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Preface

Various approaches to environmentally sound waste-treatment processes have been

designed and developed in recent years. Biological treatments are the best alterna-

tive to the disposal of the putrescent fraction of separately collected biowaste, as

these technologies maximize recycling and recovery of the waste components.

Composting, the biological degradation of organic wastes to humus, saves

natural resources, and the application of composts may enhance the organic carbon

status in soil, thereby contributing to a decrease in atmospheric CO2. The use of

compost is also known to exert positive effects on the physical properties of soil,

such as increasing the soil porosity, enhancing microbial activities and the ability to

suppress plant diseases, and therefore reducing the need for pesticides.

Anaerobic digestion is the biological process for the decomposition of organic

waste in the absence of oxygen. This process converts the organic part of the waste

into stable substances through a number of complex bacterial reactions and pro-

duces biogas, an important asset in times of decreasing fossil fuel supplies and

concerns about rises in greenhouse gases, as well as an anaerobic sludge that can be

used as a fertilizer and for soil conditioning. Anaerobic digestion is increasingly

replacing aerobic degradation as a treatment process, since the additional benefit of

gaining renewable energy is considered more and more important.

Microorganisms play a key role in both aerobic and anaerobic digestion process-

es of organic wastes. Until the last decade, there had been only limited research

concerning the structural and functional diversity of the microbial communities

involved in these digestion processes. The development of molecular tools has

however allowed more detailed investigations into the microbial communities

responsible for the conversion of the wastes to resources, allowing a better under-

standing of the dynamics of the microbial players involved.

‘Microbes at work: From wastes to resources’ comprises 16 chapters that discuss

various aspects of digestion processes. In the first chapters, contributions focus on

the communities of microorganisms involved in different types of waste treatment,

including composting, vermicomposting, and anaerobic digestion. The chapters

that follow discuss the presence of ‘good’ and ‘bad’ microorganisms in the final
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product. The chapters occurring towards the end of the book present application-

based studies or investigate the effects of application of a treated waste on the soil

microbial community. Hopefully, the reader will be adequately informed about the

state-of-the-art of biological waste treatment, and, with the help of the final chapter,

will learn to better exploit microbial metabolic pathways.

The editors acknowledge the assistance of the many reviewers in editing the

different book chapters and thank Springer Verlag for the excellent co-operation

during the production of the book.

Innsbruck Heribert Insam

September 2009 Marta Goberna

Ingrid Franke-Whittle
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Chapter 1

Microbes in Aerobic and Anaerobic

Waste Treatment

Heribert Insam, Ingrid Franke-Whittle, and Marta Goberna

Abstract This chapter gives an overview of the materials and chemical compounds

that are the subject of microbial degradation under both aerobic and anaerobic

conditions. Bacteria, fungi, and archaea that are responsible for degradation or for

specific phases of a degradation process are indicated. Special attention is given

to two major processes of organic waste recycling involving microorganisms –

composting and anaerobic digestion for biogas production. The use of classical and

novel tools for investigating the involved microbiota is discussed. Also, aspects of

nutrient and greenhouse gas balances are addressed. The chapter concludes by

emphasizing that with microbial action, an environmentally sound recycling of

organic residues is possible, and that this should be encouraged by waste manage-

ment policies.
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1.1 Introduction

During biodegradation, all organic matter passes through the microbial decom-

poser pool. This is the reason why microorganisms have a key role to play in the

recycling of matter, and why we need to facilitate their activity in order to

ensure faster and proper work being done. However, very often it is the engi-

neers who design the waste treatment facilities who are driven by empirical

experience, architectural concepts, and political decisions rather than the needs

of the microbes.

Microbiologists responsible for the well-being of “the workers,” i.e., microbes,

in a waste treatment plant would come up with a set of prerequisites that must be

met for the best possible working conditions. There are essentially two different

classes of workers, those that prefer fresh air with a lot of oxygen (the composters)

and those that like it oxygen-free (the digesters). In some cases, however, we need

both of them, and we need to offer working conditions that are acceptable for each

group. This starts with the appropriate substrates.

1.2 The Substrates

Essentially, all degradable substrates are either of plant, animal, or microbial origin.

Generally, plant materials comprise the largest fractions, whereas animal tissues

and microbial components are only minor fractions of any mixture. The major

natural compounds, as well as their potential degradability, have been summarized

by Insam and de Bertoldi (2007).

1.2.1 Lignin

A major structural component of plants is lignin which may comprise up to 30% of

wood. While the number of different monomers (derivatives of phenylpropane,

mainly coniferyl alcohol) is small, the extraordinary variety of bondings among

them make degradation a difficult task. Thus, lignin decomposition is usually of the

co-metabolic type, as the energy yield from lignin degradation is negligible. Lignin

is primarily degraded by fungi that are often pathogens which also thrive on living

plants. Lignin-degrading fungi are known as white-rot fungi, like Trametes versi-
color (Turkey Tail), or Stereum hirsutum (False Turkey Tail). They degrade the

lignin and leave behind the cellulosic components. Some fungi, such as Pleurotus
ostreatus, co-degrade cellulose and lignin.

2 H. Insam et al.



1.2.2 Cellulose

Cellulose is the most abundant natural organic compound that is found in almost

every type of organic waste. Cellulose molecules are chains of b-D-glucose with a

polymerization degree of up to 40,000. The glucose molecules are joined by b-1,
4-glycosidic bonding. Three major enzymes are involved in the degradation: (1)

Endo-b-1, 4-Glucanases cleave the b-1, 4-bonds within the molecule, resulting in

long chains with free ends, (2) Exo-b-1, 4-Glucanases separate the disaccharide

cellobiose from the free ends, and (3) b-glucosidases hydrolyze the cellobiose to

leave glucose monomers.

Wilson (2008) suggests three microbial strategies for cellulolysis. Most aerobic

microbes secrete cellulases that contain a carbohydrate-binding molecule (CBM)

while most anaerobic microorganisms produce cellulosomes, large multi-enzyme

complexes, which are bound to the outer surface of the microorganism. Gene

analyses of Cytophaga hutchinsonii, an aerobe, and Fibrobacter succinogenes, an
anaerobe, indicate that these organisms use a third yet unknown mechanism. They

do not encode processive cellulases, and their endocellulase genes neither encode

CBMs nor dockerin and cohesin domains that are the key components of cellulo-

somes. Fungi are, in general, more important for cellulose degradation than bacte-

ria, which is especially the case if the cellulose is encrusted with lignin (e.g., in

wood or straw). Since cellulose is rich in C but does not contain N or other essential

elements, the mycelial structure gives fungi a competitive advantage in cellulose

degradation as nutrients may be transported in the mycelium. Important fungal

cellulose degraders include Chaetomium, Fusarium, and Aspergillus species.

Among the bacteria, the myxomycetes and related taxonomic groups (Cytophaga,
Polyangium, Sorangium) are important in cellulose degradation. Also, Pseudomo-
nas and related genera are known to degrade cellulose, but only few Actinobacteria

are involved. Under oxygen-limited conditions, cellulose is mainly degraded by

mesophilic and thermophilic Clostridia, and also by Fibrobacter species.

1.2.3 Hemicelluloses (Xylan, Pectin, Starch)

Xylan is the most important of the three hemicellulosic compounds, and is found in

straw, bagasse (up to 30%), and wood (2–25%). Xylan is made up of pentoses

(xylose, arabinose) or hexoses (glucose, mannose, galactose), with a degree of

polymerization of 30–100. The main degrading enzymes are xylanases, produced
by many bacteria and fungi (in some cases, constitutively). Pectin comprises

unbranched chains of polygalacturonic acid, making up between 2 and 35% of

plant cell walls. It is degraded by pectinases, which are commonly produced by

fungi and bacteria, many of them plant pathogens. Starch is composed of amylose

(20%), unbranched chains of D-glucose and amylopectin which is branched at the

1 Microbes in Aerobic and Anaerobic Waste Treatment 3



1,6 position and contains phosphate moieties and Ca and Mg ions. Three groups of

enzymes are important in starch degradation. Phosphorylases start at the free, non-
reducing end of the amylose chain, and release single glucose-1-phosphate mole-

cules. At the 1,6 branches, the enzyme comes to a halt, and only continues after the

action of amylo-1,6-glucosidase. The a-1,4 bonds within the molecule are cleaved

by a-amylase.

1.2.4 Microbial Cell Wall Components: Murein and Chitin

Murein consists of unbranched chains of N-acetylglucosamine and N-acetylmura-

mic acid, and muramic acid is bound through lactyl groups to various amino acids.

Murein is the main component of the cell wall of most bacteria. Chitin is the most

important structural compound in the cell wall of fungi, and is the substance that

makes up the exoskeleton of insects and crustaceans. Fungal chitin is an important

waste product from fermentation industries, and crustacean chitin is a waste product

from crayfish processing. Chemically, chitin is very similar to cellulose with the

glucose monomer of cellulose being replaced by N-acetylglucosamine in the chitin

molecule. From the viewpoint of a microbe, the high N content of chitin (the C/N of

chitin is approximately 5) is what distinguishes it from cellulose. Many fungi (e.g.,

Aspergillus) and bacteria (e.g., Flavobacterium, Cytophaga, Pseudomonas) are

able to use chitin both as a N and C source. Chitin is degraded through exoenzymes

to N-acetylglucosamine, which is resorbed, transformed to fructose-6-P, and thus

incorporated into the carbohydrate metabolism.

1.3 Aerobic or Anaerobic Degradation: Four-Phase Microbially

Driven Processes

Various metabolic pathways for the degradation of organic compounds exist. Aerobic

processes involving oxygen as a terminal electron acceptor (composting) are thermo-

dynamically more favorable than anaerobic processes (anaerobic digestion), so

microbial degradation under oxygen is usually faster. Both composting and anaerobic

digestion may be described as four-phase processes, as explained in detail below.

1.3.1 Composting

Under aerobic conditions, the degradation of organic matter is an exothermic

process that produces energy in the form of heat, resulting in an increase in

temperature and a high-temperature (thermic) phase. The end products of a

4 H. Insam et al.



composting process are carbon dioxide, water, minerals, and stabilized organic

matter (compost with a high content of humic acids). The transformation of fresh

organic matter into compost has several advantages: it overcomes the phytotoxicity

of non-stabilized organic matter, it improves the hygienic status of the materials

(Chap. 9, Vinnerås et al. 2010), and it produces a stable organic material, rich in

nutrients and C that is known to be beneficial to soils (Ros et al. 2006; Chap. 13,

Bastida et al. 2010) and plants (Chap. 11, Fuchs 2010).

Browne (1933) was the first to prove that the self-heating of composts is due to

biological activity, and Waksman (1932) was the first to publish studies on micro-

bial community dynamics. Then, for decades, isolation and culturing procedures

were the basis for studying compost microbial communities (e.g., Finstein and

Morris 1975). In the 1980s and 1990s, approaches based on DNA and RNA showed

that many unknown species of microorganisms were yet to be found in composts

(e.g., Beffa et al. 1996). Recent molecular tools have considerably increased the

knowledge on microbial communities involved in composting (Ryckeboer et al.

2003). The continuing change in habitat conditions (temperature, pH, aeration,

moisture, availability of substrates) results in stages of exponential growth and

stationary phases for various organisms. The microbial consortia present at any

point of time are replaced by others in short intervals. On the other hand, composts

are heterogeneous, and thus, not in all zones of a compost pile are similar tempera-

tures reached. From a microbiological point of view, four major zones may be

identified within a pile. The outer zone is the coolest, and well supplied with

oxygen; the inner zone is poorly supplied with oxygen; the lower zone is hot, and

well supplied with oxygen; while the upper zone is the hottest zone, and usually

fairly well supplied with oxygen (Lott Fischer 1998).

Continuous composting processes may be regarded as a sequence of continuous

cultures, each of them with their own physical (e.g., temperature), chemical (e.g.,

the available substrate), and biological (e.g., the microbial community composi-

tion) properties and feedback effects. These changes make it difficult to study the

process, which is virtually impossible to simulate in the laboratory since tempera-

ture, aeration, moisture, etc., are directly related to the surface–volume ratio.

However, it is generally accepted that composting is essentially a four-phase

process, as described in Sects. 1.3.1.1–1.3.1.4.

1.3.1.1 Mesophilic Phase (25–40˚C)

In the initial phase, energy-rich, abundant and easily degradable compounds like

sugars and proteins are degraded by fungi and bacteria that are generally referred to

as primary decomposers. During this phase, fungi compete with bacteria for the

easily available substrates. Since the maximum specific growth rates of bacteria

exceed those of fungi by one order of magnitude (Griffin 1985), fungi are very soon

outcompeted. The importance of bacteria – with the exception of Actinobacteria –

during the composting process has long been neglected, probably because of the

1 Microbes in Aerobic and Anaerobic Waste Treatment 5



better visibility of organisms with a mycelial growth. An extensive review on

organisms found in the first mesophile phase is given by Ryckeboer et al. (2003).

Provided that mechanical influences (like turning) are small, mesofauna, includ-

ing compost worms, mites, and millipedes may thrive. From a microbiological

viewpoint, these organisms may be considered as catalysts, contributing to the

mechanical breakdown and offering an intestinal habitat for specialized microor-

ganisms. Depending on the composting method, the contribution of these animals is

either negligible or, as in the special case of vermicomposting, considerable (Chap.

5, Domı́nguez et al. 2010).

1.3.1.2 Thermophilic Phase (35–65˚C)

High temperatures give a competitive advantage to thermophilic microorganisms

that outcompete the mesophilic microbiota. Mesophilic organisms are inactivated

by higher temperatures, and are, along with the remaining easily degradable sub-

strates, eventually degraded by the succeeding thermophiles. The decomposition

continues to be fast, and accelerates up to a temperature of about 62˚C.

Thermophilic fungi grow at temperatures up to 55˚C, while higher temperatures

usually inhibit fungal growth. A good supply of oxygen is more important for fungi

than for bacteria, and even in force-aerated systems, temporary anoxic conditions

may occur. For these reasons fungi play a negligible role during the thermophilic

phase. One exception is the composting of substrates that are particularly rich in

cellulose and in lignin. In this case, fungi remain important degraders throughout

the entire process.

At temperatures under 60˚C, more than 40% of the solids are degraded within

the first week, almost entirely through bacterial activity (Strom 1985). The temper-

ature range from 50 to 65˚C is of selective advantage, particularly for the genus

Bacillus. When temperatures exceed 65˚C, B. stearothermophilus is often domi-

nant. Also, members of the Thermus/Deinococcus group grow on organic substrates

at temperatures from 40 to 80˚C, with optimum growth between 65 and 75˚C.

Thermus/Deinococcus group numbers in biowaste composts can be as high as 107 to

1010 g–1 dry weight of compost (Beffa et al. 1996). Thus, it seems that Thermus
species, previously known only from geothermal sites, have probably adapted to the

hot-compost system and play a major role in the peak-heating phase. A number of

autotrophic bacteria have also been isolated from composts. These non-sporing

bacteria grow at 60–80˚C, with optima of 70–75˚C, and closely resemble Hydro-
genobacter strains that were previously known only from geothermal sites. They

obtain their energy by the oxidization of sulfur or hydrogen, and synthesize their

organic matter from CO2 (Beffa et al. 1996).

Despite the destruction of most microorganisms at temperatures above 65˚C,

compost temperatures may exceed 80˚C. It is probable that this final temperature

rise is not due to microbial activity, but rather to the effect of abiotic exothermic

reactions in which temperature-stable enzymes of Actinobacteria might be

involved. Such high temperatures are important for compost hygienization (Chap. 9),

6 H. Insam et al.



destroying human and plant pathogens, and killing weed seeds and insect larvae. The

disadvantage of temperatures exceeding 70˚C is that most mesophiles are killed, and

thus the recovery of the decomposer community is retarded after the temperature peak.

This may, however, be avoided by appropriate measures for recolonization such as

inoculation with matter from the first mesophilic stage.

There is evidence that obligate anaerobic bacteria are also common in composts,

but so far, very little information is available. During the preparation of Agaricus
substrates, Eicker (1981) found evidence for sulfate reduction under thermophilic

conditions. Many thermophilic or even hyperthermophilic archaea are known, but

their occurrence in composts has long been negated. It was assumed that the longer

generation times of archaea, when compared with bacteria, made the archaea

unsuitable for the rapidly changing conditions in the composting process. Until

recently, archaea had been rarely isolated from composts (e.g., Stackebrandt et al.

1997). However, since considerable methanogenesis in compost piles has recently

been reported (Jäckel et al. 2005; Cabanas-Vargas and Stentiford 2006), it has been

proposed that methanogenic archaea should be found if the right tools are used to

search for them. Indeed, Thummes et al. (2007a, b) found that a considerable

number of cultivable (Methanosarcina thermophila, Methanothermobacter sp.,
Methanobacterium formicicum, Methanoculleus thermophilus) and yet unculti-

vated archaea may be among the dominating microorganisms in composting

processes.

1.3.1.3 Cooling Phase (Second Mesophilic Phase)

When the activity of the thermophilic organisms ceases due to exhaustion of

substrates, the temperature starts to decrease. Mesophilic organisms recolonize

the substrate, either originating from surviving spores, through the spread from

protected microniches, or from external inoculation. While in the starting phase,

organisms with the ability to degrade sugars, oligosaccharides and proteins domi-

nate, the second mesophilic phase is characterized by an increased number of

organisms that degrade starch or cellulose. Cellulose degraders include the bacteria

Cellulomonas, Clostridium, and Nocardia and fungi of the genera Aspergillus,
Fusarium, and Paecilomyces (as summarized by Ryckeboer et al. 2003).

1.3.1.4 Maturation and Curing Phase

During the maturation phase, the quality of the substrate declines, and in several

successive steps the composition of the microbial community is entirely altered.

Usually, the ratio of fungi to bacteria increases due to the competitive advantage of

fungi under conditions of decreasing water potential and poorer substrate availability.

Compounds that are not further degradable, such as lignin-humus complexes, are

formed and become predominant.

1 Microbes in Aerobic and Anaerobic Waste Treatment 7



Some authors have proposed a fifth composting phase, the curing phase. In this

phase, also called a “storage phase,” physico-chemical parameters do not change,

although it has been observed that changes in the microbial communities still occur

(Danon 2008). As can be seen in Fig. 1.1, during curing, i.e., after maturation,

nitrifying organisms gradually disappear, and organisms involved in macromole-

cule degradation like Mycobacteria and Verrucomicrobia start to predominate.

1.3.2 Anaerobic Digestion

Anaerobic degradation of organicmatter takes place in natural habitats where oxygen

access is restricted, such as sediments, water-logged soils, and intestinal tracts. The

term anaerobic digestion refers to the biotechnological process by which organic

matter, be it organic waste, wastewater, or a renewable resource, e.g., purposely

grown energy crops, is degraded in the absence of oxygen. Anaerobic digestion

occurs in land-filled and piled wastes (Whitehead and Cotta 1999; Chen et al. 2003)

and is used in engineered environments to commercially produce biogas as a source

of green energy (Chap. 2, Braun et al. 2010; Chap. 3, Plugge et al. 2010; Chap. 4,

Wett and Insam 2010). A co-product derived from the anaerobic digestion of wastes

is the stabilized sludge, which can be applied to the soil as an organic amendment in

agricultural and non-agricultural lands (e.g., rangelands, public parks). Anaerobically

digested sludge seems more appropriate for land spreading than undigested products

such as cattle manure. According to US-EPA (2005) this is due to its reduced organic

pollutant load, malodour and pathogen content - but see Sählstrom 2003 and Bagge

et al. 2005 as well as its increased nutrient bioavailability.

The process of anaerobic digestion has been extensively studied in natural and

engineered ecosystems for more than a century. Until the late 1980s, the isolation of

Nitrification Degradation of cellulose Degradation of macromolecules

Xanthomonodaceae

Pseudomonas

Flavobacter

Mycobacterium

Verrucomicrobia 

Chloroflexi
Acidovorax

Chrysebacterium
Sphingobacterium

Promicromonospora

Nitrospira,Nitrosovibrio,
Nitrosomonas

0 30 60 90 120 150 180 210 240 270 300 330

Curing time [d]

Fig. 1.1 Gantt chart of predominant compost bacteria – a model of bacterial population shifts

during compost curing and their possible functions, derived from microarray, cloning and PCR-

DGGE-sequencing data (Danon 2008)
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anaerobes after enrichment culture was the approach used to investigate the micro-

bial communities involved in a particular environmental sample. This led to the

idea, as Boone et al. (1993) noted, that “because it will never be practical to study

all of the innumerable different organisms in digesters, it was important to find

ways to identify the numerically important microbial groups […] to understand the

digestion process.” In the same year, Harmsen and coworkers published the recon-

structed phylogeny of Syntrophobacter wolinii, a fatty acid degrading bacterium

common in bioreactors, based on its 16S rRNA gene (Harmsen et al. 1993). Also,

Raskin and co-workers developed 32P labeled oligonucleotide probes specifically

targeting the 16S rRNA gene of several groups of methanogens to quantify their

populations in bioreactors (Raskin et al. 1994a,b). These pioneer studies laid the

basis for an avalanche of surveys using a wealth of molecular methods to phylo-

genetically identify the microbial drivers of the anaerobic digestion of waste

(waters), as has been reviewed by O’Flaherty et al. (2006) and Talbot et al.

(2008) (see Sect. 1.4). Unraveling the prokaryotic diversity in bioreactors, and

understanding their physiological requirements, has allowed engineers to devise

biogas plants more efficient in utilizing the organic carbon content of residues

(Briones and Raskin 2003; Ward et al. 2008).

Anaerobic digestion is generally described as a four-phase process (see

Sects. 1.3.2.1–1.3.2.4), in which several microbial guilds closely cooperate, forced

by the low-energy yield of the anoxic degradation of organic matter (Schink 1997)

and by the physical proximity that their metabolic syntrophism requires (Stams et al.

2006). Prokaryotic communities have received most of the focus and, hence, not

much is known on the anaerobic eukaryotes taking part in digestion – mainly, fungi

and protozoa – although some information is available about ruminal organisms

(Krause et al. 2003). Bacteria are dominant in anaerobic reactors, representing over

80% of the total diversity (Krause et al. 2008). Bacterial phyla commonly detected

include Firmicutes, Proteobacteria, and Bacteroidetes. Thermotogae, Chloroflexi,

Fusiobacteria, Spirochaetes, Deferribacteres, Actinobacteria, and Nitrospira are also

sporadically found. Archaeal representatives in reactors mostly belong to the phylum

Euryarchaeota, which includes all known methanogens. However, in public data-

bases hundreds of sequences have been stored which are phylogenetically related to

yet uncultured archaea, also clustering within the phylum Crenarchaeota (Chouari

et al. 2005; Collins et al. 2006; Sekiguchi 2006). Even more overwhelming is the

amount of prokaryotic diversity that cannot be assigned to any known taxon.

Recently, up to 15% of 1,930 identified 16S rRNA sequences could not be related

to any known organism using a whole-genome-shotgun sequencing approach

(Krause et al. 2008). Revealing the ecophysiological functions of this massive

diversity of newly discoveredmicrobes is the next challenge for microbial ecologists.

1.3.2.1 Depolymerization – Hydrolysis

In the first step of the anaerobic food chain (Fig. 1.2), biopolymers (polysacchar-

ides, lipids, proteins, and nucleic acids) are depolymerized and hydrolyzed into

1 Microbes in Aerobic and Anaerobic Waste Treatment 9



monomeric compounds (sugars, amino acids, fatty acids, purines, and pyrimidines).

A complex community of fibrolytic fungi and bacteria produce extracellular hydro-

lytic enzymes (e.g., cellulases, xylanases, proteases, lipases) that team up to

dissemble the complex biopolymers into their structural units. Due to the realiza-

tion that depolymerization – hydrolysis is often the rate limiting step of the

anaerobic digestion process, recent strategies to optimize methane production try

to foster the production and activity of extracellular enzymes or include a pre-

hydrolysis step using thermal or mechanical treatments (Schwarz 2001; Mosier

et al. 2005; Zhang et al. 2007; Ward et al. 2008).

Polysaccharides, particularly cellulose, are the most prominent structural and

storage compounds of biomass (see Sect. 1.2). Thus, polysaccharide hydrolysis is

among the most important enzymatic processes determining the efficiency of

anaerobic reactors. Most aspects of the microbial utilization of cellulose have

been covered by Lynd et al. (2002). In stark contrast to aerobes, most anaerobic

cellulolytic bacteria have developed a multi-enzymatic complex, the cellulosome

(Schwarz 2001). This includes (i) several strongly linked catalytic domains, which

synergistically degrade cellulose, and (ii) substrate-anchoring domains that reduce

the distance between the cell and the products of hydrolysis. In general, the

hydrolysis of polysaccharides proceeds slowly under anaerobic conditions due to

the heterogeneity of forms in which cellulose is present in nature and to the

complexity of the hemicellulose and lignin matrices in which it is embedded

(Lynd et al. 2002). The rate and efficiency of cellulose hydrolysis is related,

among other factors, to the particular microbial species composition, since cellulo-

lytic organisms differ in the structure and activity of their enzymatic complexes

(Schwarz 2001) and, hence, in their cellulose degradation yields (Ren et al. 2007).

Protein hydrolysis to peptides and amino acids occurs slowly, and is the limiting

step in the anaerobic digestion of proteinaceous substrates (Ortega-Charleston

2008). On the contrary, lipid hydrolysis into glycerol and long-chain fatty acids

(e.g., oleic, stearic or palmitic acids) takes place rapidly in comparison to their

subsequent fermentation or b-oxidation (Ortega-Charleston 2008). Lipolytic and

proteolytic organisms are particularly important in industrial wastewaters rich in

lipids, usually in the form of fats and oils (e.g., residues from slaughter houses and

polysaccharides

proteins

nucleic acids

lipids

Biopolymers

sugars

aminoacids

purines

pyrimidines

glycerol

Monomers

lactate

alcohols

short-chain fatty acids

Reduced compounds

H2 + CO2

acetate CH4

1

2

4

5

Methanogenesis
substrates

6

6long-chain fatty acids

CO2

methyl compounds

3

6
4

Fig. 1.2 Schematic representation of the main steps of anaerobic degradation of organic matter in

the absence of inorganic electron acceptors other than H2 and CO2: (1) depolymerization-hydro-

lysis, (2) fermentation, (3) b-oxidation, (4) acetogenesis, (5) acetate oxidation, (6) methanogen-

esis. Modified from Sousa (2006)
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vegetable oil refineries), or proteins (e.g., wastes from food processing industry,

such as cheese, whey, beer, and fish).

Anaerobic hydrolytic fungi are slow growers compared to bacteria and, hence,

fungi are less abundant in anaerobic reactors. The anaerobic fungus Neocallimastix
sp. has been well studied in the rumen. This is a cellulase, xylanase, and esterase

producer (Krause et al. 2003) that generates dihydrogen, formate, and acetate

(Nakashimada et al. 2000). Co- and tri-cultures of N. frontalis with the methano-

gens Methanobacterium formicicum and Methanosaeta concilii produce methane

directly from cellulose (Nakashimada et al. 2000). Other fungi commonly involved

in the anaerobic digestion of cellulose are close relatives of Neocallimastix, namely

Orpimomyces, Anaeromyces, Piromyces, and Caecomyces (Lynd et al. 2002,

Gallert and Winter 2005).

Hydrolytic bacteria in bioreactors are extremely diverse, reflecting their meta-

bolic flexibility and the range of substrates available in complex input materials.

The dynamics of bacterial physiological groups is typically coupled to waste

maturation. Sarada and Joseph (1994) measured an increase in the number of

culturable cellulolytic, xylanolytic, pectinolytic, proteolytic, and lypolytic bacteria

during the first 40 days of anaerobic digestion of tomato-processing waste, followed

by a subsequent decline in all groups from days 40 to 110. Bacterial populations are

very dynamic even under stable conditions (Fernández et al. 1999; Zumstein et al.

2000), probably due to the functional redundancy allowing oscillations of phyloge-

netic groups without changes in reactor performance (Briones and Raskin 2003;

Curtis and Sloan 2004). However, bacterial phylogenetic stability has also been

reported under conditions of stable (LaPara et al. 2002) and unstable reactor

performance (Malin and Illmer 2008). This has been attributed to the existence of

stress factors that filter the bacterial groups best adapted to harsh conditions. High

salinity levels, for instance, were argued as determinants of the stability of haloto-

lerant (Clostridium) and halophilic (Halocella) cellulolytic bacteria in a biowaste

digesting reactor (Goberna et al. 2009).

Table 1.1 lists several hydrolytic bacteria that have been detected in anaerobic

reactors. Members of the Firmicutes, particularly Clostridium, are predominant in

cellulolytic anaerobic environments (Chynoweth and Pullammanappallil 1996;

Schwarz 2001; Lynd et al. 2002). Acetivibrio, Bacteroides, Selenomonas or Rumi-
nococcus are other common examples of hydrolytic anaerobes. Typically, the same

organisms that hydrolyze biopolymers take up and ferment the resulting monomers.

1.3.2.2 Fermentation (Acidogenesis)

Monomeric compounds released after the hydrolysis of biopolymers can be taken

up by cells, where they are either fermented, or, in the presence of electron donors

such as nitrates or sulfates, anaerobically oxidized into alcohols, short-chain fatty

acids, carbon dioxide (CO2), and molecular hydrogen (Fig. 1.2). In engineered

environments, aimed at the production of biogas – mostly composed of methane

1 Microbes in Aerobic and Anaerobic Waste Treatment 11
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(CH4) and CO2 – fermentation is the desired pathway, as it yields the major

substrates for methanogenesis, i.e., acetate, formate, H2, and CO2.

Fermentation usually occurs through the production of an energy-rich interme-

diate – bearing a phosphate bond or a coenzyme A molecule – which is used to

synthesize ATP. The reaction renders a fermentation product that is excreted out of

the cell. Fermentation products are typically acidic substances that lower the

extracellular pH. The increase in short-chain fatty acids, and the concurrent

decrease in pH, is one of the most common reasons for reactor failure. Therefore,

the equilibrium of fermentative-acidogenic bacteria and acid scavenging microbes

is crucial for maintaining the pH balance of the system. Indeed, the volatile fatty

acids/alkalinity ratio has been suggested as one of the best indicators of imbalance,

its increase indicating an imminent reactor breakdown (Zhao and Viraraghavan

2004).

Bacteria are responsible for the majority of fermentative reactions, and carbohy-

drates generally constitute the most abundant substrates (Table 1.1). Clostridium sp.

and enteric bacteria are common sugar fermenters in anaerobic reactors. Strepto-
coccus sp. and Lactobacillus sp. also usually ferment sugars, yielding lactate or

lactate and ethanol, plus CO2 and molecular hydrogen. Lactate can be further

fermented by organisms such as Propionibacterium or Clostridium propionicum,
which yield propionate, acetate, CO2, and water.

Amino acids are fermented via two pathways: (1) Stickland coupled deamina-

tion between a pair of amino acids, one acting as the electron acceptor and the other

as the donor, and (2) deamination of a single amino acid in the presence of a H2-

scavenging partner (Ramsay and Pullammanappallil 2001). Main products of

amino acid fermentation are acetate, propionate, ammonia, CO2, and H2. Also

methylamines are formed, instead of ammonia, if betaine or sarcosine are used as

hydrogen acceptors (Schmitz et al. 2006). Depending on the amino acid composi-

tion, the presence of H2-scavenging microbes, and the availability of micronutrients

in the medium, amino acid degradation can proceed through either pathway (Schink

and Stams 2006). Clostridium sp. are the most abundant amino acid fermenters

found in anaerobic digesters, and species of Anaerobaculum, Caloramator, and
Sporanaerobacter are also commonly found (Table 1.1).

Glycerol is mainly fermented to ethanol, acetate, butyrate, propionate, succinate,

formate, H2, and CO2 (Yazdani and Gonzalez 2007). Few microorganisms are

known to catabolize glycerol fermentatively and most belong to the family of

Enterobacteriaceae. This ability is well known in species of the genera Klebsiella
and Citrobacter, but has also been reported in Enterobacter, Escherichia, Clostrid-
ium, Bacillus, Lactobacillus (Yazdani and Gonzalez 2007). Long-chain fatty acids

are not fermented, but degraded via b-oxidation, their catabolism involving electron

acceptors (Sousa 2006).

Fermentation of purines and pyrimidines in anaerobic environments is mostly

carried out by species of Clostridium (Vogels and Van der Drift 1976). Fermenta-

tion of purines has been well studied in Clostridium cylindrosporum (Vogels and

Van der Drift 1976). Typically, growing on guanine, C. cylindrosporum produces

formate, acetate, glycine, ammonia, and CO2 (Vogels and Van der Drift 1976).
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1.3.2.3 Acetogenesis

Fermentation products are mainly oxidized to acetate, formate, H2, and CO2 by

acetogenic bacteria (Fig. 1.2). Acetogens are phylogenetically diverse, but most of

them are clustered within the low G+C branch of Firmicutes (Drake et al. 2006).

Most genera encompassing acetogenic species, e.g., Clostridium, Eubacterium, or
Ruminococcus, also include non-acetogenic members (Drake et al. 2006).

Acetogens can use diverse electron donors (e.g., carbohydrates, short-chain fatty

acids, alcohols ...) and acceptors (CO2, fumarate, pyruvate, protons …), and thus

can generate multiple products apart from acetate (Drake et al. 2006). Certain

acetogenic reactions are thermodynamically unfavorable under standard condi-

tions, and require the syntrophic association between the acetogen and a H2-

scavenging methanogen (Schink 1997). This means that both organisms cooperate

to degrade a substrate with a net energy gain that they would not obtain from the

individual degradation of the substrate. These partners are, therefore, obligatorily

inter-dependent, their metabolic linkage being mediated by H2 and/or formate (see

Chap. 3). The taxonomic groups involved in this form of microbial syntrophism

have been well studied, as have been the energetics of the biochemical reactions

(Schink 1997, Schink and Stams 2006) and the mechanism of inter-species H2

(format) transfer (Stams et al. 2006). Table 1.2 lists examples of bacteria that

Table 1.2 Examples of bacteria that degrade the fermentation products through the syntrophic

association with a hydrogenotrophic methanogen in anaerobic reactors

Phylum Genus Species Substrates Detection References

Firmicutes Aminobacterium A. colombiense Aminoacids c Tang et al. (2005)

Aminomonas A. paucivorans Aminoacids c Tang et al. (2005)

Pelotomaculum P. thermopropionicum Propionate f, g Krause et al. (2008),

Schlüter et al.

(2008)

Syntrophobotulus S. glycolicus Glycolate a Friedrich et al. (1996)

Syntrophomonas Short-chain

fatty

acids

c, f Krause et al. (2008),

Goberna et al.

(2009)

Syntrophothermus S. lipocalidus Short-chain

fatty

acids

a Sekiguchi et al. (2000)

Moorella M. mulderi Methanol,

formate,

H2/CO2

a Balk et al. (2003)

Proteobacteria Smithella S. propionica Propionate d McMahon et al. (2001)

Syntrophus S. buswellii Benzoate a Mountfort et al. (1984)

Syntrophobacter S. wolinii Propionate d McMahon et al. (2001,

2004)

Syntrophorhabdus S. aromaticivorans Phenol a Qiu et al. (2008)

Thermotogae Thermotoga T. lettingae Methanol a, b, c,

e, g

Balk et al. (2002),

Roest et al. (2005a),

Schlüter et al.

(2008)

( a) culturing, (b) 16S rRNA gene PCR + DGGE or TGGE + sequencing, (c) 16S rRNA gene PCR + cloning +

sequencing, (d) 16S RNA oligonucleotide membrane hybridization, (e) DNA–DNA hybridization, (f) whole-

genome shotgun sequencing, (g) 454-pyrosequencing
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degrade the products of fermentation through a syntrophic relationship with H2-

consuming methanogens in anaerobic reactors.

Ideally, in an anaerobic reactor, the products of acetogenesis constitute the

substrates for methanogenesis (see Sect. 1.3.2.4). However, some groups of anaer-

obically respiring bacteria share the substrates with methanogens, thus competing

with them and reducing the efficiency of methane production (Stams et al. 2003).

Sulfate-reducing bacteria (e.g., Desulfotomaculum, Desulfobulbus) are strict anae-
robes that use sulfate as a terminal electron acceptor, oxidizing molecular hydrogen

and organic compounds (Muyzer and Stams 2008). These can outcompete metha-

nogens in the presence of sulfate, producing hydrogen sulfide (H2S) that inhibits

several microbial groups and causes corrosion and malodor (O’Flaherty et al.

2006). Iron-reducing (e.g., Deferribacter) and nitrate-reducing bacteria (e.g., Deni-
trovibrio) are also able to outcompete acetotrophic methanogens in the presence of

their electron acceptors (Zinder 1993).

Three acetogenic bacteria are known to be capable of acetate oxidation in the

presence of a H2-scavenging methanogen that lowers the H2 partial pressure:

Clostridium ultunense (Schnürer et al. 1996), Thermoacetogenium phaeum (Hattori

et al. 2000), and strain AOR (Zinder and Koch 1984). Also hydrogenogenic

bacteria, such as Carboxydocella or Thermosinus, interact with methanogenic

communities (Sokolova et al. 2002, 2004). Hydrogenogens oxidize carbon monox-

ide in the presence of water rendering CO2 and H2. These can be used by hydro-

genotrophic methanogens that, in turn, produce carbon monoxide (CO) as a

by-product.

1.3.2.4 Methanogenesis

The formation of methane (from acetate, H2/CO2, and methyl compounds) is the

last step of the anaerobic degradation of organic matter (Fig. 1.2) and the most

sensitive to process imbalances in engineered environments (Briones and Raskin

2003). This has been attributed to the inherently low methanogenic diversity and

functional redundancy, making methanogenesis easy to inhibit (Curtis and Sloan

2004). All known methanogenic organisms are archaea belonging to the phylum

Euryarchaeota. Among the five orders of known methanogens, four are commonly

found in anaerobic reactors (Methanobacteriales,Methanococcales,Methanomicrobiales,

and Methanosarcinales). The fifth order, Methanopyrales, includes a single hyper-

thermophilic species.

Members of Methanobacteriales, Methanococcales, and Methanomicrobiales

use CO2 as an electron acceptor. Hydrogen is commonly used as an electron

donor, but some species can also use formate and/or secondary alcohols (e.g.,

isopropanol, ethanol). Members of these orders cannot use acetate or C1 com-

pounds (e.g., methanol, methylamines), with the exception of Methanosphaera
(Methanobacteriales) which uses H2 to reduce methanol to methane (Bonin and

Boone 2006; Garcı́a et al. 2006; Whitman and Jeanthon 2006). Methanosarcinales

are the most diverse metabolically. Acetate, hydrogen, formate, secondary alcohols,
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and methyl compounds are used as energy sources (Kendall and Boone 2006).

Among these, Methanosaetacea is the only family that includes strict acetoclastic

methanogens (Smith and Ingram-Smith 2007).

Table 1.3 lists methanogens that have been found in anaerobic digesters. The

predominance of hydrogenotrophic or acetotrophic methanogens seems to be

mainly related to the levels of their substrates and their tolerance to diverse

inhibitors, such as ammonia, hydrogen sulfide, or volatile fatty acids (Demirel

and Scherer 2008). Methanogenic communities in anaerobic digesters have been

found to be rather stable (Mladenovska et al. 2003; Chachkhiani et al. 2004; Leclerc

et al. 2004; Goberna et al. 2009). Their dynamics has been related to main process

parameters, such as volatile fatty acids (Karakashev et al. 2005; Hori et al. 2006)

that are also used as indicators of process stability.

1.4 Application of Molecular Tools for Studying

Microbial Community Diversity in Composts

and Anaerobic Sludges

Traditional culture-based approaches to the analysis of prokaryotic diversity are

only capable of the detection of less than 1% of organisms (Torsvik et al. 1990;

Ward et al. 1992; Amann et al. 1995). The disparity between culturable and in situ

diversity has increased the importance of culture-independent molecular

approaches. Molecular techniques based on the comparative analysis of the rRNA

gene sequences are now being widely used in microbial ecology and have allowed

the discovery of many novel and yet unculturable microbes. Most of these methods

are based on the diversity of the 16S or 18S rRNA gene sequences, although in

recent years, more and more studies are being conducted using functional genes.

The first step in all molecular work is the extraction of nucleic acids, and the

quality of nucleic acid (DNA and RNA) extracted from an environmental sample is

crucial to be able to subsequently obtain informative results. Once good quality

nucleic acid has been extracted, it can be amplified via the PCR using universal

bacteria-, archaea-, or gene-specific primers, and subjected to one of the numerous

community fingerprinting techniques that exist (see Chap. 12, Minz et al. 2010).

The resulting pattern is reflective of the microbial diversity in the community.

Included in this group of techniques are DGGE/TGGE-denaturing/temperature

gradient gel electrophoresis (Muyzer et al. 1993), ARDRA – amplifed rDNA

restriction analysis (Moyer et al. 1994), TRFLP – terminal-restriction fragment

length polymorphism (Liu et al. 1997), ARISA – automated ribosomal inter-genic

spacer analysis (Schloss et al. 2003; Nocker et al. 2007), SSCP – single strand

conformation polymorphism (Talbot et al. 2004; Fracchia et al. 2006), and cloning

and sequence analysis (Liesack and Stackebrandt 1992). A comparison of the

methods is presented in Table 1.4. Review articles on these methods are abundant

16 H. Insam et al.



T
a
b
le

1
.3

E
x
am

p
le
s
o
f
m
et
h
an
o
g
en
ic

ar
ch
ae
a
d
et
ec
te
d
in

an
ae
ro
b
ic

re
ac
to
rs

O
rd
er

G
en
u
s

S
p
ec
ie
s

S
u
b
st
ra
te
s

D
et
ec
ti
o
n

R
ef
er
en
ce
s

M
et
h
an
o
b
ac
te
ri
al
es

M
et
ha

no
br
ev
ib
ac
te
r

M
.
sm

it
hi
i

F
o
rm

at
e,
H
2
/C
O
2

g
M
ac
ar
io

an
d
C
o
n
w
ay

d
e
M
ac
ar
io

(1
9
8
8
)

M
et
ha

no
th
er
m
ob

ac
te
r

M
.
th
er
m
au

to
tr
op

hi
cu
s

F
o
rm

at
e,
H
2
/C
O
2

a,
b
,
c,
f

Z
in
d
er

et
al
.
(1
9
8
4
),
M
cH

u
g
h
et
al
.
(2
0
0
3
),
S
m
it
h

et
al
.
(2
0
0
4
),
R
o
es
t
et

al
.
(2
0
0
5
a)
,
H
o
ri
et

al
.

(2
0
0
6
),
G
o
b
er
n
a
et

al
.
(2
0
0
9
)

M
et
h
an
o
co
cc
al
es

M
et
ha

no
co
cc
u
s

M
.
va
nn

ie
li
i

F
o
rm

at
e,
H
2
/C
O
2

e,
g

M
ac
ar
io

an
d
C
o
n
w
ay

d
e
M
ac
ar
io

(1
9
8
8
),

M
cH

u
g
h
et

al
.
(2
0
0
3
)

M
et
h
an
o
m
ic
ro
b
ia
le
s

M
et
ha

no
m
ic
ro
bi
um

M
.
m
ob

il
e

F
o
rm

at
e,
H
2
/C
O
2

e
M
cH

u
g
h
et

al
.
(2
0
0
3
)

M
et
h
an

oc
o
rp
u
sc
ul
um

M
.
pa

rv
um

F
o
rm

at
e,
al
co
h
o
ls
,

H
2
/C
O
2

e,
f

M
cH

u
g
h
et

al
.
(2
0
0
3
),
L
ec
le
rc

et
al
.
(2
0
0
4
)

M
et
ha

no
cu
ll
eu
s

M
.
b
ou

rg
en
si
s

F
o
rm

at
e,
H
2
/C
O
2

a,
c

B
o
o
n
e
et

al
.
(1
9
9
3
),
T
an
g
et

al
.
(2
0
0
5
),
L
ev
én

et
al
.
(2
0
0
7
),
G
o
b
er
n
a
et

al
.
(2
0
0
9
)

M
.
th
er
m
op

hi
li
cu
s

F
o
rm

at
e,
H
2
/C
O
2

c,
e,
f

M
cH

u
g
h
et

al
.
(2
0
0
3
),
C
h
ac
h
k
h
ia
n
i
et

al
.
(2
0
0
4
),

H
o
ri
et

al
.
(2
0
0
6
),
L
ev
én

et
al
.
(2
0
0
7
)

M
et
h
an

og
en
iu
m

M
.
ca
ri
ac
i

F
o
rm

at
e,
H
2
/C
O
2

e
M
cH

u
g
h
et

al
.
(2
0
0
3
)

M
et
h
an

os
p
ir
il
lu
m

M
.
hu

ng
at
ei

F
o
rm

at
e,
al
co
h
o
ls
,

H
2
/C
O
2

b
,
c,
e,
f,

g
,
h
,
i

M
ac
ar
io

an
d
C
o
n
w
ay

d
e
M
ac
ar
io

(1
9
8
8
),
H
u
an
g

et
al
.
(2
0
0
3
),
M
cH

u
g
h
et

al
.
(2
0
0
3
),
L
ec
le
rc

et
al
.
(2
0
0
4
),
C
h
o
u
ar
i
et
al
.
(2
0
0
5
),
L
ev
én

et
al
.

(2
0
0
7
),
K
ra
u
se

et
al
.
(2
0
0
8
),
S
ch
lü
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(e.g., Juste et al. 2008; Talbot et al. 2008) and many of the methods are discussed in

Chaps. 7 (Hultman et al. 2010) and 14 (Knapp et al. 2010).

Although all these molecular tools have greatly advanced microbial ecology,

there are limitations with such approaches. As most molecular techniques require

the extraction of DNA to be used as the template for PCR amplification and

subsequent community analysis, these studies are subject to various flaws, namely,

the potential formation of PCR artefacts (Wang et al 1997), the potential discrep-

ancy between the quantitative composition of rRNA genes within the sample DNA

and the amplification product (Farrelly et al. 1995; Suzuki and Giovannoni 1996;

Polz and Cavanaugh 1998), and the tedium, time, and cost involved in sequencing

and sequence analysis for identification purposes. As a result, studies using PCR-

amplified templates may reflect a biased microbial community composition. How-

ever, the use of PCR to amplify target DNA does greatly increase the detection

sensitivity of microorganisms in any environmental sample in comparison to non-

PCR-based methods.

Other molecular techniques which commonly target the 16S or 18S rDNA

sequence, but do not involve amplification and resolution of the gene products

include microarray analysis (Guschin et al. 1997; Small et al. 2001; Loy et al.

2002), real-time PCR (Monis and Giglio 2006), fluorescence in situ hybridization

(DeLong et al. 1989), and DNA and RNA stable isotope probing. These techniques

will be described briefly in this section.

Nucleic acid microarrays provide a powerful tool for the parallel detection of

16S rRNA genes (or other genes of interest), thus allowing the identification of

microorganisms from different environments (Franke-Whittle et al. 2005, 2009a, b;

Guschin et al. 1997; Small et al. 2001; Loy et al. 2002). DNA microarrays are based

on the relatively old technology of DNA hybridization between two complementary

strands of nucleic acids, and offer the possibility to analyze an entire array of

microorganisms concerning their presence or absence in a particular sample in a

single experiment. As with all techniques, the application of microarrays for routine

diagnostic work in microbial ecology and other fields is hindered by a lack of

standardization and insufficient evaluation of newly developed arrays (Loy and

Bodrossy 2006), and issues relating to the potentially low levels of target micro-

organisms in the environment have hampered the application of such diagnostic

arrays (Cook and Sayler 2003). More information on the use and application of

microarrays is provided in Table 1.4 (see also Chap. 7).

Real-time PCR allows a reproducible and sensitive detection and quantitation of

specific microbial populations. Several technologies for performing real-time PCR

exist (Chap.12, Yu et al. 2006; Monis and Giglio 2006). Despite the high level of

detection sensitivity attainable by quantitative PCR, the method is not appropriate

for studies requiring the enumeration of large numbers of target species in any

particular sample. Quantitative PCR methods based on the analysis of rRNA genes

are also subject to biases associated with PCR, as well as to the quantitative

uncertainty of the numbers of rRNA genes (rrn operons) per genome. Real-time

PCR has nonetheless been applied to the composting and anaerobic digestion
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environments, allowing the accurate quantification of various targets of interest

(Table 1.4).

The sequencing of ribosomal RNA molecules has not only facilitated the

reconstruction of phylogenetic trees and allowed the development of primers for

amplification of microbial DNA, but it is also the basis for the development of

oligonucleotide probes which can be used to detect bacteria in situ. Whole cell

hybridization with fluorescent-labeled rRNA gene-targeted oligonucleotide probes

(fluorescence in situ hybridization; FISH) allows the identification of individual

microbial cells (DeLong et al. 1989) in samples of natural communities. This

technique is not limited by the problems inherent to PCR, although the method is

influenced by the abundance and accessibility of the target intracellular rRNA

molecules (Roller et al. 1994). Target cells need to be metabolically active, and

hence contain large numbers of ribosomes for a strong signal to be generated

(Manz et al. 1992) and microorganisms to be visualized. Although FISH has

often been applied to investigate the microbial communities in the anaerobic

digestion environment (Raskin et al. 1994a,b; Karakashev et al. 2005; Montero

et al. 2008), it has not been commonly used in composting studies, most likely due

to the problems with autofluorescence of compost particles (Table 1.4).

Stable isotope probing (SIP) is a relatively new and emerging tool, being used

increasingly by environmental microbiologists (Chap. 12). It is based on the

incorporation and metabolism by microorganisms of a rare stable isotope or

radioisotope (Table 1.4). The method can be combined with community finger-

printing and cloning/sequencing analyses, thus allowing information on the

microbial catabolic activity to be obtained (Talbot et al. 2008). Several publica-

tions on the application of SIP to the biodegradation environment have been

published in the past few years (Madsen 2006), although publications in the area

of anaerobic digesters and composting are limited (Hatamoto et al. 2007, 2008; He

et al. 2009).

A common limitation of DNA-based community analyses is that DNA-based

studies detect the occurrence of all micoorganisms irrespective of their viability or

metabolic activity (Sessitsch et al. 2002). To further complicate the results, the

adsorption of DNA to solid particles could potentially result in the generation of

biased population profiles. RNA-based community analysis is thus considered to be

a more suitable approach to describe the metabolically active community members,

as the amount of rRNA produced by bacterial cells correlates well with the growth

activity of bacteria (Wagner 1994). In the study of an entire bacterial community,

the ribosome abundance reflects the relative contribution of each species to the

protein synthesis capacity of the community (Felske et al. 2000). However, the

laborious nature, and greater number of problems associated with RNA isolation

and RNA studies has resulted in fewer studies based on RNA than DNA.

The newest metagenomic-based techniques being used in microbial community

analyses include “shotgun” Sanger sequencing and chip-based pyrosequencing.

These tools allow a mostly unbiased analysis of all genes from all members of a

sampled community (e.g., Krause et al. 2008; Schlüter et al. 2008).
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1.5 Carbon and Nutrient Balance

In a well-managed composting process, about 50% of the biodegradable organic

matter is converted into CO2, H2O, mineral salts, and energy. Of the remaining

organic matter, about 20% undergoes complex metabolic transformations with the

final production of humic-like substances, while the other 30% is partially degraded

by aerobic and anaerobic processes with the final production of less complex

organic molecules. This loss of biodegradable organic matter during the compost-

ing process may vary from 30 to 60%, depending on the system of composting,

length of the process, aeration system, quality (chemical and physical) of the

organic matter, particle size, C/N, and temperature pattern.

The mineralization of nitrogenous organic compounds (e.g., proteins) leads to

the production of free ammonia that, if not immediately oxidized by nitrifying

bacteria, can be lost to the environment through volatilization. Additional nitrogen

loss during composting can be caused by denitrification, an anaerobic microbial

process that reduces nitrate to N2. This can occur only in anaerobic niches which

may be present even in well oxygenated material. Some denitrifying bacteria

operate at thermophilic conditions (Bacillus sp.), while others operate at mesophilic

temperatures (Pseudomonas, Paracoccus). Ideally, however, in composting, no N

losses occur if the substrate composition and process conditions are set to avoid

ammonia volatilization (original C/N ratio < 25, pH < 7.5, good aeration). The C/N

ratio usually decreases during the process because of the loss of C as CO2.

During the thermal stage of composting, autotrophic nitrification is inhibited

(Loehr 1974; Focht and Chang 1975). Heterotrophic nitrification by Arthrobacter
or Actinomyces, or by fungi-like Aspergillus flavus or Penicillium, seem to be less

affected. The production of nitrate in the early phases of composting seems mostly

exclusively the work of heterotrophic nitrifiers (Eylar and Schmidt 1959; Hora and

Iyengar 1960; Hirsch et al. 1961; Marshall and Alexander 1962; Alexander 1977).

Heterotrophic nitrifying microorganisms and those that directly assimilate ammo-

nia for their anabolic metabolism are the most important agents in reducing the

negative effects of ammonia volatilization.

Despite nitrogen losses at some stages, partial recovery takes place later in the

process, due to the activity of nitrogen-fixing bacteria such as Azospirillum, Bacil-
lus, Clostridium, Enterobacter, and Klebsiella (de Bertoldi et al. 1982, 1983).

Biological nitrogen fixation is inhibited by the presence of ammonia and by the

high temperature and thus, nitrogenase activity is higher during the later stages of

composting.

The rate of oxygen utilization indicates biological activity. For horticultural

applications, composts evolving less than 20 mg O2 kg–1 compost h–1 are consi-

dered stable, for agricultural use, < 100 mg O2 kg–1 compost h–1 is considered

sufficiently mature. The Solvita test (Woods End Laboratories, Francou et al.

2005), is a quick test for the respiration rate and also measures the ammonia

content. Less than 5 mg CO2-C g–1 compost C d–1 indicates stable compost. Values

exceeding 20 mg CO2-C g–1 compost C d–1 indicate instability of the compost.
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Results, however, must be interpreted with care since composts that are cold, dry, or

highly saline may not respire even though they are not stable.

Major concerns on greenhouse gas production from composting were raised

recently (Insam and Wett 2008). On the other hand, anaerobic digestion is consi-

dered to mitigate the greenhouse gas potential of farming. Table 1.5 summarizes the

potential effects of composting and anaerobic digestion on microbial greenhouse

gas production.

1.6 Conclusions

Microbes are involved in various processes related to organic waste recycling.

Microbial catabolic abilities are diverse, and offer exciting options for making

use of various otherwise wasted materials. More specific information will be

given in the remaining 15 chapters.
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Schlnter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition

and gene content of a methane-producing microbial community isolated from a biogas reactor:

genome research in the light of ultrafast sequencing technologies. J Biotechnol 136:91–101
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Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann K-H, Krahn I, Krause L,
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Sokolova TG, González JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya

EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic,

thermophilic, carbon-monoxideoxidizing, hydrogenogenic bacterium from a hot pool of

Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359

Sousa DZ (2006) Ecology and physiology of anaerobic microbial communities that degrade long

chain fatty acids. PhD Thesis, Universidade do Minho

Sousa DZ, Pereira MA, Smidt H, Stams AJM, Alves MM (2007) Molecular assessment of complex

microbial communities degrading long-chain fatty acids in methanogenic bioreactors. FEMS

Microbiol Ecol 60:252–265

Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new heirarchic classification

system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

Stams AJM, Elferink SJWHO, Westermann P (2003) Metabolic interactions between methano-

genic consortia and anaerobic respiring bacteria. In: Sheper T (ed) Advances in biochemical

engineering/biotechnology. Springer-Verlag, Berlin, pp 31–56

Stams AJM, de Bok FAM, Plugge CM, van Eekert JD, Schraa G (2006) Exocellular electron

transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

Strom PF (1985) Effect of temperature on bacterial diversity in thermophilic solid-waste compost-

ing. Appl Environ Microbiol 50:899–905

Suzuki M, Giovannoni S (1996) Bias caused by template annealing in the amplification of

mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630
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Thummes K, Kämpfer P, Jäckel U (2007a) Temporal change of composition and potential activity

of the thermophilic archaeal community during the composting of organic material. Syst Appl

Microbiol 30:418–429
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Chapter 2

Recent Developments in Bio-Energy Recovery

Through Fermentation

R. Braun, B. Drosg, G. Bochmann, S. Weiß, and R. Kirchmayr

Abstract Bio-energy recovery through fermentation is gaining importance

because of limited fossil resources. Especially, bio-ethanol and biogas production

are applied worldwide and have reached industrial scale. Other options such as

bio-hydrogen, microbial fuel cells, and higher alcohol and acid fermentations are still

in development. Current fields of intense research are the utilization of lignocellulose

substrates, intensification of the recovery of wastes and industrial byproducts for bio-

energy recovery, optimization of process control (especially, in anaerobic digestion),

and the optimal utilization scenario of byproducts from microbial bio-energy pro-

cesses (e.g., stillage, digestate). For lignocellulose utilization, the optimal pretreatment

technologies (heat, acid, enzyme, steam explosion, mechanical treatment) are being

investigated. For methane production, benchmarks for fermentation parameters are

presented, and current bottlenecks and deficiencies of the technology are discussed.

As biomass is not only needed for energy conversion, but also for other purposes

(food production, animal feed, raw material for industry), the conversion efficiency

from sunlight via plants to biomass and biofuels has to be enhanced. For this reason,

research also focuses on increasing yields, improving conversion technologies,

usage of the entire plant biomass, and improving the entire energy conversion

system. Mass and energy balances, net energy balances, and combined heat and

power usage are also considered.

Current research tries to evaluate eco balances, greenhouse gas emissions, and

the sustainability of the entire production process, in order to improve the entire
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conversion systems. In summary, microbial bio-energy conversion systems will be

of great importance as part of a future energy mix, until alternative energy sources

like direct conversion of sunlight (e.g., photovoltaics), nuclear technology (e.g.,

fusion), or other future energy sources can replace it.
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2.1 Introduction

Due to rising prices for fossil fuels and rising energy demand, bio-energy genera-

tion concepts have gained increasing interest in recent years. Scenarios anticipating

future developments (Schmid 2008) show that the usage of biomass for energy

purposes will not be sufficient to provide the world’s entire energy demand.

Nevertheless, it will be of great importance for the next decades, until direct

conversion systems for energy from sunlight are more advanced.

There are two main ways for the recovery of energy from biomass, i.e., thermal/

chemical- or microbial conversion systems. This chapter covers only the bio-energy

recovery through microbial fermentation. The main focus lies on biogas and bio-

ethanol production processes. These technologies have been realized in many

industrial applications around the world. Other concepts like bio-hydrogen produc-

tion, microbial fuel cells or further alcohol and fatty acid fermentations will not be

discussed in detail.

One of the main advantages of using microorganisms is that high temperature

(or high thermal energy) is not needed for the conversion process. Nevertheless,
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downstream processing can require high energy demand (e.g., distillation of

bio-ethanol, purification of biogas to bio-methane). Additionally, the high water

content of substrates (organic waste, wet biomass) makes costly effluent treatment

or recovery (slops, digestate) necessary.

2.2 Bio-Ethanol Fermentation

Currently, bio-ethanol production is of great importance among microbial bio-

energy transformations, providing alternative energy in the transport sector

(biofuels). Industrial bio-ethanol fermentation is done by pure cultures. The fer-

mentation is typically carried out with selected yeast strains (e.g., Saccharomyces
cerevisiae, S. uvarum, Schizosaccharomyces pombe, Kluyveromyces sp.). Numer-

ous efforts have been reported in strain improvement, aimed at improving the strain

stability, pH-, ethanol-, osmo- and temperature tolerance, productivity and suppres-

sion of the respiratory chain in yeasts (Hutter and Oliver 1998; Shi et al. 1999). A

stable fermentation pattern would allow prolonged continuous process cycles.

Higher osmo and ethanol tolerance allows higher stillage recycling rates and a

less energy consuming distillation. Higher ethanol productivity allows smaller

fermentation vessels and better pH tolerance would lead to less susceptibility to

infections. Finding new S. cerevisiae mutants with higher ethanol yield is still an

issue in research (Mobini-Dehkordi et al. 2008). The alternative use of bacteria (e.g.

Zymomonas mobilis, Clostridium thermosaccharolyticum, Thermoanaerobacter
ethanolicus) for ethanol fermentation has been investigated intensively (Kosaric

et al. 2001). Thermophilic bacterial fermentations would allow less energy con-

suming distillations. Many bacteria can also ferment pentose sugars. However, due

to several reasons, i.e., a need for anaerobic and sterile fermentation conditions,

accumulation of undesirable byproducts, bad centrifugability, so far no full-scale

bacterial ethanol fermentation has been established. Yeast is still the only organism

currently used for large-scale ethanol production. Selected yeasts have proven to be

best suited in terms of stability, robustness against contaminations, and ease of

separation. Most of the yeast strains applied are proprietary of plant suppliers, some

selected strains are provided from culture collections. Yeast fermentations are

carried out both as continuous and batch fermentations, although often the batch

process is preferred due to less probability of contamination. Practical bio-ethanol

fermentation plants are huge, and an optimal sized plant produces about 200,000–

300,000 tons of ethanol per year (Gallagher and Brubaker 2005).

Broadening of the substrate spectrum is among the major future challenges for

strain improvement for bio-ethanol fermentation (Table 2.1). In Brazil, bio-ethanol

production focuses on the direct conversion from sugar (sugar cane), whereas in the

United States and Europe mainly starch-containing substrates (e.g., corn, wheat,

triticale) are used. In the latter, starch is broken down into sugars via amylase

treatment. Future developments are now focusing on the utilization of lignocellu-

losic biomass as substrates (Delgenes et al. 1996; Nigam 2001; Dien et al. 2003;

Mosier et al. 2005; Linde et al. 2008; Panagiotopoulos and Bakker 2008). The use
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of cellulose containing raw materials would allow a major increase of renewable

substrate availability, without diminishing the availability of food plants. Cellulose-

containing substrates demand a more sophisticated pre-treatment to break down

cellulose and hemicellulose to sugars. Enzymatic, thermal, and acid treatments are

applied. Particularly, simultaneous enzymatic cellulose degradation is being inten-

sively investigated (Pejó 2008). Unfortunately, to date the use of commercial

Table 2.1 Overview on typical examples of microorganisms in bio-energy recovery concepts and

important issues in research

Organisms Research issues

Bio-ethanol (pure culture)

Yeasts: Saccharomyces cerevisiae,
Saccharomyces uvarum, Schizosaccharomyces
pombe, Kluyveromyces sp.

Bacteria: Clostridium sp., Zymomonas mobilis,
Thermoanaerobacter ethanolicus

l Pentose sugar utilization
l Strain improvement (pH, ethanol, osmo,

temperature tolerance)
l Suppression of the respiratory chain
l Cellulose and lignocellulose utilization

(pre-treatment technologies)
l Cell recycle
l High substrate utilization
l Process integration
l Stillage treatment

Biogas (mixed culture)

Hydrolysis and Acidogenesis: Bacillus sp.,
Bacteroides sp., Clostridium sp.,

Pseudomonas sp.
Acetogenesis: Microccus sp., Acetobacterium

woodii, Peptostreptococcus sp., Clostridium
aceticum

Methanogenesis: Methanobacterium spp.,
Methanococcus sp., Methanosarcina barkeri,
Methanosaeta sp., Methanospirillum sp.,

Methanobacterium sp.

l Application of pure cultures
l Treatment of nitrogen-rich substrates
l Fast start-up phases for treating industrial

byproducts processed in campaigns
l Process stability
l Substrate pre-treatment technologies
l Digestate treatment
l Nutrient recovery from digestate

Bio-hydrogen (pure/mixed culture)

Dark fermentation: strict anaerobes (e.g.,

Clostridia), thermophiles (e.g., Pyrococcus),
facultative anaerobes (e.g., Enterobacter),
rumen bacteria (e.g. Ruminococcus), aerobic
bacteria (e.g., Bacillus)

Photofermentation: purple bacteria (e.g.,

Rhodobacter sphaeroides), green algae (e.g.,

Chlamydomonas reinhardtii)

l Higher H2-yields
l Means against H2 product inhibition
l Hydrogen storage
l Hydrogen distribution infrastructure

Microbial fuel cell (mixed culture)

Pseudomonas aeruginosa, Alcaligenes
faecalis, Enterococcus gallinarum,
Proteobacteria, Firmicutes, Planctomyces sp.

l Higher currents
l Better electrodes
l Increased durability

Higher alcohol and acid fermentations

(pure culture)

e.g., Clostridium acetobutylicum l Utilization as biofuels
l Raw materials for industry
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cellulases (e.g. from Trichoderma reesei) is quite expensive. Research focuses on

reducing enzyme cost and increasing enzyme activity to allow economically viable,

large-scale enzyme applications (Kovács et al. 2009). Also, new strains are inves-

tigated in order to detect promising alternatives, e.g. T. atroviride mutants (Kovács

et al. 2008, 2009). In addition, thermal pre-treatment (Kovács et al. 2008, 2009;

Matsumura et al. 2008) found great interest in recent research projects. Different

types of heat treatment and steam explosion (Martı́n et al. 2002; Oliva et al. 2008)

are being investigated. Mild acid treatment can be an additional conditioning step

for the mentioned pre-treatment types (Panagiotopoulos and Bakker 2008). In the

last few years, many processes to raise the ethanol yield and to lower the energy

demand have been developed. Alkaline, acid, solvent treatment, or steam explosion

offer the best opportunity to disintegrate biomass according to Cardona and

Sánchez (2007). Pan and Arato (2005) describe the so-called “Lignol” process for

processing softwood into ethanol and byproducts. This process uses the organosolv

process for obtaining fermentable products and high quality lignin. A mixture of

ethanol and water is applied as solvent at about 200�C and 30 bar. Apart from the

comparatively high energy need and high costs for such pre-treatment processes,

the toxicity of byproducts which occur in the pre-treatment step must be considered

(Delgenes et al. 1996). Also, the simulation of the described pre-treatment processes

is of importance in the latest research projects (Tsoutsos et al. 2007).

The use of genetically modified organisms (GMO) in bio-ethanol production is

still restricted to laboratory scale investigations (Martı́n et al. 2002; Dien et al. 2003).

