilistic system P , let ρ = s1.α1.s2.α2. · · · and φ such that
ρ
|=P̂ φ. We sketch how the corresponding path ρ̂ is constructed in the standard
approach. If α1 ∈ ample(s1), then ρ̂ starts with s1.α1 and the construction con-
tinues from s2.α2. · · · . On the contrary side, if α1
∈ ample(s1), then ρ̂ cannot
start with s1.α1, since α1 is not enabled for s1 in P̂ . However, condition A1 en-
sures that ample(s1)
= ∅. For simplicity, let’s consider the case in which some β ∈
ample(s1) is eventually executed in ρ. W.l.o.g., we can take such a β to be the first
transition αn in ρ such that αn ∈ ample(s1). Then, by condition A3 and defini-
tion of independence, we have that ρ′ = s1.αn.s

′
2.α1. · · · .s′n−1.αn−1.sn.αn+1. · · ·

is a path in P . (Here, s′i denotes the state such that αi−1(s′i, s
′
i+1) = 1, since

the system is non-probabilistic.) Let �i = L(si) for all i. Then, since A2 re-
quires the transitions in ample(s) to be stuttering, the sequence L(ρ) of labels
in ρ has the form �1 · · · �n�n�n+2 · · · . Condition A2 can be used to prove that
L(ρ′) = �1�1�2 · · · . So, since L(ρ) and L(ρ′) differ only in the amount of times
that each �i appears, and LTL\{next} formulae are stuttering-invariant, φ
|=P ρ′.
Having found ρ′, we let ρ̂ start with s1.αn and continue the construction using
s′2.α1. · · · .s′n−1.αn−1.sn.αn+1. · · · . The case in which no transition β is executed
in ρ is similar (see [9]).

gh?gh?

init‖

h! t!

ch! ch!

1/2 1/2

(a)

gh?

init‖
ch!

t!
h!

gh?

1/2
1/2

(b)

Fig. 6. Transforming a scheduler in
the coin example

In summary, the key step of the construc-
tion is to “move” β across the αi’s so that it
executes immediately after s1. In the prob-
abilistic case, we must deal with schedulers
(which have a tree-like structure) instead of
mere paths, and so it is not clear how a tran-
sition can be moved. Consider the scheduler
η in Fig. 6 (a) and the reduction in Fig. 4.
The corresponding scheduler in ̂T ‖ G can-
not start with the probabilistic transition
1
2h! + 1

2 t!, since it is not enabled in înit‖.
However, the same probabilistic effect is obtained by the scheduler η̂ that exe-
cutes ch! in the first place, as illustrated in Fig. 6 (b). In this figure, ch! is moved
across both h! and t!. In the general case, the transition in the ample set is moved
across the transitions in all branches. Note that, in order to move ch! after init,
we rely on the fact that ch! is executed after both h! and t!. In fact, there is
no way to transform the non-distributed scheduler in Fig. 2 into a scheduler for
the reduced system in Fig. 4: although ch!, ct! ∈ ample(init‖), we have that ch!
is chosen in one of the branches, while ct! is chosen in the other.

350 S. Giro, P.R. D’Argenio, and L.M. Ferrer Fioriti

Groesser et al. [2] showed how schedulers for the original system can be
mapped to schedulers in the reduced system. They require condition A5 because
the transformation is not possible for some schedulers and some reductions, even
if such reductions comply with A1–A4. However, we proved in [16] that a sim-
ilar transformation can be carried out for all schedulers η complying with the
following condition:

η(σ) ∈ ample(s1) ∧ η(σ′) ∈ ample(s1) =⇒ η(σ) = η(σ′) (2)

for all σ = s1.α1. · · · .αn−1.sn, σ′ = s1.α
′
1. · · · .α′n′−1.s

′
n′ such that the αk’s and

the α′k’s are independent from ample(s). Roughly speaking, the ample transition
must be the same in all branches in which an ample transition appears.

We show that (2) holds if: (1) η is distributed and A5′ holds or (2) η is
strongly distributed. If η is distributed, let I be ∪β∈ample(s1)Inv(β) and let σ, σ′

be as in (2). Since the αk’s and the α′k’s are independent from all the transitions
in ample(s1), we have I ∩ Inv(αk) = I ∩ Inv(αk′) = ∅ for all k. Then, [σ]i =
[σ′]i = s1 for all Ai ∈ I. By A5′, we have GenAtom(η(σ)) = GenAtom(η(σ′)).
Let Ai = GenAtom(η(σ)) and let Θi be the output scheduler that defines η.
Then, Θi([σ]i) = Θi([σ′]i), and so the generative transition is the same in both
η(σ) and η(σ′). The same argument can be used to show that the input choice
functions are the same in both η(σ) and η(σ′), and so η(σ) = η(σ′).

In case η is strongly distributed, we define Ai = GenAtom(η(σ)) and Ai′ =
GenAtom(η(σ′)). Then, [σ]i = [σ′]i (= s1) and [σ]i′ = [σ′]i′ (= s1). Let I be the
interleaving scheduler that defines η. By Eqn. (1), we have Ai = I(σ) = I(σ′) =
Ai′ , and so GenAtom(η(σ)) = GenAtom(η(σ′)). Following the same reasoning
as in the case of distributed schedulers, we conclude that η(σ) = η(σ′).

The bottom line is that the restrictions imposed to schedulers (together with
A5′, in case distributed schedulers are assumed) allow to transform every sched-
uler in P into a scheduler in P̂ without requiring A5.

Using our technique with existing model checking algorithms. We
emphasize that, although the correctness of the reduction relies on the assump-
tion that the schedulers are distributed (strongly distributed, resp.), the reduced
system is analysed assuming total information (because of the undecidability re-
sult in [13], the verification under partial information cannot be carried out in a
fully automated fashion). The result of the verification thus corresponds to a pes-
simistic analysis of the reduced system. As a consequence, the bounds obtained are
still safe, but they are not so tight as for distributed (strongly distributed, resp.)
schedulers.

As an example, suppose that we are interested in finding the supremum prob-
ability that a system P fails under distributed schedulers. Suppose that 0.1 is
the highest probability of failure allowed by the specification. Moreover, sup-
pose that, by using the standard model checking algorithm for MDPs (e.g. [3]),
we calculate that the supremum probability of a failure quantifying over all
schedulers is 0.15. According to this analysis, the system would not meet the
specification. However, the schedulers yielding probabilities greater than 0.1

Partial Order Reduction for Probabilistic Systems 351

might be “unrealistic” schedulers as the one in Fig. 2. Suppose that we con-
struct P̂ as described above. Then, we can use the algorithm in [3] to calculate
S = supη∈Sched(P̂) Prη(F Fail). If S = 0.05, then Theorem 1 above ensures that
supη∈Dist(P) Prη(F Fail) ≤ 0.05, and so the system meets the specification. In
this sense, the bounds are safe with respect to Dist(P). Note that, in this case,
the reduction has prevented some schedulers that are not distributed and so the
verification on P̂ is more accurate than the verification on P .

4 Concluding Remarks

We have presented a theoretical framework to perform partial order reduction for
probabilistic model checking. Our technique is a revision of previous works [2,10].
We showed that, in the context of distributed systems, the bounds for the prob-
ability values calculated by the technique on those works may result overly safe.
We then showed that the new condition of [2,10] to construct the ample set may
be relaxed or even dropped. This simplifies the algorithm and results in smaller
reductions.

The POR technique for symbolic representation introduced in [1] constructs
ample sets with transitions from several atoms. So, Theorem 2 allows us to apply
a similar technique for probabilistic systems. We are currently busy implement-
ing the technique into PRISM using these ideas. Preliminary results are shown
in Table 1.

We have selected two notable case studies. Table 1(a) reports results checking
anonymity on the dining cryptographers problem [4]. Column “%” indicates in
percentage how small is the reduced model with respect of the full system. Thus,
for instance, the size of the state space of the reduced model is 23.58% of the
size of the state space of the full model for 11 cryptographers (i.e., more than
4 times smaller). Note that, in general, the construction time of the system
is significantly more expensive for POR when compared to the construction
time of the full system. Nonetheless, the calculation time of the probability
values is significantly larger in the full model. Thus, the total processing time
on large systems is better under POR (see the 11 cryptographers). We remark
that the old POR reduction (including A5) achieves the same results in this
case study. However, our results using POR for the symbolic representation and
explicit vectors for calculation (the so-called “hybrid” approach [20]) significantly
improve the explicit approach of LiQuor [8].

Still more interesting is our second case study. It reports on the verification
of the Binary Exponential Backoff protocol of the IEEE 802.3. (The model is
the same used in [19] adapted to PRISM notation.) We calculated the maximum
and minimum probability that a colliding host aborts transmission after multiple
collisions. The numbers n, N , and K are respectively the number of colliding
hosts, the maximum number of attempts to seize the channel, and the maximum
time slots. Table 1(b) shows reductions yielding sizes up to 5% of the full state
space. More interesting is that reduction using only A1–A4 is significantly more
efficient than the old reduction with A1–A5 (up to 58.88% in case 6/3/4). We

352 S. Giro, P.R. D’Argenio, and L.M. Ferrer Fioriti

Table 1. Summary of Experimental Results

(a) Dining Cryptographers

Full A1–A4 reduct.
n size constr. total size % constr. total
7* 287666 0m00.19 0m03.53 115578 40.18 0m13.01 0m16.59
8* 1499657 0m00.30 0m16.18 526329 35.10 0m36.69 0m52.96
9* 7695856 0m00.44 1m24.84 2363896 30.72 1m46.16 2m29.15
10 39005612 0m00.70 4m41.10 10495991 26.91 4m48.19 6m40.37
11 195718768 0m01.11 29m43.34 46159864 23.58 13m12.84 21m02.46

(b) Binary exponential backoff (size comparison)

Model Full A1–A5 reduct. A1–A4 reduct.

n / N / 2K size size % full size % full % A5
4 / 3 / 4 532326 191987 36.07 126629 23.79 65.96
5 / 3 / 4 13866186 2752750 19.85 1690227 12.19 61.40
6 / 3 / 4 357387872 36974560 10.35 21771724 6.09 58.88
4 / 3 / 8 3020342 913379 30.24 604457 20.01 66.18
5 / 3 / 8 115442928 18569442 16.09 11585347 10.04 62.39
6 / 3 / 8 4318481408 353075296 8.18 212917856 4.93 60.30

(c) Binary exponential backoff (time comparison)

Model Full A1–A5 reduct. A1–A4 reduct.

n / N / 2K constr. total constr. total constr. total
4 / 3 / 4 0m01.39 1m04.27 0m18.96 1m22.98 0m18.02 1m13.36
5 / 3 / 4 0m03.49 11m32.99 1m16.82 8m15.60 1m14.53 6m50.12
6 / 3 / 4 0m07.55 5h03m39.81 4m00.95 1h13m11.39 5m15.06 53m35.43
4 / 3 / 8 0m02.05 3m33.62 0m23.85 3m01.88 0m22.78 2m28.50
5 / 3 / 8 0m05.41 1h21m13.54 1m36.41 30m42.82 1m41.18 22m09.23
6 / 3 / 8 0m13.30 — 5m14.95 12h31m57.39 6m44.82 7h45m46.75

Entries marked with * run on a Pentium 4 630, 3.0Ghz with 2Gb memory, while all the
others run on an Opteron 8212 (dual core) with 32Gb memory.

obtained similar satisfactory results on time comparison, notably (again) in case
6/3/4. We note that the 6/3/8 full model could not be analysed because the
state space was too large to fit in the hybrid engine of PRISM.

Of course, not all examples we ran yielded such impressive results. We have
experienced very little reduction in cases in which components depend very much
from each other. This is nonetheless reasonable as our technique is precisely
devised for distributed system with little sharing. In particular, both case studies
have few communication points and significant local processing.

It is in our plans to report soon on the details of the implementation of the
tool under development.

References

1. Alur, R., Brayton, R.A., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state-space exploration. Formal Methods in System
Design 18(2), 97–116 (2001)

2. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic systems.
In: QEST 2004, Washington, DC, USA, pp. 230–239. IEEE CS, Los Alamitos (2004)

Partial Order Reduction for Probabilistic Systems 353

3. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 288–299.
Springer, Heidelberg (1995)

4. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptology 1(1), 65–75 (1988)

5. Cheung, L.: Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud Universiteit Nijmegen (2006)

6. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: Parallel com-
position via distributed scheduling. Theor. Comput. Sci. 365(1-2), 83–108 (2006)

7. Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: QEST 2006, pp. 131–132. IEEE CS, Los Alamitos
(2006)

8. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model
checking markov decision processes. In: QEST 2008, pp. 45–54 (2008)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

10. D’Argenio, P., Niebert, P.: Partial order reduction on concurrent probabilistic pro-
grams. In: QEST 2004, Washington, DC, USA, pp. 240–249. IEEE CS, Los Alami-
tos (2004)

11. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. In: PROBMIV 1999. TR CSR-99-8, University of
Birmingham, pp. 19–32 (1999)

12. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 351–365. Springer, Heidelberg (2001)

13. Giro, S., D’Argenio, P.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)

14. Giro, S., D’Argenio, P.: On the expressive power of schedulers in distributed proba-
bilistic systems. In: Proc. of QAPL 2009, York, UK, March 28-29 (2009), Extended
version, cs.famaf.unc.edu.ar/~sgiro/QAPL09-ext.pdf

15. Giro, S., D’Argenio, P.: On the verification of probabilistic I/O automata with
unspecified rates. In: Proc. of 24th SAC, pp. 582–586. ACM Press, New York
(2009)

16. Giro, S., D’Argenio, P.: Partial order reduction for probabilistic systems assum-
ing distributed schedulers. Technical Report Serie A, Inf. 2009/02, FaMAF, UNC
(2009), http://cs.famaf.unc.edu.ar/~sgiro/TR-A-INF-09-2.pdf

17. Glabbeek, R.v., Smolka, S., Steffen, B.: Reactive, generative, and stratified models
of probabilistic processes. Information and Computation 121, 59–80 (1995)

18. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

19. Jeannet, B., D’Argenio, P., Larsen, K.: Rapture: A tool for verifying Markov
Decision Processes. In: Cerna, I. (ed.) Tools Day 2002, Brno, Czech Republic,
Technical Report, Faculty of Informatics, Masaryk University Brno (2002)

20. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer (STTT) 6(2), 128–142 (2004)

21. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Laboratory for Computer Science, MIT (1995)

22. Vardi, M.: Automatic verification of probabilistic concurrent finite state programs.
In: Procs. of 26th FOCS, pp. 327–338. IEEE Press, Los Alamitos (1985)

cs.famaf.unc.edu.ar/~sgiro/QAPL09-ext.pdf
http://cs.famaf.unc.edu.ar/~sgiro/TR-A-INF-09-2.pdf

Model-Checking Games for Fixpoint Logics
with Partial Order Models

Julian Gutierrez and Julian Bradfield

LFCS. School of Informatics. University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, UK

Abstract. We introduce model-checking games that allow local second-
order power on sets of independent transitions in the underlying partial
order models where the games are played. Since the one-step interleav-
ing semantics of such models is not considered, some problems that may
arise when using interleaving semantics are avoided and new decidability
results for partial orders are achieved. The games are shown to be sound
and complete, and therefore determined. While in the interleaving case
they coincide with the local model-checking games for the µ-calculus
(Lµ), in a noninterleaving setting they verify properties of Separation
Fixpoint Logic (SFL), a logic that can specify in partial orders prop-
erties not expressible with Lµ. The games underpin a novel decision
procedure for model-checking all temporal properties of a class of infi-
nite and regular event structures, thus improving previous results in the
literature.

Keywords: Modal and temporal logics; Model-checking games; Hintikka
game semantics; Partial order models of concurrency; Process algebras.

1 Introduction

Model-checking games, also called Hintikka evaluation games, are played by two
players, a “Verifier” Eve (∃) and a “Falsifier” Adam (∀). These logic games are
played in a formula φ and a mathematical model M. In a game G(M, φ) the
goal of Eve is to show that M |= φ, while the goal of Adam is to refute such an
assertion. Solving these games amounts to answering the question of whether or
not Eve has a strategy to win all plays in the game G(M, φ). These games have
a long history in mathematical logic and in the last two decades have become an
active area of research in computer science, both from theoretical and practical
view points. Good introductions to the subject can be found in [2,10].

In concurrency and program verification, most usually φ is a modal or a tem-
poral formula and M is a Kripke structure or a labelled transition system (LTS),
i.e., a graph structure, and the two players play the game G(M, φ) globally by
picking single elements of M, according to the game rules defined by φ. This
setting works well for concurrent systems with interleaving semantics since one
always has a notion of global state enforced by the (nondeterministic) sequential
computation of atomic actions, which in turn allows the players to choose only

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 354–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model-Checking Games for Fixpoint Logics 355

single elements of the structure M. However, when considering concurrent sys-
tems with partial order models explicit notions of locality and concurrency have
to be taken into account. A possible solution to this problem – the traditional
approach – is to use the one-step interleaving semantics of such models in order
to recover the globality and sequentiality of the semantics of formulae.

This solution is, however, problematic for at least five reasons. Firstly, inter-
leaving models usually suffer from the state space explosion problem. Secondly,
interleaving interpretations cannot be used to give completely satisfactory game
semantics to logics with partial order models as all information on independence
in the models is lost in the interleaving simplification. Thirdly, although tempo-
ral properties can still be verified with the interleaving simplification, properties
involving concurrency, causality and conflict, natural to partial order models of
concurrency, can no longer be verified. From a more practical standpoint, par-
tial order reduction methods cannot be applied directly to interleaving models
in order to build less complex model checkers based on these techniques. Finally,
the usual techniques for verifying interleaving models cannot always be used to
verify partial order ones since such problems may become undecidable.

For these reasons, we believe that the study of verification techniques for
partial order models continues to deserve much attention since they can help
alleviate some of the limitations related with the use of interleaving models. We,
therefore, abandon the traditional approach to defining model-checking games
for logics with partial order models and introduce a new class of games called
‘trace local monadic second-order (LMSO) model-checking games’, where sets of
independent elements of the structure at hand can be locally recognised. These
games avoid the need of using the one-step interleaving semantics of partial
order models, and thus define a more natural framework for analysing fixpoint
modal logics with noninterleaving semantics. As a matter of fact, their use in the
temporal verification of a class of regular event structures [11] improves previous
results in the literature [5,7]. We do so by allowing a free interplay of fixpoint
operators and local second-order power on conflict-free sets of transitions.

The logic we consider is Separation Fixpoint Logic (SFL) [3], a µ-calculus
(Lµ) extension that can express causal properties in partial order models (e.g.,
transition systems with independence, Petri nets or event structures), and al-
lows for doing dynamic local reasoning. The notion of locality in SFL, namely
separation or disjointness of independent sets of resources, was inspired by the
one defined statically for Separation Logic [8]. Since SFL is as expressive as Lµ
in an interleaving context, nothing is lost with respect to the main approaches to
logics for concurrency with interleaving semantics. Instead, logics and techniques
for interleaving concurrency are extended to a partial order setting with SFL.

Section 2 contains some background concepts and definitions. In Section 3,
trace LMSO model-checking games are defined, and in Section 4 their soundness
and completeness is proved. In Section 5, we show that they are decidable and
their coincidence with the local model-checking games for Lµ in the interleaving
case. In Section 6 the game is used to effectively model-check a class of regular
and infinite event structures. The paper concludes with Section 7.

356 J. Gutierrez and J. Bradfield

2 Preliminaries

2.1 A Partial Order Model of Concurrency

A transition system with independence (TSI) [6] is an LTS where independent
transitions can be recognised. Formally, a TSI T is a structure (S, s0, T,Σ, I),
where S is a set of states with initial state s0, T ⊆ S × Σ × S is a transition
relation,Σ is a set of labels, and I ⊆ T×T is an irreflexive and symmetric relation
on independent transitions. The binary relation ≺ on transitions defined by

(s, a, s1) ≺ (s2, a, q) ⇔
∃b.(s, a, s1)I(s, b, s2) ∧ (s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)

expresses that two transitions are instances of the same action, but in two differ-
ent interleavings. We let ∼ be the least equivalence relation that includes ≺, i.e.,
the reflexive, symmetric and transitive closure of ≺. The equivalence relation ∼
is used to group all transitions that are instances of the same action in all its
possible interleavings. Additionally, I is subject to the following axioms:

– A1. (s, a, s1) ∼ (s, a, s2) ⇒ s1 = s2
– A2. (s, a, s1)I(s, b, s2) ⇒ ∃q.(s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)
– A3. (s, a, s1)I(s1, b, q) ⇒ ∃s2.(s, a, s1)I(s, b, s2) ∧ (s, b, s2)I(s2, a, q)
– A4. (s, a, s1) ≺ ∪ * (s2, a, q)I(w, b, w′) ⇒ (s, a, s1)I(w, b, w′)

Axiom A1 states that from any state, the execution of an action leads always
to a unique state. This is a determinacy condition. Axioms A2 and A3 ensure
that independent transitions can be executed in either order. Finally, A4 ensures
that the relation I is well defined. More precisely, A4 says that if two transitions
t and t′ are independent, then all other transitions in the equivalence class [t]∼
(i.e., all other transitions that are instances of the same action but in different
interleavings) are independent of t′ as well, and vice versa.

Local Dualities. Based on the previous axiomatization one can define two ways
of observing concurrency such that in each case they are dual to causality and
conflict, respectively [3]. The semantics of SFL is based on these dualities. Given
a state s and a transition t = (s, a, s′), s is called the source node, src(t) = s, and
s′ the target node, trg(t) = s′. Thus, define the following relations on transitions:

⊗ def= {(t1, t2) ∈ T × T | src(t1) = src(t2) ∧ t1 I t2}
def= {(t1, t2) ∈ T × T | src(t1) = src(t2) ∧ ¬(t1 I t2)}
+ def= {(t1, t2) ∈ T × T | trg(t1) = src(t2) ∧ t1 I t2}
≤ def= {(t1, t2) ∈ T × T | trg(t1) = src(t2) ∧ ¬(t1 I t2)}

2.2 Sets in a Local Context

The relation ⊗ defined on pairs of transitions, can be used to recognize sets
where every transition is independent of each other and hence can all be executed
concurrently. Such sets are said to be conflict-free and belong to the same trace.

Model-Checking Games for Fixpoint Logics 357

Definition 1. A conflict-free set of transitions P is a set of transitions with the
same source node, where t⊗ t′ for each two elements t and t′ in P .

Given a TSI T = (S, s0, T,Σ, I), all conflict-free sets of transitions at a state
s ∈ S can be defined locally from the maximal set of transitions Rmax(s), where
Rmax(s) is the set of all transitions t ∈ T such that src(t) = s. Hence all maximal
sets and conflict-free sets of transitions are fixed given a particular TSI. Now we
define the notion of locality used to give the semantics of SFL.

Definition 2. Given a TSI T, a support set R in T is either a maximal set of
transitions in T or a non-empty conflict-free set of transitions in T.

Given a TSI, the set of all its support sets is denoted by P. The next definition
is useful when defining the semantics of SFL: R1 ,R2 � R

def= R1 ∪ R2 ⊆ R,
and R1 and R2 are two disjoint non-empty conflict-free support sets, and ¬∃t ∈
R \ (R1 ∪R2). ∀t′ ∈ R1 ∪R2. t⊗ t′.

Notice that the last definition characterizes support sets R1 and R2 that
contain only concurrent transitions and cannot be made any bigger with respect
to the support set R. Therefore, the sets R1 ,R2 with the properties above are
the biggest traces that can be recognized from a support set R.

2.3 Separation Fixpoint Logic

Definition 3. Separation Fixpoint Logic (SFL) [3] has formulae φ built from a
set Var of variables Y, Z, ... and a set L of labels a, b, ... by the following grammar:

φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉cφ1 | 〈K〉ncφ1 | φ1 ∗ φ2 | µZ.φ1

where Z ∈ Var, K ⊆ L, and µZ.φ1 has the restriction that any free occurrence of
Z in φ1 must be within the scope of an even number of negations. Dual operators
are defined as expected: φ1 ∨ φ2

def= ¬(¬φ1 ∧ ¬φ2), φ1 � φ2
def= ¬(¬φ1 ∗ ¬φ2),

[K]c φ1
def= ¬〈K〉c¬φ1, [K]nc φ1

def= ¬〈K〉nc¬φ1, νZ.φ1
def= ¬µZ.¬φ1 [¬Z/Z].

Definition 4. A TSI-based SFL model M is a TSI T = (S, s0, T,Σ, I) together
with a valuation V : Var → 2S, where S = S×P×A is the set of tuples (s,R, t)
of states s ∈ S, support sets R ∈ P in the TSI T, and transitions t ∈ A = T∪{tε}.
The denotation ‖φ‖T

V of an SFL formula φ in the model M = (T,V) is a subset
of S, given by the following rules (omitting the superscript T):

‖Z‖V = V(Z)
‖¬φ‖V = S − ‖φ‖V
‖φ1 ∧ φ2‖V = ‖φ1‖V ∩ ‖φ2‖V
‖〈K〉cφ‖V = {(s,R, t) | ∃b ∈ K. ∃s′ ∈ S.

t ≤ (t′ = s
b−→ s′) ∧ t′ ∈ R ∧ (s′, R′

max(s
′), t′) ∈ ‖φ‖V}

‖〈K〉ncφ‖V = {(s,R, t) | ∃b ∈ K. ∃s′ ∈ S.

t+ (t′ = s
b−→ s′) ∧ t′ ∈ R ∧ (s′, R′

max(s
′), t′) ∈ ‖φ‖V}

‖φ1 ∗ φ2‖V = {(s,R, t) | ∃R1, R2.
R1 ,R2 � R ∧ (s,R1, t) ∈ ‖φ1‖V ∧ (s,R2, t) ∈ ‖φ2‖V}

‖µZ.φ(Z)‖V =
⋂
{Q ⊆ S | ‖φ‖V[Z:=Q] ⊆ Q}

358 J. Gutierrez and J. Bradfield

where V [Z := Q] is the valuation V ′ which agrees with V save that V ′(Z) = Q.
A tuple (s,R, t) of a model M is called a process. The initial process is the tuple
(s0, Rmax(s0), tε), where s0 is the initial state of T and tε is the empty transition,
such that for all t ∈ T if s0 = src(t), then tε ≤ t.

Remark 1. The models we consider here are infinite state systems of finite
branching, i.e., image-finite. Also, henceforth, w.l.o.g., we consider only formulae
in positive normal form for the definition of the games in the next section.

3 Trace LMSO Model-Checking Games

Trace LMSO model-checking games G(M, φ) are played on a model M = (T,V),
where T = (S, s0, T,Σ, I) is a TSI, and on an SFL formula φ. The game can also
be presented as GM(H0, φ), or even as GM(s0, φ), where H0 = (s0, Rmax(s0), tε) is
the initial process of S. The board in which the game is played has the form B =
S×Sub(φ), for a process space S = S×P×A of states s in S, support setsR in P
and transitions t in A in the TSI T. The subformula set Sub(φ) of an SFL formula
φ is defined by the Fischer–Ladner closure of SFL formulae in the standard way.

A play is a possibly infinite sequence of configurations C0, C1, ..., written as
(s,R, t) ! φ or H ! φ whenever possible; each Ci is an element of the board B.
Every play starts in the configuration C0 = H0 ! φ, and proceeds according to
the rules of the game given in Fig. 1. As usual for model-checking games, player
∃ tries to prove that H0 |= φ whereas player ∀ tries to show that H0
|= φ.

The rules (FP) and (VAR) control the unfolding of fixpoint operators. Their
correctness is based on the fact that σZ.φ ≡ φ [σZ.φ/Z] according to the seman-
tics of the logic. Rules (∨) and (∧) have the same meaning as the disjunction and
conjunction rules, respectively, in a Hintikka game for propositional logic. Rules
(〈 〉c), (〈 〉nc), ([]c) and ([]nc) are like the rules for quantifiers in a standard
Hintikka game semantics for first-order (FO) logic, provided that the box and
diamond operators behave, respectively, as restricted universal and existential
quantifiers sensitive to the causal information in the partial order model.

Finally, the most interesting rules are (∗) and (�). Local monadic second-order
moves are used to recognize conflict-free sets of transitions in M, i.e., those in
the same trace. Such moves, which restrict the second-order power (locally) to
traces, give the name to this game. The use of (∗) and (�) requires both players
to make a choice, but at different levels and with different amount of knowledge.
The first player must look for two non-empty conflict-free sets of transitions, with
no information on which formula φi the other player will choose afterwards.

Guided by the semantics of ∗ (resp. �), it is defined that player ∃ (resp. ∀)
must look for a pair of non-empty conflict-free sets of transitions R0 and R1 to be
assigned to each formula φi as their support sets. This situation is equivalent to
playing a trace for each subformula in the configuration. Then player ∀ (resp. ∃)
must choose one of the two subformulae, with full knowledge of the sets that have
been given by player ∃ (resp. ∀). It is easy to see that ∗ should be regarded as
a special kind of conjunction and � of disjunction. Indeed, they are a structural
conjunction and disjunction, respectively.

Model-Checking Games for Fixpoint Logics 359

(FP)
H 	 σZ.φ

H 	 Z
σ ∈ {µ, ν} (VAR)

H 	 Z

H 	 φ
fp(Z) = σZ.φ

(∨)
H 	 φ0 ∨ φ1

H 	 φi
[∃] i : i ∈ {0, 1} (∧)

H 	 φ0 ∧ φ1

H 	 φi
[∀] i : i ∈ {0, 1}

(〈 〉c) (s,R, t) 	 〈K〉cφ
(s′, R′

max(s′), t′) 	 φ
[∃] b : b ∈ K, s

b−→ s′ = t′ ∈ R, t ≤ t′

(〈 〉nc)
(s, R, t) 	 〈K〉ncφ

(s′, R′
max(s′), t′) 	 φ

[∃] b : b ∈ K, s
b−→ s′ = t′ ∈ R, t� t′

([]c)
(s, R, t) 	 [K]c φ

(s′, R′
max(s′), t′) 	 φ

[∀] b : b ∈ K, s
b−→ s′ = t′ ∈ R, t ≤ t′

([]nc)
(s, R, t) 	 [K]nc φ

(s′, R′
max(s′), t′) 	 φ

[∀] b : b ∈ K, s
b−→ s′ = t′ ∈ R, t� t′

(∗) (s, R, t) 	 φ0 ∗ φ1

(s,Ri, t) 	 φi
[∃] R0, R1; [∀] i : R0 �R1 % R, i ∈ {0, 1}

(�)
(s,R, t) 	 φ0 � φ1

(s, Ri, t) 	 φi
[∀] R0, R1; [∃] i : R0 �R1 % R, i ∈ {0, 1}

Fig. 1. Trace LMSO Model-Checking Game Rules of SFL. Whereas the notation [∀]
denotes a choice made by Player ∀, the notation [∃] denotes a choice by Player ∃.

Definition 5. The following rules are the winning conditions that determine
a unique winner for every finite or infinite play C0, C1, ... in a game GM(H0, φ).

Player ∀ wins a finite play C0, C1, ..., Cn or an infinite play C0, C1, ... iff:

1. Cn = H ! Z and H
∈ V(Z).

2. Cn = (s,R, t) ! 〈K〉cψ and {(s′, R′, t′) : b ∈ K ∧ t ≤ t′ = s
b−→ s′ ∈ R} = ∅.

3. Cn = (s,R, t) ! 〈K〉ncψ and {(s′, R′, t) : b ∈ K ∧ t+ t′ = s
b−→ s′ ∈ R} = ∅.

4. Cn = (s,R, t) ! φ0 ∗ φ1 and {R0 ∪R1 : R0 ,R1 � R} = ∅.
5. The play is infinite and there are infinitely many configurations where Z ap-

pears, such that fp(Z) = µZ.ψ for some formula ψ and Z is the syntactically
outermost variable in φ that occurs infinitely often.

Player ∃ wins a finite play C0, C1, ..., Cn or an infinite play C0, C1, ... iff:

1. Cn = H ! Z and H ∈ V(Z).

2. Cn = (s,R, t) ! [K]c ψ and {(s′, R′, t′) : b ∈ K ∧ t ≤ t′ = s
b−→ s′ ∈ R} = ∅.

3. Cn = (s,R, t) ! [K]nc ψ and {(s′, R′, t) : b ∈ K ∧ t+ t′ = s
b−→ s′ ∈ R} = ∅.

4. Cn = (s,R, t) ! φ0 � φ1 and {R0 ∪R1 : R0 ,R1 � R} = ∅.
5. The play is infinite and there are infinitely many configurations where Z ap-

pears, such that fp(Z) = νZ.ψ for some formula ψ and Z is the syntactically
outermost variable in φ that occurs infinitely often.

360 J. Gutierrez and J. Bradfield

4 Soundness and Completeness

Let us first give some intermediate results. Due to lack of space some proofs are
omitted or sketched. Let T be a TSI and C = (s,R, t) ! ψ a configuration in the
game GM(H0, φ), as defined before. As usual, the denotation ‖φ‖T

V of an SFL
formula φ in the model M = (T,V) is a subset of S. We say that a configuration
C of GM(H0, φ) is true iff (s,R, t) ∈ ‖ψ‖T

V and false otherwise.

Fact 1. SFL is closed under negation.

Lemma 1. A game GM(H0, φ), where player ∃ has a winning strategy, has a
dual game GM(H0,¬φ) where player ∀ has a winning strategy, and conversely.

Proof. We use Fact 1 and duality and completeness of winning conditions. "#

Lemma 2. Player ∃ preserves falsity and can preserve truth with her choices.
Player ∀ preserves truth and can preserve falsity with his choices.

Proof. The cases for the rules (∧) and (∨) are just as for the Hintikka evaluation
games for FO logic. Thus, let us go on to check the rules for the other operators.
Firstly, consider the rule (〈 〉c) and a configuration C = (s,R, t) ! 〈K〉cψ, and
suppose that C is false. In this case there is no b ∈ K such that t ≤ t′ = s

b−→ s′ ∈
R and (s′, R′

max(s′), t′) ∈ ‖ψ‖T
V . Hence, the following configurations will be false

as well. Contrarily, if C is true, then player ∃ can make the next configuration
(s′, R′

max(s
′), t′) ! ψ true by choosing a transition t′ = s

b−→ s′ ∈ R such that
t ≤ t′. The case for (〈 〉nc) is similar (simply change ≤ for +), and the cases
for ([]c) and ([]nc) are dual. Now, consider the rule (∗) and a configuration
C = (s,R, t) ! ψ0 ∗ ψ1, and suppose that C is false. In this case there is no
pair of sets R0 and R1 such that R0 , R1 � R and both (s,R0, t) ∈ ‖ψ0‖T

V and
(s,R1, t) ∈ ‖ψ1‖T

V to be chosen by player ∃. Hence, player ∀ can preserve falsity
by choosing the i ∈ {0, 1} where (s,Ri, t)
∈ ‖ψi‖T

V , and the next configuration
(s,Ri, t) ! ψi will be false as well. On the other hand, suppose that C is true.
In this case, regardless of which i player ∀ chooses, player ∃ has previously fixed
two support sets R0 and R1 such that for every i ∈ {0, 1}, (s,Ri, t) ∈ ‖ψi‖T

V .
Therefore, the next configuration (s,Ri, t) ! ψi will be true as well. Finally, the
deterministic rules (FP) and (VAR) preserve both truth and falsity because of
the semantics of fixpoint operators. Recall that for any process H , if H ∈ ‖σZ.ψ‖
then H ∈ ‖ψ‖Z:=‖σZ.ψ‖ for all free variables Z in ψ. "#

Lemma 3. In any infinite play of a game GM(H0, φ) there is a unique syntac-
tically outermost variable that occurs infinitely often.

Proof. By a contradiction argument and following an analysis of the structure
of those formulae that appear in the configurations of infinite plays. "#

Fact 2. Only rule (VAR) can increase the size of a formula in a configuration.
All other rules decrease the size of formulae in configurations.

Model-Checking Games for Fixpoint Logics 361

Lemma 4. Every play of a game GM(H0, φ) has a uniquely determined winner.

Proof. For finite plays follows from winning conditions one to four (Definition 5).
For plays of infinite length, by analysing the unfolding of fixpoints and winning
conditions five of both players. We use Fact 2 and Lemma 3 in this case. "#

Definition 6. (Approximants). Let fp(Z) = µZ.φ for some formula φ and
let α, λ ∈ Ord be two ordinals, where λ is a limit ordinal. Then:

Z0 := ff, Zα+1 = φ [Zα/Z], Zλ =
∨

α<λ Z
α

For greatest fixpoints the approximants are defined dually. We can now show
that the analysis for fixpoint modal logics [1] can be extended to this scenario.

Theorem 1. (Soundness). Let T be the TSI in the model M = (T,V) of a
formula φ in the game GM(H0, φ). If H0
∈ ‖φ‖T

V then player ∀ wins H0 ! φ.

Proof. Suppose H0
∈ ‖φ‖T
V . We construct a possibly infinite game tree that

starts in H0 ! φ, for player ∀. We do so by preserving falsity according to
Lemma 2, i.e., whenever a rule requires player ∀ to make a choice then the tree
will contain the successor configuration that preserves falsity. All other choices
that are available for player ∃ are included in the game tree.

First, consider only finite plays. Since player ∃ only wins finite plays that end
in true configurations, then she cannot win any finite play by using her winning
conditions one to four. Hence, player ∀ wins each finite play in this game tree.

Now, consider infinite plays. The only chance for player ∃ to win is to use her
winning condition five. So, let the configuration H ! νZ.φ be reached such that
Z is the syntactically outermost variable that appears infinitely often in the play
according to Lemma 3. In the next configuration H ! Z, variable Z is interpreted
as the least approximant Zα such that H
∈ ‖Zα‖T

V and H ∈ ‖Zα−1‖T
V , by the

principle of fixpoint induction. As a matter of fact, by monotonicity and due to
the definition of fixpoint approximants it must also be true that H ∈ ‖Zβ‖T

V
for all ordinals β such that β < α. Note that, also due to the definition of
fixpoint approximants, α cannot be a limit ordinal λ because this would mean
that H
∈ ‖Zλ =

∧
β<λ Z

β‖T
V and H ∈ ‖Zβ‖T

V for all β < λ, which is impossible.
Since Z is the outermost variable that occurs infinitely often and the game

rules follow the syntactic structure of formulae, the next time that a configuration
C′ = H ′ ! Z is reached, Z can be interpreted as Zα−1 in order to make C′ false
as well. And again, if α− 1 is a limit ordinal λ, there must be a γ < λ such that
H ′
∈ ‖Zγ‖T

V and H ′ ∈ ‖Zγ−1‖T
V . One can repeat this process even until λ = ω.

But, since ordinals are well-founded the play must eventually reach a false
configuration C′′ = H ′′ ! Z where Z is interpreted as Z0. And, according to
Definition 6, Z0 := tt, which leads to a contradiction since the configuration
C′′ = H ′′ ! tt should be false, i.e., H ′′ ∈ ‖tt‖T

V should be false, which is impos-
sible. In other words, if H had failed a maximal fixpoint, then there must have
been a descending chain of failures, but, as can be seen, there is not.

As a consequence, there is no such least α that makes the configuration H !
Zα false, and hence, the configuration H ! νZ.φ could not have been false either.

362 J. Gutierrez and J. Bradfield

Therefore, player ∃ cannot win any infinite play with her winning condition 5
either. Since player ∃ can win neither finite plays nor infinite ones whenever
H0
∈ ‖φ‖T

V , then player ∀ must win all plays of GM(H0, φ). "#

Remark 2. If only finite state systems are considered Ord, the set of ordinals,
can be replaced by N, the set of natural numbers.

Theorem 2. (Completeness). Let T be the TSI in the model M = (T,V) of
a formula φ in the game GM(H0, φ) . If H0 ∈ ‖φ‖T

V then player ∃ wins H0 ! φ.

Proof. Suppose that H0 ∈ ‖φ‖T
V . Due to Fact 1 it is also true that H0
∈ ‖¬φ‖T

V .
According to Theorem 1, player ∀ wins H0 ! ¬φ, i.e., has a winning strategy in
the game GM(H0,¬φ). And, due to Lemma 1, player ∃ has a winning strategy
in the dual game GM(H0, φ). Therefore, player ∃ wins H0 ! φ if H0 ∈ ‖φ‖T

V . "#

Theorems 1 and 2 imply that the game is determined. Determinacy and perfect
information make the notion of truth defined by this Hintikka game semantics
coincide with its Tarskian counterpart.

Corollary 1. (Determinacy). Player ∀ wins the game GM(H0, φ) iff player ∃
does not win the game GM(H0, φ).

5 Local Properties and Decidability

We have shown that trace LMSO model-checking games are still sound and
complete even when players are allowed to manipulate sets of independent tran-
sitions. Importantly, the power of these games, and also of SFL, is that such
a second-order quantification is kept both local and restricted to transitions in
the same trace. We now show that trace LMSO model-checking games enjoy
several local properties that in turn make them decidable in the finite case. Such
a decidable result is used in the forthcoming sections to extend the decidability
border of model-checking a category of partial order models of concurrency.

Proposition 1. (Winning strategies). The winning strategies for the trace
LMSO model-checking games of Separation Fixpoint Logic are history-free.

Proof. Consider a winning strategy π for player ∃. According to Lemma 2 and
Theorem 2 such a strategy consists of preserving truth with her choices and
annotating variables with their approximant indices. But neither of these two
tasks depends on the history of a play. Instead they only depend on the current
configuration of the game. In particular notice that, of course, this is also the
case for the structural operators since the second-order quantification has only a
local scope. Similar arguments apply for the winning strategies of player ∀. "#

This result is key to achieve decidability of these games in the presence of the local
second-order quantification on the traces of the partial order models we consider.
Also, from a more practical standpoint, memoryless strategies are desirable as
they are easier to synthesize. However, synthesis is not studied here.

Model-Checking Games for Fixpoint Logics 363

Theorem 3. The model-checking game for finite Transition systems with inde-
pendence against Separation Fixpoint Logic specifications is decidable.

Proof. Since the game is determined, finite plays are decided by winning con-
ditions one to four of either player. Now consider the case of plays of infinite
length; since the winning strategies of both players are history-free, we only need
to look at the set of different configurations in the game, which is finite even
for plays of infinite length. Now, in a finite system an infinite play can only be
possible if the model is cyclic. But, since the model has a finite number of states,
there is an upper bound on the number of fixpoint approximants that must be
calculated (as well as on the number of configurations of the game board that
must be checked) in order to ensure that either a greatest fixpoint is satisfied
or a least fixpoint has failed. As a consequence, all possible history-free winning
strategies for a play of infinite length can be computed, so that the game can be
decided using winning condition five of one of the players. "#

Remark 3. A naive local tableau algorithm is at least doubly exponential in the
system size, but applying global model-checking techniques, a formula of length
k and alternation depth d on a system of size n can be decided in time k.2O(nd).

The Interleaving Case. Local properties of trace LMSO model-checking
games can also be found in the interleaving case, namely, they coincide with
the local model-checking games for the modal µ-calculus as defined by Stirling
[9]. As shown in [3] interleaving systems can be cast using SFL by both syntactic
and semantic means. The importance of this feature of SFL is that even hav-
ing constructs for independence and a partial order model, nothing is lost with
respect to the main approaches to interleaving concurrency. Recall that Lµ can
be obtained from SFL by considering the ∗-free language and using only the fol-
lowing derived operators: 〈K〉φ = 〈K〉cφ∨ 〈K〉ncφ and [K]φ = [K]c φ∧ [K]nc φ.

Proposition 2. If either a model with an empty independence relation or the
syntactic Lµ fragment of SFL is considered, then the trace LMSO model-checking
games for SFL degenerate to the local model-checking games for the µ-calculus.

6 Model-Checking Partial Order Models of Concurrency

In this section we use trace LMSO model-checking games to push forward the
decidability border of the model-checking problem of a particular class of par-
tial order models, namely, of a class of event structures [6]. More precisely, we
improve previous results [5,7] in terms of logical expressive power.

6.1 SFL on Event Structures

Definition 7. A labelled event structure E is a tuple (E,
, #, η,Σ), where E is
a set of events that are partially ordered by
, the causal dependency relation on
events, # ⊆ E×E is an irreflexive and symmetric conflict relation, and η : E → Σ
is a labelling function such that the following holds:

364 J. Gutierrez and J. Bradfield

If e1, e2, e3 ∈ E and e1#e2
 e3, then e1#e3.
∀e ∈ E the set {e′ ∈ E | e′
 e} is finite.

The independence relation on events is defined with respect to the causal and
conflict relations. Two events e1 and e2 are concurrent, denoted by e1 co e2, iff
e1

 e2 and e2

 e1 and ¬(e1#e2). The notion of computation state for event
structures is that of a configuration. A configuration C is a conflict-free set of
events (i.e., if e1, e2 ∈ C, then ¬(e1#e2)) such that if e ∈ C and e′
 e, then
e′ ∈ C. The restriction to image-finite models implies that the partial order

 of E is of finite branching, and hence for all C, the set of immediately next
configurations is bounded. If one further requires that for all e ∈ C, the set of
future non-isomorphic configurations rooted at e defines an equivalence relation
of finite index, then E is also regular [11].

An event structure E = (E,
, #, η,Σ) determines a TSI T = (S, T,Σ, I) by
means of an inclusion functor from the category ES of event structures to the
category T SI of TSI. Here we give such a mapping in a set-theoretic way since
this presentation is more convenient for us. A categorical presentation can be
found in [4]. The construction λ : ES → T SI is as follows:

S = {C ⊆ E | ∀e1, e2 ∈ C. ¬(e1#e2), (e ∈ C ∧ e′
 e ⇒ e′ ∈ C)} .
T = {(C, a, C′) ∈ S ×Σ × S | ∃e ∈ E. η(e) = a, e
∈ C,C′ = C ∪ {e}}
I = {((C1, a, C

′
1), (C2, b, C

′
2)) ∈ T × T | ∃(e1, e2) ∈ co.

η(e1) = a, η(e2) = b, C′
1 = C1 ∪ {e1}, C′

2 = C2 ∪ {e2}}
where the set of states S of the TSI T is isomorphic to the set Conf of config-
urations C ⊆ E of the event structure E, and the set of labels Σ remains the
same. Since the semantics of SFL is given only by defining the relations ≤, +,
and ⊗ on pairs of transitions at every state, i.e., on pairs of events at every
configuration, such a semantics can also be given directly from the elements of
an event structure using the construction above. Moreover, support sets and all
elements needed to build a lattice S and hence a model for SFL in the category
of event structures are defined using the same definitions as for the TSI case.

6.2 A Computable Folding Functor from Event Structures to TSI

Although we have defined satisfiability of SFL formulae in event structure mod-
els, model-checking these structures is rather difficult since very simple concur-
rent systems can have infinite event structures as models, in particular, all those
with recursive behaviour. In order to overcome this problem we define a mor-
phism (a functor) that folds a possibly infinite event structures into a TSI. Such
a morphism and the procedure to effectively compute it is described below.

The Quotient Set Method. Let Q = (Conf / ∼) be the quotient set repre-
sentation of Conf by ∼ in a finite or infinite event structure E, where Conf
is the set of configurations in E and ∼ is an equivalence relation on such con-
figurations. The equivalence class [X]∼ of a configuration X ∈ Conf is the set
{C ∈ Conf | C ∼ X}. A quotient set Q where ∼ is decidable is said to have a
decidable characteristic function, and will be called a computable quotient set.

Model-Checking Games for Fixpoint Logics 365

Definition 8. A regular quotient set (Conf / ∼) of an event structure E is a
computable quotient set representation of E with a finite number of equivalence
classes.

Having defined a regular quotient set representation of E, the morphism λ :
ES → T SI above can be modified to defined a new map λf : ES → T SI which
folds a (possibly infinite) event structure into a TSI:

S = {[C]∼ ⊆ Conf | ∃[X]∼ ∈ Q = (Conf / ∼). C ∼ X}
T = {([C]∼, a, [C′]∼) ∈ S ×Σ × S | ∃e ∈ E. η(e) = a, e
∈ C,C′ = C ∪ {e}}
I = {(([C1]∼, a, [C′

1]∼), ([C2]∼, b, [C′
2]∼)) ∈ T × T | ∃(e1, e2) ∈ co.

η(e1) = a, η(e2) = b, C′
1 = C1 ∪ {e1}, C′

2 = C2 ∪ {e2}}

Lemma 5. Let T be a TSI and E an event structure. If T = λf (E), then the
models (T,V) and (E,V) satisfy the same set of SFL formulae.

Proof. The morphism λf : ES → T SI from the category of event structures to
the category of TSI has a unique right adjoint ε : T SI → ES, the unfolding
functor that preserves labelling and the independence relation between events,
such that for any E we have that E′ = (ε ◦λf) (E), where E′ is isomorphic to E.
But SFL formulae do not distinguish between models and their unfoldings, and
hence cannot distinguish between (T,V) and (E′,V). Moreover, SFL formulae
do not distinguish between isomorphic models equally labelled, and therefore
cannot distinguish between (E′,V) and (E,V) either. "#

Having defined a morphism λf that preserves SFL properties, one can now define
a procedure that constructs a TSI model from a given event structure.

Definition 9. Let E = (E,
, #, η,Σ) be an event structure and (Conf / ∼) a
regular quotient set representation of E. A representative set Er of E is a subset
of E such that ∀C ∈ Conf . ∃X ⊆ Er. C ∼ X .

Lemma 6. Let E be an event structure. If E is represented as a regular quotient
set (Conf / ∼), then a finite representative set Er of E is effectively computable.

Proof. Construct a finite representative set Er as follows. Start with Er = ∅ and
Cj = C0 = ∅, the initial configuration or root of the event structure. Check Cj ∼
Xi for every equivalence class [Xi]∼ in Q = (Conf / ∼) and whenever Cj ∼ Xi

holds define both a new quotient set Q′ = Q \ [Xi]∼ and a new Er = Er ∪ Cj .
This subprocedure terminates because there are only finitely many equivalence
classes to check and the characteristic function of the quotient set is decidable.
Now, do this recursively in a breadth-first search fashion in the partial order
defined on E by
, and stop when the quotient set is empty. Since
 is of
finite branching and all equivalence classes must have finite configurations, the
procedure is bounded both in depth and breath and the quotient set will always
eventually get smaller. Hence, such a procedure always terminates. It is easy to
see that this procedure only terminates when Er is a representative set of E. "#

366 J. Gutierrez and J. Bradfield

A finite representative set Er is big enough to define all states in the TSI rep-
resentation of E when using λf . However, such a set may not be enough to
recognize all transitions in the TSI. In particular, cycles cannot be recognized
using Er. Therefore, it is necessary to compute a set Ef where cycles in the TSI
can be recognized. We call Ef a complete representative set of E. The procedure
to construct Ef is similar to the previous one.

Lemma 7. Let E = (E,
, #, η,Σ) be an event structure and Er a finite repre-
sentative set of E. If E is represented as a regular quotient set (Conf / ∼), then
a finite complete representative set Ef of E is effectively computable.

Proof. Start with Ef = Er, and set C = Conf (Er), the set of configurations
generated by Er. For each Cj in Er check in
 the set Next(Cj) of next con-
figurations to Cj , i.e., those configurations C′

j such that C′
j = Cj ∪ {e} for some

event e in E \Cj . Having computed Next(Cj), set Ef = Ef ∪ (
⋃
Next(Cj)) and

C = C \ {Cj}, and stop when C is empty. This procedure behaves as the one
described previously. Notice that at the end of this procedure Ef is complete
since it contains the next configurations of all elements in Er. "#

Proposition 3. The TSI T generated from an event structure E using λf and
a finite complete representative Ef of E is the smallest TSI that represents E.

Proof. From Lemmas 6 and 7. There is only one state in T for each equivalence
class in the quotient set representation of E. Similarly there can be only one
transition in T for each relation on the equivalence classes of configurations in E
since, due to A1 of TSI (determinacy), λf forgets repeated transitions in T . "#

6.3 Temporal Verification of Regular Infinite Event Structures

Based on Lemmas 5 and 7 and on Theorem 3, we can give a decidability result
for the class of event structures studied in [5,11] against SFL specifications. Such
a result, which is obtained by representing a regular event structure as a regular
quotient set, is a corollary of the following theorem:

Theorem 4. The model-checking problem for an event structure E represented
as a regular quotient set (Conf / ∼) against SFL specifications is decidable.

Regular Event Structures as Finite CCS Processes. A regular event
structure [5,11] can be generated by a finite concurrent system represented by
a finite number of (possibly recursive) CCS processes [12]. Syntactic restric-
tions on CCS that generate only finite systems have been studied. Finiteness
of CCS processes and restriction to image-finite models give both requirements
for regularity on the event structures that are generated. Now, w.l.o.g., consider
only deterministic CCS processes without auto-concurrency. A CCS process is
deterministic if whenever a.M + b.N , then a
= b, and similarly has no auto-
concurrency if whenever a.M ‖ b.N , then a
= b. Notice that any CCS process P
that either is nondeterministic or has auto-concurrency can be converted into an
equivalent process Q which generates an event structure that is isomorphic, up

Model-Checking Games for Fixpoint Logics 367

to relabelling of events, to the one generated by P . Eliminating nondeterminism
and auto-concurrency can be done by relabelling events in P(P), the powerset
of CCS processes of P , with an injective map θ : Σ → Σ∗ (where Σ∗ is a set of
labels and Σ ⊆ Σ∗), and by extending the Synchronization Algebra according to
the new labelling of events so as to preserve pairs of (labels of) events that can
synchronize. Also notice that the original labelling can always be recovered from
the new one, i.e., the one associated with the event structure generated by Q,
since θ is injective and hence has inverse θ−1 : Σ∗ → Σ. In [5,11], deterministic
regular event structures are called trace event structures.

Finite CCS Processes as Regular Quotient Sets. Call ESProc(P) to the
set of configurations of the event structure generated by a CCS process P of the
kind described above. The set ESProc(P) together with an equivalence relation
between CCS processes ≡CCS given simply by syntactic equality between them
is a regular quotient set representation (ESProc(P) / ≡CCS) of the event struc-
ture generated by P . Notice that since there are finitely many CCS processes,
i.e., P(P) is finite, then the event structure generated by P is of finite-branching
and the number of equivalence classes is also bounded. Finally, ≡CCS is clearly
decidable because process P is always associated with configuration ∅ and any
other configuration in ESProc(P) can be associated with only one CCS process
in P(P) as they are deterministic and have no auto-concurrency after relabelling.

Corollary 2. Model-checking regular trace event structures against Separation
Fixpoint Logic specifications is decidable.

7 Concluding Remarks and Related Work

In this paper we introduced a new kind of model-checking games where both
players are allowed to choose sets of independent elements in the underlying
model. These games, which we call trace LMSO model-checking games, are
proved to be sound and complete, and therefore determined. They can be played
on partial order models of concurrency since the one-step interleaving semantics
of such models need not be considered. We showed that, similar to [3], by defining
infinite games where both players have a local second-order power on conflict-free
sets of transitions, i.e., those in the same trace, one can obtain new positive de-
cidability results on the study of partial order models of concurrency. Indeed, we
have pushed forward the borderline of the decidability of model-checking event
structures. To the best of our knowledge the technique we presented here is the
only game-based procedure defined so far that can be used to verify all usual
temporal properties of the kind of event structures we studied. We wonder how
much further one can go in terms of logical expressive power before reaching the
MSO undecidability barrier when model-checking event structures.
Related Work. Model-checking games have been an active area of research in
the last decades (cf. [2,10]). Most approaches based on games have considered
either only interleaving models or the one-step interleaving semantics of partial

368 J. Gutierrez and J. Bradfield

order models. Our work differs from these approaches in that we deal with games
played on partial order models without considering interleaving simplifications.
However, verification procedures in finite partial order models can be undecid-
able. Nevertheless, the game presented here is decidable in the finite case.

Regarding the temporal verification of event structures, previous studies have
been done on restricted classes. Closer to our work is [5,7]. Indeed, model-
checking regular event structures [11] has turned out to be rather difficult and
previous work has shown that verifying MSO properties on these structures is
already undecidable. For this reason weaker logics have been studied. Unfor-
tunately, although very interesting results have been achieved, especially in [5]
where CTL� properties can be verified, previous approaches have not managed to
define decidable theories for a logic with enough power to express all usual tem-
poral properties as can be done with Lµ in the interleaving case, and hence with
SFL in a noninterleaving setting. The difference between [5] and the approach we
presented is that in [5] a global second-order quantification on conflict-free sets in
the partial order is permitted, whereas only a local second-order quantification
in the same kind of sets is defined here, but such a second-order power can be
embedded into fixpoint specifications, which in turn allows one to express more
temporal properties. Therefore, we have improved in terms of temporal expres-
sive power previous results on model-checking regular event structures against
a branching-time logic. Our work is the first (local) game approach in doing so.

References

1. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, vol. 3,
pp. 721–756. Elsevier, Amsterdam (2006)

2. Grädel, E.: Model checking games. Electr. Notes Theor. Comput. Sci. 67 (2002)
3. Gutierrez, J.: Logics and bisimulation games for concurrency, causality and con-

flict. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 48–62. Springer,
Heidelberg (2009)

4. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Com-
put. 127(2), 164–185 (1996)

5. Madhusudan, P.: Model-checking trace event structures. In: LICS, pp. 371–380.
IEEE Computer Society, Los Alamitos (2003)

6. Nielsen, M., Winskel, G.: Models for concurrency. In: Handbook of Logic in Com-
puter Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)

7. Penczek, W.: Model-checking for a subclass of event structures. In: Brinksma, E.
(ed.) TACAS 1997. LNCS, vol. 1217, pp. 145–164. Springer, Heidelberg (1997)

8. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: LICS,
pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

9. Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR
1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

10. Stirling, C.: Modal and Temporal Properties of Processes. LNCS. Springer,
Heidelberg (2001)

11. Thiagarajan, P.S.: Regular trace event structures. Technical report, BRICS (1996)
12. Winskel, G.: Event structure semantics for ccs and related languages. In: Nielsen,

M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 561–576. Springer,
Heidelberg (1982)

Reachability in Succinct and Parametric
One-Counter Automata

Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell

Oxford University Computing Laboratory, UK
{chrh,kreutzer,joel,jbw}@comlab.ox.ac.uk

Abstract. One-counter automata are a fundamental and widely-studied
class of infinite-state systems. In this paper we consider one-counter au-
tomata with counter updates encoded in binary—which we refer to as
the succinct encoding. It is easily seen that the reachability problem for
this class of machines is in PSpace and is NP-hard. One of the main
results of this paper is to show that this problem is in fact in NP, and
is thus NP-complete.

We also consider parametric one-counter automata, in which counter
updates be integer-valued parameters. The reachability problem asks
whether there are values for the parameters such that a final state can
be reached from an initial state. Our second main result shows decid-
ability of the reachability problem for parametric one-counter automata
by reduction to existential Presburger arithmetic with divisibility.

1 Introduction

Counter automata are a fundamental computational model, known to be equiv-
alent to Turing machines [19], and there has been considerable interest in sub-
classes of counter machines for which reachability is decidable, such as Petri
nets, one-counter automata and flat counter automata [5,18]. As originally con-
ceived by Minsky, counters are updated either by incrementation or decrementa-
tion instructions. However, for many applications of counter machines, including
modelling computer programs, it is natural to consider more general types of up-
dates, such as adding integer constants to a counter [3,5,16] or adding integer
parameters [4,12]. Parametric automata are used in various synthesis problems,
and to model open programs, whose behaviour depends on values input from
the environment [2]. In [20] parameters are also used to model resources (e.g.,
time, memory, dollars) consumed by transitions. The reachability problem for
parametric counter automata asks whether there exist values of the parameters
such that a given configuration is reachable from another given configuration.

In this paper we show NP-completeness of the reachability problem for one-
counter automata in which counters can be updated by adding integer constants,
where the latter are encoded in binary. We also show decidability of reachabil-
ity for parametric one-counter automata by reduction to existential Presburger
arithmetic with divisibility [17]. We defer consideration of the complexity of the
latter problem to the full version of this paper.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 369–383, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

370 C. Haase et al.

1.1 Related Work

The verification literature contains a large body of work on decidability and
complexity for various problems on restricted classes of counter automata. The
work that is closest to our own is that of Demri and Gascon on model checking
extensions of LTL over one-counter automata [8]. They consider automata with
one integer-valued counter, with updates encoded in unary, and with sign tests
on the counter. They show that reachability in this model is NL-complete. De-
termining the complexity of reachability when updates are encoded in binary is
posed as an open problem by Demri in [7], Page 61, Problem 13. Since this last
problem assumes an integer-valued counter with sign tests, it is more general
than the one considered in our Theorem 1, and it remains open.

Another work closely related to our own is that of Ibarra, Jiang, Tran and Wang
[12], which shows decidability of reachability for a subset of the class of determin-
istic parametric one-counter automata with sign tests. The decidability of reach-
ability over the whole class of such automata is stated as an open problem in [12].
Note that although we do not allow negative counter values and sign tests, we allow
nondeterminism. Thus our Theorem 4 is incomparable with this open problem.

Aside from reachability, similarity and bisimilarity for one-counter automata
and one-counter nets have been considered in [1,13,14], among others.

For automata with more than one counter, other restrictions are required to
recover decidability of the reachability problem: for example, flatness [5,16] and
reversal boundedness [11]. Bozga, Iosif and Lakhnech [4] show decidability of the
reachability problem for flat parametric counter automata with a single loop, by
reduction to a decidable problem concerning quadratic diophantine equations.
Such systems of equations also feature in the work of Ibarra and Dang [11].
They exhibit a connection between a decidable class of quadratic diophantine
equations and a class of counter automata with reversal-bounded counters.

2 One-Counter Automata

A one-counter automaton is a nondeterministic finite-state automaton acting
on a single counter which takes values in the nonnegative integers. Formally a
one-counter automaton is a tuple C = (V,E, λ), where V is a finite set of control
locations, E ⊆ V × V is a finite set of transitions, and λ : E → Op is a function
that assigns to each transition an operation from the set Op = {zero}∪{add(a) :
a ∈ Z}. The operation zero represents a zero test on the counter, whereas add(a)
denotes the operation of adding a to the value of the counter.

A configuration of the counter automaton C is a pair (v, c), where v ∈ V is
a control location and c ∈ N is the value of the counter. The transition relation
on the locations of C induces an unlabelled transition relation on configurations
in the obvious way: an edge (v, v′) ∈ E with labelled zero yields a single transi-
tion (v, 0) −→ (v′, 0), while the same edge with label add(a) yields a transition
(v, c) −→ (v′, c+ a), provided that both c and c+ a are both non-negative.

A computation π of a counter automaton C is a finite sequence of transitions
between configurations

Reachability in Succinct and Parametric One-Counter Automata 371

π = (v0, c0) −→ (v1, c1) −→ · · · −→ (vn, cn) .

We define the length of π to be length(π) = n. We sometimes write π : (v0, c0)
−→∗ (vn, cn) or (v0, c0)

π−→ (vn, cn) to denote that π is a computation from
(v0, c0) to (vn, cn).

The reachability problem asks, given a one-counter automaton C and con-
figurations (v, c) and (v′, c′), whether there is a computation starting in (v, c)
and ending in (v′, c′). The control-state reachability problem asks, given C
and two locations v and v′, whether there is a computation from (v, 0) to (v′, c′)
for some counter value c′. It is easily seen that both reachability problems are
reducible to each other in logarithmic space.

In determining the complexity of these problems we assume a standard en-
coding of counter automata and their configurations—in particular, we suppose
that integers are encoded in binary. Given a counter machine C, we denote by |C|
the length of the encoding of C. It is easy to see that the shortest computation
between two given locations may have length exponential in |C|. For example, in
the automaton in Figure 1 the unique path from (v0, 0) to (v1, 0) has length 2n.

v0 v1

add(1)

add(−2n)

Fig. 1.

The first observation is the following.

Proposition 1. The reachability problem for one-counter automata is NP-hard.

Proof. The proof is by reduction from the subset sum problem [9]. Recall that
an instance of the latter consists of a set of positive integers S = {a1, a2, . . . , an}
and a goal c, and the question asked is whether there exists a subset T ⊆ S such
that

∑
T = c. This reduces to the question of whether configuration (vn, c) is

reachable from (v0, 0) in the one-counter automaton in Figure 2. "#

Proposition 1 crucially depends on encoding integers in binary. Indeed, it fol-
lows from Proposition 2, below, that if integers are encoded in unary then the
reachability problem becomes NL-complete, since it reduces to reachability in a
polynomial-size graph.

The first main contribution of this paper is to establish an upper bound
for the complexity of the reachability problem, matching the lower bound in
Proposition 1.

Theorem 1. The reachability problem for one-counter automata is in NP.

The idea behind the proof of Theorem 1 is as follows. Suppose one is given a one-
counter automaton C, and two configurations (v, c) and (v′, c′). One can show
that if (v′, c′) is reachable from (v, c), then there is a computation π from (v, c)

372 C. Haase et al.

v0 · · · vn
add(0)

add(0)
add(a1)

add(0)

add(0)
add(a2)

add(0)

add(0)
add(an)

Fig. 2. Reduction from Subset Sum to reachability

to (v′, c′) whose length is bounded by an exponential function in |C| and the bit
lengths of c and c′. This computation has a succinct certificate: a network flow
which records for each edge of C how many times it is taken in π. This flow has
a polynomial-size description, and so it can be guessed in polynomial time. The
main difficulty in fleshing out this idea is the problem of how to validate such a
certificate; that is, given a flow, to determine in polynomial time whether it arises
from a valid computation of the counter machine. To solve this problem we define
a subclass of such flows with certain structural properties, called reachability
certificates. We show that validating reachability certificates can be done in NP,
and that the computation π, above, can, without loss of generality, be divided
into sub-computations, each of which generates a reachability certificate.

2.1 Parametric Counter Automata

A parametric one-counter automaton is a tuple C = (V,E,X, λ), where
the sets V and E of vertices and edges are as in the definition of a one-counter
automaton, X is a set of non-negative integer parameters, and the labelling
function λ : E → Op has codomain

Op = {zero} ∪ {add(a), add(x), add(−x) : a ∈ Z, x ∈ X} .

The only difference with one-counter automata is the ability to add or subtract
the value of a parameter x ∈ X to the counter. Each instantiation of the param-
eters yields a different one-counter automaton.

The reachability problem for parametric one-counter automata asks,
given configurations (v, c) and (v′, c′), whether there exist values for the parame-
ters such that there is a computation from (v, c) to (v′, c′). We exhibit reductions
in both directions between this problem and the satisfiability problem for the
existential fragment of Presburger arithmetic with divisibility, i.e., the ex-
istential theory of the structure (Z, <, | ,+, 0, 1), where | is the binary divides
predicate. Lipshitz [17] gave a procedure for deciding satisfiability of this logic.
Thus we obtain our second main result.

Theorem 2. The reachability problem for parametric one-counter automata is
decidable.

The reduction from existential Presburger arithmetic with divisibility to the
reachability problem for parametric one-counter automata is fairly straightfor-
ward, and is detailed below. It follows a similar pattern to [2], which reduces
existential Presburger arithmetic with divisibility to the reachability problem
for two-clock parametric timed automata.

Reachability in Succinct and Parametric One-Counter Automata 373

Let ϕ be a quantifier-free formula of Presburger arithmetic with divisibility.
Without loss of generality, assume that ϕ is a positive Boolean combination of
atomic formulas, A = B, A < B, A | B and ¬(A | B), where A and B are
linear expressions in variables x1, . . . , xn. By representing arbitrary integers as
differences of positive integers we can also assume that the variables x1, . . . , xn

range over the positive integers.
For each such atomic sub-formula ψ we construct a one-counter automaton

Cψ, with parameters x1, . . . , xn and distinguished locations u and v, such that
(v, 0) is reachable from (u, 0) iff ψ is satisfied. We can then combine the au-
tomata representing atomic sub-formulas using sequential composition to model
conjunction and nondeterminism to model disjunction.

For an atomic formula ψ ≡ A | B, the automaton Cψ first guesses the sign of
A and B. Assume that A and B are guessed to be non-negative; the remaining
cases are similar. In this case the automaton simply loads B into its counter and
repeatedly subtracts A until the counter reaches 0.

For an atomic formula ψ ≡ ¬(A | B) the automaton Cψ first guesses the sign
of A and B. Again, assume that A and B are non-negative. Then the automaton
loads B into its counter and repeatedly subtracts A until the counter reaches a
value strictly between 0 and A. It can be checked whether the counter is strictly
between 0 andA by performing the following sequence of transitions: subtract one;
add two; add one a nondeterministic number of times; subtract A; test for zero.

Handling the other atomic formulas is equally straightforward.

3 Weighted Graphs and Flow Networks

In this section we recall some standard definitions about weighted graphs and
flow networks.

A weighted graph is a tuple G = (V,E,w), where V is a set of vertices,
E ⊆ V × V is a set of directed edges, and w : E → Z assigns an integer weight
to each edge. Given such a graph and two distinguished vertices s, t ∈ V , a path
π from s to t, also called an s-t path, is a sequence of vertices π = v0v1 . . . vn

with v0 = s, vn = t and (vi, vi+1) ∈ E for 0 ≤ i < n. A path with the same first
and last vertices is called a cycle. To indicate that π is an s-t path we often
write π : s −→∗ t. If π : s −→∗ t and π′ : t −→∗ u, then π · π′ denotes the path
from s to u obtained by composing π and π′. Given a cycle � on vertex v, we
define �0 = v (the trivial cycle on v) and �n+1 = �n · � for n ∈ N.

The weight of a path π, denoted weight(π) is the sum of the weights of the
edges in π. If � is a cycle such that weight(�)>0 then we say that � is a positive
cycle, and if weight(�)< 0 then we say that � is a negative cycle.

Given a weighted graph G = (V,E,w), with distinguished vertices s and t, a
flow from s to t, also called an s-t flow, is a function f : E → N satisfying the
following flow conservation condition for each vertex u ∈ V − {s, t}:∑

(v,u)∈E

f(v, u) =
∑

(u,v)∈E

f(u, v) .

374 C. Haase et al.

The value |f | of flow f is the net flow out of the source s (equivalently the net
flow into the sink t), that is,

|f | =
∑

(s,u)∈E

f(s, u) −
∑

(u,s)∈E

f(u, s) .

The weight of the flow f is defined to be

weight(f) =
∑
e∈E

f(e) · w(e) .

An s-t path π determines an s-t flow fπ, where for each edge e ∈ E, f(e) is
defined to be the number of times edge e is taken in π. We call the class of flows
that arise in this way path flows. Just as paths can be sequentially composed,
path flows can be composed by summation: given an s-t path flow f and a t-u
path flow g, we define a s-u path flow f + g by (f + g)(e) = f(e) + g(e) for each
edge e ∈ E.

The skew transpose Gop of G is the weighted graph obtained by multiplying
all edge weights by −1 and then reversing the direction of each edge. A path
flow f from s to t in graph G induces a path flow fop from t to s in Gop , where
fop(u, v) = f(v, u).

4 Reachability Certificates

The following result [15, Lemma 42] shows that the reachability problem for
one-counter machines is in PSpace.

Proposition 2. There is a polynomial P such that given a one-counter au-
tomaton C and configurations (v, c) and (v′, c′), if (v, c) can reach (v′, c′) then
there is computation from (v, c) to (v′, c′) of length at most 2P (n), where n is the
maximum of |C| and the bit lengths of c and c′.

Let C = (V,E, λ) be a one-counter automaton. For proving NP-membership of
the reachability problem, it is no loss of generality to assume that C has no zero
tests. Indeed, since we may assume that each zero test is taken at most once,
by guessing the order in which the zero tests are taken, a reachability query on
a one-counter automaton with zero tests can be reduced to a linear number of
reachability queries on the same automaton with zero tests erased. Now a one-
counter automaton without zero tests is nothing but a weighted graph, where the
weight of an edge labelled add(a) is a ∈ Z. For emphasis, we denote automaton
C qua weighted graph by GC .

Recall that a computation π of C determines a path flow fπ in GC , mapping
each edge to its multiplicity in π. If the length of π is bounded by an exponential
function in the size of C, then fπ has a description that is polynomial in the size
of C. We regard fπ as a polynomial reachability certificate. In this section we
consider the problem of how to validate such a certificate in polynomial time;
that is, given configurations (v, c) and (v′, c′), we seek necessary and sufficient

Reachability in Succinct and Parametric One-Counter Automata 375

conditions on a flow f for there to exist a computation π from (v, c) to (v′, c′)
with f = fπ, and we require that these conditions be polynomial-time checkable.

As a starting point, we recall the following straightforward variant of Euler’s
theorem.

Proposition 3. Given vertices s
= t, an s-t flow f is a path flow if and only if
|f | = 1 and the subgraph induced by the set of edges {e ∈ E : f(e)> 0} ∪ {(t, s)}
is strongly connected.

Proposition 3 gives a way to check in linear time, given a flow f , whether there
exists a path π such that f = fπ. The difficult part is then to determine whether
π can be chosen such that it corresponds to a computation between given source
and target configurations (v, c) and (v′, c′). Informally speaking, we need to
know that taking π from (v, c) does not cause the counter to go negative. More
formally, given a path π = v0v1 . . . vn, define vertex vj to be a minimum of π
if the path π′ = v0v1 . . . vj has minimal weight among all prefixes of π; in this
case we define drop(π) to be weight(π′). Then π corresponds to a computation
from (v, c) to (v′, c′) if and only if drop(π) ≥ −c and weight(π) = c′ − c.

Given a path π from v to v′, if there is a computation over π starting in
configuration (v, c) and ending in configuration (v′, c′), we say that π can be
taken from (v, c) and taken to (v′, c′). Next we introduce two key notions
about flows which will help us to state sufficient conditions for a flow to be
realisable by a computation between given configurations.

Given a flow f in GC , a cycle in f is a cycle � in GC such that f assigns
positive flow to each edge in �. If � has positive (resp. negative) weight, then we
speak of f having a positive (resp. negative) cycle.

Let f be a path flow from s to t. A decomposition of f consists of an
enumeration v1, . . . , vn of the set set {v : ∃u.f(u, v)>0} of vertices with incoming
flow, together with a sequence of flows f0, . . . , fn−1 such that (i) f0 is a path
flow from s to v1, (ii) fi is a path flow from vi to vi+1 for 1 ≤ i ≤ n − 1,
(iii) f = f0 + f1 + . . . + fn−1, and (iv) if i ≤ j then fj directs no flow into
vertex vi.

Proposition 4. Let (v, c) and (v′, c′) be configurations of C and f be a path flow
in GC from v to v′ such that weight(f) = c′ − c.

(i) If f has no positive cycles, then f = fπ for some computation π : (v, c) −→∗

(v′, c′) if and only if there is a decomposition f = f0 + . . . + fn−1 such that∑j
i=0 weight(fi) ≥ −c, 0 ≤ j < n.

(ii) If f has no negative cycles, then f = fπ for some computation π : (v, c) −→∗

(v′, c′) if and only if there is a decomposition fop = f0 + · · · + fn−1 in Gop
C

such that
∑j

i=0 weight(fi) ≥ −c′, 0 ≤ j < n.

Proof (sketch)

(i) Since f has no positive cycles, any path π in GC such that f = fπ also has
no positive cycles. Thus in a computation along π, the net change in the
counter value between consecutive visits to a given location is less than or

376 C. Haase et al.

equal to 0. Thus to check that the counter never becomes negative, we need
only verify that it is non-negative the last time π visits any given location.
It is not hard to see that there exists a path π satisfying this last condition if
and only if f has a flow decomposition satisfying the condition in (i) above.

(ii) This follows by applying the result stated in Part (i) to the flow fop on the
skew transpose of GC . "#

In a slightly different vein to Proposition 4, Proposition 5 gives a simple condition
on GC , rather than on the flow f , that guarantees that (v′, c′) is reachable from
(v, c).

Proposition 5. Let (v, c) and (v′, c′) be configurations of C and f be a path flow
in GC from v to v′ such that weight(f) = c′ − c. If there is a positive cycle �
that can be taken from (v, c), and a negative cycle �′ that can be taken to (v′, c′),
then (v′, c′) is reachable from (v, c).

Proof (sketch). The idea is simple. By definition, there exists a path π from
v to v′ in GC such that f = fπ. Now π need not yield a computation from
(v, c) to (v′, c′) since it may be that drop(π) ≤ −c. However we can circumvent
this problem, and build a computation from (v, c) to (v′, c′), by first pumping
up the value of the counter by taking the positive cycle � a number of times,
then traversing π, and then pumping down the value of the counter by taking
the negative cycle �′ a number of times. Note that if we take the positive cycle
−k ·weight(�′) times, and the negative cycle k ·weight(�) times, for some positive
integer k, then the net effect on the counter is 0. "#

A flow f is called a reachability certificate for two configurations (v, c) and
(v′, c′) if there exists a path π : (v, c) −→∗ (v′, c′) such that f = fπ and one
of the following three conditions holds: (i) f has no positive cycles; (ii) f has
no negative cycles; (iii) there exists a positive cycle � that can be taken from
(v, c) and a negative cycle �′ that can be taken to (v′, c′). Depending on which
of the above three cases holds, we respectively call fπ a type-1, type-2 or type-3
reachability certificate. In any case, we say that the computation π yields the
reachability certificate fπ. The following corollary of Propositions 4 and 5 gives
an upper bound on the complexity of recognising a reachability certificate.

Corollary 1. Given a one-counter machine C, two configurations (v, c) and
(v′, c′), and a path flow f in GC, the problem of deciding whether f is a reacha-
bility certificate for (v, c) and (v′, c′) is in NP.

Proof. It can be checked in polynomial time whether f has any positive cycles
or any negative cycles, e.g., using the Bellman-Ford algorithm [6]. If f has no
positive cycles, then by Proposition 4(i) to show that f is a type-1 reachability
certificate we need only guess a decomposition f = f0 + · · · + fn−1 such that∑j

i=0 weight(fi) ≥ −c, 0 ≤ j<n. The case that f has no negative cycles similarly
uses Proposition 4(ii).

It remains to consider type-3 reachability certificates. To this end, observe
that there is a positive cycle � that can be taken from (v, c) if and only if there

Reachability in Succinct and Parametric One-Counter Automata 377

is a positive simple cycle in the same strongly connected component of GC as v
that can be reached and taken from (v, c). This last condition can be checked
in polynomial time using a small modification of the Bellman-Ford algorithm.
By running the same algorithm on the skew transpose of GC , it can be checked
whether there is a negative cycle �′ that can be taken to (v′, c′). "#

Note that we do not assert that the existence of a computation π : (v, c) −→∗

(v′, c′) guarantees that there is a reachability certificate for (v, c) and (v′, c′).
However, in the next section we show that the existence of a computation from
(v, c) to (v′, c′) can be witnessed using at most three polynomial-size reachability
certificates.

5 NP-Membership

Based on the ideas developed in the previous section, we are interested in paths
π for which the associated flow fπ has no positive cycles or no negative cycles. It
is important to note here that fπ may have positive cycles even though π itself
does not have any positive cycles (and similarly for negative cycles). We will use
the following proposition to overcome this problem.

Proposition 6. Let π be a computation from (v, c) to (v′, c′) in which all cycles
are negative. Then either the corresponding flow fπ has no positive cycles, or
there is a computation θ = θ1 · θ2 · θ3 from (v, c) to (v′, c′) such that length(θ1)<
length(π) and θ2 is a positive cycle.

Proof. Suppose that fπ contains a positive cycle �. Let u ∈ V be the first vertex
of � that π reaches, and let the counter value be y when π first reaches u. We
claim that there is a positive cycle in GC that can be taken from configuration
(u, y).

If � cannot be taken from (u, y) then we argue as follows. Factor � as � =
u

ρ1−→ w
ρ2−→ u, with w a minimum of � (cf. Figure 3, which depicts the height of

Fig. 3. Decomposition of the loop �

378 C. Haase et al.

the counter as � is traversed). Then we have weight(ρ1)< −y. But π must visit
w after it first visits u (since u is the first vertex of � visited by π), so there is a
path ρ3 : u −→∗ w in GC such that weight(ρ3) ≥ drop(ρ3) ≥ −y > weight(ρ1).
Now consider the cycle �′ : u

ρ3−→ w
ρ2−→ u. The preceding inequality gives

weight(�′) = weight(ρ3) + weight(ρ2)
> weight(ρ1) + weight(ρ2)
= weight(�) ,

so that �′ is a positive cycle. We also have

drop(�′) ≥ drop(ρ3) + drop(ρ2)
≥ −y + 0
= −y ,

whence �′ can be taken from (u, y). This proves the claim.
Next we observe that the first occurrence of u in π actually lies on a negative

cycle in π. This is because π must visit u again, and all cycles in π are negative
by assumption. Thus we can factor π as

(v, c) π1−→ (u, y) π2−→ (u, y′) π3−→ (v′, c′)

such that there is a positive cycle �′ that can be taken from (u, y), and with π2
a negative cycle.

To define the required computation θ = θ1 · θ2 · θ3, we reuse an idea from
the proof of Proposition 5. Write weight(�′) = p and weight(π2) = −q, where
p, q>0. Then define θ1 = π1, θ2 = (�′)q and θ3 = (π2)p+1 ·π3. Clearly length(θ1)<
length(π) and θ2 is a positive cycle, as required. Since the positive cycle (�′)q

is cancelled out by the negative cycle (π2)p, θ is a computation from (v, c) to
(v′, c′). "#

We also have the following dual of Proposition 6.

Proposition 7. Let π be a computation from (v, c) to (v′, c′) in which all cycles
are positive. Then either the corresponding flow fπ has no negative cycles, or
there is a computation θ = θ1 · θ2 · θ3 from (v, c) to (v′, c′) such that θ2 is a
negative cycle and length(θ3)< length(π).

Next we exploit Propositions 6 and 7 to show that the reachability of a con-
figuration (v′, c′) from a configuration (v, c) can be witnessed by at most three
reachability certificates.

Proposition 8. If (v′, c′) is reachable from (v, c), then there exists a computa-
tion π from (v, c) to (v′, c′) that can be written π = π1 · π2 · π3, such that π1, π2
and π3 each yield reachability certificates.

Proof. Let π = v0v1 . . . vn be (the path underlying) a computation from (v, c)
to (v′, c′). Without loss of generality we assume that π contains no zero-weight

Reachability in Succinct and Parametric One-Counter Automata 379

cycles. If π contains a positive cycle, then define i1 such that vi1 is the first
vertex that appears in a positive cycle in π; otherwise let i1 = n. Write π1 =
v0, v1, . . . , vi1 and assume that π is chosen such that length(π1) is minimised.
Then π1 contains only negative cycles; thus from Proposition 6 and the mini-
mality of length(π1) we deduce that the flow fπ1 has no positive cycles. We now
consider two cases.

Case (i). i1 = n. Then π = π1, and fπ1 is a reachability certificate.

Case (ii). i1<n. If the terminal segment of π from vi1 to vn contains a negative
cycle, then define i2 ≥ i1 such that vi2 is the last vertex that appears in a negative
cycle in π; otherwise let i2 = i1. Write π3 = vi2vi2+1 . . . vn. Assume π is chosen,
subject to the original choice to minimise length(π1), such that length(π3) is
minimised. Then π3 contains only positive cycles; thus from Proposition 7 and
the minimality of length(π3) we deduce that the flow fπ3 has no negative cycles.
We now consider two sub-cases.

Case (ii)(a). i1 = i2. Then π = π1 ·π3, and fπ1 and fπ3 are both reachability
certificates.
Case (ii)(b). i1<i2. Then write π2 = vi1vi1+1 . . . vi2 . Starting in configura-
tion (v, c), let (vi1 , ci1) be the configuration of C after executing π1, and let
(vi2 , ci2) be the configuration of C after further executing π2. By definition
of π2 there is a positive cycle that can be taken from (vi1 , ci1) and a negative
cycle that can be taken to (vi2 , ci2). Thus fπ2 is a reachability certificate and
π = π1 · π2 · π3 is the sequential composition of three paths, each of which
yields a reachability certificate. "#

We can now complete the proof of the first main result of the paper.

Theorem 3. The reachability problem for one-counter automata is in NP.

Proof. Let C be a one-counter automaton with configurations (v, c) and (v′, c′).
If (v′, c′) is reachable from (v, c) then, by Proposition 8, there is a computation
π = π1 ·π2 ·π3 from (v, c) to (v′, c′) such that π1, π2 and π3 each yield reachability
certificates. Moreover we can assume, without loss of generality, that the lengths
of π1, π2 and π3 are bounded by 2P for some polynomial P in |C| and the bit
lengths of c and c′. The bounds on π1 and π3 follow from the fact that π1 has
only negative cycles and π3 has only positive cycles. The bound on π2 follows
from Proposition 2. Thus the reachability certificates corresponding to π1, π2
and π3 all have polynomial size, and, by Corollary 1, can be guessed and verified
in polynomial time. "#

6 Parametric Counter Automata

In this section we exploit the results developed in Section 5 to show that the
reachability problem for parametric one-counter automata can be reduced to
the satisfiability problem for a decidable extension of existential Presburger
arithmetic.

380 C. Haase et al.

Let x1, . . . , xn be a set of integer variables. A linear polynomial is a poly-
nomial of the form a0 + a1x1 + . . .+ anxn, where the ai are integer coefficients.
A linear constraint is an inequality of the form a0 + a1x1 + . . . + anxn ≤ 0.
Define S ⊆ Z

n to be an (N-)linear set if there exist vectors v0, v1, . . . , vt ∈ Z
n

such that S = {v : v = v0 + b1v1 + . . . + bnvn, bi ∈ N}. A semilinear set is a
finite union of linear sets.

Presburger arithmetic is the first-order theory of the structure (Z, <,+, 0, 1).
It is well-known that the satisfiability problem for Presburger arithmetic is decid-
able, and that subsets of Z

k definable by formulas of Presburger arithmetic are
effectively semilinear. Adding multiplication to Presburger arithmetic leads to
undecidability, as does adding the divides predicate n | m. However Lipshitz [17]
gave a decision procedure for the satisfiability problem for the existential frag-
ment of Presburger arithmetic with divisibility. This last result has been used
to show the decidability of certain problems concerning systems of quadratic
Diophantine equations [10,11]. We give a simple application of this kind below.

Let {y1, . . . , yk} and {x1, . . . , xn} be disjoint sets of integer variables. For
1 ≤ i ≤ k let Ri denote the quadratic polynomial yiAi + Bi, where Ai and Bi

are linear polynomials in x1, . . . , xn. Furthermore, let P be a subset of Z
k defined

by a formula of Presburger arithmetic. We consider the following problem:

Problem A. Given R1, . . . , Rk and P , are there values for x1, . . . , xn and
y1, . . . , yk such that (R1, . . . , Rk) ∈ P?

Lemma 1. Problem A is decidable.

Proof. The proof is by reduction to the satisfiability problem for the existential
fragment of Presburger arithmetic with divisibility.

Note that P ⊆ Z
k, being Presburger definable, is effectively semilinear. By

case splitting we may assume that P defines a linear set, say P = {v : v =
v0 + a1v1 + . . . + atvt, ai ∈ N} where v0, . . . , vt ∈ Z

k. Thus, introducing new
nonnegative integer variables w1, . . . , wt, we seek a solution to the following
system of equations

y1A1 +B1 = v0,1 + w1v1,1 + . . . + wtvt,1

y2A2 +B2 = v0,2 + w1v1,2 + . . . + wtvt,2

...
ykAk +Bk = v0,k + w1v1,k + . . .+ wtvt,k

But this is equivalent to finding a solution to the following formula in Presburger
arithmetic with divisibility:

k∧
i=1

Ai | (v0,i + w1v1,i + . . .+ wtvt,i −Bi) ∧
t∧

i=1

wi ≥ 0 .

Remark 1. Note that in Problem A, each variable yi occurs in a single quadratic
polynomial. It immediately follows from a result of Ibarra and Dang [10] that
generalising Problem A to allow the same variable yi to appear in two separate
quadratic polynomials leads to an undecidable problem.

Reachability in Succinct and Parametric One-Counter Automata 381

6.1 Reachability

Let C = (V,E,X, λ) be a parametric one-counter automaton, and assume for
now that C does not have any zero tests. Recall that the reachability problem
asks whether there is a computation between given configurations (v, c) and
(v′, c′) for some instantiation of the parameters. By Proposition 8, the existence
of such a computation is witnessed by (at most) three reachability certificates.
Thus our strategy to show decidability of reachability is to phrase the existence
of each of the three types of reachability certificate as an instance of Problem
A, with variables representing the parameters. We illustrate the idea for type-1
certificates, the other cases being very similar.

Recall that a type-1 reachability certificate for configurations (v, c) and (v′, c′)
consists of a path flow f from v to v′ such that f has no positive cycles,
weight(f) = c′ − c, and there is a decomposition f = f0 + . . . + fn−1, such
that

n−1∧
j=0

(
j∑

i=0

weight(fi) ≥ −c
)
. (1)

In encoding the existence of such an f , let us temporarily assume that the
support Ei

def= {e ∈ E : fi(e) > 0} of each flow fi has been fixed beforehand,
subject to the requirement that f = f0 + · · · fn−1 be a flow decomposition. Thus
it only remains to determine the flow along each edge of Ei.

Let the set of edges E have cardinality m. We introduce a set of nonnegative
integer variables Y (i) = {y(i)

1 , y
(i)
2 , . . . , y

(i)
m } to represent the flow fi, 0 ≤ i < n.

The idea is that each variable represents the flow along a given edge. The flow
conservation conditions on fi and the requirement that fi have support Ei can
be expressed as a system S(i) of linear constraints on the set of variables Y (i).

We also have a set of integer variables X = {x1, x2, . . . , xk} representing the
parameters of C. The requirement that f have no positive cycles can be expressed
as a system of linear constraints:

Aj ≤ 0 , j = 0, . . . , t , (2)

where Aj is a linear polynomial in the set of variables X , and there is one
constraint for each simple cycle of f (exactly which equations need to be written
here, which depends on the simple cycles in f , is determined by the supports
E1, E2, . . . , En−1.)

The weight of flow fi can then be expressed as a quadratic expression in the
set of variables X ∪ Y (i):

weight(fi) =
m∑

j=1

y
(i)
j αj [αj ∈ Z ∪X] . (3)

The next step is to eliminate the system of constraints S(i) by a change of
variables. Note that the constraints S(i) on the set of variables Y (i) define a

382 C. Haase et al.

linear set, thus we can introduce a set of nonnegative integer variables U (i) =
{u(i)

1 , u
(i)
2 , . . . , u

(i)
li
} and linear polynomials B(i)

j , 1 ≤ j ≤ m, in U (i), such that

(y(i)
1 , . . . , y

(i)
m) satisfies S(i) iff y

(i)
j = B

(i)
j for some choice of the variables in U (i).

Applying this change of variables to Equation (3) and rearranging terms yields

weight(fi) =
li∑

j=1

u
(i)
j C

(i)
j +D(i) , (4)

where the C(i)
j and D(i) are linear polynomials in X .

We can now formulate the existence of a type-1 reachability certificate as
an instance of Problem A. To this end we introduce a family Ri,j of quadratic

polynomials over the set of variables X ∪U (i), where Ri,j
def= u

(i)
j Cj for 0 ≤ i<n

and 1 ≤ j ≤ li. By (4) the weight of each flow fi can be written as a linear
expression in D(i) and Ri,j . Thus requirements (1) and (2) can be expressed
as a Presburger definable relation P on the Ai, D(i) and Ri,j , according to the
format of Problem A.

Finally, we note that we can drop our assumption of the fixity of the supports
E1, E2, . . . , En−1 by case splitting, using the closure of Presburger definable sets
under disjunction. Thus we can phrase the existence of a type-1 reachability
certificate between two given configurations as an instance of Problem A.

In a similar fashion, the existence of type-2 and type-3 reachability certificates
can also be translated into instances of Problem A. Combining with Proposition 8
we derive our second main result:

Theorem 4. The reachability problem for parametric one-counter automata is
decidable.

References

1. Abdulla, P.A., Cerans, K.: Simulation is decidable for one-counter nets. In:
Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 253–
268. Springer, Heidelberg (1998)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc.
STOC 1993, pp. 592–601. ACM, New York (1993)

3. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

4. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052,
pp. 577–588. Springer, Heidelberg (2006)

5. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg
(1998)

6. Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. MIT Press and
McGraw-Hill (1990)

Reachability in Succinct and Parametric One-Counter Automata 383

7. Demri, S.: Logiques pour la spécification et vérification. Mémoire d’habilitation,
Université Paris 7 (2007)

8. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. In: Proc. TIME 2007. IEEE Computer Society Press, Los Alamitos (2007)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

10. Ibarra, O.H., Dang, Z.: On two-way finite automata with monotonic counters and
quadratic diophantine equations. Theor. Comput. Sci. 312(2-3), 359–378 (2004)

11. Ibarra, O.H., Dang, Z.: On the solvability of a class of diophantine equations and
applications. Theor. Comput. Sci. 352(1), 342–346 (2006)

12. Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-
way counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson, R.
(eds.) ICALP 1993. LNCS, vol. 700, pp. 313–324. Springer, Heidelberg (1993)

13. Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-
checking and model-checking of one-counter automata. Information Computa-
tion 188(1), 1–19 (2004)

14. Kučera, A.: Efficient verification algorithms for one-counter processes. In: Welzl,
E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 317.
Springer, Heidelberg (2000)

15. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational
theories with homomorphisms. In: Research Report LSV-04-16. LSV, ENS de
Cachan (2004)

16. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

17. Lipshitz, L.: The diophantine problem for addition and divisibility. Transaction of
the American Mathematical Society 235, 271–283 (1976)

18. Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Proc.
STOC 1981, pp. 238–246. ACM, New York (1981)

19. Minsky, M.: Recursive unsolvability of post’s problem of “tag” and other topics in
theory of turing machines. Annals of Math. 74(3) (1961)

20. Xie, G., Dang, Z., Ibarra, O.H.: A solvable class of quadratic diophantine equa-
tions with applications to verification of infinite-state systems. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 668–680. Springer, Heidelberg (2003)

Winning Regions of Pushdown Parity Games:
A Saturation Method

Matthew Hague and C.-H. Luke Ong

Oxford University Computing Laboratory

Abstract. We present a new algorithm for computing the winning region of a par-
ity game played over the configuration graph of a pushdown system. Our method
gives the first extension of the saturation technique to the parity condition. Fi-
nite word automata are used to represent sets of pushdown configurations. Start-
ing from an initial automaton, we perform a series of automaton transformations
to compute a fixed-point characterisation of the winning region. We introduce
notions of under-approximation (soundness) and over-approximation (complete-
ness) that apply to automaton transitions rather than runs, and obtain a clean proof
of correctness. Our algorithm is simple and direct, and it permits an optimisation
that avoids an immediate exponential blow up.

1 Introduction

Pushdown systems — finite-state transition systems equipped with a stack — are an
old model of computation that have recently enjoyed renewed interest from the soft-
ware verification community. They accurately model the control flow of first-order re-
cursive programs [7] (such as C and Java), and lend themselves readily to algorithmic
analysis. Pushdown systems have played a key rôle in the automata-theoretic approach
to software model checking [1,5,10,14]. Considerable progress has been made in the
implementation of scalable model checkers of pushdown systems. These tools (e.g. Be-
bop [11] and Moped [10]) are an essential back-end component of such model checkers
as SLAM [12].

The modal mu-calculus is a highly expressive language for describing properties of
program behaviour (all standard temporal logics in verification are embeddable in it).
In a seminal paper [3] at CAV 1996, Walukiewicz showed that local modal mu-calculus
model checking of pushdown systems, or equivalently [4] the solution of pushdown
parity games (i.e. parity games over the configuration graphs of pushdown systems), is
EXPTIME-complete. His method reduces pushdown parity games to finite parity games
by a kind of powerset construction, which is immediately exponential in size. Whilst
local model checking asks if a designated state (of a pushdown system) satisfies a given
property, global model checking computes a finite representation of the set of states
satisfying the property. The latter is equivalent to computing Éloı̈se’s winning region
of a pushdown parity game, which is the problem that we have set ourselves here. It
is worth noting that global model checking used to be the norm in verification (CTL
and many symbolic model checkers still perform global model checking). While local
model checking can be expected to have better complexity, global model checking is im-
portant when repeated checks are required (because tests on the representing automata

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 384–398, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Winning Regions of Pushdown Parity Games 385

tend to be comparatively cheap), or where the model checking is only a component of
the verification process.

Related work. Cachat [13] and Serre [9] have independently generalised Walukiewicz’
algorithm to provide solutions to the global model-checking problem: they use the lo-
cal model-checking algorithm as an oracle to guide the construction of the automaton
recognising the winning region. An alternative approach, introduced by Piterman and
Vardi [8], uses two-way alternating tree automata to navigate a tree representing all pos-
sible stacks: after several reductions, including the complementation of Büchi automata,
an automaton accepting the winning region can be constructed.

At CONCUR 1997, Bouajjani et al. [1], and, independently, Finkel et al. [2] (at IN-
FINITY 1997), introduced a saturation technique for global model-checking reacha-
bility properties of pushdown systems. From a finite-word automaton recognising a
given configuration-set C, they perform a backwards-reachability analysis. By itera-
tively adding new transitions to the automaton, the set of configurations that can reach
some configuration in C is constructed. Since the number of new transitions is bounded,
the iterative process terminates. This approach underpins the acclaimed Moped tool.

Contributions. This paper presents a new algorithm for computing Éloı̈se’s winning
region of a pushdown parity game. We represent (regular) configuration sets as alter-
nating multi-automata [1]. Using a modal mu-calculus formula that defines the winning
region as a guide, our algorithm iteratively expands (when computing least fixpoints)
and contracts (when computing greatest fixpoints) an approximating automaton until
the winning region is precisely recognised. Our method is a generalisation of Cachat’s
for solving Büchi games [13], which is itself a generalisation of the saturation tech-
nique for reachability analysis. However, we adopt a different proof strategy which we
believe to be cleaner than Cachat’s original proof. Our contribution can equivalently
be presented as a solution to the global model checking problem: given a pushdown
system K, a modal mu-calculus formula χ(Y), and a regular valuation V , our method
can directly compute an automaton that recognises the set �χ(Y)�KV of K-configurations
satisfying χ(Y) with respect to V .

Our algorithm has several advantages:

(i) The algorithm is simple and direct. Even though pushdown graphs are in general
infinite, our construction of the automaton that recognises the winning region fol-
lows, in outline, the standard pen-and-paper calculation of the semantics of modal
mu-calculus formulas in a finite transition system. Through the use of projection,
our algorithm is guaranteed to terminate in a finite number of steps, even though
the usual fixpoint calculations may require transfinite iterations. Thanks to pro-
jection, the state-sets of the approximating automata are bounded: during expan-
sion, the number of transitions increases, but only up to the bound determined by
the finite state-set; during contraction, the number of transitions decreases until it
reaches zero or stabilises.

(ii) The correctness proof is simple and easy to understand. A conceptual innovation
of the correctness argument are valuation soundness and valuation completeness.
They are respectively under- and over-approximation conditions that apply locally
to individual transitions of the automaton, rather than globally to the extensional

386 M. Hague and C.-H.L. Ong

behaviour of the automaton (such as runs). By combining these conditions, which
reduce the overhead of the proof, we show that our algorithm is both sound and
complete in the usual sense.

(iii) Finally, our decision procedure builds on and extends the well-known saturation
method, which is the implementation technique of choice of pushdown checkers.
In contrast to previous solutions, our algorithm permits a straightforward opti-
misation that avoids an immediate exponential explosion, which we believe is
important for an efficient implementation. Another advantage worth noting is that
the automaton representing the winning region is independent of the maximum
priority m (even though it takes time exponential in m to construct).

2 Preliminaries

A pushdown parity game is a parity game defined over a pushdown graph (i.e. the
configuration graph of a pushdown system). Formally it is a quadruple (P ,D, Σ⊥, Ω)
where P = PA,PE = {p1, . . . , pz} is a set of control states partitioned into Abelard’s
and Éloı̈se’s states, Σ⊥ := Σ ∪ {⊥} is a finite stack alphabet (we assume ⊥ /∈ Σ),
D ⊆ P×Σ⊥×P×Σ∗

⊥ is a set of pushdown rules andΩ : P → {1, . . . ,m} is a function
assigning priorities to control states. As is standard, we assume that the bottom-of-stack
symbol ⊥ is neither pushed onto, nor popped from, the stack. We also assume there is
a rule for each p ∈ P and a ∈ Σ⊥.

