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Preface

The annual conference of the European Association for Computer Science Logic
(EACSL), CSL 2009, was held in Coimbra (Portugal), September 7–11, 2009.
The conference series started as a programme of International Workshops on
Computer Science Logic, and then at its sixth meeting became the Annual Con-
ference of the EACSL. This conference was the 23rd meeting and 18th EACSL
conference; it was organized at the Department of Mathematics, Faculty of Sci-
ence and Technology, University of Coimbra.

In response to the call for papers, a total of 122 abstracts were submitted to
CSL 2009 of which 89 were followed by a full paper. The Programme Committee
selected 34 papers for presentation at the conference and publication in these
proceedings.

The Ackermann Award is the EACSL Outstanding Dissertation Award for
Logic in Computer Science. The award recipient for 2009 was Jakob Nordström.
Citation of the award, abstract of the thesis, and a biographical sketch of the
recipient may be found at the end of the proceedings. The award was sponsored
for the years 2007–2009 by Logitech S.A.

After the submission deadline we received the sad news that Volker Weber
died on the night of April 6–7, 2009. He had submitted a paper to CSL 2009,
which ran through the regular referee process and was accepted according to the
usual CSL standards. The final version, printed in these proceedings was revised
by his supervisor, Thomas Schwentick, taking into account the (few) remarks
of the referees. We are grateful to Thomas Schwentick, who wrote an obituary
which is added to his paper.

We sincerely thank the Programme Committee and all of the referees for
their help in reviewing the papers. We also thank the Organizing Committee,
in particular Ana Almeida and Pedro Quaresma from the Department of Math-
ematics of the University of Coimbra, for their help in the organization of the
conference. The conference received support from the following Portuguese Re-
search Centers: CENTRIA, Centre for Artifical Intelligence, New University of
Lisbon; CISUC, Centre for Informatics and Systems of the University of Coim-
bra; CITI, Center for Informatics and Information Technologies, New University
of Lisbon; CMAF, Centro de Matemática e Aplicações Fundamentais, Univer-
sity of Lisbon; CMAT, Centre of Mathematics, University of Minho; CMUC,
Centre for Mathematics, University of Coimbra; LIACC, Artificial Intelligence
and Computer Science Laboratory, University of Porto; and SQIG, Security and
Quantum Information Group, Instituto de Telecomunicações, Technical Univer-
sity of Lisbon. Further support was given by the Association for Symbolic Logic,



VI Preface

the Kurt Gödel Society, the Fundação para a Ciência e a Tecnologia (FCT), and
the Fundação Luso-Americana. We are grateful to all these institutions for their
sponsorship.

September 2009 Erich Grädel
Reinhard Kahle



Organization

Programme Committee

Samson Abramsky, Oxford
Matthias Baaz, Vienna
Patricia Bouyer, Cachan
Andrei Bulatov, Burnaby
Stephen Cook, Toronto
Anuj Dawar, Cambridge
Hugo Gimbert, Bordeaux
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Gonçalo Gutierres, Coimbra

Reinhard Kahle, Lisbon, Co-chair
Isabel Oitavem, Lisbon
Pedro Quaresma, Coimbra, Co-chair
João Rasga, Lisbon
Carlota Simões, Coimbra

Additional Referees

Andreas Abel
Beniamino Accattoli
Marco Aiello
Luca Alberucci
Thorsten Altenkirch
Bob Atkey
Albert Atserias
David Baelde
Patrick Baillot
Jiri Barnat
Michele Basaldella
Nick Benton

Christoph Benzmüller
Stefano Berardi
Benno van den Berg
Achim Blumensath
Guillaume Bonfante
Julian Bradfield
Franck van Breugel
Gerhard Brewka
Christopher Broadbent
Veronique Bruyere
Kai Brünnler
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Algebra for Tree Languages�

Miko�laj Bojańczyk

Institute of Informatics, Warsaw University, Poland
bojan@mimuw.edu.pl

There are at least as many interesting classes of regular tree languages as there
are of regular word languages. However, much less is known about the former
ones. In particular, very few effective characterizations of tree language classes
are known. Since for words most known characterizations are obtained using
algebra, it seems to be a good idea to look for an algebra for tree languages. I will
talk about one such attempt, which is called forest algebra. (Other frameworks
in the literature include pre-clones of Ésik and Weil or tree algebra of Wilke.
Another approach is to forget about algebra and study the structure of a tree
automaton.)

In the algebraic theory of word languages, elements of a monoid or semigroup
are used to represent words. In a forest algebra, there are two sorts. The first sort
represents forests, and the second sort represents contexts (forests with a hole).
The operations of forest algebra include concatenation of forests (concatenating
a forest of n trees with a forest of m trees gives a forest with n + m trees) and
composition of contexts (composing a context where the hole is at depth n with
a context where the hole is at depth m gives a context where the hole is at depth
n+m).

I will talk about some recent work, which tries to relate the algebraic structure
of a forest algebra with the type of tree languages that this algebra recognizes. A
very simple example of this kind says that if the algebra has commutative concate-
nation, then the languages it recognizes are invariant under swapping siblings. Of
course, the theory contains some non-trivial results.

A big open problem in the field is finding an effective characterization of first-
order logic. One of the reasons why forest algebra was developed is the hope that
there is some structural property of forest algebra – something like aperiodicity
for monoids – that corresponds to first-order definability of a tree language.

� Joint work with: Luc Segoufin, Howard Straubing and Igor Walukiewicz.

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Forcing and Type Theory

Thierry Coquand

Department of Computer Science and Engineering,
Göteborg University and Chalmers University of Technology, Sweden

coquand@chalmers.se

We present the technique of forcing from a constructive point of view. The con-
nections with proof theory [1] and constructive mathematics are not so surprising
given that Cohen’s original discovery of forcing was “motivated by an attempt to
prove analysis consistent” and the idea that statements which seemed to involve
infinities “could be reduced to pieces of finite informations” [9]. The interest of
combining forcing and realizability was pointed out in the proof of Goodman’s
Theorem [5].

We explain first how forcing allows to explain non effective objects (such
as non principal ultrafilters, or well-ordering of the reals) in term of classical
logic and dependent choices [7]. The combination of classical logic and depen-
dent choices have a computational interpretation [3,4,6]. However, the associated
computational behaviour is difficult to describe. We show then how to describe in
type theory the addition of one Cohen real. We make explicit the computations
involved in such an extension. One application, similar to the ones described
in the reference [2], is the uniform continuity of functionals on Cantor space
definable in type theory. By iterating this extension, we get a computational
interpretation of universal quantification over Cantor space.

References

1. Avigad, J.: Forcing in proof theory. Bulletin of Symbolic Logic 10(3), 305–333 (2004)
2. Beeson, M.: Foundations of constructive mathematics. Metamathematical studies.

In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics
and Related Areas (3)], vol. 6, Springer, Berlin (1985)

3. Berardi, S., Bezem, M., Coquand, T.: On the Computational Content of the Axiom
of Choice. J. Symb. Log. 63(2), 600–622 (1998)

4. Berger, U., Oliva, P.: Modified bar recursion. Mathematical Structures in Computer
Science 16(2), 163–183 (2006)

5. Goodman, N.: Relativized realizability in intuitionistic arithmetic of all finite types.
J. Symbolic Logic 43(1), 23–44 (1978)

6. Krivine, J.L.: Dependent choice, ‘quote’ and the clock. Th. Comp. Sc. 308, 259–276
(2003)

7. Krivine, J.L.: Structures de réalisabilité, RAM et ultrafiltre sur N (to appear, 2009)
8. Martin-Löf, P.: Constructive mathematics and computer programming. In: Logic,

methodology and philosophy of science, VI (Hannover, 1979). Stud. Logic Found.
Math., vol. 104, pp. 153–175. North-Holland, Amsterdam (1982)

9. Platek, R.: Kreisel, Generalized Recursion Theory, Stanford and Me. In: Odifreddi,
P. (ed.) Kreiseliana, About and Around Georg Kreisel (1996)

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, p. 2, 2009.
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Functional Interpretations of Intuitionistic Linear Logic

Gilda Ferreira and Paulo Oliva

School of Electronic Engineering and Computer Science
Queen Mary, University of London

Abstract. We present three functional interpretations of intuitionistic linear logic
and show how these correspond to well-known functional interpretations of
intuitionistic logic via embeddings of ILω into ILLω. The main difference from
previous work of the second author is that in intuitionistic linear logic the inter-
pretations of !A are simpler (at the cost of an asymmetric interpretation of pure
ILLω) and simultaneous quantifiers are no longer needed for the characterisation
of the interpretations.

1 Introduction

This paper presents a family of functional interpretations of intuitionistic linear logic
ILLω, starting from a single functional interpretation of pure (exponential-free) ILLω,
followed by three possible interpretations of !A.

The second author [7,8,9,10] has recently shown how different functional interpre-
tations of intuitionistic logic can be factored into a uniform family of interpretations of
classical linear logic combined with Girard’s standard embedding (·)∗ of intuitionistic
logic into linear logic. In the symmetric context of classical linear logic each formula A
is associated with a simultaneous one-move two-player game |A|xy . Intuitively, the two
players, say Eloise and Abelard, must pick their moves x and y simultaneously and
Eloise wins if and only if |A|xy holds. The symmetric nature of the game implies that
(proof-theoretically) the formula A was interpreted as the formula

Æx
y |A|xy

where

Æx
y A is a simple form of branching quantifier – termed simultaneous quantifier.

Following this game-theoretic reading, the different interpretations of the modality !A
are all of the following form: First, it (always) turns a symmetric game into an asym-
metric one, where Eloise plays first, giving Abelard the advantage of playing second.
In the symmetric context, this asymmetric game can be modelled by allowing Abelard
to play a function f which calculates his move from a given Eloise move x. But also,
the game !A gives a second (non-canonical) advantage to Abelard, by allowing him to
play a set of moves, rather than a single move. The idea being that he wins the game !A
if any move y ∈ f x is winning with respect to Eloise’s move x, i.e. ¬|A|xy . Formally

|!A|xf ≡ ∀y∈ f x |A|xy.
Therefore, the game !A always introduces a break of symmetric, but it leaves open what
kind of sets Abelard is allowed to play. What the second author has shown is that if only

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 3–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



4 G. Ferreira and P. Oliva

singleton sets are allowed the resulting interpretation corresponds to Gödel’s dialectica
interpretation [1,4,9]; if finite sets are allowed then it corresponds to the Diller-Nahm
variant of the dialectica interpretation [2,10]; and if these sets are actually the whole set
of moves then it corresponds to Kreisel’s modified realizability interpretation [6,8].

In this paper we show that in the context of intuitionistic linear logic every formula
can be interpreted as a game where Eloise plays first and Abelard plays second, being
the branching quantifiers no longer needed. In other words, Abelard’s advantage of play-
ing second, which was limited to the game !A in classical linear logic, is ubiquitous in
intuitionistic linear logic. In this way, the game-theoretic interpretation of the modality
!A is simply to lift the moves of Abelard from a single move to a set of moves. Formally,

|!A|xa ≡ ∀y∈ a |A|xy.
Hence, by working in the context of ILLω, we can fully separate the canonical part
of the interpretation (pure intuitionistic linear logic), where all interpretations coincide,
and the non-canonical part where each choice of “sets of moves” gives rise to a different
functional interpretation.

As we shall see, the functional interpretation of pure intuitionistic linear logic co-
incides with Gödel’s dialectica interpretation of intuitionistic logic, reading �,⊗ and
⊕ as →,∧ and ∨, respectively. This is so, because the dialectica interpretation identi-
fies the games A and !A. The connection between Gödel’s dialectica interpretation and
intuitionistic linear logic was first studied by de Paiva [11]. One can view our work
here as a proof-theoretic reading of de Paiva’s category-theoretic work, together with
an extension linking the “dialectica” interpretation of intuitionistic linear logic also with
Kreisel’s modified realizability.

The main contributions of the paper are as follows: In Section 2 we present the basic
interpretation of pure intuitionistic linear logic. In the same section we outline which
principles are needed for the characterisation of the interpretation (Subsection 2.1).
Section 3 describes three different interpretations of the modality !A. This is followed
(Section 4) by a description of how each of these choices corresponds to the three best-
known functional interpretations of intuitionistic logic.

1.1 Intuitionistic Linear Logic

Intuitionistic linear logic can be viewed as a fragment of Girard’s linear logic [3] which
is sufficient for embedding intuitionistic logic into the linear context. We will make use
of the formulation of intuitionistic linear logic shown in Tables 1 and 2. Our system is
denoted by ILLω since we work in the language of all finite types.

The finite types are inductively defined in the usual way: i is a finite type and if ρ
and σ are finite types then ρ→ σ is a finite type. Our language has a constant of type i
(to ensure that all types are inhabited by a closed term) and variables xρ for each finite
type ρ. We assume that the terms of ILLω contain all typed λ-terms, i.e. constants and
variables are terms and if tσ and sρ→σ are terms then (λxρ.tσ)ρ→σ and (sρ→σtρ)σ are also
terms.

The atomic formulas of ILLω are denoted by Aat (the linear logic constant 0 is an
atomic formula) and if A and B are formulas, then A ⊗ B, A & B, A ⊕ B, A � B, !A,
∀xA(x) and ∃xA(x) are also formulas. In this paper we will also work with a subsystem
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Table 1. Intuitionistic Linear Logic (connectives)

(id)
P  P Γ, 0  A

Γ  A Δ, A  B
(cut)

Γ, Δ  B

Γ  A
(per)

π{Γ}  A

Γ  A Δ  B
(⊗R)

Γ, Δ  A ⊗ B

Γ, A, B  C
(⊗L)

Γ, A ⊗ B  C

Γ, A  B
(� R)

Γ  A� B

Γ  A Δ, B  C
(� L)

Γ,Δ, A� B  C

Γ  A Γ  B
(&R)

Γ  A & B

Γ, A  B
(&L)

Γ, A & C  B

Γ, B  C
(&L)

Γ, A & B  C

Γ  A
(⊕R)

Γ  A ⊕ B

Γ  B
(⊕R)

Γ  A ⊕ B

Γ,A  C Γ, B  C
(⊕L)

Γ, A ⊕ B  C

of ILLω, dubbed ILLωr , where a restriction is assumed on the &R-rule: it is applied just
with contexts of the form !Γ. In subsequent chapters we will see the necessity of this
technical restriction. Note, however, that both systems ILLω and ILLωr are strong enough
to capture intuitionistic logic ILω into the linear context, as precised in the following
proposition.

Proposition 1 ([3]). Define two translations of ILω into ILLω inductively as follows:

A∗at :≡ Aat A◦at :≡ !Aat, if Aat � ⊥
⊥∗ :≡ 0 ⊥◦ :≡ 0

(A ∧ B)∗ :≡ A∗& B∗ (A ∧ B)◦ :≡ A◦ ⊗ B◦

(A ∨ B)∗ :≡ !A∗⊕ !B∗ (A ∨ B)◦ :≡ A◦ ⊕ B◦

(A→ B)∗ :≡ !A∗ � B∗ (A→ B)◦ :≡ !(A◦ � B◦)

(∀xA)∗ :≡ ∀xA∗ (∀xA)◦ :≡ !∀xA◦

(∃xA)∗ :≡ ∃x!A∗ (∃xA)◦ :≡ ∃xA◦

If A is provable in ILω then A∗ and A◦ are provable in ILLωr (and hence also in ILLω).
Moreover, it is easy to check that A◦� !A∗.

Proof. It is already known that if Γ ILω A then !Γ∗ ILLω A∗. The result with ILLω

replaced by ILLωr just require our attention in the rule &R. The result for A◦ follows
immediately from the fact that in ILLωr we can prove A◦� !A∗. �
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Table 2. Intuitionistic Linear Logic (quantifiers and modality)

Γ  A
(∀R)

Γ  ∀xA

Γ, A[t/x]  B
(∀L)

Γ,∀xA  B

Γ  A[t/x]
(∃R)

Γ  ∃xA

Γ, A  B
(∃L)

Γ,∃xA  B

Γ, !A, !A  B
(con)

Γ, !A  B

Γ  B
(wkn)

Γ, !A  B

!Γ  A
(!R)

!Γ !A
Γ, A  B

(!L)
Γ, !A  B

1.2 Verifying System

As we will show in the next sections, the three functional interpretations we present
interpret the formula A ⊕ B via a sort of flagged disjoint union, i.e. a boolean and a
witness for either A or B. Therefore, in the verifying system, which we shall denote
by ILLωb , we consider that the language also contains the booleans b as base type, with
two boolean constants true and false (T, F), boolean variables, an equality relation =b

between two terms of boolean type and a constant of type b → ρ→ ρ → ρ that should
be seen as a conditional λ-term z(t, q) that reduces to t or q depending on whether zb

reduces to true or false. ILLωb is assumed to contain the following axioms for equality:

1. !(x =b x)

2. !(x =b y)� !(y =b x)

3. !(x =b y) ⊗ !(y =b z)� !(x =b z)

4. !(x =b y) ⊗ A[x/w]� A[y/w].

We would also like to ensure that true and false are distinct and that there are no other
elements of boolean type

5. !(T =b F)� 0

6. !(z =b T)⊕ !(z =b F).

The axioms for the conditional λ-term are as follows

7. A[T(t, q)/w]� A[t/w] and A[F(t, q)/w]� A[q/w].

For simplicity, we use the following abbreviation:

A �z B :≡ (!(z =b T)� A) & (!(z =b F)� B).
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Lemma 1. The following are derivable in ILLωb

(i)
 A[T]  A[F]

 A[z]

(ii) !(T =b T)� A  A and !(F =b F)� A  A

(iii) A  !(T =b F)� B

(iv) A �T B� A and A �F B� B

(v) !A �z !B� !(!A �z !B).

Proof. Assertion (i) can be derived from axioms 4. and 6.; (ii) follows easily from
axiom 1.; (iii) can be deduced from axiom 5. and the forward implications in (iv) follow
immediately from item (ii) and the inverse implications can easily be deduced using
(iii). The direct implication in assertion (v) can be derived using assertions (i) and (iv),
being the other implication trivial. �

2 A Basic Interpretation of Pure ILLω

In this section we present a basic functional interpretation of pure (without the expo-
nential !A) intuitionistic linear logic, and prove its soundness. In the next section we
then consider different extensions of this interpretation to full intuitionistic linear logic,
ILLω.

Definition 1 (Basic functional interpretation of pure ILLω). For each formula A of
pure ILLω, let us associate a new formula |A|xy, with two fresh sets of free-variables x
and y, inductively as follows: For atomic formula Aat we let |Aat| :≡ Aat. Assume the
interpretations of A and B have already been defined as |A|xy and |B|vw, we then define

|A� B| f ,gx,w :≡ |A|xf xw � |B|gx
w

|A ⊗ B|x,vy,w :≡ |A|xy ⊗ |B|vw
|A & B|x,vy,w,z :≡ |A|xy �z |B|vw
|A ⊕ B|x,v,zy,w :≡ |A|xy �z |B|vw
|∃zA(z)|x,zy :≡ |A(z)|xy
|∀zA(z)| fy,z :≡ |A(z)| fz

y .

Intuitively, the meaning of A is reduced to the existence of an object x such that ∀y|A|xy.
The x’s are called witnesses and the y’s challenges. Note that, contrary to the interpre-
tation of classical linear logic [7,10], the functional interpretation of intuitionistic linear
logic is no longer symmetric. In terms of games, the interpretation above can be seen
as associating to each formula A a one-move two-player sequential game |A|xy . In this
game, Eloise starts by playing a move x followed by Abelard playing a move y. Eloise
wins if |A|xy holds, otherwise Abelard wins.
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Those familiar with the dialectica interpretation might find it puzzling that linear
implication A � B is interpreted above precisely as the intuitionistic implication in
Gödel’s dialectica interpretation, even though we claim this is the canonical part of the
interpretation, which, depending on the interpretation of !A, can correspond to modified
realizability as well. Again, in terms of games, this is explained by the fact that in the
game A � B Eloise plays first in the game B, but she plays second in the game A.
In order to circumvent this discrepancy with our general rule that Eloise always plays
first, we allow Eloise’s move f in game A to depend on Abelard’s move x. In this way,
although she plays first in both games, it is as if she is playing second in game A, since
her move is a function which might depend on Abelard’s move.

Theorem 1 (Soundness). Let A0, . . . , An, B be formulas of pure ILLω, with z as the only
free-variables. If

A0(z), . . . , An(z)  B(z)

is provable in pure ILLω then terms a0, . . . , an, b can be extracted from this proof such
that

|A0(z)|x0
a0
, . . . , |An(z)|xn

an
 |B(z)|bw

is provable in ILLωb , where FV(ai) ⊆ {z, x0, . . . , xn,w} and FV(b) ⊆ {z, x0, . . . , xn}.
Proof. By induction on the derivation of A0(z), . . . , An(z)  B. The axioms are trivial
since the interpretation does not change atomic formulas and every type is inhabited.
The permutation rule is also immediate. Let us consider a few cases:

Cut
|Γ|uγ  |A|a0

y
[ a1[a0]

y ]|Γ|uγ′  |A|a0
a1[a0]

|Δ|vδ, |A|xa1[x]  |B|bw
[ a0

x ]|Δ|vδ′ , |A|a0
a1[a0]  |B|b

′
w

(cut)|Γ|uγ′ , |Δ|vδ′  |B|b
′

w

where γ′ and δ′, b′ are obtained from γ and δ, b via the substitutions [a1[a0]/y] and
[a0/x], respectively.

Tensor
|Γ|uγ  |A|ay |Δ|vδ  |B|bw (⊗R)|Γ|uγ, |Δ|vδ  |A|ay ⊗ |B|bw (D1)|Γ|uγ, |Δ|vδ  |A ⊗ B|a,by,w

|Γ|uγ, |A|xa, |B|vb  |C|cw
(⊗L)|Γ|uγ, |A|xa ⊗ |B|vb  |C|cw
(D1)|Γ|uγ, |A ⊗ B|x,va,b  |C|cw

Linear implication - left introduction

|Γ|uγ[y]  |A|ay
[ f a(b[ga])

y ]|Γ|uγ[ f a(b[ga])]  |A|af a(b[ga])

|Δ|wδ[v], |B|vb[v]  |C|c[v]
z

[ ga
v ]|Δ|wδ[ga], |B|ga

b[ga]  |C|c[ga]
z

(� L)|Γ|uγ[ f a(b[ga])], |Δ|wδ[ga], |A|af a(b[ga]) � |B|ga
b[ga]  |C|c[ga]

z
(D1)|Γ|uγ[ f a(b[ga])], |Δ|wδ[ga], |A� B| f ,ga,b[ga]  |C|c[ga]

z
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Universal quantifier

|Γ|uγ[z]  |A(z)|a[z]
y

|Γ|uγ[z]  |A(z)|(λz.a[z])z
y

(D1)|Γ|uγ[z]  |∀zA(z)|λz.a[z]
y,z

|Γ|uγ[x], |A(t)|xa[x]  |B|b[x]
w

[ f t
x ]|Γ|uγ[ f t], |A(t)| f t

a[ f t]  |B|b[ f t]
w

(D1)|Γ|uγ[ f t], |∀zA(z)| fa[ f t],t  |B|b[ f t]
w

Existential quantifier

|Γ|uγ  |A(t)|ay
(D1)|Γ|uγ  |∃zA(z)|a,ty

|Γ|uγ[z], |A(z)|xa[z]  |B|b[z]
y

(D1)|Γ|uγ[z], |∃zA(z)|x,za[z]  |B|b[z]
y

With - right introduction

|Γ|uγ0
 |A|ay

(Ax. 7/ L1(iv))|Γ|uT(γ0,γ1)  |A|ay �T |B|bw
|Γ|uγ1

 |B|bw
|Γ|uF(γ0,γ1)  |A|ay �F |B|bw

(L1(i))|Γ|uz(γ0,γ1)  |A|ay �z |B|bw
(D1)|Γ|uz(γ0,γ1)  |A & B|a,by,w,z

With - left introduction and Plus - right introduction

|Γ|uγ, |A|xa  |B|bw
(L1(iv))|Γ|uγ, |A|xa �T |C|vc  |B|bw
(D1)|Γ|uγ, |A & C|x,va,c,T  |B|bw

|Γ|uγ  |A|ay
(L1(iv))|Γ|uγ  |A|ay �T |B|bw
(D1)|Γ|uγ  |A ⊕ B|a,b,Ty,w

The other &-L and ⊕-R are similar.

Plus - left introduction

|Γ|uγ0
, |A|xa  |C|c1

w

|Γ|uT(γ0,γ1), |A|xa �T |B|vb  |C|T(c1,c2)
w

|Γ|uγ1
, |B|vb  |C|c2

w
(Ax. 7/ L1(iv))|Γ|uF(γ0,γ1), |A|xa �F |B|vb  |C|F(c1,c2)

w
(L1(i))|Γ|uz(γ0,γ1), |A|xa �z |B|vb  |C|z(c1,c2)

w
(D1)|Γ|uz(γ0,γ1), |A ⊕ B|x,v,za,b  |C|z(c1,c2)

w

The other cases are treated similary. �

2.1 Characterisation

As described in the introduction, one of the main advantages of working in the con-
text of intuitionistic linear logic is that we no longer need (non-standard) branching
quantifiers. The asymmetry introduced in ILLω turns the symmetric games of classical
linear logic into games where Eloise always plays first, so formulas A are interpreted as
∃x∀y|A|xy.

Proposition 2. The following principles characterise the basic interpretation presented
above
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ACl : ∀x∃yA∀(y)� ∃ f∀xA∀( f x)

MPl : (∀xAqf � Bqf)� ∃x(Aqf � Bqf)

IPl : (A∀ � ∃yB∀)� ∃y(A∀ � B∀)

EP : ∀x, v(Aqf ⊗ Bqf)� (∀xAqf ⊗ ∀vBqf)

where Aqf, Bqf and A∀, B∀ are quantifier-free formulas and purely universal formulas of
ILLωb respectively. Formally,

ILLωb + ACl +MPl + IPl + EP  A� ∃x∀y|A|xy.
Proof. By induction on the logical structure of A. Let us consider a few cases:

Tensor.

A ⊗ B
(IH)
� ∃x∀y|A|xy ⊗ ∃v∀w|B|vw
(EP)
� ∃x, v∀y,w(|A|xy ⊗ |B|vw)

≡ ∃x, v∀y,w|A ⊗ B|x,vy,w.

With.

A & B
(IH)
� ∃x∀y|A|xy &∃v∀w|B|vw
� ∀z(∃x∀y|A|xy �z ∃v∀w|B|vw)

� ∀z∃x, v(∀y|A|xy �z ∀w|B|vw)

� ∀z∃x, v∀y,w(|A|xy �z |B|vw)

(ACl)� ∃ f , g∀z, y,w(|A| fz
y �z |B|gz

w )

� ∃x, v∀z, y,w(|A|xy �z |B|vw)

≡ ∃x, v∀y,w, z|A & B|x,vy,w,z.

Linear implication.

A� B
(IH)
� ∃x∀y|A|xy � ∃v∀w|B|vw (IPl ,MPl)� ∀x∃v∀w∃y(|A|xy � |B|vw)

(ACl)� ∃ f , g∀x,w(|A|xf xw � |B|gx
w ) ≡ ∃ f , g∀x,w|A� B| f ,gx,w.

Universal quantifier.

∀zA
(IH)
� ∀z∃x∀y|A|xy (ACl)� ∃ f∀y, z|A| fz

y ≡ ∃ f∀y, z|∀zA| fy,z.
The other cases are treated similarly. In fact, for the remaining cases (once the induction
hypothesis is assumed) the equivalence can be proved in ILLωb alone. �

Remark 1. Note that if we are embedding ILω via the standard embedding (·)∗ then the
connective A ⊗ B is not needed, and hence the extra principle EP is not needed either.
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3 Some Interpretations of ILLω

In this section we consider a few choices of how the basic interpretation given in Defi-
nition 1 can be extended to full intuitionistic linear logic, i.e. we give some alternative
interpretations of the modality !A. All choices considered will have the form:

|!A|xy :≡ !∀y′ � y |A|xy′ (1)

for some notion of bounded quantified formula ∀y′ � y A. In fact, very little structure
is required in order to obtain a sound interpretation.

Proposition 3. Given a formula A[y], assume the formula ∀y � a A is such that for
some terms1 η(·), (·) ⊗ (·) and (·) ◦ (·) the following are provable in ILLωb

(A1) !∀y � η(z) A[y]� A[z]

(A2) !∀y � y1 ⊗ y2 A[y]� !∀y � y1 A[y]⊗ !∀y � y2 A[y]

(A3) !∀y � f ◦ z A[y]� !∀x � z !∀y � f x A[y].

The interpretation of !A as above leads to a sound functional interpretation of ILLω.

Proof. By Theorem 1 we just have to analyse the rules of contraction, weakening, !-
right introduction and !-left introduction.

Contraction

|Γ|uγ, |!A|x0
a0
, |!A|x1

a1
 |B|bw

[ x
x0
, x

x1
]|Γ|uγ, |!A|xa0

, |!A|xa1
 |B|bw

(1)|Γ|uγ, !∀y′ � a0 |A|xy′ , !∀y′ � a1 |A|xy′  |B|bw
(⊗L)|Γ|uγ, !∀y′ � a0 |A|xy′ ⊗ !∀y′ � a1 |A|xy′  |B|bw
(A2)|Γ|uγ, !∀y′ � a0 ⊗ a1 |A|xy′  |B|bw

(1)|Γ|uγ, |!A|xa0⊗a1
 |B|bw

Weakening

|Γ|uγ  |B|bw
(wkn)|Γ|uγ, !∀y′ � a |A|xy′  |B|bw
(1)|Γ|uγ, |!A|xa  |B|bw

Note that every type is inhabited by a closed term.

1 Note that these terms are allowed to be specific to the formula A, in particular, the free variables
of η(·), (·) ⊗ (·) and (·) ◦ (·) are assumed to be contained in the free-variables of ∀yA[y] (i.e. all
free-variables of A except y).
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Bang - right introduction

|!Γ|uγ[y′]  |A|ay′
(1)

!∀w′ � γ[y′] |Γ|uw′  |A|ay′
!∀y′ � y !∀w′ � (λy′.γ[y′])y′ |Γ|uw′  !∀y′ � y |A|ay′

(A3)
!∀w′ � (λy′.γ[y′]) ◦ y |Γ|uw′  !∀y′ � y |A|ay′

(1)|!Γ|u(λy′ .γ[y′])◦y  |!A|ay
Bang - left introduction

|Γ|uγ, |A|xa  |B|bw
(A1)|Γ|uγ, !∀y � η(a) |A|xy  |B|bw
(1)|Γ|uγ, |!A|xη(a)  |B|bw

That concludes the proof. �

Remark 2. Assume that the types of yρ and aTρ in ∀y � a |A|xy are as shown, for a fixed
A. Then, our three families of terms have types

η : ρ→ Tρ

⊗ : Tρ × Tρ→ Tρ

◦ : (τ→ Tρ) × Tτ→ Tρ.

In category theory, one could think of (T, η, ◦) as forming a Kleisli triple (∼ monad),
with ⊗ being a commutative monoid on Tρ. This in turn extends to a comonad on
formulas as

T (A[y]) :≡ !(∀y � a A)[a].

See e.g. the work of Valeria de Paiva [12] and Martin Hyland ([5], section 3.1) on
categorical logic for more information about the connection between functional inter-
pretations and comonads.

Proposition 4. The following are three sound interpretations of !A:

(a) |!A|x :≡ !∀y|A|xy
(b) |!A|xa :≡ !∀y∈ a |A|xy
(c) |!A|xy :≡ !|A|xy.

Proof. (a) This interpretation of !A corresponds to the choice ∀y � t A[y] :≡ ∀yA[y]. It
is easy to check that conditions (A1), (A2) and (A3) become

!∀yA[y]� A[z]

!∀yA[y]� !∀yA[y]⊗ !∀yA[y]

!∀yA[y]� !∀x!∀yA[y]

respectively, which are trivially derivable in ILLωb .
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(b) Consider that the language of ILLωb has a new finite type σ∗ for each finite type σ.
An element of type σ∗ is a finite set of elements of type σ. The extended language
has a relation symbol ∈ infixing between a term of type σ and a term of type σ∗ with
axioms to ensure that !(x ∈ y) if and only if x is an element in the set y. Consider
also the existence of three more constants of types σ → σ∗, σ∗ → σ∗ → σ∗ and
σ∗ → (σ → ρ∗) → ρ∗ that should be seen as terms such that η(t) is the singleton set
with tσ as the only element (in particular !(t ∈ η(t))), t ⊗ q is the union of two finite sets
t and q, and f ◦ q is the set that results from the union of all sets f x with x ∈ q. The
interpretation |!A|xa :≡ !∀y∈ a |A|xy corresponds to the choice ∀y � t A[y] :≡ ∀y∈ t A[y],
which is an abbreviation for ∀y(!(y ∈ t) � A[y]). In this context, the conditions (A1),
(A2) and (A3) become

!∀y∈η(z) A[y]� A[z]

!∀y∈ y1 ⊗ y2 A[y]� !∀y∈ y1 A[y]⊗ !∀y∈ y2 A[y]

!∀y∈ f ◦ z A[y]� !∀x∈ z !∀y∈ f xA[y],

which are provable in the extension of ILLωb outlined above.

(c) This interpretation of !A corresponds to the choice ∀y � t A[y] :≡ A[t/y]. Given a
formula A[y] we define η(·), as being the identity, ◦ is defined as f ◦ x :≡ f x and y1 ⊗ y2
is

y1 ⊗ y2 :=

⎧⎪⎪⎨⎪⎪⎩
y1 if !A[y1]� 0

y2 if !A[y1].

We are assuming that ILLωb has also an extra axiom (asserting the decidability of A)
 !A ⊕ (!A� 0). Conditions (A1), (A2) and (A3) become

!A[η(z)]� A[z]

!A[y1 ⊗ y2]� !A[y1]⊗ !A[y2]

!A[ f ◦ z]� !!A[ f z]

respectively. (A1) and (A3) are trivially derivable. In the derivation of (A2) use

 !A ⊕ (!A� 0)

!A[y1], !A[y1 ⊗ y2]  !A[y1]⊗ !A[y2], and

!A[y1]� 0, !A[y1 ⊗ y2]  0. �

4 Relation to Standard Interpretations of ILω

We argued in the introduction (see Proposition 1) that for the purpose of analysing ILω

via linear logic it sufficies to work with the system ILLωr . As it turns out, in ILLωr , we can
simplify our definition of functional interpretation as follows:

Proposition 5. When interpreting the subsystem ILLωr , the interpretation of A & B pre-
sented in Definition 1 can be simplified so that the parametrised interpretation
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|A� B| f ,gx,w :≡ |A|xf xw � |B|gx
w

|A ⊗ B|x,vy,w :≡ |A|xy ⊗ |B|vw
|A & B|x,vy,w :≡ |A|xy & |B|vw
|A ⊕ B|x,v,zy,w :≡ |A|xy �z |B|vw
|∃zA(z)|x,zy :≡ |A(z)|xy
|∀zA(z)| fy,z :≡ |A(z)| fz

y

|!A|xy :≡ !∀y′ � y |A|xy′
is sound for ILLωr , assuming (A1), (A2), and (A3) are satisfied.

Proof. We just have to analyse the rules for & having in mind that, in the case of the
system under interpretation, the &-right introduction is restricted of the form !Γ. The
simplified interpretation of A & B is shown sound as:

|!Γ|uγ0
 |A|ax

(P5)
!∀y′ � γ0 |Γ|uy′  |A|ax

(A2)
!∀y′ � γ0 ⊗ γ1 |Γ|uy′  |A|ax

|!Γ|uγ1
 |B|by

(P5)
!∀y′ � γ1 |Γ|uy′  |B|by

(A2)
!∀y′ � γ0 ⊗ γ1 |Γ|uy′  |B|by

(&R)
!∀y′ � γ0 ⊗ γ1 |Γ|uy′  |A|ax & |B|by

(P5)|!Γ|uγ0⊗γ1
 |A & B|a,bx,y

And for the left introduction:

|Γ|uγ, |A|xa  |C|cw
(&L)|Γ|uγ, |A|xa & |B|vb  |C|cw (P5)|Γ|uγ, |A & B|x,va,b  |C|cw

The other &-left introduction is similar. �

Since in the remaining part of this section we work with translations of intuitionis-
tic logic into linear logic, by |A|xy we refer to the (simplified) parametrised interpreta-
tion described in Proposition 5. Next we prove that the three different ways of inter-
preting !A (cf. Proposition 4) give rise to interpretations of ILLωr that correspond (via
the translations of intuitionistic logic into intuitionistic linear logic) to Kreisel’s modi-
fied realizability, the Diller-Nahm interpretation, and Gödel’s dialectica interpretation,
as:

|!A|xa Interpretation of ILω

!∀y|A|xy Kreisel’s modified realizability

!∀y∈ a |A|xy Diller-Nahm interpretation

!|A|xa Gödel’s dialectica interpretation.
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But first a consideration concerning translation (·)∗ of ILω into ILLωr , which we will
use in the treatment of the Diller-Nahm and the dialectica interpretations (for modified
realizability we use the translation (·)◦).
Proposition 6. Consider the following simplification of Girard’s translations (·)∗ (cf.
Proposition 1)

A+at :≡ Aat, if Aat � ⊥
⊥+ :≡ 0

(A ∧ B)+ :≡ A+& B+

(A ∨ B)+ :≡ A+ ⊕ B+

(A→ B)+ :≡ !A+ � B+

(∀xA)+ :≡ ∀xA+

(∃xA)+ :≡ ∃xA+.

If A is provable in ILω then A+ is provable in ILLωr + P⊕ + P∃, where

P⊕ : !(A ⊕ B)� !A⊕ !B

P∃ : !∃xA� ∃x!A.

Proof. First we show that given the principles P⊕ and P∃, we have !A∗ � !A+. The
proof is done by induction on the complexity of the formula A. Conjunction, implica-
tion and universal quantification follow easily by induction hypothesis using that ILLωr
proves:

!(A & B) � !A⊗ !B

!(!A� B)� !(!A� !B)

!∀xA � !∀x!A

respectively. Disjunction and existential quantification are studied below:

!(A ∨ B)∗ ≡ !(!A∗ ⊕ !B∗)�!A∗ ⊕ !B∗

(IH)
� !A+ ⊕ !B+

(P⊕)
�!(A+ ⊕ B+) ≡ !(A ∨ B)+

and !(∃xA)∗ ≡ !∃x!A∗ � ∃x!A∗
(IH)
� ∃x!A+

(P∃)� !∃xA+ ≡ !(∃xA)+. Applying
Proposition 1, we know that from ILω  A we have ILLωr  A∗. So, ILLωr !A∗ and hence
ILLωr +P⊕+P∃ !A∗. Using the equivalence proved before we have ILLωr +P⊕+P∃  !A+.
In particular, we conclude ILLωr + P⊕ + P∃  A+. �

The reason for assuming the principles P⊕ and P∃ is that they are validated by the
interpretations we shall consider. As such, we can make use of these to simplify the
embeddings of intuitionistic logic into (this extension of) linear logic, since the inter-
pretation of linear logic will interpret these principles taking us back to standard linear
logic, as suggested by the following diagram:
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ILLωP

(·)+

�

| · |
ILLωb

(·)+ = (·)∗
� �

ILω �
Interpretation

ILωef

In the diagram, ILLωP abbreviates ILLωr + P⊕ + P∃. Note that all our interpretations trans-
form proofs in ILω into existential-free proofs, i.e. proofs in ILωef, where the two transla-
tions (·)∗ and (·)+ coincide.

4.1 Modified Realizability

Kreisel’s modified realizability associates to each formula A of intuitionistic logic a
new formula x mr A (see [13] for the formal definition). We are going to prove that
this form of realizability once translated to the linear logic context via the (·)◦ transla-
tion corresponds (according to the theorem bellow) to the interpretation of ILLωr with
|!A|x :≡ !∀y|A|xy. First an auxiliar result:

Lemma 2. |A◦|x � !|A◦|x.

Proof. Note that, because of the way we interpret !A, it can be checked by induction on
A that the interpretation of A◦ has an empty tuple of challenge variables, i.e. we obtain a
formula of the form |A◦|x. To verify the lemma, it is enough to prove that |A◦|x � !A′,
for some formula A′, since assuming this we have !|A◦|x � !!A′ � !A′ � |A◦|x.
The proof is done by induction on the complexity of the formula A. We just sketch the
cases of conjunction and disjunction, being the other cases immediate.

|(A ∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y ≡ |A◦|x ⊗ |B◦|y (IH)
� !A′ ⊗ !B′� !(A′& B′).

|(A ∨ B)◦|x,y,z ≡ |A◦ ⊕ B◦|x,y,z ≡ |A◦|x�z |B◦|y (IH)
� !A′ �z !B′

(L1(v))
� !(!A′ �z !B′). �

Theorem 2. |A◦|x � (x mr A)◦.

Proof. The proof is done by induction on the complexity of the formula A. If A is an
atomic formula, the result is trivial. Consider the case of conjunction:

|(A ∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y ≡ |A◦|x ⊗ |B◦|y
(IH)
� (x mr A)◦ ⊗ (y mr B)◦ ≡ (x mr A ∧ y mr B)◦ ≡ (x, y mr A ∧ B)◦.

The universal and existential quantifications also follow immediately from the way we
define the translation and the interpretations, applying the induction hypothesis. Impli-
cation is treated as

|(A→ B)◦|g ≡ |!(A◦ � B◦)|g ≡ !∀x|A◦ � B◦|gx ≡ !∀x(|A◦|x � |B◦|gx)

(IH)
� !∀x((x mr A)◦ � (gx mr B)◦)� !∀x!((x mr A)◦ � (gx mr B)◦)

≡ (∀x(x mr A→ gx mr B))◦ ≡ (g mr (A→ B))◦.
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whereas disjunction uses the auxiliary result above:

|(A ∨ B)◦|x,y,z (L2)
� !|(A ∨ B)◦|x,y,z ≡ !|A◦ ⊕ B◦|x,y,z ≡ !(|A◦|x �z |B◦|y)
(IH)
� !((!(z = T)� (x mr A)◦) & (!(z = F)� (y mr B)◦))

� !(!(z = T)� (x mr A)◦)⊗ !(!(z = F)� (y mr B)◦)

≡ ((z = T→ x mr A) ∧ (z = F→ y mr B))◦

≡ (x, y, z mr A ∨ B)◦.

That concludes the proof. �

4.2 Gödel’s Dialectica Interpretation

Recall that Gödel’s dialectica interpretation associates to each formula A a quantifier-
free formula AD(x; y) inductively, such that A is interpreted as ∃x∀yAD(x; y) (see [1],
section 2.3). The next result shows the correspondence between the dialectica interpre-
tation and the ILLωr interpretation with |!A|xy :≡ !|A|xy, via the simplified embedding (·)+
(cf. Proposition 6).

Theorem 3. |A+|xy � (AD(x; y))+.

Proof. The proof is easily done by induction on the complexity of the formula A. Again
the atomic formulas are checked trivially and the other formulas follow immediately by
induction hypothesis using the definitions of the (·)+-translation and the interpretations.
We illustrate with two cases: Conjunction

|(A ∧ B)+|x,vy,w ≡ |A+& B+|x,vy,w ≡ |A+|xy & |B+|vw (IH)
� (AD(x; y))+& (BD(v; w))+

≡ (AD(x; y) ∧ BD(v; w))+ ≡ ((A ∧ B)D(x, v; y,w))+.

and disjunction:

|(A ∨ B)+|x,v,zy,w ≡ |A+ ⊕ B+|x,v,zy,w ≡ |A+|xy �z |B+|vw
≡ (!(z = T)� |A+|xy) & (!(z = F)� |B+|vw)

(IH)
� (!(z = T)� (AD(x; y))+) & (!(z = F)� (BD(v; w))+)

≡ (z = T→ AD(x; y))+& (z = F→ BD(v; w))+

≡ ((z = T→ AD(x; y)) ∧ (z = F→ BD(v; w)))+

≡ ((A ∨ B)D(x, v, z; y,w))+.

The other cases are treated similarly. �

Note that although (·)+ translates formulas from ILω into ILLωr + P⊕ + P∃, since these
two principles are interpretable the verifying system is still ILLωb . Let us argue that P⊕
and P∃ are interpretable, by showing that the interpretation of premise implies that of
the conclusion (hence the identity and projection functions can be taken as realisers for
the implication). It can be proved that
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∀x � a (A(x) & B)� (∀x � a A(x) & B) and

∀x � a (B� A(x))� (B� ∀x � a A(x))

when the variable x does not occur free in B. Also, !(A �b B)� !A �b !B. So,

|!(A ⊕ B)|x,v,ba,c ≡ !∀y � a∀w � c (|A|xy �b |B|vw)

� !(∀y � a |A|xy �b ∀w � c |B|vw)

� !∀y � a |A|xy �b !∀w � c |B|vw ≡ |!A ⊕ !B|x,v,ba,c .

Similarly, |!∃zA|x,za ≡ !∀y � a |∃zA|x,zy ≡ !∀y � a |A|xy ≡ |!A|xa ≡ |∃z!A|x,za .

4.3 Diller-Nahm Interpretation

The Diller-Nahm interpretation differs from Gödel’s dialectica interpretation since it
allows finite sets to witness the negative content of an implication. Formally, the Diller-
Nahm interpretation is defined inductively as

(Aat)dn(; ) :≡ Aat

(A ∧ B)dn(x, v; y,w) :≡ Adn(x; y) ∧ Bdn(v; w)

(A ∨ B)dn(x, v, z; y,w) :≡ (z = T→ Adn(x; y)) ∧ (z = F→ Bdn(v; w))

(A→ B)dn( f , g; x,w) :≡ ∀y ∈ f xwAdn(x; y)→ Bdn(gx; w)

(∀zA)dn( f ; y, z) :≡ Adn( fz; y)

(∃zA)dn(x, z; y) :≡ Adn(x; y).

Next we show that the Diller-Nahm interpretation of ILω corresponds to the interpreta-
tion of ILLωr with |!A|xa :≡ !∀y∈ a |A|xy.

Theorem 4. |A+|xy � (Adn(x; y))+.

Proof. The proof, by induction on the structure of A, is almost entirely similar to the
one concerning Gödel’s interpretation. The only case which needs attention is that of
implication, which we analyse below.

|(A→ B)+| f ,gx,w ≡ |!A+ � B+| f ,gx,w ≡ |!A+|xf xw � |B+|gx
w

≡ !∀y ∈ f xw|A+|xy � |B+|gx
w

(IH)
� !∀y ∈ f xw(Adn(x; y))+ � (Bdn(gx; w))+

≡ !(∀y ∈ f xwAdn(x; y))+ � (Bdn(gx; w))+

≡ (∀y ∈ f xwAdn(x; y)→ Bdn(gx; w))+

≡ ((A→ B)dn( f , g; x,w))+.
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Note that the (·)+ translation of ∀y∈aA is ∀y∈aA+, as we can see below:

(∀y∈a A)+ ≡ (∀y(y∈a→ A))+

≡ ∀y(!(y∈a)+ � A+) ≡ ∀y(!(y∈a)� A+) ≡ ∀y∈a A+.

That concludes the proof. �
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Fixed-Point Definability and Polynomial Time

Martin Grohe

Humboldt-Universität zu Berlin, Germany

Abstract. My talk will be a survey of recent results about the quest for
a logic capturing polynomial time.

In a fundamental study of database query languages, Chandra and Harel [4]
first raised the question of whether there exists a logic that captures polynomial
time. Actually, Chandra and Harel phrased the question in a somewhat disguised
form; the version that we use today goes back to Gurevich [15]. Briefly, but
slightly imprecisely,1 a logic L captures a complexity class K if exactly those
properties of finite structures that are decidable in K are definable in L. The
existence of a logic capturing PTIME is still wide open, and it is viewed as one
of the main open problems in finite model theory and database theory. One
reason the question is interesting is that we know from Fagin’s Theorem [9] that
existential second-order logic captures NP, and we also know that there are logics
capturing most natural complexity classes above NP. Gurevich conjectured that
there is no logic capturing PTIME. If this conjecture was true, this would not only
imply that PTIME �= NP, but it would also show that NP and the complexity
classes above NP have a fundamentally different structure than the class PTIME
and presumably most natural complexity classes below PTIME. (This aspect is
highlighted by a result due to Dawar [6], also see [13].)

On the positive side, Immerman [18] and Vardi [23] proved that least fixed-
point logic FP captures polynomial time on the class of all ordered finite struc-
tures. Here we say that a logic L captures a complexity class K on a class C of
finite structures if exactly those properties of structures in C decidable in K are
definable in L. It is easy to prove that FP does not capture PTIME on the class of
all finite structures. Immerman [19] proposed the extension FP + C of fixed-point
logic by counting operators as a candidate for a logic capturing PTIME. It is not
easy to prove, but true nevertheless, that FP + C does not capture PTIME. This
was shown by Cai, Fürer, and Immerman in 1992 [3].

Fixed-Point Definability on Graphs with Excluded Minors

Even though the logic FP + C does not capture PTIME on the class of all finite
structures, it does capture PTIME on many natural classes of structures. Im-
merman and Lander [20] proved that FP + C captures PTIME on the class of all
trees. In 1998, I proved that FP + C captures PTIME on the class of all planar
1 For a precise definition of a logic capturing PTIME, I refer the reader to Grädel’s

excellent survey [10] on descriptive complexity theory.

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 20–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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graphs [11] and around the same time, Julian Mariño and I proved that FP + C
captures PTIME on all classes of structures of bounded tree width [14]. In [12], I
proved the same result for the class of all K5-free graphs, that is the class of all
graphs that have no complete graph on five vertices as a minor. A minor of graph
G is a graph H that can be obtained from a subgraph of G by contracting edges.
By (the easy direction of) Kuratowski’s Theorem, the class of all K5-free graphs
contains all planar graphs. We say that a class C of graphs excludes a minor if
there is a graph H that is not a minor of any graph in C. Very recently, I proved
the following theorem, which generalises all these previous results, because all
classes of graphs appearing in these results exclude minors.

Theorem2 FP + C captures PTIME on all classes of graphs that exclude a
minor.

The main part of my talk will be devoted to this theorem.

Stronger Logics

While FP + C captures PTIME on many interesting classes of structures, it has
been known for almost twenty years that it does not capture PTIME. So what
about stronger logics? Currently, the two main candidates for logics capturing
PTIME are choiceless polynomial time with counting CP + C and fixed-point logic
with a rank operator FP + R. The logic CP + C was introduced ten years ago by
Blass, Gurevich and Shelah [1] (also see [2,8]). The formal definition of the logic is
carried out in the framework of abstract state machines. Intuitively CP + C may
be viewed as a version of FP + C where quantification and fixed-point operators
not only range over elements of a structure, but instead over all objects that can
be described by O(log n) bits, where n is the size of the structure. This intuition
can be formalised in an expansion of a structure by all hereditarily finite sets
which use the elements of the structure as atoms. The logic FP + R, introduced
recently in [7], is an extension of FP by an operator that determines the rank of
definable matrices in a structure. This may be viewed as a higher dimensional
version of a counting operator. (Counting appears as a special case of diagonal
{0, 1}-matrices.)

Both CP + C and FP + R are known to be strictly more expressive than
FP + C. Indeed, both logics can express the property used by Cai, Fürer, and Im-
merman to separate FP + C from PTIME. For both logics it is open whether they
capture polynomial time, and it is also open whether one of them semantically
contains the other.

Is There a Logic Capturing PTIME ?

Let me close this note by a few thoughts on the question of whether there exists a
logic capturing PTIME. As I said in the first paragraph, the question is still wide
2 As this result has not been published yet, and not even a complete readable

manuscript exists, the skeptic reader may treat this as a conjecture rather than
a theorem.
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open. By this, I do not only mean that we are far from having a proof settling the
question in either direction, but actually that I do not see any evidence pointing
towards one or the other answer (despite Gurevich’s conjecture). If anything,
I mildly lean towards believing that there is a logic for PTIME. It is known
that there is a connection between the question of whether there exists a logic
capturing PTIME and a variant of the graph isomorphism problem: If there is
a polynomial time graph canonisation algorithm, then there is a logic capturing
PTIME. But this does not really help, because the question for polynomial time
graph isomorphism and canonisation algorithms is open just the same, and even
if there is no polynomial time canonisation algorithm, this does not mean that
there is no logic for PTIME. To gain a better understanding of the relation
between the two problems, it would be interesting to see a small complexity
class like uniform AC0, which provably does not admit graph canonisation, can
be captured by a logic.

References

1. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Annals of Pure
and Applied Logic 100, 141–187 (1999)

2. Blass, A., Gurevich, Y., Shelah, S.: On polynomial time computation over un-
ordered structures. Journal of Symbolic Logic 67, 1093–1125 (2002)
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This little gem is stated unbilled and proved (completely) in the last two lines of
§2 of the short note Kleene (1938). In modern notation, with all the hypotheses
stated explicitly and in a strong form, it reads as follows:

Theorem 1 (SRT). Fix a set V ⊆ N, and suppose that for each natural number
n ∈ N = {0, 1, 2, . . .}, ϕn : N

n+1 ⇀ V is a recursive partial function of (n + 1)
arguments with values in V so that the standard assumptions (1) and (2)
hold with

{e}(�x) = ϕn
e (�x) = ϕn(e, �x) (�x = (x1, . . . , xn) ∈ N

n).

(1) Every n-ary recursive partial function with values in V is ϕn
e for some e.

(2) For all m, n, there is a recursive (total) function S = Sm
n : N

m+1 → N

such that
{S(e, �y)}(�x) = {e}(�y, �x) (e ∈ N, �y ∈ N

m, �x ∈ N
n).

Then, for every recursive, partial function f(e, �y, �x) of (1+m+n) arguments
with values in V, there is a total recursive function z̃(�y) of m arguments such
that

{z̃(�y)}(�x) = f(z̃(�y), �y, �x) (�y ∈ N
m, �x ∈ N

n). (1)

Proof. Fix e so that {e}(m,�y, �x) = f(S(m, m, �y), �y, �x) and let z̃(�y) = S(e, e, �y).��

Kleene states the theorem with V = N, relative to specific ϕn, Sm
n , supplied by

his Enumeration Theorem, m = 0 (no parameters �y) and n ≥ 1, i.e., not allowing
nullary partial functions. And most of the time, this is all we need; but there
are a few important applications where choosing “the right” ϕn, Sm

n , restricting
the values to a proper V � N or allowing m > 0 or n = 0 simplifies the proof
considerably. With V = {{0}} (singleton 0) and m = n = 0, for example, the
characteristic equation

{z̃}( ) = f(z̃) (2)

is a rather “pure” form of self-reference, where the number z̃ produced by the
proof (as a code of a nullary semirecursive relation) has the property f(z̃), at
least when f(z̃)↓ .
� Part of an expository article in preparation, written to commemorate the passage

of 100 years since the birth of Stephen Cole Kleene.
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Kleene uses the theorem in the very next page to prove that there is a largest
initial segment of the countable ordinals which can be given “constructive nota-
tions”, in the first application of what we now call effective grounded (transfinite)
recursion, one of the most useful methods of proof justified by SRT; but there
are many others, touching most parts of logic and even classical analysis.

My aim in this lecture is to list, discuss, explain and in a couple of simple
cases prove some of the most significant applications of the Second Recursion
Theorem, in a kind of “retrospective exhibition” of the work that it has done
since 1938. It is quite impressive, actually, the power of such a simple fact with
a one-line proof; but part of its wide applicability stems precisely from this
simplicity, which make it easy to formulate and establish it in many contexts
outside ordinary recursion theory on N. Some of the more important applications
come up in Effective Descriptive Set Theory, where the relevant version of SRT
is obtained by replacing N by the Baire space N = (N → N) and applying
recursion theory on N—also developed by Kleene.

Speaking rather loosely, the identity (1) expresses a self-referential property
of z̃(�y) and SRT is often applied to justify powerful, self-referential definitions.
I will discuss some of these first, and then I will turn to applications of effective
grounded recursion.

The lecture will focus on some of the following consequences of SRT:1

A. Self reproducing Turing machines. It is quite simple to show using SRT
that there is a Turing machine which prints its code when it is started on the
blank tape. It takes just a little more work—and a careful choice of ϕn, Sm

n —to
specify a Turing machine (naturally and literally) by a string of symbols in its
own alphabet and then show

Theorem 2. On every alphabet Σ with N ≥ 3 symbols, there is a Turing ma-
chine M which started on the blank tape outputs itself.

B. Myhill’s characterization of r.e. complete sets. Recall that a recur-
sively enumerable (r.e.) set A ⊆ N is complete if for each r.e. set B there is a
recursive (total) function f such that x ∈ B ⇐⇒ f(x) ∈ A.2 An r.e. set A is
creative if there is a unary recursive partial function u(e) such that

We ∩ A = ∅ =⇒ u(e)↓ & u(e) /∈ (A ∪ We). (3)

The notion goes back to Post (1944) who showed (in effect) that every r.e.-
complete set is creative and implicitly asked for the converse.

1 The choice of these examples was dictated by what I know and what I like, but also
by the natural limitations of space in an extended abstract and time in a lecture.
A more complete list would surely include examples from Recursion in higher types
and Realizability theory. (For the latter, see Moschovakis (2010) which is in some
ways a companion article to this.)

2 And then one can find a one-to-one f with the same property, cf. Theorem VII
in Rogers (1967).



26 Y.N. Moschovakis

Theorem 3 (Myhill (1955)). Every creative set is r.e.-complete.

This clever argument of Myhill’s has many applications, but it is also founda-
tionally significant: it identifies creativeness, which is an intrinsic property of a
set A but depends on the coding of recursive partial functions with complete-
ness, which depends on the entire class of r.e. sets but is independent of coding.
I believe it is the first important application of SRT in print by someone other
than Kleene.

C. The Myhill-Shepherdson Theorem. One (modern) interpretation of
this classical result is that algorithms which call their (computable, partial)
function arguments by name can be simulated by non-deterministic algorithms
which call their function arguments by value. It is a rather simple but interesting
consequence of SRT.

Let P1
r be the set of all unary recursive partial functions. A partial operation

Φ : N
n × P1

r ⇀ N (4)

is effective if its partial function associate

f(�x, e) = Φ(�x, ϕ1
e) (5)

is recursive. In programming terms, an effective operation calls its function ar-
gument by name, i.e., it needs a code of any p ∈ P1

r to compute the value Φ(�x, p).
There are cases, however, when we need to compute Φ(�x, p) without access

to a code of p, only to its values. In programming terms again, this comes up
when p is computed by some other program which is not known, but which
can be asked to produce any values p(�y) that are required during the (otherwise
effective) computation of Φ(�x, p). We can make this precise using a (deterministic
or non-deterministic) Turing machine M with an oracle which can request values
of the function argument p on a special function input tape: when M needs p(y),
it prints y on the function input tape and waits until it is replaced by p(y) before
it can go on—which, in fact, may cause the computation to stall if p(y) ↑. In
these circumstances we say that M computes Φ by value.

Notice that the recursive associate f of an effective operation Φ as in (5)
satisfies the following invariance condition:

ϕe1 = ϕe2 =⇒ f(�x, e1) = f(�x, e2). (6)

This is used crucially in the proof of the next theorem, which involves two clever
applications of SRT:

Theorem 4 (Myhill and Shepherdson (1955)). A partial operation Φ as in (4)
is effective if and only if it is computable by a non-deterministic Turing
machine.3
3 The use of non-deterministic machines here is essential, because the operation

Φ(p) =

{

1, if p(0)↓ or p(1)↓ ,

⊥, otherwise

is effective but not computable by a deterministic Turing machine.
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D. The Kreisel-Lacombe-Shoenfield-Ceitin Theorem. Let F1
r be the set

of all unary total recursive functions. By analogy with operations on P1
r , a partial

operation
Φ : N

n ×F1
r ⇀ N

is effective if there is a recursive partial function f : N
n+1 ⇀ N such that

ϕe ∈ F1
r =⇒ Φ(�x, ϕe) = f(�x, e). (7)

Notice that such a recursive associate f of Φ satisfies the invariance condition

ϕe = ϕm ∈ F1
r =⇒ f(�x, e) = f(�x, m), (8)

but is not uniquely determined.

The next theorem is a version of the Myhill-Shepherdson Theorem appropriate
for these operations. Its proof is not quite so easy, and it involves applying SRT
in the middle of a relatively complex construction:

Theorem 5 (Kreisel, Lacombe, and Shoenfield (1957), Ceitin (1962)). Suppose
Φ : N

n ×F1
r → N is a total effective operation.

(1) Φ is effectively continuous: i.e., there is a recursive partial function g(e, �x),
such that when ϕe is total, then g(e, �x)↓ for all �x, and for all p ∈ F1

r ,

(∀t < g(e, �x))[p(t) = ϕe(t)] =⇒ Φ(�x, p) = Φ(�x, ϕe).

(2) Φ is computed by a deterministic Turing machine.

The restriction in the theorem to total operations on F1
r is necessary, because

of a lovely counterexample in Friedberg (1958).

Ceitin (1962) proved independently a general version of (1) in this theorem:
every recursive operator on one constructive metric space to another is effectively
continuous. His result is the central fact in the school of constructive analysis
which was flowering in Russia at that time, and it has played an important role
in the development of constructive mathematics ever since.

E. Incompleteness and undecidability using SRT. We formulate in this
section two basic theorems which relate SRT to incompleteness and undecidabil-
ity results: a version of the so-called Fixed Point Lemma, and a beautiful result
of Myhill’s, which implies most simple incompleteness and undecidability facts
about sufficiently strong theories and insures a very wide applicability for the
Fixed Point Lemma.

Working in the language of Peano Arithmetic (PA) with symbols 0, 1, +, ·, define
first (recursively) for each x ∈ N a closed term Δx which denotes x, and for
every formula χ, let

#χ = the code (Gödel number) of χ, �χ� ≡ Δ#χ = the name of χ.
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We assume that the Gödel numbering of formulas is sufficiently effective so that
(for example) #ϕ(Δx1, . . . , Δxn) can be computed from #ϕ(v1, . . . , vn) and
x1, . . . , xn. A theory (in the language of PA) is any set of sentences T and

Th(T ) = {#θ | θ is a sentence and T � θ}

is the set of (Gödel numbers of) the theorems of T . A theory T is sound if every
θ ∈ T is true in the standard model (N, 0, 1, +, ·); it is axiomatizable if its proof
relation

ProofT (e, y) ⇐⇒ e is the code of a sentence σ

and y is the code of a proof of σ in T

is recursive, which implies that Th(T ) is recursively enumerable; and it is suffi-
ciently expressive if every recursive relation R(�x) is numeralwise expressible in
T , i.e., for some formula ϕR(v1, . . . , vn),

R(x1, . . . , xn) =⇒ T � ϕR(Δx1, . . . , Δxn),
¬R(x1, . . . , xn) =⇒ T � ¬ϕR(Δx1, . . . , Δxn).

Theorem 6 (Fixed Point Lemma). If T is axiomatizable in the language of
PA and Th(T ) is r.e.-complete, then for every formula θ(v) with at most v free,
there is a sentence σ such that

T � σ ⇐⇒ T � θ(�σ�). (9)

Proof. Let ψ0, ψ1, . . . be recursive partial functions satisfying the standard as-
sumptions, let4

u ∈ A ⇐⇒ (∃n)[Seq(u) & lh(u) = n + 1 & ψn((u)0, (u)1, . . . , (u)n)↓ ],

so that A is r.e., and so there is a total recursive function r such that

u ∈ A ⇐⇒ r(u) ∈ Th(T ).

It follows that for every n-ary semirecursive relation R(�x), there is a number e
such that

R(�x) ⇐⇒ ψn(e, �x)↓ ⇐⇒ 〈e, �x〉 ∈ A ⇐⇒ r(〈e, �x〉) ∈ Th(T ). (10)

We will use SRT with V = {{0}} and

ϕn(e, �x) = 0 ⇐⇒ r(〈e, �x〉) ∈ Th(T ),

which (because of (10), easily) satisfy the standard assumptions.
4 For any tuple �x = (x0, . . . , xn−1) ∈ N

n, 〈�x〉 codes �x so that for suitable recursive
relations and functions,

〈�x〉 = fn(x0, . . . , xn−1), Seq(w) ⇐⇒ w is a sequence code, lh(〈�x〉) = n, (〈�x〉)i = xi,

and the code 〈 〉 of the empty sequence is 1.
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Given θ(v), SRT (with m = n = 0) gives us a number z̃ such that

{z̃}( ) = 0 ⇐⇒ r(〈z̃〉) is not the code of a sentence or T � θ(Δr(〈z̃〉)). (11)

Now r(〈z̃〉) is the code of a sentence, because if it were not, then the right-hand-
side of (11) would be true, which makes the left-hand-side true and insures that
r(〈z̃〉) codes a sentence, in fact a theorem of T ; and if r(〈z̃〉) = #σ, then

T � σ ⇐⇒ r(〈z̃〉) ∈ Th(T ) ⇐⇒ {z̃}( ) = 0
⇐⇒ T � θ(Δr(〈z̃)〉) ⇐⇒ T � θ(�σ�). ��

The conclusion of the Fixed Point Lemma is usually stated in the stronger form

T � σ ↔ θ(�σ�),

but (9) is sufficient to yield the applications. For the First Incompleteness The-
orem, for example, we assume in addition that T is sufficiently expressive, we
choose σ such that

T � σ ⇐⇒ T � ¬(∃u)ProofT (�σ�, u) (12)

where ProofT (v, u) numeralwise expresses in T its proof relation, and we check
that if T is consistent, then T �� σ, and if T is also sound, then T �� ¬σ. The
only difference from the usual argument is that (12) does not quite say that σ
“expresses its own unprovability”—only that it is is provable exactly when its
unprovability is also provable. For the Rosser form of Gödel’s Theorem, we need
to assume that T is a bit stronger (as we will explain below) and consistent,
though not necessarily sound, and the classical argument again works with the
more complex Rosser sentence and this same, small different understanding of
what the Rosser sentence says.

There is a problem, however, with the key hypothesis in Theorem 6 that Th(T )
is r.e.-complete. This is trivial for sufficiently expressive and sound theories,
including, of course, PA, but not so simple to verify for theories which are con-
sistent but not sound. In fact it holds for every axiomatizable theory T which
extends the system Q from Robinson (1950)—which is the standard hypothesis
for incompleteness and undecidability results about consistent theories which
need not be sound.5

Theorem 7 (Myhill (1955)). If T is any consistent, axiomatizable extension of
Q, then Th(T ) is creative, and hence r.e.-complete.

5 For a description of Q and its properties, see (for example)
Boolos, Burgess, and Jeffrey (1974) or even Kleene (1952), §41. Notice also that
Theorem 7 does not lose much of its foundational interest or its important
applications if we replace Q by PA in its statement—and the properties of Q that
are used in the proof are quite obvious for PA.
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The proof uses SRT with V = {{0, 1}}, and (like all arguments of Myhill), it is
very clever.

So consistent, axiomatizable extensions of Q are undecidable and hence in-
complete; moreover, the Fixed Point Lemma Theorem 6 applies to them, and
so we can construct specific, interesting sentences that they cannot decide, a la
Rosser.
A minor (notational) adjustment of the proofs establishes Theorems 6 and 7 for
any consistent, axiomatizable theory T , in any language, provided only that Q
can be interpreted in T ,6 including, for example, ZFC; and then a third funda-
mental result of Myhill (1955) implies that the sets of theorems of any two such
theories are recursively isomorphic.7

F. Solovay’s theorem in provability logic. The (propositional) modal for-
mulas are built up as usual using variables p0, p1, . . .; a constant ⊥ denoting
falsity; the binary implication operator → (which we use with ⊥ to define all the
classical propositional connectives); and a unary operator �, which is usually
interpreted by “it is necessary that”. Solovay (1976) studies interpretations of
modal formulas by sentences of PA in which � is interpreted by “it is provable
in PA that” and establishes some of the basic results of the logic of provability.
His central argument appeals to SRT at a crucial point.
An interpretation of modal formulas is any assignment π of sentences of PA
to the propositional variables, which is then extended to all formulas by the
structural recursion

π(⊥) ≡ 0 = 1, π(ϕ → ψ) ≡ (π(ϕ) → π(ψ)), π(�ϕ) ≡ (∃u)ProofPA(�π(ϕ)�, u).

A modal formula ϕ is PA-valid if PA � π(ϕ) for every interpretation π.
The axiom schemes of the system GL are:

(A0) All tautologies;
(A1) �(ϕ → ψ) → (�ϕ → �ψ) (transitivity of provability);
(A2) �ϕ → ��ϕ (provable sentences are provably provable); and

(A3)
(

�(�ϕ → ϕ)
)

→ �ϕ (Löb’s Theorem).

The inference rules of GL are:
(R1) ϕ → ψ, ϕ =⇒ ψ (Modus Ponens); and
(R2) ϕ =⇒ �ϕ (Necessitation).

Theorem 8 (Solovay (1976)). A modal formula ϕ is PA-valid if and only if it
is a theorem of GL.

Solovay shows also that the class of PA-valid modal formulas is decidable, and he
obtains a similar decidable characterization of the modal formulas ϕ such that
6 A (weak) interpretation of T1 in T2 is any recursive map χ 	→ χ∗ of the sentences of

T1 to those of T2 such that T1 � χ =⇒ T2 � χ∗ and T2 � (¬χ)∗ ↔ ¬(χ∗).
7 Pour-El and Kripke (1967) have interesting, stronger results of this type, whose

proofs also use the Second Recursion Theorem.
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every interpretation π(ϕ) is true (in the standard model), in terms of a related
axiom system GL′.

The proof of Theorem 8 is long, complex, ingenious and depends essentially
(and subtly) on the full strength of PA. It is nothing like the one-line derivations
of Theorems 2 and 6 from standard facts about the relevant objects by a natural
application of SRT or even the longer, clever proofs of Theorems 3, 4, 5 and 7 in
which SRT still yields the punch lines. Still, I cannot see how one could possibly
construct (or even think up) the key, “self-referential” closed term l of Solovay’s
Lemma 4.1 directly, without appealing to the Second Recursion Theorem,8 and
so, in that sense, SRT is an essential ingredient of his argument.

Next we turn to effective, grounded recursion, and perhaps the best way to
explain it it to describe how it was introduced in Kleene (1938).

G. Constructive and recursive ordinals. Ordinal numbers can be viewed as
the order types of well ordered sets, but also as extended number systems, which
go beyond N and can be used to count (and regulate) transfinite iteration. Church
and Kleene developed in the 1930s an extensive theory of such systems, aiming
primarily at a constructive theory of ordinals—which, however, was only partly
realized since many of their basic results could only be proved using classical
logic. Kleene (1938) formulated the Second Recursion Theorem to solve one of
the basic problems in this area.

A notation system for ordinals or r-system (in Kleene (1938)) is a set S ⊆ N,
together with a function x �→ |x|S which assigns to each x in S a countable
ordinal so that the following conditions hold:

(ON1) There is a recursive partial function K(x) whose domain of convergence
includes S and such that, for x ∈ S,

|x|S = 0 ⇐⇒ K(x) = 0,

|x|S is a successor ordinal ⇐⇒ K(x) = 1,

|x|S is a limit ordinal ⇐⇒ K(x) = 2.

(ON2) There is a recursive partial function P (x), such that if x ∈ S and |x|S is
a successor ordinal, then P (x)↓ , P (x) ∈ S and |x|S = |P (x)|S + 1.

(ON3) There is a recursive partial function Q(x, t), such that if x ∈ S and
|x|S is a limit ordinal, then for all t, Q(x, t) ↓ , |Q(x, t)|S < |Q(x, t + 1)|S and
|x|S = limt |Q(x, t)|S .

In short, an r-system assigns S-names (number codes) to some ordinals, so
that we can effectively recognize whether a code x names 0, a successor ordi-
nal or a limit ordinal, and we can compute an S-name for the predecessor of
each S-named successor ordinal and (S-names for) a strictly increasing sequence
converging to each S-named limit ordinal.

A countable ordinal is constructive if it gets a name in some r-system.

8 Which Solovay invokes to define a function h : N → {0, . . . , n} by the magical words
“Our definition of h will be in terms of a Gödel number e for h. The apparent
circularity is handled, using the recursion theorem, in the usual way.”
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The empty set is an r-system, as is N, which names the finite ordinals, and
every r-system (obviously) assigns names to a countable, initial segment of the
ordinal numbers. It is not immediately clear, however, whether the set of con-
structive ordinals is countable or what properties it may have: the main re-
sult in Kleene (1938) clarifies the picture considerably by constructing a single
r-system which names all of them.

This “maximal” r-system is defined by a straightforward transfinite recursion
which yields the following

Lemma. There is an r-system (S1, | |1) such that:
(i) 1 ∈ S1 and |1|1 = 0.
(ii) If x ∈ S1, then 2x ∈ S1 and |2x|1 = |x|1 + 1.
(iii) If ϕ1

e is total and for all t, ϕe(t) ∈ S1 and |ϕe(t)|1 < |ϕe(t + 1)|1, then
3 · 5e ∈ S1 and |3 · 5e|1 = limt |ϕe(t)|.

Theorem 9 (Kleene (1938)). For every r-system (S, | |S), there is a unary re-
cursive function ψ such that

x ∈ S =⇒
(

ψ(x) ∈ S1 & |x|S = |x|1
)

.

In particular, the system (S1, | |1) names all constructive ordinals.

Proof. Let K, P, Q be the recursive partial functions that come with (S, | |S),
choose a number e0 such that

{S(e0, z, x)}(t) = {e0}(z, x, t) = {z}(Q(x, t)),

fix by SRT (with V = N, m = 0, n = 1) a number z̃ such that

ϕz̃(x) =

⎧

⎪

⎨

⎪

⎩

1, if K(x) = 0,

2ϕz̃(P (x)), if K(x) = 1,

3 · 5S(e0,z̃,x), otherwise,

and set ψ(x) = ϕz̃(x). The required properties of ψ(x) are proved by a simple
(possibly transfinite) induction on |x|S . ��
In effect, the map from S to S1 is defined by the obvious transfinite recursion
on |x|S , which is made effective by appealing to SRT—hence the name for the
method.

The choice of numbers of the form 3 · 5e to name limit ordinals was made
for reasons that do not concern us here, but it poses an interesting question:
which ordinals get names in (S′1, | |′1), defined by replacing 3 · 5e by (say) 7e in
the definition of S1? They are the same constructive ordinals, of course, and the
proof is by defining by effective grounded recursion (exactly as in the proof of
Theorem 9) a pair of recursive functions ψ, ψ′ such that

x ∈ S1 =⇒
(

ψ′(x) ∈ S′1 & |x|1 = |ψ′(x)|′1
)

,

x ∈ S′1 =⇒
(

ψ(x) ∈ S1 & |x|′1 = |ψ(x)|1
)

.

(And I do not know how else one could prove this “obvious” fact.)
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The constructive ordinals are “constructive analogs” of the classical countable
ordinals, and so the constructive analog of the first uncountable ordinal Ω1 is

ωCK
1 = sup{|x|1 | x ∈ S1} = the least non-constructive ordinal,

the superscript standing for Church-Kleene. This is one of the most basic “uni-
versal constants” which shows up in logic—in many parts of it and under many
guises. We list here one of its earliest characterizations.

A countable ordinal ξ is recursive if it is the order type of a recursive well
ordering on some subset of N.

Theorem 10 (Markwald (1954), Spector (1955)). A countable ordinal ξ is con-
structive if and only if it is recursive.

Both directions of the theorem are proved by (fairly routine) effective, grounded
recursions.

H. The hyperarithmetical hierarchy. Kleene (1955c) associates with each
a ∈ S1 a set Ha ⊆ N so that:9

(H1) H1 = N.
(H2) H2b = H ′

b.
(H3) If a = 3 · 5e, then t ∈ Ha ⇐⇒ (t)1 ∈ Hϕe((t)0).

A relation P ⊆ N
n is hyperarithmetical if it is recursive in some Ha.10

This natural extension of the arithmetical hierarchy was also defined indepen-
dently (and in different ways) by Davis (1950) and Mostowski (1951) who knew
most of its basic properties, but not the central Theorem 11 below. To formulate
it, we need to refer to the arithmetical and analytical relations on N which were
introduced in Kleene (1943, 1955a); without repeating the definitions, we just
record here the fact that they fall into two hierarchies

Δ0
1 � · · · � Σ0

� ∪ Π0
� � Δ0

�+1 � · · · � Δ1
1 � · · · � Σ1

k ∪ Π1
k � Δ1

k+1 � · · ·

where Δ0
1 comprises the recursive relations. Above all the arithmetical relations

and at the bottom of the analytical hierarchy lie the Δ1
1 relations which satisfy

a double equivalence

P (�x) ⇐⇒ (∃β)Q(�x, β) ⇐⇒ (∀β)R(�x, β)

where β ranges over the Baire space N = (N → N) and Q, R are arithmetical
(or just Δ0

2) relations on N
n ×N , suitably defined.

Theorem 11 (Kleene (1955c)). A relation P ⊆ N
n is Δ1

1 if and only if it is
hyperarithmetical.
9 For each A ⊆ N, A′ is the jump of A.

10 Actually, Kleene defines Ha only when a ∈ O, a variant of S1 which has more struc-
ture and is “more constructive”. I will disregard this fine point here, as many basic
facts about O can only be proved classically and the attempt to use intuitionistic
logic whenever it is possible clouds and complicates the arguments.
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Notice that the theorem characterizes only the Δ1
1 relations on N, so we will

revisit the question later.
This is the most significant, foundational result in the sequence of articles

Kleene (1935, 1943, 1944, 1955a,b,c, 1959) in which Kleene developed the theory
of arithmetical, hyperarithmetical and analytical relations on N, surely one of
the most impressive bodies of work in the theory of definability.11 Starting with
the 1944 article, Kleene uses effective, grounded recursion in practically every
argument: it is the key, indispensable technical tool for this theory.
From the extensive work of others in this area, we cite only one, early but
spectacular result:

Theorem 12 (The Uniqueness Theorem, Spector (1955)). There is a recursive
function u(a, b), such that if |a|1 ≤o |b|1, then u(a, b) is the code of a Turing
machine M which decides Ha using Hb as oracle.

In particular, if |a|1 = |b|1, then Ha and Hb have the same degree of unsolv-
ability.

The definition of u(a, b) is naturally given by effective grounded recursion.
Classical and effective descriptive set theory. Kleene was primarily in-
terested in relations on N, and he was more-or-less dragged into introducing
quantification over N and the analytical hierarchy in order to find explicit forms
for the hyperarithmetical relations. Once they were introduced, however, the
analytical relations on Baire space naturally posed new problems: is there, for
example, a construction principle for the Δ1

1 relations which satisfy

P (x) ⇐⇒ (∃β)Q(x, β) ⇐⇒ (∀β)R(x, β) (13)

where x = �x, �α varies over N
n × Nm and Q, R are arithmetical—a useful and

interesting analog of Theorem 11?
In fact, these were very old problems, initially posed (and sometimes answered,

in different form, to be sure) by Borel, Lebesgue, Lusin, Suslin and many others,
primarily analysts and topologists who were working in Descriptive Set The-
ory in the first half of the 20th century. The similarity between what they had
been doing and Kleene’s work was first noticed by Mostowski (1946) and (espe-
cially) Addison (1954, 1959), and later work by many people created a common
generalization of the classical and the new results now known as Effective De-
scriptive Set Theory; Moschovakis (2009) is the standard text on the subject
and it gives a more careful history and a detailed introduction to this field.

The main inheritance of effective descriptive set theory from recursion theory
is the propensity to code—assign to objects names that determine their relevant
properties and then compute, decide or define functions and relations on these
objects by operating on the codes rather than the objects coded—except that
now we use points in N rather than numbers for codes. We operate on N -codes
11 Kleene was the first logician to receive in 1983 the Steele Prize for a seminal con-

tribution to research of the American Mathematical Society, specifically for the
articles Kleene (1955a,b,c).
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using recursion on N , by which a partial function f : Nn ⇀ N is recursive if
f(�α) = (λs)f∗(�α, s) where f∗ : Nn×N ⇀ N is recursive, i.e., there is a recursive
relation R ⊆ N

n+2 such that

f∗(�α, s) = w ⇐⇒ (∃t)R(α1(t), . . . , αn(t), s, w)

where α(t) = 〈α(0), α(1), . . . , α(t − 1)〉. It is easy to show (and important) that
for these partial functions,

f(�α) = β =⇒ β is recursive in α1, . . . , αn.

A partial function g : Nn ⇀ N is continuous if

g(�α) = f(δ0, �α)

with some recursive f : Nn+1 ⇀ N and some δ0 ∈ N .12

And here is the relevant version of SRT:

Theorem 13. There is a recursive partial functions ϕn : Nn+1 ⇀ N for each
n ∈ N, so that (1) and (2) hold with

{ε}(�α) = ϕn
ε (�α) = ϕn(ε, �α) (�α = (α1, . . . , αn) ∈ Nn).

(1) Every continuous g : Nn ⇀ N is ϕn
ε for some ε, and every recursive

f : Nn ⇀ N is ϕn
ε for some recursive ε.

(2) For all m, n, there is a recursive (total) function S = Sm
n : Nm+1 → N

such that

{S(ε, �β)}(�α) = {ε}(�β, �α) (ε ∈ N , �β ∈ Nm, �α ∈ Nn).

It follows that for every recursive, partial function f(ε, �β, �α) of (1 + m + n)
arguments, there is a total recursive function γ̃(�β) of m arguments such that

{γ̃(�β)}(�α) = f(γ̃(�β), �β, �α) (�β ∈ Nm, �α ∈ Nn). (14)

I will confine myself here to formulating just two results from effective descriptive
set theory. Both are proved by effective, grounded recursion justified by this
version of SRT, and they suggest the power of the method and the breadth of
its applicability.

I. The Suslin-Kleene Theorem. Classical descriptive set theory is the study
of definable subsets of an arbitrary Polish (metrizable, separable, complete topo-
logical) space X , including the real numbers R and products of the form X =
12 Notice that the domain of convergence of a recursive, partial f : Nn ⇀ N is not (in

general) Σ0
1 but Π0

2 ,

f(�α)↓ ⇐⇒ (∀s)(∃w)(∃t)R(α1(t), . . . , αn(t), s, w).