From a practical point of view, proper substrate selection, efficient ethanol

recovery, and environmentally friendly byproduct management (stillage, CO2) are

considered essential. Main byproduct of ethanol fermentation is the residual stillage

after distillation – “Distillers’ dried grains with solubles.” Up to now, stillage is

mainly used for animal feeding, demanding a high energy consuming drying step.

Due to the huge volumes and high energy demand, research currently is focused on

energy recovery from stillage. It is estimated that between 75% (Pfeffer et al. 2007)

and 100% (Friedl et al. 2005) of the overall process heat demand could be covered

through biogas from anaerobic digestion of stillage. Anaerobic treatment of stillage

and other byproducts from ethanol production has been investigated for a long time

(Braun and Huss 1982). Recently, a biogas yield of 400–500 m3 per t volatile solids

(VS), at hydraulic retention times (HRT) of 20–39 days was reported for stillage

from distillery. Two-stage fermentation of stillage gives an opportunity for a more

stable process for the methanogenesis (Blonskaja et al. 2003).

2.3 Methane Fermentation

Different from bio-ethanol fermentation, the formation of bio-methane (Anaerobic

digestion) is induced by a multi-strain mixed bacterial culture (Reith et al. 2003),

usually obtained by the natural enrichment from the respective substrates applied.

Depending on the substrate applied and on the fermentation conditions, constitution
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and number of participating bacteria can vary considerably. According to the de-

gradation step, different bacteria are considered (Table 2.1; see Chap. 1, Insam

et al. 2010; Chap.3, Plugge et al. 2010). In the hydrolysis, the break-down phase

of proteins, carbohydrates and lipids to monomers, the bacteria Bacillus sp.,

Bacteroides sp., Clostridium sp., Pseudomonas sp. and Micrococcus sp. are of

greater importance. To separate the hydrolysis step as a pre-treatment step in

anaerobic digestion is an important issue both in research and in constructing new

biogas plants (Park et al. 2005). The same microorganism population responsible

for hydrolysis also carries out the further degradation of monomers to acids in

acidogenesis. In the consecutive degradation to acetate (acetogenesis), the bacteria

Acetobacterium woodii, Peptostreptococcus sp., and Clostridium aceticum are

usually involved. Whereas other species like Methanobacterium spp., Methano-
coccus sp., Methanosarcina barkeri, Methanosaeta sp., Methanospirillum, and
Methanobacterium sp. are responsible for the last step, the methane formation

(methanogenesis). The described processes take place simultaneously, provided

all participating microorganisms stay in a well-balanced equilibrium.

Although there has been much research on interrelationships and growth condi-

tions in pure cultures, little information is available on the more complex mixed

culture methane fermentation or on other bio-energy fermentations carried out by

mixed cultures (Kleerebezem and van Loosdrecht 2007). So far steering of the

mixed population is only possible through proper control of environmental and

fermentation conditions. Most important environmental parameters are tempera-

ture, pH, alkalinity, and redox conditions. Important fermentation conditions are

substrate concentration, nutrient ratio (C:N:P), substrate volatile solids (VS) load-

ing rate (kg VS m–3 per day), hydraulic residence time (d), as well as metabolite

(volatile fatty acids, VFA), and byproduct formation (NH4
+, H2S). These para-

meters have to be properly controlled during the start-up of fermentation.

For the start-up of methane fermentation, usually no artificial inoculummaterials

have to be added. Normally autochthonous bacteria from the substrates applied are

slowly adapted to the fermentation conditions, using gradually increasing substrate

loading rates. The start-up procedure can take several weeks to months. Once

established properly, mixed bacterial cultures in anaerobic digestion can stay stable

for long periods of time. To accelerate the start-up process, inoculum material from

operational fermentations can be used as seed sludge. Own investigations showed

that commercially available inoculum materials or catalysts normally do not show a

noticeable enhancement compared to naturally derived seed cultures. Future chal-

lenges for the inoculation of methane fermentations can lie in fast start-up pro-

cesses. Thus, organic industrial byproducts which are processed in campaigns, like

in the sugar and starch industry, can be dealt with more easily.

Since the microorganisms involved in anaerobic digestion can feed on bigger

substrate spectra than ethanol fermenting yeasts, pre-treatment has not gained the

same importance as in bio-ethanol production, but is still an important issue when

treating energy crops. Special pre-treatment for the use of nitrogen rich or fiber-

containing substrates is also being investigated. A pre-treatment of the substrates is

expected to achieve shorter retention times and higher gas yields in anaerobic
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digestion. Palmowski and Müller (2000) describe the influence of the size reduction

of organic waste on the digestion efficiency. Smaller particle size lowers the retention

time and increases the biogas yield in fibrous agricultural substrates. Various thermal,

mechanical, and biochemical (enzymatic) disintegration processes have been devel-

oped (Palmowski and Müller 2000; Mao and Show 2007). Thermal disintegration

processes claim an increase in biogas yields between 10 and 30% (Schiedner et al.

2000). Ultrasonic treatment also increases the digestibility through a size reduction of

the organic waste particulate matter (Palmowski and Müller 2000). Ultrasonic treat-

ment is occasionally used for sewage sludge disintegration (Mao and Show 2007).

2.4 Other Fermentation Products

Various algae and bacterial fermentations of pure and mixed cultures have been

demonstrated as being capable of bio-hydrogen formation in fundamental research

(Reith et al. 2003). To date none of these experiments has reached practical

significance or technical scale bio-hydrogen production. While algae are cultivated

in pure cultures, dark fermentation (a part of the anaerobic digestion) takes place in

mixed cultures (Table 2.1). Main problems are low hydrogen concentrations,

product inhibition, separation, and storage of hydrogen. The main practical problem

is the missing infrastructure for hydrogen distribution.

Electric power can even be produced directly through fermentation in microbial

fuel cells (MFC). In a MFC, the degradation process of the organic substrates takes

place directly at an electrode which is used as an electron acceptor. By this means

electricity can be produced directly, without an intermediate energy carrier (e.g.,

methane or hydrogen). However, only very low voltage can be achieved. So far, an

industrial application seems difficult (Scholz and Schröder 2003; Schröder et al.

2003; Siegl 2006).

The fermentation of higher alcohols (e.g., butanol, butanediol) and fatty acids can

also be considered part of bio-energy recovery concepts. During the Second World

War, the Aceton-Butanol-Ethanol (ABE) fermentation was of great importance.

Currently, this process has no industrial relevance. However, for example, butanol is

interesting as an energy carrier and could, in principle, be used as fuel for cars.

2.5 Optimum Fermentation Conditions, Bottlenecks,

and Process Control in Microbial Methane Production

2.5.1 Deficiencies in Methane Fermentation

Successful control of bio-ethanol fermentation with yeasts has been proved in

numerous full-scale applications. Control of methane fermentations proves to be

much more complicated. Due to the complex mixed culture fermentation and
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substrate spectrum, further research and development is required to remove various

bottlenecks in the process chain. Practical experience shows that process failures in

anaerobic digestion applications may occur for several reasons: Microbiological

limitations, affecting reflexively the microbial community (e.g., ammonia inhibi-

tion, trace element insufficiency etc.), and also technical weakness of the equip-

ment, like insufficient mixing caused by inappropriate particle size, or high

viscosity caused by insufficient hydrolysis. For example, after replacing half of

the maize silage substrate of a biogas plant by grass and clover, the recirculation

rate of the separated liquid fraction of the digestate had to be doubled. In other

cases, increased viscosity caused failure of the mixing device (Resch et al. 2008). In

conclusion, it may be stated that in anaerobic digestion of organic waste possible

ammonia inhibition can decelerate methane production. Methane formation is,

therefore, the rate limiting step in waste fermentation. In energy crop digestion,

however, the rate limiting step is the hydrolysis of cellulose.

Hydrolytic, acetogenic and methanogenic prokaryotes differ considerably in terms

of physiology, nutritional needs, growth kinetics, and sensitivity to environmental

conditions (Pohland and Ghosh 1971; Chen et al. 2008). Imbalance between acid- and

methane-forming microorganisms is frequently the primary cause of reactor instabil-

ity (Speece 1996; Demirel andYenigün 2002). Additionally, inhibitory substances are

often found to be the cause of anaerobic reactor disturbance, since various contami-

nants are present in substantial concentrations inwastewater – and sludge – substrates.

Furthermore, metabolites, such as VFA, NH3, or H2S frequently disturb methane

fermentations. Due to the high variation of substrates applied in methane fermenta-

tions, several other environmental impacts can affect methane formation. Especially,

substrateswith high volatile solid (VS) contents (e.g., energy crops) can cause an upset

through sudden temperature increase (Daverio et al. 2003; Lindorfer et al. 2006; Braun

2007). Even a lack in trace element supply may occur with some substrates (Hummer

2006) used in methane fermentations (e.g., exhaust vapor condensate, energy crops).

Unbalanced substrate mixtures may occur occasionally in fermentations using indus-

trial bio-wastes (e.g., slaughter house waste, pulp and paper wastes) or energy crops

(e.g., maize). If the C:N ratio cannot be kept in the range of 10:1 to 30:1 (Eder and

Schulz 2006) either a lack or a surplus of nitrogen can cause major disturbance

of methane formation (Kirchmayr et al. 2007). Inhibition is usually indicated by a

decrease of the steady state rate of methane gas production and hence, an accumula-

tion of volatile organic acids (Kroeker et al. 1979). The concentration of low mole-

cular free VFA (carboxylic acids C2-C5) as intermediate metabolites in anaerobic

digestion is considered a benchmark for the equilibrium between hydrolytic micro-

organisms and methane-forming microorganisms (Ahring et al. 1995).

2.5.2 Ammonia Inhibition

Ammonium ions (NH4
+) and free ammonia (NH3) are the two principal forms of

inorganic ammonia nitrogen in aqueous solution. Several mechanisms explaining

ammonia inhibition have been proposed, i.e., a change in the intracellular pH,
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increase of maintenance energy requirement, and inhibition of specific enzyme

reactions (Whittmann et al. 1995). NH3 is widely considered to be the main cause

of inhibition, since it is easily membrane-permeable (Kroeker et al. 1979; de Baere

et al. 1984). The hydrophobic ammonia molecule may diffuse passively into the cell,

causing proton imbalance, and/or potassium deficiency (Gallert et al. 1998; Sprott

and Patel 1986). Among the four types of microorganisms involved in anaerobic

digestion, the methanogens are the least tolerant and therefore, the most likely to

cease growth due to ammonia inhibition. Different sensitivity to ammonia shock

loadings and better tolerance to ammonia after adaptation (van Velsen et al. 1979;

Hashimoto 1986; Koster and Lettinga 1984; Hansen et al. 1998) could be explained

by a change in metabolic pathways as proposed by Schnürer and Nordberg (2008).

The results from that study strongly suggest that the observed adaptation to higher

ammonia levels corresponds to a shift in the methane-producing population.

Practical experience with full-scale bio-waste and slaughter house waste diges-

ters show ammonium concentrations exceeding 5,000 mg L–1 NH4-N which are still

operated reliably (Kirchmayr et al. 2007; Resch et al. 2007b). Average HRTs in such

digesters are between 50 and 100 days. Nevertheless, implementing an intermediate

ammonia removal and recovery step (Resch et al. 2007b) clearly showed an increase

of the biogas yield by 35% and a better reactor performance (doubling of the COD

removal rate) of slaughter house waste digestion. In energy crop fermentation,

ammonium concentrations were mostly negligible (Resch et al. 2007a; Gabauer

et al. 2008; Lindorfer et al. 2008a). Using the formula described by Hashimoto

(1986) to calculate the level of free ammonia, it is clear that the shift in this study

occurred at levels above 128–330mg L–1 NH3. These values are in the same range as

previously reported to be inhibitory for methanogenesis in un-adapted processes

(Braun et al. 1981; de Baere et al. 1984). Resch et al. (2006) and Kirchmayr et al.

(2007) reported stable operation of biogas plants up to an ammonia level of 1,000

mg L–1 NH3-N which has been indicated as a critical value by Hansen et al. (1998).

2.5.3 Trace Element Supply

On some occasions, disorders in methane fermentations have been attributed to a

lack in trace element supply. Better performance of anaerobic digestion of catering

waste or energy crops has been described after the addition of trace elements

(Preissler et al. 2007; Climenhaga and Banks 2008). There is also information

available about trace metal dynamics in anaerobic granular sludge bed reactors and

their influence on reactor performance (Zandvoort et al. 2006).

The key factor influencing the trace element requirement in specified reactor

systems is the bioavailability of the trace elements supplied through substrate and/

or supplement. Despite chelate-forming conditions (Kuo and Parkin 1996), the

sulfide concentration will influence the bioavailability of trace elements, as metals

will precipitate as insoluble metal sulfides (Gerardi 2003). Long-chain fatty acids

can also bind with minerals such as calcium (Pereira et al. 2001).
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Co-fermentation, i.e., addition of substrates rich in minerals, such as liquid

manure, organic wastes or grass varieties, can help overcome lack in trace elements.

Although there is little information available on actual trace element need and on

positive effects in biogas fermentation, numerous commercial additives are avail-

able, usually claiming improved fermentation performance in practice.

2.5.4 Fermentation Temperature

Numerous investigations show advantages and disadvantages of thermophilic ver-

sus mesophilic methane fermentations (van Lier et al. 1993, 1996; Speece 1996;

Gallert and Winter 1997; Gallert et al. 1998; Angelidaki et al. 2004; Kim et al.

2006; Zábranská et al. 2000). In most studies a specific temperature optimum was

defined, either in the mesophilic range between 35 and 40�C or in the thermophilic

range between 50 and 65�C (Gerardi 2003; Bischofsberger et al. 2004). For this

reason most practical biogas fermentations operate either at about 35 or 55�C
(Lindorfer et al. 2008b). In contrast, there are not many data available on the

process temperatures between 40 and 50�C. However, deviation from the meso-

philic temperature range proved to be problematic in several cases of full-scale

energy crop fermentation plants (Lindorfer et al. 2008b). The exothermic carbohy-

drate degradation and the high energy density in the substrates, together with high

loading rates, can cause a sudden temperature increase. Such self-heating effects

led to an increase in process temperatures from 35–39�C to 42–49�C (Daverio et al.

2003; Lindorfer et al. 2006; Braun 2007). This effect was accompanied by a gradual

cease in methane formation. This phenomenon was observed in 20 of 41 full-scale

biogas plants investigated, which subsequently had to be operated at increased

temperatures between 40 and 50�C (Laaber et al. 2005; Braun 2007).

The self-induced temperature increase in mesophilic digesters to sub-thermo-

philic levels (40–50�C) was shown to cause severe disorders of the microbial

population (Lindorfer et al. 2006). In laboratory-scale experiments, complete fail-

ure in methane production for several days occurred after a sudden temperature

increase (Bolzonella et al. 2003). The only way to prevent a sudden temperature

increase is to change the feedstock, to reduce the organic loading rate or to install a

fermenter cooling system. However, in the early planning phase of an energy crop

digestion plant a thorough investigation of the optimum fermentation temperature is

highly recommended.

2.5.5 Retention Time

Recent investigations have shown that considerably high HRTs of 144 days (mean

values) are required in energy crop fermentations and 84 days in co-fermentation of

bio-wastes (Laaber et al. 2007). Under such conditions, the degree of volatile solid
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degradation can be above 90% and the final biogas yield between 0.5 and 0.8 Nm3

kg–1 VSadded (50–60% CH4). Because of the extended HRT, the resulting biogas

productivity is just between 0.5 and 2 m3 m–3 fermenter volume per day.

Apart from the substrates, the operation temperature can also be responsible for

variations of the fermentation parameters. Especially, the HRT depends on meso-

philic or thermophilic process control. Thermophilic temperature conditions and

cofermentation lead to a shorter HRT (Schöftner et al. 2007). However, a change in

substrate composition to higher proportions of fibrous and cellulosic substrates,

leads to an increase in recirculation demand of diluting process liquid, which lowers

the HRT and generates more solid digestion residues (Resch et al. 2008). These

solid residues provide the largest source of residual methane potential (expressed as

nonconverted volatile solids). Consequently, its minimization is considered the

main goal (Resch et al. 2008).

So far, predominantly conventional one- and two-step continuous stirred tank

reactors are applied, especially in agricultural applications, using plant byproducts,

slurries, or energy crops. More sophisticated bio-reactors are occasionally applied

in municipal bio-waste treatment and anaerobic industrial waste treatment (Speece

1996; Reith et al. 2003). Reactor systems such as UASB (Upflow Anaerobic Sludge

Bed) reactors or anaerobic filters are based on immobilization, that is, retention of

bacterial biomass within the bioreactor.

Another strategy to realize shorter retention times and high productivities in

fermenters is the pretreatment of substrates as described above.

2.6 Benchmarks in Fermenter Performance

Provided that proper reaction conditions can be kept stable, the anaerobic digestion

process can be performed without significant occurrence of volatile fatty acid

metabolites or pH changes. According to a benchmark analysis of energy crop

digesters, recommended process parameters are listed in Table 2.2. Regular meth-

ane fermentations are characterized by a volatile fatty acid concentration (as acetic

acid) of 0–1.5 g L–1. Nevertheless, intermediate fatty acid levels (VFA) in methane

fermentations can differ widely depending on the substrate or nutrient mixture

applied. While in energy crop digesters the VFA levels are found comparably

low (0–1.5 g L–1), in biogas plants operated with organic wastes and slaughter

Table 2.2 Recommended fermentation conditions for energy crop digesters (Laaber et al. 2007)

Regions of values

Stable process Tendency to instability Unstable process

pH 7.5–8.1 7.1–7.5 <7.1; >8.1

Volatile fatty acids (g L–1) <1.5 1.5–4.5 >4.5

NH4-N (g L–1) <5 >5 –

Total solids (% w/w) 4–8 <4; 8–9 >9

Volatile solids (% w/w) 3–6 <3; 6–7 >7
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house wastes VFA levels up to 19 g L–1 have been reported (Kirchmayr et al. 2007).

A pH range between 7.5 and 8.1 is frequently found to be stable. Ammonium levels

should be below 5 g L–1. Typical total solid (TS) content is between 4 and 9% and

that of volatile solids (VS) between 3 and 7%.

In most cases, an adverse influence on the fermentation pattern is caused by

sudden changes in substrate composition, concentration, quality, and feeding rate.

Care has to be taken for a well-balanced ratio of total nutrients to be provided by the

substrate. Bacterial communities producing biogas demand a ratio of carbon to

nitrogen to phosphate between 75:5:1 and 125:5:1 (Eder and Schulz 2006). Practi-

cal experience (Laaber et al. 2007) as well as extended simulations and experimen-

tal studies indicate that initial concentrations of carbohydrates, proteins, and fat

affect the performance of methane fermentations significantly (Angelidaki et al.

1993; Biswas et al. 2006). The methane concentration in biogas decreases with

increasing concentrations of carbohydrates and protein, while fat concentration has

the opposite effect (Biswas et al. 2006).

2.7 Monitoring and Control of Fermentations

It is of vital importance not only to control the environmental conditions e.g.,

temperature, pH, alkalinity or redox potential, but also to monitor fermentation

conditions and to apply real-time analysis. Online measurement of alkali consump-

tion and biogas production allows the detection of toxicity incidents and substrate

over- or underloading. Anaerobic bio-sensors are available to monitor overload

and toxicity by measuring biogas yields (Rozzi et al. 1997; Thévenot et al. 2001;

Nakamura and Karube 2003).

According to Scherer (2008a), calculating the carbon balance of input and output

of a biogas plant can help in evaluating the process stability. This can be achieved

by following the carbon path by measuring the gas production (carbon dioxide,

methane), determining carbon content of solid digestion residues and gas chroma-

tography analysis of the metabolites, VFA and alcohols in liquid digestion residues.

An imminent plant failure can also be indicated if the ratio of VFA and buffering

capacity decreases below 0.5 (Speece 1996; Gerardi 2003). Normally, the alkalinity

should lie between 6,000 and 8,000 mg L–1 of CaCO3 equivalent (Scherer 2008b).

An optional analytical parameter is the digital image analysis to estimate the

ratio of methanogenic archaea in the mixed culture as well as bacterial hydrolytic

activity. The methanogenic fraction represents �5% of the population (Scherer

2008b).

However, simple online methods are not always able to predict process imbal-

ances. Offline analyses, e.g., high-performance liquid chromatography (HPLC), gas

chromatography (GC), and flow injection analysis are time consuming. To obtain

better control, process analytical technologies may be invoked. Thus, a wide array

of process analytical methods is available (Bakeev 2005). Examples are GC

determination of volatile components (Boe 2006; Diamantis et al. 2006) or
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spectroscopy coupled to a flow system containing enzymes for the determination of

byproducts, e.g., glycerol dehydrogenase (Fernandes et al. 2004). Also, near

infrared spectroscopy (i.e., transflexive embedded near infrared sensor - TENIRS)

can be applied. Such near infrared technology can be used for monitoring acetic,

propionic, iso-butanoic, butanoic, iso-valeric and valeric acid, ammonium, and total

VFA (Holm-Nielsen et al. 2007). The ratio between acetic acid and propionic acid

in the process can provide valuable information as an early warning before a

process failure occurs (Hill and Holmberg 1988; Boe 2006).

Under anaerobic conditions, H2 is preferably used for the reduction of

NO3
– and SO4

2–. Depending on the substrate used, a hydrogen sulfide (H2S)

content in the biogas from 500 to 20,000 ppm (2% v/v) can result (Woodcock

and Gottlieb 2004). Because of its inhibitory, corrosive, and generally harmful

properties, it has to be removed from the produced biogas. Simultaneous

biological oxidation using controlled aeration or external bio-filtration is fre-

quently applied as an alternative to conventional chemical methods (Devinny

1999; Gabriel and Deshussen 2003). Redondo et al. (2008) introduced an auto-

mated online H2S analyzer applicable to the monitoring of methane fermenta-

tions. A single-channel flow injection analyzer detects S– in the liquid phase and

is coupled with a continuous flow analyzer including a gaseous diffusion step for

detecting H2S in the gas phase.

2.8 Sustainability of Microbial Energy Transformations

2.8.1 Process Energy Demand and Greenhouse Gas Emission

Important criteria for evaluating the sustainability are the ratio of renewable energy

output to fossil energy input and the emission of greenhouse gases (GHG).

The most important issue is the amount of primary energy needed in the energy

conversion process. In the first process step of plant production, primary energy

input is required for ploughing, sowing, fertilizer and pesticide production, harvest

and transport. Further primary energy input may be required for the pretreatment

and processing of the plant material, fermentation, recovery and purification of

products and byproducts. In bio-ethanol production, for example, the recovery of

ethanol is a highly energy intensive step where a high percentage of the overall

primary energy is spent. A standard biogas process in which biogas is used in a

combined heat and power plant (CHP) requires less process energy. However, if

biogas is to be upgraded to bio-methane again more primary energy will be

required. Apart from the amount of primary energy required, the source of the

process energy is important for the sustainability. In the bio-ethanol production

process, an appreciable amount of the energy required could be provided by

renewable energy, e.g., anaerobic digestion of stillage (Drosg et al. 2008b) or the

use of plant byproducts (e.g., straw, bagasse).

2 Recent Developments in Bio-Energy Recovery Through Fermentation 47



GHG emissions occur during the whole process chain, i.e., cultivation and

harvest of the biomass, during transportation, conversion processes, and through

the use of products. Emissions vary considerably according to the raw materials

used for fermentation. If energy crops are used for example (e.g., maize, sugar

beets), N2O-emissions from fertilization have a large negative impact on a life cycle

analysis (LCA). Ecologically sound plant selection and land use are, therefore, of

primary importance and consequently “Good Ecological Practise” for bio-energy

projects is requested (Firbank 2008; Fritsche 2008).

Further emissions occur (e.g., NH3), if organic waste is used as a substrate in

anaerobic digestion. Incomplete substrate degradation during fermentation can

often cause additional GHG emissions (e.g., CH4) from residual substrate storage

and use. Incomplete combustion of methane in CHPs can contribute to GHG

emissions during product use.

2.8.2 Impacts of Byproducts on the Sustainability of Bio-Energies

Byproducts can be responsible for some of the emissions and an additional primary

energy demand. In small-scale decentralized agricultural biogas plants, the diges-

tate can be easily applied as fertilizer on nearby agricultural areas. However, the

bigger the plant, the higher is the cost of storage, transportation, and application of

digestate. In addition, there are often application limits for nitrogen and other

nutrients. Especially, byproducts from large-scale anaerobic digestion of industrial

wastes can cause considerable problems (Drosg et al. 2008b). Since most of such

substrates are from supra-regional origin, the digestate has to be transported

considerable distances for application.

Different technologies are applied for digestate treatment or upgrading. Usually

the solid phase is separated from the liquid via screw press or decanters. The solid

digestion residue subsequently can often be directly applied as fertilizer in agricul-

ture. Increasingly, residual solids have to be composted or otherwise treated for

intermediate storage and portability. For improving solid-liquid separation, floccu-

lation or precipitation agents are commonly applied. For nutrient recovery, mem-

brane technology, e.g., ultrafiltration and reverse osmosis, are used (Diltz et al.

2007; Fakhru’l-Razi 1994). Membrane filtration produces a nutrient concentrate and

purified process water (Castelblanque and Salimbeni 1999; Klink et al. 2007). The

liquid digestate can also be purified through aerobic biological wastewater treatment

(Camarero et al. 1996). However, because of the high nitrogen content and low

biological oxygen demand (BOD), an addition of an external carbon source may be

necessary to achieve appropriate denitrification (Drosg et al. 2008a). A further

possibility for concentrating digestate is evaporation and/or drying of the concen-

trate. For reducing the nitrogen content in the digestate, stripping (Siegrist et al.

2005), ion exchange (Sánchez et al. 1995) or struvite precipitation (Uludag-Demirer

et al. 2005; Marti et al. 2008) have been proposed. Whatever the process applied,

advanced digestate treatment in most cases requires high chemical and energy
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inputs. Together with increased investment costs for appropriate machinery, con-

siderable treatment costs may result. Therefore, it has to be thoroughly investigated

whether the resulting overall economics allow the realization of huge centralized

installations.

2.8.3 Mass and Energy Balances

For evaluating the different bio-energy recovery concepts, emphasis has to be laid

on the mass and energy balance. Figure 2.1 shows the energy efficiency of a two-

stage biogas plant. Manure, energy crops, and organic residues are used as sub-

strates. In this plant about 86% of the volatile solid input is converted into biogas.

The energy balance shows that in the case of such a plant a large amount of energy

(51%) remains unused in the form of heat. Consequently, a combined heat and

electricity utilization has to be the aim for achieving better energy efficiency in

biogas plants.

The yield of plant biomass per hectare is another important contributor to the

energy balance. Poor hectare yields adversely influence the energy balance. Fur-

thermore, it makes a difference whether the entire plant is used (e.g., whole crop

silage), or only parts from the plants are used (e.g., grains).

Uellendahl et al. (2008) showed that energy balances and cost-benefit analyses

favor perennial crops for energy production in biogas plants. The required energy

input for the cultivation of e.g., Miscanthus or Willow is significantly lower than in

the case of annual crops (Heller et al. 2008; Møller et al. 2008), which are predomi-

nantly cultivated in most European countries. Due to longer growing seasons,

perennials result in higher biomass yields of dry matter per hectare (Uellendahl

et al. 2008). Thus, the annual solar energy conversion efficiency of perennial crops is

Fig. 2.1 Overall energy balance of a two-step energy crop co-digestion plant (all units are given in

t volatile solids (VS) per year). A net electrical efficiency of 37% and a typical high proportion of

unused heat (51%) can be seen. Just 7.8% of the heat produced can be used. Methane loss in the

combined heat and power plant is 1.8%. Own process electricity demand is 2.5%
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often higher than that of annual plants. For biogas production, the net energy yield

per hectare can be increased by a properly balanced co-fermentation. Uellendahl

et al. (2008) report output/input ratios ranging from 6.9 to 9.5 for corn, Miscanthus

and Willow fermentation to biogas without pre-treatment (Table 2.3). However,

since perennial crops show high lignocellulose concentrations, their hydrolytic pre-

treatment is frequently being proposed. Akali or acid treatment, pre-digestion,

ensiling, thermochemical, or ultrasonic treatment have been proposed (Yadvika

et al. 2004). With wet oxidation pre-treatment, the output/input ratio can be

increased up to 13.1 for biogas fermentation (Uellendahl et al. 2008).

Considering energy balances in bio-ethanol production, switchgrass results in a

high energy output/input ratio ranging from 10.8 to 11.3 (Vadas et al. 2008). In

comparison annual crops, e.g., corn (including straw), reach a maximum energy

output/input ratio of 2.2 (without straw stover it decreases to 1.4). Alfalfa–corn

rotation systems show an input/output ratio ranging from 2.9 to 3.1 (Vadas et al.

2008).

For ethanol production from lignocellulosic biomass, e.g., rye straw, oilseed

rape straw, wet oxidation (Petersson et al. 2007), or steam explosion (Galbe and

Zacchi 2004) were proposed for pre-treatment. For bio-ethanol, the resulting energy

output/input ratios vary considerably depending on the substrates applied. Based on

theoretical calculations, Hofmann (1999) reported an energy output/input ratio of

1.3. Other calculations for bio-ethanol from sugar beets (Schäfer et al. 1997) found

a maximum output/input ratio of 1.8 (Table 2.3). A respective net energy gain of

77% corresponding to about 1,200 L ethanol ha–1 was reported. Rosenberger et al.

(2001) calculated an output/input ratio ranging from 2.5 to 2.8 (depending on the

process conditions) for winter cereals, i.e., triticale and winter rye.

Table 2.3 Overview of energy efficiency of different microbial energy transformation systems

Substrate Fermentation process Energy output/

input

Reference

Corn Biogas fermentation (no pre-treatment) 7.2–9.5 [1]

Corn Biogas fermentation (with wet oxidation

pre-treatment)

6.8–8.9 [1]

Miscanthus Biogas fermentation (no pre-treatment) 6.9–7.8 [1]

Miscanthus Biogas fermentation (with wet oxidation

pre-treatment)

11.6–13.1 [1]

Willow Biogas fermentation (no pre-treatment) 7.3 [1]

Willow Biogas fermentation (with wet oxidation

pre-treatment)

12.3 [1]

Corn Bio-ethanol fermentation 1.4 [2]

Corn + stover Bio-ethanol fermentation 2.33 [2]

Alfalfa – corn (plant

rotation)

Bio-ethanol fermentation 2.87–3.05 [2]

Switchgrass Bio-ethanol fermentation 10.76–11.31 [2]

Sugar beets Bio-ethanol fermentation 1.77 [3]

Winter cereals Bio-ethanol fermentation 2.53–2.76 [4]

[1] Uellendahl et al. (2008), [2] Vadas et al. (2008), [3] Schäfer et al. (1997), [4] Rosenberger et al.

(2001)
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2.8.4 Potential of Microbial Energy Transformations

Unless the direct use of solar energy or other alternative energy sources (e.g.,

nuclear fusion) becomes predominant, for the next decades microbial energy

transformation of renewable biomass will be of increasing importance. Biomass

competitively serves for a multitude of purposes, i.e., food, feed, industrial use,

energetic use. Its yield and availability depends on numerous regional conditions.

Different varieties of plants have to be carefully selected for different processes and

uses to avoid competitive use or environmental drawbacks like water shortage,

plant diseases, or greenhouse gas emissions. Biomass can have special importance

in energy provision because it is storable. So imbalances between energy demand

and energy provision through unsteady renewable energy sources like wind or solar

energy can be adjusted.

The arable land area for the production of biomass is restricted (Hedegaard et al.

2008). Campbell et al. (2008) estimate the potential for sustainable biomass pro-

duction in agriculture to be 385–472 mio ha. For this study only abandoned

agricultural lands were considered, to avoid deforestation or threatening food

security. Considering this area for biomass production up to 8% of the current

worldwide primary energy demand could be provided by biomass. In addition, there

may be a large future potential for algae production in the oceans (Orr and

Sarmiento 1992).

Nevertheless, the competition between biomass for food production and for non-

food purposes is increasingly discussed (Bole and Londo 2008; Cockerill and

Martin 2008). Furthermore, the preservation of biodiversity is endangered by

increasing monocultures (Perry et al. 2008). As a consequence, the potential of

organic wastes and byproducts for energy recovery needs to be better exploited.

Although an increasing alternative energy demand is pushing bio-energies, the first

priority has to be food production, followed by animal feed production. Remaining

land areas can be used for the production of raw materials for industry and finally as

sources of renewable energy.

In transportation, there is still a big potential for bio-ethanol and biogas (or bio-

hydrogen) as biofuels, since in this sector the GHG reduction is still very difficult to

achieve while the fuel demand is increasing. Biogas upgraded to bio-methane

shows a high potential as a biofuel because of the high hectare yields and the

good energy output/input relation. Nevertheless, lacking bio-methane infrastructure

and methane driven vehicles are still a big hindrance. However, the overall conver-

sion efficiency for biofuels is still very poor as shown in Table 2.4. When using bio-

methane from maize directly as biofuel in a vehicle, only 9% of the chemical

energy of the whole plant is used. For biodiesel from rapeseed oil this is even worse

with 6% useful energy. In Fischer Tropsch-Diesel, a second generation biofuel, the

percentage of useful energy is still only 10%. According to the data from Table 2.4,

electrical power generation from bio-methane in a combined cycle power plant

would raise the conversion efficiency almost threefold from 9 to 24%. This can be a

future scenario for biomass in the transport sector. Biomass is first converted to
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electricity and then used in vehicles. However, electricity produced directly from

wind or solar energy has an even higher conversion efficiency of up to 77%. All this

indicates that future developments will tend to a direct use of electric power in

vehicles. Nevertheless, bio-methane and bio-ethanol can be stored more easily than

electricity which is a large benefit. Also, infrastructure and research for electric

mobility applications is still insufficient. Bio-methane and bio-ethanol will stay, or

will even become a more important factor considering GHG emission reduction and

renewable energy provision for mobility in the medium term. Apart from that,

microbial energy transformation from biomass will still be used for electric power

generation.
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Chapter 3

Syntrophic Communities in Methane Formation

from High Strength Wastewaters

Caroline M. Plugge, Jules B. van Lier, and Alfons J. M. Stams

Abstract High-strength wastewaters from agro-industrial processes (sugar refi-

neries, potato-processing factories, distilleries, paper mills, slaughter houses, etc.)

are efficiently (pre-)treated using high rate anaerobic wastewater treatment systems.

The organic pollution load can be reduced by 80–90% prior to aerobic polishing.

The bio-fuel methane thus produced is generally used for the production of elec-

tricity and/or steam, thereby lowering the industrial fossil energy demand. Addi-

tional advantages of anaerobic (pre-)treatment are a distinct reduction in excess

sludge production and space demand, and low operational costs, mainly owing to

low sludge handling costs and low chemical costs. Anaerobic treatment in high rate

anaerobic bioreactors is accomplished by mixed syntrophic communities of anaer-

obic bacteria and methanogenic archaea. Balanced and highly structured microbial

communities are essential for high rate anaerobic wastewater treatment. This

chapter deals with the syntrophic microbial associations in anaerobic sludge and

their importance to high rate wastewater treatment.
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3.1 Methane

3.1.1 Sources of Methane

Methane (CH4) is a colorless, odorless gas with a wide distribution in nature. The

origin of methane is biological. Methane is produced from natural as well as

anthropogenic sources (Table 3.1). It is the principal component of natural gas, a

mixture that contains about 70–90% methane and other hydrocarbons (ethane,

propane, butane), carbon dioxide (CO2), oxygen (O2), nitrogen (N2), hydrogen

sulfide (HS–), and traces of some rare gases (He, Ne, Xe). Swamp gas, which is

produced during the anaerobic microbial decomposition of plant and animal matter,

e.g., under water, is also mainly composed of methane. Ruminants and other

animals produce and release methane during digestion. Methane is also formed in

considerable quantities during the fermentation of organic matter such as manure,

wastewater sludge, municipal solid waste (including landfills), or any other biode-

gradable feedstock. Commonly, methane-containing gas mixtures that are formed

Table 3.1 Estimates of the global methane emissions from different sources

Sources Methane emission (Tg CH4 y
–1) Percentage (%)

Natural Sources
Wetlands 92–237 15–40

Termites 20 3

Ocean 10–15 2–3

Hydrates 5–10 1–2

Subtotal 127–282 21–47

Antropogenic Sources
Ruminants 80–115 13–19

Energy generationa 75–110 13–18

Landfills 35–73 6–12

Rice agriculture 25–100 7–17

Waste treatment 14–25 2–4

Biomass burning 40 4–9

Subtotal 267–478 45–80

Total 400–700 nab

aMethane deposits released by coal mining, petroleum drilling, and petrochemical

production
bna: not applicable

Source: Adapted from Lowe (2006)
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in biological processes are termed biogas or swamp gas. Methane hydrates – frozen

mixtures of methane and water on the ocean floor – are present in massive amounts

and are a potential source of methane to be exploited.

3.1.2 The Dual Characteristic of Methane

Methane is a greenhouse gas which, owing to its higher infrared adsorptive capac-

ity, is over 20 times more effective in trapping heat in the atmosphere than carbon

dioxide over a 100-year period (US-EPA 2008). However, its lifetime in the

atmosphere is relatively short, approximately 9–15 years. On the other hand,

methane is also an important energy source. Efforts to reduce methane emissions

directly contribute to a reduction in greenhouse gas emissions, thereby they also

contribute to energy conservation with considerable economic and environmental

benefits. When methane is produced under controlled conditions and subsequently

recovered as renewable fuel, it contributes to the sustainable development of our

present society. In a world where the demand for fuels is rapidly increasing and

fossil fuels are limited, methane can serve as a renewable energy source. With

anaerobic digestion, it can be produced economically with simultaneous controlled

management of biodegradable materials, such as different types of industrial waste-

waters and also in (semi-)tropical areas for domestic wastewaters.

3.2 Composition of High-Strength Wastewater

Most agro-industries are based on the so-called “wet” processing of agricultural

harvest products. In these industries, water is used as a transport medium for raw

materials, reaction products, and waste components, and also for washing and

cleaning, for cooling purposes, as well as for consumptive use. Depending on the

efficiency of the industrial process, i.e., the specific water use in m3 ton–1 product

and the nature of the raw material, the resulting wastewater is charged with a

specific amount of complex particulate organic matter. The organic compounds

are, as bulk pollutant, analytically measured using oxidative techniques, which

determine the amount of oxygen that is required to scavenge all possible electrons

coming from the carbon atoms. The pollutant concentration is consequently

expressed as chemical oxygen demand (COD). Industrial wastewaters can be

arbitrarily divided into high strength, moderate strength, and low strength, with

COD concentrations of >10 g O2 L
–1, 2–10 g O2 L

–1 and <2 g O2 L
–1. Typical

industries discharging high-strength wastewaters are alcohol distilleries, yeast

factories, cane and beet molasses producers, some pulp and paper industries,

pharmaceutical industries, and chemical industries. Moderate-strength wastewaters

originate from advanced beer brewers, wineries, fruit and vegetable producers,

dairies, citric acid plants, soft drink producers, etc., whereas the low-strength
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wastewaters originate from malteries, traditional brewers, municipalities, acid

mines, etc.

With the increase in influent COD, the implementation of anaerobic (pre-)

treatment is of major interest. The energy content of 1 kg COD equals about 13.5

MJ, whereas the removal of 1 kg COD, applying conventional aerobic technologies,

such as activated sludge, costs about 3.5 MJ or� 1 kWh-electric (kWh-e) (van Lier

et al. 2008). Thus, the energy gain in applying anaerobic treatment – yielding

biogas – at an industry discharging 20 tons of biodegradable COD can be easily

calculated. It should be noted that biogas, after the removal of impurities, is

essentially pure methane. Then the energy content of the cleaned biogas needs to

be converted into effective energy. At present, modern combined heat and power

plants reach up to 40% net electricity conversion. The aforementioned 20 tons of

COD deliver a net electric potential of 30 MWh per day. Meanwhile, a potential of

20 MWh per day is saved by avoiding the usage of conventional activated sludge

technology. At a kWh price of € 0.09, this gives a total net benefit of €4.500 per day
(van Lier et al. 2008).

In the operation of an anaerobic reactor for wastewater treatment, process

stability and process reliability are the key factors (see Sects. 3.3.1 and 3.3.2). To

ensure stable reactor operation, various technological reactor advancements have

been made and various microbiological studies have been performed to elucidate

the most crucial pathways of the anaerobic conversion process.

3.3 Methane-Producing Processes

3.3.1 Methane Reactors

In anaerobic reactors, organic COD is converted stepwise to the end-products,

methane and carbon dioxide (biogas), of which methane, owing to its low solubil-

ity, is automatically removed from the system. The methane formation is performed

by obligate anaerobic microbial communities, which are characterized by a low

growth rate (see Sect. 3.4; Schink 2006; McInerney et al. 2008). As the overall

COD conversion rate of the anaerobic reactor directly depends on the number and

activity of the microorganisms, reactors that are able to retain a high number of

microbes will be more successful. The first anaerobic systems for waste(water)

treatment appeared in the late 19th century. However, their efficiency was too low

as no attempts were made to specifically retain the crucial microbial populations.

Interception basins such as “Mouras fosses” and the septic tank were designed to

settle solids out of wastewater streams rather than to treat the soluble COD. The

potentials of the anaerobic conversion technology were better explored in the early

20th century when the completely stirred tank reactor (CSTR) was designed to treat

the separated solids coming from the first activated sludge processes (McCarty

2001). However, when applying anaerobic treatment to wastewaters, the CSTR
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volumes became too large as the size was directly dependent on the growth rate of

the methanogenic biomass. The anaerobic contact process, a CSTR coupled to a

clarifier from which the settled anaerobic flocs are returned to the reactor, enhanced

the volumetric loading capacity and improved the overall conversion capacity of

the system by a factor of about 5, using a similar reactor volume.

In the 1960s, it was observed that the anaerobic biomass easily adheres to inert

support materials, which formed the basis for the development of upflow anaerobic

filter (UAF) systems (e.g., Young and McCarty 1968). With the use of these

systems, the retention of the slow growing microbial communities was fully

uncoupled from the liquid retention time. Moreover, by applying the system on

liquid industrial effluents, it was observed that anaerobic flocs were additionally

entrapped in the applied filter material, leading to an additional increase in the

organic loading capacity. Full-scale applications, however, frequently led to clog-

ging of the filter material by excessive biomass accumulation resulting in channel-

ing or hydraulic short cuts in the anaerobic reactor, lowering the reactor capacity.

The subsequently developed downflow filter could indeed rinse these solids but the

overall immobilized capacity was too low to guarantee a sufficiently high conver-

sion capacity.

The real breakthrough was the introduction of the upflow anaerobic sludge

blanket process (UASB; Fig. 3.1a), which was developed by Lettinga and his

co-workers in the Netherlands in the 1970s (Lettinga et al. 1980). Important incentive

for this development was the worldwide energy crises and the implementation of the

first environmental law protecting the surface waters in the Netherlands. The UASB

design is based on a hydrodynamic selection of anaerobic flocs when introducing

wastewater in an upflow mode through the reactor. The dense particles separate

automatically from the liquid leading to a complete uncoupling of the hydraulic

Effluent

Influent

Effluent
recycling

Biogas

Gas
bubble

Sludge
Granule

Expanded
sludge
bed

Gas Dome

b

3 phase
separator

Sludge
bed

Influent

Effluent

Gas bubble

Sludge granule

Biogas

Gas cap

a

Fig. 3.1 (a) Upflow anaerobic sludge bed (UASB 2005) reactor concept and (b) expanded

granular sludge bed (EGSB) reactor concept (modified from http://www.uasb.org/)
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retention time (HRT) from the solid retention time (SRT). Another important feature

of the UASB process is the immobilization of anaerobic microorganisms into

granules without the presence of any carrier material. This microbial self-immobili-

zation of methanogenic communities has been studied by many researchers (e.g.,

Lettinga et al. 1980; Liu et al. 2003; Hulshoff Pol et al. 2004). In general, the process

of initial granulation and granule formation is complex and involves both physico-

chemical and biological interactions. It yields methanogenic granular sludge in

which the microorganisms are densely packed. The sedimentation of the granules

prevents the granules from being washed out of the reactors and the gas is separated

from the sludge solids. In this way, a very high SRT can be achieved by applying very

short HRTs. At high organic loading rates, biogas production guarantees sufficient

contact between substrate and biomass, resulting in a more or less completely mixed

reactor. The presence of well settling active anaerobic granular sludge gave the

possibility to further improve the loading potentials of the upflow reactor by increas-

ing the upflow velocities up to a factor of 10. By expanding the granular sludge bed,

the mass transfer rates of pollutants to the microorganisms and reaction products out

of the aggregates were reduced to a minimum. Currently, the so-called expanded

granular sludge bed reactors (EGSB; Fig. 3.1b) are sold in the market, applying

loading rates between 20 and 35 kg COD m�3 per day. Another high rate reactor

concerns the fluidized bed (FB) system, which makes use of free floating support

material such as sand or pumice on which anaerobic microorganisms are immobi-

lized. At present, the UASB and EGSB reactors have the largest market share with

regard to the application of anaerobic reactor systems for wastewater treatment.

Approximately, 80% of all reactors worldwide are UASB or EGSB type systems

(van Lier 2008). Many different types of high-strength wastewaters, even those that

were previously believed not to be suitable for anaerobic waste treatment, are now

treated by high rate anaerobic conversion processes.

Besides wastewater, many different organic waste streams are treated by anaer-

obic technologies with the objective to stabilize the organic matter and to reduce

their environmental effects, to reduce the sludge volumes, and to recover methane

as a renewable fuel. In fact, the renewed current interest in conventional anaerobic

digestion is driven by the increasing energy prices and the need for renewable fuel

production. Examples of feed materials are excess sewage sludge, manure, the

organic fraction of municipal solid waste, industrial organic waste and, more

recently, energy crops. In the digestion of (semi-)slurries and solid wastes, the

hydrolysis stage of the multi-step anaerobic process (see Sect. 3.4.1) is the most

important and in fact, rate limiting.

3.3.2 Factors Influencing Methane Formation

In anaerobic digestion, the microorganisms present differ in physiology, nutritional

needs, growth kinetics, and sensitivity to environmental conditions. An imbalance

between the different groups of microorganisms is a primary cause for reactor
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instability and process failure (see Chap. 2, Braun et al. 2010). As described in a

recent review by Chen et al. (2008), a wide variety of substances have been reported

to be inhibitory to the anaerobic methanogenic digestion processes, such as ammo-

nia, sulfide, salts of (earth)alkali metals, heavy metals, and organic compounds of

different origins. A compound may be judged inhibitory when it causes inhibition of

microbial growth and/or activity, often resulting in a shift in the microbial popula-

tion. This leads to less biogas production, accumulation of unwanted products in the

effluent, and in the worst case a complete destabilization of the anaerobic methano-

genic digestion process. Inhibition is generally concentration-dependent. In fact,

any compound will cause inhibition if present at concentrations exceeding the

toxicity level of the respective microbial community. This, obviously, is also true

for the organic substrates and their reaction products. If intermediate products like

volatile fatty acids (VFA) and hydrogen are not removed instantaneously, their

accumulation will dramatically impact the stability of the entire digestion process.

Acclimatization of microorganisms to specific wastewater constituents is possi-

ble but may take several weeks to several months (Van Lier et al. 2008). Particu-

larly, chemical effluents require a balanced ecosystem of specialized organisms,

which are responsible for crucial intermediate reactions (Razo-Flores et al. 2006).

A typical example is the anaerobic treatment of purified terephthalic acid (PTA)

wastewaters (Kleerebezem et al. 1999). It was shown that the decarboxylation of

terephtalate to benzoic acid was only performed after a lengthy and carefully

performed start-up procedure. However, compounds that are persistent organic

pollutants (POPs) may not be degraded at all.

Sufficiently acclimated microbial communities have shown greater stability

toward stress-inducing events such as hydraulic overloads as well as fluctuations

in temperature and in volatile acid and ammonia concentrations. Not only the

microbial composition for removing the (intermediate) compounds, but also the

presence of matured biofilms or granular structures stabilizes the anaerobic conver-

sion process to a great extent. As a result of immobilization, mass transfer will limit

the maximum possible conversion rates. On the contrary, immobilization creates a

biomass buffer at the inner side of the biofilm that can be drawn upon when the

specific conversion rates are affected by toxicants and/or less appropriate environ-

mental conditions. As a consequence, the overall capacity of the system will not be

changed by the perturbation event.

3.4 Microbiology of Methane Formation from High-Strength

Wastewater

3.4.1 Anaerobic Methanogenic Food Chain

The anaerobic degradation of COD (as complex, particulate organic waste) has

been described as a multi-step process of series and parallel reactions performed by

obligate anaerobic microbial communities (Schink 2006; McInerney et al. 2008;
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see Chap. 1, Insam et al. 2010). For complete conversion, three physiological

groups of microorganisms are required. One metabolic type of microorganism, in

theory, might be capable of complete oxidation of COD, but these microbes have

never been found in methanogenic environments. Polymeric substances, such as

polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed by extra-

cellular enzymes, secreted by microorganisms. This hydrolysis facilitates transport

or diffusion of the corresponding monomers across the cell membrane. The rela-

tively simple compounds are then fermented or anaerobically oxidized to short-

chain fatty acids, alcohols, carbon dioxide, hydrogen, formate, and ammonia. The

short-chain fatty acids (other than acetate) are converted to acetate, hydrogen,

formate, and carbon dioxide. Methanogenesis as the final step occurs from the

reduction of carbon dioxide by hydrogen and the cleavage of acetate and is

performed by archaea (see Fig. 1.2 in Chap. 1 for a representation of the anaerobic

food chain under methanogenic conditions). To understand microbial interactions

that occur in high-strength wastewater treatment, detailed study of the physiology

of the individual predominating microorganisms is necessary. A thorough under-

standing of the formation and structure of dense microbial aggregates is essential

for application of methanogenesis. Only in bioreactors in which methanogenic

communities operate in dense aggregates, anaerobic wastewater treatment can

take place at a high volumetric rate (see Sect. 3.3.1).

We focus onmethanogenic and acetogenic microorganisms, since they represent the

core metabolism of the bio-methane producing biomass treating soluble wastewater.

3.4.2 Methanogenic Archaea in High Rate Anaerobic Digesters

Methanogenic archaea perform the final step in the overall anaerobic conversion of

organic material to methane and carbon dioxide. Autotrophic methanogenic

archaea utilize carbon dioxide and hydrogen, while heterotrophic methanogens

convert acetate, formate, and a few other compounds to support their metabolic

functions. Acetate, the absolute key intermediate in anaerobic digestion, accounts

for approximately two-third of all methane produced, while the other third is

produced from the reduction of carbon dioxide with electrons derived from the

oxidation of hydrogen or formate (Ferry 1992, Liu and Whitman 2008). Currently,

only two types of acetoclastic methanogens have been identified:Methanosaeta sp.
and Methanosarcina sp. Methanosarcina sp. is a versatile genus of methanogens,

including species capable of growing on different substrates including acetate,

methanol, methylamines, and H2/CO2, whereas Methanosaeta sp. is only capable

of using acetate.Methanosaeta sp. is widely distributed in nature and, because of its
high affinity for acetate, prevails over Methanosarcina sp. in the low acetate

environments of anaerobic waste digesters (Conklin et al. 2006). Both acetoclastic

archaea are very slow growers, with doubling times of 1–12 (Methanosaeta) and
0.5–2 (Methanosarcina) days (Jetten et al. 1992). Table 3.2 summarizes the domi-

nance of either Methanosarcina or Methanosaeta in various mesophilic reactors.
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Under most conditions evaluated, Methanosaeta is the dominant acetoclastic

methanogen, independent of the reactor type (Leclerc et al. 2004). However, in

reactors with high acetate concentration a dominance ofMethanosarcinawas found
(Conklin et al. 2006). Despite their restricted substrate range (H2/CO2, formate, and

methylated C1 compounds), methanogens are phylogenetically diverse. They are

classified in five well-established orders that are described in detail by Whitman

et al. (2006). Representatives of the orders Methanobacteriales, Methanomicro-

biales, and Methanosarcinales are commonly present in anaerobic bioreactors.

3.4.3 Syntrophic Acetogenic Bacteria

Saturated fatty acids, unsaturated fatty acids, alcohols, and hydrocarbons are

degraded by the action of syntrophic communities in methanogenic environments.

These syntrophic communities consist of an acetogen and a methanogen, that

cannot grow alone on a certain organic compound, but when present together

they can. Syntrophy is defined as a specialized case of tightly coupled mutual

interaction (Plugge and Stams 2005; Schink 2006; McInerney et al. 2008).

The degradation of a syntrophic substrate is thermodynamically unfavorable if

the product concentrations are at standard conditions (1 M concentration, or 105 Pa

for gases). The function of methanogens is to consume hydrogen, for example, to

low steady-state pressure (10–4–10–5 atm) and to make the overall substrate con-

version thermodynamically favorable (Table 3.3). An important factor in syn-

trophic interactions is the distance between the hydrogen-producing (acetogen)

and the hydrogen-consuming (methanogen) organism. The diffusion distances for

metabolite transfer should be as short as possible (Schink and Thauer 1988). The

diffusion of hydrogen from producer to consumer can be described by a simple

equation: FluxH2 (mol s–1) = –A D (c2–c1) per day, where A is the total surface area

of the hydrogen producer (4pr2 � number of hydrogen producers), D is the

diffusion constant for hydrogen (4.9� 10–5 cm2 s–1 at 298 K), c is the concentration

of hydrogen from producer (c2) to consumer (c1) in water, and d is the distance

between producer and consumer. In general, aggregation of bacteria from different

Table 3.3 Reactions involved in propionate degradation occurring in methanogenic processes

Concept of interspecies hydrogen transfer: DG0’ DG’
Propionate– + 3H2O ! acetate– + HCO3

– + 3 H2 + H+ +76 –9

4 H2 + HCO3
– + H+ ! CH4 + 3 H2O –135 –12

Acetate– + H2O ! CH4 + HCO3
– –31 –31

Concept of interspecies formate transfer:

Propionate– + 2HCO3
– ! acetate– + 3 formate– + H+ +72 –15

4 formate– + H+ + H2O ! CH4 + 3 HCO3
- –130 –9

Acetate– + H2O ! CH4 + HCO3
– –31 –31

Gibbs free energy changes under standard conditions in kJ per reaction (1 M for solutes; 105 Pa for

gases; T = 25�C; pH 7). DG’ is calculated for 10 mM formate and 1 Pa hydrogen

Source: From Thauer et al. (1977)
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metabolic groups enables a faster degradation of complex organic material (Ishii

et al. 2005).

Syntrophic interactions are usually associated with interspecies hydrogen trans-

fer, although formate transfer is also a possible mechanism. Acetogenic bacteria are

capable of producing both hydrogen and formate, and methanogens usually con-

sume both. As hydrogen is poorly soluble in water (the maximum solubility at

atmospheric pressure and room temperature is about 1 mM), it was speculated from

theoretical considerations that formate may also act as an electron shuttle in

methanogenic consortia (Thiele and Zeikus 1988; Boone et al. 1989). Flux calcula-

tions in suspended and aggregated biomass revealed that hydrogen transfer pre-

vailed in aggregates (de Bok et al. 2004; Ishii et al. 2005). This may suggest that in

anaerobic bioreactors, where biomass is densely aggregated, hydrogen transfer is

the dominant process of interspecies electron transfer.

The syntrophic degradation of fatty acids is often the rate limiting step in

methanogenic conversions. Therefore, it is essential that anaerobic wastewater

treatment is operated under the conditions that favor the retention of these syn-

trophs. Important intermediate metabolites, besides acetate (see Sect. 3.4.2) in

methanogenic processes are propionate and butyrate (McCarty 1971), which are

often used as indicator for the overall performance of the process (Kida et al. 1993;

Ariesyady et al. 2007a). If propionate and butyrate accumulate in the effluent,

methanogenic rates decrease and the overall efficiency of COD removal decreases

accordingly.

3.4.3.1 Degradation of Propionate

All currently identified syntrophic propionate-oxidizing bacteria are affiliated with

the class Deltaproteobacteria within the phylum Proteobacteria (McInerney et al.

2005), or the low G+C Gram-positive bacteria in the class Clostridia within the

phylum Firmicutes (Imachi et al. 2002; Plugge et al. 2002; de Bok et al. 2005).

Some of the Syntrophobacter sp. are able to use sulfate as the electron acceptor for

propionate oxidation (McInerney et al. 2005). In addition, they can grow by

fermentation of pyruvate and fumarate. Smithella propionica is phylogenetically

related to the genus Syntrophus (Liu et al. 1999) and lacks the ability to reduce

sulfate. It also uses a different pathway to oxidize propionate from that used by

Syntrophobacter strains, and can grow on crotonate in pure cultures (de Bok et al.

2001; Liu et al. 1999).

The concept of interspecies hydrogen versus interspecies formate transfer has

been studied in detail in propionate-degrading Syntrophobacter fumaroxidans co-
cultures (Table 3.3). Thermodynamic calculations, flux measurements in defined

co-cultures, and enzyme measurements confirmed that interspecies formate transfer

is an essential mechanism in syntrophic propionate degradation in suspended

cultures (Dong et al. 1994; Dong and Stams 1995). The terminal reductases were

studied in detail and biochemical evidence for the occurrence of the formate

transfer mechanism was found (De Bok et al. 2002). Two formate dehydrogenases
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were isolated from S. fumaroxidans and characterized. In contrast to most formate

dehydrogenases, which contain molybdenum, the formate dehydrogenase (CO2

reductase) from S. fumaroxidans contains tungsten and has an unusual high specific
activity both in the formate oxidation and in the carbon dioxide reduction assay

(Reda et al. 2008). When syntrophic co-cultures of S. fumaroxidans andM. hungatei
were grown with limiting amounts of tungsten, propionate degradation decreased.

This decrease coincided with decreased formate dehydrogenase activity, while the

hydrogenase activities remained almost unchanged (Plugge et al. 2009). In their

natural habitat, syntrophic propionate degrading bacteria form microcolonies with

methanogens. In such microcolonies, interspecies distances are much shorter. We

have indications that under these conditions interspecies hydrogen becomes rela-

tively more important. In syntrophic propionate-degrading microcolonies, Syntro-
phobacter like bacteria are often surrounded by Methanobrevibacter sp.,

methanogens which can use hydrogen but not formate (Grotenhuis et al. 1991). In

thermophilic sludge, interspecies hydrogen transfer also seems the preferred elec-

tron transfer mechanism (Schmidt and Ahring 1993). In addition, in highly con-

centrated cell suspensions with S. fumaroxidans and Methanobrevibacter
arboriphilus, slow propionate degradation is observed (Dong et al. 1994).

All species described to date were isolated from anaerobic reactors, indicating the

significance of these organisms in the reactors. Pure culture studies alone cannot

reveal the in situ contribution of the strains in a microbial community or the diversity

of propionate-oxidizing bacteria. Moreover, only a limited fraction of the total

microorganisms in an ecosystem population can be cultured (Amann et al. 1995).

Microbial community analysis of anaerobic sludge, based on 16S rRNA gene

sequencing, is a tool to determine the microbial propionate degrading populations

present in anaerobic bioreactors (see Chap. 1; Sekiguchi et al. 2000; Shigematsu et al.

2006). Harmsen et al. (1996) demonstrated the population dynamics of Syntropho-
bacter sp. by dot blot and in situ hybridization with 16S rRNA-based oligonucleotide
probes in laboratory scale UASB reactors, fed with propionate or propionate plus

sulfate. Syntrophobacter sp. in UASB reactors fed with synthetic substrates contain-

ing sucrose, acetate, propionate, and peptone or yeast extract, were detected and

analyzed by 16S rRNA gene clone libraries and fluorescence in situ hybridization

(FISH) (Sekiguchi et al. 1998, 1999; Ariesyady et al. 2007b). Pelotomaculum sp. in a

UASB reactor was detected and analyzed by FISH (Imachi et al. 2000).

3.4.3.2 Degradation of Butyrate and Long Chain Fatty Acids (LCFA)

Bacteria capable of syntrophic butyrate metabolism include all species of the genus

Syntrophomonas (McInerney et al. 1981; Lorowitz et al. 1989; Zhang et al. 2004,

2005; Sobieraj and Boone 2006; Wu et al. 2006a, b; Sousa et al. 2007a; Wu et al.

2007), Thermosyntropha lipolytica (Svetlitshnyi et al. 1996), and Syntrophothermus
lipocalidus (Sekiguchi et al. 2000). All these acetogenic bacteria are capable of

degrading anaerobically fatty acids with more than four and up to 18 carbon atoms.

Syntrophic butyrate and saturated LCFA metabolism proceeds via the b-oxidation
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pathway (Wofford et al. 1986). Except for S. bryantii and T. lipolytica, all strains
were isolated from anaerobic reactors, indicating the significance of these organisms

in the reactors. Culture-independent molecular community analyses confirm the

high abundance of these butyrate fermenters in bioreactors (Roest et al. 2005; Sousa

et al. 2007b, c). Moreover, recently the link between the presence and activity of

syntrophic butyrate and LCFA degrading communities in methanogenic sludges

was shown using the stable isotope probing (Hatamoto et al. 2007, 2008).

Wastewaters and waste streams that contain high concentrations of lipids and

LCFA may yield high levels of methane in an anaerobic digestion process. How-

ever, due to their poor solubility LCFA were found to be inhibitory to methanogens

(Lalman and Bagley 2000, 2001; Pereira et al. 2003, 2004). The inhibitory effects

are reversible and are often associated with their physical interactions with the cell

wall, preventing the conversion of other compounds (Pereira et al. 2005).

3.4.3.3 Unusual Syntrophic Conversions

Acetate, methanol, and formate are compounds that from a biochemical and

thermodynamic point of view do not seem an obvious substrate for syntrophic

growth. In anaerobic reactors, syntrophs have to compete with fermentative bacte-

ria and methanogenic archaea that can directly convert these compounds, and have

more net energy available than hydrogen- and bicarbonate-producing bacteria.

However, syntrophic acetate conversion was first described by Zinder and Koch

(1984). The responsible bacterium was a homoacetogen and therefore nicknamed

“Reversibacter.” Thermacetogenium phaeum and Clostridium ultunense are char-

acterized species that grow on acetate in coculture with hydrogenotrophic metha-

nogens (Schnürer et al. 1996; Hattori et al. 2000). Both strains were isolated from

methanogenic bioreactors. In addition, Shigematsu et al. (2004) demonstrated that

the dilution rate could cause a shift in the primary pathway of acetate conversion to

methane in acetate-fed chemostats. The biomass in these chemostats originated

from an anaerobic methanogenic reactor. At low dilution rate, the acetate-oxidizing

syntrophs, associated with hydrogen-consuming methanogens, could metabolically

outcompete the acetoclastic methanogens,Methanosarcina andMethanosaeta, and
played a primary role in the conversion of acetate to methane.

Pure cultures of homoacetogens ferment methanol and carbon dioxide to acetate.

However, in coculture with hydrogen-consuming anaerobes, they oxidize methanol

to hydrogen and carbon dioxide, and form little if any acetate (Cord-Ruwisch and

Ollivier 1986; Heijthuijsen and Hansen 1986; Balk et al. 2003, 2007). Since the

homoacetogens do not have an obvious energetic advantage of producing hydrogen,

it could be termed as energy parasitism. Recent studies showed that hydrogen

formation may result in obligate syntrophic growth as well. A homoacetogen

which grew in pure culture on methanol in media that contained sufficient

cobalt, has also been isolated (Jiang et al. 2009). Methanol is metabolized by

means of a cobalt-containing methyltransferase. However, in the absence of cobalt

the bacterium could only grow on methanol in coculture with methanogens.
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Apparently, in that case methanol is metabolized by a methanol dehydrogenase,

which does not contain cobalt. This process is only possible at a low hydrogen

partial pressure.

Hydrolytic cleavage of formate to hydrogen and bicarbonate has been described in

the past (Carroll and Hungate 1955; Guyot and Brauman 1986). Only recently it was

found that bacteria were able to grow on the conversion of formate to hydrogen and

bicarbonate, provided that hydrogen is consumed by a methanogen. Two different

defined communities, a thermophilic Moorella AMP in co-culture with Metha-
nothermobacter NJ1, and a mesophilicDesulfovibrioG11 in co-culture withMetha-
nobrevibacter arboriphilicusAZ performed this type of syntrophic metabolism. The

methanogens used can only use hydrogen as electron donor (Dolfing et al. 2008).

The detour via hydrogen as mentioned above calls for the introduction of new,

previously unrecognized microbial guilds consisting of bacteria that sponge on

substrates that can also be used by methanogens. Therefore, this type of metabolism,

while apparently inconsistent in the context of the existence of acetoclastic and

formate-utilizing methanogens, may actually be a more fundamental component of

methanogenic organic-carbon-mineralizing systems than previously recognized.

3.5 Perspectives

To further increase our fundamental knowledge, detailed surveys of microbial com-

munities in anaerobic sludge, in particular population changes over time, and

continued challenges to cultivate relevant but fastidious anaerobes, are indispensable.

The molecular-based microbial community structure analyses may reveal biodi-

versity and detailed spatial organization of microbes of interest in sludge granules,

and conventional cultivation techniques together with modern molecular techni-

ques continuously enlarge our fundamental knowledge of the function and activity

of significant populations in methane producing processes.

These approaches will also bridge the gaps between the engineer and the

microbiologist, and will lead to novel discoveries to improve the reactor perfor-

mance.
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Chapter 4

Biogas Technology – Controlled Gas Flow for

Enhanced Mixing, Heating, and Desulfurization

Bernhard Wett and Heribert Insam

Abstract History and current use of biogas utilization demonstrates that with

simple approaches useful methane can be produced. From experience with small-

scale plants, a new 4-chamber technology named BIO4GAS was developed that

allows production of biogas in reactors that do not require mechanical stirring. On

the basis of data from a demonstration plant set in operation in 2008, the 4-chamber

technology and its advantages are described in detail. In particular, the low opera-

tional energy requirement and the high quality of the obtained biogas (in terms of

low H2S levels) are emphasized.
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4.1 Historical Developments

4.1.1 Europe

Plinius, always a good source for first reports on natural phenomena, noted the

appearance of flickering lights emerging from below the surface of swamps and

Van Helmont recorded the emanation of an inflammable gas from decaying organic

matter in the 17th century (van Brakel 1980). Volta is generally recognized to have

first isolated methane. He concluded as early as 1776 that the amount of gas that

evolves is a function of the amount of decaying vegetation. In 1894, Gayon, a

student of Pasteur, fermented manure at 35�C and obtained 100 L of methane per

m3 of manure. Toward the end of the 19th century, methanogenesis was found to be

connected to microbial activity. Béchamp (1868) named the “organism” – appar-

ently, a mixed community – responsible for methane production from ethanol. In

1876, Herter reported that acetate in sewage sludge was converted stoichiometri-

cally to equal amounts of methane and carbon dioxide (cited from Zehnder et al.