A play begins from some configuration 〈p, aw〉. The player controlling p chooses
p a → p′ w′ ∈ D and the play moves to 〈p′, w′w〉. Then, the player controlling p′

chooses a move, and so on, generating an infinite run. The priority of a configuration
〈p, w〉 is Ω(p). A priority occurs infinitely often in a play if there are an infinite number
of configurations with that priority. Éloı̈se wins the play if the smallest priority occur-
ring infinitely often is even. Otherwise, Abelard is the winner.

A player’s winning region of a pushdown parity game is the set of configurations
from which the player can always win the game, regardless of the other player’s strategy.
Éloı̈se’s winning region WE of a parity game G is definable in the modal µ-calculus;
the following is due to Walukiewicz [3]:

WE = �µZ1.νZ2. . . . µZm−1.νZm.ϕE(Z1, . . . , Zm)�GV

where m is the maximum parity (assumed even), V is a valuation of the variables1, and

ϕE(Z1, . . . , Zm) :=

⎛
⎝E ⇒

∧
c∈{1,...,m}

(c ⇒ ♦Zc)

⎞
⎠ ∧

⎛
⎝¬E ⇒

∧
c∈{1,...,m}

(c ⇒ �Zc)

⎞
⎠

where E is an atomic proposition asserting the current configuration is Éloı̈se’s and, for
1 ≤ c ≤ m, c asserts that the priority of the current control state is c.

For each 1 ≤ c ≤ m, we have a variable Zc. The odd priorities are bound by µ
operators which can be understood intuitively as “finite looping”. Dually, even priorities

1 The valuation is initially empty since the formula has no free variables.

Winning Regions of Pushdown Parity Games 387

are bound by ν operators and can be understood as “infinite looping”. The formula ϕE

asserts that a variableZc is visited whenever a configuration of priority c is encountered.
Thus the full formula asserts that the minimal priority occurring infinitely often must be
even — otherwise a variable bound by the µ operator would be passed through infinitely
often. It can be shown by a signature lemma that Éloı̈se has a winning strategy from a
configuration satisfying the formula [3]. Since the formula’s inverse is a similar formula
with µ/ν, and�/♦ reversed, Abelard has a winning strategy from any configuration not
in WE .

Thanks to the Knaster-Tarski Fixpoint Theorem, the semantics of a fixpoint formula
�σZ.χ(Y , Z)�GV where σ ∈ {µ, ν} can be given as the limit of the sequence of α-
approximants �σαZ.χ(Y , Z)�GV , where α ranges over the ordinals and λ ranges over
the limit ordinals:

�σ0Z.χ(Y , Z)�GV := Init
�σα+1Z.χ(Y , Z)�GV := �χ(Y , Z)�G

V [Z 	→�σαZ.χ(Y ,Z)�GV]

�σλZ.χ(Y , Z)�GV := ©α<λ�σαZ.χ(Y , Z)�GV

where Init = ∅ and © =
⋃

when σ = µ, and Init is the set of all configura-
tions and © =

⋂
when σ = ν. The least ordinal κ such that �σκZ.χ(Y , Z)�GV =

�σZ.χ(Y , Z)�GV is called the closure ordinal.

Example 1. When interpreted in a pushdown graph, 〈σαZ.χ(Y , Z) 〉α∈Ord may have
an infinite closure ordinal. Consider the following pushdown parity graph (which is a
dual of an example of Cachat’s [13]): all configurations are Abelard’s, Ω(p) = 1 and
Ω(f) = 2.

〈f,⊥〉 〈f, a⊥〉 〈f, aa⊥〉 · · ·

〈p,⊥〉 〈p, a⊥〉 〈p, aa⊥〉 · · ·

In this game, WE = �µZ1.νZ2.ϕE(Z1, Z2)� consists of all configurations. However,
any 〈f, a an⊥〉 for some n only appears in an approximant of the least fixed point
when 〈f, a a an⊥〉 and 〈p, a an⊥〉 appear in the previous approximant (since Abelard
may move to either of these configurations). Hence, all 〈p, an⊥〉 must appear in the
α-approximant before any 〈f, an⊥〉 can appear in the (α + 1)-approximant. The first
approximant containing all p configurations is the ω-approximant.

We use alternating multi-automata [1] as a representation of (regular) configuration-
sets. Given a pushdown system (P ,D, Σ) with P = {p1, . . . , pz}, an alternating
multi-automaton A is a tuple (Q, Σ,∆, I,F) where Q is a finite set of states, ∆ ⊆
Q×(Σ ∪ {⊥})×2Q is a set of transitions (we assume ⊥ /∈ Σ), I = {q1, . . . , qz} ⊆ Q
is a set of initial states, and F ⊆ Q is a set of final states. Observe that there is an
initial state for each control state of the pushdown system. We write q

a−→ Q just if
(q, a,Q) ∈ ∆; and define q

ε−→ {q}; and q
aw−−→ Q1 ∪ · · · ∪Qn just if q

a−→ {q1, . . . , qn}
and qk

w−→ Qk for all 1 ≤ k ≤ n. Finally we define the language accepted by A, L(A),
by: 〈pj , w〉 ∈ L(A) just if qj w−→ Q for some Q ⊆ F . Henceforth, we shall refer to
alternating multi-automata simply as automata.

388 M. Hague and C.-H.L. Ong

Reachability and Projection. The formula ϕE(Z1, . . . , Zm) asserts reachability in one
step, which we compute using the reachability algorithm [1] due to Bouajjani et al.
Cachat’s extension of this algorithm requires a technique called projection. Using an
example, we briefly introduce the relevant techniques.

Take a PDS with the rules p1 a → p2 ε and p2 b →
q1

q2

b
a

Fig. 1. The automaton Aeg ac-
cepting 〈p2, ba∗〉

p2 ba. The automaton Aeg in Figure 1 represents a con-
figuration set C. Let Pre(C) be the set of all configura-
tions that can reach C in exactly one step. To calculate
Pre(C) we first add a new set of initial states — since
we don’t necessarily have C ⊆ Pre(C). By applying
p1 a → p2 ε, any configuration of the form 〈p1, aw〉,
wherew is accepted from q2 in Aeg , can reach C. Hence
we add an a-transition from q1

new. (Via the pop tran-
sition, we reach 〈p2, w〉 ∈ L(Aeg).) Alternatively, via
p2 b → p2 ba, any configuration of the form 〈p2, bw〉,
where baw is accepted from q2 in Aeg , can reach C. The push, when applied back-
wards, replaces ba by b. We add a b-transition from q2

new which skips any run over ba
from q2. Figure 2 (i) shows the resulting automaton.

To ensure termination of the Büchi construction, Cachat uses projection, which re-
places a new transition to an old initial state with a transition to the corresponding new
state. Hence, the transition in Figure 2 (i) from q1

new is replaced by the transition in
Figure 2 (ii). The old initial states are then unreachable, and deleted, which, in this
case, leaves an automaton with the same states as Figure 1 (modulo the new suffix) but
an additional transition. In this sense, the state-set remains fixed.

q1
new q1

q2
new q2

b

a

b
a

q1
new q1

q2
new q2

b

b
aa

Fig. 2. (i) On the left, Aeg updated by the rules p1 a → p2 ε and p2 a → p2 ba; and (ii) on the
right, the result of projecting the automaton in (i)

3 An Example

We begin with an intuitive explanation of the algorithm by means of an example. Con-
sider the pushdown game represented in Figure 3. Note that this diagram is a quotient
of the infinite state space. Since the aim of this example is to give an overview of
the flow of the algorithm, the behaviour of the pushdown system is kept simplistic.
The subscripts indicate the priority of a configuration2 and an arc labelled with pushw

2 Our priorities here begin at 0. This does not change the algorithm significantly.

Winning Regions of Pushdown Parity Games 389

〈p′
E, bΣ∗⊥〉0 〈p′

E, aΣ∗⊥〉0

〈pE, aΣ∗⊥〉1 〈pA, aΣ∗⊥〉1 〈pA, bΣ∗⊥〉1

〈pE, bΣ∗⊥〉1

p
u
sh

ap
u
sh

b

pusha

pusha

pushb

pushb

pushb

p
u
sh

b

Fig. 3. An example pushdown parity game

indicates a pushdown rule of the form p a→ p′w for some p, a and p′. Let pE , p
′
E ∈ PE

and pA ∈ PA.
Éloı̈se can win from configurations of the forms 〈p′E , aΣ∗⊥〉0, 〈pE , aΣ

∗⊥〉1, or
〈p′E , bΣ∗⊥〉0. Éloı̈se can loop between the last two of these configurations, generating a
run with priority 0. From elsewhere, Abelard can force play to 〈pA, bΣ

∗⊥〉1 and gener-
ate a run with priority 1. Computing Éloı̈se’s winning region is equivalent to computing
�νZ0.µZ1.ϕE(Z0, Z1)�GV . We illustrate how this is done in the following.

To compute a greatest fixed point, we begin by setting Z0 to be the set of all configu-
rations. We then calculate the automaton recognising the denotation ofµZ1.ϕE(Z0, Z1)
with this value of Z0. The result is the value of Z0 for the next iteration. After each it-
eration the value of Z0 will be a subset of the previous value. This computation reaches
a limit when the value of Z0 stabilises, which is the denotation of the formula.

Computing the least fixed point proceeds in a similar manner, except that the initial
value of Z1 is set to ∅. We then compute the (automaton that recognises the) denotation
of ϕE(Z0, Z1), which gives us the next value of Z1. Dual to the case of greatest fixed
points, the value of Z1 increases with each iteration.

Constructing the Automaton. (We shall often confuse the denotation of a formula with
the automaton that recognises it, leaving it to the context to indicate which is intended.)
We begin by setting Z0 to the set of all configurations. The automaton recognising
all configurations is shown in Figure 4 (i)3. Given this value of Z0, we compute the
denotation of µZ1.ϕE(Z0, Z1). The first step is to set the initial value of Z1 to the
empty set. The corresponding automaton is also shown in Figure 4 (ii). Observe that we
have a separate set of initial states for Z0 and Z1.

We now compute ϕE(Z0, Z1) which will be the next value of Z1. A configuration
〈pj , aw〉 with priority c should be accepted if Éloı̈se can play - or Abelard must play -
a move which reaches some 〈pk, w′w〉 ∈ V (Zc). The result is Figure 4 (iii).

Observe that the computation of the new automaton has only added transitions. When
computing a least fixed point, each generation of initial states has more transitions than
the previous generation. In this example the number of possible transitions is finite since

3 This is a simplification of the automaton defined in Section 4.

390 M. Hague and C.-H.L. Ong

all transitions happen to go to q∗f . Therefore, the automaton must eventually become
saturated, causing termination. In the full algorithm, transitions from the new set of
initial states to the old are projected back onto the new initial states. This ensures that
the previous generation is not reachable. Hence, the state-set is fixed. When computing
a greatest fixed point, termination can be proved dually: we begin with all transitions
and iteratively remove transitions at each stage.

We now compute the next iterate ofZ1. We add a new set of initial states, and perform
the reachability analysis, as in Figure 5 (i). If we were to perform another round of the
reachability analysis, we would find a fixed point. That is, the transitions from the new
initial states corresponding to Z1 have the same outgoing transitions as the old. This
fixed point is the next value of Z0. Therefore, we set the current initial states of Z1 to
be the new initial states of Z0. If necessary, we would also perform projections from
the old initial states of Z0 to the new. We then begin evaluating µZ1.ϕE(Z0, Z1) with
our new value of Z0. The initial value of Z1 is the empty set, so we introduce new
initial states corresponding to Z1 with no outgoing transitions. Figure 5 (ii) shows the
automaton after these steps.

We compute the next iterate of Z1 as before, as in Figure 6. The second automaton
is the fixed point of Z1, and hence the new iterate of Z0. Since the new Z0 is identical
to the previous Z0, we have reached a final fixed point. Setting the initial states of Z1
to be the initial states of Z0, and deleting any unreachable states, gives the automaton
in Figure 7, which accepts Éloı̈se’s winning region.

qE0

qE
′

0
q∗f

qA0

Σ

Σ

Σ

Σ

qE0

qE
′

0

qA0

q∗f

qE1

qE
′

1

qA1

Σ

Σ

Σ

Σ

qE0

qE
′

0

qA0

q∗f

qE1

qE
′

1

qA1

Σ

Σ

Σ

Σ

a, b

Fig. 4. From left to right, (i) the automaton accepting the initial value of Z0; (ii) the automaton ac-
cepting the initial values of Z0 and Z1; and (iii) the automaton after the first round of reachability
analysis

4 The Algorithm

Fix a pushdown parity game G = (P ,D, Σ,Ω) that has maximum prioritym. The algo-
rithm has two key components. The first — Phi(A) — computes an automaton recog-
nising �ϕE(Z1, . . . , Zm)�GV , given an automaton A recognising the configuration-sets
V (Z1), . . . , V (Zm). The second — Sig(l, A) — computes, for each 1 ≤ l ≤ m, an au-
tomaton recognising �σZl.χl+1(Z1, . . . , Zl)�GV where σ is either µ or ν as appropriate,

Winning Regions of Pushdown Parity Games 391

qE0

qE
′

0

qA0

q∗f

qE1

qE
′

1

qA1

Σ

Σ

Σ

Σ

a

a, b

qE0

qE
′

0

qA0

q∗f

qE1

qE
′

1

qA1

Σ

a

a, b

Fig. 5. (i) The automaton after the second round of reachability analysis; and (ii) the automaton
with the new value of Z0 and Z1 set to the empty set

qE0

qE
′

0

qA0

q∗f

qE1

qE
′

1

qA1

Σ

a

a, b

a, b

qE0

qE
′

0

qA0

q∗f

qE1

qE
′

1

qA1

Σ

a

a, b

a

a, b

Fig. 6. The automaton after the first round of reachability analysis with the new Z0; and the
automaton after the second round of reachability analysis with the new Z0

qE0

qE
′

0
q∗f

qA0

Σ

a

a, b

Fig. 7. The automaton accepting the winning region of Éloı̈se

given an automaton A recognising the configuration-sets V (Z1), . . . , V (Zl−1), and

χl+1(Z1, . . . , Zl) := σZl+1 . . . σZm.ϕE(Z1, . . . , Zm).

392 M. Hague and C.-H.L. Ong

Format of the Automata. We describe the format of the automata constructed by the
algorithm. Let Qall := {q∗, qε

f}, and Qc :=
{
qj
c | 1 ≤ j ≤ |P|

}
for each 1 ≤ c ≤

m+1. These states are used to give the valuations of the variablesZ1, . . . , Zm, and the
semantics of ϕE(Z1, . . . , Zm) when c = m+ 1.

Let 0 ≤ l ≤ m+ 1. An automaton A is said to be type-l just if:

(i) the state-set QA := Q1 ∪ · · · ∪ Ql ∪ Qall

(ii) every transition of the form qj
c

a−→ Q has the property that Q
= ∅, and for all j′

and c′ > c, qj′
c′ /∈ Q (i.e. there are no transitions to states with a higher priority)

(iii) the only final state is qε
f , which can only be reached by a ⊥-transition (i.e. for each

q
a−→ Q, we have qε

f ∈ Q iff Q = {qε
f} iff a =⊥); further, qε

f has no outgoing
transitions

(iv) we have q∗
Σ−→ {q∗} and q∗

⊥−→ {qε
f}, and q∗ has no other outgoing transitions.

It follows that there is a unique automaton of type-0.
In the following, let A be a type-l automaton, where 1 ≤ c ≤ l ≤ m+ 1. We define

Lc(A) ⊆ P Σ∗⊥ by: for 1 ≤ j ≤ |P|, 〈pj , w〉 ∈ Lc(A) just if w is accepted by A
from the initial state qj

c . Thus Lc(A) is intended to represent the current valuation of the
variable Zc; in case l = m+1, Lm+1(A) is intended to represent �ϕE(Z1, . . . , Zm)�GV
where the valuation V maps Zc to Lc(A). If we omit the subscript and write L(A), we
mean Ll(A). By abuse of notation, we define Lq(A) ⊆ Σ∗⊥ ∪ { ε } to be the set of
words accepted by A from the state q (note that Lq∗(A) = Σ∗⊥ and Lqε

f
(A) = { ε }).

Definition of the Algorithm. Given a pushdown parity game G, the algorithm presented
in Figure 8 computes WE , the winning region of G:

WE = �µZ1.νZ2. . . . σZm−1.σZm.ϕE(Z1, . . . , Zm)�G∅ .

When computing �ϕE(Z1, . . . , Zm)�GV we may add an exponential number of transi-
tions. To compute �σZl. · · · .σZm . ϕE(Z1, · · · , Zm)�GV we may require an exponential
number of iterations. Hence, in the worst case, the algorithm is (singly) exponential in
the number of control states and the maximum priority m.

Theorem 1. Given a pushdown parity game G = (P ,D, Σ,Ω), we can construct an
automaton recognising the winning region of Éloı̈se in EXPTIME in |P| ·m where m is
the maximum priority.

The alternating multi-automaton returned by the algorithm, Sig(1, A0), has n = |P|+2
states. The number of transitions is bounded by n · |Σ| · 2n, which is independent of m.

5 Termination and Correctness

Termination. First an auxiliary notion of monotonicity for automaton constructions.
Let 1 ≤ l, l′ ≤ m + 1, and A and A′ be type-l automata. We write A � A′ to
mean: for all q, a and Q, if q

a−→ Q is an A-transition then it is an A′-transition. We

Winning Regions of Pushdown Parity Games 393

Input: A pushdown parity game G = (P ,D, Σ,Ω) with maximum priority m.
Output: A type-1 automaton recognising �χ1�

G , the winning region of G.

begin
return Sig(1, A0) % A0 is the unique type-0 automaton.

end

procedure Sig(l, A)
Input: 1 ≤ l ≤ m+ 1;

a type-(l− 1) automaton A as valuation of Z1, · · · , Zl−1.
Output: A type-l automaton denoting σZl · · ·σZm . ϕE(Z), relative to A.
1. if l = m+ 1 then return Phi(A)

2. A0 :=

⎧⎨
⎩
A with new states Ql, but no new transitions if σZl = µZl

A with new states Ql, and all outgoing if σZl = νZl

transitions obeying the format of the automata.
3. for i = 0 to ∞ do
4. Bi := Sig(l + 1, Ai)
5. Ai+1 := Proj (l, Bi)
6. if Ai = Ai+1 then return Ai

procedure Phi(A)

Input: A type-m automaton A as valuation of Z = Z1, · · · , Zm.
Output: A type-(m+ 1) automaton denoting ϕE(Z), relative to A.

1. (1-Step Reachability) Construct the automaton A′ by adding new states
{q1

m+1, . . . , q
|P|
m+1} and the following transitions to A. For each 1 ≤ j ≤ |P|,

set c := Ω(pj), and
– if pj ∈ PE then qj

m+1
a−→ Q if qk

c
w−→ Q and (pk, w) ∈ Next(pj, a)

– if pj ∈ PA then qj
m+1

a−→ Q1 ∪ · · · ∪Qn if qk1
c

w1−−→ Q1, . . . , q
kn
c

wn−−→
Qn, and Next(pj , a) = {(pk1 , w1), . . . , (pkn , wn)}

where Next(pj , a) := { (pk, w) | pj a → pk w ∈ D }.
2. return A′.

procedure Proj (l, A)
Input: 1 ≤ l ≤ m; a type-(l + 1) automaton A.
Output: A type-l automaton.

1. For each j, replace each transition qj
l+1

a−→ Q with qj
l+1

a−→ πl(Q) where

πl(Q) := {qj′
l+1 | qj′

l ∈ Q} ∪ (Q−Ql).
2. For each j, remove the state qj

l .
3. For each j, rename the state qj

l+1 to qj
l .

Fig. 8. Algorithm for computing winning region of a pushdown parity game

394 M. Hague and C.-H.L. Ong

consider automaton constructions T (such as Sig ,Phi and Proj) that transform type-
l automata to type-l′ automata. We say that T is monotone just if T (A) � T (A′)
whenever A � A′.

To show that our winning-region construction procedure terminates, it suffices to
prove the following.

Theorem 2 (Termination). For every 1 ≤ l ≤ m+1 and every type-(l−1) automaton
A, the procedure Sig(l, A) terminates.

We prove the theorem by induction on l. It is straightforward to establish the base case of
l = m+1: Phi(A) (where A is type-m) terminates. For the inductive case of Sig(l,−)
where 1 ≤ l ≤ m, since Sig(l + 1,−) terminates by the induction hypothesis, and
Proj (l,−) clearly terminates, it remains to check that in the computation of Sig(l, A)
where A is type-(l− 1), there exists an i ≥ 0 such that Ai = Ai+1. Since all automata
of the same type have the same finite state-set (andA0, A1, . . . are all type-l) , it suffices
to show (i) of the following Lemma.

Lemma 1 (Monotonicity). We have the following properties.

(i) Let 1 ≤ l ≤ m and A be a type-(l− 1) automaton. In Sig(l, A):
a. if σZl = µZl then Ai � Ai+1 for all i ≥ 0
b. if σZl = νZl then Ai+1 � Ai for all i ≥ 0.

(ii) For every 1 ≤ l ≤ m+ 1, the construction Sig(l,−) is monotone.
(iii) For every 1 ≤ l ≤ m, the construction Proj (l,−) is monotone.

Correctness. To prove correctness, we introduce the notions of valuation soundness
and completeness. Fix a pushdown parity game G = (P ,D, Σ,Ω). A valuation profile
is a vector S = (S1, . . . , Sl) of configuration-sets (i.e. vertex-sets of the underlying
configuration graph). We define the valuation VS : Zc �→ Sc induced by S, which we
extend to a map VS : QA −→ 2Σ∗⊥ on the states of a type-l automaton as follows:

VS :=

⎧⎨
⎩
qj
c �→ { w | 〈pj , w〉 ∈ Sc } 1 ≤ j ≤ |P|, 1 ≤ c ≤ l
q∗ �→ Σ∗⊥
qε
f �→ { ε }

Definition 1. Given a valuation profile S of length l, we say that a type-l automaton A
is S-sound just if, for all q, a and w, if A has a transition q

a−→ Q such that w ∈ VS(q′)
for all q′ ∈ Q, then aw ∈ VS(q).

By induction on the length of the word, valuation soundness extends to runs of a multi-
automaton. We then obtain that all accepting runs are sound.

Lemma 2. Let A be a S-sound automaton.

(i) For all q, w and w′, if A has a run q
w−→ Q such that w′ ∈ VS(q′) for all q′ ∈ Q,

then ww′ ∈ VS(q).
(ii) For all q ∈ QA, Lq(A) ⊆ VS(q).

Winning Regions of Pushdown Parity Games 395

Proof

(i) We prove by induction on the length of the word w. When w = a, the property
is just S-soundness. Take w = au and some run q

a−→ Q
u−→ Q′ such that for all

q′ ∈ Q′, we have w ∈ VS(q′). By the induction hypothesis, we have the property
for the run Q

u−→ Q′. Hence, we have for all q′ ∈ Q that, uw′ ∈ VS(q′). Thus, from
S-soundness, we have auw′ ∈ VS(q).

(ii) Take an accepting run q
w−→ Qf of A. We have for all q′ ∈ Qf = {qε

f}, ε ∈ VS(q′).
Thanks to (i), we have w ∈ VS(q). �

Definition 2. Given a valuation profile S of length l, we say that a type-l automaton A
is S-complete just if, for all q, a and w, if aw ∈ VS(q) then A has a transition q

a−→ Q
such that w ∈ VS(q′) for all q′ ∈ Q.

By induction on the length of the word, valuation completeness extends to runs. Fur-
thermore, an accepting run always exists when required.

Lemma 3. Let A be an S-complete automaton.

(i) For all q, w and w′, if ww′ ∈ VS(q) then A has a run q
w−→ Q such that w′ ∈

VS(q′) for all q′ ∈ Q.
(ii) For all q ∈ QA, VS(q) ⊆ Lq(A).

Notation. Recall χl(Z1, . . . , Zl−1) := σZl · · ·Zm.ϕE(Z1, . . . , Zm) where 1 ≤ l ≤
m + 1. Thus we have χ1 = µZ1 . . . σZm.ϕE(Z) and χm+1(Z1, . . . , Zm) = ϕE(Z).
Let S = (S1, . . . , Sl−1); we write (S, T) to mean (S1, . . . , Sl−1, T). Thus we write
χl(S) to mean χl(S1, · · · , Sl−1), and χl+1(S,Zl) to mean χl+1(S1, . . . , Sl−1, Zl).

Proposition 1 (Main). Let 1 ≤ l ≤ m+ 1, A be a type-(l− 1) automaton, and S be a
valuation profile of length l − 1.

(i) (Soundness Preservation) If A is S-sound, then Sig(l, A) is a type-l automaton
which is (S, �χl(S)�)-sound.4

(ii) (Completeness Preservation) If A is S-complete, then Sig(l, A) is a type-l au-
tomaton which is (S, �χl(S)�)-complete.

Since the type-0 automatonA0 is trivially sound and complete with respect to the empty
valuation profile, we obtain the following as an immediate corollary.

Theorem 3 (Correctness). The procedure call Sig(1, A0) terminates and returns a
type-1 automaton which is (�χ1�)-sound and (�χ1�)-complete. Hence, thanks to Lem-
mas 2 and 3, for each 1 ≤ j ≤ |P|, V�χ1�(q

j
1) = Lqj

1
(Sig(1, A0)) i.e. the automaton

Sig(1, A0) recognises the configuration set �χ1�, which is the winning region of the
pushdown parity game G.

4 By �χl(S1, · · · , Sl−1)� we mean �χl(Z1, · · · , Zl−1)�V where V maps Zc to Sc.

396 M. Hague and C.-H.L. Ong

Proof of the Main Proposition. We prove Proposition 1 by induction on l. First the
base case: l = m+ 1.

Lemma 4. Let S be a valuation profile of length m, and A a type-m automaton.

(i) Phi(A) is a type-(m+ 1) automaton.
(ii) If A is S-sound then Phi(A) is (S, �ϕE(S)�)-sound.

(iii) If A is S-complete then Phi(A) is (S, �ϕE(S)�)-complete.

Proof

(i) We omit the straightforward proof.
(ii) Let S′ = (S, �ϕE(S)�) andΩ(pj) = c. Take any transition qj

m+1
a−→ Q in Phi(A)

and stack w such that for all qj′
c′ ∈ Q, 〈pj′ , w〉 ∈ VS′(Zc′). For an Éloı̈se position,

we abuse notation by interpreting Next(pj , a) as the singleton set containing the
rule that led to the introduction of the new transition. Essentially, we present the
proof for an Abelard position, which can be easily applied to Éloı̈se’s positions.
Since A is S-sound and for all (pk, wk) ∈ Next(pj , a) we have qk

c
wk−−→ Qk ⊆ Q,

we know that 〈pk, wkw〉 ∈ VS′(Zc). Hence all 〈pk, wkw〉 are in VS′(Zc), and
〈pj , aw〉 ∈ VS′(Zm+1) = �ϕE(Z)�GV

S′
, since all moves, in the case of Abelard,

and a move in the case of Éloı̈se, reach configurations in Zc.
(iii) Take any configuration 〈pj , aw〉 ∈ VS′(Zm+1) = �ϕE(Z)�GV

S′
. Let Ω(pj) = c.

There exists an appropriate assignment {(pk1 , w1), . . . , (pkn , wn)} toNext(pj , a)
(as before) such that 〈pkh , whw〉 ∈ VS′(Zc) for all h ∈ {1, . . . , n}. Since A is
assumed to be S-complete, it follows that all 〈pkh , whw〉 have a complete run. In
particular, we have a complete run qkh

c
wh−−→ Qh for all h. Hence, by the definition

of Phi(A), there exists a transition pj a−→ Q that is complete. �

For the inductive case of 1 ≤ l ≤ m, we present the proof when σZl = µZl. The case
of σZl = νZl is exactly dual (in outline, the soundness and completeness proofs are
interchanged). Recall that χl(Z1, . . . , Zl−1) := σZl.χl+1(Z1, · · · , Zl).

Lemma 5. Suppose σZl = µZl. Let S be a valuation profile of length l − 1, and A be
a type-(l− 1) automaton; set θ = �µZl.χl+1(S,Zl)�.

(i) Sig(l, A) is a type-l automaton.
(ii) If A is S-sound, then Sig(l, A) is (S, θ)-sound.

(iii) If A is S-complete, then Sig(l, A) is (S, θ)-complete.

Proof

(i) The result of the recursive call to Sig(l + 1, A) combined with the call to Proj
ensures the property.

(ii) Let S′ := (S, θ). It is straightforward to see that A0 is S′-sound, since it did not
add any transitions to A, which is assumed to be S-sound. Hence, we assume by
induction Ai is S′-sound and argue the case for Ai+1.
Take a transition qj

l
a−→ Q in Ai+1 such that for all qk

l′ ∈ Q we have 〈pk, w〉 ∈
VS′(Zl′). Take the corresponding transition qj

l+1
a−→ Q′ in Sig(l + 1, Ai) before

Winning Regions of Pushdown Parity Games 397

the projection. In particular, for every qk
l ∈ Q we have qk

l or qk
l+1 in Q′. By

the induction hypothesis, we know Sig(l+ 1, Ai) is (S′, �χl+1(S′)�)-sound. Fur-
thermore, VS′(Zl) = θ = �χl+1(S, θ)� = VS′(Zl+1). Since Sig(l + 1, Ai) is
(S′, �χl+1(S′)�)-sound, we have 〈pj , aw〉 ∈ VS′(Zl+1) = VS′(Zl) as required.

(iii) Let A be a type-(l − 1) automaton which is S-complete. We use the shorthand
θα = �µαZl.χl+1(S,Zl)�. We first show that if the type-l Ai is (S, θα)-complete
for some α then Ai+1 is (S, θα+1)-complete. By the induction hypothesis, Bi :=
Sig(l + 1, Ai) is (S, θα, θα+1)-complete, since θα+1 = �χl+1(S, θα)�. We need
to show that, after the projection, Ai+1 := Proj (l, Bi) is S′-complete, where
S′ := (S, θα+1). Take some 〈pj , aw〉 ∈ VS′(Zl). We know Bi has a transition
qj
l+1

a−→ Q satisfying completeness. If Q contains no states of the form qk
l , then

the transition qj
l

a−→ Q satisfies completeness in Ai+1. If Q contains states qk
l ,

then 〈pk, w〉 ∈ θα ⊆ θα+1 = VS′(Zl). Hence, we have a required complete tran-
sition after the projection, and so, Ai+1 is S′-complete. We require that Sig(l, A)
be (S, �µZl.χl+1(S,Zl)�)-complete. Take i such that Ai = Ai+1 = Sig(l, A).
Trivially Sig(l, A) is (S, θ0)-complete. We proceed by transfinite induction. For
a successor ordinal we know by induction that Ai is (S, θα)-complete and from
the above that Ai+1 is (S, θα+1)-complete. Since Sig(l, A) = Ai = Ai+1 we
are done. For a limit ordinal λ, we have that Sig(l, A) is (S, θα)-complete for
all α < λ. Since θλ =

⋃
α<λ θ

α, the result follows because each configuration
in the limit appears in some smaller approximant, and the transition witnessing
completeness for the approximant witnesses completeness for the limit. �

6 Optimisation

In the procedure Sig(l, A), in case σZl = νZl, our definition of A0 contains all allow-
able transitions, and hence is immediately exponential. However, if we have q

a−→ Q and
q

a−→ Q′ with Q ⊆ Q′, then acceptance from Q′ implies acceptance from Q. That is, the
transition to Q′ is redundant. Furthermore, acceptance from any qj

c implies acceptance
from q∗ (trivially). Using these observations, we can optimise our automaton. In the
following definition, Q - Q′ can be taken to mean an accepting run from Q′ implies
an accepting run from Q.

Definition 3. For all non-empty sets of states Q and Q′, we define

Q - Q′ :=
(
(q∗ ∈ Q ⇒ ∃q.q
= qε

f ∧ q ∈ Q′) ∧ (∀q
= q∗.q ∈ Q ⇒ q ∈ Q′)
)

and EXPAND(A) := { q a−→ Q′ | q a−→ Q in A and Q - Q′ }.

By specifying monotonicity with respect to EXPAND(A) rather than A, A0 (in case
σZl = νZl) only needs transitions to q∗ and qε

f , which is linear. When this optimisation
is used in the case of a one-player game, the constructed automaton will not use any
alternating transitions. Furthermore, we can remove redundant transitions at every stage
of the algorithm. Since a transition to {q∗} is powerful with respect to - we expect to
keep the automaton small. However, this will have to be confirmed experimentally.

To test termination of Sig(A, l), we check if EXPAND(Ai+1) = EXPAND(Ai).

398 M. Hague and C.-H.L. Ong

Lemma 6. EXPAND(A) � EXPAND(A′) if and only if whenever q
a−→ Q in A then

there is some Q′ - Q with q
a−→ Q′ in A′.

By induction, we extend the property to runs. Hence EXPAND(A) � EXPAND(A′)
implies L(A) ⊆ L(A′). Finally, we have:

Lemma 7. The optimisation preserves monotonicity and both valuation soundness and
valuation completeness.

Conclusion. We have proposed a new, simple and direct algorithm for computing the
winning region of a pushdown parity game. The algorithm uses a mu-calculus formula
that characterises Éloı̈se’s winning region as a guide to construct the required automa-
ton. We have identified an optimisation that avoids an immediate exponential blow up.
An interesting open problem is to construct winning strategies using our approach.

Acknowledgments. This work is supported by EPSRC (EP/F036361). We are greatly
indebted to Arnaud Carayol for his invaluable assistance.

References

1. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-
tion to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

2. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown
systems. In: INFINITY (1997)

3. Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)

4. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract).
In: FOCS 1991, pp. 368–377 (1991)

5. Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular valuations for
pushdown systems. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215,
pp. 316–339. Springer, Heidelberg (2001)

6. Hague, M.: Saturation methods for global model-checking pushdown systems. PhD. Thesis,
University of Oxford (2009)

7. Jones, N., Muchnick, S.: Even simple programs are hard to analyse. JACM 24, 338–350
(1977)

8. Piterman, N., Y. Vardi, M.: Global model-checking of infinite-state systems. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 387–400. Springer, Heidelberg (2004)

9. Serre, O.: Note on winning positions on pushdown games with ω-regular conditions. Infor-
mation Processing Letters 85, 285–291 (2003)

10. Schwoon, S.: Model-checking Pushdown Systems. PhD thesis, Tech. Univ., Munich (2002)
11. Ball, T., Rajamani, S.K.: Bebop: A Symbolic Model Checker for Boolean Programs. In:

Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 113–130.
Springer, Heidelberg (2000)

12. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static analysis.
In: POPL, pp. 1–3 (2002)

13. Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen (2003)
14. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application

to interprocedural dataflow analysis. Sci. Comput. Program. (2005)

Concurrent Kleene Algebra

C.A.R. Tony Hoare1, Bernhard Möller2, Georg Struth3, and Ian Wehrman4

1 Microsoft Research, Cambridge, UK
2 Universität Augsburg, Germany

3 University of Sheffield, UK
4 University of Texas at Austin, USA

Abstract. A concurrent Kleene algebra offers, next to choice and iter-
ation, operators for sequential and concurrent composition, related by
an inequational form of the exchange law. We show applicability of the
algebra to a partially-ordered trace model of program execution seman-
tics and demonstrate its usefulness by validating familiar proof rules
for sequential programs (Hoare triples) and for concurrent ones (Jones’s
rely/guarantee calculus). This involves an algebraic notion of invariants;
for these the exchange inequation strengthens to an equational distribu-
tivity law. Most of our reasoning has been checked by computer.

1 Introduction

Kleene algebra [7] has been recognised and developed [18,19,8] as an algebraic
framework (or structural equivalence) that unifies diverse theories for conventional
sequential programming by axiomatising the fundamental concepts of choice, se-
quential composition and finite iteration. Its many familiar models include rela-
tions under union, relational composition and reflexive transitive closure, as well
as formal languagesunder union, concatenationandKleene star.This paper defines
a ‘double’ Kleene algebra, which adds an operator for concurrent composition. Se-
quential and concurrent composition are related by an inequational weakening of
the equational exchange law (a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) of two-category or
bicategory theory (e.g. [20]). Under certain conditions, this is strengthened to an
equational law, by which concurrent composition distributes through sequential.
The axioms proposed for a concurrent Kleene algebra are catalogued in Section 4.

The interest of concurrent Kleene algebra (CKA) is two-fold. Firstly, it ex-
presses only the essential properties of program execution; indeed, it represents
just those properties which are preserved even by architectures with weakly-
ordered memory access, unreliable communications and massively re-ordering
program optimisers. Secondly, the modelled properties, though unusually weak,
are strong enough to validate the main structural laws of assertional reason-
ing about program correctness, both in sequential style [12] (as described in
Section 5) and in concurrent style [17] (as described in Section 8).

The purpose of the paper is to introduce the basic operations and their laws,
both in a concrete representation and in abstract, axiomatic form. We hope in
future research to relate CKA to various familiar process algebras, such as the
π-calculus or CSP, and to clarify the links between their many variants.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 399–414, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

400 C.A.R. Hoare et al.

Before we turn to the abstract treatment, Section 2 presents our weak semantic
model which also is a concrete model of the notion of a CKA. A program is
identified with the set of traces of all the executions it may evoke. Each trace
consists of the set of events that occur during a single execution. When two sub-
programs are combined, say in a sequential or a concurrent combination, each
event that occurs is an event in the trace of exactly one of the subprograms. Each
trace of the combination is therefore the disjoint union of a trace of one of the
sub-programs with a trace of the other. Our formal definitions of the program
combinators identify them as a kind of separating conjunction [25].

We use a primitive dependence relation between the events of a trace. Its tran-
sitive closure represents a direct or indirect chain of dependence. In a sequential
composition, it is obviously not allowed for an event occurring in execution of
the first operand to depend (directly or indirectly) on an event occurring in exe-
cution of the second operand. We take this as our definition of a very weak form
of sequential composition. Concurrent composition places no such restriction,
and allows dependence in either direction. The above-mentioned exchange law
seems to generally capture the interrelation between sequential and concurrent
composition in adequate inequational form.

The dependence primitive is intended to model a wide range of computational
phenomena, including control dependence (arising from program structure) and
data dependence (arising from flow of data). There are many forms of data flow.
Flow of data across time is usually mediated by computer memory, which may
be private or shared, strongly or only weakly consistent. Flow of data across
space is usually mediated by a real or simulated communication channel, which
may be buffered or synchronised, double-ended or multiplexed, reliable or lossy,
and perhaps subject to stuttering or even re-ordering of messages.

Obviously, it is only weak properties of a program that can be proved with-
out knowing more of the properties of the memory and communication channels
involved. The additional properties are conveniently specified by additional ax-
ioms, like those used by hardware architects to describe specific weak memory
models (e.g. [22]). Fortunately, as long as they are consistent with our funda-
mental theory, they do not invalidate our development and hence do not require
fresh proofs of any of our theorems.

In this paper we focus on the basic concrete CKA model and the essential
laws; further technical details are given in the companion paper [15]. The formal
proofs of our results can be found in [14]; there we also show a typical input
file for the automated theorem prover Prover9 [28] with which all the purely
algebraic proofs have been reconstructed automatically.

2 Operators on Traces and Programs

We assume a set EV of events , i.e., occurrences of primitive actions, and a
dependence relation → ⊆ EV × EV between them: p → q indicates occurrence
of a data flow or control flow from event p to event q.

Concurrent Kleene Algebra 401

A trace is a set of events. We use sets of events to have greater flexibility, in
particular, to accommodate non-interleaving semantics; the more conventional
sequences can be recovered by adding time stamps or the like to events. A
program is a set of traces. For example, the program skip, which does nothing,
is defined as {∅}, and the program [p], which has the only event p, is {{p}}. The
program false =df ∅ has no traces, and therefore cannot be executed at all. It
serves the rôle of the ‘miracle’ [23] in the development of programs by stepwise
refinement. We have false ⊆ P for all programs P .

Following [16] we will define four operators on programs P and Q:

P ∗Q fine-grain concurrent composition, allowing dependences between
P and Q ;

P ;Q weak sequential composition, forbidding dependence of P on Q ;
P ‖Q disjoint parallel composition, with no dependence in either direc-

tion;
P $.Q alternation – exactly one of P or Q is executed, whenever possible.

For the formal definition let →+ be the transitive closure of the dependence
relation → and let, for trace tp, be dep(tp) =df {q | ∃ p ∈ tp : q →+ p}. Thus,
dep(tp) is the set of events on which some event in tp depends. Therefore, trace
tp is independent of trace tq iff dep(tp) ∩ tq = ∅. The use of the transitive
closure →+ seems intuitively reasonable; an algebraic justification is given in
Section 7.

Definition 2.1. Consider the schematic combination function

COMB(P,Q,C) =df {tp ∪ tq | tp ∈ P ∧ tq ∈ Q ∧ tp ∩ tq = ∅ ∧ C(tp, tq)}
with programs P,Q and a predicate C in the trace variables tp and tq. Then the
above operators are given by

P ∗ Q =df COMB(P,Q, TRUE) ,
P ; Q =df COMB(P,Q, dep(tp) ∩ tq = ∅) ,
P ‖ Q =df COMB(P,Q, dep(tp) ∩ tq = ∅ ∧ dep(tq) ∩ tp = ∅) ,
P $.Q =df COMB(P,Q, tp = ∅ ∨ tq = ∅) .

Example 2.2. We illustrate the operators with a mini-example. We assume
a set EV of events the actions of which are simple assignments to program
variables. We consider three particular events ax , ay , az associated with the as-
signments x := x + 1, y := y + 2, z :=x + 3, resp. There is a dependence arrow
from event p to event q iff p
= q and the variable assigned to in p occurs in
the assigned expression in q. This means that for our three events we have
exactly ax → az . We form the corresponding single-event programs Px =df

[ax], Py =df [ay], Pz =df [az]. To describe their compositions we extend the
notation for single-event programs and set [p1, . . . , pn] =df {{p1, . . . , pn}} (for
uniformity we sometimes also write [] for skip). Figure 1 lists the composition
tables for our operators on these programs. They show that the operator ∗ al-
lows forming parallel programs with race conditions, whereas ; and ‖ respect
dependences. "#

402 C.A.R. Hoare et al.

∗ Px Py Pz

Px ∅ [ax , ay] [ax , az]
Py [ax , ay] ∅ [ay , az]
Pz [ax , az] [ay , az] ∅

; Px Py Pz

Px ∅ [ax , ay] [ax , az]
Py [ax , ay] ∅ [ay , az]
Pz ∅ [ay , az] ∅

‖ Px Py Pz

Px ∅ [ax , ay] ∅
Py [ax , ay] ∅ [ay , az]
Pz ∅ [ay , az] ∅

'� Px Py Pz

Px ∅ ∅ ∅
Py ∅ ∅ ∅
Pz ∅ ∅ ∅

Fig. 1. Composition tables

It is straightforward from the definitions that ∗, ‖ and /% are commutative and
that /% ⊆ ‖ ⊆ ; ⊆ ∗ where for ◦, • ∈ {∗, ;, ‖, /%} the formula ◦ ⊆ • abbreviates
∀P,Q : P ◦Q ⊆ P •Q. Further useful laws are the following.

Lemma 2.3. Let ◦, • ∈ {∗, ;, ‖, /%}.
1. ◦ distributes through arbitrary unions; in particular, false is an annihilator

for ◦, i.e., false ◦ P = false = P ◦ false. Moreover, ◦ is isotone w.r.t. ⊆ in
both arguments.

2. skip is a neutral element for ◦, i.e., skip ◦ P = P = P ◦ skip.
3. If • ⊆ ◦ and ◦ is commutative then

(P ◦Q) • (R ◦ S) ⊆ (P •R) ◦ (Q • S).
4. If • ⊆ ◦ then P • (Q ◦R) ⊆ (P •Q) ◦R.
5. If • ⊆ ◦ then (P ◦Q) •R ⊆ P ◦ (Q •R).
6. ◦ is associative.

The proofs either can be done by an easy adaptation of the corresponding ones
in [16] or follow from more general results in [15]. A particularly important
special case of Part 3 is the exchange law

(P ∗Q) ; (R ∗ S) ⊆ (P ;R) ∗ (Q ; S) (1)

In the remainder of this paper we shall mostly concentrate on the more inter-
esting operators ∗ and ; .

Another essential operator is union which again is ⊆-isotone and distributes
through arbitrary unions. However, it is not false-strict.

By the Tarski-Kleene fixpoint theorems all recursion equations involving only
the operators mentioned have ⊆-least solutions which can be approximated by
the familiar fixpoint iteration starting from false. Use of union in such a recur-
sions enables non-trivial fixpoints, as will be seen in the next section.

3 Quantales, Kleene and Omega Algebras

We now abstract from the concrete case of programs and embed our model into
a more general algebraic setting.

Concurrent Kleene Algebra 403

Definition 3.1. A semiring is a structure (S,+, 0, ·, 1) such that (S,+, 0) is a
commutative monoid, (S, ·, 1) is a monoid, multiplication distributes over ad-
dition in both arguments and 0 is a left and right annihilator with respect to
multiplication (a · 0 = 0 = 0 · a). A semiring is idempotent if its addition is.

The operation + denotes an abstract form of nondeterministic choice; in the
concrete case of programs it will denote union (of sets of traces). This explains
why + is required to be associative, commutative and idempotent. Its neutral
element 0 will take the rôle of the miraculous program ∅.

In an idempotent semiring, the relation ≤ defined by a ≤ b ⇔df a + b = b is
a partial ordering, in fact the only partial ordering on S for which 0 is the least
element and for which addition and multiplication are isotone in both arguments.
It is therefore called the natural ordering on S. This makes S into a semilattice
with addition as join and least element 0.

Definition 3.2. A quantale [24] or standard Kleene algebra [7] is an idempotent
semiring that is a complete lattice under the natural order and in which multi-
plication distributes over arbitrary suprema. The infimum and the supremum of
a subset T are denoted by " T and # T , respectively. Their binary variants are
x " y and x # y (the latter coinciding with x+ y).

In particular, quantale composition is continuous , i.e., distributes through
suprema of arbitrary, not just countable, chains. As an idempotent semiring,
every quantale has 0 as its least element. As a complete lattice, it also has a
greatest element '. Quantales have been used in many contexts other than that
of program semantics, see e.g. the c-semirings of [3] or the general reference [29].

Let now PR(EV) =df P(P(EV)) denote the set of all programs over the
event set EV . From the observations in Section 2 the following is immediate:

Lemma 3.3. (PR(EV),∪, false, ∗, skip) and (PR(EV),∪, false, ; , skip) are quan-
tales. In each of them ' = P(EV) is the most general program over EV .

Definition 3.4. In a quantale S, the finite and infinite iterations a∗ and aω of
an element a ∈ S are defined by a∗ = µx . 1 + a · x and aω = νx . a · x, where µ
and ν denote the least and greatest fixpoint operators. The star here should not
be confused with the separation operator ∗ above.

It is well known that (S,+, 0, ·, 1, ∗) forms a Kleene algebra [18]. From this we
obtain many useful laws for free. As examples we mention

1 ≤ a∗ , a ≤ a∗ , a∗ · a∗ = (a∗)∗ = a∗ , (a+ b)∗ = a∗ · (b · a∗)∗ . (KA)

The finite non-empty iteration of a is defined as a+ =df a · a∗ = a∗ · a. Again,
the plus in a+ should not be confused with the plus of semiring addition.

Since in a quantale the function defining star is continuous, Kleene’s fixpoint
theorem shows that a∗ =

⊔
i∈IN ai. Moreover, we have the star induction rules

b+ a · x ≤ x ⇒ a∗ · b ≤ x , b+ x · a ≤ x ⇒ b · a∗ ≤ x . (2)

Our main reason for using quantales rather than an extension of conventional
Kleene algebra (see e.g. the discussion on Priscariu’s synchronous Kleene al-
gebras [27] in Section 9) is the availability of general fixpoint calculus there. A

404 C.A.R. Hoare et al.

number of our proofs need the principle of fixpoint fusion which is a second-order
principle; in the first-order setting of conventional Kleene algebra only special
cases of it, like the above induction rules can be added as axioms.

We now explain the behaviour of iteration in our program quantales. For a
program P , the program P ∗ taken in the quantale (PR(EV), ∪, false, ; , skip)
consists of all sequential compositions of finitely many traces in P ; it is denoted
by P∞ in [16]. The program P ∗ taken in (PR(EV),∪, false, ∗, skip) consists of all
disjoint unions of finitely many traces in P ; it may be considered as describing
all finite parallel spawnings of traces in P . The disjointness requirement that is
built into the definition of ∗ and ; does not mean that an iteration cannot repeat
primitive actions: the iterated program just needs to supply sufficiently many
(e.g., countably many) events having the actions of interest as labels. Then in
each round of iteration a fresh one of these can be used.

Example 3.5. With the notation of Example 2.2 let P =df Px ∪ Py ∪ Pz. We
first look at its powers w.r.t. ∗ composition:

P 2 =P ∗ P = [ax , ay] ∪ [ax , az] ∪ [ay , az] ,
P 3 =P ∗ P ∗ P = [ax , ay, az] .

Hence P 2 and P 3 consist of all programs with exactly two and three events from
{ax , ay , az}, respectively. Since none of the traces in P is disjoint from the one
in P 3, we have P 4 = P 3 ∗ P = ∅, and hence strictness of ∗ w.r.t. ∅ implies
Pn = ∅ for all n ≥ 4. Therefore P ∗ consists of all traces with at most three
events from {ax , ay , az} (the empty trace is there, too, since by definition skip
is contained in every program of the form Q∗). It coincides with the set of all
possible traces over the three events; this connection will be taken up again in
Section 6.

It turns out that for the powers of P w.r.t. the ; operator we obtain exactly
the same expressions, since for every program Q = [p] ∪ [q] with p
= q we
have

Q ;Q = ([p]∪ [q]) ; ([p]∪ [q]) = [p] ; [p]∪ [p] ; [q]∪ [q] ; [p]∪ [q] ; [q] = [p, q] = Q ∗Q ,

provided p
→+ q or q
→+ p, i.e., provided the trace [p, q] is consistent with the
dependence relation. Only in case of a cyclic dependence p →+ q →+ p we have
Q ;Q = ∅, whereas still Q ∗Q = [p, q].

"#

If the complete lattice (S,≤) in a quantale is completely distributive, i.e., if +
distributes over arbitrary infima, then (S,+, 0, ·, 1, ∗, ω) forms an omega algebra
in the sense of [6]. Again this entails many useful laws, e.g.,

1ω = ' , (a · b)ω = a · (b · a)ω , (a+ b)ω = aω + a∗ · b · (a + b)ω .

Since PR(EV) is a power set lattice, it is completely distributive. Hence both
program quantales also admit infinite iteration with all its laws. The infinite it-
eration Pω w.r.t. the composition operator ∗ is similar to the unbounded parallel
spawning !P of traces in P in the π-calculus (e.g. [30]).

Concurrent Kleene Algebra 405

4 Concurrent Kleene Algebras

That PR(EV) is a double quantale motivates the following abstract definition.

Definition 4.1. By a concurrent Kleene algebra (CKA) we mean a structure
(S,+, 0,∗, ; , 1) such that (S,+, 0, ∗, 1) and (S,+, 0, ; , 1) are quantales linked by
the exchange axiom (a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d).

This definition implies, in particular, that ∗ and ; are isotone w.r.t. ≤ in both
arguments. Compared to the original exchange law (1) this one has its free
variables in a different order. This does no harm, since the concrete ∗ operator
on programs is commutative and hence satisfies the above law as well.

Corollary 4.2. (PR(EV),∪, false, ∗, ; , skip) is a CKA.

The reason for our formulation of the exchange axiom here is that this form of
the law implies commutativity of ∗ as well as a ; b ≤ a ∗ b and hence saves two
axioms. This is shown by the following result.

Lemma 4.3. In a CKA the following laws hold.
1. a ∗ b = b ∗ a.
2. (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d).
3. a ; b ≤ a ∗ b.
4. (a ∗ b) ; c ≤ a ∗ (b ; c).
5. a ; (b ∗ c) ≤ (a ; b) ∗ c.

The notion of a CKA abstracts completely from traces and events; in the com-
panion paper [15] we show how to retrieve these notions algebraically using the
lattice-theoretic concept of atoms.

5 Hoare Triples

In [16] Hoare triples relating programs are defined by P {{Q}}R ⇔df P ;Q ⊆ R.
Again, it is beneficial to abstract from the concrete case of programs.

Definition 5.1. An ordered monoid is a structure (S,≤, ·, 1) such that (S, ·, 1)
is a monoid with a partial order ≤ and · is isotone in both arguments. In this
case we define the Hoare triple a {{b}} c by

a {{b}} c ⇔df a · b ≤ c .

Lemma 5.2. Assume an ordered monoid (S,≤, ·, 1).
1. a {{1}} c ⇔ a ≤ c; in particular, a {{1}} a ⇔ TRUE. (skip)
2. (∀ a, c : a {{b}} c ⇒ a {{b′}} c) ⇔ b′ ≤ b. (antitony)
3. (∀ a, c : a {{b}} c ⇔ a {{b′}} c) ⇔ b = b′. (extensionality)
4. a {{b · b′}} c ⇔ ∃ d : a {{b}}d ∧ d {{b′}} c. (composition)
5. a ≤ d ∧ d {{b}} e ∧ e ≤ c ⇒ a {{b}} c. (weakening)

If (S, ·, 1) is the multiplicative reduct of an idempotent semiring (S,+, 0, ·, 1) and
the order used in the definition of Hoare triples is the natural semiring order then
we have in addition

406 C.A.R. Hoare et al.

6. a {{0}} c ⇔ TRUE, (failure)
7. a {{b+ b′}} c ⇔ a {{b}} c ∧ a {{b′}} c. (choice)

If that semiring is a quantale then we have in addition
8. a {{b}} a ⇔ a {{b+}} a ⇔ a {{b∗}} a. (iteration)

Lemma 5.2 can be expressed more concisely in relational notation. Define for
b ∈ S the relation {{b}} ⊆ S×S between preconditions a and postconditions c by

∀ a, c : a {{b}} c ⇔df a · b ≤ c .

Then the above properties rewrite into
1. {{1}} = ≤.
2. {{b}} ⊆ {{b′}} ⇔ b′ ≤ b.
3. {{b}} = {{b′}} ⇔ b = b′.
4. {{b · b′}} = {{b}} ◦ {{b′}} where ◦ means relational composition.
5. ≤ ◦ {{b}} ◦ ≤ ⊆ {{b}}.
6. {{0}} = TT where TT is the universal relation.
7. {{b+ b′}} = {{b}} ∩ {{b′}}.
8. {{b}}∩ I = {{b+}}∩ I = {{b∗}}∩ I where I is the identity relation.

Properties 4 and 2 allow us to determine the weakest premise ensuring that
two composable Hoare triples establish a third one:

Lemma 5.3. Assume again an ordered monoid (S,≤, ·, 1). Then

(∀ a, d, c : a {{b}} d ∧ d {{b′}} c ⇒ a {{e}} c) ⇔ e ≤ b · b′ .

Next we present two further rules that are valid in CKAs when the above monoid
operation is specialised to sequential composition:

Lemma 5.4. Let S = (S,+, 0,∗, ; , 1) be a CKA and a, a′, b, b′, c, c′, d ∈ S with
a {{b}} c interpreted as a ; b ≤ c.
1. a {{b}} c ∧ a′ {{b′}} c′ ⇒ (a ∗ a′) {{b ∗ b′}} (c ∗ c′). (concurrency)
2. a {{b}} c ⇒ (d ∗ a) {{b}} (d ∗ c). (frame rule)

Let us interpret these results in our concrete CKA of programs. It may seem sur-
prising that so many of the standard basic laws of Hoare logic should be valid
for such a weak semantic model of programs. E.g., the definition of weak se-
quential composition allows all standard optimisations by compilers which shift
independent commands between the operands of a semicolon. What is worse,
weak composition does not require any data to flow from an assignment com-
mand to an immediately following read of the assigned variable. The data may
flow to a different thread, which assigns a different value to the variable. In fact,
weak sequential composition is required for any model of modern architectures,
which allow arbitrary race conditions between fine-grain concurrent threads.

The validity of Hoare logic in this weak model is entirely due to a cheat:
that we use the same model for our assertions as for our programs. Thus any
weakness of the programming model is immediately reflected in the weakness
of the assertion language and its logic. In fact, conventional assertions mention
the current values of single-valued program variables; and this is not adequate
for reasoning about general fine-grain concurrency. To improve precision here,
assertions about the history of assigned values would seem to be required.

Concurrent Kleene Algebra 407

6 Invariants

We now deal with the set of events a program may use.

Definition 6.1. A power invariant is a program R of the form R = P(E) for a
set E ⊆ EV of events.

It consists of all possible traces that can be formed from events in E and hence is
the most general program using only those events. The smallest power invariant
is skip = P(∅) = {∅}. The term “invariant” expresses that often a program
relies on the assumption that its environment only uses events from a particular
subset, i.e., preserves the invariant of staying in that set.

Example 6.2. Consider again the event set EV form Example 2.2. Let V be a
certain subset of the variables involved and let E be the set of all events that
assign to variables in V . Then the environment Q of a given program P can be
constrained to assign at most to the variables in V by requiring Q ⊆ R with the
power invariant R =df P(E). The fact that we want P to be executed only in
such environments is expressed by forming the parallel composition P ∗R. "#
If E is considered to characterise the events that are admissible in a certain
context, a programP can be confined to using only admissible events by requiring
P ⊆ R for R = P(E). In the rely/guarantee calculus of Section 8 invariants will
be used to express properties of the environment on which a program wants to
rely (whence the name R).

Power invariants satisfy a rich number of useful laws (see [15] for details).
The most essential ones for the purposes of the present paper are the following
straightforward ones for arbitrary invariant R:

skip ⊆ R , R ∗R ⊆ R . (3)

We now again abstract from the concrete case of programs. It turns out that the
properties in (3) largely suffice for characterising invariants.

Definition 6.3. An invariant in a CKA S is an element r ∈ S satisfying 1 ≤ r
and r ∗ r ≤ r. These two axioms can equivalently be combined into 1+ r ∗ r ≤ r.
The set of all invariants of S is denoted by I(S).

We now first give a number of algebraic properties of invariants that are useful
in proving the soundness of the rely/guarantee-calculus in Section 8.

Theorem 6.4. Assume a CKA S, an r ∈ I(S) and arbitrary a, b ∈ S.
1. a ≤ r ◦ a and a ≤ a ◦ r.
2. r ; r ≤ r.
3. r ∗ r = r = r ; r.
4. r ; (a ∗ b) ≤ (r ; a) ∗ (r ; b) and (a ∗ b) ; r ≤ (a ; r) ∗ (b ; r).
5. r ; a ; r ≤ r ∗ a.
6. a ∈ I(S) ⇔ a = a∗, where ∗ is taken w.r.t. ∗ composition.
7. The least invariant comprising a is a∗ where ∗ is taken w.r.t. ∗ composition.

Next we discuss the lattice structure of the set I(S) of invariants.

408 C.A.R. Hoare et al.

Theorem 6.5. Assume again a CKA S.

1. (I(S),≤) is a complete lattice with least element 1 and greatest element '.
2. For r, r′ ∈ I(S) we have r ≤ r′ ⇔ r ∗ r′ = r′. This means that ≤ co-

incides with the natural order induced by the associative, commutative and
idempotent operation ∗ on I(S).

3. For r, r′ ∈ I(S) the infimum r " r′ in S coincides with the infimum of r and
r′ in I(S).

4. r∗r′ is the supremum of r and r′ in I(S). In particular, r ≤ r′′ ∧ r′ ≤ r′′ ⇔
r ∗ r′ ≤ r′′ and r′ " (r ∗ r′) = r′.

5. Invariants are downward closed: r ∗ r′ ≤ r′′ ⇒ r ≤ r′′.
6. I(S) is even closed under arbitrary infima, i.e., for a subset U ⊆ I(S) the

infimum "U taken in S coincides with the infimum of U in I(S).

We conclude this section with two laws about iteration.

Lemma 6.6. Assume a CKA S and let r ∈ I(S) be an invariant and a ∈ S be
arbitrary. Let the finite iteration ∗ be taken w.r.t. ∗ composition. Then
1. (r ∗ a)∗ ≤ r ∗ a∗.
2. r ∗ a∗ = r ∗ (r ∗ a)∗.

7 Single-Event Programs and Rely/Guarantee-CKAs

We will now show that our definitions of ∗ and ; for concrete programs in terms
of transitive closure of the dependence relation → entail two important further
laws that are essential for the rely/guarantee calculus to be defined below. In the
following theorem they are presented as inclusions; the reverse inclusions already
follow from Theorem 6.4.4 for Part 1 and from Lemma 4.3.5, 4.3.4, 4.3.1 and
Theorem 6.4.3 for Part 2. Informally, Part 1 means that for acyclic → parallel
composition of an invariant with a singleton program can be always sequen-
tialised. Part 2 means that for invariants a kind of converse to the exchange law
of Lemma 4.3.2 holds.

Theorem 7.1. Let R = P(E) be a power invariant in PR(EV).
1. If → is acyclic and p ∈ EV then R ∗ [p] ⊆ R ; [p] ; R.
2. For all P,Q ∈ PR(EV) we have R ∗ (P ;Q) ⊆ (R ∗ P) ; (R ∗Q).

In the companion paper [15] we define the composition operators ; and ‖ in terms
of → rather than →+ and show a converse of Theorem 7.1:

– If Part 1 is valid then → is weakly acyclic, viz.

∀ p, q ∈ EV : p →+ q →+ p ⇒ p = q .

This means that → allows at most immediate self-loops which cannot be “de-
tected” by our definitions of the operators that require disjointness of the
operands. It is easy to see that → is weakly acyclic iff its reflexive-transitive
closure →∗ is a partial order.

– If Part 2 is valid then → is weakly transitive, i.e.,

p → q → r ⇒ p = r ∨ p → r .

Concurrent Kleene Algebra 409

This provides the formal justification why in the present paper we right away
defined our composition operators in terms of →+ rather than just → .

As before we abstract the above results into general algebraic terms. The
terminology stems from the applications in the next section.

Definition 7.2. A rely/guarantee-CKA is a pair (S, I) such that S is a CKA
and I ⊆ I(S) is a set of invariants such that 1 ∈ I and for all r, r′ ∈ I also
r " r′ ∈ I and r ∗ r′ ∈ I, in other words, I is a sublattice of I(S). Moreover, all
r ∈ I and a, b ∈ S have to satisfy r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b).
Together with the exchange law in Lemma 4.3.2, ◦-idempotence of r and com-
mutativity of ∗ this implies

r ∗ (b ◦ c) = (r ∗ b) ◦ (r ∗ c) (∗-distributivity)

for all invariants r ∈ I and operators ◦ ∈ {∗, ;}.
The restriction that I be a sublattice of I(S) is motivated by the rely/guar-

antee-calculus in Section 8 below.
Using Theorem 7.1 we can prove

Lemma 7.3. Let I =df {P(E) |E ⊆ EV } be the set of all power invariants
over EV . Then (PR(EV), I) is a rely-guarantee-CKA.

Proof. We only need to establish closure of P(P(EV)) under ∗ and ∩. But
straightforward calculations show that P(E) ∗ P(F) = P(E ∪ F) and P(E) ∩
P(F) = P(E ∩ F) for E,F ⊆ EV . "#

We now can explain why it was necessary to introduce the subset I of invariants
in a rely/guarantee-CKA. Our proof of ∗-distributivity used downward closure
of power invariants. Other invariants in PR(EV) need not be downward closed
and hence ∗-distributivity need not hold for them.

Example 7.4. Assume an event set EV with three different events p, q, r ∈ EV
and dependences p → r → q. Set P =df [p, q]. Then P ∗P = ∅ and hence P i = ∅
for all i > 1. This means that the invariant R =df P ∗ = skip ∪ P = [] ∪ [p, q]
is not downward closed. Indeed, ∗-distributivity does not hold for it: we have
R ∗ [r] = [r] ∪ [p, q, r], but R ; [r] ; R = [r]. "#
The property of ∗-distributivity implies further iteration laws.

Lemma 7.5. Assume a rely/guarantee-CKA (S, I), an invariant r ∈ I and an
arbitrary a ∈ S and let the finite iteration ∗ be taken w.r.t. ◦ ∈ {∗, ;}.
1. r ∗ a∗ = (r ∗ a)∗ ◦ r = r ◦ (r ∗ a)∗.
2. (r ∗ a)+ = r ∗ a+.

8 Jones’s Rely/Guarantee-Calculus

In [17] Jones has presented a calculus that considers properties of the environ-
ment on which a program wants to rely and the ones it, in turn, guarantees
for the environment. We now provide an abstract algebraic treatment of this
calculus.

410 C.A.R. Hoare et al.

Definition 8.1. We define, abstracting from [16], the guarantee relation by set-
ting for arbitrary element b and invariant g

b guar g ⇔df b ≤ g .

A slightly more liberal formulation is discussed in [15].

Example 8.2. With the notation Pu =df [au] for u ∈ {x, y, z} of Example 2.2
we have Pu guar Gu where Gu =df Pu ∪ skip = [au] ∪ []. "#

We have the following properties.

Theorem 8.3. Let a, b, b′ be arbitrary elements and g, g′ be invariants of a
CKA. Let ◦ ∈ {∗, ;} and ∗◦ be the associated iteration operator.
1. 1 guar g.
2. b guar g ∧ b′ guar g′ ⇒ (b ◦ b′) guar (g ∗ g′).
3. a guar g ⇒ a∗◦ guar g.
4. For the concrete case of programs let G = P(E) for some set E ⊆ EV and

p ∈ EV . Then [p] guar G ⇔ p ∈ E.

Using the guarantee relation, Jones quintuples can be defined, as in [16], by

a r {{b}} g s ⇔df a {{r ∗ b}} s ∧ b guar g ,

where r and g are invariants and Hoare triples are again interpreted in terms of
sequential composition ; .

The first rule of the rely/guarantee calculus concerns parallel composition.

Theorem 8.4. Consider a CKA S. For invariants r, r′, g, g′ ∈ I(S) and arbi-
trary a, a′, b, b′, c, c′ ∈ S,

a r {{b}} g c ∧ a′ r′ {{b′}} g′ c′ ∧ g′ guar r ∧ g guar r′ ⇒
(a " a′) (r " r′) {{b ∗ b′}} (g ∗ g′) (c " c′) .

Note that r " r′ and g ∗ g′ are again invariants by Lemma 6.5.3 and 6.5.4.
For sequential composition one has

Theorem 8.5. Assume a rely/guarantee-CKA (S, I). Then for invariants r, r′,
g, g′ ∈ I and arbitrary a, b, b′, c, c′,

a r {{b}} g c ∧ c r′ {{b′}} g′ c′ ⇒ a (r " r′) {{b ; b′}} (g ∗ g′) c′

Next we give rules for 1, union and singleton event programs.

Theorem 8.6. Assume a rely/guarantee-CKA (S, I). Then for invariants r, g ∈
I and arbitrary s ∈ S,
1. a r {{1}} g s ⇔ a {{r}} s.
2. a r {{b+ b′}} g s ⇔ a r {{b}} g s ∧ a r {{b′}} g s.
3. Assume power invariants R = P(E), G = P(F) for E,F ⊆ EV , event p
∈ E

and let → be acyclic. Then P R {{[p]}}GS ⇔ P {{R ; [p] ;R}}S ∧ [p] guar G.

Finally we give rely/guarantee rules for iteration.

Concurrent Kleene Algebra 411

Theorem 8.7. Assume a rely/guarantee-CKA (S, I) and let ∗ be finite iteration
w.r.t. ◦ ∈ {∗, ;}. Then for invariants r, g ∈ I and arbitrary elements a, b ∈ S,

a r {{b}} g a ⇒ a r {{b+}} g a ,
a {{r}} a ∧ a r {{b}} g a ⇒ a r {{b∗}} g a .

We conclude this section with a small example of the use of our rules.

Example 8.8. We consider again the programs Pu = [au] and invariants Gu =
Pu ∪ skip (u ∈ {x, y}) from Example 8.2. Moreover, we assume an event av with
v
= x, y, ax
→ av and ay
→ av and set Pv =df [av]. We will show

Pv skip {{Px ∗ Py}} (Gx ∗Gy) [av , ax , ay]

holds. In particular, the parallel execution of the assignments x :=x + 1 and
y := y+ 2 guarantees that at most x and y are changed. We set Rx =df Gy and
Ry =df Gx. Then

(a) Px guar Gx guar Ry , (b) Py guar Gy guar Rx .

Define the postconditions

Sx =df [av , ax] ∪ [av , ax , ay] and Sy =df [av , ay] ∪ [av , ax , ay] .

Then

(c) Sx ∩ Sy = [av , ax , ay] , (d) Rx ∩Ry = skip .

From the definition of Hoare triples we calculate

Pv {{Rx}} ([av] ∪ [av , ay]) ([av] ∪ [av , ay]) {{Px}}Sx Sx {{Rx}}Sx ,

since [av , ax , ay] ∗ [ay] = ∅. Combining the three clauses by Lemma 5.2.4 we
obtain

Pv {{Rx ; Px ; Rx}}Sx .

By Theorem 8.6.3 we obtain Pv Ry {{Px}}Gx Sx and, similarly, Pv Rx {{Py}}Gy Sy.
Now the claim follows from the clauses (a),(b),(c),(d) and Theorem 8.4. "#

In a practical application of the theory of Kleene algebras to program correctness,
the model of a program trace will be much richer than ours. It will certainly
include labels on each event, indicating which atomic command of the program
is responsible for execution of the event. It will include labels on each data flow
arrow, indicating the value which is ‘passed along’ the arrow, and the identity
of the variable or communication channel which mediated the flow.

9 Related Work

Although our basic model and its algebraic abstraction reflect a non-interleaving
view of concurrency, we try to set up a connection with familiar process algebras
such as ACP [1], CCS[21], CSP[13], mCRL2 [11] and the π-calculus [30].

It is not easy to relate their operators to those of CKA. The closest analogies
seem to be the following ones.

412 C.A.R. Hoare et al.

CKA operator corresponding operator
+ non-deterministic choice in CSP
∗ parallel composition | in ACP, π-calculus and CCS
‖ interleaving |‖ in CSP
; sequential composition ; in CSP and · in ACP
/% choice + in CCS and internal choice � in CSP
1 SKIP in CSP
0 this is the miracle and cannot be represented

in any implementable calculus

However, there are a number of laws which show the inaccuracy of this table.
For instance, in CSP we have SKIP � P
= P , whereas CKA satisfies 1/%P = P . A
similarly different behaviour arises in CCS, ACP and the π-calculus concerning
distributivity of composition over choice.

As the discussion after Theorem 7.1 shows, our basic model falls into the class
of partial-order models for true concurrency. Of the numerous works in that area
we discuss some approaches that have explicit operators for composition related
to our ∗ and ; . Whereas we assume that our dependence relation is fixed a
priori, in the pomset approach [10,9,26] is is constructed by the composition
operators. The operators there are sequential and concurrent composition; there
are no choice and iteration, though. Moreover, no laws are given for the oper-
ators. In Winskel’s event structures [31] there are choice (sum) and concurrent
composition, but no sequential composition and iteration. Again, there are no
interrelating laws. Another difference to our approach is that the “traces” are
required to observe certain closure conditions.

Among the axiomatic approaches to partial order semantics we mention the
following ones. Boudol and Castellani [4] present the notion of trioids, which
are algebras offering the operations of choice, sequential and concurrent com-
position. However, there are no interrelating laws and no iteration. Chothia
and Kleijn07 [5] use a double semiring with choice, sequential and concurrent
composition, but again no interrelating laws and no iteration. The application
is to model quality of service, not program semantics.

The approach closest in spirit to ours are Prisacariu’s synchronous Kleene
algebras (SKA) [27]. The main differences are the following. SKAs are not
quantale-based, but rather an enrichment of conventional Kleene algebras. They
are restricted to a finite alphabet of actions and hence have a complete and even
decidable equational theory. There is only a restricted form of concurrent com-
position, and the exchange law is equational rather than equational. Iteration
is present but not used in an essential way. Nevertheless, Prisacariu’s paper is
the only of the mentioned ones that explicitly deals with Hoare logic. It does
so using the approach of Kleene algebras with tests [19]. This is not feasible in
our basic model, since tests are required to be below the element 1, and 0 and 1
are the only such elements. Note, however, that Mace4 [28] quickly shows that
this is not a consequence of the CKA axioms but holds only for the particular
model.

Concurrent Kleene Algebra 413

10 Conclusion and Outlook

The study in this paper has shown that even with the extremely weak assump-
tions of our trace model many of the important programming laws can be shown,
mostly by very concise and simple algebraic calculations. Indeed, the rôle of the
axiomatisation was precisely to facilitate these calculations: rather than verify-
ing the laws laboriously in the concrete trace model, we can do so much more
easily in the algebraic setting of Concurrent Kleene Algebras. This way many
new properties of the trace model have been shown in the present paper. Hence,
although currently we know of no other interesting model of CKA than the trace
model, the introduction of that structure has already been very useful.

The discussion in the previous section indicates that CKA is not a direct
abstraction of the familiar concurrency calculi. Rather, we envisage that the
trace model and its abstraction CKA can serve as a basic setting into which
many of the existing other calculi can be mapped so that then their essential
laws can be proved using the CKA laws. A first experiment along these lines is
a trace model of a core subset of the π-calculus in [16]. An elaboration of these
ideas will be the subject of further studies.

Acknowledgement. We are grateful for valuable comments by J. Desharnais,
H.-H. Dang, R. Glück, W. Guttmann, P. Höfner, P. O’Hearn, H. Yang and by
the anonymous referees of CONCUR09.

References

1. Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with iteration and nesting.
The Computer Journal 37(4), 243–258 (1994)

2. Birkhoff, G.: Lattice Theory, 3rd edn. Amer. Math. Soc. (1967)
3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and

optimization. J. ACM 44(2), 201–236 (1997)
4. Boudol, G., Castellani, I.: On the semantics of concurrency: partial orders and

transition systems. In: Ehrig, H., Levi, G., Montanari, U. (eds.) CAAP 1987 and
TAPSOFT 1987. LNCS, vol. 249, pp. 123–137. Springer, Heidelberg (1987)

5. Chothia, T., Kleijn, J.: Q-Automata: modelling the resource usage of concurrent
components. Electr. Notes Theor. Comput. Sci. 175(2), 153–167 (2007)

6. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

7. Conway, J.: Regular Algebra and Finite Machines. Chapman & Hall, Sydney (1971)
8. Desharnais, J., Möller, B., Struth, G.: Kleene Algebra with domain. Trans. Com-

putational Logic 7, 798–833 (2006)
9. Gischer, J.: Partial orders and the axiomatic theory of shuffle. PhD thesis, Stanford

University (1984)
10. Grabowski, J.: On partial languages. Fundamenta Informaticae 4(1), 427–498

(1981)
11. Groote, J., Mathijssen, A., van Weerdenburg, M., Usenko, Y.: From µCRL to

mCRL2: motivation and outline. In: Proc. Workshop Essays on Algebraic Process
Calculi (APC 25). ENTCS, vol. 162, pp. 191–196 (2006)

414 C.A.R. Hoare et al.

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12,
576–585 (1969)

13. Hoare, C.A.R.: Communicating sequential processes. Prentice Hall, Englewood
Cliffs (1985)

14. Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra.
Institut für Informatik, Universität Augsburg, Technical Report 2009-04 (April
2009)

15. Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Foundations of Concurrent
Kleene Algebra. In: Berghmmar, R., Jaoua, A., Möller, B. (eds.) Relations and
kleene Algebra in Computer Science. Proc. 11th International Conference on Re-
lational Methods in Computer Science (RelMiCS 11) and 6th International Con-
ference on Applications of Kleene Algebra (AKA 6), Doha, Qatar, November 1–5.
LNCS, vol. 5827. Springer, Heidelberg (2009) (forthcoming)

16. Hoare, C.A.R., Wehrman, I., O’Hearn, P.: Graphical models of separation logic.
In: Proc. Marktoberdorf Summer School (forthcoming, 2008)

17. Jones, C.: Development methods for computer programs including a notion of
interference. PhD Thesis, University of Oxford. Programming Research Group,
Technical Monograph 25 (1981)

18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110, 366–390 (1994)

19. Kozen, D.: Kleene algebra with tests. Trans. Programming Languages and Sys-
tems 19, 427–443 (1997)

20. Mac Lane, S.: Categories for the working mathematician, 2nd edn. Springer,
Heidelberg (1998)

21. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

22. Misra, J.: Axioms for memory access in asynchronous hardware systems. ACM
Trans. Program. Lang. Syst. 8, 142–153 (1986)

23. Morgan, C.: Programming from Specifications. Prentice Hall, Englewood Cliffs
(1990)

24. Mulvey, C.: Rendiconti del Circolo Matematico di Palermo 12, 99–104 (1986)
25. O’Hearn, P.: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375,

271–307 (2007)
26. Pratt, V.R.: Modelling concurrency with partial orders. Journal of Parallel Pro-

gramming 15(1) (1986)
27. Prisacariu, C.: Extending Kleene lgebra with synchrony — technicalities. Univer-

sity of Oslo, Department of Informatics, Research Report No. 376 (October 2008)
28. McCune, W.: Prover9 and Mace4, http://www.prover9.org/ (accessed March 1,

2009)
29. Rosenthal, K.: Quantales and their applications. Pitman Research Notes in Math.

No. 234. Longman Scientific and Technical (1990)
30. Sangiorgi, D., Walker, D.: The π-calculus — A theory of mobile processes.

Cambridge University Press, Cambridge (2001)
31. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

http://www.prover9.org/

Concavely-Priced Probabilistic Timed Automata

Marcin Jurdziński1, Marta Kwiatkowska2, Gethin Norman2 and Ashutosh Trivedi2

1 Department of Computer Science,University of Warwick, UK
2 Computing Laboratory, University of Oxford, UK

Abstract. Concavely-priced probabilistic timed automata, an extension of
probabilistic timed automata, are introduced. In this paper we consider expected
reachability, discounted, and average price problems for concavely-priced prob-
abilistic timed automata for arbitrary initial states. We prove that these prob-
lems are EXPTIME-complete for probabilistic timed automata with two or more
clocks and PTIME-complete for automata with one clock. Previous work on ex-
pected price problems for probabilistic timed automata was restricted to expected
reachability for linearly-priced automata and integer valued initial states. This
work uses the boundary region graph introduced by Jurdziński and Trivedi to
analyse properties of concavely-priced (non-probabilistic) timed automata.

1 Introduction

Markov decision processes [27] (MDPs) extend finite automata by providing a probabil-
ity distribution over successor states for each transition. Timed automata [1] extend finite
automata by providing a mechanism to constrain the transitions with real-time. Proba-
bilistic timed automata (PTAs) [20,15,3] generalise both timed automata and MDPs by
allowing both probabilistic and real-time behaviour.

Priced timed automata are timed automata with (time-dependent) prices attached
to locations. Optimisation problems on priced timed automata are fundamental to the
verification of (quantitative timing) properties of systems modelled as timed automata.
In linearly-priced timed automata [2,24] the price information is given by a real-valued
function over locations which returns the price to be paid for each time-unit spent in the
location. Jurdziński and Trivedi [18] have recently proposed a generalisation to concave
prices, where the price of remaining in a location is a concave function over time,
and demonstrated that, for such prices, a number of optimisation problems including
reachability-price, discounted-price, and average-price are PSPACE-complete.

In this paper we present concavely-priced probabilistic timed automata, that is, prob-
abilistic timed automata with concave prices. Concave functions appear frequently in
many modelling scenarios such as in economics when representing resource utilization,
sales or productivity. Examples include:

1. when renting equipment the rental rate decreases as the rental duration increases [11];
2. the expenditure by vacation travellers in an airport is typically a concave function

of the waiting time [28];
3. the price of perishable products with fixed stock over a finite time period is usually

a concave function of time [12], e.g., the price of a low-fare air-ticket as a function
of the time remaining before the departure date.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 415–430, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

416 M. Jurdziński et al.

Contribution. We show that finite-horizon expected total price, and infinite-horizon ex-
pected reachability, discounted price and average price objectives on concavely-priced
PTAs are decidable. We also show that the complexity of solving expected reachability
price, expected discounted price and expected average price problems are EXPTIME-
complete for concavely-priced PTAs with two or more clocks and PTIME-complete for
concavely-priced PTAs with one clock. An important contribution of this paper is the
proof techniques which complement the techniques of [18]. We extend the boundary
region graph construction for timed automata [18] to PTAs and demonstrate that all the
optimisation problems considered can be reduced to similar problems on the boundary
region graph. We characterise the values of the optimisation problems by optimality
equations and prove the correctness of the reduction by analysing the solutions of the
optimality equations on the boundary region graph. This allows us to obtain an efficient
algorithm matching the EXPTIME lower bound for the problems. Complete proofs can
be found in the technical report version of this paper [16].

Related Work. For a review of work on optimisation problems for (non-probabilistic)
timed automata we refer the reader to [18]. For priced probabilistic timed automata
work has been limited to considering linearly-priced PTAs. Based on the digital clocks
approach [13], Kwiatkowska et. al. [19] present a method for solving infinite-horizon
expected reachability problems for a subclass of probabilistic timed automata. In [6]
an algorithm for calculating the maximal probability of reaching some goal location
within a given cost (and time) bound is presented. The algorithm is shown to be par-
tially correct in that if it terminates it terminates with the correct value. Following this,
[5] demonstrates the undecidability of this problem. We also mention the approaches
for analysing unpriced probabilistic timed automata against temporal logic specifica-
tions based on the region graph [20,15] and either forwards [20] or backwards [21]
reachability. The complexity of performing such verification is studied in [23,17].

2 Preliminaries

We assume, wherever appropriate, sets N of non-negative integers, R of reals and R⊕ of
non-negative reals. For n ∈ N, let �n�N and �n�R denote the sets {0, 1, . . . , n}, and {r ∈
R | 0≤r≤n} respectively. A discrete probability distribution over a countable set Q is a
function µ : Q → [0, 1] such that

∑
q∈Q µ(q)=1. For a possible uncountable set Q′, we

define D(Q′) to be the set of functions µ : Q′ → [0, 1] such that the set supp(µ)def={q ∈
Q |µ(q)>0} is countable and, over the domain supp(µ), µ is a distribution. We say that
µ ∈ D(Q) is a point distribution if µ(q)=1 for some q ∈ Q.

A set D ⊆ R
n is convex if θx+(1−θ)y ∈ D for all x, y ∈ D and θ ∈ [0, 1]. A

function f : R
n → R is concave (on its domain dom(f) ⊆ R

n), if dom(f) ⊆ R
n is

a convex set and f(θ·x+(1−θ)·y) ≥ θ·f(x)+(1−θ)·f(y) for all x, y ∈ dom(f) and
θ ∈ [0, 1]. We require the following well known [8] properties of concave functions.

Lemma 1

1. If f1, . . . , fk : R
n → R are concave and w1, . . . , wk ∈ R⊕, then

∑k
i=1 wi·fi :

R
n → R is concave on the domain

⋂k
i=1 dom(fi).

2. If f : R
n → R is concave and g : R

m → R
n linear, then x �→ f(g(x)) is concave.

Concavely-Priced Probabilistic Timed Automata 417

3. If f1, . . . fk : R
n → R are concave, then x �→ mink

i=1 fi(x) is concave on the
domain

⋂k
i=1 dom(fi).

4. If fi : R
n → R is concave for i ∈ N, then x �→ limi→∞ fi(x) is concave.

Lemma 2. If f : (a, b) → R is a concave function and f is the (unique) continuous ex-
tension of f to the closure of the interval (a, b), then infx∈(a,b) f(x)=min{f(a), f(b)}.

A function f : R
n → R

m is Lipschitz-continuous on its domain, if there exists a con-
stant K≥0, called a Lipschitz constant of f , such that ‖f(x)−f(y)‖∞ ≤ K‖x−y‖∞
for all x, y ∈ dom(f); we then also say that f is K-continuous.

3 Markov Decision Processes

In this section we introduce Markov decision processes (MDPs), a form of transition
systems which exhibit both probabilistic and nondeterministic behaviour.

Definition 3. A priced Markov decision process is a tuple M = (S,A, p, π) where:

– S is the set of states;
– A is the set of actions;
– p : S×A → D(S) is a partial function called the probabilistic transition function;
– π : S×A → R is a bounded and measurable price function assigning real-values

to state-action pairs.

We write A(s) for the set of actions available at s, i.e., the set of actions a for which
p(s, a) is defined. For technical convenience we assume that A(s) is nonempty for all
s ∈ S. We say M is finite, if the sets S and A are finite.

In the priced MDP M, if the current state is s, then a strategy chooses an action
a ∈ A(s) after which a probabilistic transition is made according to the distribu-
tion p(s, a), i.e., state s′ ∈ S is reached with probability p(s′|s, a) def= p(s, a)(s′).
We say that (s, a, s′) is a transition of M if p(s′|s, a)>0 and a run of M is a se-
quence 〈s0, a1, s1, . . .〉 ∈ S×(A×S)∗ such that (si, ai+1, si+1) is a transition for all
i≥0. We write RunsM (RunsMfin) for the sets of infinite (finite) runs and RunsM(s)
(RunsMfin (s)) for the sets of infinite (finite) runs starting from state s. For a finite run
r=〈s0, a1, . . . , sn〉 we write last(r)=sn for the last state of the run. Furthermore, let
Xi and Yi denote the random variables corresponding to ith state and action of a run.

A strategy in M is a function σ : RunsMfin → D(A) such that supp(σ(r)) ⊆
A(last(r)) for all r ∈ RunsMfin . Let RunsMσ (s) denote the subset of RunsM(s) which
correspond to the strategy σ when starting in state s. Let ΣM be the set of all strategies
in M. We say that a strategy σ is pure if σ(r) is a point distribution for all r ∈ RunsMfin .
We say that a strategy σ is stationary if last(r)=last(r′) implies σ(r)=σ(r′) for all
r, r′ ∈ RunsMfin . A strategy σ is positional if it is both pure and stationary. To analyse
the behaviour of an MDP M under a strategy σ, for each state s of M, we define a
probability space (RunsMσ (s),FRunsMσ (s), Probσ

s) over the set of infinite runs of σ with
s as the initial state. For details on this construction see, for example, [27]. Given a
real-valued random variable over the set of infinite runs f : RunsM → R, using stan-
dard techniques from probability theory, we can define the expectation of this variable
E

σ
s {f} with respect to σ when starting in s.

418 M. Jurdziński et al.

Performance Objectives. For a priced MDP M = (S,A, p, π), under any strategy σ
and starting from any state s, there is a sequence of random prices {π(Xi−1, Yi)}i≥1.
Depending on the problem under study there are a number of different performance
objectives that can be studied. Below are the objectives most often used.

1. Expected Reachability Price (with target set F):

EReachM(F)(s, σ) def= E
σ
s

{∑min{i |Xi∈F}
i=1 π(Xi−1, Yi)

}
.

2. Expected Total Price (with horizon N):

ETotalM(N)(s, σ) def= E
σ
s

{∑N
i=1π(Xi−1, Yi)

}
.

3. Expected Discounted Price (with discount factor λ ∈ (0, 1)):

EDisctM(λ)(s, σ) def= E
σ
s

{
(1−λ)

∑∞
i=1λ

i−1π(Xi−1, Yi)
}
.

4. Expected Average Price:

EAvgM(s, σ) def= lim sup
n→∞

1
n

E
σ
s {
∑n

i=1π(Xi−1, Yi)} .

For an objective ECostM and state s we let ECost∗M(s) = infσ∈ΣM ECostM(s, σ). A
strategy σ of M is optimal for ECostM if ECostM(s, σ) = ECost∗M(s) for all s ∈ S.
Note that an optimal strategy need not exist, and in such cases one can consider, for each
ε>0, a ε-optimal strategy, that is, a strategy σ such that ECost∗M(s) ≥ ECostM(s, σ)−ε
for all s ∈ S. For technical convenience we make the follows assumptions for reacha-
bility objectives [9].

Assumption 1. If s ∈ F , then s is absorbing and price free, i.e. p(s|s, a)=1 and
π(s, a)=0 for all a ∈ A(s).

Assumption 2. For all σ ∈ ΣM and s ∈ S we have limi→∞ Probσ
s (Xi ∈ F) = 1.

Optimality Equations. We now review optimality equations for determining the objec-
tives given above.

1. Let P : S → R and F ⊆ S; we write P |= OptFR(M), and we say that P is a
solution of optimality equations OptFR(M) if, for all s ∈ S, we have:

P (s) =
{

0 if s ∈ F
infa∈A(s)

{
π(s, a) +

∑
s′∈S p(s

′|s, a) · P (s′)
}

otherwise.

2. Let T0, . . . , TN : S → R; we say that 〈Ti〉Ni=0 is a solution of optimality equations
OptNT (M) if, for all s ∈ S, we have:

Ti(s) =

{
0 if i = 0
infa∈A(s)

{
π(s, a) +

∑
s′∈Sp(s

′|s, a) · Ti−1(s′)
}

otherwise.

Concavely-Priced Probabilistic Timed Automata 419

3. Let D : S → R; we write D |= OptλD(M), and we say that D is a solution of
optimality equations OptλD(M) if, for all s ∈ S, we have:

D(s) = inf
a∈A(s)

{
(1−λ) · π(s, a) + λ ·

∑
s′∈Sp(s

′|s, a) ·D(s′)
}
.

4. Let G : S → R and B : S → R; we write (G,B) |= OptA(M), and we say that
(G,B) is a solution of optimality equations1 OptA(M), if for all s ∈ S, we have:

G(s) = inf
a∈A(s)

{∑
s′∈Sp(s

′|s, a) ·G(s′)
}

B(s) = inf
a∈A(s)

{
π(s, a) −G(s) +

∑
s′∈Sp(s

′|s, a) ·B(s′)
}

The proof of the following proposition is routine and for details see, for example, [10].

Proposition 4. Let M be a priced MDP.

1. If P |=OptFR(M), then P (s)=EReach∗M(F)(s) for all s ∈ S.

2. If 〈Ti〉Ni=0|=OptNR (M), then Ti(s)=ETotal∗M(i)(s) for all i ≤ N and s ∈ S.

3. If D|=OptλD(M) and D is bounded, then D(s)=EDisct∗M(λ)(s) for all s ∈ S.

4. If (G,B)|=OptA(M) and G,B are bounded, then G(s)=EAvg∗M(s) for all s ∈ S.

Notice that, for each objective, if, for every state s ∈ S, the infimum is attained in the
optimality equations, then there exists an optimal positional strategy. An important class
of MDPs with this property are finite MDPs, which gives us the following proposition.

Proposition 5. For every finite MDP, the existence of a solution of the optimality equa-
tions for the expected reachability, discounted and average price implies the existence
of a positional optimal strategy for the corresponding objective.

For a finite MDP M a solution of optimality equations for expected reachability, total,
discounted, and average price objectives can be obtained by value iteration or strategy
improvement algorithms [27].

Proposition 6. For every finite MDP, there exist solutions of the optimality equations
for expected reachability, total, discounted, and average price objectives.

Proposition 5 together with Proposition 6 provide a proof of the following well-known
result for priced MDPs [27].

Theorem 7. For a finite priced MDP the reachability, discounted, and average price
objectives each have an optimal positional strategy.

Notice that the total price objective need not have an optimal positional strategy since,
unlike the other objectives, it is a finite horizon problem. However, for this reason, its
analysis concerns only finitely many strategies.

1 These optimality equations are slightly different from Howard’s optimality equations for ex-
pected average price, and correspond to Puterman’s [27] modified optimality equations.

420 M. Jurdziński et al.

4 Concavely-Priced Probabilistic Timed Automata

In this section we introduce concavely-priced probabilistic timed automata and begin
by defining clocks, clock valuations, clock regions and zones.

4.1 Clocks, Clock Valuations, Regions and Zones

We fix a constant k ∈ N and finite set of clocks C. A (k-bounded) clock valuation is a
function ν : C → �k�R and we write V for the set of clock valuations.

Assumption 3. Although clocks in (probabilistic) timed automata are usually allowed
to take arbitrary non-negative values, we have restricted the values of clocks to be
bounded by some constant k. More precisely, we have assumed the models we consider
are bounded probabilistic timed automata. This standard restriction [7] is for technical
convenience and comes without significant loss of generality.

If ν ∈ V and t ∈ R⊕ then we write ν+t for the clock valuation defined by (ν+t)(c) =
ν(c)+t, for all c ∈ C. For C ⊆ C and ν ∈ V , we write ν[C:=0] for the clock valuation
where ν[C:=0](c) = 0 if c ∈ C, and ν[C:=0](c) = ν(c) otherwise.

The set of clock constraints over C is the set of conjunctions of simple constraints,
which are constraints of the form c 	� i or c−c′ 	� i, where c, c′ ∈ C, i ∈ �k�N, and
	� ∈ {<,>,=,≤,≥}. For every ν ∈ V , let SCC(ν) be the set of simple constraints
which hold in ν. A clock region is a maximal set ζ ⊆ V , such that SCC(ν)=SCC(ν′)
for all ν, ν′ ∈ ζ. Every clock region is an equivalence class of the indistinguishability-
by-clock-constraints relation, and vice versa. Note that ν and ν′ are in the same clock
region if and only if the integer parts of the clocks and the partial orders of the clocks,
determined by their fractional parts, are the same in ν and ν′. We write [ν] for the clock
region of ν and, if ζ=[ν], write ζ[C:=0] for the clock region [ν[C:=0]].

A clock zone is a convex set of clock valuations, which is a union of a set of clock
regions. We write Z for the set of clock zones. For any clock zone W and clock valua-
tion ν, we use the notation ν �W to denote that [ν] ∈ W . A set of clock valuations is a
clock zone if and only if it is definable by a clock constraint. For W ⊆ V , we write W
for the smallest closed set in V containing W . Observe that, for every clock zone W ,
the set W is also a clock zone.

4.2 Probabilistic Timed Automata

We are now in a position to introduce probabilistic timed automata.

Definition 8. A probabilistic timed automaton T = (L, C, inv ,Act , E, δ) consists of:

– a finite set of locations L;
– a finite set of clocks C;
– an invariant condition inv : L → Z;
– a finite set of actions Act ;
– an action enabledness function E : L×Act → Z;
– a transition probability function δ : (L×Act) → D(2C×L).

Concavely-Priced Probabilistic Timed Automata 421

When we consider a probabilistic timed automaton as an input of an algorithm, its size
should be understood as the sum of the sizes of encodings of L, C, inv , Act , E, and δ.
A configuration of a probabilistic timed automaton T is a pair (�, ν), where � ∈ L is a
location and ν ∈ V is a clock valuation over C such that ν�inv (�). For any t ∈ R, we let
(�, ν)+t equal the configuration (�, ν+t). Informally, the behaviour of a probabilistic
timed automaton is as follows. In configuration (�, ν) time passes before an available
action is triggered, after which a discrete probabilistic transition occurs. Time passage
is available only if the invariant condition inv(�) is satisfied while time elapses, and
the action a can be chosen after time t if the action is enabled in the location �, i.e., if
ν+t � E(�, a). Both the amount of time and the action chosen are nondeterministic. If
the action a is chosen, then the probability of moving to the location �′ and resetting all
of the clocks in C to 0 is given by δ[�, a](C, �′).

Formally, the semantics of a probabilistic timed automaton is given by an MDP
which has both an infinite number of states and an infinite number of transitions.

Definition 9. Let T = (L, C, inv ,Act , E, δ) be a probabilistic timed automaton. The
semantics of T is the MDP [[T]] = (ST, AT, pT) where

– ST ⊆ L×V such that (�, ν) ∈ ST if and only if ν � inv(�);
– AT = R⊕×Act;
– for (�, ν) ∈ ST and (t, a) ∈ AT, we have pT((�, ν), (t, a)) = µ if and only if

• ν+t′ � inv(�) for all t′ ∈ [0, t];
• ν+t � E(�, a);
• µ(�′, ν′) =

∑
C⊆C∧(ν+t)[C:=0]=ν′ δ[�, a](C, �′) for all (�′, ν′) ∈ S.

We assume the following—standard and easy to syntactically verify—restriction on
PTAs which ensures time divergent behaviour.

Assumption 4. We restrict attention to structurally non-Zeno probabilistic timed au-
tomata [29,17]. A PTA is structurally non-Zeno if, for any run 〈s0, (t1, a1), . . . , sn〉,
such that s0=(�0, ν0), sn=(�n, νn) and �0=�n (i.e., the run forms a cycle in the finite
graph of the locations and transitions of the automaton) we have

∑n
i=1 ti ≥ 1.

4.3 Priced Probabilistic Timed Automata

We now introduce priced probabilistic timed automata which extend probabilistic timed
automata with price functions over state and time-action pairs.

Definition 10. A priced probabilistic timed automaton T = (T, π) consists of a proba-
bilistic timed automaton T and a price function π : (L×V) × (R⊕×Act) → R.

The semantics of a priced PTA T is the priced MDP [[T]] = ([[T]], π) where π(s, (t, a))
is the price of taking the action (t, a) from state s in [[T]]. In a linearly-priced PTA [19],
the price function is represented as a function r : L ∪ Act → R, which gives a price
rate to every location �, and a price to every action a; the price of taking the timed move
(a, t) from state (�, ν) is then defined by π((�, ν), (t, a)) = r(�)·t+r(a).

In this paper we restrict attention to concave price functions requiring that for any
location � ∈ L and action a ∈ Act the function π((�, ·), (·, a)) : V×R⊕→R is concave.
However, the results in this paper for PTAs with more than 1 clock, also hold for the

422 M. Jurdziński et al.

more general region-wise concave price functions of [18]. Notice that every linearly-
priced PTA is also concavely-priced.

Considering the optimisation problems introduced for priced MDPs in Section 3, the
following is the main result of the paper.

Theorem 11. The minimisation problems for reachability, total, discounted, and aver-
age cost functions for concavely-priced PTAs are decidable.

In the next section we introduce the boundary region graph, an abstraction whose size is
exponential in the size of PTA. In Section 6 we show that to solve the above mentioned
optimisation problems on concavely-priced PTAs, it is sufficient to solve them on the
corresponding boundary region graph.

5 Boundary Region Graph Construction

Before introducing the boundary region graph we review the standard region graph
construction for timed automata [1] extended in [20] to probabilistic timed automata.

5.1 The Region Graph

A region is a pair (�, ζ), where � is a location and ζ is a clock region such that ζ ⊆
inv(�). For any s=(�, ν), we write [s] for the region (�, [ν]) and R for the set of regions.
A set Z ⊆ L×V is a zone if, for every � ∈ L, there is a clock zoneW
 (possibly empty),
such that Z = {(�, ν) | � ∈ L ∧ ν � W
}. For a region R=(�, ζ) ∈ R, we write R for
the zone {(�, ν) | ν ∈ ζ}, recall ζ is the smallest closed set in V containing ζ.

For R,R′ ∈ R, we say that R′ is in the future of R, or that R is in the past of R′,
if there is s ∈ R, s′ ∈ R′ and t ∈ R⊕ such that s′ = s+t; we then write R −→∗ R′.
We say that R′ is the time successor of R if R −→∗ R

′, R
=R′, and R −→∗ R
′′ −→∗ R

′

implies R′′=R or R′′=R′ and write R −→+1 R
′ and R′ ←−+1 R. Similarly we say that

R′ is the nth successor of R and write R −→+n R′, if there is a sequence of regions
〈R0, R1, . . . , Rn〉 such that R0=R, Rn=R′ and Ri −→+1 Ri+1 for every 0≤i<n.

The region graph is an MDP with both a finite number of states and transitions.

Definition 12. Let T = (L, C, inv ,Act , E, δ) be a probabilistic timed automaton. The
region graph of T is the MDP TRG = (SRG, ARG, pRG) where:

– SRG = R;
– ARG ⊆ N×Act such that if (n, a) ∈ ARG then n ≤ (2·|C|)k;
– for (�, ζ) ∈ SRG and (n, a) ∈ ARG we have pRG((�, ζ), (n, a)) = µ if and only if

• (�, ζ) −→+n (�, ζn);
• ζn � E(�, a);
• µ(�′, ζ′) =

∑
C⊆C∧ζn[C:=0]=ζ′ δ[�, a](C, l′) for all (�′, ζ′) ∈ SRG.

Since the region graph abstracts away the precise timing information, it can not be used
to solve expected reachability, total, discounted, and average price problems for the
original probabilistic timed automaton. In the next section, we define a new abstrac-
tion of probabilistic timed automata, called the boundary region graph, which retains
sufficient timing information to solve these performance objectives.