It is not difficult to check that a partial g : Nn ⇀ N is continuous if its domain of
convergence Dg is a Gδ (Π

˜

0
2) set and g is topologically continuous on Dg .
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N
n × Nm. The class B = BX of the Borel subsets of X is the smallest class

which contains all the open balls and is closed under countable unions and com-
plements, and starting with this and iterating projection on N and complemen-
tation we get the projective hierarchy,

B ⊆ Δ
˜

1
1 � Σ

˜

1
1 ∪ Π

˜

1
1 � Δ

˜

1
2 � Σ

˜

1
2 ∪ Π

˜

1
2 � · · ·

The class Δ
˜

1
1 comprises the sets which satisfy (13) with Q and R Borel (or even

Δ
˜

0
3) subsets of the product space X ×N , and their identification with the Borel

sets is a cornerstone of the theory:

Theorem 14 (Suslin (1917)). For every Polish space X , Δ
˜

1
1 = B.

There is an obvious resemblance in form between this result of Suslin and
Kleene’s Theorem 11, which led Mostowski and Addison to talk first of “analo-
gies” between descriptive set theory and the “hierarchy theory” of Kleene, as
it was then called; but neither of these results implies the other, as Suslin’s
Theorem is trivial on N

n and Kleene’s Theorem says nothing about subsets of
N—not to mention the real numbers or other Polish spaces which are very im-
portant for the classical theory. One of the first, substantial achievements of the
“marriage” of the classical and the new theory was the derivation of a basic fact
which extends (and refines) both Theorems 11 and 14.
We code the Σ

˜

1
k and Π

˜

1
k subsets of each Polish space in a natural way, so that

the usual operations on them (countable unions and intersections, for example)
are recursive in the codes, also in a natural way. A Δ

˜

1
1-code of a set A is the

(suitably defined) pair 〈α, β〉 of a Σ
˜

1
1 and a Π

˜

1
1 code for A. Finally, we code

the Borel subsets of each X , so that a Borel code of a set A supplies all the
information necessary to construct A from open balls by iterating the operations
of countable union and complementation. And with these definitions at hand:

Theorem 15 (The Suslin-Kleene Theorem, see Moschovakis (2009)). For each
Polish space X which admits a recursive presentation, there are recursive func-
tions u, v : N → N such that if α is a Borel code of a set A ⊆ X , then u(α) is
a Δ
˜

1
1-code of A, and if β is a Δ

˜

1
1-code of A, then v(β) is a Borel code of A.

In particular, the Δ1
1 subsets of X are exactly the Borel subsets of X which

have recursive codes.13

The Suslin-Kleene Theorem implies immediately Suslin’s Theorem and (with
just a little extra work) Kleene’s Theorem 11. It is shown by adapting one of

13 The restriction to recursively presented spaces is inessential, because every Polish
space can be presented recursively in some ε0 ∈ N , and then the whole theory
“relativises” to this ε0. Notice also that Moschovakis (2009) defines recursive pre-
sentations only for countable and perfect Polish spaces, but the definition makes
sense for arbitrary Polish spaces, and then each such X is isometric with the Π0

1

subset X ×{{λt0}} of the perfect X ×N ; using this representation, the Suslin-Kleene
Theorem holds for all recursively presented spaces—as do many (but not all) results
in Moschovakis (2009).
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the classical proofs of Suslin’s Theorem rather than Kleene’s much more difficult
argument, and, of course, effective grounded recursion.

J. The Coding Lemma. The last example is from the exotic world of deter-
minacy, about as far from recursion theory as one could go—or so it seems at
first.

Theorem 16 (The Coding Lemma, Moschovakis (1970, 2009)). In ZFDC+AD:
if there exists a surjection f : R →→ κ of the continuum onto a cardinal κ, then
there exists a surjection g : R →→P(κ) of the continuum onto the powerset of κ.

Here ZFDC stands for ZFC with the Axiom of (full) Choice AC replaced by the
weaker Axiom of Dependent Choices DC, and AD is the Axiom of Determinacy,
which is inconsistent with AC. It has been shown by Martin and Steel (1988)
and Woodin (1988) that (granting the appropriate large cardinal axioms), AD
holds in L(R), the smallest model of ZFDC which contains all ordinals and all
real numbers. Long before that great (and reassuring!) result, however, AD was
used systematically to uncover the structure of the analytical and projective
hierarchies—so it has something to do with recursion theory after all!

It is not possible to give here a brief, meaningful explanation of all that goes
into the statement of Theorem 16 which, in any case, is only a corollary of a
substantially stronger and more general result. Notice, however, that in a world
where it holds, R is immense in size, if we measure size by surjections: it can be
mapped onto ℵ1 (classically), and so onto ℵ2, and inductively onto every ℵn and
so onto ℵω, etc., all the way onto every ℵξ for ξ < ℵ1: and it can also be mapped
onto the powerset of each of these cardinals. This surjective size of R is actually
immense in the world of AD, the Coding Lemma is one of the important tools
in proving this—and it does not appear possible to prove the Coding Lemma
without using SRT, which creeps in this way into the study of cardinals, perhaps
the most purely set-theoretic part of set theory.

The hypothesis AD of full determinacy is covered in Section 7D, The com-
pletely playful universe of Moschovakis (2009), part of Chapter 7 whose title is
The Recursion Theorem.
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Abstract. We present a normalization-by-evaluation (NbE) algorithm for Sys-
tem Fω with βη-equality, the simplest impredicative type theory with computa-
tion on the type level. Values are kept abstract and requirements on values are kept
to a minimum, allowing many different implementations of the algorithm. The al-
gorithm is verified through a general model construction using typed applicative
structures, called type and object structures. Both soundness and completeness of
NbE are conceived as an instance of a single fundamental theorem.

1 Introduction and Related Work

In theorem provers, such as Coq [INR07], Agda [Nor07], Epigram [CAM07], which
are based on intensional type theory, checking the validity of proofs or typings relies on
deciding equality of types. Types are recognized as equal if they have the same normal
form. This is why normalization plays a key role in type theories, such as the Calculus
of Constructions (CC) which underlies Coq, and Martin-Löf Type Theory which is
the basis of Agda and Epigram. The hardwired type equality of Coq is restricted to
computational equality (β), as opposed to Agda and Epigram which have βη-equality.
Our goal is to integrate η-laws into Coq’s equality. As a prerequisite, we have to show
normalization for the βη-CC.

Normalization by evaluation (NbE) [BS91, Dan99] is a systematic method to per-
form βη-normalization. In a first step, the object t of type T is evaluated. The resulting
value d is then reified to an η-long β-normal form v. The reification process is directed
by the shape of type T . NbE has proven a valid tool to structure extensional normaliza-
tion, especially in the notoriously difficult case of sum types [ADHS01, BCF04, Bar08].
In previous work [ACD07], we have adapted NbE to a dependent type theory with one
predicative universe and judgmental βη-equality. What is the challenge when stepping
up to impredicativity? Predicative type theories allow to define the semantics of types
from below via induction-recursion [Dyb00], and the reification function can be de-
fined by induction on types. This fails in the presence of impredicativity, where one
first has to lay out a lattice of semantic type candidates and then define impredicative
quantification using an intersection over all candidates [GLT89]. Hence, the semantic
type structure is not inductive, and reification cannot be defined by induction on types.
There are at least two ways out of this dilemma: Altenkirch, Hofmann, and Streicher
[AHS96] construct a total normalization function type-wise while building a model for
System F. In previous work [Abe08], I have conceived reification as a deterministic

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 40–54, 2009.
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relation between value d and normal form v and their type T , and showed through a
model construction that it corresponds to a total function.

In this work, we are moving one step closer to NbE for the CC: we are consider-
ing the simplest type system which features impredicativity and computation on the
type level: the higher-order polymorphic lambda-calculus Fω . It adds to the problem of
impredicativity the difficulty that types are no longer fixed syntactic expressions as in
System F, but they need to be normalized as well. Of course, due to the simply-kinded
structure of types they could be kept in long normal form using simple structural nor-
malization. This does not scale to the CC, so we resist this temptation.

In our solution, reification of objects is directed by type values A. Syntactic types
T are interpreted by a pair (A,A) of a type value A and a semantic type A which
is a set of objects that are reifiable at type A. Furthermore, type value A reifies to a
normal form V which is βη-equal to T . These considerations lead us to the concept
of a type structure which captures the similarities between syntactic types, type values,
and semantic types. Consequently, syntactic objects and their values both form an object
structure over a type structure, the syntactical type structure in case of syntactic objects
and the structure of type values in case of (object) values.

Or notions of type and object structures are very general, in essence typed versions
of Barendregt’s syntactical applicative structures [Bar84, Def. 5.3.1]. The fundamental
theorems we prove are also very general since we do not fix an interpretation of types;
we only require that semantic types inhabit a candidate space. By choosing different
candidate spaces we can harvest different results from the same fundamental theorem,
e. g., soundness of NbE, completeness of NbE, or weak normalization of β- or βη-
reduction [Abe08].

In the following developments we omit most proofs due to lack of space. They can
be found in the full version of this article on the author’s homepage [Abe09].

Preliminaries. Contexts Ξ,Θ, Γ,Δ, Φ, Ψ are functions from variables to some codo-
main. We write � for the totally undefined function and Φ, x :a for the function Φ′ with
domain dom(Φ) � {x} such that Φ′(x) = a and Φ′(y) = Φ(y) for y �= x. We say Ψ ′

extends Ψ , written Ψ ′ ≤ Ψ , if Ψ ′(x) = Ψ(x) for all x ∈ dom(Ψ).
Families TΞ indexed by a context Ξ are always understood to be Kripke, i. e., Ξ ′ ≤

Ξ implies TΞ ⊆ TΞ′ . The notion Kripke family is also used for maps MΞ . There it
implies that M does not depend on the context parameter, i. e., MΞ(a) = MΞ′(a) for
a ∈ dom(MΞ) and Ξ ′ ≤ Ξ . (Note that dom(MΞ) ⊆ dom(MΞ′) since M is Kripke.)

We write (a ∈ A) → B(a) for the dependent function space {f ∈ A →
⋃

a∈A B(a) |
f(a) ∈ B(a) for all a ∈ A}.

2 Syntax

In this section, we present the syntax and inference rules for System Fω . The system
consists of three levels: On the lowest level there live the objects, meaning polymorphic,
purely functional programs. On the middle level live the types of objects, and the type
constructors, which are classified by kinds that themselves inhabit the highest level.

Kinds κ ∈ Ki are given by the grammar κ ::= � | κ → κ′. Kind � classifies type
constructors which are actually types, and kind κ → κ′ classifies the type constructors



42 A. Abel

Kinding Ξ � T : κ. “In context Ξ , type T has kind κ.”

Ξ � C : Σ(C) Ξ � X : Ξ(X)

Ξ,X :κ � T : κ′

Ξ � λX :κ. T : κ → κ′
Ξ � T : κ → κ′ Ξ � U : κ

Ξ � T U : κ′

Type equality Ξ � T = T ′ : κ. “In context Ξ , types T and T ′ are βη-equal of kind κ.”
Congruence closure of the following β- and η-axioms.

Ξ, X :κ � T : κ′ Ξ � U : κ

Ξ � (λX :κ. T )U = T [U/X] : κ′
Ξ � T : κ → κ′

Ξ � λX :κ. T X = T : κ → κ′ X �∈ dom(Ξ)

Typing Ξ; Γ � t : T . “In contexts Ξ, Γ , object t has type T .”

Ξ � Γ

Ξ; Γ � x : Γ (x)
Ξ; Γ, x :U � t : T

Ξ; Γ � λx :U. t : U → T

Ξ;Γ � t : U → T Ξ;Γ � u : U

Ξ; Γ � t u : T

Ξ � T : κ → 	 Ξ, X :κ; Γ � t : T X

Ξ; Γ � ΛX :κ. t : ∀κT
X �∈ dom(Ξ)

Ξ;Γ � t : ∀κT Ξ � U : κ

Ξ;Γ � t U : T U

Ξ;Γ � t : T Ξ � T = T ′ : 	

Ξ;Γ � t : T ′

Object equality Ξ;Γ � t = t′ : T . “In contexts Ξ,Γ , objects t and t′ are βη-equal of type T .”
Congruence closure of the following β- and η-axioms.

Ξ;Γ, x :U � t : T Ξ;Γ � u : U

Ξ;Γ � (λx :U. t)u = t[u/x] : T

Ξ;Γ � t : U → T

Ξ; Γ � λx :U. t x = t : U → T
x �∈ dom(Γ )

Ξ, X :κ; Γ � t : T Ξ � U : κ

Ξ;Γ � (ΛX :κ. t)U = t[U/X] : T [U/X]
Ξ;Γ � t : ∀κT

Ξ; Γ � ΛX :κ. t X = t : ∀κT
X �∈ dom(Ξ)

Fig. 1. Fω: kinding, type equality, typing, object equality

which map type constructors of kind κ to type constructors of kind κ′. In the following,
we will refer to all type constructors as types.

Assume a countably infinite set of type variables TyVar whose members are denoted
by X , Y , Z . Kinding contexts Ξ,Θ ∈ KiCxt are partial maps from the type variables
into Ki. The set TyCst = {→, ∀κ | κ ∈ Ki} contains the type constants C. Their kinds
are given by the signature Σ ∈ TyCst → Ki defined by Σ(→) = � → � → � and
Σ(∀κ) = (κ → �) → � for all κ ∈ Ki.

Types are given by the grammar T, U, V ::= C | X | λX :κ.T | T U , where X ∈
TyVar, and form a “simply-kinded” lambda calculus. As usual, we write T → U for
→T U . Objects are given by the grammar t, u, v ::= x | λx :T . t | t u | ΛX :κ. t | t U
and form a polymorphic lambda-calculus with type abstraction and type application.
Herein, object variables x are drawn from a countably infinite set ObjVar which is
disjoint from TyVar. We write b[a/x] for capture-avoiding substitution of a for variable
x in syntactic expression b, and FV for the function returning the set of all free type and
object variables of a syntactic expression.
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The judgements and inference rules of Fω are displayed in Figure 1. Herein, the
auxiliary judgement Ξ � Γ , read “Γ is a well-formed typing context in Ξ”, is defined
as Ξ � Γ (x) : � for all x ∈ dom(Γ ).

3 Abstract Normalization by Evaluation

In the following, we present normalization by evaluation (NbE) for System Fω for an
abstract domain D of values and type values. This leaves the freedom to implement val-
ues in different ways, e. g., β-normal forms, weak head normal forms (as in Pollack’s
constructive engine [Pol94]), closures (as in Coquand’s type checker [Coq96]), tagged
functions (Epigram 2 [CAM07]) or virtual machine instructions (compiled reduction in
Coq [GL02]). All implementations of values that satisfy the interface given in the fol-
lowing can be used with our NbE algorithm, and in this article we provide a framework
to prove all these implementations correct.

In this section, we will understand functions in terms of a programming language,
i. e., partial and possibly non-terminating. We unify the syntax of kinds, types, and
objects into a grammar of expressions Exp. Let Var = TyVar ∪ ObjVar.

Expressions Exp �M,N ::= � | C | X | x | λx :M.N | ΛX :M.N | M N
Values D � d, e, f, A,B, F,G (abstract)

Environments Env are finite maps from variables to values. Look-up of variable x in
environment ρ is written ρ(x), update of environment ρ with new value v for variable x
is written ρ[x �→ v], and the empty environment is written �. The call fresh(ρ) returns a
variable x which is not in dom(ρ).

Application and evaluation (see Fig. 2) make values into a syntactical applicative
structure [Bar84, 5.3.1], provided the equations below are satisfied. Such structures
will appear later, in a sorted setting, as type and object structures (defs. 1 and 13). Note
that establishing the laws of evaluation can be arbitrarily hard, e. g., if � � involves an
optimizing compiler.

Values are converted back to expressions through reification. However, this process
can only be implemented for term-like value domains, in particular, we require an em-
bedding of variables into D, and an analysis neView of values that arise as iterated ap-
plication of a variable (a so-called neutral value) or as iterated application of a constant
(a constructed value). Some constructed values are types or kinds, they are analyzed by
tyView, which can actually be defined from neView.

Values d of type V in contextΔ, which assigns type values to variables, are reified by
a call to ↘⇑(Δ, d, V ). It is mutually defined with ↘⇑(Δ,n) which returns the normal
formM and type V of neutral value n. Later in this article, reification will be presented
as two relationsΔ � d ↘ M ⇓⇑ V such thatΔ � d ↘ M ⇑ V iff ↘⇑(Δ, d, V ) = M
and Δ � d ↘ M ⇓ V iff ↘⇓(Δ, d) = (M,V ).

NbE is now obtained as reification after evaluation. For closed expressions M of
type or kind N we define nbe(M,N) = ↘⇑(�, �M��, tyView�N��).
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Applicative structure D of values.

Application · : D → D → D

Evaluation � � : Exp → Env → D
�x�ρ = ρ(x)
�λx :M.N�ρ · d = �N�ρ[x �→d]

�X�ρ = ρ(X)
�ΛX :M. N�ρ · G = �N�ρ[X �→G]

�M N�ρ = �M�ρ · �N�ρ

D is term-like.

Embedding var : Var → D

View as neutral NeView � n ::= C | X | x | e d
neView : D → NeView
neView�C�ρ = C
neView(var X) = X
neView(var x) = x
neView(e · d) = e d if neView e is defined

View as type TyView � V ::= 	 | A → B | ∀κF
tyView : D → TyView
tyView �	�ρ = 	
tyView �M → N�ρ = tyView �M�ρ → tyView �N�ρ

tyView �∀κM�ρ = ∀κ tyView �M�ρ

Reification.

↘⇑ : Env → D → TyView → Exp
↘⇑(Δ, f, A → B) = let x = fresh(Δ)

(U, ) = ↘⇓(Δ, neView A)
in λx :U. ↘⇑(Δ[x 	→ A], f · var x, tyView B)

↘⇑(Δ, d,∀κF ) = let X = fresh(Δ)
in ΛX :κ. ↘⇑(Δ[X 	→ κ], d · var X, tyView(F · var X))

↘⇑(Δ, e, 	) = let (M, ) = ↘⇓(Δ, neView e) in M

↘⇓ : Env → NeView → Exp × TyView
↘⇓(Δ, C) = (C,Σ(C))
↘⇓(Δ, X) = (X, tyView(Δ(X)))
↘⇓(Δ, x) = (x, tyView(Δ(x)))
↘⇓(Δ, e d) = let (M, V ) = ↘⇓(Δ, e) in case V of

A → B 	→ (M (↘⇑(Δ, d, tyView A)), tyView B)
∀κF 	→ (M (↘⇑(Δ, d, κ)), tyView(F · d))

Normalization by evaluation.

nbe(M, N) = ↘⇑(�, �M��, tyView�N��)

Fig. 2. Specification of an NbE algorithm
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A concrete instance of NbE is obtained by defining a recursive data type D with the
constructors:

Constr : TyCst → D∗ → D
Ne : Var → D∗ → D
Abs : (D → D) → D

Application, evaluation, and variable embedding are given by the following equations.

(ConstrC Gs) · G = ConstrC (Gs , G)
(Nex ds) · d = Nex (ds , d)
(Abs f) · d = f d

�λx :M.N�ρ = Abs f where f d = �N�ρ[x 	→d]
�ΛX :M.N�ρ = Abs f where f G = �N�ρ[X 	→G]
�C�ρ = ConstrC ()

Variables are embedded via var x = Nex (). This instance of NbE is now easily com-
pleted using the equations of the specification, and can be implemented directly in
Haskell.

In this article we show that any instance of the NbE-specification terminates with
the correct result for well-formed expressions of Fω, i. e., we show the following two
properties:

1. Soundness: if � M : N , then � nbe(M,N) = M : N .
2. Completeness: if � M : N and � M ′ : N , then nbe(M,N) = nbe(M ′, N) (same

expression up to α).

In contrast to the untyped presentation in this section, which saves us from some rep-
etition, we will distinguish the three levels of Fω consequently in the remainder of the
article.

4 Type Structures

In this section, we define type structures as an abstraction over syntactic types, type
values, and semantic types. Type structures form a category which has finite products.
Let Tyκ

Ξ = {T | Ξ � T : κ}.

Definition 1 (Type structure). An (Fω) type structure is a tuple (T ,Cst,App, [[ ]] )
where T is a Kripke family T κ

Ξ of sets with the following Kripke families of maps:

CstΞ ∈ (C ∈ TyCst) → T Σ(C)
Ξ

Appκ→κ′

Ξ ∈ T κ→κ′

Ξ → T κ
Ξ → T κ′

Ξ

Usually, we will just write F · G for Appκ→κ′

Ξ (F,G). Let ρ ∈ T Ξ
Θ iff ρ(X) ∈ T Ξ(X)

Θ

for all X ∈ dom(Ξ). The interpretation function has the following properties:

[[ ]] ∈ Tyκ
Ξ → T Ξ

Θ → T κ
Θ

[[C]]ρ = CstΘ(C)
[[X ]]ρ = ρ(X)

[[λX :κ.T ]]ρ ·G = [[T ]]ρ[X 	→G]
[[T U ]]ρ = [[T ]]ρ · [[U ]]ρ
[[T [U/X ]]]ρ = [[T ]]ρ[X 	→[[U ]]ρ] (∗)
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If the condition (∗) is fulfilled, we speak of a combinatory type structure, since (∗) is
a characterizing property of combinatory algebras. The condition (∗) is only necessary
since we chose to use eager substitution in the inference rules of Fω , it can be dropped
when switching to explicit substitutions [ACD08].

We use “interpretation” and “evaluation” synonymously. Note that while the equa-
tions determine the interpretation of constants, variables, and application, there is some
freedom in the interpretation of functions [[λX :κ.T ]]ρ. It could be lambda-terms (tak-
ing T = Ty), set-theoretical functions (see Def. 20), functional values in an interpreter,
machine code etc.

Since CstΞ is independent of Ξ , we have CstΞ = Cxt�, we usually suppress the
index Ξ in CstΞ . We may even drop Cst altogether, i. e., we just write → ∈ T �→�→�

Ξ

instead of Cst(→) ∈ T �→�→�
Ξ .

To avoid ambiguities when different type structures are in scope, we may write →T ,
∀κ
T , ·T and T [[ ]] to emphasize that we mean the type structure operations of T .

Simple examples of type structures are Ty and Ty modulo β, βη, or judgmental
equality. In these instances, the interpretation function is parallel substitution.

Definition 2 (Type structure morphism). Given two type structures S and T , a type
structure morphism M : S → T is a Kripke family of maps Mκ

Ξ ∈ Sκ
Ξ → T κ

Ξ that
commute with the operations of S, i. e.,

Mκ
Ξ(CS) = CT

Mκ′

Ξ (F ·S G) = Mκ→κ′

Ξ (F ) ·T Mκ
Ξ(G)

Mκ
Θ(S[[T ]]ρ) = T [[T ]]MΞ

Θ ◦ρ
where (MΞ

Θ ◦ ρ)(X) := M
Ξ(X)
Θ (ρ(X)).

The Cartesian product S × T of two type structures forms a type structure with
pointwise application and tupled interpretation. The two projections π1 : S × T → S
and π2 : S × T → T are trivially type structure morphisms, and × is a product in the
category of type structures and their morphisms.

4.1 Type Substructures and the Fundamental Theorem for Kinding

Definition 3 (Type substructure). The Kripke family Sκ
Ξ ⊆ T κ

Ξ is a type substructure
of T if all of T ’s operations are well-defined on S, i. e., CT ∈ Sκ

Ξ , ·T ∈ Sκ→κ′

Ξ →
Sκ

Ξ → Sκ′

Ξ , and T [[ ]] ∈ Tyκ
Ξ → SΞ

Θ → Sκ
Θ .

In the following we simply write S ⊆ T to mean Sκ
Ξ ⊆ T κ

Ξ for all κ,Ξ .

Lemma 1 (Projection type substructure). If S ⊆ T1 × T2 is a type substructure, so
are π1(S) ⊆ T1 and π2(S) ⊆ T2.

Definition 4 (Function space). We write K ∈ ̂T κ if K is a Kripke family of subsets
KΞ ⊆ T κ

Ξ . Given K ∈ ̂T κ and K ′ ∈ ̂T κ′
we define the Kripke function space

(K →
̂T K ′)Ξ = {F ∈ T κ→κ′

Ξ | F ·G ∈ K ′Ξ′ for all Ξ ′ ≤ Ξ and G ∈ KΞ′}

If no ambiguities arise, we write → for →
̂T .
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Definition 5 (Induced type structure). Let T be a type structure and S ⊆ T be
Kripke. If CT ∈ SΣ(C)

Ξ for all constants C and Sκ→κ′

Ξ = (Sκ →
̂T Sκ′

)Ξ then S
is called induced or an induced type substructure of T (see Thm. 1).

Such an S is called induced since it is already determined by the choice of the denota-
tion of the base kind S�.

Theorem 1 (Fundamental theorem of kinding). Let T be a type structure. If S ⊆ T
is induced, then S is a type substructure of T .

Proof. We mainly need to show that evaluation is well-defined. This is shown by in-
duction on the kinding derivation, as usual. "#

4.2 NbE for Types and Its Soundness

We are ready to define the reification relation for type values and show that NbE, i. e.,
the composition of evaluation of a syntactic type T and reification to a normal form V ,
is sound, i. e., T and V are judgmentally equal. As a byproduct, we show totality of
NbE on well-kinded types. The structure T of type values is left abstract. However, not
every T permits reification of its inhabitants. It needs to include the variables which
need to be distinguishable from each other and other type values. Neutral types, i. e., of
the shape X · G, need to be analyzable into head X and spine G. We call a suitable T
term-like; on such a T we can define contextual reification [ACD08, Abe08].

Definition 6 (Term-like type structure). A type structure T is term-like if there exists
exists a Kripke family of maps VarΞ ∈ (X ∈ dom(Ξ)) → T Ξ(X)

Ξ and a Kripke family
of partial maps

Viewκ
Ξ ∈ T κ

Ξ ⇀ {(C,G) ∈ TyCst × T κ
Ξ | Σ(C) = κ → κ}

+ {(X,G) ∈ TyVar × T κ
Ξ | Ξ(X) = κ → κ}

such that View(F ) = (C,G) iff F = Cst(C) ·G (“F is constructed”) and View(F ) =
(X,G) iff F = Var(X) · G (“F is neutral”).

Usually, we drop the index Ξ to Var. We may write VarT to refer to the variable em-
bedding of type structure T .

Definition 7 (Type reification). On a term-like type structure T we define reification
relations

Ξ � F ↘ V ⇑ κ in Ξ , F reifies to V at kind κ,
Ξ � H ↘ U ⇓ κ in Ξ , H reifies to U , inferring kind κ,

(where F,H ∈ T κ
Ξ with H neutral or constructed, and V, U ∈ Tyκ

Ξ) inductively by the
following rules:

Ξ � X ↘ X ⇓ Ξ(X)
Ξ � H ↘ U ⇓ κ → κ′ Ξ � G ↘ V ⇑ κ

Ξ � H ·G ↘ U V ⇓ κ′

Ξ � C ↘ C ⇓ Σ(C)
Ξ � H ↘ U ⇓ �

Ξ � H ↘ U ⇑ �

Ξ,X :κ � F ·X ↘ V ⇑ κ′

Ξ � F ↘ λX :κ.V ⇑ κ → κ′



48 A. Abel

Reification is deterministic in the following sense: For all Ξ, κ, F (inputs) and neutral
or constructed H (input) there is at most one V (output) such that Ξ � F ↘ V ⇑ κ
and at most one U and κ′ (outputs) such that Ξ � H ↘ U ⇓ κ′.

Seen as logic programs with inputs and outputs as indicated above, these relations
denote partial functions, where ↘⇑ is defined by cases on the kind κ and and ↘⇓ by
cases on the neutral value H .

We continue by constructing a model of the kinding rules which proves soundness of
NbE for types. Kinds κ are interpreted as sets Gκ

Ξ of pairs (F, T ) glued together [CD97]
by reification, i. e., the type value F reifies to syntactic type T up to βη-equality. Func-
tion kinds are interpreted via Tait’s function space (see Def. 4), thus, the fundamental
theorem of kinding yields that G is indeed a type structure.

Definition 8 (Glueing candidate). Fix a term-like type structure T . We define the fam-
ilies Gl,Gl ⊆ T × Ty by

Gl
κ

Ξ = {(F, T ) ∈ T κ
Ξ × Tyκ

Ξ | Ξ � F ↘ V ⇑ κ and Ξ � T = V : κ},
GlκΞ = {(H,T ) ∈ T κ

Ξ × Tyκ
Ξ | Ξ � H ↘ U ⇓ κ and Ξ � T = U : κ}.

A family S with Glκ ⊆ Sκ ⊆ Gl
κ

is called a glueing candidate.

Def. and Lem. 2 (Kind candidate space). Glκ, Gl
κ

form a kind candidate space, i. e.,
satisfy the following laws, where we write κ for Glκ and κ for Gl

κ
.

� $ �, κ → κ′ $ κ → κ′, κ → κ′ $ κ → κ′.

Def. and Lem. 3 (Glueing type structure). Given a type structure T , we define G ⊆
T × Ty by G�

: = � and Gκ→κ′

: = Gκ →T̂ ×Ty Gκ′
. G is a glueing candidate, i. e.,

Glκ ⊆ Gκ ⊆ Gl
κ

for all κ.

Since G is induced, by the fundamental theorem of kinding it is a type substructure of
T × Ty. Thus, for all T ∈ Tyκ

Ξ , G[[T ]]VarG = (T [[T ]]VarT , T ) ∈ Gκ
Ξ ⊆ Gl

κ

Ξ , entailing
soundness.

Theorem 4 (Soundness of NbE for types). Let T be a term-like type structure. If
Ξ � T : κ then there is a V ∈ Tyκ

Ξ such that Ξ � T [[T ]]VarT ↘ V ⇑ κ and
Ξ � T = V : κ.

5 Type Groupoids

Completeness of NbE means that it models judgmental type equality, i. e., if Ξ � T =
T ′ : κ then Ξ � [[T ]] ↘ V ⇑ κ and Ξ � [[T ′]] ↘ V ⇑ κ. Completeness will be shown
by a fundamental theorem of type equality. Judgmental equality is usually modelled
by partial equivalence relations (PERs), which can be seen as groupoids. Hence, we
introduce the notion of a groupoidal type structure, or type groupoid. The advantage
over PERs is that we can directly reuse the fundamental theorem of kinding, instantiated
to a groupoidal type structure 2T of pairs of types, instead of having to prove this
theorem again for kinds modelled as PERs.
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A groupoid is a set with inversion −1 :→ and partial but associative composition
∗ : × → such that a−1 ∗a and a∗a−1 are always defined, and if a∗ b is defined, then
a ∗ b ∗ b−1 = a, and a−1 ∗ a ∗ b = b. One easily shows that (a−1)−1 = a and if a ∗ b is
defined then (a ∗ b)−1 = b−1 ∗ a−1. Examples of groupoids include partial equivalence
relations R, where (s, t)−1 = (t, s) and (r, s) ∗ (s, t) = (r, t), and any set S with the
trivial groupoidal structure: s−1 = s and r ∗ s is defined iff r = s, and then s ∗ s = s.

A subgroupoid is a subset H ⊆ that is closed under inversion and composition.

5.1 Type Groupoids and the Fundamental Theorem of Type Equality

Definition 9 (Type groupoid). A type structure is groupoidal if each T κ
Ξ is a groupoid,

constants are preserved under inversion, and inversion and composition distribute over
application, i. e., C−1 = C, (F · G)−1 = F−1 · G−1, and (F · G) ∗ (F ′ · G′) =
(F ∗ F ′) · (G ∗G′).

Given a type structure T we define the square type groupoid 2T as the product type
structure T × T equipped with (F,G)−1 = (G,F ) and (F,G) ∗ (G,H) = (F,H). If
K ∈ ̂T κ and K ′ ∈ ̂T κ′

are groupoids, so is K →
̂T K ′ ∈ ̂T κ→κ′

Definition 10 (Induced type groupoid). Let T be a type structure and E ⊆ 2T . We
say E is induced if E is an induced type structure and E�

Ξ is groupoidal for all Ξ .

Since type equality refers to kinding, we will have to refer to the fundamental theo-
rem of kinding in the proof of the fundamental theorem of type equality.

Lemma 2 (Fundamental theorem of kinding for type groupoids). Let T be a type
structure and E ⊆ 2T be induced. Then,

1. E is a type subgroupoid of 2T , and
2. if Ξ � T : κ and (ρ, ρ′) ∈ EΞ

Θ then (T [[T ]]ρ, T [[T ]]ρ′) ∈ Eκ
Θ .

Definition 11 (Model/respect type equality). E ⊆ 2T models type equality if Ξ �
T = T ′ : κ and (ρ, ρ′) ∈ EΞ

Θ imply (T [[T ]]ρ, T [[T ′]]ρ′) ∈ Eκ
Θ. A type structure T ′

respects type equality if Ξ � T = T ′ : κ implies T ′[[T ]]ρ = T ′[[T ′]]ρ for all ρ ∈ T ′ΞΘ .

Theorem 5 (Fundamental theorem of type equality). Let T be a combinatory type
structure and E ⊆ 2T an induced type structure. Then E models type equality.

5.2 Completeness of NbE for Types

In the following we show that the relation “reify to the same η-long form” gives rise to
an equivalence relation on types which models type equality. This implies that NbE is
complete.

Def. and Lem. 6 (Kind candidate space for completeness). Let T be term-like.

Per
κ

Ξ = {(F, F ′) ∈ 2T κ
Ξ | Ξ � F ↘ V ⇑ κ and Ξ � F ′ ↘ V ⇑ κ for some V }

Perκ
Ξ = {(F, F ′) ∈ 2T κ

Ξ | Ξ � F ↘ V ⇓ κ and Ξ � F ′ ↘ V ⇓ κ for some V }

Perκ and Per
κ

are Kripke families of subgroupoids, and form a kind candidate space.
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Def. and Lem. 7 (Type groupoid for completeness). Let T be a type structure. We
define Pκ ⊆ 2T κ by recursion on κ: P� := Per� and Pκ→κ′

= Pκ →2̂T Pκ′
. P is an

induced type groupoid.

Theorem 8 (Completeness of NbE for types). Let T be a term-like type structure. If
Ξ � T = T ′ : κ then Ξ � [[T ]]Var ↘ V ⇑ κ and Ξ � [[T ′]]Var ↘ V ⇑ κ for some V .

Proof. Since (Var,Var) ∈ PΞ
Ξ , by the fundamental theorem of type equality we have

([[T ]]Var , [[T
′]]Var ) ∈ Pκ

Ξ ⊆ Per
κ

Ξ which entails the goal. "#

6 Object Structures

In this section, we introduce object structures which model both the syntactic object
structure Obj indexed by syntactic types in Ty and structures of values D indexed by
type values from a structure T . The following development, leading up the fundamental
theorem of typing and the soundness of NbE for objects, parallels the preceding one
on the type level. However, while we could define the glueing type structure Gκ by
induction on kind κ, we cannot define a similar glueing objects structure gl by induction
on types, due to impredicativity. Hence, we will define gl as a structure of candidates
for semantic types.

Definition 12 (Typing context). Given a type structure T , a TΞ -context Δ ∈ T cxt
Ξ

is a partial map from the term variables into T �
Ξ . If Γ ∈ Tycxt

Ξ and ρ ∈ T Ξ
Θ then

[[Γ ]]ρ ∈ T cxt
Θ is defined by [[Γ ]]ρ(x) = [[Γ (x)]]ρ.

Let ObjΞ �T
Γ = {t | Ξ;Γ � t : T }.

Definition 13 (Object structure). Let T be a type structure. An object structure over
T is a family DΞ �A (A ∈ T �

Ξ ) of Kripke sets indexed by TΞ -contexts Δ such that
Ξ ′ ≤ Ξ implies DΞ �A

Δ = DΞ′ �A
Δ . It respects type equality, i. e., Ξ � T = T ′ : �

implies DΘ �[[T ]]ρ = DΘ �[[T ′]]ρ for any ρ ∈ T Ξ
Θ , and there are operations:

appΞ �A→B
Δ ∈ DΞ �A→B

Δ → DΞ �A
Δ → DΞ �B

Δ ,

TyAppΞ �∀κF
Δ ∈ DΞ �∀κF

Δ → (G ∈ T κ
Ξ ) → DΞ �F ·G

Δ .

We write · for both of these operations. For Δ,Ψ ∈ T cxt
Θ , let η ∈ DΘ �Ψ

Δ iff η(x) ∈
D

Θ �Ψ(x)
Δ for all x ∈ dom(Ψ). We stipulate a family of evaluation functions

� �ρ ∈ ObjΞ �T
Γ → D

Θ �[[Γ ]]ρ
Δ → D

Θ �[[T ]]ρ
Δ

indexed by ρ ∈ T Ξ
Θ which satisfy the following equations:

�x�ρ
η = η(x)

�r s�ρ
η = �r�ρ

η · �s�ρ
η

�t U�ρ
η = �t�ρ

η · [[U ]]ρ
�t[u/x]�σ

η = �t�σ
η[x 	→�u�σ

η ] (∗)

�λx :U. t�ρ
η · d = �t�ρ

η[x 	→d] if d ∈ D
Θ �[[U ]]ρ
Δ

�ΛX :κ. t�ρ
η ·G = �t�

ρ[X 	→G]
η if G ∈ T κ

Θ

�t[U/X ]�σ
η = �t�

σ[X 	→[[U ]]σ]
η (∗)
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Again, (∗) have to hold only in combinatory object structures.
With parallel substitution, Obj (modulo β, βη, or judgmental equality) forms an

object structure over Ty (modulo the same equality).

Definition 14 (Object substructure). Let S, T be type structures with S ⊆ T and let
D be an object structure over T . Let EΞ �A ⊆ DΞ �A be a Kripke family of subsets
indexed by Δ ∈ Scxt

Ξ for all A ∈ S�
Ξ . Then E is an object substructure of D over S if

application and evaluation are well defined on E.

Definition 15 (Reindexed object structure). Let M : S → T be a type structure
morphism and D an object structure over T . The type structure EΞ �A := DΞ �M(A)

over S with f ·E d := f ·D d, d ·E G := d ·D (M(G)), and E� �ρ := D� �M◦ρ is
called D reindexed by M .

Given object structures D1 over T1 and D2 over T1 we define the product object struc-
ture D1 ×D2 over T1 × T2 in the obvious way.

6.1 Realizability Type Structure and the Fundamental Theorem of Typing

Fix some term-like type structure T and an object structure D over T . Let A ∈ ̂DA
Ξ if

AΔ ⊆ DΞ �A
Δ and A is Kripke. ̂DA

Ξ forms a complete lattice for all Ξ,A.

Definition 16 (Function space and type abstraction on ̂D).

→
̂D ∈ ̂DA

Ξ → ̂DB
Ξ → ̂DA→B

Ξ

(A → B)Δ := {f ∈ DΞ �A→B
Δ | for all d,Δ′ ≤ Δ, d ∈ AΔ′ implies f · d ∈ BΔ′}

( . )∀
κF ∈ (G ∈ T κ

Ξ ) → ̂DF ·G
Ξ → ̂D∀

κF
Ξ

(G.A)∀
κF

Δ := {d ∈ DΞ �∀κF
Δ | d ·G ∈ AΔ}

Constructors of higher kind are interpreted as operators on Kripke sets.

Definition 17 (Kripke operators of higher kind). We define ̂DF :κ
Ξ by ̂DA:�

Ξ := ̂DA
Ξ

and ̂DF :κ→κ′

Ξ := (G ∈ T κ
Ξ ) → ̂DG:κ

Ξ → ̂DF ·G:κ′

Ξ .

Definition 18 (Type candidate space). A type candidate space C forD over T consists

of two Kripke sets CΞ �A, CΞ �A ∈ ̂DA
Ξ , (written A,A if no ambiguities arise) for each

type A ∈ T �
Ξ such that the following conditions hold.

H ⊆ H ∈ ̂DH
Ξ (H neutral )

∀κF ⊆ G.F ·G ∈ ̂D∀
κF

Ξ (G ∈ T κ
Ξ )

X.F ·X ⊆ ∀κF ∈ ̂D∀
κF

Ξ (X �∈ dom(Ξ))

A → B ⊆ A →
̂D B ∈ ̂DA→B

Ξ

A →
̂D B ⊆ A → B ∈ ̂DA→B

Ξ

Definition 19 (Realizable semantic types). If F ∈ T κ
Ξ and F ∈ ̂DF :κ

Ξ then F �κ
C F

(pronounced F realizes F ) is defined by induction on κ as follows:

A ��
C A :⇐⇒ A ⊆ A ⊆ A

F �κ→κ′

C F :⇐⇒ F ·G �κ′

C F(G, ) for all G �κ
C
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We define the Kripke families T ̂D
κ

Ξ = {(F,F) ∈ T κ
Ξ × ̂DF :κ

Ξ } and Cκ
Ξ = {(F,F) ∈

T κ
Ξ × ̂DF :κ

Ξ | F �κ
C F}. For the remainder of this section, we fix a type candidate

space C.

Definition 20 (Interpretation into ̂D). For T ∈ Tyκ
Ξ and (σ, ρ) ∈ T ̂D

Ξ

Θ we define
̂D[[T ]]σ,ρ ∈ ̂DT [[T ]]σ:κ

Θ as follows:

̂D[[X ]]σ,ρ := ρ(X)
̂D[[λX :κ.T ]]σ,ρ := ((G, ) ∈ T ̂D

κ

Θ) �→ ̂D[[T ]](σ,ρ)[X 	→(G,)]
̂D[[T U ]]σ,ρ := ̂D[[T ]]σ,ρ(T [[U ]]σ, ̂D[[U ]]σ,ρ)
̂D[[C]]σ,ρ := C

̂D

where ∀κ
̂D

∈ ̂D
∀κ:(κ→�)→�
Ξ

∀κ
̂D
(F,F) :=

⋂

G�κ G.F(G, )

Since the kind function space is the full set-theoretic one, ̂D is combinatory and respects
type equality.

Theorem 9 (Realizability). T ̂D is a type structure with application (F,F) · (G, ) =
(F ·G,F(G, )) and evaluation T ̂D[[T ]]σ,ρ = (T [[T ]]σ, ̂D[[T ]]σ,ρ). C is a type substruc-

ture of T ̂D.

Theorem 10 (Fundamental theorem of typing). Let D be an object structure over
T and C, C ∈ ̂D a type candidate space. Let S ⊆ C be a type substructure of the
associated realizability type structure C. Then the family EΞ �(A,A)

(Δ,Φ) := AΔ is an object
substructure of D reindexed by π1 : S → T .

6.2 Soundness of NbE for Objects

Term-like object structures and neutral objects are now defined analogously to term-like
type structures.

Definition 21 (Object reification). Given a term-like type structure T and a term-like
object structure D over T , we define the relations

Ξ;Δ � d ↘ v ⇑ A d reifies to v at type A,
Ξ;Δ � e ↘ u ⇓ A e reifies to u, inferring type A,

(where d, e ∈ DΞ �A
Δ and v, u are syntactical objects) inductively by the following

rules:

Ξ;Δ � x↘ x ⇓ Δ(x)
Ξ;Δ � e ↘ u ⇓ A → B Ξ;Δ � d ↘ v ⇑ A

Ξ;Δ � e d ↘ u v ⇓ B

Ξ;Δ � e ↘ u ⇓ ∀κF Ξ � G ↘ V ⇑ κ

Ξ;Δ � eG ↘ u V ⇓ F ·G
Ξ,X :κ;Δ � f ·X ↘ v ⇑ F ·X
Ξ;Δ � f ↘ ΛX :κ. v ⇑ ∀κF

Ξ;Δ,x :A � f · x ↘ v ⇑ B Ξ � A ↘ U ⇑ �

Ξ;Δ � f ↘ λx :U. v ⇑ A → B

Ξ;Δ � e ↘ u ⇓ H

Ξ;Δ � e ↘ u ⇑ H
H neutral

As for types, object reification is deterministic.
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Note that we cannot say now in which ObjΞ �T
Γ the objects u and v live. The con-

jecture is those Γ, T with Ξ � Δ ↘ Γ and Ξ � A ↘ T ⇑ �. However, this does not
follow directly from the definition, it is a consequence of Thm. 12.

Def. and Lem. 11 (Glueing type candidate space). Let S ⊆ T × Ty a glueing can-

didate, �Gl S. For (A, T ) ∈ S�
Ξ we define the Kripke families glΞ �(A,T ), gl

Ξ �(A,T ) ∈

D̂ × Obj
(A,T )
Ξ by

gl
Ξ �(A,T )
(Δ,Γ ) := {(d, t) | Ξ;Δ � d ↘ v ⇑ A and Ξ;Γ � t = v : T for some v},

glΞ �(A,T )
(Δ,Γ )

:= {(e, t) | Ξ;Δ � e ↘ u ⇓ A and Ξ;Γ � t = u : T for some u}.

gl is a type candidate space.

Theorem 12 (Soundness of NbE for objects). Let D be a term-like object structure
over a term-like type structure T . If Ξ;Γ � t : T then there is a long normal form v
such that Ξ; T [[Γ ]]Var � D�t�Var

var ↘ v ⇑ T [[T ]]Var and Ξ;Γ � t = v : T .

6.3 Completeness of NbE for Objects

Completeness on the object level is shown analogously to completeness on the type
level. Define object groupoids as groupoidal object structures and show that Kripke
function space and impredicative quantification on ̂D preserve the groupoid structure.
Then prove a fundamental theorem of object equality and instantiate it to the type can-
didate space defined analogously to Per. Due to lack of space, we cannot spell out the
details and refer to the full version of this article instead [Abe09].

7 Conclusion

We have developed type and object structures, which are sorted applicative structures on
type and object level, in order to facilitate generic model constructions for System Fω—
which are an alternative to categorical semantics [See87] and Bruce-Meyer-Mitchell
models [BM84]. Using special instances of kind candidate spaces we have shown sound-
ness and completeness of an abstract normalization by evaluation algorithm for types.
We have gone on to show soundness and completeness of NbE for objects.

We seek to extend NbE to the Calculus of Constructions, using ideas from this work.
Due to dependency, type and object levels cannot be defined in sequence, but must be
defined simultaneously; this seems to be the main remaining technical difficulty.
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Abstract. Boxes are a key tool introduced by linear logic proof nets to imple-
ment lambda-calculus beta-reduction. In usual graph reduction, on the other hand,
there is no need for boxes: the part of a shared graph that may be copied or erased
is reconstructed on the fly when needed. Boxes however play a key role in con-
trolling the reductions of nets and in the correspondence between nets and terms
with explicit substitutions.

We show that boxes can be represented in a simple and efficient way by adding
a jump, i.e. an extra connection, for every explicit sharing position (exponential
cut) in the graph, and we characterize our nets by a variant of Lamarche’s cor-
rectness criterion for essential nets. The correspondence between explicit substi-
tutions and jumps simplifies the already known correspondence between explicit
substitutions and proof net exponential cuts.

1 Introduction

Graph reduction [14,11] and proof nets [4,13] are two well established approaches
based on graphs for the analysis and the design of implementations of λ -calculus β -
reduction. The first one has mainly been driven by the practice of the implementation
of functional languages, the second one by the Curry-Howard correspondence between
programs and proofs extended to linear logic.

One of the main logical and computational novelties introduced by linear logic is the
clear decomposition of β -reduction between logical and structural rules, and the use of
boxes to represent the part of a term/proof that must be treated as a unique block. In
proof nets, boxes enclose subnets that have a non-linear behaviour. In graph reduction
instead there is no notion of boxes: the parts of a graph that can be shared or must be
erased or copied are determined by need. Remarkably, λ -calculus proof nets [13] and
graph-reduction do not rest on any notion of typing (therefore we shall consider untyped
λ -calculus only).

Another key feature of linear logic nets is the use of correctness criteria for the char-
acterization of the nets that are the image of a proof/program. Graph-reduction instead
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does not rest on any notion of correctness criterion, but only on the analysis of the
reducts of some graph representation of a λ -term.

One could try to combine the two approaches, proof nets and graph-reduction with
sharing, following a net style definition based on some correctness criterion, but avoid-
ing any explicit marking of boxes. Unfortunately, such a solution works almost smoothly
in the case without weakening only (the so-called λ I-calculus); moreover, in many cases,
boxes play a key role in the fine correspondence with the calculus, or even in its defini-
tion, and then cannot be completely ignored.

In the literature boxes have alternatively been represented as sets of links [13], or
introducing additional edges (or links) marking the border of every box [9], or by some
additional distributed information that allows to recover them (e.g., by indexing the
nodes/links of the structure [6]). We show a way of representing boxes by means of
jumps. Jumps are a well-known tool for defining dependencies in proof nets, introduced
by Girard in [5], and which have been recently used to analyze and control the sequen-
tialization of multiplicative proof nets [3]. Our jump representation of boxes seems a
fair compromise between the box-free approach of graph reduction and the usual proof
net approach, since to characterize the boxing of a λ -dag (our graph representation of
λ -terms with sharing), we add only few local constraints, one for each sharing node.
Moreover, if we aim at modeling and studying explicit substitutions via proof nets, we
get even more information than the information usually encoded in boxes: the quotient
induced by jumps is exactly the one given by the permutation of independent substitu-
tions, whereas in the usual approaches based on boxes, the quotient is more primitive,
and the corresponding nets are more difficult to sequentialize (i.e., the readback of a
λ -term with explicit substitution from a correct net is less direct) [2,7]. Summarizing,
the most surprising facts concerning the use of jumps are that: (i) they naturally allow
to associate a connected dag with every λ -term with explicit substitutions; (ii) they
lead to a simple correctness criterion that is just an extension of Lamarche’s correctness
criterion for multiplicative essential nets [8,10]; (iii) any correct λ -dag has just one
unique correct box assignment and a unique sequentialization, up to the permutation
of independent substitutions (that is, up to changing the order of sequentialization of
two disjoint shared subterms); (iv) boxes are implicit, induced by a local decoration of
λ -dags (with jumps), instead of being explicitly spatially bound.

To give an idea of how jumps work, Fig. 1 analyzes two terms: x[M/x][N/y] and
x[M[N/y]/x], with y ∈ M. First, a shows the graph with neither boxes nor jumps, which
is the same for both terms. Then b1 and b2 show how boxes make the difference between
the two, and then c1 and c2 show how using jumps one obtains the same effect.

The results presented in the paper can be easily reformulated and stated on pure
proof nets [13]. Nevertheless we have chosen a graph notation closer to the λ -calculus
and in the style of that used in term graph rewriting [12] for three main reasons: (i)
this notations does not require any linear logic notation; (ii) our approach does not de-
pend on any encoding of λ -calculus into linear logic (and then does not depend on any
calling or evaluation mechanism); (iii) we think that it is important to export characteri-
zations based on correctness criteria to graphical formalisms different from linear logic
proof nets.
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Fig. 1. Boxes and jumps

In section 2 we present the graphs, named λ -trees, that we shall use to represent λ -
terms and we introduce the main notations and formalisms. We shall give a
correctness criterion for λ -structure which allows to associate a readback to every cor-
rect λ -strutcure, and we shall define their sharing reductions, introducing the connec-
tions between sharing λ -structures and explicit substitutions. In section 3, we introduce
jumps. We show how to use them to represent boxes, and how they allows to obtain a
faithfull and economic representation of explicit substitutions.

2 Graph Reduction Reloaded

In this section we introduce our graphical formalism. As customary in the linear logic
literature we define a set of graphs, here called λ -structures, which act as candidates for
representing λ -terms, and a correctness criterion that precisely characterizes the subset
of λ -structures corresponding to λ -terms (without explicit substitutions, in this section).
We use the case of ordinary λ -terms as a guide to gradually introduce our formalism,
and the example of Fig. 2 to concretely explain our definitions.

2.1 λ -Structures, λ -Trees

A λ -structure G is a directed graph over a set of nodes NG connected by a set of links
LG. Every link has a set of incoming/outgoing edges that connects it to a set of nodes
and is of one of the following types:

vαv

u1 uk. . .

ux

αv = u1, . . . ,uk 〈v〉ux

v-link

λαλ

u

v w

αλ = u,v 〈λ 〉w

λ -link

@α@

u

v w

α@ = u 〈@〉 v,w

@-link

– A v-link αv has an arbitrary number k ≥ 0 of outgoing edges, the occurrence edges
(αv,ui), and one incoming edge, the variable edge (ux,αv). The number k is the
cardinality of the v-link and ux its v-node.
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– A λ -link αλ has two outgoing edges, the abstraction edge (αλ ,u) and the binding
edge (αλ ,v), and one incoming edge, the body edge (w,αλ ).

– A @-link α@ has one outgoing edge, the composition edge (α@,u), and two in-
coming edges, the function edge (v,α@) and the argument edge (w,α@).

The nodes and links of a λ -structure satisfy the following additional conditions:

Node: every node is connected to a link and has at most an incoming edge and at most
an outgoing edge.

Lambda: the binding edge of a λ -link must be connected to a v-node.
Output: G has only one node with no outgoing edges, named the root of G.
Input: every node of G with no incoming edges is a v-node.

The occurrence edges of a v-link are not ordered. Given a permutation i1, . . . , ik of
1, . . . ,k, the same v-link is denoted by u1, . . . ,uk 〈v〉 u0 and ui1 , . . . ,uik 〈v〉u0.

A λ -structure is uniquely determined by its set of links. We shall use “;” to denote
the union of two sets of links and we shall omit curly brackets for singletons; thus, α1 ;
. . . ;αn is the λ -structure corresponding to the set {αi}1≤i≤k. We shall also write α ∈ G,
to mean that α is a link of G. For instance, the λ -structure at u@1 in Fig. 2.d is denoted
by: u@1 〈@〉u@2 ,uλ2

;u@2 〈@〉u1
z1
,u2

z1
;u1

z1
,u2

z1
〈v〉 uz1;uλ2

,uy1 〈λ 〉u1
y2

;u1
y2
〈v〉 uy2 ;〈v〉uy1

Nodes and links terminology. A node with no incoming edges is an input (node), as
uz1 , uz2 and uy2 in Fig. 2.d, while a node with no outgoing edges is an output (node) (as
r). A v-node (defined above) is free if it is an input; it is abstracted if it is connected to
a λ -link by a binding edge (as ux2 and uy1 ); otherwise, it is substituted (as ux1 ). A v-link
is free/abstracted/substituted if the corresponding v-node is free/abstracted/substituted.
We shall sometimes call substitution a substituted v-node/link.

A v-link with cardinality k is a weakening when k = 0 (as αw1 and αw2 ), a dereliction
when k = 1, (as αd1 , αd2 and αd3 ), or a contraction otherwise (as αc). A v-node is a
weakening, a dereliction, or a contraction depending on the type of the corresponding
v-link. A weakening is isolated when it is free, i.e., when its v-node is an input (as αw1 ).

Translation of λ -terms. A λ -term t with the disjoint variable property (otherwise, take
any α-equivalent one with the property) is translated into a λ -structure t with a node us

for every subterm s of t, plus a node ux for every variable x (either free or abstracted),
by (see Fig. 2.a-c)

x = u1
x 〈v〉 ux

s1 s2 = us1s2 〈@〉us1 , us2 ; (s1 ◦ s2)
λ x.s0 =

{

uλ x.s0
,ux 〈λ 〉us0 ; s0 x ∈ FV(s0)

uλ x.s0
,ux 〈λ 〉us0 ; 〈v〉ux ; s0 x /∈ FV(s0)

where FV(t) is the set of free variables of t.
For every subterm s, the node us is the root of s. For every variable x in s, the λ -

structure s contains a v-link u1
x, . . . ,u

k
x 〈v〉 ux, where every node ui

x corresponds to an
occurrence of x in s. The inputs (free v-nodes) of s are exactly the nodes ux s.t. x is a
free variable of s. The abstraction case in Fig. 2 assumes s0 = G;u1

x, . . . ,u
k
x 〈v〉ux. It may

happen that in an application s1 s2 some free variables in s1 occur free in s2. In that case
the two v-links u1, . . . ,uk 〈v〉 u ∈ s1 and uk+1, . . . ,uk+h 〈v〉 u ∈ s1 corresponding to each
of these variables are replaced in s1 s2 by a unique link u1, . . . ,uk,uk+1, . . . ,uk+h 〈v〉 u.
This gluing of the common variables in s1 and s2 is denoted by s1 ◦ s2 (not explicitly
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Fig. 2. a,b,c) Translation of λ -terms; d) The guiding example (names on nodes and v-links)

represented on Fig. 2.b, we just denote it with ◦). An example: the v-link αc in Fig. 2.d
can be considered as coming from the gluing z1 ◦ z1 required by z1 z1.

Given a superset X of the free variables of t, the translation tX of t w.r.t. the context
X is obtained by adding a weakening for every variable in the context which is not a
free variable of t. namely, given X ⊇ FV(t), tX = t ◦{〈v〉ux}x∈X = t ;{〈v〉ux}x∈(X\FV(t)).

For instance, the example in Fig. 2 lies in the context {z1,z2,y2}.

Definition 1 (λ -tree). A λ -tree T is a λ -structure s.t. T = tX for some λ -term t and
some context X ⊇ FV(t).

A λ -tree has no substituted v-link (then, the guiding example in Fig. 2.d is not a λ -tree)
and, by erasing its binding edges and v-links, we obtain the syntax tree of the translated
λ -term.

Paths. The correctness criterion for λ -trees will be formulated in terms of node-to-node
directed paths over a λ -structure G.

Definition 2 (correction graph). Given a λ -structure G, its correction (directed) graph
G∗ is obtained by reversing the orientation of the binding edges in G.

We reverse the orientation of binding edges, instead of erasing them, because this al-
lows a simpler and proper formulation of the main properties of λ -structures and of
λ -structures with jumps which we shall introduce in section 3 (for instance see The-
orem 1). But we prefer not to endow λ -structures with this orientation, as this would
introduce nodes with more than one outgoing edge.

Given two nodes u1,u2 of G, we write u1 � u2 when in G∗ there is a directed path
from u1 to u2. We shall also say that a node u2 dominates a node u1, written u1 $ u2,
when in G∗ there is a path from u1 to u2 and any path starting from u1 either contains
or can be prolonged into a path that contains u2. Formally, u1 $ u2 iff u1 � u2 and for
every u s.t. u1 � u, either u � u2 or u2 � u.

We consider node-to-node paths only, but we extend notations and terminology to
links. We write u � α , when there exists a directed path from a node u to a node u′

which contains an incoming edge of α in the correction graph, and we say that such a
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path passes through α . A link α dominates a node u, written u $ α , when (in G∗) every
directed path from u passes through α or can be prolonged to do so.

Correctness criterion. λ -trees can be characterized by a correctness criterion for λ -
structures that is a variant of Lamarche’s criterion for multiplicative essential nets [8] (a
good reference for the multiplicative case is [10] also). First of all we need an acyclicity
condition stating that the only cycles a λ -structure may contain are those introduced by
the binding edges linking abstractions to their (non-weakening) variables.

(D) DAG: the directed graph G∗ obtained from G by reversing the orientation of its
binding edges has no directed cycle, namely it is a DAG.

Condition (D) does not suffice to characterize λ -trees among the λ -structures with no
substituted v-link. We need a condition stating that the binding edges in the λ -structure
induce a correct mapping between variables and binders in the corresponding λ -term.
For instance (see Fig. 3.c), u@ 〈@〉 uλ ,u

2
x ; uλ ,ux 〈λ 〉u1

x ; u1
x,u

2
x 〈v〉 ux cannot be correct,

since it would correspond to a λ -term (λ x.x)x, in which the λ binds the occurrence of
a variable that is not in its body.

(L) Lamarche: Let ux be a v-node of a λ -structure. If ux is abstracted by the λ -link
αλ = uλ ,ux 〈λ 〉ub, then ux $ αλ .

Notice that the domination in condition (L) is relative to the link, and that, in the cor-
rection graph, abstraction links have their binding edges reversed. This implies that,
in the case of an abstracted weakening 〈v〉ux, the node ux is dominated by its binder
αλ = uλ ,ux 〈λ 〉 ub, since every non-trivial node-to-node path from ux passes through
uλ , and then through αλ . We also remark that, in a λ -structure satisfying condition (D),
u $ u′ iff u � u′ and all the paths from u to the root pass through u′.

Definition 3 (L-correctness). A λ -structure is L(amarche)-correct if condition (D)
holds and condition (L) holds for every abstracted v-node.

Readback. To read a term back from an L-correct λ -structure T with no substitutions
we need to reason about subgraphs of a λ -structure.

Definition 4 (Substructures and dominions). Let G be a λ -structure. A λ -structure
H s.t. NH ⊆ NG is a substructure of G, say H � G, when every λ/@ link of H is a
link of G and, for every v-link u1, . . . ,uh 〈v〉 u0 of H there is a corresponding v-link
u′1, . . . ,u

′
k 〈v〉u0 of G s.t. u1, . . . ,uh is a subset of u′1, . . . ,u

′
k.

Given a node u of G, its dominion G↓u is a subgraph of G that contains every node
and every link dominated by u and completed by a suitable set of v-links. Namely, G↓u

is the least graph s.t. every u′ $ u is a node of G↓u and, for every α ∈ G: (i) if α is a λ or
@-link, α ∈ G↓u iff u′ $ u, for every node u′ of α; (ii) if α = u1, . . . ,uk, . . .uh 〈v〉u0 ∈ G,
with h ≥ k ≥ 0 and ui $ u for i ≤ k, then the v-link α ′ = u1, . . . ,uk 〈v〉u0 ∈ G↓u iff either
(a) k > 0 and ui �$ u for i > k or (b) h = 0 and u0 $ u but u0 �= u.

The aim of the previous definition is to ensure that, in a correct λ -structure, the domin-
ion of a node u is a λ -structure with root r that contains every node and link dominated
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by u. We cannot simply say that G↓u is the set of links dominated by u since, in or-
der to get a λ -structure, we have to add a v-node/link in the following cases: when u
dominates only some of the occurrences of a variable (in Fig. 2.d the dominion of u1

z1
is

u1
z1
〈v〉 uz1); when u dominates a λ -link that binds a weakening (indeed G↓uλ2

contains
αw1 = 〈v〉uy1 ); when u dominates a bound variable but it does not dominate its binder
(G↓ux1

is ux1 〈v〉ux2 , even if ux2 �$ ux1 ).
Let G be an L-correct λ -structure without substitutions, and u one of its nodes, non

minimal w.r.t. �. It is easily seen that G↓u is a λ -structure, and a substructure of G,
i.e., G↓u � G. Moreover G↓u is L-correct. This suggests the definition of a recursive
map that associates a λ -term G to any L-correct λ -structure G that does not contain
substitutions.

Definition 5 (Readback). Given an L-correct λ -structure G with root r that does not
contain substitutions, let us associate a distinct variable with every v-node of G and let
us denote by ux the v-node associated with the variable x. The corresponding readback
of G is the λ -term recursively defined by

r 〈v〉 ux = x r,ux 〈λ 〉u0 ; G = λ x.G↓u0 r 〈@〉 u1,u2 ; G = G↓u1 G↓u2

where ux denotes a v-node with which the variable x has been associated.

By definition, the readback depends on the names assigned to the free variables, and
equates L-correct λ -structures differing only for isolated weakenings. As an example,
the readback of the sub-graph rooted at u@1 in Fig. 2.d is (z1 z1) λ y1.y2.

Proposition 1. Let G be a λ -structure in which no v-node is a substitution. Connect-
edness: If G is L-correct then G = G↓r ;W, where W is the set of isolated weakenings
of G. Sequentialization: G is a λ -tree iff it is L-correct.

Contexts. We shall write G = G′[H1, . . . ,Hk] when a λ -structure G factors as
G′[u1, . . . ,uk] ◦H1 ◦ . . .◦Hk where: (i) G′[u1, . . . ,uk] is a λ -structure (that may not sat-
isfy the input condition of λ -structures), called context; (ii) each Hi is a λ -structure;
(iii) u1, . . . ,uk are inputs of G′, called the holes of the context; (iv) each ui is also the
root of the corresponding λ -structure Hi. Here the notion of gluing is stronger that the
one defined above. It may happen that some of the v-nodes appearing free in one of
the Hi are abstracted or substituted in G. For this reason from now on gluing is not re-
stricted to pairs of free v-links, but we also allow a free v-link of Hi to be glued to a
abstracted/substituted v-link in G′ (assuming that they denote the same variable). For
instance, let G be the left subtree of the root @-link in Fig. 2.d. It can be factorized as
G[H], where G[u1

x1
] = uλ1

,ux2 〈λ 〉u1
x1

;〈v〉ux2 and H = u1
x1
〈v〉ux1 ;ux1 〈v〉ux2 . The reader

is invited to check that G can be also factorized with respect to H ′ = ux1 〈v〉 ux2 and
H ′′ = u1

x1
〈v〉 ux1 .

β -reduction. Given a λ -tree T , a β -redex at the node r is a λ -tree (see Fig. 3.a)

R = T↓r = r 〈@〉 u,ua ; u,ux 〈λ 〉ub ; T↓ub ◦T↓ua

If T↓ub = Gb[u1, . . . ,uk] ; u1, . . . ,uk 〈v〉ux. The β -contraction of R in T is

T [T↓r] → T [Gb[T↓1
ua
, . . . ,T↓k

ua
]]
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Fig. 3. a-b) λ -tree (β ) and sharing (βs) β -rule; c) an example of incorrect λ -structure

where T↓i
ua

denotes an isomorphic copy of T↓ua of root ui
a in which the free v-nodes

are the same of T↓ua , while all the other nodes are distinct. This rule is illustrated in
Fig. 3. As usual, β -reduction is the transitive and reflexive closure of β -contraction. β -
reduction of λ -trees preserves L-correctness and simulates the corresponding reduction
of λ -terms. We overload the notation →: it denotes β -reduction on both λ -terms and
λ -trees

Proposition 2. For any λ -term t. If tX →∗ S, then t →∗ s for some λ -term s s.t. sX = S.
Moreover, if t →∗ s, then tX →∗ sX .

2.2 Sharing Reductions and Explicit Substitutions

One of the main advantages in moving from term to graph rewriting is that one can
easily share multiple copies of the same term. Duplication can be performed locally,
as in the so-called optimal implementations approach [1], or globally, by duplicating a
whole subterm [14,11]. In this paper we shall not analyze optimal implementations, but
concentrate on implementing global duplications.

Sharing β -rule. The sharing version of the β -rule does not execute the instantiation
of the substituting variables of the redex by copying the subgraph corresponding to the
argument of the redex, but denotes it by a substitution, and leaves that task up to the
rules which manipulate substitutions (the C,W,D-rules in Fig. 4).

A redex for the sharing β -rule, or βs-rule (see Fig. 3.b), is just a pair of λ/@-links
r 〈@〉u,ua ; u,ux 〈λ 〉ub; its contraction erases the λ/@-links, merges the root node r of
the redex with the root ub of the body of the λ -link, and directly connects the v-link
abstracted by the λ -link to the root of the argument (i.e., the root ua of the argument is
merged with the v-node ux of the v-link).

Explicit substitutions. The reduct of (λ x.t)s by the sharing β -rule (see Fig. 4.d) is no
longer a λ -tree (because of its substituted v-node), but can be described in the term
calculus introducing a new operator, the so-called explicit substitution. An explicit sub-
stitution t[s/x] (which can also be written let x = s in t) denotes that a term s should
be replaced for the occurrences of x in t and acts as a binder (see [7] for an account of
the main results on explicit substitutions). In the λ -calculus with explicit substitutions,
the β -rule becomes

(λ x.t)s →βes t[s/x]
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We extend the translation of λ -terms to the case with explicit substitution by adding
(see Fig. 4.d)

t[s/x] = t[s]x = t[ux]x ◦ s

where t[ux]x = t ◦ 〈v〉ux and ux is the root of s. In the λ -structure t[s/x], a substitu-
tion t[s/x] maps then to a substituted v-node, whose outgoing edge is connected to
the v-link corresponding to x in t (a weakening if x /∈ FV(t)), while its incoming
edge is connected to the root link of s. The example in Fig 2.d shows the translation
of (λ x1.(x2[x1/x2]))((z1 z1)(λ y1.y2)) in the context {z1,z2,y2}. The above definitions
imply that (λ x.t)s

X
→βs t[s/x]

X
.

Definition 6 (λ -dag). A λ -dag (directed acyclic graph) D is a λ -structure s.t. D = tX ,
for some λ -term with explicit substitutions t and some context X ⊇ FV(t).

Unfortunately, the correctness criterion in Def. 3 allows to characterize λ -dags only
in the case without weakening—the main reason being that we loose the property that
every node is connected to the root.

Boxes. In [2] boxes contain the (translation of the) term to be substituted by an explicit
substitution, so that whenever duplication or erasing is required there is no ambiguity
of which part of the graph should be involved. Let us start with a naive notion of box.

Definition 7 (λ -box). Given a λ -structure G a λ -box with principal port u in G is a
λ -structure H � G with root u.

Generally, in a λ -structure G, there are many distinct λ -structures H � G with the same
root u (consider Fig. 1.a). Therefore, if we do not associate an explicit box with every
substituted v-node, when we want to apply a contraction or an erasing at a given substi-
tuted v-node u we would have to non-deterministically choose a substructure rooted at
u as the box to duplicate or erase. In order to avoid this non-determinism, the standard
solution is decorating the structure with the required boxes; which also implies the in-
troduction of additional rules, for instance to move a box inside another box. Another
solution might be to introduce a standard choice among the set of possible boxes for
a given node; for instance, we could define the box of a node u as the smallest (or the
largest) correct λ -structure with root u, the so-called kingdom (empire) of u. But, be-
cause of weakenings, it would be very difficult to compute the kingdom (empire) of a
node on the fly. Anyway, as the main purpose of this section is to explain the reduction
rules of λ -terms with sharing, for the moment we omit the box assignment problem.
In the next section, we shall see that jumps allow an easy and efficient solution to this
problem: by adding a suitable number of jumps to a correct λ -structure we shall obtain
that every node is the root of exactly one correct substructure, its box.

Duplication, erasing, dereliction. The two rules that operate on λ -boxes are duplica-
tion, i.e., the C(ontraction)-rule, and erasing, i.e., the W(eakening)-rule. Their behaviour
is non-linear—they correspond to the exponential rules of linear logic— and this is why
in [2] they required !-boxes. The third rule that operates on substituted nodes is the
D(ereliction)-rule. This last rule allows the erasing of useless substituted v-nodes and,
since it is linear, does not directly involve boxes.

The C,W,D-rules are described in Fig. 4. Given a substitution ux of a λ -structure S,
we can always apply one of these three rules. In fact, let H be a λ -box with root ux.
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Fig. 4. a,b,c) Duplication, erasing, and dereliction rules; d) the βs-reduct of (λx.t)s

– If the v-link αx of ux has k > 1 occurrences edges, then we can apply the C-rule,
where the two isomorphic copies H1 and H2 of H (with roots ux1 and ux2 , respec-
tively) are glued to context of the redex.

– If αx has k = 0 occurrence edges, then αx is a weakening and we can apply the
W-rule. In the reduct, the λ -box H is replaced by a set of weakening links WFV(H),
one for each free v-node uy of H, added to ensure that the lhs and the rhs of the rule
have the same free v-nodes (again, more precisely, they are glued to the context).

– If αx has k = 1 occurrence edges, we can apply the D-rule, which executes the
(linear) substitution by removing αx. The D-rule is local, as it does not depend on
the λ -box associated with ux.

3 Jumps

A jump or j-link is a link with an incoming edge, the source edge, that connects the link
to its source (node) us, and an outgoing edge, the anchor edge, that connects the link to
its anchor (node) ua. A jump from the source us to the anchor ua is written ua 〈j〉us and
represented as

ua usj

j-translation of explicit substitutions. We refine the translation of λ -terms with ex-
plicit substitutions by adding a jump from the root of s to the root of t, for every explicit
substitution t[s/x]. Thus, the definition of rj is the same as r, but for (see Fig. 5.f)

t[s/x]
j
= t j[sj]x ; utj 〈j〉usj

We shall see that this economic decoration of λ -dags with jumps suffices to define
an unambiguous notion of λ -box in terms of domination. The notion of λ -structure is
therefore extended in order to encompass jumps.

Definition 8 (λ j-structure, λ j-dag). A λ j-structure G is a λ -structure Gλ plus a set
of j-links Gj s.t.: (Source) the source of every jump is a substitution and every substi-
tution of Gλ is the source of one and only one j-link; (Anchor) every anchor is not an
abstracted or free v-node of Gλ

A λ j-dag D is a λ j-structure s.t. D = t jX , for some λ -term with explicit substitutions
t and some context X ⊇ FV(t).
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Let us stress that in a λ j-structure nodes may have more than one incoming edge, but in
such a case exactly one edge is not the anchor edge of a jump. In particular a node may
be the anchor of many jumps. All and only the substituted v-nodes have more than one
outgoing edge. More precisely, they have two outgoing edges, one which is the source
edge of a jump, and one which is not.

The definitions of path and partial orders for λ -structures, and consequently, that of
dominion on Definition 4 naturally extend to λ j-structures. In particular, any jump from
the source us to the anchor ua adds a new path from us to ua.

3.1 Correctness Criterion

Jumps are a sort of back-connections similar to the binding edges of λ -links. It seems
thus rather natural to ask that they comply with a binding condition similar to the L-
condition required for λ -links.

(LJ) Lamarche for Jumps: Let αj = ua 〈j〉us be a j-link of a λ j-structure. Then us $ ua.

Definition 9 (LJ-correctness, λ j-dag). A λ j-structure with root r is LJ-correct when
condition (D) holds, condition (L) holds for every bound v-node, and condition (LJ)
holds for every substitution.

Let us remark that these conditions hold by taking into account jumps. For instance,
by adding a jump r 〈j〉 ux1 in Fig. 2.d we obtain an incorrect λ j-graph, because ux2 is
no longer dominated by its abstraction. In particular no term would translate to such
an incorrect λ j-structure, thus the criterion has to consider paths using jumps. We also
stress that, since in a λ j-structure we have a jump for every substitution, and since a
non-isolated weakening is a substitution, condition (D) and the existence of only one
output force in a λ j-dag that every node u has a path to the root of G (except the v-nodes
of the context variables), and that domination can be expressed in terms of paths to the
root (as before).

On an L-correct λ j-structure the LJ-condition implies a nesting of jumps similar to
the nesting of boxes in proof nets. In fact, given two distinct jumps ua 〈j〉us and u′a 〈j〉u′s
for which condition (LJ) holds, it is not the case that us � u′s � ua � u′a � r, unless
u′s = u′a. Therefore, condition (LJ) could be replaced by the following jump nesting
condition.

(JN) Jump Nesting: Let αj = ua 〈j〉us and α ′
j = u′a 〈j〉u′s. If us � u′s � r, then any path φ

from us to r that contains u′s contains also ua and u′a, and either
φ = us, . . . ,ua, . . . ,u′s, . . . ,u

′
a, . . . ,r or φ = us, . . . ,u′s, . . . ,u

′
a, . . . ,ua, . . . ,r.

In the particular case us = u′s (and then ua = u′a also), condition (NJ) implies that every
path from us to ur also contains ua, i.e., condition (LJ).

3.2 λ j-Boxes

Definition 10 (source-closed, j-substructure). Let G be a λ j-structure, H ⊆ G a sub-
set of its links. H is source-closed when, if the anchor ua of some jump α = ua 〈j〉 us
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of G is a node of H, then α ∈ H (and, as a consequence, the source of αj is a node of
H). H is a j-substructure of G, say H �j G, if H is a λ j-structure, Hλ � Gλ , and H is
source-closed.

According to this definition, G↓u �j G for every u that is not an abstracted or free v-
node of G (i.e. a node that is not minimal w.r.t. �). The definition of box can now be
refined to include jumps, by taking into account that a box must be a j-substructure of
the λ j-structure in which it is contained.

Definition 11 (λ j-box). Given a λ j-structure G, a λ j-box with principal port u in G is
a λ j-structure H �j G with root u.

A λ j-box H in G is source-closed. Furthermore, being a λ j-structure, all its jumps must
have a substitution as source. Thus, we get the following property: if α = ua 〈j〉us ∈ G,
then us ∈ NH implies ua ∈ NH iff us is not an input (a free v-node) of H. We can prove
that in a λ j-dag G a λ j-box is a λ j-dag too. Moreover, for every node u to which we
may (and we need to) assign a box, there is one and only one λ j-box H with principal
port u, which is indeed the only LJ-correct H �j G with root u, and which coincide with
G↓u also.

Theorem 1 (box uniqueness). Let G be an LJ-correct λ j-structure. For every node u
of G, except the abstracted and free v-nodes, we have that G↓u is an LJ-correct λ j-
structure s.t. G↓u �j G, and G↓u is the unique λ j-structure H with root u s.t. H �j G.

3.3 Readback of λ j-Dags

We want to associate a term t to every LJ-correct λ j-structure G, extending the recursive
readback · of section 2.2 to a map ·j. If the root r of G is not the anchor of any jump, we
can apply the recursive rules of section 2.2. If r is the anchor of just one jump r 〈j〉 ux

then we can readback the term t[s/x] s.t. s = G↓ux

j
and t = G′[ux]

j
, for a context G′[·] s.t.

G = G′[G↓ux ]. But when r is the anchor of many jumps we have to pay attention to the
order in which we remove jumps, because there can be dependencies among them. Let
us consider for instance G = t[s1/x1][s2/x2]j, with x2 ∈ FV(s1). The root is the anchor of

the two jumps from the substitution nodes ux1 and ux2 , but we cannot remove the jump
from ux1 before the one from ux2 , as we would obtain the term t[s2/x2][s1/x1] whose
j-translation is not G (because of x2 ∈ FV(s1)). In terms of paths, the situation described
above corresponds to the case ux2 � ux1 . Only when ux1 �� ux2 and ux2 �� ux1 the order of
removals is irrelevant, and the two substitutions can safely be permuted. Let us notice
however that by the correctness of G there cannot be mutual dependencies.

Thus, for every node u in G we assume given a partial order �u on j(u), the set of
substitutions anchored to u, s.t. �u is total and u′ � u′′ if u′ � u′′. Our readback map
depends on such partial orders.

Let us assign a distinct variable to every v-node of G, including its substitutions,
and let us denote by ux the v-node corresponding to the variable x. If r is the root
of G and j(r) is not empty, there is a context G′[·] s.t. G′[ux] is a λ j-dag and G =
G′[H] ; r 〈j〉 ux where H = G↓ux and ux = min�r(j(r)). The readback of G w.r.t. �
and the given variable assignment is G

j = G′[ux]
j
[H j

/x].
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Fig. 5. a,b,d,e) Rules for λ j-dags; c) A non λ j-structure; f) The j-translation of t[s/x]

When j(r) is empty, the readback of the LJ-correct λ j-structure is obtained by re-
placing ·j for · in the rules given for the readback of a λ -tree (Def. 5).

Proposition 3 (Sequentialization). Let G be a λ j-structure. Connectedness: if G is
LJ-correct then G = G↓r ;W , where W is the set of isolated weakenings of G. Sequen-
tialization: G is a λ j-dag iff it is LJ-correct.

Modulo isolated weakenings and free variable names, the readback is univocally deter-
mined given the linear orders �u and, since two linearizations differ for the permutation
of independent substitutions only, we get t1jX = t2jX if and only if t1 ' t2, where ' is
the least congruence induced by t[s1/x1][s2/x2]∼ t[s2/x2][s1/x1] when x1 /∈ FV(s2) and
x2 /∈ FV(s1).

We can now explain the anchor condition in the definition of λ j-structures. It asks
that no anchor is an abstracted or free v-node: these are the only nodes of a λ j-dag D
which have no corresponding subterm in D

j
. Thus, they cannot be used as sequential-

ization points for a substitution (see Fig. 5.c) for an example).

3.4 Reductions

The reduction rules for λ j-dags are the same as those described in section 2.2, with the
addition of jumps, see Fig. 5, where H is the unique λ j-box with root ux induced by the
jumps of G. The only rule that creates a new jump in the resulting graph is the sharing
β -rule, which introduces a j-link ub 〈j〉 ux from the v-node ux, that after the reduction
becomes a substitution, to the root ub (which is indeed merged with r). In the βs-rule,
the jumps on the redex move in accord to the way nodes are merged in the reduct: every
jump in the redex whose anchor is the root r, or the abstraction node u or the body
node ub are anchored in the reduct to the new root ub, while the jump anchored to the
argument node ua are moved to the substitution ux (by the definition of λ j-structure no
jump can be anchored to ux in the redex).

The other rules move, duplicate, or erase jumps depending on the action performed
on the corresponding source. In the dereliction and erasing rules, the jumps from the
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substitution ux in the redex disappear. In the duplication rules, every jump in the λ j-box
H leads to a new jump between the copied nodes, while the jump from ux leads to two
new jumps with the same anchor. Note that by source-closure every jump anchored to
ux is in H. In contrast to linear logic there is no specific rule for moving a box into
another. In the D-rule this happens implicitly : it removes the jump, and thus changes
the domination order.

Given two λ -terms r and s, let us denote by r{s/x} the λ -term obtained by replacing
s for x (i.e., the standard substitution of λ -calculus). Given a λ -term with explicit sub-
stitutions t, we shall denote by t• the λ -term obtained by replacing every r[s/x] in the
term with the λ -term r•{s•/x}.

First of all, we can state that the reduction rules for λ j-dags defined so far implement
a sound reduction of λ -terms with explicit substitutions: (i) any reduct G of a λ j-dag
D is a λ j-dag; (ii) if t is a λ -term with explicit substitutions s.t. tjX = D, then there
is a λ -term with explicit substitutions s s.t. sjX = G, and the λ -term (without explicit
substitutions) t• reduces to the λ -term (without explicit substitutions) s•.

Proposition 4. Let D be a λ j-dag and t a λ -term with explicit substitutions s.t. t jX = D
for some X. If D → G, then G is a λ j-dag, and t• →∗

β s•, for some s s.t. sjX = G.

Then, we can state that the readback of a λ j-dag D is internalized by the C,W,D-rules,
the σ -rules, of λ j-dags. In other words, we have that: (i) in a λ j-dag, the effective
execution of an implicit substitution can be implemented by the σ -reductions; (ii) the
σ -reductions of a λ j-dag are terminating and confluent and, as a consequence, every
λ j-dag has a unique σ -normal form; (iii) if t is a λ -term with explicit substitutions s.t.
t jX = D, the unique normal form of the λ j-dag D is the λ -tree T corresponding to the
λ -term (without explicit substitutions) represented by t, that is, T = t•X .