1982). As early as 1896, gas from sewage was used for lighting streets in Exeter,

England. Then, in 1904, Travis put into operation a new, two-stage process, in

which the suspended material was separated from the wastewater, and was allowed

to pass into a separate "hydrolyzing" chamber. Söhngen (1906) was able to enrich

two distinct acetate utilizing bacteria, and he found that formate, hydrogen and

carbon dioxide could be precursors for methane. Buswell and co-workers identified

anaerobic bacteria and investigated the conditions that promote methanogenesis.

Research focused also on the fate of nitrogen in anaerobic digestion, the stoichiom-

etry of the reaction and the production of energy from farm and industrial wastes

(Buswell and Neave 1930; Buswell and Hatfield 1936). Barker and his group

performed basic biochemical studies of methanogenic archaea (then methane

bacteria) and contributed significantly to the field (e.g., Pine and Barker 1956).

In Europe, biogas use has been promoted in several campaigns since the 1970s,

and currently experiences a new boom. In particular, if national policies support

the production of biogas by subsidies, considerable increases in plant numbers are

observed. The approach, however, was often focused on agro-industrial use of

energy crops in large plants and technologically sophisticated constructions. This

often led to problems in terms of cost/benefit imbalances. Johansson and Azar

(2007) have further shown that renewable bioenergy production based on

specialized agricultural crop production will compete with the food production

sector and lead to exploding food prices. This is of major concern, particularly in

the less developed countries.

4.1.2 Asia

The use of biogas has a long history in Asia and dates back many centuries. There is

evidence that biogas was used for heating bath water in Assyria during the tenth

century BC. Marco Polo mentions the use of covered sewage tanks, a practice that
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probably goes back 2,000–3,000 years in ancient China (Chawla, 1986). India has

also a quite long history of biogas development. The first unit, usually referred to in

literature, is a biogas unit at a lepers asylum near Mumbai installed in 1859. The

primary function seems to have been sewage treatment, but the gas was used for

lighting. In China, by the end of the 19th century, simple biogas digesters had

appeared in the coastal areas of southern China. Guorui invented and built an 8-m3

biogas tank in the 1920s which formed the basis for the establishment of a

successful company. Chinese Guorui Biogas Digester Practical Lecture Notes
was published in 1935, the first monograph on biogas in China and in the world.

This was the first wave of biogas use in China. The second wave of biogas use in

China originated in Wuchang in 1958 in a campaign to exploit the multiple

functions of biogas production, which simultaneously solved the problems of

manure disposal and improvement of hygiene. The third wave of biogas use

occurred between the late 1970s and early 1980s when the Chinese government

enforced biogas production as an effective use of natural resources in rural areas.

Biogas production was considered not only to provide energy, but also to contribute

to environmental protection and improvement of hygiene. Some six million diges-

ters were set up in China, and the “China dome” digester became the standard

construction, which is followed to the present day (Fig. 4.1) for small-scale

domestic use. China’s 2003–2010 National Rural Biogas Construction Plan is

aimed at increasing the biogas use by a total of 50 million small-scale plants by

2010, which is 35% of all farm households.

4.1.3 Numerical Tools and Current Technologies

In parallel to the progress in biogas technology, numerical tools have been devel-

oped to analyze, understand, and simulate processes catalyzed by anaerobic micro-

organisms. Anaerobic digestion is a multi-step degradation process in which

metabolites are transferred from one functional group of microbes to the other.

Fig. 4.1 Scheme of Chinese dome digester (left) and view of a small-scale manure digester in

Vietnam (right; Foto: E. Schreckensperger)
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In the late 1960s and 1970s, first attempts in biokinetic modeling of anaerobic

digestion processes focused on the rate-limiting process step (e.g., O’Rourke 1968;

Graef and Andrews 1974; Lyberatos and Skiadas 1999) which needs to be defined

for specific process conditions and substrates. Subsequently, more complex models

have been developed in order to describe the digester behavior and inhibit the

impacts by unionized volatile fatty acids (VFA), -acetate and -ammonia (e.g., Hill

and Barth 1977; Moletta et al. 1986). The inclusion of hydrogen partial pressure as a

key process parameter (Mosey 1983; Costello et al. 1991) contributed to the

interactive process. Additional improvements (e.g., Angelidaki et al. 1993; Siegrist

et al. 1993) led to the development of IWA’s widely acknowledged Anaerobic

Digestion Model ADM1 (Batstone et al. 2002a). It represents a generic description

of digestion processes for various substrates like sewage sludge and manure, and

considers seven functional groups of microbes (in total, more than 30 state vari-

ables) and employs more than 100 parameters (Fig. 4.2). The only nutrient that is

balanced by ADM1 is nitrogen which is released as ammonia from degraded

organic matter (Wett et al. 2006). Recent knowledge on methanogenesis and the

involved microbiota is summarized in Chaps. 1 and 3 (Insam et al. 2010; Braun

et al. 2010).
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Fig. 4.2 The Anaerobic Digestion Model ADM1 considers seven groups of organisms which

catalyze the following biochemical processes: (1) acidogenesis from sugars, (2) acidogenesis from

amino acids, (3) acetogenesis from LCFA, (4) acetogenesis from propionate, (5) acetogenesis from

butyrate and valerate, (6) aceticlastic methanogenesis, and (7) hydrogenotrophic methanogenesis

(Batstone et al. 2002b)
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4.2 The BIO4GAS-Approach

4.2.1 The Development of an Idea

To summarize the historical development of biogas technology till date, basically

two systems of agricultural biogas plants have been established which differ

significantly in size, application, and in terms of safety and general technological

standards:

l Huge number of small-scale plants in developing countries for cooking gas

production (energy self-sufficient households)
l Agro-industrial plants for electrical power generation (typically, >100 kW)

based mainly on energy crops (renewable energy production)

The range of biogas plants between these two basic types has often been

seen as economically not feasible while latest funding programs in Central

Europe target smaller plants based mainly on manure as substrate. In an

attempt to design a small-scale reactor for the use of agricultural wastes, in

particular liquid manure, a new reactor type and mixing system called BIO4-

GAS technology evolved (Wett et al. 2007). The driving factors are as given

below.

1. it is known that biogas production based on agricultural and other wastes is the

approach with the best performance in terms of mitigation of greenhouse gas

emissions. Therefore, the size of the BIO4GAS plants should fit the size of a

wide range of farms

2. often, individual planning of biogas plants makes them too costly in terms of

construction and maintenance; our aim was to develop a reactor that works

without any electromechanical parts inside and to reduce the construction costs

by a standardized or serial implementation

The 4-chamber design was derived from a biogas plant that has been in

operation since 40 years at a farm in Buch (Tyrol, Austria) (Wackerle 2005).

The layout is now formed by two concentric cylinders (Fig. 4.3). The inner

cylinder and the outer ring contain two chambers, each separated by baffles.

During operation the substrate is pumped to chamber 1 (K1) and biogas produc-

tion starts, mainly in chamber 1. Since the construction is gas-tight, gas pressure

of the head space of chamber 1 displaces the liquid manure below the baffle to

K2 and drives a gas-lift in K2. The gas lift also serves as a pipe-heat-exchanger

for heating the reactor. The chamber K1 is also heated and mixed by a thermo-

gas-lift which is driven by pressurized air injected for the desulfurization of the

generated biogas. Deposits in K1 and K2 are avoided by periodical opening of

a relief valve causing an oscillation and a concurrent recycle flow between K1

and K2. The determination of the optimal layout was supported by numerical

models (Fig. 4.4).
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4.2.2 Mixing and Agitation

As described above, the gas pressure is used in a twofold manner to mix the content

of the reactor: Chambers K1 and K2 are individually mixed by a vertical flow

induced by the thermo-gas-lifts. Rising bubbles of the injected air in K1 and biogas

in K2, respectively, and heat convection reduce the density of the water column in

the lift pipe, resulting in a moderate but continuous upflow current.

The difference in water level between chamber K1 and K2 represents the

pressure head driving the gas-lift. A pneumatic pressure relief valve is used for a

sudden equalization of the pressure difference causing an oscillation of the water

columns in K1 and K2. The periodic oscillation flow shows velocity peaks at the

bottom opening (Fig. 4.5), which mobilizes the occasionally heavy sludge layers.

Additionally, the counterflow seeds more mature biomass back to the first chamber.

Both the vertical flow from the gas-lifts and from the pressure oscillation provide

sufficient turbulence to prevent stratification of the liquor in the reactor. For

substrates with severe bulking sludge, an additional stirrer at the water surface for

reliable scum destruction is suggested.
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Fig. 4.3 Scheme of the BIO4GAS pilot plant with concentric shape and thermo-gas-lifts

employed for heating, mixing, and desulfurization

Fig. 4.4 Four-chamber system represented by serial ADM1 digesters, edited in the SIMBA-

environment for the simulation of gas production in individual chambers (Wett et al. 2007)
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Several authors (e.g., Vavilin and Angelidaki 2005; Speece et al. 2006) have

suggested that high mixing intensity and duration have an adverse effect on the

biogas production rates in agricultural biogas plants. The sheering forces are

supposed to disrupt the important spatial proximity of volatile fatty acid degrading

bacteria and hydrogen-utilizing methanogens. It is generally recognized that syn-

trophic growth of different bacterial and archaeal species is important, and sheering

forces may hamper the necessary biofilm and aggregate formation (e.g., Wu et al.

1996). The BIO4GAS approach attempts to reduce the sheering forces as much as

possible, yet ensuring a sufficient substrate mixing.

4.2.3 Heating

Continuous vertical flow through the thermo-gas-lifts ensures an efficient heat

transfer via the pipe walls. The actual heating medium is water circulating between

the double-walled lift-pipes and the co-generation unit where the biogas is burned.

The coupled heat-power system has been installed in a pre-fabricated container

module hosting the complete electrical- and safety-equipment. The heat produced is

distributed to three consecutive heat cycles at the following steps of hierarchy:

Fermenter heating requires about one third of the heat flow and shows highest

priority. The next is the external consumer, and only unused excess heat will be

eliminated by an emergency cooler at the roof-top of the container. A further

advancement means the installation of a boiler for redundant gas conversion,

replacing the flare so that even during failure or servicing of the combined heat

and power plant (CHP) unit, the thermal energy of the biogas may be used.

Fig. 4.5 CFD-simulation

(computational fluid

dynamics) of the equalization

flow after the pressure relief

valve between headspace of

chamber K1 and K2 has been

opened (colors indicating

velocity magnitude and

arrows directions of flow)
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Microorganisms in the digester show a broad range of optimum growth condi-

tions as Table 4.1 exemplifies for Thiobacilli (temperature optima between 25 and

52.5�C). According to Karakashev et al. (2005), the microbial diversity is higher in

mesophilic than thermophilic reactors. Diversity, however, does not seem to be

related to methane production rates. Pender et al. (2004) compared the microbial

communities in mesophilically and thermophillically operated reactors, with and

without the addition of sulfate. The reactor biomass sampled during mesophilic

operation, both in the presence and absence of sulfate, was characterized by a

predominance of Methanosaeta spp. In contrast, in the 55�C reactor an archeaon

closely related to Methanocorpusculum parvum was dominant, when sulfate was

added, Methanobacterium thermoautotrophicum was dominant and reactor perfor-

mance decreased. The sensitivity of the acetoclastic methanogens, dominated by

Methanocorpusculum parvum, demonstrated the fragile nature of this thermophilic

ecosystem which was particularly sensitive to sulfide inhibition. An issue that has

not yet adequately been addressed is the even temperature distribution within

Table 4.1 Growth conditions

of Thiobacilli
Species pH [-] Temperature [�C]
Acidithiobacillus
A. albertensis, ferrooxidans 2–4 30–35

A. caldus 1–3.5 32–52

A. thiooxidans 2–4 25–30

Halothiobacillus
H. halophilus 7 30–32

H. hydrothermalis 7.5–8 35–40

H. kellyi 6.5 37–42

H. neapolitanus 6–8 25–30

Thermithiobacillus
T. tepidarius 6–8 40–45

Thiolcalivibrio
T. denitrifcans, nitratus 10 25–30

T. versutus 10–10.2 25–30

Thioalcalimicrobium
T. aerophilum 9–10 25–30

Thiomicrospira
T. chilensis 7 32–37

T. crunogena 7–8 28–32

T. frisia 6.5 32–35

T. kuenenii 6 29–33

T. peliphila 6–8 25–30

T. thyasirae 7–8 35–40

Thiobacillus
T. aquaesulis 7.5–8 40–50

T. denitrifcans, thioparus 6–8 25–30

Thiomonas
T. cuprina 3–4 30–36

T. intermedia, T. perometabolis 5.5–6 30–35

T. thermosulfata 5.2–5.6 50–52.5

Source: Robertson (2004)
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reactors. Since methanogenesis is usually retarded in the temperature range

between 40 and 50�C, a suboptimal temperature range for both mesophilic and

thermophilic microorganisms, any reactor design should aim at an even tempera-

ture distribution. This is ensured in the BIO4GAS reactor by mixing and heating,

accompanied by a good thermal insulation.

4.2.4 Hydrogen Sulfide Oxidation

Anaerobic digestion involves the breakdown of organic matter in an oxygen-free

environment. The biogas produced contains, besides methane and carbon dioxide,

hydrogen sulfide (H2S) which is of major concern not only because of odor

nuisance, but mainly because of its destructiveness to engines by impacting corro-

sion and oil viscosity. The concentration of H2S in the biogas produced from

chicken manure and molasses may be as high as 4,000 mg m–3. Post-treatment of

the biogas could be avoided by oxidation of H2S in the reactor which can be

accomplished or at least reduced by offering good conditions for the growth of

sulfur oxidizing bacteria.

Sulfur oxidizing bacteria, also known as Thiobacilli, were reclassified by Kelly

and Wood (2000), forming three genera, Acidithiobacilli, Halothiobacilli, and
Thermothiobacilli. Besides reduced sulfur compounds as an electron donor, like

H2S, the presence of an electron acceptor like oxygen is necessary. In nature,

Thiobacilli grow in the boundary layer of anaerobic sediment and aerobic water

body. Many Thiobacilli are obligate or facultative autotrophs, using carbon dioxide

as their only C source. A major product of H2S oxidation is elementary sulfur. The

elementary sulfur is precipitated and in biogas plants one can always find yellow

sulfur excretions (Fig. 4.6). Besides reduced sulfur compounds, Thiobacilli also

oxidize Fe++ and form Fe+++, and are thus responsible for metal corrosion (Brock

and Gustafson 1976):

H2Sþ 0:5O2 ! Sþ H2O �209:4 kJ mol�1

Sþ H2Oþ 1:5O2 ! SO2�
4 þ 2Hþ �587:1 kJ mol�1

H2Sþ 2O2 ! H2SO4 �798:2 kJ mol�1

2Fe2þ þ 0:5O2 þ 2Hþ ! 2Fe3þ þ H2O �47:04 kJ mol�1

Sulfate production, as the second oxidation step, is promoted at excess oxygen

conditions (Janssen et al. 2009) and causes acidification and high oxygen demand.

Munz et al. (2009) point out that high pH, around 9, represents an even stronger

drive for sulfate production. Fuseler et al. (1996) have shown that sulfur is not

necessarily a stable intermediate but can be object to disproportionation to sulfate

and hydrogen sulfide. Nevertheless moderate oxygenation (ca. 0.05 g O2 g
–1 COD)

of anaerobic sludge environments does not lead to significant sulfate production

(van der Zee et al. 2007). Obviously, sulfur production is difficult to measure due to

its precipitation and attachment to surfaces, and therefore, needs to be estimated
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from the total S balance gap. Zee et al. demonstrated that sulfide oxidation rates

increased during long-term micro-aerobic operation which resulted in very low

sulfide concentration in the biogas.

In agricultural biogas plants, desulfurization of the biogas is accomplished

mainly in the fermenter gas space. For this purpose, small amounts of air

(approximately, 5–10% of the produced biogas) are added. As in all biological

processes, the availability of surfaces for bacterial settlement is most important.

In the BIO4GAS technology, the admixed air fulfils a double purpose. First, the

air is pressed into the reactor at the bottom of the thermo-gas-lift and thus aids the

mixing of the substrate by the ascending gas bubbles. And second, majority of

the formed biogas is produced in chamber 1, and is forced to move along the

subsequent three chambers before it is tapped at the rear end of chamber 4. Thus,

the gas has a very long passage way allowing the Thiobacilli to act. The

efficiency of H2S oxidation is demonstrated by an operational data during the

start-up period when measured H2S concentrations dropped below 200 ppm

(Fig. 4.7). While the methane concentration tends to increase along the flow

path through the chambers (range around 50%), the injected air (oxygen) is used

up by oxidation processes.

Oechsner (1998) investigated 52 biogas plants and found that in 54% and 15%

of all plants the H2S concentration exceeded 500 ppm and 2,000 ppm, respec-

tively. This showed that biological desulfurization did not work optimally in most

cases. The explanation may be a lack of suitable surface, a passage for the gas

that is too short, or a suboptimal temperature. In particular, non-insulated covers

may have surface temperatures below the optimum for many Thiobacilli (see

Table 4.1).

Fig. 4.6 Surface of gas-dome and manhole cover of an agricultural biogas plant coated by

precipitated elemental sulfur from biological H2S oxidation (Foto: F. Wackerle)
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4.3 Conclusions

Production of biogas from organic wastes is successfully used in millions of small-

scale reactors in Asia, while high-tech biogas plants in the Megawatt range are

efficiently operating in many countries worldwide. Yet, medium-scale plants with a

power range of 10–100 kW seem to experience a dilemma: state-of-the-art technol-

ogy is too expensive in construction and maintenance, while environmental regula-

tions and safety standards do not allow to upsize simple solutions known from

developing countries. With the BIO4GAS technology, a solution has been found

that optimizes the workplace of microbes in medium-scale Biogas plants.
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Béchamp A (1868) Lettre a M. Dumas. Ann. Chim. Phys. Ser. 4(13):103–111

Braun R, Drosg B, Bochmann G, Weiß S, Kirchmayr R (2010) Recent developments in bio-energy

recovery through fermentation. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at

work. From wastes to resources. Springer-Verlag, New York

Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl

Environ Microbiol 32:567–571

Buswell AM, Hatfield WD (eds) (1936) Anaerobic Fermentations, State of Illinois, Dept. of

Registration and Education, Div. of the State Water Survey, Urbana, IL. Bull. No. 32, 1–193

Buswell AM, Neave SL (1930) Laboratory studies of sludge digestion. Illinois Division of State

Water Survey, Bulletin No. 30

Chawla OP (1986) From biodung to biogas – a historical review of European experience. In:

Energy, Agriculture and Waste Management. Ann Arbour Science Publications, pp 207–260

Costello DJ, Greenfield PF, Lee PL (1991) Dynamic modelling of a single stage high-rate

anaerobic reactor. Water Res 25:847–871

Fuseler K, Krekeler D, Sydow U, Cypionka H (1996) A common pathway of sulfide oxidation by

sulfate reducing bacteria. FEMS Microbiol Lett 144:129–134

Graef SP, Andrews JF (1974) Stability and control of anaerobic digestion. J Water Pollut Control

Fed 46:666–683

Hill DT, Barth CL (1977) A dynamic model for simulation of animal waste digestion. J Water

Pollut Control Fed 49:2129–2143

Insam H, Franke-Whittle IH, Goberna M (2010) Microbes in aerobic and anaerobic waste

treatment. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes

to resources. Springer, Heidelberg, pp 1–34

Janssen AJH, Lens PNL, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkmann H, Van

Zessen E, Luimes P, Buismann CJN (2009) Application of bacteria involved in the biological

sulphur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343

Johansson DJA, Azar C (2007) A scenario based analysis of land competition between food and

bioenergy production in the US. Clim Change 82:267–291

Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions

on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:

331–338

Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly

designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithioba-
cillus gen. nov. Int J Syst Evol Microbiol 50:511–516

Lyberatos G, Skiadas IV (1999) Modelling of anaerobic digestion – a review. Global Nest Int J

2:63–76

Moletta R, Verrier D, Albagnac G (1986) Dynamic modelling of anaerobic digestion. Water Res

20:427–434

Mosey FE (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechan-

isms for the formation of short-chain volatile acids from glucose. Water Sci Technol

15:209–232

Munz G, Gori R, Mori G, Lubello C (2009) Monitoring biological sulphide oxidation processes

using combined respirometric and titrimetric techniques. Chemosphere 76:644–650

O’Rourke JT (1968) Kinetics of anaerobic treatment at reduced temperatures. PhD Thesis,

Stanford University, California

Oechsner H (1998) Erhebung von verfahrenstechnischen Daten an landwirtschaftlichen Bioga-
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Chapter 5

Vermicomposting: Earthworms Enhance the

Work of Microbes

Jorge Domı́nguez, Manuel Aira, and Marı́a Gómez-Brandón

Abstract Vermicomposting, a very efficient method of converting solid organic

waste into an environmentally-friendly, useful and valuable resource, is an accel-

erated process that involves bio-oxidation and stabilization of the waste as a result

of the interactions between some species of earthworms and microorganisms.

Although microorganisms are the main agents for biochemical decomposition of

organic matter, earthworms are critical in the process of vermicomposting. Com-

plex interactions among the organic matter, microorganisms, earthworms and other

soil invertebrates result in the fragmentation, bio-oxidation and stabilization of the

organic matter.
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5.1 What Is Vermicomposting?

Although it was Darwin (1881) who first drew attention to the great importance of

earthworms in the decomposition of dead plants and the release of nutrients from

them, it was necessary to wait for more than a century until this was taken seriously

as a field of scientific knowledge or even a real technology.

The cultivation of earthworms in organic wastes has been termed vermiculture,

and vermicomposting, the managed processing of organic wastes by earthworms to

produce vermicompost, has progressed considerably in recent years. Vermicom-

posting has been shown to be successful in processing sewage sludge and solids

from wastewater (Domı́nguez et al. 2003; Clark et al. 2007; Pramanik et al. 2007;

Suthar 2007), food industry waste (Nogales et al. 1999a, b, 2005), urban residues,

food and animal waste (Domı́nguez and Edwards 1997; Atiyeh et al. 2000; Triphati

and Bhardwaj 2004; Aira et al. 2006a, b; Garg et al. 2006; Suthar 2007; Lazcano

et al. 2008), and in the paper industry waste (Elvira et al. 1996, 1998; Kaushik and

Garg 2003; Gajalakshmi and Abbasi 2004), as well as treating horticultural residues

from cultivars (Gajalakshmi et al. 2005; Pramanik et al. 2007; Gupta et al. 2007;

Suthar 2007).

Vermicomposting is a bio-oxidative process in which detritivore earthworms

interact intensively with microorganisms and other soil fauna within the decom-

poser community, strongly affecting decomposition processes, accelerating the

stabilization of organic matter and greatly modifying its physical and biochemi-

cal properties (Domı́nguez 2004). Microorganisms produce the enzymes that

cause the biochemical decomposition of organic matter, but earthworms are

the crucial drivers of the process as they are involved in the indirect stimulation

of microbial populations through fragmentation and ingestion of fresh organic

matter, which results in a greater surface area available for microbial coloniza-

tion, drastically altering biological activity. Earthworms also modify microbial

biomass and activity through stimulation, digestion and dispersion in casts

(Fig. 5.1) and closely interact with other biological components of the vermi-

composting system, thereby affecting the structure of microflora and microfauna

communities (Domı́nguez et al. 2003; Lores et al. 2006). Thus, the decaying

organic matter in vermicomposting systems is a spatially and temporally hetero-

geneous matrix of organic resources with contrasting qualities that result from

the different rates of degradation that occur during decomposition (see Moore

et al. 2004).

Vermicompost, the end product of vermicomposting, is a finely divided peat-like

material of high porosity and water holding capacity and contains many nutrients in

forms that are readily taken up by plants. High rates of mineralization occur in the

organic matter-rich earthworm casts, which greatly enhances the availability of

inorganic nutrients, particularly ammonium and nitrates, for plants.
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5.2 Earthworms

Earthworms are macroscopic clitellate oligochaete annelids that live in soil. They

are hermaphroditic animals and display indeterminate growth. Earthworms repre-

sent the major animal biomass in most terrestrial temperate ecosystems; they

significantly affect soil’s physical, chemical and biological properties, and play a

key role in modifying soil structure and in accelerating the decomposition of

organic matter and nutrient turnover (Edwards and Bohlen 1996; Lavelle and

Spain 2001). More than 4,000 species of earthworms have been described, although

for the great majority of these species, only the names and morphologies are known,

and nothing is known about their biology, life cycles and ecology. Different species

of earthworms have different life histories, occupy different ecological niches and

have been classified, on the basis of their feeding and burrowing strategies, into

three ecological categories: epigeic, anecic and endogeic (Bouché 1977). Endogeic

(soil feeders) and anecic species (burrowers) live in the soil profile and consume a

mixture of soil and organic matter, and thus excrete organo-mineral feces. Epigeic

earthworms are litter dwellers and litter transformers; they live in organic horizons,

in or near the surface litter and feed primarily on coarse particulate organic matter,

ingest large amounts of non-decomposed litter and excrete holorganic fecal pellets.

These pellets provide a higher surface to the volume ratio than the original leaf

litter, which enhances the rate of decomposition (Lavelle et al. 1997; Lavelle and

Spain 2001).

Epigeic earthworms, with their natural ability to colonize organic wastes, high

rates of consumption, digestion and assimilation of organic matter, tolerance to a

wide range of environmental factors, short life cycles, high reproductive rates, and

COMMINUTION
ORGANIC MATTER

CASTING
ACTIVITIES

COMPETITIONDIGESTION+

– –

MICROFLORA

EARTHWORMS

+
+

MUCUS

Fig. 5.1 Positive (+) and negative (–) effects of earthworms on microbial biomass and activity.

Microbes are mainly dispersed through earthworm casts
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endurance and resistance to handling, show good potential for vermicomposting.

Few earthworm species display all these characteristics, and in fact only four have

been extensively used in vermicomposting facilities: Eisenia andrei, E. fetida,
Perionyx excavatus and Eudrilus eugeniae (see Domı́nguez (2004) for details of

the life cycles of these species).

5.3 Vermicomposting Food Web

Vermicomposting systems sustain a complex food web that results in the recycling

of organic matter. Biotic interactions between decomposers (i.e., bacteria and

fungi) and the soil fauna include competition, mutualism, predation and facilitation,

and the rapid changes that occur in both functional diversity and in substrate quality

are the main properties of these systems (Sampedro and Domı́nguez 2008). The

most numerous and diverse members of this food web are microbes, although there

are also abundant protozoa and many animals of varying sizes, including nema-

todes, microarthropods and large populations of earthworms (Monroy 2006;

Sampedro and Domı́nguez 2008). These fauna cover a range of trophic levels –

some feed primarily on microbes (microbial-feeders), organic waste (detritivores),

a mixture of organic matter and microbes (microbial-detritivores), whereas others

feed on animals (carnivores) or across different trophic levels (Fig. 5.2; Sampedro
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and Domı́nguez 2008). A continuous range of feeding strategies from pure detriti-

vore to pure microbivore has been proposed in detritus-based food webs (Scheu

2002), although the trophic structure and specific resource utilization are poorly

understood.

The primary consumers of the vermicomposting food web are the microbes

(mainly bacteria, fungi and ciliates) that break down and mineralize organic

residues. Microbes are the most numerically abundant and diverse members of

the vermicomposting food web, and include thousands of organisms. Secondary

and higher-level consumers, i.e., the soil fauna including the earthworms, exist

alongside microbes, feeding on and dispersing them throughout the organic matter.

As organic matter passes through the gizzard of the earthworms, it becomes finely

ground prior to digestion. Endosymbiotic microbes produce extracellular enzymes

that degrade cellulose and phenolic compounds, enhancing the degradation of

ingested material; and the degraded organic matter passes out of the earthworm’s

body in the form of casts. As earthworms feed on decaying organic wastes, their

burrowing and tunneling activities aerate the substrate and enable water, nutrients,

oxygen and microbes to move through it; their feeding activities increase the

surface area of organic matter for microorganisms to act upon. As decomposers

die, more food is added to the food web for other decomposers (Fig. 5.3; direct

Direct effects

Indirect effects

Final OM
Microorganismsfinal

Microfaunafinal

Mesofauna

Fresh OM
Microorganisms

Microfauna

Transformed OM
Microorganisms
Microfaunatrans

trans

Transformed OM
Microorganisms
Microfaunatrans

trans

Fig. 5.3 Direct and indirect effects of earthworms on the decomposition of organic matter (OM)

during vermicomposting. Here we show the two interacting pathways functioning in the process:

the earthworm-mediated pathway (black lines) and the microbial pathway (gray lines). Both
pathways involve intermediated stages of decomposition (here denominated transformed) which

result in the final organic matter
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effects are those related to direct earthworm activity such as digging, digestion and

casting, which initially modify the organic matter, microorganisms and microfauna.

Indirect effects are those derived from the direct ones, and include aging and

mixing of casts with fresh organic matter or transport of microorganisms, i.e., the

interaction of transformed substrates with fresh and transformed substrates by

microorganisms).

Earthworms accelerate decomposition processes during vermicomposting (Aira

et al. 2006a, 2007a), but it is not clear from where they obtain their energy inputs

(decaying organic matter, microorganisms, microfauna or a combination of them).

They may utilize different strategies ranging from non-selective substrate feeding

to grazing strategies, and have the ability to shift between living and nonliving

carbon sources (Domı́nguez et al. 2003; Sampedro et al. 2006).

5.4 How Vermicomposting Works

The vermicomposting process includes two different phases regarding the activity

of earthworms, (i) an active phase during which earthworms process waste, thereby

modifying its physical state and microbial composition (Lores et al. 2006), and (ii) a

maturation-like phase marked by the displacement of the earthworms towards

fresher layers of undigested waste, during which the microbes take over the

decomposition of the earthworm’s processed waste (Domı́nguez 2004; Fig. 5.4).

As in composting, the duration of the active phase is not fixed, and depends on the

species and density of earthworms (the main drivers of the process), and the rates at

which they ingest and process the waste (Aira and Domı́nguez 2008a).

The effect of earthworms on the decomposition of organic waste during the

vermicomposting process is, in the first instance, due to gut associated processes

(GAPs). These processes include all the modifications that the decaying organic

matter and the microorganisms undergo during the intestinal transit. These mod-

ifications include the addition of sugars and other substances, modification of the

microbial diversity and activity, modification of the microfauna populations,

homogenization, and the intrinsic processes of digestion, assimilation and produc-

tion of mucus and excretory substances such as urea and ammonia, which constitute

a readily assimilable pool of nutrients for microorganisms. Decomposition is also

enhanced through the action of endosymbiotic microbes that reside in the gut of

earthworms. These microbes produce extracellular enzymes that degrade cellulose

and phenolic compounds, thereby further enhancing the degradation of ingested

material. Other physical modifications of the substrate caused by the digging

activities of earthworms, such as aeration and homogenization of the substrate

also favour microbial activity and further enhance decomposition (Domı́nguez

2004). The proximate activity of earthworms significantly enhances the minerali-

zation of both carbon and nitrogen in the substrate, and such effects are in propor-

tion to the earthworm density (Aira et al. 2008). Several authors have reported
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similar responses in detritivorous organisms involved in organic matter decompo-

sition (Aira et al. 2002; Vetter et al. 2004).

Upon completion of GAPs, the resultant earthworm casts undergo cast asso-

ciated processes (CAPs), which are more closely associated with aging processes,

the action of the microflora and microfauna present in the substrate and with the

physical modification of the egested materials (days to weeks; Parthasarathi and

Ranganathan 2000; Aira et al. 2005). During these processes the effects of earth-

worms are mainly indirect and derived from the GAPs. It is important to note that in
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vermicomposting systems, earthworm casts are always mixed with material not

ingested by the earthworms, and the final vermicompost consists of a mixture of the

two different fractions. During this aging, vermicompost will reach its optimum in

terms of biological properties promoting plant growth and suppressing plant dis-

eases (see Chap. 8, de Bertoldi 2010; Chap. 11, Fuchs 2010). Currently, there is

insufficient information regarding when this “optimum” is achieved, how we can

determine it in each case and if this “optimum” has some kind of expiration date. It

is important to note that the optimal quality may only be achieved in natural

ecosystems built from the correct site-specific balance of soil, plants, microorgan-

isms, macroorganisms including earthworms and climate. However, it is not possi-

ble to easily determine when a vermicompost sample is “optimal” and thus, only

after application, can this be known.

5.5 Stimulation and Acceleration of Microbial Decomposition

by Earthworms during Vermicomposting

Nutrient mineralization is directly governed by the activities of bacteria and fungi

and these activities are strongly affected by the soil fauna that lives alongside the

microbes, and also by food web interactions that determine the transfer of nutrients

through the system. Although epigeic earthworms have little direct impact on

mineralization, their indirect effects on microbial biomass and activity are very

important. These indirect effects include digestion and release of readily assimila-

ble substances, such as mucus for microbiota (Brown and Doube 2004), as well as

the transport and dispersal of microorganisms through casting. Earthworms ingest a

mixture of organic wastes and microorganisms during vermicomposting and some

of this material will be digested, but they also excrete large amounts of rather fragile

fecal material in which further microbial growth is enhanced by favorable condi-

tions of moisture and the intense mixing that has occurred in the gut. Other earth-

worms or members of the mesofauna may subsequently ingest those pellets and

assimilate a further set of substrates made available by the most recent burst of

microbial activity (Lavelle et al. 1997; Fig. 5.3). Earthworm casts play an important

role in decomposition because they contain nutrients and microbiota different from

those contained in the material prior to ingestion (Aira et al. 2006b; Aira and

Domı́nguez 2008b). This enables better exploitation of resources either because

of the appearance of microbial species in fresh substrate or the pool of readily

assimilable compounds in the casts.

It is well known that earthworms accelerate the rate of organic matter decompo-

sition during vermicomposting (Atiyeh et al. 2000; Domı́nguez et al. 2003;

Domı́nguez 2004; Triphati and Bhardwaj 2004; Aira and Domı́nguez 2008a,b;

Aira et al. 2006b, 2007a,b, 2008; Fig. 5.5). Although earthworms can assimilate

carbon from the more labile fractions of organic wastes, their contribution to the

total heterotrophic respiration is very low due to their poor capacity for assimilation.
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Nitrogen mineralization is regulated by the availability of dissolved organic

nitrogen and ammonium, the activity of the microorganisms and their relative

requirements for carbon and nitrogen. Earthworms also have a great impact on

nitrogen transformations during vermicomposting through modifications of the

environmental conditions and their interactions with microbes; they enhance nitro-

gen mineralization, thereby producing conditions in the organic wastes that favour

nitrification, resulting in the rapid conversion of ammonium-nitrogen into nitrates

(Atiyeh et al. 2000; Domı́nguez 2004; Lazcano et al. 2008; Aira et al. 2008; Aira

and Domı́nguez 2008b; Fig. 5.6).

The effects of microbial-feeding fauna on microbial activity and nutrient miner-

alization are generally positive. Enhanced C mineralization results from increased

turnover rate, activity and respiration of grazed microbial populations, whereas

enhanced N mineralization is mainly due to the direct excretion of excess N. In

general, grazers have lower assimilation efficiencies than the microbes upon which
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they graze, and therefore they excrete the excess nutrients in biologically available

forms (e.g., protozoa preying on bacterial populations are assumed to release about

one-third of the N consumed; Bardgett 2005). This release of nutrients in fact

constitutes remobilization of the nutrients that were bound up in the microbial

biomass, and has been termed the “microbial loop” (Clarholm 1994).

5.6 Effects of Earthworms on Microbial Communities

during Vermicomposting

Microorganisms are the main agents of biochemical decomposition, whereas

earthworms are involved in the indirect stimulation of microbial populations

through comminution of organic matter, i.e., by increasing the surface area avail-

able for microbes. Earthworms also modify the microbial populations through

digestion, stimulation and dispersion in casts. Therefore, it is necessary to establish

the effects of earthworms on the microorganisms, because whether the earthworms

stimulate or depress microbiota, or modify the structure and function of microbial

communities, they would have different effects on the decomposition of organic

matter. To address these questions we performed an experiment in our laboratory

with mesocosms filled with cow manure with ten mature earthworms and without

earthworms (n¼ 5 each). We used cow manure as the substrate, which is known to

support a dense decomposer foodweb (Sampedro and Domı́nguez 2008). The

mesocosms consisted of 2 L plastic jars filled with 200 g (fresh weight, fw) of

substrate. We used the epigeic earthworm E. andrei Bouché, 1972, broadly

distributed and easy to manage under lab conditions. We allowed mature indivi-

duals (375 ± 7 mg; mean individual fw ± standard error of the mean) to shed their

gut contents on moistened tissue paper for 24 h at room temperature before the

experiment. We covered the jars (containing the substrate and the earthworms)

with perforated lids, stored them at random in a scientific incubator (20�C and 90%

humidity) and after 1 month, earthworms were removed and vermicompost and

control samples were collected and immediately processed for microbial analyses.

Viable microbial biomass was determined as the sum of all identified phospholipid

fatty acids (PLFAs). The structure of the microbial community was assessed by

PLFA analysis; and some specific PLFAs were used as biomarkers to determine

the presence and abundance of specific microbial groups. Microbial community

function was determined measuring the bacterial and fungal growth rates by the

incorporation of radioactively labelled leucine into proteins and radioactively

labeled acetate into the fungal-specific lipid ergosterol, respectively. The meta-

bolic quotient, a parameter that evaluates the efficiency of microorganisms in

utilizing organic C compounds, was also determined. The data were analyzed by

one-way ANOVA. Post hoc comparisons of means were performed by a Tukey

HSD test at a ¼ 0.05 test.
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5.6.1 Effects of Earthworms on the Structure of Microbial
Communities

5.6.1.1 Microbial Biomass

Assessment of microbial communities by PLFA (Zelles 1999) revealed that

earthworms impact greatly on microbial community structure and function. We

found that the activity of earthworms reduced the viable microbial biomass

measured as the total content of PLFAs after 1 month of vermicomposting

(Fig. 5.7a); the presence of earthworms reduced total microbial biomass by approx-

imately four to five times relative to the control without earthworms. Earthworm

activity also reduced the ratio of fungal to bacterial PLFA (Fig. 5.7b) indicating,

that the decrease in fungal PLFA was proportionally higher than that of the

bacterial PLFA.

Certain specific PLFAs can be used as biomarkers to determine the effect of

earthworms on the presence and abundance of specific microbial groups. The sum

of PLFAs characteristic of Gram-positive bacteria (iso/anteiso branched-chain

PLFAs), Gram-negative bacteria (monounsaturated and cyclopropyl PLFAs) and

actinomycetes (10Me branched PLFAs) was chosen to represent the bacterial

biomass; and the fungal biomarker 18:26,9 was used to indicate fungal biomass

(Frostegård and Bååth 1996; Zelles 1997). The abundance of both bacteria and

fungi was drastically reduced by the earthworms after 1 month of vermicomposting
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(Fig. 5.8). Earthworms can reduce microbial biomass directly by selective feeding

on bacteria and fungi (Schönholzer et al. 1999) or indirectly by accelerating the

depletion of resources for the microbes.

5.6.1.2 Bacterial and Fungal Growth

In our studies bacterial growth was estimated by the use of the leucine incorporation

technique (Bååth 1994), as modified by Bååth et al. (2001), and fungal growth with

the acetate-in-ergosterol incorporation technique (Newell and Fallon 1991) as

modified by Bååth (2001). Earthworm activity greatly decreased the bacterial

growth rate and did not affect the fungal growth rate after 1 month of vermicom-

posting (Fig. 5.9). Animal manures are microbiologically-rich environments in

which bacteria constitute the largest fraction, with fungi mainly present as spores

(Garrett 1981); moreover, the first stages of decomposition in these organic wastes

are mainly dominated by bacteria because of the availability of water and easily

decomposable substrates. Hence, the activity of earthworms is expected to affect

the bacterial growth rate to a greater extent than the fungal growth rate. In addition,

carbon availability is a limiting factor for earthworm growth and it has been
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reported that earthworms and microorganisms may compete for carbon resources

(Tiunov and Scheu 2004); thus, earthworm activity may have reduced the quantity

of resource available for microbial communities, and consequently the bacterial

growth rate. The fungal growth rate is expected to decrease during the maturation

stage, when depletion of more recalcitrant compounds takes place.

5.6.2 Effects of Earthworms on the Activity of Microbial
Communities

As discussed earlier in this chapter, there is extensive evidence in the literature

suggesting that earthworms and other soil animals grazing on microbes enhance

microbial activity at the first instance. As a result of this, earthworm activity

reduces later the availability of the resources for the microbial communities, and

consequently their activity. Thus, in our experiment, the microbial activity
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measured as basal respiration decreased after 1 month of vermicomposting with the

earthworm species E. andrei (Fig. 5.10a).
Organic carbon taken up by the heterotrophic microbial communities is parti-

tioned between microbial cell biomass production, metabolite excretion and respi-

ration. The proportion of substrate carbon retained as microbial biomass relative to

carbon respired as CO2 depends on the efficiency of microbial growth (i.e., the

efficiency with which substrates are incorporated into biomass and by-products), as

well as on the degree of protection of microbial biomass in the organic matrix and

on the rate of decomposition of bacterial and fungal by-products by other micro-

organisms. Thus, the lower the microbial growth efficiency or the less protected the

biomass, the greater the amount of carbon lost as CO2 (Six et al. 2006). The

metabolic quotient or specific activity of the microbial biomass (qCO2; microbial

respiration per unit biomass) can be used as a measure of microbial efficiency

(Anderson and Domsch 1993; Wardle and Ghani 1995); higher values of qCO2

indicate that microbial communities are under conditions of higher stress. Thus,

less of the energy yielded by substrate metabolism will be used for biosynthetic

purposes. An important portion of this energy will be expended on cell maintenance

and lost as CO2. Earthworm activity reduced the metabolic quotient after 1 month
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of vermicomposting (Fig. 5.10b), indicating, that microbial communities used the

available energy more efficiently in the presence of earthworms. As a consequence,

the system functioned much better, as shown by the large increase in the rate of

decomposition of the organic matter (Fig. 5.5.) and in the rate of nitrogen minerali-

zation (Fig. 5.6). The effect of earthworms on C and N mineralization rates is

density-dependent (Aira et al. 2008).

5.6.3 Effect of Earthworms on Total Coliforms during
Vermicomposting

Earthworms also greatly reduced the presence of total coliforms during vermicom-

posting. The passage through the gut of the earthworm species E. andrei, E. fetida
and Eu. eugeniae reduced the density of total coliforms by 98%, relative to fresh pig

slurry (Fig. 5.11a) (Monroy et al. 2008). The same drastic reduction in the density

of total coliforms was also found in another experiment after 2 weeks of vermi-

composting with E. fetida (Monroy 2006). The reductions in total coliforms were

similar to those reported by Eastman et al. (2001) for these and other human

pathogens, which indicate the effectiveness of vermicomposting at reducing the

levels of human pathogens during stabilization of biosolids and other organic

wastes. As discussed earlier, digestion of decaying substrate by earthworms

decreases the availability of nutrients for microorganisms, thereby decreasing

microbial numbers in casts and altering the microbial composition (Brown 1995).

There is increasing evidence that earthworms have a specific gut microflora

(Karsten and Drake 1995; Horn et al. 2005), and the decrease in total coliforms

also may be related to competitive interactions between coliforms and microorgan-

isms that are specific to the earthworm gut (Brown and Mitchell 1981). Moreover,

the negative effect of the passage through the earthworm gut observed in enter-

obacteria such as Serratia marcescens, Escherichia coli and Salmonella enteridis
(Day 1950; Brüsewitz 1959; Brown and Mitchell 1981) suggests the occurrence of

selective effects on the ingested microorganisms.

5.6.4 Effect of Earthworms on the Composition of Microbial
Communities

The discriminant analysis of 25 PLFAs (i14:0, 14:0, i15:0, a15:0, 15:0, i16:0, 16:19,

16:17, 16:15, 16:0, 10Me16:0, i17:0, a17:0, cy17:0, 17:0, 10Me17:0, 18:26,9,

18:19, 18:17, 18:0, 10Me18:0, cy19:0, 20:46, 20:53, 20:36) clearly differen-

tiated the vermicomposts obtained with three different epigeic earthworm species

(E. andrei, E. fetida and P. excavatus), irrespective of what manure type (cow, horse

or rabbit) was used in vermicomposting (Fig. 5.12). This indicates that there were
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different PLFA profiles associated with the vermicomposts, not related to the type of

animal manure used, but rather to the earthworm species and/or their endosymbiotic

gut microflora. Moreover, the separation between vermicomposts and control sub-

strates (manures processed without earthworms) was also very clear (Fig. 5.12),

indicating that earthworms play a key role in shaping the structure of the microbial

community in organic wastes during the vermicomposting process. Similar results

were also found with fatty acid methyl ester (FAME) profiles (Lores et al. 2006).

From this perspective and since different vermicomposts produced by different

earthworm species and from different types of organic wastes contain an enormous

and specific variety of microorganisms, it is possible to obtain specific vermicom-

posts for different practical applications. This may especially be important in
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producing plant container media and for impoverished and/or intensively fertilized

soils.

5.6.5 Molecular Tools Applied to Vermicomposting Studies

Molecular tools are commonly used for investigating microbial communities in

ecological studies (see Hultman et al. 2010, Insam et al. 2010, Knapp et al. 2010,

Minz et al. 2010). Such tools include clone libraries, fluorescent in situ hybridiza-

tion (FISH), denaturing gradient gel electrophoresis (DGGE) and terminal restric-

tion fragment length polymorphism (T-RFLP) analysis. Each of these methods

measures different aspects of the community such as diversity, in situ detection,

and community dynamics, and all of them are based on 16S rRNA gene

sequences (Deutschbauer et al. 2006). Although these techniques nowadays are

frequently used in composting research (Danon et al. 2008; Franke-Whittle et al.

2009), their application in vermicomposting is very scarce (Fracchia et al. 2006;
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Vivas et al. 2009; Sen and Chandra 2009). Application of these techniques has

shown that compost and vermicompost differ greatly in their microbial commu-

nities, and that a higher microbial diversity exists in vermicompost relative to the

initial substrate than in compost (Fracchia et al. 2006; Vivas et al. 2009; Sen and

Chandra 2009).

5.7 Conclusions

Vermicomposting is a bio-oxidative process in which detritivore earthworms inter-

act intensively with microorganisms in decomposition processes, accelerating the

stabilization of organic matter and greatly modifying its physical and biochemical

properties. Earthworms are crucial drivers of the process as they are involved in the

indirect stimulation of microbial populations through fragmentation and ingestion

of fresh organic matter. Earthworms reduce microbial biomass and activity during

the vermicomposting process. The activity of epigeic earthworms drastically

reduces the viable microbial biomass during the vermicomposting process and

this reduction is proportionally higher for fungi than for bacteria. After 1 month

of vermicomposting the bacterial growth rate decreases in the substrate whereas the

fungal growth rate is not affected. Microbial activity measured as basal respiration

decreases after vermicomposting. Earthworm activity helps microbial communities

to use the available energy more efficiently and plays a key role in shaping the

structure of the microbial community in organic wastes during the vermicompost-

ing process. These evidences indicate that detritivorous earthworms directly modu-

late the decomposer community composition in the short term accelerating the

decomposition of organic matter.

Acknowledgments This research was partially supported by a Xunta de Galicia grant

(07MRU023383PR).

References

Aira M, Domı́nguez J (2008a) Optimizing vermicomposting of animal wastes: effects of dose of

manure application on carbon loss and microbial stabilization. J Environ Manage 88:

1525–1529

Aira M, Domı́nguez J (2008b) Microbial and nutrient stabilization of two animal manures after the

transit through the gut of the earthworm Eisenia fetida (Savigny, 1826). J Hazard Mater.

doi:10.1016/j.jhazmat.2008.04.073

Aira M, Monroy F, Domı́nguez J, Mato S (2002) How earthworm density affects microbial

biomass and activity in pig manure. Eur J Soil Biol 38:7–10

Aira M, Monroy F, Domı́nguez J (2005) Ageing effects on nitrogen dynamics and enzyme

activities in casts of Aporrectodea caliginosa (Lumbricidae). Pedobiologia 49:467–473

Aira M, Monroy F, Domı́nguez J (2006a) Changes in microbial biomass and microbial activity of

pig slurry after the transit through the gut of the earthworm Eudrilus eugeniae (Kinberg, 1867).
Biol Fertil Soils 42:371–376

110 J. Domı́nguez et al.



Aira M, Monroy F, Domı́nguez J (2006b) Eisenia fetida (Oligochaeta, Lumbricidae) activates

fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol

52:738–746

Aira M, Monroy F, Domı́nguez J (2007a) Eisenia fetida (Oligochaeta: Lumbricidae) modifies the

structure and physiological capabilities of microbial communities improving carbon minerali-

zation during vermicomposting of pig manure. Microb Ecol 54:662–671

Aira M, Monroy F, Domı́nguez J (2007b) Earthworms strongly modify microbial biomass and

activity triggering enzymatic activities during vermicomposting independently of the applica-

tion rates of pig slurry. Sci Total Environ 385:252–261

Aira M, Sampedro L, Monroy F, Domı́nguez J (2008) Detritivorous earthworms directly modify

the structure, thus altering the functioning of a microdecomposer food web. Soil Biol Biochem

40:2511–2516

Anderson JPE, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity

parameter to assess the effects of environmental conditions, such as pH, on the microbial

biomass of forest soils. Soil Biol Biochem 25:393–395

Atiyeh R, Dominguez J, Subler S, Edwards CA (2000) Changes in biochemical properties of cow

manure during processing by earthworms (Eisenia andrei) and the effects on seedling growth.

Pedobiologia 44:709–724
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Chapter 6

Compost Microbial Activity Related to

Compost Stability

An Ceustermans, Jozef Coosemans, and Jaak Ryckeboer

Abstract In this chapter, compost stability has been reviewed in general and in

relation to microbial activity. The evolution of microbial activity during compost-

ing is discussed. Another issue that has been reviewed is the relationship between

temperature and microbial activity during the composting of biowaste. Different

methods to measure compost stability, as well as chemical, physical and biological

methods have been considered. Moreover, an overview is given about the implica-

tions of the use of non-stabilized compost and about the benefits of the use of

compost in agriculture.
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6.1 Introduction

Due to the intensive agricultural systems, the organic matter content of soils lowers

continuously (Baize et al. 1999). Moreover, landscape preservation hampers the

production of traditional organic matter, i.e., peat (Rivière et al. 2008). Therefore,

an enhanced interest in the use of compost in agriculture is certainly desirable.

Addition of compost to soil not only improves soil structure, soil pore system

characteristics and lowers bulk density (Pagliai et al. 2004; Lynch et al. 2005;

Tsadilas et al. 2005; Wahba 2007), but can also increase the C/N ratio, increases

soil organic carbon concentration (Lynch et al. 2005) and leads to an enhanced

enrichment of organic nitrogen in the soil (Amlinger et al. 2003).

The principal requirement of compost for a safe use in soil is its degree of

stability, implying a stable organic matter content and the absence of phytotoxic

compounds and plant or animal pathogens (Bernal et al. 1998; Ryckeboer 2001), as

the application of non-stabilized compost to soil may cause several phytotoxicity

effects and can adversely affect the environment (Butler et al. 2001). Consequently,

compost stability is an important issue to guarantee a safe use of this end-product

and thus benefit both agriculture and the environment (Baffi et al. 2007). The level

of stability and maturity of composts is an essential aspect of compost quality

(McAdams and White 1996; Lasaridi and Stentiford 1998a,b; Benito et al. 2003;

Huang et al. 2006; Said-Pullicino et al. 2007; Gómez-Brandón et al. 2008). In this

chapter, compost stability is reviewed in general and in relation to microbial

activity. Different methods that have been proposed to determine compost stability

based on physical, chemical and biological parameters are summarized. At the end

of the chapter, stability is also linked to the agricultural use of composts.

6.2 Important Factors During Composting

Composting is a common method to treat organic waste and is based on the partial

oxidation of readily oxidizable organic matter, creating a more stable, humic,

organic matrix in the process (Bio-Logic Environmental Systems 2001). The

composting process is generally characterized by a short mesophilic period initially

and then a rapid transition to the thermophilic period. After the subsequent decrease

in temperature, the curing period or compost stabilization stage starts (Tang et al.

2007).

The principal factors that contribute to making an optimum environment for the

microbial processes in composting are oxygen, temperature, moisture, C/N ratio

and pH (de Bertoldi et al. 1983; Ryckeboer et al. 2003b; Neklyudov et al. 2008).

Interstitial O2 concentrations should not fall below 10% to maintain aerobic

microbial metabolism (Vallini et al. 2002). Lower O2 concentrations can delay

organic matter decomposition, what might lead to anaerobic conditions (Steger

et al. 2005) and thus, an increased methane emission (Beck-Friis et al. 2003).

116 An Ceustermans et al.



Moreover, inadequate O2 levels lead to the establishment of an anaerobic micro-

flora, which can produce odoriferous compounds and phytotoxic metabolites

(Vallini et al. 2002). The effects of C/N ratio on composting have been investigated

by many researchers, who generally recommend the range between 20 and 30 as the

optimum C/N ratio (Sadaka and El-Taweel 2003). Vallini et al. (2002) reported that

a C/N ratio of 25/1 to 30/1 is considered ideal for faster compost stabilization.

Higher values slow down the rate of decomposition while nitrogen becomes the

limiting factor, and lower ones result in nitrogen loss in the form of ammonia

whereas the available carbon may be fully utilized (de Bertoldi et al. 1983; Vallini

et al. 2002; Sadaka and El-Taweel 2003). Microbes driving compost stabilization

operate best in the range of pH between 6.5 and 8.0. Nevertheless, the natural self-

correcting or buffering capacity of the process makes it possible to proceed over the

much wider range of 5.5 to 9.0 (Vallini et al. 2002). Besides these factors also

temperature and moisture content play an important role during composting and

will be discussed in relation to microbial activity (see Sect. 6.3, Chap. 1, Insam et al.

2010; Chap. 11, Fuchs 2010).

6.3 Microbial Activity During Composting

Own work shows that the total biological activity follows a typical evolution during

the composting process (Fig. 6.1). At the start of the process, there is a pronounced

decrease in biological activity together with increasing temperatures during the heat

peak. Also Saludes et al. (2007) observed a low microbial activity (indicated by low

ATP content) on day 1 probably caused by a very high composting temperature
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(about 67�C), resulting in the inactivation of fungi, actinomycetes and bacteria.

Miyatake and Iwabuchi (2005) also observed a decrease in bacterial activity at

temperatures over 60�C, not attributable to microbial extinction but to the decrease

in metabolic activity. As temperature drops, there is an increase in biological

activity. This is followed by a decrease in both temperature and biological activity.

At the end of the composting process the total biological activity gets stable and

reaches a basic level with low and stable end-values. The drop in biological activity

at the end of the process is probably due to a lack of easy decomposable organic

compounds and points to compost stability (Benı́tez et al. 1999; Ryckeboer et al.

2003a). Also Tiquia (2005) found no further decomposition towards the end of the

composting process: O2 consumption rate, ATP content and dehydrogenase activi-

ties (all indicators of microbial activity) dropped and stabilized to low levels.

During composting metabolic heat is produced as a byproduct through the

activity of the indigenous microbial community, which decomposes the usable

matter for energy and growth substrates (Vestal and McKinley 1986). Temperature

is probably the most important factor affecting microbial metabolism during this

process (Vallini et al. 2002) and therefore the most critical parameter influencing

the rate of composting and the quality of the product (Vestal and McKinley 1986).

Temperature is simultaneously a consequence and a determinant of the micro-

bial activity (Vallini et al. 2002; Gea et al. 2007). On the one hand, temperature is a

consequence as heat production during composting is almost completely derived

from biological activity and because it changes in direct response to heat production

(Yu et al. 2008). On the other hand, microbial activity is dependent on the

temperature. Several researchers have tried to define the optimal temperature for

composting (Nakasaki et al. 1985). However, many of the findings on optimum

temperatures for maximum decomposition rate during composting are contradic-

tory. These discrepancies may be partly due to the indirect and incomplete nature of

many of the studies concerning microbial activity and biomass in composting

material (Vestal and McKinley 1986). Moreover, substrate composition influences

the optimal composting temperature, that is, there is a difference in optimum

compost temperatures between food wastes that contain easily degradable com-

pounds and more resistant substrates (Eklind et al. 2007). For rapid composting

high temperatures for long periods must be avoided, as ammonia emissions increase

at higher composting temperatures, resulting in higher N losses (Eklind et al. 2007).

However, the waste material must be exposed to a sufficiently high temperature for

a sufficiently long period of time to ensure an effective inactivation of pathogens

(de Bertoldi et al. 1983; Ryckeboer 2001; Vinnerås et al. 2003; Haug 1993). For

further details on pathogen inactivation see Chap. 9, Vinnerås et al. (2010).

After this stage optimal temperatures vary from 45 to 55�C (de Bertoldi et al.

1983). Some researchers indicate 60�C as the optimal temperature during compost-

ing according to maximal respiration rates (O2 uptake rate and CO2 evolution rate)

(Suler and Finstein 1977; Nakasaki et al. 1985; Cronjé et al. 2004) while others

demonstrated that lower temperatures might allow higher microbial activities

(McKinley and Vestal 1984, 1985; Vestal and McKinley 1986; Miyatake and

Iwabuchi 2006). The effect of high compost temperatures on enzymatic activity
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was studied by Miyatake and Iwabuchi (2005). When the temperature increased to

63�C, an overall reduction in bacterial diversity was observed. At 66�C, bacterial
diversity increased again, and a diverse group of bacteria including Thermus spp.
and thermophilic Bacillus spp. appeared to adapt to the higher temperature. At

70�C, the activity of these diverse bacteria increased, but the decomposition of

manure organic matter was reduced due to the higher temperature.

The decrease in temperature at the end of the composting process is not always

observed. Metabolic heat generation is combined with the thermal inertia effect

found in compost materials due to their self-insulating properties (Haug 1993). As

water holds more heat and transfers heat more effectively than air, the thermal

properties of compost increase with an increasing number of water-filled pores.

Especially the water content and density of the compost, has a significant effect on

the temperature of the composting process (Ahn et al. 2006). Thermophilic tem-

peratures can be maintained during the maturation stage in the core of the pile,

because of the self-insulating properties of the compost (Barrena et al. 2006). The

heat generated by the biological activity is retained in the composting mass. This

phenomenon is not observed in laboratory or pilot scale studies, in which tempera-

ture decreases rapidly when the easily biodegradable organic matter is consumed

and where the insulating effect is less (Ryckeboer et al. 2003a). For this reason,

temperature is not a good parameter to predict biological activity and compost

stability at full scale composting plants.

Moisture content has been referred to as a critical factor to optimize compost-

engineering systems because decomposition of organic matters depends on the

presence of water to support microbial activity (Luo et al. 2008), as water

provides a medium of transport of dissolved nutrients required for the metabolic

and physiological activities of microorganisms (McCartney and Tingley 1998).

Thus, the evolution of the moisture content during composting and the moisture

content of the final compost give an idea about how well a composting process is

managed. In the work of Liang et al. (2003) the moisture content had an even

greater influence on microbial activity than the temperature. Also the study of

Margesin et al. (2006) indicated that low moisture content is a more limiting

factor for composting than low temperature. Optimum metabolic rates can be

achieved by reaching the maximum water content that does not restrict O2

transfer and utilization (Vallini et al. 2002). Additionally, optimal moisture

content differs between various starting materials (Madejón et al. 2002), which

depends on the physical state and size of the particles (de Bertoldi et al. 1983;

Forshell 1993) and is related to maintenance of a certain free air space (Madejón

et al. 2002). Many investigators have conducted experiments and identified that

50–60% moisture content is suitable for efficient composting (Suler and Finstein

1977; Tiquia et al. 1998; Lin 2008; Mohee et al. 2008). Moreover, Liang et al.

(2003) reported that 50% moisture content is the minimal requirement for obtain-

ing adequate microbial activities during biosolid composting. On the other hand,

their experimental design could not detect an upper limit. However, when the

initial moisture content is too high, this situation can lead to the production of

biologically unstable compost, as high water content could influence gaseous
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exchange by limiting diffusion and thus restricting oxygen utilization by micro-

organisms, resulting in decreased microbial activity (Tiquia et al. 1996; Sundberg

and Jönsson 2008). In addition, biosolids showed significant compressive beha-

viour and lower air permeabilities with increasing moisture content (Das and

Keener 1997).

Also, when the moisture content is too low, microbial activity is reduced, as

shown by the lower CO2 evolution rate (Nakasaki et al. 1994; Ryckeboer et al.

2003b) and this can cause early dehydration, which arrests the biological process,

resulting in physically stable but biologically unstable compost (de Bertoldi et al.

1983). Decomposition slows dramatically in mixtures below 40% moisture (Vallini

et al. 2002, Liang et al. 2003). Adding a water absorbent (an organic high polymer)

seems to be a good method to adjust the initial moisture content of the compost,

because it has been shown to induce the longest duration of thermophilic stage and

inhibitive temperature stage at the bottom of the pile (Luo et al. 2008).

6.4 Compost Stability

6.4.1 Definition of Compost Stability

First of all, it is important to differentiate between compost stability and compost

maturity; often these two terms are used synonymously. Compost stability reflects

the degree of decomposition of the organic matter (Chen 2003). McAdams and

White (1996) defined compost stability as the point where readily degradable

substrate is diminished so that its decomposition rate does not control the overall

rate of decomposition. According to Albrecht et al. (2008) compost stability refers

to the degree to which composts have been decomposed to more stable organic

materials. Also Lasaridi and Stentiford (1998a) defined stability as the extent to

which readily biodegradable organic matter has decomposed. A material is con-

sidered unstable if it contains a high proportion of biodegradable matter that may

sustain high microbial activity (Tiquia 2005; Barrena Gómez et al. 2006). In most

publications, compost stability is related to biological activity (Butler et al. 2001;

Tiquia 2005; Zmora-Nahum et al. 2005), because stability increases as biological

activity decreases (ADAS Consulting Limited 2005). Since composting is char-

acterized by a high degree of microbiological activity, which ceases when all

available nutrients have been consumed, compost with a low biological activity is

described as being stable (Pearson et al. 2004). In this way, compost stability

refers to the level of activity of the microbial biomass and can be determined by

the O2 uptake rate, the CO2 production rate or by the heat released as a result of

microbial activity (Iannotti et al. 1993, 1994). On the other hand, compost

maturity is often characterized by germination indexes, which are a measure of

phytotoxicity (Cunha Queda et al. 2002), by the degree of decomposition of

phytotoxic organic substances produced during the active composting stage
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(Wu et al. 2000) or by nitrification (Bernal et al. 1998) and has been associated

with the degree of compost humification (Jouraiphy et al. 2005). A compost which

is mature is likely also stable. Yet stable compost may not always be at a level of

maturity adequate for use as a medium for growing a certain species of plant

(McAdams and White 1996).

6.4.2 Compost Stability Evaluation

Several authors agree that no single technique or method can successfully be used

to evaluate compost stability because the differences between raw materials used to

produce compost are so great that these may affect biological stability itself

(Mondini et al. 2003). Many parameters, with varying degrees of reliability and

technical complications, are used for the assessment of compost stabilization

(Lasaridi and Stentiford 1998b).

6.4.2.1 Physicochemical Parameters

Physical parameters include temperature, odor and color (Iglesias Jiménez and

Pérez Garcı́a 1989; de Guardia et al. 2004). Temperature has been suggested to

be one of the most convenient parameters for stability evaluation (Huang et al.

2003). However Gea et al. (2004) observed that temperature is not always useful for

monitoring biological activity and thus biological stability (see Sect. 6.3). A

problem with using temperature as a stability indicator is the influence of other

factors like pile size and weather conditions (McAdams and White 1996). The

generally unpleasant odor of refuse decreases during the first stages of the bio-

oxidation phase and practically disappears by the end of the composting process

(Iglesias Jiménez and Pérez Garcı́a 1989). The end-product, after a sufficiently long

period of maturation, has a dark brown or almost black color (Iglesias Jiménez and

Pérez Garcı́a 1989). As odor and color are two subjective parameters, these are not

considered as accurate stability indicators (de Guardia et al. 2004). Physical

characteristics give a general idea of the decomposition stage reached, but give

little information as regards the degree of maturation (Bernal et al. 1998).

Chemical parameters such as pH, electrical conductivity (EC), cation exchange

capacity (CEC), C/N ratio, thermal analyses and humification parameters have been

applied as indicators of stability (Iglesias Jiménez and Pérez Garcı́a 1989; Mondini

et al. 2003; de Guardia et al. 2004; Melis and Castaldi 2004; Gómez et al. 2007;

Gómez-Brandón et al. 2008). Although pH is a parameter that is often determined, it

does not seem to offer any information on the course of the process or the quality of

the compost according to Lasaridi and Stentiford (1998b). Also Francou et al.