Concavely-Priced Probabilistic Timed Automata 423

5.2 The Boundary Region Graph

We say that a region R ∈ R is thin if [s]
= [s+ε] for every s ∈ R and ε>0; other
regions are called thick. We write RThin and RThick for the sets of thin and thick regions,
respectively. Note that if R ∈ RThick then, for every s ∈ R, there is an ε > 0, such that
[s] = [s+ε]. Observe that the time successor of a thin region is thick, and vice versa.

We say (�, ν) ∈ L×V is in the closure of the region (�, ζ), and we write (�, ν) ∈
(�, ζ), if ν ∈ ζ . For any ν ∈ V , b ∈ �k�N and c ∈ C such that ν(c)≤b, we let
time(ν, (b, c)) def= b−ν(c). Intuitively, time(ν, (b, c)) returns the amount of time that
must elapse in ν before the clock c reaches the integer value b. Note that, for any
(�, ν) ∈ L×V and a ∈ Act , if t = time(ν, (b, c)) is defined, then (�, [ν+t]) ∈ RThin

and supp(pT(· | (�, ν), (t, a))) ⊆ RThin. Observe that, for every R′ ∈ RThin, there is a
number b ∈ �k�N and a clock c ∈ C, such that, for every R ∈ R in the past of R′, we
have that s ∈ R implies (s+(b−s(c)) ∈ R′; and we write R −→b,c R

′.
The motivation for the boundary region graph is the following. Let a ∈ A, s = (�, ν)

and R = (�, ζ) →∗ R
′ = (�, ζ′) such that s ∈ R and R′ � E(�, a).

– If R′ ∈ RThick, then there are infinitely many t ∈ R⊕ such that s+t ∈ R′. One
of the main results that we establish is that in the state s, amongst all such t’s,
for one of the boundaries of ζ′, the closer ν+t is to this boundary, the ‘better’ the
timed action (t, a) becomes for each performance objective. However, since R′ is
a thick region, the set {t ∈ R⊕ | s+t ∈ R′} is an open interval, and hence does
not contain its boundary values. Observe that the infimum equals b−−ν(c−) where
R →b−,c− R− −→+1 R′ and the supremum equals b+−ν(c+) where R →b+,c+

R+ ←−+1 R′. In the boundary region graph we include these ‘best’ timed action
through the actions ((b−, c−, a), R′) and ((b+, c+, a), R′).

– If R′ ∈ RThin, then there exists a unique t ∈ R⊕ such that (�, ν+t) ∈ R′. Moreover
since R′ is a thin region there exists a clock c ∈ C and a number b ∈ N such that
R →b,c R

′ and t = b−ν(c). In the boundary region graph we summarize this ‘best’
timed action from region R via region R′ through the action ((b, c, a), R′).

With this intuition in mind, let us present the definition of a boundary region graph.

Definition 13. Let T = (L, C, inv , A,E, δ) be a probabilistic timed automaton. The
boundary region graph of T is defined as the MDP TBRG = (SBRG, ABRG, pBRG) such that:

– SBRG = {((�, ν), (�, ζ)) | (�, ζ) ∈ R∧ ν ∈ ζ};
– ABRG ⊆ (�k�N×C×Act)×R;
– for any state ((�, ν), (�, ζ)) ∈ SBRG and action ((b, c, a), (�, ζa)) ∈ ABRG we have
pBRG((�, ν), (�, ζ), ((b, c, a), (�, ζa))) = µ if and only if

µ((�′, ν′), (�′, ζ′)) =
∑

C⊆C∧νa[C:=0]=ν′∧ζa[C:=0]=ζ′δ[�, a](C, l′)

for all ((�′, ν′), (�′, ζ′)) ∈ SBRG where νa = ν+time(ν, (b, c)) and one of the fol-
lowing conditions holds:
• (�, ζ) −→b,c (�, ζa) and ζa � E(�, a)
• (�, ζ) −→b,c (�, ζ−) −→+1 (�, ζa) for some (�, ζ−) and ζa � E(�, a)
• (�, ζ) −→b,c (�, ζ+) ←−+1 (�, ζa) for some (�, ζ+) and ζa � E(�, a).

424 M. Jurdziński et al.

Although the boundary region graph is infinite, for a fixed initial state we can restrict
attention to a finite state subgraph, thanks to the following observation [18].

Proposition 14. For every state s ∈ SBRG of a boundary region graph TBRG, the reach-
able sub-graph Ts

BRG is a finite MDP.

Proposition 15. If s = ((�, ν), (�, ζ)) ∈ SBRG is such that ν is an integer valuation,
then the MDP Ts

BRG is equivalent to the digital clock semantics [19] of T and extends
the corner point abstraction of [7] to the probabilistic setting.

Definition 16. Let T = (T, π) be a priced probabilistic timed automaton. The priced
boundary region graph of T equals the priced MDP TBRG = (TBRG, πBRG) where for any
state ((�, v), (�, ζ)) ∈ SBRG and action ((b, c, a), (�, ζ′)) ∈ ABRG available in the state:

πBRG

(
((�, v), (�, ζ)), ((b, c, a), (�, ζ′))

)
= π

(
(�, ν), (time(ν, (b, c)), a)

)
.

6 Correctness of the Reduction to Boundary Region Automata

For the remainder of this section we fix a concavely-priced PTA T . Proposition 14
together with Proposition 6 yield the following important result.

Proposition 17. For the priced MDP TBRG there exist solutions of the optimality equa-
tions for expected reachability, total, discounted, and average price objectives.

We say that a function f : SBRG → R is regionally concave if for all (�, ζ) ∈ R the
function f(·, (�, ζ)) : {(�, ν) | ν ∈ ζ} → R is concave.

Lemma 18. Assume that P |= OptFR(TBRG), 〈Ti〉Ni=1 |= OptNT (TBRG), and D |=
OptλD(TBRG) We have that P , TN , and D are regionally concave.

Proof. (Sketch.) Using an elementary, but notationally involved, inductive proof we
can show that TN is regionally concave. The proof uses closure properties of concave
functions (see Lemma 1), along with the fact that price functions π are concave. The
concavity of P and D follows from the observation that they can be characterised as the
limit (concave due to Lemma 1) of certain optimal expected total price objectives. "#

For any function f : SBRG → R, we define f̃ : ST → R by f̃(�, ν) = f((�, ν), (�, [ν])).

Lemma 19. If P |= OptFR(TBRG), then P̃ |= OptFR([[T]]).

Proof. Assuming P |= OptFR(TBRG), to prove this proposition it is sufficient to show that
for any s=(�, ν) ∈ ST we have:

P̃ (s) = inf
(t,a)∈A(s)

{π(s,(t,a)) +
∑

(C,
′)∈2C×L

δ[�,a](C,�′)·P̃ (�′,(ν+t)[C:=0])}. (1)

We therefore fix a state s=(�, ν) ∈ ST for the remainder of the proof. For any a ∈
Act , let Ra

Thin and Ra
Thick denote the set of thin and think regions respectively that are

successors of [ν] and are subsets of E(�, a). Considering the RHS of (1) we have:

RHS of (1) = min
a∈Act

{TThin(s, a), TThick(s, a)}, (2)

Concavely-Priced Probabilistic Timed Automata 425

where TThin(s, a) (TThick(s, a)) is the infimum of the RHS of (1) over all actions (t, a)
such that [ν+t] ∈ Ra

Thin ([ν+t] ∈ Ra
Thick). For the first term we have:

TThin(s,a) = min
(
,ζ)∈Ra

Thin

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,
′)∈2C×L

δ[�,a](C,�′)·P̃ (�′,νt
C)

}

= min
(
,ζ)∈Ra

Thin

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,
′)∈2C×L

δ[�,a](C,�′)·P ((�′,νt
C),(�′,ζC))

}

= min
(
,ζ)∈Ra

Thin

{
π(s,(t(
,ζ),a)) +

∑
(C,
′)∈2C×L

δ[�,a](C,�′)·P ((�′,νt(
,ζ)

C),(�′,ζC))

}

where νt
C denote the clock valuation (ν+t)[C:=0], t(
,ζ) the time to reach the region R

from s and ζC the region ζ[C:=0]. Considering the second term of (2) we have

TThick(s,a) = min
(
,ζ)∈Ra

Thick

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,
′)∈2C×L

δ[�,a](C,�′)·P̃ (�′,νt
C)

}

= min
(
,ζ)∈Ra

Thick

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,
′)∈2C×L

δ[�,a](C,�′)·P ((�′,νt
C),(�′,ζC))

}

= min
(
,ζ)∈Ra

Thick

inf
ts
R−<t<ts

R+
R←+1R−
R→+1R+

{
π(s,(t,a)) +

∑
(C,
′)∈2C×L

δ[�,a](C,�′)·P ((�′,νt
C),(�′,ζC))

}

From Lemma 18 we have that P ((�′, ·), (�′, ζC)) is concave and, from Lemma 1, since
νt

C is an affine mapping and δ[�,a](C,�′)≥0 for all 2C×L, the weighted sum over (C, �′)
of the functions P ((�′, νt

C), (�′, ζC)) is concave on the domain {t | ν+t ∈ ζ}. From
the concavity assumption of price functions, π(s, (·, a)) is concave over the domain
{t | ν+t ∈ ζ}, and therefore, again using Lemma 1, we have that the function:

π(s, (t, a)) +
∑

(C,
′)∈2C×L

δ[�, a](C, �′)·P ((�′, νt
C), (�′, ζC))

is concave over {t | ν+t ∈ ζ}. Therefore using Lemma 2 we have TThick(s, a) equals

min
(
,ζ)∈Ra

Thick

min
t=ts

R− ,ts
R+

(
,ζ)←−+1R−
(
,ζ)−→+1R+

{
π(s,(t,a)) +

∑
(C,
′)∈2C×L

δ[�,a](C,�′)·P ((�′,νt
C),(�′,ζC))

}

Substituting the values of TThin(s, a) and TThick(s, a) into (2) and observing that for any
thin region (�, ζ) ∈ Ra

Thin there exist b ∈ Z and c ∈ C such that ν+(b−ν(c)) ∈ ζ, it
follows from Definition 13 that RHS of (1) equals:

min
(α,R)∈ABRG(s,[s])

{
πBRG((s,[s]),(α,R))+

∑
(s′,R′)∈SBRG

pBRG((s′,R′)|(s,[s]), (α,R))·P (s′,R′)

}

which by definition equals P̃ (s) as required. "#

426 M. Jurdziński et al.

Lemma 20. If 〈Ti〉Ni=1 |= OptNT (TBRG), then 〈T̃i〉Ni=0 |= OptNT ([[T]]).

Lemma 21. If D |= OptλD(TBRG), then D̃ |= OptλD([[T]]).

Since it is not known to us whether there exists a solution (G,B) |= OptA(TBRG) such
that both G and B are regionally concave, we can not show that (G,B) |= OptA(TBRG),
implies (G,B) |= OptA([[T]]). Instead, we use the following result to reduce the aver-
age price problem on PTA to that over the corresponding boundary region graph.

Lemma 22. If (G,B) |= OptA(TBRG), then G̃ = EAvg∗[[T]].

The proof of this result follows from Lemma 24 and Corollary 26 below.

Lemma 23. For an arbitrary priced MDP M = (S,A, p, π) and state s ∈ S, the
following inequality holds:

inf
σ∈ΣM

lim sup
n→∞

1
n
·Eσ

s {
∑n

i=1π(Xi−1, Yi)} ≥ lim sup
n→∞

inf
σ∈ΣM

1
n
·Eσ

s {
∑n

i=1π(Xi−1, Yi)}

Lemma 24. For every state s ∈ ST we have EAvg∗[[T]](s) ≥ EAvg∗TBRG
(s, [s]).

Proof. Consider any s ∈ ST, using Lemma 23 we have:

EAvg∗
[[T]](s) ≥ lim sup

n→∞
inf

σ∈Σ[[T]]

1
n
· Eσ

s {
∑n

i=1π(Xi−1, Yi)}

= lim sup
n→∞

1
n
· ETotal∗[[T]](n)(s) by definition of ETotal∗[[T]](n)

≥ lim sup
n→∞

1
n
· ETotal∗TBRG

(n)((s, [s])) by Lemma 20 and Proposition 4

= lim sup
n→∞

1
n
· inf

σ∈ΣTBRG

E
σ
(s,[s]){

∑n
i=1π(Xi−1, Yi)} by definition

= inf
σ∈ΣTBRG

lim sup
n→∞

1
n
· E

σ
(s,[s]){

∑n
i=1π(Xi−1, Yi)} since [TBRG, (s, [s])] is finite

= EAvg∗TBRG
(s, [s]) as required "#

Using the Lipschitz-continuity of price functions and a slight variant of Lemma 3 of [7]
we show that the following proposition and corollary hold.

Proposition 25. For every ε>0, σ ∈ ΣTBRG and s ∈ ST, there exists σε ∈ Σ[[T]] such
that |ETotalTBRG(N)((s, [s]), σ) − ETotal[[T]](N)(s, σε) | ≤ N ·ε for all N ∈ N.

Corollary 26. For every ε>0 and s ∈ ST we have EAvg∗[[T]](s) ≤ EAvg∗TBRG
(s, [s])+ε.

7 Complexity

To show EXPTIME-hardness we present a reduction to the EXPTIME-complete prob-
lem of solving countdown games [17]. The lemma concerns only expected reachability
price problem as similar reductions follow for the other problems.

Concavely-Priced Probabilistic Timed Automata 427

2

3

3
2n′n

(a) Game G

c≤0
nu n

b,c≤B0 c≤0
n′

u n′
b,c≤B0

c=3
0.5

0.5

c:=0

c=0

c=0

c=2
c:=0

c:=0

c=2
c:=0

b=B0b=B0

�

(b) PTA TG

Fig. 1. Countdown Game and the corresponding probabilistic timed automata

Lemma 27. The expected reachability problem is EXPTIME-hard for concavely-priced
PTA with two or more clocks.

Proof. Let G = (N,M, πG , n0, B0) be a countdown game. N is a finite set of nodes;
M ⊆ N×N is a set of moves; πG : M → N+ assigns a positive integer to ev-
ery move; (n0, B0) ∈ N×N+ is the initial configuration. From (n,B) ∈ N×N+,
a move consists of player 1 choosing k ∈ N+, such that k≤B and πG(n, n′)=k for
some (n, n′) ∈ M , then player 2 choosing (n, n′′) ∈ M such that πG(n, n′′)=k; the
new configuration is (n′′, B−k). Player 1 wins if a configuration of the form (n, 0) is
reached, and loses when a configuration (n,B) is reached such that πG(n, n′)>B for
all (n, n′) ∈ M .

Given a countdown game G we define the PTA TG = (L, C, inv ,Act , E, δ) where
L = {(}∪N∪Nu whereNu = {nu |n ∈ N}; C = {b, c}; inv(n) = {ν | 0≤ν(b)≤B0∧
0≤ν(c)≤B0} and inv(nu) = {ν | ν(c)=0} for any n ∈ N ; Act = {(, u} ∪ {k | ∃m ∈
M.πG(m)=k}; for any � ∈ L and a ∈ Act :

E(�, a) =

⎧⎪⎪⎨
⎪⎪⎩

{ν | ∃n′ ∈ N. (πG(�, n′)=k ∧ ν(c)=k)} if � ∈ N and a=k ∈ N+
{ν | ν(b)=B0} if � ∈ Nu and a = (
{ν | ν(c) = 0} if � ∈ Nu and a = u

∅ otherwise

and for any n ∈ N , a ∈ Act(n), C ⊆ C and �′ ∈ L:

δ(n, a)(C, �′) =
{ 1

|{n′′ |πG(n,n′′)=a}| if a ∈ N+, C={c}, �′ = n′u and πG(n, n′)=a
0 otherwise

δ(nu, a)(C, �′) =

⎧⎨
⎩

1 if C = ∅, �′ = n and a = u
1 if C = ∅, �′ = (and a = (
0 otherwise.

An example of a reduction is shown in Figure 1. For the price function πG(s, (t, a)) = t,
it routine to verify that the optimal expected reachability price for target F = {(}×V
equals B0 when starting from (n0, (0, 0)) in the concavely-priced PTA (TG , πG) if and
only if player 1 has a winning strategy in the countdown game G.

"#

428 M. Jurdziński et al.

On the other hand, we can solve each problem in EXPTIME because:

– we can reduce each problem on probabilistic timed automata to a similar problem
on the boundary region graph (see Lemmas 19–22);

– the boundary region graph has exponential-size and can be constructed in exponen-
tial time in the size of the PTA;

– on the boundary region graph (a finite state MDP) we can solve each minimisation
problem using a polynomial-time algorithm (see, e.g., [27]) in the size of the graph.

For one clock concavely-priced PTAs expected reachability, discounted, and average-
price problems are PTIME-hard as these problems are PTIME-complete [26] even for
finite MDPs (i.e. PTAs with no clocks). To show PTIME-membership one can adapt the
construction of [22]—which shows the NLOGSPACE-membership of the reachability
problem for one clock timed automata—to obtain an abstraction similar to the boundary
region graph whose size is polynomial in the size of probabilistic timed automata, and
then run polynomial-time algorithms to solve this finite MDP.

Theorem 28. The exact complexity of solving expected reachability, discounted and
average price problems is EXPTIME-complete for concavely-priced PTA with two or
more clocks and PTIME-complete for concavely-priced PTA with one clock.

8 Conclusion

We presented a probabilistic extension of the boundary region graph originally defined
in the case of timed automata for PTAs. We characterize expected total (finite horizon),
reachability, discounted and average price using optimality equations. By analysing
properties of the solutions of these optimality equations on boundary region graphs,
we demonstrated that solutions on the boundary region graph are also solutions to the
corresponding optimality equations on the original priced PTA. Using this reduction,
we then showed that the exact complexity of solving expected reachability, discounted,
and average optimisation problems on concavely-priced PTAs is EXPTIME-complete.

Although the computational complexity is very high, we feel motivated by the suc-
cess of quantitative analysis tools like UPPAAL [4] and PRISM [14]. We wish to de-
velop more efficient symbolic zone-based algorithms for the problems considered in
this paper. Another direction for future work is to consider more involved objectives
like price-per-reward average [7,18] and multi-objective optimisation [25].

Acknowledgments. The authors are supported in part by EPSRC grants EP/D076625
and EP/F001096.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126 (1994)
2. Alur, R., La Torre, S., Pappas, G.: Optimal paths in weighted timed automata. In:

Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034,
p. 49. Springer, Heidelberg (2001)

Concavely-Priced Probabilistic Timed Automata 429

3. Beauquier, D.: Probabilistic timed automata. Theoretical Computer Science 292(1) (2003)
4. Behrmann, G., David, A., Larsen, K., Möller, O., Pettersson, P., Yi, W.: UPPAAL - present

and future. In: Proc. CDC 2001, vol. 3. IEEE, Los Alamitos (2001)
5. Berendsen, J., Chen, T., Jansen, D.: Undecidability of cost-bounded reachability in priced

probabilistic timed automata. In: Chen, T., Cooper, S.B. (eds.) TAMC 2009. LNCS,
vol. 5532, pp. 128–137. Springer, Heidelberg (2009)

6. Berendsen, J., Jansen, D., Katoen, J.-P.: Probably on time and within budget - on reachability
in priced probabilistic timed automata. In: Proc. QEST 2006. IEEE, Los Alamitos (2006)

7. Bouyer, P., Brinksma, E., Larsen, K.: Optimal infinite scheduling for multi-priced timed au-
tomata. Formal Methods in System Design 32(1) (2008)

8. Boyd, S., Vandenberghe, L.: Convex Optimization. CUP, Cambridge (2004)
9. de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic sys-

tems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 66. Springer,
Heidelberg (1999)

10. Dynkin, E., Yushkevich, A.: Controlled Markov Processes. Springer, Heidelberg (1979)
11. Falk, J., Horowitz, J.: Critical path problems with concave cost-time curves. Management

Science 19(4) (1972)
12. Feng, Y., Xiao, B.: A Continuous-Time Yield Management Model with Multiple Prices and

Reversible Price Changes. Management Science 46(5) (2000)
13. Henzinger, T., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.)

ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)
14. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verifi-

cation of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

15. Jensen, H.: Model checking probabilistic real time systems. In: Proc. 7th Nordic Work-
shop on Programming Theory, Report 86, pp. 247–261. Chalmers University of Technology
(1996)

16. Jurdzinski, M., Kwiatkowska, M., Norman, G., Trivedi, A.: Concavely-priced probabilis-
tic timed automata. Technical Report RR-09-06. Oxford University Computing Laboratory
(2009)

17. Jurdziński, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed automata
with one or two clocks. Logical Methods in Computer Science 4(3) (2008)

18. Jurdziński, M., Trivedi, A.: Concavely-priced timed automata. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 48–62. Springer, Heidelberg (2008)

19. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilis-
tic timed automata using digital clocks. Formal Methods in System Design 29 (2006)

20. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time
systems with discrete probability distributions. Theoretical Computer Science 282 (2002)

21. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for proba-
bilistic timed automata. Information and Computation 205(7) (2007)

22. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with one
or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 387–401. Springer, Heidelberg (2004)

23. Laroussinie, F., Sproston, J.: State explosion in almost-sure probabilistic reachability. Infor-
mation Processing Letters 102(6) (2007)

24. Larsen, K., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.: As
cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 493. Springer, Heidelberg
(2001)

430 M. Jurdziński et al.

25. Larsen, K., Rasmussen, J.: Optimal reachability for multi-priced timed automata. Theoretical
Computer Science 390(2-3) (2008)

26. Papadimitriou, C., Tsitsiklis, J.: The complexity of Markov decision processes. Mathematics
of Operations Research 12 (1987)

27. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, Chichester (1994)

28. Torres, E., Dominguez, J., Valdes, L., Aza, R.: Passenger waiting time in an airport and
expenditure carried out in the commercial area. Journal of Air Transport Management 11(6)
(2005)

29. Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999,
ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 299. Springer, Heidelberg (1999)

Compositional Control Synthesis for Partially
Observable Systems

Wouter Kuijper� and Jaco van de Pol

University of Twente Formal Methods and Tools
Dept. of EEMCS

{W.Kuijper,J.C.vandePol}@ewi.utwente.nl

Abstract. We present a compositional method for deriving control constraints
on a network of interconnected, partially observable and partially controllable
plant components. The constraint derivation method works in conjunction with an
antichain–based, symbolic algorithm for computing weakest strategies in safety
games of imperfect information. We demonstrate how the technique allows a re-
active controller to be synthesized in an incremental manner, exploiting locality
and independence in the problem specification.

1 Introduction

Control Synthesis [23] is the idea of automatically synthesizing a controller for enforc-
ing some desired behaviour in a plant. This problem can be phrased logically as follows.
Given a plant description P and a desired property φ, construct a controller C such that
P‖C � φ. Control synthesis is a close cousin of the model checking problem. Where
model checking is about establishing whether or not a model supports a given property,
control synthesis is about generating a model on which the property will hold.

The main difficulty that any effective procedure for controller synthesis must face is
that the uncontrolled state space generated by the plant description is typically large.
This is mainly due to concurrency in the model, which is a central issue also in model
checking. However, for synthesis the problem is amplified by two additional, compli-
cating factors. First, we typically see a higher degree of non–determinism because a
priori no control constraints are given. Second, it is often the case that the state of the
plant P is only partially observable for the controller C. Resolving this may incur an-
other exponential blowup. On instances, this blowup may be avoided by using smart,
symbolic methods [26].

Contribution. In this paper we focus on the compositional synthesis of a reactive
controller under the assumption of partial observability. Our main contributions are a
compositional framework for describing control synthesis problems as a network of in-
terconnected, partially controllable, partially observable plant components, and a com-
positional method for synthesizing safety controllers over such a plant model.

We believe there are at least two novel aspects to our approach. First, there is the
combination of imperfect information with compositionality. In particular, we make

� This author is supported by NWO project 600.065.120.24N20.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 431–447, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

432 W. Kuijper and J. van de Pol

sure that context assumptions take into account partial observability of the components.
Second, our framework ensures context assumptions gradually shift in the direction of
control constraints as the scope widens. In this way we avoid, to some extent, unrealistic
assumptions, and generally obtain a less permissive context. Note that the size of the
context assumptions is an important factor [19] in the efficiency of assume–guarantee
based methods.

This work is complementary to our work in [13]. The game solving algorithm we
present there is designed to be applied in a compositional setting. It is an efficient coun-
terexample driven algorithm for computing sparse context assumptions. As such, it is
especially suitable for the higher levels in the composition hierarchy where abstraction
is often possible (and useful). However, its successful application hinges on the fact that
control constraints local to any of the considered subcomponents should already be in-
corporated into the game board. Here we show how this can be achieved by proceeding
compositionally.

Related Work. Synthesis of reactive systems was first considered by Church [10] who
suggested the problem of finding a set of restricted recursion equivalences mapping
an input signal to an output signal satisfying a given requirement [25]. The classi-
cal solutions to Church’s Problem [4,22] in principle solve the synthesis problem for
omega–regular specifications. Since then, much of the subsequent work has focused
on extending these results to richer classes of properties and systems, and on making
synthesis more scalable.

Pioneering work on synthesis of closed reactive systems [18,11] uses a reduction
to the satisfiability of a temporal logic formula. That it is also possible to synthesize
open reactive systems is shown [20,21] using a reduction to the satisfiability of a CTL∗

formula, where path operators force alternation between the system and the environ-
ment. Around the same time, another branch of work [23,16] considers the synthesis
problem specifically in the context of control of discrete event systems, this introduces
many important control theoretical concepts, such as observability, controllability, and
the notion of a control hierarchy.

More recently several contributions have widened the scope of the field and ad-
dressed several scalabilty issues. Symbolic methods, already proven successful in a
verification setting, can be applied also for synthesis [2]. Symbolic techniques also
enable synthesis for hybrid systems which incorporate continuous as well as discrete
behaviour [1]. Controller synthesis under partial information can be solved by a re-
duction to the emptiness of an alternating tree automaton [15]. This method is very
general and works in branching and linear settings. However, scalability issues remain
as the authors note that most of the combinatorial complexity is shifted to the emptiness
check for the alternating tree automaton. In [14] a compositional synthesis method is
presented that reduces the synthesis problem to the emptiness of a non–deterministic
Büchi tree automaton. The authors of [17] consider the specific case of hard real time
systems. They argue that the full expressive power of omega regular languages may not
be necessary in such cases, since a bounded response requirement can be expressed as
a safety property.

Even the earliest solutions to Church’s problem, essentially involve solving a
game between the environment and the control [24]. As such there is a need to study

Compositional Control Synthesis for Partially Observable Systems 433

the (symbolic) representation and manipulation of games and strategies as first class
citizens. In [7] a symbolic algorithm for games with imperfect information is devel-
oped based on fixed point iteration over antichains. In [5] there are efficient on–the–fly
algorithms for solving games of imperfect information. In [13] we propose a counter ex-
ample driven algorithm for computing weakest strategies in safety games of imperfect
information.

Compositionality adds another dimension to the synthesis problem: for reasons of
scalability it is desirable to solve the synthesis problem in an incremental manner, treat-
ing first subproblems in isolation before combining their results. In general this requires
a form of assume–guarantee reasoning. There exists an important line of related work
that addresses such issues.

One such recent development that aims to deal with component based designs is the
work on interface automata [12]. This work introduces interfaces as a set of behavioural
assumptions/guarantees between components. Composition of interfaces is optimistic:
two interfaces are compatible iff there exists an environment in which they could be
made to work together. In this paper, we work from a similar optimistic assumption
while deriving local control constraints, i.e.: a local transition should not be disabled
as long as there exists a safe context which would allow it to be taken. A synchronous,
bidirectional interface model is presented in [6]. Our component model is similar, but
differs on the in–/output partition of the variables to be able to handle partially observ-
able systems. Besides providing a clean theory of important software engineering con-
cepts like incremental design and independent implementability, interfaces also have
nice algorithmic properties allowing for instance automated refinement and compatibil-
ity checking. Several algorithms for interface synthesis are discussed in [3].

Authors in [9] describe a co–synthesis method based on assume–guarantee reason-
ing. Their solution is interesting in that it addresses non–zero–sum games where pro-
cesses compete, but not at all cost. In [8] the same authors explore ways in which
to compute environment assumptions for specifications involving liveness properties,
where removal of unsafe transitions constitutes a pre–processing step. Note that, for a
liveness property, in general, there does not exist a unique weakest assumption on the
context, so this is a non–trivial problem.

Structure. The rest of the paper is structured as follows. In Section 2 we build up a
game–theoretic, semantical framework for control synthesis problems. We also present
our running example used to illustrate all the definitions. In Section 3 we propose a
sound and complete compositional method for control synthesis. We demonstrate the
method on the running example. In Section 4 we conclude with a summary of the con-
tribution, and perspectives on future work.

2 Compositional Framework

In this section we give a formal semantics for our central object of interest, which is the
plant under control, or PuC. First we give an example.

434 W. Kuijper and J. van de Pol

feeder

stamp 1 stamp 2
optical sensors

Model Propositions
prop.: description: cntrl.: here:
p0 parcel at 0 - true
s0 sensor 0 in true
p1 parcel at 1 - false
a1 arm 1 out false
s1 sensor 1 in false
p2 parcel at 2 - true
a2 arm 2 out true
s2 sensor 2 in true

feed0 stamp1 stamp2

p0 p1 p2

s0 a1 s1 a2 s2

Desired Control Logic
Model
Components

Fig. 1. A modular parcel stamping plant. (top left) The legend (top right) shows all the propositions
we used to model this example. The decomposition structure (bottom) shows the components we
identified in the model and their interconnections, in terms of input and output propositions.

A Motivating Example. We consider the parcel plant illustrated in Figure 1. This
fictive plant consists of a feeder and two stamps connected together with a conveyor
belt. A parcel is fed onto the belt by the feeder. The belt transports the parcel over to
stamp 1 which prints a tracking code. The belt then transports the parcel over to stamp
2 which stamps the shipping company’s logo. Next to the illustration in Figure 1 we list
all the propositions we used to model this particular example. For each proposition we
indicate whether it is a control output/input, and whether or not it holds for the current
state of the plant as it is shown in the picture. We specify the behaviour of the three
components in the parcel stamp using Kripke structures over these atomic propositions
in Figure 2.

Definition 1 (Kripke Structures). We let X be a background set of propositions. For
a given (finite) subset X ⊆ X of propositions we define S[X] = 2X as the set of states,
or valuations overX . We define shorthandS = S[X]. A Kripke structure is a tupleA =
(L,X, γ, δ, Linit), consisting of a set of locationsL, a finite set of relevant propositions
X ⊆ X , a propositional labeling γ : L → S[X], a transition relation δ ⊆ L×L, and a
set of initial locationsLinit ⊆ L. For any two Kripke structuresA1, A2 the composition
A12 = A1‖A2 is defined withL12 = {(�1, �2) ∈ L1×L2 | γ1(�1)∩X2 = γ2(�2)∩X1},
X12 = X1 ∪X2, for all (�1, �2) ∈ L12 it holds γ12(�1, �2) = γ1(�1) ∪ γ2(�2), for all
(�1, �2), (�′1, �′2) ∈ L12 it holds (�1, �2)δ12(�′1, �′2) iff �1δ1�′1 and �2δ2�

′
2, and, for the

initial locations, it holds Linit
12 = (Linit

1 × Linit
2) ∩ L12. Note that L12 contains all the

pairs of locations in the Kripke structures that are consistent, meaning that they agree
on the truth of all shared propositions X1 ∩X2. �
We note that, in our notation, we use a horizontal bar to denote the negation of a propo-
sition letter, i.e.: a1 should be read as not a1 which, in turn, is interpreted as stamp

Compositional Control Synthesis for Partially Observable Systems 435

�0

p0p1a1s1

�1

p0p1a1s1

�3

p0p1a1s1

�2

p0p1a1s1

�4

p0p1a1s1

�5

p0p1a1s1

�6

p0p1a1s1

�7

p0p1a1s1

Astamp1

�0

p0s0

�1

p0s0

Afeed0

�0

p1p2a2s2

�1

p1p2a2s2

�3

p1p2a2s2

�2

p1p2a2s2

�4

p1p2a2s2

�5

p1p2a2s2

�6

p1p2a2s2

�7

p1p2a2s2

Astamp2

Fig. 2. Kripke structures modeling the feeder (left), stamp 1 (center), and stamp 2 (right) of the
parcel plant in Figure 1.

number 1 has not activated its stamping arm. Next, we note that the models for the
stamps contain deadlock locations. We use this to encode a safety property into the
model. The safety property here simply says that the stamp must activate whenever
there is a parcel present on the belt, otherwise the system will deadlock.

Game Semantics. We now turn to assigning a standard game semantics to the type
of plant models like the parcel plant that we have just introduced. We start with some
prerequisites.

Definition 2 (Strategy). A strategy f : S∗ → 2S is a function mapping histories of
states to the sets of allowed successor states. With f� we denote the strategy that maps
all histories to S. A trace σ = s0 . . . sn ∈ S+ is consistent with f iff f(ε) 0 s0 and for
all 0 < i ≤ n it holds f(s0 . . . si−1) 0 si. With Reach(f) we denote the set of traces
consistent with f . We require strategies to be prefix–closed meaning that f(σ)
= ∅ and
σ
= ε implies σ ∈ Reach(f). A strategy f is safe iff for all σ ∈ Reach(f) it holds
f(σ)
= ∅. With Safe we denote the set of all safe strategies. �

Any given Kripke structure can be viewed as a strategy by considering the restriction
that the Kripke structure places on the next state given the history of states that came
before.

Definition 3 (Regular Strategies). To a given Krikpke structureA, we assign the strat-
egy [[A]] : S∗ → 2S such that for the empty trace ε it holds s ∈ [[A]](ε) iff there exists
an initial location �0 ∈ Linit

A such that �0 is consistent with s, and for a given history
σ = s0 . . . sn ∈ S+ it holds s′ ∈ [[A]](σ) iff there exists a computation �0 . . . �n+1 in
the Kripke structure such that �0 ∈ Linit

A , each location �i for i ≤ n is consistent with
si, and s′ is consistent with �n+1. A strategy f ∈ F is regular iff there exists a finite
Kripke structure A such that f = [[A]]. �

436 W. Kuijper and J. van de Pol

It is often important that a Kripke structure A is input enabled for a subset of the propo-
sitions X i

A ⊆ XA, as is the case for the Kripke structures we defined for the parcel
stamp. In practice this is easy to enforce using some syntactic criteria on the specifica-
tion. On a semantic level we prefer to abstract from the particular way the strategy is
represented. For this reason we introduce the notion of permissibility.

Definition 4 (Permissibility). For a given set of propositions X ⊆ X we define the
indistinguishability relation ∼X⊆ S ×S such that s ∼X s′ iff s∩X = s′ ∩X , we lift
∼X to traces of states σ = s1 . . . sn ∈ S∗ and σ′ = s′1 . . . s

′
m ∈ S∗ such that σ ∼X σ′

iff n = m and for all 0 < i ≤ n it holds si ∼X s′i. A signature is a pair [X i → Xo]
such that X i ⊆finite X and Xo ⊆finite X , we let X io = X i ∪Xo. A strategy f ∈ F is
permissible for a signature [X i → Xo] iff for all σ, σ′ ∈ S∗ such that σ ∼Xio σ′ and
all s, s′ ∈ S such that s ∼Xo s′ we have s ∈ f(σ) iff s′ ∈ f(σ′). With F [X i → Xo]
we denote the set of strategies that are permissible for [X i → Xo]. �
To illustrate, we can now formalize a suitable notion of input enabledness for Kripke
structures in terms of permissibility. We say that A is input enabled for a subset of the
relevant propositions X i

A ⊆ XA iff [[A]] ∈ F [X i
A → Xo

A] where Xo
A = XA \X i

A.

Definition 5 (Lattice of Strategies). We fix a partial order � on the set of strategies
such that f � f ′ iff for all σ ∈ S∗ it holds f(σ) ⊆ f ′(σ) we say f ′ is more permissive
or weaker than f . The set of strategies ordered by permissiveness forms a complete
lattice. The join of a set of strategies F ⊆ F is denoted #F and is defined as f ∈ F
such that for all σ ∈ S∗ it holds f(σ) = ∪f ′∈F f

′(σ). The meet is denoted "F and is
defined dually. �
We have now all the prerequisites to introduce the concept of a plant under control or
PuC. A PuC is a semantic object that encodes the behaviour of a system of interacting
plant components. In addition it also specifies a set of control localities which are se-
lected subsets of plant components that are of special interest because of their control
dependencies. For each such control locality the PuC encodes context assumptions and
control constraints. Later we will show how these assumptions and constraints can be
automatically derived by solving games.

Definition 6 (Plant under Control). A plant under control (PuC) M is a tuple

M = (P, {fp, [X i
p → Xo

p]}p∈P , C, {gK , hK}K∈C)

Consisting of a finite set of plant components P , for each plant component p ∈ P
the PuC represents the component behaviour as the strategy fp ∈ F [X i

p → Xo
p]. We

require for all p1, p2 ∈ P such that p1
= p2 it holds X i
p1

∩ X i
p2

= Xo
p1

∩ Xo
p2

= ∅.
The PuC has a selected set of control localities C ⊆ 2P such that P ∈ C. For a
given control locality K ∈ C we define X i

K = ∪p∈KX i
p, and Xo

K = ∪p∈KXo
p , and

fK = "p∈Kfp. We define the control signature [Xci → Xco] such thatXci = Xo
P \X i

P

and Xco = X i
P \Xo

P . For each control locality K ∈ C, the PuC represents the current
context assumptions as the strategy gK ∈ F [Xo

K \X i
K → X i

K \Xo
K], and the current

control constraints as the strategy hK ∈ F [Xo
K ∩Xci → X i

K ∩Xco]. �
In this definition we are assuming a set of interacting plant components that commu-
nicate to each other and to the controller by means of their signature of input/output

Compositional Control Synthesis for Partially Observable Systems 437

propositions. If a proposition is both input and output to the same component we say
it is internal to the plant component. The definition ensures that no other plant compo-
nent may synchronize on such an internal proposition. We assume that all non–internal
propositions that are not used for synchronization among plant components are control
propositions (open plant output propositions are control input propositions, and open
plant input propositions are control output propositions).

Note that we are assuming a given set of control localities. This information should
be added to an existing componentized model of the plant. Either manually or by look-
ing for interesting clusters of plant components that have some mutual dependencies.
Such an automated clustering approach has already been investigated for compositional
verification in [19].

Example 1 (Parcel Stamp). We define a PuC Mparcel for the parcel stamp example.
We first fix the plant components Pparcel = {feed0, stamp1, stamp2}. Their signa-
tures are Xo

feed0
= {p0, s0}, X i

feed0
= ∅, Xo

stamp1
= {p1, s1}, X i

stamp1
= {p0, a1},

Xo
stamp2

= {p2, s2}, X i
stamp2

= {p1, a2, p2}, Note that we make p2 an internal vari-
able of stamp2 since it is not input to any other component, in this way the control sig-
nature becomes Xci = {s0, s1, s0} and Xco = {a1, a2}. The component behaviour is
given by the Kripke structures in Figure 2, ffeed0 = [[Afeed0]], and fstamp1

= [[Astamp1
]],

and fstamp2
= [[Astamp2

]]. We define the control localities

Cparcel = {{feed0, stamp1, stamp2},
{feed0, stamp1}, {stamp1, stamp2},
{feed0}, {stamp1}, {stamp2}}

The context assumptions gK and control guarantees hK for each locality K ∈ C are
initially set to the vacuous strategy gK = hK = f�. �

Global Control Constraints. For a given PuC M we are interested in computing the
weakest global control constraints ĥP such that fP " ĥP ∈ Safe. In principle this
can be done by viewing the PuC as a safety game of imperfect information where the
safety player may, at each turn, observe the value of the control input propositions and
determine the value of the control output propositions. In this way we obtain a game
graph that can be solved using conventional game solving algorithms. The result will
be the weakest strategy ĥP for the safety player.

Definition 7 (Weakest Safe Global Strategy). For a given PuCM we define the weak-
est safe global control constraints ĥP as follows

ĥP = #{h ∈ F [Xci → Xco] | fP " h ∈ Safe}

i.e. the weakest global control strategy that is sufficient to keep the system safe. �
Computing ĥP directly by solving the global safety game does not scale very well
to larger systems. For this reason we want to proceed compositionally and start with
smaller control localities K ∈ C such that K ⊂ P before treating the plant P ∈ C
as a whole. As it turns out solving the local safety game over the control signature

438 W. Kuijper and J. van de Pol

{�0}
{a1}

��������� {a1}

		�������

{�0, �4}
s1
��

{�1, �2}
s1
��

{�0, �4}
{a1}

���

�����
{a1}
���

����
�

{�1, �2}
...

{�0, �4, �7, �6}
s1
��

{�1, �2, �3, �5}
s1

���

�����
s1

���

����
�

{�0, �4, �7, �6}
×

{�1, �2}
...

{�3, �5}
...

Fig. 3. Partial game tree for Astamp1 , where the safety player is restricted to use the control
signature [Xo

stamp1
∩Xci → X i

stamp1
∩Xco] = [{s1} → {a1}]

[Xo
K ∩Xci → X i

K ∩Xco] will yield control constraints that are too strong in the sense
that not every possible safe control solution on the global level will be preserved. In
Example 2 we illustrate this phenomenon.

Example 2 (Overrestrictive Control). In Figure 3 we show a partial unravelling of the
game board Astamp1

into a game tree. The nodes in the game tree are partitioned into
nodes for the safety player shown as solid boxes and nodes for the reachability player
shown as dotted boxes. Edges originating at nodes for the safety player are annotated
with allow sets. For these examples it suffices to consider only allow sets consisting
of a single, concrete control output. Edges originating at the nodes for the reachability
player are annotated with concrete control inputs. Since we consider only singleton
allow sets it is not necessary to also include the concrete control output on these edges.

The nodes for the safety player are annotated with the knowledge or information set
that the safety player has given the observation history. The nodes for the reachability
player are labeled with the forcing sets which are all locations to which there exists a
trace that is consistent with the observation history and the control output as allowed
by the safety player.

From a forcing set, the reachability player fixes the control input by choosing one of
the locations in the forcing set as the concrete successor location. Note that the subset
construction does not show the concrete successor locations. Rather it shows the result-
ing information set for the safety player, which is the smallest set of locations that are
consistent with the input/output pair that has been exchanged.

As can be seen the safety player is forced, after 1 iteration, to always play a1. Meaning
that, she is always activating the stamp. She cannot, based on her observations, deter-
mine for sure whether or not there is a parcel present. Note however, if we would have
taken also the feeder component Afeed0 into account, it would have been possible for
the safety player to deduce this information based on the sensor in the feeder. So the

Compositional Control Synthesis for Partially Observable Systems 439

{�0}
{p0a1}

���������

������������ {p0a1}
��

�����
{p0a1}

���

����
�� {p0a1}
������

���������

{�0}
s1p1
��

{�4}
s1p1
��

{�1}
s1p1
��

{�2}
s1p1
��

{�0}
...

{�4}
{p0a1}

���
�

�����
� {p0a1}

��

����
{p0a1}

��

���
�{p0a1}
����

������

{�1}
...

{�2}
...

{�7}
s1p1
��

{�6}
s1p1
��

{�3}
s1p1
��

{�5}
s1p1
��

{�7}
×

{�6}
×

{�3}
...

{�5}
...

Fig. 4. Partial game tree for Astamp1 , where the safety player is allowed to use the control signa-
ture [Xo

stamp1
\X i

stamp1
→ X i

stamp1
∩Xo

stamp1
] = [{s1, p1} → {p0, a1}].

strategy forAstamp1
that we got from solving this game does not respect the strategy for

Afeed0‖Astamp1
which activates only if the optical sensor in the feeder is triggered. �

3 Compositional Synthesis Method

Our solution approach to the problems sketched in the previous section is based on an
over approximation of the allowable behaviour followed by an under approximation of
the denyable behaviour. The soundness of our approach rests on the notion of conser-
vativity.

Definition 8 (Conservative Systems). A PuC is conservatively constrained iff for all
K ∈ C both the local assumptions gK and the local constraints hK are conservative,
meaning that fP " ĥP � gK and fP " ĥP � hK , i.e.: both the local assumptions
and the local constraints allow all the behaviour that would be allowed by the weakest
safe global control constraints. A system that is not conservatively constrained is over
constrained. �

For a conservatively constrained PuC we may always take into account the existing
control constraints and context assumptions while computing new control constraint
or context assumptions. This unlocks possibilities that allows more efficient symbolic
game solving. For larger systems there may exist control localities that need highly
non–trivial context assumptions which require a lot of computation time and stor-
age space [19]. This problem is sometimes referred to as the problem of assumption
explosion.

To prevent this we rely on two mechanisms. The first is the fact that the signature for
the context assumptions gK converges to the signature for the control constraints hK as
K approaches P . Note that, at the highest level of composition, P , the signatures for

440 W. Kuijper and J. van de Pol

the control constraints and the context assumptions coincide. This means that context
assumptions become more and more like control constraints as we progress upward in
the decomposition hierarchyC. The second mechanism we rely on is a synergy between
context assumptions and control constraints. In particular, for conservative systems, it
is possible while computing weakest context assumptions for a control locality K ∈ C
to take into account the conservative control constraints of all lower control localities
K ′ ⊂ K that have been previously computed. We refer to this as subordinate control.

Definition 9 (Conservative Local Context Assumptions). For a PuC M and control
locality K ∈ C we define the subordinate localities K↓= {K ′ ∈ C | K ′ ⊂ K}, and
the subordinate control hK↓ = "K′∈K↓hK′ . Now WeakestContextK(M) = M ′ such
that

g′K = #{g′ ∈ F [Xo
K \X i

K → X i
K \Xo

K] | (fK " hK↓) " g′ ∈ Safe}

and M ′ is equal to M otherwise. �

Lemma 1 (WeakestContext). The operation WeakestContextK(·) preserves conser-
vativity. �

Proof Sketch. We define ĝK = "{g ∈ F [Xo
K \X i

K → X i
K \Xo

K] | (fP " ĥP) � g}.
For this context assumption we can prove that it is conservative and safe in the sense
that (fK " hK↓) " ĝK ∈ Safe, it follows, by Definition 9, that ĝK � g′K , hence g′K is
also conservative. �

Example 3 (Computing Conservative Local Context Assumptions). In Figure 4 we
show a partial unravelling of the game board Astamp1

into a game tree, this time for the
control signature [Xo

stamp1
\X i

stamp1
→ X i

stamp1
\Xo

stamp1
] = [{s1, p1} → {a1, p0}].

When we solve this game and determine the weakest safe strategy we obtain the
strategy which, in modal logic notation, can be defined as follows: p0 → ©a1, i.e.:
when there is a parcel in the feeder the stamp must activate in the next state. This
regular strategy is shown in Figure 5 (left) encoded as a Kripke structure.

Note however, that this strategy relies on observation of p0 which is not in the con-
trol signature. This means that this strategy encodes an assumption on the context, rather
than a guarantee on the control. Assumptions may or may not be realizable depending
on the rest of the plant. In this example, for this particular constraint, a control is re-
alizable because the feeder component indeed provides us with an observation s0 that
allows the control to derive the status of p0 by causality. �

To fully exploit the synergy between context assumptions and control constraints we
need to obtain also control constraints on a local level. So far we have shown (in
Example 3) how local context assumptions can be computed, at the same time we
have shown (in Example 2) that the direct approach to computing local control guaran-
tees breaks down because it may yield constraints that are not conservative. However,
as it turns out, it is possible to approximate conservative control constraints based on
conservative context assumptions. Intuitively, this is done by under approximating the
denyable behaviour.

Compositional Control Synthesis for Partially Observable Systems 441

�0

p0a1

�1

p0a1

�2

p0a1

�3

p0a1

Acontext1

�00

p0p1a1s1

�11

p0p1a1s1

�31

p0p1a1s1

�23

p0p1a1s1

�42

p0p1a1s1

�53

p0p1a1s1

Astamp1
‖Acontext1

��
r → (va1
↔ a1)

�⊥
r ∧ (va1 ↔ a1)

Adeny1

Fig. 5. Context assumptions for stamp1 component (left), the behaviour of the stamp1 compo-
nent in its idealized context (center), the special Kripke structure encoding the rules of the dual
deny game for the stamp1 component (right).

Definition 10 (Conservative Local Control). For a given PuC M and a control local-
ity K ∈ C we define StrongestControlK(M) = M ′ such that

h′K = "{h′ ∈ F [Xo
K ∩Xci → X i

K ∩Xco] | (fK " hK↓) " gK � h′}

and M ′ is equal to M otherwise. �

Lemma 2 (StrongestControl). The operation StrongestControlK(·) preserves con-
servativity. �

Proof. By conservativity of M it holds fP " ĥP � (fK " hK↓)" gK . By Definition 10
it holds (fK " hK↓) " gK � h′K . It follows fP " ĥP � h′K . �

Example 4 (Computing Strongest Local Control). We can compute an approximate
local control strategy by exploiting a natural duality that exists between allow strate-
gies and deny strategies. Where allow strategies determine what is the set of allowed
control outputs based on the observation history, deny strategies work by mapping an
observation history to the set of denied control outputs, which is just the complement
of the allowed set. We can exploit this duality because the weakest conservative deny
strategy is the strongest conservative allow strategy.

The construction that turns an allow game into a deny game is then done as follows.
First we turn the control outputs a1, a2 ∈ Xco into control inputs a1, a2 ∈ Xci′ and
introduce, specifically for the control outputs on which we want to derive the strongest
local constraints, a fresh set of deny outputs va1 , va2 · · · ∈ Xco′

. We add one special
control output r ∈ Xco′

which is called restrict. The rules of the game are as follows:
if the safety player plays r the next state is not restricted. And the plant in its idealized
context progresses normally. If the safety player plays r, restrict, we require that, in the
next state, at least one of the deny outputs va1 , va2 , . . . differs from the original control

442 W. Kuijper and J. van de Pol

{�00�}
. . .

{�00⊥, �42⊥, �11�, �23� {�00�, �42�, �11�, �23�}

{�00⊥, �42⊥}
×

{�11�, �23�}
...

{�00�, �42�}
. . .

{�11�, �23�}
...

{�00⊥, �42⊥, �31�, �53�, �11�, �23�} {�00�, �42�, �31�, �53�, �11�, �23�}

{�00⊥, �42⊥}
×

{�31�, �53�}
...

{�11�, �23�}
...

{�00�, �42�}
...

{�31�, �53�}
...

{�11�, �23�}
...

{rva1}��

a1s1
��

���� a1s1
��

����

{r} ��

a1s1
��

���� a1s1
��

����

{rva1}
��

a1s1
��

���� a1s1�� a1s1
��

����

{r}
���

����
�

a1s1
��

���� a1s1�� a1s1
��

����

Fig. 6. Game tree for the deny game Astamp1‖Acontext1‖Adeny1 , over the control signature
[{a1, s1} → {r, va1}], here rva1 means restrict by denying a1, and r means unrestricted.

outputs a1, a2 . . . as chosen by the plant in its idealized context. In this way the safety
player is forced to be conservative in the restriction that she puts since she can only
deny some sequence of control outputs whenever she is sure that the idealized context
will never allow this sequence.

We may construct the game board for this deny game by taking the composition of
the Kripke structures for the plant, the context strategy, and the rule that forces at least
one of the deny outputs to be distinct from the control output as chosen by the plant in its
idealized context. For stamp1 this is Astamp1

‖Acontext1‖Adeny1
. A partial unraveling

of the resulting game tree over this product game is shown in Figure 6. When we work
this out further we quickly see that, in this game, the safety player is always forced
to play r. This means she cannot put any restriction on the control outputs. Which, in
turn, means that the resulting control strategy (after projecting out r, and projecting the
temporary va1 back to a1) will be f�, i.e.: we cannot put any control constraints using
the control signature for this locality.

Note that it is possible to repeat this procedure several times with different sets of
control outputs, each time requiring the player to come up with new deny outputs. In
this way we can build up the new control constraints incrementally in accordance with
the control hierarchy. �

Compositional Controller Synthesis Algorithm. We have now established all pre-
requisites to present Compositional Controller Synthesis Algorithm 1 (COCOS). The
algorithm starts with a PuC M that is initially unconstrained, that is: the context as-
sumptions and control constraints for each control locality are vacuous. The algorithm
then works by making a single bottom–up pass over the control localities. It will start at
the lowest localities (for which K↓ = ∅) progressing up to the highest control locality
P . For each locality the weakest local context assumptions are computed (simplified
using the subordinate control constraints) and subsequently the strongest local con-
trol constraints are computed (based on the weakest local control assumptions and the

Compositional Control Synthesis for Partially Observable Systems 443

Algorithm 1. COCOS (Compositional Control Synthesis)

Data: A PuC M = (P, {fp, [X i
p → Xo

p]}p∈P , C, {gK , hK}K∈C) such that for all
K ∈ C it holds gk = hK = f�

Result: The maximally permissive, safe control strategy for the given system of plant
components.

Visited ← ∅1

while P /∈ Visited do2

select some K ∈ C such that K /∈ Visited and K↓ ⊆ Visited3

M ← StrongestControlK(WeakestContextK(M))4

Visited ← Visited ∪ {K}5

return hP6

subordinate control constraints). The while loop terminates when the highest control
locality P ∈ C has been visited. At this point it holds: (fP " hP) = (fP " ĥP).

Theorem 3 (Correctness). Algorithm 1 always terminates, and after termination it
will hold (fP " hP) = (fP " ĥP). �

Proof. Completeness follows from the fact that there are only a finite number of con-
trol localities. Soundness follows from Lemmas 1 and 2, and the fact that for the highest
control locality P the signatures of the weakest context assumptions, the strongest con-
trol constraints and the global control constraints ĥP coincide. �

Example 5 (Compositional Controller Synthesis). In Figure 7 we show how COCOS

treats the PuC Mparcel as defined in Example 1. The plant components are shown as
gray boxes connected by horizontal arrows denoting the unchecked plant propositions.
The control localities are shown as white boxes connected to the plant components by

feed0 stamp1 stamp2

{feed0}, (' | ') {stamp1}, (p0 → ©a1 | ') {stamp2}, (p1 → ©a2 | ')

{feed0, stamp1}, (s0 → ©a1 | s0 → ©a1)

{stamp1, stamp2}, (p0 → ©a1 ∧ s1 → ©a2 | s1 → ©a2)

{feed0, stamp1, stamp2}, (' | s0 → ©a1 ∧ s1 → ©a2)

p0 p1 p2

a2 s2

a1 s1

s0

Fig. 7. A run of COCOS on the PuC Mparcel from example 1 each locality is annotated with:
(weakest local context assumptions | strongest local control guarantees)

444 W. Kuijper and J. van de Pol

vertical arrows denoting the control propositions. Each control locality is labeled with
the weakest local context assumptions and the strongest local control constraints in
modal logic notation. Since the algorithm performs a single, bottom–up pass over the
control localities this picture represents the entire run.

For locality {feed0} we get two vacuous strategies. The reason is that the feeder
plant component does not contain any deadlocks. As such it needs no assumptions or
control constraints to function safely. Control locality {stamp1} has been treated more
extensively as the running example in the previous sections. It requires a single context
assumption saying that the arm will activate when there is a parcel queuing in the feeder.
As we have seen in the previous example we cannot enforce this assumption on a local
level, yet. The situation for {stamp2} is completely symmetrical. After treating the
lower localities COCOS proceeds with the intermediate two localities.

For locality {feed0, stamp1} new context assumptions are computed. This compu-
tation cannot yet benefit from subordinate control, since subordinate control is still vac-
uous. However, we do note that, since the signature of the context assumptions changes
non–monotonically, the results will be different this time. In particular the p0 proposi-
tion has become an internal plant proposition which is no longer visible to the context.
At the same time the feeder component has added the control input proposition s0.
This means that the weakest context assumption has changed from p0 → ©a1 into
s0 → ©a1. Intuitively, by restricting the context signature as much as we can (with-
out sacrificing conservativity) the context assumptions have shifted into the direction of
something that can be turned into a control constraint.

For locality {stamp1, stamp2} the situation is almost symmetrical except for the fact
that the assumption p0 → ©a1 on stamp1 still has to be made by the context. Note
that, even though the weakest local context assumptions are over approximating the
allowable behaviour by assuming plant proposition p0 to be observable, COCOS is still
able to recover the control constraint s1 → ©a2 which has a clear causal dependency
on the plant proposition p0.

Finally, we treat the topmost locality {feed0, stamp1, stamp2} = P . The weakest
context assumptions for this locality are vacuous, since subordinate control already en-
sures safety. In this case, the strongest control constraints are simply the conjunction of
the subordinate control constraints. Note that this is where compositionality really helps
us: computing the assumptions for higher control localities becomes much easier in the
presence of subordinate control, especially using a counterexample driven algorithm. In
this case subordinate control ensures that there are no unsafe transitions anymore at the
highest level of composition. �

4 Conclusion

We have presented a semantical framework for compositional control synthesis prob-
lems. Based on the framework we have developed a compositional control synthesis
method that is sound and complete for computing most permissive safety controllers on
regular models under the assumption of partial observation. The novel aspects of the
method are:

Compositional Control Synthesis for Partially Observable Systems 445

1. The signature of the context assumptions changes non–monotonically with increas-
ing scope, converging to the signature of control constraints. In this way we obtain
more realistic assumptions as the scope widens.

2. Local context assumptions are simplified with respect to control constraints that
were previously derived for lower control localities. In this way, we make it possible
to efficiently apply a counterexample driven refinement algorithm for finding the
weakest context assumptions.

3. Local control constraints are approximated based on local context assumptions and
control constraints that were previously derived for lower control localities. In this
way, we enable a synergy between local context assumptions and local control
constraints.

Bidirectionality and Control Hierarchy. To simplify exposition in this paper we for-
bid the situation where a proposition is output by more than one plant component. For
some applications, such as circuit synthesis, or hardware protocol analysis [6], it may
be desirable to relax this restriction.

As a simple example of bidirectionality consider the plant component over the sin-
gle proposition x that, at even clockcycles, treats x as output by writing a random bit
s2j(x) ∈ {0, 1} to the controller, and, at odd clockcycles, treats x as input by reading
s2j+1(x) ∈ {0, 1} back from the controller. Next consider a safety invariant that re-
quires: s2j+1(x) = s2j(x), i.e. the controller must simply echo back the bits written by
the component in the previous clockcycle.

In the resulting game, the safety player cannot always choose concrete outputs for
x at each clockcycle t. Since at even clockcycles t = 2j she cannot predict what the
component is going to write as output. Note that, since we consider moves as allow sets,
this is not a problem in principle: at even clockcycles the safety player may simply allow
x to vary freely by allowing x to be either high or low: h(ε) = h(s0 . . . s2j+1) = {x, x},
and at odd clockcycles the safety player may restrict x depending on what she observed
in the previous state: h(s0 . . . s2j) = {x} in case s2j(x) = 1 or h(s0 . . . s2j) = {x} in
case s2j(x) = 0.

Note that we do allow bidirectionality on the level of control localities’ context as-
sumptions and control constraints. For the control, bidirectionality is important, not
so much for reasons of expressivity, but because it allows the synthesis algorithm to
achieve a form of abstraction for the higher control localities. By abstraction we mean
simplifying the context assumptions with respect to the control constraints already im-
posed by the lower control localities. Intuitively, the synthesized context uses its output
propositions in a bidirectional fashion by “listening” to the plant being controlled by the
various subcontrollers that are already in place. The higher control locality then only
has to impose more constraints in those situations where the constraints imposed by the
subcontrollers are not already sufficient to keep the plant safe.

Future Work. We are working to validate COCOS by applying it in a case study for
deriving a reactive controller in a setting with limited observability. In order to do
this a prototype toolchain is being developed. Implementation of COCOS requires ef-
ficient symbolic manipulation of strategies. We have described a way of deriving con-
text assumptions in an efficient counterexample driven manner [13]. However, it would

446 W. Kuijper and J. van de Pol

certainly be interesting to compare with various other game solving algorithms [7,5].
The intuition here is that lower levels of the control hierarchy may benefit from forward
rather than backward algorithms, and possibly even explicit state rather than symbolic
representations since these games are typically much simpler. At higher levels of com-
position backward symbolic algorithms may be more beneficial since there is much
more room for abstraction and potential benefit in terms of alleviating the state explo-
sion problem.

Other directions for future research include applications in design, modelchecking,
static analysis, optimization and testing, extension to asynchronous and timed systems,
and parallelized versions of COCOS.

References

1. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of switching
controllers for linear systems. Proceedings of the IEEE 88(7), 1011–1025 (2000)

2. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed sys-
tems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999,
pp. 1–20. Springer, Heidelberg (1995)

3. Beyer, D., Henzinger, T.A., Singh, V.: Algorithms for interface synthesis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 4–19. Springer, Heidelberg (2007)

4. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by Finite-State strategies. Trans-
actions of the American Mathematical Society 138, 295–311 (1969)

5. Cassez, F.: Efficient On-the-Fly algorithms for partially observable timed games. In: Raskin,
J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 5–24. Springer,
Heidelberg (2007)

6. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and bidirec-
tional component interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002, vol. 2404,
pp. 414–745. Springer, Heidelberg (2002)

7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for Omega-Regular
games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207,
pp. 287–302. Springer, Heidelberg (2006)

8. Chatterjee, K., Henzinger, T., Jobstmann, B.: Environment assumptions for synthesis. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 147–161.
Springer, Heidelberg (2008)

9. Chatterjee, K., Henzinger, T.A.: Assume-Guarantee synthesis. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)

10. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis. In:
Summaries of the Summer Institute of Symbolic Logic, Cornell Univ., Ithaca, NY, vol. 1,
pp. 3–50 (1957)

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
Branching-Time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

12. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26(5),
109–120 (2001)

13. Kuijper, W., van de Pol, J.: Computing weakest strategies for safety games of imperfect
information. In: Kowalewski, S., Phillippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 92–106. Springer, Heidelberg (2009)

14. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

Compositional Control Synthesis for Partially Observable Systems 447

15. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Advances in Tem-
poral Logic. Applied Logic Series, vol. 16, pp. 109–127. Kluwer, Dordrecht (2000)

16. Lin, F., Wonham, W.M.: Decentralized control and coordination of discrete-event system-
swith partial observation. IEEE Transactions on automatic control 35(12), 1330–1337 (1990)

17. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from Bounded-Response
properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 95–107.
Springer, Heidelberg (2007)

18. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifica-
tions. ACM Transactions on Programming Languages and Systems (TOPLAS) 6(1), 68–93
(1984)

19. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verification by learn-
ing assumptions. Form. Methods Syst. Des. 32(3), 207–234 (2008)

20. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, Austin,
Texas, United States, pp. 179–190. ACM, New York (1989)

21. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ronchi
Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372,
pp. 652–671. Springer, Heidelberg (1989)

22. Rabin, M.O.: Automata on infinite objects and Church’s problem. American Mathematical
Society (1972)

23. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proceedings of the
IEEE 77(1), 81–98 (1989)

24. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.)
STACS 1995. LNCS, vol. 900, p. 12. Springer, Heidelberg (1995)

25. Thomas, W.: Facets of synthesis: Revisiting church’s problem. In: de Alfaro, L. (ed.)
FOSSACAS 2009. LNCS, vol. 5504, p. 1. Springer, Heidelberg (2009)

26. De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect in-
formation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168.
Springer, Heidelberg (2006)

Howe’s Method for Calculi with Passivation

Serguëı Lenglet1, Alan Schmitt2, and Jean-Bernard Stefani2

1 Université Joseph Fourier, Grenoble, France
2 INRIA Rhône-Alpes, France

Abstract. We show how to apply Howe’s method for the proof of con-
gruence of early bisimilarities in a higher-order process calculus with
passivation. This involves the introduction of a proof technique based
on a new kind of transition system and bisimilarity, called complemen-
tary semantics. We show that complementary semantics is equivalent to
contextual semantics, originally introduced by Sangiorgi, that relies on
classical transition systems for higher-order calculi and context bisimilar-
ity. We apply this technique to obtain the first characterization of weak
barbed congruence for such a higher-order calculus with passivation.

1 Introduction

Motivation. A natural notion of program equivalence in concurrent languages is
a form of contextual equivalence called barbed congruence, introduced by Milner
and Sangiorgi [17]. Roughly, given an operational semantics defined by means of
a small-step reduction relation, two processes are barbed congruent if they have
the same reductions and the same observables (or barbs), under any context.

The definition of barbed congruence, however, is impractical to use in proofs
because of its quantification on contexts. An important question, therefore, is to
find more effective characterizations of barbed congruence. A powerful method
for proving program equivalence is the use of coinduction with the definition
of an appropriate notion of bisimulation. The question of characterizing barbed
congruence to enable the use of coinduction becomes that of finding appropriate
bisimulation relations such that their resulting behavioral equivalences, called
bisimilarities, are sound (i.e., included in barbed congruence) and complete (i.e.,
containing barbed congruence) with respect to barbed congruence.

For first-order languages, such as CCS or the π-calculus, the behavioral theory
and the associated proof techniques, e.g., for proving congruence, are well devel-
oped [23]. Characterizing barbed congruence in these languages is a reasonably
well understood proposition. The situation is less satisfactory for higher-order
concurrent languages. Bisimilarity relations that coincide with barbed congru-
ence have only been given for some higher-order concurrent languages. They
usually take the form of context bisimilarities, building on a notion of context
bisimulation introduced by Sangiorgi for a higher-order π-calculus, HOπ [21].
Context bisimilarity has been proven to coincide with barbed congruence for
higher-order variants of the π-calculus: Sangiorgi’s HOπ [20,21,12], a concurrent
ML with local names [11], a higher-order distributed π-calculus called SafeDpi

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 448–462, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Howe’s Method for Calculi with Passivation 449

[8], Mobile Ambients [16], and some of Mobile Ambients’s variants such as Boxed
Ambients [3]. A sound but incomplete form of context bisimilarity has been
proposed for the Seal calculus [5]. For the Homer calculus [6], strong context
bisimilarity is proven sound and complete, but weak context bisimilarity is not
complete. A sound and complete context bisimilarity has been defined for the
Kell calculus [24], but for the strong case only.

The key step in proving the soundness of candidate bisimilarities in higher-
order concurrent calculi is to show that they are congruences. A systematic
technique for proving the congruence of bisimilarity relations is Howe’s method
[10,1,7]. Unfortunately, Howe’s method is originally well suited for bisimulations
that are defined in both a late and a delay style, either of which generally
breaks the correspondence with barbed congruence. For Homer, Howe’s method
has been extended to a version of context bisimulation in an input-early style [6],
but the resulting weak bisimilarity is not complete with respect to weak barbed
congruence.

Contributions. In this paper, we show how to apply Howe’s method to deal
with bisimulations defined in an early (and non-delay) style. This involves the
introduction of complementary semantics, a labelled transition system and its
associated bisimulation. This semantics is designed to avoid the key difficulty
in applying Howe’s method to a bisimulation defined in an early style. We use
complementary semantics as a proof technique to obtain a characterization of
weak barbed congruence in a concurrent calculus called HOπP. HOπP is a calcu-
lus introduced in [15] to study the behavioral theory of passivation in a simpler
setting than in Homer [9] or the Kell calculus [24]. Passivation allows a named
locality to be stopped and its state captured for further handling. It can be used
to model process failures, strong process mobility, and “thread thunkification” as
in the Acute programming language [25] (see [24] for discussion and motivation).
To our knowledge, this is the first characterization of weak barbed congruence
for a concurrent calculus with both restriction and passivation.

Outline. In Section 2, we present the syntax, contextual semantics, and known
bisimilarity results for HOπP. In Section 3, we explain why Howe’s method
fails with early context bisimilarities, and present the intuition behind our ap-
proach. We propose in Section 4 a new semantics and associated bisimilarities for
HOπP, called complementary semantics. We prove that the semantics are equiv-
alent, that complementary bisimilarity coincides with early context bisimilarity,
and that complementary bisimilarity is a congruence using Howe’s method. We
discuss related work in Section 5. Section 6 concludes the paper. Proofs and
additional details are available in the draft of the full paper [14].

2 HOπP Contextual Semantics

HOπP (Higher-Order π with Passivation) [15] extends the higher-order calculus
HOπ [21] with localities a[P], that are passivation units. We write names a, b . . .,

450 S. Lenglet, A. Schmitt, and J.-B. Stefani

Syntax: P ::= 0 | X | P | P | a(X)P | a〈P 〉P | νa.P | a[P]

Agents:
Processes P, Q,R, S
Abstractions F, G ::= (X)P
Concretions C, D ::= 〈P 〉Q | νa.C
Agents A, B ::= P | F | C

Extension of operators to all agents

(X)Q | P ∆= (X)(Q | P)
P | (X)Q ∆= (X)(P | Q)
a[(X)Q] ∆= (X)a[Q]
νa.(X)Q ∆= (X)νa.P

(νb̃.〈Q〉R) | P ∆= νb̃.〈Q〉(R | P)
P | (νb̃.〈Q〉R) ∆= νb̃.〈Q〉(P | R)

a[νb̃.〈Q〉R] ∆= νb̃.〈Q〉a[R]
νa.(νb̃.〈Q〉R) ∆= νb̃, a.〈Q〉R if a ∈ fn(Q)
νa.(νb̃.〈Q〉R) ∆= νb̃.〈Q〉νa.R if a /∈ fn(Q)

Pseudo-application and process application

(X)P • νb̃.〈R〉Q ∆= νb̃.(P{R/X} | Q) (X)P ◦ Q
∆= P{Q/X}

LTS rules

a(X)P a−→ (X)P Abstr a〈Q〉P a−→ 〈Q〉P Concr a[P] a−→ 〈P 〉0 Passiv

P
α−→ A

a[P] α−→ a[A]
Loc

P
α−→ A

P | Q α−→ A | Q Par

P
α−→ A α /∈ {a, a}
νa.P

α−→ νa.A
Restr

P
a−→ F Q

a−→ C

P | Q τ−→ F • C
HO

Fig. 1. Contextual Labeled Transition System for HOπP

conames a, b . . ., and process variables X,Y, Sets {x1 . . . xn} are written x̃.
We let γ range over names and conames.

Convention. We identify processes up to α-conversion of names and variables:
processes and agents are always chosen such that their bound names and vari-
ables are distinct from free names and variables. We also assume that bound
names and variables of any process or actions under consideration are chosen to
be different from free names and variables of any other entities under consider-
ation. Note that with this convention, we have (X)Q | P ∆= (X)(Q | P) without
qualification on the free variables of P .

Syntax and contextual semantics of the calculus can be found in Figure 1,
with the exception of the symmetric rules for Par and HO. In process a(X)P ,
the variable X is bound. Similarly, in process νa.P , the name a is bound. We
write fv(P) for the free variables of a process P , fn(P) for its free names, and
bn(P) for its bound names. We write P{Q/X} for the capture-free substitution
of X by Q in P . A closed process has no free variable.

Howe’s Method for Calculi with Passivation 451

Processes may evolve towards a process (internal actions P
τ−→ P ′), an ab-

straction (message input P
a−→ F = (X)Q), or a concretion (message output

P
a−→ C = νb̃.〈R〉Q). Transition P

a−→ (X)Q means that P may receive process R
on a to continue as Q{R/X}. Transition P

a−→ νb̃.〈R〉Q means that P may send
process R on a and continue as Q, and the scope of names b̃ has to be expanded
to encompass the recipient of R. A synchronous higher-order communication
takes place when a concretion interacts with an abstraction (rule HO).

A locality a[P] is a transparent evaluation context: process P may evolve by
itself and communicate freely with processes outside of locality a (rule Loc).
At any time, passivation may be triggered and locality a[P] becomes a concre-
tion 〈P 〉0 (rule Passiv). Rule Loc implies that the scope of restricted names
may cross locality boundaries. Scope extrusion outside localities is performed
“by need” when a communication takes place, as defined in the extension of re-
striction to concretions in Fig. 1. Note that with this semantics, the interaction
between passivation and restriction is not benign: in general processes b[νa.P]
and νa.b[P] are not barbed congruent (see [14] for more details).

Remark 1. In HOπP, process a(X)P is used for message input and process pas-
sivation, while Homer and the Kell calculus use two different receiving patterns.
We chose to keep HOπP syntax as simple as possible; adding a specific input for
passivation does not change our results.

Contextual Equivalences

Barbed congruence is the usual reduction-based behavioral equivalence. We iden-
tify reduction with τ -transition −→∆= τ−→ and define weak reduction =⇒ as the
reflexive and transitive closure of −→. Observables γ of a process P , written
P ↓γ , are unrestricted names or conames on which a communication may imme-
diately occur (P

γ−→ A, for some agent A). Contexts � are terms with a hole �.
A relation R is a congruence iff P R Q implies �{P} R �{Q} for all contexts �.

Definition 1. A symmetric relation R on closed processes is a strong (resp.
weak) barbed bisimulation iff P R Q implies:

– for all P ↓γ, we have Q ↓γ (resp. Q =⇒↓γ);
– for all P −→ P ′, there exists Q′ such that Q −→ Q′ (resp. Q =⇒ Q′) and
P ′ R Q′;

Strong (resp. weak) barbed congruence ∼b (resp. ≈b) is the largest congruence
that is a strong (resp. weak) barbed bisimulation.

A relation R is sound with respect to ∼b (resp. ≈b) iff R⊆∼b (resp. R⊆≈b); R
is complete with respect to ∼b (resp. ≈b) iff ∼b⊆R (resp. ≈b⊆R).

As in HOπ [21], we characterize strong barbed congruence using an early
strong context bisimilarity. As explained in [15], bisimilarities in HOπP require
more discriminating power than in HOπ, as the passivation of enclosing localities

452 S. Lenglet, A. Schmitt, and J.-B. Stefani

has to be taken into account. Let bisimulation contexts � be evaluation contexts,
i.e., contexts that allow transitions at the hole position, used for observational
purposes.

� ::= � | νa.� | � | P | P | � | a[�]

We write bn(�) the names bound at the hole position by the context �: a name
a ∈ bn(�) ∩ fn(P) is free in P and becomes bound in �{P}.
Definition 2. Early strong context bisimilarity ∼ is the largest symmetric re-
lation on closed processes R such that P R Q implies fn(P) = fn(Q) and:

– for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;
– for all P a−→ F , for all C, there exists F ′ such that Q a−→ F ′ and F • C R
F ′ • C;

– for all P a−→ C, for all F , there exists C′ such that Q a−→ C′ and for all �,
F • �{C} R F • �{C′}.

Note. The late variant of strong context bisimulation can simply be obtained
by changing the order of quantifications on concretions and abstractions in the
above clauses. Thus the clause for input in late style would be: for all P a−→ F ,
there exists F ′ such that Q a−→ F ′ and for all C, we have F • C R F ′ • C.

Condition fn(P) = fn(Q) is required because of lazy scope extrusion: two
bisimilar processes with different free names may be distinguished by scope ex-
trusion and passivation [15,13].

Theorem 1. Relation ∼ is a congruence and ∼=∼b.

The proof of congruence in Theorem 1 is the same as in the Kell calculus [24] (see
[14] for details). Unfortunately, this technique fails with weak relations. We write
τ=⇒ for the reflexive and transitive closure of τ−→. For every higher-order name or
coname γ, we write

γ
=⇒ for ⇒ γ−→. As higher order steps result in concretions and

abstractions, they may not reduce further; silent steps after this reduction are
taken into account in the definition of weak bisimulation.

Definition 3. Early weak context bisimilarity ≈ is the largest symmetric rela-
tion on closed processes R such that P R Q implies fn(P) = fn(Q) and:

– for all P τ−→ P ′, there exists Q′ such that Q τ=⇒ Q′ and P ′ R Q′;
– for all P a−→ F , for all C, there exist F ′, Q′ such that Q a=⇒ F ′, F ′ • C τ=⇒ Q′,

and F • C R Q′;
– for all P a−→ C, for all F , there exists C′ such that Q a=⇒ C′ and for all �,

there exists Q′ such that F • �{C′} τ=⇒ Q′ and F • �{C} R Q′.

Barbed congruence and context bisimilarities are extended to open processes via
the notion of open extension R◦ of a relation R on closed processes.

Definition 4. Let P and Q be two open processes. We have P R◦ Q iff Pσ R
Qσ for all process substitutions σ that close P and Q.

In the following section, we present a congruence proof technique, called Howe’s
method, and then explain why it fails with early context bisimilarities.

Howe’s Method for Calculi with Passivation 453

3 Howe’s Method

The essence of the method. Howe’s method [10,1,7] is a systematic proof tech-
nique to show that a bisimilarity R (and its open extension R◦) is a congruence.
The method can be divided in three steps: first, prove some basic properties on
the Howe’s closure R• of the relation. By construction, R• contains R◦ and is a
congruence. Second, prove a simulation-like property for R•. Finally, prove that
R and R• coincide on closed processes. Since R• is a congruence, conclude that
R is a congruence.

Howe’s closure is inductively defined as the smallest congruence which con-
tains R◦ and is closed under right composition with R◦.

Definition 5. Howe’s closure R• of a relation R is the smallest relation
verifying:

– R◦⊆R•;
– R•R◦⊆R•;
– for all operators op of the language, if P̃ R• Q̃, then op(P̃) R• op(Q̃).

By definition, R• is a congruence, and the composition with R◦ allows some
transitivity and gives additional properties to the relation.

Remark 2. In the literature (e.g., [10,7,9]) Howe’s closure is usually inductively
defined by the following rule for all operators op in the language:

P̃ R• R̃ op(R̃) R◦ Q

op(P̃) R• Q

Both definitions are equivalent (see [7] for the proof). We believe that Definition 5
is easier to understand and to work with in the proofs.

By definition, we have R◦⊆R•. To have the reverse inclusion, we prove that
R• is a bisimulation. To this end, we need the following classical properties of
Howe’s closure of any equivalence R.

Lemma 1. Let R be an equivalence.

– If P R• Q and R R• S, then we have P{R/X} R• Q{S/X}.
– The reflexive and transitive closure (R•)∗ of R• is symmetric.

The first property is typically used to establish the simulation-like result (second
step of the method). Then one proves that the restriction of (R•)∗ to closed terms
is a bisimulation. Consequently we have R⊆R•⊆ (R•)∗ ⊆R on closed terms, and
we conclude that bisimilarity R is a congruence.

The main difficulty of the method lies in the proof of the simulation-like
property for Howe’s closure. In the following, we explain why we cannot directly
use Howe’s method with early context bisimilarity (Definition 2).

454 S. Lenglet, A. Schmitt, and J.-B. Stefani

Communication problem. To prove that R• is a simulation, we need to establish
a stronger result, to avoid transitivity issues which otherwise would arise and
make the method fail in the weak case [14]. Given a bisimilarity R based on a
LTS P

λ−→ A, the simulation-like result follows the pattern below, similar to a
higher-order bisimilarity clause, such as the one for Plain CHOCS [26].

Let P R• Q. If P λ−→ A, then for all λ R• λ′, there exists B such that Q λ′
−→ B

and A R• B.
Early bisimulations are those where all the information about a step on one

side is known before providing a matching step. In the higher-order setting with
concretions and abstractions, it means that when an output occurs, the abstrac-
tion that will consume the output is specified before the matching step is given.
In fact, the matching step may very well be different for a given output when
the abstraction considered is different. Symmetrically, in the case of an input,
the matching step is chosen depending on the input and the actual concretion
that is provided. In both cases, this amounts to putting the abstraction in the
label in the case of an output, and the concretion in the label in case of an input.
One is thus lead to prove the following simulation property.

Conjecture 1. If P R• Q, then:

– for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R• Q′;
– for all P a−→ F , for all C R• C′, there exists F ′ such that Q

a−→ F ′ and
F • C R• F ′ • C′;

– for all P a−→ C, for all F R• F ′ there exists C′ such that Q a−→ C′ and for all
�, we have F • �{C} R• F ′ • �{C′}.

These clauses raise several issues. First, we have to find extensions of Howe’s
closure to abstractions and concretions which fit an early style. Even assuming
such extensions, there are issues in the inductive proof of conjecture 1 with
higher-order communication. The reasoning is by induction on P R• Q. Suppose
we are in the parallel case, i.e., we have P = P1 | P2 and Q = Q1 | Q2, with
P1 R• Q1 and P2 R• Q2. Suppose that we have P

τ−→ P ′, and the transition
comes from rule HO: we have P1

a−→ F , P2
a−→ C and P ′ = F • C. We want to

find Q′ such that Q τ−→ Q′ and P ′ R• Q′. We also want to use the same rule HO,
hence we have to find F ′, C′ such that Q τ−→ F ′ • C′. However we cannot use
the input clause of the induction hypothesis with P1, Q1: to have a F ′ such that
Q1

a−→ F ′, we have to find first a concretion C′ such that C R• C′. We cannot
use the output clause with P2, Q2 either: to have a C′ such that Q2

a−→ C′, we
have to find first an abstraction F ′ such that F R• F ′. We cannot bypass this
mutual dependency and the inductive proof of conjecture 1 fails.

Remark 3. Note that the reasoning depends more on the bisimilarity than on
the calculus: the same problem occurs with early context bisimilarities for HOπ,
Homer, and the Kell calculus.

The intuition behind our approach. A simple way to break the mutual depen-
dency between concretions and abstractions is to give up on the early style. An

Howe’s Method for Calculi with Passivation 455

approach, used in [6], is to change the output case to a late style (hence the
name, input-early, of their bisimulation): an output is matched by another out-
put independently of the abstraction that receives it. This breaks the symmetry
and allows us to proceed forward: first find the matching output C′, then for this
C′ find the matching input using the input-early relation ∼ie. Howe’s closure is
then extended to concretions C ∼•

ie C
′ and a simulation-like property similar to

Conjecture 1 is shown, except that the output clause is changed into:

– for all P a−→ C, there exists C′ such that Q a−→ C′ and C ∼•
ie C

′.

However, in the weak case, this input-early approach does not result in a
sound and complete characterization of weak barbed congruence. Definition of
weak input-early bisimilarity has to be written in the delay style: internal actions
are not allowed after a visible action. The delay style is necessary to keep the
concretion clause independent from abstractions. It is not satisfactory since delay
bisimilarities are generally not complete with respect to weak barbed congruence.

We thus propose a different approach, detailed in Section 4, that works with
weak bisimulations defined in the early non-delay style. In our solution, the out-
put clause is not late, just a little less early. More precisely, instead of requiring
the abstraction before providing a matching output, we only require the process
that will do the reception (that will reduce to the abstraction). This may seem
a very small change, yet it is sufficient to break the symmetry. We return to the
communication problem where P1 | P2 is in relation with Q1 | Q2. The concre-
tion C′ from Q2 matching the P2

a−→ C step depends only on P1, which is known,
and not on some unknown abstraction. We can then obtain the abstraction F ′

from Q2 that matches the P1
a−→ F step. This abstraction depends fully on C′,

in the usual early style. Technically, we do not use concretions and abstractions
anymore. In the LTS, when a communication between P and Q occurs, this be-
comes a transition from P using Q as a label (rule HOτ in Fig. 2). Higher in
the derivation, the actual output from P is discovered, and we switch to dealing
with the input knowing exactly the output (rule Outo in Fig. 3). The proof of
the bisimulation property for the candidate relation relies on this serialization
of the LTS, which illustrates the break in the symmetry. On the other hand, the
gap between a completely early relation and this one is small enough to let us
prove that they actually coincide.

4 Complementary Semantics for HOπP

We define a new semantics for HOπP that coincides with the contextual one, yet
allows the use of Howe’s method to prove the soundness of early bisimilarities.

4.1 Complementary LTS

We define a LTS P
λ�−→ P ′ where processes always evolve to other processes. We

have three kinds of transitions: internal actions P τ�−→ P ′, message input P
a,R�−−→

456 S. Lenglet, A. Schmitt, and J.-B. Stefani

a(X)P
a,R�−−→ P{R/X} Ini

P
µ�−→ P ′

P | Q µ�−→ P ′ | Q
Pariτ

P
µ�−→ P ′

a[P] µ�−→ a[P ′]
Lociτ

P
µ�−→ P ′ a �= n(µ)

νa.P
µ�−→ νa.P ′ Restriτ

P
a,Q,��−−−−→b̃ P ′

P | Q τ�−→ P ′ HOτ

Fig. 2. Complementary LTS for HOπP: Internal and Message Input Actions

P ′, and message output P
a,Q,��−−−→b̃ P

′. We call this new LTS complementary since
labels λ contain contexts complementing and interacting with P for observational
purposes. They are used to establish bisimilarity.

Rules for internal actions P τ�−→ P ′ are similar to the ones for the contextual
LTS P

τ−→ P ′, except for higher-order communication since message output is
different; we detail rule HOτ later. Message input P

a,R�−−→ P ′ means that process
P may receive the process R as a message on a and becomes P ′. In the contextual
style, it means that P a−→ F and P ′ = F ◦ R for some F . Complementary message
input is simply contextual input written in the early style. We let

µ�−→ range over
τ�−→ and

a,R�−−→. For higher-order input, we define n(a,R) = a. Rules can be found
in Figure 2 except for the symmetric counterparts of rules Pariτ and HOτ .

We now detail output actions P
a,Q,��−−−→b̃ P

′. Rules can be found in Fig. 3, ex-
cept for the symmetric of rule Paro. Context bisimilarity (Definition 2) compares
message outputs by making them react with an abstraction F and a context �.
In complementary semantics, we consider a receiving process Q instead of F , i.e.,
a process able to receive the message emitted by P on a. Transition P

a,Q,��−−−→b̃ P
′

means that P is put under context � and emits a message on a, which is received
by Q: we have �{P} | Q τ�−→ P ′ by communication on a. In the contextual style,
it means that there exist F,C such that P a−→ C, Q a−→ F , and P ′ = F • �{C}. It
is not however a simple rewrite of contextual transitions in an early style as the
abstraction F is not fixed by the rule. Consider rule Outo for message output.
Unlike contextual rule Concr, it needs a premise Q

a,R�−−→ Q′, to check that Q
is able to receive on a the emitted process R. The resulting process Q′ is then
run in parallel with the continuation S under context �. By hypothesis of rule
Outo, the context does not capture any free name of R. We explain below why
we choose to first deal with capture-free contexts. For such contexts, we intro-

duce the transition a〈R〉S a,Q,�
↪−−−→b̃ Q′ | �{S}. In the contextual semantics, we

have a〈R〉S a−→ 〈R〉S, and context bisimilarity tests F • �{〈R〉S} in the output
clause, which is equal to F ◦ R | �{S} for capture-free contexts. Since Q′ may
be rewritten as F ◦ R for some F , the complementary transition mimics exactly
the context bisimilarity output clause.

Note that the message no longer appears in the label of output transitions.
We thus need additional information to deal with scope extrusion in the rules

Howe’s Method for Calculi with Passivation 457

fn(R) = b̃ Q
a,R�−−→ Q′ bn(�) ∩ b̃ = ∅

a〈R〉S a,Q,�
↪−−−→b̃ Q′ | �{S}

Outo

fn(P) = b̃ Q
b,P�−−→ Q′ bn(�) ∩ b̃ = ∅

b[P]
b,Q,�

↪−−−→b̃ Q′ | �{0}
Passivo

P
a,Q,�{b[�]}

↪−−−−−−−→b̃ P ′

b[P]
a,Q,�

↪−−−→b̃ P ′
Loco

P1

a,Q,�{�|P2}
↪−−−−−−−−→b̃ P ′

P1 | P2
a,Q,�

↪−−−→b̃ P ′
Paro

P
a,Q,�

↪−−−→b̃ P ′ c �= a c ∈ b̃

νc.P
a,Q,�

↪−−−→b̃\c νc.P ′
Extro

P
a,Q,�{νc.�}

↪−−−−−−−−→b̃ P ′ c �= a c /∈ b̃

νc.P
a,Q,�

↪−−−→b̃ P ′
Restro

P
a,Q,�

↪−−−→b̃ P ′

P
a,Q,��−−−→b̃ P ′

CFreeo

P
a,Q,�{�}�−−−−−−→b̃ P ′ c ∈ b̃

P
a,Q,�{νc.�}�−−−−−−−−→b̃ νc.P ′

Capto

Fig. 3. Complementary LTS for HOπP: Message Output Actions

for name restriction. To this end, rule Outo stores the free names b̃ of R in
the label. Scope extrusion may happen in the process under consideration (e.g.,
P = νc.a〈R〉S with c ∈ fn(R)) or because of the bisimulation context � (e.g.,
P = a〈R〉S and � = d[νc.(� | c〈0〉0)] with c ∈ fn(R)). Notice that premise
fn(�)∩ b̃ = ∅ in rule Outo forbids the latter kind of capture. We thus first define

auxiliary transitions P
a,Q,�
↪−−−→b̃ P

′ where � is a capture-free context, and we then

give rules for all contexts P
a,Q,��−−−→b̃ P

′.
We now explain the restriction rules on an example; let P = a〈R〉S and

c ∈ fn(R). Process νc.P may emit R on a, but the scope of c has to be expanded
to encompass the recipient of R. First premise of rule Extro checks that P may

output a message; here we have a〈R〉S a,Q,�
↪−−−→b̃ �{S} | Q′ with b̃ = fn(R). In

conclusion, we have νc.a〈R〉S a,Q,�
↪−−−→b̃\c νc.(�{S} | Q′). Scope of c includes Q′ as

expected. For a concretion C = νã.〈P1〉P2, the names b̃C that may be extruded
are the free names of P1 which are not already bound in ã, i.e., b̃C = fn(P1) \ ã.

Suppose now that P = a〈R〉S with c /∈ fn(R). Process νc.P may emit a
message, but the scope of c has to encompass only the continuation S: we want

to obtain νc.P
a,Q,�
↪−−−→b̃ �{νc.S} | Q′. To this end, we consider P

a,Q,�{νc.�}
↪−−−−−−−−→b̃

P ′ as a premise of rule Restro. In process P ′, the continuation is put under

�{νc.�}, hence we obtain a〈R〉S
a,Q,�{νc.�}
↪−−−−−−−−→b̃ �{νc.S} | Q′ = P ′, as expected

and reflected in the conclusion of the rule.

458 S. Lenglet, A. Schmitt, and J.-B. Stefani

Rule for passivation Passivo is similar to rule Outo, while rules Loco and
Paro follow the same pattern as rule Restro. Rule CFreeo simply means
that a transition with a capture-free context is a message output transition.
We now explain how to deal with context capture with rule Capto. Suppose
P = a〈R〉S and �′ = d[νc.(� | c〈0〉0)] with c ∈ fn(R); we want to obtain

P
a,Q,�′
�−−−−→b̃ νc.(d[S | c〈0〉0] | Q′) (with the scope of c extended out of d). We

first consider the transition P
a,Q,�{�}�−−−−−−→b̃ P

′ without capture on c; in our case we

have P
a,Q,d[�|c〈0〉0]�−−−−−−−−−→b̃ d[S | c〈0〉0] | Q′ = P ′ with � = d[�] and � = � | c〈0〉0.

According to the rule, we have P
a,Q,�{νc.�}�−−−−−−−−→b̃ νc.P

′, that is P
a,Q,�′
�−−−−→b̃ νc.(d[S |

c〈0〉0] | Q′). The scope of c is extended outside � and includes the recipient of
the message, as required.

PremiseP
a,Q,��−−−−→b̃ P

′ of rule HOτ (Figure 2) means that processP sends a mes-
sage on a to Q without any context around P , and the result is P ′. Consequently
we have P | Q τ�−→ P ′ by communication on a, which is the expected conclusion.
Names b̃ may no longer be potentially extruded, so we simply forget them.

4.2 Complementary Bisimilarity

We now define complementary bisimilarity and prove its soundness using Howe’s
method. Strong complementary bisimilarity for HOπP is simply the classic bisim-
ilarity associated to the complementary LTS with an additional condition on free
names.

Definition 6. Strong complementary bisimilarity ∼m is the largest symmetric
relation R such that P R Q implies fn(P) = fn(Q) and for all P λ�−→ P ′, there
exists Q λ�−→ Q′ such that P ′ R Q′.

We define � ∼•
m �′ as the smallest congruence that extends ∼•

m with � ∼•
m �. We

also extend ∼•
m to labels λ in the following way: we have λ ∼•

m λ′ iff λ = λ′ = τ , or
λ = (a,R), λ′ = (a,R′) with R ∼•

m R′, or λ = (a,R,�, b̃), λ′ = (a,R′,�′, b̃) with
R ∼•

m R′ and � ∼•
m �′. We prove the following simulation-like property for ∼•

m:

Lemma 2. Let P,Q be closed processes. If P ∼•
m Q and P

λ�−→ Q, then for all

λ ∼•
m λ′, there exists Q′ such that Q λ′

�−→ Q′ and P ′ ∼•
m Q′.

The higher-order communication problem of Section 3 is avoided. We recall
that in this case, we have P1 | P2 ∼•

m Q1 | Q2 with P1 ∼•
m Q1, P2 ∼•

m Q2 and

P1
a,P2,��−−−−→b̃ P

′. We can apply directly the message output clause of the induction

hypothesis: there exists Q′ such that Q1
a,Q2,��−−−−→b̃ Q

′ and P ′ ∼•
m Q′. We conclude

that Q1 | Q2
τ�−→ Q′ (by rule HOτ) with P ′ ∼•

m Q′ as wished.

Theorem 2. Relation ∼m is a congruence.

We now turn to the relationship between context and complementary bisimilar-
ities. We show that they actually coincide.

Howe’s Method for Calculi with Passivation 459

Theorem 3. We have ∼=∼m.

In the message input case, complementary bisimilarity tests with a process while
context bisimilarity tests with a concretion. Both testings are equivalent because
of the congruence of ∼m (Theorem 2). See [13] for more details. The output

clause of complementary bisimilarity requires that transition P
a,T,��−−−→b̃ P ′ has

to be matched by a transition Q
a,T,��−−−→b̃ Q

′ with the same set of names b̃ which
may be extruded. At first glance, we do not have this requirement for the early
strong context bisimilarity, hence we first have to prove that it is the case before
proving Theorem 3.

Correspondence also holds in the weak case. We write �
τ=⇒ the reflexive and

transitive closure of τ�−→. We define �
a,R
==⇒ as �

τ=⇒ a,R�−−→�
τ=⇒. In the weak case, two pro-

cesses P and Q may evolve independently before interacting with each other.
Since a transition P

a,Q,��−−−→b̃ P
′ includes a communication between P and Q, we

have to authorize Q to perform τ -actions before interacting with P in the weak

output transition. We define P �
a,Q,�
===⇒b̃ P

′ as P �
τ=⇒ a,Q′,��−−−−→b̃ �

τ=⇒ P ′ with Q �
τ=⇒ Q′.

Definition 7. Weak complementary bisimilarity ≈m is the largest symmetric
relation R such that P R Q implies fn(P) = fn(Q) and for all P λ�−→ P ′, there
exists Q �

λ=⇒ Q′ such that P ′ R Q′.

Using the same proofs techniques as in the strong case, we have the following
results.

Theorem 4. Relation ≈m is a congruence.

Theorem 5. We have ≈m=≈.

Bisimilarity ≈m coincides with ≈b on image-finite processes. The limitation on
image-finite processes is usual and can be found in π-calculus [23] for instance. A
closed process P is image finite iff for every label λ, the set {P ′, P �

λ=⇒ P ′} is finite.
Using the same proof technique as in [23], we have the following completeness
result.

Theorem 6. Let P,Q be image-finite processes. P ≈b Q if and only if P ≈m Q.

5 Related Work

Howe’s method. This method has been used originally to prove congruence in
a lazy functional programming language [10]. Baldamus and Frauenstein [2] are
the first to adapt Howe’s method to process calculi. They prove congruence
of a late delay context bisimilarity, and of late and early delay higher-order
bisimilarities in variants of Plain CHOCS [26]. Hildebrandt and Godskesen use
Howe’s method for their calculus Homer to prove congruence for late delay [9]
and input-early delay [6] context bisimilarities. In [15], we have used Howe’s
method to prove congruence of a weak higher-order bisimilarity for a calculus
featuring passivation but without restriction.

460 S. Lenglet, A. Schmitt, and J.-B. Stefani

Behavioral equivalences in higher-order calculi. Very few higher-order calculi
feature a coinductive characterization of weak barbed congruence. It is the case
in HOπ and in variants of Mobile Ambients. Sangiorgi introduces context bisim-
ilarities as characterizations of barbed congruence for its calculus HOπ [21].
Mobile Ambients [4] is a calculus with hierarchical localities and subjective lin-
ear process mobility. Contextual characterizations of weak barbed congruence
have been defined for Mobile Ambients [16] and its variant NBA [3].

Difficulties arise in more expressive process calculi. The Seal calculus [5] is a
calculus with objective, non linear process mobility, which requires synchroniza-
tion between three processes (a process sending a name a, a receiving process,
and a locality named a). Castagna et al. define a sound weak delay context bisim-
ilarity in [5] called Hoe bisimilarity for the Seal calculus. The authors point out
that their notion of context bisimilarity, Hoe bisimilarity, is not complete, not
only because of the delay style, but also because of the labels introduced for
partial synchronization which are most likely not all observable.

The Kell calculus [24] and Homer [9] are two higher-order calculi featuring
passivation. They differ in how they handle communication; in particular, the
Kell calculus allows join patterns while Homer does not. Sound and complete
context bisimilarities have been defined for both calculi in the strong case. As
stated before, a weak delay input-early bisimilarity has been proved sound in
Homer using Howe’s method. In [15] we have studied various calculi with passi-
vation in order to find normal bisimilarities for those calculi, i.e., relations with
finite testing at each step. In particular we have studied HOπP and showed that
its behavioral theory raises similar difficulties as the Homer and Kell ones.

One can also establish soundness by writing transitions in a special rule format
that ensures that the corresponding bisimilarity is a congruence. For higher-order
calculi, Mousavi et al. [18] propose Promoted (resp. Higher-Order) PANTH for-
mat which guarantees that the corresponding strong (resp. higher-order) bisimi-
larity is a congruence. Another method is to generate the LTS from the reduction
such that the corresponding bisimilarity is a congruence [19]. To this date, both
methods have been applied in the strong case only. One can also prove congru-
ence using environmental bisimulations [22]. We have not been able to apply this
method to a calculus with passivation yet.

6 Conclusion and Future Work

Contextual LTS (based on abstractions and/or concretions) are not well suited
to prove congruence using Howe’s method. The method relies on a simulation-
like property, which is hard to establish with early context bisimilarities that
are the usual candidate relations for characterization of barbed congruence. The
main issue is the mutual dependency between message input and output clauses
of the context bisimilarity. In our complementary semantics, the message output
clause depends on a process which may receive the message (i.e., a process which
evolves towards an abstraction), instead of an abstraction which directly receives
the message. This proof technique allows Howe’s method to work with early weak
(non delay) bisimilarity.

Howe’s Method for Calculi with Passivation 461

We have defined complementary semantics for HOπP, an extension of HOπ
with passivation. In Section 4, we have defined a weak complementary bisimi-
larity and proved its soundness using Howe’s method. We have also proved that
it coincides with weak barbed congruence on image-finite processes, yielding the
first characterization result in a calculus featuring passivation and restriction.
This approach may be applied to other calculi: in [13] we present a sound weak
complementary bisimilarity for HOπ and for the Seal calculus [5].

An immediate future work would be to define a complementary semantics for
process calculi with no characterization result for weak barbed congruence, such
as Seal, Homer [6], and the Kell calculus [24], and to prove that complementary
bisimilarity in these calculi yields the required characterization. It should be
easy for Homer since the HOπP semantics is close to the Homer one. For Seal,
it remains to show that the complementary semantics in [13] is indeed complete.
The Kell calculus may prove to be more challenging because of join patterns: to
complement an emitting process P , we need a receiving process Q, but also other
emitting processes R̃ to match the receiving pattern of Q. Another future work
is to define a LTS rule format which guarantees that Howe’s method works with
the corresponding bisimilarity, possibly extending the Promoted or Higher-Order
PANTH format for higher-order calculi proposed by Mousavi et al. [18].