Proposition 5. Let →σ = →D ∪→C ∪→W . For every λ -term with explicit substitu-
tions t, we have that

1. t[s/x]
jX
→∗

σ t{s/x}
jX

, for every s;
2. →σ is terminating and confluent on the λ j-dag D = t jX and, as a consequence, D

has a unique σ -normal form;
3. the unique σ -normal form of D is the λ -tree t•jX .

The first item of the previous proposition states that two σ -equivalent λ j-dags have the
same readback t and are just distinct shared representation of the λ -dag T associated to
t. Every C-rule decreases the amount of sharing in the λ j-dag D, while the D-rule and
the W-rule decrease the size of the λ j-dag, Therefore, the σ -reduction is terminating.
Confluence can be proved directly by inspection of the rules or by observing that the
normal form of D w.r.t. σ -reduction does not contain substitutions and then it is a λ -tree;
in particular, since readback is preserved, the normal form of D must be its readback.

Finally, we can conclude that the β -reductions of λ -terms can be simulated by →j

= →βs ∪ →σ , the sharing reductions with jumps of λ j-dags, and that every sharing
reduction with jumps of a λ -tree corresponds indeed to some β -reduction of the λ -term
represented by the λ -tree.

Theorem 2. Let t be a λ -term. If t →∗
β s, then tjX →∗

j sjX . If t jX →∗
j D, then there is

t →∗
β s s.t. D →∗

σ sjX .



Jumping Boxes 69

4 Conclusions and Further Work

In the paper we have seen a way to represent boxes in λ -dags—the graphs correspond-
ing to the proof nets of λ -calculus—by means of jumps. Jumps give a local and indirect
implementation of boxes, which is very economic—we only need a jump for every sub-
stitution (every exponential cut in the corresponding proof net)—and does not require
to deal with boxes auxiliary ports.

When we interpret jumps as λ -terms with explicit substitutions, jumps have also a
very clear interpretation: any jump gives the exact position of a substitution in the term,
leading to a unique sequentialization of λ -dags (when we assume that sequences of
independent substitutions correspond to a sort of multiple parallel substitution). How-
ever, since the main purpose of the paper was the analysis of λ j-dags from the point of
view of nets—correctness, graph reduction, sequentialization—we have not analyzed,
or compared with the calculi in the literature, the calculus with explicit substitutions
induced by the λ j-dag reduction. In fact, let |t|x be the number of free occurrences of x
in t; the rules correspond to

(βes) (λ x.t)[v/y] u → t[u/x][v/y]
(Gc) t[u/x] → t |t|x = 0
(V) t[u/x] → t{u/x} |t|x = 1
(Dup) t[u/x] → t{y|x}[u/x][u/y] |t|x ≥ 2 & y fresh

where t[v/y] stands for t[v1/y1] . . . [vn/yn] for some n ≥ 0, and t{y|x} means that k oc-
currences of x in t, chosen in any way and with 0 < k < |t|x, are replaced by a fresh
variable y. In particular, the second rule corresponds to →W , the third one to →D and
the last one to →C. The detailed analysis of the main properties of such a calculus are
the subject of our ongoing research.
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Abstract. We introduce tree-width for first order formulae ϕ, fotw(ϕ).
We show that computing fotw is fixed-parameter tractable with parame-
ter fotw. Moreover, we show that on classes of formulae of bounded fotw,
model checking is fixed parameter tractable, with parameter the length
of the formula. This is done by translating a formula ϕ with fotw(ϕ) < k
into a formula of the k-variable fragment Lk of first order logic. For fixed
k, the question whether a given first order formula is equivalent to an
Lk formula is undecidable. In contrast, the classes of first order formu-
lae with bounded fotw are fragments of first order logic for which the
equivalence is decidable.

Our notion of tree-width generalises tree-width of conjunctive queries
to arbitrary formulae of first order logic by taking into account the quan-
tifier interaction in a formula. Moreover, it is more powerful than the
notion of elimination-width of quantified constraint formulae, defined by
Chen and Dalmau (CSL 2005): For quantified constraint formulae, both
bounded elimination-width and bounded fotw allow for model checking
in polynomial time. We prove that fotw of a quantified constraint formula
ϕ is bounded by the elimination-width of ϕ, and we exhibit a class of
quantified constraint formulae with bounded fotw, that has unbounded
elimination-width. A similar comparison holds for strict tree-width of
non-recursive stratified datalog as defined by Flum, Frick, and Grohe
(JACM 49, 2002).

Finally, we show that fotw has a characterization in terms of a robber
and cops game without monotonicity cost.

1 Introduction

Model checking is an important problem in complexity theory. It asks for a given
formula ϕ of some class C of formulae and a structure A, whether A satisfies ϕ.

MC(C)

Input: A structure A and a formula ϕ ∈ C.
Question: A |= ϕ?

Let L denote first order logic. It is well-known, that MC(L) is pspace-
complete. Motivated by this, much research has been done on finding fragments
of L having a tractable model checking problem. For instance, for fixed k, the
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problem MC(Lk) can be solved in polynomial time, where Lk denotes the frag-
ment of first order formulae with at most k variables (see e.g. [15]).

The class of conjunctive queries, CQ, is an important fragment of first order
logic. Many queries that occur in practice are conjunctive queries, and model
checking of conjunctive queries on relational databases (i.e. relational structures)
is an important and well-studied problem in database theory [25,7,16,9,17,20].
It is equivalent to conjunctive query containment, to the constraint satisfaction
problem studied in artificial intelligence and to the homomorphism problem for
structures [6,12]. A conjunctive query is a first order formula starting with a
quantifier prefix using only existential quantifiers, followed by a conjunction
of relational atoms. While MC(CQ) is NP-hard in general, several researchers
proved independently that conjunctive queries of bounded tree-width can be
evaluated in polynomial time [7,16]. One way to prove this is the following.
Suppose ϕ is a conjunctive query having tree-width k−1. Then we can compute
a tree decomposition of width k− 1 in linear time using Bodlaender’s algorithm
[5]. From the decomposition we can actually read off the syntax of an equivalent
formula ϕ′ ∈ Lk. Finally, we use the fact that MC(Lk) is solvable in polynomial
time.

In this paper, we introduce a notion of tree-width for first order formulae ϕ,
fotw(ϕ). Our notion generalises the notion of tree-width of conjunctive queries,
and we show that the class Ck of all first order formulae ϕ with fotw(ϕ) ≤ k
satisfies the following properties.

1. Ck has a polynomial time membership test (Corollary 2).
2. Ck has the same expressive power as Lk, the fragment of first order formulae

with at most k variables (Theorem 2).
3. There is an algorithm that computes for given ϕ ∈ Ck an equivalent formula

ϕ′ ≡ ϕ with ϕ′ ∈ Lk (Theorem 2).
4. MC(Ck) is fixed parameter tractable with parameter the length of ϕ, i.e. for

input ϕ ∈ Ck and A, the running time is p(‖A‖)f(|ϕ|) for a polynomial p
and a computable function f (Corollary 3).

Obviously, properties 1 and 3 imply property 4. While MC(Lk) is solvable in
polynomial time, we do not obtain a polynomial algorithm for MC(Ck). Nev-
ertheless, in typical applications one can expect the length of the formula to
be small compared to the size of the structure (database). For a fixed formula
the running time is polynomial, and moreover, the problem is fixed-parameter
tractable (in fpt), meaning that changing ϕ does not alter the exponent of the
polynomial (see [10,15]).

Note that for fixed k > 0 it is undecidable, whether a first order formula ϕ
is equivalent to an Lk formula. Hence it is not surprising that our notion of k-
bounded first order tree-width does not capture semantic equivalence to Lk (we
will give more details in Section 5). The idea is to compute a tree decomposition
of a formula ϕ ∈ L layerwise, respecting the quantifier interaction.

Quantified constraint formulae generalise conjunctive queries by allowing ar-
bitrary quantifiers in the quantifier prefix. In [8], Chen and Dalmau introduce
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elimination orderings for quantified constraint formulae. These elimination or-
derings must respect the quantifier prefix. In this way, Chen and Dalmau obtain
a notion of elimination-width1 , which allows for model checking of quantified
constraint formulae of bounded elimination-width in polynomial time, using a
consistency algorithm. Hereby, they answer a question posed in [19] positively,
whether bounded tree-width methods work for formulae more general than con-
junctive queries. Introducing a notion of tree-width for arbitrary first order
formulae, we even go further. We show that for quantified constraint formu-
lae ϕ, elimination-width of ϕ is at least as large as fotw(ϕ), and we exhibit a
class of quantified constraint formulae with bounded first order tree-width and
unbounded elimination-width. We show that quantified constraint formulae of
bounded fotw allow for model checking in polynomial time. Hence fotw is more
powerful than elimination-width.

In [13], Flum, Frick and Grohe introduce strict tree-width for non-recursive
stratified datalog (nrsd) programs. They show that model checking for nrsd

programs of bounded strict tree-width can be done in polynomial time. Since
first order formulae can be easily translated into nrsd programs, their notion of
strict tree-width can be transfered to first order formulae. We show that if an
nrsd program obtained from a formula ϕ has strict tree-width at most k, then
fotw(ϕ) ≤ k, and there are classes of formulae with bounded first order tree-
width, whose corresponding nrsd programs have unbounded strict tree-width.2

Hence our notion of first order tree-width yields larger subclasses of L, that still
allow for tractable model checking.

Actually, we obtain first order tree-width as a special case of a more abstract
notion which we term stratified tree-width. We expect that stratified tree-width
will find further, quite different, applications.

The rest of this paper is organised as follows. Section 2 fixes some terminology.
Section 3 introduces the notion of stratified tree-width and the special case
of first order tree-width. In Section 4 we show how to compute stratified tree
decompositions and, in particular, how to compute first order tree-width. In
Section 5 we prove that model checking for formulae of bounded first order tree-
width is fixed-parameter tractable. In Section 6 we relate our notion to existing
notions and give a game characterisation of stratified tree-width. We conclude
with some open problems in Section 7.

2 Well-Known Definitions

A vocabulary σ = {R1, . . . , Rn, c1, . . . , cm} is a finite set of relation symbols Ri,
1 ≤ i ≤ n, and constant symbols cj , 1 ≤ j ≤ m. Every Ri has an associated arity,

1 Actually, the notion is called tree-width for quantified constraint formulae in [8], But
since the notion is defined via elimination orderings, we prefer the term elimination-
width.

2 In [13], the authors also introduce a notion of tree-width for first order formulae. But
their notion disregards the quantifier interaction, and they only use it for conjunctive
queries with negation.
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an integer ar(Ri) > 0. A σ-structure is a tuple A = (A,RA1 , . . . , R
A
n , c

A
1 , . . . , c

A
m)

where A is a finite set, the universe of A, RAi ⊆ Aar(Ri) for 1 ≤ i ≤ n, and
cj ∈ A for 1 ≤ j ≤ m.

Given a σ-structure A we distinguish between the cardinality |A| of the uni-
verse A of A and the size ‖A‖ of A, given by ‖A‖ = |σ|+|A|+

∑n
i=1

∣

∣RAi
∣

∣·ar(Ri).
We use L to denote relational first order logic with constants, and for simplic-

ity, we refer to L as first order logic. We assume that the reader is familiar
with the basic notions of first order logic (see for instance [11]). For a for-
mula ϕ we let free(ϕ) denote the set of free variables of ϕ. Formula ϕ is a
sentence, if free(ϕ) = ∅. We sometimes write ϕ(x1, . . . , xn) to indicate that
free(ϕ) ⊆ {x1, . . . , xn}.

For a structure A and a formula ϕ(x1, . . . , xn) we let

ϕ(A) := {(a1, . . . an) | A |= ϕ(a1, . . . an)}.

For sentences we have ϕ(A) = true, if A satisfies ϕ, and false otherwise. If
the vocabularies of ϕ and A are different, we let ϕ(A) = ∅.

The Query Evaluation Problem for a class C of formulae is the following
problem:

Eval(C)

Input: A structure A and a formula ϕ ∈ C.
Problem: Compute ϕ(A).

Note that if ϕ is a sentence, then Eval(C) and MC(C) coincide. We say
that a formula ϕ ∈ L is straight, if no variable in ϕ is quantified over twice,
if no free variable is also a quantified variable, and if each quantified variable
actually occurs in some atom. All formulae are straight, unless stated otherwise.
Moreover, we assume that all formulae are in negation normal form, i.e. the
negation symbols only appear in front of atoms.

A tree decomposition of a graph G = (V,E) is a pair (T,B), consisting of
a rooted tree T and a family B = (Bt)t∈T of subsets of V , the pieces of T ,
satisfying:

(TD1). For each v ∈ V there exists t ∈ T , such that v ∈ Bt. We say the node
t covers v.

(TD2). For each edge e ∈ E there exists t ∈ T , such that e ⊆ Bt. We say the
node t covers e.

(TD3). For each v ∈ V the set {t ∈ T | v ∈ Bt} is connected in T .

The width of (T,B) is defined as w(T,B) := max
{

|Bt|
∣

∣ t ∈ T
}

− 1.
The tree-width of G is defined as

tw(G) := min
{

w(T,B)
∣

∣ (T,B) is a tree decomposition of G
}

.

3 First Order Tree-Width

We start with defining stratified tree-width. Then, first order tree-width is de-
fined as a special case. Although it is our only application of stratified tree-width,
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stating results in greater generality allows us to focus on their essence. It is also
quite possible, that further applications will arise in the future.

Any rooted tree T induces a natural partial order <T on its nodes, where the
smallest element is the root. For a tree decomposition (T,B) of a graph G and
a vertex v ∈ V (G), let tv ∈ T denote the <T -minimal tree node that covers v.
By (TD3), the node tv is well-defined. Now, let d : V (G) → N be a function. We
say that a tree decomposition (T,B) of G is d-stratified, if all u, v ∈ V (G) with
tu <T tv satisfy d(u) ≤ d(v). The tree-width of (G, d) is defined as

tw(G, d) := min
{

w(T,B)
∣

∣ (T,B) is a d-stratified tree decomposition of G
}

.

For a formula ϕ, the formula graph is the undirected graph Gϕ, with vertices
var(ϕ), and edges {x, y} whenever x and y are free variables, or when x and
y occur together in some atom of ϕ. (If ϕ is not straight, then we obtain the
formula graph of ϕ by first making it straight.) Note that the formula graph
depends on the syntax of the formula. Logically equivalent formulae may have
different formula graphs.

We now introduce a partial order *ϕ on the variables of a formula ϕ, from
which we then obtain the essential alternation depth, dϕ(x), of a variable x ∈
var(ϕ). Given a tree decomposition of Gϕ of width k+1 that respects dϕ, we then
transform the formula ϕ bottom up along the decomposition into an equivalent
Lk-formula. In this transformation, we want to ‘reuse’ as many variables as
possible, so, intuitively, the ‘worst case’ is that ϕ is in prenex normal form.
Hence we want to ‘undo’ prenex normal form, pushing quantifiers as far as
possible away from the root in the syntax tree. Of course, we have to make sure
that we obtain an equivalent formula. Intuitively, *ϕ gives us a partial order of
quantifications that we have to respect while undoing prenex normal form.

For a bound variable x, let Qx ∈ {∃, ∀} be the type of quantifier used to
quantify x. For bound variables x, y of ϕ, we write x ≤ϕ y to denote that x = y
or y is quantified in the scope of x. For a set X of variables, we use ϕ[X] to denote
the minimal subformula of ϕ which contains all atoms that use variables from
X . Let *ϕ be the minimal (with respect to ⊆) binary relation on var(ϕ), such
that the following hold, where we say that two variables x and y are entangled,
if there are X ⊆ (x *ϕ) (meaning x *ϕ x′ for all x′ ∈ X) and Y ⊆ (y *ϕ), such
that x occurs in ϕ[Y ] and y occurs in ϕ[X].

1. *ϕ is reflexive.
2. *ϕ is transitive.
3. If x ≤ϕ y, Qx �= Qy and there is a sequence x = z0, . . . , zn = y of bound

variables such that for all 0 ≤ i < n we have that zi, zi+1 are entangled and
that x *ϕ zi or y *ϕ zi, then x *ϕ y (Alternation).

It is clear, that these closure conditions are monotone on *ϕ. (Some explanations
of the term monotonicity in this context might be in order. The above conditions
on *ϕ can be seen as closure of *ϕ under certain operations on binary relations.
For example transitivity is closure under the operation R �→ R2, that is *ϕ must
satisfy (*ϕ)2 ⊆ (*ϕ). The statement is, that the operations implicit in the three
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conditions are monotone with respect to ⊆.) Hence they constitute an inductive
definition.

Remark 1. 1. The relation *ϕ is a subrelation of ≤ϕ: (*ϕ) ⊆ (≤ϕ),
2. the relation *ϕ is a partial order, and
3. x *ϕ y holds whenever x and y are entangled, Qx �= Qy, and x ≤ϕ y.

Proof. 1 follows since ≤ϕ satisfies all closure conditions.
2: x *ϕ y is reflexive and transitive by definition, and it inherits anti-symmetry
from (≤ϕ) by 1.
3: This follows by letting n = 1 in Alternation. "#

We have defined entanglement somewhat complicated, to make monotonicity
clear. Setting ϕx := ϕ[(x�)], we can now simplify the definition, by noting that
x and y are entangled, if and only if x occurs in ϕy and y occurs in ϕx. Observe,
that ϕx is a subformula of the scope of x.

Example 1. Let ϕ := ∃x∀y∃z
(

Pxy ∧ ∀u(Ryu∨ Pzu)
)

. Then x *ϕ y and z *ϕ u
by Remark 1.3, y *ϕ z by Alternation (witnessed by the sequence y, u, z), and
x *ϕ z, y *ϕ u, and x *ϕ u by Transitivity.

Last, let dϕ(x) denote the essential alternation depth of x in ϕ, that is the
maximum over all *ϕ-paths P ending in x of the number of quantifier changes
in P , adding +1 in case the first variable on P is existentially quantified and +2
if it is universally quantified. If x is a free variable, we set dϕ(x) = 0. Observe,
that we have dϕ ≤ t for ϕ ∈ Σt. For instance, formula ϕ of Example 1 satisfies
dϕ(x) = 1, dϕ(y) = 2, dϕ(z) = 3, and dϕ(u) = 4.

For a formula ϕ we let fotw(ϕ) := tw(Gϕ, dϕ). Accordingly, we say that (T,B)
is a tree decomposition for ϕ, if (T,B) is a dϕ-stratified tree decomposition
for Gϕ. We will make frequent use of the following well-known fact about tree
decompositions:

Fact. Let (T,B) be a tree decomposition of some graph G, and let C ⊆ V (G).
If for all v, w ∈ C, some piece of (T,B) covers both v and w, then there is some
piece Bt covering C entirely, i.e. C ⊆ Bt.

In particular, each clique of G is covered by some piece.

Note that for a formula ϕ, the variables free(ϕ), as well as the variables of any
atom or literal in ϕ induce cliques in Gϕ. In particular, since dϕ(x) = 0 for any
free variable x, it is no restriction to require that the free variables be covered
in the root of a tree decomposition.

Prenex normal form aims to make the scopes of quantifiers as large as possible.
Working in the opposite direction, we obtain what we term xenerp normal form.

Definition 1. A subformula χ of a formula ϕ is in xenerp normal form with
respect to ϕ, if for all variables x quantified in χ the following holds: ϕx is
immediately preceeded by a quantifier sequence which contains Qxx.

A formula ϕ is in xenerp normal form, if it is in xenerp normal form with
respect to itself.
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Example 2. Let ϕ := ∀x∃y∀z
(

Pzy∨(Rx∧Ry)
)

, and let ψ := ∃y∀z
(

Pzy∨(∀xRx∧
Ry)

)

. Then ϕ and ψ are equivalent and ψ is in xenerp normal form, whereas ϕ is
not in xenerp normal form. Moreover, we have dϕ(x) = 2, dϕ(y) = 1, dϕ(z) = 2,
and dψ = dϕ.

The following Lemma presents equivalent transformations of formulae, such that
neither the formula graph, nor the essential alternation depth, nor the corre-
sponding tree decompositions change.

Lemma 1. Let ϕ and ψ be formulae satisfying either 1, 2 or 3.

1. There are formulae χ1, . . . , χn, a positive Boolean combination θ of n ar-
guments, and a variable x which does not occur in χ2, . . . , χn, such that
ψ is obtained from ϕ by replacing a subformula θ(Qxxχ1, χ2, . . . , χn) by
Qxxθ(χ1, χ2, . . . , χn).

2. There are a formula χ, and variables x, y with Qx = Qy such that ψ is
obtained from ϕ by replacing a subformula QxxQyyχ by QyyQxxχ.

3. There are a formula χ, and variables x, y with ϕx a proper subformula of
ϕy, such that ψ is obtained from ϕ by replacing a subformula QxxQyyχ by
QyyQxxχ, where Qyyχ is xenerp with respect to ϕ.

Then ϕ ≡ ψ, dϕ = dψ, and Gϕ = Gψ. Consequently, tree decompositions for ϕ
coincide with tree decompositions for ψ and in particular fotw(ϕ) = fotw(ψ).

Implicitly, we assume in these cases that Qx and Qy are the same with respect
to the formula ϕ and with respect to the formula ψ.

The (rather technical) proof is deferred to the full version. Observe, that the first
class of replacements in the previous lemma are exactly what is used in turning
a formula into prenex normal form. All classes are used for xenerp normal form.

Corollary 1. Let ϕ be a formula and let ψ be a prenex normal form (obtained
in the usual way) of ϕ. Then fotw(ϕ) = fotw(ψ).

Lemma 2. From a formula ϕ we can compute in polynomial time a formula ψ
in xenerp normal form, such that ϕ ≡ ψ, Gϕ = Gψ, dϕ = dψ, and consequently
tree decompositions for ϕ coincide with those for ψ.

The proof can be found in the full version.
A (Boolean) conjunctive query is a sentence ϕ = ∃x1 . . . ∃xnψ, where ψ is a

conjunction of relational atoms such that var(ψ) = {x1, . . . , xn}. The tree-width
of a conjunctive query ϕ, tw(ϕ), is defined as the tree-width of Gϕ (see [21]).
For a conjunctive query ϕ we have dϕ = 1. Hence the notion of fotw generalises
the notion of tree width of conjunctive queries.

Remark 2. Any conjunctive query ϕ satisfies fotw(ϕ) = tw(ϕ). "#

For the relation of fotw to tree-width of non-recursive stratified datalog and
to elimination-width we need some more definitions, and the reader is referred
to Section 6. In general, the difference between fotw(ϕ) and tw(Gϕ) can be
unbounded:
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Proposition 1. For every n > 0 there is a formula ϕn with fotw(ϕn) = n and
tw(Gϕn) = 1.

Proof. Let
ϕn = ∃x1 . . . ∃xn∀y

∧

1≤i≤n

Exiy .

Then Gϕn is the n-star with center y, and we have dϕn(xi) = 1 for all 1 ≤ i ≤ n,
and dϕn(y) = 2. It is easy to see that any dϕn -stratified tree decomposition
(T,B) of Gϕn has a piece {x1, x2, . . . , xn, y}, namely Bty . On the other hand,
such a tree decomposition needs no other pieces. Hence fotw(ϕn) = n. Since Gϕn

is a tree we have tw(Gϕn) = 1. "#

4 Computing Stratified Tree Decompositions

In this section, we show that computing stratified tree decompositions of optimal
width is fixed-parameter tractable, where the parameter is the stratified tree-
width. In fact, the running time is linear for bounded stratified tree-width. In
the next section, we will use the algorithm here developed as a first step for
formula evaluation.

Definition 2. Let G = (V,E) be a graph and d : V → N. We say that (G, d)
is normalized, if for some n ∈ N we have V = {1, . . . , n} and d(v) ≤ n for all
v ∈ V .

Theorem 1. There is an algorithm that, given a normalized (G, d), computes
a d-stratified tree decomposition of G of minimum width in time O(|V (G)| ·
2poly(tw(G,d))).

The proof of the theorem will be included in the full version. As each (G, d) can
be normalized in time O(n logn), a similar statement holds for arbitrary (G, d),
albeit not with linear running time. Theorem 1 implies that we can efficiently
decide whether a formula ϕ satisfies fotw(ϕ) ≤ k:

Corollary 2. There is an algorithm that, given a formula ϕ ∈ L, computes
a tree decomposition of ϕ of minimum width in time poly(‖ϕ‖) + |var(ϕ)| ·
2poly(fotw(ϕ)).

Proof. Given ϕ, it is first turned into a straight formula. Then, Gϕ and dϕ are
computed and normalized in polynomial time. The last step is a call to the
algorithm from Theorem 1. The only part that might need further clarification
is, that computing *ϕ (as needed to compute dϕ) can be done in polynomial
time. This follows from the three closure operators each being computable in
polynomial time and the size of final relation *ϕ being polynomially bounded
by ‖ϕ‖. "#



Tree-Width for First Order Formulae 79

5 Query Evaluation on Bounded First Order Tree-Width

This section contains the second main result: Evaluating formulae of bounded
tree-width is fixed parameter tractable with parameter the length of the formula.
Moreover, we show that evaluating quantified constraint formulae of bounded
first order tree-width can be done in polynomial time. This is a stronger than
Chen and Dalmau’s result [8] for quantified constraint formulae of bounded
elimination-width: As we will see in Section 6, bounded elimination-width (i.e.
bounded tree-width in [8]) implies bounded first order tree-width, but there are
classes of quantified constraint formulae with unbounded elimination-width, that
have bounded bounded first order tree-width.

For an integer k ≥ 0 let Lk be the fragment of formulae ϕ of L, such that all
subformulae of ϕ have at most k free variables. Note that Lk is equivalent to the
fragment of L consisting of all (not necessarily straight) formulae with at most
k variables.

The question whether a given formula is equivalent to an Lk formula for some
fixed k is undecidable. (This can be seen by a reduction from satisfiability: First,
satisfiability reduces to satisfiability by an infinite structure using relativization.
Then, let ϕ be some fixed formula, such that ϕ does not have finite models,
and such that ϕ is not equivalent to any Lk-formula. Now, a given formula ψ is
unsatisfiable by infinite structures, if and only if ϕ ∧ ψ′ is equivalent to an Lk

formula, where ψ′ is obtained from ψ by renaming all symbols to be disjoint from
those of ϕ.) As a consequence, there is no computable width parameter such that
width-k captures all formulae logically equivalent to a formula of Lk. For any
width parameter, only formulae which are ‘syntactically close’ to a formula of
Lk are captured, for varying values of ‘syntactically close’.

Example 3. Let n > 2. ϕn = ψn ∨ χ, where fotw(χ) = 2 and fotw(ψn) = n, but
ψn is unsatisfiable. Then ϕn ≡ χ ∈ L2, but fotw(ϕn) = n.

First order sentences of tree-width at most k−1 have the same expressive power
as Lk. More generally we have the following.

Theorem 2. Let k ≥ 0.

1. For any formula ϕ with fotw(ϕ) ≤ k − 1 there is a formula ψ ∈ Lk with
ϕ ≡ ψ which is computable from ϕ.

2. Any formula ψ ∈ Lk satisfies fotw(ψ) ≤ k − 1, and we can compute a tree
decomposition witnessing this in time linear in the size of ψ.

The rather technical proof is deferred to the full version. It is well-known that
first order query evaluation for Lk is in polynomial time [24].

Corollary 3. Evaluating queries of bounded first order tree-width is fixed pa-
rameter tractable with parameter the length of the formula.

More precisely, given a finite structure A and a formula ϕ ∈ L, there is an al-
gorithm that computes ϕ(A) in time ‖A‖fotw(ϕ)+O(1)f(|ϕ|) for some computable
function f .
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Here the function f is basically the running time we need for translating the
formula ϕ with fotw(ϕ) ≤ k − 1 into an Lk formula. It is q-times exponential,
where q is the alternation depth of ϕ. The exponentiations arise from converting
some subformulae into disjunctive or conjunctive normal form. In particular, if
ϕ does not use any disjunctions to start with (for example ϕ is a quantified
constraint formula), then all respective subformulae already are in disjunctive
as well as conjunctive normal form, and the running time is much lower.

Corollary 4. Evaluating quantified constraint formulae of bounded first order
tree-width can be done in polynomial time.

6 Relation to Similar Notions

A quantified constraint formula [8] is a sentence

ϕ = Q1x1Q2x2 . . .Qnxnψ,

whereQi ∈ {∀, ∃} for i = 1 . . .n and ψ is a conjunction of relational atoms. In [8],
Chen and Dalmau introduce the notion of tree-width of a quantified constraint
formula and they show that model checking for quantified constraint formulae
of bounded tree-width can be done in polynomial time using the k-consistency
algorithm. Since their notion of tree-width is defined via an elimination ordering
rather than via a decomposition, we call it elimination-width instead of tree-
width. We generalise the definition of elimination-width to formulae of L, and
we show that fotw is less or equal to elimination-width. Thus fotw yields a larger
class of tractable formulae than elimination width.

Let G = (V,E) be a graph and d : V → N. An elimination ordering for
(G, d) is a linear ordering (x1, . . . , xn) of V which respects d, i.e. i < j implies
d(xi) ≤ d(xj). With an elimination ordering we associate a sequence of graphs
as follows:

– Gn := G
– Gi−1 := Gi − xi +

{

{u, v}
∣

∣ {u, xi}, {xi, v} ∈ E(Gi)
}

, for 1 < i ≤ n

The width of an elimination ordering is maxi∈[n]{deg(xi) in Gi}. The elimination-
width of (G, d), ew(G, d), is theminimumwidth of an elimination ordering of (G, d).
For a formula ϕ we define ew(ϕ) := ew(Gϕ, dϕ). (If ϕ is not straight, then we first
transformϕ into a straight formulaϕ′ andwe let ew(ϕ) := ew(ϕ′).) It iswell-known
that the tree-width of a graph G equals the elimination-width of G, and this fact
can be generalised to our setting.

Theorem 3. Let G be a graph and d : V (G) → N. Then tw(G, d) = ew(G, d).
In particular, any formula ϕ ∈ L satisfies fotw(ϕ) = ew(ϕ).

The proofs of Theorem 3 and of the following lemma can be found in the full
version.

Chen and Dalmau’s notion of elimination-width [8] can be equivalently refor-
mulated in our setting as follows. Let ϕ be a quantified constraint formula with
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formula graph Gϕ. Let d′ϕ be the mapping that assigns to a variable v ∈ var(ϕ)
the alternation depth of v (i.e. the number of quantifier changes occurring before
v in the quantifier prefix of ϕ), adding +1. Then Chen and Dalmau’s notion of
elimination-width is ew(Gϕ, d′ϕ).

Lemma 3. Let ϕ be a quantified constraint formula. Then fotw(ϕ) = ew(ϕ) ≤
ew(Gϕ, d′ϕ).

The following example exhibits a class of quantified constraint formulae hav-
ing first order tree-width 1, where Chen and Dalmau’s elimination-width is
unbounded.

Example 4. For an integer n > 0 let

ϕn := ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn∃z
(

n
∧

i=1

Rxiz ∧
n
∧

i=1

Pyi

)

.

Then for all i ≤ n we have dϕn(xi) = 1 = dϕn(z) and dϕn(yi) = 2, and hence
fotw(ϕn) = 1. Moreover, ew(Gϕn , d

′
ϕn

) = n.

In [13], Flum, Frick and Grohe define tree-width of non-recursive stratified dat-
alog (nrsd) programs and they show that the evaluation problem for nrsd

programs can be solved in polynomial time on programs of bounded strict tree-
width [13, Corollary 5.26]. nrsd programs have the same expressive power as
L and every nrsd program corresponds to a first order formula and vice versa.
This allows us to compare their notion with fotw. We denote the strict tree-
width of a datalog program Π by stw(Π) and we refer the reader to [13] for the
definition of strict tree-width of nrsd programs.

We show that if the nrsd program has strict tree-width at most k, then
the corresponding first order formula has fotw at most k, and we exhibit a
class of formulae with bounded fotw, whose corresponding nrsd programs have
unbounded strict tree-width. Let ϕΠ denote the first-order formula associated
with an nrsd program Π .

Lemma 4. For any nrsd program Π we have fotw(ϕΠ) ≤ stw(Π).

Again, the proof must be deferred to the full version. As with quantified constraint
formulae, the difference can be unbounded in the opposite direction.

Remark 3. There is a class C of nrsd programs with unbounded strict tree-
width, such that fotw(ϕΠ) = 0 for all Π ∈ C.

The programs from C are nrsd versions of the formulae from Example 4.
We now introduce the robber and cops game as defined in [23]. Let G be a

graph and let k ≥ 0 be an integer. The robber and cops game on G (with game
parameter k) is played by two players, the cop player and the robber player,
on the graph G. The cop player controls k cops and the robber player controls
the robber. Both the cops and the robber move on the vertices of G. Some of
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the cops move to at most k vertices and the robber stands on a vertex r not
occupied by the cops. In each move, some of the cops fly in helicopters to at
most k new vertices. During the flight, the robber sees which position the cops
are approaching and before they land she quickly tries to escape by running
arbitrarily fast along paths of G to a vertex r′, not being allowed to run through
a standing cop. Hence, if X ⊆ V (G) is the cops’ first position, the robber stands
on r ∈ V (G) \ X , and after the flight, the cops occupy the set Y ⊆ V (G),
then the robber can run to any vertex r′ within the connected component of
G \ (X ∩ Y ) containing r. The cops win if they land a cop via helicopter on the
vertex occupied by the robber. The robber wins if she can always elude capture.
Winning strategies are defined in the usual way. The cop-width of G, cw(G), is
the minimum number of cops having a winning strategy on G.

A winning strategy for the cops is monotone, if for any sequence X1, X2, . . . of
cop positions and all possible responses of the robber, the connected components
Ri ofG\Xi containing the robber form a decreasing (with respect to ⊆) sequence.
The Ri are called the robber spaces. The monotone cop-width of G, mon-cw(G),
is the minimum number of cops having a monotone winning strategy on G.

Theorem 4 (Seymour, Thomas [23]). Any graph G satisfies tw(G) + 1 =
cw(G) = mon-cw(G).

Now let G be a graph and let d be a function d : V (G) → N. The d-stratified
robber and cops game on G is played as the robber and cops game on G, but in
every move the cops have to satisfy the following additional condition. Intuitively,
they can only clear vertices x with d(x) = i after they have cleared all vertices
y with d(y) < i. More precisely: For every move (X,R), where X ⊆ V (G) is
the cop position and R is the robber space, the cops have to make sure that
max{dϕ(x) | x ∈ X} ≤ min{dϕ(r) | r ∈ R}. Then cw(G, d) and mon-cw(G, d)
are defined analogously, and for a formula ϕ we let cw(ϕ) := cw(Gϕ, dϕ) and
mon-cw(ϕ) := mon-cw(Gϕ, dϕ).

Although proving the following theorem is not very hard, it seems interesting
to know that cw(G, d) and mon-cw(G, d) coincide. In many generalisations of
the robber and cops game to other settings, the analogous statements become
false [1,2,22], and it might be helpful to explore the borderline. The proof can
be found in the full version.

Theorem 5. Let G = (V,E) be a graph and let d : V → N.
Then tw(G, d) + 1 = mon-cw(G, d) = cw(G, d).

In particular, any first order formula ϕ satisfies fotw(ϕ) + 1 = mon-cw(ϕ) =
cw(ϕ).

7 Conclusion

We introduced a notion of tree-width for first order formulae ϕ, fotw(ϕ), gen-
eralising tree-width of conjunctive queries and elimination-width of quantified
constraint formulae [8]. Our notion can also be seen as an adjustment of the
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notion of tree-width of first order formulae as defined in [13] (which only works
for conjunctive queries with negation).

We proved that computing fotw is fixed-parameter tractable with parameter
fotw (Theorem 1). Moreover, we showed that evaluating formulae of k-bounded
first order tree-width is fixed-parameter tractable, with parameter the length of
the formula (Theorem 2). This is done by first computing a tree decomposition
of width at most k for the formula, and then translating the formula equivalently
into a formula of the k-variable fragment Lk of first order logic. It is well-known
that evaluating Lk formulae can be done in polynomial time. When translating
the formula ϕ into an equivalent Lk formula, we get a non-elementary explosion
in the running time.

Conjecture 1. When translating a formula ϕ satisfying fotw(ϕ) ≤ k into an
equivalent Lk formula, a non-elementary explosion cannot be avoided.

Moreover, the precise complexity of evaluating queries of bounded first order
tree-width is still unknown.

We show that first order tree-width can be characterised by other notions such
as elimination-width (Theorem 3), and the minimum number of cops necessary to
catch the robber in the stratified robber and cops game, as well as the minimum
number of cops necessary in the monotone version of the game (Theorem 5).
Hence our notion is very natural and robust.

Moreover, we showed that fotw is more powerful than the notion of elimination-
width of quantified constraint formulae as defined in [8]: For quantified con-
straint formulae, both bounded elimination-width and bounded fotw allow for
model checking in polynomial time. We proved that if ϕ is a quantified con-
straint formula, then fotw(ϕ) is bounded by the elimination-width of ϕ, and
there are classes of quantified constraint formulae with bounded fotw and un-
bounded elimination-width.

In [13], Flum, Frick and Grohe define strict tree-width of non-recursive strat-
ified datalog (nrsd) programs and they show that the evaluation problem for
nrsd programs can be solved in polynomial time on programs of bounded strict
tree-width. nrsd programs have the same expressive power as first order logic, in
the sense that nrsd programs correspond to first order formulae and vice versa.
We showed that first-order tree-width of (formula versions of) nrsd programs
is bounded by the strict tree-width of the programs and that there are classes
of first order formulae with bounded fotw, whose corresponding nrsd programs
have unbounded strict tree-width.

For conjunctive query evaluation, methods more powerful than bounded tree-
width are known. Conjunctive queries of bounded hypertree-width [17], bounded
fractional hypertree-width [20] and bounded (hyper)closure tree-width [4] yield
even larger tractable classes of instances. For example, conjunctive queries of
bounded hypertree-width correspond to the k-guarded fragment of first order
logic [18], and similar correspondences can be found for the other invariants.
Why not generalise these notions to first order formulae? By generalising these
notions to first order formulae ϕ in the obvious way, a decomposition of bounded
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width would not give us an instruction how to translate ϕ into the correspond-
ing guarded fragment of first order logic (transforming subformulae of ϕ into
conjunctive normal form as in the proof of Theorem 2, 1 does not necessarily
yield guarded subformulae).

Nevertheless, generalising these notions to quantified constraint formulae
should indeed yield classes with an efficient query evaluation, that are strictly
larger than classes of quantified constraint formulae of bounded first order tree-
width. It would be interesting to find the largest fragment of first order formulae
for which such a generalization is possible.
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Rajeev Alur, Pavol Černý, and Scott Weinstein

University of Pennsylvania
{alur,cernyp,weinstein}@cis.upenn.edu

Abstract. For programs whose data variables range over boolean or
finite domains, program verification is decidable, and this forms the ba-
sis of recent tools for software model checking. In this paper, we con-
sider algorithmic verification of programs that use boolean variables,
and in addition, access a single read-only array whose length is po-
tentially unbounded, and whose elements range over a potentially un-
bounded data domain. We show that the reachability problem, while
undecidable in general, is (1) Pspace-complete for programs in which the
array-accessing for-loops are not nested, (2) decidable for a restricted
class of programs with doubly-nested loops. The second result establishes
connections to automata and logics defining languages over data words.

1 Introduction
Verification questions concerning programs are undecidable in general. However,
for finite-state programs — programs whose data variables range over finite
types such as boolean, the number of bits needed to encode a program state is a
priori bounded, and verification questions such as reachability are decidable. This
result, coupled with progress on symbolic techniques for searching the state-space
of finite-state programs, and abstraction techniques for extracting boolean over-
approximations of general programs, forms the basis of recent tools for software
model checking [3,16].

We focus on algorithmic verification of programs that access a single array.
The length of the input array is potentially unbounded. The elements of the
array range over Σ ×D, where Σ is a finite set, and D is a data domain that is
potentially unbounded and totally ordered. The array is thus modeled as a data
word, that is, a sequence of pairs in Σ ×D. For example an array that contains
employees’ names, and for each name a tag indicating whether the employee is
a programmer, a manager, or a director, can be modeled by setting D to be
the set of strings, and Σ to be a set with three elements. The program can
have Boolean variables, index variables ranging over array positions, and data
variables ranging over D. Programs can access Σ directly, but can only perform
equality and order tests on elements of D. The expressions in the program can
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use constants in D, and equality tests and ordering over index and data variables.
The programs are built using assignments, conditionals, and for-loops over the
array. Even with these restrictions, one can perform interesting computational
tasks including searching for a specific value, finding the minimum data value,
checking that all values in the array are within specific bounds, or checking for
duplicate data values. For example, Java midlets designed to enhance features
of mobile devices include simple programs accessing the address books, and our
methods can lead to an automatic verification tool that certifies their correct-
ness before being downloaded. For programs that fall outside the restrictions
mentioned above, it is possible to use abstract interpretation techniques such
as predicate abstraction [13] to abstract some of the features of the program,
and analyze the property of interest on the abstract program. As the abstract
programs are nondeterministic, we will consider nondeterministic programs.

Our first result is that the reachability problem for programs in which there are
no nested loops is decidable. The construction is by mapping such a program to a
finite-state abstract transition system such that every finite path in the abstract
system is feasible in the original program for an appropriately chosen array.
We show that the reachability problem for programs with non-nested loops is
Pspace-complete, which is the same complexity as that for finite-state programs
with only boolean variables.

Our second result shows decidability of reachability for programs with doubly-
nested loops with some restrictions on the allowed expressions. The resulting
complexity is non-elementary, and the interest is mainly due to the theoretical
connections with the recently well-studied notions of automata and logics over
data words [6,5,17]. Among different kinds of automata over data words that
have been studied, data automata [6] emerged as a good candidate definition
for the notion of regularity for languages on data words. A data automaton first
rewrites the Σ-component to another finite alphabet Γ using a nondeterministic
finite-state transducer, and then checks, for every data value d, whether the
projection obtained by deleting all the positions in which the data value is not
equal to d, belongs to a regular language over Γ . In order to show decidability of
the reachability problem for programs with doubly nested loops, we extend this
definition as follows: An extended data automaton first rewrites the data word as
in case of data automata. For every data value d, the corresponding projection
contains more information than in case of data automata. It is obtained by
replacing each position with data value different from d by the special symbol
0. The projection is required to be in a regular language over Γ ∪ {0}. We prove
that the reachability problem for extended data automata can be reduced to
emptiness of multi-counter automata (or equivalently, to Petri nets reachability),
and is thus decidable. We then show that a program containing doubly-nested
loops can be simulated, under some restrictions, by an extended data automaton.
Relaxing these restrictions leads to undecidability of the reachability problem
for programs with doubly-nested loops.

Analyzing reachability problem for programsbrings a new dimension to investi-
gations on logics and automata on data words.We establish some new connections,
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in terms of expressiveness and decidability boundaries, between programs, logics,
and automata over data words. Bojańczyk et al. [6] consider logics on data words
that use two binary predicates on positions of the word: (1) an equivalence rela-
tion ≈, such that i ≈ j if the data values at positions i and j are equal, and (2) an
order ≺ which gives access to order on data values, in addition to standard succes-
sor (+1) and order < predicates over the positions. They show that while the first
order logic with two variables, FO2(≈, <,+1), is decidable, introducing order on
data values causes undecidability, that is, FO2(≈,≺, <,+1) is undecidable. In this
context, our result on programs with non-nested loops is perhaps surprising, as we
show that the undecidability does not carry over to these programs, even though
they access order on the data domain and have an arbitrary number of index and
data variables.

Details of proofs are available in the companion report [1].

2 Programs

In this section, we define the syntax and semantics of programs that we will
consider. We start by defining arrays. Let D be an infinite set of data values. We
will consider domains D equipped with equality (D,=), or with both equality
and linear order (D,=, <). Let Σ be a finite set of symbols. An array is a data
word w ∈ (Σ×D)∗. The program can access the elements of the array via indices
into the array.

Syntax. The programs have one array variable A. Variables b, b1, b2, . . . are
boolean. Variables p, p1, p2, . . . range over N, and are called index variables.
Variables i, j, i1, i2, . . . range over N and are called loop variables. Variables v,
v1, v2, . . . range over D and are called data variables. Constants c, c1, c2, . . . are
in D, and constants s, s1, s2, . . . are in Σ. We make a distinction between loop
and index variables because loop variables cannot be modified outside of the
loop header. Index expressions IE are defined by the following grammar IE ::=
p | i. Data expressions DE are of the form DE :: = v | c | A[IE].d, where
A[IE].d accesses the data part of the array. Σ-expressions SE are of the form SE
:: = s | A[IE].s, where A[IE].s accesses the Σ part of the array. Boolean
expressions are defined by the following grammar: B :: = true | false | b |
B and B | not B | IE = IE | IE < IE | DE = DE | DE < DE | SE = SE.
The programs are defined by the grammar:

P :: = skip | { P } | b:=B | p:=IE | v:=DE
| if B then P else P | if * then P else P
| for i:=1 to length(A) do P | P;P

The commands include a nondeterministic conditional. We consider nondeter-
ministic programs in this paper, in order to enable modeling of abstracted pro-
grams. Software model checking approaches [13,3,16] often rely on predicate
abstraction. For example, if the original program contains an assignment of the
form b := E, where E is a complicated expression that falls out of scope of the in-
tended analysis, the assignment is abstracted into a nondeterministic assignment
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to b. This is modeled as if * then b:=true else b:=false in the language
presented here.

Semantics. A global state of the program is a valuation of its boolean, loop,
index and data variables, as well as of the array variable. We denote global states
by g, g1, and the set of global states by G. For a boolean, index, loop or data
variable v, we denote the value of v by g[v]. The value of the array variable A is a
word w ∈ (Σ×D)∗. It is denoted by g[A]. The length of the array at global state
g is denoted by l(g[A]) and evaluates to the length of w. Note that the length
and the contents of the array do not change over the course of the computation.

Semantics of boolean, index, data and Σ expressions is a partial function:
[[B]] : G → B, [[IE]] : G → N, [[DE]] : G → D and [[SE]] : G → Σ. It is not

defined only in cases when there is an array access out of bounds. For example,
in a state g where g[A] is a word of length 10 and g[p] is 20, the semantics of
the expression A[p].d is undefined. The semantics of commands is defined as a
relation on G, [[P]] ⊆ G×G. The definition is presented in detail in [1].

Given a program, a global state is initial if either i) the array variable con-
tains a nonempty word, all boolean variables are set to false, all index and loop
variables are set to 1, and all data variables are set to the same value as the first
element of the array; or ii) the array variable contains an empty word, all boolean
variables are set to false, all index and loop variables are set to 1, and all data
variables are set to constant cD ∈ D. The intention is that the only unspecified
part of the initial state, the part that models input of the program, is the array.
A boolean state is a valuation of all the boolean variables of a program. For a
given global state g, we denote the corresponding boolean state by bool(g). For
any boolean variable b of the program, we have that bool(g)[b] = g[b]. We denote
boolean states by m,m1 and the set of boolean states by M .

Restricted fragments. We classify programs using the nesting depth of loops.
We denote programs with only non-nested loops by ND1, programs with nesting
depth at most 2 by ND2, etc. Restricted-ND2 programs are programs with nesting
depth at most 2, that do not use index or data variables, and do not refer to or-
der on data or indices. Furthermore, a key restriction, such that if it is lifted, the
reachability problem becomes undecidable, is a restriction on the syntax of the
code inside the inner loop. Let P1 be the code inside an inner loop, and let i be the
loop variable of the outer loop and let j be the loop variable for the inner loop. P1
must be of the following form: if A[i].d=A[j].d then P2 else P3. Furthermore,
P3 cannot refer to A[j], i.e. it does not contain occurrences of A[j].d or A[j].s.

Examples. We present three examples illustrating these classes of programs.

Example 1. We consider a simple array accessing program Min that scans through
an array to find a minimal data value. It has one index variable, p, and it is an ND1
program, as it does not contain nested loops:

for i:= 1 to length(A) do { if A[i].d < A[p].d then p := i }
Note that by definition of program semantics, p is initialized to 1. The cor-
rectness requirement for this program is that the index p points to a minimal



90 R. Alur, P. Cerný, and S. Weinstein

b:=true;

for i:= 1 to length(A) do {
if A[i].d < v then b:=false

else skip;

v := A[i].d

}

Fig. 1. Example 2

b:=false;

for i:= 1 to length(A) do {
for j:= 1 to length(A) do

if (A[i].d = A[j].d) then {
if (not (i = j)) then b:=true

else skip

} else skip

}

Fig. 2. Example 3

element, that is ∀ i: A[i].d ≥ A[p].d. Verifying the correctness of the pro-
gram can be reduced to checking reachability, as the requirement itself can be
expressed as a program, by appending to the program Min above the following:

b:=true;
for i:= 1 to length(A) do { if A[i].d < A[p].d then b:=false }
We can now ask a reachability question: Does the control reach the end of the

program in a state where b == false holds?

Example 2. Figure 1 shows an ND1 program that tests whether the array is
sorted. It uses one data variable called v (note that by definition of the semantics,
v is initialized to the same value as the first element of the array).

Example 3. The Restricted-ND2 program in Figure 2 tests whether there is a
data value that appears twice in the array.

3 Reachability

Given a program P, a boolean state m is reachable if and only if there exists an
initial global state gI and a global state g such that (gI , g) ∈ [[P]] and bool(g) =
m. The reachability problem is to determine, for a given program P and a given
boolean state m, whether m is reachable. We will use a notion of a local state.
Given a program, a local state is a valuation of all its boolean, index, loop, and
data variables, as well as the values of array elements corresponding to index and
loop variables. For each index and loop variable v, local states have an additional
variable A v that stores the value of the array element at position given by v.
The main difference between local and global states of a program P is that local
states do not contain valuation of the array, they store instead at most a fixed
finite number kP of values from the unbounded domain D, where kP is bounded
by the total number of index and loop variables occurring in P.

Theorem 1. Reachability for ND1 programs is decidable. The problem is Pspace-
complete.

The structure of the proof is as follows. We first characterize the semantics
of a program in terms of a transition system T whose states are (tuples of)
local states. Let us first consider the following simple program P: for i1:=1
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to length(A) do P1. Here, and in the rest of the proof, we assume that the
length of the array is non-zero. (In the case the length of the array is zero,
the program effectively contains no loops, and reachability can be computed
in time polynomial in number of variables.) The program P can be seen as a
transition system whose states are local states of P and which processes an input
word in Σ × D, with each iteration consuming one symbol of the word. For
sequential composition of commands, a product construction (augmented with
some bookkeeping) is used.

Note that T is still an infinite-state system, as its states store values from
D. Therefore, we construct a finite state system Tα that abstracts the infinite
part of the local states, that is the values of index, loop and data variables. The
abstract state transition system Tα keeps only order and equality information on
the index, loop and data variables. Let IV be the set of index and loop variables
of P. Let DV be the set of data variables of P. An abstract state is a tuple
(m,SI ,SD), where m is a boolean state in M , SI is a total order on equivalence
classes on IV and SD is a total order on equivalence classes on DV ∪ IV . An
abstract state represents a set of local states. For example, if a program has an
index variable p1, a loop variable i1 and a data variable v1, a possible abstract
state is (m, p1 < i1, p1 = i1 < v1). This abstract state represents a set of
concrete states whose boolean state is m and, the value of p1 is less than the
value of i1, the value of the array at position p1 is the same as the value of the
array at position i1, which is less than the value of v1.

We show that reachability of a boolean state m can be decided on the abstract
system, in the sense that m is reachable in T if and only if it is reachable in
Tα. (A boolean state m is reachable in Tα iff there exist SI and SD such that
(m,SI ,SD) is reachable in Tα.) The main part of the proof shows that every
finite path in the abstract transition system is feasible in the concrete transition
system. The first idea for a proof might be to show that the abstraction defines
a bisimulation between abstract and concrete transition systems. However, this
is not the case. We present a simple counterexample. Let us consider a program
P and let us focus on two data variables v1 and v2. Let q1 be a local state such
that its boolean component is m, the value of v1 at q is 5 and the value of v2
at q is 6. The abstract state corresponding to r1, rα

1 is thus (m,SI ,SD), where
SD , the order on data and index variables, includes v1 < v2. Furthermore, let
us suppose that the program is such that the abstract state rα

1 can transition
(in a way that does not change the values of v1 and v2) to an abstract state rα

2
that requires that another data variable v3 has a value greater than the value of
v1, but smaller than the value of v2. Note now that the concrete state r1 cannot
transition to any state that would correspond to the order on data variables
required by rα

2 , because there is no value between 5 and 6.
In a key part of the proof, we show that if an abstract state rα

2 is reachable
from rα

1 , then there exists a state r1 (abstracted by rα
1 ) and a state r2 (abstracted

by rα
2 ) such that r2 is reachable from r1. The main idea for proof by induction

is that we can choose r1 in such a way that the gaps between values are large
enough. More precisely, if (1) rα

1 requires that e.g. v1 > v2 for two data variables
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v1 and v2 and (2) rα
2 is reachable from rα

1 in k steps, then it is sufficient to choose
r1 such that v1− v2 > 2k.

The above argument gives rise to a Pspace algorithm for deciding reachability
of a boolean state m.

4 Programs, Automata and Logics on Data Words

In this section, we will examine the decidability boundary for array-accessing
programs, and compare the expressive power of these programs to that of logics
and automata on data words. We will show that the reachability problem for
Restricted-ND2 programs is decidable, and that it is undecidable for full ND2
programs. We start by reviewing the results on automata and logics on data
words, as these will be needed for the decidability proof. We will reduce the
reachability problem for Restricted-ND2 programs to the nonemptiness problem
of extended data automata, a new variation of data automata. The latter is a
definition intended to correspond to the notion of regular automata on finite
words.

4.1 Background

We briefly review the results on automata and logics on data words from [6].
Recall that a data word is a sequence of pairs Σ × D. A data language is a
set of data words. Let w be a data word (a1, d1)(a2, d2) . . . (an, dn). The string
str(w) = a1a2 . . . an is called the string projection of w. Given a data language
L, we write str(L) to denote the set {str(w) | w ∈ L}. A class is a maximal set
of positions in a data word with the same data value. Let S(w) be the set of all
classes of the data word w. For a class X in S(w) with positions i1 < . . . < ik,
the class string str(w,X) is ai1 . . . aik

.

Data automata. A data automaton (DA) A = (G,C) consists of a transducer
G and a class automaton C. The transducer G is a nondeterministic finite-state
letter-to-letter transducer from Σ to Γ and C is a finite-state automaton on Γ .
A data word w = (a1, d1)(a2, d2) . . . (an, dn) is accepted by a data automaton
A if there is an accepting run of G on the string projection of w, yielding an
output string b = b1 . . . bn, and for each class X in S(w′), the class automaton C
accepts str(w′, X), where w′ = w′1 . . .w′n is defined by w′i = (bi, di), for all i such
that 1 ≤ i ≤ n. Given a DA A, L(A) is the language of data words accepted
by A. The nonemptiness problem for data automata is decidable. The proof is
by reduction to a computationally complex problem, the reachability problem
in Petri nets.

Example 4. We present a data automaton A such that str(L(A)), the set of
string projections, is exactly the set of all words over {a, b, c} that contain the
same number of as, bs, and cs. The transducer of A computes the identity func-
tion, i.e. it accepts all words and its output string is the same as its input string.
The class automaton ensures, for each class, that the class contains exactly one
occurrence of a, one occurrence of b and one occurrence of c.
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Logics on data words. We define logics whose models are data words. Follow-
ing [6], we consider two predicates on positions in a data word whose definition also
involves the data values at these positions. The predicate i ≈ j is satisfied if both
positions i and j have the same data value. The predicate i ≺ j is satisfied if the
data value at position i is smaller than the data value at position j. Furthermore,
standard successor and order predicates on positions in a data word are used.

Let us first consider logics that use the ≈ predicate and not the ≺ predicate.
We first note that for a first order logic FO(≈, <,+1) satisfiability is undecidable,
even if we restrict the number of variables to three. If we restrict the number of
variables to two, the logic becomes decidable, and the proof is by reduction to
the nonemptiness problem of data automata. The decidability naturally extends
to existentially quantified second order monadic logic with two first order vari-
ables, denoted by EMSO2(≈,+1,⊕1). Moreover, EMSO2(≈,+1,⊕1) is precisely
equivalent in expressive power to data automata. The predicate ⊕1 denotes the
class successor, and i⊕1 = j is satisfied if i and j are two successive positions in
the same class of the data word. Furthermore, the logic EMSO2(≈, <,+ω,⊕1)
is included in EMSO2(≈,+1,⊕1). The symbol +ω represents all predicates of
the form +k, k ∈ N, i.e. the logic includes all predicates i+ 2 = j, i+ 3 = j, etc.

4.2 Extended Data Automata

Position-preserving class string. Note that the class automaton does not
know the positions of symbols in the word w. The symbols from other classes
have simply been erased. However, let us consider a program with a doubly-
nested loop where i is the loop variable of the outer loop and j is the loop
variable of the inner loop, and let us suppose that the program inside the inner
loop is of the form: if (A[i].d=A[j].d) then P1 else P2. The inner loop of
the program scans the array from left to right and and modifies the state in two
different ways (given by P1 and P2), depending on whether (A[i].d=A[j].d)
holds or not. Simply erasing the positions from other classes seems therefore not
good enough. We thus define an extension of the notion of class string and a
corresponding extension of the class automaton.

Given a data word w ∈ (Σ×D)∗, a position-preserving class string pstr(w,X)
is a string over Σ ∪ {0}. (We assume that 0 /∈ Σ.) Let w = w1w2 . . .wn, let i be
a position in w, and let wi be (ai, di). The string v = pstr(w,X) has the same
length as w, and for vi we have that vi = ai iff i ∈ X , and vi = 0 otherwise.
That is, for each position i which does not belong to X , the symbol from Σ at
the position i is replaced by 0.

An extended data automaton (EDA) E = (G,C) consists of a transducer G and
a class automaton C. The transducer G is a finite-state letter-to-letter transducer
from Σ to Γ and C is a finite-state automaton over Γ ∪ {0}. A data word
w = w1 . . .wn is accepted by the EDA E if there is an accepting run of G on the
string projection of w, yielding an output string b = b1 . . . bn, and for each class
X in S(w′), the class automaton C accepts pstr(w′, X), where w′ = w′1 . . .w′n is
defined as follows: w′i = (bi, di), for all i such that 1 ≤ i ≤ n. Given an EDA E ,
L(E) is the language of data words accepted by E .
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Example 5. We consider L, a language of data words defined by the following
property: A data word w is in L iff for every class X in S(w), we have that
between every two successive positions in the class, there is exactly one position
from another class. We show that there exists an EDA E = (G,C) such that
L(E) = L. The transducer G computes the identity function. The class automa-
ton C is given by the following regular expression: 0∗(Σ0)∗0∗. It is easy to see
that E accepts L.

We first note that for each DA A, it is easy to find an EDA E such that L(E) =
L(A). We just modify the class automaton C, by adding the tuple (q, 0, q), for
each q, to the transition relation. This means that on reading 0 the state of the
class automaton does not change.

We will also show in this section that for each EDA E we can find an equivalent
DA A. This might not be obvious at a first glance, as class automata of DAs do
not get to see the distances between positions in a class. Indeed, we show that the
language from Example 5 cannot be captured by a deterministic DA. However,
we show that EMSO2(≈,+1,⊕1) and EDAs are expressively equivalent, and
since EMSO2(≈,+1,⊕1) and DAs are also expressively equivalent, we conclude
that for every EDA there exists a DA that accepts the same language. Showing
that for every EDA there exists an equivalent EMSO2(≈,+1,⊕1) formula also
establishes that non-emptiness is decidable for EDAs. However, the proof of
decidability of satisfiability of EMSO2(≈,+1,⊕1) formulas is rather involved.
We present a direct proof for decidability of emptiness for EDAs, as it also gives
an intuitive reason why emptiness is decidable fro EDAs.

Theorem 2. Given an EDA E, it is decidable whether L(E) = ∅.

Proof. Let E = (G,C) be an EDA, let G be defined by a tuple (QG, Σ, Γ, δG, q
G
0 ,

FG), and let C be defined by a tuple (QC , Γ, δC , q
C
0 , FC). We start by describing a

more operational view of EDAs. A run of an EDA on a data word w is a function
� from positions in w to tuples of the form (q, o, c), where q ∈ QG is a state of
the transducer G, o (a symbol from Γ ) is the output of the transducer, and c
is a function from S(w) to QC , the set of states of C. Furthermore, we require
that � is consistent with δG and δC , the transition functions of G and C. We
define �(0) to be (qG

0 , γ, λX.qC
0 ), i.e. the transducer and all the copies of the class

automaton are in initial states. Furthermore, for each position i, �(i) is equal to
(q′, o′, c′) if and only if wi = (a, d), �(i− 1) = (q, o, c) and (i) (q′, o′) ∈ δG(q, a),
(ii) for the unique X such that i ∈ X we have c′(X) ∈ δC(c(X), o′), (iii) for X
such that i /∈ X we have c′(X) ∈ δC(c(X), 0).

A run is accepting iff �(n) = (q, o, c), q is a final state of G and for all X in
S(w), we have that c(X) is a final state of C.

Let us consider the class automaton C. Without loss of generality, we suppose
that C is a complete deterministic automaton on Γ∪{0}. The transition function
δC defines a directed graph C0 with states of C as vertices and 0-transitions as
edges, i.e. there is an edge (p1, p2) in C0 if and only if δC(p1, 0) = p2. Every
vertex in C0 has exactly one outgoing edge (and might have multiple incoming
edges). Therefore, each connected component of C0 has exactly one cycle. A
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vertex is called cyclic if it is part of a cycle, and it is called non-cyclic otherwise.
It is easy to see that each connected component is formed by the cyclic vertices
and their 0-ancestors. An example of a connected component is in Figure 3. The
vertex labeled q6 is cyclic, its ancestors q9, q10, q11 are non-cyclic.

The graph C0 consists of a number
q1

q2

q3

q4

q5

q6

q7

q8

q9 q10

q11

0

0

0

00

0

0
0

0
0

0

Fig. 3. A connected component of a
graph C0 corresponding to an EDA E

of connected components. We denote
these components by Cj

0 , for j ∈ [1..k],
where k is the number of the compo-
nents. Let W be the set of all non-cyclic
vertices. For each non-cyclic vertex v,
let D(v) be defined as follows: D(v) =
d for non-cyclic vertices connected to
a cycle, where d is the length of the
unique path connecting v to the clos-
est cyclic vertex. For the graph C0, we
define D(C0) to be maxv∈W D(v).

Let i be a position in a data word w. The data word w1w2 . . .wi is denoted by
prefix(w, i). Let us consider a position i in a data word w and the set of classes
S(w). Let Sact (w, i) be a set of active classes, i.e. classes X such that there is a
position in X to the left of the position i. More formally, a class X ∈ S(w) is in
Sact(w, i) if the string str(prefix (w, i), X) is not equal to 0i.

Lemma 1. Let � be a run of E on w. Let i be a position in w. Let �(i) be
(q, o, c). The number N of classes X, such that X is in Sact (w, i) and c(X) is a
noncyclic vertex, is bounded by D(C0), i.e. N ≤ D(C0).

Proof. Let i be a position in a word w. If i ≤ D(C0), then the number of active
classes is at most D(C0), and we conclude immediately. Let us consider the
case i > D(C0). Let �(i) be (q, o, c) and let s be the string of length D(C0)
defined by s = wi−D(C0)+1 wi−D(C0)+2 . . .wi. There are two possible cases for
each class X in S(w). The first case is the case when pstr(s,X) = 0D(C0). Let
�(i−D(C0)) = (q′, o′, c′), and let c′(X) = v. We can easily prove that δ∗C(p, 0e)
is not in W , for all p and for all e ≥ D(p). By definition, D(C0) ≥ D(q′).
Therefore, we can conclude that c(X) �∈ W . The second case is the case when
pstr(s,X) �= 0D(C0). This is true for at most D(C0) classes, because, for all
positions x, there is exactly one class X , such that the symbol at the position x
of the class string pstr(s,X) is not 0. Thus we have that c(X) ∈ W for at most
D(C0) classes.

We reduce emptiness of EDAs to emptiness of multicounter automata. Mul-
ticounter automata are equivalent to Petri nets [11], and thus the emptiness
of multicounter automata is decidable. We use the definition of multicounter
automata from [6]. A multicounter automaton is a finite, non-deterministic au-
tomaton extended by a number k of counters. It can be described as a tuple
(Q,Σ, k, δ, qI, F ). The set of states Q, the input alphabet, the initial state qI ∈ Q
and final states F ⊆ Q are as in a usual finite automaton. The transition relation
is a subset of Q× (Σ ∪ {ε})× {inc(i), dec(i)}×Q. The idea is that in each step,
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the automaton can change its state and modify the counters, by incrementing
(inc(i) increments counter number i) or decrementing them, according to the
current state and the current letter on the input (which can be ε). Whenever
it tries to decrement a counter of value zero the computation stops and rejects.
The transition of a multicounter automaton does not depend on the value of
the counters in any other way. In particular, it cannot test whether a counter is
exactly zero. The automaton accepts when the state is final and all the counters
are empty.

Lemma 2. Let E be an EDA. A multicounter automaton V such that str(L(E))
= L(V ) can be computed from E.

Proof. We present the construction of a multicounter automaton V that simu-
lates E . The multicounter automaton V simulates the transducerG and a number
of copies of C. There is one copy per class in S(w), where w is the word the
automaton is reading. We say that a class automaton performs a 0-transition
if the input symbol it reads is 0, and it performs a Γ -transition if the input
symbol it reads is from Γ . Intuitively, at each step, the automaton V : (i) Sim-
ulates the transducer G using the finite state part (i.e. not the counters), and
(ii) It guesses to which class the current position belongs, and it executes the
Γ -transition of the automaton for that class with the symbol that is the output
of the transducer at this step. For all the other simulated automata, V executes
the 0-transition. (This is sufficient because each position belongs to exactly one
equivalence class.) The counters of the multicounter automaton V correspond
to the cyclic vertices in C0. (In what follows, we call a state of C (non-)cyclic if
it corresponds to a (non-)cyclic vertex in C0.) The value of the counter h corre-
sponds to the number of copies of C currently in the state h. The finite part of
the automaton state tracks the number of copies in each non-cyclic state. The
key idea of the proof is that the total number of copies in non-cyclic states is
finite and bounded (by D(C0)). This fact is implied by Lemma 1.

Furthermore, one copy e of the class automaton is used to keep track of all
the classes that are not active yet, i.e. not in Sact (w, i) at step i - thus when a
position-preserving class string contains a symbol in Γ for the first time, a new
copy of the automaton C is started from the state at which the copy e is.

Let γ ∈ Γ be the current input symbol. The automaton works as follows:
The first step consists of the automaton V nondeterministically guessing the
equivalence class X to which the current position belongs. The copy of the class
automaton for X is then set aside while the second step is performed. That is,
if the copy is in state s, then s is remembered in a separate part of the finite
state. In the second step, the automaton V simulates 0-transitions for all the
other copies (other than the copy that performed the Γ -transition). For copies
in non-cyclic states, this is done by a transition modifying the finite state of V .
The copies that transition from a non-cyclic to a cyclic state are dealt with by
modifying the finite state and increasing the corresponding counter. The copies
in cyclic states are tracked in the counters. Note that if we restrict the graph to
only cyclic states, each state has exactly one incoming and one outgoing 0-edge.
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For all the copies in cyclic states, the 0-transition is accomplished by “relabeling”
the counters. This is done by remembering in the the finite state of V for each
loop for one particular state to which counter it corresponds. This is then shifted
in the direction of the 0-transition.

The third step is to perform the Γ transition for the class X . For the copy
of the automaton corresponding to this class, a Γ -transition is performed. That
is, if it is in state q, and δ(q, γ) = q′, then there are four possibilities.: (i) if q, q′

are cyclic states, the counter corresponding to q is decreased and the counter
corresponding to q′ is increased; (ii) if q, q′ are non-cyclic state, a transition that
changes the state of V is made; (iii) if q is a cyclic state and q′ is a non-cyclic
state, the counter corresponding to q is decreased, and the finite state of V is
changed to reflect that the number of copies in q′ has increased; (iv) if q is a
noncyclic state and q′ is a cyclic state, the transition is simulated similarly.

This concludes the proof of Theorem 2.

4.3 Restricted Doubly-Nested Loops

We will reduce the reachability problem of Restricted-ND2 programs to the empti-
ness problem of EDAs. The main idea of the proof is that the transducer G
guesses an accepting run of the outer loop, while the class automaton C checks
that the inner loop can be executed in a way that is consistent with the guess
of the transducer.

Theorem 3. Reachability for Restricted-ND2 programs is decidable.

The proof of Theorem 3 gives a decision procedure, but one whose running
time is non-elementary. The reason is that while the problem of reachability in
multicounter automata is decidable, no elementary upper bound is known.

However, the following proposition shows that the problem is at least as hard
as the reachability in multicounter automata, which makes it unlikely that a
more efficient algorithm exists. The best lower bound for the latter problem is
Expspace [19].

Proposition 4. The reachability problem for multicounter automata can be re-
duced to the reachability problem for Restricted-ND2 programs.

4.4 Undecidable Extensions

We show that if we lift the restrictions we imposed on Restricted-ND2 programs,
the reachability problem becomes undecidable.

Theorem 5. The reachability problem for ND2 programs is undecidable.

The proof is by reduction from the reachability problem of two-counter au-
tomata [20]. We note that the proof also implies that the reachability problem
is undecidable even for ND2 programs that do not use order on the data domain
and do not use index or data variables.
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We investigate the case of Restricted-ND2 programs with access to order on
the data domain and with data index variables. We show that if we add order
on the data domain and at least one data variable, the reachability problem
becomes undecidable. The proof is by reduction from the Post’s Correspondence
Problem, and is similar to the proof of Proposition 21 of [6].

Proposition 6. Reachability for Restricted-ND2 programs that use order on D
and at least one data variable is undecidable.

A natural question, which is now open, is whether it is possible to add only one of
these features (order on data domain or data (index) variables) to Restricted-ND2
programs without losing decidability of the reachability problem.

4.5 Expressiveness

In this section, we compare expressiveness of logics and automata on data words
and array-accessing programs. We make our comparisons in terms of languages
of data words these formalisms can define. Due to a lack of space, we present
only the results in this subsection.

Language of a program. In order to define the language of a program, we
extend the notion of a program by adding a final state. That is, in this section
we will assume that every program P has a final state mf , where m is a boolean
state of P. The language Lm(P) is the set of data words w, such that there
exist an initial state gI and a state g, such that gI [A] = w, bool (g) = m, and
(gI , g) ∈ [[P]]. We say that a program P accepts the language Lm(P), where m is
the final state.

The following proposition shows that EDAs and EMSO2(≈,+1,⊕1) are equally
expressive. This means that somewhat surprisingly, DAs and EDAs are expres-
sively equivalent.

Proposition 7. EDAs and EMSO2(≈,+1,⊕1) are equally expressive.

The following proposition sheds light on the difference between DAs and EDAs.
We saw that DAs and EDAs are expressively equivalent. However, one difference
between EDAs and DAs is that deterministic EDAs are more expressive than de-
terministic DAs. It is the nondeterminism that then levels the difference.

Proposition 8. DeterministicEDAsaremore expressive than deterministicDAs.

We show that nondeterminism adds to the expressive power of EDAs, as there
exists a language accepted by a nondeterministic EDA, but no deterministic EDA
can accept it. This implies the following proposition.

Proposition 9. Deterministic EDAs are strictly less expressive than EDAs.

We will now compare the expressive power of array-accessing programs to logics
and automata on data words. Specifically, we will use the logic EMSO2(≈,+1,⊕1)
for comparison. Recall that this logic is expressively equivalent to data automata.
We first show that Restricted-ND2 programs are not as expressive as
EMSO2(≈,+1,⊕1). We also compare the expressive power of ND1 programs and
EMSO2(≈,+1,⊕1).
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Proposition 10. Restricted-ND2 programs are strictly less expressive than
EMSO2(≈,+1,⊕1).

Proposition 11. There exists an EMSO2(≈,+1,⊕1) property that is not express-
ible by an ND1 program.

Note that ND1 programs allow order on the data domain, and thus can check a
property specifying that the elements in the input data word are in increasing or-
der. It is easy to see that this property is not specifiable in EMSO2(≈,+1,⊕1).
However, if we syntactically restrict ND1 programs not to use order on D, they
can be captured by EMSO2(≈,+1,⊕1) formulas. The reason is that ND1 programs
that do not refer to the order on D can be simulated by register automata intro-
duced in [17]. For every register automaton, there is an equivalent data automa-
ton [5]. Another natural question is whether there is an order-invariant
property that can be captured by ND1 programs (that have access to order), but
is not expressible in EMSO2(≈,+1,⊕1). We leave this question for future work.

5 Related Work

Our results establish connections between verification of programs accessing ar-
rays and logics and automata on data words. Kaminski and Francez [17] initiated
the study of finite-memory automata on infinite alphabets. They introduced regis-
ter automata, that is automata that in addition to finite state have a fixed number
of registers that can store data values. The results of Kaminski and Francez were
recently extended in [21,6,5,4]. Data automata introduced in this line of research
were shown to be more expressive than register automata. Furthermore, the logic
EMSO2(≈,+1,⊕1) was introduced, and [6] shows that EMSO2(≈,+1,⊕1) and
data automata are equally expressive. The reduction from EMSO2(≈,+1,⊕1) to
data automata and the fact that emptiness is decidable for data automata imply
that satisfiability is decidable for EMSO2(≈,+1,⊕1). We show that Restricted-
ND2 programs can be encoded in EMSO2(≈,+1,⊕1). However, adding a third
variable to the logic or allowing access to order on data variable makes satisfi-
ability undecidable for the resulting logic, even for the first order fragment. We
show, perhaps somewhat surprisingly, that the undecidability does not translate
into undecidability of reachability for ND1 programs that access order on the data
domain and have an arbitrary number of index and data variables. The results
on automata and logics on data words model were applied in the context of XML
reasoning [21] and extended temporal logics [9]. The connection to verification of
programs with unbounded data structures is the first to the best of our knowledge.

Deutsch et al. [10] consider a model of database-driven systems similar in some
aspects to our model of programs. The key difference is that they consider a dense
order. They specifically note that the model-checking problem they consider is
open for the case of a discrete order. It would be interesting to see if our result
on programs on structures with discrete order can be extended to the setting of
database-driven systems. Fragments of first order logic on arrays have been shown
decidable in [8,15,2,7]. These fragments do not restrict the number of variables
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(as was the case with EMSO2(≈,+1,⊕1)), but restrict the number of quantifier
alternations. These papers focus on theory of arrays, rather than on analysis of
array-accessing programs. Decidability of reachability for polymorphic systems
with arrays (PSAs) was studied e.g. in [18]. PSAs use well-typed λ-terms and do
not allow iteration over arrays.

Static analysis of programs that access arrays is an active research area, with
recent results including [12,14,2]. The approach consists in finding inductive in-
variants for loops using abstraction methods, such as abstract domains that can
represent universally quantified facts [14] and a predicate abstraction approach
to shape analysis [2]. In contrast, our results yield decision procedures for array-
accessing programs. However, the methods based on abstraction are applicable to
a richer class of programs. Note that the abstract domains used for examples and
applications also track equality and order on array elements.
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18. Lazić, R.: Decidability of reachability for polymorphic systems with arrays: A com-
plete classification. ENTCS 138(3), 3–19 (2005)

19. Lipton, R.: The reachability problem requires exponential space. Technical Report
Dept. of Computer Science, Research report 62. Yale University (1976)

20. Minski, M.: Recursive unsolvability of Post’s problem of ’tag’ and other topics in
theory of Turing machines. Annals of Mathematics 74, 437–455 (1962)

21. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 5(3), 403–435 (2004)



Decidable Relationships between Consistency
Notions for Constraint Satisfaction Problems

Albert Atserias1 and Mark Weyer2
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Abstract. We define an abstract pebble game that provides game in-
terpretations for essentially all known consistency algorithms for con-
straint satisfaction problems including arc-consistency, (j, k)-consistency,
k-consistency, k-minimality, and refinements of arc-consistency such as
peek arc-consistency and singleton arc-consistency. Our main result is
that for any two instances of the abstract pebble game where the first
satisfies the additional condition of being stacked, there exists an al-
gorithm to decide whether consistency with respect to the first implies
consistency with respect to the second. In particular, there is a decid-
able criterion to tell whether singleton arc-consistency with respect to a
given constraint language implies k-consistency with respect to the same
constraint language, for any fixed k. We also offer a new decidable crite-
rion to tell whether arc-consistency implies satisfiability which pulls from
methods in Ramsey theory and looks more amenable to generalization.

1 Introduction

Comparing finite structures with respect to some preorder or equivalence rela-
tion is a classic theme in logic and algorithms. Notable examples include isomor-
phisms, embeddings, and homomorphisms, as well as preservation of formulas in
various logics, and (bi-)simulation relations of various types.

Let ≤ and ≤′ be preorders on finite structures, where ≤ is a refinement of ≤′
which is however harder than ≤′. More precisely, ≤ is a refinement of ≤′ in that
the implication

A ≤ B =⇒ A ≤′ B (1)

holds true, but the reverse implication is not true in general. Also, ≤ is harder
than ≤′ in the sense that determining whether A is smaller than B is compu-
tationally harder for ≤ than for ≤′. A question of interest in this situation is
to characterize the structures A (resp. B) for which the implication in (1) is
actually an equivalence. Let us summarize a few known instances where this
equivalence holds.

1.1 Some Examples

For a collection of first-order formulas L, we write A ≤L B if every sentence
from L that is true in A is also true in B. Clearly, ≤L defines a preorder, and if
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L is closed under negation, it defines an equivalence relation ≡L. When L is FO,
the collection of all first-order formulas, it is well known that ≡L agrees with
isomorphism on finite structures. On the other hand, the k-variable fragment of
first-order logic FOk gives a coarsening of isomorphism which, for fixed k, can
be decided in polynomial time. Thus, we are asking for the finite structures A
for which the equivalence

A ≡FOk

B ⇐⇒ A ∼= B (2)

holds for every finite B.
If A is a colored path (a word), then (2) holds for k ≥ 3 and every B [16].

More generally, for every colored tree A, equation (2) holds with k ≥ d+ 1 and
every B, where d is a bound on the degree of the tree. Other fascinating examples
arise for graphs embedded in surfaces: if A is a 3-connected planar graph, (2)
holds for every large constant k and every B, and indeed k ≥ 15 suffices [13,21].

When L is ∃FO+, the existential-positive fragment of FO, the preorder A ≤L

B coincides with the existence of a homomorphism from A into B. Also its k-
variable fragment ∃FOk,+ gives a coarsening that can be decided in polynomial
time. Thus, in this case we are asking for the finite structures A for which the
equivalence

A ≤∃FO+,k

B ⇐⇒ A → B (3)

holds true for every B, where A → B denotes the existence of a homomorphism.
If A is a colored tree, it is easy to show that (3) holds for k ≥ 2 and every B.

More generally, if the treewidth of A is less than k, even if up to homomorphic
equivalence, then (3) holds for every B [8]. Interestingly, this result is tight: if
(3) holds for every B, then the treewidth of A is less than k, up to homomorphic
equivalence [2].

For equation (3), restrictions imposed on B have a different meaning than
restrictions imposed on A, and obtaining tight characterizations becomes much
harder. Still, some cases are known. For example, if B is a bipartite graph, then
(3) holds for k ≥ 3 and every A. And on restriction to graphs, this is one of the
few instances where we get a characterization: if B is a graph (with at least one
edge) for which (3) holds for every A, then k ≥ 3 and B is bipartite [20]. For
general relational structures, the state of affairs is much more complicated, as
discussed next.

1.2 On Characterization Results and CSPs

Unfortunately, full characterizations as those discussed in the previous section
may be hopeless even for natural instances of ≤ and ≤′. Consider for example
the problem that, given A, asks whether the equivalence in (2) holds for every
B. For k = 2, an algorithm follows from the fact that the finite satisfiability
problem for FO2 is decidable. But for k = 3, equivalence with respect to FOk is
able to encode Diophantine problems [14] and we quickly face undecidability.

For coarser preorders, such as homomorphism, there is still some hope. For
example, the results mentioned above show that the equivalence in (3) holds
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for every B if and only if the treewidth of A is less than k up to homomor-
phic equivalence, which is a decidable criterion. On the other hand, the dual
question of characterizing the finite structures B for which (3) holds for every
A is one of the main questions in the seminal work by Feder and Vardi [10] on
constraint satisfaction problems. It corresponds to the question of characterizing
all constraint languages for which the so-called k-consistency algorithm (defined
in Section 3) solves any instance. In symbols:

k-CON(B) ?= CSP(B) (4)

where k-CON(B) denotes the collection of all instances that are k-consistent
with respect to B, and CSP(B) is the collection of all A such that A → B.

1.3 New Results

Motivated by question (4), we offer a unifying approach to the consistency algo-
rithms that were considered in the literature. These include arc-consistency, k, �-
consistency, k-consistency, k-minimality, and refined versions of arc-consistency
such as peek arc-consistency and singleton arc-consistency. For pairs of these al-
gorithms, which we denote as preorders ≤ and ≤′, we want to be able to decide
for which finite structures B the equivalence

A ≤ B ⇐⇒ A ≤′ B (5)

holds true for every finite A. Along the lines of Kolaitis and Vardi [18], we phrase
each of these algorithms as an instance of a general pebble game. This abstract
setting allows us to prove that the equivalence in (5) is decidable for pairs of algo-
rithms including arc-consistency, peek arc-consistency, singleton arc-consistency,
and some others. The simple argument pivots around three components: the fact
that such games enjoy treewidth duality, the identification of a subclass of games
–called stacked– that have definitions in monadic second-order logic, and the de-
cidability of MSO on structures of bounded treewidth. It is worth pointing out,
as an interesting feature, that the MSO definitions of stacked games span differ-
ent levels of the so-called “closure of monadic NP” introduced by Ajtai, Fagin,
and Stockmeyer [1]. In particular, they seem to go beyond monadic NP.