(2005) concluded that pH was not a good indicator of compost stability as little

variations of pH were observed. According Wu et al. (2000), pH as well as EC, may
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be used to monitor compost stabilization processes, but with relatively consistent

source waste composition and calibration of other stability tests. A low value of final

pH may signify that organic acids remain in the material and that composting time

was insufficient. However, pH around neutrality is not sufficient to consider that the

organic matter is stable (de Guardia et al. 2004). The absence of a rigorous tendency

of the evolution of electrical conductivity during composting, the influence of the

drying effect, which may be responsible for conductivity increases without any real

increase of the quantity of ions, the expected dependency on the initial composition

of the material and the complexity of reactions between ions and organic matter

prevent to use conductivity as a stability indicator (Lasaridi and Stentiford 1998b;

de Guardia et al. 2004). During efficient composting, the C/N ratio is expected to

decrease as a consequence of degradation of organic matter and mineralization

(Harada et al. 1981; Margesin et al. 2006). Bernal et al. (1998) reported that the

C/N ratio was the most suitable parameter they studied for describing the stability of

different composts as it correlated with many chemical characteristics of the mate-

rial during composting. However, according to Namkoong et al. (1999) the C/N

ratio could not be considered as a reliable index of compost maturity, as it changed

irregularly with time. Moreover, as the variation of the C/N ratio during composting

depends on the type of compost, it is of limited usefulness (Lasaridi and Stentiford

1998b). In the study of Pascual et al. (1997) for instance, the C/N ratio varied

between wastes from 6.9 to 24.8, which suggests that a C/N ratio of less than 15,

proposed by other authors as an indicator of organic matter stability, cannot always

be used, particularly in the case of sewage sludges, since their high nitrogen content

leads to C/N ratios of below 15 although the organic matter is fresh.

Cation-exchange capacity (CEC) increases as compost approaches stability

(McAdams and White 1996). This increase is a function of humification due to

the formation of carboxyl and phenolic functional groups (Lax et al. 1986). But the

wide variations of CEC of initial substrates prevent to define threshold values and to

use it as a stability indicator (de Guardia et al. 2004).

Determination of the humification rate (HR) and the humification index (HI)

demonstrated to be effective indicators of the formation of humic-like substances

during compost maturation, being able to establish with accuracy the moment of

complete stabilization (Ciavatta et al. 1990). Humification parameters, based on the

fractionation of the extractable humic-like and non-humic organic C, have been

successfully used for evaluating the stability level of compost (Tittarelli et al.

2002). The time course of the humification parameters – humification index (HI)

and degree of humification (DH) – allowed to detect different rates of organic

matter transformation during the process in the study of Mondini et al. (2003). After

19 days the variations were less pronounced, indicating a slower transformation

rate, as a function of the decrease of substrate available for biological processes and

the increased stability of the organic matter in the compost.

Thermal analyses seem to be useful for the characterization of the compost

organic matter, because of their rapid determination and simplicity. They are based

on a programmed heating of the samples under a controlled atmosphere which

finally provides qualitative and quantitative information regarding the compost
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humic matter content. In the study of Melis and Castaldi (2004), thermoanalytical

data resulted in being useful in integrating quantitative information coming from

chemical analysis of humified fraction of compost organic matter. Differential

scanning calorimetry (DSC) curves allowed distinguishing between well and poorly

stabilized organic matter. Information deriving from weight losses, registered by

the thermogravimetry (TG) and differential TG (DTG) curves enable to individuate

the evolution state of the organic matter and therefore its stability.

In the study of Castaldi et al. (2005) the water soluble carbon (WSC) concentra-

tion showed a significant correlation with time, which makes it a suitable parameter

to indicate the degree of compost stabilization. Also the water soluble carbon to

nitrogen ratio (WSC/N) can be used as a parameter to indicate the stability of the

tested materials. The lowest mean values for WSC/N were presented by the mature

compost in the work of Pascual et al. (1997).

6.4.2.2 Biological Parameters

Also biological parameters, such as oxygen and CO2 respirometry and enzyme

activities have been proposed to measure stability (Lasaridi and Stentiford 1998a).

Respiration (CO2 evolution rate and/or O2 uptake rate) can be considered as a

general measure of microbial activity and has been widely used to evaluate the

stability of the compost (Lasaridi and Stentiford 1998a,b; Heerenklage and

Stegmann 2005; Barrena Gómez et al. 2006; Scaglia et al. 2007; Kalamdhad

et al. 2008). The basis of these methods is that immature compost has a strong

demand for O2 and high CO2 production rates due to the intense development of

microorganisms as a consequence of the easily biodegradable compounds in the

raw material. Conversely, at late composting stages, both processes decline as the

amount of degradable organic matter decreases (Barrena Gómez et al. 2005). As a

consequence, the respiration rate in stable composts is significantly lower than in

raw waste (Lasaridi and Stentiford 1998b).

Carbon dioxide evolution is the most direct technique of compost stability

because it measures carbon derived directly from the compost being tested

(Kalamdhad et al. 2008). CO2 production is directly correlated with the aerobic

respiration (Barrena Gómez et al. 2006). However, monitoring of CO2 evolution

presents two major drawbacks: (1) the solubility of CO2 in aqueous solutions and

(2) this solubility is pH-dependent (Barrena Gómez et al. 2006).

Methods based on O2 uptake rate (OUR) have been classified into two different

classes: dynamic and static methods. Dynamic methods are those in which a

continuous supply of air is used throughout the assay minimizing O2 diffusion

limitations (Barrena Gómez et al. 2006). When static methods are used, under-

estimation of oxygen uptake is possible, as they do not allow the oxygen to be

dispersed throughout the biomass (Adani et al. 2001). The problem can be solved by

continuous biomass stirring and periodical aeration to replenish the oxygen con-

sumed by the microorganisms (specific oxygen uptake rate or SOUR test;
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Lasaridi and Stentiford 1998a). The SOUR is a simple technique for the assessment

of compost stability (Lasaridi and Stentiford 1998a; Gazi et al. 2007). Oxygen

consumption of an aqueous compost suspension is measured instead of a solid

matrix, as in most traditional respiration tests. By doing this, the test is not affected

by variations in the matric water potential of the samples, since there is immediate

contact between substrate, microbes and oxygen leading to maximum reaction

rates; and the gas-liquid barrier for oxygen diffusion at the surface to the compost

particles is omitted (Lasaridi and Stentiford 1998a).

Another way to solve the problem of underestimation of oxygen uptake by

static methods is the continuous aeration of the biomass (dynamic respiration

index DRI; Adani et al. 2001). The DRI measurement represents a reproduction of

the full-scale process using a laboratory approach (Adani et al. 2006) and deter-

mines the biological stability of composts because it is able to measure the easily

degradable organic fraction (Baffi et al. 2007). Oxygen uptake is ascertained by

measuring the difference in oxygen concentration between the inlet and outlet

airflows passing through the biomass. Two DRIs are defined depending on the

operating conditions: (1) the real dynamic respiration index (RDRI) and (2) the

potential dynamic respiration index (PDRI), without or with adjustment to optimal

moisture content respectively (Adani et al. 2001). The static respiration index

(SRI) is determined using the same scientific apparatus as that used for determin-

ing the DRI. The oxygen uptake rate is ascertained by following the changes in

oxygen concentration with time, in the air-space on top of the solid sample in the

sealed container, after which aeration is stopped (Adani et al. 2001).

Barrena Gómez et al. (2005) built a static respirometer to determine the respira-

tion index (RI) of composting samples at different temperatures. Respiration

indices were determined at 37�C (RI37) and at the in situ temperature of the

composter at sampling (RIT).

In Europe, the respiration activity after 4 days (AT4) and the DRI are recom-

mended in the Second Draft of the Working Document on the Biological Treatment

of biowaste as parameters for the estimation of compost stability (European Com-

mission 2001). AT4 respiration activity may be determined in a respirometer

(Sapromat), in which the CO2 produced by microorganisms is absorbed by a base

so that a negative pressure builds up. A sensitive pressure sensor gives a signal to an

electrolytical oxygen production cell which produces oxygen until normal pressure

conditions are restored (Heerenklage and Stegmann 2005). Alternatives such as the

Oxitop method exist (Veeken et al. 2003; Wagland et al. 2009).

In addition to the aerobic respirometric methods, there is also the Dewar self-

heating test, which measures the heat produced by the sample under aerobic

conditions, rather than the gases consumed or produced (Wagland et al. 2009).

The principle of the method is to precisely record the highest temperature achieved

after placement of compost into the vessel for several days (Brinton et al. 1995).

The rate of microbial respiration affects the heat output which is reflected in the rise

in temperature. The higher the temperature reaches, the less stable the material is

(Cabañas-Vargas et al. 2005). The self-heating test is widely adopted at solid waste

composting plants in Europe to determine the biological stability of the compost
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produced. It is a simple test and a good indicator of compost organic matter stability

and does not require sophisticated equipment (Francou et al. 2005).

The Solvita maturity index provides a simple, relatively inexpensive relative test

of compost stability and NH3 emission for diverse samples of compost. Solvita

measures CO2 evolution and ammonia emissions simultaneously. A compost sam-

ple of optimum water content is allowed to equilibrate at 25�C in partially closed

plastic bags and loaded into jars up to the fill line. CO2 and NH3 test gel-paddles are

inserted into the compost. After a 4 h incubation at 25�C the gel color change is

observed and used to determine CO2 values on a scale of 1 to 8 and NH3 values on a

scale of 1 to 5 (Changa et al. 2003).

Enzymatic activities have been proposed as a simple, quick and a cheap

measure for compost stabilization (Mondini et al. 2004; Tiquia 2005). Enzymes

play a role during composting as they are implicated in the biological and bio-

chemical processes (Vuorinen 2000; Tiquia 2002). Important enzymes during

composting include cellulases, b-glucosidases, amidohydrolase, proteases, urease,

phosphatases and arylsulphatase (Mondini et al. 2004). Therefore, enzymatic

activities are suitable as indicators of the state and evolution of the organic matter

during composting (Benı́tez et al. 1999; Castaldi et al. 2008) and as stated earlier

the stability of the end-product (Mondini et al. 2004; Gómez-Brandón et al. 2008).

According to Tiquia (2005) dehydrogenase activity is the simplest, quickest and

cheapest method to monitor compost stability compared with respiration rate, ATP

content and microbial biomass procedures. In her study the decrease in dehydro-

genase activity to low levels towards the end of composting indicated that there

was no more active decomposition going on. Mondini et al. (2004) reported that the

formation of a stable enzymatic activity, either in moist or air-dried compost

samples, could represent a useful index of stabilization. Moreover, the use of

enzymatic activity as an indicator of compost stability was supported by the final

values of conventional chemical parameters. Also FDA (Fluorescein diacetate)

hydrolysis activity, as a parameter of overall hydrolytic activity, has been sug-

gested by Garcı́a-Gómez et al. (2003), Ryckeboer et al. (2003a) and Cayuela et al.

(2008) as a valid parameter for measuring the degree of biological stability of the

composting material. In the study of Cayuela et al. (2008) FDA increased during

the composting of two-phase olive mill waste and was able to classify compost

samples with different degree of stability. In addition, FDA correlated with impor-

tant stability indices.

6.4.2.3 Spectroscopic Methods

Nuclear magnetic resonance spectroscopy of carbon (13C NMR) is a valid tool for

examining the chemical structure of natural organic matter (OM) and the chemical

changes associated with OM decomposition. Changes can be measured on the bulk

OM either fresh or composted, on humic substances extracted from the compost or

on dissolved OM (Chen 2003). According to Gómez et al. (2007) the carbon
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distribution determined from 13C NMR spectra can be used as a mean for quantifi-

cation of the conversion experienced by the organic matter under biological stabili-

zation.

Fourier transform-infrared spectroscopy (FT-IR) is a technique that is efficient

in providing comprehensive information on chemical composition of heteroge-

neous materials (Wagland et al. 2009). FT-IR characterizes the principal classes of

chemical groups that compose the OM (Chen 2003). Several indicator bands that

are referred to functional groups represent components or metabolic products.

Their presence and intensity or their absence shed light on the phase of degrada-

tion or stabilization. Therefore, the rapid assessment of the stage of OM decom-

position in waste materials is a very important field of application. Moreover, the

infrared spectrum that is used for the qualitative assessment is less affected by the

heterogeneity of the material than single parameters due to diverse indicator bands

that provide information. Classification of waste materials regarding quality prop-

erties (stability) is possible by means of the spectral pattern (Smidt and Meissl

2007).

6.5 Stability and Agricultural Use of Composts

6.5.1 The Role of Compost in Preserving Soil Quality

Compost has the unique ability to improve soil properties and the growing media

physically (structure), chemically (nutrition) and biologically (Wahba 2007;

Chap.13, Bastida et al. 2010). The degree of stability required may depend on the

end-use of the compost. Complete stability is not readily attainable and not likely

desirable as there would be no soil amendment value due to low or nonexistent

organic content. On the other hand, compost with a high potential for continuing

decomposition can adversely affect crop growth (see Sect. 6.5.2). There is, there-

fore, a level of stability which must be met based on the end-use of the product

(Ministry of Environment, Ontario 2004).

Addition of compost to soil improves soil structure and soil pore system char-

acteristics while it lowers bulk density (Lynch et al. 2005; Pagliai et al. 2004;

Tsadilas et al. 2005; Wahba 2007). In the study of Bazzoffi et al. (1998) results

showed the positive lasting effect of compost in ameliorating physical properties of

the soil and reducing water runoff and soil erosion. Compost can increase the C/N

ratio, increases soil organic carbon (Lynch et al. 2005) and leads to an enhanced

enrichment of organic nitrogen in the soil (Amlinger et al. 2003). Tsadilas et al.

(2005) found that after three years of biosolids application, organic matter content,

water retention capacity, available water and infiltration rate significantly increased,

whereas aggregate instability index decreased. In a study of Speir et al. (2004), the

soil’s total C, N and P and CEC and exchangeable cations increased after the

previous application of compost indicating a potential long-term enhancement of
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nutrient storage and supply. Total-extractable and EDTA-extractable metals (Cd,

Cr, Cu, Ni, Pb and Zn) were also elevated, which is due to the impurity of the waste

feedstocks of this type of composting; however none of the heavy metals

approached soil limit concentrations except for Cu. According to Albrecht et al.

(2008) several studies showed that compost application to the soil stimulated

beneficial biological activity by increasing microbial biomass and enzyme activ-

ities. Also Albiach et al. (2000) observed that the annual application of organic

residues led to a significant increase of soil enzyme activities. Guerrero et al. (2007)

reported that as well as composted, noncomposted manure increased microbial

biomass, but that the use of composted manure is preferred in order to avoid an

excessive inorganic N production. The finished compost product can be beneficial to

plants, i.e. through improvement of plant development in e.g. Arachis hypogaea
(Ravindran et al. 2007) and leek and cauliflower (De Rooster 2006) or can induce

suppression of diseases e.g. Fusarium crown and Fusarium wilt of tomato (Cotxar-

rera et al. 2002; Cheuk et al. 2005) and pathogens including Pythium ultimum
(Erhart et al. 1999) and Rhizoctonia solani apart from many others (Ryckeboer

2001, De Clercq et al. 2004). Mulching with compost (of vegetable, fruit and garden

waste) suppressed Colletotrichum acutatum in strawberry plant nursery (Meurrens

and Demeyer 2003). Disease-suppression of composts has been reviewed by Bailey

and Lazarovits (2003) and De Clercq et al. (2004), and is further discussed in

Chapters. 8 and 11.

6.5.2 Implications of the Use of Non-Stabilized Compost

One problem associated with immature or unstable compost is its continued

decomposition in soil. This can induce anaerobic conditions as the microbial

biomass utilizes oxygen in the soil pores to break down the material (Butler et al.

2001). This in turn can deprive plant roots of oxygen and lead to production of

hydrogen sulphide (H2S) and nitrite (NO2
-) (Mathur et al. 1993).

Immature compost with a high C/N ratio can induce nitrogen starvation in plants

as microbes scavenge soil N to make up for the deficit (Iglesias Jiménez and

Pérez Garcı́a 1989; Bernal et al. 1998; Butler et al. 2001; Gómez-Brandón et al.

2008), starved roots of oxygen due to a high microbial activity, support growth of

pathogens as Salmonella and Pythium and create high levels of organic acids (Inbar

et al. 1990). Moreover, N immobilization in soil is thought to have caused low yield

of ryegrass plants (Bernal et al. 1998). On the other hand, immature composts with

a low C/N ratio create high ammonia concentrations, resulting in ammonium

toxicity in plants (Bio-Logic Environmental Systems 2001).

The immaturity of compost can also result in phytotoxicity and the use of this

kind of material as a soil amendment causes phytotoxic reactions to the crops

(Reinikainen and Herranen 2001). On the one hand, phytotoxicity may be of

internal origin due to the temporarily production of harmful byproducts during

some of the intermediate stages in the composting process, i.e. an excess of NH4
+,
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the presence of phenolic substances or organic acids such as acetic acid, propionic

acid and n-butyric acid (Smith and Hughes 2004). The inhibitory effects of acetic

acid are stated on weed suppression (Ozores-Hampton et al. 1999), seed germina-

tion and root length of cucumber (Shiralipour et al. 1997). Phytotoxic substances of

internal origin can be eliminated for a large part thanks to the composting process

(Pascual et al. 1997). On the other hand, phytotoxicity can be of external origin: the

bioavailability of heavy metals is a function of the degree of maturity of the

compost, since the humic material is capable of binding them. Experiments have

shown that metals become less available with increasing maturity (Déportes et al.

1995). A degradation of environmental contaminants has also been reported by the

use of spent mushroom compost (Lau et al. 2003). Phytotoxic effects from compost

of different maturity degree were also observed on germinating ryegrass. In this

study phytotoxicity was mainly related to pH and electrical conductivity of the

compost extract (Zubillaga and Lavado 2006).

6.6 Conclusion

Optimal compost use in agriculture needs an appropriate determination of compost

stability in relation to microbial activity. Stability prevents nutrients from becoming

tied up in rapid microbial growth, allowing them to be available for plant needs

(Kalamdhad et al. 2008). However, evaluating compost stability is difficult due to

the widely different properties of the organic substrates (Mondini et al. 2003) and

the degree of stability required may depend on the end use of the compost (Ministry

of Environment, Ontario 2004).

To date there is no single parameter that can give a sure indication of the stability

of composts from different starting materials (Mondini et al. 2003). Therefore, one

has to use a combination of methods depending on the intended compost use

(Reinikainen and Herranen 2001). Numerous authors have suggested the use of

different indices (Mondini et al. 2003, Baffi et al. 2007), e.g. FDA hydrolysis rate in

addition to measurement of CO2-evolution (Levanon and Pluda 2002), or e.g. CO2-

evolution in combination with ammonia emissions (Solvita; Changa et al. 2003).
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Chapter 7

Utility of Molecular Tools in Monitoring Large

Scale Composting

Jenni Hultman, Jukka Kurola, Aija Rainisalo, Merja Kontro,

and Martin Romantschuk

Abstract Composting is an aerobic biological process in which solid organic matter

is degraded bymicroorganisms. Themicrobiology of composting has been of interest

for decades, and microbes in composting have been characterized in many types of

composing processes using traditional culture-based methods. In recent years, an

immense diversity of bacteria, archaea, and fungi has been found to occupy many

different habitats using culture-independent molecular biological methods. Molecu-

lar methods which can detect both the culturable and non-culturable fractions of the

microbial community are under constant development. In this chapter, several new

molecular tools for characterising the microbes present in different composting

processes are described, and the advantages and limitations of the application of

these methods in studying composting microbiology are discussed.

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.1 Microbes in the Composting Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Molecular Methods to Study Microbial Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.2 Fingerprinting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.3 Macroarrays for Negative Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.4 Diagnostic Microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.5 Quantitative Real-Time PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

J. Hultman, J. Kurola, A. Rainisalo, M. Kontro and M. Romantschuk (*)

Department of Ecological and Environmental Sciences, University of Helsinki, Niemenkatu 73,

15140, Lahti, Finland

e-mail: jenni.hultman@helsinki.fi; jukka.kurola@helsinki.fi; aija.raininsalo@helsinki.fi; merja.

kontro@helsinki.fi; martin.romantschuk@helsinki.fi

J. Hultman

Institute of Biotechnology, University of Helsinki, Viikinkaari 4, POB 56, 00014, Finland

e-mail: jenni.hultman@helsinki.fi

H. Insam et al. (eds.), Microbes at Work,
DOI 10.1007/978-3-642-04043-6_7, # Springer-Verlag Berlin Heidelberg 2010

135



7.1 Introduction

Composting is the aerobic degradation of organic waste into humus-like material. It

is not only a waste treatment technique but also a recycling method as the end

product can be used in agriculture as a fertiliser, in gardening, or in landscaping.

The composting process can be divided into four different stages based on temper-

ature (Gray et al. 1971). In the initial mesophilic stage, the temperature is the same as

in the environment, and the pH is low. As the material starts to degrade, the numbers

of mesophilic microbes, often lactic acid bacteria and yeasts, increase. The prolifer-

ation of these acid-producing microbes causes a further drop in the pH-level. As

the temperature rises, a thermophilic microbial flora take over the degradation, and

normally this event coincides with the pH turning alkaline. The temperature starts to

fall as the resources for the thermophilic microbes become scarce, signifying the

beginning of the cooling phase, which is followed by the maturation phase (see also

Chap. 6, Ceustermans et al. 2010; Chap. 1, Insam et al. 2010).

Although the principle of composting is rather simple, there are intrinsic pro-

blems in industrial large scale composting. When increased amounts of solid

organic waste should be composted efficiently, controlling the process or the quality

of the end-product may become difficult. For example, if the composting process is

not proceeding optimally and the temperature does not rise spontaneously, there is a

risk of the survival of pathogens that are often abundant in organic waste material

(see Chap. 9, Vinnerås et al. 2010). These microorganisms pose a health risk to the

workers in the compost facilities, users of the end product, and also to the general

population. According to the European Commission (EC) health rules concerning

animal by-products not intended for human consumption, the principal method of

ensuring disinfection during composting is by recording time-temperature relation-

ships that destroy pathogens (EC 2002, 2006). Linked to problems with temperature

in the large scale composting processes, is a high moisture content, which can lead

to low oxygen levels and anaerobic conditions. This, in turn, can cause the decom-

position rate to decline and also results in severe odor problems (Tiquia et al. 1996).

Compost microbiota have been studied in different composting scales, from 0.5

L laboratory scale batch units (Schloss et al. 2003), and 30 L synthetic composts

made from dog food (Dees and Ghiorse 2001), to large scale (25 m3 drum to a 136.5

m2 floor area) composting drums (Ishii and Takii 2003) and piles (Vuorinen and

Saharinen 1997; Steger et al. 2007a). In a typical laboratory scale experiment, the

process is a closed batch, the material used is usually known, and factors such as

rate of compacting, surface to volume ratio, and heat dissipation characteristics

differ from those in large scale composting. The laboratory setups (Petiot and de

Guardia 2004), although valuable tools (Peters et al. 2000; Schloss et al 2003;

Hansgate et al. 2005), cannot, therefore, be used alone to predict the succession and

the behavior of microbial communities in the large scale processes. In such pro-

cesses, waste materials with varying composition are used and the microbes already

present in the composting facility function as a seed for the process or alternatively,

the composted mass is recycled to act as a seed for the process.
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7.1.1 Microbes in the Composting Process

The study of compost microbes has mainly focused on bacteria, although it has

been reported that composting is most efficient when both bacteria and fungi are

present (Gray et al. 1971). In the mesophilic stages of composting, bacteria from

the genera Lactobacillus and Bacillus are often detected (Ryckeboer et al. 2003).

When the temperature rises, the community changes so that thermophilic and

thermotolerant bacteria such as Actinobacteria (Fergus 1964), Bacillus (Blanc

et al. 1997) and Thermus (Beffa et al. 1996) become abundant (see also Chap. 11,

Fuchs 2010).

Fungi have been found to play an important role in the composting process as

degraders of lignin and cellulose (Tuomela et al. 2000) and the Eukarya have been

found to be numerically abundant in the early stages of composting as well (Schloss

et al. 2005). Yeasts have been detected in the mesophilic stages, (Choi and Park

1998) while thermophilic fungi belonging to the Pezizomycota (Fergus 1964) and

Zygomycota (von Klopotek 1962; Kane and Mullins 1973) have been found in the

thermophilic stages of the process. Basidiomycota become abundant in the cooling

and maturation phases of composting (Von Klopotek 1962).

It is now widely accepted that with cultivation-based methods less than one

percent of microbes are detected because the growth conditions on any plate or in

any cultivation situation are favorable for only a very small portion of the microbes

present (Amann et al. 1995; Amann and Ludwig 2000). The development of

culture-independent molecular methods for ecological studies of microorganisms

(Insam 2001) has however expanded the potential for characterization of microbial

community composition in composts. Advantages and limitations of different

cultivation dependent and independent methods which have been utilised in study-

ing compost microbiology are described in Table 7.1. Since the development of the

polymerase chain reaction (PCR, Saiki et al. 1985) to amplify DNA, the molecular

methods for studying microbes and the knowledge on microbial diversity have

substantially increased. Many of these methods have been applied to the study of

compost microbiology, and thus conversely, monitoring of the composting process

could be based on observing changes in microbial composition in different phases

of the process. In this chapter, we describe a set of culture-independent molecular

tools which can be utilised in fine-scale monitoring of the composting process.

7.2 Molecular Methods to Study Microbial Diversity

Microbial diversity in many different environments has been studied by amplifying

the gene of interest (often ribosomal genes or genes representing metabolic func-

tions of interest) with PCR, followed by cloning of the amplified fragments and

sequencing. Because of the superior sensitivity of PCR, there is no need to cultivate

the microbes as the gene of interest can be amplified directly from the sample (see

Chap. 12, Minz et al. 2010).
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The genes coding for ribosomal RNA (rRNA) have been broadly used in

studying microbial diversity with molecular methods. There are several explicit

reasons for focusing on rRNA: (i) rRNA is the key element of the protein synthesis-

ing machinery and it is present in all organisms, (ii) the rRNA genes are extremely

conserved in secondary structure and in nucleotide sequences, which allows align-

ment of disparate sequences, so that they can be used in phylogenetic analyses, (iii)

there is a large amount of rRNA in most cells, and it is easily recovered from all

types of organisms, and (iv) the availability of huge rRNA databases which is

required for comparative sequence analysis (Amann et al. 1995; Amann and

Ludwig 2000; Amaral-Zettler et al. 2008).

The genes coding for the bacterial and the archaeal small and large ribosomal

subunits, 16S and 23S rRNA genes, respectively, (Fig. 7.1.), and eukaryal 18S

and 28S rRNA genes, contain both conserved and variable regions, and the

differences in these genes can be used to infer the relationships between RNA

Table 7.1 Comparison of different methods used in determining microbial community composi-

tion in composts.

Method Advantages Limitations

Plating Widely available, relatively easy

to use, produces quantitative

data

Heavily biassed towards cultivable

strains, high detection limit

Plating + pure culturing Specific identification, provides

isolate to work with

Time consuming

MPNa Widely available, relatively easy

to use, produces quantitative

data

Biased towards cultivable strains,

high detection limit

PCR + DGGE Relatively widely available and

easy to use, produces

fingerprint profile of the

studied community

Requires dedicated equipment,

species identification not

achieved

PCR+DGGE +

sequencing

See PCR + DGGE. Excised

sequenced DNA bands give

positive identification

High diversity observed may

obscure resolution. Requires

possibility to sequencing. See

also text

Microarrays Very sensitive (new versions),

fairly robust, and fast.

Possibility for simultaneous

detection of many species.

Expensive machinery, design of

the array is time consuming.

Quantitative PCR Excellent for quantification, fast,

and very sensitive detection of

target species

Requires skills, targeted for one

species at a time, expensive

machinery

PLFAa Major microbial groups can be

quantified, easy to use,

protocol takes a few days

Expensive machinery, low

resolution, microbes can not be

identified to species level

Random amplification

and cloning

PCR fairly sensitive, microbial

identification up to species

level

Requires skills, takes several days

+ data-analysis

aMost probable number (MPN) and phospho-lipid fatty acid (PLFA) analysis are not described in

this chapter
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gene sequences from different microbial species (Van de Peer et al. 1996).

Several domain and phylum specific primers have been developed for the PCR

amplification of rRNA gene regions from bacteria, fungi and archaea (e.g.

Edwards et al. 1989; White et al. 1990; Jürgens et al. 1997; Anderson et al.

2003; Baker et al. 2003).

For fungi, the gene coding for 18S rRNA does not provide enough taxonomic

resolution and therefore the internal transcribed spacer (ITS) area allocated between

the 18S and 28S rRNA gene is used. Primers that are situated within the 18S gene,

spanning the ITS1, the 5.8S gene, and the ITS2, all the way into the upstream part of

the 28S gene are often utilised (White et al. 1990; Fig. 7.2). Since the ITS area

varies in length between different species, the PCR-amplicon produced is between

500 and 1,200 base pairs (bp) in size.

Methods which are based on PCR amplification face certain inherent biases.

PCR does not provide amplification products exactly in the same ratios as the

genomic templates that are present in the reaction (Poltz and Cavanaugh 1998) and

problems with primer selection and the formation of PCR artefacts have been

reported (see Chap. 1). The possible bias that has emerged with the use of PCR-

based methods could be avoided by using whole genome amplification instead of

PCR prior to the ligation detection reaction and microarray hybridisation. This

amplification has been successfully applied in a soil microbiome study in which

community composition was further studied with cloning and sequencing (Abu-

lencia et al. 2006), as well as in a microarray study by Wu et al (2006).

pA

pH’R1378

F243 Mf341

Mr907

16S rRNA 

V1-V2 V3 V4 V5 V6 V7

Fig. 7.1 The bacterial 16S rRNA gene and the location of the various primers used for amplifica-

tion. pA and pH’ (Edwards et al. 1989), F243 and R1378 (Heuer et al. 1997), Mf341 and Mr917

(Muyzer et al. 1998). The different variable regions (V1-V7) are marked

Fig. 7.2 Graphical illustration on the location of the internal transcribed spacer areas (ITS)

flanking the 18S rRNA gene and 28S rRNA gene. The arrows represent the location of the widely

used ITS-primers for PCR amplification (White et al. 1990)
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7.2.1 Sequencing

As described above, the rRNA gene has been widely used in the determination of

the microbial contents and diversity of environmental samples, and as a result,

several 16S rRNA gene sequence databases have been developed and maintained

(Amaral-Zettler et al. 2008). By aligning newly generated sequences to those stored

in the databases it is possible to perform a taxonomical annotation, and to determine

whether the same sequences have been detected elsewhere. In order to make sense

out of the sequence data, several programmes are available for sequence analyses.

According to common practise, sequences with �99% similarity in fungal ITS

sequences and�96% similarity in bacteria can be joined into contigs or phylotypes,

and aligned sequences can be further used in phylogenetic analyses.

Partanen and collaborators (2009) studied bacterial diversity in a large scale and

a pilot scale composting facility by amplifying the bacterial 16S rRNA gene with

the primers pA and pH’ (Edwards et al. 1989), then cloning and sequencing over

1,500 complete 16S rRNA gene sequences. After comparing the results between the

suboptimally functioning large scale facility and an optimised pilot scale facility, it

was found that the frequency of certain bacterial families or genera differed

between the phases and conditions of the composting process, suggesting that the

bacterial community profile or certain key bacterial species may be used as indi-

cators of process efficiency. For example, a high incidence of lactic acid and acetic

acid bacteria was found to correlate with insufficient aeration and low pH, while the

rise of Bacilli and Actinobacteria would indicate a transfer from the mesophilic to

the thermophilic phase. The fact that bacteria from the anaerobic genus Clostridium
were detected in almost all types of processes showed, however, that targeting only

one or several bacterial species may give an incomplete picture of the situation in

the composting process. The recovered number of different bacterial (566, Partanen

et al. 2009) and fungal (166, Hultman et al. 2009a) phylotypes in the studied

compost samples was lower than that found in farm soils (3,000 phylotypes, Tringe

et al. 2005) and urban air (1,500–1,800 phylotypes, Brodie et al. 2007). The reason

may be that the conditions during composting change very rapidly and can reach

extremes: the pH can drop below four and the temperature may rise in a relatively

short time from below zero (temperature of the incoming frozen waste) up to

+80�C. This may restrict the diversity of bacteria and fungi in the processes as

the rapidly changing conditions favor the growth of a limited number of micro-

organisms in each phase. When examining different composting processes, the

bacterial species found may vary greatly, while dominating types/groups may

correlate to the conditions, and may therefore be used for diagnosing the process.

Presently, however, not enough data are available to confirm this assumption.

Studies using molecular techniques (Hultman et al. 2009a) revealed that the

fungal community residing in industrial composting plants, and in pilot and labora-

tory scale reactors, differed from what has been reported earlier. In previous

studies, fungal communities were dominated by Pezizomycotina members, such

as Aspergillus and Penicillium species (e.g. Anastasi et al. 2004), fungi from the
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genera Mucor and Rhizomucor (Von Klopotek 1962; Fergus 1964; Anastasi et al.

2004), and basiodiomycetes such as Coprinus cinereus (Von Klopotek 1962).

Yeasts have rarely been detected (von Klopotek 1962; Peters et al. 2000) in

previous studies although they are known to be important in the first phases of

the composting process to overcome the acidophilic early stages (Choi and Park

1998). However, in industrial composting processes in Nordic countries Ascomy-

cetous, yeasts were in some cases found to dominate the fungal community, even at

later stages of the process (Hultman et al. 2008a, 2009a).

In recent years, the study of microbial communities has expanded and both

phylogenetic and metagenomic approaches have been applied (Hugenholtz and

Tyson 2008). The microbial diversity found in these phylogenetic and metagenomic

studies has been high and the results have advanced microbial ecology. Nonethe-

less, some problems exist in approaches that are based on the cloning of DNA from

environmental samples. For example, it is challenging to get a representative

sample to study the diversity and abundance of microbes in certain environments

(Ranjard et al. 2003). Another challenge is that microbial groups that are abundant

in samples can obscure organisms present in lower numbers that consequently may

not be sampled and sequenced (Curtis and Sloan 2005). Moreover, studying the

diversity of natural microbial communities using the Sanger sequencing method

(Sanger et al. 1977) is slow and laborious as it has been estimated that over 40,000

sequencing reactions are required to reach 50% coverage of the diversity in a soil

sample (Dunbar et al. 2002). Therefore the sampling needs to be carefully planned

in order to get a good picture of the microbes in the heterogeneous environment.

In recent years, several next generation sequencing techniques, such as 454 tag

sequencing (Margulies et al. 2005), have been developed. These methods have been

introduced to microbial ecology as sequencing of specific short (~100 to 210 bp)

rRNA or functional gene tag-sequences that have been isolated from environments

such as the deep marine biosphere (Sogin et al. 2006; Huber et al. 2007) and soil

(Leininger et al. 2006; Roesch et al. 2007). The amount of data gained with this

approach is massive – the number of sequences in the above examples was from

26,000 to 900,000. The technology in this area is developing rapidly. Both the length

of the reads, as well as the number of fragments processed in parallel is increasing,

leading to an exponential growth of raw sequence data to be analysed. In particular, an

increase in the length of the fragments is welcome in view of the fact that phylogeny

based on very short fragments is often unreliable. The utility of these novel sequenc-

ing techniques is in the vast amount of sequence data, which can be used in other

applications, such as microarrays (see Sect. 7.2.4) for compost monitoring.

7.2.2 Fingerprinting Methods

Various molecular fingerprinting methods, such as denaturing gradient gel electro-

phoresis (DGGE, Ishii et al. 2000; Steger et al. 2007b), single stranded conformation

pattern (SSCP; Peters et al. 2000), amplified ribosomal DNA restriction analysis
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(ARDRA; Schloss et al. 2003) and restriction fragment length polymorphism

(RFLP) analysis and sequencing (Dees and Ghiorse 2001) have been used to

study the compost microbial communities to find out which microbes are present

in certain stages of the composting process (see Chaps. 1, 12 and 14, Knapp et al.

2010). These methods can also be used prior to sequencing to determine how much

sequencing is required for a sample of interest, and also which sequencing tech-

nique to use as the diversity in samples varies. Figure 7.3 shows an example of

compost process monitoring using DGGE for investigating the genus Bacillus.
Although DNA fingerprinting methods give a profile of the community compo-

sition of different environmental samples (Liu et al. 1997; Osborn et al. 2000;

Brodie et al. 2003; Steger et al. 2007a,b) they may underestimate the true microbial

diversity. Microbes from different species or genera can share an identical restric-

tion pattern (Dunbar et al. 2002), a single DGGE band can contain several different

ribotypes (Costa et al. 2006) and numerically rare phylotypes may not be detected

(Bent and Forney 2008). These methods are therefore not suitable if the aim is to

detect rare phylotypes or certain species. While bacterial species abundance curves

are generally log-normal distributed with very long tails (Martiny et al. 2006) and

dominating phylotypes make up a minority of the diversity (Curtis and Sloan 2005),

Fig. 7.3 Example of use of DGGE-analysis in compost monitoring. Genus specific primers were

used to study community structure of Bacillus ssp. during the early stages of biowaste composting.

(a) Control compost, days 0, 2, 5 and 8. (b) Compost with added microbes, days 0, 2, 5 and 8. The

changes of Bacillus ssp. community within the process development can be seen in the different

banding patterns in the different days
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capturing the tail-end of those communities is difficult with fingerprinting methods.

With a cloning approach they may be captured, but also then the abundant types

may prevent this. Moreover, it is possible that in some cases the phylogenetic

denomination changes when the complete gene coding for 16S rRNA gene is used

instead of a shorter subfragment of the gene (Hultman 2009b).

Dot-blotting methods have been applied to study microbes in different environ-

ments. In this method, species specific probes are blotted on a nylon membrane and

a labeled sample is hybridised on the membrane (e.g. Valinsky et al. 2002). The

species present are detected with either colorimetric or radioactive staining. These

methods lack specificity and sensitivity and are therefore not in wider use in

microbial diagnostics (Bodrossy and Sessitsch 2004). Novel approaches, based on

the dot-blot concept have, however, been developed (see Sect. 7.2.3).

7.2.3 Macroarrays for Negative Selection

As mentioned above, capturing the tail-end of communities is difficult with finger-

printing methods (Bent and Forney 2008). A novel method based on dot blotting

hybridizations was recently published (Hultman et al. 2008a). A macroarray test

was developed to find sequences representing a minor fraction of the total popula-

tion. The method was used for 1,536 fungal ITS clones that were gridded on a nylon

membrane. With six probes representing the most common fungal phylotypes, the

identity of 900 clones was determined, and thus not chosen for sequencing. The

remaining 41% were sequenced. In addition, 384 clones were sequenced to verify

the hybridization results and the specificity and sensitivity of the method and the

probes used. The rate for the false negatives (i.e. sequenced clones among the 384

that did not hybridize with the six probes used, despite representing common

phylotypes) was 5.2%. False positives (clones that were recognized in the hybridi-

zation as common despite representing new phylotypes) were found in fifteen cases

(n = 384, 3.9%). The false positives were mainly from species that were present in

high numbers in these samples and therefore, the amount of probe was not sufficient

as it did not attach to all of these samples. Part of the false positives proved to be

impure PCR-products that contained PCR-products from two clones. With the

membrane hybridization method (Hultman et al. 2008a) the common phylotypes

can be detected allowing only the novel clones to be sequenced. New probes can be

added to the probe pool when the studied sample is further characterized and more

of the abundant phylotypes are detected.

7.2.4 Diagnostic Microarrays

Microbial diagnostic microarrays, also known as phylochips or phylogenetic oligo-

nucleotide arrays, became a popular high-throughput tool for microbial detection
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from various environments over a decade ago (Guschin et al. 1997). With these

microarrays (see Chap. 1), the parallel detection of hundreds to thousands of

microorganisms can be achieved and arrays have been applied in the study of

microbes in different environments such as soil (Small et al. 2001), landfills

(Bodrossy et al. 2003), water (Rich et al. 2008), compost (Franke-Whittle et al.

2005; Franke-Whittle et al. 2009) and urban air (Brodie et al. 2007). Both short

(18–28 mer) and long (50–70 mer) oligonucleotide probes specific for certain

species, genus or strains, can be printed on a glass slide. Short probes have been

shown to be more specific than the long ones, but they suffer from a high detection

limit (from 1 to 5%). With the longer probes, a lower detection limit is achieved but

they are not as specific as the short probes (reviewed in Bodrossy and Sessitsch

2004). Fluorescently labeled total DNA from the sample or a PCR-amplified gene

of interest is hybridized on the array and the results are read with a specific scanner.

Although in microarray probe design attention is paid to reaching the highest

possible nucleotide specificity for the probes, the thermodynamic properties of the

probes need to be checked as well. The microarray probes are printed on the same

glass slide and therefore, to avoid cross hybridization, their thermodynamic

properties have to be identical. The design of only one probe for the identification

of a certain species is not sufficient due to the fact that ribosomal genes do not

always have enough discrimination power. Therefore, microarrays with several

probes for each species are widely used (e.g. Loy et al. 2004; Brodie et al. 2007).

The nested-probe approach relies on parallel or hierarchical probe specificity.

These microarray platforms are usable for the study of the microbiota in the

sample, but as the microbes cannot be distinguished at the species level and as

there are problems with detection limits (Bodrossy et al. 2003; Loy et al. 2004;

Franke-Whittle et al. 2005; DeSantis et al. 2007), novel platforms are being

developed for the study of microbial communities in a specific and sensitive

manner.

Methods that rely on enzyme assisted detection methods have been developed in

combination with microarray hybridization in order to improve the specificity of the

oligonucleotide microarray (Busti et al. 2002; Banér et al. 2003; Castiglioni et al.

2004). A method based on the ligation detection reaction (LDR; Busti et al. 2002;

Castiglioni et al. 2004) has recently been adapted for compost samples (Hultman

et al. 2008b). Previously the method had been used for detecting single base

mutations associated with genetic diseases (Landegren et al. 1988; Barany 1991)

but has been adapted to characterize microbial communities (Busti et al. 2002;

Rantala et al. 2008). Two target specific probes are used in LDR. These probes

hybridize to the template DNA adjacently and are ligated with a thermostable ligase

if there is a perfect complementarity between the probes and the target DNA. The

probes are designed so that the nucleotide in the junction point of the probes

distinguishes the target from other species. After ligation, the ligation products

are linearly amplified (Barany 1991). The first of the two probes is fluorescently

labeled (Gerry et al. 1999; Busti et al. 2002) while the second probe contains a 3’

tag sequence (zip code,) which directs it to the right address on the microarray

containing a complementary zip code-sequence. These zip sequence pairs have
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uniform hybridization conditions and the same array platform can be used with

multiple ligation probe sets. For use in characterization of composting fungi, the

microarray was first optimised with pure cultures and clones, after which real

environmental samples were used. When comparing to fungal diversity results

that were obtained by cloning and sequencing the same samples, it was concluded

that the results of the LDR microarray test appeared to give reliable results. Since

the chip is still a prototype, further testing is needed for demonstration of reproduc-

ibility (Hultman et al. 2008b). The detection limit was 0.04% (target DNA/total

DNA), and the sensitivity was similar to that of quantitative-PCR (qPCR). With

qPCR, the presence of one species or phylotype can be analysed at a time, while

with a microarray thousands of species can be detected in one run. In many

oligonucleotide studies, a detection limit from 1 to 5% have been calculated (e.g.

Loy et al. 2004; Franke-Whittle et al. 2005) so the increase in sensitivity observed

with the LDR-based microarray is considerable. Furthermore, the microarray was

species or phylotype specific despite the close relatedness of the target microbes.

Thus, species that are highly similar based on the rRNA small subunit sequences,

but that may occupy different niche spaces (Jaspers and Overmann 2004) can be

distinguished with LDR-chips.

7.2.5 Quantitative Real-Time PCR

When the presence and concentration of specific microorganisms needs to be

monitored, qPCR (also known as real-time PCR) is a good choice. qPCR

approaches (see Chap. 1) are now widely applied in microbial ecology to quantify

the abundance and expression of taxonomic and functional gene markers within

the environment (Smith and Osborn 2009). In qPCR, the amplification of the

target gene is measured in the terms of the increment in the quantity of fluores-

cence which is determined at the end of each amplification cycle. The threshold

cycle C(t), at which the sample’s fluorescence trace crosses the threshold line, is

then used for the calculation of the amount of template DNA in a reaction.

Quantification of the initial target sequences of an unknown concentration is

determined from the C(t) values and can be described either in relative or in

absolute terms.

In relative quantification, changes in the unknown target are expressed relative

to a coamplified steady state (typically housekeeping) gene. Using quantification

standards (absolute quantification) with a range of known amounts of template

DNA, a linear standard curve of the log of the template DNA versus C(t) is

generated. Unknown template quantity can then be calculated by interpolating the

samples threshold cycle against the standard curve. Melting curve analysis is then

used in product identification, determination of product homogeneity, and certifi-

cation of the PCR amplification.

Two detection chemistries are commonly used, namely, the intercalating SYBR

green assay and the TaqMan probe system (Smith and Osborn 2009, Chap. 1).
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The detection of microbial DNA does not indicate the presence of live or intact

microorganisms due to the persistence of DNA within or released from cells that

once lived in the investigated site. This must be kept in mind when DNA-based

techniques are used in analysing microbial numbers in the environment.

The qPCR method has been used successfully in samples from different envir-

onments, e.g. the enumeration of pathogenic bacteria and indicator bacteria during

wastewater treatment and sludge composting (Novinscak et al. 2007; Wery et al.

2008). The qPCR method is not officially approved or in regular use for monitoring

hygienization of compost. This is despite the fact that the sensitivity of qPCR is

equivalent, and sometimes surpasses that of the cultivation-based methods which

are currently used for determining compost quality.

Although free from the effect of cultivation bias, qPCR like all PCR-based

methods involves sources of error related to DNA extraction and PCR amplification

(see Chap. 1). In addition, variation in the number of RNA operons (1 to 14 per

genome) precludes direct conversion of 16S and 18S rRNA gene numbers into

bacterial and fungal cell numbers, and even the exact number of copies of the

16S rRNA gene in given bacterial and fungal species may vary (Klappenbach

et al. 2000).

7.3 Conclusions

The fast development of modern DNA-based techniques has opened up new

possibilities for determining microbial diversity and succession in composts. The

methods described here, large scale clone library sequencing, 454-tag sequencing,

DNA fingerprinting methods, negative selection of rare phylotypes from the clone

libraries, diagnostic microarrays and qPCR have been used in our laboratory

independently and combined together. The information on the diversity of compost

microbes can be collected by cloning and sequencing of PCR-amplified indicator

regions, and with the use of the macroarray method for the negative selection of

already sequenced fragments. Major changes in the microbial community structure

can be monitored with fingerprinting methods and the confirmation of presence of

particular (pathogenic) microbes can be achieved with the use of specific micro-

arrays or with qPCR. As more detailed information on the microbial communities

present in the different stages of typical well functioning composting processes, as

well as information on microbes that indicate specific process disturbances is

gathered, this knowledge can be used in monitoring the composting process.

With the tools presented above, the microbial community composition can be

determined in greater detail, and in a shorter time than what previously has been

possible. Nevertheless, the study of the microbial profile should always be com-

plemented with and compared to the physical and chemical properties of the

samples, and as always when studying complex environmental processes, utmost

attention has to be paid to sampling – the results are at best only as representative

as the sampling has been.
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Chapter 8

Production and Utilization of Suppressive

Compost: Environmental, Food and

Health Benefits

Marco de Bertoldi

Abstract Since many centuries, compost has been utilized in agriculture to replace

organic matter and nutrients for different crops. Only in recent decades, particular

composts, produced with selected starting material and with controlled processes,

have been applied to suppress phytopathogenic agents. Such composts can be used

to control soil-borne or air-borne pathogens. This has been tested, to control

diseases, both in the field and laboratory on many different crops and conditions:

greenhouse, horticulture, floriculture, apple, grapes, container systems, pot culture,

turf grass, plant nursery, etc. The mechanisms of disease suppression are still not

fully understood and include a complex interplay of abiotic (pH, temperature, C/N,

organic matter quality, etc.) and biotic (predators, antagonists, competition for

nutrients, antibiosis, production of lytic enzymes, microbial metabolites like side-

rophores, etc.) factors. In this chapter, compost characteristics related to disease

suppression, the use of suppressive compost and economical benefits are discussed,

in particular the possible reduction of pesticide use.
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8.1 Introduction

The first scientific reports on composting, use of compost and benefits for the

growth and the health of plants had been published more than eight centuries ago.

The Knight Templars were a military order in the time of Crusades. When the

Moslems occupied the holy places in Palestine, they moved away and settled in

Spain and in France where they devoted themselves to agriculture. They had the

donations of many farms and others had been rented by them. These farms had been

devastated by Moslems during their retreat from Spain and some remained unculti-

vated for many years; the Knight Templars, drawing up the contracts, had to

describe clearly the methods used to recover these soils. These contracts and

respective clauses, how to recover the depleted soils, were written and still exist

in the Historic National Archives of Madrid. Manuscripts also exist in the Cister-

cian Abbeys of Fitero, Poblet, Santes Crues, Huerta, Archives of Caceres Deputa-

tion, the biggest “Commanderie” farm of Templars in Alcanedre, Extremadura

(Dailliez 1981; de Bertoldi 1999). In these manuscripts of the thirteenth century, the

techniques used by Templars to recover fertility in arid and depleted soils are

reported in detail. Composting technologies are, for the first time in the history,

scientifically described. The descriptions start with the preparation of different

starting materials in order to obtain different composts to be used in different

crops. Particle size, quality and moisture are carefully evaluated. After the prepara-

tion of the starting mixture, exact indications on windrow dimension follow.

Treatment times for different materials are clearly reported. Finally, they suggest

the use (quantity and time of application) of any compost produced for different

crops. They assure that, with the use of compost, the plants will grow better and

without diseases!

To have well-documented results with respect to the production and use of

disease suppressive compost we have had to wait until 1975 (Malek and Cartner

1975) and 1977 (Hoitink et al. 1977). As a substitute for peat, composted hardwood

has been produced in container systems. Phytophtora cinnamoni (Hoitink et al.

1977) and nematodes asMeloidogyne, Pratilenchus and Trichodorus species where
inhibited by this kind of compost (Malek and Cartner 1975). As a result of these

interesting researches, bark compost has been widely used in the United States,

Israel, and Switzerland to suppress phytopathogenic agents. Two schools have

deeply worked in this field: the Ohio Agricultural Research and Development

Centre, Wooster, USA and The Hebrew University of Jerusalem. In these two

countries, since many years, an industrial production of suppressive compost exists

and it is utilized to produce horticultural crops and flowers without pesticides. After

154 M. de Bertoldi



1980, there has been a huge increase in scientific research on suppressive compost

and its use, both against soil-borne and air-borne pathogenic agents.

8.2 The Composting Process

Composting is a bioxidative microbial process leading to highly stabilized organic

matter, which may contribute directly to soil conditioning and fertility (de Bertoldi

et al. 1983b). The starting material for composting (see Table 8.1) must be physi-

cally and chemically conditioned in order to guarantee a good performance of the

process. The specific weight should be around 0.5 and water content around 60%.

The structural strength of the material should permit to have interstices large

enough to allow air to pass through the mass. The dimension of the particles should

be around 3–5 cm, in order to be degraded by microorganisms for a time no longer

than 50 days. For high quality compost, maximum process efficiency is required,

which in turn is a reflection of our capability to manage the microbial biomass

growth and activity. The main factors which need to be optimized are: oxygen

supply to the mass, moisture and temperature control, C/N ratio, pH, organic matter

(quantity and quality), physical structure and balance of nutrients. Production of

phytotoxic metabolites characterizes the intermediate phase of the process. Man-

agement of the process must take into account the end-product value and compati-

bility with plant growth. Many detailed analyses of the main parameter which

govern composting have already been reported (de Bertoldi et al.1982, 1983a,

1985, 1988; Finstein and Morris 1975; Finstein et al. 1985, 1986; de Bertoldi and

Zucconi 1986; Diaz et al. 2007). Stabilization implies oxidation, mineralization and

humification of organic matter. The stable products that remain after composting

are still degradable, but at a much reduced rate compared to the raw material. Very

important is to evaluate how much compost should be stabilized before utilization

both as an organic fertilizer and as a suppressive medium (de Bertoldi and Schnap-

pinger 2001). The rate of oxygen uptake by the compost is one of the most impor-

tant parameters both for stability and suppressivity control. Several procedures for

Table 8.1 Starting materials

utilized in suppressive

compost production

Bark

Chipped wood

Forestry waste

Agricultural waste (animal dejections, straw, corn cobs,

pruning, etc.)

Marc grape

Olive mill waste

Food processing waste

Garden waste

Organic fraction of municipal solid waste, from source

separation

Sludge from anaerobic digestion

By products from bioenergy production (bioethanol, biodiesel)
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testing stability and maturity of the compost have been proposed. Negative plant

responses to compost can be due to high cellulose content, resulting in N immobi-

lization, allelopathic chemicals, high salt content (Hoitink and Kuter 1986). The

most widely used methods to assay maturity level are plant bioassays (Chanyasak

et al. 1983; Zucconi et al. 1981a,b), oxygen uptake and CO2 evolution. The self-

heating method is also utilized to determine stability; it is very simple and still

valuable (van Elsas and Postma 2007).

8.3 Controlling of Composting Process

The control of the composting process in order to obtain suppressive compost is

essential. Parameters like oxygenation of the mass, temperature, ventilation and

moisture are strictly connected. Their control during the process is very important

to maintain favorable conditions for achieving suppressivity.

Microbial oxidation and humification of organic matter during composting are

the result of microbial catabolism. About 50% of the total energy recovered is used

for the growth of new microorganisms (anabolism), the remaining 50% is lost as

heat (de Bertoldi and Civilini 2006). The microorganisms involved in the process

are mainly aerobic, with most of them being mesophilic and some thermophilic.

Some of the earliest composting strategies were developed by researchers

working in the US Department of Agriculture in Beltsville, MD. The system used

were static piles with vacuum aeration from the bottom. In such experiments lasting

28 days (Epstein et al. 1976) the pile temperature from the tenth day until the end

was between 60 and 80�C. The maximum oxygen consumption occurs in the first

10 days when temperature was lower: a confirmation that in the thermophilic

conditions microbial activity was depressed and that the aeration provided was

insufficient to cool the pile to mesophilic temperatures. Finstein and co-workers at

the Rutgers University developed a new strategy (oxygen feed-back control),

blowing air not at a fixed rate but with a configuration which maintains a tempera-

ture ceiling that provides a high decomposition rate through on-demand removal of

the heat by ventilation. Compared with the approach in widespread use at that time,

the Rutgers strategy was said to yield high rate composting that decomposes four

times more organic matter in half the time (Finstein et al. 1985).

A new strategy for controlling the composting process has been developed,

based on O2 feedback control (de Bertoldi et al. 1988). More air is required to

remove heat than to supply oxygen. Calculations show that it takes nearly nine

times more air to remove the heat than to replenish the oxygen (Finstein et al. 1986).

For this reason temperature has been considered the primary control parameter with

regard to oxygen. The optimal values for these parameters are respectively 40�C
(temperature) and 15% (oxygen).

A good control of the composting process, on order to respect the requirements

for suppressivity, can be based on these two systems: a computerized system
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(based on temperature and oxygen) manages air ventilation of the composting

mass, maintaining temperature, oxygenation and moisture at the optimal values for

inducing suppressivity. Ventilation of piles can be regulated at 0.1 m3 of air per ton

of organic matter per minute. This rate will be automatically varied by the

computer on receiving values of temperature and of oxygen level different from

those planned in the computer program. Oxygen levels and temperature are

directly controlled by ventilation of the mass; moisture will be regulated spraying

water over the composting piles during turning. The computer will stop water

supply when the values in the mass will reach the most convenient value (about

40–45%).

8.4 Suppressivity of Compost

There are two kinds of suppressivity that can be obtained: (1) by compost (soil-

borne phytopathogens); (2) by water extracts of compost, called compost tea (air-

borne phytopathogens). Compost is not an inert material and it contains living

microorganisms. During the process it evolves through a thermophilic phase that

kills most of the pathogenic agents (to man and plant). At the same time, antago-

nistic microorganisms develop during compost maturation. Not all composts have

the same capacity to protect plants against diseases. The loss of suppressivity in

compost, after a thermal treatment (90�C), indicates that disease suppression is also
due to the microbiological activity of compost. Also physiochemical and biological

properties of compost can also influence suppressivity.

To obtain suppressive compost it is important to select the starting material and

to condition it chemically and physically. In general, bark, hardwood, lignocellu-

losic compounds, yard waste, agricultural waste, food processing waste (olive and

grape marc) are very good starting materials. The particle size must not be too small

to hinder the mass aeration and not too large because of microbial degradation

problems (size of 2–8 cm). The C/N ratio should be not too high and not too low

(25–40). Nitrogen at the end of the process should be mostly organic; high levels of

mineral nitrogen reduce the suppressive effect of compost. The maturity (biological

stability) influences the potential for plant disease control. The oxygen supply

during the process of composting is very important. Periodical turning of windrows

is therefore not enough to guarantee a constant supply of oxygen. It must be

operated with ventilation of the mass (forced or passive aeration from the bottom)

in conjunction with periodical turning (Finstein et al. 1986). To obtain a high

quality compost it seems very important to operate with a feed-back control system,

utilizing as a parameter oxygen and/or temperature (de Bertoldi et al. 1988).

Compost quality is not stable, therefore the mature compost has to be stored

appropriately and never in anaerobic conditions (no plastic packaging) in order to

maintain suppressivity. Thermal treatments (pelletting) should also be avoided

because they reduce suppressivity.
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8.5 Mechanisms of Suppression

In spite of the many efforts to find indicators of disease suppressivity, there is still a

general lack of understanding the disease-suppressive status of the compost (van

Elsas and Postma 2007). However the suppressivity of compost can be caused by a

complex range of abiotic and biotic factors. Prediction of compost suppressivity is

complex, mainly due to the different soil-borne pathogens: fungi, bacteria, nema-

todes. Although general indicators for suppression are not available, several

promising examples of disease suppression have been described for specific diseases

(Klose and Mohnl 2010; van Elsas and Postma 2007). In Table 8.2 the main factors

which can affect inactivation and destruction of pathogenic agents are reported.

8.5.1 Biotic

The different sensitivity of the various pathogens to heat is reported in the previous

reviews/chapters (Bollen 1993; Bollen and Volker 1996). The quantity of heat

generated during the first phase of composting of crop residues and organic

household waste exceeds the level that is needed for the thermal kill of most

pathogens.

Unfortunately, beneficial as well as detrimental microorganisms are killed

during the thermophilic phase of composting. Therefore, suppression of pathogens

and/or disease is largely induced during maturation and curing of compost (meso-

philic phase) as biocontrol agents recolonize compost after peak heating. In the

curing phase of composting, the concentration of readily biodegradable compo-

nents declines. At this time mesophilic microorganisms recolonize the compost

from the outer low temperature layer into the pile (e.g., Danon et al. 2008). Bacillus
spp., Enterobacter spp., Flavobacterium balustinum, Pseudomonas spp., Strepto-
myces spp., as well as fungi like Penicillium spp., Trichoderma spp., Gliocladium
virens and other fungi have been identified as biocontrol agents in the compost

Table 8.2 Mechanisms of suppression

Abiotic Biotic

l Process heat generated l Competition for nutrients
l pH l Production of lytic enzymes
l C/N l Microflora of compost
l Organic matter quality l Biocontrol (competition, antibiosis, hyperparasitism)
l Chemical molecules (like

siderophores)

l Toxicity caused by decomposition of some products

during composting
l Low molecular weigh molecules able

to degrade fungal wall

l Antagonistic microorganisms (Actinobacteria, Fungi

and Bacteria)
l Decomposition level of organic matter
l Beneficial microorganisms in compost
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(Chung and Hoitink 1990; Hadar and Gorodecki 1991; Hardy and Sivasithamparam

1991; Hoitink and Fahy 1986; Nelson and Hoitink 1983; Nelson et al. 1983; Phae

et al. 1990; Hoitink et al. 1993, 1996, 1997; Hoitink and Boehm 1999; Hoitink and

Krause 2001).

The moisture of compost critically affects the potential for bacterial mesophiles

to colonize the substrate after peak heating. Dry composts with lower moisture than

35% become colonized by fungi and are conducive to Pythium diseases. The

moisture content must be high enough, at least 45%, so that bacteria can colonize

the substrate after peak heating and induce biological control. Often, water must be

added during composting as well as curing to avoid this problem (Hoitink et al.

1996).

Compost produced in the open, near a forest, an environment that is high in

microbial species diversity, is colonized by a greater diversity of biocontrol agents

than the same produced in a closed reactor (Kuter et al. 1983). Field compost is

therefore more consistently suppressive to Rhizoctonia diseases.

Two mechanisms of biological control, based on competition, antibiosis, hyper-

parasitism, and induced systemic resistance in the host plant, have been described

for compost amended substrates. Plant pathogens as Pythium spp. and Phytophtora
spp. are suppressed through a mechanism known as “general suppression” (Chen

and Hadar 1999; Chen et al. 1988a,b; Cook and Baker 1983; Hardy and Sivasitham-

param 1991; Boehm et al. 1993, 1997).

Diseases caused by Phytophtora spp. and Phythium spp. have been suppressed

by many types of microorganisms present in compost correctly produced. High

microbial activity prevents both germination of conidia of many pathogens and

infection of the host through microbiostasis (Chen et al. 1988a; Mandelbaum and

Hadar 1990).

The biological control for Rhizoctonia solani in compost is different from that of

Pythium and Phytophtora spp. Few microorganisms are able to eradicate sclerotia

of R. solani and this type of suppression is referred as “specific suppression”

(Hoitink et al. 1991, 1996). Trichoderma spp is the predominant hyperparasite

recovered from compost prepared with lingo-cellulosic substrates. These fungi

interact with various bacterial strains in biological control of Rhizoctonia damping-

off (Kwok et al. 1987). Penicillium species are the dominant hyperparasites recov-

ered from sclerotia of Sclerotium rolfsii in composted grape by-products (Hadar and

Gorodecki 1991).

In fresh composts that still contain undecomposed organic matter, in particular

cellulose, biological control does not occur because pathogens grow as saprophytes

and remain capable of causing disease. Also the biosynthesis of lytic enzymes,

involved in hyperparasitism, is repressed due to the high glucose concentration.

The same may apply to antibiotic production which plays an important role in

biocontrol (Hoitink et al. 1996). In mature compost, where concentration of free

nutrients is low and biological control prevails, e.g., sclerotia ofR. solani are killed by
the hyperparasites (Chen et al. 1988a; Nelson and Hoitink 1983). Also excessively

stabilized composts, where most of the organic matter is humified and highly miner-

alised, do not support adequate activity of biocontrol agents (Workneh et al. 1993).
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Four mechanisms have been described for the activity of biocontrol against soil-

borne plant pathogens. They are: (1) competition for nutrients (carbon and/or iron),

(2) antibiosis, (3) hyperparasitism and (4) induced protection (Hoitink et al. 1993).

In Table 8.3 a list of microorganisms correlated with suppressiveness of compost is

reported. Some phytopathogenic microorganisms that can be controlled by suppres-

sive compost are reported in Table 8.4.

8.5.2 Abiotic Action

Various products, originated from decomposing crop residues, are toxic to phyto-

pathogens. Ammonia is often formed early during the composting process. In

relatively high concentration, it has a detrimental effect on some pathogenic

fungi as Phytophtora cinnamoni (Bollen 1993). High pH and low C/N ratio in

composting material, due to ammonia presence, will increase suppression of phy-

topathogenic agents (Gilpatrick 1969; Bollen 1993). Fungitoxic compounds have

been detected in the extract of bark compost. Water extracts of fresh composted

hardwood bark contain ethyl esters of hydroxyl-oleic acids that inhibit development

of Phytophtora spp. (Hoitink and Fahy 1986). Compost from helmlock bark

releases fungitoxic substances with selective activity (Kai et al. 1990).

Compost produced with grape marc which contains siderophores (microbial iron

chelators) has a suppressive effect on nine phytopathogens: Rhizoctonia solani,

Table 8.3 Microorganisms

correlated with

suppressiveness of compost

Fungi Bacteria

Acremonium spp.

Chaetomium spp.

Gliocladium virens
Penicillium spp.

Trichoderma spp.

Trichoderma hamatum
Trichoderma viride
Verticillium spp.

Zygorrhynchus spp.

Bacillus cereus
Bacillus mycoides
Bacillus subtilis
Burkholderia spp.

Chryseobacterium gleum
Enterobacter cloacae
Enterobacter agglomerans
Flavobacterium balustinum
Janthinobacterium lividum
Paenibacillus spp.
Pantoea spp.

Pseudomonas aeruginosa
Pseudomonas fluorescens
Pseudomonas putida
Pseudomonas stutzeri
Serratia spp.

Streptomyces spp.
Streptomyces aureofaciens
Xanthomonas maltophilia

Source: Hoitink and Fahy (1986), Boulter et al. (2000, 2002),

van Elsas and Postma (2007), Hoitink et al. (1993)
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Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. lycoper-
sici race 0 and race 1, Fusarium oxysporum f. sp. radicis-cucumerinum, Verticillium
dahliae, Pythium aphanidermatum, Phytophthora parasitica and the mycopathogen

Verticillium fungicola (Diànez et al. 2006). Grape marc is the remaining product

once grapes have been pressed to produce vine. In the European Union (EU) more

than 20 mio tons per year of grape marc are produced; these can be used as ligno-

cellulosic bulking agents in composting processes to obtain a very active suppres-

sive compost. The microorganisms present in the grape marc compost produce

siderophores which capture iron, stopping its availability, thus preventing the

phytopathogen development. The suppressivity shown by grape marc compost

extracts is a combination of various factors, such as competition for nutrients,

antibiosis, production of lytic enzymes outside the cell and of low molecular weight

molecules, which, are capable of degrading the fungus wall (Diànez et al. 2006).

Allelopathy toxin, the available carbon-to-nitrogen ratio, and the concentration

of soluble salts, and possibly also the chloride ion concentration in composts, are

the principal chemical properties identified so far that affect biological control

induced by compost (Hoitink et al. 1993). Tree bark compost releases inhibitors

(natural fungicides) that lyse zoospores and sporangia of Phytophthora spp. Also

the presence of mineral nitrogen in compost must be taken into account to avoid

severe epidemic causes by plant pathogens. In well stabilized compost most of the

nitrogen should be in the organic form.