References

1. Baldamus, M.: Semantics and Logic of Higher-Order Processes: Characterizing
Late Context Bisimulation. PhD thesis, Berlin University of Technology (1998)

2. Baldamus, M., Frauenstein, T.: Congruence proofs for weak bisimulation equiva-
lences on higher–order process calculi. Technical report, Berlin University of Tech-
nology (1995)

3. Bugliesi, M., Crafa, S., Merro, M., Sassone, V.: Communication and mobility con-
trol in boxed ambients. Information and Computation 202 (2005)

4. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

5. Castagna, G., Vitek, J., Zappa Nardelli, F.: The Seal Calculus. Information and
Computation 201(1), 1–54 (2005)

6. Godskesen, J.C., Hildebrandt, T.: Extending howe’s method to early bisimulations
for typed mobile embedded resources with local names. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005, vol. 3821, pp. 140–151. Springer, Heidelberg (2005)

7. Gordon, A.D.: Bisimilarity as a theory of functional programming. Mini-course.
Notes Series NS-95-3, BRICS, University of Cambridge Computer Laboratory,
iv+59 pp. (July 1995)

8. Hennessy, M., Rathke, J., Yoshida, N.: Safedpi: a language for controlling mobile
code. Acta Inf. 42(4-5) (2005)

9. Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for
Homer — a calculus of higher order mobile embedded resources. Technical Report
ITU-TR-2004-52, IT University of Copenhagen (2004)

10. Howe, D.J.: Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation 124(2), 103–112 (1996)

11. Jeffrey, A., Rathke, J.: A theory of bisimulation for a fragment of concurrent ML
with local names. Theoretical Computer Science 323, 1–48 (2004)

462 S. Lenglet, A. Schmitt, and J.-B. Stefani

12. Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order pi-calculus revis-
ited. Logical Methods in Computer Science 1(1) (2005)

13. Lenglet, S., Schmitt, A., Stefani, J.B.: Howe’s method for early bisimilarities. Tech-
nical Report RR 6773, INRIA (2008)

14. Lenglet, S., Schmitt, A., Stefani, J.B.: Characterizing contextual equivalence in
calculi with passivation (2009),
http://sardes.inrialpes.fr/~aschmitt/papers/hop_howe_long.pdf

15. Lenglet, S., Schmitt, A., Stefani, J.-B.: Normal bisimulations in process calculi with
passivation. In: FoSSaCS 2009. LNCS, vol. 5504, pp. 257–271. Springer, Heidelberg
(2009)

16. Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. Journal of
the ACM 52(6), 961–1023 (2005)

17. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623. Springer, Heidelberg (1992)

18. Mousavi, M., Gabbay, M.J., Reniers, M.A.: Sos for higher order processes (extended
abstract). In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653,
pp. 308–322. Springer, Heidelberg (2005)

19. Rathke, J., Sobocinski, P.: Deconstructing behavioural theories of mobility. In:
IFIP TCS. IFIP, vol. 273, pp. 507–520. Springer, Heidelberg (2008)

20. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, Department of Computer Science, University of
Edinburgh (1992)

21. Sangiorgi, D.: Bisimulation for higher-order process calculi. Information and Com-
putation 131(2), 141–178 (1996)

22. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: LICS 2007, pp. 293–302. IEEE Computer Society, Los Alamitos
(2007)

23. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

24. A. Schmitt and J.-B. Stefani. The Kell Calculus: A Family of Higher-Order Dis-
tributed Process Calculi. In Global Computing 2004 workshop, volume 3267 of
LNCS, 2004.

25. Sewell, P., Leifer, J., Wansbrough, K., Zappa Nardelli, F., Allen-Willians, M.,
Habouzit, P., Vafeiadis, V.: Acute: High-level programming language design for
distributed computation. Journal of Functional Programming 17(4-5) (2007)

26. Thomsen, B.: Plain chocs: A second generation calculus for higher order processes.
Acta Informatica 30(1), 1–59 (1993)

http://sardes.inrialpes.fr/~aschmitt/papers/hop_howe_long.pdf

On the Relationship between π-Calculus
and Finite Place/Transition Petri Nets

Roland Meyer1 and Roberto Gorrieri2

1 LIAFA, Paris Diderot University & CNRS
roland.meyer@liafa.jussieu.fr

2 Department of Computing Science, University of Bologna
gorrieri@cs.unibo.it

Abstract. We clarify the relationship between π-calculus and finite p/t
Petri nets. The first insight is that the concurrency view to processes
taken in [Eng96, AM02, BG09] and the structural view in [Mey09] are
orthogonal. This allows us to define a new concurrency p/t net semantics
that can be combined with the structural semantics in [Mey09]. The re-
sult is a more expressive mixed semantics, which translates precisely the
so-called mixed-bounded processes into finite p/t nets. Technically, the
translation relies on typing of restricted names. As second main result
we show that mixed-bounded processes form the borderline to finite p/t
nets. For processes just beyond this class reachability becomes undecid-
able and so no faithful translation into finite p/t nets exists.

1 Introduction

There has been considerable recent interest in verification techniques for mo-
bile systems that are based on automata-theoretic and in particular Petri net
translations [AM02, FGMP03, KKN06, DKK08, MKS09, BG09, Mey09]. Most
verification approaches and tool implementations have been developed for fi-
nite place/transition (p/t) Petri nets. This raises the question for a character-
isation of the processes that can be verified with the help of finite p/t Petri
net semantics. Despite the efforts in the semantics community dating back to
[BG95, MP95, Eng96, Pis99] the problem is still open and we tackle it in this
paper. The contribution is the precise borderline that separates π-calculus pro-
cesses from finite p/t Petri nets in terms of computational expressiveness.

In structurally stationary processes [Mey09] restricted names generate a finite
number of connection graphs at runtime. Although the constraint is semantical
and thus undecidable, large syntactic subclasses of structurally stationary pro-
cesses exist, e.g. finite control [Dam96] and restriction-free processes [AM02].
The so-called structural semantics represents structurally stationary processes
as finite p/t nets and is sound wrt. the reaction semantics [Mey09]. Therefore,
we take structurally stationary processes as starting point in our quest for the
borderline to finite p/t nets.

Mobile systems are concurrent systems where the connections between com-
ponents evolve over time. While the structural semantics focuses on these con-
nections, concurrency semantics highlight the interactions between components.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 463–480, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

464 R. Meyer and R. Gorrieri

In [BG95, BG09], we defined a concurrency semantics that reflects the intended
causality semantics for π-calculus. It is finite for the semantic class of restriction-
bounded processes, which generate a finite number of restricted names. In this
work, we present the largest class of processes with a finite p/t net semantics
that is sound wrt. the reaction behaviour. We find it as follows.

We observe that the structural view to processes is orthogonal to the con-
currency view. The main result is that an appropriately defined concurrency
semantics can be combined with the structural semantics to a more expres-
sive mixed translation. Intuitively, the new translation mirrors the interactions
between groups of components. Technically, the combination is achieved by typ-
ing restricted names, and the type determines the semantics that handles a
name.

We prove the mixed semantics to be finite precisely for mixed-bounded pro-
cesses, which combine the previous finiteness characterisations, i.e., they form
finitely many connection graphs with names of type one and generate finitely
many restricted names of type two. Again, mixed boundedness is an undecid-
able semantic condition, but it inherits all syntactic subclasses of structurally
stationary and restriction-bounded processes.

restriction-free,
≥ finite p/t nets [AM02,Mey08b]

struct. stat. [Mey09] restriction-bounded,
building upon [BG09]

mixed-bounded

mixed-bounded + depth one

bounded depth [Mey08a]

= finite p/t Petri nets

> finite p/t Petri nets
≤ WSTS

Fig. 1. Hierarchy of process classes and relation to finite p/t Petri nets (→ := ⊆)

We then show that mixed-bounded processes form the borderline between π-
calculus and finite p/t nets, since in a minimal extension of the class reachability
becomes undecidable. Unfortunately, this extension lies within the processes of
bounded depth, which are known to have well-structured transition systems
(WSTS) and so, e.g. a decidable termination problem [Mey08a]. Hence, our
results dash hope of a finite p/t net translation for this interesting class.

Note that every finite p/t net can be represented by a restriction-free process
of linear size with contraction-isomorphic transition system [AM02, Mey08b].
Hence, all process classes we consider are at least as expressive as finite p/t nets.
Figure 1 illustrates the elaborated relationships. We summarise our contribution.

– We define a new concurrency semantics for the π-calculus, which satisfies
three indispensable quality criteria. It yields a bisimilar transition system,
translates processes with restricted names, and enjoys an intuitive finiteness
characterisation. The technical tool that facilitates the definition is a new
name-aware transition system, which manages the use of restricted names.

On the Relationship between π-Calculus and Finite P/T Petri Nets 465

– We combine the concurrency semantics with the structural semantics and
prove the resulting translation finite precisely for so-called mixed-bounded
processes. The idea to combine the semantics is to type restricted names.
Technically, the definition also relies on a new normal form for processes
under structural congruence.

– We prove that mixed-bounded processes form the borderline to finite p/t
nets. If we relax the requirement slightly, reachability becomes undecidable.

Related Work. Although several automata-theoretic semantics for the π-calculus
have been proposed [Eng96, MP95, Pis99, AM02, BG95, BG09, KKN06, DKK08],
we found them all defective in the sense that they do not satisfy the criteria we
require for a semantics to be usable for verification. We discuss their problems.

Engelfriet [Eng96] translates processes with replication into p/t nets that are
bisimilar to the reaction semantics. Since the Petri net representation is infinite
as soon as the replication operator is used, the requirement for finiteness is
not satisfied. In subsequent papers [EG99, EG04], Engelfriet and Gelsema show
that the discriminating power of their semantics corresponds to extended and
decidable versions of structural congruence. In the proofs, they exploit normal
forms for processes similar to the restricted form we present in Section 2.

Montanari and Pistore propose history dependent automata (HDA) as se-
mantic domain, finite automata where states are labelled by sets of names that
represent the restrictions in use [MP95, Pis99]. The ground and early labelled
transition semantics are translated into HDA in a way that bisimilarity on the
automata coincides with the corresponding bisimilarity on processes. The trans-
lations yield finite HDA only for finitary processes, the subclass of structurally
stationary processes obtained by bounding the degree of concurrency [Mey09].

Amadio and Meyssonnier [AM02] translate restriction-free processes into
bisimilar (reaction semantics) and finite p/t nets. To deal with a class of pro-
cesses that contain restrictions, a second translation identifies restricted names
as unsed and replaces them by generic free names. Since the number of processes
to be modified by replacement is not bounded, these authors rely on Petri nets
with transfer as semantic domain. Having an undecidable reachability problem,
transfer nets are strictly more expressive than finite p/t nets [DFS98].

Our work [BG95] translates the early labelled transition relation of restriction-
bounded processes into finite p/t Petri nets, but fails to prove bisimilarity. Based
on that translation, [BG09] studies non-interleaving and causal semantics for the
π-calculus and provides decidability results for model checking.

Koutny et. al. [DKK08] achieve a bisimilar translation of the indexed labelled
transition system into finite but high-level Petri nets, thus relying on a Turing
complete formalism where automatic analyses are necessarily incomplete. The
main contribution is compositionality, for every π-calculus operator there is a
corresponding net operator and in many cases the size of the net is linear in
the size of the process. In [KKN06], the translation is extended by an unfolding-
based model checker. To avoid the undecidability the verification approach is
restricted to recursion-free processes, a class of limited practical applicability.

466 R. Meyer and R. Gorrieri

2 Preliminaries

We recall the basics on π-calculus, p/t Petri nets, and the structural semantics.

π-Calculus. We use a π-calculus with parameterised recursion as proposed in
[SW01]. Let the set N := {a, b, x, y, . . .} of names contain the channels, which
are also the possible messages, that occur in communications. During a process
execution the prefixes π are successively removed from the process to communi-
cate with other processes or to perform silent actions. The output action π = a〈b〉
sends the name b along channel a. The input action π = a(x) receives a name
that replaces x on a. Prefix π = τ performs a silent action.

To denote recursive processes, we use process identifiers K,L, . . . A process
identifier is defined by an equation K(x̃) := P , where x̃ is a short-hand notation
for x1, . . . , xk. When the identifier is called, K/ã., it is replaced by process P
with the names x̃ changed to ã. More precisely, a substitution σ = {ã/x̃} is a
function that maps the names in x̃ to ã, and is the identity for all the names
not in x̃. The application of a substitution is denoted by Pσ and defined in
the standard way [SW01]. A π-calculus process is either a call to an identifier,
K/ã., a choice process deciding between prefixes, M +N , a parallel composition
of processes, P1 | P2, or the restriction of a name in a process, νa.P :

M ::= 0 � π.P � M +N P ::= M � K/ã. � P1 | P2 � νa.P.

Writing π for π.0 we omit pending 0 processes. By M=0 we denote choice com-
positions of stop processes 0+ . . .+0. To indicate a choice composition contains
at least one term π.P we denote it by M �=0. Processes M �=0 and K/ã. are called
sequential, and they are the basic processes that produce reactions, either alone
or by synchronisation of two of them, in the reaction relation defined below.

A restriction νa that is not covered by a prefix π is active and the set of active
restrictions in a process is arn(P). For example, arn(νa.a〈b〉.νc.a〈c〉) = {a}. The
input action a(b) and the restriction νc.P bind the names b and c, respectively.
The set of bound names in a process P is (arn(P) ⊆) bn(P). A name which is not
bound is free and the set of free names in P is fn(P). We permit α-conversion
of bound names. Therefore, wlog. we assume that a name is bound at most once
in a process and that bn(P) ∩ fn(P) = ∅. Moreover, if a substitution σ = {ã/x̃}
is applied to a process P , we assume bn(P) ∩ (ã ∪ x̃) = ∅.

We use the structural congruence relation in the definition of the behaviour
of a process term. It is the smallest congruence where α-conversion of bound
names is allowed, + and | are commutative and associative with 0 as the
neutral element, and the following laws for restriction hold:

νx.0 ≡ 0 νx.νy.P ≡ νy.νx.P νx.(P | Q) ≡ P | (νx.Q), if x /∈ fn(P).

The last rule is called scope extrusion. The behaviour of π-calculus processes is
then determined by the reaction relation → ⊆ P × P defined by the rules in
Table 1. By Reach(P) we denote the set of all processes reachable from P by
the reaction relation. The transition system of process P factorises the reachable

On the Relationship between π-Calculus and Finite P/T Petri Nets 467

Table 1. Rules defining the reaction relation → ⊆ P × P

(Tau) τ.P + M → P (React) x(y).P + M | x〈z〉.Q + N → P{z/y} | Q
(Const) K'ã) → P{ã/x̃}, if K(x̃) := P

(Par)
P → P ′

P | Q → P ′ | Q (Res)
P → P ′

νa.P → νa.P ′ (Struct)
Q ≡ P → P ′ ≡ Q′

Q → Q′

processes along structural congruence, T (P) := (Reach(P)/≡,→T , [P]) with the
transition relation [P] →T [Q] defined by P → Q.

Our theory employs two normal forms for processes. The classical standard
form of Milner [Mil99] maximises the scopes of active restricted names and re-
moves unused restrictions and 0 processes. For example, the standard form of
νa.K/a. | νb.0 | K/c. is νa.(K/a. | K/c.). We compute it with the function
sf , which is the identity on sequential processes. For a restriction νa.P we have
sf (νa.P) := νa.sf (P) if a ∈ fn(P) and sf (νa.P) := sf (P) otherwise. The par-
allel composition of P and Q with sf (P) = νãP .P

�=ν and sf (Q) = νãQ.Q
�=ν

maximises the scopes, sf (P | Q) := νãP .νãQ.(P �=ν | Q �=ν). Of course, the se-
quences of names ãP and ãQ may be empty and furthermore P �=ν and Q �=ν

denote parallel compositions of sequential processes K/a. and M �=0.
Dual to the standard form, the restricted form [Mey09] minimises the scopes

of active restrictions and also removes unused restrictions and processes con-
gruent to 0. For example, the restricted form of νa.(K/a. | νb.0 | K/c.) is
νa.K/a. | K/c.. Technically, the restricted form relies on the notion of fragments
F,G,H built inductively in two steps. Sequential processes K/ã. and M �=0 are
called elementary fragments F e, Ge and form the basis. General fragments are
defined by the grammar

F e ::= K/ã. � M �=0 F ::= F e
� νa.(F1 | . . . | Fn)

with a ∈ fn(Fi) for all i. A process P rf in restricted form is now a parallel com-
positions of fragments, P rf = Πi∈IFi, and we refer to the fragments in P rf by
fg(P rf) :=

⋃
i∈I{Fi}. The decomposition function dec(P rf) counts the number of

fragments in P rf that are in a given class, e.g. P rf = F | G | F ′ with F ≡ F ′
≡ G
yields (dec(P rf))([F]) = 2, (dec(P rf))([G]) = 1, and (dec(P rf))([H]) = 0 for
F
≡ H
≡ G. The function characterises structural congruence: P rf ≡ Qrf

is equivalent to dec(P rf) = dec(Qrf) [Mey09]. This is crucial for the well-
definedness of the concurrency semantics we investigate in Section 3.

For a fragment F , we let ||F ||ν denote the nesting of active restrictions. For
example, ||νa.(νb.K/a, b. | νc.νd.L/a, c, d.)||ν = 3. The depth of a fragment F
is then the nesting of active restrictions in the flattest representation, ||F ||D :=
min{||G||ν � G ≡ F}. A process is bounded in depth if there is a bound k ∈ N

on the depth of all reachable fragments [Mey08a].
For a given process, function rf computes a structurally congruent one in

restricted form [Mey09]. It is the identity on sequential processes and a homo-
morphism for the the parallel composition, rf (P | Q) := rf (P) | rf (Q). In case

468 R. Meyer and R. Gorrieri

of restriction νa.P , we first compute the restricted form rf (P) = Πi∈IFi. Then
the scope of νa is restricted to the fragments where a is a free name (let the set
Ia contain their indices), rf (νa.P) := νa.(Πi∈IaFi) | Πi∈I\Ia

Fi.

Petri Nets. An (unmarked) Petri net is a triple (S, T,W) with disjoint and
potentially infinite sets of places S and transitions T , and a weight function
W : (S × T) ∪ (T × S) → N := {0, 1, 2, . . .}. A Petri net is finite if S and T
are finite sets. A marking of the net is a function M : S → N and its support
supp(M) are the elements mapped to a value greater zero. As usual, places
are represented by circles, transitions by boxes, the weight function by arcs
with numbers (missing arcs have weight 0, unlabelled arcs have weight 1), and
markings by tokens within the circles. We denote pre- and postset of z ∈ S ∪ T
by •z := {y � W (y, z) > 0} and z• := {y � W (z, y) > 0}. A (marked) Petri net
is a pair N = (S, T,W,M0) of an unmarked net (S, T,W) and an initial marking
M0. The set of all marked Petri nets is denoted by PN .

A transition t ∈ T is enabled in marking M if M(s) ≥ W (s, t) for every s ∈ •t.
Firing an enabled transition leads to marking M ′(s) := M(s)−W (s, t)+W (t, s)
for every s ∈ S, and is denoted by M [t〉M ′. In the transition system we work
with the unlabelled relation M → M ′, which means M [t〉M ′ for some t ∈ T .

To relate a process and its Petri net representation, we rely on the notion
of bisimilarity [Mil89]. Two transition systems Ti = (St i,→i, s

0
i) with i = 1, 2

are bisimilar, T1 ≈ T2, if there is a bisimulation relation R ⊆ St1 × St2 that
contains the initial states, (s01, s02) ∈ R. In a bisimulation relation R, containment
(s1, s2) ∈ R requires (1) that for every t1 ∈ St1 with s1 →1 t1 there is a t2 ∈ St2
with s2 →2 t2 and (t1, t2) ∈ R and (2) similar for transitions from s2.

Structural Semantics. We recall the translation of π-calculus processes into
Petri nets defined in [Mey09]. The idea is to have a separate place for each
reachable group of processes connected by restricted names, i.e., the notion of
fragments plays a crucial role. The algorithm takes a π-calculus process P and
computes a Petri net NS [[P]], called the structural semantics of P , as follows.

The places are the fragments of all reachable processes Q. More precisely, we
take the structural congruence classes of fragments, fg(rf (Q))/≡.

There are two disjoint sets of transitions. Transitions t = ([F], [Q]) model
reactions inside fragment F that lead to process Q. More formally, [F] is a place
and F → Q holds. These reactions are communications within F , silent actions,
or calls to process identifiers. There is an arc weighted one from place [F] to t.

Transitions t = ([F1 | F2], [Q]) model reactions between reachable fragments
along public channels: [F1] and [F2] are places and F1 | F2 → Q. To define the
preset of t, consider place [F]. If F1, F2, and F are structurally congruent there
is an arc weighted two from [F] to t. If F is structurally congruent with either
F1 or F2, there is an arc weighted one. Otherwise there is no arc.

The postset of a transition ([F], [Q]) or ([F1 | F2], [Q]) are the reachable
fragments of Q. If fragment G occurs (up to ≡) k ∈ N times in rf (Q), then there
is an arc weighted k from ([F], [Q]) to [G]. For example, from the transition
([τ.(K/a. | K/a.)], [K/a. | K/a.]) there is an arc weighted two to place [K/a.].

On the Relationship between π-Calculus and Finite P/T Petri Nets 469

The initial marking of place [F] in NS [[P]] is determined by the number of
fragments in rf (P) that are congruent to F . We illustrate the translation on our
running example: a model of a bag data structure that takes values from a fill
process on channel in and emits them on channel out in any order [Fok07].

Example 1. Consider FILL/in. | BAG/in , out. with the equations FILL(in) :=
νval .in〈val 〉.FILL/in. and BAG(in , out) := in(y).(out〈y〉 | BAG/in , out.). The
structural semantics NS [[FILL/in. | BAG/in, out.]] is the Petri net in Figure 2
without s6, . . . , s9 and with the following places:

s1 := [FILL/in.] s2 := [BAG/in , out.] s5 := [νval .out〈val〉]
s3 := [νval .in〈val 〉.FILL/in.] s4 := [in(y).(out〈y〉 | BAG/in, out.)].

Note that the structural semantics remains finite if we restrict the name in
while it becomes infinite if we restrict out . A restricted name out , distributed to
an unbounded number of processes νval .out〈val 〉, would create an unbounded
number of places (unboundedness in breadth [Mey09]).

A π-calculus process and its structural semantics have isomorphic transition
systems [Mey09]. Moreover, the structural semantics is finite iff the translated
process is structurally stationary, i.e., generates finitely many types of fragments.

s5s1 s2

s3 s4

s6

s7

s8

s9

Fig. 2. Petri net representation of the different versions of the bag data structure
introduced in the Examples 1, 2, and 3. The places and the usage of s6, . . . , s9 depend
on the semantics under consideration and are explained in the examples

3 A Sound Concurrency Semantics for the π-Calculus

Concurrency semantics highlight the communications between sequential pro-
cesses. As opposed to the structural semantics, the scopes of restricted names
are not important. The key idea to define a concurrency semantics is to use
designated free names for active restrictions. To generate these names system-
atically, we define the so-called name-aware transition system. It facilitates the
first bisimilarity proof P ≈ NC [[P]] for a concurrency semantics that handles
name creation and allows for a finiteness characterisation. Surprisingly, all ear-
lier attempts lacking this technical tool failed as explained in the introduction.

For a smooth definition of the name-aware transition system we assume that
restricted names have the form am, i.e., they carry an index m ∈ N. α-conversion
of a restricted name am changes the index m but not the name a. Wlog., for
a process P of interest we assume the indices to be zero. If P uses defining
equationsKi(x̃) := Pi, then the indices in the Pi are zero as well. For a restriction
am the increment operation yields am + 1 := am+1. Its application to sets is
defined elementwise, for example {a3, b2, c5} + 1 = {a4, b3, c6}.

470 R. Meyer and R. Gorrieri

In the name-aware transition system, the states are name-aware processes
of the form (P �=ν , ã). Intuitively, in an execution sequence leading to process
(P �=ν , ã) the active restrictions ã have been found (the set may be empty, ã = ∅).
The names ã are not chosen arbitrarily but are computed by incrementing the
indices. For example, the name-aware process (τ.νa0.K/a0., {a0, a1, a2}) con-
sumes a τ -action and generates the restricted name a3. Formally, the behaviour
of name-aware processes is captured by the name-aware reaction relation

(P �=ν , ã) →na (Q �=ν , ã , b̃) :⇔
P �=ν → νb̃.Q �=ν in standard form and

∀bk ∈ b̃ : k − 1 = max{i � bi ∈ ã},
(♣)

where we choose zero as index if there is no name bi ∈ ã. The set of all processes
reachable from (P �=ν , ã) by the name-aware reaction relation is Reachna(P �=ν , ã).
For the example process above, the definition in fact yields the name-aware reac-
tion (τ.νa0.K/a0., {a0, a1, a2}) →na (K/a3., {a0, a1, a2, a3}). The name-aware
transition system Tna (P �=ν , ã) is again defined by factorising the reachable pro-
cesses along structural congruence, Reachna(P �=ν , ã)/≡. The name-aware reac-
tion relation is lifted to process classes ([P �=ν], ã), accordingly. Lemma 1 states
bisimilarity of the name-aware and the standard transition system of a process.

Lemma 1. For every process P ∈ P with standard form sf (P) = νã.P �=ν the
bisimilarity T (P) ≈ Tna (P �=ν , ã) holds.

Proof. The relation that connects

([Q �=ν], b̃) ∈ Reachna (P �=ν , ã)/≡ and [νb̃.Q �=ν] ∈ Reach(P)/≡

is a bisimulation and relates the initial processes in both transition systems.

Two basic ideas underly our concurrency semantics. First, as usual we let tokens
reflect the numbers of processes in a state. Second and unusual, we use additional
name places to imitate the generation of free names in the name-aware transition
system; a construction that has precursor in our earlier works [BG95, BG09]. If
a place, say a3, is marked, the names a0, a1, a2 have already been generated and
a3 is the next one to be invented. The transition that corresponds to the reaction
(τ.νa0.K/a0., {a0, a1, a2}) →na (K/a3., {a0, a1, a2, a3}) above moves the token
from name place a3 to a4.

Technically, we start with the name-aware transition system and compute the
two disjoint sets of name and process places. The name places are precisely the
names b̃ in all reachable name-aware processes ([Q �=ν], b̃). The process places are
given by the (structural congruence classes of) sequential processes in Q �=ν.

Let ([P �=ν], ã) be the initial process in the name-aware transition system. Also
the initial marking is composed out of two disjoint functions. Function MP

0 marks
the process places as required by the sequential processes in P �=ν . Marking MN

0
puts a single token on all name places with index zero—except ã. If a0 ∈ ã the
name is already in use and a1 is the next to be generated. Therefore, name place
a1 is marked by one token. In fact, all name places are 1-safe.

On the Relationship between π-Calculus and Finite P/T Petri Nets 471

Like for the structural semantics we have two disjoint sets of transitions.
The first set contains transitions t = ([M �=0], b̃, [Q �=ν]) with the constraint that
[M �=0] and b̃ are places and M �=0 → νb̃.Q �=ν in standard form. The preset of
t are the process place [M �=0] and the name places b̃. Hence, names can only
be generated if their places are marked. The postset is given by the reachable
sequential processes in Q �=ν and the names b̃ + 1. Thus, the transition moves a
token from bk ∈ b̃ to bk+1 as was explained. Similar transitions exist for K/c̃..

The second set of transitions models communications between sequential pro-
cesses. Here we have transitions t = ([M �=0

1 | M �=0
2], b̃, [Q �=ν]) with the condition

that M �=0
1 | M �=0

2 reacts to νb̃.Q �=ν in standard form. There is an arc weighted
two from place [N �=0] to t if M �=0

1 ≡ N �=0 ≡ M �=0
2 . In this case, two structurally

congruent processes communicate. If place [N �=0] is only one of the sequential
processes, N �=0 ≡ M �=0

1 xor N �=0 ≡ M �=0
2 , we draw an arc weighted one from the

place to the transition. In any other case there is no arc, which means transition
t represents a reaction where process [N �=0] is not involved in. Like for the first
set of transitions, the places b̃ in the preset of t ensure restricted names are
invented in the correct order. The postset is similar as well. We illustrate the
definition of the concurrency semantics on the bag data structure.
Example 2. Consider the process νin0.νout0.(FILL2/in0, val. | BAG/in0, out0.)
where different from Example 1 data value val is not restricted, FILL2(in0, val) :=
in0〈val〉.FILL2/in0, val.. The equation for BAG is as before. The concurrency
semantics NC [[νin0.νout0.(FILL2/in0, val. | BAG/in0, out0.)]] is the Petri net in
Figure 2 with the process places

s1 := [FILL2/in0, val.] s2 := [BAG/in0, out0.] s5 := [out0〈val 〉]
s3 := [in0〈val 〉.FILL2/in0, val.] s4 := [in0(y).(out0〈y〉 | BAG/in0, out0.)]
and the name places s6 := in0, s7 := in1, s8 := out0, and s9 := out1. Note that
place in1 is initially marked as in0 is active in the initial process. Moreover, if
we restricted val the concurrency semantics would have an unbounded number
of val i places and hence be infinite.
Formally, the concurrency semantics is the function NC : P → PN . It assigns to
a process P0 ∈ P with sf (P0) = νã0.P

�=ν
0 the Petri net NC [[P0]] = (S, T,W,M0)

as follows. The set of places is the disjoint union S := SP , SN of the process
places SP and the name places SN :

SP := fg(Reachna (P �=ν
0 , ã0))/≡

SN := nms(Reachna(P �=ν
0 , ã0)) ∪ nms(Reachna(P �=ν

0 , ã0)) + 1,

where fg(P �=ν , ã) := fg(P �=ν) and nms(P �=ν , ã) := ã for a name-aware process
(P �=ν , ã). Note that since P �=ν is a parallel composition of elementary fragments,
it is in restricted form and we can access its elements via fg(P �=ν).

To define the set T of transitions, consider the process places [F e], [F e
1], [F e

2]
and the name places ã in S. We have

T := {([F e], ã, [Q �=ν]) � F e → νã.Q �=ν in standard form}
∪ {([F e

1 | F e
2], ã, [Q �=ν]) � F e

1 | F e
2 → νã.Q �=ν in standard form}.

472 R. Meyer and R. Gorrieri

We define the weight function for transitions t = ([F e
1 | F e

2], ã, [Q �=ν]), for tran-
sitions t′ = ([F e], ã, [Q �=ν]) the definition is similar. Consider places a and [Ge]
and let condition a ∈ ã or a ∈ (ã+ 1) yield 1 if it is satisfied and 0 otherwise:

W ([Ge], t) := (dec(F e
1 | F e

2))([Ge]) W (a, t) := a ∈ ã

W (t, [Ge]) := (dec(Q �=ν))([Ge]) W (t, a) := a ∈ (ã + 1).

The initial marking is the disjoint union M0 := MP
0 ,MN

0 . Since name places
receive a single token, we define MN

0 by the set of marked places:

MP
0 := dec(P �=ν

0) MN
0 := ({a0 ∈ S} \ ã0) ∪ (ã0 + 1).

This definition in fact mirrors the name-aware transition system.

Lemma 2. For every process P ∈ P with sf (P) = νã.P �=ν the bisimilarity
T (NC [[P]]) ≈ Tna (P �=ν , ã) holds.

Proof. The lemma can be established by showing that

R :=
{(
MP ,MN , ([Q �=ν], b̃)

)
� Q �=ν ≡ Π[F e]∈supp(MP)Π

MP([F e])F e and

b̃ = {bi ∈ S � MN (bk) = 1 with i < k}
}

is a bisimulation relation that connects the initial state of the name-aware tran-
sition system and the initial marking of the concurrency semantics.

By transitivity of bisimilarity, the Lemmas 1 and 2 prove our first main result.
The transition system of a process and that of its concurrency semantics are
bisimilar and the reachable processes can be recomputed from the markings
using the composed bisimulation relation.

Theorem 1 (Retrievability). For every P ∈ P we have T (NC [[P]]) ≈ T (P).

Our second result is a finiteness characterisation. The concurrency semantics is a
finite Petri net if and only if the process generates finitely many restricted names.
We call those processes restriction bounded. Since in the standard transition
system unused restrictions can be removed by νa.P ≡ P if a /∈ fn(P), we again
rely on the name-aware transition system to define restriction boundedness.

Definition 1. Consider P ∈ P with sf (P) = νã.P �=ν . We call P restriction
bounded if there is a finite set of names m̃ ⊆ N so that for every reachable
name-aware process (Q �=ν , b̃) the inclusion b̃ ⊆ m̃ holds.

If the process is not restriction bounded, clearly the concurrency semantics is
infinite as every restricted name yields a place. Theorem 2 shows that also the
reverse holds, i.e., a bounded number of restricted names implies finiteness of
the Petri net. The proof uses the theory of derivatives [Mey09, Proposition 3].

Theorem 2 (Finiteness Characterisation). For any process P ∈ P, the
concurrency semantics NC [[P]] is finite if and only if P is restriction bounded.

The Examples 1 and 2 show that structurally stationary and restriction-bounded
processes are incomparable. Section 4 explains how to unify the classes.

On the Relationship between π-Calculus and Finite P/T Petri Nets 473

4 Combining Structural and Concurrency Semantics

To combine the structural and the concurrency semantics we type restricted
names, and the type determines the semantics that handles a name. More pre-
cisely, restricted names νa may carry a tag C. Tagged names νaC are translated
by the concurrency semantics while names νa without tag are handled by the
structural semantics. Hence, tagged names yield name places in the combined
semantics and untagged names form fragments that replace the process places.
Like in the concurrency semantics, we assume that tagged names have indices.

Technically, the idea of adding tags raises two problems that need to be ad-
dressed. (1) We need to define a name-aware transition system to generate tagged
names systematically. (2) We need to compute the fragments formed by untagged
names. The solution to both problems is a normal form for processes, which com-
bines the standard and the restricted form. Before we turn to its definition, we
illustrate the use of tags on our running example.

Example 3. Tagging the names in0 and out0 in the bag example yields process
νinC

0 .νoutC0 .(FILL/inC
0 . | BAG/inC

0 , outC0.) with the equations in Example 1.
Since channel outC0 is shared by arbitrarily many processes, we tag it to treat it
by the concurrency semantics. Vice versa, as arbitrarily many instances of val
are created we omit the tag to handle the name by the structural semantics.

The mixed translation will result in the Petri net in Figure 2 with the name
places s6 := inC

0 , s7 := inC
1 , s8 := outC0 , and s9 := outC1 . Different from the

concurrency semantics, the mixed semantics has fragment places

s1 := [FILL/inC
0.] s2 := [BAG/inC

0 , outC0.] s5 := [νval .outC0 〈val 〉]

s3 := [νval .inC
0 〈val 〉.FILL/inC

0.] s4 := [inC
0 (y).(outC0 〈y〉 | BAG/inC

0 , outC0.)].

Observe that neither the structural nor the concurrency semantics finitely rep-
resent the process. It is also worth comparing the places with those in the Ex-
amples 1 and 2 to see how the mixed semantics unifies the previous translations.

4.1 Mixed Normal Form

The idea of the mixed normal form is to maximise the scopes of tagged active
restrictions νaC and to minimise the scopes of untagged ones νa. In the result-
ing process Pmf = νãC .P rf the tagged names νãC surround a process P rf in
restricted form, which only contains untagged active restrictions. We call Pmf

a process in mixed normal form and denote the set of all processes in mixed
normal form by Pmf . To give an example, process

P = νinC
0 .νoutC0 .(FILL/inC

0. | BAG/inC
0 , outC0. | outC0 〈val〉)

is in mixed normal form while νval .P is not as the scope of νval is not minimal.
For every tagged process, the function mf : P → Pmf computes a structurally

congruent process in mixed normal form. Empty sums M=0 are mapped to 0

474 R. Meyer and R. Gorrieri

and sequential processes are left unchanged. For the parallel composition P | Q,
we recursively compute the mixed normal forms mf (P) = νãCP .P

rf and mf (Q) =
νãCQ.Q

rf , where ãCP and ãCQ may be empty. Like the standard form, the mixed
normal form extrudes the scopes of ãCP and ãCQ,

mf (P | Q) := νãCP .νã
C
Q.(P

rf | Qrf).

Tagged active restricted names are handled like in the standard form, i.e.,
we have mf (νaC .P) := νaC .mf (P) if aC ∈ fn(P) and mf (νaC .P) := mf (P)
otherwise. For a process νa.P with an untagged name νa, we recursively compute
mf (P) = νãC .P rf . This singles out the tagged names ãC in P . Commuting νa
with νãC yields νãC .νa.P rf . Let P rf = Πi∈IFi and let Ia contain the indices of
the fragments that have a as a free name. Shrinking the scope of νa gives

mf (νa.P) := νãC .
(
νa.(Πi∈IaFi) | Πi∈I\Ia

Fi

)
.

Example 4. We observed that νval .P /∈ Pmf . An application of the function
gives mf (νval .P) = νinC

0 .νoutC0 .(νval .outC0 〈val〉 | FILL/inC
0. | BAG/inC

0 , outC0.),
which is a process in mixed normal form.

Lemma 3. For every tagged process P ∈ P function mf yields mf (P) ∈ Pmf

with mf (P) ≡ P . For Pmf ∈ Pmf , even mf (Pmf) = Pmf holds.

4.2 Mixed Semantics

Like the concurrency semantics, the definition of the mixed semantics relies on a
name-aware transition system that organises the creation of fresh tagged active
restrictions. With the mixed normal form νãC .P rf in mind, we define the new
name-aware processes to be pairs (P rf , ãC), where the active restrictions in P rf

are untagged. For these name-aware processes, the name-aware reaction relation
→na is adapted accordingly. The only difference to Definition (♣) is the use of
the mixed normal form instead of the standard form:

(P rf , ãC) →na (Qrf , ãC , b̃C) :⇔
P rf → νb̃C .Qrf in mixed normal form and

∀bCk ∈ b̃C : k − 1 = max{i � bCi ∈ ãC}.

Without change of notation, let the resulting new name-aware transition system
be Tna (P rf , ãC). It is straightforward to modify the proof of Lemma 1 in order
to show bisimilarity for the adjusted definition.

Lemma 4. For every tagged process P ∈ P with mf (P) = νãC .P rf the bisimi-
larity Tna(P rf , ãC) ≈ T (P) holds.

The mixed semantics is a variant of the concurrency semantics, so again we
have two sets of places. While the tagged active restrictions b̃C in name-aware

On the Relationship between π-Calculus and Finite P/T Petri Nets 475

processes ([Qrf], b̃C) yield name places, the process places known from the con-
currency semantics are replaced by fragment places fg(Qrf)/≡ in the mixed se-
mantics. They represent the fragments generated by untagged active restrictions.
Also the transitions are changed to the form

t = ([F], b̃C , [Qrf]) and t = ([F1 | F2], b̃C , [Qrf]),

with the condition that F (and F1 | F2) has a name-aware reaction to the
process νb̃C .Qrf in mixed normal form, i.e., F →na νb̃C .Qrf and νb̃C .Qrf ∈ Pmf .
Intuitively, the transition models a communication of processes (or a τ -action
or a call to an identifier) within F , which results in process Qrf and generates
the new tagged active restrictions b̃C . The modification of the weight function
is immediate. We denote the mixed semantics of a process P ∈ P by NM[[P]].
Also the proof of bisimilarity in Lemma 2 still holds for the mixed semantics.

Lemma 5. Consider the tagged process P ∈ P with mf (P) = νãC .P rf . We have
the bisimilarity T (NM[[P]]) ≈ Tna (P rf , ãC).

Combining the bisimilarities in Lemma 4 and 5, we obtain bisimilarity for the
mixed semantics. Moreover, the bisimulation relation used in the proof allows
one to reconstruct the reachable process terms from the markings.

Theorem 3 (Retrievability). For every tagged process P ∈ P the bisimilarity
T (NM[[P]]) ≈ T (P) holds.

For processes without tagged names the mixed semantics degenerates to the
structural semantics. The absence of tagged names leads to absence of name
places in the semantics. Hence, transitions do not generate names and have
the form ([F], ∅, [Qrf]) or ([F1 | F2], ∅, [Qrf]). They can be identified with the
transitions ([F], [Q]) and ([F1 | F2], [Q]) in the structural semantics. In case
all names are tagged in the process under consideration, the mixed semantics
corresponds to the concurrency semantics. This follows from the fact that the
mixed normal form coincides with the standard form for these processes. Hence,
the fragment places in the mixed semantics are in fact sequential processes.

Proposition 1 (Conservative Extension). If the process P ∈ P does not use
tagged names, the mixed semantics coincides with the structural semantics, i.e.,
NM[[P]] = NS [[P]]. If the process only uses tagged names, the mixed semantics
coincides with the concurrency semantics, i.e., NM[[P]] = NC [[P]].

According to Theorem 2 the concurrency semantics is finite if and only if the
translated process is restriction bounded. The structural semantics is finite pre-
cisely if there is a finite set of fragments every reachable process consists of
(structural stationarity [Mey09]). We prove the mixed semantics to be finite if
and only if (a) finitely many tagged names are generated and (b) the untagged
names form finitely many fragments.

Definition 2. A tagged process P ∈ P is mixed bounded if there are finite
sets of names m̃C and fragments {F1, . . . , Fn} so that for every reachable process
(Qrf , b̃C) we have b̃C ⊆ m̃C and for every F ∈ fg(Qrf) there is Fi with F ≡ Fi.

476 R. Meyer and R. Gorrieri

To see that NM[[P]] is finite iff P is mixed bounded, observe that finiteness of
the set of places implies finiteness of the mixed semantics. Finiteness of the set
of name places is equivalent to Condition (a), finiteness of the set of fragment
places equivalent to Condition (b) in the definition of mixed boundedness.

Theorem 4 (Finiteness Characterisation). For every tagged process P ∈ P
the mixed semantics NM[[P]] is finite if and only if P is mixed bounded.

Structurally stationary and restriction-bounded processes are mixed bounded,
hence the mixed semantics finitely represents all their syntactic subclasses. In
finite control processes parallel compositions are forbidden within recursions,
but an unbounded number of restricted names may be generated [Dam96].
Incomparable, restriction-free processes allow for unbounded parallelism but for-
bid the use of restrictions [AM02]. They are generalised by finite handler pro-
cesses designed for modelling client-server systems [Mey09]. All these classes are
structurally stationary [Mey09]. Restriction-free processes are also generalised
by finite-net processes, which forbid the use of restrictions within recursions but
allow for unbounded parallelism (dual to finite control processes) [BG09]. They
form a subclass of restriction-bounded processes.

We conclude the section with a remark that mixed-bounded processes are a
subclass of the processes of bounded depth.

Proposition 2. If P ∈ P is mixed bounded, then it is bounded in depth.

Theorem 4 shows that if a process is mixed bounded then there is a faithful
representation as a finite p/t net. We now consider the reverse direction.

5 Borderline to Finite P/T Petri Nets

We argue that if we have a superclass of mixed-bounded processes, there will
be no reachability-preserving translation into finite p/t Petri nets. This means
mixed-bounded processes form the borderline between π-calculus and finite p/t
nets. Since it is always possible to handle particular classes of processes by
specialised translations, we make our argument precise. We show that in a slight
extension of mixed-bounded processes reachability becomes undecidable. Since
the problem is decidable for finite p/t nets [May84], there is no reachability-
preserving translation for the extended process class.

The processes we consider are bounded in depth by one. To establish undecid-
ability of reachability, we reduce the corresponding problem for 2-counter ma-
chines [Min67]. Due to the limitations of the process class, the counter machine
encoding differs drastically from those in the literature [Mil89, AM02, BGZ03]
modelling counters as stacks. The only related encoding that does not rely on
stacks is given in [BGZ04] to prove weak bisimilarity undecidable for CCS!.

We imitate a construction in [DFS98] which shows undecidability of reach-
ability for transfer nets. The idea of Dufourd, Finkel, and Schnoebelen is to
represent a counter c1 by two places c1 and c′1. The test for zero

l : if c1 = 0 then goto l ′; else c1 := c1 − 1; goto l ′′; (♠)

On the Relationship between π-Calculus and Finite P/T Petri Nets 477

is modelled by the transfer net in Figure 3. To test counter c1 for being zero,
transition t transfers the content of c′1 to a trash place st . Since the transition is
enabled although c′1 is empty, the content of c1 and c′1 coincides as long as the
net properly simulates the counter machine. If a transfer operation is executed
when c′1 is not empty, the amount of tokens in c1 and c′1 becomes different,
Figure 3 (a) and (b). The difference is preserved throughout the computation,
because increment operations add the same amount of tokens to c1 and c′1.
Hence, a state (c1 = v1, c2 = v2, l) with v1, v2 ∈ N is reachable in the counter
machine if and only if a marking is reachable in the transfer net where place l is
marked, counter c1 and its copy c′1 carry v1 tokens, and similar for c2 and c′2.

(a) l

c1

c′
1

l ′′

st

l ′t

(b) l

c1

c′
1

l ′′

st

l ′t

Fig. 3. A Petri net with transfer modelling a test for zero in a counter machine. Dashed
lines represent transfer arcs of t that move all tokens in c′

1 to the trash place st .

We represent a counter value by a parallel composition of processes, e.g. c′1 = 2
by a | a. The transfer operation requires us to change arbitrarily many processes
with one communication. To achieve this, we attach the processes a to a so-
called process bunch PB/a, ic′

1
, dc′

1
, tc′

1
. by restricting the name a. The result

is a process νa.(PB/a, ic′
1
, dc′

1
, tc′

1
. | a | a). Since the name a is restricted, the

process bunch has exclusive access to its processes a. It offers three operations to
modify their numbers. A communication on ic′

1
stands for increment and creates

a new process a. Similarly, a message on dc′
1

decrements the process number by
consuming a process a. A test for zero on tc′

1
creates a new and empty process

bunch for counter c′1. The old process bunch terminates. A process νa.(a | a)
without process bunch is considered to belong to the trash place. Abbreviating
dx, ix, tx by c̃x, a process bunch is defined by

PB(a, c̃x) := ix.(PB/a, c̃x. | a) + dx.a.PB/a, c̃x. + tx.νb.PB/b, c̃x..
Labelled instructions l : inst of the counter machine are translated to process
identifiers Kl where inst determines the defining process. The increment opera-
tion l : c1 := c1 +1 goto l ′ yields Kl(c̃) := ic1 .ic′

1
.Kl′/c̃.. Here, c̃ abbreviates

the channels of all four process bunches dc1 , ic1 , tc1 , dc′
1
, . . . , tc′

2
. Note that both,

c1 and c′1, are incremented. Like in transfer nets, the test for zero (♠) only
changes the value of counter c′1. Decrement acts on both counters:

Kl(c̃) := tc′
1
.Kl′/c̃. + dc1 .dc′

1
.Kl′′/c̃..

If an empty process bunch accepts a decrement, the system deadlocks (requires
synchronisation actions that we omitted here to ease presentation) and reachabil-
ity is preserved. Finally, a halt instruction l : halt is translated into Kl(c̃) := halt .
The full translation of a counter machine CM yields the process

478 R. Meyer and R. Gorrieri

P [[CM]] := Π
x∈{c1,...,c′

2}
νax.PB/ax, c̃x. | Kl0/c̃..

The counter machine CM reaches the state (c1 = v1, c2 = v2, l) if and only if its
encoding P [[CM]] reaches the process

Π
x∈{c1,c′

1}
νax.(PB/ax, c̃x. | Πv1ax) | Π

x∈{c2,c′
2}
νax.(PB/ax, c̃x. | Πv2ax) | Kl/c̃..

The leftmost parallel composition ensures that the process bunches for c1 and
c′1 contain v1 processes ac1 and ac′

1
, respectively. The construction for c2 and c′2

is similar. Combined with the observation that the process P [[CM]] is bounded
in depth by one, we arrive at the desired undecidability result.

Theorem 5 (Undecidability in Depth One). Consider P,Q ∈ P where the
depth is bounded by one. The problem whether Q ∈ Reach(P) is undecidable.

Since reachability is decidable for finite p/t nets [May84], there does not exist a
reachability-preserving translation into finite p/t nets for any class of processes
subsuming those of depth one.

We argue that any reasonable extension of mixed-bounded processes will al-
ready subsume those of depth one. Reconsider the counter machine encoding, it
exploits two features that mixed-bounded processes are forbidden to combine.
First, in a process bunch νa.(PB/a, c̃x. | a | a) the number of processes a un-
der the restriction may be unbounded. Second, arbitrarily many instances of νa
may be generated. If either of the conditions is dropped, the resulting process is
mixed bounded. In case νa is shared by a bounded number of processes a, we
translate the name by the structural semantics. If finitely many instances of νa
are generated, we use the concurrency semantics (cf. Examples 1 and 2). Hence,
mixed-bounded processes form the borderline to finite p/t nets.

6 Discussion

Combining the structural semantics in [Mey09] and a new concurrency seman-
tics yields a mixed semantics that finitely represents the mixed-bounded pro-
cesses (Theorem 4). They generalise (Proposition 1) structurally stationary and
restriction-bounded processes, the latter are finitely represented by the new con-
currency semantics (Theorem 2). As it is not possible to extend mixed-bounded
processes without losing reachability (Theorem 5), the class defines the border-
line to finite p/t nets. Since mixed-bounded processes are bounded in depth
(Proposition 2), also this class is more expressive than finite p/t nets, Figure 1.

We use a π-calculus with guarded choice and step-unwinding recursion. The
former permits an elegant definition of fragments and the latter gives us decid-
ability of structural congruence. However, both restrictions do not delimit the
computational expressiveness of the π-calculus, which is the focus of the paper,
but are made for technical convenience.

The definition of the mixed semantics relies on a typing mechanism for re-
stricted names. In our tool Petruchio [Pet08], an approximate algorithm infers
the types automatically. They need not be given by the user.

On the Relationship between π-Calculus and Finite P/T Petri Nets 479

Finally, our implementation does not rely on the often infinite name-aware
transition system, but computes the mixed semantics as a least fixed point on
the set of Petri nets. Starting with the initially marked places it adds transitions
and places where appropriate. A coverability graph allows us to compute the
simultaneously markable places, and we currently experiment with more efficient
algorithms. The compilation terminates iff the process is mixed bounded.

References

[AM02] Amadio, R., Meyssonnier, C.: On decidability of the control reachabil-
ity problem in the asynchronous π-calculus. Nord. J. Comp. 9(1), 70–101
(2002)

[BG95] Busi, N., Gorrieri, R.: A Petri net semantics for π-calculus. In: Lee,
I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 145–159.
Springer, Heidelberg (1995)

[BG09] Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on
Petri nets with inhibitor arcs. J. Log. Alg. Prog. 78(1), 138–162 (2009)

[BGZ03] Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive defini-
tions in channel based calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144.
Springer, Heidelberg (2003)

[BGZ04] Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication,
and iteration in process calculi. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 307–319. Springer,
Heidelberg (2004)

[Dam96] Dam, M.: Model checking mobile processes. Inf. Comp. 129(1), 35–51
(1996)

[DFS98] Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability
and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP
1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

[DKK08] Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net transla-
tion of general π-calculus terms. For. Asp. Comp. 20(4–5), 429–450 (2008)

[EG99] Engelfriet, J., Gelsema, T.: Multisets and structural congruence of the
pi-calculus with replication. Theor. Comp. Sci. 211(1-2), 311–337 (1999)

[EG04] Engelfriet, J., Gelsema, T.: A new natural structural congruence in the
pi-calculus with replication. Acta Inf. 40(6), 385–430 (2004)

[Eng96] Engelfriet, J.: A multiset semantics for the pi-calculus with replication.
Theor. Comp. Sci. 153(1-2), 65–94 (1996)

[FGMP03] Ferrari, G.-L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking
verification environment for mobile processes. ACM Trans. Softw. Eng.
Methodol. 12(4), 440–473 (2003)

[Fok07] Fokkink, W.: Modelling Distributed Systems. Springer, Heidelberg (2007)
[KKN06] Khomenko, V., Koutny, M., Niaouris, A.: Applying Petri net unfoldings

for verification of mobile systems. In: Proc. of MOCA, Bericht FBI-HH-
B-267/06, pp. 161–178. University of Hamburg (2006)

[May84] Mayr, E.W.: An algorithm for the general Petri net reachability problem.
SIAM J. Comp. 13(3), 441–460 (1984)

[Mey08a] Meyer, R.: On boundedness in depth in the π-calculus. In: Proc. of IFIP
TCS. IFIP, vol. 273, pp. 477–489. Springer, Heidelberg (2008)

480 R. Meyer and R. Gorrieri

[Mey08b] Meyer, R.: Structural Stationarity in the π-calculus. PhD thesis, Depart-
ment of Computing Science, University of Oldenburg (2008)

[Mey09] Meyer, R.: A theory of structural stationarity in the π-calculus. Acta
Inf. 46(2), 87–137 (2009)

[Mil89] Milner, R.: Communication and concurrency. Prentice Hall, Englewood
Cliffs (1989)

[Mil99] Milner, R.: Communicating and Mobile Systems: the π-Calculus. CUP,
Cambridge (1999)

[Min67] Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs (1967)

[MKS09] Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification
of mobile systems using net unfoldings. Fund. Inf. (to appear 2009)

[MP95] Montanari, U., Pistore, M.: Checking bisimilarity for finitary π-calculus.
In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 42–56.
Springer, Heidelberg (1995)

[Pet08] Petruchio (2008), http://petruchio.informatik.uni-oldenburg.de
[Pis99] Pistore, M.: History Dependent Automata. PhD thesis, Dipartimento di

Informatica, Università di Pisa (1999)
[SW01] Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes.

CUP, Cambridge (2001)

http://petruchio.informatik.uni-oldenburg.de

Modeling Radio Networks�

Calvin Newport and Nancy Lynch

MIT CSAIL, Cambridge, MA
{cnewport,lynch}@csail.mit.edu

Abstract. We describe a modeling framework and collection of foun-
dational composition results for the study of probabilistic distributed
algorithms in synchronous radio networks. Existing results in this set-
ting rely on informal descriptions of the channel behavior and therefore
lack easy comparability and are prone to error caused by definition sub-
tleties. Our framework rectifies these issues by providing: (1) a method
to precisely describe a radio channel as a probabilistic automaton; (2) a
mathematical notion of implementing one channel using another chan-
nel, allowing for direct comparisons of channel strengths and a natural
decomposition of problems into implementing a more powerful channel
and solving the problem on the powerful channel; (3) a mathematical
definition of a problem and solving a problem; (4) a pair of composi-
tion results that simplify the tasks of proving properties about channel
implementation algorithms and combining problems with channel imple-
mentations. Our goal is to produce a model streamlined for the needs of
the radio network algorithms community.

1 Introduction

In this paper we describe a modeling framework, including a collection of foun-
dational composition results, for the study and comparison of distributed al-
gorithms in synchronous radio networks. In the two decades that followed the
deployment of AlohaNet [1]—the first radio data network—theoreticians invested
serious effort in the study of distributed algorithms in this setting; c.f., [2,3,4].
This early research focused on the stability of ALOHA-style MAC layers under
varying packet arrival rates. In a seminal 1992 paper, Bar-Yehuda, Goldreich,
and Itai (BGI) [5] ushered in the modern era of radio network analysis by intro-
ducing a synchronous multihop model and a more general class of problems, such
as reliable broadcast. Variants of this model have been studied extensively in the
intervening years; c.f., [6,7,8]. Numerous workshops and conferences are now ded-
icated exclusively to radio network algorithms–e.g., POMC, ADHOCNETS—
and all major distributed algorithms conference have sessions dedicated to the
topic. In short, distributed algorithms for radio networks is an important and
well-established field.
� This work has been support in part by Cisco-Lehman CUNY A New MAC-Layer

Paradigm for Mobile Ad-Hoc Networks, AFOSR Award Number FA9550-08-1-0159,
NSF Award Number CCF-0726514, and NSF Award Number CNS-0715397.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 481–495, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

482 C. Newport and N. Lynch

The vast majority of existing theory concerning radio networks, however, re-
lies on informal English descriptions of the communication model (e.g., “If two
or more processes broadcast at the same time then...”). This lack of formal rigor
can generate subtle errors. For example, the original BGI paper [5] claimed a
Ω(n) lower bound for multihop broadcast in small diameter graphs. It was sub-
sequently discovered that due to a small ambiguity in how they described the
collision behavior (whether or not a message might be received from among sev-
eral that collide at a receiver), the bound is actually logarithmic [9]. In our work
on consensus [10], for another example, subtleties in how the model treated trans-
mitters receiving their own messages—a detail often omitted in informal model
descriptions—induced a non-trivial impact on the achievable lower bounds. And
so on. We also note that informal model descriptions prevent comparability be-
tween different results. Given two such descriptions, it is often difficult to infer
whether one model is strictly stronger than the other or if the pair is incom-
parable. And without an agreed definition of what it means to implement one
channel with another, algorithm designers are denied the ability to build upon
existing results to avoid having to resolve problems in every model variant.

In this paper we describe a modeling framework that addresses these issues.
Specifically, we use probabilistic automata to describe executions of distributed
algorithms in a synchronous radio network.1 (We were faced with the decision of
whether to build a custom framework or use an existing formalism for modeling
probabilistic distributed algorithms, such as [11,12,13]. We opted for the custom
approach as we focus on the restricted case of synchronous executions of a fixed
set of components. We do not the need the full power of general models which,
among other things, must reconcile the nondeterminism of asynchrony with the
probabilistic behavior of the system components.)

In our framework: The radio network is described by a channel automa-
ton; the algorithm is described by a collection of n process automata; and
the environment—which interacts with the processes through input and out-
put ports—is described by its own automaton. In addition to the basic system
model, we present a rigorous definition of a problem and solving a problem, and
cast the task of implementing one channel with another as a special case of solv-
ing a problem. We then describe two foundational composition results. The first
shows how to compose an algorithm that solves a problem P using channel C1
with an algorithm that implements C1 using channel C2. We prove the result-
ing composition solves P using C2. (The result is also generalized to work with
a chain of channel implementation algorithms.) The second composition result
shows how to compose a channel implementation algorithm A with a channel
C to generate a new channel C′. We prove that A using C implements C′. This
result is useful for proving properties about a channel implementation algorithm
such as A. We conclude with a case study that demonstrates the framework and
the composition theorems in action.

1 We restrict our attention to synchronous settings as the vast majority of existing
theoretical results for radio networks share this assumption. A more general asyn-
chronous model remains important future work.

Modeling Radio Networks 483

2 Model

We model n processes that operate in synchronized time slots and communicate
on a radio network comprised of F independent communication frequencies. The
processes can also receive inputs from and send outputs to an environment. We
formalize this setting with automata definitions. Specifically, we use a probabilis-
tic automaton for each of the n processes (which combine to form an algorithm),
another to model the environment, and another to model the communication
channel. A system is described by an algorithm, environment, and channel.

For any positive integer x > 1 we use the notation [x] to refer to the integer
set {1, ..., x}, and use Sx, for some set S, to describe all x-vectors with elements
from S. Let M, R, I, and O be four non-empty value sets that do not include
the special placeholder value ⊥. We use the notation M⊥, R⊥, I⊥, and O⊥
to describe the union of each of these sets with {⊥}. Finally, we fix n and F
to be positive integers. They describe the number of processes and frequencies,
respectively.

2.1 Systems

The primary object in our model is the system, which consists of an environment
automaton, a channel automaton, and n process automata that combine to define
an algorithm. We define each component below:

Definition 1 (Channel). A channel is an automaton C consisting of the fol-
lowing components:

– cstatesC, a potentially infinite set of states.
– cstartC , a state from statesC known as the start state.
– crandC , for each state s ∈ cstatesC, a probability distribution over cstatesC.

(This distribution captures the probabilistic nature of the automaton. Both
the environment and process definitions include similar distributions.)

– crecvC , a message set generation function that maps cstatesC ×Mn
⊥ × [F]n

to Rn
⊥.

– ctransC, a transition function that maps cstatesC ×Mn
⊥× [F]n to cstatesC.

Because we model a channel as an arbitrary automaton, we can capture a wide
variety of possible channel behavior—from simple deterministic receive rules to
complex, probabilistic multihop propagation.

We continue by the defining the elements of a system: an environment, process,
and algorithm. We then define a system execution.

Definition 2 (Environment). A environment is some automaton E consisting
of the following components:

– estatesE , a potentially infinite set of states.
– estartE , a state from estatesE known as the start state.
– erandE , for each state s ∈ estatesE , a probability distribution over estatesE .
– einE , an input generation function that maps estatesE to In

⊥.
– etransE , a transition function that maps estatesE ×O⊥ to estatesE .

484 C. Newport and N. Lynch

Definition 3 (Process). A process is some automaton P consisting of the
following components:

– statesP , a potentially infinite set of states.
– randP , for each state s ∈ statesP , is a probability distribution over statesP .
– startP , a state from statesP known as the start state.
– msgP , a message generation function that maps statesP × I⊥ to M⊥.
– outP , an output generation function that maps statesP × I⊥ ×R⊥ to O⊥.
– freqP , a frequency selection function that maps statesP × I⊥ to [F].
– transP , a state transition function mapping statesP ×R⊥ ×I⊥ to statesP .

Definition 4 (Algorithm). An algorithm A is a mapping from [n] to processes.

Definition 5 (System). A system (E ,A, C), consists of an environment E, an
algorithm A, and a channel C.

Definition 6 (Execution). An execution of a system (E ,A, C) is an infinite
sequence

S0, C0, E0, R
S
1 , R

C
1 , R

E
1 , I1,M1, F1, N1, O1, S1, C1, E1, ...

where for all r ≥ 0, Sr and RS
r map each i ∈ [n] to a process state from A(i),

Cr and RC
r are in cstatesC, Er and RE

r are in estatesE, Mr is in Mn
⊥, Fr is

in [F]n, Nr is in Rn
⊥, Ir is in In

⊥, and Or is in On
⊥. We assume the following

constraints:

1. C0 = cstartC , E0 = estartE , and ∀i ∈ [n] : S0[i] = startA(i).
2. For every round r > 0:

(a) ∀i ∈ [n] : RS
r [i] is selected according to distribution randA(i)(Sr−1[i]),

RC
r is selected according to crandC(Cr−1), and RE

r is selected according
to erandE(Er−1).

(b) Ir = einE(RE
r).

(c) ∀i ∈ [n] : Mr[i] = msgA(i)(RS
r [i], Ir[i]) and Fr [i] = freqA(i)(RS

r [i], Ir[i]).
(d) Nr = crecvC(RC

r ,Mr, Fr).
(e) ∀i ∈ [n] : Or [i] = outA(i)(RS

r [i], Ir[i], Nr[i]).
(f) ∀i ∈ [n] : Sr[i] = transA(i)(RS

r [i], Nr[i], Ir[i]), Cr =ctransC(RC
r ,Mr, Fr),

and Er = etransE(RE
r , Or).

In each round: first the processes, environment, and channel transform their
states (probabilistically); then the environment generates inputs to pass to the
processes; then the processes each generate a message to send (or ⊥ if they
plan on receiving) and a frequency to use; then the channel returns the received
messages to the processes; then the processes generate output values to pass
back to the environment; and finally all automata transition to a new state.

Definition 7 (Execution Prefix). An execution prefix of a system (E, A, C),
is a finite prefix of some execution of the system. The prefix is either empty or
ends with an environment state assignment Er, r ≥ 0. That is, it contains no
partial rounds.

Modeling Radio Networks 485

2.2 Trace Probabilities

To capture the probability of various system behaviors we start by defining the
function Q:

Definition 8 (Q). For every system (E ,A, C), and every execution prefix α of
this system, Q(E ,A, C, α) describes the probability that (E ,A, C) generates α.
That is, the product of the probabilities of state transitions in α as described by
randA, crandC , and erandE .

Next, we define a trace to be a finite sequence of vectors from In
⊥∪On

⊥; i.e., a se-
quences of inputs and outputs passed between an algorithm and an environment.
And we use T to describe the set of all traces Using Q, we can define functions
that return the probability that a system generates a given trace. First, how-
ever, we need a collection of helper definitions to extract traces from prefixes.
Specifically, the function io maps an execution prefix to the subsequence con-
sisting only of the In

⊥ and On
⊥ vectors. The function cio, by contrast, maps an

execution prefix α to io(α) with all ⊥n vectors removed. Finally, the predicate
term returns true for an execution prefix α if and only if the output vector in
the final round of α is not ⊥n.

Definition 9 (D & Dtf). For every system (E ,A, C), and every trace β :
D(E ,A, C, β) =

∑
α|io(α)=β Q(E ,A, C, α) and

Dtf (E ,A, C, β) =
∑

α|term(α)∧cio(α)=β Q(E ,A, C, α).

Both D andDtf return the probability of a given system generating a given trace.
The difference between D and Dtf is that the latter ignores empty vectors—that
is, input or output vectors consisting only of ⊥. (The tf indicates it is time-free;
e.g., it ignores the time required between the generation of trace elements.)

2.3 Problems

We define a problem and provide two definitions of solving a problem—one that
considers empty rounds (those with ⊥n) and one that does not. In the following,
let E be the set of all possible environments.

Definition 10 (Problem). A problem P is a function from environments to a
set of functions from traces to probabilities.

Definition 11 (Solves & Time-Free Solves). We say algorithm A solves
problem P using channel C if and only if ∀E ∈ E, ∃F ∈ P (E), ∀β ∈ T :
D(E ,A, C, β) = F (β). We say A time-free solves P using C if and only if:
∀E ∈ E, ∃F ∈ P (E), ∀β ∈ T : Dtf(E ,A, C, β) = F (β).

For some of the proofs that follow, we need to restrict our attention to environ-
ments that are indifferent to delays.

Definition 12. We say an environment E is delay tolerant if and only if for
every state s ∈ estatesE and ŝ = etransE(s,⊥n), the following conditions hold:

486 C. Newport and N. Lynch

1. einE(ŝ) = ⊥n.
2. erandE(ŝ)(ŝ) = 1.
3. etransE(ŝ,⊥n) = ŝ.
4. for every non-empty output assignment O, etransE(ŝ, O) = etransE(s,O).

When a delay tolerant environment receives output ⊥n in some state s, it tran-
sitions to a special marked version of the current state, denoted ŝ, and cycles on
this state until it next receives a non-⊥n output. In other words, it behaves the
same regardless of how many consecutive ⊥n outputs it receives. We use this
definition of a delay tolerant environment to define a delay tolerant problem.

Definition 13 (Delay Tolerant Problem). We say a problem P is delay
tolerant if and only if for every environment E that is not delay tolerant, P (E)
returns the set containing every trace probability function.

3 Implementing Channels

Here we construct a precise notion of implementing a channel with another
channel as a special case of a problem. In the following, we say an input value
is send enabled if it is from (send × M⊥ × F). We say an input assignment
(i.e., vector from In

⊥) is send enabled if all inputs values in the assignment are
send enabled. Similarly, we say an output value is receive enabled if it is from
(recv×R⊥), and an output assignment (i.e., vector from On

⊥) is receive enabled
if all output values in the assignment are receive enabled. Finally, we say an
input or output assignment is empty if it equals ⊥n

Definition 14 (Channel Environment). An environment E is a channel en-
vironment if and only if it satisfies the following criteria: (1) It is delay tolerant;
(2) it generates only send enabled and empty input assignments; and (3) it gen-
erates a send enabled input assignment in the first round and in every round
r > 1 such that it received a receive enabled output vector in r − 1. In every
other round it generates an empty input assignment.

These constraints require the environment to pass down messages to send as
inputs and then wait for the corresponding received messages, encoded as al-
gorithm outputs, before continuing with the next batch messages to send. This
formalism is used below in our definition of a channel problem. The natural pair
to a channel environment is a channel algorithm, which behaves symmetrically.

Definition 15 (Channel Algorithm). We say an algorithm A is a channel
algorithm if and only if: (1) it only generates receive enabled and empty output
assignments; (2) it never generates two consecutive received enabled output as-
signments without a send enabled input in between; and (3) given a send enabled
input it eventually generates a receive enabled output.

Definition 16 (AI). Each process P of the channel identity algorithm AI be-
haves as follows. If P receives a send enabled input (send,m, f), it sends message
m on frequency f during that round and generates output (revc,m′), where m′

is the message it receives in this same round. Otherwise it sends ⊥ on frequency
1 and generates output ⊥.

Modeling Radio Networks 487

Definition 17 (Channel Problem). For a given channel C we define the cor-
responding (channel) problem PC as follows: ∀E ∈ E, if E is a channel envi-
ronment, then PC(E) = {F}, where, ∀β ∈ T : F (β) = Dtf (E ,AI , C, β). If E is
not a channel environment, then PC(E) returns the set containing every trace
probability function.

The effect of combining E with AI and C is to connect E directly with C. With the
channel problem defined, we can conclude with what it means for an algorithm
to implement a channel.

Definition 18 (Implements). We say an algorithm A implements a channel
C using channel C′ only if A time-free solves PC using C′.

4 Composition

We prove two useful composition results. The first simplifies the task of solving
a complex problem on a weak channel into implementing a strong channel using
a weak channel, then solving the problem on the strong channel. The second
result simplifies proofs that require us to show that the channel implemented by
a channel algorithm satisfies given automaton constraints.

4.1 The Composition Algorithm

Assume we have an algorithm AP that time-free solves a delay tolerant prob-
lem P using channel C, and an algorithm AC that implements channel C using
some other channel C′. In this section we describe how to construct algorithm
A(AP ,AC) that combines AP and AC . We then prove that this composition al-
gorithm solves P using C′. We conclude with a corollary that generalizes this
argument to a sequence of channel implementation arguments that start with
C′ and end with C. Such compositions are key for a layered approach to radio
network algorithm design.

Composition Algorithm Overview. At a high-level, the composition algorithm
A(AP ,AC) calculates the messages generated by AP for the current round of
AP being emulated. It then pauses AP and executes AC to emulate the messages
being sent on C. This may require many rounds (during which the environment
is receiving only ⊥n from the composed algorithm—necessitating its delay toler-
ance property). When AC finishes computing the received messages, we unpause
AP and finish the emulated round using these messages. The only tricky point in
this construction is that when we pause AP we need to store a copy of its input,
as we will need this later to complete the simulated round once we unpause. The
formal definition follows:

Definition 19 (The Composition Algorithm: A(A,AC)). Let AP be an al-
gorithm and AC be a channel algorithm that implements channel C using channel
C′. Fix any i ∈ [n]. To simplify notation, let A = A(AP ,AC)(i), B = AP (i),
and C = AC(i). We define process A as follows:

488 C. Newport and N. Lynch

– statesA ∈ statesB × statesC × {active, paused} × I⊥ .
Given such a state s ∈ statesA, we use the notation s.prob to refer to the
statesB component, s.chan to refer to the statesC component, s.status to
refer to the {active, paused} component, and s.input to refer to the I⊥ com-
ponent. The following two helper function simplify the remaining definitions
of process components:
• siminput(s ∈ statesA, in ∈ I⊥): the function evaluates to ⊥ if s.status=
paused, and otherwise evaluates to input:
(send,msgB(s.prob, in), freqB(s.prob, in)).

• simrec(s ∈ statesA, in ∈ I⊥,m ∈ R⊥) : the function evaluates to ⊥ if
outC(s.chan, siminput(s, in),m) = ⊥, otherwise if
outC(s.chan, siminput(s, in),m) = (recv,m′) for some m′ ∈ R⊥, it re-
turns m′.

– startA = (startB , startC , active,⊥).
– msgA(s, in) = msgC(s.chan, siminput(s, in)).
– freqA(s, in) = freqC(s.chan, siminput(s, in)).
– outA(s, in,m) : let m′ = simrec(s.chan, siminput(s, in),m). The outA

function evaluates to ⊥ if m′ = ⊥, or outB(s.prob, s.input,m′) if m′
= ⊥ and
s.state = passive, or outB(s.prob, in,m′) if m′
= ⊥ and s.state = active.

– randA(s)(s′) : the distribution evaluates to randC(s.chan)(s′.chan) if
s.status = s′.status = paused, s.input = s′.input, and s.prob = s′.prob, or
evaluates to randB(s.prob)(s′.prob) · randC(s.chan)(s′.chan) if s.status =
s′.status = active and s.input = s′.input, or evaluates to 0 if neither of the
above two cases hold.

– transA(s,m, in) = s′ where we define s′ as follows. As in our definition of
outA, we let m′ = simrec(s.chan, siminput(s, in),m):
• s′.prob = transB(s.prob,m′, s.input) if m′
= ⊥ and s.status = paused,

or transB(s.prob,m′, in) if m′
= ⊥ and s.status = active, or s.prob if
neither of the above two cases hold.

• s′.chan = transC(s.chan,m, siminput(s, in)).
• s′.input = in if in
= ⊥, otherwise it equals s.input.
• s′.status = active if m′
= ⊥, otherwise it equals paused.

We now prove that this composition works (i.e., solves P on C′). Our strategy
uses channel-free prefixes: execution prefixes with the channel states removed.
We define two functions for extracting these prefixes. The first, simpleReduce,
removes the channel states from an execution prefix. The second, compReduce,
extracts the channel-free prefix that describes the emulated execution prefix of
AP captured in an execution prefix of a (complex) system that includes a com-
position algorithm consisting of AP and a channel implementation algorithm.

Definition 20 (Channel-Free Prefix). We define a sequenceα to be a channel-
free prefix of an environment E and algorithm A if and only if there exists an ex-
ecution prefix α′ of a system including E and A, such that α describes α′ with the
channel state assignments removed.

Modeling Radio Networks 489

Definition 21 (simpleReduce). Let E be a delay tolerant environment, AP

be an algorithm, and C a channel. Let α be an execution prefix of the system
(E ,AP , C). We define simpleReduce(α) to be the channel-free prefix of E and
AP that results when remove the channel state assignments from α.

Definition 22 (compReduce). Let E be a delay tolerant environment, AP be
an algorithm, AC be a channel algorithm, and C′ a channel. Let α′ be an ex-
ecution prefix of the system (E ,A(AP ,AC), C′). We define compReduce(α′) to
return a special marker “null” if α′ includes a partial emulated round of AP

(i.e., ends in a paused state of the composition algorithm). This captures our
desire that compReduce should be undefined for such partial round emulations.
Otherwise, it returns the emulated execution of AP encoded in the composition
algorithm state. Roughly speaking, this involves projecting the algorithm state
onto the prob component, removing all but the first and last round of each emu-
lated round, combining, for each emulated round, the initial state of the algorithm
and environment of the first round with the final states from the last round, and
replacing the messages and frequencies with those described by the emulation. (A
formal definition can be found in the full version of this paper [14].)

We continue with a helper lemma that proves that the execution of AP emulated
in an execution of a composition algorithm that includes AP , unfolds the same
as AP running by itself.

Lemma 1. Let E be a delay tolerant environment, AP be an algorithm, and AC
be a channel algorithm that implements C with C′. Let α be a channel-free prefix
of E and AP . It follows:

∑
α′|simpleReduce(α′)=α

Q(E ,AP , C, α′) =
∑

α′′|compReduce(α′′)=α

Q(E ,A(AP ,AC), C′, α′′)

Proof. The proof can be found in the full version of the paper [14].

We can now prove our main theorem and then a corollary that generalizes the
result to a chain of implementation algorithms.

Theorem 1 (Algorithm Composition). Let AP be an algorithm that time-
free solves delay tolerant problem P using channel C. Let AC be an algorithm that
implements channel C using channel C′. It follows that the composition algorithm
A(AP ,AC) time-free solves P using C′.

Proof. By unwinding the definition of time-free solves, we rewrite our task as
follows:

∀E ∈ E, ∃F ∈ P (E), ∀β ∈ T : Dtf (E ,A(AP ,AC), C′, β) = F (β).

Fix some E . Assume E is delay tolerant (if it is not, then P (E) describes every
trace probability function, and we are done). Define trace probability function

490 C. Newport and N. Lynch

F such that ∀β ∈ T : F (β) = Dtf (E ,AP , C, β). By assumption F ∈ P (E).
It is sufficient, therefore, to show that ∀β ∈ T : Dtf (E ,A(AP ,AC), C′, β) =
F (β) = Dtf (E ,AP , C, β). Fix some β. Below we prove the equivalence. We begin,
however, with the following helper definitions:

– Let ccp(β) be the set of every channel-free prefix α of E and AP such that
term(α) = true and cio(α) = β.2

– Let Ss(β), for trace β, describe the set of prefixes included in the sum that
defines Dtf (E ,AP , C, β), and Sc(β) describe the set of prefixes included in the
sum that defines Dtf (E ,A(AP ,AC), C′, β). (The s and c subscripts denote
simple and complex, respectively.) Notice, for a prefix to be included in Sc

it cannot end in the middle of an emulated round, as this prefix would not
satisfy term.

– Let S′
s(α), for channel-free prefix α of E and AP , be the set of every prefix α′

of (E ,AP , C) such that simpleReduce(α′) = α. Let S′
c(α) be the set of every

prefix α′′ of (E ,A(AP ,AC), C′) such that compReduce(α′′) = α. Notice, for
a prefix α′′ to be included in S′

c, it cannot end in the middle of an emulated
round, as this prefix would cause compReduce to return null.

We continue with a series of 4 claims that establish that {S′
s(α) : α ∈ ccp(β)}

and {S′
c(α) : α ∈ ccp(β)} partition Ss(β) and Sc(β), respectively.

Claim 1:
⋃

α∈ccp(β) S
′
s(α) = Ss(β).

We must show two directions of inclusion. First, given some α′ ∈ Ss(β),
we know α = simpleReduce(α′) ∈ ccp(β), thus α′ ∈ S′

s(α). To show
the other direction, we note that given some α′ ∈ S′

s(α), for some
α ∈ ccp(β), simpleReduce(α′) = α. Because α generates β by cio and
satisfies term, the same holds for α′, so α′ ∈ Ss(β).

Claim 2:
⋃

α∈ccp(β) S
′
c(α) = Sc(β).

As above, we must show two directions of inclusion. First, given some
α′′ ∈ Sc(β), we know α = compReduce(α′′) ∈ ccp(β), thus α′′ ∈ S′

c(α).
To show the other direction, we note that given some α′′ ∈ S′

c(α), for
some α ∈ ccp(β), compReduce(α′′) = α. We know α generates β by
cio and satisfies term. It follows that α′′ ends with the same final non-
empty output as α, so it satisfies term. We also know that compReduce
removes only empty inputs and outputs, so α′′ also maps to β by cio.
Therefore, α′′ ∈ Sc(β).

Claim 3: ∀α1, α2 ∈ ccp(β), α1
= α2 : S′
s(α1) ∩ S′

s(α2) = ∅.
Assume for contradiction that some α′ is in the intersection. It follows
that simpleReduce(α′) equals both α1 and α2. Because simpleReduce
returns a single channel-free prefix, and α1
= α2, this is impossible.

2 This requires some abuse of notation as cio and term are defined for prefixes, not
channel-free prefixes. These extensions, however, follow naturally, as both cio and
term are defined only in terms of the input and output assignments of the prefixes,
and these assignments are present in channel-free prefixes as well as in standard
execution prefixes.

Modeling Radio Networks 491

Claim 4: ∀α1, α2 ∈ ccp(β), α1
= α2 : S′
c(α1) ∩ S′

c(α2) = ∅.
Follows from the same argument as claim 3 with compReduce substi-
tuted for simpleReduce.

The following two claims are a direct consequence of the partitioning proved
above and the definition of Dtf :

Claim 5:
∑

α∈ccp(β)
∑

α′∈S′
s(α) Q(E ,AP , C, α′) = Dtf (E ,AP , C, β).

Claim 6:
∑

α∈ccp(β)
∑

α′∈S′
c(α) Q(E ,A(AP ,AC), C′, α′) = Dtf (E ,A(AP ,AC),

C′, β).

We conclude by combining claims 5 and 6 with Lemma 1 to prove that:

Dtf (E ,A(AP ,AC), C′, β) = Dtf (E ,AP , C, β),

as needed. "#

Corollary 1 (Generalized Algorithm Composition). Let A1,2, ..., Aj−1,j ,
j > 2, be a sequence of algorithms such that each Ai−1,i, 1 < i ≤ j, implements
channel Ci−1 using channel Ci. Let AP,1 be an algorithm that time-free solves de-
lay tolerant problem P using channel C1. It follows that there exists an algorithm
that time-free solves P using Cj.

Proof. Given an algorithm AP,i that time-free solves P with channel Ci, 1 ≤
i < j, we can apply Theorem 1 to prove that AP,i+1 = A(AP,i, Ai,i+1) time-free
solves P with channel Ci+1. We begin with AP,1, and apply Theorem 1 j − 1
times to arrive at algorithm AP,j that time-free solves P using Cj.

4.2 The Composition Channel

Given a channel implementation algorithm A and a channel C′, we define the
channel C(A, C′). This composition channel encodes a local emulation of A and C′
into its probabilistic state transitions. We formalize this notion by proving that
A implements C(A, C′) using C′. To understand the utility of this result, assume
you have a channel implementation algorithm A and you want to prove that A
using C′ implements a channel that satisfies some useful automaton property.
(As shown in Sect. 5, it is often easier to talk about all channels that satisfy a
property than to talk about a specific channel.) You can apply our composition
channel result to establish that A implements C(A, C′) using C′. This reduces
the task to showing that C(A, C′) satisfies the relevant automaton properties.

Composition Channel Overview. At a high-level, the composition channel
C(A, C′), when passed a message and frequency assignment, emulates A using
C′ being passed these messages and frequencies as input and then returning the
emulated output from A as the received messages. This emulation is encoded
into the crand probabilistic state transition of C(A, C′). To accomplish this feat,
we have define two types of states: simple and complex. The composition channel

492 C. Newport and N. Lynch

starts in a simple state. The crand distribution always returns complex states,
and the ctrans transition function always returns simple states, so we alternate
between the two. The simple state contains a component pre that encodes the
history of the emulation of A and C′ used by C(A, C′) so far. The complex state
also encodes this history in pre, in addition it encodes the next randomized
state transitions of A and C′ in a component named ext, and it stores a ta-
ble, encoded in a component named oext, that stores for each possible pair of
message and frequency assignments, an emulated execution prefix that extends
ext with those messages and frequencies arriving as input and ending when A
generates the corresponding received messages. The crecv function, given a mes-
sage and frequency assignment and complex state, can look up the appropriate
row in oext and return the received messages described in the final output of
this extension. This approach of simulating prefixes for all possible messages in
advance is necessitated by the fact that the randomized state transition occurs
before the channel receives the messages being sent in that round.

The formal definition of the composition channel, and the proof for the theo-
rem below, can be found in the full version of the paper [14].

Theorem 2 (The Composition Implementation Theorem). Let A be a
channel algorithm and C′ be a channel. It follows that A implements C(A, C′)
using C′.

5 Case Study

We highlight the power and flexibility of our framework with a simple example.
We begin by defining two types of channels: p-reliable and t-disrupted. The for-
mer is an idealized single-hop single-frequency radio channel with a probabilistic
guarantee of successful delivery (e.g., as considered in [15]). The latter is a real-
istic single-hop radio channel, comprised of multiple independent frequencies, up
to t of which might be permentantly disrupted by outside sources of interference
(e.g., as considered in [16]). We then describe a simple algorithm Arel and sketch
a proof that it implements the reliable channel using the disrupted channel. Be-
fore defining the two channel types, however, we begin with this basic property
used by both:

Definition 23 (Basic Broadcast Property). We say a channel C satisfies
the basic broadcast property if and only if for every state s, message assignment
M , and frequency assignments F , N = crecvC(s,M, F) satisfies the following:

1. If M [i]
= ⊥ for some i ∈ [n]: N [i] = M [i]. (Broadcasters receive their own
messages.)

2. If N [i]
= ⊥, for some i ∈ [n], then there exists a j ∈ [n] : M [j] = N [i] ∧
F [j] = F [i]. (If i receives a message then some process sent that message on
the same frequency as i.)

3. If there exists some i, j, k ∈ [n], i
= j
= k, such that F [i] = F [j] = F [k],
M [i]
= ⊥, M [j]
= ⊥, and M [k] = ⊥, it follows that N [k] = ⊥. (Two or
more broadcasters on the same frequency cause a collision at receivers on
this frequency.)

Modeling Radio Networks 493

Definition 24 (p-Reliable Channel). We say a channel C satisfies the p-
reliable channel property, p ∈ [0, 1], if and only if C satisfies the basic broadcast
property, and there exists a subset S of the states, such that for every state
s, message assignment M , and frequency assignments F , N = crecvC(s,M, F)
satisfies the following:

1. If F [i] > 1 ∧M [i] = ⊥, for some i ∈ [n], then N [i] = ⊥.
(Receivers on frequencies other than 1 receive nothing.)

2. If s ∈ S and |{i ∈ [n] : F [i] = 1,M [i]
= ⊥}| = 1, then for all j ∈ [n] such
that F [j] = 1 and M [j] = ⊥: N [j] = M [i].
(If there is a single broadcaster on frequency 1, and the channel is in a state
from S, then all receivers on frequency 1 receive its message.)

3. For any state s′,
∑

s∈S crandC(s′)(s) ≥ p.
(The probability that we transition into a state in S—i.e., a state that guar-
antees reliable message delivery—is at least p.)

Definition 25 (t-Disrupted Channel). We say a channel C satisfies the t-
disrupted property, 0 ≤ t < F , if and only if C satisfies the basic broadcast chan-
nel property, and there exists a set Bt ⊂ [F], |Bt| ≤ t, such that for every state
s, message assignment M , and frequency assignment F , N = crecvC(s,M, F)
satisfies the following:

1. If M [i] = ⊥ and F [i] ∈ Bt, for some i ∈ [n]: N [i] = ⊥.
(Receivers receive nothing if they receive on a disrupted frequency.)

2. If for some f ∈ [F], f /∈ Bt, |{i ∈ [n] : F [i] = f,M [i]
= ⊥}| = 1, then for all
j ∈ [n] such that F [j] = f and M [j] = ⊥, N [j] = M [i], where i is the single
process from the above set of broadcasters on f .
(If there is a single broadcaster on a non-disrupted frequency then all re-
ceivers on that frequency receive the message.)

Consider the channel algorithm, Arel, that works as follows: The randomized
transition randArel(i) encodes a random frequency fi for each process i in the re-
sulting state. This choice is made independently and at random for each process.
If a process Arel(i) receives an input from (send,m ∈ M, 1), it broadcasts m on
frequency fi and outputs (recv,m). If the process receives input (send,⊥, 1) it
receives on fi, and then outputs (recv,m′), where m′ is the message it receives.
Otherwise, it outputs (recv,⊥). We now prove that Arel implements a reliable
channel using a disrupted channel.

Theorem 3. Fix some t, 0 ≤ t < F . Given any channel C that satisfies the
t-disrupted channel property, the algorithm Arel implements a channel that sat-
isfies the (F−t

Fn)-reliable channel property using C.

Proof (Sketch). By Theorem 2 we know Arel implements C(Arel, C) using C.
We are left to show that C(Arel, C) satisfies the (F−t

Fn)-reliable channel property.
Condition 1 of this property follows from the definition of Arel. More interesting
is the combination of 2 and 3. Let Bt be the set of disrupted frequencies asso-
ciated with C. A state s returned by crandC(Arel ,C) is in S if the final state of

494 C. Newport and N. Lynch

Arel in s.ext encodes the same f value for all processes, and this value is not
in Bt. Because each process chooses this f value independently and at random,
this occurs with probability at least (F−t

Fn). "#

Next, imagine that we have some algorithm AP that solves a delay tolerant prob-
lem P (such as randomized consensus, which is easily defined in a delay tolerant
manner) on a (F−t

Fn)-reliable channel. We can apply Theorem 1 to directly de-
rive that A(AP ,Arel) solves P on any t-disrupted channel C′. In a similar spirit,
imagine we have an algorithm A+

rel that implements a (1/2)-reliable channel us-
ing a (F−t

Fn)-reliable channel, and we have an algorithm AP ′ that solves delay
tolerant problem P ′ on a (1/2)-reliable channel. We could apply Corollary 1 to
AP ′ , A+

rel, and Arel, to identify an algorithm that solves P ′ on our t-disrupted
channel. And so on.

6 Conclusion

In this paper we present a modeling framework for synchronous probabilistic
radio networks. The framework allows for the precise definition of radio channels
and includes a pair of composition results that simplify a layered approach to
network design (e.g., implementing stronger channels with weaker channels). We
argue that this framework can help algorithm designers sidestep problems due
to informal model definitions and more easily build new results using existing
results. Much future work remains regarding this research direction, including
the formalization of well-known results, exploration of more advanced channel
definitions (e.g., multihop networks or adversarial sources of error), and the
construction of implementation algorithms to link existing channel definitions.

References

1. Abramson, N.: The Aloha system - Another approach for computer communi-
cations. In: The Proceedings of the Fall Joint Computer Conference, vol. 37,
pp. 281–285 (1970)

2. Roberts, L.G.: Aloha packet system with and without slots and capture. In:
ASS Note 8. Advanced Research Projects Agency, Network Information Center,
Stanford Research Institute (1972)

3. Kleinrock, L., Tobagi, F.: Packet switching in radio channels. IEEE Transactions
on Communications COM-23, 1400–1416 (1975)

4. Hajek, B., van Loon, T.: Decentralized dynamic control of a multiaccess broadcast
channel. IEEE Transactions on Automation and Control AC-27, 559–569 (1979)

5. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Sciences 45(1), 104–126 (1992)

6. Chlamtac, I., Weinstein, O.: The wave expansion approach to broakodcasting
in multihop radio networks. IEEE Transactions on Communications 39, 426–433
(1991)

Modeling Radio Networks 495

7. Clementi, A., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant
broadcasting on wireless networks. Journal of Parallel and Distributed Comput-
ing 64(1), 89–96 (2004)

8. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In: The
Proceedings of the International Symposium on Principles of Distributed Comput-
ing, pp. 73–82 (2003)

9. Kowalski, D., Pelc, A.: Time of deterministic broadcasting in radio networks with
local knowledge. SIAM Journal on Computing 33(4), 870–891 (2004)

10. Chockler, G., Demirbas, M., Gilbert, S., Lynch, N., Newport, C., Nolte, T.: Con-
sensus and collision detectors in radio networks. Distributed Computing 21, 55–84
(2008)

11. Wu, S.H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic
I/O automata. In: The Proceedings of the International Conference on Concurrency
Theory (1994)

12. Segala, R.: Modeling and verification of randomized distributed real-time sys-
tems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (June 1995)

13. Cheung, L.: Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud University Nijmege (2006)

14. Newport, C., Lynch, N.: Modeling radio networks. Technical report, MIT CSAIL
(2009)

15. Bar-Yehuda, R., Goldreich, O., Itai, A.: Efficient emulation of single-hop radio
network with collision detection on multi-hop radio network with no collision
detection. Distributed Computing 5, 67–71 (1991)

16. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-resilient informa-
tion exchange. In: The Proceedings of the Conference on Computer Communication
(2009)

Time-Bounded Verification�

Joël Ouaknine1, Alexander Rabinovich2, and James Worrell1

1 Oxford University Computing Laboratory, UK
{joel,jbw}@comlab.ox.ac.uk

2 School of Computer Science, Tel Aviv University, Israel
rabinoa@post.tau.ac.il

Abstract. We study the decidability and complexity of verification
problems for timed automata over time intervals of fixed, bounded length.
One of our main results is that time-bounded language inclusion for
timed automata is 2EXPSPACE-Complete. We also investigate the satis-
fiability and model-checking problems for Metric Temporal Logic (MTL),
as well as monadic first- and second-order logics over the reals with or-
der and the +1 function (FO(<,+1) and MSO(<,+1) respectively). We
show that, over bounded time intervals, MTL satisfiability and model
checking are EXPSPACE-Complete, whereas these problems are decid-
able but non-elementary for the predicate logics. Nevertheless, we show
that MTL and FO(<,+1) are equally expressive over bounded intervals,
which can be viewed as an extension of Kamp’s well-known theorem to
metric logics.

It is worth recalling that, over unbounded time intervals, the satisfi-
ability and model-checking problems listed above are all well-known to
be undecidable.

1 Introduction

Timed automata were introduced by Alur and Dill in [2] as a natural and versatile
model for real-time systems. They have been widely studied ever since, both by
practitioners and theoreticians. A celebrated result concerning timed automata,
which originally appeared in [1] in a slightly different context, is the PSPACE
decidability of the language emptiness (or reachability) problem.

Unfortunately, the language inclusion problem—given two timed automata A
and B, is every timed word accepted by A also accepted by B?—is known to
be undecidable. A related phenomenon is the fact that timed automata are not
closed under complementation. For example, the automaton below accepts every
timed word in which there are two a-events separated by exactly one time unit.

����������

	
� ��

Σ

��
a

x:=0
���������� a

x=1
��

	
� ��

Σ

��
��������
���	��

	
� ��

Σ

��

� This work was partially supported by the ESF Research Networking Programme
Games and the UK’s EPSRC.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 496–510, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Time-Bounded Verification 497

The complement language consists of all timed words in which no two a-events
are separated by precisely one time unit. Intuitively, this language is not express-
ible by a timed automaton, since such an automaton would need an unbounded
number of clocks to keep track of the time delay from each a-event. (We refer
the reader to [17] for a formal treatment of these considerations.)

The undecidability of language inclusion severely restricts the algorithmic
analysis of timed automata, both from a practical and theoretical perspective,
as many interesting questions can be phrased in terms of language inclusion.
Over the past decade, several researchers have therefore attempted to circum-
vent this state of affairs by investigating language inclusion, or closely related
concepts, under various assumptions and restrictions. Among others, we note
the use of (i) topological restrictions and digitisation techniques: [14, 10, 31, 28];
(ii) fuzzy semantics: [13, 15, 30, 7]; (iii) determinisable subclasses of timed au-
tomata: [4, 37]; (iv) timed simulation relations and homomorphisms: [42, 26, 23];
and (v) restrictions on the number of clocks: [32, 11].

The undecidability of language inclusion, first established in [2], derives from
the undecidability of an even more fundamental problem, that of universality:
does a given timed automaton accept every timed word? The proof of undecid-
ability of universality in [2] uses in a crucial way the unboundedness of the time
domain. Roughly speaking, this allows one to encode arbitrarily long computa-
tions of a Turing machine. On the other hand, many verification questions are
naturally stated over bounded time domains. For example, a run of a commu-
nication protocol might normally be expected to have an a priori time bound,
even if the total number of messages exchanged is potentially unbounded. Thus
numerous researchers have considered the problem of time-bounded verification
in the context of real-time systems [39, 8, 22]. This leads us to the question of the
decidability of the time-bounded version of the language inclusion problem for
timed automata. This problem asks, given timed automata A and B and a time
bound N , whether all finite timed words of duration at most N that are accepted
by A are also accepted by B. One of the main results of this paper is that the
time-bounded language inclusion problem is 2EXPSPACE-Complete. It is worth
noting that, since we are working with a dense model of time, time-bounded runs
of a given automaton may contain arbitrarily many events. Moreover the restric-
tion to time boundedness does not alter the fact that timed automata are not
closed under complement, and hence classical techniques for language inclusion
do not trivially apply.

A second line of investigation in this paper concerns the relative expres-
siveness of monadic second-order and first-order metric logics over the reals.
This direction is motivated by the celebrated result of Kamp [21] that Linear
Temporal Logic (LTL) has the same expressiveness over the structure (N, <) as
monadic first-order logic (FO(<)). An influential consequence of Kamp’s result is
that LTL has emerged as the canonical temporal logic over the naturals. While
a version of Kamp’s result holds over the structure (R≥0, <), the correspon-
dence between predicate logics and temporal logics becomes considerably more

498 J. Ouaknine, A. Rabinovich, and J. Worrell

complicated with the introduction of metric specifications. In practice this has
led to a veritable babel of metric temporal logics over the reals [5].

A natural predicate logic in which to formalise metric specifications over the
reals is the first-order monadic logic over the structure (R≥0, <,+1). Given a
set of uninterpreted monadic predicates P, a model over (R≥0, <,+1) is nothing
but a function f : R≥0 → 2P mapping each x ∈ R≥0 to the set of predicates that
hold at x. Such a model is called a flow or signal, and naturally corresponds to
the trajectory of a real-time system.

On the side of temporal logics, an appealing extension of LTL, called Metric
Temporal Logic (MTL), was proposed by Koymans [24] almost twenty years ago.
While MTL has been widely studied, it is well-known that there are first-order
formulas over (R≥0, <,+1) that cannot be expressed in MTL [20].

Our second main result is that, over bounded time domains, MTL has the
same expressiveness as monadic first-order logic. Specifically, we show that MTL
is as expressive as first-order logic over the structure ([0, N), <,+1), for any fixed
integer N . Thus, as with language inclusion for timed automata, the restriction
to time-boundedness leads to a better-behaved theory.

Finally, we relate automata and logics by showing decidability of the model-
checking problem for timed automata against specifications expressed in MTL,
first-order, and second-order monadic logics over ([0, N), <,+1). We also show
decidability of the satisfiability problems for first-order and second-order log-
ics over ([0, N), <,+1). In contrast to the case of language inclusion between
timed automata, the model-checking and satisfiability problems for monadic
predicate logics all have non-elementary complexity, whereas these problems are
EXPSPACE-Complete in the case of MTL.

2 Timed Automata

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set ΦX of
clock constraints over X via the following grammar, where k ∈ N stands for any
non-negative integer, and 	� ∈ {=,
=, <,>,≤,≥} is a comparison operator:

φ ::= true | x 	� k | x− y 	� k | φ1 ∧ φ2 | φ1 ∨ φ2 .

A timed automaton. A is a six-tuple (Σ,S, S0, SF , X,∆), where

– Σ is a finite set (alphabet) of events,
– S is a finite set of states,
– S0 ⊆ S is a set of initial states,
– SF ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– ∆ ⊆ S × S × Σ × ΦX × 2X is a finite set of transitions. A transition

(s, s′, a, φ,R) allows a jump from state s to s′, consuming event a ∈ Σ
in the process, provided the constraint φ on clocks is met. Afterwards, the
clocks in R are reset to zero, while all other clocks remain unchanged.

Time-Bounded Verification 499

Given a timed automaton A as above, a clock valuation is a function ν : X →
R≥0. If t ∈ R≥0, we let ν+t be the clock valuation such that (ν+t)(x) = ν(x)+t
for all x ∈ X .

A configuration of A is a pair (s, ν), where s ∈ S is a state and ν is a clock
valuation.

Anacceptingrun ofA isafinitealternatingsequenceofconfigurationsanddelayed
transitions π = (s0, ν0)

d1,θ1−→ (s1, ν1)
d2,θ2−→ . . .

dn,θn−→ (sn, νn), where each di ∈ R>0
and each θi = (si−1, si, ai, φi, Ri) ∈ ∆, subject to the following conditions:

1. s0 ∈ S0, and for all x ∈ X , ν0(x) = 0.
2. For all 0 ≤ i ≤ n− 1, νi + di+1 satisfies φi+1.
3. For all 0 ≤ i ≤ n − 1, νi+1(x) = νi(x) + di+1 for all x ∈ X \ Ri+1, and

νi+1(x) = 0 for all x ∈ Ri+1.
4. sn ∈ SF .

Each di is interpreted as the (strictly positive1) time delay between the firing of
transitions, and each configuration (si, νi), for i ≥ 1, records the data immedi-
ately following transition θi. Abusing notation, we also write runs in the form
(s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) to highlight the run’s events.
A timed word is a pair (σ, τ), where σ = 〈a1a2 . . . an〉 ∈ Σ∗ is a word

and τ = 〈t1t2 . . . tn〉 ∈ (R>0)∗ is a strictly increasing sequence of real-valued
timestamps of the same length.

Such a timed word is accepted by A if A has some accepting run of the form
π = (s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) where, for each 1 ≤ i ≤ n,
ti = d1 + d2 + . . .+ di.

In this paper, we are mainly concerned with behaviours over time domains of
the form [0, N), where N ∈ N is a positive integer. Let us in general write T to
denote either [0, N) or R≥0. We then define LT(A) to be the set of timed words
accepted by A all of whose timestamps belong to T.

Remark 1. Our timed automata have transitions that are labelled with instan-
taneous events; this is by far the most common model found in the literature.
Alternatives include automata in which states are labelled with atomic propo-
sitions [3], or even mixed models in which states carry atomic propositions and
transitions carry events. Other variants allow for silent transitions (invisible
events), invariants on states, and combinations thereof. All the results presented
in this paper carry over without difficulty to these more expressive models.

Note that we are focussing on finite words. Timed automata can be defined
to accept infinite words (for example, by using Büchi acceptance conditions [2]),
although over bounded time infinite words are automatically Zeno (and ipso
facto ruled out from the accepted language by most researchers). Theorem 4
could nonetheless be extended to such infinite words, if desired.
1 This gives rise to the strongly monotonic semantics for timed automata; in contrast,

the weakly monotonic semantics allows multiple events to happen ‘simultaneously’
(or, more precisely, with null-duration delays between them). The main results of this
paper remain substantively the same under either semantics, although the weakly
monotonic semantics causes some slight complications.