One further consequence of these results is that, for a given finite structure
B, the equality SAC(B) = k-CON(B) is decidable, where SAC(B) denotes the
collection of all instances that are singleton arc-consistent with respect to B.
To our knowledge, this sort of result was unknown before. Another remarkable
consequence is that a solution to problem (4) automatically gives a solution to
problem SAC(B) = CSP(B), and similarly for other pairs of algorithms.

Finally, we close the paper by offering a new decidable criterion for the
problem AC(B) = CSP(B), where AC(B) denotes the instances that are arc-
consistent with respect to B. Our new proof pulls from ideas in Ramsey theory
and looks more amenable to generalization when compared to the previous direct
proof by Feder and Vardi [10]. Indeed, our method was introduced by Kolaitis
and Vardi [17] for solving a completely different problem related to the asymp-
totic probability of strict NP properties, which indicates its wider generality.
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2 Preliminaries

We use standard notation and terminology in finite model theory; see [9]. All our
vocabularies are finite and relational, perhaps with additional constant symbols.
Homomorphisms preserve tuples and constants, strong homomorphisms preserve
also non-tuples, embeddings are injective homomorphisms, and strong embed-
dings are injective strong homomorphisms. We write h : A → B to denote that
h is a homomorphism from A to B. If h does not matter, we write A → B to de-
note its existence. We use the convention that if A and B do not share the same
vocabulary, automatically A �→ B. The same conventions apply to embeddings
e→, strong embeddings s→, and isomorphisms ∼=.

The structure A is a substructure of B if A ⊆ B and the identity mapping is
an embedding. It is an induced substructure if the embedding is strong. In this
case, A is the substructure of B induced by A, and we denoted it by B 	 A. The
union of A and B is the structure with universe A ∪ B where the relation R
is interpreted by RA ∪ RB. The disjoint union of A and B is the union of two
copies of A and B with disjoint universes. If C = A ∩B and A and B agree on
C in the sense that A 	 C = B 	 C, the union of A and B is called the glued
union through C, where C = A 	 C = B 	 C.

For the definitions of treewidth and tree-decompositions of graphs and rela-
tional structures we refer the reader to, say, [11]. We write TW(k) for the class
of all finite structures of treewidth at most k.

For the definitions of first and second-order logic, MSO, least and greatest
fixed-point logic, and Datalog see [9]. Co-Datalog stands for the negations of
Datalog formulae. If k is an integer, k-ary Datalog has all recursive predicates
of arity at most k. An SNP formula is a formula of the form ∃X∀xϕ, where X is
a sequence of relation variables, x is a sequence of first-order variables, and ϕ is
a quantifier-free formula. A k-ary SNP formula has all relation variables of arity
at most k. The closure of monadic SNP stands for the collection of formulas
of the form ∃X1∀x1 · · · ∃Xm∀xmϕ, where all relation variables are unary and ϕ
is quantifier-free. The closure of monadic NP was introduced in [1]. It follows
from standard techniques that every formula of k-ary co-Datalog is equivalent
to a k-ary SNP formula, and that every formula of monadic universal greatest
fixed-point logic is equivalent to a formula in the closure of monadic SNP.

A consistency notion is just any reflexive transitive relation between struc-
tures, which is isomorphism invariant. Thus, →, e→, s→, and ∼= are consistency
notions. If L is a logic and ≤L denotes preservation of L-formulas, then ≤L is
also a consistency notion. Let ≤ and ≤′ be two consistency notions. We say that
≤ is a refinement of ≤′, or ≤′ a coarsening of ≤, if A ≤ B implies A ≤′ B.

3 Generalized Pebble Game

In this section we define the abstract pebble game for which we prove our results.
The methods would work for versions of the game that are even more general, but
as this is at the expense of intuition, we have made the definition only as general
as necessary to include the important consistency notions in the literature.
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Before we start, let us introduce some necessary notation and terminology. Let
{c1, c2, . . .} be a countable set of constant symbols. For a natural number k, a
k-numbered structure is a structure D for a vocabulary that contains {c1, . . . , ck}
such that D =

{

cD1 , . . . , c
D
k

}

. Observe, that this does not imply |D| = k. For
a structure D and d1, . . . , dk ∈ D, let (D, d1, . . . , dk) denote the k-numbered
structure, which is obtained from D 	 {d1, . . . , dk} by interpreting ci by di for
all 1 ≤ i ≤ k. All k-numbered structures can be represented this way.

3.1 Definition of the Game

The game comes parameterized by two sets G and S. The growing set G is a
collection of pairs (k,D), where k is a natural number and D is an �-numbered
structure for some � ≥ k. The shrinking set S is a collection of pairs (k,K),
such that k is a natural number and K ⊆ {1, . . . , k}. Further we require, that if
(k,D) ∈ G and D ∼= D′, then also (k,D′) ∈ G.

The game GG,S is played by two players, Spoiler and Duplicator, on a board
formed by two structures A and B. The positions of a play of the game are
sequences

((a1, b1), . . . , (ak, bk)), (6)

where ai ∈ A and bi ∈ B. The initial position is the empty sequence. From a
position p as in (6), Spoiler has a set of options:

1. Growing round: Spoiler may announce a growing round in which he picks
some � ≥ k, some ak+1, . . . , a� from A, and an �-numbered substructure
S of (A, a1, . . . , a�), provided that the pair (k,S) belongs to G. Then it is
Duplicator’s turn, who is required to pick some bk+1, . . . , b� from B such that
S → (B, b1, . . . , b�). If she succeeds, the next position is ((a1, b1), . . . , (a�, b�));
if she does not, the game is over.

2. Shrinking round: For every (k,K) in S, Spoiler has the option to move to
((ai, bi) : i ∈ K), the subsequence of p induced by K.

Duplicator wins a play if she can play infinitely. We write A ≤G,S B if Duplicator
has a winning strategy to win every play of GG,S on the board formed by A and
B. If b is an integer, we say that the game GG,S is grow-bounded by b if every
pair (k,D) in G has k ≤ b. We say that it is fully-bounded by b if for every such
pair, D is �-numbered for some � ≤ b.

The first thing we need to observe is that our pebble games define relations
that are always coarser than homomorphisms:

Lemma 1. Let G and S define a pebble game. Then → is a refinement of ≤G,S,
and ≤G,S is reflexive.

Proof. If h : A → B, then Duplicator has a winning strategy by answering all
growing rounds with h. In other words, in position ((a1, h(a1)), . . . , (ak, h(ak))),
if Spoiler picked ak+1, . . . , a� and a substructure S of (A, a1, . . . , a�), Duplicator
replies with h(ak+1), . . . , h(a�). Then S → (A, a1, . . . , a�) → (B, h(a1), . . . , h(a�))
so this is a valid move. In this way, Duplicator can play infinitely to win. The
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second claim is immediate from considering the identity homomorphism from A
to A. "#

On the other hand, not all ≤G,S are transitive, hence not all of them induce
proper consistency notions. All of our examples are transitive, though.

3.2 Examples

The k-consistency algorithm was studied by Freuder [12]. It can be defined as
follows. Let A and B be two structures. Let H be the collection of all partial
homomorphisms h from A to B such that |Dom(h)| ≤ k. For every h in H with
|Dom(h)| ≤ k and every a in A, if there does not exist any b in B such that
g := h∪{(a, b)} is a partial homomorphism from A to B, for which every f ⊆ g
with |Dom(f)| ≤ k belongs to H , remove h from H , and repeat. Whenever H
does not change anymore, stop. If H stabilizes to a non-empty set, we say that
A is k-consistent with respect to B. Otherwise we say that it is k-inconsistent.

The form we presented of the k-consistency algorithm is somewhat closer
to the game interpretation given by Kolaitis and Vardi [18]. Our framework, of
course, also captures it. We formulate a slightly more general version of it, called
k, �-consistency, that appears in [10] and goes back to [12]:

Example 1. Let k and � be natural numbers with 0 < k < �. Define

G = {(i,D) : i ≤ k and D is j-numbered with i ≤ j ≤ �}
S = {(i,K) : K ⊆ {1, . . . , i}, and |K| ≤ k},

Then ≤G,S is called k, �-consistency and we denote it by ≤k,�. This game is
grow-bounded by k and fully-bounded by �. The special case ≤k,k+1 is called
k-consistency.

A variant of the k-consistency algorithm was introduced by Bulatov, who called it
k-minimality. Although the differences are minor, specially when the vocabulary
is finite, we show how to phrase it in our framework as the particular case of
1-minimality is a very well-known algorithm called arc-consistency.

Before we phrase the k-minimality algorithm in game-theoretic terms, let us
present the algorithmic view of arc-consistency. Let A and B be two structures.
The algorithm maintains a set Sa ⊆ B for every a ∈ A, initially set to B. For
every a ∈ A, every b ∈ Sa, every relation symbol R, and every (a1, . . . , ar) ∈ RA,
if there does not exist any (b1, . . . , br) ∈ RB such that, for every j ∈ {1, . . . , r},
it holds that bj ∈ Saj , and bj = b whenever aj = a, remove b from Sa, and
repeat. Whenever the Sa’s do not change anymore, stop. If the Sa’s stabilize to
non-empty sets, we say that A is arc-consistent with respect to B. Otherwise
we say that it is arc-inconsistent. The algorithmic version of k-minimality is a
straightforward generalization of this algorithm that maintains relations of arity
at most k.

In order to define k-minimality in game terms, we need the following additional
concept. Let i ≤ j. An i, j-tuple structure is a j-numbered structure D such that
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RD �= ∅ holds for exactly one R in the vocabulary, such that RD has exactly one
tuple (d1, . . . , dr), and such that {d1, . . . , dr} =

{

cDi , . . . , c
D
j

}

.

Example 2. Let k be a natural number with k > 0. Define

G = {(i,D) : i ≤ k and D is j-numbered with i ≤ j ≤ k} ∪
{(k,D) : D is a 1, j-tuple structure with j ≥ k}

S = {(i,K) : K ⊆ {1, . . . , i} and |K| ≤ k},

Then ≤G,S is called k-minimality and we denote it by ≤k-MIN. This game is
grow-bounded by k, and fully-bounded by the maximum of k and the maximum
arity of the relation symbols in the vocabulary. The particular case ≤1-MIN is
called arc-consistency and we denote it by ≤AC.

We discuss two more examples that will re-appear later in the paper. These are
refinements of arc-consistency that have been studied in the literature, sometimes
interchangeably. The first refinement is called peek arc-consistency in [6]. In
algorithmic form, this stands for the procedure that, for every a ∈ A, checks if
there exists some b ∈ B for which the arc-consistency algorithm started with
Sa = {b}, and Sa′ = B for a′ �= a, stabilizes with non-empty sets. As a game,
this is phrased as follows:

Example 3. Define

G = {(i,D) : D is j-numbered with i ≤ j ≤ 2} ∪
{(2,D) : D is a 2, j-tuple structure with j ≥ 2}

S = {(i, {1, j}) : 2 ≤ j ≤ i},

Then ≤G,S is called peek arc-consistency and we denote it by ≤PAC. This game
is grow-bounded by 2 and fully-bounded by the maximum arity of the relation
symbols in the vocabulary plus one.

The last example is singleton arc-consistency [5]. Algorithmically, we maintain
sets Ta ⊆ B, initially set to B, and for every a ∈ A and every b ∈ Ta check
whether arc-consistency started with Sa = {b}, and Sa′ = Ta′ for a′ �= a,
stabilizes with non-empty sets. If it does not, we remove b from Ta, and repeat.
Game-theoretically, here is how this is defined:

Example 4. Define

G = {(i,D) : D is j-numbered with i ≤ j ≤ 2} ∪
{(2,D) : D is a 2, j-tuple structure with j ≥ 2}

S = {(i, {j}) : 1 ≤ j ≤ i} ∪ {(i, {1, j}) : 2 ≤ j ≤ i},

Then ≤G,S is called singleton-arc-consistency and we denote it by ≤SAC. Again,
this game is grow-bounded by 2 and fully-bounded by the maximum arity of the
relation symbols in the vocabulary plus one.
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3.3 Definability

We turn now to definability. We say that ≤ induces a consistency notion that is
definable in some logic if, for every finite structure B, there exists a formula ϕ
in the logic, such that for every finite structure A we have A ≤ B iff A |= ϕ.
We say that the definition is effective if furthermore such a ϕ can be computed
from B. The following is well-known:

Lemma 2. → induces a consistency notion that is is definable in monadic SNP.
Furthermore, the definition is effective.

For the general pebble game, it does not seem possible to stay within monadic
SNP, not even monadic second-order logic. However, standard methods give the
following:

Lemma 3. Let G and S define a pebble game that is grow-bounded by k and
fully-bounded. Then, ≤G,S induces a consistency notion that is definable in k-
ary co-Datalog and hence in k-ary SNP. Furthermore, if G and S are decidable,
the definition is effective.

Note, in particular, that ≤AC induces a consistency notion that is definable in
monadic co-Datalog and hence in monadic SNP. According to this lemma, ≤PAC

and ≤SAC induce consistency notions that are definable in binary co-Datalog and
binary SNP, as they are both grow-bounded by 2. We will show more as both
notions are definable in a monadic fragment of second-order logic. This will
follow from a general condition on pebble games that we define next.

Let G and S define a pebble game. The game is called stacked if for ev-
ery (k,K) in S there exist 0 ≤ i, j ≤ k such that K \ {j} = {1, . . . , i}. Arc-
consistency, 1, �-consistency, peek-arc-consistency, and singleton-arc-consistency
are all stacked. Note also that these examples are grow-bounded by 2 but, in
general, stacked pebble games need not be grow-bounded by any fixed k. Thus,
the following result, which is the main result of this section, gets interesting
when compared to Lemma 3.

Lemma 4. Let G and S define a fully-bounded stacked pebble game. Then, ≤G,S

induces a consistency notion that is definable in monadic universal greatest fixed-
point logic and hence in the closure of monadic SNP. Furthermore, if G and S
are decidable, the definition is effective.

Proof (rough sketch). The construction makes heavy use of nested and simul-
taneous fixed points. Intuitively, the nesting levels correspond to the different
i for shrinking sets of the form {1, . . . , i, j}. In this setting, only the j are
able to change entries in positions, which leads to monadic fixed points being
sufficient. "#

3.4 Treewidth Duality

Let C be a class of structures. The binary relation ≤ has C-duality, if for every
pair of structures A and B such that A �≤ B, there exists a C ∈ C such that
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C ≤ A and C �≤ B. We say that ≤ has treewidth-k-duality, if it has C-duality
for some C ⊆ TW(k).

Observe that this differs in formulation from the duality used in [10]. There,
it is established that for a certain ≤, namely k-consistency, A �≤ B implies the
existence of C in TW(k), such that C → A and C �→ B. As for this ≤ it
turns out that C ≤ D and C → D are equivalent for every C in TW(k) and
every structure D, the different formulations amount to the same. However, this
equivalence does not carry over to other ≤. In particular, the following result
does not follow directly from the fact that every bounded pebble game induces
a consistency notion that is definable in co-Datalog. It requires its own proof.

Lemma 5. Let G and S define a pebble game fully-bounded by k. Then ≤G,S

has treewidth-(k − 1)-duality.

Proof (rough sketch). For the structure C, we use an unravelling of A. The actual
notion of unravelling is game specific, but it coincides with the usual one for the
k-consistency game. In order to obtain a finite C, we truncate the unravelling
tree at a depth which is large enough to contain all relevant moves in a game
between A and B. "#

4 Application: Decidable Relative Consistency Results

The relative consistency problem for ≤ and ≤′ is the problem of, given some
finite structure B, deciding whether the implication

A ≤ B =⇒ A ≤′ B (7)

holds for every finite A. A simple application of the decidability of the satisfia-
bility problem for MSO on structures bounded treewidth (see [11]) gives:

Theorem 1. Let ≤ and ≤′ induce consistency notions such that:

1. both notions are effectively definable in MSO.
2. ≤′ has treewidth duality.
3. ≤′ is a refinement of ≤.

Then, the relative consistency problem for ≤ and ≤′ is decidable.

Proof. Let B be given and let k be such that ≤′ has TW(k) duality. Let ϕ be
an MSO definition of the consistency notion induced by ≤ and B, and let ϕ′ be
the one for ≤′ and B. We will show that the implication (7) fails if and only if
there exists some C in TW(k) such that C ≤ B and C �≤′ B. This last condition
is equivalent to the satisfiability of ϕ ∧ ¬ϕ′ in TW(k), which is decidable.

The ‘if’ part of the claim is immediate. For the ‘only if’ part, let A be such
that A ≤ B and A �≤′ B. Using duality, let C in TW(k) be such that C ≤′ A
and C �≤′ B. From C ≤′ A we obtain C ≤ A because ≤′ is a refinement of ≤,
and then C ≤ B using transitivity. "#
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Even though k-consistency induces a consistency notion that is probably not
definable in MSO when k > 1, we can still prove the following result:

Theorem 2. Let k ≥ ar(σ), and let ≤ induce a consistency notion such that:

1. the notion is effectively definable in MSO.
2. ≤k is a refinement of ≤.

Then, the relative consistency problem for ≤ and ≤k is decidable.

Proof. The proof follows the same lines as in Theorem 1, using TW(k) duality
of ≤k. It remains to replace MSO definability of ≤k. For this purpose, note that
the previous proof only needed the formula ϕ′ to describe whether A ≤k B for
A in TW(k), not for all finite structures. Recall that ≤k and → coincide on
TW(k) (see [8]), and that → is definable in MSO. This is all we need. "#

It is also possible to generalize this result to any consistency notion defined by
a fully-bounded game replacing ≤k. This requires some additional techniques,
including a notion of game treewidth, which will appear in the full version of the
paper.

Combining lemmata 4 and 5 and theorems 1 and 2, we obtain the following:

Corollary 1. The following relative consistency problems are decidable:

1. Arc-consistency and peek arc-consistency.
2. Peek arc-consistency and singleton arc-consistency.
3. Singleton arc-consistency and k-consistency for k ≥ ar(σ).
4. 1, �-consistency and 1, �′-consistency for � ≤ �′.
5. 1, �-consistency and k-consistency for k ≥ �− 1.
6. Transitive combinations of the above.

As a side note we give a further result, which in particular implies that the
injective variant of the relative consistency problem for ≤k and → is decidable.

Theorem 3. Let ≤ induce a consistency notion such that:

1. ≤ is decidable.
2. e→ is a refinement of ≤.

Then, the relative consistency problem for ≤ and e→ is decidable.

Proof. Although a more elementary presentation would be possible, we proceed
along the lines of the previous proofs. First, e→ has size-plus-one duality: If
A � e→ B, then there is some C such that C e→ A, C � e→ B, and |C| ≤ |B| + 1: If
|A| ≤ |B|+1, we let C := A. Otherwise, let C be any subset of A of size |B|+1
and let C = A 	 C. Then id : C e→ A and C � e→ B follows from injectivity.

Hence, we only need to decide whether A ≤ B implies A e→ B for all A with
|A| ≤ |B| + 1. As ≤ is decidable, this can be solved by brute force. "#
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5 Decidable Criterion for Arc-Consistency

In this section we concentrate on arc-consistency. We want to be able to decide,
for a given B, whether A ≤AC B implies A → B for every finite A. Put differ-
ently, we want to detect if there exists some counterexample: a finite A such that
A ≤AC B and yet A �→ B. Since our goal is to build an arc-consistent instance,
we start by developing the closure properties of this class of structures.

For the rest of this section, we fix a finite structure B with vocabulary σ. For
every b in B, let Pb be a new unary relation symbol and let τ be σ∪{Pb : b ∈ B}.
For every A such that A ≤AC B, let W(A) be the collection of all τ -expansions
of A whose interpretations for {Pb : b ∈ B} satisfy the following conditions:

i. for every a ∈ A there exists some b ∈ B such that a ∈ PA
b ,

ii. for every a ∈ A, every b ∈ B such that a ∈ PA
b , every R ∈ σ, and every

(a1, . . . , ar) ∈ RA, there exists (b1, . . . , br) ∈ RB such that, for every j ∈
{1, . . . , r}, it holds that aj ∈ PA

bj
, and bj = b whenever aj = a.

The condition A ≤AC B is equivalent to the statement that W(A) is non-empty.
Alternatively, we could have taken this as our definition of ≤AC. Let W denote
the union of all W(A) as A ranges over all finite structures such that A ≤AC B.

Lemma 6. W is closed under induced substructures and glued unions.

Proof. Closure under induced substructures is immediate since the conditions i.
and ii. defining W(A) are universal on A. We concentrate on glued unions. Let
A1 and A2 be two structures in W that agree on the common part: that is, for
A0 = A1 ∩ A2, we have A1 	 A0 = A2 	 A0. Let A3 be the glued union of A1
and A2, and let A be its σ-reduct. We claim that the sets {PA3

b : b ∈ B} satisfy
the conditions i. and ii. that define W(A). This will show that A ≤AC B and at
the same time put A3 in W(A) and W .

For condition i., fix an element a ∈ A3. If a ∈ Ak for k ∈ {1, 2}, then there
exists some b ∈ B such that a ∈ PAk

b and the same b serves for A3. The fact that
A1 and A2 agree on A0 guarantees that this is well-defined. For condition ii.,
fix a ∈ A3, b ∈ B, R ∈ σ, and (a1, . . . , ar) ∈ RA as in its statement. Since
(a1, . . . , ar) belongs to RA and A is also the glued union of the σ-reducts of
A1 and A2, it must necessarily be the case that either {a1, . . . , ar} ⊆ A1 or
{a1, . . . , ar} ⊆ A2. In case {a1, . . . , ar} ⊆ Ak for k ∈ {1, 2}, let b1, . . . , br ∈ B
be given by condition ii. on Ak. Again the fact that A1 and A2 agree on A0
guarantees that this choice is well-defined and valid for A3. "#

It follows from the lemma that W is an amalgamation class and, by Fräıssé’s
construction (see [15]), there exists a countably infinite structure S+ satisfying
the following three properties:

1. every finite induced substructure of S+ is isomorphic to a structure in W ,
2. every structure in W is isomorphic to a finite induced substructure of S+,
3. for every two finite subsets S1 and S2 of S+, if S+ 	 S1 and S+ 	 S2 are

isomorphic, then there exists an automorphism of S+ that maps S1 to S2.
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From now on, we write S for the σ-reduct of S+. Except for the fact that it
is infinite, S is the candidate counterexample we are looking for. To establish
this, the first and second properties of S+ will suffice; the third property will be
discussed later on. We start showing that S is arc-consistent:

Lemma 7. S ≤AC B

Proof. If we show that the sets {PS+

b : b ∈ B} satisfy the conditions i. and
ii. that define W(S), it will follow that the duplicator has a winning strategy
witnessing that S ≤AC B. For condition i., fix an element a ∈ S+. Let A be the
finite substructure S+ 	 {a}. By the first property of S+, the structure A belongs
to W . Let then b be the witness to condition i. for A. The same b works for S+.
For condition ii., fix an element a ∈ S+, b ∈ B, R ∈ σ, and (a1, . . . , ar) ∈ RS as
in its statement. Let A be the finite substructure S+ 	 {a1, . . . , ar}. By the first
property of S+, the structure A belongs to W . Let then b1, . . . , br ∈ B be the
witnesses to condition ii. for A. The same witnesses work for S+. "#

Next we show that the existence of a homomorphism S → B determines if
arc-consistency solves CSP(B).

Lemma 8. The following are equivalent:

1. S → B.
2. A ≤AC B implies A → B for every finite A.

Proof. Assume S → B and let A be a finite structure such that A ≤AC B. This
means that W(A) is not empty; let A+ be a member of W(A) and therefore of
W . By the second property of S+, the structure A+ embeds into S+, and hence
A also embeds into S. Since S → B, also A → B.

The converse is proved by a standard compactness argument. As we will not
really need this implication in what follows, we omit the standard proof. At any
rate, it will be a consequence of the results below (of course, without falling in
a circularity; see the proof of Theorem 5). "#

Our next goal is to finitize S+. Since we cannot satisfy the three properties of S+

in a finite structure, we relax them significantly. This will give us a very naive
first candidate to a finitized S+ which we will strengthen later on. Let r be the
maximum arity of the relations in σ. Let N+ be a finite τ -structure satisfying
the following two properties:

1. every induced substructure of N+ is isomorphic to some structure in W ,
2. every structure in W of cardinality at most r is isomorphic to some induced

substructure of N+.

Note that the disjoint union of all structures in W of cardinality at most r does
the job. We will take this canonical example as our N+. Note that N+ belongs
to W as W is closed under glued unions and hence under disjoint unions. From
now on, let N be the σ-reduct of N+.
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By itself, N is way too naive. If N is unsatisfiable, meaning that N �→ B, we
are certainly done as we have a counterexample. But if it is satisfiable, there is
not much we can say. We will ask then for a stronger condition on N that comes
inspired by the third property of S+. We will say that N is strongly B-satisfiable
if there exists a homomorphism f : N → B such that f(a1) = f(a2) for every
pair of points a1 and a2 in N for which N+ 	 {a1} and N+ 	 {a2} are isomorphic.
The following lemma links our naive candidate N with our ideal candidate S, in
one direction:

Lemma 9. If N is strongly B-satisfiable, then S → B.

Proof. Let f : N → B be a homomorphism witnessing that N is strongly satis-
fiable. Let c1, c2, c3, . . . be a fixed enumeration of the universe of S. We define a
sequence of mappings h0, h1, h2, h3, . . . where hi has domain {c1, . . . , ci}, induc-
tively. Let h0 be the empty mapping. Let i > 0 and suppose that hi−1 is already
defined. Let ai be any element of N+ for which S+ 	 {ci} and N+ 	 {ai} are
isomorphic. Such an ai must exist by the first property of S+ and the definition
of N+. Let hi be the extension of hi−1 that sets hi(ci) = f(ai). From the fact
that N is strongly satisfied by f , this does not depend on the choice of ai.

We claim that the map h =
⋃

i hi is a homomorphism from S to B. Fix a tuple
(ci1 , . . . , cir ) in some relation RS. Let d1, . . . , dr be such that S+ 	 {ci1 , . . . , cir}
and N+ 	 {d1, . . . , dr} are isomorphic with cij mapped to dj . Such d1, . . . , dr

exist by the first property of S+ and the definition of N+. Since f is a homomor-
phism, we have (f(d1), . . . , f(dr)) ∈ RB. On the other hand, S+ 	 {cij} is isomor-
phic to both N+ 	 {dj} and N+ 	 {aij}. It follows that f(dj) = f(aij ) = h(cij ),
and therefore also (h(ci1 ), . . . , h(cir )) ∈ RB. Thus h is a homomorphism. "#

Our next goal is to reverse the implication in Lemma 9. For this we need to
introduce some terminology from Ramsey theory.

Let C and D be structures and let p ≥ 1 and c ≥ 1 be integers. We write
D → (C)p

c if for every mapping f :
(

D
p

)

→ {1, . . . , c} there exists a strong
embedding e : C s→ D such that for every two sets A,B ⊆ C with |A| = |B| = p
and C 	 A ∼= C 	 B, it holds that f(e(A)) = f(e(B)). Here, the notation

(

M
p

)

stands for the collection of all subsets of M of size p. A classic result in Ramsey
theory states that for every p and c and every finite structure C, there exists a
finite structure D such that D → (C)p

c . See [19] for a beautiful exposition and
a discussion on the long history of this result.

On the one hand, we require the Ramsey result for the much simpler case of
p = 1. On the other, we require it relative to a particular class of finite structures.
If K is a class of finite structures and p ≥ 1, we say that K is a p-Ramsey class
if for every c ≥ 1 and every C in K, there exists a D in K such that D → (C)p

c .
We say that K is a pigeonhole class if it is a 1-Ramsey class. Relativized Ramsey
theorems are also known and have an equally long history. The version stated
below seems not to appear in the literature but can be proved by standard
methods in the area. We note that the restriction to p = 1 is essential in all
known approaches.
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Theorem 4. Let K be a class of finite structures that is closed under induced
substructures and glued unions. Then K is a pigeonhole class.

We see how this solves our problem by reversing the implication in Lemma 9.
First note that, by Lemma 6 and Theorem 4, the class W is a pigeonhole class.
Let M+ be the structure D given by the Theorem 4 with C = N+ and c = |B|.
Let M be the σ-reduct of M+. These two structures will be used in the following:

Lemma 10. If S → B, then N is strongly B-satisfiable.

Proof. Let h : S → B. By the second property of S+, there exists f : M e→ S.
Composing we get h◦f : M → B. As M+ → (N+)1|B|, there exists e : N+ s→ M+

such that if N+ 	 {a1} ∼= N+ 	 {a2}, then h(f(e(a1))) = h(f(e(a2))). Thus,
h ◦ f ◦ e is a homomorphism witnessing that N is strongly satisfiable. "#

Finally, we obtain the characterization:

Theorem 5. The following conditions are equivalent:

1. S → B,
2. M → B,
3. N is strongly B-satisfiable,
4. A ≤AC B implies A → B for every finite A.

Proof. Implication 1. to 2. follows from the second property of S+ and the fact
that M+ belongs to W . Implication 2. to 3. is in the proof of Lemma 10. Im-
plication 3. to 1. is Lemma 9. This shows that 1., 2., and 3. are equivalent. The
equivalence between 1. and 4. is Lemma 8. But since we proved only that 1.
implies 4. in that Lemma, let us note how 4. implies 2.: M+ belongs to W and
hence M ≤AC B, which means that if 4. holds, then 2. holds as well. "#

Note that 3. is a perfectly decidable condition. Condition 2. is also decidable as
M+ and M are explicitely defined from N+ (this is implicit in the full proof).

6 Concluding Remarks

Important progress on the analysis of the k-consistency algorithm was achieved
recently through the algebraic approach to CSPs. Complete decidable classifi-
cations are now known for digraphs without sources or sinks [4] and for special
triads [3]. Even for general structures a solution was announced recently. As soon
as this breakthrough is confirmed, our results give also decidability for SAC and
other stacked games by transitivity. A natural next step would be understanding
this decidability proof through some explicit algebraic condition, or perhaps by
showing that k-consistency is no more powerful than SAC for solving CSPs. On
a related note, we are not aware of algebraic conditions that allow comparing
the relative strength of two different algorithms as in Corollary 1. Again, this
could be because different consistency algorithms collapse after all, or because
some refinement of the algebraic approach awaits for discovery.
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Finally, the decidable criterion we gave for AC has an appealing combinato-
rial flavour that calls for generalization. An explicit question we were unable to
answer and that stopped our progress is this: Is the class of all instances that
are k-consistent with respect to a fixed B the collection of reducts of some amal-
gamation class? Results in the style of [7] indicate that this might be possible.
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Abstract. We study an extension of monadic second-order logic of order
with the uncountability quantifier “there exist uncountably many sets”.
We prove that, over the class of finitely branching trees, this extension
is equally expressive to plain monadic second-order logic of order.

Additionally we find that the continuum hypothesis holds for classes
of sets definable in monadic second-order logic over finitely branching
trees, which is notable for not all of these classes are analytic.

Our approach is based on Shelah’s composition method and uses basic
results from descriptive set theory. The elimination result is constructive,
yielding a decision procedure for the extended logic. Furthermore, by the
well-known correspondence between monadic second-order logic and tree
automata, our findings translate to analogous results on the extension
of first-order logic by cardinality quantifiers over injectively presentable
Rabin-automatic structures, generalizing the work of Kuske and Lohrey.

1 Introduction

Monadic second-order logic of order, MLO, extends first-order logic by allowing
quantification over subsets of the domain. The binary relation symbol < and
unary predicate symbols Pi are its only non-logical relation symbols. MLO plays
a very important role in mathematical logic and computer science. The funda-
mental connection between MLO and automata was discovered independently
by Büchi, Elgot and Trakhtenbrot when the logic was proved to be decidable
over the class of finite linear orders and over (ω,<). Moving away from linear
orders, Rabin proved that monadic second-order theory of the full binary tree,
S2S for short, is decidable [14]. This theorem, obtained using the notion of tree
automata, is one of the most celebrated results in theoretical computer science,
sometimes even called “the mother of all decidability results”.

First-order cardinality quantifiers, also known under the name of Magidor-
Malitz quantifiers, count the number of elements with a given property. These
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quantifiers have been widely investigated in mathematical logic with respect
to both decidability and the possibility of elimination. The book [1] presents
results on decidability and other properties of first-order logic extended with
such cardinality quantifiers over various natural classes of structures.

Second-order cardinality quantifiers in MLO, which we study in this paper,
have been mostly considered in the context of automata and automatic struc-
tures. The first, basic result [2,3] shows that the quantifier “there exist infinitely
many words” can be eliminated on automatic structures. By the standard corre-
spondence between automata and MLO mentioned above, this is equivalent to
eliminating the quantifier “there exist infinitely many sets” from weak MLO over
(ω,<). The case of full MLO over (ω,<) corresponds to injectively presented ω-
automatic structures and was solved by Kuske and Lohrey in [7,8]. Let us remark
that, while cardinality quantifiers are hardly ever used directly in specifications,
the structural properties of ω-regular languages identified in these results gave
important insights into automatic structures and their properties.

Motivated by previous work on (ω,<) that used word automata, we investigate
cardinality quantifiers over finitely branching trees, in particular over the binary
tree with arbitrary labelings, which corresponds to tree automata with additional
parameters. The parameterless question was previously studied by Niwiński, who
in [12] proved that a regular language of infinite trees is uncountable if and only
if it contains a non-regular tree.

This paper deals with the expressive power of the extension of MLO by cardi-
nality quantifiers “there exist infinitely many subsets X such that” (∃ℵ0), “there
exist uncountably many subsets X such that” (∃ℵ1) and “there exist at least
continuum many subsets X such that” (∃2ℵ0 ). We study the extension of MLO
by these quantifiers, MLO(∃ℵ0 , ∃ℵ1 , ∃2ℵ0 ), over simple trees. These are finitely-
branching trees every branch of which is either finite or of order type ω. Our
main results are summarized in the next two theorems.

Theorem 1 (Elimination of the uncountability quantifier). For every
MLO(∃ℵ0 , ∃ℵ1 , ∃2ℵ0 ) formula ϕ(Y ) there exists an MLO formula ψ(Y ), com-
putable from ϕ, that is equivalent to ϕ(Y ) over the class of simple trees.

In addition to the above, the reduction will show that over simple trees the quan-
tifiers ∃ℵ1X and ∃2ℵ0

X are equivalent, i.e. that the continuum hypothesis holds
for MLO-definable families of sets. Though not surprising, this is not obvious
for it is known that in MLO one can define non-analytic classes of sets [13] and
that CH is independent of ZFC already for co-analytic sets [11].

Theorem 2. For every MLO formula ϕ(X,Y ), ∃ℵ1X ϕ(X,Y ) is equivalent to
∃2ℵ0

X ϕ(X,Y ) over simple trees.

These results naturally extend to cardinality quantifiers ∃ℵ0X, ∃ℵ1X and ∃2ℵ0
X

counting (finite) tuples of sets. This follows from the basic fact that for any
cardinal κ ≥ ℵ0 it holds ∃κ(U, V ) ϕ ≡ ∃κU

(

∃V ϕ
)

∨ ∃κV (∃U ϕ).
Note that ∃κXϕ means “there exist at least κ sets X satisfying ϕ”.
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Our results bear relevance to the theory of automatic structures. Call a struc-
ture A generalized tree-automatic [4], or specifically T-automatic, if there is a
subset interpretation of A in a labeled simple tree T. As introduced in [4], subset
interpretations differ from monadic second-order interpretations in that the free
variables of their constituent formulas are set variables. A structure A is thus
T-automatic if it has a concrete representation with subsets of T as elements and
atomic relations given by MLO formulas, equivalently, by Rabin tree-automata,
hence the name. The first-order theory of A is thus interpreted in the MLO the-
ory of T. Such a representation is called injective if equality is left uninterpreted
[6]. Theorem 1 entails the following.

Corollary 3. Cardinality quantifiers can be effectively eliminated from first-
order logic on injectively presented generalized tree-automatic structures.

This supersedes the previously mentioned results from [2,3] and [7,8] and gen-
eralizes the theorem of Niwiński from [12], which follows form a parameterless
instance of our theorem. Certain structural insight gained from some of our in-
termediate lemmas might be of independent interest. More specifically we show
that counting sets of nodes satisfying an MLO-formula on a simple tree can be
effectively reduced to a combination of counting branches satisfying a certain
MLO-formula, and counting chains with certain MLO-definable properties on
individual branches. While the latter essentially amounts to dealing with the
special case treated in [7,8], relying on basic results from descriptive set theory
we show that counting of branches can also be implemented in MLO.

1.1 Organization

We begin by noting in Section 2 some observations considered folklore regarding
the second-order infinity quantifier ∃ℵ0X . In Section 3 we fix terminology and
notation on trees and recollect some essentials of Shelah’s composition method
for MLO. The rest of the paper is devoted to the proof of Theorems 1 and 2.

In Section 4 we start by reducing the question of the existence of uncount-
ably many sets X satisfying a given MLO formula ϕ(X,Y ) with parameters Y
over a simple tree to a disjunction of three conditions: A, B and C. Condition
A deals with MLO-properties of antichains; Condition C deals with a simpler
version of the uncountability quantifier, namely with the quantifier “there ex-
ist uncountably many branches”. Ultimately, condition B is concerned with the
cardinality of chains with a specific MLO property on individual branches, but
it is postulated first in a far broader form for deductive advantages.

In Section 5, we show that Condition B can be significantly weakened assuming
that conditions A and C are not satisfied. Relying on the elimination results on
(ω,<) from [7,8], we formalize this weakened form of Condition B in MLO and
prove, that it guarantees the existence of continuum many sets satisfying ϕ.

In Section 6 we consider Condition C in the special case of the complete
binary tree. The key theorem that we prove there, which might be of independent
interest, is that MLO-definable sets of branches of the binary tree are Borel. This
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opens the way to formalizing Condition C in plain MLO, first over the binary
tree and finally, in Section 7, over arbitrary simple trees.

The proofs of our main theorems are summarized in Section 8, Section 9 states
further results.

2 Infinity Quantifier

With regard to the second-order infinity quantifier ∃ℵ0X the following observa-
tions are worth making. While it clearly cannot be eliminated over all structures,
it is easily expressible in monadic second-order logic (MSO) with the auxiliary
predicate Inf(Z) asserting that the set Z is infinite, or equivalently, with the
help of the first-order infinity quantifier ∃ℵ0x.

Proposition 4. For every MSO(∃ℵ0) formula ϕ(Y ) there exists an MSO(Inf)
formula ψ(Y ) equivalent to ϕ(Y ) over all structures.

Proof. Observe that the following are equivalent:

(1) There are only finitely many X which satisfy ϕ(X,Y ).
(2) There is a finite set Z such that any two different sets X1, X2 which both

satisfy ϕ(Xi, Y ) differ on Z, i.e.

∃Z
(

¬Inf(Z) ∧ ∀X1X2
(

(ϕ(X1, Y ) ∧ ϕ(X2, Y ) ∧X1 �= X2) →

∃z ∈ Z (z ∈ X1 ↔ z �∈ X2)
)

)

.

Item (2) implies (1) as a collection of sets pairwise differing only on a finite set
Z has cardinality at most 2|Z|. Conversely, if X1, . . . , Xk are all the sets that
satisfy ϕ(Xi, Y ), then choose for every pair of distinct sets Xi, Xj an element
zi,j in the symmetric difference of Xi and Xj and define Z as the set of these
chosen elements. "#

Over simple trees Inf(Z) can of course be expressed in MLO. Indeed, with
König’s Lemma in mind, Z is infinite iff there is an infinite chain, equivalently,
an unbounded set of nodes each having an element of Z below it:

ψInf(Z) = ∃C∀v ∈ C∃w ∈ C, z ∈ Z : v < w ∧ v ≤ z

Corollary 5. MLO(∃ℵ0) collapses effectively to MLO over the class of simple
trees.

Observe that the converse of Proposition 4 holds as well. In fact, the predicate
Inf(Z) can be defined over all structures by the formula ∃κY (Y ⊆ Z) for any
ℵ0 ≤ κ ≤ 2ℵ0 . Therefore, by Proposition 4, any of the quantifiers ∃κY with
ℵ0 < κ ≤ 2ℵ0 can be used to define ∃ℵ0X over arbitrary structures.
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3 Preliminaries

For a given set A we denote by A∗ the set of all finite sequences of elements of
A, by Aω the set of all infinite sequences of elements of A (i.e. functions ω → A),
and A≤ω = A∗ ∪ Aω . For any sequence s = s0s1s2 . . . ∈ A≤ω we denote by |s|
the length of s (either a natural number or ω) and by s|n = s0 . . . sn−1 the finite
sequence composed of the first n elements of s, with s|0 = ε, the empty sequence.
We write s[n] for the (n + 1)st element of s (we count from 0), so s[n] = sn for
n ∈ N. Given a finite sequence s and a sequence t ∈ A≤ω we denote by s · t (or
just st) the concatenation of s and t. Moreover, we write s * t if s is a prefix of
t, i.e. if there exists a sequence r such that t = sr. A subset B of A≤ω is said to
be prefix-closed if for every t ∈ B and s * t it holds that s ∈ B.

3.1 Trees

For a number l ∈ N, l > 0, an l-tree is a structure T = (T,<, P1, . . . , Pl),
where the Pi’s are unary predicates and < is the irreflexive and transitive binary
ancestor relation with a least element called the root of T and such that for
every v ∈ T the set {u ∈ T | u < v} of ancestors of v is linearly ordered by
<. Elements of a tree are referred to as nodes, maximal linearly ordered sets of
nodes are called branches, ancestor-closed and linearly ordered sets of nodes are
called paths, whereas chains are arbitrary linearly ordered subsets. An antichain
is a set of pairwise incomparable nodes. Given a node v, the subtree of T rooted
in v is obtained by restricting the structure to the domain Tv = {u ∈ T | u ≥ v}
and is denoted Tv.

Given a finite setA, we denote by T(A) the full tree overA, which is a structure
with the universe A∗, < interpreted as the prefix ordering and unary predicates
Pa = A∗a for each a ∈ A. For finite A with |A| = n, this structure is axiomatiz-
able in MLO and its MLO theory is the same as SnS, the monadic second-order
theory of n successors (modulo trivial MLO-interpretations in T(n)).

We identify a path B of T(A) with the sequence β = a0a1a2 . . . ∈ A≤ω such
that B = {a0 . . . as | s ≤ |β|}. Conversely, given a sequence β ∈ A≤ω we write
Pref(β) for the corresponding path B.

Ordered sums of trees are defined as follows.

Definition 6. Let l > 0, I = (I,<I) be an unlabeled tree and let Ti = (Ti, <
i

, P i
1, . . . , P

i
l ) be an l-tree for each i ∈ I. The tree sum of (Ti)i∈I, denoted

∑

i∈I Ti, is the l-tree

T = (
⋃

i∈I

{i} × Ti, <
T,
⋃

i∈I

{i} × P1
i, . . . ,

⋃

i∈I

{i} × Pl
i),

such that (i, a) <T (j, b) for i, j ∈ I, a ∈ Ti, b ∈ Tj iff:

i <I j and a is the root of Ti, or i = j and a <i b .

Unless explicitly noted, we will not make a distinction between Ti and the iso-
morphic subtree {i} × Ti of T.
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A particular special case of the sum we will be using is when the index structure
I consists of a single branch, i.e. is a linear ordering. For every linear order (I,<)
and chain 〈Ti | i ∈ I〉 of trees, the sum T =

∑

i∈I Ti is well defined, and (I,<)
forms a path (not necessarily maximal) of T.

We remark that not every tree can be decomposed as a sum along an arbi-
trarily chosen path. Such discrepancies can be ruled out by requiring that every
two nodes possess a greatest common ancestor, i.e. an infimum. In this paper we
consider only simple trees, which trivially fulfill this requirement.

Definition 7. A simple tree is a finitely branching tree every branch of which
is either finite or of order type ω.

3.2 MLO and the Composition Method

We will work with labeled trees in the relational signature {<,P1, . . . , Pl} where
< is a binary relation symbol denoting the ancestor relation of the tree, and the
Pi’s are unary predicates representing a labeling.

Monadic second-order logic of order, MLO for short, extends first-order logic
by allowing quantification over subsets of the domain. MLO uses first-order vari-
ables x, y, . . . interpreted as elements, and set variables X,Y, . . . interpreted as
subsets of the domain. Set variables will always be capitalized to distinguish them
from first-order variables. The atomic formulas are x < y, x ∈ Pi and x ∈ X , all
other formulas are built from the atomic ones by applying Boolean connectives
and the universal and existential quantifiers for both kinds of variables. Concrete
formulas will be given in this syntax, taking the usual liberties and short-hands,
such as X ∪ Y,X ∩ Y,X ⊆ Y , guarded quantifiers and relativization of formulas
to a set.

The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximum depth of
nesting of quantifiers in ϕ. For fixed n and l we denote by Formn,l the set of
formulas of quantifier depth ≤ n and with free variables among X1, . . . , Xl. Let
n, l ∈ N and T1,T2 be l-trees. We say that T1 and T2 are n-equivalent, denoted
T1 ≡n T2, if for every ϕ ∈ Formn,l, T1 |= ϕ iff T2 |= ϕ.

Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set
Formn,l is infinite. However, it contains only finitely many semantically distinct
formulas, so there are only finitely many ≡n-classes of l-structures. In fact, we
can compute representatives for these classes as follows.

Lemma 8 (Hintikka Lemma). For n, l ∈ N, we can compute a finite set
Hn,l ⊆ Formn,l such that:

– For every l-tree T there is a unique τ ∈ Hn,l such that T |= τ .
– If τ ∈ Hn,l and ϕ ∈ Formn,l, then either τ |= ϕ or τ |= ¬ϕ. Furthermore,

there is an algorithm that, given such τ and ϕ, decides which of these two
possibilities holds.

Elements of Hn,l are called (n, l)-Hintikka formulas.
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Given an l-tree T we denote by Tpn(T) the unique element of Hn,l satisfied in T
and call it the n-type of T. Thus, Tpn(T) determines (effectively) which formulas
of quantifier-depth ≤ n are satisfied in T.

We sometimes speak of the n-type of a tuple of subsets V = V1, . . . , Vm of a
given l-tree T. This is synonymous with the n-type of the (l + m)-tree (T, V )
obtained by expansion of T with the predicates Pl+1, . . . , Pl+m interpreted as
the sets V1, . . . , Vm. This type will be denoted by Tpn(T, V ) and often referred
to as an n-type in m variables, whereby the n-type of the (l +m)-tree (T, V ) is
understood. Moreover, when considering substructures, e.g. T′ ⊆ T, and given
sets X ⊆ T, we write Tpn(T′, X) to denote Tpn(T′, X ∩ T′).

The essence of the composition method is that certain operations on struc-
tures, such as disjoint union and certain ordered sums, can be projected to
n-types. A general composition theorem for MLO from which most other follow
was proved by Shelah in [15]. We only cite the composition theorem that we use
[9], a more detailed presentation of the method can be found in [16,5].

Theorem 9 (Composition Theorem for Trees). For every MLO-formula
ϕ(X) in the signature of l-trees having m free variables and quantifier rank n,
and given the enumeration τ1(X), . . . , τk(X) of Hn,l+m, there exists an MLO-
formula θ(Q1, . . . , Qk) such that for every tree I = (I,<I) and family {Ti | i ∈ I}
of l-trees and subsets V1, . . . , Vm of

∑

i∈I Ti,

∑

i∈I

Ti |= ϕ(V ) ⇐⇒ I |= θ(Q1, . . . , Qk)

where Qr = QI;V
r = {i ∈ I | Tpn(Ti, V ) = τr} for each 1 ≤ r ≤ k. Moreover, θ

is computable from ϕ, and does not depend on the decomposition of T.

4 D-Nodes versus U-Nodes and Relevant Branches

To eliminate the uncountability quantifier from ∃ℵ1X ϕ(X,Y ) over an l-tree T,
we will consider certain colorings of segments of T. Let us first fix m sets Y , n as
the quantifier rank of ϕ, and k as the number of n-types in l +m+ 1 variables.

An interval of a tree is a connected and convex set I of nodes, i.e. such that
for every u,w ∈ I if u and w are incomparable, then their greatest common
ancestor is in I, and if u < w then for every u < v < w also v ∈ I. We denote
by T|I the restriction of an l-tree T to the interval I.

An interval having a minimal element is called a tree segment. Observe that
every interval of a simple tree is a tree segment and that the summands Ti of a
tree sum T =

∑

i∈I Ti are tree segments of T. In fact any subtree Tz of a tree T
is a tree segment.

Let Z be a subset of a tree T and z be an element of T. We use the notation
Tz\Z for the restriction of T to the set Tz \ (

⋃

w∈Z,z<w Tw). Any tree segment
T′ with a minimal element z can be written in the form Tz\Z , where Z is the
set {u | u ≥ z ∧ u �∈ T′}.



124 V. Bárány, �L. Kaiser, and A. Rabinovich

Definition 10. Let T = (T,<, P ,X, Y ) be an l + m + 1-tree such that T |=
ϕ(X,Y ) and let I be an interval of T.

(1) I is a U-interval for ϕ, X, Y iff

T|I |= ∀Z τ(Z, Y ) → Z = X,

where τ(X,Y ) is the n-type of T|I in m+ 1 variables.1

(2) I is a D-interval for ϕ, X, Y iff it is not a U-interval.
(3) In the special case of I = {u | u ≥ z} we say that the subtree Tz is a U-tree

or D-tree, respectively, and further say that z is a U-node or D-node for
ϕ,X, Y .

(4) The set of D-nodes for ϕ,X, Y is denoted D(X).
(5) An infinite path P is called a D-path for ϕ,X, Y if every v ∈ P is a D-node

for ϕ,X, Y , i.e. if P ⊆ D(X).

Whenever ϕ,X, Y are clear from the context, we will write “D-interval for X”
instead of “D-interval for ϕ,X, Y ”, and similarly for the other notions above.

Observe that D(X) is prefix-closed since if u < v and Tv is a D-tree then, by
composition, Tu is a D-tree as well. Therefore D(X) can be thought of as a tree
whose infinite paths are precisely the infinite D-paths for X .

We note that each of the notions introduced in Definition 10 is formalizable
in MLO. Let us start by constructing the formula DINTϕ(I,X, Y ), expressing
that I is a D-interval for ϕ,X and Y . By Lemma 8, the set of n-types Hn,l+m+1
can be computed and is finite. Thus, we can write the formula

ψeqtp(X,X ′, Y ) =
∧

τ∈Hn,l+m+1

τ(X,Y ) ↔ τ(X ′, Y ),

expressing thatX andX ′ have the same n-type on the tree T. Letψrel
eqtp(X,Z, Y , I)

be the relativization ofψeqtp(X,Z, Y ) to an interval I, which expresses thatX and
Z have the same n-type on I. DINTϕ(I,X, Y ) can now be written as

ϕ(X,Y ) ∧ ∃Z(ψrel
eqtp(X,Z, Y , I) ∧X ∩ I �= Z ∩ I).

Using this formula we can also write the other formulas DPATHϕ(P,X, Y ) and
DNODEϕ(v,X, Y ), expressing, respectively, that P is a D-path and that v is a
D-node for ϕ,X, Y , and the formula DSETϕ(D,X, Y ) which holds iff D = D(X).

The following lemma is the first step in eliminating the ∃ℵ1 quantifier from
MLO over simple trees.

Lemma 11. Let T be a simple l-tree and ϕ(X,Y ) an MLO-formula in the sig-
nature of l-trees. Then, for every tuple of subsets V of T,

T |= ∃ℵ1X ϕ(X,V )

if and only if one of the following conditions is satisfied.
1 As set before, n is the quantifier rank of ϕ and m is the length of Y .
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A. There is a set U satisfying T |= ϕ(U, V ) and there is an infinite antichain A
of D-nodes for ϕ,U, V .

B. There is an infinite branch B of T which is a D-path for uncountably many
U satisfying T |= ϕ(U, V ).

C. The following set of branches of T

{B | there exists a set U such that B is a D-path for ϕ,U, V }
is uncountable.

Proof. Note first that over simple trees, where König’s Lemma applies, condition
A is properly subsumed by, in other words implies B and is enlisted here for
deductive reasons only.

Indeed, A is arguably the most natural (easily expressible) condition sufficient
for the existence of continuum many sets U satisfying T |= ϕ(U, V ). To see that,
let U and A be as in A and let v0 denote the root of T = (T, U, V ). Then T can
be decomposed as T = Tv0\A +

∑

w∈A Tw. Applying the Composition Theorem
(Th.9) to this decomposition, we get that T |= ϕ(U ′, V ) for every U ′ such that
U ′ ∩Tv0\A = U ∩Tv0\A and Tpn(Tw, U

′, V ) = Tpn(Tw, U, V ) for all w ∈ A. By
the choice of A, U can be modified independently on each subtree Tw without
changing its type Tpn(Tw). Hence there are continuum many different sets U ′

as above.
Furthermore, ¬A amounts to saying that for each U satisfying ϕ(U, V ) the

set D(U) induces a tree comprised of only finitely many branches. In particular,
there are only finitely many infinite D-paths for each such U .

Condition B explicitly requires the existence of uncountably many sets satis-
fying ϕ(X,V ), so it too is sufficient for ∃ℵ1X ϕ(X,V ) to hold. Hence it remains
to be shown that when B fails then C is both sufficient and necessary hereto.

Assuming B does not hold in some T then A fails there as well, hence, as
pointed out above, in this case there are only finitely many infinite D-paths for
each U satisfying T |= ϕ(U, V ). Also by the failure of B every branch is a D-path
for at most countably many U satisfying T |= ϕ(U, V ). It follows that every such
set U shares its set of D-nodes with at most countably many other such U ′.
Indeed, this is clear from the above whenever D(U) contains an infinite D-path.
If on the other hand D(U) is finite then U is fully determined by U ∩ D and
the n-types of all those U-nodes that are successors of some D-node, which only
allows for a finite number of choices of U given that T is simple.

Thus we have established that whenever B fails in some T then there are
uncountably many U satisfying T |= ϕ(U, V ) iff there are uncountably many
sets D(U) with T |= ϕ(U, V ) iff condition C holds. "#
Let us note again that if condition A holds then there are in fact continuum many
sets X satisfying the formula ϕ(X,Y ). The description of Condition A can be di-
rectly formalized in MLO(Inf), hence, over simple trees, also in MLO as follows:

ψA(Y ) = ∃U∃A
(

ϕ(U, Y ) ∧ Inf(A) ∧ antichain(A)∧
(∀w ∈ A DNODEϕ(w,U, Y ))

)

,

where antichain(A) = ∀x, y ∈ A ¬(x < y ∨ y < x).
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5 Condition B

In this section, we show that a branch B is a witness for Condition B if and
only if this branch satisfies a disjunction of three sub-conditions: Ba, Bb and
Bc. Moreover, if both Condition A and Condition C fail, then already the sub-
conditions Ba and Bc are sufficient. Finally, we express both Ba and Bc in MLO
and show, that in fact both these sub-conditions guarantee the existence of
continuum many sets X satisfying the formula ϕ(X,Y ) in consideration.

As in the previous section, we assume that the formula ϕ(X,Y ) of quantifier
rank n is fixed together with a simple l-tree T and m parameters Y , and let k
be the number of n-types in l + m + 1 variables. Additionally, we fix a branch
B and introduce the formula ψ(X,Y , P ) stating that P is an infinite D-path for
X and that ϕ(X,Y ) holds:

ψ(X,Y , P ) = DPATHϕ(P,X, Y ) ∧ Inf(P ) ∧ ϕ(X,Y ).

Note that the branch B witnesses Condition B if and only if ∃ℵ1U ψ(U, Y ,B).
To break up Condition B, we decompose T = (T, X, Y ) along the branch B,

T =
∑

w∈B Tw\B, and apply the Composition Theorem (Th.9) to this decom-
position and the formula ψ. This yields a formula θ such that

T |= ψ(X,Y ,B) ⇐⇒ (B,<) |= θ(P1, . . . , Pr),

where r is the number of qr(ψ)-types in l+m+2 variables, which we enumerate
as τ1, . . . , τr, and

Pi = {w ∈ B | (Tw\B, {w}) |= τi}.
Note that we use the expansion of Tw\B by {w} as w is the only element of Tw\B
that belongs to B.

With this reformulation it is clear that a branch B satisfies condition B if and
only if either there are uncountably many different P satisfying θ, or some P
satisfying θ has uncountably many X corresponding to it. Along these lines one
obtains the following breakdown of condition B.

Lemma 12. There are uncountably many X ⊆ T satisfying the formula
ψ(X,Y ,B) in T iff one of the following sub-conditions holds.

(Ba) There exists a set X such that Tw\B is a D-interval for ϕ,X, Y for infinitely
many w ∈ B.

(Bb) There exists a set X satisfying ψ and a w ∈ B so that

Tw\B |= ∃ℵ1X ′ τi(X ′, Y ∩ Tw\B, {w}),

where τi = Tpqr(ψ)(Tw\B, X, Y , {w}).
(Bc) It holds that

(B,<) |= ∃ℵ1P

(

θ(P ) ∧
r
∧

i=1

Pi ⊆ Qi ∧ ∀x
( r
∨

i=1

(x ∈ Pi ∧
∧

j �=i

x �∈ Pj

))

,
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where for each 1 ≤ i ≤ r, Qi is the set of nodes on the branch B in which
the type τi is satisfied by some set X, i.e.

Qi = {w ∈ B | Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w})}

Observe that (Ba) already subsumes A in the sense that if condition A holds
then there is a branch satisfying (Ba). Also observe that Condition (Bb) is itself
just another instance of our initial problem. It is important to note, however,
that the above cases classify conditions under which an individual branch may
satisfy B. At closer inspection we find that if no branch satisfies either (Bc) or
(Ba) (so that in particular A fails) and moreover condition C fails too, then B
cannot hold either.

Lemma 13. If over a simple tree T both Conditions A and C fail, then Condition
B holds iff some branch satisfies Condition (Ba) or Condition (Bc).

One intuitive way to see this is that if all the conditions A, (Ba), (Bc) and C fail
on a tree, and thereby also on every tree segment of that tree, then for (Bb) to
hold for a proper tree segment that tree segment would have to contain a proper
tree segment on which (Bb) holds, and so on indefinitely. This would ultimately
trace an infinite branch witnessing (Ba) contrary to the initial assumption.

Next we will construct MLO formulas ψBa(B, Y ) and ψBc(B, Y ) formalizing
sub-conditions (Ba) and (Bc), respectively. By the above, we can then use the for-
mula ψB(Y ) = ∃B(ψBa(B, Y )∨ψBc(B, Y )) in place of Condition B in Lemma 11.

5.1 Formalization of Condition Ba

Much like condition A, (Ba) is naturally expressible in MLO(Inf) and thus, over
simple trees, in pure MLO as well by the formula

ψBa(B, Y ) = ∃X ∃ℵ0w DINT(Tw\B, X, Y ),

where Tw\B is just a notation for the set defined by

x ∈ Tw\B ⇐⇒ w ≤ x ∧ ¬∃b ∈ B (b > w ∧ b ≤ x).

The fact that Condition (Ba) is sufficient for the existence of continuum many
sets U satisfying ϕ(U, V ) can be arrived at by appealing to the Composition
Theorem in the same manner as for Condition A in the proof of Lemma 11,
because the set X can be left intact or changed to another one with the same
type on any of the infinitely many trees Tw\B which are D-intervals for X .

5.2 Formalization of Condition Bc

In order to eliminate the explicit use of the uncountability quantifier from Con-
dition (Bc) over (B,<) ∼= (ω,<), we use Proposition 2.5 from [8] reformulated
using the standard equivalence of automata and MLO on (ω,<), as stated in
the following proposition.
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Proposition 14 (cf. [7,8]). For every MLO formula ϕ(X,Y ) there exists an
effectively constructible formula ψ(Y ) such that over (ω,<)

ψ(Y ) ≡ ∃ℵ1X ϕ(X,Y ) ≡ ∃2ℵ0
X ϕ(X,Y ).

Applying this result to the formula on the right hand side of Condition (Bc),
with Q as parameters, we obtain a formula ϑ(Q) such that Condition (Bc) holds
iff (B,<) |= ϑ(Q), with Q as specified there.

By Proposition 14, if ϑ(Q) holds, then there are even continuum many sets
P satisfying Condition (Bc). This in turn ensures the existence of continuum
many sets X satisfying ϕ(X,Y ), because for each P accounted for in ϑ(Q) a
corresponding X satisfying ψ(X,Y ,B) can be found and this association is nec-
essarily injective.

To formalize Condition (Bc) in MLO over the tree T, we first define the sets
Qi on T. As the set of types is computable, we can compute each τi and thus
effectively construct the formula αi(w,B, Y ) expressing that w is a node on the
branch B such that Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w}), i.e. w ∈ Qi. Using this
formula we can express Condition (Bc) as ψBc(B, Y ) =

∃Q
(

r
∧

i=1

(

w ∈ Qi ↔ αi(w,B, Y )
)

∧ ϑB(Q)

)

,

where ϑB is a relativization of ϑ to the branch B.

6 The Full Binary Tree and the Cantor Space

In order to formalize Condition C in MLO over simple trees, we first analyze
the problem only on the full binary tree and identify and prove the following
key topological property that distinguishes counting branches from counting
arbitrary sets.

On the full binary tree T(2) = ({0, 1}∗,≺, S0, S1) where ≺ is the prefix-order
and Si = {0, 1}∗i, we show that the set of branches satisfying any given MLO
formula is a Borel set in the Cantor topology and hence it has the perfect set
property: it is uncountable iff it contains a perfect subset iff it has the cardinality
of the continuum. A perfect set is a closed set without isolated points.

The Cantor-Bendixson Theorem states that closed subsets of a Polish space
have the perfect set property: they are either countable or contain a perfect
subset and thus have cardinality continuum. A set P is perfect if it is closed and
if every point p ∈ P is a condensation point of P , i.e. if every neighborhood of
p contains another point from P . We shall rely on the following fundamental
result of Souslin.

Theorem 15 (cf. e.g. in [11]). A subset of a Polish space is Borel if and only
if it is both analytic and co-analytic. Moreover, every uncountable analytic set
contains a perfect subset.
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Note that whether co-analytic sets, or all sets on higher levels of the projective
hierarchy, satisfy the continuum hypothesis is independent of ZFC [11].

A key observation that our formalization will exploit is that, even though
there are non-Borel sets of trees definable in MLO, sets of definable paths are
Borel. Recall that for a sequence π ∈ {0, 1}∗ we denote by Pref(π) the path
through T(2) that corresponds to this sequence, which formally is the set of
prefixes of π.

Theorem 16 (MLO definable sets of branches are Borel). Let U1, . . . , Um

be subsets of T(2) and let ψ(X,Y ) be an MLO formula over T(2). Then the set

X = { π ∈ {0, 1}ω | T(2) |= ψ(Pref(π), U ) }

of branches of the binary tree satisfying ψ(X,U) is Borel and therefore it has the
perfect set property.

Proof. Note that the complement of X is also definable by ¬ψ(X,U). We will
show that every definable set of branches is analytic. Therefore, by Souslin’s
Theorem, it is Borel. To prove this, we will use the following variation of the
Composition Theorem (cf. [9]).

Lemma 17. Let ψ(X,Y1, . . . , Ym) be an MLO formula with quantifier rank n ≥
2, and let k be the number of (n+ 2)-types in m+ 1 variables. Then there exists
an MLO formula θ(I, Z1, . . . , Zk) such that

T(2) |= ψ(Pref(π), U) ⇐⇒ (ω,<) |= θ({n | π[n] = 1}, Q),

where for each 1 ≤ i ≤ k we define Qi = Qπ,U
i as

Qi = {j ∈ ω | Tpn+2(T(2)π|j , U) = τi}.

Let θ be the formula obtained by applying the above lemma to ψ. Then, by
the well-known correspondence of MLO and finite automata on ω-words, there
is an ω-regular language Lθ ⊆ ({0, 1}k+1)ω ∼= {0, 1}ω × ({0, 1}k)ω , such that
Lθ consists of those pairs of sequences (π, ρ) for which (ω,<) |= θ(P,Q), where
P and Q are subsets of ω with characteristic sequences π ∈ {0, 1}ω and ρ ∈
({0, 1}k)ω. By McNaughton’s theorem [10], Lθ ∈ Σ0

3.
Let T be the extension of T(2) with each node w labeled by (σ, q) such that

w is the σ-th successor of its parent (i.e. w ∈ Sσ) and q = (0, . . . , 0, 1, 0, . . . , 0)
with the 1 in position i if Tpn+2(T(2)w, U) = τi. The set [T ] of labeled infinite
branches of T is closed in the Cantor topology.

By construction, X is the projection of Lθ ∩ [T ] to its first component, and is
analytic as Lθ ∈ Σ0

3 and [T ] ∈ Π0
1. "#

7 Formalizing Condition C

The perfect set property established in Theorem 16 provides an MLO-definable
characterization of Condition C of Lemma 11 over the full binary tree (with
arbitrary labeling). Via interpretations, this can be extended to all simple trees
to yield the following characterization.
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Proposition 18 (Eliminating uncountably-many-branches quantifier).
For every MLO formula ϕ(X,Y ) the assertion “ ∃ℵ1B branch(B) ∧ ϕ(B, Y )”
is equivalent over all simple trees to the existence of a perfect set of branches
B, each satisfying ϕ(B, Y ). The latter ensures that there are in fact continuum
many such branches.

Towards an MLO formulation, note that the collection of nodes of a perfect
set of branches induces a perfect tree, and vice versa. A perfect tree is one
without isolated branches, equivalently, one in which for every node u there are
incomparable nodes v, w > u. Perfectness is thus first-order definable.

Corollary 19. Over simple trees Condition C is expressible in MLO as

ψC(Y ) = ∃P perfect(P ) ∀B ⊂ P, branch(B) ∃X DPATHϕ(B,X, Y )

Hence if Condition C holds then there are continuum many D-paths altogether
for all sets U satisfying ϕ(U, Y ).

8 Summary of the Proofs

As we have shown above, the conditions of Lemma 11 can be formalized in
MLO over simple trees, thus we can again state the conclusion of this Lemma:
T |= ∃ℵ1X ϕ(X,Y ) holds if and only if

T |= ψA(Y ) ∨ ∃B(ψBa(B, Y ) ∨ ψBc(B, Y )) ∨ ψC(Y ).

Using the above, we can reduce any formula of MLO(∃ℵ1) to an MLO formula
equivalent over the class of simple trees by inductively eliminating the inner-most
occurrence of a cardinality quantifier. Theorem 1 follows. Moreover, as we have
shown in the corresponding sections, each of the conditions of Lemma 11 implies
the existence of continuum many sets X satisfying ϕ(X,Y ), whence Theorem 2.

9 Further Results

The technique we used here can be applied to linear orders and leads to the
following generalization of the theorem of Kuske and Lohrey (c.f. Proposition 14).

Theorem 20 (Eliminating uncountability quantifier on linear orders).

(1) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that
is equivalent to ϕ(Y ) over the class of all ordinals.

(2) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that
is equivalent to ϕ(Y ) over the class of all countable linear orders. Moreover,
∃ℵ1X ϕ(X,Y ) is equivalent to ∃2ℵ0

X ϕ(X,Y ) over the class of countable
linear orders.

Furthermore, in all these cases ψ is computable from ϕ.
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The proof will be provided in an extension of this paper. Note that the elim-
ination result in (2) cannot be obtained simply by interpretation of countable
linear orders in the full binary tree.

Acknowledgment. We are very grateful to Sasha Rubin for insightful discus-
sions at an earlier stage of this work.
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Abstract. We give a coinductive characterization of the set of contin-
uous functions defined on a compact real interval, and extract certified
programs that construct and combine exact real number algorithms with
respect to the binary signed digit representation of real numbers. The
data type corresponding to the coinductive definition of continuous func-
tions consists of finitely branching non-wellfounded trees describing when
the algorithm writes and reads digits. This is a pilot study in using proof-
theoretic methods for certified algorithms in exact real arithmetic.

Keywords: Proof theory, program extraction, exact real number com-
putation, coinduction.

1 Introduction

Most of the recent work on exact real number computation describes algorithms
for functions on certain exact representations of the reals (for example streams
of signed digits [1,2] or linear fractional transformations [3]) and proves their
correctness using a certain proof method (for example coinduction [4,5,6,7]).
Our work has a similar aim, and builds on the work cited above, but there
are two important differences. The first is methodological : we do not ‘guess’ an
algorithm and then verify it, instead we extract it from a proof, by some (once
and for all) proven correct method. That this is possible in principle is well-
known. Here we want to make the case that it is also feasible, and that interesting
and nontrivial new algorithms can be obtained (see also [8,9] for related work
on program extraction in constructive analysis and inductive definitions). The
second difference is algorithmic: we do not represent a real function by a function
on representations of reals, but by an infinite tree-like structure that contains not
only information about the real function as a point map, but also and foremost
information about the modulus of continuity. Since the representing tree is a pure
data structure (without function component) a lazy programming language, like
Haskell, will memoize computations which may improve performance in certain
situations.

A crucial ingredient in the proofs (that we use for program extraction) is a
coinductive definition of the notion of uniform continuity (u.c.). Although, clas-
sically, continuity and uniform continuity are equivalent for functions defined
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on a compact interval (we only consider such functions), it is a suitable con-
structive definition of uniform continuity which matters for our purpose. For
convenience, we consider as domain and range of our functions only the interval
I := [−1, 1] = {x ∈ R | |x| ≤ 1} and, for the purpose of this introduction, only
unary functions. However, later we will also look at functions of several variables
where one has to deal with the non-trivial problem of deciding which of the input
stream the next digit is to be consumed of. This choice can have a big influence
on the performance of the program.

We let SD := {−1, 0, 1} be the set of signed digits. By SDS we denote the set
of all infinite streams a = a0 : a1 : a2 : . . . of signed digits ai ∈ SD. A signed
digit stream a ∈ SDS represents the real number

σ(a) :=
∑

i≥0

ai2−(i+1) ∈ I

A function f : I → I is represented by a stream transformer f̂ : SDS → SDS
if f ◦ σ = σ ◦ f̂ . The coinductive definition of uniform continuity allows us
to extract from a constructive proof of the u.c. of a function f : I → I an
algorithm for a stream transformer f̂ representing f . Furthermore, we show
directly and constructively that the coinductive notion of u.c. is closed under
composition. The extracted algorithms are represented by finitely branching non-
wellfounded trees which, if executed in a lazy programming language, give rise
to memoized algorithms. These trees turn out to be a generalization of the data
structure studied in [10], and the extracted program from the proof of closure
under composition is a generalization of the tree composing program defined
there.

In Section 2 we briefly review inductive and coinductive sets defined by mono-
tone set operators. We give some simple examples, among them a coinductive
characterization of the real numbers in the interval I. The method of program
extraction from proofs involving induction and coinduction is discussed infor-
mally, but in some detail, in Section 3. The earlier examples are continued and,
for example, a program transforming fast Cauchy representations into signed
digit representations is extracted from a coinductive proof. We also show how
program extraction can be implemented in the functional programming language
Haskell. As Haskell’s syntax is very close to the usual mathematical notation for
data and functions we hope that also readers not familiar with Haskell will be
able to understand the code. In Section 4 the coinductive characterization of
real numbers is generalized to real functions, and closure under composition is
proven. In Section 5 the positive effect of memoization is demonstrated by a case
study on iterated logistic maps.

2 Induction and Coinduction

We briefly discuss inductive and coinductive definitions as least and greatest
fixed points of monotone set operators and the corresponding induction and
coinduction principles. The results in this section are standard and can be found



134 U. Berger

in many logic and computer science texts. For example in [11] inductive defini-
tions are proof-theoretically analysed, and in [12] least and greatest fixed points
are studied in the framework of the modal mu-calculus.

An operator Φ:P(U) → P(U) (where U is an arbitrary set and P(U) is the
powerset of U) is monotone if for all X,Y ⊆ U

if X ⊆ Y , then Φ(X) ⊆ Φ(Y )

A set X ⊆ U is Φ-closed (or a pre-fixed point of Φ) if Φ(X) ⊆ X . Since P(U) is
a complete lattice, Φ has a least fixed point μΦ (Knaster-Tarski Theorem). For
the sake of readability we will sometimes write μX.Φ(X) instead of μΦ. μΦ can
be defined as the least Φ-closed subset of U . Hence we have the closure principle
for μΦ, Φ(μΦ) ⊆ μΦ and the induction principle stating that for every X ⊆ U ,
if Φ(X) ⊆ X , then μΦ ⊆ X . It can easily be shown that μΦ is even a fixed point
of Φ, i.e. Φ(μΦ) = μΦ. For monotone operators Φ, Ψ :P(U) → P(U) we define

Φ ⊆ Ψ :⇔ ∀X ⊆ U Φ(X) ⊆ Ψ(X)

It is easy to see that the operation μ is monotone, i.e. if Φ ⊆ Ψ , then μΦ ⊆ μΨ .
Using monotonicity of μ one can easily prove, by induction, a principle, called
strong induction. It says that, if Φ(X ∩ μΦ) ⊆ X , then μΦ ⊆ X .

Dual to inductive definitions are coinductive definitions. A subset X of U is
called Φ-coclosed (or a post-fixed point of Φ) if X ⊆ Φ(X). By duality, Φ has a
largest fixed point νΦ which can be defined as the largest Φ-coclosed subset of U .
Similarly, all other principles for induction have their coinductive counterparts.
To summarise, we have the following principles:

Fixed point Φ(μΦ) = μΦ and Φ(νΦ) = νΦ.
Monotonicity if Φ ⊆ Ψ , then μΦ ⊆ μΨ and νΦ ⊆ νΨ .
Induction if Φ(X) ⊆ X , then μΦ ⊆ X .
Strong induction if Φ(X ∩ μΦ) ⊆ X , then μΦ ⊆ X .
Coinduction if X ⊆ Φ(X), then X ⊆ νΦ.
Strong coinduction if X ⊆ Φ(X ∪ νΦ), then X ⊆ νΦ.

Example (natural numbers). Define Φ : P(R) → P(R) by

Φ(X) := {0} ∪ {y + 1 | y ∈ X}

Then μΦ = N = {0, 1, 2, . . .}. We consider this as the definition of the natu-
ral numbers. The induction principle is logically equivalent to the usual zero-
successor-induction on N: if X(0) (base) and ∀x (X(x) → X(x+1)) (step), then
∀x ∈ NX(x). Strong induction weakens the step by restricting x to the natural
numbers: ∀x ∈ N (X(x) → X(x+ 1)).

Example (signed digits and the interval [−1, 1]). For every signed digit
d ∈ SD we set Id := [d/2−1/2, d/2+1/2] = {x ∈ R | |x−d/2| ≤ 1/2}. Note that
I is the union of the Id and every sub interval of I of length ≤ 1/2 is contained
in some Id. We define an operator J0 : P(R) → P(R) by

J0(X) := {x | ∃d ∈ SD (x ∈ Id ∧ 2x− d ∈ X)}
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and set C0 := νJ0. Since clearly I ⊆ J0(I), it follows, by coinduction, that
I ⊆ C0. On the other hand C0 ⊆ I, by the fixed point property. Hence C0 = I.
The point of this definition is, that the proof of “I ⊆ J0(I)” has an interesting
computational content: x ∈ I must be given in such a way that it is possible to
find d ∈ SD such that x ∈ Id. This means that d/2 is a first approximation of x.
The computational content of the proof of “I ⊆ C0”, roughly speaking, iterates
the process of finding approximations to x ad infinitum, i.e. it computes a signed
digit representation of x as explained in the introduction, that is, a stream a of
signed digits with σ(a) = x.

Example (lists, streams and trees). Let the Scott-domain D be defined
by the recursive domain equation D = {∗} + D × D where “+” denotes the
separated sum of domains (see [13] for information on domains). The elements
of D are ⊥ (the obligatory least element), ∗, and (x, y) where x, y ∈ D. Define
Times∗ : P(D) → P(D) → P(D) by

Times∗(X)(Y ) := {∗} ∪ {(x, y) | x ∈ X, y ∈ Y }

Clearly, Times∗ is monotone in both arguments. For a fixed setX⊆ D, List(X) :=
μ(Times∗(X)) (= μY.Times∗(X)(Y )) can be viewed as the set of finite lists
of elements in X (viewing (·, ·) as the “cons” operation), and Stream(X) :=
ν(Times∗(X)) (= νY.Times∗(X)(Y )) as the set of finite or infinite lists or
streams of elements in X . Since μ is monotone the operator List : P(D) → P(D)
is again monotone. Hence we can define Tree := νList ⊆ D which is the set of
finitely branching wellfounded or non-wellfounded trees. On the other hand,
Tree′ := μStream consist of all finitely or infinitely branching wellfounded trees.
The point of this example is that the definition of Tree is similar to the character-
ization of uniformly continuous functions from I

n to I in Section 4, the similarity
being the fact that it is a coinductive definition with an inductive definition in
its body. The set C0 of the previous example corresponds to the case n = 0
where the inner inductive definition is trivial.

3 Program Extraction from Proofs

In this section we briefly explain how we extract programs from proofs. Rather
than giving a technical definition of the method and a rigorous correctness proof
(which will be the subject of a separate paper) we explain it by means of simple
examples, which hopefully provide a good intuition also for non-experts, and then
make some general remarks concerning the computational content of induction
and coinduction. The method of program extraction we are using is based on
an extension and variation of Kreisel’s modified realizability [14]. The extension
concerns the addition of inductive and coinductive predicates. Realizability for
such predicates has been studied previously, in the slightly different context of q-
realizability by Tatsuta [15]. The variation concerns the fact that we are treating
the first-order part of the language (i.e. quantification over individuals) in a
‘uniform’ way, that is, realizers do not depend on the individuals quantified over.



136 U. Berger

This is similar to the common uniform treatment of second-order variables [16].
The argument is that an arbitrary subset of a set is such an abstract (and even
vague) entity so that one should not expect an algorithm to depend on it. With
a similar argument one may argue that individuals of an abstract mathematical
structure (reals, model of set-theory, etc.) are unsuitable as inputs for programs.
But which data should a program then depend on? The answer is: on data
defined by the ‘propositional skeletons’ of formulas and ‘canonical’ proofs.

Example (parity). Let us extract a program from a proof of

∀x (N(x) ⇒ ∃y (x = 2y ∨ x = 2y + 1)) (1)

where the variable x ranges over real numbers and the predicate N is defined as
in the example in Section 2, i.e. N is the least set of real numbers such that

N(x) ⇔ x = 0 ∨ ∃y (N(y) ∧ x = y + 1) (2)

The type corresponding to (2) is obtained by the following type extraction:

– replace N(t) by Nat (a name for the data type to be defined),
– replace other atomic formulas by the unit or ‘void’ type 1,
– delete all quantifiers,
– replace ∨ by + (disjoint sum) and ∧ by × (cartesian product),
– carry out obvious simplifications (e.g. replacing Nat × 1 by Nat).

Hence Nat is the least solution of the equation

Nat = 1 + Nat

In Haskell we can define this as

data Nat = Zero | Succ Nat -- data

The comment “-- data” indicates that we intend to use the recursive data type
Nat as an inductive data type (or initial algebra). This means that the “‘total”,
or “legal” elements are inductively generated from Zero and Succ. The natural
(domain-theoretic) semantics of Nat also contains, for example, an “infinite”
element defined recursively by infty = Succ infty which is not total in the
inductive interpretation of Nat. In a coinductive interpretation (usually indicated
by the comment -- codata) infty would count as total. That Haskell does not
distinguish between the inductive and the coinductive interpretation is justified
by the limit-colimit-coincidence in the domain-theoretic semantics [17].

Applying type extraction to (1) we see that a program extracted from a proof
of this formula will have type Nat → 1 + 1. Identifying the two-element type
1 + 1 with the Booleans we get the Haskell signature

parity :: Nat -> Bool

The definition of parity can be extracted from the obvious inductive proof of
(1): For the base x = 0, we take y = 0 to get x = 2y. In the step, x+1, we have,
by i.h. some y with x = 2y ∨ x = 2y + 1. In the first case x+ 1 = 2y + 1, in the
second case x+ 1 = 2(y + 1). The Haskell program extracted from this proof is
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parity Zero = True
parity (Succ x) = case parity x of {True -> False ; False -> True}

If we wish to compute not only the parity, but as well the rounded down half of
x (i.e. quotient and remainder), we just need to relativise the quantifier ∃y in
(1) to N (i.e. ∀x (N(x) ⇒ ∃y (N(y)∧(x = 2y∨x = 2y+1))) and use the fact that
N is closed under the successor operation in the proof. The extracted program
is then

parity1 :: Nat -> (Nat,Bool)
parity1 Zero = (Zero,True)
parity1 (Succ x) = case parity1 x of

{(y,True) -> (y,False) ;
(y,False) -> (Succ y,True)}

This example shows that we can get meaningful computational content despite
ignoring the first-order part of a proof. Moreover, we can fine-tune the amount
of computational information we extract from a proof by simple modifications.
Note also that in the proofs we used arithmetic operations on the reals and their
arithmetic laws without implementing or proving them. Since these laws can
be written as equations (or conditional equations) their associated type is void.
Hence it is only their truth that matters, allowing us to treat them as ad-hoc
axioms without bothering to derive them from basic axioms. Note that a formula
that does not contain a disjunction has always a void type and can therefore be
taken as an axiom as long as it is true.

The reader might be puzzled by the fact that quantifiers are ignored in the
program extraction process. Quantifiers are, of course, not ignored in the specifi-
cation of the extracted program, i.e. in the definition of realizability. For example,
the statement that the program p :=parity realizes (1) is expressed by

∀n, x (n rN(x) ⇒ ∃y (p(n) = True ∧ x = 2y ∨ p(n) = False ∧ x = 2y + 1))

where n ranges over Nat, i.e. the terms Zero, Succ Zero, Succ(Succ Zero),
. . . , and n rN(x) means that n realizes N(x) which in this case amounts to x
being the value of n in R. The Soundness Theorem for realizability states that
the program extracted from a proof realizes the proven formula (see e.g. [16],
[15] for detailed proofs of soundness for related notions of realizability).