8.6 Compost Tea

To obtain compost tea, compost is diluted in water; the mixture is homogenized and

maintained for different periods of time (from 1 day to 2 weeks). Subsequently it

can be filtered, centrifuged and sterilized by filtration. The final liquid is then

Table 8.4 Phytopatogenic agents that can be controlled by the use of suppressive compost

Fungi

Alternaria spp.

Botrytis spp.
Botrytis cinerea
Cylindrocladium spp.

Erysiphe spp.
F. oxysporum
Fusarium spp.

Microdochium spp.

Monilia spp.

Olpidium spp.

Plasmopara viticola
Pythium spp.

Pythium aphanidermatum
Phytophtora spp.

Phytophtora parasitica
Pseudopeziza spp.

Ralstonia solanacearum
Rhizoctonia spp.

Rhizoctonia solani
Sclerotium rolfsii

Sclerotinia spp.

Sphaerotheca spp.

Sphaerotheca pannosa
Stromatina spp.

Taphrina deformans
Typhula spp.

Uncinula necator (Oidium tuberi)
Venturia inequalis
Verticillium spp.

Verticilliun dahliae

Nematodes

Globodera rostochiensis, Meloidogyne spp., Pratylenchus spp., Trichodurus spp.

Boen et al. (2006), Scheuerell and Mahaffee (2002), Bollen (1993), Hoitink et al. (1993), van Elsas

and Postma (2007), Hoitink et al. (1977)
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sprayed on the leaves of the plant to control air-borne phytopathogens (Scheuerell

and Mahaffee 2002).

Soil and plant sprays, based on compost and on different plants, have been in

practice since the 1920s (Koepf 1992). An increasing body of experimental evi-

dences indicates that plant disease can be suppressed by treating plant surfaces with

a variety of water-based compost extracts (Weltzien 1990, 1991; Diver 1998). Two

methods to produce compost tea have being described: with aeration and without

aeration. Irrespective of aeration, both methods intentionally ferment compost in

water for e defined period of time. Fermentation is intended as a cultivation of

microorganisms (Hilton 1999). Both methods require a fermentation vessel, com-

post and water, incubation and filtration. Nutrients may be added before or after

fermentation and various spray adjuvants can be added prior to the application of

undiluted or diluted tea (Scheuerell and Mahaffee 2002). There is a debate over the

necessity to aerate during compost tea production (Brinton et al. 1996; Ingham

2003). Aeration methods are associated with reduced process time. Non aerated

methods are associated with low cost, with low energy input and with many

documented reports of plant disease control (Weltzien 1991).

There are several reasons why compost tea use is expanding: Tea has been tested

on potatoes, wheat, calla liles, cherries, pears, delphiniums, papayas, sugar beets

and turfs in many states, enhancing plant growth, disease suppression, soil health

and tilth (Touart 2000). Professional landscapers, golf courses are assessing com-

post tea for fertility and disease control. Municipal parks and recreation depart-

ments are using compost tea for grounds maintenance. A number of individuals and

companies are selling compost tea at farmers, retail outlets, internet sites and

through application services (Scheuerell and Mahaffee 2002).

8.7 Tests to Evaluate Suppressivity of Compost

In vitro tests can be performed with Petri dishes containing potato dextrose agar on

which a layer of water extract from suppressive compost is spread. As a control,

Petri dishes are used without water extract of suppressive compost. Both series of

plates are inoculated with propagules of phytopatogenic fungi and incubated at

28�C. After some days the growth of the phytopatogen is measured and compared

with that occurred in the plate with the water extract from suppressive compost

(Diànez et al. 2006). Experiments carried out by these authors in vitro have

suggested that microorganisms present in grape marc compost produce sidero-

phores and inhibit several pathogens (see above; Diànez et al. 2006).

Similar tests can be performed using small pots containing suppressive compost

or peat with soil. All the pots are irrigated with a suspension containing propagules

of a phytopathogenic fungus. Seedlings from different vegetables are then planted

in these pots. The pots with suppressive compost should have healthier plants

during the cropping cycle. Chen et al. (1988a,b) and Inbar et al. (1991) have

established a direct correlation between microbial activity, based on the rate of
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hydrolysis of fluorescein diacetate, and the severity of damping-off of cucumber

induced by Pythium ultimum and P. irregulare. This procedure is now used in the

United States as a quality control test for natural suppression.

Randomly amplified polymorphic DNA analysis and PCR (polymerase chain

reaction) fingerprinting have proven to be a valuable tool for studying DNA

polymorphism in fungal organisms (Abbasi et al. 1999). It is a simple and reliable

technique that can be used to detect genetic differences at the isolate level in

compost (Civilini et al. 2000). Using this approach it is possible to identify

molecular markers that can be used to detect a specific isolate of a microorganism

that gives specific biological control against phytopathogens.

The utilization of these molecular biological methods as a diagnostic tool for

suppressive microorganisms can be very useful for tagging a particular isolate and

verify its presence in compost, without transforming the organism. This, highly

specific combination techniques allow detection and enumeration of beneficial

microorganisms in compost-amended substrates.

8.8 Use of Suppressive Compost

The European strategy on waste management has established a hierarchy on the

different treatment options for biowaste which in order are: (1) reduction of waste

production; (2) recycling and composting; (3) termovalorisation; (4) landfill. This

hierarchy is based on the effects that each option has on the environment and the

intent to reach the general aim of sustainability. To improve the integrated man-

agement of organic waste and to contribute to an increasing sustainability, it is

mandatory to respect the hierarchy above mentioned. A European Directive (EC 31

1999) says that Member States shall set up a national strategy for implementation of

the reduction to 35% of the biodegradable waste going to landfill. This will result in

a big increase of composting plants in Europe, but if compost would play an

important role in this scenario, it would be of prime importance to produce high

quality products. Factors that affect the compost quality are: (1) starting material

and its conditioning; (2) the composting system and process; (3) the control of the

process. Only respecting all the requirements that a composting process needs, it is

possible to obtain products compatible with agricultural crops and beneficial to

biological fertility of soils.

In the Mediterranean area soils have been depleted since 2,000 years; climatic

conditions and intensive agriculture reduce every year the organic matter content in

soils. The introduction of compost in agriculture can solve most of these problems

(Hoitink et al. 1996). The potential production of compost in the EU is high due to

the huge quantity of available organic wastes. The realization depends only by the

politics of the single Nations and a good coordination of the EU. Composts can

partially substitute chemical fertilizers and pesticides (suppressive compost) (Chen

and Hadar 1999; Hoitink and Boehm 1999; van Elsas and Postma 2007), contribut-

ing to maintain a sustainable agriculture with renewable resources. In Table 8.5 the
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main benefits and uses of compost are summarized (de Bertoldi and Schnappinger

2001).

8.9 Pesticides in Agriculture

More than 3 mio t of pesticides are produced worldwide each year to be used in

agriculture; 30% of this is used in the EU. A wide range of different chemical

compounds are currently in use as insecticides, fungicides and herbicides. About

1,000 active ingredients are utilized in the EU (Stanners and Bourdeau 1995).

According to World Health Organization, more than 20,000 fatalities per year in

the EU may result, only from acute poisoning by pesticides (WHO 1990). Among

the different classes of chemicals present in the environment and to which the

human population is massively exposed, pesticides play an important role due to

their wide use and their toxicity. Most of pesticides used in agriculture are fungi-

cides to suppress soil and air-borne plant diseases. Fungi are eukaryote organisms,

genetically more similar to the human being than to bacteria. Therefore, fungicides

have a particularly toxic effect to man.

Only recently, besides the acute toxicity, the potential genotoxic effect of

pesticides has been considered; newly developed pesticides are currently screened

for their potential genotoxic effects and it is mandatory for manufacturers to present

the results of mutagenicity studies to Health Authorities. Extensive research carried

out by different authors confirm the high mutagenic, carcinogenic and teratogenic

activity of a large number of tested pesticides (Siebert et al. 1970; Bridges 1975;

Gibel 1975; Shirasu et al. 1976; de Bertoldi et al. 1981, 1983a; de Bertoldi 1996;

Ames and Gold 1988).

Table 8.5 Compost utilization and benefits

l Biological agriculture (no pesticides) l Organic fertilizer, soil conditioner
l Contribute to chemical fertilization l Preparation of growth media
l Plant nurseries (pot and container cultures) l Horticultural and floricultural substrates
l Green house (peat substitute) l Green fields (golf, soccer, turfgrass)
l Control of plant diseases (suppressivity) l Beneficial effect on mycorrhiza and nitrogen-

fixation
l Mushroom production l Reclamation of sandy soils
l Viticulture, pomology l Recovery of landfills
l Biofilters for air depuration and

odor control

l Improvement of soil organic matter status, soil

porosity and texture
l Increase in water retention l Increase of biological fertility of soil
l Benefit to microbial activity in soil l Improvement of plant nutrient availability
l Prevention of desertification and

soil erosion

l Prevention of pollution caused by improper

waste disposal
l Reduced leaching of nutrients l Enhancement of sustainability in agriculture
l Prevention of replant disease
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For these reasons it is of the utmost importance to test pesticides for their

potential genetic and carcinogenic activity before they come into contact with

man; still more urgent seems the task of testing the effect of those compounds

that have already been in use. Moreover, there is an increasing tendency to produce

systemic pesticides, some of which may persist in the plant tissues and fruits for

some months. The risk in using these compounds is therefore not only confined to

the farmers, but also to the people who consume the treated products. The most

persistent products may enter the food chain in different way: fruits, vegetables,

meat, fish, animal derived products (milk, cheese, eggs, etc.) and water.

The evaluation of the potential risks posed by cancer-causing pesticides in our

foods is uncertain. Most of the epidemiological analyses have been done on

mammalian species different from man. Nevertheless, the US National Academy

of Sciences estimates that 20% of cancer deaths are due to the consumption of

pesticide residues in food in the United States in our life times (Winter 1992). The

US Environmental Protection Agency (EPA 1989) and the US National Resource

Council (NRC 1987) have classified pesticides according to cancer risk for humans.

Most of the classified pesticides belong to high risk classes (Ekstrom and Akerblom

1990). Other authors (Gold et al. 2001) minimize the genotoxic effect of synthetic

pesticides in food considering the larger amount of natural pesticides (produced by

plants) present in the human diet.

A high level of public concern from pesticide residues in food currently exists,

and much of this concern is due to the high genotoxic effects of some molecules and

to the difficulty to evaluate the persistence in foods of their residues or of their

metabolites. Finally, it is possible to assert that epidemiological analyses and

dietary pesticide risk assessment are very important parameters to evaluate and to

correlate with carcinogenic risk in humans.

The utilization of suppressive compost in agriculture could help to reduce the

use of pesticides and to obtain a healthier environment and food.

8.10 Concluding Remarks

A huge amount of scientific papers on disease suppressivity of composts has been

produced in the past 40 years. All the aspects have been investigated: starting

materials for suppressive compost, how to control a composting process, compost

storage, phytopathogenic agent suppressed, microorganisms that induce suppres-

sivity, mechanisms of suppression and so on.

In spite of this abundant literature on disease suppressiveness, there is still

insufficient insight into the general principles of disease suppression by compost.

Prediction of efficacy of compost application to the field is still premature. Still

research is needed to be able to produce specific compost for the suppression of

certain pathogens in a specific cropping system.

However, many positive and concrete results have been achieved and production

and application in agriculture of suppressive compost is a concrete fact not fiction
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(Fuchs 2002, 2010; Fuchs et al. 2006). However, today only two countries, USA

and Israel, produce industrially suppressive compost and utilize it to produce

horticultural products, fruits and flower without pesticides and free of diseases. In

many other countries the utilization of suppressive compost is still in an experi-

mental phase. The potential starting material to produce suppressive compost is

very impressive. In the EU, 4,000 mio t of organic refuses are produced (de Bertoldi

2008). Their transformation into compost, suppressive to plant pathogens, would be

a splendid result, not only for agriculture but also for the environment and, above

all, human health. We must thus reconsider our view of these organic materials not

as a waste item to be disposed, but as a valuable resource, put to the highest and best

use possible. Simply by keeping compostable organics out of landfill and incinera-

tion, we can prevent methane and CO2 emissions and build healthier soils, recycling

organic matter and nutrients. These in turn replenish carbon stocks and provide

sustainably healthier foods for the population. Through composting these organic

wastes can be transformed into a humified organic fertilizer, compatible with plant

growth. The benefits to agriculture soils are: the improvement of soil organic

matter status, substitution of chemical fertilizers (N, P, S, K and trace elements),

increase in water retention, reduction of nutrient leaching, prevention of soil

erosion and desertification, control of plant disease (suppressivity) and sustain-

ability in agriculture.

It is worthwhile to mention also the economical benefits. Recycling organic

wastes into compost prevents the cost of land filling and incineration. Besides, the

utilization of compost in agriculture saves money to buy chemical fertilizers and

pesticides.
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Chapter 9

Sanitation by Composting

Björn Vinnerås, F. Agostini, and Hakan Jönsson

Abstract In composting, there is always a risk of pathogens and unwanted plant

seeds being present. The risk of pathogen content varies with substrate and is the

highest in sewage and excreta products. There are several functions regulating

pathogen inactivation in composting, with the main effect deriving from the heat

produced. Most pathogen inactivation starts at temperatures above 50�C, and it

increases with increasing temperature. The compost conditions needed for reaching

high temperatures are the available energy and oxygen. The temperature distribu-

tion within the compost varies depending on factors such as moisture content and

external cooling from incoming air. In areas with lower temperatures, inactivation

decreases and in some cases where the material is fresh, growth of pathogenic

bacteria can occur. In a composting process, it is impossible to monitor all polluting

pathogens and plant seeds, and therefore, the most appropriate management option

is the validation of the process regarding its efficiency for pathogen inactivation.

Thereafter, the sanitisation effect can be monitored via process parameters such as

temperature, pH and product stability.
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9.1 Introduction

If one of the aims of composting is the recycling of organic matter and nutrients to

the soil, then the hygiene quality of the product is critical for its safe use. Product
stability is not a guarantee of compost hygiene quality, though compost looks and

smells like soil, it is not necessarily as safe as soil. This chapter looks at the factors

regulating compost hygiene quality and the measures that ensure such quality,

allowing the nutrient loop to be closed while leaving the pathogens behind.

9.1.1 Hygiene, an Important Factor in Composting

There are several factors that have to be taken into consideration regarding the

hygiene safety in composting. The most discussed factor is the final product quality,

which is included in most quality assurance programmes and which is also strongly

related to consumer-acceptance of the product. The main organisms that pose a

threat to compost hygiene are presented in Table 9.1. As it is impossible indeed to

monitor the quality of each and every kilogram of a compost produced, a safety

assurance system is very much needed whereby the efficiency of the process is

evaluated mainly by monitoring process parameters in combination with an initial

validated process to verify the final quality of the products. However, the risk

remains of disease transmission before and during treatment to workers, who in

some cases handle unsanitised material. The more manual labour included in the

treatment, the higher the risk of disease transmission. Of course, there is also
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the risk of transmitting diseases to the surrounding environment, e.g., water reci-

pients (by runoff water), wild animals and aerosols.

Most diseases only infect one species, although some can infect several. These

are called zoonoses, and examples are salmonella and verotoxin-producing

Escherichia coli (VTEC). There are two main types of transmissions to vectors

staying at the site for shorter or longer time periods, e.g., flies, birds and rodents, and

Table 9.1 Pathogenic agents

that can be present in the

starting material for

composting

Pathogen Disease

Viruses

Enterovirus Gastroenteritis, meningitis

Rotavirus Gastroenteritis

Norwalk virus Gastroenteritis

Parvovirus Gastroenteritis

Adenovirus Respiratory infections

Hepatitis A virus Viral hepatitis

Hepatitis E virus Viral hepatitis

Polio virus Poliomyelitis

Ecovirus Meningitis

Coxsackie virus Meningitis

Bacteria

Salmonella (1,700 types) Typhoid fever

Mycobacterium tuberculosis Tuberculosis

Vibrio cholerae Cholera

Verotoxin producing Escherichia
coli (VTEC)

Haemorrhagic colitis

Yersinia enterocolitica Gastroenteritis

Listeria monocytogenes Meningo-encephalitis

Shigellae spp. Sigellosis

Yersinia enterocolitica Yersinosis

Campylobacter jejuni Gastroenteritis

Protozoa

Cryptosporidium parvum Cryptosporidiosis

Cyclospora cayetanensis Gastroenteritis

Entamoeba histolytica Amoebiasis

Guardia lambdia Guardiasis

Balantidium coli Balantidiasis

Naegleria fowleri Meningo-encephalitis

Acanthamoebae Meningo-encephalitis

Helminths

Ascaris lumbricoides Ascariosis

Enterobius vermicularis Enterobiasis

Strongyloides stercolaris Strongylaidiasis

Toxocara spp. Toxocariasis

Taenia spp. Tapeworm

Hymenolepis spp. Hymenolepiasis

(tapeworm)

Echinococcus spp. Echinococcosis

(tapeworm)

Thrichuris thrichuria Thricuriasis
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to larger wild animals such as deer and boar, which can become a reservoir, thus

potentially affecting humans and animals in the surrounding area (Albihn and

Vinnerås 2007).

Other factors that need to be included in the assessment of compost quality are

with the presence of plant pathogens, which behave similar to animal and human

pathogens, and the presence of seeds from unwanted plants that can pollute the end-

product, e.g., tomato, papaya, melon. However, the content and germination capacity

of plant seeds can also be used as an indicator of product quality regarding plant and

animal hygiene as discussed below.

9.1.2 Barriers – Use of Product

When waste fractions are treated for reuse, several barriers should be included to

prevent disease transmission. The treatment is one of the most important barriers as

it is here that the actual numbers of pathogens can be reduced. Another barrier that

affects the risk of disease transmission is the source of the incoming material, e.g.,

material from hospitals, toilet waste, sewage sludge, etc. Finally, selection of the

end-use of the compost produced is itself a further barrier, as material of uncertain

quality can be used for application to non-food crops or to crops for animal feed if

the quality is slightly higher.

9.2 Risk Factors

9.2.1 Incoming Material

Depending on the source of the incoming material, the risks of contamination of

unwanted organisms such as pathogens vary. The main risk material for transmis-

sion of disease via the faecal-oral route is animal manure and fractions that contain

human excreta, such as latrine or sewage sludge, which from a large population

usually contain pathogenic pollutants (Sahlström et al. 2004). By controlling and

monitoring the treatment process, there is no problem in managing the increased

risk of these fractions. Only including food waste in the composting process does

not ensure a safe material, since there can be faecal contaminants present and since

the food waste itself can contain and also promote growth of pathogens such as

Salmonella spp.

9.2.2 Contamination of Composting Material

During the treatment process, pathogenic bacteria can contaminate and grow within

the composting material. The source of contamination can be vector organisms such
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as birds and rodents. Another important source is the use of contaminated equip-

ment. If pathogenic bacteria contaminate the composting material before it is well

stabilised, and when the temperature is below sanitising levels, then there is a high

risk of contamination and growth of these bacteria.

9.3 Organisms That Pose a Risk

The main risk of disease-transmission from compost is posed by pathogens that

follow the faecal-oral route. These pathogens can be divided into four categories:

non spore-forming bacteria, spore-forming bacteria, viruses and parasites. In addi-

tion, these categories can be divided into two, organisms specific to one species and

zoonoses that can infect both animals and humans, e.g., Salmonella spp. The main

human pathogenic agents are listed in Table 9.1.

9.3.1 Enteric Pathogens

The enteric Gram-negative bacteria behave relatively similarly in compost material

and, therefore, the reduction in these organisms can be monitored by analysis of

Gram-negative indicator bacteria, e.g., faecal coliforms, especially thermotolerant

coliforms.

Salmonella spp., are Gram-negative, rod-shaped bacteria, and are zoonoses that

infect both humans and animals. The infective dose can be as small as 20 cells, but

in most cases 104–106 cells are required for infection (FDA 1992). However, as for

all organisms, the infective dose varies from host to host depending on factors such

as age, time of infection, nutritional status, etc., and the most severe infections

occur in young and old people and in immuno-suppressed individuals. Growth of

Salmonella spp. has been reported in sewage sludge (Sahlström et al. 2004), in

compost material (Elving et al. 2009) and in manured soil (Gibbs et al. 1997).

VTEC produce verotoxins, a shiga-like toxin. The behaviour of such strains is

similar to that of the non VTEC-producing E. coli, which means that they have high

survival in the environment. The infective dose of VTEC is as low as ten organisms,

depending on the receptivity of the host (FDA 1992).

Vibrio cholera is a Gram-negative, curved-rod bacterium motile with polar

flagella. It is mainly found in water and most outbreaks are related to water (FDA

1992). It has a high infective dose (>106) and the organism has a low thermal

resistance (Feachem et al. 1983; Vinnerås et al. 2003). It should, therefore, not pose

any major risk within compost management.

Shigella spp. is a Gram-negative, rod-shaped bacterium closely related to E. coli
and Salmonella. Some of the Shigella strains produce enterotoxin and shiga toxin,

which is similar to the toxin found in VTEC.

Campylobacter jejuni is a Gram-negative, slender, curved and motile rod. It is a

micro aerophilic bacterium that is sensitive to high O2 levels and to most other
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factors related to composting, such as heating, drying and acids. Therefore, this

organism should not be of any great concern in compost management.

9.3.2 Other Pathogenic Bacteria

Listeria monocytogenes is a Gram-positive bacterium, motile by means of flagella.

It is normally found in the environment and is relatively hardy, as it can withstand

heat and drying. Most people infected do not show any symptoms at all and the risk

is only related to the foetus during pregnancy and immuno-suppressed individuals

(FDA 1992). This organism should not be of any great concern regarding compost

management.

Mycobacterium tuberculosis is an obligate aerobe, acid-fast, Gram-positive

bacterium that causes tuberculosis. It is slow-growing in bacterial terms but very

resistant to chemicals and drying (FDA 1992).M. tuberculosis is relatively stable in
the environment but is thermally inactivated, with a decimal reduction of less than

one day in compost at 55�C (Grewal et al. 2006).

9.3.3 Pathogenic Viruses

Several viruses are included in the group that cause gastroenteritis, but only a few of

these viruses are considered to be zoonotic, e.g., Hepatitis E infecting both humans

and pigs. Other viruses commonly included in this group are Hepatitis A, Rota-

viruses, Noroviruses, Astroviruses, Caliciviruses, Enteric adenoviruses, Entero-

viruses and Parvovirus. In total, more than 130 pathogenic viruses may be present

in faeces-contaminated material. The infective dose of viruses is generally low,

even as low as one single viral unit (FDA 1992). Viruses do not proliferate outside

the body, as they need their host for growth. Some of these viruses are very

thermoresistant and studies have shown slow reduction at high temperatures

(Sahlström et al. 2008), but treatment in thermophilic composting including mixing

should be sufficient for appropriate reduction (Feachem et al. 1983; Vinnerås et al.

2003; Wichuk and McCartney 2007). Viruses in stool samples are mainly detected

via electron microscopy or immunoassays, but such analyses are complicated and

costly to perform for compost material. One alternative for monitoring the viral

count is to use naturally occurring bacterial viruses, i.e., coliphages, and correlate

their thermal inactivation in the material and use them for monitoring the viral

reduction during the process.

9.3.4 Pathogenic Parasites

Parasites can be divided into two groups, protozoa and helminths. Both groups

have a low-infective dose but they cannot increase in numbers outside the host.
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The protozoa, mainly the zoonotic Giardia and Cryptosporidium, are relatively

sensitive to heat treatment and are rapidly reduced within thermophilic composting

(Feachem et al. 1983; Wichuk and McCartney 2007).

The helminths, on the other hand, include very heat-tolerant microorganisms,

with Ascaris spp. regarded as the most thermoresistant pathogen (Feachem et al.

1983; Haug 1993). The inactivation of complex organisms such as Ascaris cannot
be regarded as linear (Nordin et al. 2009), as most studies show an initial lag phase

before inactivation starts. Even if the organism is resistant, it shows a reduction that

increases in speed with temperature for thermophilic conditions over 50–55�C
(Feachem et al. 1983; Vinnerås et al. 2003; Wichuk and McCartney 2007).

9.4 Inactivation Process

There are several factors that regulate the inactivation of unwanted microorganisms

and seeds in compost. A number of chemical substances affect microorganisms,

especially in combination with heat. Ammonia is a well-known antibiotic agent

(Warren 1962), which in its uncharged form inactivates most organisms, especially

bacteria and parasites. The inactivation of viruses is somewhat slower, but at the

temperatures found in compost the effect is high for all organisms (Vinnerås et al.

2003, 2008; Pecson et al. 2007; and Nordin et al. 2009). Ammonia is one of the end-

products during degradation of proteins and peptides. Most of it is lost as gaseous

emissions (Haug 1993) but to some extent, the ammonia gas can affect the sanita-

tion process. Other products found in the compost are volatile fatty acids (VFA),

which have an effect on microorganisms especially when the temperature increases

(Sundberg et al. 2004). During the initial stage of composting and when areas of the

compost become anaerobic, organic acids are produced as explained further below.

Another factor that can have an influence is the competition with other organisms

for energy consumption, but also via antagonistic relationships. The combination of

these factors leads to a natural decay over time, as the environment is not optimised

for growth of pathogenic bacteria. In most cases, these factors cannot regulate the

inactivation of pathogenic organisms alone. They are also difficult to monitor for an

estimation of reliable inactivation. Therefore, heat is the single easily monitored

factor within the composting process for reliable inactivation to ensure that a

properly sanitised end-product is produced.

The following sections, therefore, mainly focus on the hygiene quality of

compost in relation to heat production and distribution in the material, in combina-

tion with the actual inactivation process.

Regardless of the type of organism, the inactivation during the composting

process is mainly driven by heat inactivation. To ensure reduction of the pathogens

by heat, an understanding of the microbial population’s resistance to heat is crucial.

The heat stresses the organisms, with the end result that proteins are denatured.

During mild heat stress, the effect on microorganisms is a reversible inactivation

that is negated when the temperature decreases. The effect of the temperature is that
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the organisms start producing heat-shock proteins that assist other proteins to

maintain their integrity and avoid being denatured by the heat. At a certain point,

the heat becomes too strong for the organisms to withstand and the proteins are

irreversibly denatured. The rule of thumb used in most situations is that a tempera-

ture of at least 50–55�C is needed for successful inactivation of pathogens. Gener-

ally, no pathogenic bacteria grow at these temperatures but some pathogenic

organisms can withstand high temperature stress for a long time, when the temper-

ature is up to 50�C and sometimes above, before being inactivated. The higher the

temperature, the more efficient the inactivation, and the better the heat transfer, the

faster the inactivation, i.e., moist heat is more efficient than dry heat. Thermoto-

lerant organisms such as those active in the compost during the thermophilic phase

can withstand high temperatures but are normally not considered to be pathogenic.

The main exception regarding inactivation of pathogens at high temperatures is

some spore-forming bacteria, which in their spore form withstand high tempera-

tures without inactivation (FDA 1992). The relevant organisms mainly affect

animals, e.g., Clostridium schauvoei, which causes black leg. In addition, some

organisms mainly affect farming due to toxin production, e.g., C. botulinum. The
main effect of these toxins occurs when they are present in the feed, e.g., in silage,

or in the bedding, e.g., on chicken farms. As Clostridium spp. are obligate anae-

robes, they only increase during anaerobic conditions, which can develop in

anaerobic parts of a compost mass.

The other group of spore-forming organisms, Bacillus spp., includes the patho-
gen Bacillus anthraci. However, anthrax is not commonly associated with waste

and manure and is thus beyond the scope of this paper. Spore-forming organisms, in

general, are very heat-resistant in their spore form and are probably not significantly

reduced during composting treatment. On farms experiencing problems due to

spore-formers, extra measures need to be taken regarding manure management to

reduce the spread of these organisms within the farm and to the surrounding

environment.

9.5 Heat Generation in the Compost

Composting can be defined as the aerobic degradation of organic substrates
mediated by microbes. The organic substrates are ideally oxidised completely,

which leads to the generation of large amounts of heat. The heat generated in the

complete oxidation of a molecule of fatty acid and a molecule of glucose is given in

(9.1) and (9.2), respectively.

C16H32O2 þ 23O2 ! 16CO2 þ 16H2O DH ¼ �39:2 MJ kg�1 (9.1)

C6H12O6 þ 6O2 ! 6CO2 þ 6H2O DH ¼ �15:7 MJ kg�1 (9.2)
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As can be seen from these equations, complete oxidation of the organic sub-

strates releases large amounts of heat. The actual heat released during the build-up

phase of composting is not as large as that shown by (9.1) and (9.2), because much

of the energy from the substrate is spent on the growth of the bacterial population.

During this build-up phase, the degradation activity can occur very quickly.

During short periods activity increases exponentially, before it is rate-limited by

substrate deficiency. Turning the compost material can relieve this rate limitation

and the activity can again increase very quickly provided that the environmental

conditions are optimal, i.e., that the most limiting factor for degradation is the size

of the bacterial population and no other environmental condition (Eklind et al.

2007; Fig. 9.1). The exponential increase in degradation is mainly due to two

factors, the exponentially increasing bacterial population and the rapidly increasing

temperature.

Under such optimal degradation conditions, the peak of the degradation activity

is relatively sharp, at least in a substrate consisting of fine particles (Fig. 9.1).

In such a substrate there is a sharp peak, after which the degradation activity only

continues for 1–2 days before starting to fall exponentially. This decrease is

probably mainly due to decreasing access to available and easily degradable sub-

strates, as by this time sugars are getting depleted, the starch is rapidly decreasing

and the main substrate is rapidly turning into hemicellulose and cellulose (Eklind

et al. 2007; Fig. 9.2).

Often, however, the degradation activity is limited to far less than the maximum

by non-optimal environmental conditions such as temperature (Haug 1993; Eklind

et al. 2007), temperature in combination with pH below 6–6.5 (Nakasaki et al.

1993; Choi and Park 1998; Smårs et al. 2002; Sundberg et al. 2004), limited oxygen

Fig. 9.1 Degradation measured as CO2-C evolution when composting source-separated kitchen

waste. Day 0 was when the pH was high enough to allow the temperature to increase above 37�C.
The sharp peaks and troughs in the diagrams are due to daily turning of the compost. The numbers

40, 55a and 67a denote runs at 40, 55 and 67�C, respectively. (Figure from Eklind et al. 2007)
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availability (e.g., Richard et al. 2002; Beck-Friis et al. 2003) or limited water

availability (e.g., Haug 1993; Richard et al. 2002).

The optimal temperature for degradation of most substrates is somewhere

around 55�C (Haug 1993; Eklind et al. 2007; Fig. 9.3). In large compost masses,

the temperature can easily rise too high, up to 70�C and even 80�C. While this is

very good for the reduction of pathogens, it seriously decreases the rate of degra-

dation of the organic substrates, which can have a negative or positive influence

depending on the specific circumstances. It is negative if the goal is to optimise the

degradation, i.e., if the goal is to produce mature compost in the shortest available

time, while it is positive if the amount of easily available substrates is borderline for

safe sanitisation, as it slows down the degradation of the substrates and preserves

them. At this high temperature, pathogen reduction is fast, and thus a high temper-

ature can be a good way to economise on a limited amount of degradable substrates

in such a way that complete sanitisation is achieved.

In many small composting units, the degradation activity is limited by low

temperature, much below 55�C. This is a very serious limitation as regards sanitisa-

tion, as for many pathogens there is little or no reduction at temperatures below

50�C. The seriousness of this condition is due to the fact that the degradation

Fig. 9.2 Substrate

constituents remaining in the

reactor in run 67a from

Fig. 9.1. (Figure from Eklind

et al. 2007)

Fig. 9.3 Cumulative carbon

turnover when composting at

40, 55 and 67�C. (Figure from
Eklind et al. 2007)
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activity at around 40�C is as large as it is around 65–70�C (Fig. 9.3), but while the

pathogen reduction is very high at 65–70�C, for most pathogens the reduction at

around 40�C is very low or even negligible.

At a pH of 6–6.5, the degradation activity is also much more sensitive to

temperature. It is seriously inhibited if the temperature increases to about 38�C or

above (Smårs et al. 2002; Sundberg et al. 2004). These conditions are common

when substrates with a large proportion of kitchen waste are composted, e.g., in

municipal plants composting source separated household waste in the Nordic

countries (Sundberg and Jönsson 2008). There is hardly any garden waste in the

source-separated kitchen waste in these countries and the reason for the low pH is

that there is a high concentration of lactic acid bacteria in fresh kitchen waste

(Sundberg et al. 2008). The decrease in pH is mainly from the activity of Lacto-
bacter spp., which uses the available sugars for production of lactic acid. During the
initial collection and storage phase in the household, the activity of these organisms

is high, resulting in a low pH, sometimes as low as 4.5 (Eklind et al. 1997), in the

incoming waste. In the initial stage of composting, the pH often sinks even further

due to the continued activity of the acid-producing bacteria, as when there are

ample supplies of sugars some bacteria prioritise incomplete degradation, produc-

ing organic acids, instead of full degradation to carbon dioxide and water.

In composts with only small heat losses, i.e., large composts, the inhibition due

to low pH (<6–6.5) and high temperature (>40�C) can become semi-permanent.

Any degradation that still goes on under these conditions lowers the pH rather than

increases it (Sundberg et al. 2004, 2008). This means that the compost can linger at

a temperature around 40–50�C for several months with minimal degradation

(Sundberg et al. 2008). At the same time, both the degradation activity and the

pathogen reduction are low.

If the availability of oxygen is low or totally lacking, the initial tendency for the

pH to decrease is enforced due to anaerobic degradation, initially mainly acidifica-

tion (Beck-Friis et al. 2003). Low oxygen availability is a sign of the aeration being

inadequate. While the most common cause of this is inadequate capacity of the

aeration system, another very common cause is excessive water content in the

substrate, resulting in too low a volume of air-filled pores. A rule of thumb is that an

air-filled pore volume of about 30% is needed for well-functioning aeration of large

composting units (Haug 1993). If the moisture content is too high, then too many of

the pores become waterlogged, which inhibits the oxygen supply to the microbes,

limiting aerobic oxidation and thus heat generation. The relationship between

moisture level and air-filled pores depends on the structural strength and water-

absorption capacity of the substrate and thus, the optimal moisture content is

substrate-dependent.

On the other hand, if the moisture level becomes too low, for most substrates

below 40–45%, then the degradation activity is hampered by limited access to

water. If water addition is possible, as it is on household and small scale, it is often

advisable to start with the substrate being a little bit too dry to ensure well-aerated

conditions and to minimise anaerobic zones and thus the production of VFA and

odour. Furthermore, the heat capacity of the material is lower with lower moisture
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content (Haug 1993), facilitating a more rapid increase in temperature. As the

temperature and activity increase, the substrate dries and becomes too dry, particu-

larly if it is energy-rich, like kitchen waste (Sundberg and Jönsson 2008). At this

stage, water should be added. The degradation activity can actually be regulated by

the moisture level in the substrate, and ensuring that the moisture level is always

below optimum can minimise the risk of anaerobic zones and odour production.

In large composting plants, addition of sufficient amounts of water to the

substrate is often difficult and thus, it is tempting to allow the initial moisture

level of the substrate to be a little too high. However, there is a sharp divide between

a moisture level that is slightly high but still gives a high-rate composting process,

and a moisture level that is too high and seriously inhibits the aerobic process

(Richard et al. 2002; Niwagaba et al. 2009). Such anaerobic conditions often result

in production of VFA, leading to a decrease in pH and in a long period of inhibited

degradation due to the combination of high temperature and low pH. Studies of wet

composting substrates show that the temperature never reaches much above 40�C at

a pH below 6.5, even when the moisture level is adjusted (Niwagaba et al. 2009).

Thus, it is critical to avoid starting with too high a moisture level, as this easily

results in a vicious circle for the process (Sundberg et al. 2008). When the material

is not degraded but rather preserved, changes in the composition, e.g., buffering the

compost, can lead to high regrowth of pathogenic bacteria (Elving et al. 2009), even

if these are not initially detected (Gibbs et al. 1997).

9.6 Distribution of Heat in the Compost

Heat generation and transport within the composting mass are critical events for the

whole composting process, especially if one of its purposes is heat inactivation of

pathogens. It is not possible to design a successful composting process that ensures

the complete treatment of the whole substrate with predetermined temperature

gradients without being able to model the heat distribution within such a substrate,

accounting for all the thermodynamic factors involved (Mason and Wilke 2005).

Compost substrates are extremely heterogeneous in composition and in physical

and chemical properties. However, they always consist of an organic solid compo-

nent, the majority of which is easily degradable, a microbial community, and gas

and liquid phases, which provide the water and the oxygen demanded by the

microbial degradation (Haug 1993). In such a context, the distribution of heat

within the compost cannot be based on a single or few physical models, since it

is itself the result of complex interactions between concurrent and dependent

physical processes: heat conduction through the solid matrix, heat conduction by

the non-solid phases and within them, heat exchange between the phases, heat

convection, vapour air diffusion, water movement due to capillarity, air-vapour

equilibrium and evaporation. Such a scenario increases further in complexity

because the substrate changes radically during the composting process in its

chemical composition and physical structure. The main change occurs in the ratio
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between the three physical phases, with volume and mass decreasing due to water

and gas losses. Therefore, the evolution of porosity, bulk density and water content

within the compost must also be accounted for when investigating the heat

distribution during composting (Hogan et al. 1989; Sarwar and Majumdar 1995;

Izadpanah et al. 1998).

In such a multiphase environment, the heat distributed along the solid matrix,

even if this is heterogeneous in composition, follows the fundamental Fourier Law

on heat transfer:

fq

�! ¼ �kr!T

where fq

�!
is the local heat flux (Wm–2), k is thematerial’s conductivity (Wm–1 K–1),

and rT is the temperature gradient (K m–1).

In this case, the flux is a function of the thermal conductivity (k) of the

components of the solid matrix, which is also a function of the contact surface

between the particles of the matrix. More precisely, the matrix stores a part of such

heat according to its specific heat capacity (cp), so the thermal diffusivity (a)
coefficient, (k/rcp), is the parameter to consider. The other distribution pathways

are the conduction–convection mix transfers between the three phases and within
them. The weight of these distribution flows can be assumed to range from small,

and nearly negligible, to prevalent with the increase in empty spaces, fluid contents

and circulation within the solid matrix.

Different approaches can be adopted to quantify the heat distribution in such a

scenario, which is essentially a case of heat distribution in a porous medium where

the solid, liquid and gas phases do not maintain constant conditions, but continu-

ously change with the progression of the composting process. A general simplifica-

tion is to look only at the conductive transfer and to neglect all the convection and

mix transfers.

In the simplest scenario of all, the solid component is prevalent and relatively

stable during the process, the ideal case of a non-aerated low porosity substrate and

with low moisture content. The temperature gradient can then be calculated (9.3) as

the product of thermal diffusivity coefficient of the matrix for the second derivative

of the difference in temperature between points in relation to their internal distances

(Carslaw and Jaeger 1958):

@T

@t
¼ a

@2T

@d2
(9.3)

However, since the solid matrix is of variable chemical composition and the

effect of the porosity (at least 30% in most compost substrates, according to Haug

1993) is relevant, an aeff (effective thermal diffusivity coefficient), which accounts

for these should be calculated as:

aeff ¼ eaair þ ð1� eÞaaverage solid components (9.4)

where e is porosity.
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A further step is to account for the conduction occurring along all three phases

and as a function of the contact surfaces between them (Sarwar and Majumdar

1995). A weighted harmonic average of a of the different phases is then used in the
basic differential equation, assuming asol to be the diffusion coefficient of the solid

particles and aPor to be that of the pores filled by air–water mix (9.5):

aeff ¼ 2asol þ apor � 2eðasol � aporÞ
2asol þ apor � eðasol � aporÞ asol (9.5)

Considering instead the more realistic conductive and convective scenario, the

parameters to be accounted for and therefore, measured or extrapolated increase in

number because the heat distribution and movement within the fluid mix (air, water,

and vapour) must also be described. The heat transfer coefficient between the solid

phase (or more accurately, between its different components) and the non-solid

phases must then be considered, i.e., the convective heat transfer coefficient and the

thermal conductivity of the fluid mix. In particular, the ratio between these two

terms or the Biot number (which indicates whether heat moves faster within the

fluid and is then dispersed, in which case the heat gradient within the fluid is

negligible) should be determined (Erdogu 2005, 2008).

When the heat distribution is greatly affected by the fluid dynamics within the

composting mass, e.g., the case of forced air ventilation to control temperature and

moisture, then the fluid mix properties determine whether the heat is mainly

transferred by fluid convection or by fluid conduction (Izadpanah et al. 1998;

Seki 2000). All such parameters and their relationships are summarised and

expressed by specific dimensionless numbers expressing the effects of viscosity

(Prandtl number), flow paths among the solid components (Rayleigh number) and

types of flow (laminar, turbulent or mix) determined through viscosity, buoyancy or

inertia (Grashof, Reynolds or Nusselt numbers, respectively). The values of these

parameters must be known in order to understand heat distribution in complex

systems, such as natural and forced ventilated systems. The fluid dynamics within

the compost can be even more difficult to describe if the heterogeneity of the

substrate leads to the formation of areas with different affinity to water or different

porosity. In these cases, the mathematical models of heat distribution increase their

complexity depending on the accuracy with which the substrate and its phases are

described, necessitating the use of partial differential equations through the need to

couple two or more physical models from different physical fields (e.g., Darcy flow

dynamics and heat convection, evaporation and capillarity, etc.). The study of heat

distribution in such conditions is based on different computational approaches in

functions of pore dimensions and evaporation rates, e.g., finite element method,

finite differential method or finite volume method (Datta 2007a, b).

Heat distribution within a composting substrate is a very complex phenomenon,

which can be studied with different levels of accuracy and precision. If the aim of

the investigation is the assessment of time and temperature gradients to establish a

selective microbial environment against microbial pathogens, a minimum-risk
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approach involves not relying on pure theoretical modelling, which cannot account

for the presence of spot cold zones generated by drastic changes in thermal

conductive properties within the substrate due to its heterogeneity and to associated

events such as evaporation or unpredictable changes in porosity. These untreated

areas could generate undesired health hazards. Instead, composting design should

always consider technical strategies such as mass turning and mixing and/or

extended treatment periods, which ensure the complete, uniform and thorough

exposure of the substrate to heat fluxes.

9.7 Function of Mixing

The general method for management of the temperature distribution in the compost

material, and thereby the hygiene in the process, is mixing during the high temper-

ature phase. As the inactivation is temperature-related, only the compost areas

where high temperatures are reached are sanitised. Therefore, mixing is required

for transportation of unheated material into regions where the material is hot. By

performing temperature measurements, it is possible to estimate the temperature

distribution in the compost and from that calculate the proportion of compost that

can be considered to have a sanitising temperature and the proportion that does not

achieve such a temperature.

Based on the distribution of hot and cold areas in the compost, it is possible to

calculate the extent to which the material needs to be turned for sufficient reduction

of unwanted organisms and pathogens. The simplest assumption is that there is total

inactivation in the high temperature area, which is achieved if the minimum

temperature of 50�C is combined with a treatment time allowing several days

between turnings, thereby ensuring high levels of inactivation (Feachem et al.

1983; Vinnerås et al. 2003). The higher the temperature, the shorter is the possible

time between turnings while still the same level of safety is maintained. The other

assumption is that there are no changes at all in the microbial population in the cold

zone. Any changes there can have a major effect on the overall inactivation. If there

is a decrease in the number of organisms, the total effect is simply an increase in the

safety level, as the total number of pathogens is the sum of those surviving in the hot

and cold zones (9.6).

nt ¼ n0 flð ÞNþ1
(9.6)

where nt = number of organisms at time t, n0 = number of organisms at time 0, fl =
proportion of compost in cold zones and N = number of turnings of the pile.

However, if the organisms increase in number in the cold zone (see below) the

total number of microorganisms can actually increase. Studies performed on

regrowth risk have linked the degree of inactivation to the maturity of the compost

material, with e.g., Sidhu et al. (2001) showing a decreased risk of regrowth with

increasing compost maturity. This is due to decreased availability of nutrients and
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energy in the form of short-chain, easily available organic molecules. Later studies

performed by (Elving et al. 2009) have been able to link the maturity of the compost

(measured using Solvita and Rottegrad maturity tests) to the pattern of regrowth of

faecal indicator bacteria and Salmonella spp. In that study, a good correlation was

found between low compost maturity and pathogen growth, with microorganisms

added to immature compost growing to a high extent (increase corresponding to

1–3 log10 growth) during the first 3 days. Studies of the survival of pathogens in

compost/manure-amended soil have shown that even when no pathogens were

detected initially, after a change in climate, such as increased moisture due to

rain, pathogens had re-grown (Gibbs et al. 1997).

The potential of microbial growth in compost cold zones generates a risk of the

total number of organisms increasing. If 10% of the compost is not hot enough for

inactivation and there is a growth corresponding to 2 log10 in this area, the total

number of pathogenic bacteria in the compost, even though all pathogens are

inactivated in 90% of the compost, will increase by 1 log10. Therefore, the inacti-

vation outcome for pathogenic bacteria is a combination of the inactivation in the

hot area and the possible growth in the cold area. As discussed above, the risk of

pathogen growth in the compost is related to the maturity of the material, with more

mature material carrying a lower risk of regrowth or recontamination. It is impor-

tant to consider the risk of false stability, e.g., due to moisture deficiency, where the

material shows stability and no detectable pathogens but where changes in the

environment such as increased moisture can result in an increase in bacterial

pathogens.

9.8 Calculation of Inactivation

The time required at a certain temperature to inactivate 90% of the microbial

population is called the decimal reduction time, or D-value. The D-value is given

in minutes together with the temperature studied, e.g., D60 = 40 min, meaning that

the population number has been reduced by one decimal place at a temperature of

60�C when heated for 40 min, and thus 10% of the original population still remains.

For the treated material to be considered safe from a hygiene point of view, the

reduction in pathogens has to be related to the hygiene status of the incoming

material. A rule of thumb is provided by the EU animal by-product (ABP) directive

and the WHO recommendations on reuse of faeces. The ABP directive demands a

reduction in thermotolerant Salmonella senftenberg W775 S- or the indicator

Enterococcus faecalis corresponding to 5 log10 and, in cases of risk for viruses, a

3 log10 reduction in thermotolerant viruses. The WHO guideline on faecal manage-

ment recommends a 6 log10 reduction in potential risk organisms.

The resistance characteristics of microorganisms can be determined by exposing

the microorganisms to heat at a defined temperature and plotting the survival

curves or by using fraction negative methods. Ideally, the survival curve is linear

(since microbial death is an exponential function), but most microorganisms do not
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show such behaviour over the full plotted range. Plotting semi-logarithmic survival

curves (log10 of the viable part of the population against time) involves enumeration

(the method is also referred to as the direct enumeration method), while the

fraction-negative method is a statistically based calculation of surviving micro-

organisms in the test population. The fraction-negative method usually requires

more samples than a survivor curve test since it is applied in the lower range of

microbial counts and uses observation of growth in a fluid growth medium as a +/–

result. In the survivor curve, the slope of the plotted line is calculated (least squares;

see international standard ISO 11138-1 for extended guidance on test methodology).

The inactivation of pathogens differs in different materials. This is mainly due to

the different characteristics of the material. The main inactivation factor is the heat

transfer from the surrounding material to the organisms themselves. This transfer is

mainly related to the moisture content of the material as the heat transfer is much

higher when it is accompanied by moisture. This is easily shown by the difference

in time and temperature requirements during dry sterilisation compared with moist

sterilisation. The difference in heat transfer can be shown by the difference in heat

inactivation on egg albumin, where the coagulation temperature at 0% moisture is

165�C, while at 50% moisture, it is 56�C (Haug 1993).

In addition to this, the heat transfer can be affected by other factors such as non-

homogeneous moisture distribution, with dry or isolated parts of the compost.

Furthermore, organisms closely attached to particles in the compost can have

microclimates as the material to which they are attached can act as an insulator or

can share its heat with the attached organisms.

One factor that can improve the inactivation is repeated temperature peaks,

tyndallisation or intermittent sterilisation. The repeated heat peaks add more stress

to the organisms and in some cases this can even affect the spore formers, as the

spores can be encouraged to germinate by the periods of decreased temperature.

Therefore, turning of the compost, with decreases in temperature after turning and

in some parts for longer periods, can actually have a positive effect on sanitisation

compared with having a constant high temperature.

The advantage of using D-values for calculating inactivation of different organ-

isms in the material is that these make it possible to estimate the potential safety

margins for inactivation of the organisms. The D-values for some important

organisms are presented in Table 9.2. These values are based on equations for

total inactivation presented by Vinnerås et al. (2003) as 12 log10 reduction (includ-

ing a safety margin of 6 log10 reduction), using inactivation data presented in a

review of inactivation studies by Feachem et al. (1983). By combining the D-value

for the individual organisms (Table 9.1) with temperature measurements and

estimates of the required turning interval for adequate reduction (9.6), a manage-

ment plan for production of hygienically safe end-products can be developed.

With the D-values shown above (Table 9.2), a treatment of 13 h at 55�C would

be sufficient to achieve the goal of a 6 log10 reduction in accordance with WHO

recommendations for excreta treatment. However, WHO also states that the treat-

ment should last for 1 week with temperatures above 50�C. The difference between
the actual time of inactivation and the recommended time of treatment is due to

9 Sanitation by Composting 187



differences in heat distribution within the compost material, as discussed above.

Therefore, it is important to combine the two factors of heat treatment long enough

for inactivation, in combination with mixing. Thus, to reach the goal of inactivating

6 log10 of potential pathogens, at least 1–10
–6 (99.9999%) of the material must be

treated at the same time as the reduction in the hot section of the compost is above 6

log10.

9.9 Validation of the Hygiene Level in the Composting Process

The composting process requires validation to assure the hygiene quality of the final

compost, e.g., regarding its efficiency for inactivation of pollutants, i.e., unwanted

plant seeds, plant pathogens and human and animal pathogens. Analysis of the actual

unwanted organisms in the final product is not a feasible method for determining the

product quality, mainly because the numbers of different organisms present would

require different methods of analysis and in some cases are not even possible to

analyse, and therefore the cost of analysis would be unreasonably high. Another

reason is that even if such analyses are performed, their results express assurance

only for the actual samples, which are some grams from a pile of several tonnes, i.e.,

perhaps some ppm of the treated material. Therefore, the process needs to be

validated regarding hygiene quality in connection with factors that are actually

easy to monitor. The validation should be performed during an initial stage where

several factors such as pH, moisture content and temperature are monitored at several

points within the compost. In addition, analysis regarding the hygiene quality of the

incoming material should be performed. This should then be re-validated at regular

intervals to assure the functioning of the system and the actual points of measure-

ments, especially if the process changes (e.g., amounts and sources of added mate-

rial).

Considering naturally occurring pathogens and plant seeds for valuing, the

inactivation can sometimes be complicated, as the natural occurrence varies and

their concentrations are often below the required reduction for evaluating the

compost as a high quality end-product. WHO guidelines recommend a reduction

corresponding to 6 log10 reduction, while the EU ABP directive recommends

3 log10 reduction of thermoresistant viruses. In most cases, the natural levels in

Table 9.2 D-values (hours) for thermal inactivation of indicator pathogens

during biological treatment at 55, 60, and 65�C based on calculations by

Vinnerås et al. (2003) using data presented by Feachem et al. (1983)

Temperature 55�C 60�C 65�C
Enteroviruses 1.70 1.02 0.62

Salmonella spp. 1.45 0.70 0.33

Vibrio cholerae 0.0089 0.0031 0.0011

Shigella spp. 0.293 0.148 0.074

Entamoeba histolytica 0.11 0.03 0.006

Ascaris spp. 2.11 0.80 0.30
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the compost material are below this and, in combination with the detection limits, it

would be impossible to validate the process to these levels of reduction. At the same

time, adding pathogenic organisms to the fresh material in the large-scale compost

system is not an option due to the risk of contamination and the large volumes

treated. However, several other alternatives are available. Firstly, there are data on

the thermal inactivation levels for most pathogens, either as actual inactivation

energy (Haug 1993) or as field data measurements with detection of organisms and

temperatures in full-scale systems as presented in Table 9.1 (Feachem et al. 1983;

Vinnerås et al. 2003).

One method for adding actual pathogens to the compost is the use of carriers,

small vessels/bags containing organisms, which are added to the test material at the

start of the process and then analysed at the end. Some studies have used con-

taminated pieces of meat in monitoring (Ceustermans et al. 2006). By analysing the

outgoing material, it is possible to evaluate the process quality. This can be

combined with analysis of indicator organisms that have similar behaviour to the

pathogens. Examples of such indicators are total coliforms for pathogenic enter-

obacteria, bacteriophages for pathogenic viruses, etc. One additional indicator that

can be used is plant seeds, both naturally occurring and added. The German

standard for compost quality (BioAbfallverordnung 1998) includes analysis of

tomato seed inactivation, with the requirement that 99% of 200 seeds should be

inactivated during the process for good compost quality.

After a validation test, it is possible to correlate the measurements of the inacti-

vation of indicators and/or pathogens with parameters crucial for the process, e.g.,

temperature/temperature distribution, number of turnings, pH, moisture content and

particle size. The set of parameters should then be examined within an expected

interval, which can be decided on in laboratory studies where the impact from one

parameter can be isolated and determined for the full scale. From this, a standard

procedure should be developed where the most crucial parameter/s listed above are

monitored during the process to ensure the quality. This means that if e.g., a certain

pH together with the temperature improves the safety of the end-product, then these

parameters should bemonitored during the composting process. Based on laboratory

evaluations combined with the actual validation, a set or range of acceptable

deviations from the standard process procedure also needs to be developed. Further-

more, an action plan needs to be developed for actions to be taken with material

treated in a process not reaching the required parameters for acceptable quality.
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Chapter 10

Microbial Antagonists in Animal Health

Promotion and Plant Protection

Viviana Klose, Markus Neureiter, Michaela Mohnl, Herbert Danner, and

Christina Donat

Abstract The use of agrochemicals in animal husbandry and crop cultivation is

well established, but the public acceptance is generally low and in some cases,

substances have already been legally banned because their application poses risks

for public health. Microbes that are able to suppress the growth of pathogens have

been shown to be an effective alternative to maintain animal or plant health.

Isolation and screening of potent strains as well as the characterization of their

mode of action and the assessment of potential risks play an important role in order

to obtain a safe and acceptable biological product. The development of a commer-

cial production process, product formulation, and the requirements for the registra-

tion process are further critical items, which will determine over the commercial

success of the final product.
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10.1 Health Promoting Microbial Antagonists

The application of antibiotic growth promoters in animal nutrition is no longer

acceptable and legally banned in the European Union. Gastrointestinal microbes

have the ability to suppress harmful microbes and to strengthen the resistance

against certain diseases in farm animals and, therefore, represent a viable alterna-

tive to the use of antibiotics. Current husbandry techniques, however, restrict the

contact between younger and older animals, which is the usual way to establish a

protective microflora. Therefore, the supplementation of animal feed with beneficial

strains appears to be a promising strategy to maintain animal health. The combina-

tion of multiple strains in one product may enhance the effect. The screening of

microbes used as animal feed additive should preferentially focus on isolates from

the target of action. A thorough characterization of the mode of action, metabolites

and potential risks is necessary in order to obtain an effective product that meets the

legal requirements and is widely accepted.

10.1.1 The Competitive Power of Gut Bacteria

Humans and animals coexist with complex communities of commensal microbes in

their gastrointestinal tract (GIT), predominantly facultative and anaerobic organ-

isms (Blaut et al. 2002). Gastrointestinal microbes achieve one of the highest

densities and diversities recorded for an ecosystem, made up of several hundred

species and with estimated numbers of 1010–1012 bacteria in a gram of gut sample

(Zoetendal et al. 2004). The composition and physiology of the gut microbiota of

food producing animals is of important scientific and economic interest, because of

its impact on the health and well-being of animals. Most of the microbes are

“working for the host” by playing an important role in digestive processes and in

maintaining animal health (Hooper and Gordon 2001). They provide the necessary

nutrients or protection from pathogens and disease by limiting the ability of harmful

bacteria to colonize the intestinal environment. Stress or changes in feed manage-

ment practices (e.g. diet changes, antibiotic supplementation, inadequate feed

hygiene) can significantly influence the microbial population in the GIT of food-

producing animals and their effects on performance and health (Savage 1981). In

order to enhance animal growth and feed efficiency and to reduce the frequency of

bacterial diseases under certain conditions, antimicrobial compounds have been fed
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to various food-producing animals for more than five decades. Nowadays, however,

the emergence of antibiotic resistance in the human commensal bacteria has raised

concerns about the impact of the subtherapeutic use of these antibiotic growth

promoters for animal farming (van den Bogaard and Stobberingh 2000). Because of

the general problem of increased resistance of bacteria and the decreasing accep-

tance of consumers for this type of additive, the feeding of antibiotics has been

banned step by step throughout the European Union, and this has accelerated the

search for biological strategies. A successful alternative to antimicrobial promoters

must not only enhance growth but also protect animals from a myriad of enteric

pathogens and be devoid of adverse side effects. Infectious diseases in young

animals are a major cause of morbidity and mortality, and this increased suscepti-

bility is especially pronounced in animals kept at high density such as chickens and

pigs. Most important infections are caused by a great variety of bacterial pathogens,

such as Salmonella spp., Campylobacter spp., Clostridium spp., and enterotoxi-

genic, enterohemorrhagic or toxin-producing Escherichia coli serotypes, causing
not only severe human diseases (zoonoses), but also large economic losses in

livestock (Bertschinger and Fairbrother 1999). Nowadays, the most promising

protective strategy is to feed high quality diets including health-promoting addi-

tives such as live bacteria acting as GIT competitors to diverse harmful bacteria in

their natural environment. The concept of feeding native gut bacteria to improve

pathogen colonization resistance of young food-producing animals goes back to

Nurmi and Rantala (1973) who noticed that feeding of intestinal content (feces)

from adult chickens could protect newly hatched chicks against Salmonella infec-

tion. Commercially produced poultry lack the natural contact between chicks and

mother hens, resulting in a delayed development of the intestinal microflora. As a

consequence, day-old chicks that do not establish a protective microflora immedi-

ately after hatching are susceptible to pathogen colonization, particularly to the

genera Salmonella and Campylobacter. The phenomenon by which adult gut flora

protects young birds against invasion by enteropathogens is called competitive

exclusion (CE) or the Nurmi concept (Nurmi et al. 1992). The microbes of the

GIT environment are thought to enhance resistance to infection by competing with

pathogens for nutrients or attachment sites, or more directly by antagonistic action

against non-desirable microorganisms (barrier effect). Several inhibitory com-

pounds can be produced by lactic acid bacteria, including well-characterized

bacteriocins (e.g. nisin, reuterin), bacteriocin-like substances and other antagonists

such as hydrogen peroxide and certain organic acids (Juven et al. 1991). Although

little is known about their mode of action in the intestine, their biological signifi-

cance is thought to be that of amensalism, a means of one bacterium gaining

advantage over another competing microbe. A very simple approach, but in fact,

in many countries it is impossible to register such an undefined feed supplement for

placement on the market. In Europe, for example, only well-defined microbial feed

additives are accepted by legislation. Preparations of unknown bacterial composi-

tion pose the risk of containing pathogenic bacteria or viruses (Collins and Gibson

1999). Regarding the foreseen problems associated with the total ban of antibiotic

growth promoters (e.g. increased use of therapeutic antimicrobials), several studies
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have been performed in order to find out alternative ways of preventing and treating

animal infections that are also a risk to humans. The intestinal microflora of the

adult animal is, in itself, capable of resisting the establishment of intestinal patho-

gens (Hillman et al. 1994). It has often been shown that certain members of the

commensal gut microbiota, including lactic acid bacteria (LAB) and bifidobacteria,

possess an inhibitory activity towards enteric pathogens and that the in vitro

addition of large numbers of certain bacteria to the animal´s microflora results in

suppression or removal of the pathogen (Deprez et al. 1986; Xuan et al. 2001). In

this context, the idea of strengthening the protective microbiota by key gut bacteria

thereof is a promising approach because it offers a biological and safe alternative,

which should find acceptance by both the producers and consumers. The microbial

feed additives are applied especially during critical key times in animal production,

e.g. for chicken, in the first days of life either by spraying in the hatchery or in the

farm via the first feed or drinking water. The classical example of competitive

exclusion – the introduction of a gut microflora originating from adult birds for

Salmonella reduction in young, growing chickens – has with time being expanded

for protecting other animals against a variety of pathogenic species. For all animals,

the development and colonization of the GIT at young age is a critical time period.

In pigs, for example, the microbial colonization of the intestine begins after birth

and follows a rapid succession during the neonatal and weaning period (Moughan

et al. 1992). Weaning is a very stressful process in which piglets are separated from

the mother sow at an early age, mixed with other piglets and gradually introduced to

solid feed. Hence, during the weaning period piglets are highly susceptible to

develop gastrointestinal disturbances. The balance between the development of a

beneficial microbiota and the establishment of intestinal pathogens can easily shift

towards disease and increased mortality. Weaning is typically accompanied by

changes in morphology and histology of the small intestine of pigs resulting in

maldigestion and proliferation of enterotoxemic bacteria causing high incidence of

diarrhea (Nabuurs 1998). Supplementing beneficial microbes to weaning diets is,

therefore, a practical strategy to reduce disease outbreaks by providing highly

competitive bacteria such as lactobacilli and bifidobacteria at times of need, thereby

reducing overgrowth of intestinal pathogens. Of the present possibilities, multispe-

cies or strain combinations of gut bacteria are considered to be highly effective in

suppressing various harmful bacteria, but compared to antibiotics with the added

benefit of acting naturally and fully biologically in their habitat without leaving any

residues.

10.1.2 Finding an Alternative to Antibiotics

In recent years, multicomponent feed additives consisting of a range of well-defined

and carefully selected bacterial strains have been developed for chicks and piglets

that show promise as dietary intervention tools. Several authors suggested that

multiple strains may be more useful than a single strain because they may act at
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different sites, in various modes and probably in a synergistic manner (Dunne et al.

1999; Rolfe 2000; Sanders and Huis in’t Veld 1999). Mixed cultures may contain

bacteria that complement each others’ effect. Indeed, it was reasoned that distinct

members of the gut flora may exert a protective role against different pathogens.

Furthermore, it has also been hypothesized that microbial preparations are more

effective when they contain both, obligate anaerobic and facultative anaerobic

members of the gut flora, respectively, because the oxygen scavengers might create

more favorable conditions for growth and activity of strict anaerobic microorgan-

isms like bifidobacteria (Timmerman et al. 2004). In the complex microflora of the

intestine, these bacteria are, by nature, in constant competition with other microbial

species for nutrients so that the production of compounds (e.g. bacteriocins)

inhibitory to other species confers a survival advantage (Abee et al. 1995). How-

ever, to obtain physiological and host-adapted microbial strains with a broad range

of competitive features, the microbes are preferentially isolated from their target of

action, the GIT of the host animal. Having in mind the use of various beneficial

microorganisms of different GIT compartments (e.g. ileum, colon, caecum), it

seems logical that their modes of action will probably be based on different princi-

ples. Depending on the strain, the gut microbes may counteract pathogens through

competitive exclusion based on aggregation with pathogenic bacteria, competitive

adhesion to epithelial receptors, production of specific substances (organic acids,

bacteriocins, hydroxid peroxide), or competition for nutrients (Kirjavainen et al.

1998). As additional effects, modifications of the structure and function of the

intestinal epithelium as well as of the immune response have been described

(Erickson and Hubbard 2000).

Microbes used in animal feed should bear several important features:

l Digestion of nutrients and detoxification of toxic molecules
l Antagonistic action against non-desirable microorganisms (barrier effect)
l Protection of the intestinal mucous membrane against invading microorganisms
l Contribution to maturation and stimulation of the hosts’ immune system

However, for their use as feed supplement, the bacterial strains should be selected

carefully in terms of identity, efficacy and safety. Scientific work has been carried

out, which aimed at the research and development of a well-defined multispecies

feed additive for chickens. The feed additive development was focussed to control

the problems associated with increased occurrence of infectious disease due to the

ban of antibiotics (e.g. performance losses in animal husbandry, food-borne disease

in humans, increased use of therapeutic antibiotics) and on the other hand, to meet

the requirements in the European Community to guarantee safety in animal pro-

duction (European Commission 1994) and safe animal-derived products, free of

contaminants (e.g. antibiotics, hormones, toxins).

The main purposes of the EU-promoted competitive exclusion research are:

l To provide European animal producers with a biological alternative to antimi-

crobials
l To decrease the occurrence of antibiotic-resistant microorganisms
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l To provide sound production processes based on natural resources
l To reduce zoonotic burden (e.g. Salmonella spp., E. coli spp.) in the meat

In our laboratory, the development of the multispecies preparation followed the

technological steps from the naturally derived source to the refined product

(Fig. 10.1). The feed additive was designed as a five-strain product using various

bacterial species derived from different niches from the gut of chickens (Klose et al.

2006). These strains were selected out of 477 strains, originally isolated from the

crop, jejunum, ileum and caecum of healthy chickens, and according to their

ability to inhibit common poultry pathogens such as Salmonella enterica, E. coli,
Clostridium perfringens and Campylobacter. After isolation, the strains were sub-
jected to microbiological studies in order to select those with the potential of

stabilizing the indigenous microflora by competitive exclusion (CE) against patho-

genic microorganisms. For classifying the strains, a polyphasic approach was

carried out combining pheno- and genotypic methods as described by Klose et al.