500 J. Ouaknine, A. Rabinovich, and J. Worrell

3 Metric Logics

3.1 Syntax

Let Var be a set of first-order variables, denoted x, y, z, etc., ranging over non-
negative real numbers. Let MP be a set of monadic predicates, denoted P,Q,R,
etc. Monadic predicates will alternately be viewed as second-order variables over
R≥0, i.e., ranging over sets of non-negative real numbers, and also as atomic
propositions holding at various points in time.

Second-order monadic formulas are obtained from the following grammar:

ϕ ::= true | x < y | +1(x, y) | P (x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀xϕ | ∀P ϕ ,

where +1 is a binary relation symbol, with the intuitive interpretation of +1(x, y)
as ‘x+1 = y’.2 We refer to ∀x and ∀P as first-order and second-order quantifiers
respectively.

The monadic second-order metric logic of order , written MSO(<,+1),
comprises all second-order monadic formulas. Its first-order fragment, the
(monadic) first-order metric logic of order , written FO(<,+1), comprises
all MSO(<,+1) formulas that do not contain any second-order quantifier; note
that these formulas are however allowed free monadic predicates.

We also define two further purely order-theoretic sublogics, which are pe-
ripheral to our main concerns but necessary to express some key related re-
sults. The monadic second-order logic of order, MSO(<), comprises all second-
order monadic formulas that do not make use of the +1 relation. Likewise, the
(monadic) first-order logic of order, FO(<), comprises those MSO(<) formulas
that eschew second-order quantification.

Metric Temporal Logic, abbreviated MTL, comprises the following tempo-
ral formulas:

θ ::= true | P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ♦Iθ | �Iθ | θ1 UI θ2 ,

where P ∈ MP is a monadic predicate, and I ⊆ R≥0 is an open, closed, or half-
open interval with endpoints in N ∪ {∞}. If I = [0,∞), then we omit the anno-
tation I in the corresponding temporal operator. We also use pseudo-arithmetic
expressions to denote intervals. For example, the expression ‘≥1’ denotes [1,∞)
and ‘=1’ denotes the singleton {1}.

Note that our version of MTL includes only forwards temporal operators, in
keeping with the most common definition found in the literature. All our results
extend straightforwardly to variants of MTL that make use of both forwards and
backwards operators. It is also worth pointing out that the ♦I and �I operators
are derivable from UI .

2 The usual approach is of course to define +1 as a unary function symbol; this however
necessitates an awkward treatment over bounded domains, as considered in this
paper. We shall nonetheless abuse notation later on and invoke +1 as if it were a
function, in the interest of clarity.

Time-Bounded Verification 501

Finally, Linear Temporal Logic, written LTL, consists of those MTL formulas
in which every indexing interval I on temporal operators is [0,∞) (and hence
omitted).

Figure 1 pictorially summarises the syntactic inclusions and relative expressive
powers of these various logics.

MSO(<, +1)

������
�������

MSO(<) FO(<,+1) MTL

FO(<)

�������
�������

LTL

Fig. 1. Relative expressiveness among the various logics. Metric logics are enclosed in
boxes. Straight lines denote syntactical inclusion, whereas dotted lines express semantic
equivalence over bounded time domains (cf. Section 5).

3.2 Semantics

Let P ⊆ MP be a finite set of monadic predicates, and let us again write T to
denote either [0, N) (for some fixed N ∈ N) or R≥0. A flow (or signal) over
P is a function f : T → 2P that is finitely variable. Finite variability means
that the restriction of f to any finite subinterval of T has only finitely many
discontinuities.3 Note that we do not place any bound on the variability, other
than requiring that it be finite.

Observe that a timed word (〈a1 . . . an〉, 〈t1 . . . tn〉) over alphabet Σ can be
viewed as a (particular type of) flow, as follows. Let T be either [0, N) (for some
N > tn) or R≥0, and let P = Σ. Set f(ti) = {ai}, for 1 ≤ i ≤ n, and f(t) = ∅
for all other values of t ∈ T.

Fix a time domain T, equipped with the standard order relation < and the
obvious binary relation +1, i.e., +1(a, b) iff a, b ∈ T and a+1 = b. Given a formula
ϕ of MSO(<,+1) or one of its sublogics, let P and {x1, . . . , xn} respectively be
the sets of free monadic predicates and free first-order variables appearing in
ϕ. For any flow f : T → 2P and real numbers a1, . . . , an ∈ T, the satisfaction
relation (f, a1, . . . , an) |= ϕ is defined inductively on the structure of ϕ in the
standard way. We shall particularly be interested in the special case in which ϕ
is a sentence, i.e., a formula with no free first-order variable. In such instances,
we simply write the satisfaction relation as f |= ϕ.

For θ an MTL or LTL formula, let P be the set of monadic predicates appearing
in θ. Given a flow f : T → 2P and t ∈ T, the satisfaction relation (f, t) |= θ is
defined inductively on the structure of θ, as follows:
3 The restriction to finitely-variable flows can be partially lifted, as we discuss in the

full version of this paper [29]. Note however that from a computer science perspec-
tive, infinitely-variable flows do not correspond to feasible computations, hence the
widespread adoption of the present restriction in the literature.

502 J. Ouaknine, A. Rabinovich, and J. Worrell

– (f, t) |= true.
– (f, t) |= P iff P ∈ f(t).
– (f, t) |= θ1 ∧ θ2 iff (f, t) |= θ1 and (f, t) |= θ2.
– (f, t) |= θ1 ∨ θ2 iff (f, t) |= θ1 or (f, t) |= θ2.
– (f, t) |= ¬θ iff (f, t)
|= θ.
– (f, t) |= ♦Iθ iff there exists u ∈ T with u > t, u− t ∈ I, and (f, u) |= θ.
– (f, t) |= �Iθ iff for all u ∈ T with u > t and u− t ∈ I, (f, u) |= θ.
– (f, t) |= θ1 UI θ2 iff there exists u ∈ T with u > t, u− t ∈ I, (f, u) |= θ2, and

for all v ∈ (t, u), (f, v) |= θ1.

Finally, we write f |= θ iff (f, 0) |= θ. This is sometimes referred to as the
initial semantics.

Note that we have adopted a strict semantics, in which the present time t
has no influence on the truth values of future temporal subformulas. Strictness
is required for Theorem 2, but our other results hold under both the strict and
non-strict semantics.

An important point concerning our semantics is that it is continuous, rather
than pointwise: more precisely, the temporal operators quantify over all time
points of the domain, as opposed to merely those time points at which a discon-
tinuity occurs. Positive decidability results for satisfiability and model checking
of MTL over unbounded time intervals have been obtained in the pointwise se-
mantics [33, 34, 35]; it is worth noting that none of these results hold in the
continuous semantics.

4 Satisfiability

The canonical time domain for interpreting the metric logics MSO(<,+1),
FO(<,+1), and MTL is the non-negative real line R≥0. Unfortunately, none
of these logics are decidable over R≥0 [5, 6, 19].

Our main focus in this paper is therefore on satisfiability over bounded time
domains of the form [0, N), for N ∈ N. For each of the logics introduced in Sec-
tion 3.1, one can consider the corresponding time-bounded satisfiability prob-
lem : given a sentence ϕ over a set P of free monadic predicates, together with a
time bound N ∈ N, does there exist a flow f : [0, N) → 2P such that f |= ϕ?

One of our main results is the following:

Theorem 1. The time-bounded satisfiability problems for the metric logics
MSO(<,+1), FO(<,+1), and MTL are all decidable, with the following
complexities:4

MSO(<,+1) Non-elementary
FO(<,+1) Non-elementary

MTL EXPSPACE-Complete

4 All the complexity results in this paper assume that the time bound N is provided
in binary.

Time-Bounded Verification 503

Remark 2. It is worth noting that if one allows second-order quantification
over flows of arbitrary variability, then MSO(<) is undecidable over R≥0 [40].
Since any non-trivial interval of the form [0, N) is order-isomorphic to R≥0, the
same result holds over bounded time domains, and also clearly carries over to
MSO(<,+1). FO(<,+1) and MTL however remain decidable over bounded time
domains regardless of the variability of flows—see [29].

The proofs of all theorems in this paper are given in Appendix A.

5 Expressiveness

Fix a time domain T to be either [0, N) (for some N ∈ N) or R≥0. Let L and
J be two logics. We say that L is semantically at least as expressive as
J (with respect to the initial semantics of T) if, for any sentence θ of J , there
exists a sentence ϕ of L such that θ and ϕ are satisfied by precisely the same set
of flows over T.

Two logics are then said to be semantically equally expressive (with re-
spect to the initial semantics of T) if each is at least as expressive as the other.

The following result can be viewed as an extension of Kamp’s celebrated
theorem [21, 12] to metric logics over bounded time domains:

Theorem 2. For any fixed bounded time domain of the form [0, N), with N ∈
N, the metric logics FO(<,+1) and MTL are semantically equally expressive.
Moreover, this equivalence is effective.

Remark 3. Note that semantic expressiveness here is relative to a single struc-
ture T, rather than to a class of structures. In particular, although FO(<,+1)
and MTL are equally expressive over any bounded time domain of the form
[0, N), the correspondence and witnessing formulas may very well vary accord-
ing to the time domain.

It is interesting to note that FO(<,+1) is strictly more expressive than MTL
over R≥0 [20]. For example, MTL is incapable of expressing the following formula
(in slightly abusive but readable notation)

∃x∃y ∃z (x < y < z < x+ 1 ∧ P (x) ∧ P (y) ∧ P (z))

over the non-negative reals. This formula asserts that, sometime in the future,
P will hold at three distinct time points within a single time unit.

It is also worth noting that MSO(<,+1) is strictly more expressive than
FO(<,+1)—and hence MTL—over any time domain; see [29].

Finally, we point out that, in contrast to Kamp’s theorem [21], but similarly
to [12], Theorem 2 does not require backwards temporal operators for MTL
(although adding these would be harmless).

6 Model Checking and Language Inclusion

We now turn to questions concerning the time-bounded behaviours of timed
automata. Recall from Section 3.2 that timed words over an alphabet Σ can be

504 J. Ouaknine, A. Rabinovich, and J. Worrell

viewed as flows from a sufficiently large time domain over the set of monadic
predicates P = Σ. The model checking problem takes as inputs a timed
automaton A with alphabet Σ, a sentence ϕ with set of free monadic predicates
P = Σ, and a time domain T (taken to be either [0, N), for some N ∈ N, or
R≥0). The question is then whether every timed word (flow) in LT(A) satisfies ϕ.

Unfortunately, the model checking problem for timed automata and any of
the metric logics introduced in this paper is undecidable over the non-negative
real line R≥0 [5, 6]; this in fact also follows easily from the undecidability of the
satisfiability problem for these logics over flows. We therefore focus on the time-
bounded model checking problem , in which the time domain is required to
be bounded. We have:

Theorem 3. The time-bounded model-checking problems for timed automata
against the metric logics MSO(<,+1), FO(<,+1), and MTL are all decidable,
with the same complexities as the corresponding time-bounded satisfiability prob-
lems (cf. Theorem 1): non-elementary for MSO(<,+1) and FO(<,+1), and
EXPSPACE-Complete for MTL.

The language inclusion problem takes as inputs two timed automata, A and
B, sharing a common alphabet, together with a time domain T (of the form
[0, N), for some N ∈ N, or R≥0). The question is then whether every timed word
accepted by A over T is also accepted by B.

As for model checking, language inclusion is unfortunately undecidable over
R≥0 [2]. The time-bounded language inclusion problem circumvents this
by restricting to bounded time domains. This leads us to our final main result,
as follows:

Theorem 4. The time-bounded language inclusion problem for timed automata
is decidable and 2EXPSPACE-Complete.

A Proofs of Theorems

Theorem 1. The time-bounded satisfiability problems for MSO(<,+1) and
FO(<,+1) are decidable and non-elementary, whereas the time-bounded satis-
fiability problem for MTL is EXPSPACE-Complete.

Proof. Throughout this proof, let N ∈ N be fixed.
An easy first observation is that any MTL formula can be translated into an

equivalent FO(<,+1) formula over [0, N). For decidability, it therefore suffices
to handle the case of MSO(<,+1).

Let P ⊆ MP be a finite set of monadic predicates. With each P ∈ P, we
associate a collection P0, . . . , PN−1 of N fresh monadic predicates. We then let
P = {Pi | P ∈ P, 0 ≤ i ≤ N − 1}.

Intuitively, eachmonadic predicatePi representsP over the subinterval [i, i+1).
Indeed, there is an obvious bijection (indicated by overlining) between the set of
flows {f : [0, N) → 2P} and the set of flows {f : [0, 1) → 2P}.

Time-Bounded Verification 505

Let ϕ be an MSO(<,+1) sentence with set of free monadic predicates P. We
will define an MSO(<) sentence ϕ such that, for any flow f : [0, N) → 2P, f |= ϕ
iff f |= ϕ.

We can assume that ϕ does not contain any (first- or second-order) existential
quantifiers, by replacing the latter with combinations of universal quantifiers and
negations if need be. It is also convenient to rewrite ϕ into a formula that makes
use of the integer constants 0, 1, . . . , N as well as a family of unary functions +k
(for k ∈ N) instead of the +1 relation. To this end, replace every occurrence of
+1(x, y) in ϕ by (x < N − 1 ∧ x+ 1 = y).

Next, replace every instance of ∀xψ in ϕ by the formula

∀x (ψ[x/x] ∧ ψ[x+ 1/x] ∧ . . . ∧ ψ[x+ (N − 1)/x]) ,

where ψ[t/x] denotes the formula resulting from substituting every free occur-
rence of the variable x in ψ by the term t. Intuitively, this transformation is
legitimate since first-order variables in our target formula will range over [0, 1)
rather than [0, N).

Having carried out these substitutions, rewrite every term in ϕ in the form
x+ k, where x is a variable and k ∈ N is a non-negative integer constant.

Every inequality occurring in ϕ is now of the form x + k1 < y + k2. Replace
every such inequality by (i) x < y, if k1 = k2; (ii) true, if k1 < k2; and (iii) ¬true
otherwise.

Every occurrence of a monadic predicate in ϕ now has the form P (x + k).
Replace every such predicate by (i) Pk(x), if k ≤ N−1, and (ii) ¬true otherwise.

Finally, replace every occurrence of ∀P ψ in ϕ by ∀P0 ∀P1 . . . ∀PN−1 ψ. The
resulting formula is the desired ϕ.

It is now straightforward to prove by induction that the set of [0, N)-flows
satisfying the original ϕ are indeed in one-to-one correspondence with the set of
[0, 1)-flows satisfying ϕ.

Note that ϕ does not use any +1 or +k functions or relations, and is therefore
indeed a non-metric (i.e., purely order-theoretic) sentence in MSO(<). Moreover,
the satisfiability problem for MSO(<) by finitely-variable flows over R≥0 is decid-
able [36]. However, although R≥0 and [0, 1) are order-isomorphic, finitely-variable
flows over R≥0 do not necessarily translate to finitely-variable flows over [0, 1).
In fact, it is easily seen that the finitely-variable flows over R≥0 whose counter-
parts in [0, 1) are finitely-variable are precisely those flows that are ultimately
constant: every monadic predicate P is such that there is a time point beyond
which P is either always true or always false.

For P a monadic predicate, let us therefore write σP to denote the first-order
sentence

∃x (∀y (x < y → P (y)) ∨ ∀y (x < y → ¬P (y))) .

We now perform one last transformation on ϕ, by replacing every instance of
∀Pi ψ in ϕ by ∀Pi(σPi → ψ), yielding a new sentence ϕ′. Recall that P is the set
of monadic predicates appearing freely in ϕ (and hence also ϕ′). We now have
that our original sentence ϕ is satisfiable by finitely-variable flows over [0, N) iff
the MSO(<) sentence

506 J. Ouaknine, A. Rabinovich, and J. Worrell

ϕ′ ∧
∧

{σPi | Pi ∈ P}

is satisfiable by finitely-variable flows over R≥0, which is decidable.
We now tackle the complexity. Satisfiability of FO(<) over R≥0 is known

to be non-elementary [41, 27]. An examination of the proof shows that this
result in fact also holds over (finitely-variable) flows that are ultimately constant.
Since R≥0 is order-isomorphic to [0, N), FO(<), and a fortiori FO(<,+1) and
MSO(<,+1), also have non-elementary time-bounded satisfiability problems.

Let θ now be an MTL formula. It would be possible to show, following an
approach somewhat similar to the reduction above of MSO(<,+1) over [0, N)
to MSO(<), that one can manufacture an equi-satisfiable but exponentially
larger formula of Linear Temporal Logic with past operators (LTL+Past). Since
LTL+Past satisfiability is PSPACE-Complete, satisfiability for θ over [0, N) can
be decided in exponential space.

In the interest of brevity, we shall however proceed differently, and translate
instead the satisfiability problem for θ over [0, N) to that of a related Flat Metric
Temporal Logic (Flat-MTL) formula over R≥0. The result will follow by the known
EXPSPACE-Completeness of satisfiability for Flat-MTL [9].

Note first that we can assume that all intervals I appearing as subscripts to
temporal operators in θ are subsets of [0, N)—indeed, if this is not the case,
replace any offending interval I by I ∩ [0, N) to obtain a semantically equivalent
formula over [0, N). θ can therefore be taken to be a Bounded Metric Temporal
Logic (Bounded-MTL) formula.

Next, let us postulate a fresh predicate T which will be required to hold
precisely within the time domain [0, N). We now modify θ by relativising all
temporal operators to quantify over the ‘absolute’ time domain [0, N), as follows:
(i) replace every subformula in θ of the form ♦Iρ by ♦I(T ∧ρ); (ii) replace every
subformula in θ of the form �Iρ by �I(T → ρ); and (iii) replace every subformula
in θ of the form ρ1 UI ρ2 by ρ1 UI (T ∧ ρ2). Let us call the resulting formula θ′.

Consider now the formula

θ′ ∧ �[0,N)T ∧ �[N,∞)¬T

which belongs to Flat-MTL (cf. [9]) since θ′ is in Bounded-MTL. This formula is
clearly satisfiable by finitely-variable flows over R≥0 iff θ is satisfiable by finitely-
variable flows over [0, N). Since the former can be decided in EXPSPACE, then
so can the latter.

Finally, the EXPSPACE-Hardness proof of Bounded-MTL satisfiability in [9]
easily carries over to MTL satisfiability over [0, N). This therefore establishes
EXPSPACE-Completeness of time-bounded satisfiability for MTL. "#

Before proving Theorem 2, we first state a preliminary lemma, easily proven by
induction.

Lemma 1. Let ϕ be an FO(<) or LTL formula with set of monadic predicates
P. Assume that ϕ is only satisfiable by ultimately-constant flows. Let β be any
bijection from [0, 1) to R≥0. Then β extends to a bijection between [0, 1)-flows

Time-Bounded Verification 507

and R≥0-flows that are ultimately constant. Moreover, this bijection preserves
and reflect the flows that satisfy ϕ; in other words, for any flow f : [0, 1) → 2P,
f |= ϕ iff β(f) |= ϕ.

Theorem 2. For any fixed bounded time domain of the form [0, N), with N ∈
N, the metric logics FO(<,+1) and MTL are semantically equally expressive.
Moreover, this equivalence is effective.

Proof. Throughout this proof, let N ∈ N be fixed.
Thereduction fromMTL toFO(<,+1) is straightforward,andthereforeomitted.
For the other direction, let ϕ be an FO(<,+1) sentence with set of free

monadic predicates P ⊆ MP. As in the proof of Theorem 1, let P = {Pi |
P ∈ P, 0 ≤ i ≤ N − 1} be a set of fresh monadic predicates. The construction
used in Theorem 1 yields an FO(<) sentence ϕ with set of free monadic pred-
icates P, such that there is a bijection (indicated by overlining) from the set
of [0, N)-flows over P satisfying ϕ to the set of [0, 1)-flows over P satisfying ϕ.
Moreover, we can ensure that, when interpreted over R≥0, ϕ is only satisfied by
flows that are ultimately constant.

According to [18], one can now construct an LTL formula ψ, with set of
monadic predicates P, that defines precisely the same set of finitely-variable
R≥0-flows as ϕ. By Lemma 1, ϕ and ψ therefore also define precisely the same
set of finitely-variable [0, 1)-flows over P.

It therefore suffices to exhibit an MTL formula θ, over set of monadic predi-
cates P, such that, for any flow f : [0, N) → 2P, f |= θ iff f |= ψ.

To this end, write ι to denote the MTL formula ♦=(N−1)true. Note that,
when interpreted within the time domain [0, N), ι holds precisely over the time
interval [0, 1). Perform the following substitutions on ψ to obtain the desired
θ: (i) for each P ∈ P, replace every occurrence of P0 in ψ by P , and every
occurrence of Pi in ψ (for i ≥ 1) by ♦=iP ; (ii) replace every occurrence of ♦γ in
ψ by ♦(ι∧γ); (iii) replace every occurrence of �γ in ψ by �(ι → γ); (iv) replace
every occurrence of γ1 U γ2 in ψ by γ1 U (ι ∧ γ2).

Finally, show by induction on ψ that, for any flow f : [0, N) → 2P and any
t ∈ [0, 1), one has (f, t) |= θ iff (f, t) |= ψ. The desired result follows by setting
t = 0. "#
Theorem 3. The time-bounded model-checking problems for timed automata
against the metric logics MSO(<,+1), FO(<,+1), and MTL are all decidable, with
the same complexities as the corresponding time-bounded satisfiability problems:
non-elementary for MSO(<,+1) and FO(<,+1), and EXPSPACE-Complete for
MTL.

Proof. Fix N ∈ N, and let A be a timed automaton over alphabet Σ. In [16],
it is shown how to construct (in polynomial time) an MTL formula θA, over
a potentially larger set of monadic predicates P ⊇ Σ, such that, for any flow
f : [0, N) → 2Σ , f ∈ L[0,N)(A) iff there exists a flow g : [0, N) → 2P such that
g |= θA and g�Σ = f . Intuitively, the extra monadic predicates of θA keep track
of the (otherwise invisible) identity of transitions and clock resets that occur
during runs of A.

508 J. Ouaknine, A. Rabinovich, and J. Worrell

Of course, θA can clearly instead be taken to be an FO(<,+1) or MSO(<,+1)
formula, if desired. In all cases, given a metric formula ϕ, the model-checking
problem for A and ϕ over [0, N) boils down to whether θA ∧ ¬ϕ is unsatisfiable
over [0, N) or not.

This shows that time-bounded model checking reduces to time-bounded
satisfiability. For the converse, simply pick an automaton A that accepts
every flow. "#

Theorem 4. The time-bounded language inclusion problem for timed automata
is decidable and 2EXPSPACE-Complete.

Proof. Fix N ∈ N, and let A and B be timed automata over alphabet Σ. We
give a procedure for deciding whether L[0,N)(A) ⊆ L[0,N)(B).

As in the proof of Theorem 3, let θA be an MTL formula over set of monadic
predicates P = Σ ∪ U, with the property that each [0, N)-timed word over Σ
accepted by A can be extended to a [0, N)-flow over P satisfying θA, and vice-
versa. Likewise, let θB be a similar MTL formula over set of monadic predicates
Q = Σ ∪ V for the timed automaton B. We assume that Σ, U, and V are all
pairwise disjoint.

Abusing notation, we see that L[0,N)(A) ⊆ L[0,N)(B) iff the following formula
holds over [0, N):

∀Σ ∀U∃V (¬θA(Σ,U) ∨ θB(Σ,V)) . (1)

Observe, as argued in the proof of Theorem 1, that θA and θB can in fact
be taken to be Bounded-MTL formulas. We can therefore invoke a result of [9]
and transform ¬θA ∨ θB into an equivalent but exponentially larger formula ψ
of LTL+Past. More precisely, ψ has a different (and exponentially larger) set of
monadic predicates R = Σ∪U∪V∪W, yet there is a one-to-one correspondence
between the flows satisfying ¬θA ∨ θB and those satisfying ψ. We also adjust
the outside quantifiers accordingly to transform Formula (1) into the equivalent
formula

∀Σ ∀U ∃V ∃Wψ(Σ,U,V,W) .

Next, following [25, 38], we transform ψ into an equivalent untimed finite-state
automaton C whose transitions are labelled by subsets of Σ ∪U ∪V ∪W. This
incurs a second exponential blowup.

Note that the existential quantifications ∃W and ∃V simply correspond to
relabelling all W- and V-labelled transitions in C; this can be carried out in
polynomial time. We are therefore asking whether the resulting automaton is
universal overΣ∪U, i.e., accepts any string over this alphabet. Since universality
is decidable in PSPACE, the overall procedure can be carried out in doubly-
exponential space.

The proof of 2EXPSPACE-Hardness is fairly intricate and will appear in the
full version of this paper [29]. "#

Time-Bounded Verification 509

References

[1] Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (1990)

[2] Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126 (1994)
[3] Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality.

J. ACM 43(1) (1996)
[4] Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class

of timed automata. Theor. Comput. Sci. 211 (1999)
[5] Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing,

C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS,
vol. 600, pp. 74–106. Springer, Heidelberg (1992)

[6] Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf.
and Comput. 104(1) (1993)

[7] Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer,
Heidelberg (2005)

[8] Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation
of time-bounded reachability probabilities in uniform continuous-time Markov
decision processes. Theor. Comput. Sci. 345(1) (2005)

[9] Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: On expressiveness and com-
plexity in real-time model checking. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 124–135. Springer, Heidelberg (2008)

[10] Bošnački, D.: Digitization of timed automata. In: Proceedings of FMICS (1999)
[11] Emmi, M., Majumdar, R.: Decision problems for the verification of real-time

software. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927,
pp. 200–211. Springer, Heidelberg (2006)

[12] Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal basis of fairness.
In: Proceedings of POPL. ACM Press, New York (1980)

[13] Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)

[14] Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

[15] Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid sys-
tems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 145.
Springer, Heidelberg (2000)

[16] Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443,
p. 580. Springer, Heidelberg (1998)

[17] Herrmann, P.: Timed automata and recognizability. Inf. Process. Lett. 65 (1998)
[18] Hirshfeld, Y., Rabinovich, A.: Future temporal logic needs infinitely many modal-

ities. Inf. Comput. 187(2) (2003)
[19] Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity.

Fundam. Inform. 62(1) (2004)
[20] Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous

time. Logical Methods in Computer Science 3(1) (2007)
[21] Kamp, H.: Tense logic and the theory of linear order. Ph.D. Thesis (1968)
[22] Katoen, J.-P., Zapreev, I.S.: Safe on-the-fly steady-state detection for time-

bounded reachability. In: Proceedings of QEST. IEEE Computer Society, Los
Alamitos (2006)

510 J. Ouaknine, A. Rabinovich, and J. Worrell

[23] Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O Automata: A
mathematical framework for modeling and analyzing real-time systems. In: Pro-
ceedings of RTSS. IEEE Computer Society Press, Los Alamitos (2003)

[24] Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4) (1990)

[25] Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals:
PSpace and below. Inf. and Comput. 205 (2007)

[26] Lynch, N.A., Attiya, H.: Using mappings to prove timing properties. Distributed
Computing 6(2) (1992)

[27] Meyer, A.R.: Weak monadic second-order theory of successor is not elementary-
recursive. In: Logic colloquium. LNM, vol. 453, pp. 72–73. Springer, Heidelberg
(1975)

[28] Ouaknine, J.: Digitisation and full abstraction for dense-time model checking. In:
Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 37. Springer,
Heidelberg (2002)

[29] Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification (full version)
(in preparation, 2009)

[30] Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability
for timed automata. In: Proceedings of LICS. IEEE Computer Society Press,
Los Alamitos (2003)

[31] Ouaknine, J., Worrell, J.: Universality and language inclusion for open and closed
timed automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623,
pp. 375–388. Springer, Heidelberg (2003)

[32] Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
Closing a decidability gap. In: Proceedings of LICS. IEEE Computer Society
Press, Los Alamitos (2004)

[33] Ouaknine, J., Worrell, J.: On the decidability of Metric Temporal Logic. In: Pro-
ceedings of LICS. IEEE Computer Society Press, Los Alamitos (2005)

[34] Ouaknine, J., Worrell, J.: Safety Metric Temporal Logic is fully decidable. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425.
Springer, Heidelberg (2006)

[35] Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal
Logic over finite words. Logical Methods in Computer Science 3(1) (2007)

[36] Rabinovich, A.: Finite variability interpretation of monadic logic of order. Theor.
Comput. Sci. 275(1-2) (2002)

[37] Raskin, J.-F.: Logics, Automata and Classical Theories for Deciding Real Time.
PhD thesis, University of Namur (1999)

[38] Reynolds, M.: The complexity of temporal logic over the reals (2004) (submitted)
[39] Roux, O., Rusu, V.: Verifying time-bounded properties for ELECTRE reactive

programs with stopwatch automata. In: Antsaklis, P.J., Kohn, W., Nerode, A.,
Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 105–116. Springer, Heidelberg
(1995)

[40] Shelah, S.: The monadic theory of order. Ann. Math. 102 (1975)
[41] Stockmeyer, L.J.: The complexity of decision problems in automata theory and

logic. PhD thesis, MIT (1974)
[42] Taşiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of

timed systems. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS,
vol. 1119, pp. 546–562. Springer, Heidelberg (1996)

Secure Enforcement
for Global Process Specifications

Jérémy Planul1, Ricardo Corin1, and Cédric Fournet1,2

1 MSR-INRIA
2 Microsoft Research

Abstract. Distributed applications may be specified as parallel compo-
sitions of processes that summarize their global interactions and hide lo-
cal implementation details. These processes define a fixed protocol (also
known as a contract, or a session) which may be used for instance to
compile or verify code for these applications.

Security is a concern when the runtime environment for these appli-
cations is not fully trusted. Then, parts of their implementation may run
on remote, corrupted machines, which do not comply with the global
process specification. To mitigate this concern, one may write defensive
implementations that monitor the application run and perform crypto-
graphic checks. However, hand crafting such implementations is ad hoc
and error-prone.

We develop a theory of secure implementations for process specifica-
tions. We propose a generic defensive implementation scheme, relying
on history-tracking mechanisms, and we identify sufficient conditions on
processes, expressed as a new type system, that ensure that our im-
plementation is secure for all integrity properties. We illustrate our ap-
proach on a series of examples and special cases, including an existing
implementation for sequential multiparty sessions.

1 Introduction

Distributed applications may be specified using concurrent processes that cap-
ture their global interactions, or protocol, and otherwise ignore their local im-
plementation details. Hence, each machine that takes part in the application is
assigned a fixed initial process (often called a role of the protocol) and may run
any local code that implements its process, under the global assumption that all
other participating machines will also comply with their respective assigned pro-
cesses. This approach yields strong static guarantees, cuts the number of cases to
consider at runtime, and thus simplifies distributed programming. It has been ex-
plored using (binary) sessions [6,5] and, more recently, multiparty sessions [3,7].
Within sessions, machines exchange messages according to fixed, pre-agreed pat-
terns, for instance a sequence of inputs and outputs between a client and a server;
these patterns may be captured by types, expressed as declarative contracts (also
known as workflows), or more generally specified as processes.

Global process specifications also provide an adequate level of abstraction to
address distributed security concerns. Each machine is then interpreted as a unit

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 511–526, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

512 J. Planul, R. Corin, and C. Fournet

of trust, under the control of a principal authorized to run a particular role in
the application. Conversely, these principals do not necessarily trust one another.
Indeed, many applications commonly involve unknown parties on open networks,
and a machine may participate in a session run that also involves untrustworthy
machines (either malicious, or compromised, or poorly programmed). In this
situation, we still expect session integrity to hold: an “honest” machine should
accept a message as genuine only if it is enabled by the global specification.
To this end, their implementation may perform cryptographic checks, using for
example message signatures, as well as checks of causal dependencies between
messages.

Cryptographic implementation mechanisms need not appear in the global
specification. They can sometimes be automatically generated from this specifi-
cation. Corin et al. perform an initial step in this direction, by securing imple-
mentations of n-ary sequential sessions [3,1]. Their sessions specify sequences of
communications between n parties as paths in directed graphs. A global session
graph is compiled down to secure local implementations for each role, using a
custom cryptographic protocol that protects messages and monitors their de-
pendencies. Their main security result is that session integrity is guaranteed
for all session runs—even those that involve compromised participants. They
also report on prototype implementations, showing that the protocol overhead
is small. Although their sequential sessions are simple and intuitive, they also
lack flexibility, and are sometimes too restrictive. For instance, concurrent spec-
ifications must be decomposed into series of smaller, sequential sessions, and the
programmer is left to infer any security properties that span several sub-sessions.
More generally, they leave the applicability of their approach to more expressive
specification languages as an open problem.

In this paper, we consider a much larger class of session specifications that en-
able concurrency and synchronization within session runs; and we systematically
explore their secure implementation mechanisms, thereby enforcing more global
properties in a distributed setting. We aim at supporting arbitrary processes,
and as such we depart significantly from prior work: our specification language
is closer to a generic process algebraic setting, such as CCS [8]. On the other
hand, we leave the cryptography implicit and do not attempt to generalize their
concrete protocol design.

Example 1. To illustrate our approach, consider a simple model of an election,
with three voting machines (V1, V2, and V3) and one election officer machine (E)
in charge of counting the votes for two possible candidates (c1 and c2) and send-
ing the result (r1 or r2) to a receiver machine (R). We specify the possible actions
of each machine using CCS-like processes (defined in Section 2), as follows:

V1 = V2 = V3 = c1 + c2 E = c1.c1.r1 | c2.c2.r2 R = r1 + r2

Machines running process Vi for i = 1, 2, 3 may vote for one of the two candidates
by emitting one of the two messages c1 or c2; this is expressed as a choice
between two output actions. The machine running process E waits for two votes
for the same candidate and then fires the result; this is expressed as a parallel

Secure Enforcement for Global Process Specifications 513

composition of two inputs followed by an output action. Finally, the machine
running process R waits for one of the two outcomes; this is expressed as a
choice between two input actions.

Protocols and applications. We now give an overview of the protocols and the
attacker model. Our processes represent protocol specifications, rather than the
application code that would run on top of the protocol. Accordingly, our protocol
implementation monitors and protects high-level actions driven by an abstract
application. The implementation immediately delivers to the application any in-
put action enabled by the specification, and sends to other machines any action
output enabled by the specification and selected by the application. The applica-
tion is in charge of resolving internal choices between different message outputs
enabled by the specification, and to provide the message payloads.

We intend that our implementations meet two design constraints: (1) they
rely only on the global specification—not on the knowledge of which machines
have been compromised, or the mediation of a trusted third party; and (2) they
do not introduce any extra message: each high-level communication is mapped
to an implementation message. This message transparency constraint excludes
unrealistic implementations, such as a global, synchronized implementation that
reaches a distributed consensus on each action.

Attacker Model. We are interested in the security of any subset of machines that
run our implementation, under the assumption that the other machines may be
corrupted. In Example 1, for instance, the receiver machine should never accept
a result from the election officer if no voter has cast its vote.

Our implementations provide protection against active adversaries that con-
trols parts of the session run: We assume an unsafe network, so the adversary
may intercept, reorder, and inject messages—this is in line with classic symbolic
models of cryptography pioneered by Dolev and Yao [4]. We also assume partial
compromise, so the adversary may control some of the machines supposed to run
our implementation, and run instead arbitrary code; hence, those machines need
not follow their prescribed roles in the session specification and may instead col-
lude to forge messages in an attempt to confuse the remaining compliant, honest
machines.

We focus on global control flow integrity, rather than cryptographic wire for-
mats; thus, we assume that the message components produced by the compliant
machines cannot be forged by our adversary. (This can be achieved by standard
cryptographic integrity mechanisms, such as digital signatures.) Conversely, the
adversary controls the network and may forge any message component from com-
promised machines. Also, we do not address other security properties of interest,
such as payload confidentiality or anonymity.

Contributions. Relying on process calculi, we define an expressive language for
specifications and formally describe its implementation. We construct a secure,
generic implementation scheme: we propose a general implementability condi-
tion, expressed as a type system, and show that it suffices to ensure that any set
of compliant machines remain in a globally-consistent state, despite any coordi-
nated attack by an adversary in control of the remaining, corrupted machines.

514 J. Planul, R. Corin, and C. Fournet

Contents. Section 2 defines a global semantics for specifications. Section 3 de-
scribes their generic implementations, and states their soundness and complete-
ness properties. Section 4 considers binary specifications. Section 5 defines our
type system. Section 6 presents our history-tracking implementation and estab-
lishes its correctness for well-typed specifications. Section 7 considers sequential
n-ary sessions. Section 8 concludes. Additional details and proofs appear in an
online paper at http://msr-inria.inria.fr/projects/sec/sessions.

2 Global Process Specifications

We consider specifications that consist of distributed parallel compositions of
local processes, each process running on its own machine. In the remainder of
the paper, we let n be a fixed number of machines, and let P̃ range over global
process specifications, that is, n-tuples of local processes (P0, . . . , Pi, . . . , Pn−1).

Syntax and informal semantics. Our local processes use a CCS syntax, given
below. Their outputs are asynchronous, since we are in a distributed setting.

P ::= Local processes
0 inert process
a asynchronous send
a.P asynchronous receive
P + P ′ choice
P |P ′ parallel fork
!P replication

The specification P̃ = (P0, . . . , Pn−1) sets a global “contract” between n ma-
chines; it dictates that each machine i behaves as specified by Pi. For instance,
in Example 1 we have n = 5 and P̃ = (V1, V2, V3, E,R).

Operational semantics (−→P and −→S). We define standard labelled transitions for
local processes, with the rules given below. We write P

β−→P P ′ when process P
evolves to P ′ with action β ranging over a and a. We omit the symmetric rules
for sum and parallel composition.

a.P
a−→P P a

a−→P 0
P0

β−→P P ′
0

P0 + P1
β−→P P ′

0

P0
β−→P P ′

0

P0|P1
β−→P P ′

0|P1

P
β−→P P ′

!P
β−→P!P |P ′

We also define labelled transitions for global configurations, with the commu-
nication rule below. We write P̃

i a j−−−→S P̃
′ when P̃ evolves to P̃ ′ by action a

with sender Pi and receiver Pj . (The case i = j is for local, but still observable
communications.) We let α range over global communication labels i a j, and let
ϕ range over sequences of these labels (written for instance i a j.α) representing
high-level traces. We write α ∈ ϕ when α occurs in ϕ.

Pi
a−→P P ◦

i (Pk = P ◦
k)k �=i P ◦

j
a−→P P ′

j (P ◦
k = P ′

k)k �=j

P̃
i a j−−−→S P̃

′

Secure Enforcement for Global Process Specifications 515

3 Distributed Process Implementations

We describe distributed implementations of the specifications of Section 2, each
process being mapped to one machine. We separate compliant (honest) machines
from compromised (dishonest) machines, then we define their implementations,
their semantics, and their properties (soundness and completeness).

We let C range over subsets of {0, . . . , n − 1}, representing the indexes of P̃
whose machines are compliant. We let P̂ range over tuples of processes indexed
by C. Intuitively, these machines follow our implementation semantics, whereas
the other machines are assumed to be compromised, and may jointly attempt
to make the compliant machines deviate from the specification P̃ . For instance,
if the election officer of Example 1 is compromised, it may immediately issue a
result r1 without waiting for two votes c1. Similarly, a compromised voter may
attempt to vote twice. We are interested in protecting (the implementations of)
compliant machines from such actions.

We give a generic definition of process implementations. In the following sec-
tions, we show how to instantiate this definition for a given specification. Infor-
mally, an implementation is a set of programs, one for each specification process
to implement, plus a definition of the messages that the adversary may be able
to construct, in the spirit of symbolic models for cryptography.

Definition 1 (Distributed implementation). A distributed implementation
is a triple 〈(Qi)i<n, (

γ−→i)i<n, (!C)C⊆0..n−1〉 (abbreviated 〈Q̃, −̃→,!C〉) where, for
each i ∈ 0..n− 1 and C ⊆ 0..n− 1,

– Qi is an implementation process;
–

γ−→i is a labelled transition relation between implementation processes;
– !C is a relation between message sets and messages.

In the definition, each Qi is an initial implementation process, and each
γ−→i is a

specialized transition relation between implementation processes for machine i,
labelled with either an input (M) or an output (M). We let γ range over M
and M , and let ψ range over sequences of γ, representing low-level traces. For
each local implementation process, these transitions define the messages that
may be sent, and the messages that may be received and accepted as genuine. We
assume that every message M implements a single high-level communication α.
(Intuitively, M is a wire format for α, carrying additional information.) We write
ρ(γ) for the corresponding high-level communication α, obtained by parsing γ.

The relations !C model the capabilities of an adversary that controls all ma-
chines outside C to produce (or forge) a message M after receiving (or eaves-
dropping) the set of messages M. For instance, if the implementation relies
on digital signatures, the definition of !C may reflect the capability of signing
arbitrary messages on behalf of the non-compliant machines.

Example 2. We may implement the request-response protocol with processes
A0 = a | b, A1 = a.b by re-using the syntax of specification processes and labels
(i.e. M is just α), with initial implementation processes (A0, A1), implementation
transitions

516 J. Planul, R. Corin, and C. Fournet

A0
0 a 1−−−→0 b

1 b 0−−−→0 0 A1
0 a 1−−−→1 b

1 b 0−−−→1 0

and an adversary that can replay intercepted messages and produce any messages
from compromised principals, modelled with the deduction rules

M,M !C M
i
∈ C i, j ∈ {0, 1} x ∈ {a, b}

M !C i x j

Distributed semantics. For a given distributed implementation 〈Q̃, −̃→,!C〉 and
set of compliant machines C, we define a global implementation semantics that
collects all message exchanges between compliant machines on the network. In
our model, compromised processes do not have implementations; instead, the en-
vironment represents an abstract adversary with the capabilities specified by !C .
Thus, the global implementation transitions

γ−→I relate tuples of compliant im-
plementation processes Q̂ and also collects all compliant messages M exchanged
on the network (starting with an empty set), with the following two rules:

(SendI)

Qi
M−→i Q

′
i (Qk = Q′

k)k �=i

i ∈ C ρ(M) = i a j

M, Q̂
M−→I M∪M, Q̂′

(ReceiveI)

Qi
M−→i Q

′
i (Qk = Q′

k)k �=i

i ∈ C M !C M ρ(M) = j a i

M, Q̂
M−→I M, Q̂′

Rule (SendI) simply records the message sent by a compliant participant, after
ensuring that its index i matches the sender recorded in the message interpre-
tation i a j (so that no compliant participant may send a message on behalf
of another). Rule (ReceiveI) enables a compliant participant to input any mes-
sage M that the adversary may produce from M (including, for instance, any
intercepted message) if its index matches the receiver i in its interpretation j a i;
this does not affect M, so the adversary may a priori replay M several times.
The wire format M may include additional information, such as a nonce to de-
tect message replays, or some evidence of a previously-received message. The
example below illustrates the need for both mechanisms.

Example 3. In the specification A0 = a | a,A1 = a |a, machine A1 must discrim-
inate between a replay of A0’s first message and A0’s genuine second message,
so these two messages must have different wire formats. For instance, an imple-
mentation may include a sequence number, or a fresh nonce.

In the specification A0 = a,A1 = a.b, A2 = b, the implementation of A2
that receives b from A1 must check that A1 previously received a from A0. For
instance, the two messages may be signed by their senders, and A1’s message
may also include A0’s message, as evidence that its message on b is legitimate.

Concrete threat model and adequacy. The distributed implementations of Defi-
nition 1 are expressed in terms of processes and transitions, rather than message
handlers for a concrete, cryptographic wire format. (We refer to prior work for
sample message formats and protocols for sequential specifications [3,1]).

Secure Enforcement for Global Process Specifications 517

In the implementation, the use of cryptographic primitives such as digital
signatures can prevent the adversary to forge arbitrary messages. On the other
hand, since the adversary controls the network, he can resend any intercepted
messages and, when it controls a participant, he can at least send any message
that this participant could send if it were honest. Accordingly, for any realistic
implementation, we intend that the two rules displayed below follow from the
definition of !C . We say that an implementation is adequate when these two
rules are valid.

M,M !C M
i
∈ C Qi

ψ−→i Q
′
i

M0−−→i Q
′′
i M !C M for each M ∈ ψ

M !C M0

In the second rule, if (1) the adversary controls machine i; (2) a compliant
implementation Qi can send the message M0 after a trace ψ has been taken; and
(3) every message received in ψ can be constructed from M by the adversary;
then he can also construct the message M0 from M.

Soundness and completeness. We first formally relate high-level traces of the
specification, ranged over by ϕ, which include the communications of all pro-
cesses, to low-level implementation traces, ranged over by ψ, which record only
the inputs and outputs of the compliant processes. We then define our property
of soundness, stating that every implementation run corresponds to a run of
the specification; and our property of completeness, stating that every specifica-
tion run corresponds to a run of the implementation. These properties depend
only on the implementation and specification traces: trace-equivalent specifica-
tions would accept the same sound and complete implementations. The corre-
spondence between high-level and low-level traces is captured by the following
definition of valid explanations.

Definition 2. A high-level trace ϕ = α0 . . . αp−1 is a valid explanation of a low-
level trace ψ = γ0 . . . γq−1 for a given set C when there is a partial function ι from
(indexes of) low-level messages γk of ψ to (indexes of) high-level communications
αι(k) of ϕ such that ρ(γk) = αι(k) for k ∈ 0..q − 1 and

1. the restriction of ι on the indexes of the low-level inputs of ψ is a one-to-one,
increasing function to the indexes of the high-level communications of ϕ with
honest receivers (i a j with j ∈ C);

2. the restriction of ι on the indexes of the low-level outputs of ψ is a partial
one-to-one function to the indexes of the high-level communications of ϕ with
honest senders (i a j with i ∈ C); and

3. whenever a low-level input precedes a low-level output, their images by ι are
in the same order when defined.

The definition relates every trace of messages sent and received by honest imple-
mentations to a global trace of communications between specification processes
(including compromised processes). In particular, the specification trace may
have additional communications between compromised processes. The relation
guarantees that the implementation messages are received in the same order as

518 J. Planul, R. Corin, and C. Fournet

the communications in the specification trace. Conversely, since the adversary
controls the network, the relation does not guarantee that all low-level outputs
are received, or that they are received in order.

For example, consider an implementation that uses specification messages as
wire format (that is, M is just α) and let C = {0; 2}. We may reflect the trace

ψ = (0 b 2).(0 c 1).(1 d 2).(0 a 1).(0 b 2)

using, for instance, the valid explanation ϕ1 = (0 c 1).(1 d 2).(0 b 2) and the
index function ι from ψ to ϕ1 defined by {0 �→ 2, 1 �→ 0, 2 �→ 1, 4 �→ 2}. Following
Definition 2, we check that

1. the restriction of ι to the indexes of the low-level inputs is {2 �→ 1; 4 �→ 2}
and relates the inputs of compliant participants in ψ and in ϕ;

2. the restriction of ι to the indexes of the low-level outputs is {0 �→ 2; 1 �→ 0}
and relates two of the three outputs in ψ to the outputs of compliant par-
ticipants in ϕ, out of order; and

3. (1 d 2) precedes (0 a 1) in ψ, but ι is undefined on that low-level output.

Another valid explanation is ϕ2 = (1 d 2).(0 a 1).(0 c 1).(0 b 2).
We are now ready to define our main security property, which states that an

implementation is sound when the compliant machines cannot be driven into an
execution disallowed by the global specification.

Definition 3 (Soundness). 〈Q̃, −̃→,!C〉 is a sound implementation of P̃ when,

for every C ⊆ 0..n − 1 and every implementation trace ∅, Q̂ ψ−→I M, Q̂′, there
exists a source trace P̃

ϕ−→S P̃
′ where ϕ is a valid explanation of ψ.

Also, an implementation is complete if, when all machines comply, every trace
of the global specification can be simulated by a trace of the implementation.

Definition 4 (Completeness). 〈Q̃, −̃→,!C〉 is a complete implementation of P̃
when, for C = 0..n − 1 and for every source traces P̃

ϕ−→S P̃ ′, there exists an
implementation trace ∅, Q̃ ψ−→I M, Q̃′ where ϕ is a valid explanation of ψ.

We easily check that, with our definition of valid explanations, an implemen-
tation that is both sound and complete also satisfies the message transparency
property discussed in Section 1.

4 Implementing Two-Party Specifications (Application)

We instantiate our definitions to specifications with only two participants, such
as a client and a server. Such specifications have been much studied using session
types. For this section, we set n = 2 and implement specifications of the form
P̃ = (P0, P1). For simplicity, we also exclude local communications: for any
action a, each Pi for i = 0, 1 may include either a or a, but not both.

Secure Enforcement for Global Process Specifications 519

A simple (insecure) implementation. An implementation that re-uses the syn-
tax of specification processes and labels with initial implementation processes
(P0, P1) (that is, Qi is just Pi, and M is just α) is generally not sound. Con-
sider, for instance, the specification A0 = a.e | b.(e+ c) and A1 = a | b | e | c. After
the communications a, e, and b, the implementation of machine 1 would be in
state c, while that of machine 0 would be in state e+ c: machine 1 should accept
a message c. However, after the communications b, e, and a, the implementa-
tion of machine 1 would still be in state c, but that of machine 0 would be in
state e, unable to send c: machine 1 should not accept a message c. In state c
machine 1 does not know whether a message c from machine 0 is legitimate or
not. Therefore, an implementation accepting the message c is unsound, and an
implementation refusing it is incomplete.

History-tracking Implementations. Our implementation relies on a refinement
of the specification syntax and semantics to keep track of past communications:
local processes are of the form P : ψ where ψ is a sequence of global communi-
cations, each tagged with a fresh nonce � used to prevent message replays (any
received message whose tag already occurs in ψ is ignored).

– We use P0 : ε and P1 : ε as initial processes (where ε is the empty sequence).
– We define local implementation transitions −→i from the initial specification
P̃ and the specifications traces:

P̃
ρ(ψ)−−−→S P̃ ′ i a j−−−→S P̃ ′′ i a j �
∈ ψ

P ′
i : ψ

i a j
−−−−→i P
′′
i : ψ.(i a j �)

P̃
ρ(ψ)−−−→S P̃ ′ i a j−−−→S P̃ ′′ i a j �
∈ ψ

P ′
j : ψ

i a j
−−−−→j P
′′
j : ψ.(i a j �)

where i, j is either 0, 1 or 1, 0 and where ρ yields a specification trace by
erasing all nonces � in ψ.

– We define the adversary knowledge !C by
M,M !C M

and
i
∈ C

M !C i a j �
.

Hence, an action is locally enabled only when it extends the specification trace
recorded so far and the nonce � is fresh. The adversary may send a message
either by eavesdropping it or by constructing it with a compromised sender.
(Pragmatically, a concrete implementation may generate � at random, or incre-
ment a message sequence number, and may use a more compact representation
of ψ.)

Theorem 1. 〈(P0 : ε, P1 : ε), −̃→,!C〉 is a sound and complete implementation
of (P0, P1).

The soundness of our implementation above relies on every machine recording
every communication (since it is either sending or receiving every message);
this approach does not extend to specifications with more than two machines,
inasmuch as these machines do not directly observe actions between two remote
machines.

520 J. Planul, R. Corin, and C. Fournet

5 Implementability by Typing

In the preceding section, we presented a complete and sound implementation for
binary sessions. We now illustrate some difficulties in the general n-ary case.

Example 4. Consider a variant of Example 1 with the same V1, V2, V3 and R but
with the election officer E split into E1 = c1.c1.r1 and E2 = c2.c2.r2. One of the
voters (say, V1) may cheat, and send both c1 to E1 and c2 to E2. To prevent this
attack,E1 andE2 would need to communicate with one another, thereby breaking
message transparency. Therefore no adequate implementation of this example can
be both sound and complete. To prevent this pattern, we will demand that both
sides of a sum affect the same participants in the same order.

Example 5. Consider now the specification

A = (b1 | c1) + (b2 | c2) B = b1 | b2 C = c1 | c2

The process A can send either b1 to B and c1 to C, or b2 to B and c2 to C.
A dishonest machines in charge of running A can send b1 to B and c2 to C.
Therefore no adequate implementation of this example can be both sound and
complete. To prevent this pattern, we will also demand that both sides of some
parallel composition (e.g.under a sum) affect the same participants in the same
order.

To prevent these situations, we develop a type system with two kinds of types,
for sequential processes and (possibly) parallel processes:

σ ::= sequential types
0 completion
i.σ sequence

π ::= parallel types
σ sequential type
i.π sequence
π |π parallel

Intuitively, our types indicate (by their indexes) which other participants may
be affected by each action, and in what order. In Example 1, action c1 would be
of type 3.4 since it is received by process 3 and this reception may contribute to
the emission of r1 to process 4.

We define subtyping with three base rules and two context rules:

0 ≤ σ π |π ≤ π π ≤ π |π
π ≤ π′

i.π ≤ i.π′
π1 ≤ π′1 π2 ≤ π′2
π1 |π2 ≤ π′1 |π′2

Thus, for a sequential type, we can “forget” potential future actions and obtain
a less precise type and, for parallel types, we can duplicate or merge parallel
copies carrying the same information.

We type local processes at each machine i ∈ 0..n− 1, in a given environments
Γ that map channels to parallel types. The typing judgment Γ !i P : π indicates
that P can be given type π at machine i in environment Γ , with the rules below:

Secure Enforcement for Global Process Specifications 521

(Send)

Γ, a : π 	i a : i.(π\i)
(Receive)

Γ, a : π 	i P : π′ π′ ≤ π

Γ, a : π 	i a.P : π′

(Sub)

Γ 	i P : π π ≤ π′

Γ 	i P : π′

(Nil)

Γ 	i 0 : i

(Plus)

Γ 	i P0 : σ Γ 	i P1 : σ

Γ 	i P0 + P1 : σ

(Par)

Γ 	i P0 : π Γ 	i P1 : π′

Γ 	i P0 |P1 : π |π′

(Repl)

Γ 	i P : π

Γ 	i!P : π

where π\i is π after erasure of every occurrence of i.
Rule (Send) gives to the output a the type of action a (minus i) preceded by i.

This records that a at host i affects any process that receives on a. Conversely,
rule (Receive) gives to a.P the type of the continuation process P , and checks
that it is at least as precise as the type of action a. Rule (Sub) enables subtyping.
Rule (Nil) gives type i to an empty process, since it has no impact outside i.
Rule (Plus) ensures that the two branches of a choice have the same effect,
a sequential type, excluding e.g.the typing of the specifications in Example 4.
Rules (Par) and (Repl) deal with parallel compositions.

For instance, in the environment Γ = r1 : 4, r2 : 4, c1 : 3.4, c2 : 3.4, the
processes of Example 1 have types

Γ !0 V1 : 0.3.4 Γ !1 V2 : 1.3.4 Γ !2 V3 : 2.3.4 Γ !3 E : 3.4 Γ !4 R : 4

Conversely, the processes V1 = V2 = V3 = c1 + c2 are not typable within the un-
safe specification of Example 4, because c1 and c2 necessarily have incompatible
types.

We end this section by defining typability for global specifications, with a
shared environment for all machines and a technical condition to ensure consis-
tency on channels with parallel types.

Definition 5. A global specification P̃ is well-typed when, for some environ-
ment Γ and each i ∈ 0..n − 1, we have Γ !i Pi : πi and, for each (a : π) ∈ Γ ,
either π is (a subtype of) a sequential type, or P̃ has at most one reception on a.

6 History-Tracking Implementations

In this section we present an implementation for session specifications. We prove
that the implementation is complete, and that it is sound when the specification
is well-typed (Definition 5). The resulting family of implementations subsumes
those presented in the special cases of binary sessions (Section 4) and sequential
sessions (Section 7).

Multiparty specifications and history-tracking implementations. As seen in Ex-
ample 1, in a multiparty system, a local action at one machine may causally
depend on communications between other machines. To avoid cheating, we em-
bed evidence of past execution history in our implementation messages. Thus,
to implement Example 1, the code for the election officer E explicitly forwards
evidence of receiving c1 twice in order to convinceR that it can send the result r1.

As a preliminary step, we enrich processes with histories of prior communica-
tions. Then, we equip these processes with a refined semantics, with rules that

522 J. Planul, R. Corin, and C. Fournet

define how histories are collected and communicated. Finally, the presence of
histories allows us to constrain each local implementation by prescribing what
messages may be sent and received at runtime. (Our history-tracking implemen-
tation is related to locality semantics for CCS; for instance Boudol and Castel-
lani [2] use proved labelled transitions that keep track of causality by recording
where each action occurs in a process.)

Histories are lists of messages, defined by the following grammar:

H ::= Histories
ε empty history
H.M recorded receive

M ::= Messages
(H i a j �)

Each messageH i a j � records an action a between sender i and receiver j (where
i and j are indexes of processes in the global specification), with a history H
that provides evidence that action a is indeed enabled. In addition, � denotes a
unique nonce, freshly generated for this message, used to avoid replays.

The syntax of processes extended with histories is as follows:

T ::= Threads
0 inert thread
a asynchronous send
a.P asynchronous receive
P + P ′ choice
!P replication

R ::= History-tracking processes
(T0 : H0 |T1 : H1 | . . . |Tk−1 : Hk−1)

parallel composition of history-tracking threads
R̃ ::= Global history-tracking specifications

(R0, R1, . . . , Rn−1) tuple of n history-tracking processes

where P ranges over the local processes of Section 2. Our specification processes
are split into different parallel components, each with its own history. For exam-
ple, when P = a.b | c receives a, this receive enables action b (and is tracked in
its history) but is independent from action c. So, a thread T is a (specification)
process without parallel composition at top-level, a history-tracking process R
is a collection of threads in parallel, each with its history, and a global history-
tracking specification R̃ is a tuple of n history-tracking processes.

The function Ths(P : H) normalizes the process P into a parallel composition
of threads, each annotated with the same history H . It is recursively defined from
Ths(P0 |P1 : H) = Ths(P0 : H) |Ths(P1 : H). Further, the function [[·]]0 normal-
izes a global specification, with an initial, empty history. Conversely, since any
thread is a local process, a history-tracking process (resp. a global history speci-
fication) stripped of its histories is a local process (resp. a global specification).

Semantics of history specifications (−→h and −→H). We define labelled transitions
for history specifications. We write R

γ−→h R′ when R can evolve to R′ with
action γ. It corresponds to an input or an output on one of its threads.

Secure Enforcement for Global Process Specifications 523

(SendH)

T
a−→P P

T : H
H i a j
−−−−−−→h P : H

(ReceiveH)

T
a−→P P

T : H ′ H i a j
−−−−−−→h P : H ′.(H i a j �)

(ParH)

R
γ−→h R

′

R |R′′ γ−→h R
′ |R′′

Rule (ReceiveH) records the message in the thread history. In contrast, rule
(SendH) does not record the message, since our semantics is asynchronous. Rule
(ParH) is a rule for parallel contexts; we omit the symmetric rule.

We write R̃
M−→H R̃′ to represent communications between history-tracking

specifications, with a single global rule:

Ri
H i a j
−−−−−−→h R

◦
i (Rk = R◦

k)k �=i

R◦
j

H i a j
−−−−−−→h R
′
j (R◦

k = R′
k)k �=j H i a j �
∈ R̃

R̃
H i a j
−−−−−−→H R̃′

A communication step consists of a send (at machine i) followed by a receive
(at machine j) for local history-tracking processes (possibly with i = j). The
condition H i a j �
∈ R̃ excludes multiple usage of the same message.

Example 6. Consider a global specification with three processes a, a.b and b; the
following is a trace of its global history specification.

[[(a, a.b, b)]]0
ε 0 a 1−−−−−→H (0 : ε, b : ε 0 a 1, b : ε)

(ε 0 a 1)1 b 2−−−−−−−−−→H (0 : ε,0 : ε 0 a 1, 0 : (ε 0 a 1)1 b 2)

Local semantics (−→i). We are now ready to define distributed implementation
transitions locally, for each machine i ∈ 0..n− 1, written Ri

M−→i R
′
i:

[[P̃]]0
ψ−→H R̃′ H i a j �
∈ R̃′

R′
i

H i a j
−−−−−−→h R
◦
i (R′

k = R◦
k)k �=i

R◦
j

H i a j
−−−−−−→h R
′′
j (R◦

k = R′′
k)k �=j

R′
i

H i a j
−−−−−−→i R
◦
i

[[P̃]]0
ψ−→H R̃′ H i a j �
∈ R̃′

R′
i

H i a j
−−−−−−→h R
◦
i (R′

k = R◦
k)k �=i

R◦
j

H i a j
−−−−−−→h R
′′
j (R◦

k = R′′
k)k �=j

R◦
j

H i a j
−−−−−−→j R
′′
j

These rules (with identical premises) prescribe that a distributed implementation
can send or receive a message when the corresponding communication is enabled
in some global history specification state that is reachable from the initial history
specification process [[P̃]]0.

A naive concrete implementation may enumerate all possible runs at every
communication. A more efficient implementation would cache this computation
and perform incremental checks, or perform this computation at compile-time.
(See [3,1] for optimized implementations in the sequential case.)

524 J. Planul, R. Corin, and C. Fournet

Distributed implementation. We finally define our distributed implementation,
with Q̃ = [[P̃]]0 as initial implementation processes, with (

γ−→i)i defined above as
transition relations between implementation processes, and with capabilities !C
for the adversary defined by

M,M !C M
(M !C Mm)m<k i
∈ C
M !C M0. · · · .Mk−1 i a j �

The first rule states that the adversary can eavesdrop messages on the network.
The second rule states that the adversary can build any message sent by a dis-
honest participant, with a history recursively composed of sequence of messages
previously obtained. Conversely, the adversary cannot forge any message from a
compliant machine (i.e.a machine i ∈ C). This can be cryptographically enforced
by authenticating messages and countersigning their histories. Our implementa-
tion is adequate, in particular a dishonest participant can behave as an honest
participant.

(The global transition rules −→I for our distributed implementation follow from
the general definitions of Section 3.)

Soundness and completeness. Our implementation is complete, that is, it can
simulate any specification trace:

Theorem 2 (Completeness). 〈[[P̃]]0, −̃→,!C〉 is a complete implementation of P̃ .

Our main result states that our implementation is also sound when applied to
well-typed specifications ; as explained in Section 5, many other specifications
cannot be safely implemented.

Theorem 3 (Soundness by Typing). If P̃ is well-typed, then 〈[[P̃]]0, −̃→,!C〉
is sound.

7 Sequential Multiparty Sessions (Application)

We consider secure implementations of sequential multiparty sessions, as defined
by Corin et al. [3]. Their sessions are a special case of process specifications. We
recall their grammar, which defines a session as a parallel composition of role
processes, each process specifying the local actions for one role of the session.

τ ::= Payload types
int | string base types

p ::= Role processes
!(fi : τ̃i ; pi)i<k send
?(fi : τ̃i ; pi)i<k receive
µχ.p recursion declaration
χ recursion
0 end

S ::= Sequential session (with n roles)
(ri = pi)i∈0..n−1

Secure Enforcement for Global Process Specifications 525

Their role processes must alternate between send and receive actions, and
moreover only the initiator role process (p0) begins with a send. Thus, there is
always at most one role that can send the next message, as expected of a sequen-
tial session. From a more global viewpoint, a session is represented as a directed
graph, whose nodes represent roles and whose arrows are indexed by unique com-
munication labels. The paths in the graph correspond to the global execution
traces for the session. Given an additional implementability property on these
paths, named “no blind fork”, they construct a cryptographic implementation
that guarantees session integrity, even for sessions with dishonest participants,
a property closely related to Soundness (Definition 3).

To illustrate our approach, we show that our generic implementation directly
applies to every session that they implement (although with less compact mes-
sage formats). We translate their role processes into our syntax as follows:

[[p]] =
∑

i<k(fi) when p = !(fi : τ̃i ; pi)i<k

|
∏

(?(fi:τ̃i ; pi)i<k)∈p, i<k, pi=!(f ′
j :τ̃

′
j ; p′

j)j<l
!fi.

∑
j<l(f

′
j)

|
∏

(?(fi:τ̃i ; pi)i<k)∈p, i<k, pi=χ, (µχ.!(fj :τ̃j ; pj)j<l)∈p!fi.
∑

j<l(f
′
j)

[[(ri = pi)i∈0..n−1]] = ([[pi]])i∈0..n−1

Each node in a session graph has an input arrow and one or several output
arrows, representing an internal choice between outputs. Accordingly, our trans-
lation associates to each node a replicated input (using q ∈ p to denote any
syntactic subprocess q of p) following by a choice between asynchronous out-
puts. In addition, the initial role for the session is an internal choice between
outputs, translated to an internal choice of asynchronous outputs. By induction
on paths in the graph, we can check that our translation behaves as the initial
sequential session. (The sequentiality of the session follows from the presence of
a single choice between outputs in every reachable state, so we can replicate all
inputs, whether they occur in recursive loops or not.)

For any given sequential session, typability of the translation (Definition 5)
coincides with the “no blind fork” property [3]. Hence, every sequential session
supported by their implementation is typable, and can also be implemented in
our general framework:

Theorem 4. The history-tracking implementation of the translation of a se-
quential session that respects the “no blind fork” property is sound and complete.

8 Conclusions
We have given an account of distributed specifications and their implementa-
tions in three steps: (1) a global specification language; (2) a distributed im-
plementation semantics; (3) correctness and completeness results, depending on
an implementability condition. In combination, this yields a general framework
for designing and verifying n-ary communication abstractions with strong, guar-
anteed security properties. (In comparison, the work on sequential multiparty
sessions [3] can now be seen as a specialized cryptographic implementation for
the sequential case.)

526 J. Planul, R. Corin, and C. Fournet

Future work. Each of the above contributions may be improved. First, the spec-
ification language may be extended, for example by accounting for the message
contents and stating additional security goals (secrecy, causality, commitment)
or by adding mobile channel names. Second, the implementation semantics may
be further refined. Although we believe our implementation approach is fully
general, its performance can clearly be improved, for example by avoiding re-
dundant communications of history once it is either irrelevant or common knowl-
edge. Also, even if the cryptographic protection mechanisms are standard, their
efficient implementation remains delicate. More experimentally, we have not pro-
totyped an actual session compiler for our implementation scheme, and it remains
unclear how to deal efficiently e.g.with infinite numbers of states. This leads us
to our third point, possible improvement on implementability conditions: typa-
bility only provides a sufficient condition; we have built an efficient (quadratic)
typability verifier, and our only examples of specifications that are sound but not
typable can be easily rewritten into typable ones, but still it would be interesting
to address this gap.

Acknowledgements. Karthikeyan Bhargavan, Pierre-Malo Deniélou, Gurvan le
Guernic, Cosimo Laneve, James Leifer, Jean-Jacques Lévy, Eugen Zălinescu,
and the anonymous reviewers provided useful comments on this work.

References

1. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: 22nd IEEE Computer
Security Foundations Symposium (CSF 2009) (July 2009)

2. Boudol, G., Castellani, I.: Flow models of distributed computations: three equivalent
semantics for CCS. Information and Computation 114(2), 247–314 (1994)

3. Corin, R., Deniélou, P.-M., Fournet, C., Bhargavan, K., Leifer, J.J.: A secure com-
piler for session abstractions. Journal of Computer Security (Special issue for CSF
2007) 16(5), 573–636 (2008)

4. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

5. Gay, S.J., Hole, M.: Types and subtypes for client-server interactions. In:
Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 74–90. Springer, Heidelberg
(1999)

6. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998.
LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

7. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, pp. 273–284. ACM, New York (2008)

8. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Englewood Cliffs
(1989)

On Convergence of Concurrent Systems under
Regular Interactions

Pavithra Prabhakar, Sayan Mitra, and Mahesh Viswanathan

University of Illinois, Urbana-Champaign

Abstract. Convergence is often the key liveness property for distributed
systems that interact with physical processes. Techniques for proving
convergence (asymptotic stability) have been extensively studied by con-
trol theorists. In particular, for the asynchronous model of computa-
tion Tsitsiklis [8] provides a set of necessary and sufficient conditions
for proving stability and convergence under the assumption that each
asynchronous operator (state transition function) is applied infinitely
often. This paper generalize these results to obtain necessary and suffi-
cient conditions for systems where the infinite sequence of operators is
a member of an arbitrary omega regular language. This enables us to
apply our theory to distributed systems with changing communication
topology, node failures and joins. We illustrate an application of the new
set of conditions in verifying the convergence of a simple (continuous)
consensus protocol.

1 Introduction

Convergence or asymptotic stability is a key requirement of many concurrent
and distributed systems that interact with physical processes. Roughly, a sys-
tem A converges to a target state x∗ if the state of A along infinite executions
get closer and closer to x∗, with respect to some topology on the state space X ,
as time goes to infinity. While termination has been the defacto liveness property
of interest for software systems, the more general convergence property becomes
relevant for systems with both software and physical components. Examples of
such systems include algorithms for mobile robots for forming a spatial pat-
tern, synchronization of coupled oscillators, distributed control algorithms over
switching networks [7](see for e.g. [4], [1], [2] and [6]). Convergence may indeed
be viewed as a liveness property quantified over a (possibly infinite) sequence of
shrinking predicates containing the target state.

Necessary and sufficient conditions for proving convergence of distributed sys-
tems which broadly fall under the category of continuous consensus have been
studied extensively by control theorists for over three decades [7]. Specifically,
two types of models of distributed computation have been considered. In the
synchronous model, the state of the entire system x ∈ X evolves according to
some difference equation: xk+1 = f(xk) or differential equation ẋ = f(x), where
f : X → X . Convergence conditions in this case are derived based on the eigen-
values of f . We refer the reader to [7] for a survey of the results of this type. In

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 527–541, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

528 P. Prabhakar, S. Mitra, and M. Viswanathan

the asynchronous model, the evolution of the system is specified by a collection
of transition functions {Tk}, where each Tk : X → X , and ans execution of the
system is obtained by applying an infinite sequence σ of T ′

ks to the starting state.
In [8], Tsitsiklis has identified a general set of necessary and sufficient conditions
for the convergence of executions that satisfy a particular fairness assumption.

Tsitsiklis’ condition, informally, is as follows. He requires one to identify a
collection of shrinking neighborhoods, indexed by a totally ordered index set,
that converges to x∗ and satisfies the following properties. First the neighbor-
hoods are required to be invariant, i.e., for any neighborhood U , Tk(x) ∈ U for
every x ∈ U and every Tk. Second, for every neighborhood U , there must be a
transition TU that takes U to a strictly smaller neighborhood. Tsitsiklis shows
that when such a neighborhood “system” exists, the system can be proved to
converge to x∗ in every execution where each transition Tk is applied infinitely
often. Moreover, he shows that the convergence of a system also implies the
existence of such a neighborhood system.

In this paper, we generalize Tsitsiklis’ observations as follows. We identify
necessary and sufficient conditions for convergence under executions described
by an arbitrary ω-regular language, instead of focusing on a particular set of ex-
ecutions that satisfy a specific fairness condition. While this is a philosophically
natural extension of Tsitsiklis’ investigations, it allows us to model a variety
of asynchronous behavior, such as ordered execution of certain events, com-
munication patterns between distributed agents over a dynamically evolving or
unreliable communication network, and distributed network with nodes failing
and recovering, that are not captured by Tsitsiklis’ original formulation.

Our necessary and sufficient condition for convergence is remarkably similar to
Tsitsiklis’ condition. Let us assume that A is a Müller automaton that describes
the set of valid executions. Once again, we require a collection of shrinking
neighborhoods, indexed by a totally ordered index set, that converges to x∗. We
also require these neighborhoods to be “invariant”. However, since every finite
sequence of operations need not be the prefix of a valid execution, our definition
of invariance accounts for the state of the automaton A. Next, like Tsitsiklis, we
have a condition that ensures “progress towards” x∗ is eventually made. This
is captured by our insight that edges crossing “cuts” in accepting cycles of A
are traversed infinitely often, and so for every neighborhood set U , there must
be some cut that ensures progress. The proof showing that these conditions
are sufficient, is very similar to Tsitsiklis’ proof. To demonstrate the necessity
of these condition for convergence is more challenging primarily because every
finite sequence of operations need not be the prefix of a valid execution.

We conclude the paper by demonstrating the application of the new set of
conditions to prove the convergence of a simple continuous consensus algorithm.
We consider a variety of scenarios ranging from a dynamically evolving commu-
nication network, to a situation where nodes in the distributed system can fail
and recover.

Related Work. Tsitsiklis’ result for the asynchronous model have been extended
in several ways. For example, in [7] sufficient conditions have been given for

On Convergence of Concurrent Systems under Regular Interactions 529

proving convergence of distributed algorithms in which the communication graph
of the participating agents is dynamic, but never permanently partitioned. More
recently, in [5] sufficient conditions for convergence have been derived for par-
tially synchronous systems where messages may be lost or delayed by some con-
stant but unknown time. All of these constrained executions can be modelled
as ω-regular languages, and therefore the results of this paper can be seen as a
generalization of these observations.

2 Motivating Example

We model the behavior of a distributed system where agents starting at arbitrary
positions on a line communicate based on an underlying dynamic graph to move
closer to each other. In addition they can fail and join the system a finite number
of times. However when they join they start at the same position in which they
originally started. We show that the agents finally converge to a common point.
We describe the protocol formally below.

Let N ∈ N denote the maximum number of agents that can ever be present in
the system. Each agent has a unique identifier from the set [N] = {1, 2, · · · , N}.
We denote the state variable which stores the position of agent i, i ∈ [N], by
xi, and it takes values in R ∪ {⊥}. For any i ∈ [N], agent i is said to be failed
if xi = ⊥; otherwise i is alive. We denote the collective states of all agents by
vectors x, y etc.

Let G = (V,E) be an undirected graph with V = [N] and E ⊆ V × V . Each
vertex in the graph corresponds to an agent in the system. G is the underlying
graph that remains fixed throughout our discussion. At a given point in the
execution of the system, the actual communication graph G′ is the subgraph of
G restricted to the alive nodes.

Let us concentrate on a particular initial state (G, c) where c = (c1, · · · , cN).
Let the current configuration of the system be (H,x), where H = (VH , EH).
There are three kinds of operators which can modify the configuration, namely,
join , fail and move, and correspond to a node joining the system, a node failing
and two nodes communicating to move to their average value.

We say that a configuration has reached a fixpoint if all the unfailed nodes
have the same value, that is, (H,x) is a fixpoint if for every i, j ∈ [N], i
= j,
xi
= ⊥ and xj
= ⊥ implies xi = xj . When (H,x) is a fixpoint, for all i, j ∈ [N],
fail j((H,x)) = (H,x), join j((H,x)) = (H,x) and movei,j((H,x)) = (H,x).
When (H,x) is not a fixpoint,

– fail j((H,x)) = (H ′, x′) where x′j = ⊥ and x′i = xi for i
= j and H ′ =
(V ′

H , E′
H) where V ′

H = VH − {j} and E′
H = E ∩ (V ′

H × V ′
H).

– joinj((H,x)) = (H ′, x′) where x′j = cj and x′i = xi for i
= j and H ′ =
(V ′

H , E′
H) where V ′

H = VH ∪ {j} and E′
H = E ∩ (V ′

H × V ′
H).

– movei,j((H,x)) = (H,x′) where x′ = x if either xi = ⊥ or xj = ⊥, otherwise
x′i = x′j = (xi + xj)/2 and x′k = xk for k
∈ {i, j}.

We note that movei,j is defined only if (i, j) ∈ E, that is, communication
between (i, j) is allowed. We want to show that an infinite sequence of operations

530 P. Prabhakar, S. Mitra, and M. Viswanathan

converges to a point if it contains a finite number of fail j and join j operations
and the set of edges (i, j) of E such that movei,j occurs infinitely often forms
a connected graph. We will see later that this set of sequences is an ω-regular
language. We will develop sufficiency conditions for proving such properties,
and apply it to this example. Several generalizations of this type of consensus
protocol has been presented in the literature (see for e.g. [3]).

3 Preliminaries

3.1 Directed and Undirected Graphs

A labelled directed graph (LDG) G is a triple (V,E,Σ), where V is a finite set
of vertices, E ⊆ V ×Σ × V is a set of edges and Σ is a finite set of labels. Let
G = (V,E,Σ) be a LDG . Given V ′ ⊆ V , the restriction of G to V ′ is given by
the LDG G[V ′] = (V ′, E′, Σ) where E′ ⊆ E is the set {(u, a, v) ∈ E |u, v ∈ V ′}.
Given E′ ⊆ E, G − E′ = (V,E − E′, Σ). A path in G is a sequence of edges
e1 · · · en such that ei = (qi, a, qi+1) for all i. We say that qn+1 is reachable from
q1. We say that G is strongly connected if for every u, v ∈ V , v is reachable from
u. A set V ′ ⊆ V is strongly connected in G if G[V] is strongly connected and is
maximally strongly connected if in addition for all V ′′ such that V ′ ⊂ V ′′, G[V ′′]
is not strongly connected.

An undirected graph G is a pair (V,E) where E ⊆ V × V is a symmetric
relation. Whenever we refer to a set of edges of an undirected graph it is assumed
to be symmetric. A path in G and reachability of a vertex is defined as before.
We say that a graph G is connected if every vertex is reachable from every other
vertex. A cut in a connected graph G is a non-empty set of edges E such that
G−E is not connected. A subgraph of G = (V,E) is a graph G′ = (V ′, E′) such
that V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′).

3.2 Stability and Convergence

Let X be a set and Tk : X → X for 1 ≤ k ≤ K be a finite collection of
functions (“operators”). Let Xfp ⊆ X be a set of common fixpoints, that is,
Tk(x) = x for all 1 ≤ k ≤ K and x ∈ Xfp . We will denote an infinite sequence
of operators by σ. Let σ = a1a2a3 · · · , then σ(i) denotes the i-th element of
σ namely ai, and Pref (σ, i) denotes the finite sequence consisting of the first i
elements, namely, a1 · · · ai. Given an x ∈ X , we denote the element obtained by
applying the first n operators of σ to x in order by σ(x, n). Formally σ(x, 0) = x,
σ(x, n) = σ(n)(σ(x, n − 1)), for n ≥ 1.

Next we want to define the notion of convergence. We say that starting from
x a sequence σ converges to some point in Xfp if it moves closer and closer to Xfp

along σ. To make this notion precise we need to define a neighborhood system
around Xfp .

Definition 1. An X -neighborhood system U around Xfp is a collection of subsets
of X such that:

On Convergence of Concurrent Systems under Regular Interactions 531

Property 1. Xfp ⊆ U , ∀U ∈ U .

Property 2. For any y ∈ X such that y
∈ Xfp , there exists some U ∈ U such
that y
∈ U .

Property 3. U is closed under finite intersections.

Property 4. U is closed under unions.

We say that U has a countable base if there exists a sequence {Un}∞n=1 of elements
of U such that for every U ∈ U there exists some n such that Un ⊆ U .

We say that a sequence {xn}∞n=1 of elements of X converges to Xfp with
respect to U if for every U ∈ U there exists a positive integer N such that
xn ∈ U , ∀n ≥ N .

We want to converge not with respect to a single sequence but a set of se-
quences. Let us fix a set of operators Σ = {T1, · · · , Tk}. An infinite sequence
of operators from Σ will also be called an infinite word. We will denote the set
of all infinite words over Σ by Σω. We will call a subset L of Σω a language
over Σ.

Definition 2. Stability and convergence. Given a neighborhood system U and
L ⊆ Σω, we say that L is stable with respect to U if ∀U ∈ U , ∃V ∈ U such that
∀x ∈ X , ∀σ ∈ L, if there exists n0 ∈ N such that σ(x, n0) ∈ V then ∀n ≥ n0,
σ(x, n) ∈ U .

We say that L converges to Xfp with respect to U if {σ(x, n)}∞n=1 converges to
Xfp for all x ∈ X and σ ∈ L.

Remark 1. Our definition of convergence is analogous to asymptotic stability
used is control theory. However our definition of stability is slightly stronger
than the classical notion of Lyapunov stability in that instead of requiring that
for every U there exists a V such that any trajectory starting in V remains within
U , we require that if a trajectory starting anywhere enters V , then we remain
within U . This stronger condition is equivalent to the weaker condition, when
the L we consider is a suffix closed language.

Example 1. Let us now try to formalize the convergence of the Example in Sec-
tion 2. Let the agents have identifiers from [N] and G = (V,E) be the underlying
undirected graph which changes when nodes fail and join. The state space X is
the set of all pairs (H,x) where H is a subgraph of G restricted to the nodes i
which have not failed. X = {(H,x) |H = (VH , EH), VH = {i |xi
= ⊥}, EH =
E ∩ (VH × VH)}. We take Xfp to be the set of all fixpoints, which are config-
urations in which all the unfailed nodes have the same value. Xfp = {(H,x) ∈
X | ∀i, j, (xi
= ⊥, xj
= ⊥) ⇒ xi = xj}.

Next we need to define a neighborhood system which satisfies the properties
1, 2, 3 and 4. Before defining the neighborhood, we need to set some notation.
Let β(n) = (1 − 1/(2n3) when n > 0 and β(0) = 0. Let alive(x) is the size
of the set {i |xi
= ⊥}. We define a function f : (R ∪ {⊥})N → R≥0 given by
f(x) =

∑
j:xj �=⊥(xj −M)2, where M = 1

alive(x)

∑
j:xj �=⊥ xj when alive(x)
= 0,

532 P. Prabhakar, S. Mitra, and M. Viswanathan

otherwise f(x) = 0. Let I be the set of all integers. We can now define the
neighborhood as:

U = {Ui}i∈I,where Ui = {(H,x) ∈ X | f(x) ≤ β(alive(x))i}.

U is a neighborhood system. To see the Property 1 is satisfied, observe that for
all (H,x) ∈ Xfp, f(x) = 0 and β(alive(x))i ≥ 0. Hence Xfp ⊆ Ui for all i. Given
any (H,x)
∈ Xfp , f(x) > 0. And β(n)i → 0 as i → ∞ for n ≥ 0. Therefore
(H,x)
∈ Ui for some i. In particular we have Xfp ⊂ · · · ⊂ U3 ⊂ U2 ⊂ U1 ⊂ U0 ⊂
U−1 ⊂ U−2 ⊂ U−3 ⊂ · · · ⊂ X , and

⋂
i∈I Ui = Xfp. Clearly Properties 3 and 4

are satisfied.
We want to show that starting from any (H,x) ∈ X , we converge to Xfp

on any sequence of operations of join , fail and move with finite number of join
and fail operations and such that the moves form a connected component of
the alive nodes. Let join = {joinj | j ∈ [N]}, fail = {fail j | j ∈ [N]} and
move = {movei,j | (i, j) ∈ E}. Formally Σ = join ∪ fail ∪ move. We can define
a function Nodes−Alive : Σ∗ → 2[N] which takes a finite sequence of operators
and returns the set of nodes alive after applying the operators in the sequence.
We will use . for concatenation of two finite sequences or for concatenation
of an infinite sequence to the end of a finite sequence. Nodes−Alive(ε) = [N].
Nodes−Alive(σ.T) = Nodes−Alive(σ) if T ∈ move, = Nodes−Alive(σ) − {i}
if T = fail i and = Nodes−Alive(σ) ∪ {i} if T = join i. Lconverge = {σ ∈
Σω | ∃σ1 ∈ Σ∗, σ2 ∈ moveω, σ = σ1σ2, Gσ1,σ2 is connected}, where Gσ1,σ2 =
(Nodes−Alive(σ1), {(i, j) |movei,j ∈ inf(σ2) or movej,i ∈ inf(σ2)}).

Remark 2. This system is not stable even in the classical sense because starting
in any configuration, executing joinj, j = 1, · · · , N , will result in the initial
configuration. So given a U which is sufficiently small, for every V , there exists
an x ∈ V and σ such that σ takes x out of U . However we will prove the
convergence using our sufficiency results.

3.3 Muller Automata and ω-Regular Languages

A Muller automaton A over an alphabet Σ is a tuple (Q , qinit , δ, {F1, · · · , Fk})
where:

– Q is a finite set of states.
– qinit is the initial state.
– δ ⊆ Q ×Σ × Q is the transition relation (or the set of edges).
– Fi ⊆ Q for 1 ≤ i ≤ k are accepting sets.

An automaton A defines a language over Σ. Given an infinite sequence sequence
τ = τ1τ2 · · · , we define inf(τ) = {τi | {j | τj = τi} is an infinite set }. A run of A
on σ ∈ Σω is an infinite sequence of states ρ = q1q2 · · · such that q1 = qinit and
(qi, σ(i), qi+1) ∈ δ for i ≥ 1. A run ρ of A on σ is accepting if inf(ρ) = Fi for
some i. An infinite word σ ∈ Σω is accepted by A if there exists a run of A on σ
which is accepting. The language accepted by A, denoted Lang(A) is the set of

On Convergence of Concurrent Systems under Regular Interactions 533

all infinite words accepted by A. A language L ⊆ Σω is ω-regular if there exists
a Muller automaton whose language is L. We associate a labelled directed graph
with A denote Graph(A) and is defined as Graph(A) = (Q , δ, Σ). Henceforth
when we refer to a path of an automaton or a state being reachable, we refer to
the underlying graph.

We call a Muller automaton A = (Q , qinit , δ, {F1, · · · , Fk}) simple if:

– Every state in Q is reachable from qinit , and every edge e ∈ δ is useful, that
is, there exists σ ∈ Lang(A) and an accepting run ρ of A on σ such that
e = (ρ(i), σ(i), ρ(i + 1)) for some i.

– Graph(A)[Fi] is maximally strongly connected in Graph(A) for all i.
– All edges going out of Fi go into Fi for all i, that is, (q, a, q′) ∈ δ and q ∈ Fi

implies q′ ∈ Fi.

The next proposition states that the class of languages accepted by simple Muller
automata is exactly the class of ω-regular languages.

Proposition 1. For every Muller automaton A, there exists a simple Muller
automaton B such that Lang(A) = Lang(B). Further B can be constructed in
time polynomial in the size of A.

Proposition 2. Given a simple Muller automaton A and a set of edges E ⊆ δ
such that (Graph(A)−E)[Fi] is not strongly connected for every i, an accepting
run ρ of A on any σ ∈ Σω has infinitely many indices i such that (ρ(i), σ(i),
ρ(i+ 1)) ∈ E.

Example 1. The language Lconverge of the Example in section 2 is ω-regular. It
is accepted by the following automaton Aconverge = (Q , qinit , δ,F). Q consists of
two types of states: the first set Q1 = 2[N] stores the set of alive nodes, the second
set Q2 = {(S,ES , e) |S ⊆ [N], (S,ES) is a connected subgraph of G, e ∈ ES}.
qinit = [N]. F = {FS,ES | (S,ES , e) ∈ Q2}, where FS,ES = {(S,ES , e) ∈ Q}. All
nodes in FS,ES ensure that eventually the set of alive nodes will be S and those
which will communicate infinitely often will be those in ES . δ consists of three
sets of transition:

– δ1 = {(S, T, S ∪ {j}) |S ∈ Q1, T ∈ join} ∪ {(S, T, S − {j}) |S ∈ Q1, T ∈
fail} ∪ {(S, T, S) |S ∈ Q1, T ∈ move}.

– δ2 = {((S,ES , e), T, (S,ES , e
′)) | e = (i, j), T = movei,j , e

′ ∈ ES − {e}}.
– δ3 = {(S, T, (S,ES , e)) |T ∈ move}.

3.4 A, X -Neighborhood System

For the rest of the paper, let us fix some notation. Let X be a set and Σ =
{T1, · · · , Tk} a set of operators on X . Let Xfp be a non-empty set of common
fixpoints of X with respect to the operators in Σ, and U a neighborhood system
around Xfp . Let A be a Muller automaton on Σ. Let Y = Q ×X .

We will define some concepts related to Y. Given Y ⊆ Y and q ∈ Q ,
Proj q(Y) = {x | (q, x) ∈ Y } and Proj (Y) = ∪q∈QProj q(Y). Given an edge

534 P. Prabhakar, S. Mitra, and M. Viswanathan

e = (q, Ti, q
′) ∈ δ, funce((q, x)) = (q′, Ti(x)). Given Y ⊆ Y, funce(Y) =

{q′} × Ti(Proj q(Y)). A set Y ⊆ Y is said to be A-invariant if for all e ∈ δ,
funce(Y) ⊆ Y . We say that a state y ∈ Y is reachable if there exists an x ∈ X ,
a σ ∈ Lang(A) and a run ρ of A on σ such that y = (ρ(i), σ(x, i − 1)) for some
i. We say that y is reached from x using w = Pref (σ, i− 1). We will denote the
set of all reachable states of Y by Reachable(Y).

Let Yfp = Reachable(Q × Xfp). Note that Yfp is an A-invariant set. A A,X -
neighborhood system around Xfp is a Q × X -neighborhood system W around
Yfp . When X is clear from the context we will drop the X and call it an A-
neighborhood system. W is said to be finer than U , if for every U ∈ U , there
exists a W ∈ W such that Proj (W) ⊆ U . U is said to be finer than an W , if for
every W ∈ W , there exists a U ∈ U such that W contains Reachable(Q × U).
U and W are said to be equivalent, if U is finer than W and W is finer than U .
An A,X -neighborhood system W is said to be A-invariant if every W ∈ W is
A-invariant.

Proposition 3. Let W be an A-neighborhood system equivalent to U such that
every W ∈ W is a subset of Reachable(Q ×X). Then U has a countable base if
and only if W has a countable base.

Proof. Let {Un}∞n=1 be a countable base for U . Let W ∈ W . Then there exists
U ∈ U such that Reachable(Q × U) ⊆ W since U is finer than W . There exists
Un ⊆ U by the definition of countable base. Also there exists Wn such that
Wn ⊆ Q × Un since W is finer than U . Since Wn ⊆ Reachable(Q × X) by
assumption, we have Wn ⊆ Reachable(Q × Un). Therefore Wn ⊆ W . {Wn}∞n=1
is a countable base for W .

Similarly let {Wn}∞n=1 be a countable base for W . Let U ∈ U . Then there ex-
ists W ∈ W such that Proj (W) ⊆ U , or there exists Wn such that Proj (Wn) ⊆
U . Also there exists Un ∈ U such that Reachable(Q × Un) ⊆ Wn. Hence
Proj (Reachable(Q × Un)) ⊆ U , or Un ⊆ U . {Un}∞n=1 is a countable base
for U . "#

4 Stability

From now on we will assume that A is a simple Muller automaton.
The following result generalizes the result of Tsitsiklis [8].

Theorem 1. The following are equivalent.

1. Lang(A) is stable with respect to an X -neighborhood system U around Xfp.
2. There exists an A,X -invariant neighborhood system W around Reachable

(Q × Xfp) which is equivalent to U .

Proof. The proof is along the lines of that given in [8]. Let Lang(A) = L.

(1 ⇒ 2): We assume that L is stable with respect to U and we need to con-
struct an A-invariant neighborhood system W of subsets of Y which is equivalent
to U .

On Convergence of Concurrent Systems under Regular Interactions 535

We do this as follows. Given U ∈ U , we define WU as the union of all A-
invariant subsets of U ′ = Reachable(Q×U). Note that Yfp = Reachable(Q×Xfp)
is an A-invariant subset of U ′, which shows that WU is nonempty for all U ∈ U .
Also WU is the largest A-invariant subset of U ′. Let W ′ = {WU : U ∈ U} and
let W be the closure of W ′ under finite intersections and unions.

W is a neighborhood system. The first property is satisfied since Q×Xfp ⊆ WU

for all U implies Q × Xfp ⊆ W for all W ∈ W . The sets in W are closed under
finite intersections and arbitrary union by definition. Let y = (q, x) ∈ Y − Yfp .
If y is not reachable then it does not belong to any WU . Otherwise x
∈ Xfp ,
and therefore x
∈ U for some U ∈ U . Therefore y
∈ WU . Therefore for every
y ∈ Y − Yfp , there exists W ∈ W such that y
∈ W .

W is A-invariant, since WU are A-invariant and finite intersections and arbi-
trary unions of A-invariant sets are A-invariant.

W is equivalent to U . For every U ∈ U , there exists WU ∈ W such that
WU ⊆ Q × U , hence W is finer than U . To show that U is finer than W , it is
enough to show that U is finer than W ′, because the sets in U are also closed
under finite intersections and arbitrary unions. Let W ∈ W ′, then WU = W for
some U ∈ U . Using the fact that L is stable ∃V ∈ U such that ∀x ∈ X , ∀σ ∈ L,
if there exists n0 ∈ N such that σ(x, n0) ∈ V then ∀n ≥ n0, σ(x, n) ∈ U . Define
V ′ = {y | y is reached from x ∈ X using Pref (σ, j) for some σ ∈ L and σ(x, i) ∈ V
for some i ≤ j}. In particular, V ′ contains Reachable(Q ×V). Note that V ′ is an
A-invariant subset of U ′ (here we use that fact that every edge is useful). Hence
V ′ ⊆ WU . Therefore there exists V ∈ U such that Reachable(Q × V) ⊆ W .

(2 ⇒ 1): Given any U ∈ U , there exists some W ∈ W such that Proj (W) ⊆ U ,
because W is finer than U . Moreover, since U is finer than W , there exists some
V ∈ U such that V ′ = Reachable(Q ×V) is contained in W . Consider an x, n0 ∈
N and σ ∈ L such that σ(x, n0) ∈ V . Let ρ be an accepting run of A on σ. Then
(ρ(n0 + 1), σ(x, n0)) ∈ V ′ ⊆ W . Since W is A-invariant (ρ(n + 1), σ(x, n)) ∈ V ′

for all n ≥ n0. Therefore σ(x, n) ∈ Proj (W) ⊆ U for all n ≥ n0. Hence L is
stable with respect to U . "#

Remark 3. We note that the W constructed in the first part of the proof is such
that every W ∈ W is a subset of Reachable(Q ×X).

5 Convergence

In this section we present necessary and sufficient conditions for convergence of
a ω-regular language L. Let X , Xfp , Σ, U , Y and Yfp be as above. Let L be an
ω-regular language over Σ such that L = Lang(A), where A is a simple Muller
automaton.

First, we present a sufficient condition for convergence.

Condition 1. There exists a totally ordered index set I and a collection
{Xα : α ∈ I} of distinct subsets ofY containing Yfp with the following properties:

Property 1. α < β implies Xα ⊆ Xβ.

536 P. Prabhakar, S. Mitra, and M. Viswanathan

Property 2. For every U ∈ U , there exists some α ∈ I such that Proj (Xα) ⊆ U .

Property 3.
⋃

α∈I Proj qinit
(Xα) = X .

Property 4. Xα is A-invariant for all α ∈ I.

Property 5. For every α ∈ I such that Xα
= Yfp , there exists E ⊆ δ such that
for every i (Graph(A) − E)[Fi] is not strongly connected, and for every e ∈ E,
funce(Xα) ⊆

⋃
β<α Xβ.

Property 6. Every non-empty subset of I which is bounded below has a smallest
element.

Following theorem states that the above condition is sufficient for convergence.

Theorem 2. If Condition 1 holds, then L converges to Xfp with respect to U .

Proof. Let I, {Xα : α ∈ I} have the properties in Condition 1. Suppose that
we are given some U ∈ U , x0 ∈ X and σ ∈ L. We must show that σ(x0, n)
eventually enters and remains in U .

Let us fix an accepting run ρ = q1q2q3 · · · of A on σ. Let
J = {α ∈ I : ∃n such that (ρ(n), σ(x0, n− 1)) ∈ Xα}.

Lemma 1. J = I.

Proof. Since from Property 3, we have X =
⋃

α∈I Proj qinit
(Xα), there exists

some α ∈ I such that (qinit , x0) ∈ Xα. Hence J is nonempty. We consider two
cases: we first assume that J is not bounded below. Then, for every α ∈ I, there
exists a β ∈ J such that β < α. Hence for every α ∈ I, there exists some β < α
and some integer n such that (ρ(n), σ(x0, n− 1)) ∈ Xβ ⊆ Xα (Property 1). So,
every α ∈ I belongs to J , and I = J .

Let us now assume that J is bounded below. Since it is nonempty, it has a
smallest element from Property 6, denoted by β. If Xβ = Yfp , then β is also the
smallest element of I, and I = J follows. So, let us assume that Xβ
= Yfp . Then
from Property 5 there exists E ⊆ δ such that (Graph(A)−E)[Fi] is not strongly
connected, and for every e ∈ E, funce(Xβ) ⊆

⋃
γ<β Xγ . From the definition of

J , there exists some n0 such that (ρ(n0), σ(x0, n0 − 1)) ∈ Xβ and by invariance
of Xβ (Property 4), (ρ(n), σ(x0, n−1)) ∈ Xβ for all n ≥ n0. Since σ ∈ L and ρ is
an accepting run, we have an m > n0 such that (ρ(m), σ(m), ρ(m + 1)) ∈ E by
Proposition 2. Since (ρ(m), σ(x0,m− 1)) ∈ Xβ , we have (ρ(m + 1), σ(x0,m)) ∈⋃

γ<β Xγ , or (ρ(m + 1), σ(x0,m)) ∈ Xγ for some γ < β. Hence γ ∈ J , which
contradicts the assumption that β was the smallest element of J . This completes
the proof of the lemma. "#
Given U ∈ U , there exists some α ∈ I such that Proj (Xα) ⊆ U (Property 2).
Since J = I, there exists some n0 such that (ρ(n0), σ(x0, n0 − 1)) ∈ Xα. Since
funce(Xα) ⊆ Xα for all e, it follows that (ρ(n), σ(x0, n−1)) ∈ Xα for all n ≥ n0.
Or σ(x0, n−1) ∈ Proj (Xα) for all n ≥ n0. Hence σ(x0, n−1) ∈ U for all n ≥ n0,
which completes the proof. "#
Next we show that Condition 1 is a necessary condition when the system satisfies
some additional properties.

On Convergence of Concurrent Systems under Regular Interactions 537

Theorem 3. If L is stable and converges to Xfp with respect to U and if U has
a countable base, then Condition 1 holds.

Proof. Since L is stable with respect to U , we have from Theorem 1 that there
exists an A-invariant neighborhood system W which is equivalent to U . Since U
has a countable base, from Proposition 3 and Remark 3, we have that W has
a countable base as well {Wn}∞n=1. Without loss of generality we may assume
that Wn+1 ⊆ Wn for all n. (Otherwise we could define a new countable base
W ′

n =
⋂n

k=0 Wk.) Let W0 be Reachable(Q ×X).
Our proof consists of two main steps: for each n ≥ 0 we construct a nested

collection of subsets of Y which lie between Wn and Wn+1. Then we merge these
collections to get a single nested collection.

Lemma 2. Let W ′,W ′′ ∈ W such that W ′ ⊂ W ′′. Let Inv be the set of all A-
invariant subsets of W ′′ containing W ′. Then there exists a function f : Inv →
Inv and g : Inv → 2δ such that:

– For any W ∈ Inv, we have W ⊆ f (W) and if Proj qinit
(W)
= Proj qinit

(W ′′)
then f (W) ⊂ W .

– funce(f (W)) ⊆ W for all e ∈ g(W).
– (Graph(A) − g(W))[Fi] is not strongly connected for all i.

For the sake of continuity we prove continue with the proof of the theorem and
prove the lemma later.

Let In be a well-ordered set with cardinality larger than that of Y and let α0,n

be its smallest element. We apply Lemma 2 with W ′′ = Wn and W ′ = Wn+1
to obtain a function fn satisfying the properties of the lemma above. We define
a function hn : In → Inv using the following transfinite recursion: hn(α0,n) =
Wn+1, and for all α > α0,n, hn(α) = fn(

⋃
β<α hn(β)).

Notice that Wn+1 ⊆ hn(β) ⊆ hn(α) ⊆ Wn, for any α, β such that α > β, and
that if Proj qinit

(hn(β))
= Proj qinit
(Wn), then hn(β) ⊂ hn(α). Since In has cardi-

nality larger than that of Y, there exists some α ∈ In such that Proj qinit
(hn(α)) =

Proj qinit
(Wn). Let ᾱn be the smallest such α and let Īn = {α ∈ In |α < ᾱn}.

We now define I = {'} ∪ {(n, α) |α ∈ Īn, n = 0, 1, · · · } with the following
total order: (n, α) < (m,β) if either n > m or n = m and α < β, and (n, α) < '
for all n and α. Finally, let X(n,α) = hn(α) and X� = W0.