Example (from Cauchy to signed digits). In the second example of
Section 2 we defined the set C0 as the largest set of real numbers such that

C0(x) ⇔ ∃d (SD(d) ∧ Id(x) ∧ C0(2x− d)) (3)

Since SD(d) is shorthand for d = −1∨ d = 0∨ d = 1, and Id(x) is shorthand for
|x− d/2| ≤ 1/2, the corresponding type is the largest solution of the equation

SDS = (1 + 1 + 1) × SDS (4)
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Identifying the type 1 + 1 + 1 with SD

data SD = N | Z | P -- N = -1 , Z = 0, P = 1

we obtain that SDS is the type of infinite streams of signed digits, i.e. the largest
fixed point of the type operator

type J0 alpha = (SD,alpha)

which corresponds to the set operator J0 which C0 is the largest fixed point of.
Therefore (choosing Cons as constructor name)

data SDS = Cons (J0 SDS) -- codata

i.e. SDS = Cons (SD,SDS).
We wish to extract a program that computes a signed digit representation of

x ∈ I from a fast rational Cauchy sequence converging to x. Set

Q(x) := ∃n,m, k (N(n) ∧ N(m) ∧ N(k) ∧ x = (n−m)/k)
A(x) := ∀n (N(n) ⇒ ∃q (Q(q) ∧ |x− q| ≤ 2−n))

Constructively, A(x) means that there is a fast Cauchy sequence of rational
numbers converging to x.

Lemma 1.
∀x (I(x) ∧A(x) ⇒ C0(x)) (5)

Proof. We show I ∩ A ⊆ C0 by coinduction, i.e. we show I ∩ A ⊆ J0(I ∩ A).
Assume I(x) and A(x). We have to show (constructively!) J0(I ∩A)(x), i.e. we
need to find d ∈ SD such that x ∈ Id and 2x−d ∈ I∩A. Since, clearly A(2x−d)
holds for any d ∈ SD, and x ∈ Id holds iff 2x − d ∈ I, we only need to worry
about x lying in Id. The assumption A(x), used with n = 2, yields a rational q
with |x− q| ≤ 1/4. It is easy to find (constructively!) a signed digit d such that
[q − 1/4, q + 1/4] ∩ I ⊆ Id. For that d we have x ∈ Id.

The type corresponding to the predicate Q is Nat × Nat × Nat, which we how-
ever implement by Haskell’s built-in rationals, since it is only the arithmetic
operations on rational numbers that matter, whatever the representation. (It is
possible - and instructive as an exercise - to extract implementations of the arith-
metic operations on rational numbers w.r.t. the representation Nat×Nat×Nat
from proofs that Q is closed under these operations.) The type of the predicate
A is Nat → Rational. The program extracted from the proof of Lemma 1 is

cauchy2sd :: (Nat -> Rational) -> SDS
cauchy2sd = coitJ0 step

where step is the program extracted from the proof of I ∩A ⊆ J0(I ∩A):

step :: (Nat -> Rational) -> J0(Nat -> Rational)
step f = (d,f’) where
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q = f (Succ (Succ Zero))
d = if q > 1/4 then P else if abs q <= 1/4 then Z else N
f’ n = 2 * f (Succ n) - sd2Rational d

sd2Rational :: SD -> Rational
sd2Rational d = case d of {N -> -1 ; Z -> 0 ; P -> 1}

The program coitJ0 is a polymorphic “coiterator” realizing the coinduction
scheme X ⊆ J0(X) ⇒ X ⊆ νJ0:

coitJ0 :: (alpha -> J0 alpha) -> alpha -> SDS
coitJ0 s x = Cons (mapJ0 (coitJ0 s) (s x))

mapJ0 :: (alpha -> beta) -> J0 alpha -> J0 beta
mapJ0 f (d,x) = (d,f x)

An equivalent definition of coitJ0 would be

coitJ0 s x = Cons (d,coitJ0 s y) where (d,y) = s x

We hope that this example and the way it was presented gives enough hints to
understand how program extraction from coinductive proofs works in general.
In the general case one has a coinductive predicate νΦ defined from a positive
(and therefore monotone) set operator Φ (J0 in our example), i.e. Φ(X) = {x |
A(X,x)} where X occurs only positively (in the usual sense) in A. Φ corresponds
to a positive type operator Phi (J0 in our example). Due to the positivity of Phi
one can define mapPhi :: (alpha -> beta) -> Phi alpha -> Phi beta (by
structural recursion on Phi alpha), and from that, recursively, the coiterator

coitPhi :: (alpha -> Phi alpha) -> alpha -> Fix
coitPhi s x = Cons (mapPhi (coitPhi s) (s x))

where Fix is the largest fixed point of Phi:

data Fix = Cons (Phi Fix) -- codata

The program extracted from a coinductive proof of X ⊆ νΦ is then coitPhi step
where step :: alpha -> Phi alpha is the program extracted from the proof of
X ⊆ Φ(X) (alpha is the type corresponding to the predicate X). For inductive
proofs the construction is similar: One defines recursively an “iterator”

itPhi :: (Phi alpha -> alpha) -> Fix -> alpha
itPhi s (Cons z) = s (mapPhi (itPhi s) z)

(where the type Fix is now viewed as the least fixed point of Phi). The pro-
gram extracted from an inductive proof of μΦ ⊆ X is now itPhi step where
step :: Phi alpha -> alpha is extracted from the proof of Φ(X) ⊆ X .

The above sketched computational interpretations of induction and coinduc-
tion and more general recursive schemes can be derived from category-theoretic
considerations using the initial algebra/final coalgebra interpretation of least and
greatest fixed points (see for example [18,19,20,21]).
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4 Coinductive Definition of Uniform Continuity

For every n we define a set Cn ⊆ R
In

for which we will later show that it coincides
with the set of uniformly continuous functions from I

n to I.
In the following we let n,m, k, l, i range over N, p, q over Q, x, y, z over R, and

d, e over SD. Hence, for example, ∃dA(d) is shorthand for ∃d (SD(d)∧A(d)). We
define average functions and their inverses

avd: R → R, avd(x) :=
x+ d

2
vad: R → R, vad(x) := 2x− d

Note that avd[I] = Id and hence f [I] ⊆ Id iff (vad ◦ f)[I] ⊆ I. We also need
extensions of the average functions to n-tuples

avi,d(x1, . . . , xi−1, xi, xi+1, . . . , xn) := (x1, . . . , xi−1, avd(xi), xi+1, . . . , xn)

We define an operator Kn:P(RIn

) → P(RIn

) → P(RIn

) by

Kn(X)(Y ) := {f | ∃d (f [In] ⊆ Id ∧X(vad ◦ f)) ∨ ∃i ∀d Y (f ◦ avi,d)}

Since Kn is strictly positive in both arguments, we can define an operator
Jn:P(RIn

) → P(RIn

) by

Jn(X) := μ(Kn(X)) = μY.Kn(X)(Y )

Hence, Jn(X) is the set inductively defined by the following two rules:

∃d (f [In] ⊆ Id ∧X(vad ◦ f)) ⇒ Jn(X)(f) (6)

∃i ∀dJn(X)(f ◦ avi,d) ⇒ Jn(X)(f) (7)

Since, as mentioned in Section 2, the operation μ is monotone, Jn is monotone
as well. Therefore, we can define Cn as the largest fixed point of Jn,

Cn = νJn = νX.μY.Kn(X)(Y ) (8)

Note that for n = 0 the second argument Y of Kn becomes a dummy variable,
and therefore J0 and C0 are the same as in the corresponding example in Sect. 2.

The type corresponding to the formula Kn(X)(Y ) is SD×α+Nn ×β3. where
Nn := {1, ..., n}. Therefore, the type of Jn(X) is μβ.SD × α + Nn × β3 which
is the type of finite ternary branching trees with indices i ∈ Nn attached to the
inner nodes and pairs (d, x) ∈ SD × α attached to the leaves. Consequently, the
type of Cn is να.μβ.SD × α + Nn × β3 which is the type of non-wellfounded
trees obtained by infinitely often stacking the finite trees on top of each other,
i.e. replacing in a finite tree each x in a leaf by another finite tree and repeating
ad-infinitum the process in the substituted trees. Alternatively, the elements of
this type can be described as non-wellfounded trees without leaves such that
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1. each node is either a
writing node labelled with a signed digit and with one subtree, or a
reading node labelled with an index i ∈ Nn and with three subtrees;

2. each path has infinitely many writing nodes.

The interpretation of such a tree as a stream transformer is easy. Given n signed
digit streams a1, . . . , an as inputs, run through the tree and output a signed digit
stream as follows:

1. At a writing node (d, t) output d and continue with the subtree t.
2. At a reading node (i, (td)d∈SD) continue with td, where d is the head of ai,

and replace ai by its tail.

This interpretation corresponds to the extracted program of a special case of
Proposition 1 below which shows that the predicates Cn are closed under
composition.

Lemma 2. If Cn(f), then Cn(f ◦ avi,d).

Proof. We fix i ∈ {1, . . . , n} and d ∈ SD and set

D := {f ◦ avi,d | Cn(f)}

We show D ⊆ Cn by strong coinduction, i.e. we show D ⊆ Jn(D ∪ Cn), i.e.
Cn ⊆ E where

E := {f | Jn(D ∪ Cn)(f ◦ avi,d)}
Since Cn = Jn(Cn) it suffices to show Jn(Cn) ⊆ E. We prove this by strong
induction on Jn(Cn), i.e. we show Kn(Cn)(E ∩ Jn(Cn)) ⊆ E. Induction base:
Assume f [In] ⊆ Id′ and Cn(vad′ ◦ f). We need to show E(f), i.e. Jn(D∪Cn)(f ◦
avi,d). By (6) it suffices to show (f ◦avi,d)[In] ⊆ Id′ and (D∪Cn)(vad′ ◦f ◦avi,d).
We have (f◦avi,d)[In] = f [avi,d[In]] ⊆ f [In] ⊆ Id′ . Furthermore,D(vad′◦f◦avi,d)
holds by the assumption Cn(vad′ ◦ f) and the definition of D. Induction step:
Assume, as strong induction hypothesis, ∀d′ (E ∩ Jn(Cn))(f ◦ avi′,d′). We have
to show E(f), i.e. Jn(D ∪ Cn)(f ◦ avi,d). If i′ = i, then the strong induction
hypothesis implies Jn(Cn)(f ◦ avi,d) which, by the monotonicity of Jn, in turn
implies Jn(D ∪ Cn)(f ◦ avi,d), i.e. E(f). If i′ �= i, then ∀d′ avi′,d′ ◦ avi,d =
avi,d◦avi′,d′ and therefore, since the strong induction hypothesis implies ∀d′E(f◦
avi′,d′), we have ∀d′ Jn(D ∪ Cn)(f ◦ avi,d ◦ avi′,d′). By (7) this implies Jn(D ∪
Cn)(f ◦ avi,d), i.e. E(f).

Proposition 1. Let f : In → R and gi: Im → R, i = 1, . . . , n. If Cn(f) and
Cm(g1), . . . ,Cm(gn), then Cm(f ◦ (g1, . . . , gn)).

Proof. We prove the proposition by coinduction, i.e. we set

D := {f ◦ (g1, . . . , gn) | Cn(f), Cm(g1), . . . , Cm(gn)}

and show that D ⊆ Jm(D), i.e. Cn ⊆ E where

E := {f ∈ R
In

| ∀g (Cm(g) ⇒ Jm(D)(f ◦ g))}
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and Cm(g) := Cm(g1) ∧ . . . ∧ Cm(gn). Since Cn = Jn(Cn) it suffices to show
Jn(Cn) ⊆ E. We do an induction on Jn(Cn), i.e. we show Kn(Cn)(E) ⊆ E.
Induction base: Assume f [In] ⊆ Id, Cn(vad ◦ f) and Cm(g). We have to show
(f ◦ g)[Im] ⊆ Id and Jm(D)(f ◦g)). By (6) it suffices to show D(vad ◦ f ◦g). But
this holds by the definition of D and the assumption. Induction step: Assume,
as induction hypothesis, ∀dE(f ◦ avi,d). We have to show E(f) , i.e. Cm ⊆ F
where

F := {g ∈ R
Im | ∀g (g = gi ∧ Cm(g) ⇒ Jm(D)(f ◦ g))}

Since Cm ⊆ Jm(Cm) it suffices to show Jm(Cm) ⊆ F which we do by a side
induction on Jm, i.e. we show Km(Cm)(F ) ⊆ F . Side induction base: Assume
g[Im] ⊆ Id and Cm(vad◦g) and Cm(g) where g = gi. We have to show Jm(D)(f ◦
g). Let g′ be obtained from g by replacing gi with vad◦g. By the main induction
hypothesis we have Jm(D)(f ◦ avi,d ◦ g′). But avi,d ◦ g′ = g. Side induction
step: Assume ∀dF (g ◦ avj,d) (side induction hypothesis). We have to show F (g).
Assume Cm(g) where g = gi. We have to show Jm(D)(f ◦ g). By (7) it suffices
to show Jm(D)(f ◦g◦avj,d) for all d. Since the i-th element of g◦avj,d is g◦avj,d

and, by Lemma 2, Cm(g ◦ avj,d), we can apply the side induction hypothesis.

The program extracted from Prop. 1 composes trees (unfortunately there is not
enough space to show the extracted Haskell code of this and later examples). The
special case where m = 0 interprets a tree in Cn as an n-ary stream transformer.
The special case n = m = 1 was treated in [10], however, without applications to
exact real number computation. The program was ‘guessed’ and then verified,
whereas we are able to extract the program from a proof making verification
unnecessary. Of course, one could reduce Proposition 1 to the case m = n = 1,
by coding n streams of single digits into one stream of n-tuples of digits. But this
would lead to less efficient programs, since it would mean that in each reading
step all inputs are read, even those that might not be needed (for example, the
function f(x, y) = x/2 + y/100 certainly should read x more often than y).

5 Digital Systems

Now we introduce digital systems which are a convenient tool for obtaining
implementations of certain families of u.c. functions.

Let (A,<) be a wellfounded relation. A digital system is a family F = (fα :
I
n → I)α∈A such that for all α ∈ A

∃d (fα[In] ⊆ Id ∧ ∃β fβ = vad ◦ fα) ∨ ∃i ∀d∃β < αfβ = fα ◦ avi,d

When convenient we identify the family F with the set {fα | α ∈ A}.
Proposition 2. If F is a digital system, then F ⊆ Cn.

Proof. Let F be a digital system. We show F ⊆ Cn by coinduction. Hence, we
have to show Jn(F)(fα) for all α ∈ A. But, looking at the definition of Jn(F)
and the properties of a digital system, this follows immediately by wellfounded
<-induction on α.
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Since wellfounded induction can be realized by a simple recursive procedure we
can extract from the proof of Prop. 2 a program that transforms a (realization
of) a digital system into a family of trees realizing its members.

Example (linear affine functions). For u, v ∈ Q
n+1 define fu,v: In → R by

fu,v(x) := u1x1 + . . . + unxn + v

Clearly, fu,v[In] = [v−|u|, v+|u|] where |u| := |u1|+. . .+|un|. Hence fu,v[In] ⊆ I

iff |u| + |v| ≤ 1, and if |u| ≤ 1/4, then fu,v[In] ⊆ Id for some d. Furthermore,
fu,v ◦ avi,d = fu′,v′ where u′ is like u except that the i-th component is halved,
and v′ = v+uid/2. Hence, if i was chosen such that |ui| ≥ |u|/n, then |u′| ≤ q|u|
where q := 1 − 1/(2n) < 1. Therefore, we set A := {u, v ∈ Q

n+1 | |u| + |v| ≤ 1}
and define a wellfounded relation < on A by

u′, v′ < u, v :⇔ |u| ≥ 1/4 ∧ |u′| ≤ q|u|

From the above it follows that Pol1,n := (fu,v)u,v∈A is a digital system. Hence
Pol1,n ⊆ Cn, by Proposition 2. Program extraction gives us a program that
assigns to each tuple of rationals u, w ∈ A a digit implementation of fu,w.

Remark. In [22] it has been shown that the linear affine transformations are
exactly the functions that can be represented by a finite automaton. The trees
computed by our program generate these automata, simply because for the com-
putation of the tree for fu,v only finitely many other indices u′, v′ are used, and
Haskell will construct the tree by connecting these indices by pointers.

Example (iterated logistic map). With a similar proof as for the linear
affine maps one can show that all polynomials of degree 2 with rational coeffi-
cients mapping I to I are in C1. In particular the function logistic map (trans-
formed to I), defined by fa(x) = a(1− x2)− 1 is in C1 for each rational number
a ∈ [0, 2]. Exact computation of iterations of the logistic map on [0, 1] were
studied in [23] and [24]. Our extracted programs are able to compute 100 binary
digits of f500

a (q) for arbitrary choices of a, q in a few minutes. This compares
favourably with the experiments in [24] which are based on the binary signed
digit representation as well. In addition, when one carries out this computation
for a sequence of values q that are close together, then the memoizing effect of
the tree representation kicks in and one observes a speed up of computation of
a factor ≥ 2 compared to the non-memoized computation.

An important application of digital systems is the following proof that the
predicate Cn precisely captures uniform continuity. We work with the maximum
norm on I

n and set Bδ(p) := {x ∈ I
n | |x − p| ≤ δ} for p ∈ I

n. We also set
Q := I∩Q and let δ, ε range over positive rational numbers. Furthermore, we set

Box(δ, ε, f) :⇔ ∀p ∈ Qn ∃q ∈ Q (f [Bδ(p)] ⊆ Bε(q))

It is easy to see that f : In → R is uniformly continuous with f [In] ⊆ I iff

∀δ ∃εBox(δ, ε, f) (9)
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Proposition 3. For any function f : In → R, Cn(f) iff f is uniformly continu-
ous and f [In] ⊆ I.

Proof. We have to show that Cn(f) holds iff (9) holds.
For the “if” part we use Prop. 2. Let A be the set of triples (f,m, [d1, . . . , dk])

such that f satisfies (9), Box(2−m, 1/4, f) holds, and d1, . . . , dk ∈ SD with k < n
(hence in the case n = 1 the list [d1, . . . , dk] is always empty). Define a well-
founded relation < on A by

(f ′,m′, [d′1, . . . , d
′
k′ ]) < (f,m, [d1, . . . , dk]) :⇔ m′ < m ∨ (m′ = m ∧ k′ > k)

For d = [d1, . . . , dk], where k < n, set avd := av1,d1 ◦ . . . ◦ avk,dk
, i.p. av[] is the

identity function. We show that F := (f ◦ avd)(f,m,d)∈A is a digital system (this
is sufficient, because f ◦ av[] = f).

Let α := (f,m, [d1, . . . , dk]) ∈ A.
Case m = 0, i.e. Box(1, 1/4, f). We show that the left disjunct in the definition

of a digital system holds. We have f [In] = f [B1(0)] ⊆ B1/4(q) for some q ∈ Q. If
|q| ≤ 1/4, choose d := 0, if q > 1/4, choose d := 1, if q < −1/4 choose d := −1.
Then clearly f [In] ⊆ Id, and g := vad ◦ f is uniformly continuous and maps I

n

into I. Hence (g,m′, []) ∈ A for some m′.
Case m > 0. We show that the right disjunct in the definition of a digi-

tal system holds. Choose i := k + 1. Let d ∈ SD. If k + 1 < n, then β :=
(f,m, [d1, . . . , dk, d]) < α and f◦av[d1,...,dk,d] = (f◦av[d1,...,dk])◦avi,d. If k+1 = n,
then for g := f ◦ av[d1,...,dk,d] we have β := (g,m− 1, []) ∈ A because av[d1,...,dk,d]
is a contraction with contraction factor 1/2. Clearly, β < α . Furthermore,
g ◦ av[] = g = (f ◦ av[d1,...,dk]) ◦ avi,d.

For the “only if” part we assume Cn(f). Set

Ek := {f : I
n → R | ∃δBox(δ, 2−k, f)}

For proving (9) it obviously suffices to show ∀k (f ∈ Ek). Hence, it suffices to
show Cn ⊆ Ek for all k. We proceed by induction on k.

Base, k = 0: Since B1(0) = I, we clearly have Box(1, 20, f) for all f ∈ Cn.
Step, k → k + 1: Since Cn = Jn(Cn) it suffices to show Jn(Cn) ⊆ Ek+1. We

prove this by side induction on Jn(Cn), i.e. we show Kn(Cn)(Ek+1) ⊆ Ek+1.
Side induction base: Assume f [In] ⊆ Id and Cn(vad ◦ f). By the main induction
hypothesis, Box(δ, 2−k, vad◦f) for some δ. Hence, clearly, Box(δ, 2−(k+1), f). Side
induction step: Assume, as side induction hypothesis, Box(δd, 2−(k+1), f ◦ avi,d)
for all d ∈ SD. Setting δ=min{δd | d ∈ SD}, we clearly have Box(δ/2, 2−(k+1), f).

Remark. The proof of the “if” direction computes a tree for every u.c. function,
however, usually not a very good one, since if some input needs to be read, then
all inputs are read. Hence, for particular families of u.c. functions one should
not use this proof, but rather design a special digital system that reads inputs
only when necessary (as done in the case of the linear affine functions).
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6 Conclusion

We presented a method for extracting from coinductive proofs tree-like data
structures that code exact lazy algorithms for real functions. The extraction
method is based on a variant of modified realizability that strictly separates the
(abstract) mathematical model the proof is about from the data types the ex-
tracted program is dealing with. The latter are determined solely by the proposi-
tional structure of formulas and proofs. This has the advantage that the abstract
mathematical structures do not need to be ‘constructivised’. In addition, formu-
las that do not contain disjunctions are computationally meaningless and can
therefore be taken as axioms as long as they are true. This enormously reduces
the burden of formalization and turns - in our opinion - program extraction into
a realistic method for the development of nontrivial certified algorithms.

Further work. Currently, we are adapting the existing implementation of pro-
gram extraction in the Minlog proof system [25] to our setting. We are also ex-
tending this work to more general situations where the interval I and the maps
avd are replaced by an arbitrary bounded metric space with a system of con-
tractions (see [26] for related work), or even to the non-metric case (for example
higher types). These extensions will facilitate the extraction of efficient programs
for e.g. analytic functions, parametrised integrals, and set-valued functions.
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22. Konečný, M.: Real functions incrementally computable by finite automata.
Theor. Comput. Sci. 315, 109–133 (2004)

23. Blanck, J.: Efficient exact computation of iterated maps. Journal of Logic and
Algebraic Programming 64, 41–59 (2005)

24. Plume, D.: A Calculator for Exact Real Number Computation. PhD thesis. Uni-
versity of Edinburgh (1998)

25. Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M., Zuber, W.: Proof theory
at work: Program development in the Minlog system. In: Bibel, W., Schmitt, P.
(eds.) Automated Deduction – A Basis for Applications. Applied Logic Series,
vol. II, pp. 41–71. Kluwer, Dordrecht (1998)

26. Scriven, A.: A functional algorithm for exact real integration with invariant mea-
sures. Electron. Notes Theor. Comput. Sci. 218, 337–353 (2008)



On the Relation between Sized-Types Based
Termination and Semantic Labelling

Frédéric Blanqui1 and Cody Roux2

1 FIT 3-604, Tsinghua University, Haidian District, Beijing 100084, China
frederic.blanqui@inria.fr

2 LORIA�, Pareo team, Campus Scientifique, BP 239, 54506 Vandoeuvre-lès-Nancy,
Cedex, France

cody.roux@loria.fr

Abstract. We investigate the relationship between two independently
developed termination techniques. On the one hand, sized-types based
termination (SBT) uses types annotated with size expressions and Gi-
rard’s reducibility candidates, and applies on systems using construc-
tor matching only. On the other hand, semantic labelling transforms a
rewrite system by annotating each function symbol with the semantics
of its arguments, and applies to any rewrite system.

First, we introduce a simplified version of SBT for the simply-
typed lambda-calculus. Then, we give new proofs of the correctness of
SBT using semantic labelling, both in the first and in the higher-order
case. As a consequence, we show that SBT can be extended to systems
using matching on defined symbols (e.g. associative functions).

1 Introduction

Sized types were independently introduced by Hughes, Pareto and Sabry [16]
and Giménez [11], and were extended to richer type systems, to rewriting and
to richer size annotations by various researchers [21,1,2,5,7].

Sized types are types annotated with size expressions. For instance, if T is
the type of binary trees then, for each a ∈ N, a type Ta is introduced to type
the trees of height smaller or equal to a. In the general case, the size is some
ordinal related to the interpretation of types in Girard’s reducibility candidates
[12]. However, as suggested in [5], other notions of sizes may be interesting.

These size annotations can then be used to prove the termination of functions
by checking that the size of arguments decreases along recursive calls, but this
applies to functions defined by using matching on constructor terms only.

At about the same time, semantic labelling was introduced for first-order
systems by Zantema [22]. It received a lot of attention in the last years and was
recently extended to the higher-order case by Hamana [13].

In contrast with SBT, semantic labelling is not a termination criterion but
transforms a system into another one whose termination is equivalent and hope-
fully simpler to prove. The transformation consists in annotating function sym-
bols with the semantics of their arguments in some model of the rewrite system.
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Finding a model may of course be difficult. We will see that the notion of size
used in SBT provides such a model.

In this paper, we study the relationship between these two methods. In partic-
ular, we give a new proof of the correctness of SBT using semantic labelling. This
will enable us to extend SBT to systems using matching on defined symbols.

Outline. Section 2 introduces our notations. Section 3 explains what SBT is
and Section 4 introduces a simplified version of it. To ease the understanding of
the paper, we first present the first-order case which already contains the main
ideas, and then consider the higher-order case which requires more knowledge.
Hence, in Section 5 (resp. 7), we recall what is semantic labelling in the first
(resp. higher) order case and show in Section 6 (resp. 8) that SBT is an instance
of it. For lack of space, some proofs are given in the Appendices of [8].

2 Preliminaries

First-order terms. A signature F is made of a set Fn of function symbols of
arity n for each n ∈ N. Let F be the set of all function symbols. Given a set X
of variables, the set of first-order terms T (F ,X ) is defined as usual: X ⊆ T ; if
f ∈ Fn and t is a sequence t1, . . . , tn ∈ T of length n = |t|, then f(t) ∈ T .

An F-algebra M is given by a set M and, for each symbol f ∈ Fn, a function
fM : Mn → M . Given a valuation μ : X → M , the interpretation of a term t is
defined as follows: [[x]]μ = μ(x) and [[f(t1, . . . , tn)]]μ = fM([[t1]]μ, . . . , [[tn]]μ).

Positions are words on N. We denote by ε the empty word and by p · q or pq
the concatenation of p and q. Given a term t, we denote by t|p the subterm of
t at position p, and by t[u]p the replacement of this subterm by u. Let Pos(f, t)
be the set of the positions of the occurrences of f in t.

Higher-order terms. The set of (simple) types is T = T (Σ) where Σ0 = B is
a set of base types, Σ2 = {⇒} and Σn = ∅ otherwise. The sets of positive and
negative positions in a type are inductively defined as follows:

– Pos+(B) = ε and Pos−(B) = ∅ for each B ∈ B,
– Posδ(T ⇒ U) = 1 · Pos−δ(T ) ∪ 2 · Posδ(U) where −− = + and −+ = −.

Let X be an infinite set of variables. A typing environment Γ is a map from
a finite subset of X to T. For each type T , we assume given a set FT of function
symbols of type T . The sets ΛT (Γ ) of terms of type T in Γ are defined as usual:
FT ⊆ ΛT (Γ ); if (x, T ) ∈ Γ then x ∈ ΛT (Γ ); if t ∈ ΛU (Γ, x : T ), then λxT t ∈
ΛT⇒U (Γ ); if t ∈ ΛU⇒V (Γ ) and u ∈ ΛU (Γ ), then tu ∈ ΛV (Γ ).

Let F (resp. Λ) be the set of all function symbols (resp. terms). Let X (t)
be the set of free variables of t. A substitution σ is a map from a finite subset
of X to Λ. We denote by (u

x) the substitution mapping x to u, and by tσ the
application of σ to t. A term t β-rewrites to a term u, written t →β u, if there
is p ∈ Pos(t) such that t|p = (λxT v)w and u = t[vw

x ]p.
A rewrite rule is a pair of terms l → r of the same type such that X (r) ⊆ X (l).

A rewrite system is a set R of rewrite rules. A term t rewrites to a term u, written
t →R u, if there is p ∈ Pos(t), l → r ∈ R and σ such that t|p = lσ and u = t[rσ]p.
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Constructor systems. A function symbol f is either a constructor symbol if no
rule left-hand side is headed by f, or a defined symbol otherwise. A pattern is a
variable or a term of the form ct with c a constructor symbol and t patterns. A
rewrite system is constructor if every rule is of the form fl → r with l patterns.

As usual, we assume that constructors form a valid inductive structure [6],
that is, there is a well-founded quasi-ordering ≤B on B such that, for each base
type B, constructor c : T ⇒ B and base type C occuring at position p in Ti,
either C <B B or C 'B B and p ∈ Pos+(Ti). Mendler indeed showed that invalid
inductive structures lead to non-termination [18].

Given a constructor c : T ⇒ B, let Ind(c) be the set of integers i such that Ti

contains a base type C 'B B. A constructor c with Ind(c) �= ∅ is said recursive.
A constructor c : T ⇒ B is strictly-positive if, for each i, either no base type

equivalent to B occurs in Ti, or Ti is of the form U ⇒ C with C 'B B and no
base type equivalent to B occuring in U .

SBT applies to constructor systems only. By using semantic labelling, we will
prove that it can also be applied to some non-constructor systems.

3 Sized-Types Based Termination

We now present a simplified version of the termination criterion introduced in
[5], where the first author considers rewrite systems on terms of the Calculus of
Algebraic Constructions, a complex type system with polymorphic and depen-
dent types. Here, we restrict our attention to simply-typed λ-terms since there
is no extension of semantic labelling to polymorphic and dependent types yet.

This termination criterion is based on the semantics of types in reducibility
candidates [12]. An arrow type T ⇒ U is interpreted by the set [[T ⇒ U ]] =
{v ∈ T | ∀t ∈ [[T ]], vt ∈ [[U ]]}. A base type B is interpreted by the fixpoint [[B]] of
the monotonic function FB(X) = {v ∈ SN | ∀ constructor c : T ⇒ B, ∀t, ∀i ∈
Ind(c), v →∗ ct ⇒ ti ∈ [[Ti]]B	→X} on the lattice of reducibility candidates that
is complete for set inclusion [6]. This fixpoint, defined by induction on the well-
founded quasi-ordering ≤B on base types, can be reached by transfinite iteration
of FB up to some limit ordinal ωB strictly smaller than the first uncountable
ordinal A. This provides us with the following notion of size: the size of a term
t ∈ [[B]] is the smallest ordinal oB(t) = a < A such that t ∈ F a

B (⊥), where ⊥
is the smallest element of the lattice and F a

B is the function obtained after a
transfinite iterations of FB.

This notion of size, which corresponds to the tree height for patterns, has the
following properties: it is well-founded; the size of a pattern is strictly bigger
than the size of its subterms; if t → t′ then the size of t′ is smaller than (since
→ may be non confluent) or equal to the size of t.

SBT consists then in providing a way to syntactically represent the sizes of
terms and, given for each function symbol an annotation describing how the size
of its output is related to the sizes of its inputs, check that some measure on the
sizes of its arguments decreases in each recursive call.
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Size algebra. Sizes are represented and compared by using a first-order term
algebra A = T (Σ,X ) equipped with an ordering ≤A such that:

– <A is stable by substitution;
– (A, <A), where <A is the usual ordering on ordinals, is a model of (A, <A):
• every symbol h ∈ Σn is interpreted by a function hA : An → A;
• if a <A b then [[a]]μ <A [[b]]μ for each μ : X → A.

To denote a size that cannot be expressed in A (or a size that we do not care
about), Σ is extended with a (biggest) nullary element ∞. Let A be the ex-
tended term algebra in which all terms containing ∞ are identified, <A =
<A ∪ {(a,∞) | a ∈ A} and ≤A = ≤A ∪ {(a,∞) | a ∈ A}. Note that such an
extension is often used in domain theory but with a least element instead.

Annotated types. The set of base types is now all the expressions Ba such
that B ∈ B and a ∈ A. The interpretation of B∞ (also written B) is [[B]] and,
given a ∈ A, the interpretation of Ba wrt a size valuation μ : X → A is the set
of terms in [[B]] whose size is smaller or equal to [[a]]μ: [[Ba]]μ = F

[[a]]μ
B (⊥).

Hence, we assume that every symbol f ∈ F is given an annotated type τAf
whose size variables, like type variables in ML, are implicitly universally quan-
tified and can be instantiated by any size expression. Hence the typing rule for
symbols in Figure 1 allows any size substitution ϕ to be applied to τAf . Subtyping
naturally follows from the interpretation of types and the ordering on A.

ϕ : X → A
Γ �s f : τA

f ϕ

(x, T ) ∈ Γ

Γ �s x : T

Γ, x : T �s u : U x /∈ Γ

Γ �s λxT u : T ⇒ U

Γ �s t : U ⇒ V Γ �s u : U

Γ �s tu : V

Γ �s t : T T ≤ T ′

Γ �s t : T ′

a ≤A b

Ba ≤ Bb

T ′ ≤ T U ≤ U ′

T ⇒ U ≤ T ′ ⇒ U ′
T ≤ U U ≤ V

T ≤ V

Fig. 1. Type system with size annotations

Definition 1. Given a type T , let T∞ be the type obtained by annotating every
base type with ∞, and annotαB(T ) be the type obtained by annotating every base
type C 'B B with α, and every base type C �'B B with ∞. Conversely, given an
annotated type T , let |T | be the type obtained by removing all annotations.

Note that, in constrast to types, terms are unchanged: in λxTu, T = T∞.
Given a size symbol h ∈ Σ, let Mon+(h) (resp. Mon−(h)) be the sets of

integers i such that h is monotonic (resp. anti-monotonic) in its i-th argument.
The sets of positive and negative positions in an annotated type are:

– Pos−(Ba) = 0 · Pos−(a) and Pos+(Ba) = {ε} ∪ 0 · Pos+(a),
– Pos−(α)=∅, Pos+(α)=ε, Posδ(h(a))=

⋃

{i·Posεδ(ai) | i∈Monε(h), ε∈{−,+}}.
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To ease the expression of termination conditions, for every defined symbol f, τAf
is assumed to be of the form P ⇒ Bαf ⇒ BfA(αf) with |τAf | = τf , X (P ) = ∅ and
X (fA(αf)) ⊆ {αf} where αf are pairwise distinct variables. The arguments of
type B are the ones whose size will be taken into account for proving termination.
The arguments of type P are parameters and every rule defining f must be of
the form fpl → r with p ∈ X , |p| = |P | and |l| = |B|.

Moreover, the annotated type of a constructor c : T1 . . .Tn ⇒ B is:

τAc = annotαB(T1) ⇒ . . . ⇒ annotαB(Tn) ⇒ BcA(α)

with cA(α) = ∞ if c is non-recursive, and cA(α) = s(α) otherwise, where s is
a monotonic unary symbol interpreted as the ordinal successor and such that
a <A s(a) for each a.

Termination criterion. We assume given a well-founded quasi-ordering ≥F on
F and, for each function symbol f :s T ⇒ Bαf ⇒ BfA(αf) and set X ∈ {A,A}, an
ordered domain (DX

f , <
X
f ) and a function ζX

f : X |αf | → DX
f compatible with 'F

(i.e. |αf | = |αg|, DX
f = DX

g , <X
f = <X

g and ζX
f = ζX

g whenever f 'F g) and such
that >A

f is well-founded and ζA
f ([[a]]μ) <A

f ζA
f ([[b]]μ) whenever ζAf (a) <Af ζAf (b)

and μ : X → A.
Usual domains are An ordered lexicographically, or the multisets on A ordered

with the multiset extension of >A.

Theorem 1 ([5]). Let R be a constructor system. The relation →β ∪ →R
terminates if, for each defined f :s P ⇒ Bα ⇒ BfA(α) and rule fpl → r ∈ R,
there is an environment Γ and a size substitution (a

α) such that:

– pattern condition: for each θ, if pθ ∈ [[P ]] and lθ ∈ [[B]] then there is ν such
that, for each (x, T ) ∈ Γ , xθ ∈ [[T ]]ν and [[a]]ν ≤ oB(lθ);

– argument decreasingness: Γ �s
fa r : BfA(a) where �fa is defined in Figure 2;

– size annotations monotonicity: Pos(α, fA(α)) ⊆ Pos+(fA(α)).

The termination criterion introduced in [5] is not expressed exactly like this.
The pattern condition is replaced by syntactic conditions implying the pattern
condition, but the termination proof is explicitly based on the pattern condition.
This condition means that a is a valid representation of the size of l, whatever
the instantiation of the variables of l is, and thus that any recursive call with
arguments of size smaller than a is admissible. The existence of such a valid
syntactic representation depends on l and the size annotations of constructors.
With the chosen annotations, the condition is not satisfied by some patterns
(whose type admits elements of size bigger than ω, Appendix A). This suggests
to use a more precise annotation for constructors.

The expressive power of the criterion depends on A. Taking the size algebra
A reduced to the successor symbol s (the decidability of which is proved in [3]) is
sufficient to handle every primitive recursive function. As an example, consider
the recursor recT : O ⇒ T ⇒ (O ⇒ T ) ⇒ ((N ⇒ O) ⇒ (N ⇒ T ) ⇒ T ) ⇒ T
on the type O of Brouwer’s ordinals whose constructors are 0 : O, s : Oα ⇒ Osα
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g <F f, ψ : X → A
Γ �s

fa g : τA
g ψ

+ variable, abstraction, application and subtyping rules of Fig. 1

g �F f g :s U ⇒ Cβ ⇒ CgA(β) Γ �s
fa u : U Γ �s

fa m : Bb ζA
f (b) <A

f ζA
f (a)

Γ �s
fa gum : CgA(b)

Fig. 2. Computability closure

and lim : (N ⇒ Oα) ⇒ Osα, where N is the type of natural numbers whose
constructors are 0 : N and s : Nα ⇒ Nsα:

rec0uvw → u
rec(sx)uvw → vx(recxuvw)

rec(limf)uvw → wf(λnrec(fn)uvw)

For instance, with f : N ⇒ Oα, we have limf : Osα, fn : Oα and sα >A α.
An example of non-simply terminating system satisfying the criterion is the

following system defining a division function / : Nα ⇒ N ⇒ Nα by using a
subtraction function − : Nα ⇒ N ⇒ Nα.

−x0 → x
−0x → 0

−(sx)(sy) → −xy

/0x → 0
/(sx)y → s(/(−xy)y)

Indeed, with x : Nx, we have sx : Nsx, −xy : Nx and sx >A x.

4 Annotating Constructor Types with a max Symbol

In this section, we simplify the previous termination criterion by annotating
constructor types in an algebra made of the following symbols:

– 0 ∈ Σ0 interpreted as the ordinal 0;
– s ∈ Σ1 interpreted as the successor ordinal;
– max ∈ Σ2 interpreted as the max on ordinals.

For the annotated type of a constructor c : T1 . . .Tn ⇒ B, we now take:

τAc = annotα1
B (T1) ⇒ . . . ⇒ annotαn

B (Tn) ⇒ BcA(α1,...,αn)

with α distinct variables, cA(α) = 0 if c is non-recursive, and cA(α) = s(max(αi |
i ∈ Ind(c))) otherwise, where max(α1, . . . , αk+1) = max(α1,max(α2, . . . , αk+1))
and max(α1) = α1.

This does not affect the correctness of Theorem 1 since, in this case too, one
can prove that constructors are computable: c ∈ [[τAc ]]μ for each μ.

Moreover, now, both constructors and defined symbols have a type of the form
annotα1

B1
(T1) ⇒ . . . ⇒ annotαn

Bn
(Tn) ⇒ BfA(α) with α distinct variables.
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This means that a constructor can be applied to any sequence of arguments
without having to use subtyping. Indeed, previously, not all constructor ap-
plications were possible (take cxy with c : Bα ⇒ Bα ⇒ bsα, x : Bx and
y : By) and some constructor applications required subtyping (take cx(dx) with
c : Bα ⇒ Bα ⇒ bsα, d : Bα ⇒ Bsα and x : Bx).

We can therefore postpone subtyping after typing without losing much ex-
pressive power . It follows that every term has a most general type given by a
simplified version of the type inference system �i of [3] using unification only
(see Appendix B).

Moreover, the pattern and monotonicity conditions can always be satisfied by
defining, for each symbol f :s P ⇒ Bα ⇒ U and rule fpl → r ∈ R, a as σ(l)
where σ(x) = x and σ(ct) = cA(σ(t)), and Γ as the set of pairs (x, T ) such that
x ∈ X (fpl) and T is:

– Pi if x = pi,
– Bx

i if x = li,
– annotxBi

(T ) if cuxv is a subterm of li and c : U ⇒ T ⇒ V ⇒ C.

Note that, if Γ � t : T and t is a non-variable pattern then there is a base type
B such that Γ �i t : Bσ(t). So, σ(t) is the most general size of t.

Theorem 2. Let R be a constructor system. The relation →β ∪ →R terminates
if, for each f :s P ⇒ Bα ⇒ BfA(α) and rule fpl → r ∈ R, we have:

– argument decreasingness: Γ �i
fa r : Ba and a ≤A fA(a) where Γ and a = σ(l)

are defined just before and �i
fa is the type inference system �i [3] (see Appendix

B) with function applications restricted as in Figure 2.

The proof is given in Appendix C. In the following, we say that R SB-terminates
if R satisfies the conditions of Theorem 2.

5 First-Order Semantic Labelling

Semantic labelling is a transformation technique introduced by Hans Zantema
for proving the termination of first-order rewrite systems [22]. It consists in
labelling function symbols by using some model of the rewrite system.

Let F be a first-order signature and M be an F -algebra equipped with a
partial order ≤M. For each f ∈ Fn, we assume given a non-empty poset (Sf ,≤f)
and a labelling function πf : Mn → Sf . Then, let F be the signature such that
Fn = {fa | f ∈ Fn, a ∈ Sf}.

The labelling of a term wrt a valuation μ : X → M is defined as follows:
labμ(x) = x and labμ(f(t1, . . . , tn)) = fπf([[t1]]μ,...,[[tn]]μ)(labμ(t1), . . . , labμ(tn)).

The fundamental theorem of semantic labelling is then:

Theorem 3 ([22]). Given a rewrite system R, an ordered F-algebra (M,≤M)
and a labelling system (Sf ,≤f , πf)f∈F , the relation →R terminates if:
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1. M is a quasi-model of R, that is:
– for each rule l → r ∈ R and valuation μ : X → M , [[l]]μ ≥M [[r]]μ,
– for each f ∈ F , fM is monotonic;

2. for each f ∈ F , πf is monotonic;
3. the relation →lab(R)∪Decr terminates where:

lab(R) = {labμ(l) → labμ(r) | l → r ∈ R, μ : X → M},
Decr = {fa(x1, . . . , xn) → fb(x1, . . . , xn) | f ∈ F , a >f b}.

For instance, by taking M = N, 0M = 0, sM(x) = x + 1, −M(x, y) = x and
/M(x, y) = x, and by labelling − and / by the semantics of their first argument,
we get the following infinite system which is easily proved terminating:

−ix0 → x (i ∈ N)
−00x → 0

−i+1(sx)(sy) → −ixy (i ∈ N)

/00x → 0
/i+1(sx)y → s(/i(−ixy)y) (i ∈ N)

6 First-Order Case

The reader may have already noticed some similarity between semantic labelling
and size annotations. We here render it more explicit by giving a new proof of
the correctness of SB-termination using semantic labelling.

In the first-order case, the interpretation of a base type does not require
transfinite iteration: all sizes are smaller than ω and A = N [6]. Moreover, by
taking Γ (x) = Bx for each x of type B, every term t has a most general size
σ(t) given by its most general type: Γ �i t : Cσ(t). This function σ extends to all
terms the function σ defined in the previous section by taking σ(f(t1, . . . , tn)) =
fA(σ(t1), . . . , σ(tn)) for each defined symbol f.

Theorem 4. SB-termination implies termination if:

– R is finitely branching and the set of constructors of each type B is finite;
– for each defined symbol f, fA and ζAf are monotonic.

Proof. For the interpretation domain, we take M = A = N which has a structure
of poset with ≤M=≤A=≤N.

If fA is not the constant function equal to ∞ (fA �= ∞ for short), which is the
case of constructors, then let fM(a) = [[fA(α)]]μ where αμ = a.

When fA = ∞, we proceed in a way similar to predictive labelling [15], a
variant of semantic labelling where only the semantics of usable symbols need to
be given when M is a #-algebra (all finite subsets of M have a lub wrt ≤M),
which is the case of N. Here, the notions of usable symbols and rules are not
necessary and a semantics can be given to all symbols thanks to the strong
assumptions of SB-termination.

Let (f,x) >A (g,y) if f >F g or f 'F g and ζA
f (x) >A

f ζA
f (y). The relation

>A is well-founded since the relations >F and >A
f are well-founded. We then

define fM by induction on >A by taking fM(a) = max({0} ∪ {[[r]]μ | fl → r ∈
R, μ : X → A, [[l]]μ ≤ a}). This function is well defined since:
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– For each subterm gm in r, (f, σ(l)) >A (g, σ(m)). Assume that f 'F g.
Then, σ(l) >A σ(m). Hence, for each symbol f occuring in l or m, fA �= ∞.
Therefore, [[l]]μ = [[σ(l)]]μ, [[m]]μ = [[σ(m)]]μ and (f, [[l]]μ) >A (g, [[m]]μ).

– The set {(fl → r, μ) | fl → r ∈ R, [[l]]μ ≤ a} is finite. Indeed, since l are
patterns and constructors are interpreted by monotonic and strictly extensive
functions (i.e. cA(α) ≥A s(max(αi | i ∈ Ind(c)))), [[l]]μ is strictly monotonic
wrt μ and the height of l. We cannot have an infinite set of l’s of bounded
height since, for each base type B, the set of constructors of type B is finite.
And we cannot have an infinite set of r’s since R is finitely branching.

We do not label the constructors, i.e. we take any singleton set for Sc and
the unique (constant) function from Mn to Sc for πc. For any other symbol f,
we take Sf = DA

f which is well-founded wrt >f , and πf = ζA
f .

1. M is a quasi-model of R:
– Let f :s P ⇒ Bα ⇒ BfA(α), l → r ∈ R with l = fpl, and μ : X →
M . We have [[l]]μ = fM(a) where a = [[l]]μ. If fA = ∞, then fM(a) =
max({0} ∪ {[[r]]μ | fl → r ∈ R, μ : X → A, [[l]]μ ≤ a}) and [[l]]μ ≥ [[r]]μ.
Assume now that fA �= ∞. Since Γ �fa r :i Ba and a ≤A fA(a), we have
σ(r) = a ≤A fA(a) = σ(l) where a = σ(l). By definition of Γ and σ, for
each i, ai �= ∞ (a �= ∞ for short). Therefore, σ(l) �= ∞ and σ(r) ≤A σ(l).
Hence, [[l]]μ = σ(l)μ ≤A σ(r)μ = [[r]]μ since ≤A is a model of ≤A.

– If f is a non-recursive constructor, then fM(a) = 0 is monotonic. If f is a
recursive constructor, then fM(a) = sup{ai | i ∈ Ind(c)} + 1 is monotonic.
If fA �= ∞, then fM(a) = [[fA(α)]]μ where αμ = a is monotonic since fA

is monotonic by assumption. Finally, if fA = ∞, then fM(a) = max({0} ∪
{[[r]]μ | fl → r ∈ R, μ : X → A, [[l]]μ ≤ a}) is monotonic.

2. If f is a defined symbol, then the function πf is monotonic by assumption. If
f is a constructor, then the constant function πf is monotonic too.

3. We now prove that →lab(R)∪Decr is precedence-terminating (PT), i.e. there
is a well-founded relation > on symbols such that, for each rule fl → r ∈
lab(R) ∪Decr, every symbol occurring in r is strictly smaller than f [19].
Let ga < fb if g <F f or g 'F f and a <A

f b. The relation > is well-founded
since both >F and >A

f are well-founded.
Decr is clearly PT wrt >. Let now fl → r ∈ R, μ : X → M and gt be a
subterm of r. The label of f is a = πf([[l]]μ) = ζA

f ([[σ(l)]]μ) and the label of g
is b = ζA

f ([[σ(m)]]μ). By assumption, (f, l) >A (g,m). Therefore, a >A
f b. "#

It is interesting to note that we could also have taken M = A, assuming that
<Af is stable by substitution (ζAf (aθ) <Af ζAf (bθ) whenever ζAf (a) <Af ζAf (b)).
The system labelled with A is a syntactic approximation of the system labelled
with A. Although less powerful a priori, it may be interesting since it provides
a finite representation of the infinite A-labelled system.

Finally, we see from the proof that the system does not need to be constructor:

Theorem 5. Theorem 4 holds for any (non-constructor) system R such that,
for each rule fl → r ∈ R with fA = ∞ and subterm gm in l:
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– gA is monotonic and strictly extensive: gA(α) ≥A s(max(αi | i ∈ Ind(c))),
– if gA = ∞, then g <F f or g 'F f and ζAf (σ(m)) <Af ζAf (σ(l)).

Example: assuming that A is the ⇒-type constructor, then the expression Fnuv
represents the set of n-ary functions from u to v.

+0y → y
+(sx)y → s(+xy)

+(+xy)z → +x(+yz)

F0uv → v
F(sx)uv → Au(Fxuv)

F(+xy)uv → Fxu(Fyuv)
Take +A(x, y) = ζ+(x, y) = a = 2x+ y + 1, FA = ∞ and ζF(x, u, v) = x. The

interpretation of FM is well-defined since x < a and y < a. The labelled system
that we obtain (where b = 2y + z + 1) is precedence-terminating:

+y+10y → y
+a+2(sx)y → s(+axy)

+2a+z+1(+axy)z → +2x+b+1x(+byz)

F00uv → v
Fx+1(sx)uv → Au(Fxxuv)

Fa(+axy)uv → Fxxu(Fyyuv)

7 Higher-Order Semantic Labelling

Semantic labelling was extended by Hamana [13] to second-order Inductive Data
Type Systems (IDTSs) with higher-order pattern-matching [4]. IDTSs are a
typed version of Klop’s Combinatory Reduction Systems (CRSs) [17] whose cat-
egorical semantics based on binding algebras and F -monoids [10] is studied by
the same author and proved complete for termination [14].

The fundamental theorem of higher-order semantic labelling can be stated
exactly as in the first-order case, but the notion of model is more involved.

CRSs and IDTSs. In CRSs, function symbols have a fixed arity. Meta-terms
extend terms with the application Z(t1, . . . , tn) of a meta-variable Z ∈ Z of arity
n to n meta-terms t1, . . . , tn.

An assignment θ maps every meta-variable of arity n to a term of the form
λx1..λxnt. Its application to a meta-term t, written tθ, is defined as follows:

– xθ = x, (λxt)θ = λx(tθ) and f(t1, . . . , tn)θ = f(t1θ, . . . , tnθ);
– for θ(Z) = λx1..λxnt, Z(t1, . . . , tn)θ = t{x1 �→ t1θ, . . . , xn �→ tnθ}.

A rule is a pair of meta-terms l → r such that l is a higher-order pattern [20].
In IDTSs, variables, meta-variables and symbols are equipped with types over

a discrete category B of base types. However, Hamana only considers structural
meta-terms where abstractions only appear as arguments of a function symbol,
variables are restricted to base types, meta-variables to first-order types and
function symbols to second-order types. But, as already noticed by Hamana,
this is sufficient to handle any rewrite system (see Section 8). Let IZB (Γ ) be the
set of structural meta-terms of type B in Γ whose meta-variables are in Z.

Models. The key idea of binding algebras [10] is to interpret variables by natural
numbers using De Bruijn levels , and to handle bound variables by extending
the interpretation to typing environments.

Let F be the category whose objects are the finite cardinals and whose arrows
from n to p are all the functions from n to p. Let E be the (slice) category of
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typing environments whose objects are the maps Γ : n → B and whose arrows
from Γ : n → B to Δ : p → B are the functions ρ : n → p such that Γ = Δ ◦ ρ.

Given Γ : n → B, let Γ + B : n + 1 → B be the environment such that
(Γ +B)(n) = B and (Γ +B)(k) = Γ (k) if k < n.

Let M be the functor category (SetE)
B
. An object of M (presheaf) is given by

a family of sets MB(Γ ) for every base type B and environment Γ and, for every
base type B and arrow f : Γ → Δ, a function MB(f) : MB(Γ ) → MB(Δ) such
that MB(idΓ ) = idMB(Γ ) and MB(f◦g) = MB(f)◦MB(g). An arrow α : M → N
in M is a natural transformation, i.e. a family of functions αB(Γ ) : MB(Γ ) →
NB(Γ ) such that, for each ρ : Γ → Δ, αB(Δ) ◦MB(ρ) = NB(ρ) ◦ αB(Γ ).

Given M ∈ M, Γ ∈ E and B ∈ B, let upB
Γ (M) : M(Γ ) → M(Γ + B) be the

arrow equal to M(idΓ + 0Δ) where 0Δ is the unique morphism from 0 to Δ.
An X + F-algebra M is given by a presheaf M ∈ M, an interpretation of

variables ι : X → M and, for every symbol f : (B1 ⇒ B1) ⇒ . . . ⇒ (Bn ⇒
Bn) ⇒ B and environment Γ , an arrow fM(Γ ) :

∏n
i=1 MBi(Γ + Bi) → MB(Γ ).

The category M forms a monoidal category with unit X and product • such
that (M •N)B(Γ ) is the set of equivalence classes on the set of pairs (t,u) with
t ∈ MB(Δ) and ui ∈ NΔ(i)(Γ ) for some Δ, modulo the equivalence relation
∼ such that (t,u) ∼ (t′,u′) if there is ρ : Δ → Δ′ for which t ∈ MB(Δ),
t′ = MB(ρ)(t) and u′ρ(i) = ui.

To interpret substitutions, M must be an F-monoid, i.e. a monoid (M,μ :
M2 → M) compatible with the structure of F -algebra [13] (see Appendix E).

The presheaf I∅ equipped with the product μB(Γ )(t,u) = t{i �→ ui} (simul-
taneous substitution) is initial in the category of F -monoids [14]. Hence, for each
F -monoid M, there is a unique morphism !M : I∅ → M .

Labelling. As in the first-order case, for each f : (B1 ⇒ B1) ⇒ . . . ⇒ (Bn ⇒
Bn) ⇒ B, we assume given a non-empty poset (Sf ,≤f) for labels and a labelling
function πf(Γ ) :

∏n
i=1 MBi(Γ + Bi) → Sf . Let Fn = {fa | f ∈ Fn, a ∈ Sf}. Note

that the set of labelled meta-terms has a structure of F -monoid [13].
The labelling of a meta-term wrt a valuation θ : Z → I∅ is defined as follows:

– labθB(Γ )(x) = x;
– labθB(Γ )(Z(t1, . . . , tn)) = Z(labθB(Γ )(t1), . . . , labθB(Γ )(tn));
– for f : (B1 ⇒ B1) ⇒ . . . ⇒ (Bn ⇒ Bn) ⇒ B and Γi = Γ,xi : Bi,
labθB(Γ )(f(λx1t1, . . . , λxntn)) = fa(labθB1

(Γ1)(t1), . . . , labθBn
(Γn)(tn))

where a = πf(!MB1
(Γ1)(t1θ), . . . , !MBn

(Γn)(tnθ)).

We can now state Hamana’s theorem for higher-order semantic labelling.

Theorem 6 ([13]). Given a structural IDTS R, an ordered F-algebra (M,≤M)
and a labelling system (Sf ,≤f , πf)f∈F , the relation →R terminates if:

1. (M,≤M) is a quasi-model of R, that is:
– for each l → r : T ∈ R, θ : Z → I∅ and Γ , !MB (Γ )(lθ) ≥MB(Γ )!MB (Γ )(rθ),
– for each f ∈ F , fM is monotonic;

2. for each f ∈ F , πf is monotonic;
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3. the relation →lab(R)∪Decr terminates, where:
lab(R) = {lab∅B(Γ )(lθ) → lab∅B(Γ )(rθ) | l → r : B ∈ R, θ : Z → I∅, Γ ∈ E},
Decr = {fa(. . . , λxiZi(xi), . . .) → fb(. . . , λxiZi(xi), . . .) | f ∈ F , a >f b}.

8 Higher-Order Case

In order to apply Hamana’s higher-order semantic labelling, we first need to
translate into a structural IDTS not only the rewrite system R but also β itself.

Translation to structural IDTS. Following Example 4.1 in [13], the relations
β and R can be encoded in a structural IDTS as follows.

Let the set of IDTS base types B be the set T (Σ) where Σ0 = B is the set
of base types, Σ2 = {Arr} and Σn = ∅ otherwise. A simple type T can then
be translated into an IDTS base type 〈T 〉 by taking 〈T ⇒ U〉 = Arr(〈T 〉, 〈U〉)
and 〈T 〉 = T if T ∈ B. Then, an environment Γ can be translated into an IDTS
environment 〈Γ 〉 by taking 〈∅〉 = ∅ and 〈x : T, Γ 〉 = x : 〈T 〉, 〈Γ 〉. Conversely, let
|T | be the simple type such that 〈|T |〉 = T .

Let the set of IDTS function symbols be the set 〈F〉 made of the symbols
〈f〉 : 〈T1〉 ⇒ . . . ⇒ 〈Tn〉 ⇒ B such that f : T1 ⇒ . . . ⇒ Tn ⇒ B, and all the
symbols λU

T : (T ⇒ U) ⇒ Arr(T, U) and @U
T : Arr(T, U) ⇒ T ⇒ U such that T

and U are IDTS base types. Note that only λU
T has a second order type.

A simply-typed λ-term t such that Γ � t : T can then be translated into an
IDTS term 〈t〉Γ such that 〈Γ 〉 � 〈t〉Γ : 〈T 〉 as follows:

– 〈x〉Γ = x,
– 〈λxT u〉Γ = λ

〈U〉
〈T 〉(λx〈u〉Γ,x:T ) if Γ, x : T � u : U ,

– for f : T1 ⇒ . . . ⇒ Tn ⇒ B and Ui = Ti+1 ⇒ . . . ⇒ Tn ⇒ B,
〈ft1. . .tk〉Γ=λ〈Uk+1〉

〈Tk+1〉 (λxk+1 . . .λ
〈Un〉
〈Tn〉 (λxn〈f〉(〈t1〉Γ , . . . , 〈tk〉Γ , xk+1, . . . , xn))...),

– 〈tu〉Γ = @〈V 〉〈U〉(〈t〉Γ , 〈u〉Γ ) if Γ � t : U ⇒ V .

A rewrite rule l → r ∈ R is then translated into the IDTS rule 〈l〉 → 〈r〉
where the free variables of l are seen as nullary meta-variables, and β-rewriting
is translated into the family of IDTS rules 〈β〉 =

⋃

T,U∈B β
U
T where βU

T is:

@U
T (λU

T (λxZ(x)), X) → Z(X)

where Z (resp. X) is a meta-variable of type T ⇒ U (resp. T ). Note that only
〈β〉 uses non-nullary meta-variables.

Then, →R ∪ →β terminates iff →〈R〉∪〈β〉 terminates (Appendix F).

Interpretation domain. We now define the interpretation domain M for in-
terpreting 〈β〉 ∪ 〈R〉. First, we interpret environments as arrow types:

– MT (Γ ) = NArr(Γ,T ) where:
Arr(∅, T ) = T and Arr(Γ + U, T ) = Arr(Γ,Arr(U, T )).
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As explained at the beginning of Section 3, to every base type B ∈ B corre-
sponds a limit ordinal ωB < A that is the number of transfinite iterations of the
monotonic function FB that is necessary to build the interpretation of B.

So, a first idea is to take NB = ωB and the set of functions from NT to NU for
NArr(T,U). But taking all functions creates some problems. Consider for instance
the constructor lim : (N ⇒ O) ⇒ O. We expect limM(∅)(f) = sup{f(n) | n ∈
NN}+1 to be a valid interpretation, but sup{f(n) | n ∈ NN}+1 is not in NO for
each function f . We therefore need to restrict NArr(T,U) to the functions that
correspond to (are realized by) some λ-term.

Hence, let NT = {x | ∃t ∈ T , t �T x} where �T is defined as follows:

– t �B a ∈ ωB if t ∈ [[B]] and oB(t) ≥ a,
– v �Arr(T,U) f : NT → NU if v ∈ [[|T | ⇒ |U |]] and vt �U f(x) whenever t �T x.

Then, we can now check that sup{f(n) | n ∈ NN} + 1 ∈ NO. Indeed, if there
are v and t such that v �Arr(N,O) f and t �N n, then vt �O f(n) and lim(v) �O

sup{f(n) | n ∈ NN} + 1 ∈ NO.
The action of M on E-morphisms is defined as follows. Given f : Γ → Δ

with Γ : n → B and Δ : p → B, let MT (f) : MT (Γ ) → MT (Δ) be the function
mapping x0 ∈ NArr(Γ,T ), x1 ∈ NΔ(1), . . . , xp ∈ NΔ(p) to x0(xf(1), . . . , xf(n)).

Finally, the sets MB(Γ ) and NT are ordered as follows:

– x ≤MB(Γ ) y if x ≤NArr(Γ,B) y where:
• x ≤NB y if x ≤ y,
• f ≤NArr(T,U) g if f(x) ≤NU g(x) for each x ∈ NT .

Interpretation of variables and function symbols. As one can expect,
variables are interpreted by projections: ιΓ (i)(Γ )(i)(x) = xi, λU

T by the identity:
(λU

T )M(Γ )(f) = f , and @U
T by the application: (@U

T )M(Γ )(f, x)(y) = f(y, x(y)).
One can check that these functions are valid interpretations indeed, i.e. ιΓ (i)

(Γ )(i)(x) ∈ NΓ (i) and (@U
T )M(Γ )(f, x)(y) ∈ NU .

Moreover, we have (@U
T )M(Γ )(f, x)(x) = μU (Γ )(f,px) where pi = ιΓ (i)(Γ )(i)

and μ is the monoidal product μB(Γ )(t, u1 . . .un)(x) = t(u1(x), . . . , un(x)).
We can then verify that 〈β〉 is valid if (M,μ) is an F -monoid, and that (M,μ)

is an F -monoid if, for each f and Γ , fM(Γ )(x)(y) = fM(∅)(x1(y), . . . , xn(y))
(Appendix G).

One can see that (λU
T )M and (@U

T )M satisfy this property. Moreover, for each
term t ∈ I∅T (Γ ), we have !MT (x1 : T1...xn : Tn)(t)(a) = [[t]]μ where xiμ = ai and:

[[x]]μ = μ(x) [[@U
T (v, t)]]μ = [[v]]μ([[t]]μ) [[λU

T (λxu)]]μ = a �→ [[u]]μa
x

[[f(t)]]μ = fM(∅)([[t]]μ) [[Z(t)]]μ = μ(Z)([[t]]μ)

Higher-order size algebra. In the first-order case, the interpretation of the
function symbols f such that fA is not the constant function equal to ∞ (which
includes constructors) is fM(a) = [[fA(α)]]μ where αμ = a. To be able to do the
same thing in the higher-order case, we need the size algebra A to be a typed
higher-order algebra interpreted in the sets NT .
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Hence, now, we assume that size expressions are simply-typed λ-terms over a
typed signature Σ, and that every function symbol f : τf is interpreted by ∞ or
a size expression fA : τf . We then let σ : T → A be the function that replaces
in a term every symbol f by fA, all the terms containing ∞ being identified.
Hence, for each term t containing no symbol f such that fA = ∞, we have
[[t]]μ = [[σ(t)]]μ. Finally, we define <A as the relation such that a <A b if, for
each μ, [[a]]μ <A [[b]]μ.

For instance, for a strictly-positive constructor c : T ⇒ B with Ti = U i ⇒
Bi, we can assume that there is a symbol cA ∈ Σ interpreted by the function
cA(x) = sup{xiyi | i ∈ Ind(c),yi ∈ N〈Ui〉} + 1. Hence, with Brouwer’s ordinals,
we have σ(limf) = limAf >A σ(fn) = fn.

Thus, using such an higher-order size algebra, we can conclude:

Theorem 7. SB-termination implies termination if constructors are strictly-
positive and the conditions of Theorems 4 and 5 are satisfied.

Proof. The proof is similar to the first-order case (Theorem 4). We only point
out the main differences.

We first check that M is a quasi-model. The case of 〈β〉 is detailed in Appendix
G. For 〈R〉, we use the facts that !MB (Γ )(lθ) ≤MB(Γ )!MB (Γ )(rθ) if !MB (Γ )(lθ)(a)
≤MB(∅)!MB (Γ )(rθ)(a) for each a, and that !MB (Γ )(lθ)(a) = [[l]]θμ where xiμ = ai.

We do not label applications and abstractions. And for a defined symbol
f : B ⇒ B, we take Sf =

∐

Γ

∏n
i=1 MBi(Γ ) and πf(Γ )(x) = (Γ,x).

We now define a well-founded relation on Sf that we will use for proving
some higher-order version of precedence-termination. For dealing with lab(〈R〉),
let (Γ,x) >Rf (Δ,y) if Δ = Γ + Γ ′ and, for each zz′, ζf(. . .xi(z) . . .) >A

f

ζf(. . . yi(zz′) . . .). For dealing with lab(〈β〉), let (Γ,x) >β
f (Δ,y) if Γ = Δ + T

and there is e such that, for each i and z, xi(z, e(z)) = yi(z). Since >Rf ◦ >β
f is

included in >Rf ∪ >β
f ◦ >Rf , the relation >f = >Rf ∪ >β

f is well-founded [9].
One can easily check that the functions πf and fM are monotonic.
We are now left to prove that →lab(〈β〉)∪lab(〈R〉)∪Decr terminates. First, re-

mark that →lab(〈β〉) is included in →∗
Decr→〈β〉. Indeed, given @U

T (λU
T (λxlabU (Γ+

T )(u)), labT (Γ )(t)) → labU(Γ )(ut
x) ∈ lab(〈β〉), a symbol f occuring in u is la-

belled in labU (Γ +T )(u) by something like (Γ +T +Δ, !MB (Γ +T +Δ)(v)), and
by something like (Γ + Δ, !MB (Γ + Δ)(vt

x)) in labU (Γ )(ut
x). Hence, the relation

→lab(〈β〉)∪lab(〈R〉)∪Decr terminates if →〈β〉∪lab(〈R〉)∪Decr terminates.
By translating back IDTS types to simple types and removing the sym-

bols λU
T (function | |), we get a β-IDTS [4] such that →〈β〉∪lab(〈R〉)∪Decr ter-

minates if →|〈β〉∪lab(〈R〉)∪Decr| terminates (Appendix F). Moreover, after [4],
→|〈β〉∪lab(〈R〉)∪Decr| terminates if |lab(〈R〉)∪Decr| satisfies the General Schema
(we do not need the results on solid IDTSs [13]). This can be easily checked by
using the precedence > on F such that fa > gb if f >F g or f 'F g and a >f b.

Conclusion. By studying the relationship between sized-types based termina-
tion and semantic labelling, we arrived at a new way to prove the correctness of
SBT that enabled us to extend it to non-constructor systems, i.e. systems with
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matching on defined symbols (e.g. associative symbols, Appendix D). This work
can be carried on in various directions by considering: richer type structures
with polymorphic or dependent types, non-strictly positive constructors, or the
inference of size annotations to automate SBT.
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Abstract. This paper is part of a general project of developing a
systematic and algebraic proof theory for nonclassical logics. Gener-
alizing our previous work on intuitionistic-substructural axioms and
single-conclusion (hyper)sequent calculi, we define a hierarchy on Hilbert
axioms in the language of classical linear logic without exponentials.
We then give a systematic procedure to transform axioms up to the
level P ′

3 of the hierarchy into inference rules in multiple-conclusion (hy-
per)sequent calculi, which enjoy cut-elimination under a certain condi-
tion. This allows a systematic treatment of logics which could not be
dealt with in the previous approach. Our method also works as a heuris-
tic principle for finding appropriate rules for axioms located at levels
higher than P ′

3. The case study of Abelian and �Lukasiewicz logic is
outlined.

1 Introduction

Since the axiomatisation of classical propositional logic by Hilbert in 1922, such
axiomatic descriptions (nowadays called Hilbert-systems) have been successfully
used to introduce and characterize logics. Ever since Gentzen’s seminal work
it has been an important task for proof theorists to design for these logics de-
ductive systems that admit cut-elimination. The admissibility of cut is crucial
to establish important properties of corresponding logics such as consistency,
decidability, conservativity, interpolation, and is also the key to make a system
suitable for proof search. As designers of deductive systems could never keep
pace with the speed of logicians and practitioners coming up with new logics,
general tools to automate this design process and extract suitable rules out of
axioms would be very desirable. Work in this direction are e.g. [7,20,19].

A general project of systematic and algebraic proof theory for nonclassical
logics was recently launched in [3,4] where Hilbert axioms in the language of
full Lambek calculus FL (i.e., intuitionistic noncommutative linear logic without
exponentials) have been classified into the substructural hierarchy (Pn,Nn)n∈N,
with the aim to conquest the whole hierarchy from bottom to top. The work in [3]
successfully dealt with the axioms up to level N2. It gave a procedure to trans-
form them into structural rules in the single-conclusion sequent calculus, and
algebraically proved (a stronger form of) cut-elimination for FL extended with
the generated rules which satisfy the syntactic condition of acyclicity. Then,
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[4] expanded the realm to the level P ′3, a subclass of P3 in the commutative
setting, by using the single-conclusion hypersequent calculus [2]. The aim to
continue the conquer further faced a serious obstacle: As shown in [3], “strong”
cut-elimination for a logical system L implies that the class of algebras corre-
sponding to L is closed under completions, whereas certain logics beyond P ′3
do not admit closure under completions. Typical examples are Abelian logic
AL [15,16]—the logic corresponding to compact closed categories—and infinite-
valued �Lukasiewicz logic � L, although possessing cut-free hypersequent calculi,
see [14].

In this paper, we circumvent the obstacle by shifting from the intuitionistic
and single-conclusion setting to the classical and multiple-conclusion one. This
causes a deconstruction of the hierarchy; certain axioms which resided at high
levels are brought down to lower levels, to the reach of our systematic proof
theory (Section 3). Generalizing the method in [3,4], Section 4 (resp. Section 5)
describe a procedure to transform any N2 axiom (resp. P ′3 axiom) into structural
rules in the multiple-conclusion sequent (resp. hypersequent) calculus. The pro-
cedure is also applied to obtain logical rules for connectives defined by certain
Hilbert axioms. Section 6 outlines a uniform syntactic cut-elimination procedure
that works for the generated rules satisfying the acyclicity condition. This al-
lows the systematic introduction of cut-free calculi for logics which cannot be
dealt with in the single-conclusion approach, such as 3-valued �Lukasiewicz logic
and Nelson’s logic. Our method also works as a heuristic principle for finding
appropriate rules for axioms located at levels higher than P ′3. As a case study, in
Section 7 we show how to semi-automatically obtain the cut-free hypersequent
calculi for AL and� L, that have been discovered in [14] by trial and error.

2 Preliminaries: Sequents and Hypersequents

We consider formulas to be generated from a set V = {a, b, c, . . .} of propositional
variables, their duals V⊥ = {a⊥, b⊥, c⊥, . . .}, and the constants ⊥, 1, 0, and 1
via the binary connectives �, �, �, and �:1

F ::= V | V⊥ | ⊥ | 1 | 0 | 1 | F � F | F � F | F � F | F � F (1)

We use A,B,C, . . . to denote formulas, and we define the negation on formulas
via the usual DeMorgan equalities. It follows immediately that A⊥⊥ = A for
all A. We write A � B for A⊥ � B, and A ◦−−◦ B for (A � B) � (B � A). For
reasons that will become clear later, we will write A�1 for A � 1.

We will also speak about axiom (schemes) φ, ψ, . . ., which are generated by
the same grammar as (1), but starting from formula variables instead of proposi-
tional variables. By some abuse of notation, we use A,B,C, . . . to denote formula
1 We use here the notation used in the linear logic community. The table below gives

the translation to the notation used in the substructural logics community.

linear logic: � � � � ⊥ 1 0 �
substructural logics: ⊕ ·/� ∨ ∧ 0 1 ⊥ �
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ax
H | 	 A, A⊥

H | 	 Γ, A H | 	 A⊥, Δ
cut

H | 	 Γ, Δ

H
ew

H | 	 Γ

H | 	 Γ | 	 Γ
ec

H | 	 Γ

1
H | 	 1

H | 	 Γ, A H | 	 B, Δ�
H | 	 Γ, A � B, Δ

H | 	 Γ
⊥

H | 	 Γ,⊥
H | 	 Γ, A,B�
H | 	 Γ, A � B

�
H | 	 Γ,�

H | 	 Γ, A H | 	 Γ, B�
H | 	 Γ, A � B

H | 	 Γ, A�1
H | 	 Γ, A � B

H | 	 Γ, B�2
H | 	 Γ, A � B

Fig. 1. Hypersequent system HMALL

variables. We call an axiom φ atomic if φ = A or φ = A⊥ for some formula vari-
able A. By some further abuse of notation, we will use A,B,C, . . . to denote
atomic axioms (positive or negative).

We write �n
i=1Ai, or simply �iAi to abbreviate A1 � A2 � · · · � An, where

�n
i=1Ai = 0 if n = 0, and similarly for the other connectives.

Definition 1. A (single sided) sequent is a finite multiset of formulas, usually
written as �A1, . . . , An. A (single sided) hypersequent H is a finite multiset
of sequents written as �Γ 1| . . . | � Γn. The interpretation ( �Γ )I of a sequent
�Γ = �A1, . . . , An is the formula A1 � · · · � An, and ( �Γ )I = ⊥, if n = 0. For
a hypersequent H = �Γ 1| . . . | �Γn, we define H I = ( �Γ 1)I�1 � · · ·� ( �Γn)I�1.

Henceforth we use Γ,Δ,Σ, . . . to denote multisets of formulas, and G ,H , . . . to
denote hypersequents. We denote by HMALL the hypersequent system shown
in Figure 1. With MALL we denote the corresponding sequent system, obtained
from HMALL by removing the rules ec and ew, and by dropping the hypersequent
context H everywhere. In inference rules we will refer to Γ,Δ,Σ, . . . as multiset
variables (as opposed to the formula variables A,B, . . .).

The notation �S A (respectively �S Γ or �S H ) will mean that a formula A
(respectively a sequent �Γ or a hypersequent H ) is provable in the system S.

Proposition 1. For any sequent �Γ and hypersequent G , we have that

�HMALL+G Γ iff �MALL+G I Γ .

Proof. For the ‘if’ direction, observe that G I is derivable from G in HMALL. For
the converse, prove by induction that �HMALL+G H implies �MALL+G I H I . "#

Definition 2. Given two sets of inference rules S1 and S2, we say that S1 and
S2 are equivalent iff (H)MALL + S1 and (H)MALL + S2 prove the same sequents.
If S1 = {r} is a singleton, we simply write (H)MALL + r.

An axiom φ is a rule without premises. Thus, the definition above applies also
to (sets of) axioms.
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Remark 1. By moving to the single-sided (multiple conclusion) setting, we do
not lose any expressive power of the two-sided single-conclusion setting (i.e. in-
volving sequents of the form Γ � A). Indeed the latter can faithfully be embedded
into the former by using left/right polarities, referring to the left and the right
side of a two-sided sequent (see, e.g., [8,9] for details). We can then call a MALL
formula (or axiom) intuitionistic, if it has right polarity. A MALL sequent �Γ
is intuitionistic iff at most one formula in Γ has right polarity, and all other
formulas in Γ have left polarity, and a proof in MALL is called intuitionistic if
all its lines are intuitionistic sequents. We then have that a formula A belongs to
intuitionistic logic iff its translation Ac into the classical language is intuition-
istic in our sense. Let IMALL denote the usual two-sided sequent calculus for
intuitionistic MALL (also known as full Lambek calculus with exchange, FLe),
then we have �IMALL Γ �A iff there is an intuitionistic proof of (Γ �A)c in MALL.
Furthermore, If A does not contain any occurrences of ⊥ or 1, then �IMALL Γ �A
iff �MALL (Γ �A)c. The reason is that MALL is a conservative extension of IMALL
without ⊥ and 1 [21].

3 Substructural Hierarchy

Following [3,4], we define a hierarchy (Pn,Nn) on formulas of MALL. It is based
on the polarities of the connectives [1], which is also the basis for focusing and
linear logic programming [17]. Recall that logical connectives of MALL can be
classified into two groups: negative (�, �, ⊥, and 1) and positive (�, �, 0, and
1), according to the fact that their sequent calculus rules are invertible and
non-invertible, respectively.

Let A be the set of atomic axioms. The classes Pn and Nn of positive and
negative axioms are defined via the following grammar:

P0 ::= A Pn+1 ::= Nn | Pn+1 � Pn+1 | Pn+1 � Pn+1 | 1 | 0

N0 ::= A Nn+1 ::= Pn | Nn+1 � Nn+1 | Nn+1 � Nn+1 | 1 | ⊥
(2)

We have the following immediate observations:

Proposition 2. Every axiom belongs to some Pn and some Nn, and for all n,
we have Pn ⊆ Pn+1 and Nn ⊆ Nn+1. Furthermore, A ∈ Pn iff A⊥ ∈ Nn.

Hence we have a hierarchy, called the substructural hierarchy in [3,4], which can
be depicted as in Figure 2.

P0 P1 P2 P3

N0 N1 N2 N3

�

�

�

�
�

���

�

�
�

���

�

�
�

���

� � � � � � � � ��

�
�

�
���

�
�

�
���

�
�

�
���

� � � � � � � ��

Fig. 2. The Substructural Hierarchy
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Axiom (intuitionistic and classical version) Name Rule Class

i: A � 1, ⊥ � A
weakening w

N2

c: A � 1 N2

i: A � A � A
contraction c

N2

c: A⊥ � (A � A) N2

i: A � (A � ⊥)
excluded middle em

P2

c: A � A⊥ P1

i: (A � B)�1 � (B � A)�1 linearity com
P ′

3

c: (A⊥ � B)�1 � (B⊥ � A)�1 P ′
3

i: ((A�2 � B) � ((B � ⊥)�2 � (A � ⊥))) � (A � B)
Nelson axiom nel

N3

c: ((A � A � B) � (B � B � A)) � A⊥ � B⊥ N2

i: A � (A�n � ⊥)
n-excluded middle n-em

P2

c: A � (A⊥)�n P2

We abbreviate A � · · · � A (n times) by A�n and A � · · · � A (n times) by A�n.

Fig. 3. Axioms and their level in the substructural hierarchy

Remark 2. In [4] the hierarchy was defined on formulas of IMALL as follows:

P i
0 ::= A P i

n+1 ::= N i
n | P i

n+1 � P i
n+1 | P i

n+1 � P i
n+1 | 1 | 0

N i
0 ::= A N i

n+1 ::= P i
n | N i

n+1 � N i
n+1 | P i

n+1 � N i
n+1 | 1 | ⊥,

where A ranges over positive atomic axioms (without negation). It follows from
Remark 1 that the two hierarchies coincide: φ ∈ P i

n iff φc ∈ Pn, and φ ∈ N i
n iff

φc ∈ Nn.

Figure 3 shows some examples of axioms and their class, and Figure 4 shows
the corresponding structural rules. How they are obtained will be explained in
the course of this paper. Observe we can have the following situation: For a
certain intuitionistic axiom φ there is an axiom φ′ located in a lower class of
the hierarchy such that φ′ is not intuitionistic and �MALL φ ◦−−◦ φ′. The use of
the classical language also simplifies the following statement, established in [4],
which will be used to make syntactic transformations of axioms.

Proposition 3. Every axiom φ ∈ Pn+1 is equivalent to an axiom of the form
�i

(

�jψi,j

)

where ψi,j ∈ Nn for each i, j. And every axiom φ ∈ Nn+1 is equiv-
alent to an axiom of the form �i

(

�jψi,j

)

where ψi,j ∈ Pn for each i, j.

Definition 3. An axiom φ is called N2-normal if it is of the shape

φ = �k

(

�i

(

�jAk,i,j

))

where each Ak,i,j is atomic.

It follows immediately from Proposition 3 that any N2-axiom can be transformed
into a finite conjunction (�) of N2-normal axioms. As in [4], for dealing with
systems having no weakening, we consider a subclass of P3 that we call P ′3,
which is generated by the grammar:

P ′3 ::= N2 � 1 | P ′3 � P ′3 | P ′3 � P ′3 | 1 | 0
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	 Γ
w

	 Γ, Δ

	 Γ, Δ, Δ
c

	 Γ, Δ

	 Γ, Γ
em

	 Γ

	 H |Γ, Θ 	 H |Σ, Δ
com

H | 	 Γ, Δ| 	 Σ, Θ

	 Γ, Σ, Σ, Δ 	 Γ, Σ, Δ, Δ
nel

	 Γ, Δ, Σ

H | 	 Γ, Σ1 · · · H | 	 Γ, Σn
n-em

H | 	 Γ | 	 Σ1, . . . , Σn

Fig. 4. Rules generated from axioms in Figure 3

Lemma 1. The set {φ�1 �ξ, ψ�1 �ξ} is equivalent (in the sense of Definition 2)
to (φ�1 � ψ�1) � ξ as well as to (φ � ψ)�1 � ξ, for any φ, ψ, and ξ.

Proof. Follows from provability in MALL of (A�1�C)�(B�1�C)�(A�1�B�1)�C
and (A�1 � B�1) � C � (A � B)�1 � C, for all formulas A, B, and C. "#

Proposition 4. Every axiom φ ∈ P ′3 is equivalent to a finite set {ψ1, . . . , ψn}
of axioms such that ψi = �mi

j=1(ξi,j)�1 where ξi,j is N2-normal for all i, j.

Proof. We have φ ◦−−◦ �j�k (�lξj,k,l)�1 where ξj,k,l is N2-normal, so that we
can apply Lemma 1. "#

4 From N2-Axioms to Sequent Rules

In this section we provide an algorithm for transforming N2 axioms into equiv-
alent sequent calculus rules. Our algorithm extends and simplifies the one in-
troduced in [4] (and in [3], for the noncommutative case) for axioms in N i

2 and
structural rules. A suitable modification of the procedure also enables us to
extend the result to logical rules.