(2006). Finally, 121 of the isolated strains were selected as representatives of

chicken intestinal strains based on differences in whole cell protein patterns and

screened for antagonistic properties against common poultry pathogens. By using a

co-cultivation assay, a reduced number of 90 strains exhibited the ability to inhibit a

Salmonella enteritidis pathogenic indicator strain. A range of 20 strains showed

antagonism to a series of pathogenic strains affiliated to E. coli serotypes O157:H7,
O147:H19, S. choleraesuis ssp. choleraesuis, C. jejuni and C. perfringens, respec-
tively. On the basis of these data, five well-defined strains belonging to the genera

1. Strain isolation & cultivation
- isolation from various GIT compartments
- purification

2. Pre-selection of representatives
- taxonomic grouping
- phenotypic and genotypic characterization

3. Screening for functionality & technology
- growth, fermentation capacity
- CE properties e.g. antagonisms

4. Safety assessment
- antibiotic susceptibility

5. Strain selection
- production in large scale, micro-encapsulation
- deposition in international strain collection

- exclusion of virulence determinants

6. In vivo evaluation
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Enterococcus, Pediococcus, Lactobacillus and Bifidobacterium were selected. All
strains derived from the natural intestinal flora of healthy chicken, thus providing a

rationale for their combined use as feed additive for chickens. Further, selection

criteria were growth and fermentation performance, pH reduction, formation of

different organic acids, survival in simulated GIT passage, adhesion capability to

mucosal cell lines, and immunological activity (Joelli 2005). Further laboratory

studies focused on the biosafety of the feed additive strains. Concerns about the

increased prevalence of antibiotic resistance were the important reason that led to

the European ban of antibiotic feed additives. As a matter of fact, one of the focuses

in safety evaluation of microbes used in animal feed was put on antibiotic resis-

tances and the potential carryover among bacteria. Therefore, the feed-additive

strains were subjected to a critical evaluation of the risks associated with the genetic

transfer of antibiotic resistances from animals to humans via the food chain. Using a

combination of pheno- and genotypic methods following the European guidances

for risk assessment (European Commission 2005), it was verified that the strains do

not harbour easily transferable, plasmid-linked resistances to clinically relevant

antibiotics.

10.1.3 Microbial Feed Additives: To Be Accepted

Bringing a feed additive to the European market involves a step-wise evaluation

process in order to provide a well-studied functional and safe animal feed supple-

ment. First, the success of the practical approach depends on technological aspects.

Maintaining the viability, stability and functionality of the selected strains during

processing, formulation and storage is essential for delivering the health benefits of

these microbes to animals. To protect the bacterial strains of the multispecies feed

additive against the harsh conditions of the stomach (low pH, gastric acid, detergent

effect of bile salts), in our laboratory, a microencapsulation process was developed

and optimized for every strain. The coated strains were then subjected to long-term

stability investigations (up to 24 months) and to feeding trials.

Lactic acid bacteria and bifidobacteria have been consumed in fermented foods

or feeds for several centuries without any obvious adverse effects (Salminen et al.

1998). They are, therefore, classified “Generally Recognized As Safe” (GRAS).

Nevertheless, risks associated with a potential repertoire of virulence determinants

are known to be strain-dependent and among enterococci few strains have been

involved in septicemia (Franz et al. 1999). Therefore, in our experiments, the

GRAS status of newly isolated organisms with no previous history was confirmed

by safety studies using target animals prior to being incorporated into feed products,

as recommended by the European Commission (2003). In addition, several feeding

trials were conducted at various European farms (e.g. Austria, Hungary, Greece,

Romania) to confirm the efficacy and safety of the feed additive for the target

animal, the chicken (Mountzouris et al. 2007). A challenge trial performed at the

Sao Paulo State University in Brazil with S. enteritidis showed the protective
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potential of the multispecies additive in vivo (Mohnl et al. 2006). In this field

experiment, the five-strain combination was fed to chicks for 3 days. Control birds

received the same unsupplemented feed. Thereafter, the birds were orally inocu-

lated with S. enteritidis (105 colony forming units). Significant differences were

obtained when comparing the group treated with supplemented feed and the

control, indicating that the common poultry pathogen was successfully reduced

within the birds’ intestine by the multispecies feed additive. Although long-term

challenge studies will be required to determine its efficacy and the optimal applica-

tion conditions (e.g. time, form of intake) for achieving a long-lasting protective

effect, the results from this study showed that well-designed microbial preparations

of native, host-adapted gut bacteria have a strong potential for their use as a

biological feed additive for the reduction of Salmonella carriage in the chicken

GIT, thus demonstrating the success of the bacterial isolation and selection process.

Usage of the natural competition of certain gut bacteria is a powerful principle to

protect newly hatched chicks from common enteric infections. Furthermore, studies

in our laboratory have recently demonstrated antagonistic properties of selected

porcine gut-derived strains against Brachyspira hyodysenteriae spp., the main agent

causing the swine dysentery (Taylor 2005). Further investigations of the mode of

action of these bacteria are currently underway. The pathogen inhibition by some

strains of Enterococcus sp., Lactobacillus sp. and Pediococcus sp. may indicate the

possible production of bacteriocins. Future work will first involve monitoring the

survival of the introduced bacteria through their GIT journey and examination of

changes in the gut microbiota and immune response of the host after feeding of

microbial preparations by using DNA-based methods, with later work focussing

on the ability of the microbes to inhibit important pathogenic organisms (e.g.

Salmonella, Brachyspira) under these circumstances.

10.2 Microbial Plant Protection Agents

The massive use of synthetic pesticides for the control of plant diseases entails well-

known disadvantages: residues of synthetic plant protection products are found in

the environment and on food and feed (European Commission 2008), development

of resistance against several active ingredients in plant pathogens, e.g. Botryticides
(Kretschmer et al. 2008) is enhanced, and also human pathogens can develop

resistance against the active ingredients, resulting in e.g. multi-resistant strains

against antibiotics (Witte 1998). Therefore, the public acceptance of these products

is low. Microbiological plant protection agents have been developed as an alterna-

tive. The effect of these agents is based on their different modes of actions, which

have to be carefully evaluated with respect to their impact on the target organism

and the environment. Regarding the screening of microbial antagonists, it is crucial

to isolate microbes that are able to survive in the conditions of the host environ-

ment. It, therefore, appears to be a useful approach to take isolates directly from the

host plant and to use culture-independent methods to characterize the indigenous
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microflora on the plant. For commercial applications, the effect has to be proven in

field trials and a production process that yields an effective, storable, and applicable

product needs to be established. Currently, the success of these products is limited

because of requirements for the registration process and the acceptance by the

farmers due to the economical framework.

10.2.1 Use of Antagonists in Plant Protection

When humans began to settle and switched from hunting and collection of food to

the use of farmland, our natural competitors changed from large animal predators to

weeds, insects and microorganisms. Therefore, it was necessary to develop techni-

ques to fight these new enemies, and in the early beginning of agriculture, biocon-

trol of plant disease and storage losses was the only existing possibility. Records on

the use of natural antagonists in plant protection date back to the eleventh century,

when Chinese farmers moved nests of predatory insects and birds into their storages

(Liu 1939). In the middle of the eighteenth century, the search for beneficial

organisms began on a scientific basis, and with the discovery of the causal pathogen

of potato late blight (Phytophthora infestans) in 1845, the research in microbe-plant

interactions started. In 1877, J.T. Burril discovered the causal pathogen of fire

blight and thus described the first bacterial plant pathogen (Börner 1990).

In the beginning of the twentieth century and especially after World War II,

synthetic pesticides overstocked the plant protection market, with a remarkable

increase in turnover each vegetation period. Regarding all plant diseases, the main

losses in yield are due to microbial plant pathogens, whereof 80% are caused by

mycosis (Krieg and Franz 1989). The trend went from broad-spectrum active

ingredients to the implementation of very specific active ingredients. Both strate-

gies, however, have their problems:

l Unspecific active substances tend to affect all living organisms, not distinguish-

ing between beneficial and harmful (from the human point of view)
l Very specific active substances have shortened the time between first use of the

products and the occurrence of the first resistances in target (plant pathogenic)

and non-target (human pathogenic) microorganisms

As a consequence, modern plant protection should focus on the development of

biological substitutes for pesticides (see Chap. 8, de Bertoldi 2010, and Chap. 11,

Fuchs 2010), relying on a stable ecosystem and a stable predator-prey relationship.

The time is now to initiate a comeback to biological plant protection. Disregarding

the environmental and economical need for alternative plant protection products,

however, the overall contribution of biological control agents (BCAs) to plant

health management is still less then 1% of chemical sales in the USA (Fravel

2005). Due to high costs for product development, problems with patent applica-

tion, and high costs and long time for product registration, unfortunately, only a
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small amount of scientifically well-developed products succeed in reaching the

market.

10.2.2 Targets and Soldiers, Microbial Ecology in and on Plants

The plant surface is a sophisticated and complex ecosystem and the microbial

communities in this microhabitat depend on a large set of interactions between

plant and microorganism and among microorganisms themselves. Microorganisms

are able to colonize all parts of a plant: The parts above the ground, including stem,

leaves and blossoms, are referred to as the phyllosphere (Lindow and Brandl 2003),

while the habitat below the ground surrounding the roots constitutes the rhizo-

sphere. In addition, there are endophytic microbes which live inside the plant tissue.

Endophytes can be found in the phyllosphere as well as in the roots, where they

comprise the endorhiza. Since the rhizosphere provides more protection and a

higher amount of nutrients, it is more densely colonized than the phyllosphere

(Brencic and Winans 2005). However, since both the rhizosphere and the phyllo-

sphere are subject to the attack of pathogens, both habitats are of importance for

biocontrol agents.

Very close relationships between plants and microorganisms have been the topic

of intensive research for a long period of time and such interactions will, in most

cases, strengthen the plant and promote the growth by improving the nutrient

supply. Well-established examples are mycorrhiza, which is a general term used

for a huge number of different symbiotic interaction between plants and fungal

species, and the symbiosis of plants belonging to the familiy Leguminosae with

nitrogen-fixing bacteria of the genera Rhizobium and Bradyrhizobium. It is esti-

mated that about 80% of all plants are involved in some kind of mycorrhiza (Paul

and Clark 1996). A mycorrhizza results in an enlargement of root surface for the

plant, which leads to a more effective nutrient uptake and thus effectuates an

improved performance of the plants in terms of yield and resistance against patho-

gens. The symbiosis between plant and fungus is, in many cases, obligatory for both

partners, which implies that the fungi are obligatory biotrophic and therefore, not

able to grow saprophytic in the soil without nutrient supply from their plant partners

(Gisi 1990). Similarly, the uptake of Rhizobia in nodula on the roots of legumes

provides nitrogen to the plant independently from soil nitrogen supply. However,

these plant-strengthening effects due to microorganisms in the rhizosphere of plants

can, usually, not be attributed to a distinct antagonistic reaction of the involved

beneficial microorganisms against plant pathogens. In fact, the improved perfor-

mance is mainly the result of a close relationship in the metabolism (nutrient uptake)

of the participating organisms. Products to force this kind of symbiosis are available

in the market, for nitrogen fixation as well as for the establishment of mycorrhiza.

Regarding the mode of action of microbial antagonists against microbial plant

pathogens, a differentiation can be made between antibiosis, hyperparasitism,

competition, and induced resistance of the plant against the pathogen. Microbial
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plant protection products focusing on an antibiotic mode of action produce com-

pounds that are inhibitive or toxic for the pathogenic microorganism. This mecha-

nism is common in many fungi and yeasts as well as in bacterial preparations based

on e.g. Bacillus sp. or Pseudomonas sp. (Punja and Utkhede 2003, Montesinos

2007). Examples of antibiotic agents are: Pseudomonas fluorescens (“Blight Ban”),
which is used against fire blight on apple and pear and produces an antibiotic toxin

against Erwinia amylovora (Temple et al. 2006); and Bacillus amyloliquefaciens
FZB42 (“RhizoVital”), claimed to have a plant-strengthening effect due to antago-

nistic efficacy against soil-born pathogens. In the latter case, more than 8.5% of the

genome is devoted to synthesizing antibiotics and siderophores, including the

polyketides bacillaene and difficidin, respectively (Chen et al. 2007).

Hyperparasitism means that the pathogen, which is to be regarded as a plant

parasite, is affected by another microorganism, which is living at its expense. Based

on hyperparasitism is the effect of Trichoderma harzianum (“Trichodex“), which

produces hydrolytic enzymes (chitinases) and physically attacks the fungal myce-

lium (Schubert et al. 2008). The same mode of action is used by Coniothyrium
minitans (“Contans”): sclerotia, the resting states of the pathogen Sclerotinia
sclerotium causing sclerotia rot are penetrated by the hyphae of the antagonist,

the wall collapses and the cytoplasma disintegrates. Conidia of the antagonist

germinate when sclerotia are in the surrounding (Grendene and Marciano 1999).

The antagonist sporulates on the surface and in the sclerotium. Hyperparasitism is

often combined with the production of cell wall lysing hydrolytic enzymes. These

enzymes can also interact with pathogenicity factors involved with the invasion of

the host plant by the pathogen. This could be considered as an additional mode of

action (Punja and Utkhede 2003).

Competition for nutrients involves epiphytic or saprophytic microorganisms,

which are able to use nutrients more efficiently than a potential pathogen in a certain

ecological niche. An example is the effect of Aureobasidium pullulans (“Blossom
Protect”, “Boni Protect”) against fire blight (E. amylovora) and storage diseases on

pome fruits (e.g. Botrytis cinerea, Monilia spp., Penicillium spp.) as shown in

Fig. 10.2. The antagonist is a saprophytic yeast-like fungus. During growth, A.
pullulans produces organic acids and thereby gains an additional advantage in the

development of colony-forming units in the blossoms or in wounds. The pathogens

have not enough space and nutrients available to start the infection process (Kunz

2006). For the efficacy of A. pullulans against storage diseases, it has been demon-

strated that providing additional nutrients in the pathosystem (apple-B. cinerea-A.
pullulans) reduces the antagonistic effect of the yeast-like fungus, which indicates

that competition for nutrients is an important factor in this case (Wandmacher 1996).

Induced-resistance of the plant against pathogens due to the presence of benefi-

cial microorganisms cannot be clearly defined as an antagonistic action mode. In

most cases, it may be that the mode of action of the beneficial microorganism is not

known in detail and only an overall plant-strengthening effect is noticed. However,

two systems are to be distinguished: systemic acquired resistance (SAR), typically

induced by less virulent pathogens, and induced systemic resistance (ISR), typically

induced by non-pathogenic bacteria (van Loon et al. 1998). In order to produce
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induced-resistance, it is not necessarily required to add living cells; in some

cases, it appears to be sufficient to add only cell fractions or active components

(e.g. proteins) produced by the microbes to induce resistance (Gerhardtson 2002).

As an example, Penicillium simplicissimum GP17-2 is reported to induce resistance

and activate multiple defence signals in Arabidopsis thaliana (Hossain et al. 2007).
Some commercial products are already in the market under the name of plant

strengtheners; these may be sold as fertilizers in some countries.

In most cases, two or more modes of action are combined, as has been shown for

Trichoderma strains (Benı́tez et al. 2004) and for A. pullulans (Wandmacher 1996).

It has been described that the presence of A. pullulans forces wounded apples to

produce more b-1,3-glucanase, chitinase and peroxidase; these enzymes are known

to inhibit the growth of several fungal pathogens. The fact that A. pullulans itself is
not affected by these substances raises the hypothesis whether this is a symbiotic

interaction to protect the apple against fruit rot (Ippolito et al. 2000). This system of

plant pathogen interaction may be one of the advantages of microbial plant protec-

tion agents, preventing the target pathogens from becoming resistant.

Plant-protection products with microorganisms, as active ingredients, are

applied in several ways: depending on the location where the effect is most likely

to occur, they can be sprayed aerially on parts of the plants like leaves or blossoms

as well as on or in the soil. Some agents are used as seed coatings and only recently

a “stubble treatment” has been proposed for antagonists against the pathogen

Fusarium ssp in wheat and maize in order to reduce the risk of infection with the

pathogen for the next generation of crops on that site (Luongo et al. 2005).

10.2.3 Out of Nature – Back to Nature: Screening
for New Antagonistic Microorganisms

In order to develop a microbial plant-protection product with a high efficacy,

one possible strategy will be to search for new antagonists at infection time on

Fig. 10.2 Untreated (left) and with Boni-Protect1 treated (right) apples (variety Cox Orange) after
storage
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infection site. Since the antagonist should be efficient in the field of use, it has to

cope with all environmental factors on site. In the case of the phyllosphere, the

microorganism has to endure UV radiation and tremendous fluctuations in tempera-

ture and moisture. Traditional culture-dependent methods have been shown to

underestimate the size of the microbial population on plants (Yang et al. 2001).

Therefore, the microbial community should be screened by cultivation-independent

molecular biological methods as far as possible, in order to guarantee that potential

candidates are not excluded. Changes in microbial community composition under

pathogen pressure may be monitored; for example, with the help of denaturing

gradient gel electrophoresis (DGGE) or similar approaches focusing on the genomes

of active microorganisms (Timms-Wilson et al. 2007). If dominating species or

strains occur in correlation with a low number of infected plants, these microorgan-

isms can be identified and with the help of cultivation methods tailored to their

particular needs they can be cultivated. In another approach, existing knowledge of

a pathosystem or an antagonistic behavior of already known species may be used for

pathogen control on several plants. Since e.g. A. pullulans is highly effective against
storage diseases on apples includingB. cinerea (Wandmacher 1996), it is an obvious

step to develop applications of the same preparation against B. cinerea on grapes.

Further knowledge on the mode of action of the microbial antagonist is gained

by dual-culture tests on nutrient agar plates, in order to investigate if the antagonist

produces antibiotic substances that inhibit the growth of the target pathogen. While

these substances prove to be very effective in many cases (Gullino et al. 2000), their

application is to some extent disputable. On the one hand, all microorganisms, and

especially antagonists, will communicate with their environment including the

plant and other microorganisms through signal molecules. On the other hand,

biological control agents with antibiosis main mode of action may have some

characteristics in common with traditional chemical pesticides because the effect

is mainly due to a defined chemical compound. Therefore, the same problems

concerning toxicity and resistance may pose a hazard, although these antibiotic

metabolites can be found in the natural environment and are usually harmless to

mammals. An example of this is the group of chemical pesticides named strobilur-

ins, originally based on fungal metabolites extracted from the fungus Strobilurus
tenacellus (Gullino et al. 2000) or the usage of streptomycin, extracted from the

fungus Streptomyces griseus, against the bacterial plant pathogen E. amylovora.
Current approaches include the identification of the genes that are responsible for

the production of the effective compounds (Chen et al. 2007), allowing the optimi-

zation of the expression system and the transference of the respective genes to other

organisms (Filutowicz et al. 2008). A further step would be the production of these

compounds by biotechnological or chemical means including purification and

modification in order to improve their effectiveness. Such an approach may be

helpful for the development of new and more effective pesticides; however, in this

case, the term “biocontrol agent” should be avoided, since such products are similar

to conventional pesticides and pose the same problems.

In order to demonstrate an effect which is not mainly based on antibiosis, a test

system that involves the plant is required. Usually, this involves greenhouse and
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field trials. In some cases, tests on parts of the plant are sufficient; e.g. antagonists

against fire blight can be tested on infected blossoms (Johnson and Stockwell 2000),

the effect on storage diseases can be evaluated on wounded and artificially infected

apples (Fig. 10.3) and the cultivation of detached wheat spikelets in liquid culture

medium can be used for studying plant-microbe interactions in wheat (Trione and

Stockwell 1989). Such laboratory test systems have the advantage that they are easy

to handle and a high number of potentially antagonistic strains can be tested at

steady environmental conditions.

While greenhouse and laboratory trials may be adequate for screening purposes,

the final product has to prove its efficacy in field trials. This has to be done on

different sites with different plant varieties over several vegetation periods. For

microbial antagonists, several methods of applications are in use: spraying like

“classic” plant protection products and seed coatings. Furthermore, insects can be

used as vectors, e.g. microbial antagonists against fire blight are brought to the

blossoms of apple and pear trees by honey bees (Moosbeckhofer et al. 2008).

Another hurdle on the way to the market is to overcome critical technological

steps, such as the establishment of a stable large scale production; the output has to

be a product that can be stored over a sufficient time period (at least more than one

vegetation period) with a minimum number of colony-forming units of the micro-

bial antagonist to ensure a high efficacy, and free of contaminations. Commercial

calculations and trials of different formulations concerning the production price

versus the possible end-user price have to be done necessarily at this point of the

developing process.

10.2.4 The Hard Way to Commercial Application

Registration of microbial plant-protection products is a long story. For authorities

and applicants, it is a hard challenge to ensure human and environmental safety and

the need to bring such products as fast as possible to the market in view of their

Fig. 10.3 In vitro test of

antagonists against storage

disease with apples (variety

Golden Delicious) after 6

week of incubation. Wounded

apples were artificially

infected with Pezicula
malicorticis, the arrow
highlights the wound which

was protected by adding

0.15% Boni-Protect1 (active

substance: Aureobasidium
pullulans) to the inocula
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utility and substitutability of harmful chemical pesticides. The registration practice

for chemical substances can not easily be applied for microbial plant-protection

agents. Studies need to be adapted to the specific microorganism.

Currently, studies concerning pathogenicity and infectivity for mammals are

necessary for the registration more or less worldwide. Ecotoxicity is investigated by

studies with birds, fish, arthropods like bees and predatory mites, water flees and

earthworms. Investigations have to be provided on the fate and behavior of the

microbial plant-protection agent in the environment. It can be concluded that the

registration costs to launch a product in the market in one European country with

the final registration for 10 years may be about €1,000,000. The registration process
lasts for about 10 years. Some countries offer national provisional registrations to

allow the owner of a new biological product to reach the market earlier, but this

registration forms are always coupled with some clear disadvantages for marketing.

This may include registration that is restricted to only a short period of time (120

days). In some countries, it is also possible to sell products as “plant strengtheners,”

which involves that no advertising addressing the efficacy of the product against

specific plant diseases is allowed.

10.2.5 Perspectives: Acceptance in the Market, Competing
Products

One fact which is often overestimated during research for new antagonistic pro-

ducts is the environmental concern of the end-user. Agriculture is, nowadays, a

question of economical success and aside from farmers who work under organic

farming labells, the decision for the use of plant-protection products is basically an

economical one. Until society is not willing to take part in indirect additional costs

for sustainable plant-protection systems, e.g. by supporting development and regis-

tration of microbial plant-protection products, success for such products in compe-

tition with chemical pesticides will, furthermore, take a long period of time.

10.3 Conclusions

Preparations that are mainly based on microbial antagonism can be used in animal

nutrition to promote animal health as well as in plant protection to prevent the

growth of microbial plant pathogens. Screening appears to be a crucial step during

product development. In addition to the effectiveness, aspects concerning safety

also gain importance and therefore, it is essential that the exact mode of action

is known and that potential product strains are evaluated with regard to hazard-

ous properties. From the technological point of view, the challenge lies in the

development of a production process that provides a sufficient number of living
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microorganisms. Furthermore, a proper product formulation is necessary to ensure

shelf life, applicability and effectiveness of the product.

While registration is essential to guarantee a proven effect and safety for the

consumer, especially for products based on microorganisms, the legal requirements

often pose a large obstacle on the way to commercialisation. This may be due to the

fact that current regulations have been mainly developed for chemical agents and

the responsible authorities still lack experience with microbial products.

Microbial antagonists for agricultural application have been proven to be effec-

tive and an increasing number of products is available in the market. Over the long

term, these products can help to reduce the use of the undesirable and potentially

hazardous agrochemicals.
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Chapter 11

Interactions Between Beneficial and Harmful

Microorganisms: From the Composting Process

to Compost Application

Jacques G. Fuchs

Abstract Numerous microorganisms are involved in the composting process, but

their precise roles are often unknown. Compost microorganisms are influenced by

the composition of the substrate and by the temperature in the compost pile. In

addition, different microorganisms also influence each other, e.g. through competi-

tion. In the first phase of composting, microbial activity increases drastically,

leading to a rise in temperature. The initial bacterial dominance is replaced by a

fungal one during compost maturation.

Compost management aims to achieve favourable conditions for beneficial and

unfavourable conditions for harmful microorganisms. The type of input substrate,

the size of compost piles, the frequency of turning, particle size, aeration and

moistening all affect the microbial processes. They influence microorganisms

mainly by affecting nutrient, oxygen and water supply. Sometimes, composts are

inoculated with selected microorganisms. Harmful microorganisms are introduced

into the compost mainly with the input substrate. They are mainly inactivated by

high temperatures, but other mechanisms of inactivation have also been demon-

strated, e.g. certain plant-derived compounds and antagonistic interactions. Benefi-

cial microorganisms are capable of outcompeting harmful ones during the process

and/or have a beneficial effect on crops after field application. Application of

compost increases the microbial activity of soils, and crops are less sensitive to

diseases after compost application (disease suppressiveness); the mechanisms are

largely unknown. Better knowledge in this field would certainly allow optimizing

the composting process to enhance disease suppressiveness.
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11.1 Introduction

Numerous microorganisms have been shown to be associated with composts

(Ryckeboer et al. 2003b). It is evident that the microbial community, as a whole,

plays an important role in the decomposition of organic materials and in the build-

up of stabilized compounds. For most microbial species, however, the precise role

in the composting process is unknown.

Among the microorganisms found in composts, there are not only beneficial and

useful ones (i.e. microorganisms responsible for the regular composting process),

but also those that are potentially harmful for humans, animals, plants or the

environment. For example, plant pathogens are a normal component of crop

residues, and if household waste is composted, human pathogens such as Salmo-
nella are not uncommon. One of the most important goals of composting is the

inactivation of these harmful microorganisms and the development of a beneficial
microbial community. To achieve this, operators can adapt the compost manage-

ment process in a way that is favourable for beneficial microorganisms and unfa-

vourable for harmful microorganisms. This is described in a separate section below.

One of the challenging difficulties of studying microbial populations in compost

is the interpretation of the results in relation to the methods used. For example, Dees

and Ghiorse (2001) used three different methods to determine microbial popula-

tions (fluorescent direct counting, plate counts, and molecular methods), and their

results differed 100-fold. A similar difference was observed by Atkinson et al.
(1996). The difference may be explained by the fact that only active microorgan-

isms can be counted, while also inactive microorganisms are detected with molec-

ular methods. However, we do not know at present which of the methods gives the

most adequate result in terms of compost microbiology.

11.2 Microorganisms at the Beginning of the Process

The microorganisms present at the beginning of the process are introduced with the

original mixture of organic materials, with which the composting process is started.

These microorganisms are all found in the natural environment. The most frequent
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in numbers are bacteria, and in particular actinobacteria, but fungi are also impor-

tant members of the community. The composition of the input substrate influences

the microbial communities (Klammer et al. 2008). This is particularly true for the

populations found at the beginning of the composting process. Input substrates are

often very heterogeneous and so are the initial microbial communities found on

them. However, initial microbial communities of input substrates have rarely been

investigated.

In source-separated household waste, only few mesophilic fungi but numerous

thermophilic bacteria and fungi were found (Ryckeboer et al. 2003a). Food wastes

containing vegetable residues have a low-initial pH, which favours the prolifera-

tion of fungi and yeasts and slows down bacterial growth (Choi and Park 1998;

Ryckeboer et al. 2003b). On leaves, grass and brush compost samples at the first day

of composting, Michel et al. (2002) found primarily Gram-negative, a-, b- and
g-proteobacteria.

Especially, the harmful organisms are substrate dependent. For example, animal

manure and food wastes contain significant quantities of potential human and

animal pathogens like Escherichia coli, Listeria sp. and Salmonella sp. (Grewal

et al. 2007; Heinonen-Tanski et al. 2006; Hess et al. 2004; Jiang et al. 2004;
Lemunier et al. 2005; Wichuk and McCartney 2007). Vegetable and crop residues

may contain various plant pathogens (Bollen 1993; Hoitink et al. 1976).
Immediately after the start of the composting process, the microbial community

changes drastically, and soon does not resemble the initial community any more as

will be described in the next section.

11.3 Succession of Microorganisms During the Process

Immediately at the beginning of the composting process, the microbial biomass

increases drastically (Hellmann et al. 1997; Narihiro et al. 2004). For example,

Klamer and Baath (1998) observed a six-fold increase during the first day of

composting shredded straw of Miscanthus with added pig slurry. Not all micro-

organisms multiply equally fast, and there are complex interactions between indi-

vidual species. This results in significant changes of the microbial community

(Klamer and Baath 1998).

The physical and chemical properties of the substrate change during the com-

posting process. The microorganisms which are active first, degrade the original

substrate, produce metabolites and create a new physico-chemical environment.

This can then be used by other microorganisms (Ryckeboer et al. 2003a). Ishii and

Takii (2003) postulate that the main factor affecting microbial communities in the

composting process is the concentration and composition of dissolved organic

materials. Quantitatively, the main components of organic matter are carbohy-

drates, proteins, lipids and lignin (Ryckeboer et al. 2003b). Different microorgan-

isms produce different enzymes needed for degradation of the different substrates

(Hu and van Bruggen 1997; Ryckeboer et al. 2003b; Tuomela et al. 2000).
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Bacteria dominate the microbial community during the degradation phase (Beffa

et al. 1996; Hu and van Bruggen 1997; Ryckeboer, et al. 2003a; van Heerden et al.
2002). During this phase, large quantities of dissolved organic carbon are usually

available in the substrate. Depending on the input substrate (e.g. green waste,

household waste), nitrogen may also be available in significant quantities. At a

C/N ratio from 25 to 40, microbial activity is intense. This activity causes a rise in

temperature, particularly in the centre of the compost pile. This phase is, therefore,

also called “thermophilic phase.” In general, the highest microbial numbers and

enzymatic activities occur during this phase (Cunha-Queda et al. 2007). In com-

posting of household biowaste, Narihiro et al. (2004) found that bacteria increased

in two phases up to 1011 cells per gram dry weight, and then stayed stable during the

process. Although the bacterial community was quantitatively stable, the authors

observed a drastic shift from ubiquitous proteobacteria in the first phase to actino-

bacteria in the second phase. They attribute this community shift to antagonistic

interactions between the different bacteria.

The increase of temperature that causes significant changes in the microbial

communities (Hassen et al. 2001; Sundh and Rönn, 2002) is essential for the auto-

sterilization of the compost (see Sect 11.4). Guo et al. (2007) found different

microbial communities at different locations within the compost pile, which were

related to the temperature at this precise location. Thambirajah et al. (1995)

observed that during the peak heating phase, fungal activity was almost completely

suppressed. Klamer and Baath (1998) observed that Gram-positive bacteria

increased when compost heated up, and decreased against when the compost cooled

down. Gram-negative bacteria and fungi increased with rising temperature up to

approximately 50�C, but decreased at higher temperatures. After cooling to

<50�C, these two groups increased again.

During the maturation phase, the number of bacteria decreases, but their diversity

increases, as demonstrated by phospholipid-fatty acid profiling (Ryckeboer et al.
2003a). At the same time, the populations of fungi increase in quantity and in diversity

(Ryckeboer et al. 2003a). Fungal activity is mainly important in the maturation phase

of the composting process (Hu and van Bruggen 1997; Klamer and Baath 1998).

In summary, the microbial populations present in compost during different

phases are the result of dynamic, complex interactions between the microorganisms

and their environment. In the short term, high temperature is probably the major

selective factor influencing the composition of microbial communities. High tem-

perature is, itself, the result of high microbial activity, which depends on the

substrate availability. However, the composition of the substrate is also greatly

influenced by the metabolic activity of microorganisms.

11.4 Influence of Compost Management on Compost Microflora

The aim of compost management is to influence the microbial processes in a

way that the input substrate is well decomposed, stable humus compounds are

formed, harmful microorganisms are destroyed and beneficial microorganisms are
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promoted. All four aims must be achieved simultaneously, but this chapter is

concerned only with the microorganisms.

Composting plants differ in the substrate which they use, as well as in the size of

piles they make (composting system). They have several management tools at hand

to influence oxygen level and moisture within the compost pile. Aggregate structure

can be influenced by adapting the shredding of the input substrate. Further, oxygen

levels can be influenced with forced aeration and/or by the frequency of turning the

pile. If moisture is too low, the compost pile can be moistened artificially. The

practical aspects of compost management are described elsewhere in Chap. 10 of

this book (Klose et al. 2010). To some extent, the microbial interactions can be

influenced by managing the environmental conditions. Oxygen and moisture are the

two factors, which can be managed by the operator and have the greatest influence

on microbial communities.

The oxygen level is known to be an important factor influencing compost

quality. Enticknap et al. (2006) observed a growth stimulation of aerobic bacteria

by oxygenation of a compost pile. Facultatively anaerobic microorganisms grow

also in aerated composts (Atkinson et al. 1996). These authors postulate that

anaerobic microorganisms in microenvironments within substrate particles may

be responsible for a significant proportion of the metabolic activity in aerobic

composts also in the later phases of the composting process. Thus, the size and

structure of the substrate particles can greatly influence the activity of anaerobic

bacteria. Watanabe et al. (2008) observed that populations of the family Bacillaceae

clearly dominate under optimal composting conditions (98%), but that they were

significantly decreased when the substrate was aggregated. Anaerobes or faculta-

tive anaerobes were dominant in the aggregates, but were not found in the non-

aggregated substrate. The oxygen level in the composting material also has an

indirect influence on the microflora, for example through the ammonia con-

centration in the substrate. If the aeration of the compost pile is poor, levels of

ammonia increase, and the communities of ammonia-sensitive microorganisms

decrease (de Guardia et al. 2008).
The moisture content in the composting material also greatly influences the

microbial activity and the composition of the microbiota. Liang et al. (2003)
observed that a minimal moisture content of 50% (w/w) is necessary for optimal

aerobic microbial activity. However, too high a moisture content has a negative

effect on the biological activity through the increased compaction of the material

and the diminution of oxygen diffusion through the matrix (Das and Keener 1997).

Not all microorganisms have similar needs in terms of water availability, and a

change in moisture content can cause a shift in the composition of the microbial

community (Takebayashi et al. 2007). In general, high water content favors bacteria
over fungi (Finstein and Morris 1975).

The inoculation with selected microorganisms can also influence the biological

processes and modify the microbial community. For example, Sasaki et al. (2006)
added a commercial microbial additive composed of the genera Alcaligenes,
Bacillus, Clostridium, Enterococcus and Lactobacillus to cattle manure compost.

As a result, the temperature increased more quickly and the ammonia emission
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from the compost pile decreased more quickly. Also, the microbial composition of

the manure changed and contained 10 to 100 times more mesophilic and thermo-

philic, aerobic bacteria, but a smaller number of thermophilic anaerobes. Inocula-

tion is especially useful in unilateral raw mixtures, for example containing high

amounts of woody material. However, the choice of the microorganisms is very

important (Vargas-Garcia et al. 2005). They have to be competitive enough to

colonize the material, and the quantity of inoculum must be sufficient. Otherwise,

the competition of the native microorganisms does not allow the inoculum to

develop in the compost.

The influence of inoculation on composting depends on the conditions of the

process and on the characteristics of the raw material (Vargas-Garcia et al. 2007).
The difficulty of inoculation is that each situation is very specific, and the inocu-

lation strategy has to be adapted to each situation. Thus, it is not possible to give

precise advice here. More research is clearly needed in this area. Our preliminary

observations suggest that inoculation is not needed and has no effect if a balanced

input substrate is used. In this context, a balanced substrate has a C/N ratio

between 30:1 and 40:1, and a good structure allowing for adequate moisture and

aeration.

11.5 Destruction of Harmful Microorganisms

With the initial substrates, microorganisms which are harmful for humans, animals

or plants can be introduced into the compost (Wichuk and McCartney 2007; Noble

and Roberts 2004). Noble and Roberts (2004) describe more than 60 plant patho-

gens, which potentially survive the composting process and which can be found in

green wastes. Hence, the inactivation of harmful organisms is essential to obtain a

safe compost.

High temperature is the most important factor for the “hygienization” (i.e.

elimination of pathogens) of compost (Downer et al. 2008; Elorrieta et al. 2003;
Suarez-Estrella et al. 2003). However, not all pathogens have the same sensitivity

to high temperature (Bollen and Volker 1996; Wichuk and McCartney 2007).

Effectivity of hygienization depends not only on the maximum temperature

achieved within the compost pile, but also on the duration of the heat period (Bollen

1993; Elorrieta et al. 2003; Fayolle et al. 2006; Katan 2000; Suarez-Estrella et al.
2003). In addition, moisture also interacts with temperature in the hygienization

process (Fayolle et al. 2006).
Contrary to common belief, high temperature is not the only mechanism for

the hygienization. Even when the composting process does not reach the tempera-

ture level required for thermal kill, pathogens can be inactivated in compost. A

number of compounds have been shown to be capable of pathogen inactivation.
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Their occurrence varies with the substrate used. For example, Elorrieta et al. (2003)
showed that the release of phenolic compounds during the composting process

could be responsible for hygienization. Ammonia is generally present at relatively

high concentrations at the beginning of the composting process. According to

Gilpatrick (1969) and Lazarovits (2001), ammonia is well known to have some

effect on different pathogens. Hoitink and Fahy (1986) showed that young com-

posted hardwood bark contains ethyl esters of hydroxyl-oleic acids, which inhibit

the development of the pathogen Phytophthora spp. Crucifers contain substances,

which are toxic to some pathogens (Cohen et al. 2005; Koike and Subbarao 2000).

Crucifers can be used for biofumigation, which can be considered as a specific

mode of composting within the soil.

Antagonistic interactions may also lead to hygienization (Elorrieta et al. 2003).
Different mechanisms can be involved. Competition for substrate has already been

described above. Saprophytic microorganisms are often more competitive on dead

substrates than pathogenic microorganisms. Some microorganisms produce volatile

substances (Seewald et al. 2010), often secondary metabolites, which can be toxic

for other microorganisms including pathogens (Wheatley 2002). For example,

some isolates of Trichoderma spp. produce hydrolytic enzymes, which may destroy

the cell wall components of many microorganisms (Krupke et al. 2003; Savoie et al.
2001; Williams et al. 2003). Bacillus subtilis can be an important inhabitant of

composts (Ashraf et al. 2007; Kim et al. 2008; Phae et al. 1990; Yangui et al. 2008).
This species is known for its production of antifungal substances, which are

particularly active against plant pathogens.

It is generally assumed that the majority of the pathogens are destroyed during

the composting process. An important question concerning the quality of the final

product is to know whether pathogens from the environment are able to re-colonize

the compost after the hygienization phase. Lemunier et al. (2005) tested the

re-infestation risks of mature compost with E. coli, Salmonella serovar enteridis
and Listeria monocytogenes by artificial inoculation. While L. monocytogenes was
never detected in the different composts, E. coli and S. serovar enteridis survived
between 3 and 90 days, but did not grow in the substrate. In sharp contrast, all three

pathogens were able to proliferate after inoculation to a sterilized compost. This

illustrates the importance of natural microbial populations in the compost for

preventing re-colonization by pathogens. Jiang et al. (2002) observed a similar

pattern: after artificial inoculation, E. coli declined more rapidly in manure-

amended soil than in autoclaved soil. Cayuela et al. (2009) found that composts

that were prepared with hoof or meat meal as a nitrogen source showed elevated

abundance of Acinetobacter calcoaceticus, a bacterium that is suspected to trigger

bovine spongioform encephalopathy (BSE).

In conclusion, good hygienization of composts can be achieved in most cases.

Only very few pathogens, e.g. the tobacco mosaic virus (TMV) and Xanthomonas
malvacearum, are critical in terms of their potential to survive a well-managed

composting process (Bollen 1993).
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11.6 Development of Beneficial Microflora During the

Composting Process

As described above, a microbial succession occurs during the composting process,

which is influenced by several factors (Ryckeboer et al. 2003a). In the case of good
management practice, the population shift leads to a product containing mainly

beneficial microorganisms, while the harmful microorganisms are eliminated dur-

ing the process (see Sect.12.6, Minz et al. 2010).

In practice, crops growing on soil that had received compost are often less

susceptible to diseases than plants growing on soil without compost (Arora et al.
2005; Boulter et al. 2000, 2002; Hoitink and Boehm 1999; Hoitink et al. 1997a;

Suarez-Estrella et al. 2007). This phenomenon is known as “disease suppressive-

ness” (see also Sect. 12.7). Microorganisms are assumed to play an important role

in disease suppression (Fuchs 2002; Hoitink et al. 1993; Noble and Coventry 2005;
Tilston et al. 2002). There is evidence that beneficial microorganisms are more

competitive in colonizing organic residues during the composting process than

pathogens are. For example, Thornton (2004) observed that antagonistic Tricho-
derma species were able to outcompete the pathogenic fungus Rhizoctonia solani
for nutrients, and thereby prevent its saprophytic growth. Cohen et al. (1998) could
not attribute disease suppressiveness to the community of beneficial microorgan-

isms alone.

Hygienization is not evenly effective throughout a compost pile. The outer zones

of the compost pile do not reach temperatures high enough for hygienization. In

these zones, mesophilic, heat-sensitive microorganisms including pathogens are

present. During turning of a pile, the substrate from the outer zones is mixed with

the hygienized material. Subsequently, the beneficial microorganisms grow faster

than the pathogens. After a few cycles of turning and composting, the beneficial

microorganisms outcompete the pathogens completely.

During the final process of compost maturation, the amount of the readily

available nutrients is limited and the microbial community is stabilized. For

example, the beneficial effect of green manure was more constant when it was

composted than when it was not composted, independent of whether or not it

contained pathogens (Bonanomi et al. 2007). Not all composts have the same

ability to protect the plants against disease (Fuchs et al. 2008). Various authors

observed that composts can show two different suppressive reactions: a broad,

modest, suppressivity, or a specific suppressivity (Fuchs 2002; Fuchs et al. 2008;
Hoitink et al. 1997b).

Addition of antagonistic microorganisms to compost is a promising technique to

improve its suppressivity. Already in 1983, Nelson et al. (1983) increased the

suppressive potential of compost by adding selected Trichoderma strains. They

found that not only the addition of the antagonist is important, but also the strategy

of inoculation of the antagonist, so that it can establish itself and develop its

antagonistic activity. Chung and Hoitink (1990) also state that the inoculation of

an antagonist must be optimized. Otherwise it cannot efficiently colonize the
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substrate, because the autochthonous microbial community inhibits it. Kwok et al.
(1987) demonstrated that bacterial antagonists could establish themselves and

protect specifically cucumber against R. solani better in sterilized bark compost

media than in the medium with a broad suppressive effect.

11.7 Influence of Compost Amendments on the Soil Microflora

The interactions between microorganisms are not limited to the composting process

alone. They continue also in the soil after the application of the compost. The

microbiological activity of soils is increased by compost amendments. Angers et al.
(1993) studied a soil, which was amended annually with 30 m3 of compost of horse

manure and wood shavings. In the second year of the experiment, they observed

50% more microbial biomass C and an ammonification rate increase by 30%.

Crecchio et al. (2001) studied an amendment with 12 tons of municipal solid

waste compost per hectare. This increased dehydrogenase activity by 20%. Fuchs

et al. (2008) tested the effect of eight different composts and digestates on soil

microbial activity. Six months after the amendment, the fluorescein diacetate

(FDA) hydrolytic activity in the soil amended with compost or digestate was 20

to 40% higher than in the control, independent of the tested products. Other authors

made similar observations (Nayak et al. 2007; Rumberger et al. 2004; Serra-

Wittling et al. 1995; Tiquia et al. 2002). The overall quantity of microorganisms

in the soil increases between 5 and 60% after addition of compost (Angers et al.
1993; Fliessbach et al. 2005; Ros et al. 2006a; Rumberger et al. 2004; Tabuchi et al.
2008; Tiquia et al. 2002; Zaman et al. 2004).

The diversity of the soil microbial community is also increased by compost

amendments (Buckley et al. 2006; Dambreville et al. 2006; Drenovsky et al. 2004;
Inbar et al. 2005; Kong et al. 2004). For unknown reasons, Cherif et al. (2008) did
not observe a significant shift in bacterial community after the application of

municipal solid waste compost. The influence of compost amendments on soil

microorganisms depends on their quality. For example, the composting level (i.e.

compost maturity) of cow manure had a significant effect on the microbial diversity

(Kong et al. 2004). Compost application selectively influences the populations of

soil microorganisms. For example, Roe and Ozores-Hampton (2003) observed that

compost applications decreased the populations of aerobic and anaerobic bacteria in

the soil, but increased the numbers of fungi, actinobacteria, pseudomonads and

N-fixing bacteria.

The ways of compost influence on the soil microbial community are not fully

understood. In many cases, it is not a simple multiplication of the microorganisms

in the compost. In contrast, there is evidence that the addition of compost promotes

the growth of indigenous soil microorganisms (Innerebner et al. 2006; Chu et al.
2007; Saison et al. 2006). However, the mechanisms of promotion are unknown in

most cases. For example, Chu et al. (2007) conclude that compost promotes

indigenous Bacillus sp. in the soil. Possibly, the supply of organic matter activates
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certain soil microorganisms (Buckley et al. 2006; Fliessbach et al. 2005). However,
the quantity of organic matter applied with the compost is very small in comparison

with the total organic matter present in the soil. This could explain why different

types of composts had a similar effect on the bacterial community and activity in

soil (Ros et al. 2006b; Fuchs et al. 2008). It would also explain the observation of

Ros et al. (2006a) that the soil itself influences the microbiological activity and the

community diversity more strongly than the compost treatments. Saison et al.
(2006) report that compost affects the soil microbial community mainly through

the physicochemical characteristics of the compost matrix. In conclusion, the

establishment of microorganisms in the soil after compost application is still poorly

understood, and more research is clearly needed in this area. A better knowledge of

the mechanisms of establishment would allow to optimize compost application in

practice.

Disease suppressiveness is obviously connected with the soil microbial commu-

nity (Van Elsas et al. 2002). However, the respective roles of the native microflora

in the soil and of the microflora added with the compost are not well understood,

and the two are possibly working together. For example, Serra-Wittling et al.
(1996) tested the influence of municipal waste compost on the suppressiveness of

a loamy field soil against Fusarium wilt of flax. Compost addition did increase the

suppressiveness of the soil, regardless of whether the compost was heat-treated or

not, suggesting thereby that the microorganisms of the compost did not play a

significant role in the soil. However, if the soil was heat-treated, non-treated

compost could restore its suppressiveness. In conclusion, it seems that the micro-

flora of the soil and the compost were both involved in the suppressiveness, and

they mainly acted through nutrient and space competition with the pathogen. Such a

complex interaction was also found by Inbar et al. (2005) for streptomycetes on

cucumber roots.

Observations from practice support the role of microorganisms in disease sup-

pressiveness (Bruns and Schüler 2000; Fuchs 2002; Hoitink and Boehm 1999;

Reuveni et al. 2002; Tilston et al. 2002). In many cases, the suppressive effect

disappears when the compost is sterilized (Chen and Nelson 2008; Craft and Nelson

1996; Malandraki et al. 2008). The majority of these experiments were per-

formed with potted plants, where up to 50% of compost was added to the substrate.

In the field, much smaller quantities of compost can be added. Therefore, findings

obtained with potted plants cannot be extrapolated to field crops, and there are

severe knowledge gaps concerning the effects of composts on field crops, including

disease suppressiveness. Disease suppressiveness in the field is not always corre-

lated with suppressiveness in the laboratory (Craft and Nelson 1996). In general,

field conditions are much more variable than the conditions in the laboratory (e.g.

meteorological conditions, indigenous microbial populations). For example, Santos

et al. (2008) could demonstrate the role of compost microorganisms in the suppres-

sion of Pythium aphanidermatum. However, the in vitro inhibition of pathogens by

isolated compost microorganisms did not correlate with the suppressive effect

in the plant-soil-pathogen system. This indicates that mechanisms other than
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antagonistic relationships between compost and soil microorganisms could also be

involved in compost-induced disease suppression.

11.8 Conclusions

There are complex interactions among different microorganisms, as well as among

microorganisms, compost substrate and environment. In addition, these interactions

vary in different phases of the composting process and after compost application to

the soil. Although we know the outcome of the composting process, we are far from

understanding all the interactions, mechanisms and processes leading to the end

result. One of the more important factors in this relationship seems to be the

competition for different organic substrates. As a result of microbial breakdown,

the substrates change during the process, leading to a succession of microorgan-

isms. Another important factor influencing the relationship between harmful and

beneficial microorganisms is the temperature evolution during the composting

process. Harmful microorganisms are more sensitive to heat than beneficial micro-

organisms, and the beneficial organisms seem to be more effective in re-colonizing

the compost after the hot period. With appropriate management practices, the

operator can affect some of the physical and chemical conditions within the

compost pile, and thereby influence the balance between different microorganisms.

Compost application can have a positive influence on plant health (disease

suppressiveness). To some extent, this can be attributed to beneficial microorgan-

isms present in compost. More importantly, however, composts alter the microbial

community of soils, or the two mechanisms interact.

With respect to practical application of composts, it is clear that compost quality,

compost microorganisms, soil microorganisms and soil parameters are all involved

in disease suppressiveness. However, the interactions and mechanisms are largely

unknown. The processes need to be studied in depth not only in the short, but also in

the long term. Research indicates that compost has a huge potential for disease

suppression. In practice, however, this potential is not fully exploited. With a better

understanding of these relationships, the practical use of compost for disease

suppression could be optimized. In the long term, it can be imagined to produce

specific “designer composts” for specific applications in specific soils, on specific

crops and against specific diseases too. With such composts, high levels of disease

suppressiveness are likely to be achieved.
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Chapter 12

Compost Microbial Populations and Interactions

with Plants

Dror Minz, Stefan J. Green, Maya Ofek, and Yitzhak Hadar

Abstract The compost environment consists of complex organic materials that

form a habitat for a rich and diverse microbial community. The fate and role of

these microorganisms, when introduced into agricultural soils or potting mixes,

depend on a suite of environmental factors that include biological and chemical

properties of the soil and plant type and growth stage. In this review, we broadly

consider the state-of-knowledge regarding compost microorganisms and their fate

in plant-soil-compost systems. We explicitly consider microbial populations during

the final stages of composting and in the mature product. The changes in the soil

microbial community as affected by compost amendment and interactions with

plant surfaces are the main focus of this chapter. We also consider important

technical advances in the field of microbial ecology that have greatly improved

our understanding of compost and rhizosphere microbiology. These advanced

molecular biology techniques have allowed a comprehensive description of in situ
microbial communities and have started to link microbial community structure with

community function, even in the absence of relevant microbial isolates.
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12.1 Methods in Microbial Ecology

Many of the current methods in microbial ecology are cultivation-independent.

Most of them are based on amplification of DNA fragments using the polymerase

chain reaction (PCR; Saiki et al. 1985). The PCR (see Chap. 1, Insam et al. 2010;

Chap. 7, Hultman et al. 2010; Chap. 14, Knapp et al. 2010) rapidly produces a huge

number of copies of a desired DNA fragment, often a region encoding for a specific

gene. For the purposes of microbial ecology, this technique is frequently used to

amplify the gene encoding for the small subunit of the ribosomal RNA (SSU

rRNA). This conserved gene is ubiquitous in all organisms (Olsen et al. 1986;

Woese 1987; Pace 1997; Watanabe et al. 2001). The entire 16S rRNA gene is not

equally well-conserved, and different regions of the gene can be targeted with PCR

primers that target different taxonomic groups (from domain to species). Certain

highly conserved regions of the gene allow the targeting of domains, but between

these conserved regions the gene is variable enough to facilitate phylogenetic

comparisons (Woese 1987). It has become the most commonly used gene for

community composition studies and, when coupled with one or more profiling

techniques, can allow a rapid and informative characterization of the predominant

microbial members within a sample.

PCR amplification is dependent on the extraction and purification of adequate

amounts of high-quality DNA from environmental samples. In samples of or

containing compost, the recovery of DNA is frequently confounded by the

co-extraction of substances, such as humic acids, that are inhibitory to downstream

enzymatic reactions such as PCR (e.g. Howeler et al. 2003; Tebbe and Vahjen

1993; Tsai and Olson 1992). Humic acid contamination has been shown to result in

PCR inhibition, and the presence of humic acids in DNA extracts may result in a

strongly biased measure of microbial diversity (Martin-Laurent, et al. 2001; Miller

et al. 1999; Stach et al. 2001). A number of manuscripts describe techniques to

circumvent the co-extraction of humic acids (e.g. Lamontagne et al. 2002; Inbar

et al. 2005; Arbeli and Fuentes 2007), and commercial DNA extraction kits have

been successful in extracting clean DNA from some composts. Proper sampling and

sample handling (i.e. temperature, humidity, oxygen concentration, storage condi-

tions and duration) prior to nucleic acid extraction are also important to avoid

introduction of bias into microbial analysis of native communities (Jackson et al.

1997; Schneegurt et al. 2003; Wintzingerode et al. 1997).

Standard PCR analyses are not strictly quantitative; at best, they produce results

that can be construed as semi-quantitative. The non-quantitative nature of PCR is an
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essential part of the widespread application of PCR – namely, generating a great

number of copies of a DNA target without strong sensitivity to the number of

original copies introduced into the reaction. The polymerase chain reaction can be

modified to allow quantitation, in a process called quantitative or real-time PCR

(see Chaps. 1, 7 and 14). This approach, in which the increase in DNA target copy

number is monitored during every cycle of the reaction, allows the user to accu-

rately measure gene copy numbers present in a given sample (e.g. Higuchi et al.

1993; Heid et al. 1996). Real-time PCR has been used in several environmental

studies to monitor and measure the relative abundance of specific groups of organ-

isms in complex environments such as compost (e.g. Innerebner et al. 2006; Halet

et al. 2006; Pedro et al. 2003). This methodology is also exquisitely sensitive to

PCR inhibitors, and in samples with suspected humic contamination, a range of

dilutions of the sample should be tested to determine that inhibitors are not affecting

the quantification.

While standard rRNA gene clone library analysis is effective for characteriza-

tion of the most abundant members of a sample and for generating diversity indices,

such an approach, however, does not provide much information regarding more

minor constituents of microbial communities nor does it provide any direct infor-

mation regarding the physiology of the detected microorganisms. The first

concern – the inability to detect minor constituents of a microbial community – is

a significant one in the study of compost. Dramatic shifts in microbial community

structure are routinely observed in composting – from the community associated

with the raw ingredients, to the rapid die-off during peak-heating, to re-colonization,

shifts associated with maturation, and finally shifts associated with incorporation

of compost into soil or potting mixes and associated plant-soil interactions. Thus,

the inability to detect minor constituents during one phase of this development

can impede the determination of provenance for dominant members of microbial

communities during later stages.

The second concern – the inability to directly identify cell physiology based on

rRNA gene sequences, and the inability to identify the key physiological activities

being conducted at the time of sampling – may be overcome by way of large-

scale sequencing efforts. The recently developed methods for metagenomic study

of community DNA, via construction of genomic DNA libraries and subsequent

high-throughput sequencing or library screening (e.g. Riesenfeld et al. 2004;

Handelsman 2004) were recently applied to study soil (Daniel 2004; van Elsas

et al. 2008) and rhizosphere (Mirete et al. 2007). We can expect that it will, in the

near future, also be applied to compost systems and reveal the communities and

functions involved in shaping and affecting rhizosphere ecology. One limitation to

this approach is the high microbial diversity in compost samples. In a metagen-

ome analysis of another high diversity ecosystem, hypersaline microbial mats, a

modest metagenome of roughly 100 Mb was clearly inadequate for a deep

characterization of the system (Kunin et al. 2008). However, key insights into

the community structure were nonetheless possible, and such analyses may reveal

unexpected physiologies or commonalities among the microbial communities in

compost.
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Finally, stable isotope probing (SIP) also offers an additional molecular

approach to enable linking physiology to phylogeny. In this method (see also

Chap. 1), an exogenous compound containing a stable isotope (usually 13C) is

amended to a sample of interest. Microorganisms capable of utilizing the labeled

compound incorporate the stable isotope into cellular biomarkers that can be used

to identify organisms assimilating the substrate (e.g. Boschker and Middelburg

2002). The analysis of labeled biomarkers such as phospholipid fatty acids (PLFA;

Bull et al. 2000; Boschker andMiddelburg 2002), rRNA (Manefield et al. 2002) and

DNA (Radajewski et al. 2000) have been used in microbial ecological studies.

Stable isotope probing studies on plant roots have already been employed (e.g.

Rangel-Castro et al. 2005; Lu and Conrad 2005). These studies have examined

microbial growth on plant exudates by providing plants with 13C-carbon dioxide.

During plant growth and exudation, heavy carbon exudates are fed to the root-

associated microbial community. In other contexts, cross-feeding can confound

results, as the primary consumer transfers heavy carbon to the rest of the microbial

community. Additional advances in the SIP approach have been developed to limit

the incubation period to reduce cross-feeding (Binga et al. 2008). While DNA

remains the primary information molecule for SIP studies, lipid analysis remains a

viable approach as well. Lipid, such as PLFA, analyses have been routinely utilized

for community analysis (see below), and have been coupled with SIP for analysis

of active rhizosphere microbial communities (Treonis et al. 2004). Analysis of

PLFAs allows the quantitative estimation of total microbial biomass, coupled with

lower-resolution phylogeny and community structure; such analyses have previ-

ously been applied to compost studies (Herrmann and Shann 1997; Klamer and

Bååth 1998; Carpenter-Boggs et al. 1998; Steger et al. 2003; Steger et al. 2007).

12.1.1 Microbial Community Profiling

The application of molecular strategies has allowed scientists to accurately examine

microbial diversity in a wide range of environmental samples. These approaches

have been successful in characterizing microbial communities, and have also

encouraged the discovery and identification of novel organisms and genes in the

environment (Murrell and Radajewski 2000; Milcic-Terzic et al. 2001; Stokes et al.

2001; Greene and Voordouw 2003). Many of the molecular approaches described

above, however, represent only the first stage in the characterization of microbial

communities. Further analysis of PCR yields and informational molecules sepa-

rated by density gradients (i.e. SIP) must be conducted to characterize microbial

communities. Microbial community composition can be analyzed based on profiles

generated, for example, from the physical separation of rRNA gene sequences on an

acrylamide gel (Muyzer et al. 1993). In this regard, several techniques based on the

amplification and comparisons of PCR-amplified DNA sequences have been devel-

oped and used to characterize microbial communities from many environments,

including soil, compost and rhizosphere. These separation techniques have several
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key advantages and disadvantages, and are increasingly used in conjunction with

other molecular techniques (see Chaps. 1, 7, 14). The ability to process multiple

samples rapidly and economically is the primary advantage of these separation

techniques. These methodologies have also become useful companions to other

molecular techniques such as SIP, and direct comparison of DNA- and RNA-based

fingerprints can be used to compare active and predominant community members

(e.g. Cytryn et al. 2005). Conversely, the methods suffer from several potential

technical pitfalls. These pitfalls include the limited detection of minor constituents

of the microbial community and the lack of resolution of the approaches for

distinguishing between different sequences, and conversely, the generation of

multiple peaks or bands from nearly-the same sequence. Some of the commonly

used techniques include (i) Amplified ribosomal DNA restriction analysis

(ARDRA; e.g. Heyndrickx et al. 1996); (ii) denaturing gradient gel electrophoresis

(DGGE; Muyzer et al. 1993); (iii) Terminal-restriction length polymorphism

(T-RFLP; Liu et al. 1997); (iv) generation of clone libraries; and (v) application

of DNA microarrays. Most of these methods have been applied to compost studies,

and have been dealt with thoroughly elsewhere. We take a moment to consider

some of the issues relating to the generation of clone libraries and microarrays here.

12.1.2 Clone Libraries

Construction of clone libraries, a common approach in microbial ecology, is used to

identify key constituents of microbial communities (and increasingly to also iden-

tify extremely minor constituents), to estimate population diversity, and to perform

direct comparisons of microbial communities (Lozupone and Knight 2005; Neufeld

et al. 2004; Ramette and Tiedje 2007). The approach involves PCR amplification,

cloning, sequencing, and subsequent phylogenetic analysis. With the constant

improvement of high-throughput sequencing, future studies will, undoubtedly,

cover the diversity of even highly complex environments such as soils, composts

and roots (Hughes et al. 2001). Soil (Liesack and Stackebrandt 1992; Borneman and

Triplett 1997) and compost microbial communities (Dees and Ghiorse 2001;

Hansgate et al. 2005; Thummes et al. 2007; Danon et al. 2008) have been already

studied using SSU rRNA clone libraries. We note a few developments that have

encouraged this approach. Not only did the capacity to sequence genes increase (in

part, due to the development of rolling circle amplification, obviating the need for

plasmid extractions from each clone, and robotic approaches for high-throughput

sequencing; e.g. Dean et al. 2001), but a whole suite of online software packages

were developed, including software to (a) detect chimeric sequences (e.g. Huber

et al. 2004); (b) auto-align 16S rRNA gene sequences (e.g. Greengenes; DeSantis

et al. 2006); (c) give rapid identification of an unaligned set of sequence data (RDP,

Wang et al. 2007); (d) calculate a suite of diversity indices at all levels of taxonomic

groupings (e.g. DOTUR, FastGroupII; Schloss and Handelsman 2005; Yu et al.

2006); and (e) compare microbial community structure based on phylogenetic trees
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generated from sequence data (e.g. Unifrac, Libshuff; Lozupone and Knight 2005;

Singleton et al. 2001). Recently, it has been demonstrated that short regions of the

16S rRNA gene, roughly 100–200 bases, are suitable for identification purposes

down to a genus or species level (Wang et al. 2007). This bioinformatic advance has

been coupled with sequencing platforms that generate massive quantities of short

(50–250 base reads) sequences (e.g. Ronaghi et al. 1998). This approach has

previously been utilized in deep-sequencing efforts of environmental samples

from a variety of environments (e.g. Edwards et al. 2006; Acosta-Martı́nez et al.

2008), and would be welcome for characterizing shifts in microbial community

structure during and after composting.

12.1.3 DNA Microarrays

DNA microarrays are a recent addition to the molecular ecology toolbox (see

Chap. 1). DNA microarrays consist of small, solid supports onto which known

DNA sequences from thousands of genes are immobilized in an array at fixed

locations. DNA is printed, spotted, or synthesized directly onto the support. Nucleic

acid samples to be analyzed are fluorescently labeled and hybridized to the array,

allowing the parallel analysis of thousands of genes. Microarrays have been used

for microbial ecology research in several habitats (Loy et al. 2002; Stralis-Pavese

et al. 2004; Small et al. 2001). This technology provides a rapid, high-throughput

means to analyze the complex and highly diverse microbial community found in

compost, thus providing a tremendous tool for process monitoring, detection of

pathogens, and detection of beneficial microbial populations in compost. A DNA

microarray was recently designed and used for the investigation of microbial

communities in compost (Franke-Whittle et al. 2005, 2009; Danon et al. 2008).

This approach is limited, however, by requiring a priori knowledge of potential

community members or target genes of interest.

12.2 Compost Communities

It is difficult to construct a specific “compost” microbial community. Composts

undergo a series of dramatic changes in microbial community composition during

the composting process and during maturation and application (see Chap. 1), and

composts are produced from a wide variety of feedstocks and in a wide variety of

composting processes from simple bins to industrial-scale composting plants. In

addition, microorganisms in mature compost are present in high numbers and are

quite diverse. Considerable effort and a variety of techniques, as described above,

have been applied to the study of compost microbial populations (e.g. Cahyani et al.

2003; Schloss et al. 2003; Ryckeboer et al. 2003). The initial phase of composting is
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the most dynamic part of the process and is characterized by rapid increases in

temperature, large changes in pH, and the rapid degradation of labile organic

compounds. These physio-chemical changes in the compost strongly influence

the constituent microbial community, and there are multiple significant shifts in

the microbial community structure during the composting process (e.g. Schloss

et al. 2003; Peters et al. 2000). In general, the peak-heating stage is most likely to

select for similar microbial communities by way of selecting for thermophilic

microorganisms; as a result, Gram-positive bacteria, such as bacteria from the

genus Bacillus (low G-C Gram-positive phylum Fimicutes), can dominate (e.g.

Strom 1985a,b; Peters et al. 2000; Michel et al. 2002; Ryckeboer et al. 2003).

Actinobacteria are rarely detected in the post-peak heating compost without the use

of phylum-specific PCR primers, but can become abundant in maturing composts

(Green et al. 2004; Michel et al. 2002; Tiquia et al. 2002b; Dees and Ghiorse 2001;

Danon et al. 2008). After peak heating, the compost is re-colonized by microorgan-

isms present in the production environment, and bacteria from the phylum Bacter-

oidetes often dominate (Cahyani et al. 2003; Green et al. 2004, 2006, 2007; Takaku

et al. 2006). Sometimes, the effect of the source material for the compost is evident

in the final product (Green et al. 2004). Mature composts can be rich in phytopath-

ogen antagonistic species, or more likely, these organisms can be amended to the

compost for colonization purposes (e.g. Hoitink et al. 1993; Hoitink and Boehm

1999).

Ryckeboer et al. (2003) attempted to determine the microbial succession of the

dominating cultivable taxa and functional groups of microorganisms, as well as the

total microbial activity during composting of vegetable, fruit and garden waste.

They reported that bacteria dominated the thermophilic phase, while fungi and

bacteria from the family Streptomycetes, were below detection limits. The bacterial

community differed between the thermophilic and mesophilic composting phases.

During the peak-heating phase of fresh waste, the only bacterium isolated was

Gram-positive Firmicutes of the genus Bacillus; however, during the cooling and

maturation phases, a wide spectrum of Gram-positive and Gram-negative bacteria

was isolated (Ryckeboer et al. 2003). Similarly, the diversity and succession of

microbial communities were studied using bacterial isolation, DGGE and clone

library analysis during composting of municipal waste mixed with rice hull

(Takaku et al. 2006). The dominant microbial taxa changed from organisms

belonging to the phylum Firmicutes during the thermophilic phase to the Bacter-

oidetes in the maturation phase. Likewise, Cahyani et al. (2003) reported a bacterial

community transition during the composting of rice straw: Alphaproteobacteria in

the raw materials, Bacilli and Actinobacteria during the thermophilic stage, and

Cytophaga and Clostridia in the middle and curing stages. Members of the phylum

Bacteroidetes have been shown to be critical components of plant-associated

microbial communities for plants grown in compost-amended soils or media, and

they have been shown to be large contributors to nutrient recycling in plant

environment by way of production of degradative enzymes (Hallmann et al.

1997; Mahaffee and Kloepper 1997a, b; McSpadden Gardener and Weller 2001;

Green et al. 2006, 2007). While the different stages of composting do appear to
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select for specific taxonomic groups, it should be noted that the studies reveal

similarity at very high taxonomic levels, and that the full diversity of these com-

munities varies more significantly when examined at a genus or species level.

The maturation, or curing stage of compost is a critical period, and the length and

conditions of curing can strongly influence not only the microbial community

within the compost, but also physical and chemical properties. The successful

application of compost is considerably dependent on the selection of an appropriate

curing period, and a number of prior studies have emphasized the importance of

achieving compost maturity to ensure balanced plant nutrition and for the biological

control of soil-borne plant disease (Fuchs 2002; Noble and Coventry 2005).