We claim that the collection {Xα |α ∈ I} satisfies all the properties of Con-
dition 1. Property 1 is satisfied because hn(β) ⊂ hn(α) for every β < α,
where β, α ∈ Īn. Property 2 follows from the fact that our Xαs include the
countable base {Wn}∞n=1 we started with and W is equivalent to U . Since
Proj qinit

(W0) = X , Property 3 is true. Property 4 holds since all the new sets
we introduce (basically in Lemma 2) are A-invariant. Again Property 5 follows
from Lemma 2, where the function g gives the set of edges E for every invari-
ant set. Finally, since every non-empty subset of a well-ordered set has a least
element, and countable concatenations of well-ordered sets is well ordered, we
satisfy 6. "#

538 P. Prabhakar, S. Mitra, and M. Viswanathan

5.1 Proof of Lemma 2

Given Y ⊆ Y and e = (q, T, q′), define Reache(Y) = {(q′, x′) | ∃(q, x) ∈ Y, x′ =
T (x)}. Given a path P in Graph(A), ReachP (S) is defined inductively as fol-
lows. If P = e ∈ δ, then ReachP (Y) = Reache(Y). Otherwise if P = P ′e,
and ReachP (Y) = Reache(ReachP ′(Y)). Given an edge e ∈ δ, PathsEnd(e) =
{P |P = P ′e}, is the set of all paths ending in e.

Given a set of edges E ⊆ δ and W ∈ W , define fE(W) = {(q, x) | ∀e ∈ E,P ∈
PathsEnd (e),ReachP ({(q, x)}) ⊆ W}. fE(W) has the following properties.

– W ⊆ fE(W): Since W is invariant, for all P ReachP (W) ⊆ W .
– fE(W) is A-invariant: Let x ∈ fE(W), and Y = fE({x}). If there exists
y ∈ Y such that y
∈ fE(W), then there exists e ∈ E and P ∈ PathsEnd (e)
such that ReachP ({y})
⊆ W . Then x
∈ fE(W), since there exists e ∈ E and
a path e′P ∈ PathsEnd(e) such that ReachP ({x})
⊆ W .

– funce(fE(W)) ⊆ W for all e ∈ E: The argument is similar to the previous.

Let E = {E ⊆ (δ∩∪i(Fi×Σ×Fi)) | (Graph(A)−E)[Fi] is not strongly connected
for every i}. Given W ∈ Inv , we claim that if Proj qinit

(W)
= Proj qinit
(W ′′), then

W ⊂ fE(W) for someE ∈ E . Suppose not. Then there exists (qinit , x0) ∈ W ′′−W
and fE(W) = W for allE ∈ E . Therefore (qinit , x0) does not belong to any fE(W).

We will construct a σ ∈ Lang(A) and an accepting run ρ of A on σ such
that (ρ(i), σ(x0, i − 1))
∈ fE(W) for all E ∈ E and i ≥ 1. This contradicts the
convergence of L as follows. There exists U ∈ U such that Z = Reach(Q ×U) ⊆
W ′, since U is finer than W . Since Z ⊆ W ′ ⊆ W = fE(W), (ρ(i), σ(x0, i−1))
∈ Z
for all i. Therefore σ(x0, i)
∈ U for all i, contradicting the convergence of L with
respect to U . Hence W ⊂ fE(W) for some E ∈ E . We set f (W) = fE(W) for
some E for which W ⊂ fE(W).

It remains to construct a σ ∈ L and ρ which satisfy the above condition.
Given a path P starting in q and a singleton set {(q, x)}, ReachP ({(q, x)}) is a
singleton. Hence we will write this as just ReachP ((q, x)).

Let E ∈ E be non-empty. Let s0 = (qinit , x0). Since s0
∈ fE(W) there exists
some P ending in an edge in E such that ReachP (s0)
∈ fE(W) = W . Let us call
this P as P1 and ReachP ((qinit , x0)) as s1. Let the last of edge of P belong to
Fi∗ × Σ × Fi∗ . Since the automaton is simple any path starting from Fi∗ will
remain within Fi∗ . We will assume |Fi∗ | ≥ 2, (a similar procedure can be used
when |Fi∗ | = 1.

The following procedure generates a sequence of Pjs:

1. Let P1 and s1 be as defined above. Initialize j to 1.
2. Let Q ′ = ∅.
3. While Q ′
= Q do:

– Add the last state of Pj to Q ′.
– Consider E = δ ∩ Q ′ ×Σ × (Q − Q ′).
– Increment j.
– Set Pj to be a path ending in E such that ReachPj (sj−1)
∈ fE(W) = W .
– Set sj = ReachPj (sj−1).

On Convergence of Concurrent Systems under Regular Interactions 539

Note that we maintain the invariant that sj−1
∈ fE(W) for some E and hence
sj−1
∈ W . Therefore there always exists a path Pj ending in E such that
ReachPj (sj−1)
∈ fE(W) = W . Let P ′ = P1P2 · · · be the sequence of edges
e1e2 · · · with ei = (qi, ai, qi+1). Define σ = a1a2 · · · and ρ = q1q2 · · · . ρ is a run
of A on σ. It is accepting because each Pj contains every state from Fi∗ at least
once, and only contains states from Fi∗ , because the automaton is simple. We
have infinitely many i such that (ρ(i), σ(x0, i− 1))
∈ fE(W) for any E or equiv-
alently (ρ(i), σ(x0, i− 1))
∈ W (They correspond to sjs). Since W is invariant,
if (ρ(i), σ(x0, i− 1)) ∈ W for some i, then (ρ(j), σ(x0, j − 1)) ∈ W for all j ≥ i,
which contradicts the previous statement. Therefore (ρ(i), σ(x0, i− 1))
∈ W for
all i.

6 An Application

In this section, we illustrate the application of our results to prove convergence
of the Example in Section 2.

We have already defined X ,Xfp ,U and Lconverge. We will prove convergence
using the simple Muller Automaton Aconverge . We will then point out how one
can prove convergence given any simple Muller automaton for Lconverge.

6.1 Properties of the Neighborhood System U
Let us define movei,j(x) = x′ as follows: If xi
= ⊥, xj
= ⊥, then x′i = x′j =
(xi + xj)/2 and x′k = xk for k
∈ {i, j}, otherwise x′ = x.

We recall the following two results from [5].

Proposition 4. f(movei,j(x)) ≤ f(x).

Let Sorted(x) from [N] → [N] be a one-one and onto function which satis-
fies for i < j, xSorted(x)(i) < xSorted(x)(j), or xSorted(x)(i) ≤ xSorted(x)(j) and
Sorted(x)(i) < Sorted(x)(j). Sorted(x)(i) will give the identifier of the agent
with the i-th smallest value and when agents have same values, the value of the
agent with the smaller identifier is considered smaller. Here ⊥ is considered to
have a value of ∞.

Proposition 5. Given any x, there exists k ∈ [N] such that xSorted(x)(k+1) −
xSorted(x)(k) >

1
alive(x)

√
f(x)

alive(x) . Given any i, j such that 1 ≤ i ≤ k and k + 1 ≤
j ≤ alive(x), f(movei′,j′(x)) ≤ β(alive(x))f(x), where i′ = Sorted(x)(i) and
j′ = Sorted(x)(j).

The above property says that if we start at some (H,x) in Ui, then there is
partition of the nodes in H , such that for all edges (i, j) which go between the
partitions, movei,j(H,x) will be in Ui+1. But we need more, we need one such
partition which will work for all elements of Ui.

Define Cut(x, k) = (A,B) where A = {Sorted(x)(i) | i ≤ k} and B =
{Sorted(x)(j) | alive(x) ≥ j ≥ k + 1}. Define Gap(x) = {Cut(x, k) | 1 ≤ k <

alive(x), xSorted(x)(k+1) − xSorted(x)(k) >
1

alive(x)

√
f(x)

alive(x)}.

540 P. Prabhakar, S. Mitra, and M. Viswanathan

Proposition 6. For all i, j ∈ [N] and x such that for all (A,B) ∈ Gap(x),
either i, j ≤ A or i, j ≥ B, we have Gap(x) ⊆ Gap(movei,j(x)).

Let {Gap(x) | (H,x) ∈ Ui − Ui+1} = {C1, · · · , Cin} such that if Ci ⊂ Cj then
i < j. Between Ui and Ui+1 we define a finite number of sets as follows. Ui,0 = Ui,
Ui,j+1 = Ui,j − {(H,x) ∈ X |Gap(x) = Cj+1} for 0 ≤ j ≤ in − 1. We define the
index set to be J = {(i, j) | 0 ≤ j ≤ in − 2} with the ordering (i, j) < (i′, j′) if
i > i′ or i = i′ and j > j′. The required sets are {Uα |α ∈ J}. This set has the
following property.

Proposition 7. For all α ∈ J , there exists C ⊆ [N] × [N] such that for all
(i, j) ∈ C and (H,x) ∈ Uα, C is a cut in H and movei,j(H,x) ∈ Uβ for some β <
α. Also, for all α ∈ J , i, j ∈ [N], (H,x) ∈ Uα, we have movei,j((H,x)) ∈ Uα.

Proof. Given α, Uα = Um,n for some m,n. Let Gap(x) = Z which is the same
for any (H,x) ∈ Uα − Uα+1 where α+ 1 = m,n+ 1 if (m,n+ 1) ∈ J , otherwise
α+1 = m+1, n. The required cut C = {(i, j) | ∃(A,B) ∈ Z, i ∈ A, j ∈ B}. Then
from Proposition 5, we have for all (i, j) ∈ C, movei,j((H,x)) ∈ Um+1,n for all
(H,x) ∈ Uα − Uα+1.

Given (H,x) ∈ Uα, if (i, j) ∈ C, movei,j(H,x) ∈ Uα from above. If (i, j)
∈ C,
then from Proposition 4 we have movei,j(H,x) ∈ Um′,n′ where m′ ≥ m and from
6, we have n′ ≥ n. Therefore movei,j((H,x)) ∈ U ′

α for some α′ ≤ α, hence also
in Uα. "#

6.2 Convergence Proof

We are now ready to define the invariant sets required to prove convergence.
Recall Aconverge = (Q , qinit , δ,F) with Q = Q1 ∪Q2 and δ = δ1 ∪ δ2 ∪ δ3 and

F = {funcS,ES
| (S,ES , e) ∈ Q2}. Let Y = Q × X , Yfp = Reachable(Q × Xfp).

The index set I = J ∪ {'}, with ' > j for all j ∈ J . For α ∈ J , Yα =
(Q2 ×Xα)∪Yfp , and Y� = Y. The index set I with the sets {Yα |α ∈ I} satisfy
all the properties of Condition 1. It is easy to see that Properties 1, 2, 3 and
6 are satisfied. Y� is clearly invariant. For α ∈ J and any edge e not in δ2,
funce(Yα) = ∅ ⊆ Yα. For α ∈ J and e = (q, a, q′) ∈ δ2, a = movei,j for some
i, j and funce(Yα) ⊆ ({q′}×movei,j(Xα))∪ (Q ×Xfp). Since movei,j(Xα) ⊆ Xα

from Proposition 7, we have that Yα is invariant. Now we show that Property
5 also holds. For Y�, we can choose E to be δ2. (Graph(A) − E)[Fi] is not
strongly connected for every i. We need to show that for all (q, (H,x)) ∈ Y�,
for all e ∈ E, funce((q, (H,x))) ∈ Yα for some α ∈ J . We need to consider only
(q, (H,x)) ∈ Y� −

⋃
α∈J Yα. But then q ∈ Q1 and hence funce((q, (H,x))) = ∅.

For any other Yα, we can choose E = {(q,movei,j , q
′) | (i, j) or (j, i) ∈ C}, where

C is the cut associated with Xα given by Proposition 7. It is easy to see that
(Graph(A) − E)[Fi] is not strongly connected since the labels of the edges in
each Fi correspond to a connected subgraph on the unfailed nodes, and C is cut
in the induced subgraph of G with unfailed nodes.

Since the system is not stable as mentioned before we cannot use
Theorem 2 to guarantee existence of level sets to prove convergence of the sys-
tem for any arbitrary automaton accepting Lconverge. However we can always

On Convergence of Concurrent Systems under Regular Interactions 541

find such sets because of the following structure of any simple Muller automaton
A = (Q , qinit , δ, Σ, {F1, · · · , Fk}) such that Lang(A) = Lconverge .

– There is no edge labelled by join or fail in any of the Fi, that is, there is no
a ∈ join ∪ fail and q, q′ ∈ Fi for some i, such that (q, a, q′) ∈ δ. Because then
we would have an accepting run with infinite join or fail operations.

– Let C be a cut of G = (V,E), i.e, G − C is not connected. Then removing
the edges in A labelled by elements in C renders every Fi not strongly
connected, i.e., for every i (Graph(A) − E′)[Fi] is not strongly connected,
where E′ = {(q, a, q′) | a = movei,j , (i, j) ∈ C, q, q′ ∈

⋃
j Fj}.

References

1. Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in mul-
tiagent coordination consensus and flocking. In: Proceedings of the Joint forty-
fourth IEEE Conference on Decision and Control and European Control Conference,
pp. 2996–3000 (2005)

2. Borkar, V., Varaiya, P.: Asymptotic Agreement in Distributed Estimation. IEEE
Trans. on Automatic Control 27(3), 650–655 (1982)

3. Chandy, K.M., Mitra, S., Pilotto, C.: Convergence verification: From shared memory
to partially synchronous systems. In: Cassez, F., Jard, C. (eds.) FORMATS 2008.
LNCS, vol. 5215, pp. 218–232. Springer, Heidelberg (2008)

4. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6),
988–1001 (2003)

5. Mitra, S., Chandy, K.M.: A formalized theory for verifying stability and convergence
of automata in PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008.
LNCS, vol. 5170, pp. 230–245. Springer, Heidelberg (2008)

6. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory.
IEEE Transactions on Automatic Control 51(3), 401–420 (2006)

7. Olfati-saber, R., Alex Fax, J., Murray, R.M.: Consensus and cooperation in net-
worked multi-agent systems. Proceedings of the IEEE, 2007 (2007)

8. Tsitsiklis, J.N.: On the stability of asynchronous iterative processes. Mathematical
Systems Theory 20(2-3), 137–153 (1987)

Computing Stuttering Simulations

Francesco Ranzato and Francesco Tapparo

Dipartimento di Matematica Pura ed Applicata
Università di Padova, Italy

Abstract. Stuttering bisimulation is a well-known behavioural equivalence that
preserves CTL-X, namely CTL without the next-time operator X. Correspond-
ingly, the stuttering simulation preorder induces a coarser behavioural equiv-
alence that preserves the existential fragment ECTL-{X, G}, namely ECTL
without the next-time X and globally G operators. While stuttering bisimula-
tion equivalence can be computed by the well-known Groote and Vaandrager’s
algorithm, to the best of our knowledge, no algorithm for computing the stutter-
ing simulation preorder and equivalence is available. This paper presents such an
algorithm for finite state systems.

1 Introduction

The Problem. Lamport’s criticism [8] of the next-time operator X in CTL/CTL∗

arouse the interest in studying temporal logics like CTL-X/CTL∗-X, obtained from
CTL/CTL∗ by removing the next-time operator, and related notions of behavioural stut-
tering-based equivalences [1,4,6]. We are interested here in divergence blind stuttering
simulation and bisimulation, that we call, respectively, stuttering simulation and bisim-
ulation for short. We focus here on systems specified as Kripke structures (KSs), but
analogous considerations hold for labeled transition systems (LTSs). Let K = 〈Σ,�, �〉
be a KS where 〈Σ,�〉 is a transition system and � is a state labeling function. A relation
R ⊆ Σ ×Σ is a stuttering simulation on K when for any s, t ∈ Σ such that (s, t) ∈ R:
(1) s and t have the same labeling by � and (2) if s�s′ then t�∗t′ for some t′ in such a
way that the following diagram holds:

s � s′

t

· · ·
� t1 � · · · � tk � t′

where a dotted line between two states means that they are related by R. The intuition is
that t is allowed to simulate a transition s�s′ possibly through some initial “stuttering”
transitions (τ -transitions in case of LTSs). R is called a stuttering bisimulation when
it is symmetric. It turns out that the largest stuttering simulation Rstsim and bisimula-
tion Rstbis relations exist: Rstsim is a preorder called the stuttering simulation preorder
while Rstbis is an equivalence relation called the stuttering bisimulation equivalence.
Moreover, the preorder Rstsim induces by symmetric reduction the stuttering simula-
tion equivalence Rstsimeq = Rstsim ∩ R−1

stsim. The partition of Σ corresponding to the
equivalence Rstsimeq is denoted by Pstsim.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 542–556, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computing Stuttering Simulations 543

De Nicola and Vaandrager [4] showed that for finite KSs and for an interpretation
of universal/existential path quantifiers over all the (possibly non-maximal and finite)
paths, the stuttering bisimulation equivalence coincides with the state equivalence in-
duced by the language CTL-X (this also holds for CTL∗-X). This is not true with
the standard interpretation of path quantifiers over maximal (possibly infinite) paths,
since this requires a divergence sensitive notion of stuttering (see the details in [4]).
Groote and Vaandrager [6] designed a well-known algorithm that computes the stutter-
ing bisimulation equivalence Rstbis in O(|Σ||�|)-time and O(|�|)-space.

Clearly, stuttering simulation equivalence is coarser than stuttering bisimulation
equivalence, i.e. Rstbis ⊆ Rstsimeq. As far as language preservation is concerned, it
turns out that stuttering simulation equivalence coincides with the state equivalence
induced by the language ECTL-{X,G}, namely the existential fragment of CTL with-
out next-time X and globally G operators. Thus, on the one hand, stuttering simulation
equivalence still preserves a significantly expressive fragment of CTL and, on the other
hand, it may provide a significantly better state space reduction than simulation equiv-
alence (and, in turn, bisimulation equivalence), and this has been shown to be useful in
abstract model checking [9,10].

State of the Art. To the best of our knowledge, there exists no algorithm for computing
stuttering simulation equivalence or, more in general, the stuttering simulation preorder.
There is instead an algorithm by Bulychev et al. [2] for checking stuttering simulation,
namely, this procedure checks whether a given relation R ⊆ Σ ×Σ is a stuttering sim-
ulation or not. This algorithm formalizes the problem of checking stuttering simulation
as a two players game in a straightforward way and then exploits Etessami et al.’s [5]
algorithm for solving such a game. The authors claim that this provides an algorithm
for checking stuttering simulation on finite KSs that runs in O(|�|2) time and space.

Main Contributions. In this paper we present an algorithm for computing simul-
taneously both the simulation preorder Rstsim and stuttering simulation equivalence
Rstsimeq for finite KSs. This procedure is incrementally designed in two steps. We first
put forward a basic procedure for computing the stuttering simulation preorder that re-
lies directly on the notion of stuttering simulation. For any state x ∈ Σ, StSim(x) ⊆ Σ
represents the set of states that are candidate to stuttering simulate x so that a family of
sets {StSim(x)}x∈Σ is maintained. A pair of states (x, y) ∈ Σ ×Σ is called a refiner
for StSim when x�y and there exists z ∈ StSim(x) that cannot stuttering simulate
x w.r.t. y, i.e., z
∈ pos(StSim(x), StSim(y)) where pos(StSim(x), StSim(y)) is the
set of all the states in StSim(x) that may reach a state in StSim(y) through a path of
states in StSim(x). Hence, any such z can be correctly removed from StSim(x). It
turns out that one such refiner (x, y) allows to refine StSim to StSim′ as follows: if
S = pos(StSim(x), StSim(y)) then

StSim′(w) :=
{

StSim(w) ∩ S if w ∈ S
StSim(w) if w
∈ S

Thus, our basic algorithm consists in initializing {StSim(x)}x∈Σ as {y ∈ Σ | �(y) =
�(x)}x∈Σ and then iteratively refining StSim as long as a refiner exists. This provides

544 F. Ranzato and F. Tapparo

an explicit stuttering simulation algorithm, meaning that this procedure requires that for
any explicit state x ∈ Σ, StSim(x) is explicitly represented as a set of states.

Inspired by techniques used in algorithms that compute standard simulation pre-
orders and equivalences (cf. Henzinger et al. [7] and Ranzato and Tapparo [11]) and
in abstract interpretation-based algorithms for computing strongly preserving abstract
models [12], our stuttering simulation algorithm, called SSA, is obtained by the above
basic procedure by exploiting these two main ideas.

(1) The above explicit algorithm is made “symbolic” by representing the family of sets
of states {StSim(x)}x∈Σ as a family of sets of blocks of a partition P of the state
space Σ. More precisely, we maintain a partition P of Σ together with a binary
relation �⊆ P × P — a so-called partition-relation pair — so that: (i) two states
x and y in the same block of P are candidate to be stuttering simulation equivalent
and (ii) if B and C are two blocks of P and B � C then any state in C is candidate
to stuttering simulate each state in B. Therefore, here, for any x ∈ Σ, if Bx ∈ P is
the block of P that contains x then StSim(x) = StSim(Bx) = ∪{C ∈ P | Bx �
C}.

(2) In this setting, a refiner of the current partition-relation 〈P,�〉 is a pair of blocks
(B,C) ∈ P × P such that B�∃C and StSim(B)
⊆ pos(StSim(B), StSim(C)),
where �∃ is the existential transition relation between blocks of P , i.e., B�∃C iff
there exist x ∈ B and y ∈ C such that x�y. We devise an efficient way for finding
a refiner of the current partition-relation pair that allows us to check whether a given
preorder R is a stuttering simulation in O(|P ||�|) time and O(|Σ||P | log |Σ|)
space, where P is the partition corresponding to the equivalence R ∩R−1. Hence,
this algorithm for checking stuttering simulation already significantly improves
both in time and space Bulychev et al.’s [2] procedure.

Our algorithm SSA iteratively refines the current partition-relation pair 〈P,�〉 by
first splitting the partition P and then by pruning the relation � until a fixpoint is
reached. Hence, SSA outputs a partition-relation pair 〈P,�〉 where P = Pstsim and
y stuttering simulates x iff P (x) � P (y), where P (x) and P (y) are the blocks of P
that contain, respectively, x and y. As far as complexity is concerned, it turns out that
SSA runs in O(|Pstsim|2(|�|+ |Pstsim||�∃|)) time and O(|Σ||Pstsim| log |Σ|) space. It
is worth remarking that stuttering simulation yields a rather coarse equivalence so that
|Pstsim| should be in general much less than the size |Σ| of the concrete state space.

2 Background

Notation. If R ⊆ Σ ×Σ is any relation and x ∈ Σ then R(x)� {x′ ∈ Σ | (x, x′) ∈
R}. Let us recall that R is called a preorder when it is reflexive and transitive. If f
is a function defined on ℘(Σ) and x ∈ Σ then we often write f(x) to mean f({x}).
A partition P of a set Σ is a set of nonempty subsets of Σ, called blocks, that are
pairwise disjoint and whose union gives Σ. Part(Σ) denotes the set of partitions of Σ.
If P ∈ Part(Σ) and s ∈ Σ then P (s) denotes the block of P that contains s. Part(Σ)
is endowed with the following standard partial order �: P1 � P2, i.e. P2 is coarser
than P1, iff ∀B ∈ P1.∃B′ ∈ P2. B ⊆ B′. For a given nonempty subset S ⊆ Σ called

Computing Stuttering Simulations 545

splitter, we denote by Split(P, S) the partition obtained from P by replacing each block
B ∈ P with the nonempty sets B ∩ S and B � S, where we also allow no splitting,
namely Split(P, S) = P (this happens exactly when S is a union of some blocks of P).
If B ∈ P ′ = Split(P, S) then we denote by parentP (B) (or simply by parent(B)) the
unique block in P that contains B (this may possibly be B itself).

A transition system (Σ,�) consists of a set Σ of states and a transition relation
� ⊆ Σ × Σ. The predecessor transformer pre : ℘(Σ) → ℘(Σ) is defined as usual:
pre(Y)� {s ∈ Σ | ∃t ∈ Y. s�t}. If S1, S2 ⊆ Σ then S1�

∃S2 iff there exist s1 ∈
S1 and s2 ∈ S2 such that s1�s2. Given a set AP of atomic propositions (of some
specification language), a Kripke structure (KS) K = (Σ,�, �) over AP consists of
a transition system (Σ,�) together with a state labeling function � : Σ → ℘(AP).
P
 ∈ Part(Σ) denotes the state partition induced by �, namely, P
� {{s′ ∈ Σ | �(s) =
�(s′)}}s∈Σ .

Stuttering Simulation. Let K = (Σ,�, �) be a KS. A relation R ⊆ Σ × Σ is a
divergence blind stuttering simulation on K if for any s, t ∈ Σ such that (s, t) ∈ R:

(1) �(s) = �(t);
(2) If s�s′ then there exist t0, ..., tk ∈ Σ, with k ≥ 0, such that: (i) t0 = t; (ii) for all

i ∈ [0, k), ti�ti+1 and (s, ti) ∈ R; (iii) (s′, tk) ∈ R.

Observe that condition (2) allows the case k = 0 and this boils down to requiring
that (s′, t) ∈ R. With a slight abuse of terminology, R is simply called a stuttering
simulation. If (s, t) ∈ R for some stuttering simulation R then we say that t stut-
tering simulates s and we denote this by s ≤ t. If R is a symmetric relation then it
is called a stuttering bisimulation. The empty relation is a stuttering simulation and
stuttering simulations are closed under union so that the largest stuttering simulation
relation exists. It turns out that the largest simulation is a preorder relation called stut-
tering simulation preorder (on K) and denoted by Rstsim. Thus, for any s, t ∈ Σ, s ≤ t
iff (s, t) ∈ Rstsim. Stuttering simulation equivalence Rstsimeq is the symmetric reduc-
tion of Rstsim, namely Rstsimeq�Rstsim ∩ R−1

stsim, so that (s, t) ∈ Rstsimeq iff s ≤ t
and t ≤ s. Pstsim ∈ Part(Σ) denotes the partition corresponding to the equivalence
Rstsimeq and is called stuttering simulation partition.

Following Groote and Vaandrager [6], pos : ℘(Σ) × ℘(Σ)�℘(Σ) is defined as:

pos(S, T) �
{s ∈ S | ∃k ≥ 0.∃s0, ..., sk. s0 = s & ∀i ∈ [0, k). si ∈ S, si�si+1 & sk ∈ T }

so that a relation R ⊆ Σ × Σ is a stuttering simulation iff for any x, y ∈ Σ, R(x) ⊆
P
(x) and if x�y then R(x) ⊆ pos(R(x), R(y)).

It turns out [4] thatPstsim is the coarsest partition preserved by the temporal language
ECTL-{X,G}. More precisely, ECTL-{X,G} is inductively defined as follows:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | EU(φ1, φ2)

where p ∈ AP and its semantics is standard, namely [[p]]� {s ∈ Σ | p ∈ �(s)}
and [[EU(ϕ1, ϕ2)]]� [[ϕ2]] ∪ pos([[ϕ1]], [[ϕ2]]). The coarsest partition preserved by the

546 F. Ranzato and F. Tapparo

BasicSSA(Partition P�) {
forall x ∈ Σ do StSim(x) := P�(x);
while (∃x, y ∈ Σ such that x�y & StSim(x) �⊆ pos(StSim(x),StSim(y))) do

S := pos(StSim(x), StSim(y));
forall w ∈ S do StSim(w) := StSim(w) ∩ S;

}

Fig. 1. Basic Stuttering Simulation Algorithm BasicSSA

language ECTL-{X,G} is the state partition corresponding to the following equiva-
lence ∼ between states: for any s, t ∈ Σ, s ∼ t iff ∀φ ∈ ECTL-{X,G}. s ∈ [[φ]] ⇔
t ∈ [[φ]].

3 Basic Algorithm

For each state x ∈ Σ, the algorithm BasicSSA in Figure 1 computes the stuttering
simulator set StSim(x) ⊆ Σ, i.e., the set of states that stuttering simulate x. The ba-
sic idea is that StSim(x) contains states that are candidate for stuttering simulating x.
Thus, the input partition of BasicSSA is taken as the partition P
 determined by the
labeling � so that StSim(x) is initialized with P
(x), i.e., with all the states that have
the same labeling of x. Following the definition of stuttering simulation, a refiner is
a pair of states (x, y) such that x�y and StSim(x)
⊆ pos(StSim(x), StSim(y)). In
fact, if z ∈ StSim(x) � pos(StSim(x), StSim(y)) then z cannot stuttering simulate
x and therefore can be correctly removed from StSim(x). On the other hand, if no
such refiner exists then for any x, y ∈ Σ such that x�y we have that StSim(x) ⊆
pos(StSim(x), StSim(y)) so that any z ∈ StSim(x) actually stuttering simulates
x. Hence, BasicSSA consists in iteratively refining {StSim(x)}x∈Σ as long as a re-
finer exists, where, given a refiner (x, y), the refinement of StSim by means of S =
pos(StSim(x), StSim(y)) is as follows:

StSim(w) :=
{

StSim(w) ∩ S if w ∈ S
StSim(w) if w
∈ S

Theorem 3.1 (Termination and Correctness). For finite KSs, BasicSSA terminates
and is correct, i.e., if StSim is the output of BasicSSA on input P
 then for any x, y ∈
Σ, y ∈ StSim(x) ⇔ x ≤ y.

4 Partition-Relation Pairs

A partition-relation pair 〈P,�〉, PR for short, is given by a partition P ∈ Part(Σ)
together with a binary relation � ⊆ P × P between blocks of P . We write B � C
when B � C and B
= C and (B′, C′) � (B,C) when B′ � B and C′ � C. Our
stuttering simulation algorithm relies on the idea of symbolizing the BasicSSA proce-
dure in order to maintain a PR 〈P,�〉 in place of the family of explicit sets of states

Computing Stuttering Simulations 547

{StSim(s)}s∈Σ . As a first step, S = {StSim(s)}s∈Σ induces a partition P that cor-
responds to the following equivalence ∼S: s1 ∼S s2 ⇔ StSim(s1) = StSim(s2).
Hence, the intuition is that if P (s1) = P (s2) then s1 and s2 are “currently” candidates
to be stuttering simulation equivalent. Accordingly, a relation � on P encodes stutter-
ing simulation as follows: if s ∈ Σ then StSim(s) = {t ∈ Σ | P (s) � P (t)}. Here,
the intuition is that if B � C then any state t ∈ C is “currently” candidate to stuttering
simulate any state s ∈ B. Equivalently, the following invariant property is maintained:
if s ≤ t then P (s) � P (t). Thus, a PR 〈P,�〉 will represent the current approxima-
tion of the stuttering simulation preorder and in particular P will represent the current
approximation of stuttering simulation equivalence.

More in detail, a PR P = 〈P,�〉 induces the following map µP : ℘(Σ) → ℘(Σ):
for any X ∈ ℘(Σ),

µP(X) � ∪{C ∈ P | ∃B ∈ P.B ∩X
= ∅, B � C}.

Note that, for any s ∈ Σ, µP(s) = µP(P (s)) = {t ∈ Σ | P (s) � P (t)}, that is,
µP(s) represents the set of states that are currently candidates to stuttering simulate s.
A PR P is therefore defined to be a stuttering simulation for a KS K when the relation
{(s, t) ∈ Σ ×Σ | s ∈ Σ, t ∈ µP(s)} is a stuttering simulation on K.

Recall that in BasicSSA a pair of states (s, t) ∈ Σ × Σ is a refiner for StSim
when s�t and StSim(s)
⊆ pos(StSim(s), StSim(t)). Accordingly, a pair of blocks
(B,C) ∈ P × P is a refiner for P when B�∃C and µP(B)
⊆ pos(µP(B), µP(C)).
Thus, by defining

Refiner(P) � {(B,C) ∈ P × P | B�∃C, µP(B)
⊆ pos(µP(B), µP(C))}

the following characterization holds:

Theorem 4.1. P = (P,�) is a stuttering simulation iff for any s ∈ Σ, µP(s) ⊆ P
(s)
and Refiner(P) = ∅.

4.1 A Symbolic Algorithm

The algorithm BasicSSA is therefore made symbolic as follows:

(1) 〈P
, id〉 is the input PR, where (B,C) ∈ id ⇔ B = C;

(2) Find (B,C) ∈ Refiner(P); if Refiner(P) = ∅ then exit;

(3) Compute S = pos(µP(B), µP(C));

(4) P′ := 〈P ′,�′〉, where P ′ = Split(P, S) and �′ is modified in such a way that for
any s ∈ Σ, µP′(P ′(s)) = µP(P (s));

(5) P′′ := 〈P ′,�′′〉, where �′ is modified to �′′ in such a way that for any B ∈ P ′:

µP′′(B) =
{
µP′(B) ∩ S if B ⊆ S
µP′(B) if B ∩ S = ∅

(6) P := P′′ and go to (2).

548 F. Ranzato and F. Tapparo

SSA(PR 〈P,Rel〉) {1

Initialize();2

while ((B, C) := FindRefiner()) �= (null, null) do3

list〈State〉X := Image(〈P,Rel〉, B), Y := Image(〈P,Rel〉, C);4

list〈State〉 S := pos(X, Y);5

SplittingProcedure(〈P,Rel〉, S);6

Refine(〈P,Rel〉, S);7

}8

Fig. 2. Stuttering Simulation Algorithm SSA

This leads to the symbolic algorithm SSA described in Figure 2, where: the in-
put PR 〈P,Rel〉 at line 1 is 〈P
, id〉 of point (1); point (2) corresponds to the call
FindRefiner() at line 3; point (3) corresponds to lines 4-5; point (4) corresponds to
the call SplittingProcedure(〈P,Rel〉, S) at line 6; point (5) corresponds to the call
Refine(〈P,Rel 〉, S) at line 7. The following graphical example shows how points (4)
and (5) refine a PR 〈{[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]},�〉 w.r.t. the set S = {3, 4, 5, 8},
where if B � C then B is drawed below C while if B � C and C � B then B and C
are at same height and connected by a double line.

0 1

2 3

4 5

6 7

8 9

S

(4)⇒

0 1

2 3

98

6 7

4 5

(5)⇒

0 1

2

3

9

86 7

4 5

Theorem 4.2 (Correctness). SSA is a correct implementation of BasicSSA, i.e., if
StSim is the output function of BasicSSA on input partition P
 then SSA on input PR
〈P
, id〉 terminates with an output PR P such that for any x ∈ Σ, StSim(x) = µP(x).

5 Bottom States

While it is not too hard to devise an efficient implementation of lines 2 and 4-7 of the
SSA algorithm, it is instead not straightforward to find a refiner in an efficient way. In
Groote and Vaandrager’s [6] algorithm for computing stuttering bisimulations the key
point for efficiently finding a refiner in their setting is the notion of bottom state. Given
a set of states S ⊆ Σ, a bottom state of S is a state s ∈ S that cannot go inside S,
i.e., s can only go outside S (note that s may also have no outgoing transition). For any
S ⊆ Σ, we therefore define:

Bottom(S) � S � pre(S).

Bottom states allow to efficiently find refiners in KSs that do not contain cycles of
states all having the same labeling. Following Groote and Vaandrager [6], a transition

Computing Stuttering Simulations 549

s�t is called inert for a partition P ∈ Part(Σ) when P (s) = P (t). Clearly, if a set
of states S in a KS is strongly connected via inert transitions for the labeling parti-
tion P
 then all the states in S are stuttering simulation equivalent, i.e., if s, s′ ∈ S
then Pstsim(s) = Pstsim(s′). Thus, each strongly connected component (s.c.c.) S with
respect to inert transitions forP
, called inert s.c.c., can be collapsed to one single “sym-
bolic state”. In particular, if {s} is one such inert s.c.c., i.e. if s�s, then this collapse
simply removes the transition s�s. It is important to remark that a standard depth-first
search algorithm by Tarjan [3], running in O(|Σ|+ |�|) time, allows us to find and then
collapse all the inert s.c.c.’s in the input KS. We can thus assume w.l.o.g. that the input
KS K does not contain inert s.c.c.’s. The following characterization of refiners therefore
holds.

Lemma 5.1. Assume that K does not contain inert s.c.c.’s. Let P = 〈P,�〉 be a PR
such that for any B ∈ P , µP(B) ⊆ P
(B). Consider (B,C) ∈ P × P such that
B�∃C. Then, (B,C) ∈ Refiner(P) iff Bottom(µP(B))
⊆ µP(C) ∪ pre(µP(C)).

If B ∈ P is any block then we define as local bottom states of B all the bottom states
of µP(B) that belong to B, namely

localBottom(B) � Bottom(µP(B)) ∩B.

Also, we define C ∈ P as a bottom block for B when B � C and C contains at least a
bottom state of µP(B), that is:

bottomBlock(B) � {C ∈ P | B � C, C ∩ Bottom(µP(B))
= ∅}.

Local bottoms and bottom blocks characterize refiners for stuttering simulation as
follows:

Theorem 5.2. Assume that K does not contain inert s.c.c.’s. Let P = 〈P,�〉 be a PR
such that � is a preorder and for any B ∈ P , µP(B) ⊆ P
(B). Consider (B,C) ∈
P × P such that B�∃C and for any (D,E) such that D�∃E and (B,C) � (D,E),
(D,E)
∈ Refiner(P). Then, (B,C) ∈ Refiner(P) iff at least one of the following two
conditions holds:

(i) C
� B and localBottom(B)
⊆ pre(µP(C));
(ii) There exists D ∈ bottomBlock(B) such that C
� D and D
�∃µP(C).

We will show that this characterization provides the basis for an algorithm that effi-
ciently finds refiners. Hence, this procedure also checks whether a given preorderR is a
stuttering simulation or not. This can be done in O(|P ||�|) time and O(|Σ||P | log |Σ|)
space, where P is the partition corresponding to the equivalence R ∩ R−1. Thus, this
algorithm for checking stuttering simulation already significantly improves Bulychev
et al.’s [2] procedure that runs in O(|�|2) time and space.

6 Implementation

6.1 Data Structures

SSA is implemented by exploiting the following data structures.

550 F. Ranzato and F. Tapparo

(i) A state s is represented by a record that contains the list pre(s) of its predeces-
sors and a pointer s.block to the block P (s) that contains s. The state space Σ is
represented as a doubly linked list of states.

(ii) The states of any block B of the current partition P are consecutive in the list Σ,
so that B is represented by two pointers begin and end: the first state of B in Σ and
the successor of the last state of B in Σ, i.e., B = [B.begin, B.end[. Moreover, B
contains a pointer B.intersection to a block whose meaning is as follows: after a
call to Split(P ,S) for splitting P w.r.t. a set of states S, if ∅
= B ∩ S � B then
B.intersection points to a block that represents B ∩ S, otherwise B.intersection
= null. Finally, the fields localBottoms and bottomBlocks for a blockB represent,
respectively, the local bottom states of B and the bottom blocks of B. The current
partition P is stored as a doubly linked list of blocks.

(iii) The current relation � on P is stored as a resizable |P | × |P | boolean matrix
Rel : Rel(B,C) = tt iff B � C. Recall [3, Section 17.4] that insert operations in
a resizable array (whose capacity is doubled as needed) take amortized constant
time, and a resizable matrix (or table) can be implemented as a resizable array of
resizable arrays. The boolean matrix Rel is resized by adding a new entry to Rel ,
namely a new row and a new column, for any block B that is split into two new
blocks B � S and B ∩ S.

(iv) SSA additionally stores and maintains a resizable integer table Count and a resiz-
able integer matrix BCount. Count is indexed over Σ and P and has the following
meaning: Count(s, C) � |{(s, t) | C � D, t ∈ D, s�t}|. BCount is indexed
over P ×P and has the following meaning: BCount(B,C) �

∑
s∈BCount(s, C).

The table Count allows to implement the test s
∈ pre(µP(C)) in constant time
as Count(s, C) = 0, while BCount allows to implement the test B
�∃µP(C) in
constant time as BCount(B,C) = 0.

6.2 FindRefiner Algorithm

The algorithm FindRefiner() in Figure 3 is an implementation of the characterization
of refiners provided by Theorem 5.2. In particular, lines 8-10 implement condition (i)
of Theorem 5.2 and lines 11-12 implement condition (ii). The correctness of this imple-
mentation depends on the following key point. Given a pair of blocks (B,C) ∈ P × P
such that B�∃C, in order to ensure the equivalence: (B,C) ∈ Refiner(P) iff (i) ∨ (ii),
Theorem 5.2 requires as hypothesis the following condition:

∀(D,E) ∈ P × P. D�∃E & (B,C) � (D,E) ⇒ (D,E)
∈ Refiner(P) (∗)

In order to ensure this condition (∗), we guarantee throughout the execution of SSA
that the list P of blocks is stored in reverse topological ordering w.r.t. �, so that if
B � B′ thenB′ precedesB in the list P . The reverse topological ordering of P initially
holds because the input PR is the DAG 〈P
, id〉 which is trivially topologically ordered
(whatever the ordering of P
 is). More in general, for a generic input PR 〈P,Rel〉 to
SSA the function Initialize() achieves this reverse topological ordering by a standard
algorithm [3, Section 22.4] that runs in O(|P |2) time. Then, the reverse topological
ordering of P is always maintained throughout the execution of SSA. In fact, if the

Computing Stuttering Simulations 551

Precondition: The list P is stored in reverse topological ordering wrt Rel1

〈Block, Block〉 FindRefiner() {2

matrix〈bool〉 Refiner;3

forall B ∈ P do forall C ∈ P do Refiner(B,C) := maybe;4

forall C ∈ P do5

forall B ∈ P such that B�∃C do6

if (Refiner(B,C) = maybe) then7

if (Rel(C, B) = ff) then8

forall s ∈ B.localBottoms do9

if (Count(s, C) = 0) then return (B, C);10

forall D ∈ B.bottomBlocks do11

if (Rel(C, D) = ff & BCount(D, C) = 0) then return (B, C);12

forall E ∈ P do13

if (Rel(E,C) = tt) then Refiner(B,E) := ff;14

return (null,null);15

}16

Fig. 3. FindRefiner() algorithm

partition P is split w.r.t. a set S and a block B generates two new descendant blocks
B ∩ S and B � S then our SplittingProcedure in Figure 5 modifies the ordering of
the list P as follows: B is replaced in P by inserting B ∩ S immediately followed
by B � S. This guarantees that at the exit of Refine(〈P,Rel 〉, S) at line 7 of SSA
the list P is still in reverse topological ordering w.r.t. Rel . This is a consequence of
the fact that at the exit of Refine(〈P,Rel 〉, S), by point (5) in Section 4.1, we have
that µ〈P,Rel〉(B ∩ S) = µ〈P,Rel〉(B) ∩ S, i.e., µ〈P,Rel〉(B ∩ S) ∩ (B � S) = ∅ so
that B ∩ S
� B � S. The reverse topological ordering of P w.r.t. � ensures that
if (B,C) � (B′, C′) then the pair (B,C) is scanned by FindRefiner after the pair
(B′, C′). Since FindRefiner() exits as soon as a refiner is found, we have that (B′, C′)
cannot be a refiner, so that condition (∗) holds for (B,C).

When FindRefiner() determines that a pair of blocks (B,C), with B�∃C, is not a
refiner, it stores this information in a local boolean matrix Refiner that is indexed over
P × P and initialized to maybe. Thus, the meaning of the matrix Refiner is as follows:
if Refiner(B,C) = ff then (B,C)
∈ Refiner(P). If (B,C)
∈ Refiner(P) then both
(i) and (ii) do not hold, therefore FindRefiner() executes the for-loop at lines 13-14 so
that any (B,E) with E � C is marked as Refiner(B,E) = ff. This is correct because
if (B,C)
∈ Refiner(P) and (B,E) � (B,C) then (B,E)
∈ Refiner(P): in fact, by
Lemma 5.1, Bottom(µP(B)) ⊆ µP(C) ∪ pre(µP(C)), and since E � C implies,
because � is transitive, µP(C) ⊆ µP(E), we have that Bottom(µP(B)) ⊆ µP(E) ∪
pre(µP(E)), so that, by Lemma 5.1, (B,E)
∈ Refiner(P). The for-loop at lines 13-
14 is therefore an optimization of Theorem 5.2 since it determines that some pairs of
blocks are not a refiner without resorting to the condition ¬(i) ∧ ¬(ii) of Theorem 5.2.
This optimization and the related matrix Refiner turn out to be crucial for obtaining the
overall time complexity of SSA.

552 F. Ranzato and F. Tapparo

Precondition: TS(S, �, P�) & ∀x, y ∈ S. P�(x) = P�(y)1

list〈State〉 pos(list〈State〉 S, list〈State〉 T) {2

list〈State〉R := ∅;3

forall s ∈ S do mark1(s);4

forall t ∈ T do5

forall s ∈ pre(t) such that marked1(s) do6

mark2(s); R.append(s);7

forall y ∈ S backward such that marked2(y) do8

forall x ∈ pre(y) such that marked1(x) & unmarked2(x) do9

mark2(x); R.append(x);10

forall x ∈ S do unmark1(x); forall x ∈ R do unmark2(x);11

return R;12

}13

Fig. 4. Computation of pos

6.3 Computing pos

Given two lists of states S and T , we want to compute the set of states that belong to
pos(S, T). This can be done by traversing once the edges of the transition relation �
provided that the list Σ of states satisfies the following property:

For all x, y ∈ Σ, if x precedes y in the list Σ and �(x) = �(y) then y
�x.

We denote this property by TS(Σ,�, P
). Hence, this is a topological ordering of Σ
w.r.t. the transition relation � that is local to each block of the labeling partition P
. As
described in Section 5, as an initial pre-processing step of SSA, we find and collapse
inert s.s.c.’s. After this pre-processing step, Σ is successively topologically ordered
w.r.t. � locally to each block of P
 in O(|Σ| + |�|) time in order to initially establish
TS(Σ,�, P
). We will see in Section 6.4 that while the ordering of the list Σ of states
changes across the execution of SSA, the property TS(Σ,�, P
) is always maintained
invariant.

The computation of pos(S, T) is done by the algorithm in Figure 4. The result R
consists of all the states in S that are marked2. We assume that all the states in S have
the same labeling by �: this is clearly true when the function pos is called from the
algorithm SSA. The for-loop at lines 5-7 makes the states in S ∩ pre(T) marked2.
Then, the for-loop at lines 8-10 scans backward the list of states S and when a marked2
state y is encountered then all the states in S ∩ pre(y) are marked2. It is clear that the
property TS(Σ,�, P
) guarantees that this procedure does not miss states that are in
pos(S, T).

6.4 SplittingProcedure

SSA calls SplittingProcedure(〈P,Rel〉, S) at line 6 with the precondition TS(Σ,�, P
)
and needs to maintain this invariant property at the exit (as discussed in Section 6.3 this

Computing Stuttering Simulations 553

list〈Block〉 Split(list〈Block〉 P, list〈State〉 S) {1

list〈Block〉 split;2

forall x ∈ S do3

if (x.block.intersection = null) then4

Block B := new Block;5

x.block.intersection := B;6

split.append(x.block);7

move x in the list Σ from x.block at the end of B;8

if (x.block = ∅) then x.block := copy(B); x.block.intersection := null;9

forall B ∈ split do10

if (B.intersection = null) then split.remove(B); delete B;11

else insert B.intersection in P in front of B;12

return split;13

}14

void SplittingProcedure(PR 〈P,Rel〉, list〈State〉 S) {15

list〈Block〉 split := Split(P ,S);16

if (split �= ∅) then17

resize Rel ; // update Rel18

forall B ∈ P do forall C ∈ split do Rel(C.intersection, B) := Rel(C, B);19

forall B ∈ split do forall C ∈ P do Rel(C, B.intersection) := Rel(C, B);20

Update(); // update Count, BCount, localBottoms, bottomBlocks21

forall B ∈ P do B.intersection := null;22

}23

Fig. 5. Splitting Procedure

is crucial for computing pos). This function must modify the current PR P = 〈P,Rel〉
to P′ = 〈P ′,Rel ′〉 as follows:

(A) P ′ is the partition obtained by splitting P w.r.t. the splitter S;
(B) Rel is modified to Rel ′ in such a way that for any x ∈ Σ, µP′(P ′(x)) = µP(P (x)).

Recall that the states of a block B of P are consecutive in the list Σ, so that B is
represented as B = [B.begin, B.end[. An implementation of the splitting operation
Split(P, S) that only scans the states in S, i.e. that takes O(|S|) time, is quite easy and
standard (see e.g. [6,11]). However, this operation affects the ordering of the states in
the list Σ because states are moved from old blocks to newly generated blocks. It turns
out that this splitting operation can be implemented in a careful way that preserves
the invariant property TS(Σ,�, P
). The idea is rather simple. Observe that the list of
states S = pos(µP(X), µP(Y)) can be (and actually is) built as a sublist of Σ so that
the following property holds: If x precedes y in S and P
(x) = P
(y) then y
�x. The
following picture shows the idea of our implementation of Split(P, S), where states
within filled circles determine the splitter set S.

554 F. Ranzato and F. Tapparo

void Refine(PR 〈P,Rel〉, list〈State〉 S) {1

list〈Block〉 L := ∅;2

forall s ∈ S such that unmarked(s.block) do mark(s.block); L.append(s.block);3

forall B ∈ L do4

forall C ∈ P do5

if (Rel(B, C) = tt & unmarked(C)) then6

Rel(B,C) := ff;7

forall y ∈ C do8

forall x ∈ pre(y) do Count(x, B) – –; BCount(x.block, B) – –;9

if (C ∈ B.bottomBlocks) then B.bottomBlocks.erase(C);10

forall y ∈ C do11

forall x ∈ pre(y) do12

if (x.block �= B &Rel(B, x.block)= tt & Count(x,B) = 0)13

then
mark2(x.block);14

if unmarked2(x.block) then15

B.bottomBlocks.append(x.block);16

else if (x.block = B & Count(x,B) = 0) then17

B.localBottoms.append(x);18

forall B ∈ P do unmark(B); unmark2(B);19

}20

Fig. 6. Refine function

Σ

Σ′

B1 B2 B3

⇓ Split(P, S)

B1∩S B1�S B2∩S B2�S B3∩S B3�S

0 1 2 3 4 5 6 7 8 9

1 0 3 4 6 2 5 7 8 9

The property TS(Σ′,�, P
) still holds for the modified list of states Σ′. In fact, from
the above picture observe that it is enough to check that: if B has been split into B ∩ S
and B � S by preserving the relative orders of the states in Σ then if x ∈ B ∩ S and
y ∈ B � S then y
�x. This is true because if y�x and x ∈ S = pos(µP(X), µP(Y))
then, since x and y are in the same block of P and µP(X) is a union of some blocks of
P , by definition of pos we would also have that y ∈ S, which is a contradiction.

The functions in Figure 5 sketch a pseudo-code that implements the above described
splitting operation (the Update() function that updates data structures is omitted). The
above point (B), i.e., the modification of Rel to Rel ′ so that for anyx ∈ Σ,µP′(P ′(x))=
µP(P (x)) is straightforward and is implemented at lines 18-20 of SplittingProcedure().

Computing Stuttering Simulations 555

6.5 Refine Function

SSA calls Refine(〈P,Rel 〉, S) at line 7 with the precondition that S is a union of blocks
of the current partition P . The function Refine(〈P,Rel 〉, S) in Figure 6 implements the
point (5) of Section 4.1. This function must modify the current PR P = 〈P,Rel 〉 to
P′ = 〈P,Rel ′〉 by pruning the relation Rel in such a way that for any B ∈ P :

µP′(B) =
{
µP(B) ∩ S if B ⊆ S
µP(B) if B ∩ S = ∅

This is done by the Refine() function at lines 5-7 by reducing the relation Rel to Rel ′

as follows: if B,C ∈ P and Rel(B,C) = tt then Rel ′(B,C) = ff iff B ⊆ S and
C ∩ S = ∅, while the rest of the code updates the data structures Count, BCount,
localBottoms and bottomBlocks accordingly.

6.6 Auxiliary Functions

The implementation of the remaining functions Initialize() and Image() is easy and is
omitted. It is just worth remarking that Initialize() in particular initially establishes the
property TS(Σ,�, P
) and provides an initial reverse topological order of P w.r.t. Rel
when the input partial order Rel is not the identity relation id.

6.7 Complexity

Time and space bounds for SSA are as follows. In the following statement we assume,
as usual in model checking, that the transition relation � is total, i.e., for any s ∈ Σ
there exists t ∈ Σ such that s�t, so that the inequalities |Σ| ≤ |�| and |Pstsim| ≤ |�∃|
hold, where �∃ is the existential transition relation between blocks of Pstsim, and this
allows us to simplify the expression of the time bound.

Theorem 6.1 (Complexity). SSA runs in O(|Pstsim|2(|�| + |Pstsim||�∃|))-time and
O(|Σ||Pstsim| log |Σ|)-space.

6.8 Adapting SSA for LTSs

The algorithms SSA computes the stuttering simulation preorder on KSs, but it can
be modified to work over LTSs by following the adaptation to LTSs of Groote and
Vaandrager’s algorithm [6] for KSs. Due to lack of space the details are here omitted.
We just mention that we have a parametric posa operator for any action a ∈ Act so
that the notions of splitting and refinement of the current PR are parameterized w.r.t.
the action a.

7 Conclusion

We presented an algorithm, called SSA, for computing the stuttering simulation pre-
order and equivalence on Kripke structures (or labeled transition systems). To the best

556 F. Ranzato and F. Tapparo

of our knowledge, this is the first algorithm for computing this behavioural preorder.
The only available algorithm related to stuttering simulation is a procedure by Buly-
chev et al. [2] that checks whether a given relation is a stuttering simulation. Our pro-
cedure SSA includes an algorithm for checking whether a given relation is a stuttering
simulation that significantly improves Bulychev et al.’s one both in time and in space.

Acknowledgements. We are grateful to Silvia Crafa for numerous helpful discussions.
This work was partially supported by the PRIN 2007 Project “AIDA2007: Abstract
Interpretation Design and Applications” and by the University of Padova under the
Projects “Formal methods for specifying and verifying behavioural properties of soft-
ware systems” and “Analysis, verification and abstract interpretation of models for
concurrency”.

References

1. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propo-
sitional temporal logic. Theor. Comp. Sci. 59, 115–131 (1988)

2. Bulychev, P.E., Konnov, I.V., Zakharov, V.A.: Computing (bi)simulation relations preserv-
ing CTL*-X for ordinary and fair Kripke structures. In: Mathematical Methods and Algo-
rithms, Institute for System Programming, Russian Academy of Sciences, vol. 12 (2007),
http://lvk.cs.msu.su/˜peterbul

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
The MIT Press and McGraw-Hill, Cambridge (2001)

4. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM 42(2),
458–487 (1995)

5. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state
space reduction for Buchi automata. SIAM J. Comput. 34(5), 1159–1175 (2001)

6. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and stuttering
equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 626–638. Springer,
Heidelberg (1990)

7. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. 36th FOCS, pp. 453–462 (1995)

8. Lamport, L.: What good is temporal logic? In: Information Processing 1983. IFIP,
pp. 657–668 (1983)

9. Manolios, P.: Mechanical Verification of Reactive Systems. PhD thesis, University of Texas
at Austin (2001)

10. Nejati, S., Gurfinkel, A., Chechik, M.: Stuttering abstraction for model checking. In: 3rd
IEEE Int. Conf. on Software Engineering and Formal Methods (SEFM 2005), pp. 311–320
(2005)

11. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proc. 22nd
IEEE Symp. on Logic in Computer Science (LICS 2007), pp. 171–180. IEEE Press,
Los Alamitos (2007)

12. Ranzato, F., Tapparo, F.: Generalizing the Paige-Tarjan algorithm by abstract interpretation.
Information and Computation 206(5), 620–651 (2008)

http://lvk.cs.msu.su/~peterbul

Weak Time Petri Nets Strike Back!

Pierre-Alain Reynier1,� and Arnaud Sangnier2,��

1 LIF, Université Aix-Marseille & CNRS, France
pierre-alain.reynier@lif.univ-mrs.fr

2 Dipartimento di Informatica, Università di Torino, Italy
sangnier@di.unito.it

Abstract. We consider the model of Time Petri Nets where time is associated
with transitions. Two semantics for time elapsing can be considered: the strong
one, for which all transitions are urgent, and the weak one, for which time can
elapse arbitrarily. It is well known that many verification problems such as the
marking reachability are undecidable with the strong semantics. In this paper,
we focus on Time Petri Nets with weak semantics equipped with three differ-
ent memory policies for the firing of transitions. We prove that the reachability
problem is decidable for the most common memory policy (intermediate) and
becomes undecidable otherwise. Moreover, we study the relative expressiveness
of these memory policies and obtain partial results.

1 Introduction

For verification purpose, e.g. in the development of embedded platforms, there is an
obvious need for considering time features and the study of timed models has thus
become increasingly important. For distributed systems, different timed extensions of
Petri nets have been proposed which allow the combination of an unbounded discrete
structure with dense-time variables.

There are several ways to express urgency in timed systems, as discussed in [17]. In
timed extensions of Petri nets, two types of semantics are considered for time elaps-
ing. In the weak semantics, all time delays are allowed whereas in the strong one, all
transitions are urgent, i.e. time delays cannot disable transitions. While for models with
finite discrete structure (such as timed extensions of bounded Petri nets or timed au-
tomata [3]), standard verification problems are decidable for both semantics, for mod-
els with infinite discrete structure, the choice of the semantics has a deep influence on
decidability issues. In this work, we consider the model of Time Petri Nets [14] (TPN)
where clocks are associated with transitions, and which is commonly considered un-
der a strong semantics. In this model, all the standard verification problems are known
to be undecidable [10]. On the other hand, in the model of timed-arc Petri nets [5],
where clocks are associated with tokens and which is equipped with a weak semantics,
many verification problems are decidable (coverability, boundedness...). Indeed, this

� Partly supported by the French project DOTS (ANR-06-SETI-003) and by the European
project QUASIMODO (FP7-ICT-STREP-214755).

�� Supported by a post-doctoral scolarship from DGA/ENS Cachan and by the MIUR-PRIN
project PaCo - Performability-Aware Computing: Logics, Models and Languages.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 557–571, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

558 P.-A. Reynier and A. Sangnier

semantics entails for this model monotonicity properties which allow the application
of well-quasi-ordering techniques, see [8,2,1]. Note however that the reachability of a
discrete marking is undecidable, as proven in [18]. A natural question, which had sur-
prisingly no answer until now, as mentioned in a recent survey on the topic [7], is thus
to study TPN under a weak semantics of time elapsing.

The time-elapsing policy states which delays are allowed in a configuration. The
memory policy is concerned with the resets of clocks, and intuitively specifies, when
firing a transition, which timing informations are preserved. The original model of Mer-
lin [14] is equipped with an intermediate semantics which considers the intermediary
marking bewteen consumption and production. Two others memory policies have been
considered in [4] (the atomic and the persistent atomic) in which the firings of transi-
tions are performed atomically. While these policies can be thought as cosmetic for the
model of TPN, the results we obtain show this is not the case.

We are interested in the impact of the weak semantics on TPN, distinguishing be-
tween the different memory policies. We first study the decidability issues, and prove
that for TPN with weak intermediate semantics, a discrete marking is reachable if and
only if it is reachable in the underlying untimed Petri net. As a corollary, the problem
of the marking reachability (and also coverability, boundedness) is decidable for this
model. More surprisingly, we also prove that when changing the memory policy this
result does not hold anymore and the verification problems become undecidable. In
this work, we only consider untimed verification problems and we plan to study timed
versions in future work. We then compare w.r.t. weak time bisimilarity (weak stands
here for silent transitions) the expressive power of weak TPN looking at the different
memory policies. We first prove that the persistent atomic semantics is strictly more ex-
pressive that the atomic semantics. Then, concerning atomic and intermediate memory
policies, we provide a TPN which shows that the atomic semantics is not included in
the intermediate one.

Related works. As mentioned above, there are, up to our knowledge, only very few
works considering TPN under a weak semantics. In [7] the authors have proven that the
weak intermediate semantics and the strong intermediate semantics are uncomparable.
In another line of work, [9] considers TPN under a semantics which is a kind of com-
promise between the standard strong and weak semantics. They provide translations
between this model and timed state machines.

Due to lack of space omitted proofs can be found in [16].

2 Definitions

Let Σ be a finite alphabet, Σ∗ is the set of finite words over Σ. We note Στ = Σ ∪{τ}
where τ /∈ Σ represents internal actions. εwill represent the empty word. The sets N, Q,
Q≥0, R and R≥0 are respectively the sets of natural, rational, non-negative rational, real
and non-negative real numbers. A valuation v over a finite set X is a mapping in R

X
≥0.

For v ∈ R
X
≥0 and d ∈ R≥0, v+d denotes the valuation defined by (v+d)(x) = v(x)+d.

We note 0 the valuation which assigns to every x ∈ X the value 0.
As commonly in use for Time Petri Nets, we will associate rational intervals with

transitions. Note that we could handle intervals with bounds given as real numbers if

Weak Time Petri Nets Strike Back! 559

we abstract the problem of comparison of real numbers. We consider the set I(Q≥0) of
non-empty intervals (a, b) with non-negative rational bounds a, b ∈ Q≥0. We consider
both open and closed bounds, and also allow a right open infinite bound as in [2,+∞[.

2.1 Petri Nets

Definition 1 (Labeled Petri Net (PN)). A Labeled Petri Net over the alphabet Στ is a
tuple (P, T,Στ ,

•(.), (.)•,M0, Λ) where:

– P is a finite set of places,
– T is a finite set of transitions with P ∩ T = ∅,
– •(.) ∈ (NP)T is the backward incidence mapping,
– (.)• ∈ (NP)T is the forward incidence mapping,
– M0 ∈ N

P is the initial marking,
– Λ : T → Στ is the labeling function

As commonly in use in the literature, the vector •(t) (resp. (t)•) in N
P is noted

•t (resp. t•). The semantics of a PN N = (P, T,Στ ,
•(.), (.)•,M0, Λ) is given by its as-

sociated labeled transition system �N � = (NP ,M0, Στ ,⇒) where ⇒⊆ N
P ×Στ ×N

P

is the transition relation defined by M
a=⇒ M ′ iff ∃t ∈ T s.t. Λ(t) = a ∧ M ≥

•t ∧ M ′ = M − •t + t•. For convenience we will sometimes also write, for t ∈ T ,
M

t=⇒ M ′ if M ≥ •t and M ′ = M − •t + t•. We also write M ⇒ M ′ if there
exists a ∈ Στ such that M

a=⇒ M ′. The relation ⇒∗ represents the reflexive and tran-
sitive closure of ⇒. We denote by Reach(N) the set of reachable markings defined by
{M ∈ N

P | M0 ⇒∗ M}.
It is well known that for PN the reachability problem which consists in determining

whether a given marking M belongs to Reach(N) is decidable; it has in fact been
proved independently in [13] and [12].

We introduce a last notation concerning Labeled Petri Nets. Given a PN N , a mark-

ing M of N and a multi-set ∆ = 〈t1, . . . , tn〉 of transitions of N , we write M
∆

|=⇒ M ′

if and only if the multi-set∆ can be fired from M , meaning that there exists an ordering
of transitions in∆, represented as a permutationϕ of {1, . . . , n}, such that the sequence

of firings M
tϕ(1)
==⇒ M1

tϕ(2)
==⇒M2 . . .

tϕ(n)
==⇒M ′ exists in �N �.

2.2 Timed Transition Systems

Timed transition systems describe systems which combine discrete and continuous evo-
lutions. They are used to define the behavior of timed systems such as Time Petri
Nets [14] or Timed Automata [3].

Definition 2 (Timed Transition System (TTS)). A timed transition system over the
alphabet Στ is a transition system S = (Q, q0, Στ ,→), where the transition relation
→⊆ Q × (Στ ∪ R≥0) × Q consists of discrete transitions q

a−→ q′ (with a ∈ Στ)

representing an instantaneous action, and continuous transitions q
d−→ q′ (with d ∈ R≥0)

representing the passage of d units of time.

560 P.-A. Reynier and A. Sangnier

Moreover, we require the following standard properties for TTS :

– TIME-DETERMINISM : if q
d−→ q′ and q

d−→ q′′ with d ∈ R≥0, then q′ = q′′,

– 0-DELAY : q
0−→ q,

– ADDITIVITY : if q
d−→ q′ and q′

d′
−→ q′′ with d, d′ ∈ R≥0, then q

d+d′
−−−→ q′′,

– CONTINUITY : if q
d−→ q′, then for every d′ and d′′ in R≥0 such that d = d′ + d′′,

there exists q′′ such that q
d′
−→ q′′

d′′
−→ q′.

With these properties, a run of S can be defined as a finite sequence of moves ρ =
q0

d0−→ q′0
a0−→ q1

d1−→ q′1
a1−→ q2 . . .

an−−→ qn+1 where discrete and continuous transitions
alternate. To such a run corresponds the timed word w = (ai, ηi)0≤i≤n over Στ where
ηi =

∑i
j=0 dj is the time at which ai happens. We then denote by Untimed(w) the

projection of the word a0a1 . . . an over the alphabetΣ and by Duration(w) the duration
ηn. Note that in the word Untimed(w) the symbol τ does not appear. We will sometimes
apply, without possible ambiguities, these notations to runs writing Untimed(ρ) and
Duration(ρ). We might also describe the run writing directly q0

w−→ qn+1.

2.3 Time Petri Nets

Syntax. Introduced in [14], Time Petri Nets associate a time interval with each transi-
tion of a Petri net.

Definition 3 (Labeled Time Petri Net (TPN)). A Labeled Time Petri Net over the
alphabet Στ is a tuple (P, T,Στ ,

•(.), (.)•,M0, Λ, I) where:

– (P, T,Στ ,
•(.), (.)•,M0, Λ) is a PN,

– I : T �→ I(Q≥0) associates with each transition a firing interval.

In the sequel, we associate with an interval its left bound and its right bound. More
generally, given a transition t of a TPN, we will denote by eft(t) (resp. lft(t)) the left
bound of I(t) (resp. the right bound of I(t)), standing for earliest firing time (resp. latest
firing time). We have hence I(t) = (eft(t), lft(t)).

Semantics. A configuration of a TPN is a pair (M, ν), where M is a marking over P ,
i.e. a mapping in N

P , with M(p) the number of tokens in place p. A transition t is
enabled in a marking M if M ≥ •t. We denote by En(M) the set of enabled transitions
in M . The second component of the pair (M, ν) is a valuation over En(M), i.e. a

mapping in R
En(M)
≥0 . Intuitively, for each enabled transition t in M , ν(t) represents the

amount of time that has elapsed since t is enabled. An enabled transition t can be fired
if ν(t) belongs to the interval I(t). The marking obtained after this firing is as usual the
new marking M ′ = M − •t + t•. Moreover, some valuations are reset and we say that
the corresponding transitions are newly enabled.

Different semantics can be chosen in order to realize these resets. This choice de-
pends of what is called the memory policy. For M ∈ N

P and t, t′ ∈ T such that
t ∈ En(M) we define in different matters a predicate ↑ enableds(t′,M, t) with s ∈
{I, A, PA} which is true if t′ is newly enabled by the firing of transition t from mark-
ing M , and false otherwise. This predicate indicates whether we need to reset the clock
of t′ after firing the transition t at the marking M .

Weak Time Petri Nets Strike Back! 561

I: The intermediate semantics considers that the firing of a transition is performed
in two steps: consuming the tokens in •t, and then producing the tokens in t•.
Intuitively, it resets the clocks of t and of the transitions that could not be fired in
parallel with t from the marking M . Formally, the predicate ↑enabledI(t′,M, t) is
defined by:

↑enabledI(t′,M, t) =
(
t′ ∈ En(M − •t + t•) ∧ (t′ /∈ En(M − •t) ∨ t = t′)

)
A: The atomic semantics considers that the firing of a transition is obtained by an

atomic step. It resets the clocks of t and of the transitions t′ which are not enabled
at M . The corresponding predicate ↑enabledA(t′,M, t) is defined by:

↑enabledA(t′,M, t) =
(
t′ ∈ En(M − •t + t•) ∧ (t′ /∈ En(M) ∨ t = t′)

)
PA: The persistent atomic semantics behaves as the atomic semantics except that it does

not reset the clock of t.

↑enabledPA(t′,M, t) =
(
t′ ∈ En(M − •t + t•) ∧ t′ /∈ En(M)

)
Finally, as recalled in the introduction, there are two ways of letting the time elapse in
TPN. The first way, known as the strong semantics, is defined in such a matter that time
elapsing cannot disable a transition. Hence, when the upper bound of a firing interval
is reached then the transition must be fired or disabled. In contrast to that the weak
semantics does not make any restriction on the elapsing of time. In this work, we focus
on the weak semantics of TPN.

Definition 4 (Weak semantics of a TPN). Let s ∈ {I, A, PA}. The weak s-semantics
of a TPN N = (P, T,Στ ,

•(.), (.)•,M0, Λ, I) is a timed transition system �N �s =
(Q, q0, Στ ,→s) where Q = N

P × R
En(M)
≥0 , q0 = (M0,0) and →s consists of discrete

and continuous moves:

– the discrete transition relation is defined ∀a ∈ Στ by:

(M, ν) a−→s (M ′, ν′) iff ∃t ∈ T s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Λ(t) = a, and,
t ∈ En(M) ∧M ′ = M − •t + t•, and,
ν(t) ∈ I(t), and,
∀t′ ∈ En(M ′),

ν′(t′) =
{

0 if ↑enableds(t′,M, t)
ν(t′) otherwise

– the continuous transition relation is defined ∀d ∈ R≥0 by:

(M, ν) d−→s (M, ν′) iff ν′ = ν + d

We also write a discrete transition (M, ν) t−→s (M ′, ν′) to characterize the transition

t ∈ T which allows the firing (M, ν)
Λ(t)−−−→s (M ′, ν′). We extend this notation to words

θ ∈ (T ∪ R≥0)∗, which correspond to sequences of transitions and delays and lead

562 P.-A. Reynier and A. Sangnier

to a unique (if it exists) run ρ. We may write this run ρ : (M, ν) θ−→s (M ′, ν′) and
use Untimed(θ) (resp. Duration(θ)) to denote the word Untimed(ρ) (resp. to represent
the delay Duration(ρ)). Finally, for s ∈ {I, A, PA}, we write (M, ν) →s (M ′, ν′)
if there exists a ∈ Στ ∪ R≥0 such that (M, ν) a−→s (M ′, ν′). The relation →∗

s de-
notes the reflexive and transitive closure of →s. For a TPN N with an initial marking
M0 we define the following reachability sets according to the considered semantics:
Reach(N)s = {(M, v) | (M0,0) →∗

s (M, v)}.

Example 1. We illustrate the impact of the three memory policies in weak semantics.
Consider the net depicted on Figure 1, and the execution

t2, c, [0, 1]

t1, a, [0,+∞[

•p

Fig. 1. The TPNN1

(M,0) 1−→s (M,1) a−→s (M, v) where M(p) = 1. With the
intermediate semantics, both clocks are reset as in the in-
termediate marking, the place p is empty. With the atomic
semantics, the clock associated with t2 is not reset and the
clock associated with t1 is reset because it corresponds to
the fired transition. Finally, with the persistent atomic se-
mantics no clock is reset.

3 Decidability

3.1 Considered Problems and Known Results

Assume N = (P, T,Στ ,
•(.), (.)•,M0, Λ, I) is a TPN. In this section, we will consider

the following problems for s ∈ {I, A, PA}:

(1) The marking reachability problem : given M ∈ N
P , does there exist ν ∈ R

En(M)
≥0

such that (M, ν) ∈ Reach(N)s ?
(2) The marking coverability problem : given M ∈ N

P , does there exist M ′ ∈ N
P and

ν ∈ R
En(M ′)
≥0 such that M ′ ≥ M and (M ′, ν) ∈ Reach(N)s ?

(3) The boundedness problem : does there exist b ∈ N such that for all (M, ν) ∈
Reach(N)s and for all p ∈ P , M(p) ≤ b ?

It is well known that the ”untimed” versions of these problems are decidable in the
case of Petri nets. In fact, as mentioned before the marking reachability problem is
decidable for Petri nets [12,13] and the two other problems can be solved using the
Karp and Miller tree whose construction is given in [11].

From [10], we know that these problems are all undecidable when considering TPN
with strong semantics no matter whether the semantics is intermediate, atomic or per-
sistent atomic. In fact a TPN with strong semantics can simulate a Minsky machine.
A Minsky machine manipulates two integer variables c1 and c2 and is composed of a
finite number of instructions, each of these instructions being either an incrementation
(q : ci := ci + 1) or a decrementation with a test to zero (q : if ci = 0 goto q′ else
ci := ci − 1; goto q′′), where i ∈ {1, 2} and q, q′, q′′ are some labels preceding each
instruction. There is also a special label qf from which the machine cannot do anything.
In [15], Minsky proved that the halting problem, which consists in determining if the
instruction labeled with qf is reachable, is undecidable.

Weak Time Petri Nets Strike Back! 563

It is easy to encode an incrementation using a TPN (or even a PN), with a transition
consuming a token in a place characterizing the current control state and producing a
token in the next control state and in a place representing the incremented counter.

When encoding the decrementation with the test to

•q

q′′

ci

q′

[0, 0]

[1, 1]

Fig. 2. Encoding decrementa-
tion with strong semantics

zero, the strong semantics plays a crucial role. This en-
coding is represented on Figure 2. If there is a token in
the place ci, there is no way for the TPN to produce a
token in the place q′ because time cannot elapse since
the transition labeled with the interval [0, 0] is firable.
The example of the Figure 2 shows that the strong time
semantics allows to encode priorities (between transi-
tions in conflict) and thus to encode inhibitor arcs. This
construction obviously fails with the weak semantics.

3.2 The Peculiar Case of TPN with Weak Intermediate Semantics

We prove here that the undecidability results we had before in the case of TPN with
strong semantics do not hold anymore when considering the weak intermediate seman-
tics. Before proving this we introduce some notations. For a TPN N = (P, T,Στ ,

•(.),
(.)•,M0, Λ, I), we denote by NU the untimed PN obtained by removing from N the
component I . Furthermore given a set of configurations C ⊆ N

P × R
T
≥0 of N , we de-

note by Untime(C) the projection of C over the set N
P . For s ∈ {I, A, PA}, we have

by definition of the different semantics that Untime(Reach(N)s) ⊆ Reach(NU)
and as shown by the example given in Figure 2 this inclusion is strict in the case of
the strong semantics. When considering the weak intermediate semantics, we prove
that from any sequence of transitions ∆ firable in �NU �, we can effectively compute a
reordering of ∆, and associated timestamps, leading to a correct run of �N �I .

Theorem 5. For all TPN N , Untime(Reach(N)I) = Reach(NU).

According to the previous remark, we only have to prove that Reach(NU) ⊆
Untime(Reach(N)I). Therefore, we first state the following property expressing that
if we reduce the intervals associated with transitions, this restricts the set of reachable
configurations:

Lemma 6. Let N , N ′ be two TPN identical except on their last component associating
intervals to transitions, say respectively I and I ′. If we have I ′(t) ⊆ I(t) for any t ∈ T ,
then Reach(N ′)I ⊆ Reach(N)I .

In the sequel, we will consider TPN in which intervals are reduced to singletons. That is
we have I(t) = [eft(t), lft(t)] with eft(t) = lft(t) for all transitions t ∈ T . The proof
of the result in this particular case thus entails the result in the general case. Before to
proceed we introduce additional definitions for TPN.

Given a TPN N , a marking M of N and ∆ a multiset of transitions of N , we define

the set Candidate(M,∆) = {t ∈ ∆ | M t⇒ M ′
∆\t

|=⇒}. We will then say that a
configuration (M, ν) is compatible with a multiset ∆ iff:

M
∆

|=⇒ and ∀t ∈ Candidate(M,∆), ν(t) ≤ lft(t).

564 P.-A. Reynier and A. Sangnier

We now prove the following proposition, which intuitively states how to turn a se-
quence of transitions in the untimed Petri net into a timed execution of the TPN.

Proposition 7. Let N be a TPN with singleton intervals and (M, ν) be a configuration
of N compatible with some multiset of transitions ∆. Then, for any transition t ∈
Candidate(M,∆) such that δ(t) = lft(t) − ν(t) is minimal (among the transitions of
Candidate(M,∆)), we have:

(i) (M, ν)
δ(t)−−→I (M, ν + δ(t)) t−→I (M ′, ν′),

(ii) (M ′, ν′) is compatible with ∆′ = ∆ \ t,

Proof. Let t ∈ Candidate(M,∆) be such that for all t′ ∈ Candidate(M,∆), we have
lft(t) − ν(t) = δ(t) ≤ δ(t′) = lft(t ′) − ν(t′).

(i) First the time elpasing transition (M, ν)
δ(t)−−→I (M, ν + δ(t)) is possible as we

consider the weak semantics. Second, the discrete transition (M, ν + δ(t)) t−→I

(M ′, ν′) is also possible as ν(t) + δ(t) = lft(t) by definition of δ(t), and since
the intervals associated with transitions are all singletons.

(ii) To prove compatibility, first note that M ′
∆′

|=⇒ because t ∈ Candidate(M,∆).
Second, let t′ ∈ Candidate(M ′, ∆′). We distinguish two cases according to the
value of the predicate ↑enabledI(t,M, t′):

– If ↑enabledI(t,M, t′) is true, then we have ν′(t′) = 0 and the result follows.
– Otherwise, the definition of ↑enabledI(t,M, t′) implies that M ≥ •t + •t′.

As a consequence, we have M
t′⇒ t⇒. Then as t′ ∈ Candidate(M ′, ∆ \ t) we

get that t′ ∈ Candidate(M,∆). Due to the minimality of δ(t) among the set
Candidate(M,∆), we obtain ν′(t′) = ν(t′) + δ(t) ≤ ν(t′) + δ(t′) = lft(t ′)
as desired.

This concludes the proof. "#

The inclusion Reach(NU) ⊆ Untime(Reach(N)I) in the case of TPN with single-
ton intervals easily follows from this result. Indeed, consider some reachable marking
M in Reach(NU). There exists a sequence of transitions that leads to M from M0,
we represent it through some multiset ∆. As initially all clock valuations are null in
�N �I , the configuration (M0,0) is thus compatible with ∆. An induction on the size
of ∆, together with Proposition 7, thus gives the result. Note that Proposition 7 de-
scribes an effective procedure to compute a timed execution of �N �I : simply consider
the transitions that are candidates, and choose one with the earliest deadline.

Using the decidability results in the case of PN, we obtain the following corollary:

Corollary 8. The marking reachability, marking coverability and boundedness prob-
lems are decidable in the case of TPN with weak intermediate semantics.

3.3 Undecidability for Weak Atomic and Weak Persistent Atomic Semantics

We consider now the case of the weak atomic and weak persistent atomic semantics. As
for the strong semantics, but with a more involved construction, we will show that it is

Weak Time Petri Nets Strike Back! 565

possible to encode the behavior of a Minsky machine into a TPN with weak (persistent)
atomic semantics from which we will deduce the undecidability results. The TPN we
build contains a place for each counter ci with i ∈ {1, 2} and a place for each label q of
the considered Minsky machine. Furthermore, when executing the net, we will preserve
the invariant that there is a single place corresponding to a label q which is marked.

•q

[0, 0]

t1

p1 [1, 1]

t2

p2

ci
[0, 0]

t3

[0, 0] t5

2 p4

[0, 0]

t4 q′

p3

q′′

Fig. 3. Encoding decrementation with weak atomic or persistent atomic semantics

Encoding an incrementation can be done as in the strong semantics. Figure 3 shows
how to encode the instruction (q : if ci = 0 goto q′ else ci := ci − 1; goto q′′) using a
TPN with weak atomic or persistent atomic semantics. We now explain the idea of this
encoding. We consider the two following cases for the net shown in Figure 3:

1. Assume that the only place which contains a token is the place q, which means we
are in the case where the value of ci is equal to 0 (no token in place ci). The net
then can only fire the sequence of transitions t1, t2, t3 and then t4 and finally it
reaches a configuration where the only marked place is q′.

2. Assume now that there is a token in place q and that there is at least one token in
place ci. We are in the case where the value of ci is different of 0. We have the
following sequence of transitions:

– only the transition t1 is firable, so the net fires it;
– afterwards the transition t2 and the transition t3 are firable. In fact, since we

are considering weak semantics the deadline of t3 can be ignored thus making
time passage in order to fire t2. Note that if the net chooses to fire t3, it will
reach a deadlock state where no more transitions can be fired without having
put a token in the place q′ or q′′, therefore we assume that the transition t2 is
first fired;

– after having waiting one time unit and firing t2, the only transition which can
be fired is t5. In fact since we are considering atomic (or persistent atomic)
semantics, firing t2 does not make t3 newly enabled, whereas the weak inter-
mediate semantics would have reset the clock associated to t3. So the net fires
t5 consuming the token in p2, p3 and two tokens in ci (at least one was present
from the initial configuration and the first firing of t2 added another one);

– finally the net ends in a configuration with one token in q′′ and the place ci

contains one token less than in the initial configuration.

566 P.-A. Reynier and A. Sangnier

The above construction allows to reduce the halting problem for Minsky machine
to the marking coverability problem for weak (persistent) atomic semantics. From this
we can also deduce the undecidability for the marking reachability and boundedness
problems. Hence:

Theorem 9. The marking reachability, marking coverability and boundedness prob-
lems are undecidable for TPN with weak atomic or weak persistent atomic semantics.

In comparison with what occurs in the case of the strong semantics, this result is sur-
prising, and it reveals the important role played by the memory policy when considering
the weak semantics. Recall that as we have seen earlier, with the strong semantics, these
problems are undecidable no matter which memory policy is chosen.

Finally, in the above construction, we can replace the edges between p2 and t2 by a
read arc. Consequently, the considered problems are also undecidable for weak inter-
mediate TPN with read arcs, unlike what happens for timed-arc Petri nets [6].

4 Expressiveness

4.1 Preliminaries

Let S = (Q, q0, Στ ,→) be a TTS. We define the relation ↪→⊆ Q× (Σ ∪R≥0)×Q by:

– for d ∈ R≥0, q
d

↪−→ q′ iff there is a run ρ in S such that ρ = q
w−→ q′ and

Untimed(w) = ε and Duration(w) = d,
– for a ∈ Σ, q

a
↪−→ q′ iff there is a run ρ in S such that ρ = q

w−→ q′ and
Untimed(w) = a and Duration(w) = 0.

This allows us to define the following notion:

Definition 10 (Weak Timed Bisimulation). Let S1 = (Q1, q
1
0 , Στ ,→1) and S2 =

(Q2, q
2
0 , Στ ,→2) be two TTS and ∼ be a binary relation over Q1 × Q2. ∼ is a weak

timed bisimulation between S1 and S2 if and only if:

– q1
0 ∼ q2

0 , and,

– for a ∈ Σ ∪ R≥0, if q1
a

↪−→1 q
′
1 and if q1 ∼ q2 then there exists q′2 ∈ Q2 such that

q2
a

↪−→2 q
′
2 and q′1 ∼ q′2; conversely if q2

a
↪−→2 q

′
2 and if q1 ∼ q2 then there exists

q′1 ∈ Q1 such that q1
a

↪−→1 q
′
1 and q′1 ∼ q′2.

Two TTS S1 and S2 are weak timed bisimilar if there exists a weak timed bisimulation
between S1 and S2. We then write S1 ≈ S2.

Definition 11 (Expressiveness w.r.t. Weak Timed Bisimilarity). The class C of TTS
is less expressive than C′ w.r.t. weak timed bisimilarity if for all TTS S ∈ C there is a
TTS S′ ∈ C′ such that S ≈ S′. We write C � C′. If moreover there is a S′ ∈ C′ such
that there is no S ∈ C with S ≈ S′, then C is strictly less expressive than C′. We then
write C � C′.

For s ∈ {I, A, PA}, we will denote by T PN s the class of TTS induced by TPN with
s-semantics.

Weak Time Petri Nets Strike Back! 567

t
Λ(t)
I(t)

input places

output places

t1

Λ(t)
I(t)

t2

Λ(t)
I(t)

•p1
t p2

t

input places

output places

Fig. 4. From atomic to persistent atomic semantics

4.2 Atomic versus Persistent Atomic semantics

In [4], the authors prove that for TPN with strong semantics, the persistent atomic se-
mantics is more expressive than the atomic semantics. We prove here that this result
still holds in the case of the weak semantics. Intuitively, as it is shown on Figure 4,
from a TPN with atomic semantics, we build another TPN in which we duplicate each
transition. During an execution of this last TPN, at most one of the transitions obtained
after duplication is enabled, and when it is fired it cannot be enabled again at the next
step whereas the other one can. This trick allows us to simulate the atomic semantics
with the persistent atomic one.

Proposition 12. For all TPN N , we can build a TPN N ′ such that �N �A ≈ �N ′�PA.

Proof. Let N = (P, T,Στ ,
•(.), (.)•,M0, Λ, I) be a TPN over Στ . Figure 4 represents

the construction of the TPN N ′. Formally, its set of places P ′ is equal to P ∪ {p1
t , p

2
t |

t ∈ T } and its set of transitions T ′ contains two copies t1 and t2 of each transition
t ∈ T . These copies are connected in the same way as the transition t is in N , plus
additional edges to the places p1

t and p2
t , as depicted on Figure 4. Finally the initial

marking of N ′ is M ′
0 such that for all p ∈ P , M ′

0(p) = M0(p) and for all t ∈ T ,
M ′

0(p
1
t) = 1 and M ′

0(p
2
t) = 0.

We now consider the relation ∼⊆ (NP × R
T
≥0) × (NP ′ ×R

T ′
≥0) between the config-

urations of �N �A and the ones of �N ′�PA defined by (M, ν) ∼ (M ′, ν′) iff:

– for all p ∈ P , M(p) = M ′(p) and for all t ∈ T , M ′(p1
t) +M ′(p2

t) = 1,
– for all t ∈ T , for all i ∈ {1, 2} if t ∈ En(M) and ti ∈ En(M ′) then ν(t) = ν′(ti).

It is then easy to verify that the relation ∼ is a weak timed bisimulation. "#

We will now prove that the inclusion we obtain in the above proposition is strict. But
before, we address a technical point which we will use to delay some sequences of
transitions in weak TPN.

Lemma 13. Let s ∈ {I, A, PA} and consider a TPN N such that b is the smallest
positive upper bound of the intervals of N . Let ρ be a run in �N �s of the form ρ :
(M, ν) δ>0−−→s (M, ν + δ) t1−→s · · · tn−→s, such that there exists a value τ ≥ 0 verifying:

(i) ∀i ∈ {1, . . . , n}, ti ∈ En(M) ⇒ ν(ti) ≤ η,
(ii) η + δ < b

2

Then the sequence ρ′ : (M, ν)
δ+ b

2−−−→s (M, ν′) t1−→s · · · tn−→s is firable in �N �s.

568 P.-A. Reynier and A. Sangnier

We now consider the TPN N2 represented on Figure 5.
a, [0, 1]

Fig. 5. The TPNN2

Equipped with persistent atomic semantics, it accepts the set
of timed words composed of letters a occurring before time 1.
We will prove that this timed language cannot be accepted by
any TPN equipped with the weak atomic semantics.

Proposition 14. There exists no TPN N (even unbounded) s.t. �N �A ≈ �N2�PA.

Proof. Assume there exists a TPN N such that �N �A ≈ �N2�PA. Denote by N the
number of transitions of N , by b the smallest positive upper bound of the intervals of
N , and consider a timed word w = (a, η1)(a, η2) . . . (a, ηk) such that ∀i, 1− b

2 < ηi <
ηi+1 < 1, and k ≥ N + 1.

This timed word w is recognized by �N1�PA and there exists thus a run of �N �A

along w. We denote it by ρ and decompose it as follows :

ρ : θ0−→A
d1−→A

θ1−→A
t1a−→A

θ′
1−→A · · · di−→A

θi−→A
ti
a−→A

θ′
i−→A · · · dk−→A

θk−→A
tk
a−→A

To obtain this decomposition we proceed as follows. We denote by tia the i-th transi-
tion labelled by a. Then for each position i, we isolate the last delay step occuring before
the transition tia (it exists since ηi > ηi−1) and denote it by di. Then we gather all the
internal transitions occuring between this delay step and the transition tia, and denote
this sequence by θi. The transitions between ti−1

a and the delay step constitute the se-
quence θ′i−1. In particular, the following properties hold for any position i : Λ(tia) = a,
Untimed(θi) = Untimed(θ′i) = ε, di > 0, Duration(θi) = 0, and tia occurs at time ηi.

We claim there exists an index i ∈ {1, . . . , k} such that each transition t appearing
in θi t

i
a has already been fired since θ0, i.e. t also appears in θ1 t1a θ

′
1 · · · θi−1 t

i−1
a θ′i−1.

By contradiction, if it is not the case, then we can find, for each index i ∈ {1, . . . , k}, a
transition, denoted ti, that never appears before. The choice of k verifying k ≥ N + 1
then implies that there exist two positions i
= j such that ti = tj , thus yielding a
contradiction. We can now fix an index i verifying the above described property.

We now show that Lemma 13 can be applied to the part of ρ associated with the
sequence di θi tia. More precisely, (M, ν) is the configuration reached after firing
θ0 · · · ti−1

a θ′i−1, the delay δ is equal to di, the sequence t1 · · · tn corresponds to θi t
i
a,

and η is defined as (ηi − di) − (1 − b
2). In the atomic semantics, when a transition is

fired, its clock is reset if it is still enabled. This property allows, together with timing
constraints on the word w, to verify hypotheses (i) and (ii) of the Lemma 13. Indeed,
since each transition in θi t

i
a has been reset along θ1 t1a θ′1 · · · θ′i−1, it has been reset

since time η1. Since the global time associated with (M, ν) is equal to ηi − di, these
valuations are bounded by above by the value (ηi −di)− τ1 ≤ (ηi −di)− (1− b

2) = η.
Second, we have η+δ = ηi−(1− b

2) < b
2 , as desired (this follows from the inequalities

1 − b
2 < ηi < 1).

Finally, Lemma 13 thus allows to delay of b
2 the firing of the sequence θi t

i
a. In

particular, this will produce a letter a at time ηi + b
2 > 1. The TTS �N �A thus accepts

a timed word not recognized by �N2�PA, providing a contradiction. "#
Using the results of Propositions 12 and 14, we deduce that:

Theorem 15. T PNA � T PNPA.

Weak Time Petri Nets Strike Back! 569

4.3 About Atomic and Intermediate Policies in Weak and Strong Semantics

In this subsection, we discuss the comparison of the intermediate and atomic policies.
As we will see, the situation is more complex than in the previous comparison.

On the inclusion of T PN I into T PNA. For the strong semantics, a construction has
been proposed in [4] to transform any TPN with intermediate policy into an equivalent
(w.r.t. weak timed bisimilarity) TPN with atomic semantics. A first attempt was thus to
adapt this construction for the weak semantics. But studying this construction, we no-
ticed that it is erroneous (even for the strong semantics). We present below an example
exhibiting the error.

t′, c, [0, 1]

t, a, [0, 1]

••p

N3

t′−, c, [0, 1]

t′+, τ, [0, 0]

t−, a, [0, 1] t+, τ, [0, 0]

••p

pt

pt′

N ′
3

Fig. 6. A counter example to the construction of [4].

Example 2. Consider the net N3 depicted on the left of Figure 6. The application of
the construction proposed in [4] leads to the net N ′

3 depicted on the right of Figure 6.
According to [4], we should have, under the strong semantics, the relation �N3�I ≈
�N ′

3�A. However, it is easy to verify that in the TTS �N ′
3�A the letter c can be read

after 2 times units (with the timed word (a, 1)(a, 1)(τ, 1)(τ, 1)(c, 2)) whereas it is not
possible in �N3�I , thus proving that the construction proposed in [4] is erroneous.

This example leaves open the question of the inclusion of T PN I into T PNA for
the strong semantics, and then for this semantics both inclusions are left open. For weak
semantics, this inclusion is also open, but we show below that the converse inclusion is
false.

Non inclusion of T PNA into T PN I . We exhibit a TPN with atomic semantics which
cannot be expressed in an equivalent way by any TPN with intermediate semantics (with
weak elapsing of time). This is formally stated in the Proposition below. We consider
the TPN N1 represented on Figure 1. Interpreted in weak atomic semantics, the firing of
the a-labelled transition does not newly enable transition labelled by c. This transition
thus shares a token with transition a while preserving a time reference to the origin of
global time, what is impossible in intermediate semantics.

Proposition 16. There exists no TPN N (even unbounded) such that �N �I ≈ �N1�A.

Proof. We only present a sketch of the proof (details can be found in the [16]). We
proceed by contradiction and assume there exists such a TPN N , and denote by N its
number of transitions, and b the smallest positive upper bound of its intervals. As in the
proof of Proposition 14, we first exhibit a particular execution ρ of �N �I :

570 P.-A. Reynier and A. Sangnier

Lemma 17. Let (ηi)1≤i≤k be a set of timestamps such that for any 1 ≤ i ≤ k, 1− b
2 <

ηi < ηi+1 < 1 and k ≥ N + 1. There exists a run ρ in �N �I of the following form:

ρ :
1− b

2−−−→I
θ1−→I

d1−→I
θ′
1−→I

t1a−→I
θ′′
1−→I · · · θi−→I

di−→I
θ′

i−→I
ti
a−→I

θ′′
i−→I · · · θn−→I

dn−→I
θ′

n−→I
tn
a−→I

θ′′
n−→I

such that for any position i, Λ(tia) = a, the transition tia occurs at time ηi, di > 0,
Untimed(θi) = Untimed(θ′i) = Untimed(θ′′i) = ε, Duration(θ′i) = Duration(θ′′i) = 0,
and there exists a transition tic, labelled by c, newly enabled by the last transition of
tia θ

′′
i and (immediately) firable from the configuration reached after θ′′i .

To conclude we use a reasonning very similar to the one done in the proof of Proposition
14. In fact, applying Lemma 13, it is possible to delay by b

2 time units the firing of a
subsequence di θ

′
i t

i
a θ

′′
i and since tic is newly enabled by the last transition of tia θ

′′
i , we

thus obtain a run in �N �I with a c action following an a action occuring after time 1,
which is impossible in �N1�A, thus yielding a contradiction. "#

5 Conclusion

We have studied in this paper the model of Time Petri Nets under a weak semantics of
time elapsing, allowing any delay transition. We have first proven that for the interme-
diate memory policy, the set of reachable markings coincides with the reachability set
of the underlying untimed Petri net. As a consequence, many verification problems are
decidable for weak intermediate TPN. On the other hand, we have proven that the two
other memory policies, namely atomic and persistent atomic, allow to simulate Minsky
machines and thus are undecidable. Finally, we have studied expressiveness and have
proven that (i) the atomic semantics is strictly less expressive than the persistent atomic
one and (ii) the atomic semantics is not included in the intermediate one.

In further work, we plan to investigate properties concerning executions of weak
intermediate TPN; such as time-optimal reachability, or LTL model checking. Indeed,
while discrete markings are the same, the executions are different from those accepted
by the underlying Petri net. Concerning expressiveness, we conjecture that intermediate
and atomic semantics are uncomparable in general, and that bounded weak TPN are
strictly less expressive than timed automata (without invariants).

Aknowledgments. We would like to thank Fabrice Chevalier for fruitful discussions
and the anonymous reviewers for their insightful comments.

References

1. Abdulla, P.A., Mahata, P., Mayr, R.: Dense-timed Petri nets: Checking zenoness, token live-
ness and boundedness. Logical Methods in Computer Science 3(1), 1–61 (2007)

2. Abdulla, P.A., Nylén, A.: Timed Petri nets and bqos. In: Colom, J.-M., Koutny, M. (eds.)
ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2),
183–235 (1994)

Weak Time Petri Nets Strike Back! 571

4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of different seman-
tics for time Petri nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 293–307. Springer, Heidelberg (2005)

5. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In: PSTV 1990,
pp. 395–408. North-Holland, Amsterdam (1990)

6. Bouyer, P., Haddad, S., Reynier, P.-A.: Timed Petri nets and timed automata: On the discrim-
inating power of zeno sequences. Information and Computation 206(1), 73–107 (2008)

7. Boyer, M., Roux, O.H.: On the compared expressiveness of arc, place and transition time
Petri nets. Fundamenta Informaticae 88(3), 225–249 (2008)

8. de Frutos-Escrig, D., Valero Ruiz, V., Alonso, O.M.: Decidability of properties of timed-arc
Petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 187–206.
Springer, Heidelberg (2000)

9. Haar, S., Simonot-Lion, F., Kaiser, L., Toussaint, J.: Equivalence of timed state machines and
safe time Petri nets. In: WoDES 2002, pp. 119–126 (2002)

10. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri nets. The-
oretical Computer Science 4(3), 277–299 (1977)

11. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer System Sci-
ences 3(2), 147–195 (1969)

12. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary version).
In: STOC 1982, pp. 267–281. ACM, New York (1982)

13. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM Journal on
Computing 13(3), 441–460 (1984)

14. Merlin, P.M.: A Study of the Recoverability of Computing Systems. PhD thesis, University
of California, Irvine, CA, USA (1974)

15. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper Saddle
River (1967)

16. Reynier, P.-A., Sangnier, A.: Weak Time Petri Nets strike back! Research Report HAL-
00374482, HAL, CNRS, France (2009)

17. Sifakis, J., Yovine, S.: Compositional specification of timed systems. In: Puech, C., Reischuk,
R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 347–359. Springer, Heidelberg (1996)

18. Valero Ruiz, V., de Frutos-Escrig, D., Cuartero, F.: On non-decidability of reachability
for timed-arc Petri nets. In: PNPM 1999, pp. 188–196. IEEE Computer Society Press,
Los Alamitos (1999)

A General Testability Theory�

Ismael Rodŕıguez

Universidad Complutense de Madrid, 28040 Madrid, Spain
isrodrig@sip.ucm.es

Abstract. We present a general framework allowing to classify testing
problems into five testability classes. Classes differ in the number of tests
we must apply to precisely determine whether the system is correct or
not. The conditions that enable/disable finite testability are analyzed.
A general method to reduce a testing problem into another is presented.
The complexity of finding complete test suites and measuring the suit-
ability of incomplete suites is analyzed.

1 Introduction

Testing consists in checking the correctness of a system by interacting with it.
Typically, the goal of this interaction is checking whether an implementation
fulfills a given property or specification. If the specification is formally defined
then procedures for deriving tests, applying tests, and assessing the outputs col-
lected by tests can be formal and systematic [10,13,2,15]. There exist myriads of
formal testing methodologies, each one focusing on checking the correctness of
a different kind of system (e.g., labeled transition systems [18,4], temporal sys-
tems [16,12], probabilistic systems [17,11], Java programs [3], etc). Some methods
focus on testing a part of the behavior considered critical. Other methods aim at
constructing complete test suites, that is, sets of tests such that, after applying
them to the implementation, the results allow to precisely determine whether
the implementation is correct or not with respect to the specification. Let us
note that constructing and applying complete test suites is often unfeasible.
For example, checking the correctness of a non-deterministic machine could be
impossible regardless of how many tests one applies, because a given behavior
could remain hidden for any arbitrarily long time. Even if a machine is deter-
ministic, we could need to apply infinite tests if the number of available ways to
interact with the implementation is infinite. In some cases where infinite tests
are required, it could be the case that we can achieve any arbitrarily high de-
gree of partial completeness with some finite test suite, thus enabling a kind
of unboundedly-approachable completeness, rather than completeness. Alterna-
tively, if the behavior of the system depends on temporal conditions and the time
is assumed to be continuous, then we could need to check what happens when
a given input is produced at all possible times, thus requiring an uncountable
infinite set of tests.
� Work supported by projects TIN2006-15578-C02-01, CCG08-UCM/TIC-4124, and

the UCM-BSCH programme (GR58/08 - group number 910606).

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 572–586, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A General Testability Theory 573

Since the feasibility of a testing method depends on our capability to test
systems in finite time, investigating the conditions that enable/disable the ex-
istence of finite complete test suites in each case is a major issue in testing. In
this regard, several works have studied the effect of assuming some hypothe-
ses about the implementation [7,8,15]. By assuming hypotheses, the number of
systems that could actually be the implementation is reduced (provided that
assumed hypotheses actually hold), so less tests must be applied to seek for un-
desirable behaviors. Actually, this may allow to reduce the number of necessary
tests from infinite to finite [1,5]. However, the specific conditions that make the
difference between requiring infinite or finite sets of tests (regardless of the use
of hypotheses) must be studied. In this paper, by testability we will understand
the difficulty to test systems, measured in terms of the size required by test
suites to be complete. We think that the conditions leading to the testability
cases commented before (that is, complete test suites are (a) finite; (b) infinite,
but any arbitrarily high degree of partial completeness can be finitely achieved;
(c) countable infinite, but not as in (b); (d) uncountable infinite; or (e) there
does not exist any complete test suite at all) must be analyzed. To the best of
our knowledge, the previous five general testability scenarios have never been
defined or investigated. In particular, the border between them has never been
studied as a general issue, that is, by means of a framework where any kind of
formalism for defining specifications and implementations fits (only some partic-
ular hypotheses enabling finite complete test suites for some particular models
have been reported). This contrasts with other mature fields of Computer Sci-
ence like Computability or Complexity, where a well established theory allows
to relate different known problems with each other, as well as to classify them
into a known hierarchy. Unfortunately, the lack of such formal roots makes the
field of Formal Testing Techniques a bit disorganized because techniques are not
easily inherited from a problem to another – even if they are quite similar after
abstracting factors not directly affecting testability.