Lemma 2. For any axiom ξ, the following two sequent rules are equivalent

�Σ1 · · · �Σn

� Γ, ξ
and

�Σ1 · · · �Σn �Δ, ξ⊥

�Γ,Δ
, (3)

where Δ is fresh. If ξ ∈ P1, then the rules in (3) are equivalent to a rule

�Σ1 · · · �Σn �Δ,A1,1, . . . , A1,k1 · · · �Δ,Am,1, . . . , Am,km

�Γ,Δ
(4)

where each Ai,j is atomic and m, k1, . . . , km ≥ 0.

Proof. The first equivalence is shown in one direction by letting Δ = ξ and using
the ax-rule and in the other direction by using cut. If ξ ∈ P1 then ξ⊥ ∈ N1, and
hence ξ⊥ is equivalent to �i

(

�jAi,j

)

. Then (4) follows by using the (invertible)
rules �, �, 1 and ⊥. "#
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Theorem 1. Every N2-axiom can be transformed into a finite set of equivalent
structural sequent rules, whose conclusions consist only of multiset variables.

Proof. Let φ be any N2-axiom. By Proposition 3 φ is equivalent to a finite set
{ψ1, . . . , ψn} of N2-normal axioms, which means that each ψi is equivalent to

� ξi,1, . . . , ξi,mi

(5)

where each ξi,j ∈ P1. The claim follows by repeatedly applying Lemma 2. "#

Example 1. Applying the above procedure to excluded middle and Nelson
axiom respectively (see Figure 3) yields the structural rules:

�Γ,A �Γ,A⊥
em′

�Γ

� Γ,A⊥, A⊥, B � Γ,A⊥, B,B �Δ,A �Σ,B⊥
nel′

� Γ,Δ,Σ

These rules will be further transformed in Section 6 into equivalent rules obeying
the subformula property.

By suitably adapting the procedure above we show below how to generate logical
rules for connectives which are defined via N2 axioms.

Theorem 2. Let � be a connective. Any axiom of the shape φ� (A �B), where
A and B are formula variables and φ ∈ N2, is equivalent to a finite set of logical
sequent rules for �.

Proof. By Proposition 3 φ � (A � B) is equivalent to a finite set {ψ1 � (A �

B), . . . , ψn � (A � B)} where each ψi is N2-normal. Hence each ψi � (A � B) is
equivalent to

� ξi,1, . . . , ξi,mi , A � B
(6)

where each ξi,j ∈ P1. By repeatedly applying Lemma 2 we eliminate all ξi,j thus
obtaining a logical rule for A � B. "#

Note that Theorem 2 also applies for n-ary connectives. In Section 7 we show
two examples of the usage of this theorem for the binary case.

5 From P ′
3-Axioms to Hypersequent Rules

In this section we show how to obtain structural rules in hypersequent calculus
which are equivalent to P ′3-axioms (P3, in presence of weakening). Our procedure
generalizes the one in [4].

First notice that Lemma 2 can be extended to hypersequent calculus, without
having to change the proof (by using ew and ec), as follows:

Lemma 3. For any axiom ξ, the following hypersequent rules are equivalent

G1 · · · Gn

H |H ′| �Γ, ξ
and

G1 · · · Gn H | �Δ, ξ⊥

H |H ′| �Γ,Δ
, (7)
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where Δ is fresh. If ξ ∈ P1, then the rules in (7) are equivalent to a rule

G1 · · · Gn H | �Δ,A1,1, . . . , A1,k1 · · · H | �Δ,Am,1, . . . , Am,km

H |H ′| �Γ,Δ
, (8)

where each Ai,j is atomic and m, k1, . . . , km ≥ 0.

Definition 4. A hypersequent structural rule or hyperstructural rule is

H | �Ψ1 . . . H | �Ψn

H | �Φ1| . . . | �Φm

(9)

where each Φi and Ψj contains only multiset variables and formula variables.

Theorem 3. Every P ′3-axiom is equivalent to a finite set of hyperstructural rules
where Φ1, . . . , Φn consist of mutually distinct multiset variables.

Proof. Let φ be a P ′3-axiom. By Proposition 4, φ is equivalent to a finite set
{ψ1, . . . , ψn} of formulas such that ψi = �j(χi,j)�1 where χi,j is N2-normal for
all i, j. Thus, by Proposition 1 (see Def. 1 and 3), each ψi is equivalent to

� ξi,1,1, . . . , ξi,1,mi1 | . . . | . . . | � ξi,k,1, . . . , ξi,k,mik
(10)

where each ξi,j,l ∈ P1. By presence of the ew-rule, (10) is equivalent to

H | � ξi,1,1, . . . , ξi,1,mi1 | . . . | . . . | � ξi,k,1, . . . , ξi,k,mik

(11)

Thus, to each component of (11) we can apply the same procedure as in the
proof of Theorem 1, by using Lemma 3 instead of Lemma 2. "#

Corollary 1. Every P3-axiom is equivalent to a finite set of hyperstructural
rules in presence of weakening.

Proof. This follows from Theorem 3 and the fact that �MALL+w A ◦−−◦A � 1. "#

Example 2. The axiom A � (A⊥)�n in Figure 3 (n-excluded middle) is equiv-
alent to the following structural rule, in the presence of weakening

H | �Σ1, A
⊥ · · · H | �Σn, A

⊥ H | �Γ,A
n-em′

H | �Γ | �Σ1, . . . , Σn

Remark 3. The step from Theorem 1 to Theorem 2 can also be done in the
setting of hypersequents. Indeed, suppose that a connective � appears in an
axiom φ which is equivalent to a set of rules of the shape

� ξ1,1, . . . , ξ1,m1 | . . . | . . . | � ξk,1, . . . , ξk,mk
, A � B

We can apply the same procedure as in the proof of Theorem 3 to obtain a set
of logical hypersequent rules for �.
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6 Rule Completion and Cut-Elimination

Let us take stock of what we achieved so far. Sections 4 and 5 contain procedures
to transform axioms up to the class P ′3 (P3, in presence of w) into equivalent
(hyper)structural rules. Here we show how they can, provided they are acyclic, be
transformed into equivalent rules which preserve cut-elimination when added to
HMALL. A uniform and constructive cut elimination proof for HMALL extended
with these rules is presented.

Definition 5. The cut-closure CUT(r) of a (hyper)structural rule r is the min-
imal set which contains the premises of r and it is closed under applications of
the cut rule. A rule r is said to be cyclic if for some formula variable A, we have
H | �Γ ,A,A⊥ ∈ CUT(r). Otherwise r is acyclic.

Example 3. The rules em′, nel′, and n-em′ in Examples 1 and 2 are acyclic. On
the other hand, the following two rules are cyclic:

� Γ,A,A⊥
cancel

�Γ
and

�Γ,A⊥, A⊥ �Δ,A,A
menace

�Γ,Δ

Definition 6. We call a hyperstructural rule r completed if it satisfies the fol-
lowing properties [4]:

– No Formula Variable (NFV ): The conclusion and all premises of r contain
only multiset variables and hypersequent contexts.

– Linear Conclusion (LC ): Each multiset variable occurs at most once in the
conclusion of r.

– Subformula Property (SP): Each multiset variable occurring in the premises
of r also occurs in the conclusion.

The conditions (NFV) and (LC) are crucial for the cut-elimination proof be-
low (see, e.g., [24] for counterexamples when either of them is violated). Con-
dition (SP) ensures that cut-elimination implies the subformula property. The
rules generated by our procedures satisfy (NFV) for the conclusion, and (LC)
and (SP) for multiset variables. Thus, for transforming them into equivalent
completed rules it is enough to remove formula variables from the premises.
This is done in the proof of the following theorem, by suitably modifying the
“cutting step” of [4].

Theorem 4. Any acyclic (hyper)structural rule r generated by the procedures in
Theorems 1 and 3 can be transformed into an equivalent completed rule.

Proof. By induction on the number of formula variables in the premises of r.
Let A be one such variable. We denote by G+

A and G−A the (subsets of the)
premises of r which contain at least one occurrence of A and A⊥, respectively.
If G+

A = ∅ we remove G−A . As A does not appear in the conclusion of r, the
resulting rule implies the original one by instantiating A with 1. The case
G−A = ∅ is similar. Otherwise, note that A⊥ �∈ G+

A and A �∈ G−A by acyclicity;
moreover if some hypersequent in G+

A (resp. G−A ) contains several occurrences
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of A (resp. of A⊥) then no hypersequent in G−A (resp. in G+
A ) contains more

than one occurrence of A⊥ (resp. of A). Hence we may assume w.l.o.g. that
G+

A = {H | � Υ i, A : 1 ≤ i ≤ m} and G−A = {H | �Φk, A
⊥, . . . , A⊥ : 1 ≤ k ≤ n}.

Let Gcut
A = {H | �Φk, Υi1 , . . . , Υik

: 1 ≤ k ≤ n and 1 ≤ i1, . . . , ik ≤ m}. Let r′ be
the rule obtained by replacing in r the premises G−A ∪G+

A with Gcut
A . We show that

r′ is equivalent to r. The direction r′ ⇒ r easily follows by using cut. For the other
direction, we set Ã = �m

i=1Υi. Clearly �HMALL H | � Υ i, Ã, for all i = 1, . . . ,m,
and for each k = 1, . . . , n, the hypersequent H | �Φk, Ã

⊥, . . . , Ã⊥ is derivable
from Gcut

A using the �-rule. By applying r we get the conclusion of r′. Acyclicity
is preserved, the number of formula variables decreased by one. "#

Example 4. By applying the procedure in Theorem 4 to the rules in Examples
1 and 2 we obtain the equivalent completed rules em, nel and n-em of Figure 4.
MALL + nel is the cut-free calculus recently introduced in [12] for constructive
logic with strong negation (also known as Nelson’s logic). HMALL + w + n-em is
instead a cut-free calculus for MALL extended with weakening and n-excluded
middle (see Figure 3). The latter logic coincides with 3-valued �Lukasiewicz logic
when n = 2 and with the logic IMT3 of [5] for n = 3.

Conjecture 1. In presence of w, any (hyper)structural rule generated by
Theorems 1 and 3 can be transformed into an equivalent completed rule.

The construction of the completed rule proceeds similarly as in the proof of
Theorem 4: Let ĜA be the cut-closure of G+

A∪G−A with cut-formula A and without
G+

A ∪G−A , and let ↓ĜA be the set of minimal elements of ĜA wrt. the application
of w. Note that if r is cyclic, then ĜA is infinite, but ↓ĜA is finite. Let ↓Ĝ+

A be the
set of hypersequents in ↓ĜA that do not contain A⊥, and let Gcut

A be obtained
from ↓Ĝ+

A by deleting A everywhere. Let r′ and r′′ be the rules obtained from
r by replacing the premises G+

A ∪ G−A with ↓ĜA and Gcut
A , respectively. Then it

remains to show that r, r′, and r′′ are equivalent. (Note that r′ ⇒ r′′ follows by
setting A = ⊥ and A⊥ = 1 since 1 behaves as 1 in the presence of w.)

Example 5. By applying the procedure sketched above to menace, we get the
contraction rule c, while cancel yields the (contradictory) rule

� Γ
. It is easy

to see that the obtained rules are equivalent to menace and cancel, respectively.

Let us write HMALLext to denote HMALL extended with any set of completed
rules. We now outline a syntactic proof of cut-elimination for HMALLext (see [4]
for a semantic proof in the single-conclusion setting). As usual, the length |d|
of a (hyper)sequent derivation d is the maximal number of inference rules + 1
occurring on any branch of d. The complexity |A| of a formula A is the number of
occurrences of its connectives. The cut rank ρ(d) of d is the maximal complexity
of the cut-formulas in d plus 1. Clearly ρ(d) = 0 if d has no cuts.

Lemma 4. Let d+ and d− be derivations in HMALLext such that
(i) d+ is a derivation of H | � Γ,A and ρ(d+) ≤ |A|, and
(ii) d− is a derivation of H | �Σ,A⊥ and ρ(d−) ≤ |A|, and
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(iii) A is a compound formula and one of d+ or d− ends with a logical rule
introducing A.

Then we can find a derivation d in HMALLext of H | �Γ,Σ with ρ(d) ≤ |A|.

Of course, one could derive H | �Γ,Σ by applying cut, but the resulting deriva-
tion would then have cut-rank |A| + 1.

Proof. Assume w.l.o.g. that d− ends with a logical rule introducing A⊥. Consider
a derivation d′+ of H | �Γ 1, A

λ1 | . . . | �Γn, A
λn with ρ(d′+) ≤ |A| whereAλ stands

for A, . . . , A (λ times). We prove, by induction on |d′+|, that one can find a
derivation of H | �Γ 1, Σ

λ1 | . . . | �Γn, Σ
λn with cut-rank ≤ |A|. This is required

to deal with internal and external contraction rules. If d′+ ends in an axiom
(ax, 1,1) then we are done. Otherwise, let r be the last inference rule in d′+.
(a) If r acts only on H or r is ew, ec or ⊥ then the claim follows by the induction

hypothesis and an application of r. The same holds when r is a logical rule
which does not introduce a cut formula A.

(b) Suppose that r is an introduction rule for A. The claim easily follows by
applying cut to the premise(s) of r and to the premise(s) of the last rule
applied in d− (which is a logical rule introducing A⊥). The cut-formula(s) of
the newly introduced cut is (are) the auxiliary formula(s) of A and therefore
the resulting derivation has cut-rank ≤ |A|.

(c) If r is any completed rule then the properties of (NFV) and (LC) allow the
cut to be shifted upward over the rule premises. The claim follows by the
induction hypothesis and an application of r. "#

Lemma 5. Let d+ and d− be derivations in HMALLext such that the hypothesis
(i) and (ii) of Lemma 4 hold. Then we can find a derivation d in HMALLext of
H | �Γ ,Σ with ρ(d) ≤ |A|.

Proof. Proceed similarly to that of Lemma 4. If the last inference rule applied is
any rule other than a logical rule introducing a cut-formula A, the proof proceeds
as in cases (a) and (c). Otherwise the claim follows by induction hypothesis, an
application of r and Lemma 4. "#

Theorem 5 (Cut-elimination). HMALL extended with any set of completed
rules admits cut-elimination.

Proof. Let d be a derivation in HMALLext with ρ(d) > 0. The proof proceeds
by a double induction on (ρ(d),#ρ(d)), where #ρ(d) is the number of cuts in d
with cut-rank ρ(d). Consider an uppermost application of cut in d with cut-rank
ρ(d). By applying Lemma 5 to its premises either ρ(d) or #ρ(d) decreases. "#

Remark 4. Let S be any set of hypersequents that (1) contain only atomic for-
mulas, (2) are closed under cut, and (3) do not contain any hypersequent of the
form H | �Γ ,A,A⊥. Then our cut-elimination proof also allows the elimination
of cuts from HMALLext proofs whose leaves are either axioms (ax, 1,1) or hyper-
sequents belonging to S. This establishes a stronger form of cut-elimination.
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7 A Case Study: Abelian and �Lukasiewicz Logics

Consider the axiom inv: A�(A�1). Writing A−1 for A�1 and noting that inv is
equivalent to 1◦−−◦(A�A−1), one immediately sees that inv states that A−1 is the
inverse element of A with unit 1. Adding inv to IMALL yields a contradiction as
�IMALL 0�0−1 �A. However, IMALL+ inv without 1 and 0 is consistent. Indeed,
the logic AL = IMALL \ {1, 0,⊥}+ inv has the lattice ordered Abelian groups as
models (see, e.g., [18]), and for this reason is called Abelian logic [15,16].

Observe that inv ∈ P3, but unfortunately inv /∈ P ′3. Hence the method devel-
oped in [4] does not apply. What can we do?

Episode 1: The Power of Multiple Conclusion. First, we move to the
classical setting. Let MALL− denote MALL without 1 and 0. In MALL−, the
axiom inv can be derived from two more basic axioms ⊥� 1 and A�B �A�B.
that we call mixax and mixinv, respectively. The interesting observation is that
these two axioms are not only sufficient, but also necessary:

Theorem 6. For every AL-formula A, we have that AL proves A if and only if
MALL− + mixax + mixinv proves A.

Proof. (⇒) Observe that MALL− + mixax + mixinv proves inv. (⇐) Prove by
induction that if MALL− + mixax + mixinv proves �A1, . . . , An, then �AL �iA

a
i ,

where Aa
i is obtained from Ai by replacing ⊥ by 1, � by �, and a⊥ by a� 1. "#

There are two important observations to make: First, mixax and mixinv are both
in N2 and therefore Theorem 1 applies. Second, mixinv is not an intuitionistic
axiom. Thus, the shift to the multiple conclusion setting is crucial.

Episode 2: The Structuralization of the Axioms. Let us now apply
Theorem 1 to produce structural rules equivalent to mixax and mixinv:

mixax : ⊥ � 1 �
� 1, 1

�
�Γ,⊥ �Δ,⊥

�Γ,Δ
�

� Γ �Δ
mix

�Γ,Δ

mixinv : A�B�A�B �
�A⊥ � B⊥, A � B

�
� Γ,A⊥, B⊥ �Δ,A,B

�Γ,Δ

The result for mixinv is a cyclic rule. One formula variable (e.g. B) can be
removed using the procedure in the proof of Theorem 4 thus obtaining the cancel
rule of Example 3. However, there is no way to proceed further to obtain any
equivalent completed rule.

Episode 3: Why Not Logical Rules? Instead of transforming mixinv into
a structural rule, let us apply Theorem 2 to obtain a new logical rule for the
�-connective. Indeed:

mixinv : A � B � A � B �
�A⊥ � B⊥, A � B

�
�Γ,A,B

�′
� Γ,A � B

The rule � is then derivable from mix and �′, and can be removed. We now
have a system in which only the cut rule does not have the subformula property.
However, every attempt to eliminate cut will introduce the cancel rule, and every
attempt to eliminate the cancel rule will introduce cut — a dead end.
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Episode 4: A New Hope. By inspecting the failed attempts for cut/cancel-
elimination, we find a concrete counterexample, that is the excluded middle law
A � A⊥. It belongs to P1, so why not transforming it into a structural rule? By
applying our procedure, we obtain the equivalent rule em in Figure 4. Hence we
can safely add em without changing the logical strength of the system. Do we
now have cut and cancel elimination?

Episode 5: Counterexample Strikes Back. Unfortunately, no. We find two
more counterexamples: ⊥ and (A� 1)� (A⊥ � 1). The former is equivalent to the
nullary mix rule mix0

�
, while the latter, which we call splax, is in P ′3. We can

therefore apply Theorems 3 and 4 to obtain a hyperstructural rule:

splax �
H | �A| �A⊥

�
H | � Γ,A⊥ H | �Δ,A

H | �Γ | �Δ
�

H | � Γ,Δ
split

H | �Γ | �Δ

This leads us to switch from MALL− to its hypersequent counterpart HMALL−,
and accordingly generalize mix and �′ to their hypersequent counterparts, which
we still call mix and �′. A good news is that the previous rule em is redundant
in presence of split.

Episode 6: The Return of Cut Elimination. We have finally arrived at
the system HAL = HMALL− + mix + mix0 + �′ + split for AL introduced in [14].
A concrete cut-elimination procedure which relies on the invertibility of logical
rules is contained in [13]. Hence, we have

Theorem 7. HAL admits cut-elimination.

The General Pattern. Our development so far suggests the following heuris-
tics to find a cut-free calculus for a given logic.
1. Convert axioms into structural/logical rules having the subformula property.
2. If we obtain a cut-free system, we are done. Otherwise, find a counterexam-

ple A by inspecting the failure of cut-elimination.
3. If A ∈ N2 or A ∈ P ′3, apply Theorem 1 or 3 accordingly and go to 2.

(Otherwise, we get stuck.)
One can think of it analogous to the Knuth-Bendix algorithm for obtaining
a confluent rewriting system out of a set of equations. But the analogy is only
shallow, since ours is neither complete nor gives rise to a semi-decision procedure.

Another Example. A similar situation arises for infinite-valued �Lukasiewicz
logic � L. This logic is axiomatized by adding ((A � B) � B) � ((B � A) � A)
to IMALL. In � L, the additive disjunction is definable from linear implication:
((A�B) �B) ◦−−◦A�B. Hence the above axiom just states the commutativity
of �. The axiom is in N3, so cannot be dealt with by our general method.

Episode 7: Defining a New Connective. It is known that� L can be faithfully
interpreted in Abelian logic. In particular, the �Lukasiewicz implication A

�L⇒ B

can be defined by (A �L⇒ B) ◦−−◦ (A � B)�1 inside Abelian logic [14]. Now, each
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of the two directions yields logical rules via Theorem 2 (and the equivalences
1◦−−◦⊥, A�B ◦−−◦A�B): one for A �L⇒B, and two for its DeMorgan dual A �L⇐B:2

� Γ,A⊥, B �Γ�L⇒
�Γ,A

�L⇒B

�Γ�L⇐1
�Γ,A

�L⇐ B

� Γ,A,B⊥�L⇐2
� Γ,A

�L⇐ B

These are the implication rules of the cut-free calculus for� L introduced in [14].

8 Concluding Remarks

Relation to Algebraic Completions. Given a (hyper)sequent calculus H, we
denote by H∞ its extension with infinitary conjunction �i∈IAi and disjunction
�i∈IAi, where I is an arbitrary index set, together with suitable logical rules
generalizing � and �. We say that H∞ is conservative over H if for any set
S ∪ {A} of H-formulas, S �H∞ A implies S �H A.

Since cut-elimination is a canonical way to show conservativity, one can ex-
pect that if all rules of H are “good”, i.e. admit a suitably strong form of cut-
elimination, then H∞ is conservative over H. The work in [3] proves that any
N2-axiom φ can be transformed into equivalent acyclic structural rules if and
only if IMALL∞+φ is conservative over IMALL+φ. We conjecture that the same
holds for P ′3 axioms, both in single and multiple-conclusion settings. Now the
question is: do Abelian logic and �Lukasiewicz logic admit such a strong form of
cut-elimination which imply conservativity?

A negative answer arises from the following two facts:
(i) H∞ is conservative over H if and only if the class V(H) of algebras corre-

sponding to H is closed under completions, in the sense that any V ∈ V(H)
can be embedded into a complete algebra in V(H) [3, Prop. 5.9].

(ii) Both the class of lattice ordered Abelian groups and the class of MV-
algebras (the algebraic semantics of � L) are not closed under completions,
see, e.g., [11].

Therefore, though the calculi of [14] admit cut-elimination, their rules, which
we extracted out of P3 and N3 axioms, are not “good” enough to ensure con-
servativity. This contrasts with the result for N2 axioms (and P ′3 ones, if our
conjecture is true, cf. Remark 4).

Relation to Categories. In the category theoretical setting, Abelian logic lives
in compact closed categories, whose canonical instance is the category of finite
dimensional vector spaces over a fixed field. Indeed, MALL− \ {�,�1,�2} +
mix + �′ is the calculus given by [22] which aims to capture morphisms in a
freely generated compact closed category via sequent proofs.

On the other hand, Abelian logic (and its hypersequent calculus HAL) also
incorporates � and �, which in the the world of categories are usually interpreted
as binary products and coproducts. Thus a natural question is whether there is

2 A
�L⇐B corresponds to the left occurrence of A

�L⇒B in the two-sided sequent calculus
(cf. Remark 1), not to be confused with the �Lukasiewicz negation of A

�L⇒ B.
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a nicely behaved equivalence relation on proofs in HAL such that the equivalence
classes are the morphisms in the free compact closed category with binary prod-
ucts and coproducts (as it is achieved by the rule permutations in the sequent
calculus for multiplicative linear logic and star-autonomous categories [10]).

Two observations: First, if we add initial and terminal objects, and therefore
get all finite products and coproducts, we get a collapse: products and coprod-
ucts coincide [6]. In terms of logic we have A � B ∼= A � B, and therefore an
inconsistency. This is not a surprise: we have seen above that adding 0 and 1 to
AL makes the logic inconsistent. Second, sequents are category theoretically well
studied in the form of polycategories [23], but it has not yet been investigated
what hypersequents mean in terms of categories.
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Abstract. The coalgebraic approach to modal logic provides a uniform frame-
work that captures the semantics of a large class of structurally different modal
logics, including e.g. graded and probabilistic modal logics and coalition logic.
In this paper, we introduce the coalgebraic μ-calculus, an extension of the general
(coalgebraic) framework with fixpoint operators. Our main results are complete-
ness of the associated tableau calculus and EXPTIME decidability. Technically,
this is achieved by reducing satisfiability to the existence of non-wellfounded
tableaux, which is in turn equivalent to the existence of winning strategies in
parity games. Our results are parametric in the underlying class of models and
yield, as concrete applications, previously unknown complexity bounds for the
probabilistic μ-calculus and for an extension of coalition logic with fixpoints.

1 Introduction

The extension of a modal logic with operators for least and greatest fixpoints leads to
a dramatic increase in expressive power [1]. The paradigmatic example is of course the
modal μ-calculus [10]. In the same way that the μ-calculus extends the modal logic K ,
one can freely add fixpoint operators to any propositional modal logic, as long as modal
operators are monotone. Semantically, this poses no problems, and the interpretation
of fixpoint formulas can be defined in a standard way in terms of the semantics of the
underlying modal logic.

This apparent simplicity is lost once we move from semantics to syntax: complete-
ness and complexity even of the modal μ-calculus are all but trivial [20,4], and μ-calculi
arising from other monotone modal logics are largely unstudied, with the notable excep-
tion of the graded μ-calculus [12]. Here, we improve on this situation, not by providing
a new complexity result for a specific fixpoint logic, but by providing a generic and
uniform treatment of modal fixpoint logics on the basis of coalgebraic semantics. This
allows for a generic and uniform treatment of a large class of modal logics and replaces
the investigation of a concretely given logic with the study of coherence conditions that
mediate between the axiomatisation and the (coalgebraic) semantics. The use of coal-
gebras conveniently abstracts the details of a concretely given class of models, which
is replaced by the class of coalgebras for a(n unspecified) endofunctor on sets. Specific
choices for this endofunctor then yield specific model classes, such as the class of all
Kripke frames or probabilistic transition systems. A property such as completeness or
complexity of a specific logic is then automatic once the coherence conditions are sat-
isfied. As it turns out, even the same coherence conditions that guarantee completeness
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c© Springer-Verlag Berlin Heidelberg 2009



180 C. Cı̂rstea, C. Kupke, and D. Pattinson

and decidability of the underlying modal logic entail the same properties of the ensuing
μ-calculus. This immediately provides us with a number of concrete examples: as in-
stances of the generic framework, we obtain not only the known EXPTIME bounds,
both for the modal and the graded μ-calculus [4,12], but also previously unknown
EXPTIME bounds for the probabilistic and monotone μ-calculus, and for an extension
of coalition logic [15] with fixpoint operators.

Our main technical results are a syntactical characterisation of satisfiability in terms
of (non-)existence of closed tableaux and a game-theoretic characterisation of satisfi-
ability that yields an EXPTIME upper bound for the satisfiability problem. Along the
way, we establish a small model theorem. We start by describing a parity game that
characterizes model checking for the coalgebraic μ-calculus. As in the model-checking
game for the modal μ-calculus (see e.g. [18]), we allow greatest and least fixpoints
to be unfolded ad libitum. Truth of a formula in a particular state of a model then
follows, if only greatest fixpoints are unfolded infinitely often on the top level along
infinite paths. This condition can be captured by a parity condition. The same technique
is employed in the construction of tableaux, which we conceptualise as finite directed
graphs: closed tableaux witness unsatisfiability of the root formula, provided that along
any infinite tableau path one can construct an infinite sequence of formulas (a “trace”)
that violates the parity condition. In particular, closed tableaux are finitely represented
proofs of the unsatisfiability of the root formula. Soundness of the tableau calculus is
established by showing that a winning strategy in the model checking game precludes
existence of a closed tableau. An EXPTIME upper bound for decidability is then estab-
lished with the help of tableau games, where the adversary chooses a tableau rule, and
the player claiming satisfiability chooses one conclusion which effectively constructs
a path in a tableau. In order to turn this tableau game into a parity game we combine
the game board with the transition function of a deterministic parity word automaton.
This automaton checks that on any given play, i.e., on any tableau path, there exists no
trace that violates the parity condition. We prove adequacy of the tableau game by con-
structing a satisfying model from a winning strategy in the tableau game, which makes
crucial use of the coherence conditions between the axiomatisation and the coalgebraic
semantics. This allows us to determine satisfiability of a fixpoint formula by deciding
the associated (parity) tableau game, and the announced EXPTIME upper bound fol-
lows once we can ensure that legality of moves in the tableau game can be decided in
exponential time.

Related Work. Our treatment is inspired by [14,19,17], but we note some important
differences. In contrast to [14], we use parity games that directly correspond to tableaux,
together with parity automata to detect bad traces. Moreover, owing to the generality
of the coalgebraic framework, the model construction here needs to super-impose a
coalgebra structure on the relation induced by a winning strategy. This construction is
necessarily different from [17], since we cannot argue in terms of modal rank in the
presence of fixpoints. Coalgebraic fixpoint logics are also treated in [19], where an
automata theoretic characterisation of satisfiability is presented. We add to this picture
by providing complexity results and a complete tableau calculus. Moreover, we use
standard syntax for modal operators, which allows us to subsume for instance the graded
μ-calculus that cannot be expressed in terms of the ∇-operator used in op.cit.
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2 The Coalgebraic μ-Calculus

To keep our treatment fully parametric in the underlying (modal) logic, we define the
syntax of the coalgebraic μ-calculus relative to a (fixed) modal similarity type, that is, a
set Λ of modal operators with associated arities. Throughout, we fix a denumerable set
V of propositional variables. We will only deal with formulas in negation normal form
and abbreviate Λ = {♥ | ♥ ∈ Λ} and V = {p | p ∈ V}. The arity of ♥ ∈ Λ is the
same as that of ♥. The set F(Λ) of Λ-formulas is given by the grammar

A,B ::= p | p | A ∨B | A ∧B | ♥(A1, . . . , An) | μp.A | νp.A

where p ∈ V, ♥ ∈ Λ ∪ Λ is n-ary and p does not occur in A in the last two clauses.
The sets of free and bound variables of a formula are defined as usual, in particular
p is bound in μp.A and νp.A. Negation · : F(Λ) → F(Λ) is given inductively by
p = p, A ∧B = A ∨ B, ♥(A1, . . . , An) = ♥(A1, . . . , An) and μp.A = νp.A[p :=
p] and the dual clauses for ∨ and ν. If S is a set of formulas, then the collection of
formulas that arises by prefixing elements of S by one layer of modalities is denoted by
(Λ ∪ Λ)(S) = {♥(S1, . . . , Sn) | ♥ ∈ Λ ∪ Λ n-ary, S1, . . . , Sn ∈ S}. A substitution
is a mapping σ : V → F(Λ) and Aσ is the result of replacing all free occurrences of
p ∈ V in A by σ(p).

On the semantical side, parametricity is achieved by adopting coalgebraic semantics:
formulas are interpreted over T -coalgebras, where T is an (unspecified) endofunctor on
sets, and we recover the semantics of a large number of logics in the form of specific
choices for T . To interpret the modal operators ♥ ∈ Λ, we require that T extends to a
Λ-structure and comes with a predicate lifting, that is, a natural transformation of type
[[♥]] : 2n → 2◦T op for every n-ary modality ♥ ∈ Λ, where 2 : Set → Setop is the con-
travariant powerset functor. In elementary terms, this amounts to assigning a set-indexed
family of functions ([[♥]]X : P(X)n → P(TX))X∈Set to every n-ary modal opera-
tor ♥ ∈ Λ such that (Tf)−1 ◦ [[♥]]X(A1, . . . , An) = [[♥]]Y (f−1(A1), . . . , f−1(An))
for all functions f : Y → X . If ♥ ∈ Λ is n-ary, we put [[♥]]X(A1, . . . , An) =
(TX) \ [[♥]]X(X \ A1, . . . , X \ An). We usually denote a structure just by the end-
ofunctor T and leave the definition of the predicate liftings implicit. A Λ-structure is
monotone if, for all sets X we have that [[♥]]X(A1, . . . , An) ⊆ [[♥]]X(B1, . . . , Bn)
whenever Ai ⊆ Bi for all i = 1, . . . , n.

In the coalgebraic approach, the role of frames is played by T -coalgebras, i.e. pairs
(C, γ) where C is a (state) set and γ : C → TC is a (transition) function. A T -model is
a triple (C, γ, σ) where (C, γ) is a T -coalgebra and σ : V → P(C) is a valuation (we
put σ(p) = C \ σ(p)). For a monotone T structure and a T -model M = (C, γ, σ), the
truth set [[A]]M of a formula A ∈ F(Λ) w.r.t. M is given inductively by

[[p]]M = σ(p) [[p]]M = C \ σ(p) [[μp.A]]M = LFP(AM
p ) [[νp.A]]M = GFP(AM

p )

[[♥(A1, . . . , An)]]M = γ−1 ◦ [[♥]]C([[A1]]M , . . . , [[An]]M )

where LFP(AM
p ) and GFP(AM

p ) are the least and greatest fixpoint of the monotone
mapping AM

p : P(C) → P(C) defined by AM
p (X) = [[A]](C,γ,σ′) with σ′(q) = σ(q)

for q �= p and σ′(p) = X . We write M, c |= A if c ∈ [[A]]M to denote that A is satisfied
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at c. A formula A ∈ F(Λ) is satisfiable w.r.t. a given Λ-structure T if there exists a
T -model M such that [[A]]M �= ∅. The mappings AM

p are indeed monotone in case of a
monotone Λ-structure, which guarantees the existence of fixpoints.

Example 1. 1. T -coalgebras (C, γ : C → P(C)) for TX = P(X) are Kripke
frames. If Λ = {�} for � unary and � = ♦, F(Λ) are the formulas of the modal μ-
calculus [10], and the structure [[�]]X(A) = {B ∈ P(X) | B ⊆ A} gives its semantics.

2. The syntax of the graded μ-calculus [12] is given (modulo an index shift) by the
similarity type Λ = {〈n〉 | n ≥ 0} where 〈n〉 = [n], and 〈n〉A reads as “A holds in
more than n successors”. In contrast to op. cit. we interpret the graded μ-calculus over
multigraphs, i.e. coalgebras for the functor B (below) that extends to a structure via

B(X) = {f : X → N | supp(f) finite} [[〈n〉]]X(A) = {f ∈ B(X) |
∑

x∈X

f(x) > n}.

where supp(f) = {x ∈ X | f(x) �= 0} is the support of f . Note that this semantics
differs from the Kripke semantics for both graded modal logic [7] and the graded μ-
calculus, but both types of semantics induce the same satisfiability problem: Kripke
frames are multigraphs where each edge has multiplicity one, and the unravelling of a
multigraph can be turned into a Kripke frame by inserting the appropriate number of
copies of each state. Both transformations preserve satisfiability.

3. The probabilistic μ-calculus arises from the similarity type Λ = {〈p〉 | p ∈
[0, 1]∩Q} where 〈p〉 = [p] and 〈p〉φ reads as “φ holds with probability at least p in the
next state”. The semantics of the probabilistic μ-calculus is given by the structure

D(X) = {μ : X →f [0, 1] |
∑

x∈X

μ(x) = 1} [[〈p〉]]X (A) = {μ ∈ D(X) |
∑

x∈A

μ(x) ≥ p}

where →f indicates maps with finite support. Coalgebras for D are precisely image-
finite Markov chains, and the finite model property of the coalgebraic μ-calculus that
we establish later ensures that satisfiability is independent of image-finite semantics.

4. Formulas of coalition logic over a finite set N of agents [15] arise via Λ = {[C] |
C ⊆ N}, and are interpreted over game frames, i.e. coalgebras for the functor

G(X) = {(f, (Si)i∈N ) |
∏

i∈N

Si �= ∅, f :
∏

i∈N

Si → X}

which is a class-valued functor, which however fits with the subsequent development.
We think of Si as the set of strategies for agent i and f is an outcome function. We read
[C]A reads as “coalition C can achieve A”, which is captured by the lifting

[[[C]]]X(A) = {(f, (Si)i∈N ) ∈ G(X) | ∃(si)i∈C∀(si)i∈N\C(f((si)i∈N ) ∈ A}
that induces the standard semantics of coalition logic.

5. Finally, the similarity type Λ = {�} of monotone modal logic [2] has a single
unary � (we write � = ♦) and interpret the ensuing language over monotone neigh-
bourhood frames, that is, coalgebras for the functor / structure

M(X) = {Y ⊆ P(P(X)) | Y upwards closed} [[�]]X(A)={Y ∈ M(X) | A ∈ Y }
which recovers the standard semantics in a coalgebraic setting [8].

It is readily verified that all structures above are indeed monotone.
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3 The Model-Checking Game

We start by describing a characterisation of model checking in terms of parity games
that generalises [18, Theorem 1, Chapter 6] to the coalgebraic setting. The model-
checking game is a variant of the one from [3]. A parity game played by ∃ (Éloise) and
∀ (Abelard) is a tuple G = (B∃, B∀, E,Ω) where B = B∃ ∪B∀ is the disjoint union of
positions owned by ∃ and ∀, respectively,E ⊆ B×B indicates the allowed moves, and
Ω : B → ω is a (parity) map with finite range. An infinite sequence (b0, b1, b2, . . . ) of
positions is called bad if max{k | k = Ω(bi) for infinitely many i ∈ ω} is odd.

A play in G is a finite or infinite sequence of positions (b0, b1, . . . ) with the property
that (bi, bi+1) ∈ E for all i, i.e. all moves are legal, and b0 is the initial position of
the play. A full play is either infinite, or a finite play ending in a position bn where
E[bn] = {b ∈ B | (bn, b) ∈ E} = ∅, i.e. no more moves are possible. A finite play
is lost by the player who cannot move, and an infinite play (b0, b1, . . . ) is lost by ∃ if
(b0, b1, . . . ) is bad.

A strategy in G for a player P ∈ {∃, ∀} is a function s that maps plays that end in a
position b ∈ BP of P to a position b′ ∈ B such that (b, b′) ∈ E whenever E[b] �= ∅.
Intuitively, a strategy determines a player’s next move, depending on the history of the
play, whenever the player has a move available. A strategy for a player P ∈ {∃, ∀} is
called history-free if it only depends on the last position of a play. Formally, a history-
free strategy for player P ∈ {∃, ∀} is a function s : BP → B such that (b, s(b)) ∈ E
for all b ∈ BP with E[b] �= ∅. A play (b0, b1, . . . ) is played according to some strategy
s if bi+1 = s(b0 . . . bi) for all i with bi ∈ BP . Similarly a play (b0, b1, . . . ) is played
according to some history-free strategy s if bi+1 = s(bi) for all i with bi ∈ BP . Finally,
we say s is a winning strategy from position b ∈ B if P wins all plays with initial
position b that are played according to s.

We will use the fact that parity games are history-free determined [5,13] and that
winning regions can be decided in UP ∩ co-UP [9].

Theorem 2. At every position b ∈ B∃ ∪B∀ in a parity game G = (B∃, B∀, E,Ω) one
of the players has a history-free winning strategy. Furthermore, for every b ∈ B∃ ∪B∀,

it can be determined in time O

(

d ·m ·
(

n
�d/2�

)�d/2�
)

which player has a winning

strategy from position b, where n, m and d are the size of B, E and the range of Ω,
respectively.

The model checking game is played on both states and formulas, and only the closure
of the initial formula, which is assumed to be clean and guarded, is relevant:

Definition 3. A set Γ ⊆ F(Λ) of formulas is closed if B ∈ Γ whenever B is a sub-
formula of some A ∈ Γ and A[p := ηp.A] ∈ Γ if ηp.A ∈ Γ , where η ∈ {μ, ν}. The
closure of Γ is the smallest closed set Cl(Γ ) for which Γ ⊆ Cl(Γ ).

A formula A ∈ F(Λ) is guarded if, for all subformulas ηp.B of A, p only appears
in the scope of a modal operator within B, and A is clean if every variable is bound at
most once in A. A set of formulas is clean/guarded if this applies to every element.

In the model checking game, the unfolding of fixpoint formulas gives rise to infinite
plays, and we have to ensure that all infinite plays that cycle on an outermost μ-variable
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are lost by ∃ (who claims that the formula(s) under consideration are satisfied), as this
would correspond to the infinite unfolding of a least fixpoint. This is achieved by the
parity function.

Definition 4. A parity map for a finite, clean set of formulas Γ is a function Ω :
Cl(Γ ) → ω with finite range for which Ω(A) = 0 unless A is of the form ηp.B,
η ∈ {μ, ν}, Ω(A) is odd (even) iff A is of the form μp.B (νp.B), and Ω(η1p1.B1) ≤
Ω(η2p2.B2) whenever η1p1.B1 is a subformula of η2p2.B2, where η1, η2 ∈ {μ, ν}.

It is easy to see that every clean set of formulas admits a parity function.

Lemma 5. If Γ ⊆ F(Λ) is finite and clean, then Γ admits a parity function whose
range is bounded by the cardinality of Cl(Γ ).

A parity function for Γ defines the following game:

Definition 6. Suppose that M = (C, γ, σ) is a T -model, Γ ⊆ F(Λ) is finite, clean
and guarded, and Ω is a parity map for Γ . The model checking game MGΓ (M ) is the
parity game whose positions and admissible moves are given in the following table,

Position: b Player Admissible moves: E[b]
(p, c), c ∈ σ(p) ∀ ∅
(p, c), c �∈ σ(p) ∃ ∅
(ηp.A(p), c) for η ∈ {μ, ν} ∃ {(A[p := ηp.A(p)], c)}
(A1 ∨A2, c) ∃ {(A1, c), (A2, c)}
(A1 ∧A2, c) ∀ {(A1, c), (A2, c)}
(♥(A1, . . . , An), c) ∃ {(♥(A1, . . . , An), (U1, . . . , Un)) |

U1, . . . , Un ⊆ C, γ(c) ∈ [[♥]]C(U1, . . . , Un)}
(♥(A1, . . . , An), (U1, . . . , Un)) ∀ {(Ai, c) | 1 ≤ i ≤ n, c ∈ Ui}

where p ∈ V ∪ V , ♥ ∈ Λ ∪ Λ, A,A1, . . . , An ∈ Cl(Λ) are Λ-formulas, c ∈ C
are states and Ui ⊆ C are state sets. The parity function of MGΓ (M) is given by
Ω′(A, c) = Ω(A) for A ∈ Cl(Γ ) and c ∈ C, and Ω′( ) = 0 otherwise.

As any two parity functions for a given set of formulas induce the same winning region
for both players, we speak of the model checking game given by a set of formulas. The
announced generalisation of [18, Theorem 1, Chapter 6] now takes the following form:

Theorem 7. For Γ finite, clean and guarded, a T -model M = (C, γ, σ), A ∈ Cl(Γ )
and c ∈ C, ∃ has a winning strategy in MGΓ (M ) from position (A, c) iff M , c |= A.

The model checking game is used to show completeness of associated tableau calculi.

4 Tableaux for the Coalgebraic μ-Calculus

The construction of tableaux for the coalgebraic μ-calculus relies on a set of rules that
provides the glue between syntax and semantics. As we do not commit to a particular
semantics, we exhibit coherence conditions that ensure soundness and completeness.
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Definition 8. A monotone one-step tableau rule for a similarity type Λ is of the form

Γ0

Γ1 . . . Γn

where Γ0 ∈ (Λ ∪ Λ)(V ) and Γ1, . . . , Γn ⊆ V , every propositional variable occurs at
most once in Γ0 and all variables occurring in one of the Γi’s (i > 0) also occur in Γ0.

Monotone tableau rules do not contain negated propositional variables, which are not
needed to axiomatise (the class of models induced by) monotone Λ structures. The
restriction on occurrences of propositional variables is unproblematic, as variables that
occur in a conclusion but not in the premise and multiple occurrences of variables in
the premise can always be eliminated. The set of one-step tableau rules is a (the only)
parameter in the construction of tableaux for coalgebraic fixpoint logics. Example rules
are most conveniently presented if we identify a linear inequality

∑

i aipi < k where
pi ∈ V ∪ V and ai, k ∈ Q with the set of prime implicants of the boolean function
(xi) �→ 1 iff

∑

aisg(pi) < k where sg(p) = 1 and sg(p) = 0 for p ∈ V , and prime
implicants are represented by sets of propositional variables.

Example 9. The following rule sets are used for the logics introduced in Example 1,

(K)
♦p0; �p1; . . . ; �pn

p0; p1; . . . ; pn
(M)

�p; ♦q
p; q

(G)
〈k1〉p1; . . . ; 〈kn〉pn; [l1]q1; . . . ; [lm]qm

∑m
j=1 sjqj −

∑n
i=1 ripi < 0

(P )
〈a1〉p1; . . . ; 〈an〉pn; [b1]q1; . . . ; [bm]qm

∑m
j=1 sjqj −

∑n
i=1 ripi < k

(C1)
[C1]p1; . . . ; [Cn]pn

p1; . . . ; pn
(C2)

[C1]p1; . . . ; [Cn]pn; [D]q; [N ]r1; . . . ; [N ]rm

p1; . . . ; pn; q; r1; . . . ; rm

where n,m ∈ N and sets are represented by ;-separated lists. For the modal and mono-
tone μ-calculus, we have all instances of (K) and (M), respectively. The graded μ-
calculus uses all instances of (G) for which ri, sj ∈ N \ {0} and

∑n
i=1 ri(ki + 1) ≥

1 +
∑m

j=1 sjlj . The probabilistic μ-calculus is axiomatised by instances of (P ) where
ri, sj ∈ N \ {0} and

∑n
i=1 riai −

∑m
j=1 sjbj ≤ k if n > 0 and −

∑m
j=1 sjbj < k if

n = 0. Finally, we associate all instances of (C1), (C2) for which the Ci are disjoint
and moreoverCi ⊆ D in the case of (C2). We note that all rules above are monotone.

Tableaux themselves are formulated in terms of sequents:

Definition 10. A Λ-tableau sequent, or just sequent, is a finite set of Λ-formulas. We
write S(Λ) for the set of Λ-sequents. If Γ ∈ S(Λ) we write S(Γ ) = {Δ ∈ S(Λ) | Δ ⊆
Cl(Γ )} for the set of sequents over the closure of Γ . We identify a formula A ∈ F(Λ)
with the singleton set {A}, and write Γ ;Δ = Γ ∪Δ for the union of Γ,Δ ∈ S(Λ) as
before. Substitution extends to sequents via Γσ = {Aσ | A ∈ Γ}.



186 C. Cı̂rstea, C. Kupke, and D. Pattinson

The set TR of tableau rules induced by a set R of one-step rules contains the propo-
sitional and fixpoint rules, the modal rules (m) and the axiom (rule) below:

(∧)
Γ ;A ∧ B

Γ ; A;B
(∨)

Γ ; A ∨ B

Γ ;A Γ ; B
(f)

Γ ; ηp.A

Γ ; A[p := ηp.A]
(m)

Γ0σ, Δ

Γ1σ . . . Γnσ
(Ax)

Γ, A,A

Here, Γ,Δ ∈ S(Λ) range over sequents and A,B ∈ F(Λ) over formulas. In (m),
Γ0/Γ1 . . .Γn ∈ R and σ : V → F(Λ) is so that Aσ = Bσ only if A = B for
A,B ∈ Γ0. An axiom is a premise of (Ax). The sequent Δ is called a context of the
modal rule Γ0σ,Δ/Γ1σ . . .Γnσ, and the context of a non-modal rule is always empty.

We only allow substitutions that do not duplicate literals in the premise of modal rules to
ensure decidability, and we require that the set of one-step tableau rules is closed under
contraction later. Since fixpoint rules generate infinite paths, we formalise tableaux as
finite, rooted graphs. As a consequence, closed tableaux are finitely represented proofs
of the unsatisfiability of the root formula.

Definition 11. A tableau for a clean, guarded sequent Γ ∈ S(Λ) is a finite, directed,
rooted and labelled graph (N,K,R, �) where N is the set of nodes, K ⊆ N × N is
the set of edges, R is the root node and � : N → S(Γ ) is a labelling function such that
�(R) = Γ and, if K(n) = {n′ | (n, n′) ∈ K}:

• if �(n) is not the premise of a rule in TR, then K(n) = ∅.
• if �(n) is a premise of a rule in TR, then �(n)/{�(n′) | n′ ∈ K(n)} ∈ TR.

An annotation of a tableau is a mapping α : N → S(Λ) such that α(n) is a context of
the rule �(n)/{�(n′) | n′ ∈ K(n)} whenever K(n) �= ∅.

In other words, tableaux are sequent-labelled graphs where a rule has to be applied at
a node if the node label matches a rule premise, no rule may be applied otherwise.
The purpose of annotations is to record the weakening steps immediately prior to the
applications of modal rules, which is needed for the definition of traces later.

Our goal is to show that a formula A ∈ F(Λ) is satisfiable iff no tableau for A
ever closes. In a setting without fixpoints, a tableau is closed iff all leaves are labelled
with axioms. Here we also need to consider infinite paths, and ensure that only greatest
fixpoints are unfolded infinitely often at the top level of an infinite path. As in [14], this
necessitates to consider the set of traces through a given tableau.

Definition 12. The set of directional rule names is given by N = {∨l,∨r,∧, f,m}, and
an instance of ) ∈ N is an instance of the ∨-rule if ) = ∨l or ) = ∨r and an instance
of a fixpoint rule/modal rule if ) = f/m. A trace tile is a triple t = (Δ, ),Δ′) for
Δ,Δ′ ∈ S(Λ) and ) ∈ N. The trace tile t is consistent if there exists an instance of )
with empty context that has Γ as a premise andΔ as one of its conclusions, whereΔ has
to be the left (right) conclusion of the ∨-rule in case ) = ∨l () = ∨r). A path through
a tableau T = (N,K,R, �) is a finite or infinite sequence of nodes and directional rule
names

π = n0
�0−→ n1

�1−→ n2
�2−→ n3 . . .

such that ni+1 ∈ K(ni), �(ni)/{�(n′) | n′ ∈ K(n)} is an instance of ), and (�(ni) \
α(ni), )i, �(ni+1)) is a consistent trace tile. A finite path π is of maximal length if
K(n) = ∅ for the end node n of π.
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If α is an annotation for T, then an α-trace through π is a finite or infinite se-
quence of formulas (A0, A1, . . . ) such that Ai ∈ �(ni) and (Ai, Ai+1) ∈ Tr(�(ni) \
α(ni), )i, �(ni+1)) where the relations Tr(Γ, ),Δ) induced by trace tiles are given by

• Tr((Γ,A ∨B),∨l, (Γ,A)) = {(A ∨B,A)} ∪ Diag(Γ )
• Tr((Γ,A ∨B),∨r , (Γ,B)) = {(A ∨B,B)} ∪ Diag(Γ )
• Tr((Γ,A ∧B),∧, (Γ,A,B)) = {(A ∧B,A), (A ∧B,B)} ∪ Diag(Γ )
• Tr(Γ,m, Δ) = {(♥(B1, . . . , Bk), Bj) | ♥(B1, . . . , Bk) ∈ Γ,Bj ∈ Δ, j ≤ k}
• Tr((Γ, ηp.B), f, (Γ,B[p := ηp.B]) = {ηp.B,B[p := ηp.B])} ∪ Diag(Γ )
• Tr(Γ, ),Δ) = ∅ otherwise.

where Diag(X) = {(x, x) | x ∈ X} is the diagonal on any set X . Finally, a tableau T
is closed, if there exists an annotationα such that the end node of any finite path through
T of maximal length that starts in the root node is labelled with a tableau axiom and
every infinite path starting in the root node carries at least one bad α-trace with respect
to a parity function Ω for Γ .

Consistent trace tiles record the premise of a rule and one of its conclusions, together
with the directional rule name. Here we require empty context, so that the rule that wit-
nesses consistency of a trace tile is necessarily a substituted one-step rule. This implies
that all traces on a tableau path ending in the context of a rule premise terminate.

Example 13. If nodes are represented by their labels, then the path

A ∨ μp.B;C ∨r−→ μp.♦B;C f−→ ♦B[p := μp.B];C . . .

supports the traces (A∨μp.♦B,μp.♦B,♦B[p := μp.B], . . . ) and (C,C,C, . . . ). Note
that there is no trace on this path that starts with A.

Our goal is to show that non-existence of a closed tableau is equivalent to the sat-
isfiability of the root formula. This is where we need coherence conditions between
the axiomatisation and the (coalgebraic) semantics. In essence, we require that one-
step tableau rules characterise satisfiability of a set of modalised formulas of the form
♥(A1, . . . , An) purely in terms of the Λ-structure.

Definition 14. The interpretation of a propositional sequent Γ ⊆ V ∪ V with respect
to a set X and a valuation τ : V → P(X) is given by [[Γ ]]X,τ =

⋂

{τ(p) | p ∈ Γ},
and the interpretation [[Γ ]]TX,τ ⊆ TX of a modalised sequent Γ ⊆ (Λ ∪ Λ)(V ) is

[[Γ ]]TX,τ = ∩{[[♥]]X(τ(p1), . . . , τ(pn)) | ♥(p1, . . . , pn) ∈ Γ}.

If T is a Λ-structure, then a set R of monotone tableau rules for Λ is one-step tableau
complete with respect to T if [[Γ ]]TX,τ �= ∅ iff for all Γ0/Γ1, . . . , Γn ∈ R and all
σ : V → V with Γ0σ ⊆ Γ , there exists 1 ≤ i ≤ n such that [[Γiσ]]X,τ �= ∅, whenever
Γ ⊆ (Λ ∪ Λ)(V ) and τ : V → P(X).

Informally speaking, a set R of one-step tableau rules is one-step tableau complete
if a modalised sequent Γ is satisfiable iff any rule that matches Γ has a satisfiable
conclusion.

An adaptation of [16, Theorem 17] to the setting of monotone tableau rules estab-
lishes existence of a tableau complete set of monotone rules for monotoneΛ-structures.



188 C. Cı̂rstea, C. Kupke, and D. Pattinson

Proposition 15. Every monotone Λ-structure admits a one-step tableau complete set
of monotone tableau rules.

In our examples, the situation is as follows:

Proposition 16. The rule sets introduced in Example 9 are one-step tableau complete
with respect to the corresponding structures defined in Example 1.

With the help of Theorem 7 we can now show that satisfiability precludes the existence
of closed tableaux, as a winning strategy for ∃ in the model checking game induces a
path through any tableau that contradicts closedness.

Theorem 17. Let R be a one-step tableau complete set of monotone rules for the modal
similarity type Λ, and let Γ ∈ S(Λ) be clean and guarded. If Γ is satisfiable in some
model M = (C, γ, σ) at state c ∈ C, then no closed tableau for Γ exists.

Example 18. Consider the following formula of the coalitional μ-calculus

[C]νX.(p ∧ [N ]X) ∧ [D]μY.(p ∨ [D]Y )

stating that “coalitionC can achieve that, from the next stage onwards, p holds irrespec-
tive of the strategies used by other agents, and coalition D can ensure (through suitable
strategies used in the long term) that p holds after some finite number of steps”. Here,
we assume thatC,D ⊆ N are such thatC∩D = ∅. Define a parity mapΩ for the above
formula by Ω(νX.(p∧ [N ]X)) = 2, Ω(μY.(p∨ [D]Y )) = 1 and Ω(A) = 0 otherwise.
The unsatisfiability of this formula is witnessed by the following closed tableau:

[C]B ∧ [D]A
[C]B ; [D]A

B ; A

p ∧ [N ]B ; A

p ∧ [N ]B ; p ∨ [D]A

p ; [N ]B ; p ∨ [D]A

p ; [N ]B ; p p ; [N ]B ; [D]A
��

��

��

where B = νX.(p ∧ [N ]X) and A = μY.(p ∨ [D]Y ). Any finite path through this
tableau ends in an axiom, and the only infinite path contains the trace

[C]B ∧ [D]A, [D]A, A, A, p ∨ [D]A, p ∨ [D]A, [D]A, A

where the overlined sequence is repeated ad infinitum. This trace is bad with respect to
Ω, as Ω(A) = 1 and A is the only fixpoint formula that occurrs infinitely often.

5 The Tableau Game

We now introduce the tableau game associated to a clean and guarded sequent Γ , and
use it to characterise the (non-)existence of closed tableaux in terms of winning strate-
gies in the tableau game. For the entire section, we fix a modal similarity type Λ and
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a one-step tableau complete set R of monotone tableau rules. The idea underlying the
tableau game is that ∀ intends to construct a closed tableau for a given set of formulas
Γ , while ∃ wants to demonstrate that any tableau constructed by ∀ contains a path π
that violates the closedness condition. As (certain) infinite plays of the tableau game
correspond to paths through a tableau, an infinite play should be won by ∃ if it does not
carry a bad trace, with bad traces being detected with the help of parity word automata.

Definition 19. Let Σ be a finite alphabet. A non-deterministic parity Σ-word automa-
ton is a quadruple A = (Q, aI , δ : Q×Σ → P(Q), Ω) where Q is the set of states of
A, aI ∈ Q is the initial state, δ is the transition function, and Ω : Q → ω is a parity
function. Given an infinite word γ = c0c1c2c3 . . . over Σ, a run of A on γ is a sequence
ρ = a0a1a2 . . . ∈ Qω such that a0 = aI and for all i ∈ ω we have ai+1 ∈ δ(ai, ci). A
run ρ is accepting if ρ is not a bad sequence with respect to Ω. We say that A accepts
an infinite Σ-word γ if there exists an accepting run ρ of A on γ. Finally we call A

deterministic if δ(a, c) has exactly one element for all (a, c) ∈ Q×Σ. In other words,
A is deterministic if δ is a function of type Q×Σ → Q.

The tableau game uses an automaton over trace tiles (cf. Definition 12) to detect the
existence of bad traces through infinite plays.

Lemma and Definition 20. Let Γ ∈ S(Λ) be a clean, guarded sequent, and let ΣΓ

denote the set of trace tiles (Δ, ),Δ′) with Δ,Δ′ ∈ S(Γ ). There exists a determin-
istic parity ΣΓ -word automaton AΓ = (QΓ , aΓ , δΓ , Ω

′) such that A accepts an in-
finite sequence (t0, t1, . . . ) ∈ Σ∞Γ of trace tiles iff there is no sequence of formulas
(A0, A1, . . . ) with (Ai, Ai+1) ∈ Tr(ti) which is a bad trace with respect to a parity
function for Γ . Moreover, the index of A and the cardinality of Q are bounded by
p(|Cl(Γ )|) and 2p(|Cl(Γ )|) for a polynomial p, respectively. Such an automaton A is
called a Γ -parity automaton.

Definition 21. Let Γ ∈ S(Λ) be clean and guarded, and let A = (Q, aΓ , δ, Ω) be a
Γ -parity automaton. We denote the set of tableau rules Γ0/Γ1, . . . , Γn ∈ TR for which
Γi ∈ S(Γ ) by TRΓ . The Γ -tableau game is the parity game GΓ = (B∃, B∀, E,Ω′)
where B∀ = S(Γ ) ×Q, B∃ = TRΓ × S(Γ ) ×Q, and (b1, b2) ∈ E if either

• b1 = (Δ, a) ∈ B∀ and b2 = (r,Σ, a) ∈ B∃ where r ∈ TRΓ has premise Δ and
Σ ⊆ Δ is a context of r, or

• b1 = (r,Σ, a) ∈ B∃, b2 = (Δ, a′) ∈ B∀ and there exists ) ∈ N such that r is an
instance of ), Δ is a conclusion of r, the trace tile t = (Γ \Σ, ),Δ) is consistent where
Γ is the premise of r, and a′ = δ(a, t).
The parity function Ω′ : (B∃ ∪ B∀) → ω of GΓ is given by Ω′(Δ, a) = Ω(a) if
(Δ, a) ∈ B∀ and Ω′(r,Σ, a) = 0.

If not explicitly stated otherwise, we will only consider GΓ -plays that start at (Γ, aΓ )
where aΓ is the initial state of the automaton A. In particular, we say that a player has
a winning strategy in GΓ if she/he has a winning strategy in GΓ at position (Γ, aΓ ).

The easier part of the correspondence between satisfiability and winning strategies
in GΓ is proved by constructing a closed tableau based on a winning strategy for ∀. The
notion of trace through a GΓ -play is used to show closedness.
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Definition 22. For a GΓ -play

π = (Γ 0, a0)(r0, Σ0, a0)(Γ 1, a1)(r1, Σ1, a1) . . . (Γ l, al)(rl, Σl, al) . . .

a sequence π′ = Γ 0)0Γ
1)1 . . .Γ l)l . . . of sequents and directional rule names is an

underlying path of π if ri is a )i-rule, ti = (Γ i \Σi, )i, Γ
i+1) is a consistent trace tile,

and δ(ai, ti) = ai+1 for all i ∈ N. A sequence of formulas α = A0A1A2 . . . ∈ F(Λ)∞

is a trace through π if there exists an underlying path π′ = Γ 0)0Γ
1)1Γ

2 . . . of π such
that (Ai, Ai+1) ∈ Tr(ti) for all i ∈ N.

An underlying path of a GΓ -play assigns directional rule names to the rules used in ∀’s
moves, so that only consistent trace tiles are considered when defining traces.

Theorem 23. Let Γ ∈ S(Λ) be clean and guarded. If ∀ has a winning strategy in GΓ ,
then Γ has a closed TR-tableau.

The converse of the above theorem is established later as Theorem 26. The challenge
there is to construct a model for Γ based on a winning strategy for ∃ in the Γ -tableau
game. This crucially requires the set of tableau rules to be closed under contraction.

Definition 24. A set R of monotone one-step rules is closed under contraction, if for
all Γ0/Γ1, . . . , Γn ∈ R and all σ : V → V, there exists a rule Δ0/Δ1, . . . , Δk ∈ R
and a renaming τ : V → V such that Aτ = Bτ for A,B ∈ Δ0 implies that A = B,
Δ0τ ⊆ Γ0σ and, for each 1 ≤ i ≤ n, there exists 1 ≤ j ≤ k such that Γiσ ⊆ Δjτ .

In other words, instances of one-step rules which duplicate literals in the premise may
be replaced by instances for which this is not the case. Under this condition, we prove:

Theorem 25. Suppose that Γ ∈ S(Λ) is clean and guarded and R is one-step tableau
complete and contraction closed. If ∃ has a winning strategy in GΓ , then Γ is satisfiable
in a model of size O(2p(n)) where n is the cardinality of Cl(Γ ) and p is a polynomial.

The proof of Theorem 25 constructs a model for Γ out of the game board of GΓ using
a winning strategy f for ∃ in GΓ . We use one-step tableau completeness to impose a
T -coalgebra structure on the GΓ -positions reachable through an f -conform GΓ -play, in
such a way that the truth lemma is satisfied. We subsequently equip this T -coalgebra
with a valuation that makes Γ satisfiable in the resulting model. While our construction
shares some similarities with the shallow model construction of [17], it is by no means
a simple adaptation of loc. cit., as we are dealing with fixpoint formulas and thus cannot
employ induction over the modal rank of formulas to construct satisfying models. Our
proof of satisfiability is also substantially different from the corresponding proof for
the modal μ-calculus (cf. [14]) – we show satisfiability by directly deriving a winning
strategy for ∃ in the model-checking game from a winning strategy of ∃ in the tableau
game.

Putting everything together, we obtain a complete characterisation of satisfiability in
the coalgebraic μ-calculus.

Theorem 26. Suppose that Γ ∈ S(Λ) is a clean, guarded sequent and R is one-step
tableau complete and contraction closed. Then Γ is satisfiable iff no tableau for Γ is
closed iff ∃ has a winning strategy in the tableau game GΓ .
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As a by-product, we obtain the following small model property.

Corollary 27. A satisfiable, clean and guarded formula A is satisfiable in a model of
size O(2p(n)) where n is the cardinality of Cl(A) and p is a polynomial.

Proof. The statement follows immediately from Theorems 17, 23 and 25 together with
the determinacy of two player parity games.

6 Complexity

We now show that – subject to a mild condition on the rule set – the satisfiability prob-
lem of the coalgebraic μ-calculus is decidable in exponential time. By Theorem 26, the
satisfiability problem is reducible to the existence of winning strategies in parity games.

To measure the size of a formula, we assume that the underlying similarity type Λ is
equipped with a size measure s : Λ → N and measure the size of a formula A in terms
of the number of subformulas counted with multiplicities, adding s(♥) for every occur-
rence of a modal operator ♥ ∈ Λ in A. In the examples, we code numbers in binary,
that is, s(〈k〉) = s([k]) = 4log2 k5 for the graded μ-calculus and 〈p/q〉 = [p/q] =
4log2 p5 + 4log2 q5 for the probabilistic μ-calculus, and s([a1, . . . , ak]) = 1 for coali-
tion logic. The definition of size is extended to sequents by size(Γ ) =

∑

A∈Γ size(A)
for Γ ∈ S(Λ) and size({Γ1, . . . , Γn}) =

∑n
i=1 size(Γi) for sets of sequents. To apply

Theorem 26 we need to assume that the formula that we seek to satisfy is both clean
and guarded, but this can be achieved in linear time.

Lemma 28. For every formulaA ∈ F(Λ) we can find an equivalent clean and guarded
formula in linear time.

The proof is a straightforward generalisation of a similar result [11, Theorem 2.1]. To
ensure that the size of the game board remains exponential, we encode the set of po-
sitions of the game board by strings of polynomial length, measured in the size of the
initial sequent, and the rules need to be computationally well behaved. We require:

Definition 29. A set R of tableau rules is exponentially tractable, if there exists an
alphabet Σ and two functions f : S(Λ) → P(Σ∗) and g : Σ∗ → P(S(Λ)) together
with a polynomial p such that |x| ≤ p(size(Γ )) for all x ∈ f(Γ ), size(Δ) ≤ p(|y|) for
all Δ ∈ g(y), so that, for Γ ∈ S(Λ),

{g(x) | x ∈ f(Γ0)} = {{Γ1, . . . , Γn} | Γ0/Γ1, . . . , Γn ∈ R}

and both relations x ∈ f(Γ ) and Γ ∈ g(x) are decidable in EXPTIME.

Tractability of the set TR of tableau rules follows from tractability of the substitution
instances of rules in R, as the non-modal rules can be encoded easily.

Lemma 30. Suppose R is a set of monotone one-step rules. Then TR is exponentially
tractable iff the set {Γ0σ/Γ1σ, . . . , Γnσ | Γ0/Γ1, . . . , Γn ∈ R, ∀A,B ∈ Γ0(Aσ =
Bσ =⇒ A = B)} of substituted one-step rules is exponentially tractable.

Exponential tractability bounds the board of the tableau game and the complexity of
both the parity function and the relation determining legal moves.
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Lemma 31. Suppose that R is exponentially tractable. Then every position in the tableau
game GΓ = (B∃, B∀, E,Ω) of Γ ∈ S(Λ) can be represented by a string of polynomial
length in size(Γ ). Under this coding, the relation (b, b′) ∈ E is decidable in exponential
time and the parity function Ω can be computed in exponential time.

Together with Lemma 28, we now obtain an EXPTIME upper bound for satisfiability.

Corollary 32. Suppose T is a monotone Λ-structure and R is exponentially tractable,
contraction closed and one-step tableau complete for T . Then the problem of deciding
whether ∃ has a winning strategy in the tableau game for a clean, guarded sequent Γ ∈
S(Λ) is in EXPTIME. As a consequence, the same holds for satisfiability of A ∈ F(Λ).

Proof. The first assertion follows from Lemma 31 as the problem of deciding the win-
ner in a parity game is exponential only in the size of the parity function of the game
(Theorem 2) which is polynomial in the size of Γ (Lemma 20). The second statement
now follows with the help of Theorem 26.

Example 33. It is easy to see that the rule sets for the modal μ-calculus, the coalitional
μ-calculus and the monotone μ-calculus are exponentially tractable, as the number of
conclusions of each one-step rule is bounded. To establish exponential tractability for
the rule sets for the graded and probabilistic μ-calculus, we argue as in [17] where
tractability of the (dual) proof rules has been established. We encode the conclusion
∑n

i=1 riai < k as (r1, a1, . . . , rn, an, k) and Lemma 6.16 of op. cit. provides a poly-
nomial bound on the size of the solutions for the linear inequalities that combine con-
clusion and side condition of both the (G) and (P )-rule. This allows us to guess the
set of prime implicants of the conclusion in nondeterministic polynomial time, which
shows that both rule sets are exponentially tractable. In all cases, contraction closure is
immediate.

7 Conclusions

We have introduced the coalgebraic μ-calculus, a generic and uniform framework for
modal fixpoint logics. Our main results are soundness and completeness of tableaux
calculi, and an EXPTIME upper bound for the satisfiability problem. Concrete instances
of the generic approach directly

• reproduce the complexity bound for the modal μ-calculus [6], together with the
completeness of a slight variant of the tableau calculus presented in [14]
• lead to a new proof of the known EXPTIME bound for the graded μ-calculus [12]
• establish previously unknown EXPTIME bounds for the probabilistic μ-calculus,

for coalition logic with fixpoints and the monotone μ-calculus.

We note that these bounds are tight for all logics except possibly the monotone μ-
calculus, as the modal μ-calculus can be encoded into all other logics.
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J., Kupke, C. (eds.) Coalgebraic Methods in Computer Science (CMCS 2008). ENTCS,
vol. 203 (2008)

4. Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs. In: Proc.
FOCS 1988, pp. 328–337. IEEE Computer Society Press, Los Alamitos (1988)

5. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceedings of the
32nd IEEE Symposium on Foundations of Computer Science (FoCS 1991), pp. 368–377.
IEEE Computer Society Press, Los Alamitos (1991)

6. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM
J. Comput. 29(1), 132–158 (1999)

7. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)
8. Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Adámek,

J., Milius, S. (eds.) Coalgebraic Methods in Computer Science. ENTCS, vol. 106, pp. 121–
143. Elsevier, Amsterdam (2004)
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From a categorical perspective the structures we are investigating here are
amongst the simplest imaginable. Yet the status of the word problem for these
categories has languished in an unsatisfactory state. That equality is decidable
follows from an application of standard tools from categorical proof theory [1,2]:
these allow, through a Curry-Howard style isomorphism, the free ΣΠ-category
to be viewed as a deductive system for a logic. In [3] the deductive system
which corresponds precisely to the usual categorical coherence requirements for
products and sums was identified. Furthermore, it was shown there that the
resulting system satisfies the cut-elimination property modulo a finite number
of “permuting conversions”. This means that the focus of the decision procedure
for these categories devolves upon the cut-free terms and the equality between
these terms is determined by the permuting conversions.

The cut-free terms, which represent arrows between two given types, are finite
in number and this immediately implies that equality is decidable. However, the
complexity of this way of deciding equality is exponential because there can be
an exponential number of equivalent terms. Thus the question, which remained
open, was whether the matter could be decided feasibly. This is of particular
interest as these expressions are, in the process world, the analogue of Boolean
expressions (whose equality certainly cannot be decided feasibly). The main
contribution of this paper is to confirm that there is a polynomial - indeed an
efficient - algorithm which settles this question.

There have been a number of contributions towards the goal of this paper.
Most, however, involve representation theorems, that is the provision of a faithful
functor from some variant of a free ΣΠ-category into a concrete combinatoric
category (in which equality between maps is concrete equality).

For example the results in [4] cover free ΣΠ-categories in which the initial
and final object coincide, and show how these categories can be represented
as full subcategories of categories of generalized coherence spaces. In [5,6] a
representation of free ΣΠ-categories without units is given into the category of
sets and relations. In [7] a representation of multiplicative additive linear logic
without units (multiplicative or additive) into a combinatoric category of proof-
nets is given. As the addition of multiplicative connectives is conservative over
the additive fragment this suggests a combinatoric representation for the additive
fragment (this was explored in [5] and discovered [8] to be closely related to [4]).
All these results, however, work only for the fragment without units – or, more
precisely, for the fragment with a common initial and final object. As far we
know, there is (currently) no representation theorem into a purely combinatoric
setting for the full fragment with distinct additive units.

Units add to the decision problem – and to the representation theory – a non-
trivial challenge which is easy to underestimate. In particular, in [3], the first
mentioned author of this paper proposed a decision procedure which worked
perfectly in the absence of units but fails manifestly in the presence of units.
The effect of the additive units on the setting is quite dramatic. In particular,
when there are no units (or there is a zero) all coproduct injections are monic.
However, rather contrarily, in the presence of distinct units this simply is no
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longer the case. Furthermore, this can be demonstrated quite simply, consider
the following diagram:

0 × 0
π1 ��
π0

�� 0
σ0 �� 0 + 1

As 0 + 1 ' 1 is a terminal object, there is at most one arrow to it: this makes
the above diagram a coequalizer. Yet, the arrows π0, π1 are distinct in any free
ΣΠ-category, as for example they receive distinct interpretations in the opposite
of the category of sets and functions.

As logicians and category theorists, we were deeply frustrated by this failure
to master the units. The solution we now present for the decision problem,
however, was devised only after a much deeper algebraic understanding of the
structure of free ΣΠ-categories had been obtained. The technical observations
which underly this development, we believe, should be of interest to logicians
and category theorists alike.

It is perhaps worth saying something about why categories with (free) sums
and products are of interest. There are various ways to interpret its maps and
objects. For example, the objects, thought of as trees with product and sum
nodes, can be read as games, in which sum nodes indicate it is the player’s turn
and product nodes that it is the opponent’s turn (with no requirement that play
alternates). The maps are then interpreted as being “mediators” between these
games which can use the information of one game to determine the play in the
other. Their composition is given by hiding the transfer of information which
happens through interaction on a middle game [9,10].

This, of course, was essentially the reading originally proposed by Blass [11]
who also proposed that the maps should be combinatorial strategies. Abramsky
noticed that Blass’s composition failed to be associative and, in order to fix this
defect, in an influential paper moved attention onto alternating games [12] where
morphisms are combinatorial and, furthermore, composition is associative.

In retrospect it seems remiss that the obvious alternative for fixing the non-
associativity of Blass’s composition, namely abandoning the view that maps
must be combinatorial, received so little attention. This even though, from a
proof theoretic and categorical perspective, it was the more natural direction.
Proof theoretically, in this approach, composition becomes the cut-elimination
process of the logic of sums and products and this gives rise to an elegant re-
duction system which is confluent modulo equations – all of which is described
in [3].

Our main motivation for studying these categories, however, derives from a
slightly different reading in which the maps are viewed as (concurrent) processes
which communicate on two-way channels and the objects are (finite) concurrent
types or protocols. The protocols govern the interaction on a two-way channel by
determining whether a process should be sending or receiving a message (and pre-
cisely which messages can be sent or received). This interpretation is more than
an idle idea and, for example, the theoretical details have been pursued in [13,14].

This last interpretation is quite compelling as the algebraic results described
in this paper suggest a number of not very obvious and even somewhat surprising
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properties of communication along such a channel. For example, it is quite pos-
sible that a process which is required to send a value could send various different
values and yet, semantically, be the same process . This is the notion of indefinite-
ness which is central in the business of unraveling the meaning of communica-
tion. There are various ways in which this apparently unintuitive situation can
arise. For example, it could simply be that the recipient of the communication
has stopped listening. It is of course very annoying when this happens but, un-
deniable, this is an occurrence well within the scope of the human experience of
communication.

Proof theoretically and algebraically this all has to do with the behavior of
the additive units. The purpose of this paper is to focus on these units and
their ramifications in the business of communication. It is certainly true that
without the units the theory is purely combinatoric. However, if one is tempted
therefore to omit them, it is worth realizing that without units there is simply
no satisfactory notion of finite communication!

Of course, without the units the theory is not only simpler but a good deal
less mathematically interesting. It is to this mathematics we now turn.

In Section 1, we recall the definition of ΣΠ-categories, and the results of [3]. In
Section 2, we introduce Joyal’s notion of softeness. In Section 3 we establish that
coprojections are weakly disjoint in free ΣΠ-categories, our first technical result,
and list some consequences. This, in particular, leads to considering arrows which
factor through a unit – these are the indefinite arrows mentioned above – which
play a key role in the decision procedure. In Section 4 we present our second
technical observation: if two arrows in hom(X × Y,A) and hom(Y,A + B) are
definite and are made equal when, respectively, projecting and coprojecting into
hom(X × Y,A+B), this fact is witnessed by a unique “bouncer” in hom(Y,A).
Finally in Section 5, we collect our observations and sketch a decision procedure.

1 The Construction of Free ΣΠ-Categories

1.1 ΣΠ-Categories

The reader might consult [15] for the basic categorical notions used in this pa-
per. Here, an ΣΠ-category means a category with finite products and coprod-
ucts which, furthermore has a chosen presentation for the binary products and
terminal object, and for the binary coproducts and initial object.

Recall that a category has binary products if, given two objects A,B, there is
an object A×B, and natural transformations

hom(X,A) × hom(X,B)
〈 , 〉−−−→ hom(X,A×B) ,

hom(Xi, A) πi−−→ hom(X0 ×X1, A) , i = 0, 1 ,

that induce inverse natural bijections:

πi(〈f0, f1〉) = fi , i = 0, 1 , 〈π0(f), π1(f)〉 = f .
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A terminal object or empty product in a category is an object 1 such that, for
each object X , hom(X, 1) is a singleton. Recall that a terminal object is unique
up to isomorphism and is the unit for the product, as X × 1 is canonically
isomorphic to X .

The definition of binary sums (coproducts) and of initial object, is obtained
by exchanging the roles of left and right objects in the definition of products: a
category has binary sums if, given two objects X,Y , there exists a third object
X + Y and natural transformations

hom(X,A) × hom(Y,A)
{ , }−−−→ hom(X + Y,A) ,

hom(X,Aj)
σj−−→ hom(X,A0 +A1) , j = 0, 1 ,

that induce inverse natural bijections:

σj({f0, f1}) = fj , j = 0, 1 , {σ0(f), σ1(f)} = f .

An initial object 0 is such that, for each object A, hom(0, A) is a singleton.

A

F

����
��

��
��

��
��

��
��

��
η �� ΣΠ(A)

∃! F̃

��
B

A functor between two ΣΠ-categories A,B is a
ΣΠ-functor if it sends (chosen) products to (cho-
sen) products, and (chosen) coproducts to (chosen)
coproducts. The free ΣΠ-category over a category A,
denoted ΣΠ(A), has the following property: there is
a functor η : A −→ ΣΠ(A) such that, if F : A −→ B

is a functor that “interprets” A into a ΣΠ-category
B, then there exists a unique ΣΠ-functor F̃ : ΣΠ(A) −→ B such that F̃ ◦ η = F .
This is the usual universal property illustrated by the diagram on the right.

The free ΣΠ-category on A, can be “constructed” as follows. Its objects are
the types inductively defined by the grammar

T = η(x) | 1 | T × T | 0 | T + T , (1)

where x is an object of A. Then proof-terms are generated according to the
deduction system of figure 1. Finally, proof-terms t : X −→ A are quotiented
by means of the least equivalence relation that forces the equivalence classes to
satisfy the axioms of a ΣΠ-category. Of course, while this is a perfectly good
specification, we are looking for an effective presentation for ΣΠ(A). A first step
in this direction comes from the fact the identity-rule as well as the cut-rule can
be eliminated from the system:

Proposition 1 (See [3] Proposition 2.9). The cut-elimination procedure gives
rise to a rewrite system on ΣΠ(A) that is confluent modulo the set of equations of
figure 2.

From this we obtain an effective description of the category ΣΠ(A): the objects
are the types generated by the grammar (1), while the arrows are equivalence
classes of (identity|cut)-free proof-terms under the least equivalence generated by
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identity-rule
X

idX−−−→ X

X
f−−→ C C

g−→ A
cut-rule

X
f ;g−−−→ A

x
f−−→ y

Generators rule
η(x)

η(f)−−−→ η(y)

−
R1

X
!−→ 1

Xi
f−−→ A

Li×
X0 × X1

πi(f)−−−−→ A

X
f−−→ A X

g−→ B
R×

X
〈f,g〉−−−−→ A × B

−
L0

0 ?−→ A

X
f−−→ A Y

g−→ A
L+

X + Y
{f,g}−−−−→ A

X
f−−→ Aj

Rj+
X

σj(f)
−−−−→ A0 + A1

Fig. 1. The deductive system for ΣΠ(A)

πi(〈f, g〉) = 〈πi(f), πi(g)〉 σj({f, g}) = {σj(f), σj(g)}

πi(σj(f)) = σj(πi(f))

{〈f11, f12〉, 〈f21, f22〉} = 〈{f11, f21}, {f12, f22}〉

πi(!) = ! σj(?) = ?

{!, !} = ! 〈?, ?〉 = ?

!0 =?1

Fig. 2. The equations on (identity|cut)-free proof-terms

the equations of figure 2. Composition is given by the cut-elimination procedure,
which by the above theorem is well defined on equivalence classes.

Our goal in the remainder of the paper is to show that determining whether
two (identity|cut)-free proof-terms s, t : X −→ A, are equivalent (by the equations
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of figure 2) can be decided feasibly. The main theoretical tool we shall use is
softness which we now introduce.

2 Softness

In every ΣΠ-category1 there exist canonical maps
∐

j

hom(X,Aj) −−→ hom(X,
∐

j

Aj) ,

∐

i

hom(Xi, A) −−→ hom(
∏

i

Xi, A) .
(2)

We shall be interested in these maps when, in a free ΣΠ-category ΣΠ(A),
X = η(x) and A = η(a) are generators.

In every ΣΠ-category there also exist canonical commuting diagrams of the
form

∐

i,j hom(Xi, Aj)
∐

j hom(
∏

i Xi, Aj)��

hom(
∏

i Xi,
∐

j Aj)
��

∐

i hom(Xi,
∐

j Aj)
��

��

(3)

The following key theorem holds:

Theorem 2 (See [3] Theorem 4.8). The following properties hold of ΣΠ(A):

1. The functor η : A −→ ΣΠ(A) is full and faithful.
2. Generators are atomic, that is, the canonical maps of (2) – with X = η(x)

and A = η(a) – are isomorphisms.
3. ΣΠ(A) is soft, meaning that the canonical diagrams of (3) are pushouts.