Non-cured composts may be phytotoxic, whereas extensively cured composts can

lose their plant-disease-suppressive properties (e.g. Hoitink and Fahy 1986; Danon

et al. 2007; Zmora-Nahum et al. 2008). For instance, loss of compost suppressive-

ness toward Sclerotium rolfsii has been demonstrated during prolonged curing

time (Danon et al. 2007). In general, a shift in community structure is observed

during maturation or curing of compost although Cahyani et al. (2003) reported

that the microbial community remained stable during the curing phase. Using a

suite of cultivation-independent analyses, including DGGE, 16S rRNA gene

sequencing, and microarray analysis, Danon et al. (2008) observed statistically

significant shifts in bacterial community structure during an extended maturation

period. These data indicated that bacteria from the phylum Bacteroidetes and

from the Gammaproteobacteria were ubiquitous, but their relative dominances

were inversely related; at the beginning of the compost-curing process, Bacteroi-
detes were dominant. Later, during the mid-curing stage, Actinobacteria became

more abundant. After a lengthy curing period, Gammaproteobacteria were more

abundant.

12.3 Effect of Compost Application on Soil Microbial

Community

The utility of compost materials lies in their amendment to soils and potting

substrates as a source of organic matter, of abiotic nutrients, and of diverse and

beneficial microorganisms. The latter include plant-growth promoting and patho-

gen-antagonistic bacterial species. The enormous range of composts and of the soils

to which they are added, however, limits the ability to predict a priori the impact of

such amendments. The biological and physiochemical characteristics of the native

soil are, nonetheless, critical in determining the resulting microbial community. For

example, in soils containing very limited organic matter and consequently low

microbial biomass, even modest amendments of compost can radically affect the

total soil and rhizosphere microbial community (e.g. Inbar et al. 2005).

Pérez-Piqueres et al. (2006) systematically studied the amendment of three

composts of differing origins to two different soils under controlled conditions.

They observed that shifts in the soil biological properties depended on both the
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compost amendment and the native soil. All the composts produced shifts in

the microbial community composition, as determined by T-RFLP fingerprinting.

Similar observations were also made by Ros et al. (2006) who studied different

compost types in a long-term field experiment. The results indicated that the shifts

induced in the microbial community compositions were mainly due to the amend-

ment of the soil with new community members originating from the compost, along

with some stimulation of the native soil microflora. Interestingly, Pérez-Piqueres

et al. (2006) observed that the compost amendments did not radically change the

physiological capabilities of the soil, as inferred by Biolog community level

physiological profiling functional analysis, and attributed this to functional redun-

dancy of soil and of compost microorganisms.

Elsewhere, Calbrix et al. (2007) showed only a minor and transient effect for

compost on soil microbial community composition and functions. Similarly, Crecchio

et al. (2004) found that amendment of cropped plots with compost increased

the soil organic C and total N content and enhanced a variety of soil microbial

activities. However, they found that changes in the microbial community, as a

consequence of compost amendment (determined using DGGE, rRNA gene internal

spacer analysis and ARDRA of bacteria, Archaea, Actinobacteria, and ammonia-

oxidizing bacteria), were minimal. This may have been due to the relatively small

increase in organic matter introduced by way of the compost amendment (12%

increase) relative to that in the Pérez-Piqueres et al. (2006) study (39–260%

increase).

12.4 Effect of Compost Application on Root and Rhizosphere

Microbial Community

The amendment of compost to soils represents a fundamentally distinct biological

intervention in comparison with inoculation with specific microorganisms such as

Rhizobium spp. or other growth-promoting bacteria. Compost introduces to soils

and potting mixes an abundant and highly diverse microbiota and rich organic

matter (Tiquia et al. 2002a, b). Thus, via a combination of physical, chemical and

biological factors, composts can simultaneously influence a wide range of processes

affecting soil, rhizosphere and root-associated bacterial communities (see also

Chap. 6, Ceustermans et al. 2010; Chap. 11, Fuchs et al. 2010; Chap. 13, Bastida

et al. 2010; Chap. 14). We note that even a simple inoculation of soil with a single

bacterial or fungal species may have an effect that extends beyond the target

organisms (Lottmann et al. 2000; Johansen et al. 2005) and may involve multiple

mechanisms of action (Zhang et al. 1998; Compant et al. 2005).

Spermosphere and rhizosphere microbial populations are influenced by the type

and quantity of depositions from plant seeds and roots, which include sugars,

organic acids, polymers and sloughed cells (Campbell and Greaves 1990; Whipps

2001; Baudoin et al. 2002). These depositions vary in quantity and type with, among
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other factors, plant development status (Andrews and Harris 2000; Lugtenberg

et al. 1999). Thus, development from seed to root shifts exudate quantity and quality

that, in turn, impacts soil microorganisms (Buyer et al. 1999, 2002). Naturally, the

rhizosphere bacterial community is derived from that of the bulk soil. Even so, the

composition of the dominant bacterial population in the rhizosphere may differ

considerably from that of the bulk soil (e.g. Inbar et al. 2005; Weisskopf et al.

2005). Moreover, different plant species and even cultivars select for unique bacte-

rial communities under identical soil conditions (Smalla et al. 2001; Kowalchuk

et al. 2002). The resilience of the rhizosphere bacterial community to different

anthropogenic and other disturbances has previously been discussed (Lynch 2002;

Baumgarte and Tebbe 2005). Generally, artificial modifications such as introduction

of new microorganisms are not sustained (Nautiyal et al. 2002; Götz et al. 2006).

Currently, only a few basic research studies examining the effects of compost

amendments on root and the rhizosphere microbial community composition have

been conducted (de Brito et al. 1995; Tiquia et al. 2002a; Inbar et al. 2005; Green

et al. 2006, 2007). There is only limited research in this area, but we note that there is

a wide range of findings that is most likely a result of the different soils, different

composts and compost amendment rates, and different plants.

For example, in the study of Tiquia et al. (2002a), total microbial biomass (as

indicated by soil respiration and microbial N) increased in rhizosphere samples

from plots mulched with compost compared to un-amended or wood-mulched

plots. Consistent with the biomass and cultivation data, they observed that the

rhizosphere communities in compost-mulched plots differed significantly from

the rhizosphere communities of the un-amended and wood-mulched plots. Despite

shifts in community composition, significant differences in T-RFLP-based diversity

indices were not observed. A higher number of terminal restriction fragments

(T-RFs) corresponding to possible biocontrol organisms such as Pseudomonas
and Pantoea spp. were found in compost-mulched plots.

Conversely, de Brito et al. (1995) examined four commercial composts and their

effect on plant growth, total rhizosphere microflora, and incidence of plant growth-

promoting rhizobacteria (PGPR) in the rhizosphere of tomato plants. In this study,

compost amendments caused only small variations in the total numbers of bacteria,

actinobacteria, and fungi in the rhizosphere of the tomato plants. On the other hand,

the addition of composts to soil increased the incidence of bacteria exhibiting

antagonism towards several plant pathogenic fungi in the rhizosphere. Elsewhere,

the role of native soil organic matter and compost amendment rate on plant-

associated microbial communities was examined in a study of Streptomyces on

the roots of cucumber plants (Inbar et al. 2005). Although actinobacteria are

generally present in low abundance in composts after peak heating, Streptomyces
spp. are often present in the rhizospheres of plants (Weller et al. 2002; Smalla et al.

2001; Korn-Wendisch and Kutzner 1999). The apparent rhizosphere competence of

this bacterial group has been attributed to their production of and resistance to

antibiotics, and their ability to consume a variety of organic carbon sources,

including complex and recalcitrant plant-derived compounds (Goodfellow and

Williams 1983). In the study of Inbar et al. (2005), a single compost was amended
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at three different rates to an organic-poor sandy soil used for cultivation of

cucumber, and samples of bulk soil, rhizosphere and roots were analyzed via cultiva-

tion-independent techniques. The Streptomyces community composition was influ-

enced both by proximity to the root and by the rate of compost amendment, and the

interaction of these two factors was most readily visualized in community profiles of

the rhizosphere where the two factors overlapped to the greatest extent (Inbar et al.

2005). Compost amendment produced a dramatic shift in the composition of the bulk

soil Streptomyces community, even at low rates. However, establishment of those

populations in the rhizosphere and at the rhizoplane, required substantially higher

amendment rates.

Inbar et al. (2005) observed that all root community profiles were predominantly

composed of a single Streptomyces strain closely related by 16S rRNA gene

sequence to non-pathogenic, plant tissue-associated and antibiotic-producing Strep-
tomyces. The predominance of a single population is consistent with a rhizosphere

effect, a strong plant activity-induced selection for bacterial communities in close

proximity to roots (Smalla et al. 2001; Whipps 1990). At the highest compost

amendment rate, the dominant compost-Streptomyces population was detected in

association with the roots. Overall, the results presented by Inbar et al. (2005)

suggest a significant “rhizosphere buffering,” in which organisms applied as soil

amendments can establish high population levels but ultimately are not sustained in

the rhizosphere or rhizoplane due to plant selection (Weller et al. 2002). The

apparent insulation of the root Streptomyces community from the effects of com-

post amendment, as observed in the bulk and rhizosphere soils, must be considered

in the employment of compost amendments for modifying plant-associated micro-

bial communities. Nonetheless, as compost organisms were detected in root sam-

ples at the highest amendment rate applied, it is possible that with high-enough

amendments rates, beneficial populations can be forced into these communities.

This is consistent with the current understanding of the influence of plant deposi-

tions on microbial population dynamics in the root and rhizosphere. Cheng et al.

(1993) showed that water-soluble carbon concentrations varied inversely with

distance from the rhizoplane. Likewise, Wieland et al. (2001) found that the

influence of soil on microbial population distribution was reduced with increasing

proximity to the rhizoplane. This diminishing influence is presumably due to the

increasing predominance of exudates closer to the roots, which in turn increases

competition among copiotrophic bacteria. However, Semenov et al. (1999)

observed a decrease in such a rhizosphere effect in wheat plants grown in high

organic soils, compared to soil poor in organic matter. This may account for the

increasing similarity of rhizosphere and root community profiles in compost treat-

ments. Specifically, plants grown in compost-amended soils can be expected to

have a less-drastic rhizosphere effect due to the higher microbial carrying capacity

of the soil itself. Clearly, soil characteristics and proximity to the root surface are

critical in determining plant-associated microbial populations.

Plant-associated microbial community structure can also be expected to change

during the growth of the plant. One of the general observations in the study of Green

et al. (2006) was of dramatic shifts in plant-associated bacterial populations during
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plant development from seed to root. While Green et al. (2006) observed relatively

little overlap between seed- and root-colonizing bacterial communities, seed sur-

faces were consistently colonized by a subset of active microbial populations

present at high levels in the potting mix at the time of sowing. Normander and

Prosser (2000) also observed such a disparity between seed and root microbial

communities and proposed that this difference was an indication that emerging

plant roots are colonized by soil-borne microbial populations rather than by seed-

borne populations. Presumably, in the longer term, the development of the plants

with accompanying shifts in exudation pattern allows more competitive microbial

populations to develop from relatively low levels of soil and compost. In this facet,

compost amendments – which deliver a diverse array and great abundance of

microorganisms – have the potential to be a successful means of introduction of

beneficial bacteria to the plant environment and multiple stages of development.

The transition from seed to root adds additional complexity to the soil-compost-

plant system, and the development of roots further extends the zone impacted by

plant exudates. Green et al. (2007) hypothesized that the interaction between

exogenous soil amendments such as compost and the influence of the plant or

rhizosphere effect does not impact all microorganisms equally. To explore this

issue, the community composition of two distinct taxa, one consisting of bacteria

within the family Oxalobacteraceae (Betaproteobacteria), and the second from the

genus Chryseobacterium (Bacteroidetes), both consistently detected in seed and

root communities, were characterized by the application of population-specific

analyses (Green et al. 2007). These analyses revealed that the two groups of seed-

and root-colonizing taxa responded to compost and root effects in different ways.

The response ofOxalobacteraceae populations to plant-growth stage and proximity

to roots was consistent with the response of saprophytic bacteria largely influenced

by plant exudates, resulting in a strong rhizosphere effect (Green et al. 2007).

Furthermore, the Oxalobacteraceae community composition changed dramatically

during plant development, as seed communities resembled the initial potting mix

while the root communities comprised a single dominant population, which dif-

fered from those detected on the seeds (Green et al. 2007). The shift in the

Oxalobacteraceae population composition from seed to root was consistent with

prior observations that the seed-colonizing bacterial communities differed substan-

tially from the root microbial communities (Green et al. 2006).

Conversely, the community composition of compost-derived bacteria of the

genus Chryseobacterium was not sensitive to the seed or root environment, and

was consistent regardless of proximity to the plant surface (Green et al. 2007). This

ecological behavior is more consistent with organisms that are influenced by bulk

soil (e.g. soil organic matter). Soil organic matter can be a significant source of

carbon for rhizosphere organisms (Toal et al. 2000), and high levels of organic

matter and nutrients, such as those that are supplied via compost amendment, can

influence the strength of the observed rhizosphere effect (Semenov et al. 1999).

Although Chryseobacterium spp. are found frequently in organic-rich environ-

ments such as composts (Ryckeboer et al. 2003), these organisms are not particu-

larly well known as rhizosphere organisms, though they have been previously
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detected in or isolated from rhizosphere environments (McSpadden Gardener

and Weller 2001;Young et al. 2005; Park et al. 2006). The consistent presence

of Chryseobacterium spp. on seed and root surfaces may be a result of their

persistence in the compost-amended potting mixes. The ability of bacteria to

survive in large numbers in soil can be a major determinant of their ability to

subsequently colonize rhizosphere environments (Jjemba and Alexander 1999;

De Ridder-Duine et al. 2005), and compost amendments have been shown to sustain

Chryseobacterium in peat-based potting mixes for longer than in unamended

potting mixes (Krause et al. 2001).

Thus, although root-associated bacterial communities can be heavily influenced

by the plant, some microorganisms can be sustained in root environments with

relative insensitivity to the rhizosphere effect (Green et al. 2007). The persistence

of the same Chryseobacterium populations in potting mixes and on seed and root

surfaces demonstrates that the cucumber rhizosphere selection is not the exclusive

factor involved in determining the composition of the spermosphere and rhizo-

sphere communities. Although it seems unlikely that this is a plant-specific phe-

nomenon, these types of studies must be expanded to different plant systems. Such

research may allow us to more specifically characterize the multiple factors that can

mitigate the rhizosphere effect, and allow the persistence of ‘non-traditional’

rhizosphere microorganisms in close proximity to plant seed and root surfaces.

12.5 Conclusions

The study of plant-associated microbial communities, even without consideration

of compost, is a daunting task. A wide range of factors influence the structure of

microbial communities, a fact that is reflected in the extensive rhizosphere litera-

ture. The current literature on factors affecting plant-associated microbial commu-

nities is at best confusing, and at worst, downright contradictory. This reflects, in a

sense, the difficulty in attempting to extrapolate from single system analyses to

trends present in all rhizospheres. In general, each researcher employs an entirely

different plant-soil system and different sampling methodology, and it can be

difficult to relate the results of one study to another. Nonetheless, it is clear that

microbial interactions (microbe–microbe and microbe–plant) on plant surfaces are

influenced by plant, soil and environmental conditions and the interactions among

them. In a sense, the distribution of microorganisms on plant surfaces fall into the

dialectic of “nature” versus “nurture.” Soil microorganisms can be classified as

“nature” – all the potential plant surface colonizing microorganisms, while plant

effects can be considered “nurture,” as the plant environment selects for certain

members of the soil microbial community. As with the debate over “nature” versus

“nurture,” the real question is not which factor determines the ultimate outcome,

but to what extent each factor controls the outcome. The addition of compost to

soil or potting mixes is a decided effort to try and tilt the balance against plant

selection. Elsewhere, researchers are modifying plant genes, not to reduce plant

selection of microorganisms, but to modify those organisms for which they select
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(Oger et al. 2004). Ultimately, the goal is the same – to be able to control,

reproducibly, the structure and function of seed- and root-associated microbial

communities, be it for disease control or plant growth promotion.

Compost amendment to soils is a common agricultural technique, and has not yet

received its deserved attention, particularly with regard to molecular analyses.

Composts, of course, exert more than a biological effect; such amendments can

substantially modify soil chemistry, soil structure, and soil organic matter. These

effects are not always positive, and some composts may indeed be inhibitory to

plant growth, perhaps due to the presence of high levels of phytotoxins and high

C/N ratio, particularly in immature composts (Craft and Nelson 1996; de Brito et al.

1995). Despite studies on the beneficial effects of compost physical and chemical

characteristics, in some cases for disease control (Pascual et al. 2002), the literature

suggests that it is the great biological diversity of compost materials that is most

responsible for plant growth promotion and disease control. However, compost

minerals and organic matter can serve an important role in sustaining compost

microorganisms (Boehm et al. 1997). The driving concept is to be able to use

compost amendments to introduce and sustain specific beneficial microbial popula-

tions. The high native diversity of compost microbial communities, coupled with

the high metabolic diversity, may also greatly assist in introducing into the plant

genes environment multiple organisms that are highly competitive and antagonistic

to pathogens.

We believe that major progress in understanding the effect of compost amend-

ments on soil and plant-associated communities will come from better knowledge

of the function and diversity of the microbial populations involved (see also

Chap. 11, Fuchs 2010). This is now feasible with the application of molecular

techniques already available. High-throughput rRNA gene and functional gene

sequence analyses will help define more clearly shifts in microbial community

structure and function during the composting process and after amendment to soil

and plant environments. We propose the need for deep-sequencing of rRNA and

mRNA transcripts from many composts during multiple stages of development,

and for metagenomic data from these composts. Such data will enable us to track

compost microorganisms more effectively, and to ultimately understand the effect

of compost amendments on both the microbial community structure and activity in

plant-associated environments.
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Chapter 13

Soil Degradation and Rehabilitation:

Microorganisms and Functionality

F. Bastida, T. Hernandez, and C. Garcia

Abstract The maintenance of soil quality is critical for ensuring the sustainability

of the environment and biosphere. However, soil degradation and desertification

affect many areas of the planet, particularly the Mediterranean area where the

climatological and lithological conditions, together with anthropological activity,

are responsible for increasing desertification. It is, therefore, considered to be of

paramount importance to be able to measure soil degradation quantitatively. In this

chapter, the key role that microorganisms play in the maintenance of soil structure

and functionality, as well as their great sensitivity to soil changes, which make

microbiological parameters the most suitable ones for elaborating soil quality

indices is highlighted. Short- and long-term experiments of soil rehabilitation

carried out in semiarid areas by the addition of organic amendments are also

discussed in this chapter.
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13.1 Soil Quality

When referring to air or water, the term “quality” usually involves the analysis of

specific contaminants which are known to have well-defined threshold values.

There is no need to specify dynamic, chemical, physical and biological properties

that would define an ideal state for which there are an almost limitless number of

environmental scenarios, as would be expected when referring to soil quality.

A variety of definitions were proposed for the term soil quality during the

1990s (Parr et al. 1992; Doran and Parkin 1994), ranging from a purely agricul-

tural point of view to a more environmental perspective. In 1995, the Soil Science

Society of America (SSSA) suggested soil quality as the capacity of a specific
kind of soil to function, within natural or managed ecosystem boundaries, to
sustain plant and animal production, maintain or enhance water quality and
support human health and habitation. From that moment, soil quality emerged as

a branch of environmental studies since soil is a critically important component

of the Earth’s biosphere. However, nowadays, the term continues to lack defini-

tion, and individual investigators feel free to give it whatever meaning suits their

research at any moment – not that the meaning will necessarily be incorrect – on

an arbitrary basis, including those parameters of interest for each scientist.

Indeed, Bouma et al. (1998) suggested that emphasis of soil research is still on

a disciplinary rather than on an interdisciplinary approach, and a recommenda-

tion was made to continue the effort to expand soil research into a more

interdisciplinary domain enabling to develop the concept of soil quality in a

holistic way.

However, despite the difficulty involved in providing a definition, the mainte-

nance of soil quality is critical for ensuring the sustainability of the environment

and the biosphere, though this is a complex theme because of the importance of

climate, soil, plants, anthropic factors and their interactions. Indeed, soils are

subject to natural or environmental degradation, often accompanied by erosion,

even without human intervention (Popp et al. 2000).

Soil quality and its degradation depend on a large number of physical, chemical

and biological properties, of which the last two are the most sensitive since they

respond rapidly to changes that are directly linked to soil functionality (Trasar-

Cepeda et al. 1998; Ros et al. 2002). The microbial activity of a soil directly

influences the ecosystem stability and fertility, and it is widely accepted that a

good level of microbiological activity is essential for maintaining soil quality.

However, it should be remembered that soil microbiological activity is a mosaic

of metabolic processes that cannot be assessed from a single parameter, but only
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from a variety of parameters (Nannipieri et al. 1990). Some fractions of the organic

matter, for example, water-soluble carbon (WSC), are easily degraded by micro-

organisms since they act as energy source, and so it is useful to study them when

analysing the soil’s microbial activity (Garcia et al. 2000; Pascual et al. 2000).

Microbial biomass carbon is useful for evaluating microbial population size and

this parameter has been considered in the evaluation of natural as well as degraded

systems (Ross et al. 1982), whereas microbial activity can be evaluated by para-

meters like ATP and respiration (Nannipieri et al. 1990). Enzymatic activities are

biological catalysts of essential processes in the life cycle of microorganisms, and

the simultaneous measurement of several of these activities may be useful when

studying the level of bioactivity in a soil (Nannipieri et al. 1990). Among these

activities are those related with the N (urease and BAA-protease), P (phosphatase)

and C (b-glucosidase) cycles. Other enzymatic activities provide a more general

knowledge of microbiological activity. For example, Garcia et al. (1994) showed

that dehydrogenase activity is a clear indicator of the microbiological status of soils

in semiarid zones subject to degradation and desertification.

However, as soil microorganisms are influenced by the surrounding microenvi-

ronment, only one of these parameters is not enough to assess the soil quality status.

In the past years, there has been a tendency to “quantify” soil quality and degrada-

tion by means of soil quality indices (Andrews et al. 2002; Sharma et al. 2005;

Bastida et al. 2006b, 2008a; Zornoza et al. 2007). A soil quality index could be
defined as the minimum set of parameters that, when interrelated, provides numeri-
cal data on the capacity of a soil to carry out one or more functions. A soil quality
indicator is a measurable property that influences the capacity of a soil to carry out
a given function (Acton and Padbury 1993). All studies on soil quality indices point
to the complexity of the subject since a diversity of physical, chemical, micro-

biological and biochemical properties need to be integrated to establish such

quality.

13.2 Soil Degradation in Semiarid Areas

Desertification is the degradation of soils in arid, semiarid and dry subhumid areas,

resulting from several factors, including climatic change and human activity (Arti-

cle 1, UN Convention of the fight against desertification). This process is of global

importance since it affects about 40% of continental areas. Soil degradation is a

serious problem because the soil fulfils several vital functions: (i) it is the growth

medium of plants, acting as a physical support and reservoir of water and essential

nutrients; (ii) it regulates the flow of water in the environment and (iii) it has a

certain capacity to attenuate the harmful effects of contaminants by its physical,

chemical and biological processes.

The real scenario that we find nowadays is that there is a clear trend to

desertification and degradation along the world because of climatic factors and

human actions such as contamination, inadequate agricultural practices, etc.
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This world soil state is reflected in the global desertification vulnerability map

established by the United States Department of Agriculture which shows wide areas

with a high and very high risk for desertification, corresponding to areas with very

low organic carbon content. Thus, the main point to note is that the organic matter

losses are responsible for a great part of the soil degradation processes over the

world.

Under natural conditions, soils are in a steady state when their pedogenetic

factors are balanced. However, this equilibrium is easily upset by human activity

(e.g. agricultural abandonment) and this effect is aggravated in semiarid regions by

climatic conditions. Under such conditions, the scarcity of water limits vegetation

and, consequently, the input of organic matter to soil (Garcia et al. 1997), triggering

in many cases degradation (Bastida et al. 2006a). Therefore, the increase of the

organic matter content of soils is one approach to improve the quality of degraded

soils (Garcia et al. 1998). In semiarid areas, where soil organic matter content is

scarce, the increase of the organic matter content may play a key role on the

establishment of a vegetal cover.

13.3 Microbial Activity and Soil Degradation

It is well known that soil organisms, particularly the microbiota, play an essential

role in the cycling of elements and stabilisation of soil structure. The mineralization

of organic matter is carried out by a large community of microorganisms and

involves a wide range of metabolic processes. For this reason, it is important to

relate ecosystem structure and function to genetic and functional diversity. Micro-

bial functional diversity is related both to the use or not of specific substrates and to

the rates of substrate utilisation.

To study biological processes in soils, various parameters have been used.

Because of the complex dynamic of soil ecosystems, no single parameter is

satisfactory. The search for indicators, which can be used as quantitative tools to

assess the health of the soil, has thus become a major challenge for both scientists

and land managers. Indicators need to be robust and meaningful, and easy to

measure and interpret. To date, emphasis has been given to physical and chemical

soil properties which are generally regarded as more difficult to measure, predict or

quantify. However, biological processes are intimately linked with the maintenance

of soil structure and fertility and are potentially more sensitive to changes in the soil

than indicators based on physical and chemical properties (Nannipieri et al. 1990;

Brookes 1995). Biological indicators, therefore, may provide an early warning of

system collapse and allow us react before irreversible damage occurs. However,

problems such as the inherent temporal and spatial heterogeneity of soil biological

communities and the unpredictable interaction of soil organisms with the climatic

factors, can limit the use of these indicators.
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13.4 Indices for Soil Quality Based on Microbial Parameters

Microbial functional diversity depends on many metabolic reactions and interac-

tions of microbiota and for this reason can be determined by measuring simulta-

neously a range of microbial and biochemical parameters (Nannipieri et al. 1990).

In theory, an index integrating the enzyme activities that catalyse the reactions

limiting the rate of the main metabolic processes could be used to measure

microbial functional diversity (Nannipieri et al. 1990). The selection of the enzyme

activities can be restricted to those involved in a particular process, such as the

degradation of organic matter, N mineralization or nitrification.

Many researchers have proposed the use of simple indices of soil quality based

on a few parameters. Probably, the most straightforward index used in the literature

is the metabolic quotient (qCO2; respiration to microbial biomass ratio), which has

been widely used to asses changes in soil microbial activity because of heavy metal

contamination (Liao and Xiao 2007), deforestation (Bastida et al. 2006a), tempera-

ture (Joergensen et al. 1990) or changes in soil management practices (Dilly et al.

2003). However, the index has also been criticised for its insensitivity to certain

disturbances and to the ecosystem’s development whenever stress increases along

successional gradients (Wardle and Ghani 1995).

The percentage of organic C present as microbial biomass C has been proposed

as a more sensitive index of soil changes than total organic C, since the microbial

biomass of a soil responds more rapidly to changes than organic matter (Anderson

and Domsch 1990). Nevertheless, changes in this ratio because of different

manuring or cropping practices can be masked by climatic changes (Insam and

Haselwandter 1989).

The metabolic ratio of Masciandaro et al. (1998), calculated dividing the dehy-

drogenase activity by the amount of water-soluble C, relates the potential sources of

C available in soil for microbial metabolism to microbial activity. This ratio was

initially used to get quantitative information about soil degradation due to the

intensive soil use with a higher organic matter mineralization in cultivated than in

undisturbed soils.

Other biochemical and microbiological indices, such as the biological index of

fertility (BIF; Stefanic et al. 1984) which offers information on soil fertility, use two

enzyme activities (dehydrogenase and catalase). Others, such as the enzymatic

activity number (EAN; Beck 1984), take into consideration more enzyme activities

(dehydrogenase, phosphatase, protease and amylase activities); however, this index

considers amylase instead of cellulase activity and it has been seriously criticised

because cellulose is more prominent than starch in vegetal residues (Kang et al.

2005).

Although they are easy to apply, the use of two parameters in a soil quality index

has almost the same limitations as the use of one parameter: the lack of information.

Therefore, to obtain indices that provide and integrate more information on the

quality of a soil multiparametric indices have been developed for agro-ecosystems

and for non-agricultural soils.
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Trasar-Cepeda et al. (1998) chose three Umbrisols covered by climax vegetation

in Galicia (NE Spain), analyzed during a year (one sample per month) and estab-

lished an equation to define the total N from several microbial parameters (micro-

bial biomass C, mineralized N, and phosphatase, b-glucosidase and urease

activities). From the resulting equation, it can be concluded that there was a

relationship between total N and several biochemical parameters. This model points

to the closeness to an ideal quality level of the chosen soils, for which they used the

quotient between the N estimated by the model and the total N calculated by the

Kjedahl method.

By using the same approach followed by Trasar-Cepeda et al. (1998), Armas

et al. (2007) calculated biological quality index for volcanic Andisols and Aridisols

from Canary Island (Spain). Ten experimental plots were established in arid

coastal, humid midland and xeric highland areas, both at mature and degraded

stages. Sampling was carried out seasonally during one year. The expression

obtained by Armas et al. (2007) related total C to different enzyme activities and

hot-water-soluble carbon: Total C = –2.924 + 0.037 � extC – 0.096 � cellulase +

0.081 � dehydrogenase + 0.009 � respiration, where: extC (hot water soluble C) is

expressed in g C m–1, cellulase activity is expressed in mmol glucose m–2 h–1,

dehydrogenase activity in mmol INTF m–2 h–1, and respiration in mg CO2-C m–2 h–1.

The ratio between the values predicted for this model and the measured total C

values were considered the soil biological quality index. Values close to 1 were

observed for climax soils, while lower values were detected when vegetation

differed from climax conditions.

In four different forest sites under semiarid conditions in Spain, Zornoza et al.

(2007) found two equations by multilineal regression systems for evaluating the

environmental quality of mollisols, i.e. mature soils under natural vegetation with

minimum human disturbance and entisols, i.e. young soils similar to the lithological

material. Thirty soil samples were taken for each forest site within an area of 5 km2.

The equation established for mollisols related total N content to different enzyme

activity (phosphatase, urease and b-glucosidase activity), microbial biomass C,

available P and water-holding capacity; while the equation for entisols related

soil organic C content to available P and different enzyme activities (urease and

b-glucosidase activity). Results confirmed that these models accurately expressed

deviations from natural equilibrium in undisturbed soils.

Bastida et al. (2006b) used the approach by Andrews et al. (2002) to calculate the

microbiological degradation index (MDI) of natural soils under semiarid climate

(Murcia, SE Spain), where the climatic conditions may accelerate soil degradation.

Samples were taken during one year in eleven different areas and under different

type of plant cover, from Pinus halepensisMiller to shrublands based on xerophytic

species. This index suggests the use of biochemical and carbon-related parameters

to set up a soil quality index according to the following steps: (i) selection of

appropriate parameters, (ii) transformation and weighing of values and (iii) com-

bining the scores into an index. The polynomial relationship for calculating the

MDI is:
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MDI ¼ ½0:89ð1=ð1þ ða=4:87Þ�2:5Þ� þ ½0:86ð1=ð1þ ðb=11:09Þ�2:5Þ�
þ ½0:84ð1=ð1þ ðc=1:79Þ�2:5Þ� þ ½0:75ð1=ð1þ ðd=95:03Þ�25Þ�
þ ½0:72ð1=ð1þ ðe=18:01Þ�25Þ�;

where a is the dehydrogenase activity in mg INTF g–1 h–1, b is the value of water-

soluble carbohydrates in mg kg–1, c is the urease activity in mmol NH3 g
–1 h–1, d is

the value of water soluble C in mg kg–1 and e is the respiration in mg CO2-C kg–1

soil.

Different levels of degradation (null, low, high or very high) were established for

this index, so as to have a threshold value below which actions should be taken to

counter possible negative effects that may lead to desertification in a semiarid

climate.

13.5 Soil Rehabilitation by Applying Organic Amendments.

A Case of Study in Semiarid Areas

As commented in the previous sections, soil degradation can occur in semiarid

areas because of the soil organic matter loss and the application of organic amend-

ments from municipal wastes to semiarid soils can be a suitable biotechnological

management to restore soil quality in these areas. Changes in microbial activity and

in microbial community structure have been observed after short- and long-term

application of these materials (Bastida et al. 2007, 2008a,b) and these changes

should be considered for soil rehabilitation and restoration of these soils.

13.5.1 Short-Term Effects of Organic Amendments in Semiarid
Areas: Effects on Soil Microbial Community Size, Activity
and Structure

Applying organic amendments to soil can increase its total organic carbon content

and fractions, and can positively affect both microbial growth and microbial

activity of soils (Ros et al. 2003; Tejada et al. 2006). In general, such amendments

improve microbial growth and activity (Chap. 6, Ceustermans et al. 2010; Chap. 11,

Fuchs 2010). However, the composition of these materials is important for the

effect on the composition of soil microbiota. Indeed, changes in the composition of

microbial communities as a result of incorporating inorganic or organic amend-

ments have been observed in soil (Marschner et al. 2003). The phospholipid

fatty acids profile (PLFAs) can give quantitative information about community

structure (Ebersberger et al. 2004) and is sensitive to the soil type and management

(Bossio and Scow 1998), heavy metal contamination (Frostegard et al. 1993),
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vegetal composition (Tscherko et al. 2005) and organic amendments (Petersen et al.

2003).

Despite the extensive bibliography on the effects of organic amendments on the

recovery of degraded soils (Pascual et al. 1999; Ros et al. 2003), the effects of

organic matter on the size, composition and activity of the soil microbial commu-

nities has been poorly studied (but see Ros et al. 2006; Chap. 12, Minz et al. 2010;

Chap. 14, Knapp et al. 2010). We postulated that a single amendment can stimulate

soil microbial growth and activity and can promote vegetation cover because of the

huge amount of nutrients and carbon added to soil.

In experimental plots, located in Murcia (Southeast Spain) in an area greatly

affected by soil degradation processes, to which 12 kg m2 of fresh or composted

sewage sludge were added, a higher plant cover was recorded compared to

unamended soils, as well as a higher microbial biomass and higher overall and

specific enzyme activities, suggesting that the large amount of nutrients provided by

these organic materials favours the increases on carbon fractions, microbial activity

and microbial growth (Borken et al. 2002; Ros et al. 2003). The presence of a stable

plant cover is important for improving the input of C and for the development of

soil microbial communities, both of them contributing to the improvement of soil

fertility and avoiding soil erosion processes (Garcia et al. 2002; Tejada et al. 2006).

Hydrolase activities are indicators of microbial activity related to the cycles of

elements and their general increase in the amended soils with respect to the control

may be due to the increase in the microbial biomass, since these enzymes are

synthetised by soil microorganisms (Liang et al. 2005; Tejada et al. 2006).

As already mentioned, organic matter decline in soil is of particular concern in

Mediterranean areas and for this reason research has been mainly focused on organic

C dynamics. Conversely, N has received less attention despite being a limiting

nutrient crucial to plant survival in semiarid regions. Nitrification is a two-step

process which involves the transformation of ammonia to nitrite and the oxidation

of nitrite to nitrate (Innerebner et al. 2006). The first step is considered the bottleneck

of N cycle in soil, since only a limited number of bacteria and archaea are able to

perform this reaction (Leininger et al. 2006). As the turnover rates of ammonia

oxidising in archaea are much lower than those of ammonia oxidising in bacteria

(Könneke et al. 2005), we decided to focus on the bacterial amoA gene. This gene

encodes a subunit of the ammonia oxygenase (the subunit carrying the active site)

which catalyses the oxygenation of ammonia to hydroxylamine. We found a higher

number of amoA copies per gram of soil and hence of potential ammonia oxidizers

in amended compared to control soils (Fig. 13.1). Probably, the higher amount of

ammonia in amended than untreated soils stimulated ammonia oxidisers.

Denitrification is a respiratory process by which oxidised N compounds are used

as alternative electron acceptors for energy production when oxygen is limited. It is

the most important process by which fixed N returns to the atmosphere in the form

of N2 from soil and water, thus completing the N cycle. The process includes

several reactions, each of them controlled by various environmental factors, of

which the most important are oxygen limitation, availability of NO3
– and organic C

(Mahmood et al. 2005; Dambreville et al. 2006). Genes involved in denitrification,
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such as nitrate reductase (narG and napA), nitrite reductases (nirS and nirK) and
nitrous oxide reductase (nosZ), contain highly conserved DNA regions which have

been successfully exploited for developing gene probes. The conversion of nitrite to

nitric oxide (or nitrous oxide) is the limiting reaction of denitrification and the

reaction product is a gaseous compound (Sharma et al. 2005). Denitrifying bacteria

possess either a cytochrome cd1 (cd1 NIR) encoded by nirS or a Cu-containing

enzyme (Cu NIR) encoded by nirK to perform this reaction. In our semiarid soils,

nirK only occurred in low numbers (<105 copies per gram soil dry weight), which

was not affected by the amendments described above. In contrast, nirS showed a

significant response to the incorporation of amendments (Fig. 13.1) and was

detected in larger amounts than nirK (Bastida et al. 2009). These results contrast

with those of other authors, who could amplify successfully nirK from soil samples

but not nirS (Wolsing and Priemé 2004). It is difficult to explain these differences

since current knowledge of the environmental response of nirS- and nirK-contain-

ing denitrifying bacteria is very limited because of the difficulties to culture most of

these organisms. Apart from the fact that organic amendments enriched the soil

with a potential positive effect on soil denitrifiers, the direct incorporation of

denitrifiers with the amendments has been proposed by You (2005), but not by

Saison et al. (2006), because the survival of exogenous microbial populations in

these soils could be constrained by edaphoclimatic properties.
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Fig. 13.1 amoA and nirS gene copy numbers in control and amended soils during the experiment.

Bars with the same letter are not significantly different according to the LSD test (P � 0.05)
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The effect of different organic amendments on soil microbial communities was

evaluated by measuring their PLFA profiles. The organic amendments stimulated

both bacterial and fungal proliferation, as observed by Marschner et al. (2003),

because of the nutrient inputs by the organic amendments. After a primary succes-

sion, an increase in fungal biomass is generally observed because of increases in

organic matter content or C/N ratio (Wardle et al. 2004). After the rapid fungal

proliferation, the fungal biomass is stabilised (secondary succession) and this can

be due to changes in pH, N content and both quantity and quality of organic matter

(Van der Wal et al. 2006). In this sense, the different chemical nature of sludge and

compost can be responsible for the higher proliferation of fungi in the sludge

treatment with respect to the compost-amended soil two years after amendment

(Bastida et al. 2008b).

The ratio between fatty acid 16:1o5, an indicator of mycorrhizal biomass

(Gormsen et al. 2004), and fungal biomass can provide information on the variation

of the mycorrhizal communities with respect to the total fungal community of the

soil. Compost amendment increased the presence of mycorrhizal communities with

respect to the addition of the fresh sewage sludge, probably as a result of the nature

of the organic matter incorporated with the compost (Fig. 13.2). Although most soil

microorganisms are thought to be C limited, a significant group, the mycorrhizal

fungi, does not experience C limitation unless their plant hosts decrease the below

ground C allocation in response to high N availability and/or low light intensity,

defoliation and other stresses (Högberg et al. 2007). Because of the dependence on

recent photosynthate, it is very likely that mycorrhizal fungi are sensitive to

responses of their plant hosts to variations in N supply; indeed, it has been

postulated that N loading decreases the C supply to mycorrhizal fungi (Högberg

et al. 2007). In our study, a lower mycorrhizal to total fungi ratio was observed in

sludge-amended versus compost-amended soil which could be related to the lowest

C/N ratio found after the sludge treatment. It is probable that, once symbiotic fungi

have diminished their community size, non-mycorrhizal fungi may have competi-

tive advantages for their development.

The Gram-positive/Gram-negative ratio pointed to the preferential development

of the Gram + bacteria in the compost and sludge-amended soils compared to the

control. The bigger development of this group may be interpreted as a shift from

chemolithotrophic microbial communities, many of them Gram-negative (Schlegel

1992) towards a heterotrophic community with the increase in C (Tscherko et al.

2004). Many of these Gram-positive bacteria have a capacity to sporulate, for

example Actinomycetes, Bacillus, Clostridium, etc. (Schlegel 1992). This is unsur-
prising in Mediterranean soils since the environmental conditions would favour the

presence of the most resistant bacteria, the endosporulating ones.

It can be concluded that the addition of organic amendments can increase fungal

and bacterial biomass and their activity, as well as the different carbon fractions.

The growth of bacteria and fungi was parallel for both amendments, but the growth

of Gram-positive bacteria was higher than that of Gram-negative bacteria in both

the amended soils. It is not only to consider the changes in the content of organic C,

microbial biomass and microbial activity but also the changes in the structure of
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microbial and plant community (e.g. decrease in plant diversity). The chemical

composition of sewage sludge is an important issue when developing logical

recommendations for the application rates of sludge to agricultural soils and mini-

mising the risks of groundwater contamination, odour, etc. (Singh and Agrawal

2008). The possible emergence of pathogens from sludge and the presence of higher

levels of heavy metals in this fresh material (Singh and Agrawal 2008) could limit

the use of sludges in agriculture. However, for restoration purposes, a single dose of

12 kg m–2 was not negative for soil microbial populations and vegetal development

(Bastida et al. 2008b).

In addition, despite the general absence of differences in activity indicators

between compost- and sludge-amended soils, the longer-lasting effect of compost

carbon compounds could be related to long-term positive effects on microbial

properties and even on soil physical structure. Both the emergence of pathogens
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in sludges and the carbon nature of compost (subject to a stabilization process) lead

us to conclude that compost could be preferred for soil restoration when compared

to sludge. Both materials are useful for stimulating microbial growth and microbial

activity, thus promoting soil restoration in semiarid areas, but long-term experi-

ments are necessary to assess the long-term effects of these materials in semiarid

regions.

13.5.2 Long-Term Effects of Organic Amendments in Semiarid
Areas: Effects on Soil Microbial Community Activity and
Structure

Despite increasing understanding of the links between gene expression and process

at the microscale, there is still much progress to be made when relating these

processes at the macroscale (Standing et al. 2007). This fact should be considered

both in spatial and temporal terms. Thus, once we have clearly showed that organic

amendment application is a way to valorize these organic materials in a short-time

scale, we will consider the effects of the application of these materials in a longer

period of time. Studies are usually focused on short or medium time scales but the

long-term effects on the ecosystem health are poorly known. Here, we will discuss

some long-term results in semiarid plots of southeast Spain, concluding the suit-

ability of these applications in a broad scale in the restoration of degraded soils.

In an area of SE Spain, which is greatly affected by degradation processes,

experimental plots were amended only once in 1988 with the organic fraction of

fresh municipal solid waste (MSW), without composting or grinding, at different

rates (65, 130, 195 and 260 tonnes ha–1) (Albaladejo et al. 1994); soils were

sampled and monitored 17 years later. Amended soils showed higher C fraction

content than unamended soil, which is not surprising since the incorporation of

waste 17 years ago has led to the development of a stable plant cover that is still

evident today. This vegetation would have led to an increase in carbon inputs as a

result of plant remains and root exudates, thus favouring the formation of organic

matter (Garcia et al. 1992).

Plant cover can increase the content of organic C in soil, microbial biomass,

microbial activity and the formation of humus–enzyme complexes. In fact, the

activity of different immobilised enzymes (b-glucosidase, urease and alkaline

phosphatase) extracted with 0.1M pH 7 sodium pyrophosphate showed an increased

in the amended experimental plots, showing an increase in the amended soils with

respect to the unamended soil.

The fact that the 195 tonnes ha–1 application rate lead to higher density of plant

cover and higher immobilized enzyme activity than the treatment with higher dose

rate (260 tonnes ha–1) was one of the most noteworthy findings and suggests that the

long-term biochemical and biological response of soil to the addition of organic

wastes is linear up to a given threshold value. The lower plant cover observed in the
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latter treatment was probably responsible for the lower humic substance C concen-

tration, probably resulting in a reduced enzyme immobilisation in this C fraction.

There is a clear match between humic substance C and the enzyme concentration of

the extract. Likewise, the addition of MSW to soil did not induce a proportional

response of microbial biomass and microbial activity to the dose, and the same

occurred for C fractions studied after 17 years. For many of the parameters studied,

a threshold level was detected above which the addition of more waste does not

increase the measured parameter. This threshold level varied in our study according

to the selected parameter; in some cases, it was 130 tonnes ha–1 and in others 195

tonnes ha–1. Under the prevailing semiarid conditions of the studied area, the soil

may have reached a long-term equilibrium, with respect to both the different carbon

fractions and microbial activity. Enhancement of soil quality with addition of

MSWs allows the recovery of a stable vegetation cover, which in turn provides

organic inputs to soil, positively influencing the microbial growth and activity in

soil. The addition of these organic materials to the degraded soil is a valid strategy

for soil rehabilitation and counteracts the soil degradation and desertification on a

long-term scale (Bastida et al. 2007).

13.6 Metaproteomics of Organic Wastes

In this section, we analyse the prospect of the future soil quality improvement

thanks to the use of organic wastes. A further characterization of these materials is

needed, for what DNA- and RNA-based methods are now available. It should be

noted that these materials are highly rich, not only as regards their high content of

nutrients but also their high content and diversity of microorganisms, with a broad

enzymatic system that remains undiscovered. For this, the identification of micro-

oganisms and genes or transcripts is not enough to drive the bioremediation

approach. Furthermore, it is necessary to characterise biochemical pathways and

the presence of important enzymes involved in element cycling and pollutant

degradation.

The extraction and identification of proteins of these organic materials is a

challenge because their higher organic matter content interferes with many methods

(Roberts and Jones 2008). Nevertheless, Wilmes and Bond (2006) showed that the

metaproteome analysis of these materials is possible. Metaproteomics can help in

finding the microorganisms and enzymes responsible for a given process without

the need for previous metagenomic studies, though we should not forget that such

studies have permitted the compilation of the databases on which protein identifi-

cation is based which nowadays remains uncompleted especially for environmental

samples (Keller and Hettich 2009).

Metaproteomics development for heterogeneous matrices opens the door for

new applications of organic materials. Identification of functional proteins in

wastes can be useful for choosing the specific amendment. Indeed, such studies

may be more valuable in certain organic wastes, which practically act as microbial
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culture media and in which certain microbial species predominate, while some of

these enzymes may have a biotechnological, industrial, environmental and/or

pharmaceutical value (Schmeisser et al. 2007). In the coming years, metaproteome

studies may help to understand the richness of these organic materials, providing a

definitively valorization and usefulness as biocatalyzers in soils.

13.7 Conclusions and Final Remarks

The use of organic materials is needed to restore degraded soils since the high

organic carbon and nutrient content of these materials have more benefits than the

negative effects that they can exert in semiarid ecosystems where soil organic

content is very low. In this sense, organic materials can improve the organic carbon

content and microbial activity. However, at this stage we should consider that the

effects of such applications are dose-dependent and not always an improvement of

soil quality is reached by increasing the dose. This fact means that, if restoration

programs are made rationally, soil restoration is very cheap and problems related to

soil contamination should not be expected when using high-quality organic amend-

ments. Furthermore, the effect of these applications last in time even with only one

addition to a semiarid soil. Nevertheless, monitoring amended soils should be

carefully made because these practices may suppose an alteration on the ecosystem

related to the structure of microbial and plant communities. These changes need to

be evaluated in long-term scales since they can affect the biogeochemical cycling in

soil. Nevertheless, there are a wide range of soil quality indexes that implement

diverse microbiological indicators helping to understand and summarise the

response of soil management. These indexes include parameters related to soil

microbial biomass and its activity, organic C and nutrients availability. In future

years, scientists should be able to use the biological capacity of organic wastes not

only as a source of organic matter and nutrients to soil, but also as a source of

enzymes. However, efforts at molecular level should be carried out in order to

provide enough genome database information, which is the base for proteomic

characterization.
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Chapter 14

Do Composts Affect the Soil Microbial

Community?

Brigitte A. Knapp, Margarita Ros, and Heribert Insam

Abstract Compost amendments have been shown to provide manifold benefits, as

long as compost of good quality is used and care is taken not to accumulate heavy

metals or organic pollutants as a consequence of repeated applications. Among the

advantages of compost as soil amendment is its potential to maintain soil organic

matter, foster nutrient availability, suppress plant diseases and increase soil micro-

bial abundance and activity, thus enhancing soil quality and fertility. However, only

little is known about how compost amendments act as microbial inoculum to the

soil and if the compost-borne microflora leaves a long-term imprint on soil micro-

bial communities. In this chapter, it will be analysed if and to what extent soil

microbial biomass, activity and community structure are affected by compost

amendments. A long-term field study, in which four different composts have been

applied annually since 1991, will be presented in detail.
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14.1 Introduction

The biological process of composting involves the complete or partial degradation

of organic materials by a consortium of microorganisms, the composition of which

changes as the composting process progresses (Ryckeboer et al. 2003). In recent

years, the transformation of organic waste (e.g. municipal and industrial organic

waste, green waste, animal manure and sewage sludge) to compost has become

increasingly popular across Europe. Composting decreases the amount of waste

being deposited, and, by the application of the mature compost to agricultural soils,

reduces the use of artificial fertilisers (Hüttl and Fussy 2001). Amendment of high-

quality composts to soil is considered to be an agronomically advantageous prac-

tice, using a natural recycling product that is able to enhance soil fertility and

productivity. The effects of compost application to agricultural soils range from an

increase in nutrient availability (mainly N and P) and soil organic matter content

(Garcia-Gil et al. 2000) to the suppression of pathogens (see Chap. 8, de Bertoldi

2010; Chap. 11, Fuchs 2010) and changes in the composition and activity of soil

microorganisms (Ros et al. 2003). Although microbial activity and succession

during composting have been analysed in various studies (e.g. Kowalchuk et al.

1999; Alfreider et al. 2002; Ryckeboer et al. 2003), little is known about how

compost amendments act as microbial inoculum to the soil and if the compost-

borne microflora leaves an imprint on soil microbial communities in the long-term

(see Chap. 13, Bastida et al. 2010; Chap. 12, Minz et al. 2010).

In this chapter, whether and to what extent microbial abundance, activity and

community structure are affected by the amendment of composts to soils will be

analysed. Furthermore, a selected long-term field study, in which four different

composts as well as combined mineral fertiliser and compost treatments were

applied annually for more than 15 years, will be presented in detail.

14.2 Compost as Biological Fertiliser

Composting is an aerobic process, during which a mixture of organic substrates is

degraded by a diverse microbial community, transferring the organic matter into a

stabilised end-product (Insam and de Bertoldi 2007) and reducing human, animal
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and plant pathogens (see Chap. 9, Vinnerås et al. 2010) as well as phytotoxins

(Beffa et al. 1995). Various microbial groups are, thereby, involved, changing

in abundance and composition during the composting process (see Chap. 6,

Ceustermans et al. 2010; Chap. 1, Insam et al. 2010). At the beginning, different

species of yeasts and mesophilic bacteria dominate, utilising soluble substances

such as sugars, amino acids and fatty acids. As a consequence of microbial activity,

the temperature rises and the mesophilic microorganisms are inactivated and

replaced by a wide range of thermotolerant and thermophilic organisms (Ryckeboer

et al. 2003). The hot rotting phase may last a few days to several weeks or even

months, depending on the source material used, and temperatures up to 80�C are

reached. In this stage, organic material is actively degraded by bacteria, whereas

fungi are inhibited by temperatures exceeding 60�C (Beffa et al. 1995). Good

management is required during this stage, since heat may inactivate enzymes or

limit oxygen supply and thus cause inhibitory effects on the composting process

(Ryckeboer et al. 2003). When the easily available organic matter is metabolised,

temperature decreases and mesophilic bacteria and fungi recolonise the substrates,

starting to degrade the more recalcitrant organic compounds (Beffa et al. 1995).

Moreover, this last step of the composting process, the maturation or curing phase,

is characterised by the humification of ligno-cellulosic compounds, leading to

stabilised organic matter as an end-product (Insam and de Bertoldi 2007).

In previous studies, microbes characteristic for the individual stages of compost-

ing were described (Ryckeboer et al. 2003); however, owing to the inhomogeneity

of compost (different nutrients, oxygen, water and pH), the diversity of micro-

organisms can vary considerably between different niches. As compost is produced

from starting materials of different quality and is affected by temperature, pH,

nutrient content, O2 supply, moisture content, turning frequency and other factors

(Diaz and Savage 2007), process parameters and characteristics of the end-product

differ widely (Dimambro et al. 2007). If compost is inadequately processed, it can

contain animal and plant pathogens as well as toxic compounds, which may cause

damage to crop plants upon application (Chaps. 6 and 9, Fuchs et al. 2006).

Different parameters have been proposed for assessing the maturity and stability

of composts, and include physico-chemical properties, phytotoxicity tests (Ranalli

et al. 2001) as well as microbiological parameters such as microbial respiration,

ATP content, microbial counts, enzyme activity (Tiquia 2005) and community level

physiological profiles (Belete et al. 2001).

14.3 The Use of Compost as Soil Amendment

In the twentieth century, the concept of sustainable agriculture has contributed to

the popularity of composting, thereby making use of this technique’s potential for

closing nutrient cycles (Tittarelli et al. 2007), restoring organic matter to the soil

(Marmo 2008), and at the same time reducing the application of artificial fertilisers

and pesticides (Hargreaves et al. 2008). Political initiatives aiming at a reduction of
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the landfill of bio-waste have furthermore enforced the conversion of the degrad-

able fraction of solid wastes to compost. The European Union addressed this issue

in 1999, releasing the Council directive 1999/31/EC on the landfill of waste, in

which goals targeting the stepwise reduction of biodegradable municipal waste

being deposited in landfills were clearly defined. As a consequence of this measure,

methane emissions from landfills are expected to decrease considerably (Marmo

2008). With the increasing interest in compost, research activities towards under-

standing this complex process have been intensified, as only a profound knowledge

of composting and the use of compost as soil amendment guarantees an efficient

and safe use in agriculture.

The virtue of composts for agricultural and horticultural use has been shown

previously in numerous studies. Benefits include

l compost helps to increase soil organic matter levels and renders soils a sink for

atmospheric CO2, thus contributing to the goals of the Kyoto Protocol (Marmo

2008)
l compost increases the soil sorption capacity for pollutants such as heavy metals

on the one side as well as water and nutrients on the other (Traulsen et al. 1997)
l compost treatment is known to exert a positive effect on soil physical properties

(increased porosity and aggregate stability; Hüttl and Fussy 2001)
l compost may affect plant growth (Zhang et al. 2000) and induce suppressiveness

against soil-borne diseases (Hoitink and Fahy 1986; Noble and Coventry 2005;

Yogev et al. 2006)
l compost application increases microbial activity (Guisquiani et al. 1995; Ros

et al. 2006a,b)
l compost amendments are known to change soil microbial communities either

directly (through the indigenous compost microbiota) or indirectly through the

above mentioned mechanisms (Ros et al. 2003)

Studies on the effect of compost applications on soils have mostly concentrated

on physico-chemical parameters (Shindo et al. 2006; Tejada et al. 2009), as well as

plant productivity (Zhang et al. 2000; Mantovi et al. 2005; Fuchs et al. 2006). Little

is known about how composts impact on soil microbial communities, although they

play an important role in soil ecosystem functioning and maintenance. Moreover,

microbiological parameters are more responsive to soil management changes than

physico-chemical properties, thus providing more accurate information on the soil

status (Tejada et al. 2008).

14.4 How Compost Amendments Affect the Soil Microbiota

A variety of studies have tried to elucidate the complex interactions between

compost application and soil microbial properties. These investigations, however,

vary considerably in the applied experimental designs, displaying differences in

soil physico-chemical properties, land-use and compost type (e.g. different starting
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material, process parameters), frequency and dosage of application, plant cover on

the research site, the duration of experiments as well as the parameters chosen for

analysis. Thus, different studies are frequently not comparable to each other and

general conclusions about the effectiveness of compost as for soil amelioration or

fertilisation are difficult to draw (Postma and Kok 2001). Despite these limitations,

some interesting findings have been made, shedding light on the impact of compost

amendments on the microbial biomass, activity and diversity in soil ecosystems

(see Chap. 12).

14.4.1 The Effect of Compost Amendments on Microbial Biomass

A classical tool for assessing microbial abundance is plate counting, which is either

used for determining the total cultivable bacteria and fungi in the soil or for

studying a specific microbial group by applying selective media and growth con-

ditions. The number of colony-forming units (CFU) has also been used for inves-

tigating the effect of compost applications on soils. In a laboratory study in which

two types of agricultural soils were amended with three different composts (green

waste compost and two different types of mushroom compost), it was revealed that

the impact of the organic amendments on the soil microbiota was dependent on the

type of compost used (Perez-Piqueres et al. 2006). When examining compost

produced from turkey manure and ligneous waste, Calbrix et al. (2007) were not

able to detect a higher bacterial abundance after application of compost, whereas

manure and especially sewage sludge led to a significant increase in CFU. How-

ever, this effect was transient and 6 months after application, CFUs were similar to

the numbers found before addition of organic amendments. In this study, CFUs

were not correlated with microbial biomass carbon (Cmic), which is another classi-

cal biological parameter for characterising soils and is commonly determined by

chloroform-fumigation extraction (CFE; Jenkinson et al. 2004) or substrate-

induced respiration (SIR; Anderson and Domsch 1978). As microorganisms adapt

rapidly to changing environmental conditions such as the incorporation of organic

materials, microbial biomass carbon is a suitable indicator of changes in soil

ecosystems (Pascual et al. 1997). In a long-term experiment applying municipal

solid-waste compost (MSWC) on an agricultural soil low in organic matter content,

Garcia-Gil et al. (2000) were able to show that soils amended with MSWC

contained higher levels of Cmic as compared to the non-fertilised control plots.

This effect was, on the one hand, attributed to the input of microbial biomass as part

of the amendments and, on the other hand, it was assumed that additional C

contained in these organic substrates activated the indigenous soil microbiota.

This finding was also confirmed for compost amendments derived from green

waste (Okur et al. 2007; Tejada et al. 2008) and sewage sludge (Zaman et al.

2004). However, other factors were reported to show a more pronounced effect on

soil microbial biomass than compost treatments, especially the type of soil the

compost was applied to (Nendel and Reuter 2007).
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In contrast to these traditional parameters, quantitative polymerase chain reac-

tion (qPCR) is an approach that detects microorganisms by targeting their DNA or

RNA, thus being independent of the growth requirements of the microorganisms

involved. By using primers that specifically amplify a selected group of bacteria or

fungi, it is possible to gain insights into their abundance within a soil sample (see

Chap. 7, Hultman et al. 2010). Furthermore, a specific biological process in the soil

can be studied, as was demonstrated for ammonia oxidation in soil by He et al.

(2007). These authors analysed the effect of different fertilisers on ammonia-

oxidising bacteria (AOB) and ammonia-oxidising archaea (AOA) after 16 years

of fertiliser treatment. Different responses of the AOB and AOA communities on

the various fertiliser combinations were found; however, no compost application

was included in this study. In another long-term field experiment, Innerebner et al.

(2006) were not able to reveal significant differences between soil plots that had

been amended with four different compost types (green manure compost, organic

waste compost, manure compost and sewage sludge compost) over 15 years.

However, all compost-amended soils obtained a higher abundance of AOB than

plots receiving mineral fertiliser or control plots. This finding was explained by the

fact that the organic N in the composts was liberated by microorganisms through

ammonification, thus leading to an increase in AOB cell density within the com-

post-amended soil plots. By using reverse transcriptase (RT)-qPCR, based on the

detection of RNA, information not only on the microbial cell numbers, but also on

the microbial activity can be obtained (Nielsen and Winding 2002), as metaboli-

cally active cells contain higher levels of intracellular RNA than dormant ones.

Thus, RNA may be used as an indicator for microbial activity (Felske et al. 1998).

14.4.2 The Effect of Compost Amendments on Microbial Activity

Microbial respiration is a frequently measured parameter in soils, reflecting the

basic turnover rates (Insam et al. 1991) and responding rapidly to perturbations or

soil management changes (Gilani and Bahmanyar 2008). Basal soil respiration as

an indicator for microbial activity was determined in a long-term study (20 years),

in which organic farming was compared to conventional farming (Fließbach et al.

2006). As an outcome of this investigation, higher microbial activities were found

in the soils fertilised with farmyard manure compost than in the control plots. An

increase of soil microbial respiration upon application of municipal solid waste

compost and vermicompost was also demonstrated in an investigation on the effect

of compost applications on a silty clay soil in Iran. However, the level of soil

microbial respiration was more dependent on application rates than on fertiliser

type, and was linked to total organic C (Gilani and Bahmanyar 2008).

As microorganisms play an essential role in maintaining biogeochemical cycles

in the soil and enzymatic activity is mainly of microbial origin (Nielsen and

Winding 2002), soil enzymes can be used as indicators of microbial activity

(Chaps. 6 and 13, Marcote et al. 2001). Moreover, enzyme activity reacts quickly
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to changes in the soil ecosystem, and thus it has frequently been used to assess the

impact of treatments on microbial communities. Typically, enzymatic activities

referring to either the C-cycle (e.g. cellulase, b-glucosidase, b-galactosidase), the
N-cycle (e.g. protease, urease, amidase) and/or the P-cycle (e.g. phosphatase) are

measured, as these enzymes contribute essentially to plant nutrient availability

(Galli 2004). In two studies dealing with the effect of MSWC application at an

annual rate of 20 and 80 tonnes ha–1, it was found that soil enzyme activities varied

depending on the treatment, dose of compost application and sampling date

(Garcia-Gil et al. 2000; Marcote et al. 2001). As a drawback of MSWC application,

heavy metals were incorporated into the soil and even led to inhibitory effects when

compost was applied in large doses. The same effect was revealed in a field study

using composted yard waste in combination with sewage sludge as soil amendment,

whereby available metal concentration (Cu, Zn, Mn) increased with compost

application (He et al. 1995). Heavy metal accumulation in agricultural soils as a

consequence of compost amendments, especially of MSWC and sewage sludge

compost, has frequently been reported to be one of the main risks of long-term

application (Pinamonti et al. 1997; Wei and Liu 2005; Madrid et al. 2007; Cherif

et al. 2009).

14.4.3 The Effect of Compost Amendments on Microbial
Community Structure and Diversity

Besides having an influence on microbial biomass and activity, compost amend-

ments may also impact microbial community structure and diversity within the soil.

One cultivation-independent method for characterising the structure of soil micro-

bial communities is phospholipid fatty acid analysis (PLFA; Elfstrand et al. 2007).

This technique is based on the measurement of fatty acids within the membrane of

viable microbial cells, making it possible to distinguish several microbial groups

according to their specific PLFA composition (Zelles 1999). Saison et al. (2006)

revealed that PLFA profiles were significantly affected by compost amendments.

Successions in microbial community structure were strongly dependent on the

compost application rate, showing that higher amounts of compost led to a more

pronounced and faster effect. Fatty acid analysis was also used by Carrera et al.

(2007), demonstrating that fatty acid profiles, especially in regard to the relative

amount of polyunsaturated fatty acids (including the biomarkers for fungi), were

both influenced by treatment with poultry manure compost as well as sampling

date. In another study, Bastida et al. (2008) applied this method to analyse the

microbial community structure in a degraded semiarid soil 2 years after compost

application and revealed a change in the plots that had received sewage sludge

compost as compared to the control. This shift in community structure was

connected to an increase in microbial activity and biomass as well as elevated

carbon content, thus indicating a beneficial effect of compost application.
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Another frequently applied tool for revealing the structure of microbial popula-

tions in the soil is the use of molecular fingerprinting techniques such as automated

rRNA intergenic spacer analysis (ARISA; Ranjard et al. 2001), temperature

or denaturing gradient gel electrophoresis (TGGE/DGGE; Muyzer et al. 1993),

terminal restriction fragment length polymorphism (T-RFLP; Liu et al. 1997) or

single-strand conformation polymorphism (SSCP; Schwieger and Tebbe 1998).

These tools (discussed in Chaps. 1, 7 and 12) allow for the rapid and simultaneous

analysis of multiple samples and are especially useful for investigating microbial

succession in a habitat. DGGE and SSCP moreover offer the possibility to identify

distinctive bands from the fingerprinting profiles by excising and sequencing bands

of interest from the gel (Nocker et al. 2007). A prerequisite for the application of

these methods is the extraction and amplification of DNA from the soil, on the one

hand, providing also insight into the non-cultivable fraction of the soil microflora,

but, on the other hand, exposing the analysis to an additional bias (von Wintzinger-

ode et al. 1997).

Several studies have been conducted using molecular techniques to investigate

the influence of compost amendments on the structural composition of the soil

microbiota. Whereas some analyses discovered differences between compost- and

non-compost-amended soils (Innerebner et al. 2006, using DGGE; Perez-Piqueres

et al. 2006, using T-RFLP; Ros et al. 2006a, b, usingDGGE; Saison et al. 2006, using

ARISA), others were not able to detect compost effects (Crecchio et al. 2001, using

ARISA and DGGE; Calbrix et al. 2007, using T-RFLP; Cherif et al. 2009,

using DGGE). Therefore, general statements on the usefulness of fingerprinting

techniques for analysing the impact of compost amendments on soils are difficult to

draw and combination with other methods is recommended.

To investigate the potential functional diversity of the soil ecosystem, commu-

nity level physiological profiles (CLPPs; Garland and Mills 1991; Insam and

Goberna 2004) have been widely used. This method allows an assessment of the

microbial metabolic activity in respect to specific carbon sources; however, it is

again a tool that is restricted to the cultivable fraction of the microbial community,

as only aerobic heterotrophic microbes that are able to rapidly grow on the various

substrates can be detected (Carrera et al. 2007; Ros et al. 2008). CLPP was also

applied for analysing the effect of compost amendments on the soil microflora, as

microbial substrate utilisation patterns are considered to be suitable indicators for

detecting soil management changes (Bending et al. 2000). Different kinds of

vermicompost applications (vermicompost from source-separated household solid

waste and vermicompost from horse and rabbit manure) were demonstrated to

modify substrate utilisation patterns of the soil microbial community in comparison

to unamended control soils (Gomez et al. 2006). In contrast, Perez-Piqueres et al.