We propose a first step towards the construction of a general testability the-
ory. We present some formal criteria to classify testing problems according to
their testability. Providing a complete testability hierarchy is a huge task and
is out of the goals of the paper. Instead, a hierarchy including only five main
classes of testability (finitely testable, unboundedly-approachable finitely testable,
infinite countable testable, infinite uncountable testable, and untestable) is pre-
sented. Some formal properties of the finitely testable class are presented, such as
conditions required for finite testability, alternative characterizations, transfor-
mations keeping the testability, the effect of adding testing hypotheses, methods
to reduce a testing problem into another, the complexity of finding a minimum
complete test suite, and the complexity of measuring the completeness degree
of incomplete test suites. We apply these properties to study the testability of
some examples, both well-known and ad hoc. A deeper study of the properties
of the remaining four testability classes is left as future work.

The contribution of this paper is twofold. From a theoretical point of view, the
proposed techniques allow to classify and relate testing problems with each other,

574 I. Rodŕıguez

thus making a first step towards constructing a complete testability hierarchy
and improving our understanding about testing. From a practical point of view,
being able to reason about the most ideal testing scenario (that is, the case where
completeness is feasible) allows to deal with more practical scenarios. Though
test suites are incomplete in most of practical cases, identifying the additional
conditions required by an incomplete test suite to become complete allows to
compare and select good (incomplete) test suites: We prefer those test suites
such that the conditions required by them to be complete are weaker or more
feasible. Besides, if testing problems can be related then strategies allowing to
find good test suites for a given kind of systems can be exported to find good
test suites in other testing scenarios. Moreover, testability issues could affect the
design of systems: If there are several suitable alternatives for a design and, for
one of them, the problem of testing the corresponding system would belong to
a better class (or incomplete test suites would be closer to be complete), then
this alternative is preferable. The structure of this paper is direct. All proofs, as
well as some auxiliary results and secondary notions, are presented in [14].

2 Testability Concepts

In this section we introduce some preliminary concepts and we define testability
classes. First, we present a general notion to denote implementations and speci-
fications in our framework. Since testing consists in studying systems in terms of
their observable behavior, the behavior of a system can be defined by a function
relating inputs with their possible outputs. Next we assume that 2S denotes the
powerset of the set S.

Definition 1. Let I be a set of input symbols and O be a set of output symbols.
A computation formalism C for I and O is a set of functions f : I → 2O where
for all i ∈ I we have f(i)
= ∅. "#

Given a function f ∈ C, f(i) represents the set of outputs we can obtain after
applying input i ∈ I to the computation artifact represented by f . Since f(i)
is a set, f may represent a non-deterministic behavior. Besides, C, I, and O
can be infinite sets. Representing the behavior of systems by means of functions
avoids to implicitly impose a specific structure to system models (e.g., states,
transitions). Still, elaborated behaviors can be represented. We illustrate this.

Example 1. LetC be a computation formalism representing the set of all (possibly
non-deterministic) Mealy machines (also known as finite state machines, FSMs).
Let M be an FSM and I ′ and O′ be the set of inputs and the set of outputs of M ,
respectively. M is represented in C by a function f ∈ C such that we have f(σ) =
{σ′1, . . . , σ′n} if and only if {σ′1, . . . , σ′n} is the set of sequences of O′ outputs that
can be answered byM when it receives the sequence σ of I ′ inputs. For instance, if
σ = a · b, σ′ = x · y, and σ′′ = w · z, then f(σ) = {σ′, σ′′} means that f represents
an FSM M where, in particular, if a ·b is given then the machine can answer either
x · y or w · z. Hence, the set I considered in Definition 1 (respectively, the set O) is

A General Testability Theory 575

the set of all sequences of symbols belonging to I ′ (resp. toO′), that is, I = I ′∗ and
O = O′∗.1 Thus, even if I ′ andO′ are finite, I andO are infinite sets. Alternatively,
if systems were assumed to be deterministic FSMs, then all functions representing
a non-deterministic FSM would be removed from C. Other restrictions over the
set of systems that are represented byC could be considered (e.g. considering only
FSMs with less than n states, etc).

Now, let C represent the set of all programs in a Turing-complete language,
e.g. Java. We codify the interaction of a user with a program by using an ap-
propriate notation. For example, the behavior of a given program P could be
denoted by a function f such that, in particular, we have

f(〈(0.5, but1), (1.25, but2)〉)=

⎧⎨
⎩
〈(0.75,mes1), (1.5,mes2), (2, stop)〉,
〈(0.75,mes1), (1.5,mes3), (2,mes4), (2.5, stop)〉,
〈(0.75,mes1),⊥〉

⎫⎬
⎭

meaning that if the user presses button 1 at time 0.5 and button 2 at time 1.25,
then she will receive message 1 at time 0.75 for sure, and next the program non-
deterministically chooses one of the following choices: (a) answering message 2
at time 1.5 and stopping at time 2; (b) answering message 3 at time 1.5, giving
message 4 at time 2, and then finishing at time 2.5; or (c) not terminating
(denoted by the ⊥ symbol; the effect of non-terminating behaviors on testing
will be discussed later). For example, we have 〈(0.5, but1), (1.25, but2)〉 ∈ I and
〈(0.75,mes1), (1.5,mes2), (2, stop)〉 ∈ O. Alternatively, if temporal issues were
not considered relevant for assessing the correctness of behaviors, then time
stamps could be removed from the proposed representation, or they could be
replaced by ordering stamps denoting the relative order of each O′ output with
respect to I ′ inputs. Additional details could denote other factors.

If two FSMs (resp., two Java programs) produce the same sets of outputs for
all inputs then both machines are represented by the same function f ∈ C, since
a function belonging to C represents a relation between inputs and outputs (but
not the internal structure of the machine leading to this behavior). "#

Computation formalisms will be used to represent the set of implementations we
are considering in a given testing scenario. Implicitly, a computation formalism
C represents a fault model (i.e. the definition of what can be wrong in the IUT)
as well as the hypotheses about the IUT the tester is assuming. For instance, if
the IUT is assumed to be a deterministic FSM and to differ from a given correct
FSM in at most one transition, then only functions denoting the behaviors of
such FSMs (including the correct one) are in C; alternatively, if all we assume
is that the IUT is represented by a deterministic FSM, then C will represent
all deterministic FSMs. Computation formalisms will also be used to represent
the subset of specification-compliant implementations. Let C represent the set
of possible implementations and E ⊆ C represent the set of implementations
fulfilling the specification. The goal of testing is interacting with the implemen-
tation under test (IUT) so that, according to the collected responses, we can

1 When dealing with FSMs we will assume the same meaning for I ′, O′, I , and O.

576 I. Rodŕıguez

decide whether the IUT actually belongs to E or not. Typically, we apply some
tests (i.e., some inputs i1, i2, . . . ∈ I) to the IUT one after each other so that
observed results o1 ∈ f(i1), o2 ∈ f(i2), . . . allow us to provide a verdict. Since
all outputs are returned by the same function f , we are implicitly assuming
that all input applications are independent, i.e. the result after applying i1 does
not affect the output observed next, when we apply i2.2 Alternatively, we may
choose not to assume this independence. In this case, an interaction where we
apply i1 and next i2 is not assumed to return o1 and next o2, for some o1 ∈ f(i1)
and o2 ∈ f(i2). Instead, it returns o for some o ∈ f(i′), where i′ is a single input
representing an interaction where we apply i1 and next we apply i2. Hence, sce-
narios where the independence of input applications is not guaranteed can also
be represented in the proposed formalism.

Definition 2. A specification of a computation formalism C is a set E⊆C. "#

If f ∈ E then f denotes a correct behavior, while f ∈ C\E denotes that f
is incorrect. Thus, a specification implicitly denotes a correctness criterion. For
example, let f, f ′ ∈ C be such that for all i we have f(i) = {a} and f ′(i) = {b}.
Then, E = {f, f ′} denotes that only machines producing always a or always
b are considered correct. We can also construct E in such a way that a given
semantic relation is considered (e.g., bisimulation, testing preorder, traces inclu-
sion, conformance testing, etc). For instance, given some f ∈ C, let us consider
that f is correct and we wish to be consistent with respect to a given semantic
relation �, where A � B means that B is correct with respect to A. Then we
could define E as follows: E = {f ′|f � f ′ ∧ f ′ ∈ C}.

Testing provides verdicts in terms of the outputs collected by interacting with
the IUT. In some situations, there might exist two different outputs that are not
distinguishable in practice by means of observation. This is specially relevant if
one of them is produced when the machine fulfills the specification and the other
one is given when the machine is incorrect, because then the observed output
does not allow to assess the correctness of the observed IUT.

Definition 3. A distinguishing relation for a set of outputs O is a non-reflexive
symmetric binary relation D over O. Its complementary is denoted by
D. "#

Example 2. We revisit the example where C represents FSMs. If after receiving
some i ∈ I the IUT can answer either o1 ∈ O or o2 ∈ O then, by observing
the actual response of the IUT, we can decide which of these sequences is pro-
duced. Hence, we may consider a trivial distinguishing relation D where two
outputs o1, o2 ∈ O are distinguishable iff they represent different sequences of
O′ outputs, i.e. o1 D o2 iff o1
= o2. This strong distinguishing capability may
not be feasible in other frameworks. We revisit the example where C represents
Java programs. Let us suppose that the time at which messages are produced
is not represented, that is, outputs only represent sequences of messages. Let
us consider outputs o1 = 〈mes1,mes2, stop〉 and o2 = 〈mes1,⊥〉. In practice,

2 In practice this is equivalent to assuming a reliable reset, a typical testing assumption.

A General Testability Theory 577

o1 is not distinguishable from o2 via observation because, if mes1 is produced,
then we cannot guarantee that mes2 will not be observed later, no matter how
much time passes. Consequently, we may consider the following distinguishing
relation: We have o1 D o2 iff o1
= o2 and neither o1 = w · ⊥ nor o2 = w · ⊥,
where w is the longest common prefix of o1 and o2.3 It is worth to point out
that, if outputs are given as in Example 1 (that is, a time stamp is attached to
each O′ output), then non-termination issues do not affect the distinguishability
of outputs. Let us consider o = 〈(t1, o1), . . . , (tn, on)〉 ∈ O. If time ti is reached
and oi is not observed then we know for sure that we are not observing o. Thus,
in this case we may use the following criterion: We have o1 D o2 iff o1
= o2. "#

Next we identify complete test suites, i.e. sets of inputs such that, if they are
applied to the IUT, then collected outputs allow to precisely determine if the
IUT fulfills the considered specification or not. More precisely, a complete test
suite is a set of inputs such that, for all correct function f and incorrect function
f ′, there is at least one input i in the set such that the sets of outputs that can
be produced by f and f ′ in response to i are pairwise distinguishable (i.e. all
outputs in one set are distinguishable from all outputs belonging to the other
set). We also introduce three of the five classes of our testability hierarchy:
Class I, Class III, and Class V (Class II will be defined later in this section,
while Class IV is defined in [14]). Next we consider that if I is a set of inputs
then pairs (f,I) denotes the set of all pairs (i,f(i)) such that i∈I.

Definition 4. Let C be a computation formalism for I and O, E ⊆ C be a
specification, D be a distinguishing relation, and I ⊆ I be a set of inputs.

We say that f ∈E and f ′∈C\E are distinguished by I, denoted by di (f, f ′, I),
if there exist i ∈ I, (i, outs) ∈ pairs (f, I), and (i, outs′) ∈ pairs (f ′, I) such
that for all o ∈ outs and o′ ∈ outs′ we have o D o′.

We say that I is a complete test suite for C, E, and D if for all f ∈ E and
f ′ ∈ C\E we have di (f, f ′, I).

A triple (C,E,D) is finitely testable if there exists a finite complete test suite
for C, E, and D. Class I denotes the set of all finitely testable triples (C,E,D).

(C,E,D) is countable testable if there exists a countable complete test suite
for C, E, and D. Class III is the set of all countable testable triples (C,E,D).

Class V denotes the set of all triples (C,E,D). "#

This classification induces the relation Class I⊆Class III⊆Class V. Next we
show some examples fitting into each of these testability classes. They show that
all the inclusions considered in the previous relation are proper indeed.

Example 3. Let C1 represent the set of all deterministic completely-specified
FSMs with at most n states where the finite sets of inputs and outputs are I ′

and O′, respectively. Let E1 ⊆ C1, D be the trivial distinguishing relation (i.e.,
o1 D o2 iff o1
= o2), and I1 be the set of all sequences of I ′ symbols whose length

3 Alternatively, a tester could assume a kind of non-termination observability, which
is common for practical reasons. In that case, we could consider o1 D o2 iff o1 �= o2.

578 I. Rodŕıguez

is at most 2n+ 1. It is known that, if two FSMs M1 and M2 represented by C1
produce different responses for some input sequence, then sequences answered by
M1 and M2 are different for at least one sequence belonging to I1 [10]. Hence,
for all f ∈ E1 and f ′ ∈ C1\E1 there exists a sequence i ∈ I1 allowing to
distinguish f and f ′. Thus, (C1, E1,D) ∈ Class I. As we can see in Example 7
(given in [14]) this result can also be proved by applying Lemma 2 (c) (this
lemma, given right before Example 7 in [14], makes this result straightforward
and avoids the necessity of identifying any specific complete test suite I1).

Let us remove the restriction that FSMs have at most n states. Let C2 be
the resulting computation formalism, and let E2 ⊆ C2. It is known that, in gen-
eral, given two (possible infinite) sets of deterministic FSMs, there is no finite
set of sequences I2 allowing to distinguish each member of the first set from
each FSM in the other set. Hence, in general we have (C2, E2,D)
∈ Class I (we
also prove this property in Example 7 of [14], this time by using Lemma 2 (b)).
However, the set of all sequences of I ′ inputs, that is I ′∗, distinguishes all pairs
of non-equivalent deterministic FSMs. In fact, I ′∗ can be numbered (e.g., lexi-
cographically). Thus, we have (C2, E2,D) ∈ Class III.

Let C4 be a computation formalism representing all non-deterministic FSMs,
and let E4 ⊆ C4. We consider an FSM M1 that answers b when a is received,
and another FSM M2 with the same behavior as M1 for all inputs but a: If M2
receives a, then M2 can answer either b or c. Let us suppose that M1 is correct
and M2 is not, and let they be represented in C4 by f ∈ E4 and f ′ ∈ C4\E4,
respectively. Despite of the fact that we could obtain c after applying a to f ′,
input a does not necessarily distinguish f and f ′ because both of them could
produce b in response to a. In fact, M2 could hide output c for any arbitrarily
long time, no matter how many times we apply a. Thus, no input allows the
tester to necessarily distinguish f and f ′, so we have (C4, E4,D) ∈ Class V but
(C4, E4,D)
∈ Class III.4

Non-determinism does not imply that finite testability is not possible. Let
C5 = {f, f ′} and E5 = {f} be such that f(a) = {x}, f ′(a) = {x, y}, f(b) =
{x, y}, and f ′(b) = {z, w}. Then, {b} is a complete test suite for C5, E5, and
D. Thus, (C5, E5,D) ∈ Class I. Finally let us note that, given C, E, and D,
(C,E,D) ∈ Class I does not imply that C or E are finite. Let C represent all
deterministic terminating Java-written functions from integers to integers that
are either strictly increasing or strictly decreasing. Let E ⊆ C consist of all
strictly increasing functions in C. Though C and E are infinite sets, {3, 5} is
a complete test suite for (C,E,D): For all f ∈ C, f(3) < f(5) iff f ∈ E. So,
(C,E,D) ∈ Class I. This trivial example shows that the finite testability does
not lie in the finiteness of C or E but in their relation. "#

Let D be defined in such a way that o1 D o2 only if o1 and o2 can be effec-
tively distinguished via observation (see Example 2). If (C,E,D) ∈ Class I
then we can precisely decide if the IUT is correct or not (i.e., if it belongs to the
4 If fairness were assumed, we would be considering a different computation formalism

C′
4 �= C4. In C′

4, for all input denoting a long repetition of the same experiment, the
output must denote that all possible reactions are observed at least once.

A General Testability Theory 579

specification set) by considering the answers collected by a complete test suite. If
the problem belongs to Class III but not to Class I, then applying a complete
test suite to the IUT is unfeasible because the suite is infinite. In particular, if the
problem belongs to Class III then we could rather speak about testability in
the limit, i.e. as we iteratively apply more tests, we could tend to complete test-
ing coverage (this idea will be further elaborated below). Some issues concerning
the relation between complete test suites and non-termination are presented
in [14]. Besides, a result showing that observations collected by complete test
suites univocally determine whether the IUT is correct is also presented in [14].

Next we elaborate on the idea of finite testability in the limit or, more pre-
cisely, unboundedly-approachable finite testability. In some cases where finite
testability is not possible, it may still be possible to test the IUT up to any
arbitrarily high confidence degree with a finite test suite. By confidence degree,
here we mean the ratio between the number of pairs of correct/incorrect functions
that are distinguished by the test suite and the total number of correct/incorrect
pairs. If, for all real value 0 ≤ ε < 1, we can find a finite test suite providing
a ratio higher than ε, then we say that the IUT is unboundedly-approachable
by finite testing. Care must be taken to measure this ratio when (countable)
infinite computation formalisms are considered. For instance, even if a test suite
distinguishes one out of two pairs of correct/incorrect functions, and thus we
expect to reach a 0.5 ratio, the set of all pairs and the set of distinguished pairs
have the same cardinality (the same as IN). Instead of considering the cardinality
of these infinite sets, the ratio will be measured for some finite subsets of the
computation formalism. These subsets will be defined in such a way that they
tend to cover the whole computation formalism as they increase.

Definition 5. Let C be a countable computation formalism for I and O, E ⊆ C
be a specification, D be a distinguishing relation, and I ⊆ I be a set of inputs.
Let h : IN −→ C be a surjective function and k ∈ IN. The restriction of C to k
in h, denoted by C ↓k h, is defined as {h(j)|0 ≤ j ≤ k}. The restriction of E to
k in h, denoted by E ↓k h, is defined as (C ↓k h) ∩ E.

If C is finite then we define the distinguishing rate of I for (C,E,D), denoted

by d-rate (I, C,E,D), as |{(f, f ′)|f ∈ E, f ′ ∈ C\E, di (f, f ′, I)}|
|E| · |C\E| .

We say that (C,E,D) is unboundedly-approachable by finite testing through h
if for all ε ∈ IR, with 0 ≤ ε < 1, there exists a finite set of inputs I ⊆ I such that,
for all k ∈ IN, we have d-rate (I, C ↓k1 h,E ↓k1 h,D) ≥ ε for some k1 ≥ k. "#

Clearly, the property of being unboundedly-approachable by finite testing
strongly depends on the function h considered to sort the computation formal-
ism. In particular, given a triple (C,E,D), it may be unboundedly-approachable
for some sorting functions but not for others. Still, we can define a class of
unboundedly-approachable triples (C,E,D) as follows: We say that (C,E,D) is
unboundedly-approachable if there exists h such that (C,E,D) is unboundedly-
approachable by finite testing through h, and we denote by Class II the set
of all unboundedly-approachable triples (C,E,D). This class is related with the

580 I. Rodŕıguez

others as expected: We have Class I ⊆ Class II ⊆ Class III. In fact, as the
next example shows, both inclusions are proper.

Example 4. We revisit (C2, E2,D) as defined before in Example 3. In particular,
let us assume that the sets of FSM inputs and outputs are I ′ = {a, b} and
O′ = {0, 1}, respectively, and E2 = {f∗} consists of a single function f∗.

We have (C2, E2,D) ∈ Class II, i.e. (C2, E2,D) is unboundedly-approachable
by finite testing through some surjective function h : IN −→ C2. The proof of
this result is presented in [14], next we present an intuition. For all l ∈ IN, let
Il consist of all input sequences of length l. We define a function h sorting C2
in such a way that, for all l ∈ IN, there exists k ∈ IN such that all possible
ways to react to Il appear in the same proportion in C2 ↓k h (i.e., the number
of functions providing each combination of responses to Il is the same for all
combinations). Only one of these ways to react to Il conforms to f∗. Thus, if
there are n ways to react to Il, then Il reaches a distinguishing rate 1 − 1

n . In
longer restrictions C2 ↓k1 h with k1 > k, the proportion of functions providing
each possible response to Il is preserved, so Il also reaches a 1− 1

n rate in these
restrictions. Let 0 ≤ ε < 1. In order to find a finite test suite providing a rate
higher than ε for all restrictions, we just have to consider l′ ∈ IN such that Il′

allows m ways to react, where 1
m < 1 − ε.

Let C′
2 ⊂ C2 consist of f∗ as well as all functions gk, with k ∈ IN, such that

gk behaves as f∗ for all input sequences but the input sequence akb (and its
extensions akbσ, for all σ ∈ {a, b}∗). In particular, the output produced by gk

when input b is given after ak is the opposite as the one given by f∗ (i.e. 0 if
it is 1 in f∗; 1 otherwise). For all input sequence akbσ, the outputs produced
by gk for the rest of inputs after akb are the same as the ones produced by f∗.
There does not exist any surjective function h : IN −→ C′

2 such that (C′
2, E2,D)

is unboundedly-approachable by finite testing through h. This is because, for all
finite test suite I, the number of pairs of {(f∗, f)|f ∈ C′

2\{f∗}} distinguished by
I is finite (in particular, this number is lower than or equal to |I|). Thus, for
all I, h, and 0 < ε < 1 there exists k ∈ IN such that, for all k1 > k, we have
d-rate (I, C′

2 ↓k1 h,E2 ↓k1 h,D) < ε. We conclude (C′
2, E2,D)
∈ Class II. "#

The two cases considered in the previous example illustrate an interesting fact:
By reducing the computation formalism from C2 to C′

2 ⊂ C2 (and thus reducing
the number of possible wrong implementations) the unboundedly-approachable
finite testability is lost. Intuitively, the reason is that C′

2 only includes functions
with a single fault, while all FSMs are in C2 (including FSMs strongly devi-
ating from the correct behavior). Thus, distinguishing correct implementations
from incorrect ones is easier in C2 than in C′

2. This shows that the difficulty
of testing does not lie in the number of possible wrong implementations to be
discarded, but in the narrowness of the border between correct and incorrect
potential implementations. Due to this narrowness, if the computation formal-
ism is C′

2 then testing is not very productive in terms of distinguishability: After
applying n tests, no more than n pairs of correct/incorrect functions will be
distinguished – out of an infinite number of pairs of correct/incorrect functions
to be distinguished.

A General Testability Theory 581

3 Studying Properties of Class I

In this section we study the properties of Class I. For the sake of readability,
in results presented from now on we will assume that C denotes a computation
formalism for a set of inputs I and a set of outputs O, E ⊆ C is a specification,
and D is a distinguishing relation. In [14], some conditions enabling/disabling
the testability, as well as some conditions allowing to preserve the testability
when C and E are modified, are studied. These results allow to reason about
the testability of problems from an abstract point, in such a way that most of
details concerning the structure of a computation formalism (states, instructions,
etc) can be ignored. This is illustrated in [14] with several examples. Next, we
provide a result allowing to find a lower bound of the number of inputs that must
be included in a set to achieve a complete test suite.

Proposition 1. Let A ⊆ 2I be a set such that, for all A ∈ A, we have that

(1) for all A′ ∈ A with A′
= A we have A′ ∩A = ∅, and
(2) there exist f ∈E, f ′∈C\E with {i | i ∈I ∧ ∀ o ∈f(i), o′ ∈f ′(i) : o D o′}⊆A.

If A is finite then either (C,E,D)
∈ Class I or for all finite complete test suite I
for C, E, and D we have |I| ≥ |A|. If A is infinite then (C,E,D)
∈ Class I. "#

An example illustrating the use of Proposition 1 is given in [14]. Next we con-
sider an alternative way to find complete test suites by manipulating the sets
distinguishing each pair of functions.

Proposition 2. Let G be the set of all sets of inputs allowing to distinguish
each correct function from each incorrect function, that is,

G =
{ {

i

∣∣∣∣ i ∈ I ∧
∀ o ∈ f(i), o′ ∈ f ′(i) : o D o′

} ∣∣∣∣ f ∈ E,
f ′ ∈ C\E

}

We have (C,E,D) ∈ Class I iff there exist n ∈ IN subsets of G, denoted by
A1, . . . , An ⊆ G, such that

⋃
1≤j≤n Aj = G and for all 1 ≤ j ≤ n we have⋂

B∈Aj
B
= ∅. "#

Next we consider the problem of finding the minimum complete test suite in
a particularly basic case: The case where (a) the computation formalism C =
{f1, . . . , fn} is finite, (b) the sets I = {i1, . . . , ik} and O = {o1, . . . , ol} of in-
puts and outputs are finite as well, and (c) for each function f ∈ C, a tuple
(f(i1), . . . , f(ik)) denoting the possible outputs of f for all inputs is explicitly
provided. We will denote this problem as the Minimum Complete Suite problem,
and we prove its NP-completeness (in particular, a polynomial reduction from
the Minimum Set Cover problem to this problem is constructed in [14]).

Definition 6. Let C be a finite computation formalism for the finite sets of
inputs and outputs I={i1, . . . , ik} and O, respectively, E ⊆C be a finite speci-
fication, and D be a finite distinguishing relation. Let C′ and E′ ⊆ C′ be sets of
tuples representing the behavior of functions of C and E respectively; formally,

582 I. Rodŕıguez

for all f ∈ C we have (f(i1), . . . , f(ik)) ∈ C′ and viceversa, and for all g ∈ E we
have (g(i1), . . . , g(ik)) ∈ E′ and viceversa.

Given C′, E′, I, O, D, and some K ∈ IN, the Minimum Complete Suite
problem (MCS) is defined as follows: Is there any complete test suite I for C, E,
and D such that |I| ≤ K? "#

Theorem 1. MCS ∈ NP-complete. "#

We present some notions allowing to reason about testing hypotheses, which play
a key role in formal testing methodologies. As we have seen, the testability is
affected by assuming some restrictions about the IUT (e.g., deterministic FSMs
move from Class III to Class I if a given limit of the number of states is as-
sumed). Auxiliary notions and properties related with hypotheses are presented
in [14]. In the previous section we proposed to use the distinguishing rate (see
Definition 5) to measure the coverage of an incomplete finite test suite. Alter-
natively, next we consider measuring the coverage of an incomplete test suite I
in terms of the amount of potential functions that should be removed from C to
make I complete, that is, in terms of the number of potential implementations we
have to assume not to be the actual IUT to make I complete. We consider that
an incomplete test suite is better than another incomplete suite if making the
former suite complete requires removing less functions. That is, the suite requir-
ing a kind of weaker function removal assumption to be complete is better. Let
us note that testing hypotheses are typically assumed to make this effect indeed,
that is, to reduce the number of potential implementations so that finite test
suites can be complete – provided that the hypotheses hold. Thus, if a test suite
requires less or weaker hypotheses to be assumed (i.e. less potential implemen-
tations have to be removed) to get completeness than another, then the former
test suite is better because it is closer to be complete indeed. Next we consider
the difficulty to measure these alternative coverage measures in the same context
as when we defined the MCS problem in Definition 6. That is, C,E, I,O are finite
and functions in C and E are explicitly denoted by some sets of tuples C′ and
E′. In the next definition, the set H = {H1, . . . , Hn} represents the hypotheses
the tester may or may not assume: If the hypothesis Hi ⊆ C is assumed then all
functions in Hi are assumed not to be in the actual computation formalism (e.g.,
if we are assuming that the IUT is deterministic then we assume some H ⊆ C,
where H consists of all non-deterministic functions in C).

Definition 7. Given the same preamble as in Definition 6, let I ⊆ I be a set
of inputs and H = {H1, . . . , Hn}, where for all 1 ≤ i ≤ n we have Hi ⊆ C′.

Given C′, E′, I, O, D, I and some K ∈ IN, the Minimum Function Removal
problem (MFR) is defined as follows: Is there any set R ⊆ C with |R| ≤ K such
that I is a complete test suite for (C\R,E\R,D)?

Given C′, E′, I, O, D, I, H, and some K ∈ IN, the Minimum Function
removal via Hypotheses problem (MFH) is defined as follows: Is there any set of
hypotheses R ⊆ H with |

⋃
H∈HH | ≤ K such that I is a complete test suite for

(C\(
⋃

H∈R H), E\(
⋃

H∈R H),D)?

A General Testability Theory 583

Given C′, E′, I, O, D, I, H, and some K ∈ IN, the Minimum Hypotheses As-
sumption problem (MHA) is defined as follows: Is there any set R ⊆ H with |R| ≤
K such that I is a complete test suite for (C\(

⋃
H∈R H), E\(

⋃
H∈R H),D)? "#

The differences among the previous problems (and the corresponding coverage
measures they allow to calculate) is the following: In MFR, the coverage is mea-
sured in terms of the minimal number of functions that must be removed, where
any subset of C is allowed to be removed. In MFH, the number of functions is
considered again, though this time the set of functions to be removed must be
the union of some hypotheses (sets of functions) from a given hypotheses reper-
tory H. Finally, MHA considers the coverage in terms of the number of assumed
hypotheses, rather than on the number of removed functions. At a first glance,
one might think that all MFR, MFH, and MHA are NP-hard problems. Interestingly,
MFR is not, as it can be reduced to the Minimum Vertex Cover problem in bipar-
tite graphs, which in turn is equivalent to the Maximum Matching problem. This
problem can be solved in polynomial time by the Hopcroft-Karp algorithm [9].
Thus, measuring the coverage of an incomplete test suite in terms of the min-
imum number of functions that must be removed to achieve completeness is a
tractable problem indeed. The proof of the next result, given in [14], introduces
the proposed reduction and exploits it to actually find the minimum function
removal in time O(|C′|5/4 + |C′|2 · |I| · |O|2), thus solving MFR polynomially. On
the other hand, the NP-completeness of MFH and MHA is proved by constructing
polynomial reductions from 3-SAT and Minimum Set Cover, respectively.

Theorem 2. We have the following properties:

(a) MFR ∈ P
(b) MFH ∈ NP-complete
(c) MHA ∈ NP-complete "#

Given a computation formalism, we consider the problem of finding a complete
test suite for any specification belonging to a given set of specifications.5 More-
over, rather than imposing a fix computation formalism for all considered spec-
ifications, a (possibly infinite) set of triples (C,E,D) will denote the cases to be
considered.6 We call this set testing problem. Ideally, our knowledge about how
to find suitable tests for a given testing problem (i.e. for a given kind of target
formalisms and specifications) could help us to face other testing problems. In
order to enable this, we introduce a general notion of testability reduction. If a
testing problem can be solved by transforming it into another testing problem
and solving the latter, then we will say that the former problem can be reduced
to the latter. This provides a criterion to classify problems inside each class.

5 This is the typical goal of testing methodologies: For any specification fitting into a
given kind of specifications (for us, a computation formalism), find a way to derive
tests from the specification in such a way that the test suite is complete.

6 This improves the generality of the problem. For instance, if the tester assumes that
the IUT includes at most n faults, a particular C should be considered for each E.

584 I. Rodŕıguez

Definition 8. A testing problem for a set of inputs I is a set T of triples
(C,E,D) with the usual meanings of C,E,D, where I is the input set for all C.

Let T ⊆ Class I. A computable function f : T −→ 2I is a finite suite deriva-
tion for T if, for all p ∈ T , f(p) is a finite complete test suite for p.

Let T1 and T2 be testing problems for I1 and I2. T1 can be finitely reduced to
T2, denoted by T1 ≤F T2, if there exist some computable functions e : T1 −→ T2
and t : 2I2 −→ 2I1 such that, for all p1 ∈ T1 and I ⊆ I2, if I is a finite complete
test suite for e(p1) then t(I) is a finite complete test suite for p1. "#

Theorem 3. (Testing reduction Theorem) We have the following properties:

(a) ≤F is a preorder.
(b) Let T1 ≤F T2. If there exists a finite suite derivation for T2 then there exists

a finite suite derivation for T1.
(c) Let T1≤F T2. If T2∈Class I then T1∈Class I. "#

We should not confuse ≤F with the classical testing preorder relation given in [6].
In particular, the ≤F relation does not compare processes but testing problems.
In this sense, it reminds the reductions of computability and complexity theory,
where a computation problem is transformed into another problem.7 In our case,
we check whether finding a finite complete test suite in a given scenario can be
achieved by means of finding a finite complete test suite in another one.

Examples illustrating ≤F are given in [14]. Some finitely constrained versions
of FSMs, EFSMs (Extended FSMs), and TEFSMs (Temporal EFSMs) are con-
sidered. Under these finiteness conditions, (a) the problem of testing EFSMs is
reduced to the problem of testing FSMs; (b) testing TEFSMs is reduced to test-
ing EFSMs; (c) by the transitivity of ≤F , testing TEFSMs is reduced to testing
FSMs; (d) TEFSMs are finitely testable because FSMs are so. Other examples,
showing that the finiteness of computation formalisms is neither sufficient nor
necessary for achieving ≤F (at any side of ≤F), are presented as well. They show
that, in general, the testing reduction does not consist in mapping a computa-
tion formalism into another (as we do in the FSM-EFSM-TEFSM example), but
in mapping the border between correctness and incorrectness from a problem to
another. Next we show an example where computation formalisms are infinite
and the reduction only considers factors affecting the correctness border.

Example 5. Let D be the trivial distinguishing, CTM represent all deterministic
terminating Turing Machines (TMs) from {0, 1}∗ to {yes, no}, and CFA repre-
sent all deterministic finite automata with the same type. Let TTM consist of
all triples where we have to distinguish some TM M from all TMs answering
as M for at most k ∈ IN inputs. Formally, TTM = {({f} ∪ Cf,k

TM , {f},D)|f ∈
CTM , k ∈ IN} where Cf,k

TM = {f ′|f ′∈CTM , f ′ gives the same answer as f for at
most k words}. Similarly, let TFA = {({f} ∪ Cf,k

FA, {f},D)|f ∈ CFA, k ∈ IN}
where Cf,k

FA = {f ′|f ′ ∈ CFA, f
′ gives the same answer as f for at most k

words}. Note that any triple in TTM or TFA is uniquely characterized by f

7 In fact, a testing problem can also be regarded a kind of computation problem.

A General Testability Theory 585

and k. We have TTM ≤F TFA. In particular, the functions e and t considered
in Definition 8 can be defined as follows. e : TTM −→ TFA is such that, for all
p = ({f} ∪ Cf,k

TM , {f},D) ∈ TTM , we have e(p) = ({f ′} ∪ Cf ′,k
FA , {f ′},D) where

f ′ is any function in CFA (say, the one answering yes for all inputs), and t :
2{0,1}∗ −→ 2{0,1}∗ is the identity function. For all e(p) = ({f ′} ∪Cf ′,k

FA , {f ′},D),
I is a complete test suite for e(p) only if I consists of (any) k+1 or more different
inputs. If it is so, t(I) = I is also complete for p = ({f}∪Cf,k

TM , {f},D) ∈ TTM .
So, TTM ≤F TFA. For all q ∈ TFA, for some k ∈ IN we have that any set of k+ 1
inputs is a complete test suite for q, so TFA ∈ Class I. By Theorem 3 (c) we
conclude TTM ∈ Class I. By using similar arguments we have TFA ≤F TTM . "#

4 Conclusions and Future Work

Formal Testing Techniques have reached a high level of maturity during the last
years. However, some common roots allowing to relate testing methods with each
other are still missing. In particular, a classification of testing problems would
allow us to use our expertise about old testing problems to solve new problems.
This paper tries to contribute to this (long term) goal. We have presented some
general notions of testability and we have identified five classes of testability.
We have studied the properties of the first class, i.e. finitely testable problems,
including the complexity of finding a minimum complete test suite or measuring
the completeness degree of incomplete test suites, alternative characterizations,
transformations keeping the testability, the effect of adding testing hypotheses,
and methods to reduce a testing problem into another. From a theoretical point
of view, these techniques allow to relate testing problems with each other as well
as to classify them. From a practical point of view, they allow us to determine
the (im-)possibility to find complete test suites in different scenarios, as well as
to reason about how far an incomplete test suite is from being complete, thus
providing an implicit way to compare and select incomplete test suites. The
proposed framework endows us with these capabilities even though it is highly
abstract (several examples of use have been presented, other examples can be
found in [14]). Going one step further, the proposed general properties could be
particularized and refined for specific computation formalisms.

More generally, properties presented in Section 3 allow us to envisage new
paths to improve our understanding about testing in the future. In particular,
the testing reduction notion could play a key role to organize the five proposed
classes into a big variety of subclasses that should be defined, related, and studied
as well: e.g. bounded finite testability (what is the size of minimum complete test
suites with respect to the size of the system representation? e.g. polynomial or
exponential?), adaptive testability, probabilistic testability, heuristic testability,
etc. In addition, we wish to study the applicability of the proposed testability
notions to the related problem of learnability.

Acknowledgements. I thank Fernando Rubio, Carlos Molinero, and Manuel
Núñez for their careful reading of previous versions of this paper, Diego
Rodŕıguez for his support, and the anonymous reviewers for their suggestions.

586 I. Rodŕıguez

References

1. Bernot, G., Gaudel, M.-C., Marre, B.: Software testing based on formal specifica-
tion: a theory and a tool. Software Engineering Journal 6, 387–405 (1991)

2. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

3. Do, H., Rothermel, G., Kinneer, A.: Prioritizing JUnit test cases: An empiri-
cal assessment and cost-benefits analysis. Empirical Software Engineering 11(1),
33–70 (2006)

4. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

5. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 82–96. Springer, Heidelberg (1995)

6. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
7. Hierons, R.M.: Comparing test sets and criteria in the presence of test hypotheses

and fault domains. ACM Trans. on Software Engineering and Methodology 11(4),
427–448 (2002)

8. Hierons, R.M.: Verdict functions in testing with a fault domain or test hypothe-
ses. In: ACM Transactions on Software Engineering and Methodology (2008)
(to appear)

9. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

10. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

11. López, N., Núñez, M., Rodŕıguez, I.: Specification, testing and implementation
relations for symbolic-probabilistic systems. Theoretical Computer Science 353
(1–3), 228–248 (2006)

12. Merayo, M., Núñez, M., Rodŕıguez, I.: Extending EFSMs to specify and test
timed systems with action durations and timeouts. IEEE Transactions on Com-
puters 57(6), 835–844 (2008)

13. Petrenko, A.: Fault model-driven test derivation from finite state models: Anno-
tated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP
2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

14. Rodŕıguez, I.: A general testability theory: Extended version (2006),
http://kimba.mat.ucm.es/ismael/

15. Rodŕıguez, I., Merayo, M.G., Núñez, M.: HOTL: Hypotheses and observations
testing logic. Journal of Logic and Algebraic Programming 74(2), 57–93 (2008)

16. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata.
Theoretical Computer Science 254(1-2), 225–257 (2001); Previously appeared as
Technical Report CTIT-97-17, University of Twente (1997)

17. Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)

18. Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999)

http://kimba.mat.ucm.es/ismael/

Counterexamples in Probabilistic LTL Model Checking
for Markov Chains(

Matthias Schmalz1, Daniele Varacca2, and Hagen Völzer3

1 ETH Zurich, Switzerland
2 PPS - CNRS & Univ. Paris Diderot, France

3 IBM Zurich Research Laboratory, Switzerland

Abstract. We propose a way of presenting and computing a counterexample in proba-
bilistic LTL model checking for discrete-time Markov chains. In qualitative probabilistic
model checking, we present a counterexample as a pair (α,γ), where α,γ are finite words
such that all paths that extend α and have infinitely many occurrences of γ violate the
specification. In quantitative probabilistic model checking, we present a counterexample
as a pair (W,R), where W is a set of such finite words α and R is a set of such finite words
γ. Moreover, we suggest how the counterexample presented helps the user identify the
underlying error in the system by means of an interactive game with the model checker.

1 Introduction

A counterexample in LTL model checking is an execution path that violates the LTL
specification. This counterexample path should help the user identify and repair an error
in the system. However, a counterexample path is in general infinite, and therefore if we
want to show it to the user, we must find a finite representation. In classical LTL model
checking, we can exploit the fact that a periodic counterexample always exists (see e.g.
[17]), i.e., an execution path of the form αγω, where α and γ are finite words.

In the probabilistic LTL model checking problem that we consider here, we are given
an LTL formula Φ and a discrete-time finite-state Markov chain generating a probability
measure P, and we want to check whether P [Φ] > t (or P [Φ] ≥ t). A counterexample
witnessing the violation of this assertion is therefore a set Y of execution paths violating
Φ such that P [Y] ≥ 1− t (or P [Y]> 1− t). In general such a set is not only infinite, but
almost all of its paths are aperiodic. How can such a counterexample be presented to
the user to provide useful debugging information?

In this paper, we show how a counterexample can be presented and computed and
suggest how the user should interact with the model checker to find the error.

We start by considering the special case of qualitative probabilistic model checking,
i.e., the question whether P [Φ] = 1. We propose to represent a qualitative counterex-
ample as a pair (α,γ), where

– α is a finite path such that almost all paths extending α violate the specification and
hence the specification is violated with at least the probability of α. Therefore, α
shows where the probability is lost.

(This work was partially supported by the EU project Deploy (N. 214158).

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 587–602, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

588 M. Schmalz, D. Varacca, and H. Völzer

– γ is a finite word in a bottom strongly connected component such that all paths that
extend α and that have infinitely many occurrences of γ violate the specification.
The word γ witnesses that almost all paths extending α violate the specification.

The pair (α,γ) is presented to the user in an interactive game with the model checker.
The user tries to construct a path extending α and satisfying the specification, whereas
the model checker ensures that γ occurs infinitely often. By failing to construct such a
path the user finds an error in the system.

We then show that this approach can be extended to the quantitative case (t < 1),
where in general a set W of such finite paths α and a set R of such finite words γ has to
be considered.

Finally, we show how such a counterexample can be computed; we build on a model
checking algorithm by Courcoubetis and Yannakakis [8], which however has to be sub-
stantially complemented for our purposes.

We discuss related work in Section 6. Missing proofs can be found in [19].

2 Preliminaries

We assume that the reader is familiar with Kripke structures, discrete-time Markov
chains, linear temporal logic (LTL) and ω-regular languages. We briefly recall the basic
definitions to introduce conventions and fix the notation. References for further reading
are also provided.

2.1 Words

Let Q be a set of states. The sets of infinite, finite and nonempty finite words over Q
are denoted Qω,Q∗ and Q+, respectively. Usually q, p denote elements of Q; α,β,γ,δ
elements of Q∗, x an element of Qω, z an element of Qω ∪Q∗, and λ the empty word.

We write α � z if α is a prefix of z. If α � z, z is called an extension of α. We define
α↑:= {x | α � x} and z↓:= {α | α � z}. Similarly, given W ⊆ Q∗ and Y ⊆ Qω ∪Q∗,
W↑:=

⋃{α↑| α ∈W} (the set of extensions of W) and Y↓:=
⋃{z↓| z ∈ Y}.

2.2 Probabilistic Systems

A system (Kripke structure) Σ = (Q,S,→,v) consists of a finite set Q of states, a
nonempty set S⊆Q of initial states, a state relation →⊆Q×Q and a valuation function
v : Q → 2AP mapping each state q to a set v(q)⊆ AP of atomic propositions. We assume
here that for each q ∈ Q there is a p ∈ Q so that q → p. The size of Σ is |Σ| := |Q|+ |→|.

A path fragment (of Σ) is a word q0q1 . . . ∈ Qω ∪Q∗ such that qi−1 → qi, i > 0. A
path (of Σ) is a path fragment qz with q ∈ S. The empty word is also a path and a path
fragment of Σ. The set pathfin(Σ) contains all finite, and pathω(Σ) all infinite paths of Σ.

Often we view Σ as the directed graph (Q,→). A set K ⊆ Q is a strongly connected
component (of Σ) (scc for short) if it is a strongly connected component of (Q,→) (see
e.g. [7]). A bottom strongly connected component (of Σ) (bscc) is an scc K without
outgoing edges, i.e., if q ∈ K and q → p, then p ∈ K.

A (labelled discrete-time) Markov chain (see e.g. [6,15]) is a system Σ = (Q,S,→,v)
equipped with transition probabilities given by P : Q×Q → [0,1] and initial proba-
bilities given by Pini : Q → [0,1], where P(q, p) > 0 iff q → p, Pini(q) > 0 iff q ∈ S,

Counterexamples in Probabilistic LTL Model Checking for Markov Chains 589

∑p∈Q P(q, p) = 1, and ∑q∈Q Pini(q) = 1. It is well known (see e.g. [6,15]) that a Markov
chain induces a measure P on the σ-algebra B(Qω) induced by the basic cylinder sets
α↑, α ∈ Q∗ with the property P [q0 . . .qn↑] = Pini(q0)∏n

i=1 P(qi−1,qi), q0 . . .qn ∈ Q+.
A measure induced by a Markov chain is called Markov measure. We later refer to a
Markov chain simply as Σ,P.

2.3 Temporal Properties

A (linear-time temporal) property, denoted Y,Z, is a subset of Qω. We mainly consider
properties expressible in LTL (linear temporal logic [16]); we use the notation intro-
duced in [11]. A formula in LTL is built from atomic propositions in AP, true, false and
the boolean and temporal connectives ∧, ∨, ¬, ⇒, ⇔ and X, U, G, F. The size |Φ| of a
formula is the number of its temporal and boolean connectives.

An LTL formula Φ is interpreted in the context of a system Σ = (Q,S,→,v) over
words x ∈ Qω. For i ∈ N, x, i � Φ means that x satisfies Φ at position i (in the usual
sense [11]). Moreover, x �Φ (“x satisfies Φ”) abbreviates x,0 �Φ; Σ �Φ (“Σ satisfies
Φ”) means x �Φ for all x ∈ pathω(Σ). We write Sat(Σ,Φ) for the set of all infinite paths
of Σ satisfying Φ. For convenience, we often write Sat(Φ) or Φ instead of Sat(Σ,Φ). In
particular, Sat(true) = pathω(Σ). A formula φ without temporal connectives is a state
formula. For q ∈ Q, q � φ (“q satisfies φ”) iff qx � φ for all (or equivalently some)
x ∈ Qω.

To simplify the presentation, we suppose that for each q ∈ Q there is an atomic
proposition aq that holds in q and only there. In our examples, we do not explicitly
mention such atomic propositions aq. For better readability of formulas, we write q
instead of aq; q0q1 . . .qn instead of q0 ∧ X(q1 ∧ . . .X(qn) . . .) and λ instead of true.
These assumptions do not affect the results of the paper.

An ω-regular property is a property that is accepted by some Büchi automaton. Any
LTL formula expresses an ω-regular property. Any ω-regular property is measurable,
i.e., a member of B(Qω) (see [21]).

3 Qualitative Counterexamples

In this section, we consider the question whether P [Φ] = 1, where Φ is an LTL for-
mula and P a Markov measure. Probabilistic satisfaction can be seen as a special form
of quantification, but our traditional understanding of a counterexample is tightly con-
nected with universal quantification. Say, we want to understand why the CTL* formula
A.Φ does not hold, where Φ is an LTL formula. We display a classical linear counterex-
ample path in this case. The system has more behaviour than expected, and the model
checker displays the path as an example of the additional behaviour. The user can then
replay the path to see where the actual behaviour deviates from her expectation, which
is where she should find the error in the system.

The situation is different for existential quantification. Say we want to understand
why a CTL* formula E.Φ is violated, again Φ being an LTL formula. For example,
E.Φ could express the property that there exists a run of the system such that ‘someone
wins the jackpot’. If the formula is false, the answer of the model checker is just ‘no’.
The information to be returned could be the entire system showing the absence of a
path satisfying Φ. Of course, that is not very informative. To find the error, we suggest

590 M. Schmalz, D. Varacca, and H. Völzer

that the proof burden should be reversed, i.e., the user should try to display a witness
for the formula. The user should have an idea on what the path should look like; in the
example: she knows how someone could win the jackpot in the system. She can then try
to replay that path. In doing so, she will find a point where the behaviour of the system
deviates from her expectations, because the desired path does not exist in the system.

The interaction between user and model checker that we propose for the probabilistic
case will be a mixture of the universal and the existential case.

3.1 Examples of Counterexamples

To approach the problem for Markov chains, let us now consider some examples. By
default, the examples are based on the system Σ = (Q,S,→,v) below. For the qualitative
case the particular transition probabilities of the Markov chain are not relevant (see e.g.
[20]); hence we do not display them.
Each example considers an LTL for-
mula Φ for which P [Φ] < 1, and in
each case we will discuss how a coun-
terexample should look.

��

���	�� ��

		

q1

���	��a ��
q2

���	�� ��

��q3

���	��b��
q4

Example 3.1. Let Φ = G¬a. As Φ is a safety property, if it is violated, there is a finite
path α such that each extension of α violates Φ. This is the case for the path α = q1q2.
Because P [q1q2↑]> 0, we have P [Φ]< 1. As in classical model checking, it is sufficient
to display the violating finite path α to the user as a counterexample.

Example 3.2. Let Φ = F a. There is a finite path α := q1q3 in the system such that each
extension of α into pathω(Σ) violates Φ, i.e., no extension of α into pathω(Σ) contains
an a-state. This clearly proves that P [Φ]< 1. In contrast to the previous example, not all
extensions of α but only the extensions into pathω(Σ) violate Φ. Hence, the inspection
of α may not be sufficient to find the error; the user also has to take the structure of
Σ into account. Similar to the CTL* case discussed above, the user who designed the
system should have an idea on how to reach an a-state, once α has been executed. By
trying to play such a path, which does not exist, she will eventually find the point in the
system where the actual and the expected behaviour deviate.

Example 3.3. Let Φ = F G¬b. We recall that in any Markov chain a path eventually
enters a bscc with probability one. For each reachable bscc K, a path eventually enters
K with nonzero probability, and then, with probability 1, visits all states of K infinitely
often. (These facts are well known and also follow from Lemma 4.3.) Any run that
infinitely often visits a b-state violates Φ. The system above has a reachable bscc that
contains a b-state, and therefore the specification is violated with nonzero probability.

To show that to the user, we propose that the model checker returns a b-state within
a bscc, namely q4. The user then convinces herself that (i) the b-state indeed belongs to
a reachable bscc and (ii) repeatedly visiting the b-state violates Φ. The latter point (ii)
is straightforward in this case. To convince herself of (i), the user plays the following
interactive game with the model checker: She tries to find a finite path fragment q4β so
that q4 is unreachable after β. If she believes that Φ has probability 1, she has an idea of
how to do so. The model checker then goes back to q4. The system must deviate from
the expected behaviour in at least one of these two moves.

Counterexamples in Probabilistic LTL Model Checking for Markov Chains 591

Example 3.4. Let Φ = G F b ⇒ F a. Repeatedly visiting a b-state without visiting an
a-state violates Φ. The specification does not have probability 1, as there is a bscc
containing a b-state but no a-state, and that bscc can be reached without passing through
an a-state. We propose that the model checker outputs q4 and α := q1q3. The user then
convinces herself that (i) q4 belongs to a bscc and that α leads to that bscc, and (ii) any
path starting with α, and visiting q4 infinitely often violates Φ. To this end, she plays
the following game with the model checker: The model checker plays α. To convince
herself of (i), the user tries to extend α so that q4 becomes unreachable; the model
checker then goes back to q4. If that does not help discover the error, she tries to refute
(ii) by extending α to αβ ∈ pathfin(Σ) so that β visits an a-state.

In Examples 3.1 and 3.2, a counterexample is represented by a finite path α such that
Σ�α⇒¬Φ. This representation is not sufficiently expressive for Examples 3.3 and 3.4.
Therefore we use the more general representation (α,q), α ∈ pathfin(Σ), q∈ Q such that
Σ � α∧G F q⇒¬Φ. Note that, in the above examples, the formula Φ is violated after
α with probability one, and q witnesses that. The state q is in particular important when
α leads to a large bscc.

However, there still are situations, in which counterexamples of the form (α,q)
cannot be found, and we need a path fragment instead of the single state q:

Example 3.5. Consider Φ = F G(a ⇒ a U b) with the following system:
There are no α,q with Σ � (α∧G F q) ⇒ ¬Φ, but any
path of Σ that infinitely often visits γ := q1q2 violates Φ.

We therefore consider counterexamples of the form α∧
G F γ, α ∈ pathfin(Σ), γ ∈ Q∗. Below we prove that such
a counterexample always exists when Φ has probability
less than one.

��
���	��a ��

��

q1

���	��a

��

q3

���	�� ��
q2
���	��b��

�����������
q4

3.2 Presenting a Qualitative Counterexample

According to the discussion in the preceding section, we propose to represent a quali-
tative counterexample as a pair (α,γ), where α is a finite path of the system and γ is a
finite path fragment within some bscc of the system.

Definition 3.6. A finite path fragment belonging to a bscc of a system Σ is called a
recurrent word (of Σ). Let α be a finite path and γ a recurrent word of Σ. We say that γ
refutes a property Y in context α iff the following conditions hold:

1. If γ
= λ, then α leads to the bscc of γ, i.e., the bscc of γ is the unique bscc reachable
after α.

2. α↑ ∩Sat(G F γ)∩Y = ∅, i.e., any path starting with α and repeating γ infinitely
often violates Y .

If γ refutes Y in context α, then the pair (α,γ) represents the set of paths α↑ ∩Sat(G F γ)
violating Y ; α describes how the violations begin and γ restricts their behaviour in the
long run. The pair (α,γ) represents a qualitative counterexample because
α↑ ∩Sat(G F γ) has nonzero probability, as we will see in Section 3.3. In particular,
almost all paths that extend α violate Y . In this sense, α is a ‘bad’ prefix of the system.
The word γ witnesses that α is ‘bad’ in this sense.

592 M. Schmalz, D. Varacca, and H. Völzer

We propose to use this representation of a qualitative counterexample in an interac-
tion between the user and the model checker as follows. First the model checker outputs
α and γ and claims that γ is a recurrent word refuting Φ in context α. Then the user can
challenge that claim in the following ways:

1. If γ = λ, the user tries to construct a path that extends α and satisfies Φ. In failing
to do so, she will find a point where the actual and the expected behaviour deviate.

2.1. She challenges that γ
= λ belongs to any bscc at all or that after α only that bscc is
reachable by constructing a path αβ after which, in her opinion, γ is unreachable.
The model checker refutes this challenge by returning δ such that αβδγ∈ pathfin(Σ).

2.2. She challenges α↑ ∩Sat(G F γ)∩Sat(Φ) = ∅, where γ
= λ, by constructing a path
x = αβ1γβ2γ . . . , which she believes to satisfy Φ. In failing to construct such a path,
she will observe that the expected and the actual behaviour of the system differ.

The path x can be constructed interactively: The model checker starts with α.
The user wants to extend α to a path that ultimately satisfies Φ, but she may only
append a finite word at a time, allowing the model checker to append γ in between.
If the user appends a word that allows the model checker to append γ directly, the
model checker will do so. Otherwise the model checker suggests some extension
of the current finite path that allows it to append γ afterwards. This interaction
continues until the user has found some unexpected behaviour of the system.

In practice, the user cannot play forever. But she can try to generate a periodic
path, i.e., a path of the form αβ1(γβ2)ω. It is well known that an LTL formula is
violated only if it has a periodic counterexample.

3.3 Soundness and Completeness

Let Σ = (Q,S,→,v),P be a Markov chain and Y a property. In this section, we show
that our proposal to present qualitative counterexamples is sound and complete, i.e., the
existence of (α,γ) implies P [Y] < 1 and vice versa. In fact, using results from [20],
we can show that our proposal is sound for arbitrary properties and complete if the
specification is ω-regular.

Theorem 3.7

1. If γ is a recurrent word refuting Y in context α, then P [Y | α↑] = 0 and P [Y]< 1.
2. Suppose Y is ω-regular. If P [Y] < 1, then there is an α ∈ pathfin(Σ) such that

P [Y | α↑] = 0. Moreover, if α ∈ pathfin(Σ) with P [Y | α↑] = 0 and after α only one
bscc is reachable, there is a recurrent word γ refuting Y in context α.

The assumption in 2 that Y is ω-regular cannot be dropped. Take the Markov chain
with two states q, p, both being initial states. From any state, the next state is q with
probability 1/3 and p with probability 2/3. On the one hand, it can be shown by the
Borel-Cantelli Lemma that the property Y , i.e., that “at infinitely many positions, the
number of previous p’s equals the number of previous q’s”, has probability zero. On
the other hand, there is no recurrent word γ refuting Y in some context α: a path in
α↑ ∩Sat(G F γ)∩Y can be constructed by extending α, visiting γ infinitely often and,
between the γ’s, making the number of previous p’s equal the number of previous q’s.
A similar example shows that the theorem rests on the assumption that Q is finite.

Counterexamples in Probabilistic LTL Model Checking for Markov Chains 593

We conclude this section by comparing our notion of recurrent word γ in a context α
with the periodic paths α̃(γ̃)ω used as counterexamples in classical model checking. The
pair (α,γ) describes the set of all infinite paths extending α and executing γ infinitely
often, which has nonzero probability. The periodic path α̃(γ̃)ω in general has probability
zero. (The probability is nonzero only if γ̃ belongs to a “ring-like” bscc.) Even the
set of all periodic paths has probability zero in general, because it is a countable set.
In the probabilistic setting, counterexamples must have nonzero probability; therefore
periodic paths are unsuitable as counterexamples.

4 Quantitative Counterexamples

In this section, we discuss quantitative statements. In the following, let Σ = (Q,S,→,v),
P be a Markov chain, Φ an LTL formula and Y a property. The corresponding question
for a counterexample (or a witness) can take one of the following four shapes:

1. Why is P [Φ] ≤ t? (t < 1)
2. Why is P [Φ] ≥ t? (t > 0)

3. Why is P [Φ]< t? (t > 0)
4. Why is P [Φ]> t? (t < 1)

Questions 2 and 4 can be reduced to Questions 1 and 3, respectively, by negating the
specification. Usually, quantitative probabilistic model checkers compute the probabil-
ity of the specification. Hence, we know P [Φ] before computing a counterexample, and
can therefore reduce Question 3 to Question 1 by considering a bound between t and
P [Φ]. We therefore restrict our attention to Question 1.

4.1 Presenting a Quantitative Counterexample

In some cases, a qualitative counterexample can be used as a quantitative counterexam-
ple. However, this is not always possible:

Example 4.1. Consider the Markov chain Σ,P below together with Φ = F G a.
Note that P [Φ] = 0. There is a re-
current word γ = q2 refuting Φ
in context α = q1q2. What does
it tell us about the probability of
Φ? As P [Φ | α↑] = 0, we have
P [Φ] ≤ 1 − P [α↑] = 0.5. How-
ever, this does not answer the
question of why is P [Φ]≤ 0. The

1

��

���	��a

0.5

��

q3

0.5
��
���	��

0.5

��

q2
0.5��
���	��b

0.5 0.5 ��

q1

���	��

0.5

��

0.5 ��
q4

���	��a

0.5

��0.5
��

q5

problem is that the pair (α,γ) only provides information about one bscc, namely the left
one, but a proof for P [Φ] ≤ 0 must involve both bsccs. To overcome this problem, we
will consider counterexamples with several recurrent words, so that different bsccs can
be taken into account.

Definition 4.2. A recurrent set (of Σ) is a set of recurrent words of Σ. Given a recurrent
set R, a word x ∈ Qω is R-fair (for Σ) iff x ∈ pathω(Σ) and for each γ ∈ R either (i)
x � G F γ or (ii) some prefix of x cannot be extended to a finite path of Σ with suffix γ.
The set of R-fair paths is denoted as FairΣ(R).

594 M. Schmalz, D. Varacca, and H. Völzer

Lemma 4.3. Let R be a recurrent set. Then P [FairΣ(R)] = 1.

Proof. Let γ ∈ R. It can be checked that FairΣ({γ}) is a fairness property according to
[20,22]. Moreover, FairΣ({γ}) is ω-regular. Varacca and Völzer [20] have shown that
any ω-regular fairness property has probability one. The assertion then follows from the
facts that R is countable and FairΣ(R) =

⋂
γ∈R FairΣ({γ}). "#

In the above example, consider α = q1 and the recurrent set R = {q2,q4}. Note that ev-
ery R-fair run x violates the specification. Because of Lemma 4.3, P [α↑ ∩FairΣ(R)] =
P [α↑] = 1, and thus we have P [Φ] ≤ 1− P [α↑] = 0. Together, α and R describe a
set of paths violating Φ having probability 1. The prefix α describes how the viola-
tions begin. The recurrent set R describes what happens infinitely often in a violating
path.

In the preceding example, R contains exactly one recurrent word for each bscc of
the system, but in general it is possible that R contains no recurrent word or several
recurrent words for some bscc. Consider, for instance, the specification Φ = G F b; again
P [Φ] = 0. A counterexample would be α = λ and R = {q2}. In this case there are two
kinds of R-fair paths: (i) paths going to the left bscc and visiting q2 infinitely often; (ii)
paths going to the right bscc, where q2 can no longer be reached. As all R-fair paths
violate Φ and P [FairΣ(R)] = 1, we have P [Φ] = 0.

We now formalise this intuition.

Definition 4.4
A recurrent set R refutes Y in context α ∈ pathfin(Σ) iff α↑ ∩FairΣ(R)∩Y = ∅.

Equivalently, R refutes Y in context α if every path of the system that extends α and is
R-fair violates Y . In that case, Y is violated with at least the probability of α↑.

Corollary 4.5. If there exists a recurrent set refuting Y in context α, then P [Y | α↑] = 0,
and therefore P [Y] ≤ 1−P [α↑].

It may also be necessary to consider several contexts:

Example 4.6. Consider the Markov chain Σ,P below and Φ = q3 U q2.
To show that P [Φ] ≤ 0.7, one context word α is not
enough. For instance, any recurrent set refutes Φ in con-
text q3q1, but P [q3q1↑] = 0.2. This counterexample only
shows that P [Φ] ≤ 0.8.

To gather enough weight, we need to use several
contexts. For instance let α1 = q3q1, α2 = q3q3q1 and
α3 = q3q3q3q1. Clearly ∅ refutes Φ in context αi. Then
P [Φ] ≤ 1 − P [∪iαi↑]. As the three sets are disjoint,
P [∪iαi↑] = 0.2 + 0.08 + 0.032> 0.3.

1
��

���	��

q1

1
��
���	��

q2
1��
���	��

q3

0.4

0.2

��

0.4

��

In this simple example, the recurrent sets do not matter. Different contexts in principle
require different recurrent sets:

Counterexamples in Probabilistic LTL Model Checking for Markov Chains 595

Example 4.7. Consider the Markov chain Σ,P below and Φ = G¬c∧ (G F b ⇒ X a).
Let α1 = q3q4, α2 = q3q1 and R1 =
{q5}, R2 = {q1}. Note that Ri re-
futes Φ in context αi. First, any R1-
fair path extending q3q4 violates
Φ, as it visits q5. Second, any R2-
fair path extending q3q1 violates
Φ, as it visits q1 infinitely often,

1
��

���	��b

q1

1
��
���	��a

q2
0.5��

0.5

��

���	��

q3

0.3

0.3

��

0.4
��
���	��a

q4

0.5

��

0.5 ��
���	��c

q5

1
��

but its second state does not satisfy a. Hence, P [Φ] ≤ 1−P [α1↑ ∪α2↑] = 0.3.
This example also shows that whether a path almost certainly satisfies Φ depends

not only on which bscc it visits; here, satisfaction also depends on the second state of
the path. Therefore, in the case of general LTL properties, the bsccs cannot simply be
partitioned into “accepting” and “rejecting”.

If a recurrent set refutes a property in a context, a larger recurrent set will also do so. We
can therefore suppose without loss of generality that all Ri are the same. In the above
example, we can choose R = R1 ∪R2; then R refutes Φ in context αi, i = 1,2. Taking
only one recurrent set is a design decision simplifying the theory. In practice, it might
be desirable to have several recurrent sets.

Definition 4.8. Let W be a set of finite paths of Σ. A recurrent set R refutes Y in context
W iff W↑ ∩FairΣ(R)∩Y = ∅.

Corollary 4.9. If there exists a recurrent set refuting Y in context W , then
P [Y |W↑] = 0, and therefore P [Y] ≤ 1−P [W↑].

Thus, we present a quantitative counterexample explaining why P [Φ]≤ t by the sets W
and R such that R is a recurrent set refuting Φ in context W and P [W↑] ≥ 1− t.

4.2 Completeness

Corollary 4.9 is a soundness result: if there is a recurrent set refuting Y in context W ,
then the property is violated with probability at least P [W↑]. It turns out that Definition
4.8 also gives us a complete representation of a counterexample: if a property is violated
with some probability, there is a pair (W,R) witnessing it. In fact, there is a canonical
set that can always be used as the context W .

Definition 4.10. Let I(Σ,Y) be the set of all α∈ pathfin(Σ) such that there is a recurrent
set refuting Y in context α. We call I(Σ,Y) the initial language (of Σ w.r.t. Y).

Note that I(Σ,Y) by itself is a context, i.e., there is a recurrent set refuting Y in context
I(Σ,Y). To verify that, let Rα be the recurrent set refuting Y in context α, where α ∈
I(Σ,Y). Then R :=

⋃
α∈I(Σ,Y) Rα refutes Y in context I(Σ,Y).

Theorem 4.11. For any LTL formula Φ, I(Σ,Φ) is regular.

In Section 5.2, we will explain how to compute a finite automaton accepting I(Σ,Φ).
The next proposition states important properties of the initial language. Firstly, al-

most all elements of I(Σ,Y)↑ are violations of Y . Moreover, if the property is given by an
LTL formula Φ, almost all violations of Φ belong to I(Σ,Φ)↑. Hence, the probabilities
of ¬Φ and I(Σ,Φ)↑ coincide.

596 M. Schmalz, D. Varacca, and H. Völzer

Proposition 4.12

1. P [I(Σ,Y)↑ ∩Y] = 0.
2. For any LTL formula Φ, P [I(Σ,Φ)↑ ∪Sat(Φ)] = 1.
3. For any LTL formula Φ, P [I(Σ,Φ)↑] = P [¬Φ].

We can now give some equivalent characterisations of the initial language. The first
statement of Proposition 4.13 asserts that the initial language is the largest context in
which a recurrent set refuting Y exists. The second statement provides an alternative
definition of the initial language in terms of P.

Proposition 4.13

1. The initial language I(Σ,Y) is the largest set W ⊆ pathfin(Σ) such that there is a
recurrent set refuting Y in context W .

2. For any LTL formula Φ, I(Σ,Φ) is the set of all α∈ pathfin(Σ) so that P [Φ | α↑] = 0.

Finally we prove completeness.

Theorem 4.14. Let Φ be an LTL formula, 0 ≤ t < 1 and P [Φ] ≤ t. Then there is a
nonempty set W ⊆ pathfin(Σ) such that P [Φ |W↑] = 0 and P [W↑] ≥ 1− t. Moreover,
for any W ⊆ pathfin(Σ), W
= ∅ with P [Φ |W↑] = 0 there is a recurrent set R refuting
Φ in context W.

We will see in Section 5.3 that the set R can be chosen to contain exactly one recurrent
word per bscc. If the bound t is tight, i.e., t = P [Φ], the context W is in general infinite.
If t > P [Φ], one can show – using standard results of measure theory – that it is always
possible to choose W as a finite subset of I(Σ,Φ).

4.3 Interaction with the Model Checker
In this section, we discuss the interaction between user and model checker for quanti-
tative counterexamples. The model checker computes P [Φ] and presents W ⊆ I(Σ,Φ)
such that P [W↑] ≥ t, where t is given by the user. The user then inspects W , and may
identify some α ∈ W for which she does not believe that P [Φ | α↑] = 0. To convince
the user, the model checker computes a recurrent set R refuting Φ in context W , which
contains at most one element for each bscc of the system (see Section 5.3). The interac-
tion between user and model checker that follows is similar to the qualitative case. The
user can challenge the following:

1. R is a recurrent set: each element γ ∈ R can be checked as in the qualitative case.
2. R refutes Φ in context α: similar as in the qualitative case, the user interactively tries

to construct a path in α↑ ∩FairΣ(R)∩Φ and fails. Note that the model checker can
assure fairness while the user can concentrate on constructing a path that ultimately
satisfies Φ. Once a bscc has been reached, the model checker can also output the
γ ∈ R associated with that bscc.

The set W may be too large or even infinite so that inspecting each element individually
is not feasible (see [5,9]). This raises the question of how the user can understand what
words are contained in W . Also, the reader may want evidence that indeed P [W↑] ≥ t.
Similar questions arise in the study of counterexamples for probabilistic CTL ([14])
model checking, and we refer to the literature for possible approaches [4,5,9,23]. We
also discuss these issues further in Section 6.

Counterexamples in Probabilistic LTL Model Checking for Markov Chains 597

5 Computing Counterexamples

In this section, we explain how the counterexamples defined above can be computed.
Our algorithm is based on, but substantially complements an algorithm of Courcoubetis
and Yannakakis [8]1. We follow [18] in our presentation. In Section 5.1 we briefly
recall the underlying model checking algorithm. In Sections 5.2 and 5.3 we address the
computation of an automaton accepting the initial language and the computation of a
recurrent set, respectively.

Throughout the entire section, Σ = (Q,S,→,v),P is a Markov chain and Φ an LTL
formula. Without loss of generality, we assume that Φ only contains the temporal con-
nectives X and U.

It is well known that the assertion P [Φ] = 1 is independent from the underlying
Markov measure P (see e.g. [20]). (It depends only on which transition probabilities are
nonzero, which is uniquely determined by →.) We therefore simply say that a formula
Φ is large (in Σ) iff P [Φ] = 1.

5.1 Recalling Courcoubetis and Yannakakis

The algorithm presented in [8] works in steps. At each step, it eliminates one temporal
operator from the specification and at the same time refines the system so that the large-
ness of the specification is preserved. After eliminating all operators, the specification
becomes a state formula φ, for which largeness can easily be checked: φ is large iff all
initial states satisfy φ. We now briefly recall how the transformation takes place.

If Φ is not a state formula, then it has a subformula of the form Θ = ψUξ or Θ = X ξ,
where ψ,ξ are state formulas. The algorithm chooses such a formula Θ and replaces it
by a fresh atomic proposition d. We call the resulting formula Φ′.

The algorithm then partitions the set of states Q into three blocks QL
Θ, QS

Θ and QM
Θ . If

the initial states of Σ are replaced by a state in QL
Θ, Θ becomes large. If the initial states

of Σ are replaced by a state in QS
Θ, ¬Θ becomes large (Θ becomes “small”). If the initial

states of Σ are replaced by a state in QM
Θ , neither Θ nor ¬Θ becomes large (Θ becomes

“medium-sized”).
The new system Σ′ = (Q′,S′,→′,v′) has the set of states

Q′ := QL
Θ ×{Θ} ∪ QS

Θ ×{¬Θ} ∪ QM
Θ ×{Θ,¬Θ},

that is, the states in QL
Θ are annotated with Θ, the states in QS

Θ with ¬Θ, and the states
in QM

Θ are split into a copy with Θ and one with ¬Θ. We denote the first projection
as π so that, for instance, π(q,Θ) = q. We extend π to words in the natural way. The
initial states of the new system are the states that are projected to an initial state of the
original system. The new valuation function v′ is just like v, whereas d holds in the
states annotated with Θ and only there. Finally, the transition relation of Σ′ is defined
so that Φ′ is large in Σ′ iff Φ is large in Σ (see [8,18]).

A single transformation step takes time O(|Σ||Φ|). Moreover, the size of Σ′ is at most
twice the size of Σ; hence, it can be shown that the overall complexity of the algorithm
is O(|Σ|2|Φ|).

1 Note that we refer to the optimal algorithm in Section 3.1 of [8], and not to the automata-based
algorithm in Section 4.1, which is non-optimal for LTL.

598 M. Schmalz, D. Varacca, and H. Völzer

5.2 Computing the Initial Language

In this section, we explain how to compute a deterministic finite automaton (DFA)
accepting I(Σ,Φ). The algorithm from 5.1 terminates after n transformation steps on Σ
and Φ, resulting in the system Σn and state formula Φn. The n-fold projection on states
and paths of Σn is denoted πn, that is, πn maps a state (path) of Σn to the corresponding
state (path) of Σ. The following lemma shows how I(Σ,Φ) can be expressed in terms of
Sat(Σn,Φn):

Lemma 5.1. We have I(Σ,Φ) = pathfin(Σ)\πn(Sat(Σn,Φn))↓.

The elements of πn(Sat(Σn,Φn))↓ are (modulo πn) the finite paths of Σn starting in a
state satisfying Φn. It is therefore straightforward to compute a non-deterministic finite
automaton (NFA) accepting πn(Sat(Σn,Φn))↓. It is also straightforward to compute a
deterministic finite automaton (DFA) accepting pathfin(Σ). By applying standard au-
tomata constructions, we obtain a DFA for I(Σ,Φ).

In Theorem 5.2, we provide the key points of our complexity analysis.

Theorem 5.2

1. An NFA accepting πn(Sat(Σn,Φn))↓ can be computed in time linear in |Σ| and
exponential in |Φ|.

2. A DFA accepting πn(Sat(Σn,Φn))↓ can be computed in time linear in |Σ| and doubly
exponential in |Φ|.

3. A DFA accepting I(Σ,Φ) can be computed in time linear in |Σ| and doubly expo-
nential in |Φ|.

The overall running time is linear in |Σ| and doubly exponential in |Φ|, and we do not
know whether an exponential algorithm can be found. In Section 5.3 we explain how
to compute a single element of I(Σ,Φ) without computing the entire DFA; the running
time of the latter approach is linear in |Σ| and exponential in |Φ|.

5.3 Computing a Recurrent Set

In this subsection, Σ′ and Φ′ denote the system and formula after one transformation
step has been applied to Σ and Φ. Moreover, Θ is the subformula of Φ that has been
replaced by the new atomic proposition d during the transformation.

We explain how to compute a recurrent set R refuting Φ in context I(Σ,Φ) and there-
fore in any context W ⊆ I(Σ,Φ). For each bscc K of Σ, our algorithm calls a func-
tion computeRecurrentWord to compute a path fragment γK ∈ K+ such that I(Σ,Φ)↑
∩Sat(G F γK)∩ Sat(Φ) = ∅. The result R is then defined as R := {γK | K bscc of Σ}.
Note that FairΣ(R) =

⋃
K Sat(G F γK). Hence, I(Σ,Φ)↑ ∩FairΣ(R)∩ Sat(Φ) = ∅, i.e.,

R refutes Φ in context I(Σ,Φ).
The function computeRecurrentWord is outlined in Figure 1. Correctness can be

shown by induction over Φ.

Lemma 5.3

The function computeRecurrentWord terminates and establishes its postconditions.

We now explain how Lines 9-11 of Figure 1 can be implemented. Suppose Θ = ψ U ξ.
Given γ′ from Line 8, choose δ′ minimal w.r.t. � such that the following holds:

Counterexamples in Probabilistic LTL Model Checking for Markov Chains 599

Precondition: Σ is a system, Φ a formula, q a state of Σ.1

Postcondition:2

(1) γ is a finite path fragment of Σ with first state q.
(In particular, if q belongs to the bscc K, then γ ∈ K+.)

(2) I(Σ,Φ)↑ ∩Sat(G F γ)∩Sat(Φ) = ∅.
begin3

if Φ is a state formula then4

γ := q;5

else6

choose a state q′ of Σ′ with π(q′) = q;7

γ′ := computeRecurrentWord(Σ′,Φ′,q′);8

choose a finite path fragment γ of Σ such that9

(1) for each path fragment γ̃′ of Σ′, if γ = π(γ̃′), then γ′ � γ̃′,10

(2) for each x′ ∈ pathω(Σ′), if π(x′) � G F γ, then x′ � G(Θ⇔ d).11

end12

end13

Fig. 1. Function: γ = computeRecurrentWord(Σ,Φ,q)

1. γ′δ′ is a finite path fragment of Σ′.
2. π(γ′δ′) does not end in QM

Θ .
3. If π(γ′δ′) visits a state satisfying d, then π(γ′δ′) visits a state satisfying ξ.

Set γ := π(γ′δ′).
It can be shown that from each state in QM

Θ both a state in QL
Θ satisfying ξ and a

state in QS
Θ is reachable. An examination of the state relation of Σ′ then yields that a δ′

satisfying the above conditions exists and can therefore be computed by a breadth-first
search.

Now suppose Θ = X ξ. Given γ′ from Line 8, we construct γ as follows. If π(γ′)
does not end in QM

Θ , we set γ := π(γ′). Otherwise, we extend γ′ by one state q′ to γ′q′ ∈
pathfin(Σ′) and set γ := π(γ′q′).

A proof that γ satisfies the conditions in Lines 9-11 can be found in [19]. The running
time of computeRecurrentWord is as follows:

Theorem 5.4. Executing computeRecurrentWord(Σ,Φ,q) takes time O(|Σ||Φ|2|Φ|).

Proof. Let n be the number of transformation steps and Σi, 1 ≤ i ≤ n, the system af-
ter the ith transformation step. The length of γ = computeRecurrentWord(Σ,Φ,q) is
bounded by O(∑n

i=1 |Σi|), because the ith incarnation of computeRecurrentWord in-
creases γ by at most |Σi|, 1 ≤ i ≤ n. As |Σi| ≤ |Σ|2i, the length of γ is in O(|Σ|2|Φ|).

Computing γ from γ′ includes reading γ′ and computing some extension; both can
be accomplished in time O(|Σ|2|Φ|). This has to be repeated n times; hence the overall
running time is O(|Σ||Φ|2|Φ|). "#

The function computeRecurrentWord has to be executed once for each bscc of Σ;
accordingly the overall running time is linear in the number of bsccs and |Σ| and
exponential in |Φ|.

600 M. Schmalz, D. Varacca, and H. Völzer

Note that the user does not need to compute the entire recurrent set at once. Instead,
after computing one recurrent word, she can already inspect the bscc of the recurrent
word. If she then wants to find an error in a different bscc, she can compute a recurrent
word of that bscc. Thus, although the worst-case running time is quadratic in the size
of the system, the user already obtains the first diagnostic feedback after O(|Σ||Φ|2|Φ|)
steps.

The function computeRecurrentWord can be adapted to compute a single element α
of I(Σ,Φ), whereas the complexity remains the same. The details can be found in [19].

Theorem 5.5

If I(Σ,Φ)
= ∅, a single element of I(Σ,Φ) can be computed in O(|Σ||Φ|2|Φ|) steps.

Theorems 5.5 and 5.4 mean that a representation of a qualitative counterexample can be
computed in time linear in the system and exponential in the specification. This running
time is optimal, because it is also the running time of the optimal probabilistic model
checking algorithm in [8].

6 Conclusions and Related Work
We have proposed a way of presenting and computing counterexamples in probabilis-
tic LTL model checking for Markov chains. Our notion is sound and complete, which
means that a counterexample in our sense can be computed if and only if the speci-
fication is not met with the desired probability. We have also pointed out how such a
counterexample can be utilised to find an error in the system.

Aljazzar and Leue [2] propose solutions for counterexamples in probabilistic model
checking with respect to timed probabilistic reachability properties in Markov chains.
Han and Katoen [12] and Wimmer et al. [23] present algorithms computing counterex-
amples for model checking PCTL (probabilistic CTL [14]) formulas in Markov chains.
There are also suggestions of how to present such counterexamples to the user [4,9]. In
[1,13], the problem has been tackled for continuous time Markov chains. In [3] Aljaz-
zar and Leue generalise their proposal in [2] for (unnested, upwards-bounded) PCTL
formulas and Markov decision processes.

Recently, Andrés et al. [5] proposed an approach for LTL formulas on Markov chains
(and also Markov decision processes). They refer to the fact that probabilistic model
checking of an LTL formula in a Markov chain M1 can be reduced to probabilistic
model checking of an upwards-bounded reachability property in a generated Markov
chain M2, which is doubly exponentially larger than M1 in the size of the LTL formula
[10]. Then they develop a counterexample representation in the style of Han and Katoen
[12], which can be mapped to a subset of the initial language in M1. The authors pro-
pose an interesting way of convincing the user that the upwards-bounded reachability
property is indeed violated in the generated Markov chain M2. However, in contrast to
our approach, they do not address how to convince the user of the probability of the
original LTL formula in the original system M1.

The above approaches [2,4,5,9,12,23] have in common that a counterexample is
finitary, i.e., a set of finite paths W so that any path of the system extending W vi-
olates the specification. In our terminology, W is a subset of the initial language. We

Counterexamples in Probabilistic LTL Model Checking for Markov Chains 601

have pointed out in Section 3.1 that sets of finite paths are not sufficient to refute general
LTL properties – in particular liveness properties. Even so, the techniques of presenting
finitary counterexamples to the user can be applied to what we have called a context W
in our counterexample presentation. In future work, it would be interesting to combine
these techniques with our approach. Another important direction is to carry out some
case studies to evaluate the interaction between user and model checker.

Acknowledgement. We thank Husain Aljazzar, Christian Dax, Barbara Jobstmann and
Felix Klaedtke for useful discussions and helpful comments. We also thank the
reviewers for suggesting improvements to the paper.

References
1. Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic reachability.

In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 177–195. Springer,
Heidelberg (2005)

2. Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed reachability. In:
Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 33–51. Springer,
Heidelberg (2006)

3. Aljazzar, H., Leue, S.: Counterexamples for model checking of Markov decision processes.
Tech. Report soft-08-01, University of Konstanz, Germany (2007)

4. Aljazzar, H., Leue, S.: Debugging of dependability models using interactive visualization of
counterexamples. In: QEST 2008, pp. 189–198. IEEE, Los Alamitos (2008)

5. Andrés, M., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples in prob-
abilistic model checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394,
pp. 129–148. Springer, Heidelberg (2008)

6. Breiman, L.: Probability. Addison Wesley, Reading (1968)
7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cam-

bridge (2001)
8. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM

42(4), 857–907 (1995)
9. Damman, B., Han, T., Katoen, J.-P.: Regular expressions for PCTL counterexamples. In:

QEST 2008, pp. 179–188. IEEE, Los Alamitos (2008)
10. de Alfaro, L.: Temporal logics for the specification of performance and reliability. In:

Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176. Springer,
Heidelberg (1997)

11. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science,
vol. B, ch. 16, pp. 995–1072. Elsevier Science, Amsterdam (1990)

12. Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer, Heidelberg (2007)

13. Han, T., Katoen, J.-P.: Providing evidence of likely being on time: Counterexample genera-
tion for CTMC model checking. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y.
(eds.) ATVA 2007. LNCS, vol. 4762, pp. 331–346. Springer, Heidelberg (2007)

14. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Com-
put. 6(5), 512–535 (1994)

15. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Springer, Heidelberg
(1976)

16. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE, Los Alamitos
(1977)

602 M. Schmalz, D. Varacca, and H. Völzer

17. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the
computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

18. Schmalz, M.: Extensions of an algorithm for generalised fair model checking. Diploma The-
sis, Lübeck, Germany (2007), http://www.infsec.ethz.ch/people/mschmalz/dt.pdf

19. Schmalz, M., Völzer, H., Varacca, D.: Counterexamples in probabilistic LTL model
checking for Markov chains. Technical Report 627, ETH Zürich, Switzerland (2009),
http://www.inf.ethz.ch/research/disstechreps/techreports

20. Varacca, D., Völzer, H.: Temporal logics and model checking for fairly correct systems. In:
LICS 2006, pp. 389–398. IEEE, Los Alamitos (2006)

21. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
FOCS 1985, pp. 327–338. IEEE, Los Alamitos (1985)

22. Völzer, H., Varacca, D., Kindler, E.: Defining fairness. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 458–472. Springer, Heidelberg (2005)

23. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time Markov
chains using bounded model checking. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)

http://www.infsec.ethz.ch/people/mschmalz/dt.pdf
http://www.inf.ethz.ch/research/disstechreps/techreports

Query-Based Model Checking of
Ad Hoc Network Protocols

Anu Singh, C.R. Ramakrishnan, and Scott A. Smolka

Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794-4400, USA

{anusingh,cram,sas}@cs.sunysb.edu

Abstract. A prominent source of complexity in the verification of ad hoc net-
work (AHN) protocols is the fact that the number of network topologies grows
exponentially with the square of the number of nodes. To combat this instance
explosion problem, we present a query-based verification framework for AHN
protocols that utilizes symbolic reachability analysis. Specifically we consider
AHN nodes of the form P : I , where P is a process and I is an interface: a
set of groups, where each group represents a multicast port. Two processes can
communicate if their interfaces share a common group. To achieve a symbolic
representation of network topologies, we treat process interfaces as variables and
introduce a constraint language for representing topologies. Terms of the lan-
guage are simply conjunctions of connection and disconnection constraints of
the form conn(Ji,Jj) and dconn(Ji,Jj), where Ji and Jj are interface vari-
ables. Our symbolic reachability algorithm explores the symbolic state space of
an AHN in breadth-first order, accumulating topology constraints as multicast-
transmit and multicast-receive transitions are encountered. We demonstrate the
practical utility of our framework by applying it to the problem of detecting un-
resolved collisions in the LMAC protocol for sensor networks.

1 Introduction

An ad-hoc network (AHN) is a local area network (LAN) that is built spontaneously as
wireless devices connect. Instead of relying on a base station to coordinate the flow of
messages between nodes in the network, individual nodes forward packets to and from
each other. Because of its ah-hoc nature, an n-node AHN can assume any one of the
possible O(2n2

) topologies. A number of network protocols have been developed for
AHNs, including routing, MAC-layer, and transport protocols.

Due to the vast space of possible network topologies, the verification of AHN pro-
tocols is a computationally intensive if not intractable task. Consider, for example, the
verification of the LMAC medium access control [13] protocol performed in [5]. (We
also consider this protocol in Section 6.) The approach taken in [5] was to separately
model check each of the possible network topologies (modulo isomorphism) for a fixed
number of nodes in order to detect those that might lead to unresolved collisions. An
unresolved collision occurs when neighboring nodes (connected by at most two links)
without a common neighbor attempt to transmit within the same time slot; due to the
lack of a common neighbor, the collision remains undetected. The problem with this

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 603–619, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

604 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

approach is that as the number of nodes in the network grows, the number of possible
topologies grows exponentially, posing an instance explosion problem for verification.

To combat instance explosion, we present in this paper a new, constraint-based sym-
bolic verification technique for ad-hoc network protocols. The basic idea behind our
approach is as follows. As in [11], we represent AHNs as a collection of nodes of the
form P : I , where P is a sequential process and I is an interface. An interface is a set
of groups, with each group corresponding to a clique in the network topology. Dually,
a group is used as a local-broadcast (multi-cast) communication port. Two nodes in the
network can communicate (are within each other’s transmission range) only if there
respective interfaces have a non-null intersection (share a common group).

To achieve a symbolic representation of an AHN, we treat process interfaces as vari-
ables and introduce a constraint language for representing topologies. Terms of the
language are simply conjunctions of connection and disconnection constraints of the
form conn(Ji,Jj) and dconn(Ji,Jj), respectively. Here, Ji and Jj are interface vari-
ables, and conn(Ji,Jj) signifies that Ji and Jj are connected (Ji ∩ Jj
= ∅), while
dconn(Ji,Jj) means that Ji and Jj are disconnected (Ji ∩ Jj = ∅). As such, each
term of the language symbolically represents a set of possible topologies.

Given this symbolic representation of AHNs, one can now ask model-checking
queries of the form: under what evaluations (i.e. topologies) of the symbolic interface
variables does the reachability property in question hold? Our symbolic reachability al-
gorithm explores the symbolic state space of an AHN. A symbolic state is a pair of the
form (s, γ), where s is a network state comprising both the locations of the component
processes and valuations of their local variables, and γ is a term from our topology con-
straint language. A symbolic transition from (s, γ) to (s′, γ′) is constructed by adding
constraints to γ to obtain γ′ whenever a communication (local broadcast) occurs. As-
suming the communication involves process Pi as the broadcaster, the following con-
straints will be added: those of the form conn(Ji,Jj), where Pj is a process capable of
performing a corresponding receive action and deemed to fall within the transmission
range of Pi; and those of the form dconn(Ji,Jk), where Pk is also a process capable
of performing a receive action and deemed not to fall within Pi’s transmission range.

We describe an efficient symbolic reachability algorithm to verify reachability prop-
erties of symbolic AHNs. We moreover show that our symbolic reachability algorithm
can be extended without major modification to query-based model checking of LTL
properties. To demonstrate the practical utility of our symbolic verification technique
for AHN protocols, we applied it to the problem of detecting unresolved collisions in
the above-described LMAC protocol [13]. Our results show that our symbolic approach
to query-based model checking is highly effective: in the case of a 6-node network, our
symbolic reachability algorithm explored only 2,082 symbolic topologies, compared to
a possible 32,768 actual topologies. Moreover, all 2,082 symbolic topologies were con-
sidered in a single verification run. In contrast, for the same property, the authors of [5]
considered no more than a 5-node network, using 61 separate verification runs, one for
each unique (modulo isomorphism) concrete topology.

Main Contributions. The rest of the paper is organized around our main technical
results, which include the following:

Query-Based Model Checking of Ad Hoc Network Protocols 605

– Section 4 presents our modeling framework for AHNs, its concrete and symbolic
semantics, and a correspondence result relating the two semantics.

– Section 5 considers our query-based verification technique based on symbolic
reachability analysis, and its extension to LTL properties.

– Section 6 illustrates the practical utility of our technique by analyzing a formal
model of the LMAC [13] protocol, a MAC layer protocol for sensor networks.

Additionally, Section 2 discusses our concrete and symbolic representations for AHN
network topologies, Section 3 describes related work, and Section 7 offers our conclud-
ing remarks and directions for future work. Due to space limitations, complete proofs
are omitted.

2 An Example of Topologies and Topology Constraints

Below we illustrate the use of a constraint language for representing sets of network
topologies. In the LMAC protocol of [13], which is used to allocate transmission
slots in a sensor network MAC layer, collision, i.e. simultaneous transmission between
two nodes with overlapping ranges, is detected by neighbors common to both nodes.
Fig. 1(a) shows a network topology for which a collision between nodes 1 and 2 can be

 2

 1

 3

 4

(a) Topology with
detected collision

 1 4

 2 3

(b) Topology with
undetected collision

Fig. 1. Example topologies for collision and collision-detection in the LMAC protocol

 1 2 4 3

g2g1

(a) Group-Based View

AHN Π1≤i≤4Pi : Ii

I1 = {g1}
I2 = {g1, g2}
I3 = {g2}
I4 = {g1, g2}

(b) Concrete Repre-
sentation of Interfaces

AHN Π1≤i≤4Pi : Ji

conn(J1,J2)
conn(J1,J4)
conn(J2,J3)
conn(J2,J4)
conn(J3,J4)
dconn(J1,J3)

(c) Symbolic Represen-
tation of Interfaces

Fig. 2. Concrete and symbolic views of network topology of Fig. 1(a)

606 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

detected due to the presence of a common neighbor (node 4). Fig. 1(b) shows a topol-
ogy for which a collision between 1 and 2 remains undetected since they do not share a
neighbor.

As described in Section 1, we consider AHN nodes of the form P : I , where
P is a process and I is an interface. Further, an interface is a set of groups, with
each group g representing a shared communication channel and dually correspond-
ing to a clique in the network topology [11]. Figs. 2(a) and 2(b) provide a group-
based view and concrete representation based on process interfaces of the network
topology of Fig. 1(a). A symbolic representation of the same topology is given in
Fig. 2(c) using connection (conn) and disconnection (dconn) constraints over interface
variables J1–J4, as mentioned in Sec. 1. The language in which symbolic topology
constraints is expressed is formally described in Section 4. The symbolic representation
permits us to compactly represent sets of topologies. For instance, consider the con-
straint conn(J1,J2) ∧ conn(J1,J4) ∧ conn(J2,J3) ∧ conn(J3,J4). This represents
topologies that contain edges (1, 2), (1, 4), (2, 3) and (3, 4). The topologies in this set
may or may not contain edges (1, 3) and/or (2, 4). Hence the above constraint represents
four 4-node topologies, including the ones in Fig. 1. We use topology constraints when
constructing a symbolic verification proof (by reachability or model checking) to con-
sider a set of topologies simultaneously. These constraints may get refined as needed as
we progress in the proof, corresponding to case splits among the set of topologies. The
constraint representation and lazy case-splitting enable us to consider a large number of
topologies simultaneously within a single verification run.

3 Related Work

Our symbolic approach to query-based model checking of AHN protocols can be con-
sidered a form of constraint-based model checking. Traditionally this technique has
been used for the verification of infinite-state systems [4,10], data-independent sys-
tems [12], systems with non-linear arithmetic constraints [3], timed automata [7], and
imperative infinite-state programs [6]. In these works, constraints were used to com-
pactly represent sets of states of a system being verified. In contrast to these, our ap-
proach uses variables in the system specification (to represent interconnections) and
finds their valuations (in this case, topologies) for which a property holds. In this sense,
our approach is closely related to temporal logic query checking, introduced in [2],
which addresses the following problem: given a Kripke structure and a temporal logic
formula with a placeholder, determine all propositional formulas φ such that when φ
is inserted in the placeholder, the resulting temporal logic formula is satisfied by the
Kripke structure. Query checking has been extended in a number of ways, including
query checking of a wide range of temporal logics using a new class of alternating au-
tomata [1]; the application of query checking to a variety of model exploration tasks,
ranging from invariant computation to test case generation [9]; and its adaptation to
solving temporal queries in which formulas may contain integer variables [15].

Recently, symbolic representation of the set topologies has been used in [8] to ana-
lyze ad hoc networks. The constraint language in that work can only express the pres-
ence of connections between nodes, and not the absence of connections, in contrast to

Query-Based Model Checking of Ad Hoc Network Protocols 607

our work. It should be noted that the undetected collision problem in the LMAC proto-
col (see Section 6) is due to absence of connections, and cannot be detected using the
constraint language of [8].

As mentioned in Section 1, the correctness of the 4-node and 5-node LMAC proto-
col [13] has been previously established in [5] using the UPPAAL model checker for
timed automata. By systematically considering all 11 topologies for the 4-node case
and all 61 topologies for the 5-node case (modulo isomorphism), they report all net-
work topologies for which collisions may remain undetected in the LMAC protocol.
They also iteratively improve the protocol model so that the number of topologies for
which the protocol may fail is reduced. In contrast, our query-based approach verifies
a property related to unresolved collisions using a single symbolic reachability run,
thereby allowing us to additionally consider the 6-node case.

4 Modeling Framework

4.1 Syntax

We formally define the syntax and semantics of our framework. Systems in our frame-
work are modeled as composition of nodes. Following the notion of separation of a
node’s communication and computation behavior presented in the ω-calculus [11], we
consider a node to consist of a process (computational behavior) and an interface (com-
munication capability). We present the notations used in defining our framework, fol-
lowed by formal definitions of the components of our framework, namely a process, an
interface, a node, and a system.

Let D be a non-empty domain with a set of operations F and relations R defined
over it, and Var be a countable set of variables over domain D. For instance, D may
be a set of finite integers, with F containing arithmetic operations, and R comprising
equality, dis-equality and relational operations over integers. Symbols x, y (possibly
subscripted) range over elements of Var. An environment θ : X �→ D, whereX ⊆ Var
is a mapping from variables in Var to values in domain D. Symbol Θ is used to denote
the set of all environments over Var and D. We use E to denote the set of expressions,
which are terms over elements of D ∪Var ∪F . Expressions are represented by symbol
e (possibly subscripted). A primitive condition is a term with a symbol from R whose
arguments are elements of E . A condition is a conjunction of primitive conditions. An
assignment is of the form x := e, where x ∈ Var and e ∈ E . Following traditional
programming language semantics, we use [[.]] to represent semantics for expressions,
conditions and assignments. For an expression e, condition cond, and assignment asgn,
[[e]] : Θ �→ D, [[cond]] : Θ �→ Bool, and [[asgn]] : Θ �→ Θ are mappings from an
environment to domain D, Bool = { true , false }, and an environment, respectively.
Semantics of a single assignment can be extended to a set of simultaneous assignments
in the standard way.

The syntactic definition of a process is as follows.

Definition 1 (Process). A process = 〈L,X,Σ, δ, l0, η0〉, is an extended finite state au-
tomaton over domain D, where:

608 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

– L is a finite set of locations.
– X ⊆ Var is a set of local variables for the process.
– Σ is a finite set of action labels containing

• b e, e ∈ E (broadcast action).
• r (x), x ∈ X (receive action).

– δ is a finite set of transitions. A transition is a tuple (l, α, l′, 〈ρ, η〉), where
• l, l′ ∈ L are source and target locations, respectively.
• α ∈ Σ is an action label.
• ρ, a condition, is a transition guard.
• η is a set of simultaneous assignments of the form x1 := e1, . . . , xn := en,

where the xi are pairwise distinct.
– l0 ∈ L is the start location.
– η0 is the set of initial assignments of the form x := c, ∀x ∈ X , and c ∈ D.

In the above definition of a process, we require that a variable that is used in a receive
transition should not be assigned in the same transition.

An interface, represented by symbol I (possibly subscripted), is a finite set of names
called group names. Group names are denoted by symbol g (possibly subscripted). We
use I to denote the set of all interfaces. A node P :I denotes a process P with interface
I . Henceforth we use n to denote the set {1, . . . , n}, and Pi, i ∈ n, to denote the
process 〈Li, Xi, Σ, δi, l0,i, η0,i〉 over domain D.

Definition 2 (Ad Hoc Network, AHN). For i ∈ n, Pi = 〈Li, Xi, Σ, δi, l0,i, η0,i〉 s.t.
Xi ⊆ Var are pairwise disjoint, then Πi∈nPi :Ii is an AHN.

4.2 Concrete Semantics

We provide a labeled transition system (LTS) based semantics for AHNs. An LTS is
a 4-tuple (S,Act,−→, s0), where S is a set of states, Act is a set of labels, −→⊆
S × Act × S is a ternary relation of labeled transitions, and s0 ∈ S is the initial state.
A labeled transition (s, α, t) ∈−→, is also represented as s

α−→ t.

Definition 3 (Semantics of an AHN). The semantics of an AHN Πi∈nPi : Ii, denoted
as [[Πi∈nPi : Ii]], is the LTS (S,Act, T, s0) such that:

– S = L × Θ×Γ , where L = L1×. . .×Ln, Θ is the set of all possible environments
X �→ D, X = X1 , · · · ,Xn.

– Act = {b v | v ∈ D}.

– � is such that (l, θ, γ) b v
� (l

′
, θ′, γ′), where l = (l1, . . . , ln), l

′
= (l′1, . . . , l

′
n),

θ′ = [[η]]θ, v = [[e]]θ if:
• ∃i ∈ n: (li,b e, l′i, 〈ρi, ηi〉) ∈ δi, and
• k = {k|(lk, r (xk), l′k, 〈ρk, ηk〉) ∈ δk, k ∈ n, k
= i}, ∃kc,kd : k = kc , kd

such that:
∗ ∀j ∈ n \ (kc ∪ {i}): l′j = lj
∗ ρ = ρi ∧

∧
k∈kc

ρk, [[ρ]]θ is true
∗ η = ηi ∪

⋃
k∈kc

ηk[v/xk] ∪ {xk := v}
∗ γ′ = γ ∧

∧
k∈kc

conn(Ji,Jk) ∧
∧

k∈kd
dconn(Ji,Jk) is satisfiable

– s0 = (l0, θ0, true), where l0 = 〈l0,1, . . . , l0,n〉, θ0 = [[
⋃

i∈n η0,i]]θε, and θε is the
empty environment.

Query-Based Model Checking of Ad Hoc Network Protocols 609

In the description of the transition relation (−→) in Definition 3, i denotes the index of a
process capable of performing a broadcast (b e) action, and k denotes the set of indices
of processes that are able to receive a value broadcast by process Pi. Note that processes
not participating in the synchronization remain in the same location. For a transition to
be enabled, the guards of synchronizing processes must be true. When a transition is
taken, the value transmitted by the broadcaster is propagated to all receivers, and the
assignments of the participating processes are performed.