Moreover, if B is a ΣΠ-category with a functor F : A −→ B, so that the pair
(F,B) satisfies 1,2,3, then the extension F̂ : ΣΠ(A) −→ B is an equivalence of
categories.

Thus, the structure of the category ΣΠ(A) is precisely determined by the
conditions 1,2,3. We shall spend the next section giving an explicit account of
the property of softness. The theorem is a special instance of the more general
observations due to Joyal on free bicomplete categories [16,17].

A decision procedure necessarily focuses on the homset hom(X0×X1, A0+A1)
which, by Theorem 2, is a certain the pushout. Equivalently, this homset is the
colimit of what we shall refer to as the “diagram of cardinals”:

1 As usual in category theory, we shall use the symbols
∑

and
∐

interchangeably.
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hom(X0 ×X1, A0) hom(X0, A0)
π0�� σ0 �� hom(X0, A0 +A1)

hom(X1, A0)

π1

��

σ0

��

hom(X0, A1)

π0

��

σ1

��

hom(X1, A0 +A1) hom(X1, A1)
π1 ��σ1�� hom(X0 ×X1, A1)

The explicit way of constructing such a colimit – see [15, §V.2.2] – is to first
consider S, the disjoint sum of the corners:

hom(X0, A0 +A1)+hom(X1, A0 +A1)+hom(X0 ×X1, A0)+hom(X0 ×X1, A1)

and then quotient S by the equivalence relation generated by pairs (f, g) such
that, for some h, f = πi(h) and σj(h) = g, as sketched below:

h ∈ hom(Xi, Aj)
πi

�����������������
σj

�����������������

f ∈ hom(X0 ×X1, Aj) g ∈ hom(Xi, A0 +A1)

Thus, for f, f ′ ∈ S we have that [f ] = [f ′] ∈ hom(X0 ×X1, A0 +A1) if and only
if there is a path (which can be empty) in the diagram of cardinals from f to f ′,
that is a sequence f0f1f2 . . . fn, where f = f0, fn = f ′, and for i = 0, . . . , n− 1,
(fi, fi+1) or (fi+1, fi) is a pair as above.

3 Weak Disjointeness

A point in a ΣΠ-category is an arrow of the form p : 1 −→ A. When an object
has a point we shall say it is pointed. Similarly, a copoint is an arrow of the form
c : X −→ 0 and an object with a copoint is copointed.

An object of ΣΠ(∅) can be viewed as a two-player game on a finite tree,
with no draw final position. Points then correspond to winning strategies for the
player, while copoints correspond to winning strategies for the opponent. Thus,
every object of ΣΠ(∅) either has a point or a copoint but not both.

The first important result for analyzing softness concerns a key relationship
between coproduct injections and copoints:
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X A1
g ��

A0 +A1

σ1

��
A0

f

�� σ0 ��

0

∃c

		
?A1�������



������

?A0
��
�

����
�

Theorem 3. Coproducts are weakly disjoint
in ΣΠ(A): if f ;σ0 = g;σ1 : X −→ A0 + A1,
then there exists a copoint c : X −→ 0 such
that f = c; ? and g = c; ?.

Proof. We say that a triple (X | A0, A1) is
good if for every f : X −→ A0 and g : X −→
A1 the statement of the Theorem holds. Sim-
ilarly, we say that a triple (X0, X1 | A) is good if, for every f : X0 −→ A and
g : X1 −→ A, the dual statement of the Theorem holds. We prove that every
triple is good, by induction on the structural complexity of a triple.

The non trivial induction step arises when considering a triple of the form
(X0×X1 | A0, A1) – or the dual case. Here, saying that the equality f ;σ0 = g;σ1
holds means that there exists a path φ of the form f0f1 . . . fn in the diagram
of cardinals from f = f0 ∈ hom(X0 ×X1, A0) to g = fn ∈ hom(X0 ×X1, A1),
i.e. from northwest to southeast. Moreover, we may assume φ to be simple (i.e.
there are no repeated maps).

Such path necessarily crosses one of southwest or northeast corners, let us say
the latter. This means that, for some i = 1, . . . , n − 1, fi ∈ hom(X0, A0 + A1),
and fi−1, fi+1 are in opposite corners. W.l.o.g. we can assume fi−1 ∈ hom(X0 ×
X1, A0) and fi+1 ∈ hom(X0 ×X1, A1). Taking into account the definition of an
elementary pair, we see that for some h ∈ hom(X0, A0) and h′ ∈ hom(X0, A1) we
have h;σ0 = fi = h′σ1. Thus, by the inductive hypothesis on (X0 | A0, A1), we
have h = c; ?A0 and h′ = c; ?A1 ; in particular the projection π0 : X0 ×X1 −→ X0
is epic, because of the existence of a copoint c : X0 −→ 0. Recalling that the path
φ is simple, we deduce that i is the only time φ visits northeast, i.e. such that
fi ∈ hom(X0, A0 +A1).

A similar analysis shows that if φ crosses a corner, then it visits that corner
just once. Thus, we deduce that φ does not cross the northwest corner, as φ
visits the northwest corner at time 0 and a corner may be crossed only at time
i ∈ { 1, . . . , n−1 }. Similarly, φ does not cross the southeast corner. Also, φ cannot
visit the southwest corner, as this would imply that at least one of northwest or
southeast corners has been crossed.

Putting these considerations together, we deduce that φ visits the northwest,
northeast, and southeast corners exactly once. That is, φ has length 2 and i = 1.
Recalling the definition of elementary pair, we have

f = f0 = π0;h , h;σ0 = f1 , f1 = h′;σ1 , π0;h′ = f2 = g .

Considering that h = c; ?A0 and h′ = c; ?A1 , we deduce that f = π0; c; ?A0 and
g = π0; c; ?A1 . "#

This result may be interpretated from the perspective of a processes: the only way
a process can send different messages on a channel without changing its meaning
is when the recipient has stopped listening. The consequences of misjudging when
the recipient stops listening, of course, is well-understood by school children and
adults alike!
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There are a number of consequences of this Theorem relevant to the decision
procedure. To this end we need to introduce some terminology and some obser-
vations. We say that an arrow f is pointed if it factors through a point, i.e. if
f =!; p for some point p. Similarly, an arrow is copointed if it factors through a
copoint. Note that an object A is pointed iff ? : 0 −→ A is pointed and, similarly,
X is copointed iff ! : X −→ 1 is copointed. A map which is neither pointed nor
copointed is said to be definite, otherwise it is said to be indefinite.

The following two facts are consequences of the theorem which can be obtained
by a careful structural analysis:

Corollary 4.

1. It is possible to decide (and find witnesses) in linear time in the size of a
term whether it is pointed or copointed.

2. A coproduct injection σ0 : A −→ A+ B is monic iff either B is not pointed
or A is pointed. In particular ? : 0 −→ B is monic iff B is not pointed.

An arrow is a disconnect if it is both pointed and copointed: it is easy to see
that there is at most one disconnect between any two objects. Furthermore, if an
arrow f : A −→ B is copointed, that is f = c; ?, and its codomain, B, is pointed
then f is this unique disconnect. On the other hand, if the codomain B is not
pointed then ? : 0 −→ B is monic and, thus, such an f corresponds precisely
to the copoint c. These observations allow the equality of indefinite maps, i.e.
pointed and copointed, to be decided in linear time.

A further important fact which also follows from 4, in a similar vein to the
above, concerns whether a map in ΣΠ(A) factors through a projection or a
coprojection. This can also be decided in linear time on the size of the term.
This is by a structural analysis which we now sketch.

Suppose that we wish to determine whether f = σ0(f ′) : A −→ B + C. If
syntactically f is σ1(f ′) then, as a consequence of Theorem 3, the only way it
can factorize is if the map is copointed. However, whether f is copointed can
be determined in linear time on the term by Corollary 4. The two remaining
possibilities are that f is syntactically {f1, f2} or πi(f ′). In the former case,
inductively, both f1 and f2 have to factorize through σ0. In the latter case,
when the map is not copointed, f ′ itself must factorize through σ0.

There is, at this point, a slight algorithmic subtelty: to determine whether
f can be factorized through a projection it seems that we may have to repeat-
edly recalculate whether the term is pointed or copointed and this recalculation
would, it seems, push us beyond linear time. However, it is not hard to see that
this the recalculation can be avoided simply by processing the term initially to
include this information into the structure of the term (minimally two extra bits
are needed at each node to indicate pointedness and copointedness of the map):
subsequently this information would be available at constant cost. The cost of
adding this information into the structure of the term is linear and, even bet-
ter, the cost of maintaining this information, as the term is manipulated, is a
constant overhead.
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4 Bouncing

Given the previous discussion, equality for indefinite terms is understood and so
we can focus our attention on definite terms. The main difficulty of the decision
procedure concerns equality in the homset hom(X0 × X1, A0 + A1). However,
the proof of Theorem 3 has revealed an important fact: if two terms in this
homset have a definite denotation, then any path in the diagram of cardinals
that witnesses the equality between them cannot cross a corner of the diagram;
that is, such a path must bounce backward and forward on one side:

hom(X0 ×X1, Aj)
πi←−−−− hom(Xi, Aj)

σj−−−−→ hom(Xi, A0 +A1) . (4)

In other words, in order to understand definite maps we need to study the
pushouts of the above spans. Notice that the proof of Theorem 3 also reveals that
some simple paths in the diagram of cardinals have bounded length. However,
that proof does not provide a bound for the length of paths that bounce on one
side. It is the purpose of this section to argue that such a bound does indeed
exist and to explore the algorithmic consequences.

We start our analysis by considering a general span B
f←−− A

g−→ C of sets
and by recalling the construction of its colimit, the pushout B +A C. This can
be constructed by subdividing B and C into the image of A and the complement
of that image. Thus, if B = Im(f) + B′ and C = Im(g) + C′ then B +A C =
A′+Im(ρ)+B′ where ρ : A → B+AC. The image Im(ρ) is the quotient of A with
respect to the equivalence relation witnessed by “bouncing data”; bouncing data
is a sequence of elements of A, (a0, a1, ..., an), with, for each 0 ≤ i < n either
f(ai) = f(ai+1) or g(ai) = g(ai+1). Bouncing data, (a0, a1, ..., an), is said to be
irredundant if adjacent pairs in the sequence are identified for different reasons.
Thus, in irredundant bouncing data if f(ai) = f(ai+1) then f(ai+1) �= f(ai+2)
and similarly for g. Redundant bouncing data can always be improved to be
irredundant by simply eliding intermediate redundant steps.

For bouncing data of length 2, (a0, a1, a2), we shall write a1 : a0 � a2 to
indicate f(a0) = f(a1) and g(a1) = g(a2), and we shall call a1 a bouncer from
a0 to a2. The following is a general observation concerning pushouts of sets:

Proposition 5. For any pushout of B
f←−− A

g−→ C in sets the following are
equivalent:

1. If a0, an are related by some bouncing data, then they are related by bouncing
data of length at most 2.

2. The equivalence relations generated by f and g commute.
3. The pushout diagram is a weak pullback, i.e. the comparison map to the

pullback is surjective.

Moreover, when one of these equivalent conditions holds, the pushout is a pullback
iff for every a0 and a2 related by bouncing data there is a unique element a1 such
that a1 : a0 � a2.
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Xi
f ��

∃! h

��

Aj

σj

���������

X0 ×X1

πi

�����������

πi

����������� A0 +A1

Xi g
�� Aj

σj

�����������

Surprisingly, this altogether spe-
cial situation holds in ΣΠ(A).
More precisely, we say that
the homset hom(Xi, Aj) bounces
if, for each pair of objects
X1−i, A1−j , the span (4) has a
pushout which makes the hom-
set hom(Xi, Aj) the pullback. In-
tuitively, hom(Xi, Aj) bounces if,
whenever the upper and lower legs of the diagram on the right are equal (and
definite), this is because of a unique bouncer h : f � g, where h is shown dotted
and the fact that it is a bouncer means that the two smaller rectangles commute.
Thus we have:

Theorem 6. In ΣΠ(A) all homsets bounce.

The Theorem implies that if f and g are related by a bouncing path in the
diagram of cardinals, then there exists a path of length at most 2 relating them.

The proof of the Theorem 6 relies on a tricky structural induction on the pairs
(Xi, Aj). Rather than presenting it here, we provide the proof for the special case
of ΣΠ(∅). Here the situation is much simpler, since each object is either pointed
or copointed, but not both. We observe first that when there is a map from Xi

to Aj , if Xi is pointed then Aj must be pointed as well and, dually, when Aj

is copointed Xi must be copointed. As Xi and Aj must be either pointed or
copointed it follows that Xi is pointed (respectively copointed) if and only if Aj

is. However, if Aj is pointed then σj is monic so the bouncer h is forced to be
f . Otherwise, if Aj is not pointed, then Aj is copointed and Xi as well; then πi

is epic and the bouncer h is forced to be g.
When h ∈ { f, g }, say that the bouncers h : f � g is trivial. While ΣΠ(∅)

has only trivial bouncers, the next example shows that this is not in general the
case. Let k : x → a be an arbitrary map of A, let X0 = (0 × 0) + η(x) and
A0 = (1 + 1) × η(a), let z : 0 × 0 −→ 1 × 1 be the unique disconnect. Recalling
that an arrow from a coproduct to a product might be represented as a matrix,
define

f =
(

z π0({})
σ0(〈〉) η(k)

)

h =
(

z π1({})
σ0(〈〉) η(k)

)

g =
(

z π1({})
σ1(〈〉) η(k)

)

as arrows of the homset hom(X0, A0). Then h : f � g is an example of a non-
trivial bouncer whenever X1 is copointed and A1 is pointed, since then f and
h are coequalized by σ0 and h and g are equalized by π0. Notice, however, that
this example relies crucially on having atomic objects.

We conclude this Section by sketching an algorithm — presented below on the
right for ΣΠ(∅) – which computes whether a term f of the homset hom(X0 ×
X1, Aj) is equivalent to a term g of the homset hom(Xi, A0 + A1) within the
pushout of the span (4).
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let equivalent f g =
let f ′, g′ be such that
f ≡ σj(f ′) and g ≡ πi(g′)

in if f ′,g′ do not exist then
false

elseif X1−i is copointed then
equal σj(f ′) σj(g′)

else (*A1−j is pointed*)

equal πi(f ′) πi(g′)

The algorithm tries to lift
f and g to f ′, g′ in the homset
hom(Xi, Aj) and, if success-
ful, it tests for the existence
of a bouncer h : f ′ � g′.
Notice that the algorithm is
defined by mutual recursion
on the general decision pro-
cedure equal.

5 The Decision Procedure

We present in Figure 3 a sketch of the decision procedure for ΣΠ(∅). The general
decision procedure for ΣΠ(A) – which depends on having a decision procedure
for A – is considerably complicated by having to construct non-trivial bouncers;
we leave that to the full paper.

let equal f g = match (dom f ,cod g) with

(0,_) | (_,1) -> true

| (1,A0 + A1) ->

let i, f ′, j, g′b be such that

f ≡ σi(f ′) and g ≡ σj(g′)
in if i = j then equal f ′ g′ else false

| (Y0 × Y1,0) -> ... dual

| (_,A0 × A1) ->

let f0, f1, g0, g1 be such that

f ≡ 〈f0, f1〉 and g ≡ 〈g0, g1〉
in (equal f0 g0) && (equal f1 g1)

| (Y0 + Y1,_) -> ... dual

| (X0 × X1, A0 + A1) ->

if definite f g then

match (f, g) with

(πi(f ′), σj(g′)) | (σj(g′), πi(f ′)) -> equivalent f ′ g′

| (πi(f ′), πi(g′)) ->

let i, g̃ be such that

πi(g′) ≡ σj(g̃)
in

if such i, g̃ do not exist then equal f ′ g′

else equivalent f ′ g̃
| (σi(f ′), σi(g′)) -> ... dual

| _ -> false

else equal_indefinite f g

Fig. 3. The decision procedure for ΣΠ(∅)
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The procedure. The procedure starts with two parallel terms f, g : X → A
in ΣΠ(∅). The first step is to cut-eliminate the terms: this takes linear time on
the size of the terms. If X is initial or A is final then we are done – there are of
course no maps if X is final and A is initial. If either X is a coproduct or A is
a product we can decompose the maps and recursively check the equality of the
components. Thus, if X = X1 +X2 then f = {σ0; f, σ1; f} and g = {σ0; g, σ1; g},
and then f = g if and only if σi; f = σi; g for i = 0, 1.

This reduces the problem to the situation in which the domain of the maps is
a product and the codomain is a coproduct. Here we have to consider two cases:

Indefinite maps. In section 3 we mentioned that in time linear on the size of the
maps (which, when terms are cut-eliminated is in turn bounded by the product
of the types) one can determine whether the map is pointed (and produce a
point) or copointed (and produce a copoint). If both terms are both pointed
and copointed then they are the unique disconnect and we are done. If one term
is just pointed the other must be just pointed and the points must agree (and
dually for being just copointed).

Definite maps. When the maps are definite then a first goal is to determine
whether the term f factors through a projection or a coprojection or, indeed,
both (i.e. f = σi(f ′) or f = πj(f ′)). These factoring properties, as discussed
above, can be determined in linear time with preprocessing. Using these prop-
erties – remembering that a path in the diagram of cardinals that relates two
definite terms can only move along a side – there are two cases, either they
bounces or they do not. It they bounce we can reduce the problem to the case
when one term factors through a projection and the other through a coprojec-
tion (using equivalent). If the terms do not bounce then they both must factor
syntactically in the same manner so that f is σ0(f ′) and g is σ0(g′), then f ′

must equal g′.

Complexity. Observe that a simple structural induction yields: in ΣΠ(∅) the
size of any cut-eliminated term t : X −→ A is bounded by the product of the sizes
of the types and its height is bounded by the sum of the heights of the types. This
means that, for cut-eliminated terms at least, we can use the size of the types
to bound the term.

The decision procedure uses a preprocessing sweep to annotate the terms
(and the types) with point and copoint information. Then the main equality
algorithm either forms a tuple when the codomain is a product (or a cotuple
when the domain is a sum) or has to determine whether a term can be factored
via a projection or coprojection. Getting this to run in linear time uses the fact
that the pointed and copointed information can be retrieved in constant time
due to preprocessing.

The other major step in the algorithm, which we have not discussed for the gen-
eral case, involves finding a bouncer. In the ΣΠ(∅) case this involves determining
which of the projection or coprojection is respectively epic or monic. This, in turn,
is determined by the pointedness or copointedness of the components of the type
– calculated in the preprocessing stage – and so is constant time.
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This means that the algorithm at each node of the term requires processing
time bounded by a time proportional to the (maximal) size of the subterm. Such
a pattern of processing is bounded by time proportional to the height of the
term times the size. We therefore have:

Proposition 7. To decide the equality of two parallel cut-eliminated terms t1, t2 :
A −→ B in ΣΠ(∅) has complexity in O((hgt(A) + hgt(B)) · size(A) · size(B)).

The analysis of the algorithm for ΣΠ(A) is more complex and is left to the fuller
exposition.
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Abstract. The aim of this paper is to understand the interplay between intersection,
universally quantified, and reference types. Putting together the standard typing rules for
intersection, universally quantified, and reference types leads to loss of subject reduc-
tion. The problem comes from the invariance of the reference type constructor and the
rules of intersection and/or universal quantification elimination, which are subsumption
rules. We propose a solution in which types have a kind saying whether the type is (or
contains in the case of intersection) a reference type or not. Intersection elimination is
limited to intersections not containing reference types, and the reference type construc-
tor can only be applied to closed types. The type assignment is shown to be safe, and
when restricted to pure λ -calculus, as expressive as the full standard type assignment
system with intersection and universally quantified types.

Introduction

This paper deals with the problem of understanding the interplay between types built
using intersection, universal quantification, and reference type constructors. Reference
types, [7] and [15], are an essential tool for typing memory locations and the operations
of reading and writing in memory. Parametric polymorphism of universally quantified
types, introduced by Girard in [5] and Reynolds in [12], enhances the expressivity of
typing in a uniform way. Intersection types, introduced in [2], allow for discrete poly-
morphism, increase the typability, and in particular give a formal account to overload-
ing. Putting together these type constructs is useful for typing in a significant way a
programming language with imperative features. It is well known that reference types
must be invariant, since they represent both reading and writing of values, and therefore
they should be both covariant and contra-variant [10] [page 198]. On the other hand, the
standard intersection and universal quantifier elimination typing rules are subsumption
rules, since the intersection of two types is contained in both types, and the instantiation
of a universally quantified variable specializes the type.

As already remarked in [3] a naive typing with reference and intersection types may
lead to loss of subject reduction as the following example shows. We can derive type
Pos for the term

(λ x.(λ y.!x)(x := 0))ref1
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by assuming type RefPos∧RefNat for the variable x. In fact ref1 has type RefPos∧
RefNat since 1 is both Pos and Nat. By intersection elimination we can use:

– the type RefNat for x in the typing of x := 0 getting the type Unit;
– the type RefPos for x in the typing of !x getting the type Pos.

Reducing this term starting from the empty memory, with the call-by-value strategy we
get

(λ x.(λ y.!x) (x := 0)) ref1 * /0 −→ (λ x.(λ y.!x) (x := 0)) l * (l = 1)
−→ (λ y.!l) (l := 0) * (l = 1)
−→ (λ y.!l) () * (l = 0)
−→ !l * (l = 0)
−→ 0 * (l = 0)

and 0 does not have the type Pos. Note that this term evaluates to 1 in the memory
(l = 1) under the call-by-name reduction strategy. So the soundness of typing depends
on the evaluation strategy used.

This example is a transcription of an example in [3]. The solution given in [3] is
discussed in the conclusion, where it is compared with our proposal.

A variant of this examples shows that also a naive use of universally quantified types
may lead to loss of subject reduction. Consider the term:

M = ((λ x.(λ y.!x) (x := λ z.0)) (ref(λ z.1))) 1

We can derive type Pos for this term by assuming type ∀t.Ref(t → t) for the vari-
able x. In fact (ref(λ z.1)) has type Ref(Pos→ Pos) since 1 has type Pos. By forall
elimination we can use:

– the type Ref(Nat→ Nat) for x in the typing of x := λ z.0 getting the type Unit;
– the type Ref(Pos→ Pos) for x in the typing of !x getting the type Pos→ Pos.

Reducing this term starting from the empty memory, with the call-by-value strategy we
get

M * /0 −→ ((λ x.(λ y.!x) (x := λ z.0)) l) 1 * (l = λ z.1)
−→ ((λ y.!l) (l := λ z.0)) 1 * (l = λ z.1)
−→ ((λ y.!l)()) 1 * (l = λ z.0)
−→ !l 1 * (l = λ z.0)
−→ (λ z.0) 1 * (l = λ z.0)
−→ 0 * (l = λ z.0)

and 0 does not have the type Pos. Note that using the call-by-name reduction strategy
we get 1.

As suggested by the above examples, a memory location typed by RefPos∧RefNat
must contain values which are bothPosandNat, i.e. values of typePos∧Nat. For the case
of quantified types a memory location typed by ∀t.Ref(t → t) must contain a function
of type ∀t.t → t. This can be better expressed by typing the memory location with the
type Ref(Pos∧Nat) in the first case and Ref(∀t.t → t) in the second. Therefore, when
a value is assigned to it it must have type Pos in the first case and ∀t.t → t in the second.

Building on this idea we propose a type system for a λ -calculus with assignment
statements and reference/dereference constructors. Intersections and universally quan-
tified types are assigned to terms, via introduction rules, but elimination of intersection
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is limited to non reference types, and the Ref type constructor can only be applied to
closed types. We show safety, i.e. subject reduction and progress, of our type system.
Lastly we observe that no expressive power is lost in comparison with the original sys-
tems of universally quantified types [5], intersection types [2], and both intersection and
universally quantified types [8].

A strongly related paper is [4] which proposes a different type assignment system
with both reference and intersection types. We will compare the present solution and
that one discussed in the paper [4] in the conclusion.

Outline of the paper. Section 1 presents the syntax and reduction rules of the language.
Types with their relevant properties are introduced in Section 2, and Section 3 defines
the type assignment system and proves its safety. We conclude, in Section 4, by com-
paring our approach with the ones of [3] and [4], and outlining possible directions for
further work.

1 Syntax and Reduction Rules

The language Λimp we are working with is a simplification of the language in [3], which
in its turn belongs to the ML-family, the difference being the lack of the let construction
and of the binary strings. It is well know that the let constructor is syntactic sugar [10]
[Section 11.5] and in presence of intersection or universally quantified types does not in-
crease the typability of the language, since with either intersection or universally quan-
tified types we can type the translation of let in pure λ -calculus [1], [6]. The only data
types of Λimp are the numerals, that is enough for discussing the typing problems shown
in the introduction.

Terms of Λimp are defined by the following grammar:

M ::= n | x | λ x.M | MM | fixx.M
l | refM |!M | M := M | ()
if M then M else M | MopM | . . .

n ::= 0 | 1 | 2 | . . .
op ::= + | × | . . .

where x ranges over a countable set of variables, and l ranges over a countable set of
locations. Free and bound variables are defined as usual. A term is closed if it does not
contain free variables. The set of closed terms is denoted by Λ0

imp.
The syntactical constructs with an imperative operational behaviour are the locations,

denoting memory addresses, and the operators ref , !, and :=, denoting the operations
of allocation, dereferencing, and assignment, whose behaviour is given below. The set
of values is the subset of Λimp defined as follows:

V ::= n | λ x.M | l | ()
The value ( ) is the result of the evaluation of an assignment, whose purpose is the
side-effect of changing the store. The store is modeled as a finite association between
locations and values:

μ ::= /0 | μ ,(l = V )
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E [(λx.M) V ] * μ −→ E [M[V/x]] * μ (βv)
E [fixx.M] * μ −→ E [M[fixx.M/x]] * μ (fixR)
E [refV ] * μ −→ E [l] * μ,(l = V ) l fresh (refR)
E [!l] * μ,(l = V ) −→ E [V ] * μ,(l = V ) (locR)
E [l := V ] * μ,(l = V ′) −→ E [()] * μ,(l = V ) (unitR)
E [if 0 then M else N] * μ −→ E [M] * μ (ifZR)
E [if n then M else N] * μ −→ E [N] * μ n �= 0 (ifPR)
E [0 + 0] * μ −→ E [0] * μ (+ZZR)
E [0 + 1] * μ −→ E [1] * μ (+ZOR)
. . .

Fig. 1. Reduction Rules

On Λimp we consider a call-by-value reduction semantics. The operational semantics is
given by defining reductions inside evaluations contexts, that, as usual, are terms with
a hole, [ ], specifying which subterm must be reduced.

E ::= [ ] | E M |V E | refE |!E | E := M |V := E |
if E then M else M | E op M | n op E

As one can see the evaluation is left to right and for an application we evaluate both
terms. The reduction semantics is given by the sets of rules in Fig. 1 where [N/x] is the
capture free substitution of x with N, and μ is a store.

2 Types and Type Theory

Types, τ , σ , ρ , are defined by the following syntax:

τ,σ ,ρ ::= Pos | Nat | Unit | t | τ → τ | τ ∧ τ | ∀t : κ .τ | Refτ
κ ::= S | R

where t belongs to a countable set of type variables (ranged over by t,u,v,w). Kinds
(ranged over by κ) say whether the type is (or contains in the case of intersection) a
reference type. The simple kind S is the kind of types which are constants, arrows or
intersections of two types both of kind S. The reference kind R is the kind of types
which are references, or intersections of two types at least one of them being of kind R.
An universally quantified type inherits the kind from the type obtained by erasing the
quantification.

The type of natural and positive numbers is denoted respectively by Nat and Pos,
Unit is the type of assignments and (). The arrow constructor, τ → σ , is the type of
functions from type τ to type σ , and intersection, τ ∧ σ , is the type of expressions
that have both type τ and type σ . Universal quantification specifies the kind of the
bound variable, since the variable can be replaced only by a type of the same kind.
Finally Refτ is the type of a reference to a value of type τ . We assume the following
precedence relation between constructs: ∀, Ref , ∧, →. As usual → associates to the
right. We use ∀t : κ.τ as an abbreviation for ∀t1 : κ1. . . .∀tn : κn.τ , where n ≥ 0.

The set of free type variables of a type, T V (τ), is defined in the usual way. A term
without occurrences of free type variables is said closed.
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Δ � Pos :: S Δ � Nat :: S Δ � Unit :: S Δ ,t : κ � t :: κ

Δ � τ :: κ T V (τ) = /0

Δ � Refτ :: R

Δ � τ :: κ Δ � τ ′ :: κ ′

Δ � τ → τ ′ :: S

Δ � τ :: κ Δ � τ ′ :: κ ′

Δ � τ ∧ τ ′ :: κ �κ ′

Δ ,t : κ � τ :: κ ′

Δ � ∀t : κ.τ :: κ ′

Fig. 2. Kind Assignment

A kind environment Δ is an association between type variables and kinds, defined as
follows:

Δ ::= /0 | Δ ,t : κ t �∈ dom(Δ)

where dom is the environment domain.
We use Δ ,t : κ as an abbreviation for the kind environment Δ , t1 : κ1, ..., tn : κn, where
n ≥ 0.

A type τ has kind κ w.r.t. Δ if the judgment Δ � τ :: κ can be derived from the rules
in Fig . 2. Note that only closed types can be arguments of the Ref type constructor. As
we can see from the rules of Fig. 2 the kind of an arrow is always S and the kind of an
intersection is R if at least one of its types has kind R, since we define:

κ 	κ ′ =

{

S if κ = κ ′ = S,
R otherwise.

We abbreviate Δ � τ1 :: κ1 . . . ,Δ � τn :: κn, where n ≥ 0, by Δ � τ :: κ .
In the following we will only consider types to which a kind can be assigned from a

suitable environment.
On types, we define a congruence relation, ≡, identifying types that denote the same

property of terms. The relation ≡ is the minimal equivalence relation which is a con-
gruence and which satisfies the axioms given in Fig. 3. Regarding intersection we have
idempotence, commutativity, associativity, distribution of intersection on the right side
of arrows with the same left side, and distribution of Ref over intersection. For quanti-
fied types we have commutativity of quantification, α-conversion, the fact that quanti-
fying on a variable not free in a type is irrelevant, and the standard distribution rules for
quantifiers on arrow and intersection connectives. We consider types modulo ≡, so we
write

∧

i∈I τi, and
∧

1≤i≤n τi for denoting τ1 ∧·· ·∧τn, where I = {1, . . . ,n}, and none of
the τi, 1 ≤ i ≤ n, is an intersection.

It is easy to check that if Δ � τ :: κ and τ ≡ σ , then Δ � σ :: κ . It is important to
notice that Refτ has a kind implies τ is closed, so in particular ∀t.Refτ ≡ Refτ .

In the following it is handy to single out the types whose top quantification is
meaningless.

Definition 1. A type τ is ∀-top-free if there are no t, κ , and σ such that τ ≡ ∀t : κ .σ
and t ∈ T V (σ).

For example, ∀t.Nat is ∀-top-free, since ∀t.Nat ≡ Nat. Instead Nat → ∀t.t is not ∀-top-
free, since Nat → ∀t.t ≡ ∀t.Nat → t.
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τ ≡ τ ∧ τ σ ∧ τ ≡ τ ∧σ (τ ∧σ)∧ τ ′ ≡ τ ∧ (σ ∧ τ ′)

(σ → τ)∧ (σ → τ ′) ≡ σ → τ ∧ τ ′ Ref (τ ∧σ) ≡ Refτ ∧Refσ

∀t : κ.∀t ′ : κ ′.τ ≡ ∀t ′ : κ ′.∀t : κ.τ

t �∈ T V (τ) ⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀t ′ : κ.τ ≡ ∀t : κ.τ[t/t ′]
∀t : κ.τ ≡ τ
∀t : κ.(τ → σ) ≡ τ → ∀t : κ.σ
∀t : κ.(τ ∧σ) ≡ τ ∧∀t : κ.σ

Fig. 3. The Congruence ≡ on Types

Δ � Pos≤ Nat (pos)
Δ � τ ∧σ :: S

(∧E)
Δ � τ ∧σ ≤ τ

Δ � ∀t : κ.τ :: κ ′ Δ � σ :: κ
(∀E)

Δ � ∀t : κ.τ ≤ τ[σ/t]

Δ � τ ′ ≤ τ Δ � σ ≤ σ ′

(→)
Δ � τ → σ ≤ τ ′ → σ ′

Δ � τ ≤ τ ′ Δ � σ ≤ σ ′

(∧)
Δ � τ ∧σ ≤ τ ′ ∧σ ′

Δ ,t : κ � τ ≤ σ
(∀)

Δ � ∀t : κ.τ ≤ ∀t : κ.σ

Δ � τ :: κ
(id)

Δ � τ ≤ τ

Δ � τ ≤ ρ Δ � ρ ≤ σ
(trans)

Δ � τ ≤ σ

τ ≡ τ ′ Δ � τ ′ ≤ σ ′ σ ′ ≡ σ
(congr)

Δ � τ ≤ σ

Fig. 4. The Preorder Relation ≤ on Types

A preorder relation ≤ is defined on types through the rules shown in Fig. 4. Rule
(pos) says that a positive is also a natural. Rules (∧E) and (∀E) are the elimination
rules. Note that for eliminating intersection we require that the intersection does not
contain reference types. This is a crucial restriction, along with the facts that Ref can
only be applied to closed types and there is no rule for applying ≤ inside Ref , to get
subject reduction. Rules (→), (∧), and (∀) extend ≤ to the specific constructor, and
they are standard. Rule (id), and (trans), make ≤ a preorder, and rule (congr) makes
≤ a partial order when we identify congruent types.

Note that Δ � τ :: κ and τ ≡ σ imply both Δ � τ ≤ σ and Δ � σ ≤ τ . On the other
side Δ � τ ≤ σ implies Δ � τ :: κ and Δ � σ :: κ for some κ .

Weakening holds for kind environments in all the considered judgements, i.e.
Δ � τ :: κ implies Δ ,t : κ � τ :: κ if t �∈ dom(Δ) and similarly for Δ � τ ≤ σ .

By induction on the definition of ≤ we can show that the preorder is preserved by
replacing type variables by types of the same kinds.

Lemma 1. Δ ,t : κ � τ ≤ σ , and Δ � ρ :: κ imply Δ � τ[ρ/t]≤ σ [ρ/t].

The next technical lemma is the key tool for proving the subject reduction property in
case the used reduction rule is the βv-rule. It states that if a quantified intersection of
arrows is less than the arrow τ →σ , then there are instances of domains and co-domains
of some arrows in the intersection which are related by the preorder to τ and σ .
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Lemma 2. If Δ � ∀t : κ .
∧

i∈I(τi → σi)≤ τ → σ , where σi (i ∈ I) and σ are ∀-top-free,
then there are ρ , and J ⊆ I, such that:

– Δ � ρ :: κ ,
– Δ � τ ≤ τ j[ρ/t] ( j ∈ J), and
– Δ �∧ j∈J σ j[ρ/t] ≤ σ .

Proof. By induction on the definition of ≤. In order to prove the result for rule (trans)
we show the more general assert that follows:
If τ ≡ ∀u : κ .

∧

i∈I(τi → σi) where σi (i ∈ I) are ∀-top-free, and Δ � τ ≤ σ , then there
are v, κ ′, J, τ ′j , ∀-top-free σ ′

j ( j ∈ J), ρ such that:

– σ ≡ ∀v : κ ′.
∧

j∈J(τ ′j → σ ′
j)

– Δ ,v : κ ′ � ρ :: κ , and
– for all j ∈ J there is Hj ⊆ I with:

• Δ ,v : κ ′ � τ ′j ≤ τh[ρ/u] for all h ∈ Hj, and

• Δ ,v : κ ′ � ∧h∈Hj
σh[ρ/u] ≤ σ ′

j .
The proof is by induction on the derivation of ≤. We only consider the most difficult
case, that is when the statement is the consequent of rule (trans). Let Δ � τ ≤ τ ′ and
Δ � τ ′ ≤ σ be the premises of the application of rule (trans).

By induction hypothesis on τ ≤ τ ′ there are w, κ ′′, L, τ ′′l , ∀-top-free σ ′′
l (l ∈ L), ρ ′

such that:
(a) τ ′ ≡ ∀w : κ ′′.

∧

l∈L(τ ′′l → σ ′′
l )

(b) Δ ,w : κ ′′ � ρ ′ :: κ , and
(c) for all l ∈ L there is H ′

l ⊆ I with:
(c.1) Δ ,w : κ ′′ � τ ′′l ≤ τh[ρ ′/u] for all h ∈ H ′

l , and
(c.2) Δ ,w : κ ′′ �∧h∈H′

l
σh[ρ ′/u] ≤ σ ′′

l .

By induction hypothesis on τ ′ ≤ σ there are v, κ ′, J, τ ′j, ∀-top-free σ ′
j ( j ∈ J), ρ ′′ such

that:
(a′) σ ≡ ∀v : κ ′.

∧

j∈J(τ ′j → σ ′
j)

(b′) Δ ,v : κ ′ � ρ ′′ :: κ ′′, and
(c′) for all j ∈ J there is H ′′

j ⊆ L with:

(c′.1) Δ ,v : κ ′ � τ ′j ≤ τ ′′h [ρ ′′/w] for all h ∈ H ′′
j , and

(c′.2) Δ ,v : κ ′ �∧h∈H′′
j

σ ′′
h [ρ ′′/w] ≤ σ ′

j.

Note that we can assume that the sets of variables u, v, and w are fresh and pairwise

disjoint. Define ρ = ρ ′[ρ ′′/w] and Hj =
⋃

k∈H′′
j

H ′
k ( j ∈ J). It is easy to verify that:

– Δ ,v : κ ′ � ρ :: κ (from Lemma 1, weakening, (b) and (b′)), and
– Hj ⊆ I.

Moreover (c.1) and (b′) imply by Lemma 1 and weakening that
Δ ,v : κ ′ � τ ′′l [ρ ′′/w] ≤ τh[ρ ′/u][ρ ′′/w] for all h ∈ H ′

l .
Note that τh[ρ ′/u][ρ ′′/w] = τh[ρ/u] for all h ∈ Hj since w cannot occur in τh. So by
(c′.1), and transitivity of ≤ we get for all j ∈ J:

Δ ,v : κ ′ � τ ′j ≤ τh[ρ/u] for all h ∈ Hj.
Similarly from (c.2), (b′), Lemma 1 and weakening we get

Δ ,v : κ ′ �∧h∈H′
l
σh[ρ/u] ≤ σ ′′

l [ρ ′′/w] for all l ∈ L.
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Δ ;Σ ;Γ � 0 : Nat (Nat)
n 	= 0

(Pos)
Δ ;Σ ;Γ � n : Pos

Δ ;Σ ;Γ � () : Unit (Unit())

Δ ;Σ ;Γ ,x : τ � x : τ (var) Δ ;Σ , l : τ;Γ � l : Refτ (loc)

Δ ;Σ ;Γ � M : τ T V (τ) = /0
(Ref I)

Δ ;Σ ;Γ � refM : Refτ

Δ ;Σ ;Γ � M : Refτ
(RefE)

Δ ;Σ ;Γ �!M : τ

Δ ;Σ ;Γ ,x : τ � M : σ
(→ I)

Δ ;Σ ;Γ � λx.M : τ → σ

Δ ;Σ ;Γ � M : τ → σ Δ ;Σ ;Γ � N : τ
(→ E)

Δ ;Σ ;Γ � MN : σ

Δ ,t : κ;Σ ;Γ � M : τ t 	∈ T V (Σ ,Γ )
(∀I)

Δ ;Σ ;Γ � M : ∀t : κ.τ

Δ ;Σ ;Γ � M : τ Δ ;Σ ;Γ � M : σ
(∧I)

Δ ;Σ ;Γ � M : τ ∧σ

Δ ;Σ ;Γ � M : τ Δ � τ ≤ σ
(≤)

Δ ;Σ ;Γ � M : σ

Δ ;Σ ;Γ � M : Refτ Δ ;Σ ;Γ � N : τ
(Unit)

Δ ;Σ ;Γ � M := N : Unit

Δ ;Σ ;Γ ,x : τ � M : τ
(fix )

Δ ;Σ ;Γ � fixx.M : τ

Δ ;Σ ;Γ � M : Nat Δ ;Σ ;Γ � N1 : τ Δ ;Σ ;Γ � N2 : τ
(if)

Δ ;Σ ;Γ � if M then N1 else N2 : τ

Fig. 5. The Typing Rules for Terms

This together with (c′.2), using rule (∧), transitivity of ≤, and the congruence σ ∧σ ≡
σ implies for all j ∈ J:

Δ ,v : κ ′ �∧h∈Hj
σh[ρ/u] ≤ σ ′

j. �

3 The Typing System
The typing system proves judgements of the shape:

Δ ;Σ ;Γ � M : τ
where Δ is a kind environment, Σ and Γ are a store environment and a type environment
respectively, M is a term and τ is a type. Store and type environments are defined as
follows:

Σ ::= /0 | Σ , l : τ l �∈ dom(Σ) τ is a closed type
Γ ::= /0 | Γ ,x : τ x �∈ dom(Γ ).

A store ( type ) environment is well formed with respect to a kind environment Δ
if all its predicates have a kind, i.e., Σ ( Γ ) is such that if l : τ ∈ Σ ( x : τ ∈ Γ ) then
Δ � τ :: κ for some kind κ . When we write a typing judgement Δ ;Σ ;Γ � M : τ we
always assume that Σ and Γ are well formed with respect to Δ .

The typing rules, given in Fig. 5, are standard. We omit the typing rules dealing with
arithmetic operators which are obvious. Note that the elimination rules of both ∧ and ∀
are particular cases of rule (≤).

It is easy to verify that strengthening and weakening for all the environments are
admissible rules. Fig. 6 shows these rules, where L (M) is the set of locations and
FV (M) is the set of free variables occurring in M.

The proof that deductions remain valid under the substitution of type variables by
types respecting kinds by induction on deductions is standard.
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Δ ,t : κ;Σ ;Γ � M : τ t �∈ T V (Σ ,Γ ,τ)
(sΔ )

Δ ;Σ ;Γ � M : τ

Δ ;Σ ;Γ � M : τ t �∈ T V (Σ ,Γ ,τ)
(wΔ )

Δ ,t : κ;Σ ;Γ � M : τ

Δ ;Σ , l : τ ′;Γ � M : τ l �∈ L (M)
(sΣ )

Δ ;Σ ;Γ � M : τ

Δ ;Σ ;Γ � M : τ l �∈ dom(Σ )
Δ � σ :: κ for some κ T V (σ) = /0

(wΣ )
Δ ;Σ , l : σ ;Γ � M : τ

Δ ;Σ ;Γ ,x : τ ′ � M : τ x �∈ FV (M)
(sΓ )

Δ ;Σ ;Γ � M : τ

Δ ;Σ ;Γ � M : τ x �∈ dom(Γ )
Δ � σ :: κ for some κ

(wΓ )
Δ ;Σ ;Γ ,x : σ � M : τ

Fig. 6. Admissible Rules

Proposition 1. If Δ ,t : κ ;Σ ;Γ � M : τ and Δ � σ :: κ , then
Δ ;Σ [σ/t];Γ [σ/t] � M : τ[σ/t].

The type system enjoys a Generation Lemma, which relates the shapes of terms with the
shapes of their possible derivations. We omit the obvious points concerning numerals
and operators on numerals.

Lemma 3 (Generation). Let Δ ;Σ ;Γ � M : τ . Then Δ � τ ≥ ∀t : κ .
∧

i∈I τi, for some I,
t, κ , ∀-top-free τi (i ∈ I), and the followings hold, where Δ ′ = Δ ,t : κ:

1. M = x implies that x : σ ∈ Γ for some σ such that σ ≤ τ;
2. M = λ x.P implies that there are σi, ρi (i ∈ I), such that:

(a) τi = σi → ρi, and
(b) Δ ′;Σ ;Γ ,x : σi � P : ρi (i ∈ I);

3. M = PN implies that there are σi (i ∈ I) such that:
(a) Δ ′;Σ ;Γ � P : σi → τi (i ∈ I), and
(b) Δ ′;Σ ;Γ � N : σi (i ∈ I);

4. M = fixx.N implies that Δ ′;Σ ;Γ ,x : τi � N : τi (i ∈ I);
5. M = l implies that l : σ ∈ Σ , for some closed σ such that Refσ ≡ τ;
6. M = !N implies that Δ ′;Σ ;Γ � N : Refτi (i ∈ I);
7. M = refN implies that there are closed σi such that:

(a) τi = Refσi, and
(b) Δ ;Σ ;Γ � N : σi (i ∈ I);

8. M = P := N implies τ ≡ Unit, and for some closed σ we have Δ ′;Σ ;Γ �P : Refσ
and Δ ′;Σ ;Γ � N : σ ;

9. M = () implies τ ≡ Unit;
10. M = if P then N else N′ implies that Δ ′;Σ ;Γ � P : Nat and Δ ′;Σ ;Γ � N : τi

and Δ ′;Σ ;Γ � N′ : τi (i ∈ I).

Proof. For all points, the proof is by induction on derivations. We will consider only
the case in which the last rule applied is (∧I), and we will show it for Points 2, 3 and 5.
All the other cases are simpler.
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2. If the last applied rule is:
Δ ;Σ ;Γ � λ x.P : τ Δ ;Σ ;Γ � λ x.P : τ ′

(∧I)
Δ ;Σ ;Γ � λ x.P : τ ∧ τ ′

by induction Δ � τ ≥ ∀t : κ.
∧

i∈I(σi → ρi), and Δ � τ ′ ≥ ∀t ′ : κ ′.
∧

j∈J(σ ′
j → ρ ′

j),
and Δ ,t : κ;Σ ;Γ ,x : σi � P : ρi, for i ∈ I and Δ ,t ′ : κ ′;Σ ;Γ ,x : σ ′

j � P : ρ ′
j, for

j ∈ J. By the monotonicity of ≤ with respect to ∧ we get

τ ∧ τ ′ ≥ ∀t : κ.
∧

i∈I(σi → ρi)∧∀t ′ : κ ′.
∧

j∈J(σ ′
j → ρ ′

j)

and, since types are considered modulo ≡, we can assume that t and t ′ are disjoint,
so we have τ ∧τ ′ ≥ ∀t : κ .∀t ′ : κ ′.(

∧

i∈I(σi → ρi)∧
∧

j∈J(σ ′
j → ρ ′

j)). Moreover, by

the admissible rule (wΔ), we obtain Δ ,t : κ ,t ′ : κ ′;Σ ;Γ ,x : σi � P : ρi, for i ∈ I and
Δ ,t : κ ,t ′ : κ ′;Σ ;Γ ,x : σ ′

j � P : ρ ′
j, for j ∈ J.

3. If the last used rule is:
Δ ;Σ ;Γ � PN : τ Δ ;Σ ;Γ � PN : τ ′

(∧I)
Δ ;Σ ;Γ � PN : τ ∧ τ ′

then by induction, Δ � τ ≥ ∀t : κ.
∧

i∈I τi and Δ � τ ′ ≥ ∀t ′ : κ ′.
∧

j∈J τ ′j, and:
Δ ,t : κ ;Σ ;Γ � P : σi → τi and Δ ,t : κ ;Σ ;Γ � N : σi (i ∈ I)
Δ ,t ′ : κ ′;Σ ;Γ � P : σ ′

j → τ ′j and Δ ,t ′ : κ ′;Σ ;Γ � N : σ ′
j ( j ∈ J).

Then, by (wΔ):
Δ ,t : κ ,t ′ : κ ′;Σ ;Γ � P : σi → τi and Δ ,t : κ,t ′ : κ ′;Σ ;Γ � N : σi (i ∈ I)
Δ ,t : κ ,t ′ : κ ′;Σ ;Γ � P : σ ′

j → τ ′j and Δ ,t : κ,t ′ : κ ′;Σ ;Γ � N : σ ′
j (i ∈ J).

The proof follows from Δ � τ ∧τ ′ ≥ ∀t : κ.∀t ′ : κ ′.(
∧

i∈I τi ∧
∧

i∈J τ ′j), since we can

assume that t and t ′ are disjoint.
5. If the last applied rule is:

Δ ;Σ ;Γ � l : τ Δ ;Σ ;Γ � l : τ ′
(∧I)

Δ ;Σ ;Γ � l : τ ∧ τ ′
by induction τ ≡ Refσ and τ ′ ≡ Refσ ′, and the proof follows from the fact that
Refσ ∧Refσ ′ ≡ Ref(σ ∧σ ′). �

Note that, without reference types, Points 3 and 4 of previous lemma hold with I
a singleton set. The restriction on rule (∧E) is reflected in the necessity of having
sets of types of cardinality bigger than 1. For example from {x : (Nat → Nat) ∧
(Nat → RefNat),y : Nat,z : (Nat → Nat)∧ (RefNat → Nat → Nat)} we can de-
rive z(xy) : Nat∧ (Nat→ Nat), but there are no types τ1,τ2 such that from the same
environment we can derive z : τ1 → τ2 and xy : τ1. Instead we have /0; /0;{x : (σ →
σ)∧ (σ → τ),y : σ ,z : (σ → σ)∧ (τ → σ → σ)} � z : σ ∧ τ → σ ∧ (σ → τ) and
/0; /0;{x : (σ → σ)∧ (σ → τ),y : σ ,z : (σ → σ)∧ (τ → σ → σ)} � x : σ ∧ τ for all
σ ,τ of kind S. Similarly we can derive /0; /0;{y : (RefNat→ RefNat)∧ (Ref(Nat→
Nat) → Ref(Nat→ Nat))} � fixx.yx : Ref(Nat∧ (Nat→ Nat)), but we cannot de-
rive /0; /0;{x : Ref(Nat∧(Nat→ Nat)),y : (RefNat→ RefNat)∧(Ref(Nat→ Nat)→
Ref(Nat→ Nat))} � yx : Ref(Nat∧ (Nat→ Nat)).

The typing system enjoys the standard Substitution Property, that can be proved by
induction on derivations.

Lemma 4 (Substitution). If Δ ;Σ ;Γ ,x : τ � M : σ and Δ ;Σ ;Γ � N : τ , then Δ ;Σ ;Γ �
M[N/x] : σ .
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In order to prove subject reduction for our type system we need to show that typing is
preserved under the replacement of a type by a smaller one in the type environment.

Lemma 5. Let Δ ;Σ ;Γ ,x : σ � M : τ and Δ � σ ′ ≤ σ . Then Δ ;Σ ;Γ ,x : σ ′ � M : τ .

The agreement between a store environment and a store is defined as usual [10] [Defi-
nition 13.5.1].

Definition 2. We say that a store environment Σ agrees with a store μ (notation Σ � μ)
if:

– (l = V ) ∈ μ implies l : τ ∈ Σ and Δ ;Σ ; /0 �V : τ for some τ;
– l : τ ∈ Σ implies (l = V ) ∈ μ and Δ ;Σ ; /0 �V : τ for some V .

Now we can prove subject reduction.

Theorem 1 (Subject Reduction). Δ ;Σ ;Γ � M : τ and Σ � μ and M * μ −→ N * μ ′

imply Δ ;Σ ′;Γ � N : σ and Σ ′ � μ ′ for some Σ ′ ⊇ Σ .

Proof. M * μ −→ N * μ ′ implies that M = E [M′] and N = E [N′], for some evaluation
context E . The proof is given by induction on E . We consider the most interesting cases
for E = [ ] since the induction cases are straightforward.
If the rule applied is (βv), then M = (λ x.P)V , and N = P[V/x]. From Lemma 3(3), for
some t, κ , I, σi and ∀-top-free τi (i ∈ I),
(1) Δ � ∀t : κ.

∧

i∈I τi ≤ τ ,
(2) Δ ,t : κ ;Σ ;Γ � λ x.P : σi → τi (i ∈ I),
(3) Δ ,t : κ ;Σ ;Γ �V : σi (i ∈ I),
From Lemma 3(2), and Point (2), for all i ∈ I, there are v(i), κ (i), Hi, σ (i)

j , and τ(i)
j

( j ∈ Hi) such that σ (i)
j → τ(i)

j is ∀-top-free and

(a) Δ ,t : κ � ∀v(i) : κ (i).
∧

j∈Hi
(σ (i)

j → τ(i)
j ) ≤ σi → τi,

(b) Δ ,t : κ ,v(i) : κ (i);Σ ;Γ ,x : σ (i)
j � P : τ(i)

j ( j ∈ Hi).

Note that σ (i)
j → τ(i)

j ∀-top-free implies τ(i)
j ∀-top-free. Then Lemma 2 and Point (a)

imply that there are ρ (i), and Ji ⊆ Hi, such that:
(α) Δ ,t : κ � ρ (i) :: κ (i) (i ∈ I),
(β ) Δ ,t : κ � σi ≤ σ (i)

j [ρ (i)/v(i)] ( j ∈ Ji), and

(γ) Δ ,t : κ �∧ j∈Ji
τ(i)

j [ρ (i)/v(i)] ≤ τi.
From Points (b), (α), and Proposition 1, for all j ∈ Ji, we derive

Δ ,t : κ ;Σ ;Γ ,x : σ (i)
j [ρ (i)/v(i)] � P : τ(i)

j [ρ (i)/v(i)]
and by Point (β ), and Lemma 5 we get:

Δ ,t : κ ;Σ ;Γ ,x : σi � P : τ(i)
j [ρ (i)/v(i)].

Applying rules (∧I), (≤) by Point (γ) we derive
Δ ,t : κ;Σ ;Γ ,x : σi � P : τi

which by Lemma 4, and Point (3), implies that Δ ,t : κ ;Σ ;Γ � P[V/x] : τi for all i ∈ I.
With multiple applications of rule (∧I) we get Δ ,t : κ ;Σ ;Γ � P[V/x] :

∧

i∈I τi, and then
applying many times rule (∀I) (note that we can assume t �∈ T V (Σ ,Γ ) since we take
types modulo ≡) we derive Δ ;Σ ;Γ � P[V/x] : ∀t : κ.

∧

i∈I τi. Finally from Point (1) and
rule (≤) we conclude Δ ;Σ ;Γ � P[V/x] : τ .
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If the rule applied is (fixR), then M = fixx.P, and N = P[fixx.P/x]. From
Lemma 3(4), for some t, κ , I, τi (i ∈ I), we get Δ � ∀t : κ.

∧

i∈I τi ≤ τ
and Δ ,t : κ;Σ ;Γ ,x : τi � P : τi (i ∈ I). Therefore, rule (fix) of Fig. 5 implies
Δ ,t : κ;Σ ;Γ � fixx.P : τi (i ∈ I). From the Substitution Lemma 4 we derive Δ ,t :
κ;Σ ;Γ � P[fixx.P/x] : τi (i ∈ I). Applying (∧I)’s, (∀I)’s, and (≤) we conclude
Δ ;Σ ;Γ � P[fixx.P/x] : τ .
If the rule applied is (refR), then M = refV , N = l, and μ ′ = μ ,(l = V ). From
Lemma 3(7), for some t, κ , I, closed τi (i ∈ I), we get Δ � ∀t : κ .

∧

i∈I Refτi ≤ τ and
Δ ;Σ ;Γ �V : τi (i ∈ I). Let Σ ′ = Σ , l :

∧

i∈I τi, we have that Δ ;Σ ′;Γ � l : Ref
∧

i∈I τi.
Therefore, since τi are closed, we have that Ref

∧

i∈I τi ≡ ∀t : κ.
∧

i∈I Refτi. Applying
rule (≤) we conclude Δ ;Σ ′;Γ � l : τ . From Σ � μ and Δ ;Σ ;Γ �V :

∧

i∈I τi we also get
Σ ′ � μ ′.
If the rule applied is (locR), then result derives directly from the fact that Σ � μ .
If the rule applied is (unitR), then M = l := V , μ = μ ′′,(l = V ′), and N = (),
μ ′ = μ ′′,(l = V ). From Lemma 3(8), τ ≡ Unit, and for some closed σ we have
Δ ;Σ ;Γ � l : Refσ , and Δ ;Σ ;Γ � V : σ . The typing rule (Unit()) gives Δ ;Σ ;Γ � () :
Unit. From Δ ;Σ ;Γ � l : Refσ , and Lemma 3(5), l : σ ′ ∈ Σ for some σ ′, and Refσ ≡
Refσ ′, which implies σ ≡ σ ′. From Σ � μ in order to show Σ � μ ′ we have only to
prove that Δ ;Σ ;Γ �V : σ ′, which is immediate since Δ ;Σ ;Γ �V : σ and σ ≡ σ ′. �

Remark 1. Note that the proof of subject reduction for the case of rule (βv) extends
without modifications to rule (β ). Moreover, it is easy to check that the proof works for
arbitrary contexts. So we can conclude that subject reduction for our type assignment
system holds independently from the used reduction strategy.

In order to prove the progress of our type system we need a Canonical Form Lemma
which can be proved in a standard way, see [10], by analyzing the typing rules and the
syntax of values.

Lemma 6 (Canonical Forms).
1. Δ ;Σ ; /0 �V : Pos implies V ∈ {1,2, . . .}.
2. Δ ;Σ ; /0 �V : Nat implies V ∈ {0,1,2, . . .}.
3. Δ ;Σ ; /0 �V : Unit implies V = ().
4. Δ ;Σ ; /0 �V : τ → σ implies V = λ x.M.
5. Δ ;Σ ; /0 �V : Refτ implies V = l and l : σ ∈ Σ for some σ .

Theorem 2 (Progress). Let M ∈ Λ 0
imp. Then Δ ;Σ ; /0 � M : σ implies that either M is a

value or for all μ such that Σ � μ we have that M * μ −→ N * μ ′ for some N,μ ′.

Proof. The proof is by induction on the derivation Σ ;Γ � M : τ .
If the last applied rule is (→ I), (Unit()), (loc), (Nat), or (Pos), then M is a value.
If the last applied rule is (fix), then M is immediately reducible.
If the last applied rule is (→ E), then M is NP, and Δ ;Σ ; /0 � N : τ → ρ , and Δ ;Σ ; /0 �
P : τ .

If N is a value, then by the Canonical Form Lemma 6(4), N = λ x.Q. If also P is a
value, rule (βv) applies. Otherwise, by induction hypothesis on Δ ;Σ ; /0 � P : τ , for all
μ such that Σ � μ we have that P * μ −→ P′ * μ ′ for some P′ and μ ′. Therefore, for
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some E , R and R′, we get P = E [R] and P′ = E [R′]. Consider the evaluation context
E ′ = (λ x.Q)E . We have that E ′[R] = M and E ′[R] * μ −→ E ′[R′] * μ ′.

If N is not a value, by induction hypothesis on Δ ;Σ ; /0 � N : τ → ρ , for all μ such
that Σ � μ we have that N * μ −→ N′ * μ ′ for some N′ and μ ′. Therefore, for some E ,
R and R′, we get N = E [R] and N′ = E [R′]. Consider the evaluation context E ′ = E P.
We have that E ′[R] = M and E ′[R] * μ −→ E ′[R′] * μ ′.

If the last applied rule is (Unit) then M is N := P, and Δ ;Σ ; /0 � N : Refτ and
Δ ;Σ ; /0 � P : τ .

If N is a value, from the Canonical Form Lemma 6(5), N = l, and l : σ ∈ Σ , for some
σ . Moreover, from Σ � μ , we have that (l = V ) ∈ μ for some V. If also P is a value,
then rule (unitR) is applicable. Otherwise, if P is not a value, we apply the induction
hypothesis to Δ ;Σ ; /0 � P : τ , and derive that for all μ such that Σ � μ we have that
P * μ −→ P′ * μ ′ for some P′ and μ ′. Therefore, for some E , R and R′, we get P = E [R]
and P′ = E [R′]. Consider the evaluation context E ′ = l := E . We have that E ′[R] = M
and E ′[R] * μ −→ E ′[R′] * μ ′.

If N is not a value, by induction hypothesis on Δ ;Σ ; /0 � N : Refτ , for all μ such that
Σ � μ we have that N * μ −→ N′ * μ ′ for some N′ and μ ′. Therefore, for some E , R
and R′, we get N = E [R] and N′ = E [R′]. Consider the evaluation context E ′ = E := P.
We have that E ′[R] = M and E ′[R] * μ −→ E ′[R′] * μ ′.
The proof for the cases (RefE), (Ref I), (if), and (+) are similar.
For rules (∧I), (∀I) and (≤) the result follows directly by induction. �

Let us restrict the language to the pure λ -calculus. Then our type assignment system
preserves the typability power of intersection types, i.e., it gives types to all and only the
strongly normalizing terms. As far as the expressive power is concerned, we can compare
our system with System F [5], in its type assignment version [9], with the intersection
type assignment system of [11], and with the system defined in [8], where both intersec-
tion and universally quantified types are present. Let �F denote derivability in the type
assignment version of system F [9] and �P in the intersection type assignment system
of [11]. The system in [8] can give types to all terms, since it contains the universal type
ω , and a rule that assign ω to all terms. Let us consider a restriction of this system, ob-
tained from it by erasing both the type ω and the related rule, for whose derivability we
use �MZ . In order to prove that our system preserves the expressive power of �F , �P and
�MZ , we define a decorating function dec, transforming every type in [8] non containing
occurrences of ω in a type of our system, in the following way:

dec(τ op σ) = dec(τ) op dec(σ) (op ∈ {→,∧}) dec(∀t.τ) = ∀t : S.τ
The function dec can be obviously applied also to the set of System F types and to the
set of intersection types, which are proper subsets of the types in [8].

Theorem 3. Let M be a term of the pure λ -calculus, σ a type, Γ a type environment
and Δ the kind environment which gives kind S to all the type variables occurring in σ
and Γ .
1. If Γ �MZ M : σ , then Δ ; /0;Γ � M : dec(σ).
2. If Γ �F M : σ , then Δ ; /0;Γ � M : dec(σ).
3. If Γ �P M : σ , then Δ ; /0;Γ � M : dec(σ).
4. M is typable in the system of Fig. 5 if and only if it is strongly normalizing.
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Proof. Point 1 is immediate, since the rules of �MZ are a proper subset of our rules, and
also the ≤ relation on types is the same, when reference types are not present.

Points 2 and 3 follow from Point 1, since the rules of �F and of �P are a proper
subsets of the rules of �MZ .

For Point 4 since all strongly normalising terms are typable in the system of [11] we
get from Point 3 that all strongly Normalising terms are typable in our system. The vice
versa can be proved by a standard use of the computability technique as done in [11]. �

4 Conclusion

In this paper we discuss how to combine intersection, universally quantified and refer-
ence types in a meaningful way. The naive use of intersection and universally quantified
types is unsound in presence of references, as shown in [3] and in the introduction of
this paper. Davies and Pfenning solve the problem by restricting both the definition of
the preorder relation ≤ between types, and the type assignment system. In the preorder
relation ≤ between types they do not have the standard rules:

(→ ∧) (τ → σ)∧ (τ → ρ) ≤ τ → σ ∧ρ
(→ ∀) ∀t.τ → σ ≤ τ → ∀t.σ t �∈ T V (τ)

The type assignment system is restricted in such a way that the intersection and the
universal quantification can be introduced just in case the subject is a value. Then the
subject reduction property holds, for a call-by-value reduction semantics of terms. As
already noticed in [4], while in this way they solve the problem described in the in-
troduction, in the system there are unsound typings. In fact the term x := x + 1 can be
typed in their system, extended with the standard typing rule for the sum, through the
following derivation:

Δ ; /0;x : Nat∧RefNat � x : Nat∧RefNat
(≤)

Δ ; /0;x : Nat∧RefNat � x : RefNat

Δ ; /0;x : Nat∧RefNat � x : Nat∧RefNat
(≤)

Δ ; /0;x : Nat∧RefNat � x : Nat
(+)

Δ ; /0;x : Nat∧RefNat � x+1 : Nat
(Unit)

Δ ; /0;x : Nat∧RefNat � x := x+1 : Unit

In [4] a different solution is proposed, for a system with reference and intersection
types only, which does restrict neither the definition of the ≤ relation between types
nor the type assignment system rules. In this system there cannot be intersections be-
tween reference and non-reference types, so, for example, Nat∧RefNat is not a type.
Syntactically, this is realized through a partial intersection operator, ∩, which applied
to two non-reference types returns their intersection, and applied to two reference types
commutes with the Ref constructor pushing the operator inside the Ref . The system
is shown to be sound and no expressive power is lost in comparison with the original
system [2] [11] of intersection types when we restrict to the terms of pure λ -calculus.

In this paper, we consider a system with intersection, universally quantified and ref-
erence types. Our aim is to design a sound system having minimal restrictions. The
solution adopted to avoid unsoundness is different from both [3] and [4], and leads to a
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more elegant system. The only restriction we impose on types is that the Ref construc-
tor can be applied only to closed types. So the quantification on reference types becomes
meaningless, since ∀t.Refτ is equivalent to Refτ . Regarding intersection types we do
not have restrictions. In particular, we may have intersection between reference and
non-reference types. With a notion of kind and a kind assignment we keep track of po-
tential reference types. The soundness is reached by limiting the definition of ≤ relation
between types in the rule for intersection elimination, which may only be applied if the
intersection does not contain reference types. For our types rules (→∧) and (→ ∀) hold
in both directions. As a results, our system enjoys subject reduction independently from
the reduction strategy. In fact the critical term (λ x.(λ y.!x)(x := 0))ref1, showed in the
introduction, in our system has only types equivalent to Nat, which is the type of both
0 and 1, so the typing is preserved under any reduction strategy. Moreover unsound
terms as the one shown before cannot be typed (but their sound versions x :=!x+1 and
refx := x + 1 are typable).

When restricted to the pure functional part of the language, our typing system has a
stronger typability power than the system of [3]. As an example, consider the strongly
normalizing pure λ -term (λ xy.(λ z.zz)(xy))(λ t.t) which is typable in our system (see
Theorem 3(4)), while it is not typable in the system of [3]. For typing this term it
is necessary to introduce an intersection between two subderivations whose subject is
xy, and in the system of [3] this is not possible, since this subterm is not a value. More
precisely, if σ1 = (Nat→ Nat)∧((Nat→ Nat)→ Nat→ Nat) and σ2 = Nat∧(Nat→
Nat), it is easy to verify that λ t.t has type σ1 and λ z.zz has type σ2 → Nat. Therefore,
in order to type the above term we need to derive Δ ; /0;{x : σ1,y : σ2} � xy : σ2, which
requires the application of rule (∧I) to xy.

The system we define is clearly undecidable, as the subtyping itself is undecidable
also when restricted to the types of System F, as proved in [13]. Moreover, type in-
ference for the systems of [5] and [11] is undecidable, as proved in [14] and [11],
respectively. Therefore, the present system cannot be proposed for real programming.
The interest of this paper is merely foundational, since it explores the difficulties in
putting together different type constructs, and formalizes a sound proposal which en-
hances previous solutions. A future work will be to tailor a proper subsystem of our
typing system, possibly using bidirectional type checking as proposed in [3], with the
property of being decidable while preserving a good expressive power.

Acknowledgements. We gratefully acknowledge fruitful discussions with Frank Pfen-
ning and Betti Venneri. We also thank the referees for their comments.
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Abstract. For deterministic tree automata, classical hierarchies, like Mostowski-
Rabin (or index) hierarchy, Borel hierarchy, or Wadge hierarchy, are known to
be decidable. However, when it comes to non-deterministic tree automata, none
of these hierarchies is even close to be understood. Here we make an attempt in
paving the way towards a clear understanding of tree automata. We concentrate on
the class of linear game automata (LGA), and prove within this new context, that
all corresponding hierarchies mentioned above—Mostowski-Rabin, Borel, and
Wadge—are decidable. The class LGA is obtained by taking linear tree automata
with alternation restricted to the choice of path in the input tree. Despite their
simplicity, LGA recognize sets of arbitrary high Borel rank. The actual richness
of LGA is revealed by the height of their Wadge hierarchy: (ωω)ω.

1 Introduction

The Mostowski–Rabin hierarchy, the Borel hierarchy, and the Wadge hierarchy are the
most common measures of complexity of recognizable ω-languages.

The first one, also known as the index hierarchy, orders languages according to the
nesting of positive and negative conditions checked by the recognizing automaton. It
has two main versions: weak, relying on finitary conditions (e.g., “a does occur”);
and strong, referring to infinitary conditions (e.g., “b occurs infinitely often”). It is be-
lieved to reflect the inherent computational complexity of the language, and therefore
has attracted a lot of attention encouraged by the expectations of the verification
community [3,4,10,17,18,19,20].

The classical Borel hierarchy is based on the nesting of countable unions and nega-
tions in the set theoretic definition of the language, starting from the simplest (open)
sets. It drew attention of automata theorists as early as 1960s [12], and has continued
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to inspire research efforts ever since, mainly because of its intimate relations with the
index hierarchy [9,19,23].

The Wadge hierarchy is an almost ultimate refinement of the Borel hierarchy, de-
fined by the preorder induced on languages by simple (continuous) reductions. It en-
ables precise comparison of different models of computation. What is more powerful:
deterministic or weak automata on trees? It is known that there are deterministic lan-
guages that are not weakly recognizable and vice versa. How to compare, if not by
inclusion? An even more exotic case: deterministic tree languages versus deterministic
context free word languages. How to compare trees with words? The Wadge hierarchy
makes it possible. The sole heights (huge ordinals) of the Wadge hierarchy restricted to
the classes under comparison provide, literally, infinitely more information then other
logical techniques [6,8,15,22].

Measuring hardness of recognizable languages of infinite trees is a long standing
open problem. Unlike for infinite words, where the understanding is almost complete
since Wagner’s 1977 paper [25], for trees the only satisfyingly examined case is that of
deterministic automata [14,15,16,19,20]. But the deterministic and non-deterministic
case differ immensely for trees. The only results obtained for non-deterministic or al-
ternating automata are strictness theorems for various classes [3,4,13,17], and lower
bounds for the heights of the hierarchies [7,23]. To the best of our knowledge, the
only nontrivial decidability result is that on emptiness [21]. As the empty set and
the whole space are the only two sets on the lowest level of the Wadge hierarchy (or
the Mostowski–Rabin hierarchy), using emptiness test and the complementation proce-
dure [21] we can decide if a given language is on the first level of the hierarchy or not.
Obviously this does not say much about the complexity of the language in question.

This paper intents to change this situation, even if only very slightly for a start.
We propose a class of automata having all three hierarchies decidable and capturing a
reasonable amount of non-determinism. The class we advocate, linear game automata
(LGA), is obtained by taking linear automata (a.k.a. very weak automata), that emerged
in the verification community, and restricting the alternation to the choice of a path in
the input tree. Linear automata capture CTL [11], which is expressive enough for many
applications. Though linear game automata are weaker, they retain most alternation
related to the branching structure. Evidence for their expressivity is topological: they
recognize sets of arbitrarily high finite Borel rank, and their Wadge hierarchy has the
height (ωω)ω , much larger than (ωω)3 + 3 for deterministic automata.

As we have already pointed out, these automata are far from capturing the full expres-
sivity of non-deterministic automata, but still, computing the Wadge degree for a given
LGA is much more involved than for an ω-word automaton and even a deterministic tree
automaton. The structural simplicity of LGA might seem to reduce the computation to
the decomposition of nested chains, but in fact the alternation (even very weak) makes
it much harder. We believe that the notion of game automata is well suited to take us
further. Indeed, the next step is to consider weak and then strong game automata. This
last class is already quite expressive, as it contains inhabitants of every level of the
(strong) index hierarchy and subsumes deterministic languages. Extending decidability
to this class would be an important result, though possibly the last one accessible with
the tools we are using.
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2 Preliminaries

2.1 Weak Automata

Let W be a non empty set. A tree over Σ is a partial function t : W ∗ → Σ with a
prefix closed domain. A tree is called full if dom(t) = W ∗, and it is called binary if
W = {0, 1}. Let TΣ denote the set of full binary trees over Σ. In the sequel we only
consider full binary trees. Given v ∈ dom(t), by t.v we denote the subtree of t rooted
in v. We write d to denote the other direction: 0 = 1, 1 = 0.

A weak alternating tree automatonA = 〈Σ,Q, qI , δ, rank〉 consists of a finite input
alphabet Σ, a finite set of states Q partitioned into the existential states Q∃ and the
universal states Q∀, an initial state qI , a transition relation δ ⊆ Q×Σ × {ε, 1, 0} ×Q
and a bounded priority function rank : Q → ω. Sometimes we write q

σ,d−−→ q′ when
q′ ∈ δ(q, σ, d). The acceptance is defined in terms of a (weak) parity game.

A weak parity game is a two-player game given by 〈V, V0, V1, E, rank〉, where V =
V0 ·∪V1 is the set of vertices, E ⊆ V × V is the edge relation, and rank : V → ω is
the priority function with bounded image. A vertex v′ is a successor of a vertex v if
(v, v′) ∈ E. A play from a vertex v0 is a path v0v1v2 . . . visited by a token moving
along the edges of the graph. If the token is in v ∈ Vi, player i chooses the next location
of the token among the successors of v. We say that player 0 wins a (finite or infinite)
play if and only if the greatest priority ever occurring in the play is even.

Consider a weak alternating automaton A and an tree t ∈ TΣ . The automaton A
accepts t iff Player 0 has a winning strategy in the weak parity game GA,t defined as:

– V0 = {0, 1}∗ ×Q∃, V1 = {0, 1}∗ ×Q∀,
– the relation E = {((v, p), (vd, q)) : v ∈ dom(t), (p, t(v), d, q) ∈ δ},
– rank((v, q)) = rank(q), for every vertex (v, q).

A path in A is a sequence of states and transitions q0
σ0,d0−−−→ q1

σ1,d1−−−→ q2 · · · · · ·
qn

σn,dn−−−−→ qn+1. If there is such a path with q = q0 and q′ = qn+1, we say that q′ is
reachable from q. A path is a loop if qn+1 = q0. If there is a loop from a state q, we say
that this state is looping. If q is looping and rank(q) is even (resp. odd) we say that the
loop in q is positive (resp. negative). Finally, we say that a state p is replicated by q if

there is a path q
σ0,d0−−−→ q1 · · · qn

σn,dn−−−−→ p and a transition q
σ0,d̄0−−−→ q.

2.2 Borel Classes and Wadge Reductions

Consider the space TΣ equipped with the standard Cantor topology (see eg. [19]). Re-
call that the class of Borel sets of a topological space X is the closure of the class
of open sets of X by countable unions and complementation. Given X , the initial
finite levels of the Borel hierarchy are defined as follows with Σ0

0(X) = {∅} and
Π0

0 (X) = {X}.

– Σ0
1(X) is the class of open subsets ofX ,

– Π0
n(X) contains complements of sets fromΣ0

n(X),
– Σ0

n+1(X) contains countable unions of sets fromΠ0
n(X).
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The classes defined above are closed under inverse images of continuous functions.
Given a classe C, a set U is called C-hard if each set in C is an inverse image of U under
some continuous function. If additionally U ∈ C, U is said to be C-complete. It is well
known that every weakly recognizable tree language is a member of a Borel class of
finite rank ([7,13]). The rank of a language is the rank of the minimal Borel class the
language belongs to. It can be seen as a coarse measure of complexity of languages.

A much finer measure of the topological complexity is the Wadge degree. If T, U ⊆
TΣ , we say that T is continuously (or Wadge) reducible toU , if there exists a continuous
function f such that T = f−1(U). We write T ≤w U iff T is continuously reducible
to U . Thus, given a certain Borel class C, T is C-hard if U ≤w T for every U ∈ C.
This particular ordering is called the Wadge ordering. If T ≤w U and U ≤w T , then
we write T ≡w U . If T ≤w U but not U ≤w T , then we write T <w U . The Wadge
hierarchy is the partial order induced by <w on the equivalence classes given by ≡w.

Let T and U be two arbitrary sets of full binary trees. The Wadge game W(T, U)
is a two-player game (player I and player II). During a play, each player builds a tree,
say tI and tII . In each round both players add children to some terminal nodes of their
corresponding tree. Player I plays first and Player II is allowed to skip his turn but not
forever. Player II wins the game iff tI ∈ T ⇔ tII ∈ U . Bill Wadge designed this game
precisely in order to obtain a characterisation of continuous reducibility.

Lemma 1 ([24]). Let T, U ⊆ TΣ . Then T ≤w U iff Player II has a winning strategy in
the gameW(T, U).

A language L is called self dual if it is equivalent to its complement, otherwise it is
called non self dual. From Borel determinacy, if T, U ⊆ TΣ are Borel, thenW(T, U)
is determined. As a consequence, a variant of Martin-Monk’s result shows that <w is
well-founded. The Wadge degree for sets of finite Borel rank is inductively defined by:

– dw(∅) = dw(∅�) = 1,
– dw(L) = sup{dw(K) + 1: K non self dual,K <w L} for L >w ∅.

2.3 Linear Game Automata

A linear game automaton (LGA) is a weak alternating automatonA=〈Σ,Q, qI , δ, rank〉
satisfying two special restrictions:

– (game alternation) the transition relation is a total function δ : Q×Σ → Q×Q;

– (linearity) for every loop q
σ0,d0−−−→ q1

σ1,d1−−−→ q2 · · · qn
σn,dn−−−−→ q it holds that qi = q,

for all 1 ≤ i ≤ n.

In the remaining of the paper, we often write q
σ−→ q0, q1 if δ(q, σ) = (q0, q1). Let Aq

denote the automaton obtained from A by changing the initial state to q. Without loss
of generality, we make the following assumptions:

– there is no trivial state, i.e., if q ∈ Q is such that Aq ≡ � (resp. Aq ≡ ⊥), then
q = � (resp. q = ⊥),

– there is no trivial transition, i.e., if p ∈ Q∀, and p
σ−→ q,⊥, then q = ⊥ (dually for

p ∈ Q∃).

By convention,� is a looping state of even rank, and ⊥ is a looping state of odd rank.
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LGA are closed under complementation. The usual complementation procedure, that
increases the ranks by one and swaps existential and universal states turns LGA into
LGA. However, LGA are not closed under union nor intersection. Given σ ∈ Σ, the
language Lσ = {t ∈ TΣ : t(0) = t(1) = σ} is LGA-recognizable, but Lσ ∪ Lσ′ is not.

2.4 A Normal Form

We now provide a useful normal form of LGA. First let us define three operations on
tree languages (and tree automata). Let L, M be tree languages over Σ containing at
least two letters, a and b. Define alternative (∨), disjunctive product (�), and conjunctive
product ( � ) as

L ∨M = {t : t(ε) = a , t.0 ∈ L or t(ε) �= a , t.0 ∈M} ,
L �M = {t : t.0 ∈ L or t.1 ∈M} ,
L�M = {t : t.0 ∈ L and t.0 ∈M} .

The family of languages recognized by LGAs is closed under these three operations.
In particular, the operations have natural counterparts on automata. We write A ∨B to
denote the automaton recognizing L(A) ∨ L(B), and similarly for � and � . Multifold
alternatives are performed from left to right, e.g., A1 ∨ A2 ∨ A3 ∨ A4 = (((A1 ∨
A2) ∨ A3) ∨ A4). It is easy to see that these three operations define associative and
commutative operations on Wadge equivalence classes.

Lemma 2. Each LGA is Wadge equivalent to an LGA over the alphabet {a, b}.

Proof. We proceed by induction on the number of states. Let C be an LGA. If C
has only one state, the claim follows trivially. Suppose C has several states. We may
assume w.l.o.g. that its initial state of C, q0, is existential. Suppose that the transi-

tions of C starting in q0 are q0
ai−→ pi, p

′
i , q0

bj−→ q0, ri and q0
ck−→ q0, q0 with

Σ = {a1, . . . , a�; b1, . . . , bm; c1, . . . , cn}. Then C is Wadge equivalent to

〈q0〉
ck,∗

��
bj ,0

��

ai,0
����

��
��

��

ai,1 ��															 bj ,1
�� Cr1 ∨ · · · ∨ Crm

⊥ (Cp1 � Cp′
1
) ∨ · · · ∨ (Cp	 � Cp′

	
)

By induction hypothesis, there exist automata Ai, A
′
i, Bj over {a, b}, such that Ai ≡w

Cpi , A′i ≡w Cp′
i
, and Bj ≡w Crj . Let A = (A1 � A′1) ∨ · · · ∨ (A� � A′�) and B =

B1 ∨ · · · ∨Bm. Further, we see that if A∨B ≡w �, then C is Wadge equivalent to the
automaton on the left below and otherwise to the one on the right:

〈q0〉
b,0

��

a,0
��














a,1
���

��
��

��
� b,1

�� ⊥

� �

〈q0〉
b,0

��

a,0
��














a,1
��

��
��

��
� b,1

�� B ∨ A

⊥ A

��
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From now on we work with automata over {a, b}, unless explicitly stated otherwise.
A looping state q of an LGA A is

– restrained if it is an existential positive state or a universal negative state,
– unrestrained if it is an existential negative state or a universal positive state.

Examining the proof of Lemma 2, we see that in fact, each nontrivial looping state falls
into exactly one of the categories shown below (+ means even rank,−means odd rank).

Restrained Unrestrained

〈+〉
a,0

��

b,0��





b,1 ����
��

��
��

a,1 �� A

B0 B1

〈−〉
a,0

��

b,0��





b,1 ����
��

��
��

a,1 �� A

B0 B1

[−]
a,0

��

b,0��













b,1 ���
��

��
��

�
a,1 �� A

B0 B1

[+]
a,0

��

b,0��













b,1 ���
��

��
��

�
a,1 �� A

B0 B1

A node q of each of the above kinds may be seen as an action over triples of LGAs;
we denote by q(A,B0, B1) the automaton being the result of the action q on A, B0,
B1, e.g., [+](A,B0, B1) or 〈−〉(A,B0, B1). Often we use a shorthand [μ](A,B) =
[μ](A,B,�), 〈μ〉(A,B) = 〈μ〉(A,B,⊥) for μ = + or μ = −.

3 Deciding the Borel Hierarchy

3.1 Patterns Menagerie

The basis for the procedure computing the Borel rank of a given LGA-recognizable
language is a characterization in terms of difficult patterns. We define (0, n)-pattern,
and (1, n+ 1)-pattern by induction on n:

– a (0, 1)-pattern is a negative loop reachable from a positive loop,
– a (1, 2)-pattern is a positive loop reachable from a negative loop,
– a (0, n+ 1)-pattern is a (1, n+ 1)-pattern replicated by a universal positive node,
– a (1, n+ 2)-pattern is a (0, n)-pattern replicated by an existential negative node.