(2006) pointed out that the impact of compost application on bacterial metabolism

was dependent both on the type of compost used as well as on the soil type it was

applied to. Other studies found that sampling date was more influential for CLPP

results than compost treatments (Calbrix et al. 2007; Carrera et al. 2007), high-

lighting the need for repeated analysis applying a multi-parameter approach.
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Calbrix et al. (2007) discovered that treatment effects found directly after

compost application could not be retrieved 6 months later, which was not only

true for CLPP analysis, but also for CFU numbers and total DNA contents. In a

similar study investigating not only the effect of compost amendments on the

abundance, activity and structural composition of soil microorganisms, but also

the resilience of compost applications to soils, Saison et al. (2006) found that

composts made from grape skins and other winery residues had an influence on

all three domains of microbial life. However, although high application rates were

used in this experiment, the effects on microbial biomass, activity and community

structure were only observed shortly after application, and were not detectable 6

months later. Moreover, the initial impact of compost amendments on soil micro-

biota was mainly attributed to an additional input of organic matter, whereas

compost-derived microorganisms seemed to be outcompeted by the indigenous

soil microbiota (Saison et al. 2006). These findings indicate that besides analysing

if and to what extent compost applications have an influence on the soil microbiota,

the issue of persistency of the initially observed effects is of great importance

(Bhattacharyya et al. 2003; Gomez et al. 2006; Calbrix et al. 2007) and emphasises

the need for long-term investigations. Still, the number of long-term field experi-

ments (>5 years) investigating the impact of compost amendments on agricultural

soils are rare (Table 14.1). This is why, in the following section, a selected long-

term field trial will be presented and the use of a multi-parameter approach will be

demonstrated.

14.5 Long-Term Effects of Different Compost Amendments on

the Soil Microflora on an Agricultural Site – a Case Study

In order to conduct a full survey on the fertiliser value of different composts

(source-separated urban organic waste, green waste, manure and sewage sludge

compost), a field experiment was set up in 1991 by the Austrian Federal Agency for

Food Safety (AGES). The initial aim of the study was to observe long-term effects

of compost amendments on crop yield and compare compost-treated plots to

mineral-fertilised and control plots. In recent years, the analyses have however

been extended to investigate soil physico-chemical properties as well as microbial

activity, biomass and structure of microbial communities. The primary aim of the

present investigation was to address two major questions:

1. Does the long-term application of composts affect soil microbial biomass and

activity?

2. Does the application of different composts result in divergent structural finger-

prints in the soil?
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14.5.1 Experimental Design

A crop rotation (maize, summer-wheat, legumes and winter-barley) field experiment

was started in 1991 at the research site Ritzlhof near Linz, Austria. The soil was

loamy silt (17.4% clay, 69% silt, 13.6% sand) with a pH (H2O) of 6.8. The soil

contained 1.9% organic matter, 260 mg kg–1available P and 300 mg kg–1 available K.

The experiment was performed using a randomised block of 12 plots (5 m �
6 m) with 4 replicates. Treatments were applied annually after harvest as follows:

1. Soil without fertilisation (control)

2. Compost amendment corresponding to 175 kg N ha–1

l urban organic waste compost (OWC) from source-separate collection of

domestic organic waste
l green waste compost (GC) from roadside and park leaves, tree prunings, yard

clippings, and other bulky cellulose and lignin-rich materials
l cattle manure compost (MC) containing straw bedding impregnated with

liquid and solid manure
l sewage sludge compost (SSC) from anaerobically stabilised sewage sludge of

a municipal waste-water treatment plant with wood chips and bark as bulking

agents

3. Composts plus mineral fertiliser treatments: 175 kg N ha–1 from compost plus

80 kg mineral N (NH4NO3) ha
–1 (OWC+80N; GC+80N; MC+80N, SSC+80N)

4. Mineral fertilisation treatments corresponding to 80 kg N (NH4NO3) ha
–1 (80N)

Soils from the field experiment were sampled in October 2003 after harvest of

winter barley and in August 2004 after harvest of legumes. Three random soil cores

(20 cm depth, 6 cm diameter) were taken from each plot (four replicate plots for

each treatment), bulked and sieved (<2 mm). Samples for DNA analysis were taken

separately with a spatula and transferred into sterile 50-ml Greiner tubes. The

samples were analysed immediately (soil microbial respiration and microbial

biomass) or frozen at –18�C prior to molecular analysis.

14.5.2 Results and Discussion

As has been illustrated in the last section, composts may impact the soil microbiota

on three levels, leading to a change in microbial biomass, activity and/or commu-

nity structure. Therefore, all the three dimensions were investigated in this survey,

analysing microbial biomass using SIR (Anderson and Domsch 1978), microbial

activity by measuring microbial basal respiration using a continuous flow infrared

gas analysis system (Heinemeyer et al. 1989) and revealing microbial community

structure by performing PCR-DGGE analysis (Muyzer et al. 1993) on bacterial and

fungal communities.
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14.5.2.1 Microbial Biomass and Activity

Whereas microbial biomass increased by only a small amount as a consequence of

the annual application of organic amendments or combined compost and mineral

fertiliser treatments, the effect of compost amendment on soil microbial respira-

tion was more pronounced (Table 14.2). The highest basal respiration was

measured for the SSC and the SSC + 80 kg N treatment, which was significantly

different to the unamended control soil, and moreover displayed an elevated

metabolic quotient (qCO2). Since this finding was connected to an accumulation

of Zn and Cu in the SSC-amended soil plots, heavy metal concentration may have

lead to a stress-induced qCO2 rise (Insam et al. 1996). Moreno et al. (1999)

previously demonstrated that the metabolic quotient rose because of the incorpora-

tion of heavy metal-contaminated sewage sludge compost, making it a sensitive

indicator for stress-induced responses of the soil microbiota. Sewage sludge

compost is generally considered to be a more problematic soil amendment than

other types of compost, not only displaying elevated heavy metal contents, but

also elevated contents of xenobiotics (Pascual et al. 2008).

14.5.2.2 Soil Community Analysis Based on Microbial DNA

Molecular fingerprinting tools have proven useful for simultaneously investigating

the structural community composition of multiple samples (Sect. 14.4.3). PCR-

DGGE analysis was performed in the framework of this study to reveal if composts

leave imprints in the soil after they had been applied for many years. Control plots

and soils treated with mineral fertiliser were compared to soils amended with four

different types of compost.

Table 14.2 Microbial biomass (Cmic), basal respiration and metabolic quotient (qCO2) for

compost-amended (GC, MC, OWC, SSC), mineral fertiliser amended (80N), compost + mineral

fertiliser amended (GC+80N, MC+80N, OWC+80N, SSC+80N) and unamended soil plots

(control)

Treatments Cmic (mg C g–1 soil) Basal Respiration

(mg CO2-C g–1 soil h–1)

qCO2 (mg CO2-C g–1

Cmic h
–1)

Control 245.73 (6.20)a 0.44 (0.13)a 0.48 (0.15)a

80N 229.86 (4.42)a 0.37 (0.10)a 0.44 (0.07)a

GC 277.78 (7.94)a 0.58 (0.08)ab 0.57 (0.08)ab

MC 250.55 (4.27)a 0.40 (0.08)a 0.44 (0.05)a

OWC 284.90 (7.13)a 0.55 (0.07)ab 0.52 (0.10)ab

SSC 260.16 (5.91)a 0.66 (0.14)ab 0.69 (0.16)ab

GC + 80N 280.47 (7.65)a 0.52 (0.12)ab 0.50 (0.04)a

MC + 80N 270.28 (3.29)a 0.59 (0.06)ab 0.60 (0.15)ab

OWC + 80N 283.90 (6.04)a 0.65 (0.13)ab 0.62 (0.14)ab

SSC + 80N 271.26 (6.48)a 0.82 (0.10)b 0.81 (0.13)b

Numbers in parentheses are standard deviations, n = 4. Mean values followed by the same letter are

not significantly different (P � 0.05) between different treatments
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PCR-DGGE analyses were performed using universal bacterial (Ros et al.

2006a) and fungal primer sets (Vainio and Hantula 2000) as well as Streptomycetes

group-specific primers (Monciardini et al. 2002). Cluster analyses of fingerprinting

patterns showed that compost amendments, especially the combined compost and

mineral fertiliser treatments, had an impact on the bacterial community structure,

both on the universal and the Streptomycetes group-specific level (Fig. 14.1). In

contrast, fungal community structure was more influenced by seasonal variations

than by treatment (Fig. 14.2). Soil samples from October 2003 formed a separate

cluster in the dendrogram, while samples taken the following year formed a second

cluster. The influence of seasonal changes on microbial community structure in a

fertiliser experiment on agricultural soil was confirmed by Calbrix et al. (2007),

showing that the date of sampling contributed more to modifications in microbial

community structure than treatment effects. In contrast, DGGE fingerprints of

Streptomycetes, which are of interest because of their function as essential biode-

graders and enzyme-producers in soil (Williamson et al. 2000), clustered according

to the treatment. Seasonality seemed to have nearly no impact. Cluster analysis

showed that the different treatments separated into two main groups, with all

combined compost and mineral fertiliser treatments in one cluster and the mineral

fertiliser only treatment (80) and control treatments in the second cluster. Composts

without additional mineral fertiliser were either found in the cluster with the

Fig. 14.1 Cluster analysis of bacterial DGGE fingerprints based on 16S rRNA gene extracted from

compost-amended (GC, MC, OWC, SSC), mineral fertiliser amended (80N), compost + mineral

fertiliser treated (GC + 80N, MC + 80N, OWC + 80N, SSC + 80N) and unamended control soil

plots (control). The number at the end of the labels (–3 resp. –4) indicates the year of sampling,

2003 resp. 2004. Values at the branches of the dendrograms show the percentage of similarity,

based on the Dice correlation coefficient
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combined organic and mineral fertiliser amendments (MC, SSC), or grouped with

the control and 80 kg N mineral fertiliser treatment (MC, OWC). In general,

fingerprinting profiles of the Streptomycetes-DGGEs were highly similar to each

other, and did not show distinctive bands characteristic for a certain amendment.

Therefore, it was difficult to clearly distinguish between the four compost types

according to their banding patterns. Since DGGE has the limitation that its profiles

represent only the most dominant phylotypes in the investigated samples (Muyzer

et al. 1993), the similar fingerprinting profiles of the differently amended soils may

be attributed to the presence of some predominant microbes in all the samples,

whereas differences in less abundant representatives of the microbial community

cannot be detected by this fingerprinting technique.

14.5.3 Outlook

A multi-parameter approach applying diverse methods for investigating the micro-

bial biomass and activity as well as microbial community structure and diversity

has proven valuable for assessing the interactions between compost and soil

microbiota (Ros et al. 2006a). This is why the experiment on the research site is

still ongoing, using modern tools for analysing the effects of different fertiliser

treatments on soil microbial communities. In a current project, the impact of

Fig. 14.2 Cluster analysis of fungal DGGE fingerprints based on 18S rRNA gene extracted from

compost-amended (GC, MC, OWC, SSC), mineral fertiliser amended (80N), compost + mineral

fertiliser treated (GC + 80N, MC + 80N, OWC + 80N, SSC + 80N) and unamended control soil

plots (control). The number at the end of the labels (–3 resp. –4) indicates the year of sampling,

2003 resp. 2004. Values at the branches of the dendrograms show the percentage of similarity,

based on the Dice correlation coefficient
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different compost amendments as compared to non-amended and mineral fertiliser

amended agricultural soil is being investigated by measuring volatile organic

compounds (VOCs). VOCs are a group of substances with a high diversity includ-

ing alcohols, ketones, acetates, alkenes monoterpenes, terpenes, isoprenes and

aromatic compounds as well as sulphur- and nitrogen-containing compounds.

VOCs are ubiquitous in the environment (e.g. spoiling foods, composts, soils,

plant surfaces) and produced by plants, animals and fungi as well as by bacteria

and archaea. VOCs develop as intermediate products of the decomposition of

organic matter such as litter or organic household biowastes (Leff and Fierer

2008; Mayrhofer et al. 2006) and can be detected before microbial growth can be

measured, making them an interesting parameter for investigating changes in a soil

ecosystem. Although microorganisms in the soil release a considerable proportion

of VOCs and thus influence soil processes, only little is known about the amounts

and types of VOCS emitted from soils (Leff and Fierer 2008). This is why these

compounds are currently being investigated by proton transfer reaction mass

spectrometry, a method that enables the on-line detection of trace components

present at very low levels (Lindinger et al. 1998). Since it is assumed that soil

amendments induce changes in the microbial community structure, distinguishable

VOC emission patterns are likely to occur as a consequence of the different

treatments. If specific VOCs were detected for the organic amendments, it would

moreover be possible to distinguish between the four types of composts (Seewald

et al., submitted for publication).

Several studies have demonstrated that composts may induce suppressiveness

against soil-borne diseases (see Chap. 8, Hoitink and Fahy 1986; Noble and

Coventry 2005; Yogev et al. 2006). This is why a further emphasis of this survey

will be placed on the suppressiveness of different composts against soil-borne

phytopathogens (Fuchs 2002). If suppressive effects of a certain compost treatment

towards specific plant diseases are found, a microarray approach (Franke-Whittle

et al. 2005, 2009) may make it possible to identify specific microorganisms linked

to the disease suppressiveness of the soil.

14.6 Conclusions

Compost amendments have been shown to provide manifold benefits, as long as

composts of good quality are used and care is taken not to accumulate heavy metals

or organic pollutants as a consequence of repeated application. Among the advan-

tages of compost as soil amendment is its potential to maintain soil organic matter,

foster nutrient availability and increase soil microbial abundance and activity, thus

enhancing soil quality and fertility (Tejada et al. 2009).

Despite the intensive efforts to reveal the effects of compost applications on the

soil microbiota using microbial and molecular techniques, these investigations

provide only restricted information since the effects found directly after compost

amendment may differ considerably from those observed in the long term. Thus,
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long-term field studies on this topic are essential to gain a deeper knowledge on the

impact of compost amendments on the soil microbiota. In our experiment con-

ducted near Linz, Austria, we demonstrated that composts may impact the soil

microbiota and leave a distinct imprint on the soil.
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Chapter 15

Production and Application of Bioorganic

Fertilizers for Organic Farming Systems

in Thailand: A Case Study

N. Teaumroong, C. Wanapu, Y. Chankum, W. Arjharn, S. Sang-Arthit,

K. Teaimthaisong, and N. Boonkerd

Abstract As organic farming in Thailand has gained more momentum in recent

years, many organic production projects have been initiated. Owing to the regula-

tion of organic farming, synthetic chemical fertilizers are not allowed to be used.

Therefore, the combination of organic fertilizers and plant growth-promoting

rhizobacteria has been developed, commonly known as bioorganic fertilizers.

Amendment of mature compost with mixed microbe cultures (Azotobacter sp. +
Azospirillum sp. + Trichoderma harzianum) was conducted. In addition, the use of

Azolla microphylla as a green manure together with bioorganic fertilizer for rice

cultivation showed a satisfactory yield. In the case of vegetable (Chinese kale),

Sesbania rostrata and cowpea cultivation were also used as green manures prior to

bioorganic fertilizer application. The combination of green manures and bioorganic

fertilizers demonstrated that green manures enhance the effect of bioorganic ferti-

lizers so that it can become a potential alternative to conventional farming systems.
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15.1 Introduction

15.1.1 Aim of Organic Farming

Organic agriculture is a production system concerned with healthy and environ-

mentally friendly food production. The inputs should be reduced by reusing,

recycling and the efficient management of materials and energy, in order to main-

tain and improve environmental quality and conserve resources. The Food and

Agricultural Organization (FAO) considers organic farming an essential strategy

to improve the quality of food and to prevent health effects as a result of exposure

to residual agrochemicals. Therefore, organic farming can be referred to as a

farming system that does not use synthetic chemicals such as chemical fertilizers,

pesticides and plant hormones or genetically modified organisms (GMOs). Organic

farming systems need complex and integrated biological systems in order to

achieve their goal of sustainable crop and livestock production. Improving soil

fertility supports a diverse and active biotic community, and allows for an undis-

turbed decomposition (Foth and Ellis 1997; Mäder et al. 2002). It is dependent upon

an understanding of the effects of management practices on soil fertility. This

requires the provision of good on-farm advice by advisors who fully understand

the complexity of managing soil fertility in organic farming systems. The develop-

ment and widespread accessibility of appropriate tools to support decision-making

is also important.

The term “organic” as applied to farming was first used in the United States by

J.I. Rodale in 1940, who developed his idea based on the works of Sir Albert

Howard (England), Rudolph Steiner (Germany) and Dr. William Albrecht (USA).

In England, the term was developed at about the same time by Lord Northbourne
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who described an integrated farm as a “dynamic living organic whole” (Scofield

1986). Organic farming is developing rapidly and is now practiced in more than 120

countries around the world. According to the latest survey on worldwide organic

farming (Willer and Yussefi 2007), almost 31 million hectares are currently man-

aged organically by at least 633,891 farms. This constitutes 0.7% of the agricultural

land of the countries covered in the survey in 2007. In total, Oceania holds 39% of

the world’s organic land, followed by Europe (23%) and Latin America (19%). The

countries with the greatest organic areas are Australia (11.8 million hectares),

Argentina (3.1 million hectares), China (2.3 million hectares) and the United States

(1.6 million hectares). The number of farms and the proportion of organically

managed land when compared to conventionally managed systems, however, are

highest in Europe.

The most important factors for production of crops under organic farming

systems are soil fertility management and pest management. In this paper, soil

fertility management through the use of biofertilizers (BFs) and bioorganic fertili-

zers (BOFs) will be discussed. To produce healthy crops, essential plant nutrient

elements must be available in the soil throughout the period of cultivation.

15.1.2 Organic Agriculture in Thailand

In Thailand, organic agriculture is a part of the larger sustainable agricultural

movement, initiated by farmers and local non-governmental organizations

(NGOs) in the 1980s. The Alternative Agricultural Network (AAN) was established

in 1984 as a national network, and provides a main discussion forum of experience

sharing and policy advocacy for sustainable agriculture. As organic agriculture has

gained more and more momentum in recent years, several organizations specializ-

ing in organic agriculture have also emerged. Many organic production projects

have been initiated by government sectors, private company exporters and even

NGOs. Thailand exports moderate amounts of organic rice, spices, fruits and

vegetable, tea, coffee, cotton, cereals and honey (Thilmany et al. 2006), and

approximately 25,000 hectares of farmland is now under organic management

(www.actorganic.cert.or.th). The government policy promoting organic farming

is generally favourable. The Thai government has placed its attention mainly on

developing national standards, certification and accreditation. The NGO’s standard

as Organic Agricultural Thailand Certificate (ATC) also received a certificate of

ISO Guide 65 from IOAS (International Organic Accreditation Services Inc.) in

2005 and a certificate of Accredited Organic Body of IFOAM (International

Federation of Organic Agriculture Movements). In addition, research in the fields

of soil fertility management, pest management and assessment of long-term

impacts of whole farms is also encouraged.

The principal objections to the proposition that organic agriculture can contri-

bute significantly to the global food supply are low yields and insufficient quantities

of organically acceptable fertilizer. The main limiting macronutrient in agricultural
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production is biologically available nitrogen (N) in most areas. Generally, nitrogen

amendments in organic farming derive from crop residues, animal manures, organic

fertilizers or composts, and biologically fixed N from leguminous plants. Organic

fertilizers from manures and crop residues can be used as an alternative fertilizer

source in organic farming where the use of manufactured chemical is prohibited.

Therefore, the development of organic fertilizer formulations has increasingly

become the center of attention.

15.1.3 BOF Perspectives

BF is a product comprised of beneficial microorganisms which enhance soil fertility

and crop production either by fixing atmospheric nitrogen, by solubilizing soil

phosphorus, or by stimulating plant growth through the synthesis of growth pro-

moting substances (Shetty et al. 1994; Vessey 2003; Wu et al. 2005). In addition,

the induction of systemic resistance against phytopathogens such as defense-related

enzymes, L-phenylalanine ammonia lyase (PAL), peroxidase (Pox) and polyphenol

oxidase (PPO) was also recognized in plants applied with BF (Dutta et al. 2008).

BOF is a product arising from the combination of a good quality organic

fertilizer with an appropriate BF. Azotobacter sp. and Azospirillum sp. were used

as the BF microorganisms in this study. These organisms belong to the group of

plant growth-promoting rhizobacteria (PGPR), and are associative nitrogen-fixing

bacteria and phytohormone (indole acetic acid: IAA) producing bacteria. In addi-

tion, Trichoderma harzianum was also amended as a biological control agent. In

this study, we aim to demonstrate the production of 100 tons per month BOF and its

application in agricultural farming and organic farming systems in Thailand. The

quality control systems such as nutrient analysis of BOF, phytotoxicity tests and

PGPR root colonization will also be discussed.

15.2 Materials and Methods

15.2.1 Materials Selection for BOF Production

Cassava peel and chicken manure were selected to produce organic fertilizer. The

chemical properties analyses were summarized in Table 15.1. Seventy five tonnes

of each raw material was loaded into an organic fertilizer production pilot plant

(Fig. 15.1). Composting was conducted by mixing raw materials with a screwing

operation unit prior to adjusting the moisture content to 60% water-holding capa-

city. The turning program was operated using the screwing operation unit for 7 h per

day. Aeration was conducted underneath the pile when necessary. Temperature and

C/N ratio changes were measured every 7 days. After maturation (27–30 days),
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1% (W/W) of each inoculum (Azotobacter sp. and Azospirillum sp.) was applied to

the matured organic fertilizer via pop-up sprinklers.

15.2.2 Characterization and Production of PGPR

The Azotobacter and Azospirillum strains selected as PGPR for the study were

chosen for their nitrogen-fixing ability. The acetylene reduction assay (ARA) was

conducted to determine nitrogenase activity (Somasegaran and Hoben 1994). IAA

production (Nuntagij et al. 1997), ACC-deaminase (Shah et al. 1998) and bioeffi-

cacy were also determined (Table 15.2). The bioefficacy test of PGPR with seeds of

Pakchoi (Brassica campestris L. ssp. Chinese Lowr) and tomato (Solanum lyco-
persicum) were carried out as follows. Both Pakchoi and tomato seeds were surface

sterilized for 2 min first with 1% sodium hypochlorite, followed by 1 min with 70%

ethyl alcohol at room temperature. The seeds were washed extensively with sterile

distilled water and allowed to germinate for 2 days in sterile dish plates with wet

paper in the dark at 30�C. For inoculation, Azotobacter sp. and Azospirillum sp.

were grown and diluted to 107 cfu ml–1. Seedlings of approximately 1 cm in length

were transferred to Petri dishes containing the cell suspensions and inoculated for 2

h. A sterile 0.8% NaCl solution was used for control seedlings. The seedlings were

then transferred to a Leonard jar containing sterile sand and Hoagland’s solution

(Hoagland and Arnon 1938). Plants were grown at 25�C under light with a flux

density of 450 mEs–1m–2 and 12–12 h light-dark regime. Plants were harvested

4 weeks after inoculation. The root length and total biomass were determined.

Table 15.1 Chemical properties of raw material used in organic fertilizer production

Raw materials OM (%) C (%) N (%) P (%) K (%) EC (dS m–1) pH

Cassava peel 46.42 26.92 0.85 0.19 0.63 0.91 7.90

Chicken manure 45.69 26.5 2.90 2.80 3.68 13.3 6.90

Values are averages of three replicates

Fig. 15.1 The organic fertilizer pilot plant production with two sets of ribbon screws
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The root colonization assay was performed as described by Vande Broek et al.

(1998). To reduce the risk from contamination, Azotobacter sp. and Azospirillum
sp. were grown in the nitrogen free media LG and NFB, respectively. For large

scale production, each was cultivated in a 500-L bioreactor for 2 days. Trichoderma
harzianum was cultivated by a solid-state fermentation. Briefly, 106 spores ml–1

were inoculated into 100 g of sterilized sorghum seed for 5 days prior to scaling up

in 1 ton of sterilized saw dust containing the necessary nutrients for growth

(incubation was at room temperature for 7 days). The inocula of Azotobacter sp.,
Azospirillum sp. and T. harzianum were applied to matured organic fertilizer and

stored for 3 days inside the pilot plant before use.

15.2.3 Application of BOFs to Agricultural Cropping Systems

15.2.3.1 Application of BOFs to Vegetable Cropping Systems

The vegetable cropping system experiments were conducted over a total area of

16.8 m2 per treatment in the Wangnamkeaw district (Nakhon Ratchasima prov-

ince). The soil characteristics were 1.17% organic matter, 18.4 ppm P, 321 ppm K,

pH 6.3 and EC. 2.8 (dS m–1). In order to demonstrate the effect of the combination

of BOF and nitrogen fixed via rhizobia-leguminous plants symbiosis, Sesbania
rostrata and Vigna unguiculata (cowpea) were employed. The main experimental

plot lay out was split plot. The main plots included plots planted with S. rostrata,
plots planted with V. unguiculata and plots without green manure. The experimen-

tal variants were: (1) control (non-fertilized), (2) fertilized at recommended rate

with chemical fertilizer for vegetable (N, P and K in the ratio 15:15:15) and (3)

fertilized with BOF (5 kg per subplot). All plots were set up in triplicate.

The seeds of S. rostrata and cowpea were mixed with Azorhizobium sp. and

Bradyrhizobium sp., respectively, prior to being planted in the experimental plots.

After growing S. rostrata and cowpea for 60 and 45 days, respectively, fields were

plowed, and left for 2–3 weeks before cultivation with Chinese kale.

15.2.3.2 Application of BOF to Rice Cultivation System

Rice field experiments were carried out over a total area of 80 m2 per treatment in

the Burirum province. The soil characteristics were 0.42% organic matter, 2.73

ppm P, 106.93 ppm K, pH 5.7 and EC 1.9 (dS cm–1). The experimental layout was a

randomized complete block design with seven treatments and three replicates per

treatment. The treatments were : (1) control (non-fertilized), (2) fertilized with

chemical fertilizer at the recommended rate for rice (7.5:3.75:2.5 (�103) kg N:

P2O5:K2O m–2) (3) fertilized with farmer organic fertilizer (1.20% N, 0.95% P,

1.20% K, pH 7.75 and EC 5.25 dS m–1) 36 kg per treatment, (4) fertilized with BOF

36 kg per treatment, (5) fertilized with Azolla microphylla 5 kg fresh weight per
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treatment, (6) fertilized with half the amount of chemical fertilizer and BOF and (7)

fertilized with BOF and Azolla. The data of rice yield were collected and analyzed

by ANOVA and Duncan’s multiple range test (DMRT)

15.2.4 Quality Control of BOFs

The plant nutrient contents of BOFs were analyzed by the Department of Soil

Sciences, Faculty of Agriculture, Khonkaen University, as shown in Table 15.3.

Total Kjeldahl nitrogen (TKN) and total organic carbon (TOC) were estimated by

using the Micro-Kjeldahl method (Singh and Pradhan 1981) and Walkey and

Black’s Rapid Titration method (Walkley and Black 1934), respectively. The

C/N ratio was derived from TOC/TKN values. Total phosphorus was determined

spectrophotometrically (Olsen and Sommers 1982) while total potassium was

detected by the flame emission technique and calculation according to Okalebo

et al. (2002). The viable number of Azotobacter sp., Azospirillum sp. and

T. harzianum cells was enumerated on LG, NFB and PDA media, respectively.

To detect the persistence of the applied PGPR in cultivation systems, the

fluorescent antibody technique (FA) and denaturing gradient gel electrophoresis

(DGGE) approaches were employed (see Chap. 7, Hultman et al. 2010; Chap. 1,

Insam et al. 2010; Chap. 14, Knapp et al. 2010). For bacterial root colonization

determination, the FA technique was applied using FITC conjugated goat anti-

rabbit IgG (whole molecule), and observations were made under the fluorescent

microscope (450–480 nM). The roots of Chinese kale were taken from the Sur-

anaree University of Technology organic farm (BOF application for 3 years) and

from the first inoculation in pot experiments. For DGGE analysis, DNA was

extracted directly from the rhizosphere soil using the Ultraclean soil DNA kit

(MoBio 101 Laboratories kit, Qbiogene Inc., Irvine, CA, USA.) The primers and

PCR conditions were as described by Olivares et al. (1997).

15.3 Results of BOF Production and Application in Agricultural

Cropping Systems

15.3.1 BOF Production and Its Characteristics

Cassava peel was chosen as the energy-providing material for the microbes in the

composting process (Table 15.1). As there are more than ten big tapioca starch

factories in the area of Nakhon Ratchasima province (30% production of whole

country), the cost of cassava peel as a raw material was lower than when compared

with other materials in this area, and it was considered an appropriate material for

organic fertilizer production in this study. The C/N ratio of both raw materials
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(mixed before composting process) was 30/35. The final C/N ratio of the mature

compost was 19.1:1 and the temperature was 35 �C. The characteristics of mature

BOF are summarized in Table 15.3. The matured compost could be obtained within

27–30 days of operation in the pilot plant.

The pilot plant was capable of production of 100 tons compost per month in

the rectangular agitated bin with forced aeration. In addition, since Azotobacter sp.
and Azospirillum sp. are capable of producing the IAA phytohormone and as

T. harzianum has potential soilborne disease suppressiveness capacity, this process

could produce 100 tons of BOF within 30 days. From the results of plant nutrient

elements and seed germination in the final product of BOF (Tables 15.3 and 15.4), it

could be preliminarily concluded that BOF is a good organic fertilizer when com-

pared with the standard quality certified by Department of Agriculture, Thailand

(Table 15.3). Nevertheless, the percentage seed germination from BOF application

seemed to be better than that of the control and organic fertilizer treatments. This

was especially the case for cucumber. Prior to applying BOF in the field experi-

ment, a bioefficacy test under sterilized conditions was conducted (Table 15.2).

Figure 15.2 shows the effect of PGPR on root promotion. Azotobacter sp. and
Azospirillum sp. provide IAA to plants. Inoculation with these organisms could

enhance root growth and development. This might be explained by IAA being able

Fig. 15.2 Effect of PGPR inoculation on root growth promotion. The plants were grown in axenic

culture condition. On the left is Pakchoi (Brassica campestris) and on the right is Tomato

(Solanum lycopersicum)

Table 15.4 Seed germination index of various vegetables

Vegetable seed Vegetable seed germination index (%)

Distilled water Organic fertilizer BOF

Chinese kale 73.66 � 3.09a 71.0 � 1.41a 76.0 � 2.4a

Spinach 53.33 � 3.67a 61.33 � 2.57b 63.66 � 1.17b

Cucumber 76.66 � 0.99b 60.0 � 2.07a 86.66 � 1.36c

Values are average of three replicates � standard error

Different letters with in the same row indicate significant difference was established at P � 0.05
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to ramify more root systems, which implies that there will be root proliferation

absorbing a larger volume of nutrients, resulting in higher yields.

15.3.2 Application of BOF to Agricultural Cropping Systems

In order to compare the plant yields obtained by using BOF and chemical fertilizers

in the field experiment, vegetables and rice plants were used. The results in

Table 15.5 indicated that application of BOF could provide almost the same yield

of rice as chemical fertilizer amendment. The use of BOF together with chemical

fertilizer (half of recommended amount of each) resulted in the highest yield. The

symbiotic nitrogen-fixing cyanobacterium, Anabaena sp., which lives in the leaf

cavities of the aquatic fern Azolla, is capable of high rates of nitrogen fixation, and

the application of Azolla as a green manure to rice fields is well documented.

Combination of Azolla microphylla with BOF gave a higher yield than that of

chemical fertilizer or BOF alone. This shows that different farming alternatives

exist in order to reduce the application of chemical fertilizers, and still produce high

yields of rice.

In the case of vegetable cultivation, results demonstrated that the inoculation of

the leguminous plants S. rostrata and cowpea (V. unguiculata) with the appropriate
rhizobial strains as green manures followed by plowing before BOF application

could enhance the yield of Chinese Kale (Table 15.6). This demonstrates that

application of green manure could enhance the effect of BOF to become more

advantageous, thus confirming its replacement of chemical fertilizer application.

In addition, to ensure the effect of T. harzianum as a biological control agent, the

experiments were carried out in a field where plants were affected by the cucumber

wilting disease caused by Fusarium. The plot of cucumbers amended with BOF was

located near the actual plot of farmer cultivation (no BOF application). Figure 15.3

illustrates plants affected by the wilt disease, and shows cucumber plants amended

with BOF to be healthy. This indicates that the application of BOF can reduce the

need for chemical fertilizers and some fungicides. Thus, BOF would be a beneficial

production factor for organic farming practice.

Table 15.5 Rice yields obtained with different fertilizer treatments in field experiment (Burirum

province)

Treatments % Seed fill Weight 100 seeds (g) Rice yields (kg ha–1)

Control 75.22a 2.087d 2,505.87d

Farmer organic fertilizer 79.85b 2.342c 3,318.87c

Chemical 80.83b 2.412bc 3,813.43bc

BOF 80.85cd 2.455bc 3,965.93bc

Azolla microphylla 82.70c 2.397bc 3,667.18bc

½ chemical + ½ BOF 85.34d 2.605a 4,980.25a

BOF + Azolla mycropyhlla 84.72d 2.470b 4,146.75b

Different letters within the same column and experiment indicate a significant difference at

P � 0.05
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15.3.3 Quality Control of BOF

In order to assess the persistence of PGPR in an agricultural system after BOF

application, two approaches were used. To detect whether both Azotobacter sp. and
Azospirillum sp. colonized the root plants, an FA-based technique was conducted.

Figure 15.4 clearly demonstrates that roots of inoculated plants were heavily colo-

nized by the inoculated PGPR when long-term BOF applications in organic farming

were conducted, whilst the roots of Chinese Kale in the pot experiment were less

colonized following a single BOF application. This again confirms that PGPR must

firstly need an appropriate niche, such as the root for colonization. The persistence

of both PGPR strains in the root rhizosphere was elucidated using DGGE

(Fig. 15.5). Thus, both methodologies should be applied for quality control of

BOF production and commercialization.

Table 15.6 Effect of leguminous plants as green manure and BOF on the yield of Chinese Kale in

a field experiment (Wangnamkeaw, Nakhon Ratchasima province)

Leguminous plants Fertilizer Fresh weight

(g plant–1)

Chinese Kale Yield

(kg ha–1)

Sesbania rostrata Bioorganic fertilizer 52.00a 5,559.00a

Chemical fertilizer 60.33a 6,492.75a

Control (no fertilizer) 33.33b 3,555362a

Vigna unguiculata
(cowpea)

Bioorganic fertilizer 71.66a 7,647.75a

Chemical fertilizer 54.00a 5,760.00a

Control (no fertilizer) 24.00a 2,559.81b

Non Bioorganic fertilizer 55.00a 5,862.06a

Chemical fertilizer 20.33b 2,180.75b

Control (no fertilizer) 11.33b 1,208.93b

Different letters with in the same column and experiment indicate that significant difference was

established at P � 0.05

Fig. 15.3 Wilting symptom of cucumbers in plots amended with bioorganic fertilizer (BOF)

containing Trichoderma harzianum (left) and without BOF amendment (right)
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15.4 Discussion

15.4.1 Factors Involved with the Production of a Good Quality
Organic Fertilizer

To obtain a good quality organic fertilizer, several factors have to be considered.

Low quality compost essentially arises from an excess of heavy metals, salts and a

low degree of stabilization (Badgley et al. 2007). Some composts can have

increased electrical conductivity (EC) because of high salt concentration and this

can restrict seedling performance (Moral et al. 2008). Moisture is also one of the

limiting factors not only necessary for composting but also for the control of the

amount of greenhouse gas emissions. Tamura and Osada (2006) demonstrated

that manure containing lower moisture control gave better composting conditions.

They also found that NO2 and CH4 emissions during the composting process were

estimated at 3.4–3.8 N2O-N kg–1N and 3.1–53.7 CH4 kg
–1 organic material of the

Fig. 15.4 Detection of PGPR root colonization by FA-based technique. Left is the root sample

from organic farming where BOF has been applied for 3 years. Right is the root sample in a pot

experiment (3 days after inoculation) with the roots of Chinese Kale

Fig. 15.5 DGGE of PCR-

amplified 16S rDNA gene

fragments from soil amended

with bioorganic fertilizer

(BOF) in organic farming

system
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initial materials. High greenhouse gas emission was observed from samples with

higher moisture content.

Organic fertilizer amendment to soil is often viewed as a way to improve soil

fertility and physical structure particularly because it can contribute to the stabili-

zation of the aggregate erosion process. It also increases the amount of soil organic

carbon and other major nutrients such as N and P. Bastida et al. (2008) demon-

strated the long-term (17 years) effect of municipal solid waste application on

microbial abundance and human-associated enzyme activities under semiarid soil

in Spain. The amended plots showed greater humic substance-related enzymatic

activities such as glucosidase (C), urease (N) and alkali phosphatase (P) cycles

when compared with unamended plots as well as the formation of humic sub-

stances such as o-diphenol-oxidase. They also found greater microbial prolifera-

tion of both fungi and bacteria, accompanied by a change in soil microbial

community structure. More details of the effect of organic amendment on soil

microbial activity, organic carbon and nutrients can be found in Chap. 13 (Bastida

et al. 2010).

Compost maturity (see Chap. 6, Ceustermans et al. 2010) is another important

aspect in organic fertilizer production (see Chap. 1). It is achieved during the curing

process. The duration of curing in the industry varies according to a number of

factors including source materials, composting process and facility, climate and

planned utilization of final product. Danon et al. (2008) examined the roles of

succession transition of different bacterial phylogenetic groups involved in this

process. DGGE, clone libraries and microarrays were used to reveal these roles. The

results indicated that the Proteobacteria were the most abundant phylum in all the

processes. The Bacteroidetes and the Gammaproteobacteria were ubiquitous. Dur-

ing the mid-curing stage, Actinobacteria were dominant. Different members of

nitrifying bacteria and cellulose and macromolecule-degrading bacteria were found

throughout the curing process. In contrast, pathogens were not detected. In the

cured compost, bacterial population shifts were still observed despite compost

organic matter and other biochemical properties having stabilized. Non-cured com-

posts may be phytotoxic (Chap. 6). In our case, fundamental approaches such as

observation of stability of C/N ratio, pile temperature and phytotoxicity were

employed. Some other important factors such as humic acids, and NH4
+ should,

however, also be considered.

15.4.2 Impact of Organic Fertilizer Amendment on Soil
Characterization

Organic amendment to soil generally results in an increase in various enzymatic

activities (Sastre et al. 1996; Bandick and Dick 1999; Garcia-Gil et al. 2000;

Perucci et al. 2000). The contribution of organic fertilizer-borne microflora on the

impact of organic fertilizer amendment to soil microbial community structure is,
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however, still not known. Recently, a study of the community structure of ammo-

nia-oxidizing bacteria (AOB) in compost-treated soil by Innerebner et al. (2006)

was conducted. The abundance of AOB in four composts (organic waste, cattle

manure, green waste and sewage sludge) varied significantly. The total N content of

the composts correlated well with AOB cell numbers. However, the composts did

not appear to leave a direct microbial trace on soils, although nutrients in the

compost did have an indirect effect on microbial community structure.

The long-term persistence of the effect of organic fertilizer amendment on

the soil microbial community, or in contrast, the resilience of different character-

istics of the soil microbial community after amendment, has been poorly studied

(Crecchio et al. 2001; Marschner et al. 2003). However, Saison et al. (2006)

demonstrated that organic fertilizer amendment affected the activity, size and

composition of the soil microbial community. The effect of organic fertilizer

amendment was mainly due to the physical-chemical characterization of the

organic fertilizer matrix rather than of the organic fertilizer-borne microbes, and

no resilience of microbial characteristics was observed 6–12 months after amend-

ment with a high amount of organic fertilizer. Thus, there remains a need to

characterize the response of more targeted microbial functional groups (e.g. nitri-

fiers, or antagonistic bacteria or fungi that induce pathogen suppression) after

organic fertilizer amendment. Moreover, the study of microbial community struc-

ture and function after organic fertilizer amendment for different combinations of

soil and compost is also needed to generalize our knowledge.

Since the major aim of an organic farming system is often not to maximize

production, but rather to create sustainable plant cultivation, using green manure is

an alternative approach for reducing N chemical fertilizer application. From our

results, application of both Azolla and leguminous plants showed plant yield

improvement. This is due to N availability from biological nitrogen fixation via

symbiosis. The amount of N contributed from Azolla microphylla, S. rostrata and

V. unguiculata (cowpea) was estimated at 40–60 kg N ha–1 crop, 93–186 kg N ha–1

and 40–60 kg N ha–1, respectively.

15.4.3 Effect of PGPR on Plant Growth Promotion

With the use of PGPR gaining acceptance, numerous bacterial species have been

isolated and their capacity to promote plant growth has been investigated. In the

search for efficient PGPR strains with multiple attributes including production of

IAA, N2-fixation capability, HCN production, siderophore production, phosphate

solubilization and pathogen antagonistic activity (see Chap. 8, de Bertoldi 2010),

various genera of bacteria have shown promising results. These genera include

Azotobacter, fluorescent Pseudomonas species, Rhizobium and Bacillus (Ahmad

et al. 2008; Lawongsa et al. 2008). In the case of our study, PGPR strains were

firstly isolated on the basis of nitrogen fixation and IAA production, and then

chosen for plant growth promotion abilities. Two species of Azotobacter and
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Azospirillum showed the most promising results among 835 isolates. However,

these organisms did not show any antagonistic activity against soil-borne plant

pathogens, and thus T. harzianumwas added. This effect is clearly seen in Fig. 15.3.

with Fusarium sp. suppression in farmed cucumber plots. The development of a

single PGPR inoculum habouring both modes of BF and biocontrol should be the

focus of further studies. Recently, Choi et al. (2008) found that P. fluorescens B16
could produce pyrroloquinoline quinine (PQQ) which significantly increased the

height, flower number, fruit number and total fruit weight of tomato (Solanum
lycopersicum). The cluster of genes encoding for PQQ are expressed only under

nutrient-limiting conditions. An antioxidant mode of action of PQQ has been

suggested by Choi et al. (2008). In addition, the number of bacteria that colonize

the root of each plant should be considered as an important factor for selecting a

good strain. Signal molecules exchanged between plant and microbes should be

identified that favor beneficial plant colonization. Therefore, these parameters

should be considered prior to producing PGPR as inoculum.

Ecological conditions affecting PGPR inoculant is an important factor. Baudoin

et al. (2009) revealed the impact of Azospirillum lipoferum CRT1 inoculum

(known as phytostimulatory PGPR via its IAA production) on the rhizobacterial

community structure of field-grown maize. The results indicated that inoculation

caused a shift in the structure of indigenous rhizobacterial community at 7 and

35 days after sowing. However, the effects of CRT1 inoculation took place

without modifying the total number of root bacteria but enhanced the variability

of the bacterial community. This is the first study on the ecological impact of

Azospirillum inoculation on resident bacteria conducted in the field and showing

that this impact can last at least 1 month. The different soil type on the stimulatory

effect of PGPR was also demonstrated. The use of P. alcaligenes PsA15, Bacillus.
polymyxa BcP26 and Mycobacterium MbP18 as inoculants, and their stimulatory

effect on plant growth, N, P and K uptake in corn cultivated in calcareous calcisol

and loamy sand soil types were investigated by Egamberdiyeva (2007). The results

revealed that the stimulatory efficiency of PGPR inoculants was reduced in

relatively rich loamy sand soil and increased in nutrient-deficient calcisol soil.

In addition, combination of organic fertilizer or compost and vermicompost

with selected PGPR strains also resulted in better plant growth. Hameeda et al.

(2006) applied three types of compost to pearl millet (Pennisetum glaucum (L.)

R. Br). All the three composts (77% rice straw compost, 55% Gliricidia vermi-

compost and 30% farm waste compost) showed a significant increase in the

growth of pearl millet. Application of composts with the PGPR Serratia marces-
cens EB67 and Pseudomonas sp. CDB35 improved plant growth up to 88% (rice

straw compost + EB67) and 83% (Gliricidia vermicompost + EB67). These results

confirm the synergistic effect of selected PGPR application with composts on plant

growth.

Selection and application of PGPR with a cropping system remains the most

practical and affordable strategy available for use of these beneficial rhizosphere

microorganisms in agriculture. A cropping system is generally defined as the

integration of agricultural practices and plant genotypes. Cook (2007) showed the
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buildup in response to monoculture cereals of specific genotypes of P. fluorescens
with the ability to inhibit Gaeumonnomyces graminis var. tritici by the production

of 2,4-diacetylphoroglucinol (DAPG) accounting for take-all decline in the US

Pacific Northwest. The population of the same or other genotypes of DAPG-

producing P. fluorescens could be enriched by other crops or cropping system. In

addition, it is possible and logical that different genotypes will have the ability to

produce one or more antibiotic or antibiotic-like substances inhibitory to other

soilborne plant pathogens. The maintenance of threshold populations of resident

PGPR inhibitory to G. graminis var. trtici is the centerpiece of an integrated system
used by growers to augment take-all decline while also limiting damage caused by

Pythium, Rhizoctonia root rot, Fusarium root, and crown rot in the direct-seed (no-

fill) cereal-intensive cropping systems. However, the growing varieties of these

cereals (winter and spring wheat, barley and triticale) were fully susceptible to all

four root diseases.

15.5 Conclusions: Emerging Research, Education

and Extension Needed for BOF Application

This research activity has mainly been conducted in Northeast Thailand. Soils in

these parts are characterized by their sandy texture and low capacity for supplying

nutrients. Inherent characteristics are typical indicators for poor soil fertilizer and

major limiting factors for crop productivity. Therefore, one possible way to

improve soil fertility is BOF application. In addition, actual world market prices

of chemical fertilizer are increasing, thus replacement with BOF should be focused

upon. The quality of our BOF has met the standard for Thailand. However, in terms

of research and development, the new sources of agricultural waste in the northeast

of Thailand such as digestate from biogas production of manure and spent mush-

room should be developed for composting. In addition, manures containing high

heavy metals such as copper should also be borne in mind. For future prospects,

research, education and technology extension have to be considered globally. For

future research needs, we have to improve understanding and management of soil

fertility, pest management, assessment of long-term impact of whole-farm system

and biodiversity conservation, etc. For education action, incorporating training in

organic production to high school curricula, expanding undergraduate organic

training in universities and increasing the level of technology, e.g. precise pest

and fertility monitoring, seeds and breeds, improvement of PGPR efficiency, should

also be encouraged.
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Chapter 16

Challenges, Options and Future Research Needs

Juan Luis Turrion-Gomez and Blanca Antizar-Ladislao

Abstract Microorganisms can contribute to solve current global challenges. The

use of microorganisms to abate climate change, combat pathogens, improve soil

fertility, and produce bioenergy is offering a great potential. Microorganisms

facilitate the conversion of organic waste to soil amendment, or compost using

composting approaches; where composting of organic waste is already established,

the use of compost as a landfill cover to abate green-house gas emission shows to be

promising. Bionergy is seen as one of the primary possibilities for preventing

climate change. New techniques have been devised for the utilization of second

generation biomass feedstock for energy production, including fermentation and

anaerobic digestion. It is suggested that further research needs should be oriented

towards the improvement of soil quality and fertility, the adaptation of agricultural

management and technologies to climate change and the development of renewable

energies.
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16.1 Global Challenges

To be ready and focused to meet the challenges of the twenty-first century, the

United Nations Environment Programme (UNEP) highlights six priorities, which

are climate change, disasters and conflicts, ecosystem management, environmental

governance, harmful substances and resource efficiency. The United Nations and its

Millennium Goals consider environmental sustainability to be one of the funda-

mentals rights of individuals. To achieve global environmental sustainability, four

targets have been established, which include (a) the integration of the principles of

sustainable development into country policies and programmes and reversion of the

loss of environmental resources; (b) reduction of biodiversity loss; (c) reduction of

the proportion of the population without sustainable access to safe drinking

water and basic sanitation; and (d) achievement of a significant improvement in

the lives of slum dwellers. According to the Food and Agricultural Organization of

the United Nations (FAO) other global issues are avian influenza, biodiversity,

bioenergy, climate change, food safety, trade, water and world food situation.

The aim of this final chapter is to highlight the future research needs to optimize

the contribution of microorganisms to achieving these goals, particularly in the

areas of waste management, soil degradation, population growth and diseases,

energy demand and climate change. Microorganisms can contribute to solve current

environmental challenges, and it is suggested that further research needs should be

oriented towards the improvement of soil quality and fertility, the adaptation of

agricultural management and technologies to climate change and the development

of renewable energies. Research on the use of microorganisms to abate climate

change is of particular interest and more efforts are recommended in this direction.

16.1.1 Waste Management

Historically, it was the scarcity of new materials that has been the driving factor

for recycling of used materials. During the last decades in many countries, tradi-

tional recycling seems to have been gradually forgotten, and centralized landfills

or incineration plants are often a simple answer to growing waste problems. In

countries where population density is high and the value of preserved nature along

with minimal carbon foot-print is increasingly demanded, many of them in Europe,

environmentally sound waste management programmes have been introduced.

According to the European Environment Agency (EEA) (2007), Europe (EU-15)

and EFTA (Iceland, Norway, Switzerland, and Liechtenstein) produce almost

1,000 mio tonnes of waste each year. The United Kingdom alone produces more

than 400 mio tonnes of waste each year, and of this, about 35 mio tonnes is

municipal solid waste. The problem of waste disposal is recognized as one of the

most serious environmental problems. Composting, a waste management strategy

that exploits microorganisms to do the job, has been suggested as one sustainable
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option. There are three main reasons for the growth of the composting industry in

the UK: legislation for biodegradable municipal solid waste, environmental bene-

fits and economic benefits. Green-waste comprised the majority (92% in 1998) of

municipal wastes produced in the UK. The three main regulatory drivers for

composting are the EU landfill directive (EC 1999), the UK Waste Strategy 2000

(DETR 2000) and the EU Animal By products Regulations (EC 2003). These have

increased interest in composting of garden, tree, and food-processing organic

wastes. As a result, in 2005/2006, 3.4 mio tonnes of source segregated waste was

composted, an increase of 28% compared with the previous year. The majority of

waste was composted using open air mechanically turned windrows, with only 14%

composted in-vessel. Agriculture was the largest market sector, with one million

tonnes supplied, being the majority used on arable and cereal crops. But, also

horticulture and landfill restoration cover accounted for approximately a quarter of

amillion tonnes each. The annual turnover of the composting and biological treatment

industry was estimated at just over £90 million (Nikitas et al. 2008).

For a very long time, little research has been dedicated to improve microbial

processes for waste management, but this seems to be changing. Habitats that are so

extremely variable in both time and space like compost heaps are increasingly

attracting scientists. Optimization of other waste management strategies that

exploit the use of microorganisms including anaerobic digestion, enzymatic hydro-

lysis and fermentation is also receiving a great amount of attention (see Chap. 2,

Braun et al. 2010; Chap. 4, Wett and Insam 2010).

Future research needs in this area include the improvement of rapid and robust

measurement tools, identification and isolation of efficient microorganisms under

different conditions of temperature, substrate or humidity, study of the metabolic

processes of degradation and development of new added-value products.

16.1.2 Land Degradation and Soil Erosion

Land degradation is arguably one of the major global environmental challenges.

Land degradation leads to a significant reduction of the productive capacity of land.

Human activities contributing to land degradation include unsuitable agricultural

land use, poor soil and water management practices, deforestation, removal of

natural vegetation, frequent use of heavy machinery, overgrazing, improper crop

rotation and poor irrigation practices. Natural disasters, including droughts, floods

and landslides, also contribute to land degradation. Soil erosion is a major factor in

land degradation and has severe effects on soil functions – such as the soil’s ability

to act as a buffer and filter for pollutants, its role in the hydrological and nitrogen

cycle, and its ability to provide habitat and support biodiversity. About 2,000 mio

ha of soil, equivalent to 15% of the Earth’s land area, have been degraded through

human activities. The main types of soil degradation are water erosion (56%), wind

erosion (28%), chemical degradation (12%) and physical degradation (4%). Causes

of soil degradation include overgrazing (35%), deforestation (30%), agricultural
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activities (27%), overexploitation of vegetation (7%) and industrial activities (1%)

(UNEP 2002).

Soil salinisation is a major problem that may occur in two ways: (a) intrusion of

saline seawater into deep coastal aquifers and (b) evaporation of excess irrigation

water often associated with poor soil drainage, which leaves dissolved salts in the

soil. A reduced expansion of irrigated area by the year 2020 and an increased

investment in drainage to deal with salinisation are expected (Garrett 2005).

Nevertheless, problems of salinisation will still remain or even increase, as irriga-

tion systems with inadequate drainage continue to age. On the other hand, a

considerable amount of unsustainable irrigated land is projected to go out of

production and new opportunities for rehabilitation of degraded lands and sustain-

able pasture management systems are expected to be developed.

Microorganisms will play an essential role in the rehabilitation of degraded

lands, as they contribute to the conversion of carbon, nitrogen and other elements

in the environment and increase soil fertility. Microorganisms affect soil structure

by producing metabolites that bind soil particles together and physically enmesh

particles with filaments. This stabilization of micro-structures may be carried

through to stabilization of meso-structure, leading to sustained increases in poro-

sity, at a number of scales. This, in turn, has implications for the capacity of soils

to retain water since such properties relate to pore architecture and the range and

location of hydrophobic and hydrophilic sites within the pore network (Allton et al.

2007).

Soil stability is important for landscape dynamics with respect to their ability to

cope with externally forced change, such as wet–dry cycles and land management

practices. Cropping and tillage practices are already known to influence run-off and

soil losses, and to influence the microbial community (Jackson et al. 2003).

Compost and biochar are extensively used as soil amendments. The impact of

these amendments on the microbial structure will have a direct impact on the soil

structure and thus requires further research. Other future research needs in this area

include (a) the identification of microbial components which contribute to soil

structure stability, (b) the understanding of the processes governing a microbiolo-

gically active soil, and (c) the relationships between the soil microorganisms, soil

structure and hydrology.

16.1.3 Population Growth, Food Demand and Diseases

According to the last UN 2008 Revision of World Population Prospects (UN 2009),

world population is projected to reach 7 billion early in 2012, up from the current

6.8 billion, and surpass 9 billion people by 2050. Most of the additional 2.3 billion

people will enlarge the population of developing countries, while the population of

the more developed regions is expected to change minimally.

There are concerns that water scarcity, soil depletion, the lack of technology

adoption and dissemination, political and civil conflict, and the continued threat of
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human disease epidemics, plant diseases and animal diseases pose a grave threat to

the food security of growing populations in the developing world.

There are ominous signs. Progress in hunger reduction slowed considerably

during the late 1990s: between 1995 and 2001, the number of undernourished

people in the developing world increased by more than 18 mio. If China is excluded

from consideration, the number of undernourished people in the developing world

increased by nearly 28 mio during this period. In addition, there are indications that

price fluctuations are rising as world cereal stocks are reduced. Moreover, micro-

nutrient malnutrition is widespread, and its consequences are significant. The

majority of the world’s hungry people depend heavily, both directly and indirectly,

on growth in the agricultural sector for both food and their livelihoods, either

as farmers or as net purchasers of food. Most of the world’s hungry, approximately

80%, live in rural areas, where access to markets, health care, education, and

infrastructure such as telecommunications and roadways is scarce. These areas

are often characterized by poor quality of natural assets, a fragile natural resource

base.

At present, low agricultural investments undermine the development of new

agricultural technology and contribute to marginal levels of irrigation efficiency

and lack of improvement in water use efficiency. In addition, investments in many

sectors, including education, social services, and health, are low in developing

countries. The lack of growth in agricultural yields is the outcome of all of the

above and also partly a result of weak income growth in developing countries and

only moderate income growth in industrialized countries. Future research needs in

this area should focus in the implication of microorganisms in (a) improving water

management and irrigation efficiency, (b) adaptation to climate change, (c) increase

of crops yields, and (d) improved strategies to combat pest problems in agriculture.

All these will contribute to the increase of crop production and thus facilitate food

security.

16.1.4 Energy Demand

According to the reference case projection from the “International Energy Outlook

2008,” the world energy consumption is projected to expand by 50% from 2005 to

2030 (EIA 2008). Energy demand in the Organisation for Economic Co-operation

and Development (OECD) economies is expected to grow slowly over the projec-

tion period, at an average annual rate of 0.7%, whereas energy consumption in the

emerging economies of non-OECD countries (including India and China) is

expected to expand by an average of 2.5% per year.

High prices for oil and natural gas are expected to continue throughout the

period and are likely to slow the growth of energy demand in the long term,

nevertheless world energy consumption is projected to continue increasing

strongly as a result of robust economic growth and expanding populations in the

world’s developing countries. Thus, high prices for oil and natural gas as well as
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rising concern about the environmental impact of fossil fuel use improve the

prospects for renewable energy and coal with consumption increasing by 2.1%

and 2.0%, respectively. As coal’s costs are comparatively low relative to the costs

of liquids and natural gas, and abundant resources in large energy-consuming

countries make coal an economical fuel choice. In the absence of policies or

legislation that would limit the growth of coal use, the United States, China, and

India are expected to turn to coal in place of more expensive fuels. The only

countries for which decreases in coal consumption are projected are OECD Europe

and Japan, where populations are either growing slowly or declining, electricity

demand growth is slow, and natural gas, nuclear power, and renewables are likely

to be used for electricity generation rather than coal. Much of the growth in

renewable energy consumption is projected to come from mid- to large-scale

hydroelectric facilities in non-OECD Asia and Central and South America,

where several countries have hydropower facilities either planned or under con-

struction.

Europe, where many countries are obligated to reduce greenhouse gas emissions

under the Kyoto Protocol treaty, has set a target of increasing the renewable energy

share to 20% of gross domestic energy consumption by 2020, including a manda-

tory minimum of 10% for biofuels. Future research needs in this area should focus

in (a) optimisation of microbial processes (e.g., hydrolysis, fermentation) to pro-

duce biofuels, including biogas, (b) development of novel enzymatic processes to

reduce the cost of biofuel production, (c) development of microbial fuel cells, and

(d) production of biofuels from microorganisms, e.g., biodiesel from algae.

16.1.5 Climate Change

Climate change and the vulnerability of energy supplies are two of the biggest

threats to our security. Without urgent action, irreversible changes to the climate

system are possible. According to the Intergovernmental Panel on Climate Change

(IPCC) climate change refers to a change in the state of the climate that can be

identified (e.g. using statistical tests) by changes in the mean and/or the variability

of its properties and that persists for an extended period, typically decades or

longer. It refers to any change in climate over time, whether due to natural

variability or as a result of human activity.

IPCC’s Third Assessment Report stated that there are evidences that human

activities are attributable of the warming observed over the past 50 years (IPCC

2001). Carbon dioxide (CO2) is the greenhouse gas that makes the largest contribu-

tion from human activities. It is released into the atmosphere by for example the

combustion of fossil fuels, the burning of, for example, forests during land clear-

ance and from certain industrial and resource extraction processes and composting.

In addition to CO2, the composting process naturally produces some methane (CH4)

and nitrous oxide (N2O). Methane (CH4) has a global warming potential 23 times

higher than CO2, and the largest source of CH4 emission is from landfill sites
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(during the anaerobic methanogenic stage), where it escapes through the landfill

cover into the atmosphere. N2O is also a greenhouse gas with an extremely high

global warming potential (~310) and it can also be generated in landfills through the

processes of nitrification and denitrification; is linked to methanotrophic activity

and therefore cannot be ignored when considering methods to reduce global

warming (Chapman and Antizar-Ladislao 2007).

According to the UN Framework Convention on Climate Change, a stabilization

of greenhouse gas concentrations in the atmosphere at a level that would prevent

dangerous anthropogenic interference with the climate change should be achieved.

Technological options for reducing net CO2 emissions to the atmosphere include:

(a) reducing energy consumption, for example by increasing the efficiency of

energy conversion and/or utilization (including enhancing less energy-intensive

economic activities), (b) switching to less carbon intensive fuels, for example

natural gas instead of coal, (c) increasing the use of renewable energy sources

which emit little or no net CO2, (d) sequestering CO2 by enhancing biological

absorption capacity in forests and soils, (e) capturing and storing CO2 chemically or

physically. Further research in this area should focus in enhancing biological

absorption capacity in forests and soils where microorganisms play a crucial role.

The design or selection of microorganisms for CO2 capture presents a great

potential to reduce greenhouse gas emissions to the atmosphere.

16.2 Contribution of the Microorganisms to Solve

Current Global Challenges

Microorganisms can contribute to solve current global challenges, particularly

those aforementioned using a number of different strategies, such as the conversion

of organic waste to soil amendment or to energy. Use of microorganisms to abate

climate change, combat pathogens, improve soil fertility are also offering a great

potential. Here a few microbial strategies are highlighted. They have been selected

as they offer a great potential for a sustainable development.

Agriculturalists since ancient times have recognized significant benefits of soil

organic matter to crop production, including (a) it serves as a slow release source of

N, P and S, for plant nutrition and microbial growth; (b) it possess considerable

water-holding capacity; (c) it acts as a buffer against changes in pH of the soil; (d)

its dark colour contributes to absorption of energy from sun and heating of the soil;

(e) may act as plant-growth stimulants; and (f) binds micronutrient metal ions in the

soil (McCarthy et al. 1990).

Composting is an aerobic process where organic materials are biologically

decomposed. Conventional composting processes typically comprise four major

microbiological stages in relation to temperature: mesophilic, thermophilic, cooling

and maturation, during which the structure of the microbial community also

changes, and the final product is compost (see Chap. 1, Insam et al. 2010; Chap. 5,
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Domı́nguez et al. 2010; Chap. 12, Minz et al. 2010; Chap. 13, Bastida et al. 2010).

Compost has been widely used as soil conditioner and soil fertilizer. This practice is

recommended, as soil fertility needs more than ever to be sustained. Food demand

is increasing rapidly in non-OECD countries, and it is in those countries particularly

where organic waste needs to be diverted from landfill sites to composting prac-

tices, so compost can enhance soil fertility. In OECD countries, where composting

of organic waste is already established, also its use as a landfill cover to abate green-

house gas emissions has shown to be promising (Chapman and Antizar-Ladislao

2007). The addition of compost can minimize land degradation and soil erosion.

Additionally, composting can contribute to achieve sufficient hygienisation of

organic wastes and control soil born and air born pathogens by promotion of benefi-

cial microorganisms and suppression of harmful microorganisms (see Chaps. 11–14)

and Insam et al. (2002).

Frequently agrochemicals are not applied following a sustainable approach, and

some undesired consequences have been observed such as disease resistances,

elimination of beneficial microbes, plant toxicity and contamination of soil, rivers

or aquifers. Alternatives to chemical control or synergic strategies are thus neces-

sary for a more sustainable control of pathogens. In addition with climate change

and globalization new diseases are appearing that need to be fought. The role of

microorganisms to abate climate change should be further explored, and thus

further research is needed for example to improve the use of compost to oxidize

methane emitted at landfill sites to carbon dioxide, as methane is a potent green-

house gas, with a global warming potential 23 times higher than carbon dioxide.

Biomass waste releases carbon as it decomposes, but it can be burned in a kiln by

pyrolysis (burning of biomass under controlled, low-oxygen conditions) to create

biochar. A lot of attention is given to the use of biochar and its use to mitigate

greenhouse gas emissions. Biochar has the potential of sequestering bions of tonnes

of carbon in the world’s soils, specifically from agriculture and forestry residual

biomass. It is suggested that the biochar system will sequester carbon for at least

100 years as compared to plants or trees that will only sequester carbon for 15 or

20 years. Biochar also provides plenty of surface area for beneficial fungi and

bacteria to grow, which seems to reduce the need for fertilizers. It has been

suggested that biochar can be used to address some of the most urgent current

environmental problems, such as soil erosion, food insecurity, water pollution from

agrochemicals, and climate change (Tenenbaum 2009). Further research is required

to obtain reliable data on the agronomic and carbon sequestration potential of

biochar, and also on the use of pyrolysis to optimize biochar properties. The ability

of biochar to decrease emissions of nitrous oxide and methane is intriguing and

requires further research.

Bionergy is seen as one of the primary possibilities for preventing global

warming. At present, the immediate factor impeding the emergence of an industry

converting biomass into liquid fuels or biogas on a large scale is the high cost of

processing, rather than the cost or availability of feedstock (EEA 2008). The goal of

second generation biofuels is to extend the amount of biofuel that can be produced

sustainably by using biomass comprised of the residual non-food parts of current
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crops, as well as other crops that are not used for food purposes and also municipal,

industrial and construction waste. Second generation biofuels are expected to

reduce net carbon emission, increment energy efficiency and reduce energy depen-

dency, potentially overcoming the limitations of first generation biofuels. New

techniques have been devised for the utilization of second generation biomass

feedstock for energy production, including thermo-chemical conversion (i.e. com-

bustion, gasification, pyrolysis, liquefaction, hydrothermal upgrading), biochemical

conversion (i.e. fermentation and anaerobic digestion) and extraction of vegetable

oils. Direct combustion, gasification, pyrolysis, liquefaction or hydrothermal

upgrading are chemo-technical approaches. Another approach is to develop a

process that works universally for all feedstock, converting carbon-based feedstock

into hydrogen and carbon monoxide plus remaining components. This could use

coal or natural gas and turn it into liquid fuels combining microbes that turn the

“synthesis gas – syngas” straight into ethanol. Fermentation is an anaerobic process

by which yeast converts sugars such as glucose, fructose and sucrose into ethanol

and carbon dioxide. The anaerobic digestion process consists of three steps: a

hydrolysis step in which organic compounds, such as polysaccharides, proteins,

and fat are hydrolyzed by extracellular enzymes, an acidification step in which the

products of the hydrolysis are converted into H2, formate, acetate and higher

molecular weight volatile fatty acids, and a third step in which biogas, a mixture

of carbon dioxide and methane, is produced from hydrogen, formate, and acetate.

The complete methanogenic conversion occurs by mixed microbiological commu-

nities yielding methane as the sole reduced organic compound (see Chap. 3, Plugge

et al. 2010). Only bioethanol and biodiesel are presently produced as fuel on an

industrial scale. Including ethyl-tertio-butyl-ether partially made with bioethanol,

these fuels make up more than 90% of the biofuel market (Boehmel et al. 2008).
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