4.3 Symbolic System Specification

We define a symbolic semantics for AHNs in which process interfaces are treated as
variables. For example, for a node P : I , I is treated as a variable in contrast to the
concrete semantics, where I represents a set of group names. We use J to denote the
set of interface variables and J (possibly subscripted) to denote elements of J.

Topology Constraint Language. Constraints on process interface variables are given
by the following grammar. SymbolΓ represents the constraint language and γ (possibly
subscripted) represents elements of Γ .

Γ ::= true | false | conn(J,J) | dconn(J,J) | Γ ∧ Γ

A valuation ϑ : J → I maps an interface variable J to an interface I . A valuation ϑ is
a model of a constraint γ, written as ϑ |= γ, defined as follows: ϑ |= true

ϑ
|= false
ϑ |= conn(J1,J2) if ϑ(J1) ∩ ϑ(J2)
= ∅
ϑ |= dconn(J1,J2) if ϑ(J1) ∩ ϑ(J2) = ∅
ϑ |= Γ1 ∧ Γ2 if ϑ |= Γ1 ∧ ϑ |= Γ2

A constraint of the form conn(J1,J2) requires that nodes with interface variables
J1 and J2 be connected, enabling them to communicate with each other. Constraint
dconn(J1,J2) requires nodes with interface variables J1 and J2 to be disconnected.
A constraint γ is satisfiable, if there exists an interface valuation ϑ that assigns each
interface variable in γ a value (set of group names) such that ϑ |= γ. Two constraints
γ1 and γ2 are equivalent (≡) if for every valuation ϑ s.t. ϑ |= γ1, it holds that ϑ |= γ2,
and vice-versa.

Proposition 1. Satisfiability of topology constraints is decidable.

Proof Sketch: The following procedure determines the satisfiability of conjunction of
primitive constraints over interface variables, and returns a satisfying assignment if
there exists one.
Consider a constraint γ over interface variables J1, . . . ,Jn.

– Step 1: For every constraint of the form conn(Ji,Jj), add a fresh name gij to Ji

and Jj (so that Ji ∩ Jj
= ∅).
– Step 2: For every Ji that is not assigned a value in Step 1, initialize Ji to singleton

set {gi}, such that gi has not been assigned to any interface variable in Step 1.

610 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

– Step 3: For every constraint of the form dconn(Ji,Jj), if Ji ∩ Jj = ∅, then
constraint γ is satisfiable, otherwise γ is unsatisfiable.

This procedure terminates and if γ is satisfiable, returns one satisfying assignment. "#

For example, solution to the constraint conn(J1,J2)∧ conn(J1,J4)∧ conn(J2,J3)∧
conn(J3,J4), is J1={g1,2, g1,4},J2 ={g1,2, g2,3},J3 ={g2,3, g3,4},J4 ={g1,4, g3,4}.

A symbolic AHN is an AHN for which topology is represented using interface
variables.

Definition 4 (Symbolic AHN). For i ∈ n, Pi = 〈Li, Xi, Σ, δi, l0,i, η0,i〉 s.t. Xi ⊆
Var are pairwise disjoint, then Πi∈nPi :Ji is a symbolic AHN.

Definition 5 (Semantics of a symbolic AHN). The semantics of a symbolic AHN
Πi∈nPi : Ji, denoted as [[Πi∈nPi : Ji]], is the symbolic LTS (S,Act, T, s0), such
that:

– S = L × Θ×Γ , where L = L1×. . .×Ln, Θ is the set of all possible environments
X �→ D, X = X1 , · · · ,Xn.

– Act = {b v | v ∈ D}.

– � is such that (l, θ, γ) b v
� (l

′
, θ′, γ′), where l = (l1, . . . , ln), l

′
= (l′1, . . . , l

′
n),

θ′ = [[η]]θ, v = [[e]]θ if:

• ∃i ∈ n: (li,b e, l′i, 〈ρi, ηi〉) ∈ δi, and
• k = {k|(lk, r (xk), l′k, 〈ρk, ηk〉) ∈ δk, k ∈ n, k
= i}, ∃kc,kd : k = kc , kd

such that:
∗ ∀j ∈ n \ (kc ∪ {i}): l′j = lj
∗ ρ = ρi ∧

∧
k∈kc

ρk, [[ρ]]θ is true
∗ η = ηi ∪

⋃
k∈kc

ηk[v/xk] ∪ {xk := v}
∗ γ′ = γ ∧

∧
k∈kc

conn(Ji,Jk) ∧
∧

k∈kd
dconn(Ji,Jk) is satisfiable

– s0 = (l0, θ0, true), where l0 = 〈l0,1, . . . , l0,n〉, θ0 = [[
⋃

i∈n η0,i]]θε, and θε is the
empty environment.

In the clause for transition relation (�) in Definition 5, i denotes the index of a process
enabled to do a broadcast (b e) action, and k denotes the set of indices of processes
that are enabled to perform a receive action. kc and kd form a partition of k such that
kc is the set of indices of processes that synchronize with the Pi; thus conn constraint
is generated for processes in kc. Processes with indices in kd do not synchronize with
broadcast action of Pi, and thus are not connected to Pi, and dconn constraint is gener-
ated for the transition. Note that, as in the concrete semantics, processes not involved in
the synchronization remain in their locations. The guards and assignments are treated
exactly as in the concrete semantics, considering only the synchronizing processes.

Theorem 2 (Correspondence). The symbolic semantics is sound and complete w.r.t.
the concrete semantics; i.e. (s, γ) α

� (s′, γ′) in [[Πi∈nPi :Ji]] iff ∀ interface valuations
ϑ s.t. ϑ |= γ′, s

α−→ s′ in [[Πi∈nPi :ϑ(Ji)]].

Query-Based Model Checking of Ad Hoc Network Protocols 611

Proof Sketch:

– Soundness: Consider a symbolic transition (s, γ) α
� (s′, γ′) in Πi∈nPi :Ji. From

the semantics of the symbolic transitions, γ′ =⇒ γ. For all ϑ s.t. ϑ |= γ′ (also
ϑ |= γ), there exists a concrete transition s

α−→ s′ in Πi∈nPi :ϑ(Ji).
– Completeness: Consider a concrete transition s

α−→ s′ in Πi∈nPi : Ii. Let ϑ be
an interface valuation, γ′ be a constraint, and for i ∈ n, Ji be interface variables,
such that ϑ(Ji) = Ii, and ϑ |= γ′. Then ∃γ : γ =⇒ γ′, and (s, γ) α

� (s′, γ′) in
Πi∈nPi :Ji. "#

5 Constraint-Based Verification

5.1 Verification of Reachability Properties

We first consider verification of symbolic AHNs for reachability properties, which is
done by constructing and traversing the symbolic transition system.

Definition 6 (Reachability). For an AHN AC = Πi∈nPi : Ii, the set of states reach-
able from a state s in [[AC]], denoted by ReachC(s,AC), is the smallest set such that
s ∈ ReachC(s,AC) and for every s′ ∈ ReachC(s,AC) and for every α ∈ Act if
s′

α−→ s′′ ∈ [[AC]] then s′′ ∈ ReachC(s,AC).

For a symbolic AHN AS = Πi∈nPi :Ji, the set of states reachable from a symbolic
state (s, γ) in the [[AS]], denoted by ReachS((s, γ), AS), is the smallest set such that
(s, γ) ∈ ReachS((s, γ), AS), and for every (s′, γ′) ∈ ReachS((s, γ), AS) and for
every α ∈ Act if (s′, γ′) α

� (s′′, γ′′) then (s′′, γ′′) ∈ ReachS((s, γ), AS).

Satisfaction of a Property. A property over a concrete AHNAC , denoted by φ is either
a proposition, defined over the states of AC , or of the form EFp, where p is a proposi-
tion. We use s |= φ to denote satisfaction of property φ in state s. We say that s |= EFp
if there is some state s′ reachable from s such that s′ |= p. The notion of satisfaction of
a property is lifted to symbolic states, denoted as (s, γ) |= φ, if γ is satisfiable, and φ
is true in s in every topology ϑ such that ϑ |= γ. The following proposition establishes
that when verifying a reachability property for a symbolic AHN, it is sufficient to ex-
amine a subset of symbolic states. In particular, once (s, γ) is visited and (s, γ) |= φ,
all states (s, γ′) such that γ′ =⇒ γ can be discarded from consideration.

Proposition 3. For a given symbolic state (s0, γ0), symbolic AHN AS , and property φ,
if ∃(s, γ) ∈ ReachS((s0, γ0), AS) s.t. (s, γ) |= φ, then ∀(s, γ′) ∈ ReachS((s0, γ0),
AS) s.t. γ′ =⇒ γ, (s, γ′) |= φ.

Algorithm SymReach (Fig. 3) uses Prop. 3 to prune the search space for proving
reachability properties. For a given predicate p, a symbolic AHN and a start state
(s0, γ0) in the AHN, Algorithm SymReach returns the set of most general constraints
CS such that for all γ ∈ CS (s0, γ) |= EFp. The set of reachable states are stored in R

612 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

Algorithm SymReach
Input : predicate p ; symbolic AHN AS ; initial symbolic state (s0, γ0)
Output : CS the set of most general constraints in states that satisfy p and are

reachable from initial state (s0, γ0)
1.
2.

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

R := {(s0, γ0)}
CS :=

{ {γ0} if (s0, γ0) |= p
∅ otherwise

}
WS := {(s0, γ0)} // working set (FIFO queue)

while (WS �= ∅)
let (s, γ) ∈ WS
WS := WS \ (s, γ)
for each transition (s, γ) α

� (s′, γ′) in [[AS]]
if γ′ not subsumed by any constraint in CS

if there exists no (s′, γ′′) ∈ R such that γ′ =⇒ γ′′

WS := WS ∪ {(s′, γ′)}
R := R ∪ {(s′, γ′)}
if (s′, γ′) |= p

CS := mg(CS ∪ {γ′})
return CS

Fig. 3. Symbolic Reachability Algorithm

and a working set WS is used to store unvisited states (Line 3) during a breadth-first
traversal of the transition system. At the beginning of each iteration (Line 4) states in
R−WS have been completely explored. Since each transition only adds to the topology
constraints, we discard symbolic states whose topologies are already known to satisfy
the reachability property (Line 8). Line 9 uses Prop. 3 to prune the search space. In
Line 13, mg chooses the most general set of constraints from a given set of constraints.
Algorithm SymReach returns the CS set upon termination. It is easily shown that for
a finite-state AHN Algorithm SymReach terminates.

The following theorem formally states the correctness of the algorithm: that the set of
topology constraints computed by SymReach exactly covers the topology constraints
in ReachS (Def. 6).

Theorem 4 (Correctness). Let CS ′ = {γ | (s, γ) ∈ ReachS((s0, γ0), AS), (s, γ) |=
φ} be the set of all constraints that are part of the reachable symbolic states (s, γ) for
which φ holds. Let CS be the set returned by Algorithm SymReach (Figure 3). Then
∀γ′ ∈ CS ′ ∃γ ∈ CS : γ′ =⇒ γ, and ∀γ ∈ CS ∃γ′ ∈ CS ′ : γ ≡ γ′.

The choice of breadth-first search (BFS) in Algorithm SymReach is important for the
following two reasons. First, subsumption-based pruning of search space is more effec-
tive with BFS because general constraints are visited before more specific constraints.
Secondly, the use of BFS makes it easy to show the tight bound on the total number of
symbolic transitions, used in the complexity analysis.

Query-Based Model Checking of Ad Hoc Network Protocols 613

5.2 Complexity Analysis for the SymReach Algorithm

Consider a concrete AHN AC with n nodes. Let the total number of states in AC be |S|,
and the total number of transitions in AC be |T | = O(|S|2). The time for reachability
analysis from a given initial state in AC is bounded by the number of transitions and is
equal to |T | = O(|S|2). The total number of topologies for an n-node AHN is O(2n2

).
Therefore, the time complexity for exploring states reachable from a given state in all
n-node AHNs (all possible topologies) is O(2n2

) × |T | = O(2n2 |S|2).
Let AS = Πi∈nPi : Ji be a symbolic AHN and AC the set of all concrete AHNs

ACj = Πi∈nPi : Ii,j , where index j indicates one of the O(2n2
) possible topologies

for an n-node network. Recall that each state of AS is of the form (s, γ), where s is a
location-environment pair, and γ is a topology constraint. Let |S| be the largest number
of states of any concrete AHN AC ∈ AC . Since the number of distinct γ’s is O(2n2

),
the total number of symbolic states is bounded by O(2n2 |S|).

The number of symbolic transitions is bounded by the total number of concrete tran-
sitions for all possible topologies. We can establish this bound by defining a 1-1 map-
ping between symbolic transitions from a symbolic state (s, γ) in AS to a transition
from concrete state s in AC . Consider associating each state in R and WS with an index
which is the length of the shortest path from the initial state to (s, γ). Now, let (s, γ) be
the selected state with index i at some iteration of the algorithm. There is no state (s, γ′)
in R − WS (i.e. visited state) such that γ =⇒ γ′ (due to the use of subsumption, line 9
of the algorithm). First consider the case when there is no other state (s, γ′) in R with
index i. It follows from Theorem 2 that for every concrete topology that satisfies γ, state
s is reachable in i or fewer steps. In fact, there is a concrete topology ϑ |= γ for which
the shortest path to reach s is of length i. The symbolic transition that placed (s, γ) in
WS can then be mapped to the corresponding concrete transition in the topology given
by ϑ. Now consider the case when there is another state (s, γ′) in R with index i. If
(s, γ) and (s, γ′) can be reached using a single transition from a common state, say
(s′′, γ′′), then the symbolic transition that placed (s, γ) in WS can then be mapped to
the corresponding concrete transition in a topology that satisfies γ ∧ ¬γ′. Otherwise,
(s, γ) and (s, γ′) descend from two distinct states, both of which have the same index.
We can then associate with the symbolic transition to (s, γ) the same concrete instance
ϑ used to map the transition to its parent (and similarly with (s, γ′)).

We now show that reachability computation over symbolic state space takes no ad-
ditional time, in the asymptotic sense, than reachability over concrete state spaces.
The main additional cost of symbolic reachability algorithm is constraint subsumption
(line 9 of the algorithm). We can do this operation in amortized constant time, as fol-
lows. First, consider computing and storing the subsumption lattice for the constraints
a priori. The construction cost of this lattice is O(2n2

) but is paid only once. We can
associate a set, initially empty, with each constraint in the lattice. To determine whether
(s, γ) should be added to R, we check if s is in the set associated with γ in the lattice.
This check can be done in constant time. When (s, γ) is added to R, we add s to the sets
associated with constraints more specific than γ. This operation may take O(2n2

) in the
worst case, but note that an element s may be added to the set associated with γ at most
once, and hence maintaining this data structure incurs a total cost of O(2n2 |S|) over the

614 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

entire run of the algorithm. Hence symbolic reachability can be done in O(2n2 |S|2),
the same complexity as that of the concrete algorithm.

The space complexity is bounded by the size of the set of reachable states, R. The
number of elements of this set is 2n2 |S|. The size of each element is O(n2) due to the
size of the topology constraint, but this factor gets down-played in the asymptotic case.
Hence the asymptotic space complexity for the symbolic algorithm is O(2n2 |S|).

5.3 Model Checking Symbolic AHNs

The symbolic transition system can be readily used for checking LTL properties of
AHNs. We can use the standard procedure of constructing the product between a Büchi
automaton (corresponding to the negation of a given LTL property) and the symbolic
transition system and look for reachable accepting cycles in the product graph. Note that
for every symbolic transition of the form (s, γ) � (s′, γ′), it holds that γ′ =⇒ γ. Hence
it follows that if (s, γ) and (s, γ′) are two states in a cycle, then γ ≡ γ′. Hence the con-
straint component of states in a cycle are all equivalent. Let (s1, γ), (s2, γ), . . . (sn, γ)
be states in an accepting cycle such that (si, γ) � (si+1, γ) for 1 ≤ i < n, and
(sn, γ) � (s1, γ). It follows from Theorem 2 that for every concrete topology ϑ such
that ϑ |= γ, the states s1, s2, . . . , sn will be in an accepting cycle. Hence reachable good
cycles in the symbolic case mean that there are reachable good cycles in the concrete
case. This forms the basis for LTL model checking of symbolic AHNs.

Model checking of other temporal logics such as CTL and CTL* can be performed
over symbolic AHNs by using the standard algorithms over the symbolic transition
system. From the complexity results for reachability checking, it follows that model
checking for symbolic AHNs can be done in time and space comparable to the total
time and space for model checking of concrete AHNs for all topologies.

6 Verification of the LMAC Protocol

We built a prototype implementation of SymReach in the XSB logic programming
system [14]. XSB adds the capability of memoizing inferences to a traditional Prolog-
based system, which simplifies the implementation of fixed point algorithms such as
SymReach . Below we present the results of verifying the LMAC protocol [13], a
medium access control protocol for wireless sensor networks, using this prototype.

LMAC protocol for Wireless Sensor Networks. The LMAC protocol aims to allocate
each node in the sensor network a time slot during which the node can transmit without
collisions. Note that for collision freedom, direct (one-hop) neighbors as well as two-
hop neighbors must have pairwise different slots. The protocol works by nondetermin-
istically assigning slots, and resolving any collisions that result from this assignment.
We apply our query-based verification technique to this protocol to compute the set of
topologies for which there are undetected and hence unresolved collisions.

Protocol Description [13]. In schedule-based MAC protocols, time is divided into
slots, which are grouped into fixed length frames. Every node is allocated one time

Query-Based Model Checking of Ad Hoc Network Protocols 615

slot in which it can carry out its transmission in a frame without causing collision or
interference with other transmissions. Each node broadcasts a set of time slots occupied
by its (one-hop) neighbors and itself. When a node receives a message from a neighbor
it marks the respective time slot as occupied. The four phases of the LMAC protocol
involved in allocating time slots to nodes are as follows. Initialization phase: a node
listens on the wireless medium to detect other nodes. On listening from a neighboring
node, the node synchronizes by learning the current slot number and transitions to the
wait phase. Wait phase: a node waits for a random period of time and then continues
with the discover phase. Discover phase: a node listens to its one-hop neighbors during
one entire frame and records the time slots occupied by them and their neighbors. On
gathering information regarding the occupied time slots, the node randomly chooses a
time slot from the available ones (time slots that do not interfere in its one-hop and two-
hop neighborhood), and advances to the active phase. Active phase: a node transmits
a message in its own time slot and listens during other time slots. When a neighboring
node informs that there was a collision in the time slot of the node, the node transitions
to the wait phase to discover a new time slot for itself. Collisions can occur when two
or more one-hop or two-hop neighboring nodes choose the same time slot for trans-
mission. Nodes causing a collision cannot detect the collision themselves, they need
to be informed by their neighboring nodes about the collision. When a node detects a
collision it transmits information about the collision in its time slot.

Modeling the LMAC protocol in our framework. Our encoding of the LMAC pro-
tocol in our framework follows the encoding used in [5]. We carry over the underlying
assumption in the LMAC protocol, that the local clocks of nodes are synchronous. Since
there is no support for modeling time in our prototype framework, we define a special
timer node that informs other nodes about the end of a time slot by broadcasting an end
of slot message. Nodes update their local information at the end of every time slot.

An encoding of a process in an AHN model of LMAC is presented in Fig. 4. At the
beginning, we assume that one distinguished node is “active” (i.e. in active location)
and the rest are “passive” (i.e. in init location). Note that the figure gives the definition
of a passive node; the definition of the active node is identical except for its initial state.
The (symbolic) system specification for a 3-node network is shown below.

A = timer : J1 | active node : J2 | passive node : J3 | passive node : J4

Transitions in Fig. 4 are specified in the form [label] l & ρ → l′ & η, where label
is the label of the transition, l and l′ are the source and destination locations, ρ is the
(optional) guard and η is the set of simultaneous assignments. We use the standard no-
tation of primed variables to denote variables in the destination state. We use “epsilon”
transitions (denoted by action label [] in the figure) to simplify the encoding. We can
derive the epsilon-free description (as in the formal definition of AHNs, Defn. 1) using
standard automata construction techniques. In our model of LMAC, locations init, init1
and init2 correspond to the initialization phase; locations listening0, recOne0,
done0, choice0 and choice to the discover phase; and locations active, sent, listen-
ing, recOne, recTwo, and collision detected to the active phase. It should be noted
that the wait phase of the protocol is not modeled, since its function is to only separate
the initialization and discover phases by an arbitrary period of time.

616 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

Passive LMAC Process : < L, X, Σ, δ, l0, η0 >
L = {init, init1, init2, listening0, recOne0, done0, choice0, choice, active, sent,

listening, recOne, recTwo, collision detected}
X = {Current, RecV ec, Counter, SlotNo, F irst, Second, Col, Collision}
Σ = {r (msg(Sslot, Scollision, Sfirst)), r (eos),b msg(slot, collision, first)}
l0 = init
η0 = {Current := −1, RecV ec := ∅, Counter := 0, SlotNo := −1, F irst := ∅,

Second := ∅, Col := −1, Collision := −1}
Transitions (l, α, l′, 〈ρ, η〉) ∈ δ are given below:
Init
[r (msg(Sslot, ,))] init → init1 & Current′ := Sslot
[r (eos)] init1 → listening0 & Current′ := (Current + 1)%frame, Counter′ := 0
[r (msg(, ,))] init1 → init2
[r (eos)] init2 → init

Discover
[r (msg(, , Sfirst))] listening0 → recOne0 & RecV ec′ := Sfirst,

F irst′ := {Current} ∪ First
[r (msg(, ,))] recOne0 → done0 & if Collision < 0 then Collision′ :=Current,

RecV ec′ := ∅
[r (eos)] done0 → choice0 & Current′ := (Current + 1)%frame
[r (eos)] recOne0 → choice0 & Current′ := (Current + 1)%frame,

Second′ := RecV ec ∪ Second, RecV ec′ := ∅
[r (eos)] listening0 → choice0 & Current′ := (Current + 1)%frame
[] choice0 & Counter < frame− 1 → listening0 & Counter′ := Counter + 1
[] choice0 & Counter >= frame− 1 → choice & Second′ := First ∪ Second

Choice
[] choice & Second �= AllSlots → active & SlotNo′ ∈ AllSlots \ Second,

Second′ := ∅
[] choice & Second = AllSlots → listening0 & Counter′ := −1, Collision′ := −1,

F irst′ := ∅, Second′ := ∅
Active
[bmsg(SlotNo,Collision, F irst)] active & Current=SlotNo → sent & Collision′:=−1
[] active & Current �= SlotNo → listening

Send
[r (eos)] sent → active & Current′ := (Current + 1)%frame

Listen
[r (msg(, Scollision,))] listening → recOne & Col′ := Scollision,

F irst′ := Current ∪ First
[r (eos)] listening → active & Current′ := (Current + 1)%frame
[r (msg(, ,))] recOne → recTwo & if Collision′ < 0 then Collision′ :=Current
[r (eos)] recTwo → active & Current′ := (Current + 1)%frame
[r (eos)] recOne & Col �= SlotNo → active & Current′ := (Current + 1)%frame

Collision Reported
[r (eos)] recOne & Col = SlotNo → collision detected & First′ := ∅, RecV ec′ := ∅

Current′ := (Current + 1)%frame,
Counter′ := 0, SlotNo′ := −1,
Col′ := −1, Collision′ := −1

[] collision detected → listening0

Fig. 4. LMAC protocol model

Query-Based Model Checking of Ad Hoc Network Protocols 617

Table 1. Verification statistics for the LMAC protocol for detected collisions

Nodes # Topologies # States # Transitions CPU Time Memory (MB)
Symbolic/Concrete

2 1/2 36 36 0.08 sec 2.42
3 5/8 110 123 0.24 sec 2.46
4 25/64 458 667 3.38 sec 3.05
5 181/1024 2204 5223 69.51 sec 5.09
6 2082/32768 29012 110194 2 hr 51 min 46 sec 49.79

The length of a time frame i.e. number of slots (= 5 for 5-node network) is repre-
sented by frame, and AllSlots denotes the set of all time slots. The state variables of
a node are: Current (the current slot number w.r.t. the beginning of a frame), RecVec
(auxiliary set to record the slots occupied by one-hop and two-hop neighbors), Counter
(used to count the number of slots seen by the node in a frame), SlotNo (slot number
of the node), First (set of slots occupied by one-hop neighbors of the node), Second
(set of slots occupied by two-hop neighbors of the node), Col (collision slot reported
by another node), Collision (slot in which the node detects a collision). The parameters
of messages (msg) exchanged between nodes are: Slot, Collision, and First variables of
the sender node.

Analysis of the LMAC protocol. The property “every collision is eventually detected”
can be encoded in LTL as G(collision ⇒ F collision detected), where collision and
collision detected are propositions that are true in states where collision and collision
detection occur, respectively. Although LTL model checking of symbolic AHNs can
be done as outlined in 5, our current prototype implementation supports only reach-
ability checking. We hence checked a related property “there is a detected collision”
(EF collision detected). Let CS be the set of all topology constraints computed using al-
gorithm SymReach when checking for reachability of proposition collision detected.
Let ϑ be a valuation such that ϑ
|= γ for any γ ∈ CS. Note that in the LMAC protocol,
there may be a collision between any two neighboring nodes. If γ does not represent
a fully disconnected topology, then we can conclude that there is an undetected colli-
sion in γ. Hence, by checking for reachability of proposition collision detected, we can
compute (a subset of) topologies which have undetected collision. Moreover, using this
method is sound: if there is an undetected collision in some topology, we will find at
least one representative.

Verification Statistics and Results. We did symbolic reachability checking for 2- to
6-node networks. The performance results are shown in Table 1. The results were ob-
tained on a machine with Intel Xeon 1.7GHz processor and 2Gb memory running Linux
2.6.18, and with XSB Prolog version 3.1. For 2- and 3-node cases there were no colli-
sions. For 4-, 5- and 6-node cases, topologies containing one-hop neighboring (directly
connected) node pairs that appeared in a ring in the topology and did not have a common
direct neighbor were found to be in collision that remained undetected.

The second column in the table gives two numbers ξs/ξc, where ξs is the number of
symbolic topology constraints explored in a reachability run, i.e. the number of distinct

618 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

γ such that (s, γ) ∈ R as per the algorithm in Fig. 3; and ξc is the total number of
possible concrete topologies. Observe that for the 6-node case the number of symbolic
topology constraints examined is smaller than the number of concrete topologies by a
factor of more than 5. It should also be noted that the same property was verified for
a 5-node network in [5] by using 61 separate verification runs, one for each unique
(modulo isomorphism) concrete topology. In contrast, we verified a related property
using a single symbolic reachability run.

The third and fourth columns in Table 1 give the number of symbolic states and tran-
sitions explored, respectively; and the last two columns give the CPU time and total
memory used. Observe that the performance of our prototype implementation is effi-
cient enough to be used for topologies of reasonable size (e.g. 6 nodes). It should be
noted that our technique and its implementation does not exploit the symmetry inherent
in the problem by identifying isomorphic topologies. At a high level, symmetry reduc-
tion can be incorporated by using a check in line 9 of SymReach that recognizes
constraints representing the same set of topologies modulo isomorphism. Doing so will
enable the technique to scale to large network sizes.

7 Conclusions

We presented an efficient query-based verification technique for ad hoc network proto-
cols. Network topologies are represented symbolically using interface variables, and the
model-checking process generates constraints on the topology under which a
system specification satisfies a specified property. As such, a term in our constraint
language compactly represents a set of concrete topologies that may lead to the satis-
faction of the property in question. We demonstrated the practical utility of our approach
by considering the verification of a medium access control protocol for sensor networks
(LMAC) [13], identifying topologies under which collision may remain unresolved.

The basic data structure for query-based verification is the symbolic transition sys-
tem, where each state carries with it a topology constraint. If a symbolic state is reach-
able, then, for every topology satisfying its constraint, the corresponding concrete state
is reachable. This structure makes it possible to infer topologies under which reacha-
bility properties hold. As described in the paper, it is also possible to verify properties
specified in temporal logics such as LTL over symbolic transition systems, inferring
sets of topologies under which the properties hold. Extending our prototype implemen-
tation to handle verification with an expressive temporal logic is a topic of future work.
There are several avenues for further improving the efficiency of the symbolic veri-
fication technique. Some of these are optimizations to common low-level operations,
subsumption checks, while others are high-level state-space reductions, e.g. by exploit-
ing symmetries in systems and topologies.

In this work, the focus is on a verification technique and not on the modeling lan-
guage. We considered ad hoc networks whose topology does not change with time. We
deliberately considered only closed systems and chose a simple language that uses in-
terfaces to separate node behavior from network topology as in the ω-calculus [11]. As
part of our future work, we plan to extend this work to open systems specified in the
ω-calculus, and consider compositional verification in that setting.

Query-Based Model Checking of Ad Hoc Network Protocols 619

Acknowledgements. We thank the anonymous reviewers for their valuable comments
on an earlier version of this paper. This work was supported in part by NSF grants
CNS-0509230, CNS-0627447, CNS-0721665, and ONR grant N000140710928.

References

1. Bruns, G., Godefroid, P.: Temporal logic query checking. In: LICS, pp. 409–417 (2001)
2. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,

vol. 1855, pp. 450–463. Springer, Heidelberg (2000)
3. Chan, W., Anderson, R., Beame, P., Notkin, D.: Combining constraint solving and symbolic

model checking for a class of a systems with non-linear constraints. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 316–327. Springer, Heidelberg (1997)

4. Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999.
LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

5. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol
for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591,
pp. 253–272. Springer, Heidelberg (2007)

6. Flanagan, C.: Automatic software model checking via constraint logic. Sci. Comput.
Program. 50(1-3), 253–270 (2004)

7. Fribourg, L.: Constraint logic programming applied to model checking. In: Bossi, A. (ed.)
LOPSTR 1999. LNCS, vol. 1817, pp. 30–41. Springer, Heidelberg (2000)

8. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational reasoning on ad hoc networks. In:
Proceedings of the Third International Conference on Fundamentals of Software Engineer-
ing, FSEN (2009)

9. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool for model
exploration. IEEE Trans. Software Eng. 29(10), 898–914 (2003)

10. Podelski, A.: Model checking as constraint solving. In: Palsberg, J. (ed.) SAS 2000. LNCS,
vol. 1824, pp. 22–37. Springer, Heidelberg (2000)

11. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052,
pp. 296–314. Springer, Heidelberg (2008)

12. Starosta, B.S., Ramakrishnan, C.R.: Constraint-based model checking of data-independent
systems. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 579–598.
Springer, Heidelberg (2003)

13. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for wireless
sensor networks: Reducing preamble transmissions and transceiver state switches. In: 1st
International Workshop on Networked Sensing Systems (INSS), pp. 205–208 (2004)

14. XSB. The XSB logic programming system, http://xsb.sourceforge.net
15. Zhang, D., Cleaveland, R.: Efficient temporal-logic query checking for presburger systems.

In: ASE, pp. 24–33. ACM, New York (2005)

http://xsb.sourceforge.net

Strict Divergence for Probabilistic
Timed Automata�

Jeremy Sproston

Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy
sproston@di.unito.it

Abstract. Probabilistic timed automata are an extension of timed au-
tomata with discrete probability distributions. In previous work, a prob-
abilistic notion of time divergence for probabilistic timed automata has
been considered, which requires the divergence of time with probability
1. We show that this notion can lead to cases in which the probabilistic
timed automaton satisfies a correctness requirement by making an infi-
nite number of probabilistic transitions in a finite amount of time. To
avoid such cases, we consider strict time divergence which concerns the
divergence of time over all paths, rather than time divergence of paths
with probability 1. We present new model-checking algorithms for proba-
bilistic timed automata both for probabilistic and strict divergence. The
algorithms have the same complexity as the previous model-checking
algorithms for probabilistic timed automata.

1 Introduction

Model checking is an automatic verification technique for establishing that a
model of a system satisfies a formally-specified property [1]. Two particular
classes of systems have been subject to extensions of the basic model-checking
paradigm. Firstly, methods for timed systems, in which the durations of system
behaviours is critical for the system’s correctness, have been developed, with
particular emphasis on techniques for the system-description formalism of timed
automata [2]. Secondly, methods for probabilistic systems, in which system be-
haviours have associated probabilities of occurrence, have been introduced, in
this case concentrating on techniques for Markov chains (in which the choice
between transitions is probabilistic) or Markov decision processes (in which the
choice between transitions is both nondeterministic and probabilistic). In this
paper, we consider methods for probabilistic timed systems, in which both timed
and probabilistic behaviour coexist. In the context of probabilistic timed systems,
a correctness requirement typically combines probabilistic and timing thresholds,
such as “a request is followed by a response within 5 time units with probability
0.99 or greater”. A number of model-checking methods for system-description
formalisms for such systems, which generally can differ in terms of the way in
� Supported in part by the MIUR-PRIN project PaCo - Performability-Aware Com-

puting: Logics, Models and Languages.

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 620–636, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Strict Divergence for Probabilistic Timed Automata 621

which the interaction of probability and time is modelled both in the system and
in the correctness requirements, have been presented [3,4,5,6,7,8,9]. Our focus
is on the system-description formalism of probabilistic timed automata [10,6],
which can be regarded as an extension of timed automata with discrete proba-
bility distributions, or, equivalently, an extension of Markov decision processes
with timed automata-like clocks, constraints and resets. Probabilistic timed au-
tomata have been used to model systems such as the IEEE 1394 root contention
protocol, the backoff procedure in IEEE 802.11 Wireless LANs, and the IPv4
Zeroconf protocol [11].

When modelling timed systems, the issue of time divergence is of importance.
Roughly speaking, behaviours of the model which correspond to the case in which
the amount of time elapsed converges do not correspond to phenomena that a
real system can exhibit, and therefore should be excluded from model-checking
analyses. Methods for model checking timed automata therefore are defined in
such a way as to consider divergent behaviours only [12,13,14]. Recall that, for
probabilistic timed automata (as for Markov decision processes), a strategy is
a function which resolves the nondeterminism of the system, by mapping finite
system behaviours to nondeterministic alternative transitions available in the
last state of the behaviour. For probabilistic timed automata, a probabilistic no-
tion of time divergence has been presented [6], which requires that time diverges
with probability 1 for all strategies of the model. We henceforth refer to this no-
tion as probabilistic divergence. Furthermore, a model-checking algorithm for the
probabilistic timed temporal logic Ptctl based on the standard region graph
construction [2,12] is presented in [6], and which computes the correct proba-
bility of property satisfaction in the case in which all strategies of the model
are probabilistically divergent. This is guaranteed when all structural loops in
the graph of the probabilistic automaton require that at least one time unit
elapses, which holds for many case studies considered [11]. The algorithm runs
in EXPTIME, which is optimal by the results of [15]. Furthermore, a symbolic
probabilistic model-checking method for probabilistic timed automata has been
presented which can be applied also if not all strategies of the system are prob-
abilistically divergent [16], although this algorithm does not run in EXPTIME.

There remain two questions in this context. The first concerns whether there
exists an EXPTIME algorithm for Ptctl model checking of probabilistic timed
automata with probabilistically divergent strategies. The second question
concerns whether the notion of probabilistic divergence is generally applicable.
Consider the probabilistic timed automaton of Figure 1 (where edges without a
probability label correspond to probability 1). From the location l0, there exists
a probabilistically divergent strategy to reach l2 with probability 1. An example
of such a strategy is the following: the first time l0 is visited, let 1

2 time units
elapse, then select the rightmost transition; if the probabilistic choice is resolved
so that l0 is then visited, let 1

4 time units elapse, then take the rightmost tran-
sition again; if l0 is visited for a third time, then let 1

8 time units elapse, then
take the rightmost transition again, and so on. Then the value of the clock x
will never be 1, and the strategy will be able to take the rightmost transition an

622 J. Sproston

l1
x ≤ 1

l0
x ≤ 1

l2
x ≤ 1

x ≤ 1

1
2

1
2

x ≤ 1

x = 1
x :=0

x = 1
x :=0

Fig. 1. Maximal reachability probabilities under probabilistic and strict divergence

infinite number of times, resulting in the probability of
∑

k≥1
1
2i = 1 of reaching

l2. However, in the case in which we assume that the selection of the rightmost
transition corresponds to the change of some physical state in the system, the
behaviour exhibited by this strategy should be excluded from the analysis of
the system. Therefore we argue that it is important to have an alternative to
probabilistic divergence. We propose strict divergence, which requires that all
behaviours (rather than probability 1 of the behaviours) of a strategy should be
time divergent. Note that, with the requirement of strict divergence, the max-
imum probability of reaching l2 from l0 can be made to be arbitrarily close to
1 (by making arbitrarily large the upper bound on the number of times the
rightmost transition is selected before the leftmost transition is taken). How-
ever, there is no strictly divergent strategy which reaches l2 from l0 actually
with probability 1. Therefore, the correctness property which specifies that l2
is reached with probability 1 for some strategy is satisfied under probabilistic
divergence, but not under strict divergence.

In this paper, after first recalling the definition of probabilistic timed automata
and Ptctl, we present an EXPTIME algorithm for Ptctl model checking
with probabilistic divergence in Section 3. Then, in Section 4, we present an
EXPTIME algorithm for Ptctl model checking with strict divergence.

Related work. The distinction between probabilistic and strict divergence is
inspired by the distinction between fairness and strict fairness, as introduced
by Baier and Kwiatkowska in the context of model checking Markov decision
processes [17,18]. We note that [19] features randomized strategies in the con-
text of 2-player timed games which are required to be either time divergent, or
blameless for the convergence of time, over all paths. In [20], the probability of
behaviours satisfying a (Büchi) correctness requirement and are divergent can
be computed. We do not follow this approach, in which the correctness property
is adapted to encode also the divergence of time, because it does not exclude
strategies in which time converges with positive probability. We note that, in
contrast, the correctness property can be adapted to encode the divergence of
time in timed automata [21] and timed games [22].

2 Probabilistic Timed Automata

Preliminaries. We use R≥0 to denote the set of non-negative real numbers,
N to denote the set of natural numbers, and AP to denote a set of atomic

Strict Divergence for Probabilistic Timed Automata 623

propositions. Given a set Q and a function µ : Q → R≥0, we define support(µ) =
{q ∈ Q | µ(q) > 0}. A (discrete) probability distribution over a countable set
Q is a function µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. Let Dist(Q) be the set

of distributions over Q. If Q is an uncountable set, we define Dist(Q) to be the
set of functions µ : Q → [0, 1], such that support(µ) is a countable set and µ
restricted to support(µ) is a (discrete) probability distribution.

A timed Markov decision process (TMDP) T = (S,→, lab) comprises the fol-
lowing components: a (possibly uncountable) set of states S; a (possibly uncount-
able) timed probabilistic, nondeterministic transition relation →⊆ S × R≥0 ×
Dist(S); and a labelling function lab : S → 2AP . The transitions from state to
state of a TMDP are performed in two steps: given that the current state is
s, the first step concerns a nondeterministic selection of (s, d, µ) ∈→, where d
corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distribution µ, as to which state to make
the transition to (that is, we make a transition to a state s′ ∈ S with probability

µ(s′)). We often denote such a completed transition by s
d,µ−−→ s′. A TMDP is

total if, for each state s ∈ S, there exists at least one transition (s, ,) ∈→.

An infinite path of T is an infinite sequence of transitions r = s0
d0,µ0−−−→

s1
d1,µ1−−−→ · · · such that the target state of one transition is the source state of

the next. Similarly, a finite path of T is a finite sequence of consecutive transitions

r = s0
d0,µ0−−−→ s1

d1,µ1−−−→ · · · dn−1,µn−1−−−−−−−→ sn. If r is finite, the length of r, denoted by
|r|, is equal to the number of transitions along r. If r is infinite, we let |r| = ∞.
We use PathT

ful to denote the set of infinite paths of T, and PathT
fin the set of

finite paths of T. When clear from the context, we omit the superscript T. If
r is a finite path, we denote by last(r) the last state of r. For any path r and
i ≤ |r|, let r(i) = si be the (i+ 1)th state along r, and let step(r, i) = µi be the
(i + 1)th distribution taken along r. Let PathT

ful (s) and PathT
fin(s) refer to the

sets of infinite and finite paths of T, respectively, commencing in state s ∈ S.
A strategy of a TMDP T is a function σ mapping every finite path r ∈ Pathfin

to a transition (last(r), d, µ) ∈→. Let ΣT be the set of strategies of T (when the
context is clear, we write simply Σ). For any strategy σ ∈ Σ, let Pathσ

ful and
Pathσ

fin denote the sets of infinite and finite paths, respectively, resulting from
the choices of σ. For a state s ∈ S, let Pathσ

ful(s) = Pathσ
ful ∩ Path ful (s) and

Pathσ
fin(s) = Pathσ

fin ∩Pathfin(s). Given a strategy σ ∈ Σ and a state s ∈ S, we
define the probability measure Probσ

s over Pathσ
ful (s) in the standard way [23].

An untimed Markov decision process (MDP) M = (S,→, lab) is defined as a
TMDP, but for which →⊆ S × Dist(S) (that is, the transition relation → does
not contain timing information). A sub-MDP (S′,→′, lab|S′) of M is an MDP
such that S′ ⊆ S, →′⊆→, and lab|S′ is equal to lab restricted to S′. Let T ⊆ S.
The sub-MDP of M induced by T is the sub-MDP (T,→|T , lab|T) of M, where
→|T = {(s, ν) ∈→| s ∈ T ∧ support(ν) ⊆ T }. Occasionally we omit the labelling
function lab for MDPs. The graph of an MDP (S,→) is the pair (S,E) where
(s, s′) ∈ E if and only if there exists (s, µ) ∈→ such that s′ ∈ support(µ). An
end component (EC) of an MDP M is a sub-MDP (C,D) ∈ 2S × 2→ such that

624 J. Sproston

(1) if (s, µ) ∈ D, then s ∈ C and support(µ) ⊆ C, and (2) the graph of (C,D)
is strongly connected [5]. An end component (C,D) of M is maximal if there
does not exist any EC (C′, D′) of M such that (C,D)
= (C′, D′), C ⊆ C′ and
D ⊆ D′.

Probabilistic timed automata. Let X be a finite set of real-valued variables
called clocks, the values of which increase at the same rate as real-time. The
set CC (X) of clock constraints over X is defined as the set of conjunctions over
atomic formulae of the form x ∼ c, where x, y ∈ X , ∼∈ {<,≤, >,≥,=}, and
c ∈ N. A probabilistic timed automaton (PTA) P = (L,X , inv , prob,L) consists
of the following components: a finite set L of locations ; a finite set X of clocks; a
function inv : L → CC (X) associating an invariant condition with each location;
a finite set prob ⊆ L × CC (X) × Dist(2X × L) of probabilistic edges such that,
for each l ∈ L, there exists at least one (l, ,) ∈ prob; and a labelling function
L : L → 2AP . A probabilistic edge (l, g, p) ∈ prob is a triple containing (1) a
source location l, (2) a clock constraint g, called a guard, and (3) a probability
distribution p which assigns probability to pairs of the form (X, l′), where X ⊆ X
is a clock set X and l′ ∈ L is a location. The behaviour of a probabilistic timed
automaton takes a similar form to that of a timed automaton [2]: in any location
time can advance as long as the invariant holds, and a probabilistic edge can
be taken if its guard is satisfied by the current values of the clocks. However,
probabilistic timed automata generalize timed automata in the sense that, once
a probabilistic edge is nondeterministically selected, the choice of which clocks
to reset and which target location to make the transition to is probabilistic.

We refer to a mapping v : X → R≥0 as a clock valuation. Let R
X
≥0 denote

the set of clock valuations. For a clock valuation v ∈ R
X
≥0 and a value d ∈ R≥0,

we use v + d to denote the clock valuation such that (v + d)(x) = v(x) + d
for all clocks x ∈ X . For a clock set X ⊆ X , we let v[X := 0] be the clock
valuation obtained from v by resetting all clocks within X to 0; formally, we let
v[X := 0](x) = 0 for all x ∈ X , and let v[X := 0](x) = v(x) for all x ∈ X \X .
The clock valuation v satisfies the clock constraint ψ ∈ CC (X), written v |= ψ,
if and only if ψ resolves to true after substituting each clock x ∈ X with the
corresponding clock value v(x).

The semantics of the probabilistic timed automaton P = (L,X , inv , prob,L)
is the TMDP T[P] = (S,→, lab) where:

– S = {(l, v) | l ∈ L and v ∈ R
X
≥0 s.t. v |= inv(l)};

– → is the smallest set such that ((l, v), d, µ) ∈→ if there exist d ∈ R≥0 and a
probabilistic edge (l, g, p) ∈ prob where:
1. v + d |= g, and v + d′ |= inv(l) for all 0 ≤ d′ ≤ d;
2. for any (X, l′) ∈ 2X × L, we have that p(X, l′) > 0 implies (v + d)[X :=

0] |= inv(l′);
3. for any (l′, v′) ∈ S, we have that µ(l′, v′) =

∑
X∈Reset(v,d,v′) p(X, l

′),
where Reset(v, d, v′) = {X ⊆ X | (v + d)[X := 0] = v′}.

– lab is such that lab(l, v) = L(l) for each state (l, v) ∈ S.

Strict Divergence for Probabilistic Timed Automata 625

We restrict our attention to PTA P with a semantic TMDP T[P] which is
total. This can be guaranteed by a syntactic condition on PTA which has been
presented in [24], and which holds generally for PTA models in practice [11].

We say that σ is a strategy of P if σ is a strategy of ΣT[P]. Given a path

r = (l0, v0)
d0,µ0−−−→ (l1, v1)

d1,µ1−−−→ · · · of T[P], for every i ∈ N, we use r(i, d), with
0 ≤ d ≤ di, to denote the state (li, vi + d) reached from (li, vi) after delaying
d time units. A pair (i, d) is called a position of r. We define a total order on
positions of r: given positions (i, d), (j, d′) of r, the position (i, d) precedes (j, d′)
— denoted (i, d) ≺r (j, d′) — if and only if either i < j, or i = j and d < d′.

To reason about time divergence in the remainder of the paper, we con-
struct a modified PTA in the following manner [21,22]. First we add a new
atomic proposition tick to AP . Given a PTA P = (L,X , inv , prob,L), its en-
larged PTA P′ = (L′,X ′, inv ′, prob ′,L′) is constructed as follows. For each lo-
cation l ∈ L, we introduce a new location l. Let L′ = L ∪ {l | l ∈ L}, and
X ′ = X ∪ {z}. For each l ∈ L, let inv ′(l) = inv ′(l) = inv(l) ∧ (z ≤ 1). Let
prob ′ = prob ∪ {(l, (z = 1), p(∅,l)), (l, (z = 1), p({z},l)) | l ∈ L}, where p(∅,l) and
p({z},l) are the distributions assigning probability 1 to the elements (∅, l) and
({z}, l), respectively. Finally, let L′(l) = L(l) and L′(l) = L(l) ∪ {tick} for each
l ∈ L. Note that tick becomes true at all natural numbered time points after the
start of execution of the PTA. In the remainder of the paper, we assume that
all considered PTA are enlarged.

Probabilistic timed temporal logic. We now describe a probabilistic, timed
temporal logic which combines Pctl [4,25] and Tctl [12,13], and which can be
used to specify properties of probabilistic timed automata [6]. Assume that the
PTA P = (L,X , inv , prob,L) is fixed. Let Z be a finite set of clocks disjoint from
X . Clocks in the set Z are called formula clocks. Valuations of formula clocks
are denoted by w : Z → R≥0. The formulae of Ptctl (Probabilistic Timed
Computation Tree Logic) are given by the following grammar:

Φ ::= a | z ∼ c | z · Φ | Φ ∧ Φ | ¬Φ | P��ζ(ΦUΦ)

where a ∈ AP is an atomic proposition, z ∈ Z is a formula clock, ∼∈ {<,≤,=,
≥, >}, c ∈ N is a natural number, 	�∈ {<,≤,≥, >}, and ζ ∈ [0, 1] is a probability.

We proceed to define the satisfaction relation of Ptctl for TMDPs. Given
the infinite path r = s0

d0,µ0−−−→ s1
d1,µ1−−−→ · · · of the TMDP T, let Dur(r, i, d) =

d +
∑

0≤k<i dk be the accumulated duration along r until position (i, d). Given
a set of strategies Σ ⊆ ΣT[P] of P, and a Ptctl formula Φ, we define the
satisfaction relation |=Σ of Ptctl as in Figure 2.

In the following, for simplicity, we generally encode formula clock valuations
within the state of a PTA: that is, a state (l, v) ∈ S consists of a location l

and a clock valuation v ∈ R
(X∪Z)
≥0 . This allows us to write s |=Σ Φ rather than

s, w |=Σ Φ.
The model-checking problem for a PTA P and a Ptctl formula Φ, given a set

Σ ⊆ ΣT[P] of strategies, consists of computing the set [[Φ]]Σ = {s ∈ S | s |=Σ Φ}.

626 J. Sproston

s,w |=Σ a iff a ∈ lab(s)
s,w |=Σ z ∼ c iff w(z) ∼ c
s,w |=Σ z · Φ iff s, w[z := 0] |=Σ Φ
s,w |=Σ Φ1 ∧ Φ2 iff s, w |=Σ Φ1 and s, w |=Σ Φ2

s,w |=Σ ¬Φ iff s, w �|=Σ Φ
s,w |=Σ P��ζ(ϕ) iff Probσ

s {r ∈ Pathσ
ful(s) | r,w |=Σ ϕ} �� ζ for all σ ∈ Σ

r,w |=Σ Φ1UΦ2 iff ∃ position (i, δ) of r s.t. r(i, δ), w + Dur(r, i, δ) |=Σ Φ2,
and ∀ positions (j, δ′) of r s.t. (j, δ′) ≺r (i, δ) we have
r(j, δ′), w + Dur(r, j, δ′) |=Σ Φ1 ∨ Φ2 .

Fig. 2. Semantics of Ptctl

When clear from the context, we write [[Φ]] rather than [[Φ]]Σ . From [6,15], the
Ptctl model-checking problem with respect to the full set ΣT[P] of strategies is
EXPTIME-complete.

3 Probabilistic Divergence

In this section, we give an EXPTIME algorithm for Ptctl model checking of
PTA with the definition of probabilistically-divergent strategies of [6]. Through-
out this section, we assume that the PTA P = (L,X , inv , prob,L) and the Ptctl

formula Φ, which has a set Z of formula clocks, are fixed. A path r ∈ Path ful is
divergent if limk→∞ Dur(r, k, 0) = ∞. Let Timediv be the set of divergent paths.
A strategy σ ∈ ΣT[P] is probabilistically divergent if, for all states s ∈ S, we have
Probσ

s (Timediv) = 1. The set of all probabilistically divergent strategies of P is
denoted by ΣPd

P .

Region MDP. Our first task is to construct an MDP from P and Φ by using the
standard region graph construction [2,6]. For t ∈ R≥0, we let frac(t) = t − /t..
For each clock x ∈ X ∪ Z, we let cx be the maximal constant to which x is
compared in any of the guards of probabilistic edges or invariants of P, or in a
clock constraint in the formula Φ (if x is not involved in any clock constraint of
P or Φ, we let cx = 1). Two clock valuations v, v′ ∈ R

(X∪Z)
≥0 are clock equivalent

if the following conditions are satisfied: (1) for all clocks x ∈ X ∪ Z, we have
v(x) ≤ cx if and only if v′(x) ≤ cx; (2) for all clocks x ∈ X ∪ Z with v(x) ≤ cx,
we have /v(x). = /v′(x).; (3) for all clocks x, y ∈ X ∪ Z with v(x) ≤ cx and
v(y) ≤ cy, we have frac(v(x)) ≤ frac(v(y)) if and only if frac(v′(x)) ≤ frac(v′(y));
and (4) for all clocks x ∈ X ∪ Z with v(x) ≤ cx, we have frac(v(x)) = 0 if and
only if frac(v′(x)) = 0. We use α and β to refer to classes of clock equivalence.

Two states (l, v), (l′, v′) are region equivalent if (1) l = l′, and (2) v and v′

are clock equivalent. A region is an equivalence class of region equivalence. Let
Regions be the set of regions of P and Φ. The number of regions corresponding
to the PTA P and the Ptctl formula Φ is bounded by |L| ·

∏
x∈X∪Z(cx + 1) ·

|X ∪ Z|! · 2|X∪Z|.

Strict Divergence for Probabilistic Timed Automata 627

The set of regions of a PTA P and the Ptctl formula Φ can be used to
construct an untimed, finite-state MDP Reg[P, Φ] = (Regions,→Reg, labReg) in
the following way. The set of states of Reg[P, Φ] is the set Regions of regions.
The transition relation →Reg⊆ Regions × Dist(Regions) is the smallest set such
that ((l, α), ν) ∈→Reg if there exists ((l, v), d, µ) ∈→ such that (1) v ∈ α, and (2)
for each (l′, β) ∈ Regions such that there exists (l′, v′) ∈ support(µ) and v′ ∈ β
(by definition, this (l′, v′) will be unique), we have ν(l′, β) = µ(l′, v′), otherwise
(l′, β) = 0. For each region (l, α) ∈ Regions, we let labReg(l, α) = L(l).

Given a clock valuation v, the unique clock equivalence class to which v be-
longs is denoted by [v]. Given a state (l, v) ∈ S, the unique region to which

(l, v) belongs is (l, [v]), and is denoted by [(l, v)]. An infinite path r = s0
d0,µ0−−−→

s1
d1,µ1−−−→ · · · of T[P] corresponds to a unique infinite path [r] = [s0]

ν0−→ [s1]
ν1−→

· · · . Similarly, a finite path r = s0
d0,µ0−−−→ s1

d1,µ1−−−→ · · · dn−1,µn−1−−−−−−−→ sn of T[P]
corresponds to a unique finite path [r] = [s0]

ν0−→ [s1]
ν1−→ · · · νn−1−−−→ [sn].

Probabilistically divergent strategies on Reg[P, Φ]. In the following, we
use Ltl notation (see, for example, [1]), which is interpreted on paths of Reg[P, Φ]
in the standard way. An infinite path r of Reg[P, Φ] is region divergent if it
satisfies the condition ��tick . Note that an infinite path r of T[P] is divergent
if and only if [r] is region divergent. Hence [Timediv] =

⋃
r∈Timediv [r] = {r ∈

PathReg[P,Φ]
ful | r |= ��tick} is the set of all region divergent runs (where |= is the

standard satisfaction for Ltl properties on finite-state systems [1]). A strategy
σ ∈ ΣReg[P,Φ] is probabilistically region divergent if, for all regions R ∈ Regions,
we have Probσ

R(��tick) = 1. The set of all probabilistically region divergent
strategies of Reg[P, Φ] is denoted by ΣPd

Reg[P,Φ].
We can check whether there exists a probabilistically region divergent strategy

of Reg[P, Φ] by computing the set of regions from which it is possible to satisfy
��tick with probability 1, then comparing this set to Regions. Formally, we
compute the set of regions of Reg[P, Φ], denoted by [[¬P<1(��tick)]], for which
R ∈ [[¬P<1(��tick)]] if and only if there exists a strategy σ ∈ ΣReg[P,Φ] such
that Probσ

R(��tick) = 1. If [[¬P<1(��tick)]]
= Regions, then Reg[P, Φ] does not
have a probabilistically region divergent strategy. We note that, for the region
R = (l, α), we have (l, α) ∈ [[¬P<1(��tick)]] if and only if there exists σ ∈ ΣT[P]
such that Probσ

(l,v)(Timediv) = 1 for all v ∈ α. The set [[¬P<1(��tick)]] can be
computed on Reg[P, Φ] using polynomial-time algorithms for Büchi objectives
of Markov decision processes [26]. In the remainder of this section, we assume
that Reg[P, Φ] has at least one probabilistically region divergent strategy; that
is, [[¬P<1(��tick)]] = Regions. If this is not the case, we compute the sub-MDP
of Reg[P, Φ] induced by [[¬P<1(��tick)]] and use it in the place of Reg[P, Φ].

Ptctl model checking with probabilistic divergence. The only formula
which depends on the notion of strategy is P��ζ(Φ1UΦ2), and hence we consider
sub-formulae of Φ of this form. We assume that, for each state s ∈ S, we have
s |=ΣPd

P
Φi if and only if [s] |=ΣPd

Reg[P,Φ]
Φi for i ∈ {1, 2}. From standard reasoning,

628 J. Sproston

for any path r ∈ Path ful of T[P], we have r |=Σ Φ1UΦ2 if and only if [r] |= Φ1UΦ2,
where Σ is an arbitrary set of strategies.

Proposition 1. (1) Let σ ∈ ΣPd
P be a probabilistically divergent strategy. Then

there exists a probabilistically region divergent strategy σ′ ∈ ΣPd
Reg[P,Φ] such that

Probσ
s (Φ1UΦ2) = Probσ′

[s](Φ1UΦ2) for all states s ∈ S. (2) Let σ ∈ ΣPd
Reg[P,Φ] be

a probabilistically region divergent strategy. Then there exists a probabilistically
divergent strategy σ′ ∈ ΣPd

P such that Probσ
[s](Φ1UΦ2) = Probσ′

s (Φ1UΦ2) for all
states s ∈ S.

Corollary 1. For any s ∈ S, we have s |=ΣPd
P

P��ζ(Φ1UΦ2) if and only if
[s] |=ΣPd

Reg[P,Φ]
P��ζ(Φ1UΦ2).

Corollary 1 follows from Proposition 1 and the semantics of Ptctl. Therefore
it suffices to consider resolving properties of the form P��ζ(Φ1UΦ2) on Reg[P, Φ].
We now make a case distinction based on whether P��ζ(Φ1UΦ2) is of the form (A)
P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2), or (B) P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2). In the remain-
der of this section, we generally omit the subscript from the sets of strategies of
Reg[P, Φ], and write Σ for ΣReg[P,Φ], and ΣPd for ΣPd

Reg[P,Φ].

Case (A): properties of the form P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2). The following
proposition states that any strategy of Reg[P, Φ] can be transformed into a
probabilistically region divergent strategy which assigns the same or greater
probability to the satisfaction of Φ1UΦ2.

Proposition 2. Let σ ∈ Σ be a strategy of Reg[P, Φ] and R ∈ Regions be a
region. There exists a probabilistically region divergent strategy σ′ ∈ ΣPd such
that Probσ

R(Φ1UΦ2) ≤ Probσ′
R (Φ1UΦ2).

Proposition 2, together with the fact that ΣPd ⊆ Σ, establishes that there exists
a probabilistically region divergent strategy which assigns the same probability
to satisfying Φ1UΦ2 as a maximal – but not necessarily divergent – strategy
of Reg[P, Φ]. Combining this fact with standard methods for finite-state MDPs
[25,17], we conclude that Reg[P, Φ] can be used directly to compute maximal
probabilities of until formulae.

Theorem 1. Let R ∈ Regions be a region. Then R |=ΣPd P≤ζ(Φ1UΦ2) (respec-
tively, P<ζ(Φ1UΦ2)) if and only if R |=Σ P≤ζ(Φ1UΦ2) (respectively,
P<ζ(Φ1UΦ2)).

Case (B): properties of the form P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2). To avoid overload-
ing the subsequent notation, we consider properties in the form P≥ζ(¬Φ1U¬Φ2)
or P>ζ(¬Φ1U¬Φ2). Observe that ¬(¬Φ1U¬Φ2) ≡ Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)
(from classical reasoning about temporal logic). Therefore, the maximal prob-
ability over probabilistically region divergent strategies of satisfying Φ2U(Φ1 ∧
Φ2)∨�(¬Φ1 ∧Φ2) equals 1 minus the minimal probability over probabilistically

Strict Divergence for Probabilistic Timed Automata 629

region divergent strategies of satisfying ¬Φ1U¬Φ2. Hence, our aim is to com-
pute the maximal probability over probabilistically region divergent strategies
of satisfying Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2).

We introduce a notion of time-divergent EC. A time-divergent EC (C,D)
is an EC of Reg[P, Φ] such that tick ∈ labReg(R) for some region R ∈ C (a
similar definition is featured in [5]). For an infinite path r ∈ PathReg[P,Φ]

ful , let

Cr = {R |
∞
∃ i ≥ 0.r(i) = R} and Dr = {(R, ν) |

∞
∃ i ≥ 0.R ∈ Cr ∧ step(r, i) = ν}.

Let Inf(r) = (Cr, Dr). Note that a path r ∈ PathReg[P,Φ]
ful of Reg[P, Φ] is region

divergent if and only if Inf(r) is a time-divergent EC. For C ⊆ Regions and
D ⊆→Reg, let Path(C,D)

ful (R) = {r ∈ PathReg[P,Φ]
ful (R) | Inf(r) = (C,D)}. The

next lemma adapts to probabilistic divergence a fundamental result for ECs
[5], and states that a probabilistically region divergent strategy will be confined
eventually to time-divergent ECs with probability 1.

Lemma 1. Let E be the set of time-divergent ECs of Reg[P, Φ], let R ∈ Regions
and let σ ∈ ΣPd. Then Probσ

R(
⋃

(C,D)∈E Path(C,D)
ful (R)) = 1.

Let U ⊆ Regions be a set of regions. The set MU of time-divergent maximal
ECs within U can be computed as follows: first compute the set of maximal
ECs of the sub-MDP of Reg[P, Φ] induced by U by the standard maximal EC
computation algorithm of [5], then include in MU only those maximal ECs with
at least one region labelled by tick .

We compute the set M[[¬Φ1∧Φ2]] of time-divergent maximal ECs within the
set of states satisfying ¬Φ1 ∧ Φ2. Let U¬Φ1∧Φ2 =

⋃
(C,D)∈M[[¬Φ1∧Φ2]]

C be the set
of regions corresponding to M[[¬Φ1∧Φ2]]. By abuse of notation, we use U¬Φ1∧Φ2

as an atomic proposition such that R |=Σ U¬Φ1∧Φ2 if and only if R ∈ U¬Φ1∧Φ2 .
Note that, by Proposition 2, for any strategy σ ∈ Σ and R ∈ Regions, there
exists a probabilistically region divergent strategy σ′ ∈ ΣPd such that:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) ≤ Probσ′

R (Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) .

Proposition 3. Let R ∈ Regions be a region and σ ∈ ΣPd be a probabilisti-
cally region divergent strategy of Reg[P, Φ]. There exists a probabilistically region
divergent strategy σ′ ∈ ΣPd such that:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) ≤ Probσ′

R (Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

Proposition 4. Let R ∈ Regions be a region and σ ∈ ΣPd be a probabilistically
region divergent strategy of Reg[P, Φ]. Then:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2)) ≥ Probσ

R(Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

The subsequent theorem then follows from Proposition 2, Proposition 3, Propo-
sition 4, and the fact that ΣPd ⊆ Σ.

Theorem 2. Let R ∈ Regions be a region. Then R |=ΣPd P≥ζ(¬Φ1U¬Φ2) (re-
spectively, P>ζ(¬Φ1U¬Φ2)) if and only if R |=Σ P≤1−ζ(Φ2U((Φ1∧Φ2)∨U¬Φ1∧Φ2))
(respectively, P<1−ζ(Φ2U((Φ1 ∧ Φ2) ∨ U¬Φ1∧Φ2))).

630 J. Sproston

The following theorem is a consequence of Corollary 1, Theorem 1, Theorem 2
and the following facts: the size of Reg[P, Φ] is exponential in the size of P and Φ;
computing the maximal probability of a formula of the form Φ1UΦ2 on MDPs is
in polynomial-time [25,17]; model checking PTA against properties of the form
¬P<1(�a) is EXPTIME-hard [15].

Theorem 3. Let P be a PTA and Φ be a formula of Ptctl. Then the prob-
lem of computing the set [[Φ]] for P under probabilistically divergent strategies is
EXPTIME-complete.

4 Strict Divergence

We now extend the model-checking algorithm for probabilistically divergent
strategies to provide a model-checking algorithm for strictly divergent adver-
saries. Given a PTA P, a strategy σ ∈ ΣT[P] is strictly divergent if, for all states
s ∈ S, we have Pathσ

ful(s) ⊆ Timediv. The set of all probabilistically divergent
strategies of P is denoted by ΣSd

P . An example of the difference between proba-
bilistic and strict divergence for maximal reachability probabilities (or maximal
probabilities of satisfying formulae of the form Φ1UΦ2) has been presented in
the introduction. For minimal reachability (or Φ1UΦ2) probabilities, note that,
in the PTA of Figure 3, the minimum probability of reaching l2 from l1 is 0 under
probabilistically divergent strategies, but is 1 under strictly divergent strategies.

Strictly divergent strategies on Reg[P, Φ]. A strategy σ ∈ ΣReg[P,Φ] is
strictly region divergent if, for all regions R ∈ Regions, all paths r ∈ Pathσ

ful (R)
are region divergent. The set of strictly region divergent strategies of Reg[P, Φ] is
denoted by ΣSd

Reg[P,Φ]. We generally write Σ instead of ΣReg[P,Φ], and ΣSd instead
of ΣSd

Reg[P,Φ].
Similarly to the case of Section 3, we can check whether there exists a strictly

region divergent strategy of Reg[P, Φ] by computing the set of regions from
which it is possible to satisfy ��tick on all paths. For this purpose, we com-
pute the set of regions satisfying the Atl [27] formula 〈〈N〉〉(��tick), where
Reg[P, Φ] is interpreted as a turn-based game with 2 players: player N corre-
sponds to nondeterministic choice between transitions from a region, whereas
player P refers to choice between probabilistic alternatives corresponding to a

l0
x ≤ 1

l1
x ≤ 1

l2
x ≤ 1

x ≤ 1

1
2

1
2

x = 1 x :=0

x = 1

x = 1
x :=0

Fig. 3. Minimal reachability probabilities under probabilistic and strict divergence

Strict Divergence for Probabilistic Timed Automata 631

transition. Then the formula 〈〈N〉〉(��tick) expresses the property that player
N has the aim of ensuring region time divergence, regardless of the choices of
player P . Formally, [[〈〈N〉〉(��tick)]] = {R ∈ Regions | ∃σ ∈ ΣReg[P,Φ].∀r ∈
Pathσ

ful (R).r |=Σ ��tick}. We note that, for the region R = (l, α), we have
(l, α) ∈ [[〈〈N〉〉(��tick)]] if and only if there exists σ ∈ ΣT[P] such that r is
divergent for all paths r ∈ Pathσ

ful (l, v), for all v ∈ α. In order to compute
[[〈〈N〉〉(��tick)]], we rely on standard methods for obtaining the winning states
in 2-player turn-based games with Büchi objectives [26]. In the remainder of this
section, we assume that Reg[P, Φ] has at least one strictly region divergent strat-
egy; that is, [[〈〈N〉〉(��tick)]] = Regions. If this is not the case, we compute the
sub-MDP of Reg[P, Φ] induced by [[〈〈N〉〉(��tick)]] and use the new sub-MDP in
the place of Reg[P, Φ].

Ptctl model checking with strict divergence. We now describe a Ptctl

model-checking algorithm for the semantics under strictly divergent strategies.
The mechanism that we add to the Ptctl model-checking algorithm in order to
cater for strict divergence is inspired by similar results of [17,18], and takes the
form of the following: a set Tmax of regions of Reg[P, Φ] is computed from which
it is guaranteed that there exists an optimal (maximal or minimal probability),
strictly divergent strategy. From regions not in Tmax, there does not exist such a
strategy. However, from regions not in Tmax, we show that we can approximate
arbitrarily closely an optimal, probabilistically divergent strategy.

We first present an analogue of Proposition 1 adapted to strict divergence.

Proposition 5. (1) Let σ ∈ ΣSd
P be a strictly divergent strategy. Then there

exists a strictly region divergent strategy σ′ ∈ ΣSd
Reg[P,Φ] such that Probσ

s (Φ1UΦ2) =

Probσ′
[s](Φ1UΦ2) for all states s ∈ S. (2) Let σ ∈ ΣSd

Reg[P,Φ] be a strictly region
divergent strategy. Then there exists a strictly divergent strategy σ′ ∈ ΣSd

P such
that Probσ

[s](Φ1UΦ2) = Probσ′
s (Φ1UΦ2) for all states s ∈ S.

Corollary 2. For any s ∈ S, we have s |=ΣSd
P

P��ζ(Φ1UΦ2) if and only if
[s] |=ΣSd

Reg[P,Φ]
P��ζ(Φ1UΦ2).

Therefore, as in Section 3, it suffices to resolve properties of the form P��ζ(Φ1UΦ2)
on Reg[P, Φ]. We make a case distinction based on whether P��ζ(Φ1UΦ2) is of
the form (A) P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2), or (B) P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2).

Case (A): properties of the form P≤ζ(Φ1UΦ2) or P<ζ(Φ1UΦ2). Recall that the
example in the introduction shows that a PTA may exhibit a strategy with
a certain probability of reaching a location under probabilistic divergence, but,
under strict divergence, there may not exist a strategy with the same probability.
However, we show that strictly region divergent strategies can approximate from
below the probability of satisfying Φ1UΦ2 of an arbitrary strategy on Reg[P, Φ].

Lemma 2. Let R ∈ Regions and let σ ∈ Σ be a strategy of Reg[P, Φ]. Then, for
every n ∈ N, there exists a strictly region divergent strategy σn ∈ ΣSd such that
Probσn

R (Φ1UΦ2) ≥ Probσ
R(Φ1UΦ2) − 1

n .

632 J. Sproston

The intuition underlying the proof of the lemma is that we construct σn to
behave the same as σ on all paths whose length does not exceed some constant
cn which depends on n. From the last regions of paths of length cn, the strategy
σn then behaves as a strictly region divergent strategy. From Lemma 1 of [28],
given σ and n, such a constant can be found such that the lemma holds.

Given that it is possible to approximate arbitrarily closely using strictly di-
vergent strategies the probability of satisfying a property Φ1UΦ2 of an arbitrary
strategy, the case P≤ζ(Φ1UΦ2) is not of interest: a maximal arbitrary strategy
satisfies Φ1UΦ2 with probability greater than ζ if and only if there exists a strictly
divergent strategy satisfying Φ1UΦ2 with probability greater than ζ. Hence, we
concentrate on the case of P<ζ(Φ1UΦ2).

Let R ∈ Regions, and pmax
R (Φ1UΦ2) = maxσ∈Σ Probσ

R(Φ1UΦ2). Following
[17,18], for each regionR ∈ Regions of Reg[P, Φ], we define the set Max (R,Φ1UΦ2).
If R ∈ Regions \ [[Φ1]], then we let Max (R,Φ1UΦ2) = {(R′, ν) ∈→Reg| R = R′}.
If R ∈ [[Φ1]], then we let Max (R,Φ1UΦ2) equal:

{
(R, ν) ∈→Reg| pmax

R (Φ1UΦ2) =
∑

R′′∈Regions

ν(R′′) · pmax
R′′ (Φ1UΦ2)

}
.

We use Mmax to denote the MDP obtained by removing from Reg[P, Φ] all
transitions which are not in Max (, Φ1UΦ2). Formally, let Mmax = (Regions,
→max

Reg , labReg), where →max
Reg =

⋃
R∈Regions Max (R,Φ1UΦ2).

Let T = [[Φ2]] ∪ Regions \ Regions+(Φ1, Φ2), and let [[∃�T]] = {R ∈ Regions |
∃r ∈ Pathfin(R) s.t. last(r) ∈ T}. We apply the following algorithm to Mmax.

1. Let U equal Regions and M equal Mmax.
2. Repeat the following:

(a) Let U equal either [[〈〈N〉〉(�tick)]] or [[∃�T]], computed on M.
(b) Compute the sub-MDP of M induced by U, and call this sub-MDP M.
Until M cannot be changed by the above.

Let Tmax be the set of regions of the MDP obtained on termination of the
algorithm. The strategies of this MDP do not select non-optimal transitions
(from the definition of Mmax), and can be both strictly region divergent and
reach T with probability 1. We state this formally in relation to strategies of
Reg[P, Φ] in the following lemma.

Lemma 3. Let R ∈ Regions. Then R ∈ Tmax if and only if there exists a strategy
σ ∈ Σ such that (1) for each r ∈ Pathσ

fin(R), we have σ(r) ∈ Max (last(r), Φ1UΦ2),
(2) σ ∈ ΣSd (σ is strictly region divergent) and (3) Probσ

R(�T) = 1.

We note the importance of reaching T with probability 1: strategies satisfying
this requirement do not idle in a cycle of transitions. Such cycles, in which a
strategy does not attempt to reach [[Φ2]], may be locally optimal (in the sense
that transitions of Mmax are taken), but will be globally sub-optimal: another
strategy which does not cycle, but attempts to reach [[Φ2]], will correspond to a
higher probability of satisfying Φ1UΦ2.

Strict Divergence for Probabilistic Timed Automata 633

Our next task is to show that, from regions in Tmax, there exists a strictly
region divergent strategy with the same probability of satisfying Φ1UΦ2 as for
an optimal strategy which is not necessarily strictly region divergent.

Proposition 6. Let R ∈ Tmax and σ ∈ ΣSd be such that Probσ
R(�T) = 1 and,

for each r ∈ Pathσ
fin(R), we have σ(r) ∈ Max (last(r), Φ1UΦ2). Then

pmax
R (Φ1UΦ2) = Probσ

R(Φ1UΦ2).

Next, we show that, from regions not in Tmax, it is not possible to find strictly
region divergent strategies which obtain the probability of satisfying Φ1UΦ2 com-
puted over arbitrary strategies on Reg[P, Φ].

Lemma 4. Let R ∈ Regions\Tmax. Then, for σ ∈ ΣSd, we have pmax
R (Φ1UΦ2) >

Probσ
R(Φ1UΦ2).

The combination of Lemma 2, Proposition 6 and Lemma 4 allows us to obtain
the following result.

Theorem 4. Let R ∈ Regions be a region. Then:

R |=ΣSd P≤ζ(Φ1UΦ2) ⇔ pmax
R (Φ1UΦ2) ≤ ζ

R |=ΣSd P<ζ(Φ1UΦ2) ⇔
{
pmax

R (Φ1UΦ2) < ζ if R ∈ Tmax

pmax
R (Φ1UΦ2) ≤ ζ otherwise.

Case (B): properties of the form P≥ζ(Φ1UΦ2) or P>ζ(Φ1UΦ2). Analogously to
Section 3, we use the equivalence ¬(¬Φ1U¬Φ2) ≡ Φ2U(Φ1∧Φ2)∨�(¬Φ1∧Φ2), and
then compute the maximal probability over strictly region divergent strategies
of satisfying the formula Φ2U(Φ1 ∧Φ2)∨�(¬Φ1 ∧Φ2). This resulting probability
corresponds to the 1 minus the minimal probability of strictly region divergent
strategies satisfying ¬Φ1U¬Φ2.

In Section 3, we computed the set of time-divergent maximal ECs in which
�(¬Φ1 ∧ Φ2) was guaranteed. In the context of strict region divergence, time-
divergent ECs do not suffice, because a strategy which confines itself to a time-
divergent EC could exhibit a path (albeit with probability 0) which is not time
divergent. Therefore we introduce strictly-divergent ECs. A strictly-divergent
EC (C,D) is an EC of Reg[P, Φ] such that, for all regions R ∈ C, we have
R ∈ [[〈〈N〉〉(�tick)]] in the sub-MDP (C,D) (hence the strategy witnessing �tick
for all paths from R is a strategy of (C,D)). Intuitively, a strategy can guar-
antee strict region divergence and remain within a strictly-divergent EC (C,D)
by choosing transitions according to a strategy of the sub-MDP (C,D) which
witnesses 〈〈N〉〉(�tick); then, after a tick -region is visited, the strategy again
chooses transitions according to a strategy which, starting from the current re-
gion, witnesses 〈〈N〉〉(�tick), and so on. We also obtain an analogue of Lemma 1.

Lemma 5. Let F be the set of strictly-divergent ECs of Reg[P, Φ], let R ∈
Regions and let σ ∈ ΣSd. Then Probσ

R(
⋃

(C,D)∈F Path(C,D)
ful (R)) = 1.

Let U ⊆ Regions. The set of strictly-divergent maximal ECs within the set U can
be computed using the following algorithm.

634 J. Sproston

1. Compute the set MU of maximal ECs of Reg[P, Φ] within U.1 Let M = MU.
2. Repeat the following:

(a) Remove some (C,D) from M.
(b) Compute [[〈〈N〉〉(�tick)]] obtained from the sub-MDP (C,D).
(c) Compute the maximal ECs (C1, D1), ..., (Cn, Dn) of the sub-MDP (C,D)

induced by [[〈〈N〉〉(�tick)]], and add them to M.
Until M cannot be changed by the above iteration.

At the termination of the algorithm, the set M will be the set of strictly-divergent
maximal ECs of Reg[P, Φ] induced by U. We use SU to denote this set.

We then follow the approach of Section 3 by computing the set S[[¬Φ1∧Φ2]] of
strictly-divergent maximal ECs within the set of states satisfying ¬Φ1 ∧ Φ2. Let
V¬Φ1∧Φ2 =

⋃
(C,D)∈S[[¬Φ1∧Φ2]]

C be the set of regions corresponding to S[[¬Φ1∧Φ2]].
We use V¬Φ1∧Φ2 as an atomic proposition such that R |=Σ V¬Φ1∧Φ2 if and only
if R ∈ V¬Φ1∧Φ2 . Then we consider the path formula Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2).
We derive the following facts from Case (A). In the following, the set Tmax

is defined with respect to the until formula Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2) (rather
than with respect to Φ1UΦ2, as in Case (A)). Let T = [[(Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2]] ∪
Regions \ Regions+(Φ2, (Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2). From Proposition 6, for R ∈ Tmax

and σ ∈ ΣSd such that Probσ
R(�T) = 1 and σ(r) ∈ Max (last(r), Φ1UΦ2) for each

r ∈ Pathσ
fin(R), we have that:

pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) = Probσ

R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) .

From Lemma 4, R ∈ Regions \ Tmax implies that for σ ∈ ΣSd we have:

pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2))) > Probσ

R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) .

We present analogues of Proposition 3 and Proposition 4 adapted for strict region
divergence.

Proposition 7. Let R ∈ Regions be a region and σ ∈ ΣSd be a strictly region
divergent strategy of Reg[P, Φ] such that Probσ

R(�T) = 1. There exists a strictly
region divergent strategy σ′ ∈ ΣSd such that:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≤ Probσ′

R (Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

Proposition 8. Let R ∈ Regions and σ ∈ ΣSd be a strictly region divergent
strategy of Reg[P, Φ]. Then:

Probσ
R(Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≥ Probσ

R(Φ2U(Φ1 ∧ Φ2) ∨ �(¬Φ1 ∧ Φ2)) .

Applying Proposition 7, Proposition 8 and Theorem 4, we then obtain the
following result.

Theorem 5. Let R ∈ Regions be a region. Then:

R |=ΣSd P≥ζ(¬Φ1U¬Φ2) ⇔ 1− pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≥ ζ

R |=ΣSd P>ζ(¬Φ1U¬Φ2) ⇔
{

1− pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) > ζ if [s] ∈ Tmax

1− pmax
R (Φ2U((Φ1 ∧ Φ2) ∨ V¬Φ1∧Φ2)) ≥ ζ otherwise.

1 Recall that an algorithm for this purpose can be found in [5].

Strict Divergence for Probabilistic Timed Automata 635

From Corollary 2, Theorem 4 and Theorem 5, and from the fact that the pro-
cedures for computing Tmax and the set of strictly-divergent maximal ECs pre-
sented above run in time polynomial in the size of Reg[P, Φ], we then obtain the
following result.

Theorem 6. Let P be a PTA and Φ be a formula of Ptctl. Then the problem
of computing the set [[Φ]] for P under strictly divergent strategies is EXPTIME-
complete.

5 Conclusions

We have presented optimal model-checking algorithms for PTA for two notions
of time divergence. As in previous methods [6], the algorithms rely on a com-
putation of probabilities of satisfying an until property on a finite-state MDP
resulting from the classical region graph construction. For probabilistic diver-
gence and properties of the form P≥ζ(Φ1UΦ2) and P>ζ(Φ1UΦ2), the algorithms
rely also on the computation of maximal ECs in which a strategy can ensure
time divergence with probability 1. For strict divergence and for properties of
the form P<ζ(Φ1UΦ2), we compute the set of states in which the maximal un-
til probability can be obtained by a strictly-divergent strategy; for all other
states, strictly-divergent strategies can approximate arbitrarily closely the max-
imal probability. A similar technique can be used for properties of the form
P>ζ(Φ1UΦ2) in combination with the computation of maximal ECs in which a
strategy can ensure time divergence on all paths. The techniques of this paper
are useful when considering models in which there are no lower time bounds on
structural loops: these include abstract models of embedded controllers in which
lower bounds on certain reaction times are left unspecified. In future work we in-
tend to extend our notions of divergence to controller synthesis, and to consider
symbolic, zone-based algorithms for strict divergence.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge
(1999)

2. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
3. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for probabilistic real-time

systems. In: Leach Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP
1991. LNCS, vol. 510, pp. 115–136. Springer, Heidelberg (1991)

4. Hansson, H.A., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

5. de Alfaro, L.: Formal verification of probabilistic systems. PhD thesis, Stanford
University, Department of Computer Science (1997)

6. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. TCS 286, 101–150 (2002)

7. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. TSE 29(6), 524–541 (2003)

636 J. Sproston

8. Donatelli, S., Haddad, S., Sproston, J.: Model checking stochastic and timed prop-
erties with CSLTA. TSE 35(2), 224–240 (2009)

9. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: Proc.
LICS 2009. IEEE, Los Alamitos (2009)

10. Jensen, H.E.: Model checking probabilistic real time systems. In: Proc. of the 7th
Nordic Work. on Progr. Theory, Chalmers Institute of Technology, pp. 247–261
(1996)

11. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. FMSD 29, 33–78 (2006)

12. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. I &
C 104(1), 2–34 (1993)

13. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. I & C 111(2), 193–244 (1994)

14. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata emptiness
efficiently. FMSD 26(3), 267–292 (2005)

15. Laroussinie, F., Sproston, J.: State explosion in almost-sure probabilistic reacha-
bility. IPL 102(6), 236–241 (2007)

16. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. I & C 205(7), 1027–1077 (2007)

17. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Dist. Comp. 11(3), 125–155 (1998)

18. Baier, C.: On the algorithmic verification of probabilistic systems, Habilitation
thesis, Universität Mannheim (1998)

19. Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Trading infinite memory for uniform
randomness in timed games. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008.
LNCS, vol. 4981, pp. 87–100. Springer, Heidelberg (2008)

20. Beauquier, D.: On probabilistic timed automata. TCS 292(1), 65–84 (2003)
21. Alur, R., Henzinger, T.: Real-Time System = Discrete System + Clock Variables.

STTT 1, 86–109 (1997)
22. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The

element of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.)
CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)

23. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains, 2nd edn.
Graduate Texts in Mathematics. Springer, Heidelberg (1976)

24. Jurdziński, M., Laroussinie, F., Sproston, J.: Model checking probabilistic timed
automata with one or two clocks. LMCS 4(3), 1–28 (2008)

25. Bianco, A., Alfaro, L.d.: Model checking of probabilistic and nondeterministic sys-
tems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

26. Chatterjee, K., Jurdziński, M., Henzinger, T.: Simple stochastic parity games. In:
Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer,
Heidelberg (2003)

27. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic.
JACM 49, 672–713 (2002)

28. Fecher, H., Huth, M., Piterman, N., Wagner, D.: Hintikka games for PCTL on
labeled Markov chains. In: Proc. QEST 2008, pp. 169–178. IEEE, Los Alamitos
(2008)

Author Index

Abadi, Mart́ın 1
Almeida Matos, Ana 53
Asarin, Eugene 69

Baier, Christel 15
Baldan, Paolo 99
Baudru, Nicolas 115
Bertrand, Nathalie 15
Bojańczyk, Miko�laj 131
Bonchi, Filippo 99, 146
Bonsangue, Marcello 146
Boreale, Michele 163
Bortolussi, Luca 305
Bouajjani, Ahmed 178
Bouyer, Patricia 196
Bradfield, Julian 354

Castagna, Giuseppe 211
Chadha, Rohit 229
Chatterjee, Krishnendu 244
Corin, Ricardo 511
Czerwiński, Wojciech 259

D’Argenio, Pedro R. 338
Degorre, Aldric 69
Deng, Yuxin 274
Desharnais, Josée 289
Doyen, Laurent 244
Drǎgoi, Cezara 178
Duflot, Marie 196

Enea, Constantin 178

Ferrer Fioriti, Luis Maŕıa 338
Fournet, Cédric 511
Fröschle, Sibylle 259

Gadducci, Fabio 99
Galpin, Vashti 305
Garner, Richard 321
Giro, Sergio 338
Gorrieri, Roberto 463
Größer, Marcus 15
Gutierrez, Julian 354

Haase, Christoph 369
Hague, Matthew 384
Harris, Tim 1
Hennessy, Matthew 274
Henzinger, Thomas A. 244
Hillston, Jane 305
Hirschowitz, Tom 321
Hoare, C.A.R. Tony 399

Idziaszek, Tomasz 131

Jurdziński, Marcin 415

Kreutzer, Stephan 369
Kuijper, Wouter 431
Kwiatkowska, Marta 415

Lasota, S�lawomir 259
Laviolette, François 289
Lenglet, Serguëı 448
Lynch, Nancy 481

Markey, Nicolas 196
Meyer, Roland 463
Milner, Robin 30
Mitra, Sayan 527
Möller, Bernhard 399
Morgan, Carroll 274

Newport, Calvin 481
Norman, Gethin 415

Ong, C.-H. Luke 384
Ouaknine, Joël 369, 496

Padovani, Luca 211
Pardon, Aurélien 321
Planul, Jérémy 511
Prabhakar, Pavithra 527
Priami, Corrado 37

Quaglia, Paola 37

Rabinovich, Alexander 496
Ramakrishnan, C.R. 603
Ranzato, Francesco 542
Renault, Gabriel 196

638 Author Index

Reynier, Pierre-Alain 557
Rodŕıguez, Ismael 572
Romanel, Alessandro 37
Rutten, Jan 146

Sangnier, Arnaud 557
Schmalz, Matthias 587
Schmitt, Alan 448
Sighireanu, Mihaela 178
Silva, Alexandra 146
Singh, Anu 603
Sistla, A. Prasad 229
Smolka, Scott A. 603
Sproston, Jeremy 620
Stefani, Jean-Bernard 448
Struth, Georg 399

Tapparo, Francesco 542
Trivedi, Ashutosh 415
Turgeon, Amélie 289

van Bakel, Steffen 84
van de Pol, Jaco 431
van Glabbeek, Rob 274
Varacca, Daniele 587
Vigliotti, Maria Grazia 84
Viswanathan, Mahesh 229, 527
Völzer, Hagen 587

Wehrman, Ian 399
Worrell, James 369, 496

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Perspectives on Transactional Memory
	Introduction
	Transactional Memory in Semantics: A Simple Case
	A Simple Language
	High-Level Strong Semantics
	A Lower-Level Semantics with Roll-Back
	Separating the Transactional Memory

	Difficulties in Separating Transactional Memory
	Memory Allocation
	Concurrency, and Strong Atomicity vs. Strong Semantics
	Implementation Options at Multiple Layers

	The Garbage-Collection Analogy
	Conclusion
	References

	The Effect of Tossing Coins in Omega-Automata
	Probabilistic -Automata
	Expressiveness of Probabilistic Büchi Automata
	Composition Operators for PBA
	Decision Problems for PBA
	Conclusion
	References

	Bigraphical Categories
	Introduction
	Preliminaries
	The Bigraphical Categories
	Activity
	Conclusion
	References

	{\sf BlenX} Static and Dynamic Semantics
	Introduction
	Syntax and Notation
	Dynamic Semantics
	Static Semantics
	Conclusions
	References

	Contributed Papers
	Flow Policy Awareness for Distributed Mobile Code
	Introduction
	Language
	Information Flow Analysis
	Confinement Analysis
	Related Work and Conclusions
	References

	Volume and Entropy of Regular Timed Languages: Discretization Approach
	Introduction
	Problem Statement
	Geometry, Volume and Entropy of Timed Languages
	Three Examples
	Subclasses of Timed Automata
	Computing Volumes

	Discretization Approach
	-Words and -Balls
	Discretizing Timed Languages and Automata
	Counting Discrete Words
	From Discretizations to Volumes

	Kolmogorov Complexity of Timed Words
	Conclusions and Further Work
	References

	A Logical Interpretation of the λ-Calculus into the π-Calculus, Preserving Spine Reduction and Types
	The Asynchronous `p-Calculus with Pairing
	The Lambda Calculus (and Variants Thereof)
	Milner's Input-Based Lazy Encoding
	A Logical, Output-Based Encoding of `l-Terms
	Context Assignment
	Conclusions and Future Work
	References

	Encoding Asynchronous Interactions Using Open Petri Nets
	Introduction
	Asynchronous CCS
	Behavioural Equivalences

	OpenNets
	From Processes to Nets
	Relating Asynchronous CCS and Open Nets

	Technology Transfer on Expressiveness
	Undecidability of Bisimilarity
	Decidability of Reachability and Convergence

	Conclusions and Further Work
	References

	Distributed Asynchronous Automata
	Background
	Mazurkiewicz Traces
	Trace Automata
	Synthesis of Asynchronous Automata

	Distributed Asynchronous Automata
	High-Level Distributed Asynchronous Automata
	Located Trace Languages
	Roadmaps and Located Trace Languages
	Constructive Proof of Theorem 4.4
	Complexity Analysis of the Construction

	Back to Zielonka's Theorem
	Expressive Power of Distributed Asynchronous Automata
	References

	Algebra for Infinite Forests with an Application to the Temporal Logic EF
	Introduction
	Preliminaries
	Trees and Contexts
	Automata for Unranked Infinite Trees

	Forest Algebra
	EF for Infinite Trees
	Concluding Remarks
	References

	Deriving Syntax and Axioms for Quantitative Regular Behaviours
	Introduction
	Background
	A Language of Expressions for Polynomial Coalgebras

	Monoidal Valuation Functor
	A Non-idempotent Algebra for Quantitative Regular Behaviours
	Extending the Class of Functors
	Probabilistic Systems
	Conclusions
	References

	Weighted Bisimulation in Linear Algebraic Form
	Introduction
	Linear Weighted Automata
	Linear Weighted Bisimulation
	Partition Refinement
	Quotients
	Probabilistic Bisimulation
	Weighted Automata with an Initial State
	Related and Further Work
	References

	A Logic-Based Framework for Reasoning about Composite Data Structures
	Introduction
	Modeling Programs with Dynamic Heap
	Programs
	Heaps as Graphs
	Reasoning about Programs

	Generalized Composite Structures Logic
	The Logic CSL
	Deciding the Satisfiability Problem for CSL
	The Case of CSL1
	Extension to the Full CSL

	Related Work
	Conclusions and Future Work
	References

	Measuring Permissivity in Finite Games
	Introduction
	Weighted Games with Reachability Objectives
	Basic Definitions
	From Penalties to Costs, and Back

	Optimal Reachability in Penalty Games
	Construction of an Optimal Winning Multi-strategy
	Deriving a Memoryless Winning Multi-strategy

	Discounted and Mean Penalty Games
	Discounted and Mean Penalties of Multi-strategies
	Some Examples
	A Pair of Memoryless Strategies Is Sufficient
	Extension to the Mean Penalty of Multi-strategies

	Conclusion and Future Work
	References

	Contracts for Mobile Processes
	Introduction
	Contracts
	Typing a Core Language of Sessions
	Related Work and Conclusions
	References

	Power of Randomization in Automata on Infinite Strings
	Introduction
	Preliminaries
	Probabilistic Büchi Automata

	Probable Semantics
	Expressiveness
	Decision Problems

	Almost-Sure Semantics
	Expressiveness
	Decision Problems

	Hierarchical PBAs
	Probable Semantics
	Almost-Sure Semantics

	Conclusions
	References

	Probabilistic Weighted Automata
	Introduction
	Definitions
	Expressive Power of Probabilistic Weighted Automata
	Probabilistic LimAvg-Automata
	Probabilistic LimInf- and LimSup-Automata
	Probabilistic Disc-Automata

	Closure Properties of Probabilistic Weighted Automata
	Decision Problems
	References

	Partially-Commutative Context-Free Processes
	Partially Commutative Context-Free Processes
	The Unique Decomposition for Normed Processes
	The Algorithm
	Bases
	Outline of the Algorithm

	Implementation
	Polynomial-Time Implementation
	Compression by an Acyclic Morphism
	Representation of a Base by an Acyclic Morphism

	Conclusions
	References

	Testing Finitary Probabilistic Processes
	Introduction
	The Language pCSP
	Testing Probabilistic Processes
	Extremal Testing
	Resolution-Based Testing
	Equivalence of Testing Methods

	A Novel Approach to Weak Derivations
	Some Properties of Weak Derivations in Finitary pLTSs
	Finite Generability and Closure
	Distillation of Divergence

	Failure Simulation Is Sound and Complete for Must Testing
	Inductive Characterisation
	A Modal Logic
	Characteristic Tests for Formulae

	Simulation Is Sound and Complete for May Testing
	Conclusion and Related Work
	References

	A Demonic Approach to Information in Probabilistic Systems
	Introduction
	Background
	Labelled Markov Processes (LMPs)
	Temporal Properties

	InfLMPs
	Related Models

	Abstract Processes
	A Suitable Representation Theorem
	A Suitable Axiomatic for "705E

	From infLMP to infLMPa and Back
	Conclusion
	References

	HYPE: A Process Algebra for Compositional Flows and Emergent Behaviour
	Introduction
	HYPE Definition
	Operational Semantics
	Hybrid Semantics
	Equivalence Semantics
	Related Work
	Bisimulations on Hybrid Systems

	Conclusions and Further Work
	References

	Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs
	Introduction
	Symmetric Monoidal Closed Theories
	Signatures
	The Free Symmetric Monoidal Closed Category over a Set
	The Free Symmetric Monoidal Closed Category over a Signature
	The Free Symmetric Monoidal Closed Category over a Theory
	Commutative Monoid Objects
	Modularity and Sequentialisation as Induction

	First Examples
	Lambda-Calculus, Linearity, Induction
	Pi-Calculus Example
	Higher Order and Modularity

	Binding Bigraphs
	Bigraphs
	Bigraphs as Symmetric Monoidal Closed Theories

	Conclusions
	References

	Partial Order Reduction for Probabilistic Systems: A Revision for Distributed Schedulers
	Introduction
	Interleaved Probabilistic Input/Output Automata
	Partial Order Reduction under Distributed Schedulers
	Concluding Remarks
	References

	Model-Checking Games for Fixpoint Logics with Partial Order Models
	Introduction
	Preliminaries
	A Partial Order Model of Concurrency
	Sets in a Local Context
	Separation Fixpoint Logic

	Trace LMSO Model-Checking Games
	Soundness and Completeness
	Local Properties and Decidability
	Model-Checking Partial Order Models of Concurrency
	SFL on Event Structures
	A Computable Folding Functor from Event Structures to TSI
	Temporal Verification of Regular Infinite Event Structures

	Concluding Remarks and Related Work
	References

	Reachability in Succinct and Parametric One-Counter Automata
	Introduction
	Related Work

	One-Counter Automata
	Parametric Counter Automata

	Weighted Graphs and Flow Networks
	Reachability Certificates
	NP-Membership
	Parametric Counter Automata
	Reachability

	References

	Winning Regions of Pushdown Parity Games: A Saturation Method
	Introduction
	Preliminaries
	An Example
	The Algorithm
	Termination and Correctness
	Optimisation
	References

	Concurrent Kleene Algebra
	Introduction
	Operators on Traces and Programs
	Quantales, Kleene and Omega Algebras
	Concurrent Kleene Algebras
	Hoare Triples
	Invariants
	Single-Event Programs and Rely/Guarantee-CKAs
	Jones's Rely/Guarantee-Calculus
	Related Work
	Conclusion and Outlook
	References

	Concavely-Priced Probabilistic Timed Automata
	Introduction
	Preliminaries
	Markov Decision Processes
	Concavely-Priced Probabilistic Timed Automata
	Clocks, Clock Valuations, Regions and Zones
	Probabilistic Timed Automata
	Priced Probabilistic Timed Automata

	Boundary Region Graph Construction
	The Region Graph
	The Boundary Region Graph

	Correctness of the Reduction to Boundary Region Automata
	Complexity
	Conclusion
	References

	Compositional Control Synthesis for Partially Observable Systems
	Introduction
	Compositional Framework
	Compositional Synthesis Method
	Conclusion
	References

	Howe’s Method for Calculi with Passivation
	Introduction
	HOP Contextual Semantics
	Howe's Method
	Complementary Semantics for HOP
	Complementary LTS
	Complementary Bisimilarity

	Related Work
	Conclusion and Future Work
	References

	On the Relationship between π-Calculus and Finite Place/Transition Petri Nets
	Introduction
	Preliminaries
	A Sound Concurrency Semantics for the -Calculus
	Combining Structural and Concurrency Semantics
	Mixed Normal Form
	Mixed Semantics

	Borderline to Finite P/T Petri Nets
	Discussion
	References

	Modeling Radio Networks
	Introduction
	Model
	Systems
	Trace Probabilities
	Problems

	Implementing Channels
	Composition
	The Composition Algorithm
	The Composition Channel

	Case Study
	Conclusion
	References

	Time-Bounded Verification
	Introduction
	Timed Automata
	Metric Logics
	Syntax
	Semantics

	Satisfiability
	Expressiveness
	Model Checking and Language Inclusion
	Proofs of Theorems
	References

	Secure Enforcement for Global Process Specifications
	Introduction
	Global Process Specifications
	Distributed Process Implementations
	Implementing Two-Party Specifications (Application)
	Implementability by Typing
	History-Tracking Implementations
	Sequential Multiparty Sessions (Application)
	Conclusions
	References

	On Convergence of Concurrent Systems under Regular Interactions
	Introduction
	Motivating Example
	Preliminaries
	Directed and Undirected Graphs
	Stability and Convergence
	Muller Automata and -Regular Languages
	A, X-Neighborhood System

	Stability
	Convergence
	Proof of Lemma 2

	An Application
	Properties of the Neighborhood System U
	Convergence Proof

	References

	Computing Stuttering Simulations
	Introduction
	Background
	Basic Algorithm
	Partition-Relation Pairs
	A Symbolic Algorithm

	Bottom States
	Implementation
	Data Structures
	FindRefiner Algorithm
	Computing pos
	SplittingProcedure
	Refine Function
	Auxiliary Functions
	Complexity
	Adapting SSA for LTSs

	Conclusion
	References

	Weak Time Petri Nets Strike Back!
	Introduction
	Definitions
	Petri Nets
	Timed Transition Systems
	Time Petri Nets

	Decidability
	Considered Problems and Known Results
	The Peculiar Case of TPN with Weak Intermediate Semantics
	Undecidability for Weak Atomic and Weak Persistent Atomic Semantics

	Expressiveness
	Preliminaries
	Atomic versus Persistent Atomic semantics
	About Atomic and Intermediate Policies in Weak and Strong Semantics

	Conclusion
	References

	A General Testability Theory
	Introduction
	Testability Concepts
	Studying Properties of Class I
	Conclusions and Future Work
	References

	Counterexamples in Probabilistic LTL Model Checking for Markov Chains
	Introduction
	Preliminaries
	Words
	Probabilistic Systems
	Temporal Properties

	Qualitative Counterexamples
	Examples of Counterexamples
	Presenting a Qualitative Counterexample
	Soundness and Completeness

	Quantitative Counterexamples
	Presenting a Quantitative Counterexample
	Completeness
	Interaction with the Model Checker

	Computing Counterexamples
	Recalling Courcoubetis and Yannakakis
	Computing the Initial Language
	Computing a Recurrent Set

	Conclusions and Related Work
	References

	Query-Based Model Checking of Ad Hoc Network Protocols
	Introduction
	An Example of Topologies and Topology Constraints
	Related Work
	Modeling Framework
	Syntax
	Concrete Semantics
	Symbolic System Specification

	Constraint-Based Verification
	Verification of Reachability Properties
	Complexity Analysis for the SymReach Algorithm
	Model Checking Symbolic AHNs

	Verification of the LMAC Protocol
	Conclusions
	References

	Strict Divergence for Probabilistic Timed Automata
	Introduction
	Probabilistic Timed Automata
	Probabilistic Divergence
	Strict Divergence
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