We also define canonical automata,KΣ
n andKΠ

n , corresponding to the patterns:

KΠ
1 = [+](�,⊥,⊥), KΠ

n+1 = [+](KΣ
n ,⊥,⊥),

KΣ
1 = 〈−〉(⊥,�,�), KΣ

n+1 = 〈−〉(KΠ
n ,�,�).

The tree languages recognized by the above canonical automata coincide with the sets
used by Skurczyński to prove the existence of weakly recognizable languages of each
finite Borel rank.
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Proposition 1 ([23]). For every n > 0,
L(KΣ

n ) is Σ0
n-complete and L(KΠ

n ) is Π0
n-complete.

Skurczyński’s result follows by straightforward induction from the following easy
lemma. For v ∈ {0, 1}∗ and U ⊆ TΣ , let vU = {t ∈ TΣ : t.v ∈ U}.

Lemma 3. For each n > 0

1. if Ui is Σ0
n-hard for i < ω,

⋂

i∈ω 0i1Ui is Π0
n+1-hard;

2. if Vi is Π0
n-hard for i < ω,

⋃

i∈ω 0i1Vi is Σ0
n+1-hard.

3.2 Effective Characterization

Since any Borel class is closed under finite unions and finite intersections, we have:

Proposition 2. LetK be a complete set for some class from
⋃

1≤i<ω{Σ0
i , Π

0
i }.

For every k, if Ui ≤w K for 0 ≤ i ≤ k, then

(1)
⋃k

i=0 0i1Ui ≤w K, (2)
⋂k

i=0 0i1Ui ≤w K,

and if Vi <w K for 0 ≤ i ≤ k, then

(3)
⋃k

i=0 0i1Vi <w K, (4)
⋂k

i=0 0i1Vi <w K .

Analogously, sinceΣ0
n is closed under countable unions, andΠ0

n is closed under count-
able intersections, we obtain the following result.

Proposition 3.

1. Let K be a Σ0
n-complete set. If for every i ∈ ω it holds that Ui ≤w K , then

⋃

i∈ω 0i1Ui ≤w K .
2. Let K be a Π0

n-complete set. If for every i ∈ ω it holds that Ui ≤w K , then
⋂

i∈ω 0i1Ui ≤w K .

We now apply these properties to characterize the topological power of looping nodes
in an LGA.

Lemma 4. LetA,B0, B1, C be LGA such thatC = q(A,B0, B1), and q is a restrained
looping node. For n ≥ 2

1. if L(A), L(Bi) <w L(KΣ
n ), then L(C) <w L(KΣ

n );
2. if L(A), L(Bi) <w L(KΠ

n ), then L(C) <w L(KΠ
n ).

Proof. It is enough to prove the first claim, the second follows by duality. Suppose that
q = 〈+〉. Let us describe a winning strategy for Player II in W(L(C), L(KΣ

n )). If
Player I plays a on the leftmost branch, Player II plays accepting in the subtrees rooted
in nodes 0i1. If Player I finally plays a b in the kth round, Player II switches to playing
rejecting in every subtree rooted in 0i1 for i < k, and in the subtree rooted in 0k applies
the winning strategy given by Proposition 2 (1). Hence, L(C) ≤w L(KΣ

n ).
To obtain strictness of the inequality, we describe a winning strategy for Player I in

W(L(KΣ
n ), L(C)). As long as Player II skips or plays a on the leftmost branch, Player

I plays rejecting in the subtrees rooted in 0i1. If in the kth round Player II finally plays
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b on the leftmost branch, Player I continues playing rejecting in every subtree rooted in
0i1 for i ≤ n, and in the subtree rooted in 0n+1 applies the winning strategy given by
Proposition 2 (3).

For q = [−] the proof is analogous, only uses Proposition 2 (2) and (4). ��
Lemma 5. Let A,B0, B1, C be LGA such that C = q(A,B0, B1), and q is an unre-
strained looping node. Let n ≥ 2. If q = 〈−〉, then

1. if L(A) ≤w L(KΣ
n−1), and L(Bi) <w L(KΣ

n ), then L(C) <w L(KΣ
n );

2. if L(A) ≥w L(KΠ
n−1), then L(C) ≥w L(KΣ

n );

and if q = [+], then

3. if L(A) ≤w L(KΠ
n−1), and L(Bi) < L(KΠ

n ), then L(C) <w L(KΠ
n );

4. if L(A) ≥w L(KΣ
n−1), then L(C) ≥w L(KΠ

n ).

Proof. Use an argument similar to the proof of Lemma 4 to infer (1) and (3) from
Proposition 3, and (2) and (4) from Lemma 3. ��
The main theorem of this part follows from Lemma 4 and Lemma 5 by induction on the
structure of the automaton. And as a corollary, we obtain the first decidability result.

Theorem 1. For every n and every LGA A

1. L(A) is Σ0
n-hard iff A contains a (1, n+ 1)-pattern;

2. L(A) is Π0
n-hard iff A contains a (0, n)-pattern.

Corollary 1. The problem of calculating the exact position in the Borel hierarchy of a
language recognized by a linear game tree automaton is decidable (in polynomial time
if the productive states are given).

4 The Weak Index Hierarchy

4.1 Introducing the Hierarchy

The (Mostowski–Rabin) index of an automaton A is given by (i, j) ∈ ω × ω, where i
is the minimal and j is the maximal value of the priority function rank. Scaling down
the priorities if necessary, we can assume that i ∈ {0, 1} and that for every n ∈ {i, i+
1, . . . , j}, there is a state q such that rank(q) = n. Thus, the indices are elements of
({0, 1} × ω) \ (1, 0). Given an index (0, j) (resp. (1, j)), its dual index is (1, j + 1)
(resp. (0, j − 1)).

Consider the partial order on indices of automata given by

(i, j) � (i′, j′) iff j − i < j′ − i′ .

Note that this implies that dual indices are incomparable. The hierarchy induced by the
partial order� is called the hierarchy of Mostowski–Rabin indices (or simply the index
hierarchy) of the considered class of automata.

For a given class, the hierarchy is said to be strict if there is an automaton at each
level that cannot be simulated by any automaton from the same class of lower level. By a
result of Bradfield [3,4], we know that the index hierarchy of alternating tree automata,
and therefore the fixpoint hierarchy of the modal μ-calculus, is strict. Arnold’s proof of
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the same result [1] can be adapted to show that the index hierarchy of weak alternating
tree automata is also strict. In the latter case we speak of the weak index hierarchy.

4.2 The Conjecture

In [16] it was conjectured that for weakly recognizable tree languages the weak index
hierarchy and the Borel hierarchy coincide, i.e., that a weakly recognizable tree lan-
guage is in Σ0

n (resp. Π0
n) iff it can be recognized by a weak alternating automaton of

index (1, n+ 1) (resp. (0, n)). It has long been known that one implication holds.

Proposition 4 ([13]). For every weak alternating automaton with index (0, n) (resp.
(1, n+ 1)), it holds that L(A) ∈ Π0

n (resp. L(A) ∈ Σ0
n).

It was also proved recently that the conjecture holds when restricted to languages which
are in addition deterministically recognizable [16]. We refine this result by showing that
the conjecture also holds for languages recognizable by LGA.

4.3 Weak Index of LGA-Recognizable Sets

Theorem 2. For languages recognizable by LGA, the Borel hierarchy and the weak
index hierarchy coincide.

Proof. For simplicity we assume that all automata are in the normal form. Extending
the proof to the general case is easy.

By duality it is enough to consider Π0
n classes. By Proposition 4 it is suffices to

show that for each LGA C with L(C) ∈ Π0
n there exists an equivalent weak alternating

automaton of index (0, n). We proceed by induction on the structure of the automaton.
The case n = 0 is trivial. Suppose that n = 1. By Theorem 1, C does not contain

an accepting loop reachable from a rejecting loop. It is enough to set the rank of all
states reachable from odd looping states to 1 and the rank of the remaining states to 0
to obtain an equivalent automaton of index (0, 1).

Suppose that n ≥ 2. If the initial state of C is not looping, the claim follows easily
from the induction hypothesis. Suppose that q0 is a looping node, and C is of the form

(i)

a,0

�� a,1 ��

b,0

����
��

��
�� b,1

���
��

��
��

� A

B0 B1

We can treat C as a weak alternating automaton and transform it into an equivalent one
of index (0, n). Clearly, it must hold that L(A), L(B) ∈ Π0

n and by induction hypothe-
sis we may assume thatA,B0,B1 have index (0, n). If i = 0, the claim follows trivially.
For (i) = [1], the equivalent weak automaton of index (0, n) is shown in Fig. 1(a). To
prove the equivalence, observe that the left-hand component checks that finally b occurs
on the leftmost branch, and the right-hand component checks the condition A until the
first b occurs, and after that checks the conditionsB0 and B1.
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[0]

ε

���
��

��
��

ε

����
��

��
�

[1]

a,0

�� a,1 ��

b,∗

��

� [0]

a,0

��

a,1
��

b,0

�� b,1 ���
��

��
��

� A

� B0 B1

(a)

[0]

ε

���
��

��
��

ε

����
��

��
�

〈1〉

a,0

�� a,1 ��

b,∗

��

A 〈0〉

a,0

��

a,1
��

b,0

�� b,1 ���
��

��
��

� A

� B0 B1

(b)

Fig. 1. The equivalent weak automata

Finally, suppose that (i) = 〈1〉. By Theorem 1, C contains (1, n+ 1)-pattern, which
implies that A contains no (0, n− 1)-pattern. By induction hypothesis we may assume
that A has index (1, n). Recall thatB0 andB1 have index (0, n). The corresponding
equivalent weak alternating automaton is shown in Fig. 1(b). The left-hand component
takes care of the situation, when b never occurs on the leftmost path. If b does occur, this
component is trivially accepting, but the right-hand component provides the appropriate
semantics. ��

Combining Theorem 1 and Theorem 2 we obtain the second decidability result.

Corollary 2. The problem of calculating the exact position in the weak index hierarchy
of a language recognized by a LGA is decidable (in polynomial time if the productive
states are given).

5 The Wadge Hierarchy

5.1 The Difference Hierarchy

For a Borel class Σ0
n, the finite Hausdorff-Kuratowski, or difference, hierarchy is de-

fined as Diff1(Σn) = Σn and Diffk(Σn) = {U \ V : U ∈ Σn , V ∈ Diffk−1(Σn)}.
Let Diffk(Σn) denote the dual class. Recall that this is not the same as Diffk(Πn).
Indeed, Diff2k+1(Πn) = Diff2k+1(Σn) and Diff2k(Πn) = Diff2k(Σn). We have

Diff2k(Σn) = {U1 ∩ V �
1 ∪ · · · ∪ Uk ∩ V �

k } ,
Diff2k+1(Σn) = {U1 ∩ V �

1 ∪ · · · ∪ Uk ∩ V �
k ∪ U} ,

Diff2k(Σn) = {U1 ∩ V �
1 ∪ · · · ∪ Uk−1 ∩ V �

k−1 ∪ U ∪ V �} ,
Diff2k+1(Σn) = {U1 ∩ V �

1 ∪ · · · ∪ Uk ∩ V �
k ∪ V �} ,

where the sets U, V, Ui, Vi range overΣn. From this characterization one easily obtains
the following table of the operation �. For n > 0 let Sn(k) be a Diffk(Σn)-complete
set, and let Pn(k) be a Diffk(Σn)-complete set.
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Lemma 6. For each n > 0, i > 0, j ≥ 0

• Sn(2i) � Sn(2j) ≡ Sn(2i+2j) , Sn(2i) � Pn(2j) ≡ Pn(2i+2j)

Pn(2i) � Sn(2j) ≡ Sn(2i+2j) , Pn(2i) � Pn(2j) ≡ Pn(2i+2j−2)

• Sn(2i+1) � Sn(2j) ≡ Sn(2i+2j+1) , Sn(2i+1) � Pn(2j) ≡ Pn(2i+2j)

Pn(2i+1) � Sn(2j) ≡ Pn(2i+2j+1) , Pn(2i+1) � Pn(2j) ≡ Pn(2i+2j)

• Sn(2i+1) � Sn(2j+1) ≡ Sn(2i+2j+1) , Sn(2i+1) � Pn(2j+1) ≡ Pn(2i+2j+2)

Pn(2i+1) � Sn(2j+1) ≡ Pn(2i+2j+2) , Pn(2i+1) � Pn(2j+1) ≡ Pn(2i+2j+1) .

The equivalences above, together with closure by �, immediately provide complete
LGA-recognizable languages for Diffk(Σn) for each k, n. Building upon this we pro-
duce the whole Wadge hierarchy of LGA-recognizable languages.

5.2 Bestiarum Vocabulum

For an ordinal α let exp(α) = ωα
1 . Hence,

expk+1(α) = exp(expk(α)) = ω
ω··

·ω
α
1

1
1
︸ ︷︷ ︸

k+1 times ω1

.

Before describing the hierarchy, recall the Wadge degrees of Diffk(Σn)-complete sets.

Proposition 5 ([5]). For each k > 0, dw(Sn(k)) = dw(Pn(k)) = expn(k).

Theorem 3. The family of LGA-recognizable languages contains L with dw(L) = β

for every β =
∑0

i=n βi, where each βi is of the form

βi = expi(ω)η +
1
∑

p=j

expi(p)kp

with η < ωω, k2q ∈ {0, 1}, and j, k2q+1 < ω.

Proof. By induction on such ordinals, we provide an automaton Aβ , such that L(Aβ)
is non self dual, and dw(L(Aβ)) = β. To make the notation more readable, we use
bracketed ordinal [β] to denote the automatonAβ . Since LGA are closed under comple-
mentation, when we construct an automaton recognizing a non self dual set of degree
β, we also immediately get the automaton [β]�. We write [β]± for [β] ∨ [β]�.

Let us start with the basic building bricks of our construction: the automata [1], [ωm],
[expi(1)], and [expi(ω)ωp]. Together with these automata we show how to make a step
with those ordinals, i.e., how to define the automaton for [α+ γ], once we already have
the automaton [α] and γ is one of the above. Let

[1] = ⊥ , [α+ 1] = 〈+〉(⊥, [α]±) .

Note that [2] = KΣ
1 , and [2]� = KΠ

1 . Form > 1 let

[ω] = 〈+〉([3],⊥) , [α+ ω] = 〈+〉([3], [α]±) ,

[ωm] = 〈+〉([ωm−1 + 1],⊥) , [α+ ωm] = 〈+〉([ωm−1 + 1], [α]±) .



236 J. Duparc, A. Facchini, and F. Murlak

For i > 1 let

[exp(1)] = 〈−〉([2]�,⊥) , [α+ exp(1)] = 〈−〉([2]�, [α]±) ,

[expi(1)] = 〈−〉([expi−1(1)]�,⊥) , [α+ expi(1)] = 〈−〉([expi−1(1)]�, [α]±) .

Note that [expi(1)] = KΣ
i+1, [expi(1)]� ≡ KΠ

i+1. For p > 0 let

[expi(ω)] = 〈+〉([expi(2)],⊥) ,

[α+ expi(ω)] = 〈+〉([expi(2)], [α]±) ,

[expi(ω)ωp] = 〈+〉([expi(ω)ωp−1 + 1],⊥) ,

[α+ expi(ω)ωp] = 〈+〉([expi(ω)ωp−1 + 1], [α]±) .

Using the basic building blocks and basic steps defined above we can inductively define
automata [

∑1
i=n γi], such that each δi is of the form expi(ω)η+ expi(1)p with η < ωω

and p < ω.
To define automata for all β described in the statement of the theorem, we need one

more kind of bricks and two more kinds of steps. For η < ωω, 1 ≤ i < ω, we have:

[expi(2)] = [expi(1)] � [expi(1)]�

[α + expi(ω)η +
1
∑

p=m

expi(p + 2)kp] = [α + expi(ω)η +
1
∑

p=m

expi(p)kp] � [expi(2)]

[α+expi(ω)η+
1
∑

p=m

expi(p+2)kp+expi(2)] = [α+expi(ω)η+
�
∑

p=m

expi(p)kp+1]�[expi(2)] .

Using Lemma 6 and standard Wadge game arguments one can prove that for every
ordinal α from the statement of the theorem, [α] has Wadge degree α. ��

As a corollary we obtain a lower bound on the height of the hierarchy.

Corollary 3. The LGA hierarchy has height at least (ωω)ω = ωω2
.

In the remaining of the paper we prove that the height of the LGA hierarchy is exactly
(ωω)ω and that we can compute the Wadge degree of a language LGA-recognizable.

5.3 Two Simple Operations on Sets of Trees

Let us define two more operations on sets of trees. LetL,M ⊆ TΣ , a, b ∈ Σ. We define
the set L→M as the set of trees t ∈ TΣ , satisfying any of the following conditions:

– t.1 ∈ L and a = t(0n) for all n,
– 00n is the first node on the branch 00∗ such that a �= t(00n) and t.00n1 ∈M .

A player in charge of L → M is like a player in charge of L endowed with an extra
move, which can be used only once, that erases everything played before. Then he can
restart the play being in charge ofM .

The second operation is a generalization of ∨. Let Ln ⊆ TΣ for n < ω. Define
sup−n<ωLn as the set of trees t ∈ TΣ satisfying the following conditions for some k:



Linear Game Automata 237

– 0k is the first node on 0∗ labeled with b,
– t.0k1 ∈ Lk.

Intuitively, a player in charge of sup−n<ω Ln is given the choice between the Ln’s. The
decision is determined by the number of a’s played on the leftmost branch of the tree
before the first b. If the player keeps playing a’s forever on the leftmost branch, the tree
will be rejected.

Define also sup+
n Ln as sup−n Ln ∪ {t : ∀n t(0n) = a}. The difference from the

previous operation is that now, when the player plays a’s forever on the leftmost branch,
the obtained tree is accepted. Note that the operations are dual:

(

+
sup

n
Ln

)�
=

−
sup

n

(

L�
n

)

5.4 Computing Wadge Degrees

Let Ω denote the set of Wadge equivalence classes of languages recognized by the
automata [β], [β]�, [β]± defined in the proof of Theorem 3. Slightly abusing the notation
we write [β]− for the Wadge equivalence class of L([β]), [β]+ for the class of L([β]�),
and [β]± for the class of L([β]±).

The technical difficulty of the decidability result lies in the following effective clo-
sure property (its proof can be found in the appendix).

Theorem 4. For each U, V ∈ Ω it holds that U �V , U ∨V , and sup+k U
〈k〉 �V belong

to Ω and can be effectively computed. The same holds for U → V , if U = [expi(1)]μ

for some i < ω and μ ∈ {+,−}.
Theorem 5. For each LGA we can calculate effectively the signed degree of the recog-
nized language.

Proof. We proceed by induction on the number of states. Let C be an LGA. If C has
only one state, it is either totally accepting or totally rejecting. In the first case the signed
degree is [1]+, in the second case it is [1]−. Suppose that C has more states. By duality
we may assume that the initial state q0 is existential: if it is universal, compute the
signed degree for the complement of C, and return the degree negated. Suppose that q0
is not looping. By linearity, C can be represented as in Fig. 2(a) for some automataA0,
A1, B0, B1, each having less states than C. Clearly L(C) ≡ L(A0) �L(A1)∨L(B0) �
L(B1). Hence, we can use the induction hypothesis to get the degrees of L(Cqi), and
then Theorem 4 to compute d(C) = d(Cq1 ) � d(Cq2) ∨ d(Cq3 ) � d(Cq4 ).

A0 〈1〉a,0�� a,1 ��

b,0

��











 b,1

���
��

��
��

� A1

B0 B1

(a) C when q0 is not looping

〈i〉

a,0

�� a,1 ��

b,0

����
��

��
�� b,1

���
��

��
��

� A

B0 B1

(b) C when q0 is looping

〈1〉

a,0

�� a,1 ��

b,∗

��

A

⊥
(c) The automaton C′

Fig. 2. The automata C and C′



238 J. Duparc, A. Facchini, and F. Murlak

If q0 is looping, we can assume w.l.o.g. that C is of the form shown in Fig. 2(b)
with i = 0, 1. If i = 1, there exists n ∈ ω such that L(A) is either Σ0

n-complete,
or in Δ0

n+1 \ Σ0
n. If L(A) is Σn-complete, by Lemma 5, the language recognized by

C′, defined in Fig. 2(c) is also Σ0
n-complete. Since d(A) = d(C′) = [expn(1)]−

and ([expn(1)]−)〈k〉 = [expn(1)]− for each k > 0, we have d(C) = [expn(1)]− →
d(B1) � (B2) � [expn(1)]−. On the other hand, if L(A) ∈ Δ0

n+1 \ Σ0
n, by Theorem 1

and Theorem 2, the language recognized by C′ is Σ0
n+1-complete, and it is easy to see

that d(C) = [expn+1(1)]− → d(B1)�d(B2). We conclude by the inductive hypothesis
and Theorem 4.

If i = 0, it is straightforward to check that d(C) = sup+
k d(A)〈k〉 � d(B), and again

the claim follows from Theorem 4 and the induction hypothesis. ��

6 Conclusion

Alternating tree automata are notorious for the lack of decision procedures for classical
hierarchies like the Mostowski-Rabin hierarchy, the Borel hierarchy, or the Wadge hi-
erarchy. The reason for this is that when we move from infinite words to infinite trees,
deterministic and non-deterministic modes of computation highly diverge.

We have proposed a novel class of automata capturing an interesting aspect of alter-
nation, and for this class we have proved that all corresponding hierarchies mentioned
above are decidable. Moreover we have shown that the weak index and the Borel rank
coincide over LGA-recognizable languages.

We have seen that, despite their apparent simplicity, LGA yield a class of languages
surprisingly complex from the topological point of view: the height of their Wadge
hierarchy is (ωω)ω. Admittedly, this is much less than the height of the hierarchy for
weak alternating automata, which is known to be at least ε0 [7], but this was to be
expected, as LGA form a very restricted subclass of weak alternating automata. What
is surprising however, is that the height of the Wadge hierarchy for LGA is much larger
than that for deterministic automata, which was shown in [15] to be (ωω)3 + 3, and the
same as for deterministic push-down automata on infinite words [6].
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interest in the topological complexity of weak alternating automata, Sławek Lasota for
bringing linear automata into our attention, Igor Walukiewicz for helpful comments and
inspiring discussions, Claire David for space-saving tricks, and the anonymous referees
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Abstract. We define an enriched effect calculus by extending a type
theory for computational effects with primitives from linear logic. The
new calculus provides a formalism for expressing linear aspects of com-
putational effects; for example, the linear usage of imperative features
such as state and/or continuations.

Our main syntactic result is the conservativity of the enriched effect
calculus over a basic effect calculus without linear primitives (closely
related to Moggi’s computational metalanguage, Filinski’s effect PCF and
Levy’s call-by-push-value). The proof of this syntactic theorem makes
essential use of a category-theoretic semantics, whose study forms the
second half of the paper.

Our semantic results include soundness, completeness, the initiality of
a syntactic model, and an embedding theorem: every model of the basic
effect calculus fully embeds in a model of the enriched calculus. The
latter means that our enriched effect calculus is applicable to arbitrary
computational effects, answering in the positive a question of Benton and
Wadler (LICS 1996).

1 Introduction

The computational metalanguage was proposed by Moggi [14] as a general meta-
language for ascribing semantics to programming languages with effects, building
on his own idea that computational effects can be encapsulated by the mathe-
matical structure of a strong monad [13]. The metalanguage extends the simply-
typed λ-calculus with a new type constructor T , where TA represents a type of
all computations that produce values of type A. Semantically, T is interpreted
as a strong monad that captures the effects that computations may exhibit.

In [4], Benton and Wadler identify a close connection between Moggi’s com-
putational metalanguage and Girard’s intuitionistic linear logic (ILL) [7]. They
show that every model of ILL can be reconstrued as a model of the computational
metalanguage, and this determines an interpretation of the computational met-
alanguage within ILL. However, the models of the computational metalanguage
that arise from models of ILL are very special ones: their monads are commuta-
tive. This means that the interpretation of the computational metalanguage in
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ILL validates an equation that is not always true for effects: the equation that
asserts the insensitivity of computational effects to their order of execution.

Many computational effects are not commutative, for example: exceptions,
state, input/output, and continuations. In [4, §8], Benton and Wadler write:

“We do not know if it is possible to define a non-commutative linear
calculus which corresponds to a wider class of monad models.”

In this paper, we present such a calculus, the enriched effect calculus.
The enriched effect calculus can be viewed as an extension of Moggi’s met-

alanguage with a judicious selection of type constructors from linear logic. We
envisage that this calculus will be applicable to computational scenarios in which
the manipulation of computational effects adheres to a discipline of linearity. For
example, the usual state monad S → ((−)× S) (where S is an object of states)
has a linear counterpart S � (!(−)⊗ S), which accounts for the fact that state
(unlike values) can neither be duplicated nor discarded, cf. [15]. Similarly, the
continuations monad ((−) → R) → R (where R is a result type) has a linear
version ((−) → R) � R, which enforces the linear usage of continuations, a
discipline that is ubiquitous amongst structured forms of control [3].

While examples such as the above can be formulated in ILL itself, we be-
lieve our enriched effect calculus to be the natural home for them. Indeed, the
enriched effect calculus has two main advantages over ILL. First, it is weaker
than ILL, and hence applicable more widely (models of ILL are a strict subset
of models of the enriched effect calculus). Second, the tight connection between
the enriched effect calculus and Moggi’s computational metalanguage, which we
establish in this paper, makes the former a natural vehicle for formalising the
general phenomenon of interactions between linearity and effects, including the
linear usage of effects [9]. Detailed applications of the enriched effect calculus
to such examples will appear elsewhere, starting with a study of linearly-used
continuations in a follow-up paper [5].

In this paper, our enriched effect calculus is defined as an extension of a basic
effect calculus, which is presented in Section 2. The basic calculus is a simple (and
essentially standard) extension of Moggi’s computational metalanguage with a
notion of computation type, as used in Filinski’s effect PCF [6] and in Levy’s
call-by-push-value [11]. The enriched effect calculus is presented in Section 3.
There we state our main syntactic theorem: the enriched calculus conservatively
extends the basic calculus. Thus the addition of the new linear logic connectives
does not interfere with the existing type constructors of the basic calculus.

The second half of the paper, starting with Section 4, is devoted to category-
theoretic models. As models of the basic effect calculus we take (an appropriate
version of) Levy’s adjunction models [12], which are the natural models for cal-
culi based on computation types. As models of the enriched effect calculus, we
take adjunction models with the extra structure needed to model the linear con-
nectives. This structure is formulated in terms of enriched category theory [10].
Soundness and completeness are addressed in Section 4. In Section 5, morphisms
of models are defined and an initiality property is formulated for a syntactic
model. Finally, in Section 6, we show that every adjunction model fully embeds
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in a model of the enriched effect calculus. It is this theorem that answers Benton
and Wadler’s (implicit) question quoted above: the enriched effect calculus is
compatible with any monad model (any such can be presented as a Levy ad-
junction model). Furthermore, the embedding theorem is also used to prove the
syntactic conservativity of the enriched effect calculus over the basic calculus.

2 A Basic Effect Calculus

Moggi’s computational metalanguage, [14], extends the simply-typed λ-calculus
with new types TA, which type computations (possibly with effects) that pro-
duce values of type A. The new type has an associated “let” operator, which
performs the Kleisli extension of a map A→ TB to a map TA→ TB. This can
be seen as a restricted form of elimination rule for the type TA. Filinski [6] gener-
alises this elimination rule to apply to a wider class of “target” types than those
of the form TB, and develops a calculus for this based on classifying such types
as special computation types within a broader class of value types. Such a general-
isation is useful for interpreting call-by-name languages. Its importance has been
thoroughly established by Levy, whose call-by-push-value (CBPV) paradigm [11]
is based on the distinction between computation and value types.

Guided by the above, we define our effect calculus as an extension of the
simply-typed λ-calculus with a new type constructor, following Moggi, and with
a division of types into value types and computation types, following Filinski and
Levy. Because we have two classes of types, we assume two classes of type con-
stants. We use α, β, . . . to range over a set of value type constants, and α, β, . . .
to range over a disjoint set of computation type constants. We then use A,B, . . .
to range over value types, and A,B, . . . to range over computation types, which
are specified by the grammar below:

A ::= α | α | 1 | A× B | A→ B | !A
A ::= α | 1 | A× B | A→ B | !A

By this definition, every computation type is also a value type.
Our notation for type constructors is standard, except that we use the linear

exponential notation !A for Moggi’s monadic type TA. (The reasons for this non-
standard choice will transpire later.) We follow Filinski in making computation
types a subclass of value types. Levy, in contrast, keeps computation types and
value types separate. He has an operator F that turns a value type A into a
computation type FA, and conversely an operator U that maps a computation
type A to a value type UA. Levy’s type FA corresponds to !A in our syntax, and
his type UA is simply A itself. Three reasons for our choice of omitting U and
subsuming computation types as value types are: the streamlined syntax leads
to a very economical type system (see below); there is no loss of information,
since one can establish an equivalence between the two systems; and also the
term syntax is not cluttered with (inferable) conversions between values and
computations. However, for the purposes of the present paper, the main benefit



Enriching an Effect Calculus with Linear Types 243

of our formulation is that our syntax provides a transparent foundation for the
extension with linear logic connectives in Section 3.

We mention two other differences from CBPV, as presented in [11]. First,
because we are building on the simply-typed λ-calculus, we include a full func-
tion space between value types, whereas Levy only includes function spaces as
computation types, and, as in the present paper, these are required to have com-
putation type codomains. Second, Levy includes sums of value types as a basic
construct, whereas, largely for space reasons, we have omitted them. Since ei-
ther of these differences could be easily circumvented by making evident minor
alterations to our type system (or to CBPV), we believe it is correct to view our
effect calculus as essentially CBPV, albeit with a different syntax.

To ease the transition to the linear calculus, we shall build a notion of linear-
ity directly into the typing judgements of the basic effect calculus. This notion
has an intuitive motivation. Following Levy [11], we view value types as typing
values, which are static entities, and we view computation types as typing com-
putations, which are dynamic entities. If a term t has computation type, and
contains a parameter z of computation type then there is a natural notion of t
depending linearly on z: the execution of the computation t contains within it
exactly one execution of the computation z. Since computations may perform
arbitrary effects including nontermination, such a linear dependency can only
hold in general if the execution of z is the first subcomputation performed in
the execution of t. (If, for example, a computation that diverges were due to be
performed before z then z might never be executed.) Thus we may rephrase,
t depends linearly on z if the execution of the computation t begins with the
execution of the computation z. Accordingly, we have arrived at a notion of t
depending linearly on z that is similar in spirit to saying that t[z] is an eval-
uation context. The situation for value types is fundamentally different. Since
values are static, they are reasonably considered as pervasive entities that might
be used any number of times. Accordingly, there is no natural notion of a term
t depending linearly on a parameter x of value type.

The above discussion is intended to give informal motivation for considering
type rules for the effect calculus based on two typing judgements:

(i) Γ |− � t : A

(ii) Γ |z : A � t : B ,

where Γ is a context of value-type assignments to variables. On the right of
Γ is a stoup (following the terminology of [8]), which may either be empty, as
in the case of judgement (i), or may consist of a unique type assignment z : A,
in which case the type on the right of the turnstyle is also required to be a
computation type, as in (ii). The purpose of judgement (i) is merely to assert
that t has value type A in (value) context Γ . Judgement (ii) asserts that t is a
computation of type B (in context Γ ) which depends linearly on the computation
z of type A. Note how these two judgement forms correspond to the informal
discussion of linearity given above. This discussion also provides some intuitive
motivation for the restriction of the linear context to a stoup containing at most
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Γ, x :A |− � x : A Γ |z :A � z : A Γ |Δ � ∗ : 1

Γ |Δ � t : A Γ |Δ � u : B

Γ |Δ � 〈t, u〉 : A × B

Γ |Δ � t : A × B

Γ |Δ � fst(t) : A

Γ |Δ � t : A × B

Γ |Δ � snd(t) : B

Γ, x :A |Δ � t : B

Γ |Δ � λx :A. t : A → B

Γ |Δ � s : A → B Γ |− � t : A

Γ |Δ � s(t) : B

Γ |− � t : A

Γ |− � ! t : !A

Γ |Δ � t : !A Γ, x :A |− � u : B

Γ |Δ � let ! x be t in u : B

Fig. 1. Typing rules for the effect calculus

one variable of computation type. Since a linearly-used parameter z (necessarily
of computation type) must be executed first in the execution of t, it is natural
that just one variable can enjoy this property.

The typing rules are given in Figure 1. In them, Δ ranges over an arbitrary
(possibly empty) stoup, and the rules are only applicable in the case of typing
judgements that conform to (i) or (ii) above. The positioning of the stoups Δ in
the rules can be understood in terms of the intuitive definition of linearity given
above. For example, the evaluation behaviour of the terms associated with !A
types can be understood following Moggi [13,14]. In the introduction rule, the
term !t represents the trivial computation that immediately returns the value t of
type A. There is no space in this for any linear dependency on a subcomputation
z. In the elimination rule, the term let !xbe t inu first evaluates the computation
t, binds the result (if any) to x and then proceeds to evaluate the computation
u. Clearly if z is evaluated first within t then it is also evaluated first within
let!xbet inu, and this justifies the positioning ofΔ in the rule. Observe, however,
that the following variation on the rule is not legitimised by our interpretation
of linearity, and hence is not included in the calculus.

Γ |− � t : !A Γ, x : A |Δ � u : B

Γ |Δ � let !x be t in u : B
(1)

The problem here is that any z in Δ is evaluated as part of u, and this occurs
only after t has been evaluated first. Similar explanations can be given to the
other rules. They rely on giving the products a lazy interpretation: components
are only evaluated once projected out. (So, e.g., the linearity in the rule for 1 is
correct because 1 is the empty product and ∗ can never be projected.)

Modulo the differences from CBPV already mentioned above (abitrary func-
tion spaces, no sum types) the type system discussed is essentially just a concise
reformulation of CBPV with complex stacks, as found in [11,12]. In particular,
our judgement form Γ | − � t : A corresponds to Levy’s Γ �v M : A, and our
judgement Γ |z : A � t : B corresponds to Levy’s Γ | A �k K : B.
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Γ |Δ � t = ∗ : 1 if Γ |Δ � t : 1

Γ |Δ � fst(〈t, u〉) = t : A if Γ |Δ � t : A and Γ |Δ � t : B

Γ |Δ � snd(〈t, u〉) = u : B if Γ |Δ � t : A and Γ |Δ � t : B

Γ |Δ � 〈fst(t), snd(t)〉 = t : A × B if Γ |Δ � t : A × B

Γ |Δ � (λx : A. t)(u) = t[u/x] : B if Γ, x :A |Δ � t : B and Γ |− � u : A

Γ |Δ � λx : A. (t(x)) = t : A → B if Γ |Δ � t : A → B and x �∈ Γ, Δ

Γ |− � let !x be !t in u = u[t/x] : B if Γ |− � t : A and Γ, x :A |− � u : B

Γ |Δ � let !x be t in u[! x/y] = u[t / y] : B if Γ |Δ � t : !A and Γ |y : !A � u : B

Fig. 2. Equality rules for the effect calculus

Once again, our formulation has been chosen both for its economy and to
make the extension with linear connectives transparent. Indeed, we have stayed
close to linear logic notation (the exception is the use of × for product rather
than the usual linear &), and our typing rules are simply restrictions, from an
arbitrary linear context to a stoup, of the rules for ILL in [1]. This, in part,
motivates the nonstandard use of !A instead of TA. The one mismatch here is
the illegitimate rule (1) above, which is valid in the context of ILL. In spite of
this mismatch, it is our belief that the extension of the effect calculus with linear
primitives presented below will make it clear that the overlap with linear logic
is so strong that the linear notation is helpful more than it is misleading.

In Figure 2, we present rules for equalities between typed terms in the effect
calculus. They are to be considered in addition to the expected (typed) congrence
and α-equivalence rules.

3 The Enriched Effect Calculus

The enriched effect calculus is obtained by adding a selection of type construc-
tions from linear logic to the effect calculus. As befits the setting, this needs to
be done respecting both the distinction between value and computation types,
and the interpretation of linearity as a concept related to the latter.

We start with linear function types. In our setting, we have a notion of linearity
between computation types only. Thus we add a type A � B, internalising the
linear dependency of judgements Γ | z : A � t : B. In order to have a calculus
with a sufficiently wide collection of models (all monad models) it seems essential
not to assume that A � B is a computation type in general. This restriction is
also natural if one thinks of a linear dependency A � B as a transformation of
computations (much like an evaluation context) rather than a computation itself.
The same restriction fits naturally with the stoup-based typing judgements, since
allowing a linear function to depend linearly on another parameter would lead
to typing rules involving multivariable linear contexts.

In linear logic, linear function space is intimately connected to the tensor
product ⊗, which normally internalises the comma separating types in the lin-
ear context of a typing judgement. In our stoup-based system, there is at most
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Γ |z :A � t : B

Γ |− � λz :A. t : A � B

Γ |− � s : A � B Γ |Δ � t : A

Γ |Δ � s[t] : B

Γ |− � t : A Γ |Δ � u : B

Γ |Δ � !t ⊗ u : !A⊗B

Γ |Δ � s : !A⊗B Γ, x :A |z :B � t : C

Γ |Δ � let !x ⊗ z be s in t : C

Γ |Δ � t : 0

Γ |Δ � image(t) : A

Γ |Δ � t : A

Γ |Δ � inl(t) : A ⊕ B

Γ |Δ � t : B

Γ |Δ � inr(t) : A ⊕ B

Γ |Δ � s : A ⊕ B Γ |x :A � t : C Γ |y :B � u : C

Γ |Δ � case s of (inl(x). t; inr(y). u) : C

Fig. 3. Additional typing rules for the enriched effect calculus

one type in the linear context (the stoup), and so it seems awkward to imple-
ment the usual symmetric ⊗. Similarly, it is also difficult to find an appropriate
⊗ operation in a sufficiently general class of models. What does work, both
syntactically and semantically, is an asymmetric version: for any value type A
and computation type B, we include a new computation (and hence value) type
!A⊗B. Note that this is the application of a single primitive binary constructor.
The hybrid notation is chosen to maintain consistency with linear logic.

Finally, we include linear coproducts of computation types, A⊕ B and 0.
The resulting enriched effect calculus has types defined by extending the gram-

mar for value and computation types of the effect calculus with the following
additional type constructors.

A ::= . . . | A � B | !A⊗B | 0 | A⊕ B

A ::= . . . | !A⊗B | 0 | A⊕ B .

The judgement forms for the enriched effect calculus are exactly as for the effect
calculus (now using the extended range of types). The additional typing rules
are presented in Figure 3. Again, they can be seen to be restrictions of standard
intuitionistic linear logic rules, as in [1]. The equality theory on terms is extended
by the rules in Figure 4.

The restriction that A � B is a value type, and the lack of a symmetric tensor
have consequences on expressivity that may, at first, seem drastic. An obvious
restriction is that linear function space does not iterate: neither A � (B � C)
nor (A � B) � C are allowed. However, it is possible to interleave linear function
space with full function space. For example, A � (B → C) is a value type, and
(A � B) → C is a computation (and hence value) type. Thus, for example,
the linearly-used continuations monad, ((−) → R) � R) is implementable as
a monad on value types, for any computation type R of results. Likewise, the
linearly-used state monad S � (!(−) ⊗ S), which makes use of the asymmetric
tensor, is implementable for any computation type S of states. Such examples
will be treated in detail in future papers, starting with [5].
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Γ |Δ � (λx : A. t)[u] = t[u/x] : B if Γ |x : A � t : B and Γ |Δ � u : A

Γ |− � λx : A. (t[x]) = t : A � B if Γ |− � t : A � B and x /∈ Γ

Γ |Δ � let !x⊗y be !t⊗s in u = u[t, s/x, y] : C if Γ |− � t : A and Γ |Δ � s : B

and Γ, x : A |y : B � u : C

Γ |Δ � let !x⊗y be t in u[!x⊗y/z] = u[t/z] : C if Γ |Δ � t : !A⊗B and Γ |z : !A⊗B � u : C

Γ |x : 0 � t = image(x) : A if Γ |x : 0 � t : A

Γ |Δ � case inl(t) of (inl(x). u; inr(y). u′) if Γ |x : A � u : C and Γ |y : B � u′ : C

= u[t/x] : C and Γ |Δ � t : A

Γ |Δ � case inr(t) of (inl(x). u; inr(y). u′) if Γ |x : A � u : C and Γ |y : B � u′ : C

= u′[t/y] : C and Γ |Δ � t : B

Γ |Δ�case t of (inl(x).u[inl(x)/z]; inr(y). u[inr(y)/z])

= u[t/z] : C if Γ |Δ � t : A ⊕ B and Γ |z : A ⊕ B � u : C

Fig. 4. Additional equality rules for the enriched effect calculus

Many of the familiar laws of linear logic transfer to the enriched effect calculus,
insofar as they can be expressed. For example:

A→ B ∼= !A � B as value types
!A⊗ !B ∼= !(A× B) as computation types

!A⊗ (B⊕ C) ∼= (!A⊗B)⊕ (!A⊗C) as computation types
(!A⊗B) � C ∼= A→ (B � C)

∼= B � (A→ C) as value types
!1⊗A ∼= A as computation types,

where the isomorphisms between computation types are themselves linear. The
above laws demonstrate that our linear connectives behave just in the way linear
logic leads us to expect they should. We take this as justification for our decision
to adopt linear logic notation, including the choice of replacing TA with !A.

Our main theorem about the enriched effect calculus is that the addition of
the new linear type constructions is conservative over the basic effect calculus.

Theorem 1 (Conservativity). Suppose Γ,Δ and A contain only types from
the basic effect calculus.

1. If Γ |Δ � u : A is typable in the enriched effect calculus, then there exists a
term Γ |Δ � t : A typable in the basic effect calculus such that Γ |Δ � t =
u : A holds in the enriched effect calculus.

2. If Γ |Δ � s : A and Γ |Δ � t : A are typable in the basic effect calculus, and
Γ |Δ � s = t : A holds in the enriched effect calculus, then Γ |Δ � s = t : A
holds in the basic effect calculus.

Statement 1 can be proved by a standard normalization argument, showing
that every term t is provably equal to one for which every subterm is typed
by a subtype of a type in the judgement typing t. The only proof we know of
statement 2 is semantic, and will be given in Section 6.
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4 Models

Our basic effect calculus is closely related to Levy’s CBPV with stacks. Ac-
cordingly, the natural models are given by Levy’s adjunction models [12]. While
these are most simply presented as locally-indexed categories, see op. cit., we use
a definition based on enriched category theory, since this connects more easily
with the models of the enriched effect calculus introduced below.

The idea of enriched category theory is to generalise the notion of category
so that, rather than having sets of morphisms between pairs of objects, one
has hom-objects given as objects of a specified “enriching” category V. Thus
a V-enriched category (or V-category), C, is given by a collection of objects
together with, for every pair of objects A,B, an associated object C(A,B) of
the category V. To make this work, the category V needs to be monoidal,
and identity maps and an associative composition need to be specified on hom-
objects. For space reasons, we refer readers to Kelly’s book [10] for full definitions.
Enriched category theory generalises ordinary category theory since an ordinary
locally small category is just a Set-enriched category.

In this paper, we always consider enrichment with respect to categories V
that are cartesian closed (we write BA or [A → B] for functions spaces), and
with the enriching monoidal structure as finite product. Any such category is
self-enriched. Recall that for any small category V, the Yoneda embedding yV

fully and faithfully embeds V into the presheaf category ̂V = SetV
op

, and since
the latter is cartesian closed, V is ̂V-enriched.

We say that a V-enriched category C has (V-)powers (Kelly writes cotensors)
indexed by an object A ∈ V if, for each object B in C, there exists an object
BA of C such that, for all objects C ∈ C, there is an isomorphism:

ξA,B,C : C(C,BA) � C(C,B)A (2)

in V, and such isomorphisms are V-natural in C. The dual property is that of
having (V-)copowers (Kelly writes tensors) indexed by A: for each object B of
C, there must exist an object A ·B of C such that there are isomorphisms in V,

ψA,B,C : C(A ·B,C) � C(B,C)A (3)

and again this family is V-natural in C.
An enriched adjunction F � U between V-functors F : D→ C and U : C →

D requires the existence of isomorphisms in V

ρA,B : C(F (A), B) � D(A,U(B)) (4)

which are V-natural in A and B, cf. [10].

Definition 1. An effect-calculus model comprises a (small) cartesian closed cat-
egory V, together with a ̂V-enriched category C with: ̂V-enriched finite prod-
ucts, ̂V-powers indexed by representables, and a ̂V-adjunction F � U : C→ V.
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As mentioned above, effect-calculus models are an enriched-category formulation
of Levy’s adjunction models of CBPV [12], adapted to carry exactly the structure
needed to model the effect calculus. Effect-calculus models are closely related to
Moggi’s monad-based metalanguage models [14]. Given an effect-calculus model,
the composite UF carries the structure of a strong monad on V. Conversely,
given a strong monad T on a cartesian-closed category V, the canonical ad-
junction F � U : VT → V between V and the category VT of algebras for the
monad, enriches to an effect-calculus model [12, Examples 4.9].

The idea behind effect-calculus models is that V is the category of value types
and C the category of linear maps between computation types. The reason for
requiring C to be enriched over ̂V is to model judgements Γ | z : A � t : B
in non-empty contexts Γ , cf. [12]. In the enriched effect calculus, however, the
presence of the linear function space A � B as a value type means that the hom-
set C(A,B) needs to live as an object of the category V of value types itself.
This helps to make the definition of an enriched-effect-calculus model simpler
and more natural than the notion of effect-calculus model.

Definition 2. An enriched-effect-calculus model comprises a cartesian closed
category V, together with a V-enriched category C with: V-enriched finite prod-
ucts and coproducts, powers, copowers, and a V-adjunction F � U : C→ V.

In an obvious way, each enriched-effect-calculus model can be reconstrued as an
effect-calculus model. Although the converse, of course, does not hold, we shall
show in Section 6 that every effect-calculus model can be fully embedded in an
enriched-effect-calculus model.

A rich source of enriched-effect-calculus models is provided by models of ILL.
Amongst the various formulations of such models, the most natural for our
purposes is that of linear/nonlinear model [2], which consists of a cartesian-
closed category V (the intuitionistic category), a symmetric monoidal closed
category C (the linear category), and a symmetric monoidal adjunction F �
G : C → V. To model the & and ⊕ operators of ILL one further requires C to
have finite products and coproducts.

Proposition 1. Every linear/nonlinear model in which the linear category has
finite products and coproducts is an enriched-effect-calculus model.

Proof (outline). Since V and C are closed categories, they are self-enriched.
The functor G, being monoidal, transports C-enriched categories to V-enriched
categories by application of G to hom-objects, cf. [10, p.3]. In particular, we can
apply this construction to C and get a V-enriched category G�(C) with hom-
objects G�(C)(A,B) = G(A � B). The symmetric monoidal adjunction F � G
induces an enriched adjunction F � G : G�(C) → V. Powers and copowers can
be defined respectively as BA = F (A) � B and A · B = F (A)⊗B. ��

We give a uniform treatment of the interpretation of the effect calculus in any
effect-calculus model, and the interpretation of the enriched effect calculus in
any enriched-effect-calculus model. In either case, a value type A is interpreted
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V[[α]] = U(C[[α]])

V[[1]] = 1 C[[1]] = 1

V[[A × B]] = V[[A]] × V[[B]] C[[A × B]] = C[[A]] × C[[B]]

V[[A → B]] = V[[A]] → V[[B]] C[[A → B]] = C[[B]]V[[A]]

V[[!A]] = U(C[[!A]]) C[[!A]] = F (V[[A]])

Fig. 5. Interpretation of effect-calculus types

V[[A � B]] =C(C[[A]], C[[B]])

V[[!A⊗B]] = U(V[[A]] · C[[B]]) C[[!A⊗B]] =V[[A]] · C[[B]]

V[[0]] = U(0) C[[0]] = 0

V[[A ⊕ B]] = U(C[[A]] + C[[B]]) C[[A ⊕ B]] =C[[A]] + C[[B]]

Fig. 6. Interpretation of enriched-effect-calculus types

as an object V[[A]] of V, and each computation type A is interpreted as a pair
(C[[A]], sA) where: C[[A]] is an object of C, and sA : U(C[[A]])→ V[[A]] is an isomor-
phism in V. The interpretation is determined by specifying objects V[[α]] ∈ V
and C[[α]] ∈ C, which we assume given. The remainder of the interpretation
is defined in Figure 5, for both calculi, and also in Figure 6, for the remaining
types of the enriched effect calculus. In the case of the effect calculus only, there
is one notational simplification in Figure 5: in the definition of C[[A→ B]], the
exponent of the power C[[B]]V[[A]] should strictly be y(V[[A]]).

The non-trivial cases in the inductive definition of the isomorphism sA are
the cases for unit type, product and function space. Since U is an enriched right
adjoint, it preserves enriched limits and powers. The required isomorphisms are
easily calculated from this preservation.

Terms are interpreted differently depending on whether they are typed with
empty stoup or not. For Γ |− � t : A, the interpretation is a map in V

V[[t]] : V[[Γ ]]→ V[[A]]

where V[[Γ ]] is the product of the interpretations of the types in Γ . A typing
judgement Γ |z : A � t : B is interpreted as a morphism:

C[[t]] : V[[Γ ]]→ C(C[[A]],C[[B]]) .

For the effect calculus, this morphism is in ̂V (and strictly its domain is y(V[[Γ ]])).
For the enriched calculus it is in V itself. The interpretation of terms is defined
by induction on the typing judgement. The details are omitted for lack of space.

Theorem 2. Effect-calculus models are sound and complete with respect to the
equational theory of Figure 2. Similarly, enriched-effect-calculus models are sound
and complete with respect to the full equational theory of Figures 2 and 4.
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Proof (outline). As usual, completeness is proved by constructing a syntactic
model. We consider the enriched effect calculus only. The syntactic category
VSyn has as objects value types and as morphisms from A to B terms of the
form x : A |− � t : B identified up to equality. The VSyn-enriched category CSyn
has as objects all computation types, with the VSyn-object of morphisms from
A to B given by the value type A � B. The functor FSyn maps an object A to
!A, and the functor USyn maps A to itself. The details are routine to verify. ��

5 Morphisms of Models

In this section, we define an appropriate notion of morphism between enriched-
effect-calculus models.1 The definition is subtle because it involves an unavoid-
able change of enrichment. Further intricacies are caused by the mathematically
natural choice of requiring morphisms to preserve structure up to isomorphism
rather than strictly.

Given two enriched models F � U : C → V and F ′ � U ′ : C′ → V′, we need
to consider what a structure-preserving morphism amounts to. Such a morphism
must include a functor S : V→ V′ that preserves the cartesian-closed structure.
The functor S determines a 2-functor S� from the 2-category of V-categories to
that of V′-categories, by application of S to hom-objects, cf. [10, p.3]. Hence,
we obtain a V′-enriched adjunction S�(F ) � S�(U) : S�(C)→ S�(V).

Next, observe that S determines a fully faithful V′-functor S′ from S�(V) to
V′. This acts like S on objects, and its action on hom-objects is given by:

S�(V)(A,B) = S(V(A,B)) = S[A→V B] ∼= [SA→V′ SB] = V′(SA, SB)

using the preservation of cartesian-closedness by S.
A morphism of effect-calculus models must also include a component mapping

C to C′. Having performed the above change of enrichment, this is achieved by
requiring a fully faithful V′-functor T ′ : S�(C)→ C′ (the fully faithful property
of T ′ amounts to the preservation of linear function spaces), together with a
V′-enriched natural isomorphism α : F ′ S′ ⇒ T ′ S�(F ) such that the thereby de-
termined (via the adjunctions) V′-natural transformation α′ : S′ S�(U)⇒ U ′ T ′

(we call α′ the mate of α) is also an isomorphism. Pictorially, we have:

S�(C)
T ′ � C′

�α

S�(V)

S�(F )
�

� S�(U)

� S′ � V′

F ′

�

� U ′

�

The data (S′, T ′, α) constitute a V′-enriched Beck-Chevalley square, which is the
natural notion of non-strict morphism of V′-adjunctions.
1 For lack of space, we do not define morphisms between effect-calculus models.
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Finally, we need to ask for T ′ to preserve the structure on computation types.
Specifically, T ′ must preserve finite V′-enriched products and coproducts, and
V′-powers and copowers indexed by objects in the range of S (such powers exist
in S�(C) since they are inherited from C).

Definition 3. A morphism of enriched-effect-calculus models from F � U : C→
V to F ′ � U ′ : C′ → V′, is given by: a cartesian-closed functor S : V → V′,
which determines S′ : S�(V) → V′ as above, a fully faithful V′-enriched func-
tor T ′ : S�(C) → C′, and a V′-natural isomorphism α : F ′ S′ ⇒ T ′ S�(F ) such
that (S′, T ′, α) form a Beck-Chevalley square and T ′ preserves finite V′-enriched
products and coproducts, and V′-powers and copowers indexed by objects in the
range of S.

It can be shown that morphisms are closed under composition.
The main theorem of this section is that the syntactic models constructed in

the proof of Theorem 2 enjoy an initiality property with respect to the above
notion of morphism. Because the morphisms do not preserve structure strictly,
canonical morphisms are unique only up to coherent natural isomorphism. More-
over, establishing that this property indeed holds turns out to be a surprisingly
technical undertaking. For lack of space, the definition of coherent natural iso-
morphism and the proof of theorem below are omitted here.

Theorem 3. Given an enriched-effect-calculus model F � U : C→ V and fam-
ilies of objects, V[[α]] in V and C[[α]] in C, indexed by type constants, there exists
a morphism of models from the syntactic model FSyn � USyn : CSyn → VSyn to
F � U : C→ V that extends the given interpretation of type constants, and this
morphism is unique up to coherent natural isomorphism.

It should be pointed out that, given the way we have defined the syntactic
model, the initiality property would not hold if morphisms were required to
strictly preserve structure. The reason for this is that our economical syntax
makes identifications that do not hold in arbitrary models. While this could be
repaired by changing to Levy’s syntax, we do not view it as a defect of our
approach. The non-strict notion of morphism introduced in this section is the
one that is useful in applications; for example, non-strict morphisms are needed
in Section 6 below, and also in the companion paper [5].

6 Embedding an Effect-Calculus Model in an Enriched
Model

The purpose of this section is to establish that every effect-calculus model fully
embeds in an enriched-effect-calculus model. It is this result that establishes that
enriched-effect-calculus models are, in a precise sense, no less general than effect-
calculus models. The important consequence is that the enriched effect calculus
is compatible with arbitrary computational effects, whether commutative or not.

Theorem 4. Every (small) effect-calculus model fully embeds in an enriched-
effect-calculus model.
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Proof (outline). Given an effect-calculus model F � U : C → V, we need to
fully embed this in an enriched-effect-calculus model F ′ � U ′ : C′ → V′.

Since V and C are already ̂V-enriched, it is natural to define V′ = ̂V. Con-
sider D = V′[Cop,V′], i.e., the V′-category of V′-functors from Cop to V′. It
is standard that D is complete and cocomplete as a V′-category, and hence has
all V′-powers and copowers. Moreover, the enriched Yoneda functor y′ : C→ D
preserves all V′-limits that exist in V.

C′ will be obtained as a subcategory of D. To motivate its definition, we see
what goes wrong if we try to use the whole of D for C′. We first observe that any
object I of D determines a C′-enriched adjunction (−) · I � D(I,−) : D → C′.
When I is chosen to be y′F1, there is a V′-natural isomorphism α′ : yU ⇒
D(I,−)y′, because U ∼= C(F1,−) and both y and y′ preserve powers. However,
we do not have a Beck-Chevalley square of adjunctions because the “mate”
α : ((−) · I) y⇒ y′ F of α′, has the canonical maps ψX : yX · y′F1→ y′FX as
its components. which are not generally isomorphisms.

To rectify the situation, we define C′ to be the full sub-V′-category of D on
those objects orthogonal (in the V′-enriched sense) to every ψX . One shows that
all representables lie in D (because FX enjoys the universal property of X · F1
in C), and that C′ has all V′-limits, and these are calculated as in D. Further,
by [10, Theorem 6.5], C′ is a (V′-enriched) reflective subcategory of D. It follows
that C′ has all V′-colimits, in particular copowers and finite coproducts. Thus
(−) · I � C′(I,−) : D → C′ is an enriched-effect-calculus model, where the
copowers are calculated in V′ (by reflecting copowers from D). Moreover,

C
y′ � C′

�r(α)

V

F

�

� U

� y � V′

(−) · I
�

� V′(I,−)

�

is now a Beck-Chevalley square of V′-adjunctions, since the α components have
been reflected to isomorphisms, and the α′ components remain unchanged.

The above data determines the morphism we require. The functor y : V →
V′ is cartesian closed. The V′-functor y′ is fully faithful (as in Definition 3,
this is a requirement for structure preservation). The Beck-Chevalley property
means that the adjunction is preserved. Moreover, y′ preserves all existing V′-
limits, in particular finite products and powers indexed by objects of V (qua
representables). Thus we indeed have appropriate data for a morphism of models.
The statement that this morphism is a full embedding amounts to y being fully
faithful as a V′-functor, which is standard. ��

We apply the above embedding to complete the proof of Theorem 1.

Proof of Theorem 1.2 (outline). Suppose Γ |Δ � s, t : A are typable in the
basic effect calculus and Γ |Δ � s = t : A holds in the enriched effect calculus,
then [[s]] = [[t]] holds in all models. Thus, for all models F � U : C → V of the
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basic effect calculus, [[s]] = [[t]] holds in the model F ′ � U ′ : C′ → V′ given by
Theorem 4. Since the latter model fully embeds the former, [[s]] = [[t]] holds in
every model of the basic effect calculus. By the completeness of such models,
Γ |Δ � s = t : A holds in the basic effect calculus. ��
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Abstract. Undecidability of various properties of first order term rewrit-
ing systems is well-known. An undecidable property can be classified by
the complexity of the formula defining it. This gives rise to a hierarchy of
distinct levels of undecidability, starting from the arithmetical hierarchy
classifying properties using first order arithmetical formulas and contin-
uing into the analytic hierarchy, where also quantification over function
variables is allowed.

In this paper we consider properties of first order term rewriting sys-
tems and classify them in this hierarchy. Most of the standard properties
are Π0

2-complete, that is, of the same level as uniform halting of Turing
machines. In this paper we show two exceptions. Weak confluence is Σ0

1-
complete, and therefore essentially easier than ground weak confluence
which is Π0

2-complete.
The most surprising result is on dependency pair problems: we prove

this to be Π1
1-complete, which means that this property exceeds the

arithmetical hierarchy and is essentially analytic. A minor variant, de-
pendency pair problems with minimality flag, turns out be Π0

2-complete
again, just like the original termination problem for which dependency
pair analysis was developed.

1 Introduction

In classical computability theory a property P ⊆ N is called decidable iff there
exists a Turing machine which for every input x ∈ N outputs 0 if x ∈ P and 1
if x /∈ P . The complexity of decidable properties is usually defined in terms of
the time (or space) consumption of a Turing machine that decides the property;
the respective hierarchies (linear, polynomial, exponential,. . . ) are well-known.
Likewise, but less known, the undecidable properties can be classified into a
hierarchy of growing complexity. The arithmetical and the analytical hierarchy
establish such a classification of undecidable properties by the complexity of
predicate logic formulas that define them, which in turn is defined as the number
of quantifier alternations of its prenex normal form.

The arithmetical hierarchy is based on first order formulas, that is, quantifi-
cation is restricted to number quantifiers, function or set quantification is not

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 255–270, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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allowed; its classes are denoted Π0
n and Σ0

n for n ∈ N. The lowest level of the
hierarchy, the classes Π0

0 and Σ0
0, consists of the decidable relations (for which

there is a total computable function that decides it). Then the classes Π0
n and Σ0

n

for n ≥ 1 are inductively defined by allowing additional universal and existen-
tial quantifiers to define the properties. For example, if P (x, y, z) is a decidable
property, then ∃x. P (x, y, z) is in Σ0

1 and ∀y. ∃x. P (x, y, z) is in Π0
2. In other

words, a relation belongs to the class Π0
n for n ∈ N of the arithmetical hierarchy

if it can be defined by a first order formula (in prenex normal form), which has n
quantifiers, starting with a universal quantifier. Likewise a relation is in Σ0

n if the
formula starts with an existential quantifier. The class Σ0

1 consists of recursively
enumerable (or semi-decidable) relations; the blank tape halting problem is in
this class. The initialised uniform halting problem is in the class Π0

2.
The analytical hierarchy continues the classification by second order formulas,

allowing for function quantifiers. Its classes are denoted Π1
n and Σ1

n for n ∈ N.
The lowest level of the analytical hierarchy are the the classes Π1

0 and Σ1
0 which

consist of all arithmetical relations. The classes Π1
n and Σ1

n for n ≥ 1 are defined
inductively, each time adding an universal (∀α : N→ N.ϕ) or existential function
quantifier (∃α : N → N. ϕ), respectively. For the current paper we employ only
the class Π1

1 of the analytical hierarchy which consists of relations that can be
defined by ∀α : N→ N. ϕ where ϕ is an arithmetical relation.

Our Contribution. We investigate the complexity, of the following properties of
first order TRSs:

– confluence (CR),
– weak confluence (WCR),
– finiteness of dependency pair problems [2,5] (DP), and
– finiteness of dependency pair problems with minimality flag [5] (DPmin).

In this paper we pinpoint the precise complexities of these properties in terms of
the arithmetic and analytic hierarchy. Table 1 provides a classification of various
standard properties of TRSs: CR, WCR, DP, DPmin, termination (SN), ground
confluence (grCR), and weak ground confluence (grWCR). We note that DPmin is
only applicable in the uniform variant, see Section 6.

Table 1. Degrees of undecidability

SN WN CR grCR WCR grWCR DP DPmin

uniform Π0
2 Π0

2 Π0
2 Π0

2 Σ0
1 Π0

2 Π1
1 Π0

2

single term Σ0
1 Σ0

1 Π0
2 Π0

2 Σ0
1 Σ0

1 Π1
1 −

The contributions of this paper are encircled. The non-encircled uniform prop-
erties have been studied in [7] and [12]. For the complexity of these properties
for single terms we refer to [3], an extended version of the present paper.

We deepen the study of [12] and find surprisingly that weak ground confluence
is harder than weak confluence. While in [12] it has been shown that weak ground



Degrees of Undecidability in Term Rewriting 257

confluence is Π0
2-complete, we prove that weak confluence (that is, including open

terms) is Σ0
1-complete, a class strictly below Π0

2 in the arithmetical hierarchy.
This is an excellent counterexample to a common pitfall for people less familiar
with complexity theory: the Π0

2-hardness of weak confluence on all ground terms
does not imply Π0

2-hardness of weak confluence on the larger set of all terms.
As can be seen in Table 1, the standard properties of TRSs reside within the

classes Π0
2 and Σ0

1 of the arithmetical hierarchy (both for the uniform and single
term versions). That is, they are of a low degree of undecidability, being at most
as hard as the initialised uniform halting problem.

Surprisingly, it turns out that dependency pair problems are of a much
higher degree of undecidability: they exceed the whole arithmetical hierarchy
and thereby first order predicate logic. In particular we show that dependency
pair problems are Π1

1-complete, a class within the analytical hierarchy with one
universal function quantifier. So although dependency pair problems have been
invented for proving termination, the complexity of general dependency pair
problems is much higher than the complexity of termination itself. This even
holds if we restrict to the special format of dependency pairs: dependency pairs
are right-linear, all root symbols of left hand sides and right hand sides of de-
pendency pairs are marked, and all other symbols in the dependency pairs and
all symbols in the rewrite rules are unmarked. A variant of dependency pair
problems again arising from termination problems are dependency pair prob-
lems with minimality flag. We show that for this variant the complexity is back
to that of termination: it is Π0

2-complete.

2 Preliminaries

Term Rewriting

We give a brief introduction to term rewriting, we refer to [13] for further reading.
A signature Σ is a finite set of symbols f each having a fixed arity �(f) ∈ N. Let
Σ be a signature and X a countably infinite set of variables such that Σ∩X = ∅.
The set Ter(Σ,X ) of terms over Σ and X is the smallest set satisfying:

– X ⊆ Ter(Σ,X ), and
– f(t1, . . . , tn) ∈ Ter(Σ,X ) if f ∈ Σ with arity n and ∀i : ti ∈ Ter(Σ,X ).

We use x, y, z, . . . to range over variables. The set of positions Pos(t) ⊆ N
∗ of

a term t ∈ Ter(Σ,X ) is inductively defined by: Pos(f(t1, . . . , tn)) = {ε} ∪ {ip |
1 ≤ i ≤ �(f), p ∈ Pos(ti)}, and Pos(x) = {ε} for variables x ∈ X . We use ≡ for
syntactical equivalence of terms.

A substitution σ is a map σ : X → Ter(Σ,X ) from variables to terms. For
terms t ∈ Ter(Σ,X ) and substitutions σ we define tσ as the result of replacing
each x ∈ X in t by σ(x). That is, tσ is inductively defined by xσ := σ(x) for
variables x ∈ X and otherwise f(t1, . . . , tn)σ := f(t1σ, . . . , tnσ). Let � be a fresh
symbol, � �∈ Σ ∪ X . A context C is a term from Ter (Σ,X ∪ {�}) containing
precisely one occurrence of �. Then C[s] denotes the term Cσ where σ(�) = s
and σ(x) = x for all x ∈ X .
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A term rewriting system (TRS) over Σ, X is a set R of finitely many pairs
〈�, r〉 ∈ Ter(Σ,X ), called rewrite rules and usually written as � → r, for which
the left-hand side � is not a variable (� �∈ X ) and all variables in the right-hand
side r occur in � (Var(r) ⊆ Var(�)). Let R be a TRS. For terms s, t ∈ Ter(Σ,X )
we write s→R t if there exists a rule �→ r ∈ R, a substitution σ and a context
C ∈ Ter(Σ,X ∪ {�}) such that s ≡ C[�σ] and t ≡ C[rσ]; →R is the rewrite
relation induced by R, and →∗R denotes the reflexive, transitive closure of →R.

Definition 2.1. Let R be a TRS and t ∈ Ter(Σ,X ) a term. Then R is called

– strongly normalizing (or terminating) on t, denoted SNR(t),
if every rewrite sequence starting from t is finite.

– confluent (or Church-Rosser) on t, denoted CRR(t),
if every pair of finite coinitial reductions starting from t can be extended to
a common reduct, that is, ∀t1, t2. t1 ←∗ t→∗ t2 ⇒ ∃d. t1 →∗ d←∗ t2.

– weakly confluent (or weakly Church-Rosser) on t, denoted WCRR(t),
if every pair of coinitial rewrite steps starting from t can be joined, that is,
∀t1, t2. t1 ← t→ t2 ⇒ ∃d. t1 →∗ d←∗ t2.

The TRS R is strongly normalizing (SNR), confluent (CRR) or weakly confluent
(WCRR) if the respective property holds on all terms t ∈ Ter (Σ,X ).

Turing Machines

Definition 2.2. A Turing machine M is a quadruple 〈Q,Γ , q0, δ〉 consisting of:

– finite set of states Q,
– an initial state q0 ∈ Q,
– a finite alphabet Γ containing a designated symbol �, called blank, and
– a partial transition function δ : Q× Γ → Q× Γ × {L,R}.

A configuration of a Turing machine is a pair 〈q, tape〉 consisting of a state q ∈ Q
and the tape content tape : Z→ Γ such that the carrier {n ∈ Z | tape(n) �= �} is
finite. The set of all configurations is denoted Conf M. We define the relation→M

on the set of configurations Conf M as follows: 〈q, tape〉 →M 〈q′, tape ′〉 whenever:

– δ(q, tape(0)) = 〈q′, f , L〉, tape ′(1) = f and ∀n �= 0. tape ′(n+1) = tape(n), or
– δ(q, tape(0)) = 〈q′, f , R〉, tape ′(−1) = f and ∀n �= 0. tape ′(n− 1) = tape(n).

Without loss of generality we assume thatQ∩Γ = ∅, that is, the set of states and
the alphabet are disjoint. This enables us to denote configurations as 〈w1, q, w2〉,
denoted w−1

1 qw2 for short, with w1, w2 ∈ Γ ∗ and q ∈ Q, which is shorthand for
〈q, tape〉 where tape(n) = w2(n+ 1) for 0 ≤ n < |w2|, and tape(−n) = w1(n) for
1 ≤ n ≤ |w1| and tape(n) = � for all other positions n ∈ Z.

The Turing machines we consider are deterministic. As a consequence, final
configurations are unique (if they exist), which justifies the following definition.
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Definition 2.3. Let M be a Turing machine and 〈q, tape〉 ∈ Conf M. We denote
by finalM(〈q, tape〉) the →M-normal form of 〈q, tape〉 if it exists and undefined,
otherwise. Whenever finalM(〈q, tape〉) exists then we say that M halts on 〈q, tape〉
with final configuration finalM(〈q, tape〉). Furthermore we say M halts on tape as
shorthand for M halts on 〈q0, tape〉.

Turing machines can compute n-ary functions f : N
n → N or relations S ⊆ N

∗.
We need only unary functions fM and binary >M ⊆ N× N relations.

Definition 2.4. Let M = 〈Q,Γ , q0, δ〉 be a Turing machine with S, 0 ∈ Γ . We
define a partial function fM : N ⇀ N for all n ∈ N by:

fM(n) =

{

m if finalM(q0Sn0) = . . . qSm0 . . .

undefined otherwise

and we define the relation >M ⊆ N× N by:

n >M m ⇐⇒ finalM(0Snq0S
m0) = . . . q0 . . . .

Here, the functions fM are partial since M may not terminate on certain inputs
or M halts in a state which is not of the form . . . qSm0 . . .. Note that the set
{>M| M halts on all tapes } is the set of recursive binary relations on N.

The Arithmetic and Analytical Hierarchy

In the introduction we briefly mentioned the arithmetical and analytical hierar-
chy. We now summarize the main notions and results relevant for this paper. For
details see a standard text on mathematical logic, e.g. [11] or [6], which contains
more technical results regarding these hierarchies.

Definition 2.5. Let A ⊆ N. The set membership problem for A is the problem
of deciding for given a ∈ N whether a ∈ A.

Definition 2.6. Let A ⊆ N and B ⊆ N. Then A can be many-one reduced to
B, notation A ≤m B if there exists a total computable function f : N→ N such
that ∀n ∈ N. n ∈ A⇔ f(n) ∈ B.

Definition 2.7. Let B ⊆ N and P ⊆ 2N. Then B is called P-hard if every
A ∈ P can be reduced to B, and B is P-complete whenever additionally B ∈ P .

So a problem B is P-hard if every problem A ∈ P can be reduced to B: To decide
“n ∈ A” we only have to decide “f(n) ∈ B”, where f is the total computable
function that reduces A to B.

The classification results in the following sections employ the following well-
known lemma, which states that whenever a problem A can be reduced via a
computable function to a problem B, then B is at least as hard as A.

Lemma 2.8. If A can be reduced to B and A is P-hard, then B is P-hard. ��
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Remark 2.9. Finite lists of natural numbers can be encoded as natural numbers
using the well-known Gödel encoding: 〈n1, . . . , nk〉 := pn1+1

1 · . . . pnk+1
k , where

p1, . . . , pk are the first k prime numbers. For this encoding, the length function
(lth〈n1, . . . , nk〉 = k) and the decoding function (lth〈n1, . . . , nk〉i = ni if 1 ≤ i ≤
n) are computable and it is decidable if a number is the code of a finite list.

Using the encoding of finite lists of natural numbers, we can encode Turing
machines, terms and finite term rewriting systems. Finite rewrite sequences σ :
t1 → . . .→ tn can be encoded as lists of terms. Then of course a Turing machine
can compute the length of |σ| := n of the sequence, every term t1,. . . ,tn, in
particular the first first(σ) := t1 and the last term last(σ) := tn. Given the TRS
as input, a Turing machine can check whether a natural number n corresponds
to a valid rewrite sequence, that is, check ti → ti+1 for every i = 1, . . . , (n− 1).
Furthermore for a given term t and n ∈ N it can calculate the set of all reductions
of length ≤ n admitted by t and thereby check properties like ‘all reductions
starting from t have length ≤ n’ or ‘t is a normal form’.

An example from term rewriting that we can encode as a problem on natural
numbers is (we leave the encoding of terms as numbers implicit), s →R t :=
∃� → r ∈ R. ∃σ. ∃C. (s ≡ C[�σ] ∧ t ≡ C[rσ]). As all these quantifiers can be
bounded by the size of s and t, respectively, this amounts to a finite search and
is a decidable problem. Note that the fact that the TRS is finite is crucial here.

Undecidable problems can be divided into a hierarchy of increasing complex-
ity, the first part of which is known as the arithmetical hierarchy. An exam-
ple is the problem whether t reduces in finitely many steps to q: t →∗R q :=
∃〈s1, . . . , sn〉.(t = s1 →R . . .→R sn = q). This problem is undecidable in general
and it resides in Σ0

1 which is the class of problems of the form ∃x ∈ N. P (x, n)
where P (x, n) is a decidable problem. (We usually suppress the domain behind
the existential quantifier.) Similar to Σ0

1, we have the class Π0
1, which is the class

of problems of the form ∀x ∈ N. P (x, n) with P (x, n) a decidable problem. If we
continue this procedure, we obtain the classes Σ0

n and Πn for every n ∈ N.

Definition 2.10. The class Σ0
n consists of all sets A that can be defined in form

of A(k)⇐⇒ ∃xn.∀xn−1. . . . P (x1, . . . , xn, k) where P is a decidable relation. So,
there is a sequence of n alternating quantifiers in front of P . Likewise Π0

n is the
class of sets of the form A(k) ⇐⇒ ∀xn. ∃xn−1. . . . P (x1, . . . , xn, k) where P is
decidable. Then Δ0

n is the intersection of Σ0
n and Π0

n, that is, Δ0
n := Σ0

n ∩Π0
n.

That this definition is useful is based on the following fact, for which we refer to
[8,6,11] for a proof and further details.

Remark 2.11. Every formula in first order arithmetic is equivalent to a formula
in prenex normal form, i.e. a formula with all quantifiers on the outside of the
formula. Furthermore a sequence of ∃ (or ∀) can always be replaced by one ∃ (or
one ∀, respectively) due to the encoding of a finite list of numbers into numbers.

The reason one writes 0 as a superscript is that all quantifiers range over “the
lowest type” N; there are no quantifiers of higher types, like N → N. So every
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Fig. 1. Arithmetic Hierarchy

arithmetical problem is in one of the classes of Definition 2.10. A natural question
is whether all these classes are distinct. A fundamental result in mathematical
logic says that they are, see [11], [8] or [6].

The arithmetic hierarchy is usually depicted as in Figure 1, where every arrow
denotes a proper inclusion. All classes are closed under bounded quantification: if
A(n)⇔ ∃y < t(n)P (n, y) and P is decidable, then A is decidable (and similarly
for other classes in the hierarchy).

Above the arithmetic hierarchy, we find the analytic hierarchy, where we also
allow quantification over infinite sequences of numbers (equivalently functions
f : N → N). The classes of the analytical hierarchy are denoted Π1

n and Σ1
n

with n ∈ N where the n indicates the number of function quantifiers in prenex
normal form. That is, first-order quantifiers not counted. As a consequence the
lowest classes Π1

0 and Σ1
0 subsume the whole arithmetical hierarchy. As variables

ranging over infinite sequences we use α, β, etc. For the analytical hierarchy we
can draw a similar diagram as the one in Figure 1: replace Σ0

1 by Σ1
1 etc. To keep

the presentation as simple as possible we define only the class Π1
1.

Definition 2.12. The class Π1
1 consists of all sets A that can be defined in form

of A(k)⇐⇒ ∀α. ϕ where ϕ is a first order formula over decidable predicates.

Note that ϕ does not need to be in prenex normal form. W.l.o.g. every ϕ can be
converted into an equivalent formula ϕ′ in prenex normal form and ∀α.ϕ′ is still
a Π1

1-formula as first order quantifiers are not counted. For analytical problems
we also have all kinds of simplification procedures (analogous to Remark 2.11).

An example of an analytical formula is ∀α.∃x.α(x) �→R α(x+1), stating that
there exist no infinite rewrite sequences, that is, the rewrite system is SN. This
is a Π1

1-formula.

Lemma 2.13. We have the following well-known results:

(i) the blank tape halting problem {M | M halts on the blank tape} is Σ0
1-

complete,
(ii) the totality problem {M | M halts on q0Sn for every n ∈ N} is Π0

2-
complete,

(iii) the set WF := {M | M is total and >M is well-founded} is Π1
1-complete.
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These sets will be the basis for the hardness results in the following sections: we
will show that the blank tape halting problem is many-one reducible to WCR
and thus conclude that WCR is Σ0

1-hard. This will be done by effectively giving
for every Turing machine M, a TRS RM such that

M halts on the blank tape⇐⇒WCRRM .

Similar constructions will be carried out for the other problems that we consider.
To determine if a problem A is essentially in a certain class P (and not lower

in the hierarchy), we first prove that A is P-hard and then we show that the
property A can be expressed by formula of P .

3 Translating Turing Machines

We use the translation of Turing machines M to TRSs RM from [10].

Definition 3.1. For every Turing machine M = 〈Q,Γ , q0, δ〉 we define a TRS
RM as follows. The signature is Σ = Q ∪ Γ ∪ {�} where the symbols q ∈ Q
have arity 2, the symbols f ∈ Γ have arity 1 and � is a constant symbol, which
represents an infinite number of blank symbols. The rewrite rules of RM are:

q(x, f(y))→ q′(f ′(x), y) for every δ(q, f) = 〈q′, f ′, R〉
q(g(x), f(y))→ q′(x, g(f ′(y))) for every δ(q, f) = 〈q′, f ′, L〉

together with four rules for ‘extending the tape’:

q(�, f(y))→ q′(�,�(f ′(y))) for every δ(q, f) = 〈q′, f ′, L〉
q(x, �)→ q′(f ′(x), �) for every δ(q,�) = 〈q′, f ′, R〉

q(g(x), �)→ q′(x, g(f ′(�))) for every δ(q,�) = 〈q′, f ′, L〉
q(�, �)→ q′(�,�(f ′(�))) for every δ(q,�) = 〈q′, f ′, L〉 .

We introduce a mapping from terms to configurations to make the connection
between the M and the TRS RM precise.

Definition 3.2. We define a mapping ϕ : Ter(Γ ∪ {�},∅)⇀ Γ ∗ by:

ϕ(�) := ε ϕ(f(t)) := fϕ(t)

for every f ∈ Γ and t ∈ Ter(Γ ∪ {�},∅). We define the set of (intended) terms:

TerM := {q(s, t) | q ∈ Q, s, t ∈ Ter(Γ ∪ {�},∅)} .

We define a map Φ : TerM → Conf M by Φ(q(s, t)) := ϕ(s)−1qϕ(t) ∈ Conf M .

Lemma 3.3. Let M be a Turing machine. Then RM simulates M, that is:

(i) ∀c ∈ Conf M. Φ
−1(c) �= ∅,

(ii) for all terms s ∈ TerM: s→RM t implies t ∈ TerM and Φ(s)→M Φ(t), and
(iii) for all terms s ∈ TerM: whenever Φ(s)→M c then ∃t ∈ Φ−1(c). s→RM t.

The following is an easy corollary.

Corollary 3.4. For all s ∈ TerM: SNRM(s)⇐⇒ M halts on Φ(s).

Proof. Induction on item (ii) of Lemma 3.3. ��
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4 Weak Confluence

We show that WCRR (uniform) and WCRR(t) (for single terms) are Σ0
1-complete.

This result is surprising since (see Table 1) usually the uniform property is harder
than for single terms: for the uniform property one has to reason about all terms
which normally amounts to an additional universal quantifier. Moreover this
reveals a remarkable discrepancy in comparison with grWCRR which has been
shown Π0

2-complete in [12].

Theorem 4.1. Weak confluence is Σ0
1-complete, both uniform WCRR as well as

for single terms WCRR(t).

Proof. For Σ0
1-hardness we use the blank tape halting problem. Let M be a

Turing machine. We define the TRS S to consist of the rules of RM extended by
the following rules:

run→ T run→ q0(�, �)
q(x, f(y))→ T for every f ∈ Γ such that δ(q, f) is undefined .

The only critical pair is T← run→ q0(�, �). We have q0(�, �)→∗S T, if and only
if M halts on the blank tape. By the Critical Pairs Lemma [13] WCRR holds if
and only if all critical pairs are convergent (can be joined). Hence WCRR and
WCRR(t) (where t := run) are Σ0

1-hard.
A Turing machine can compute on the input of a TRS R all (finitely many)

critical pairs, and on the input of a TRS R and a term t all (finitely many) one
step reducts of t. Therefore it suffices to show that the following problem is in
Σ0

1: decide on the input of a TRS S, n ∈ N and terms t1, s1, . . . , tn, sn whether
for every i = 1, . . . , n the terms ti and si have a common reduct. This property
can be described by the following Σ0

1 formula:

∃r ∈ N. ((r is list r1, . . . , r2·n of length 2 · n)
and for i = 1, . . . , n we have

(r2·i−1, r2·i are reductions) and (first(r2·i−1) ≡ ti)
and (first(r2·i) ≡ si) and (last(r2·i−1) ≡ last(r2·i)) . ��

We remark that the proof also shows Σ0
1-completeness of weak ground confluence

for single terms (grWCRR(t)).
It may be unexpected that WCRR is easier than grWCRR, so let us add some

explanation. In principle we have to check for an infinite number of possibilities,
t → p and t → q, whether p and q have a common reduct. The essence of the
Critical Pairs Lemma (CPL) is that for WCRR, it suffices to check a finite set of
“overlapping patterns”. For grWCRR, this is no enough, because, even if some of
the overlapping patterns are not convergent (and thus WCRR is false), grWCRR

may still hold: for ground terms, all overlapping patterns may still be convergent.
As a simplified instance of this situation, consider a confluent term rewriting

system with a unary symbol F that defines the recursive function f : N → N.



264 J. Endrullis, H. Geuvers, and H. Zantema

Now, if we add the rules run(x) → 0 and run(x) → F (x), then the rewrite
system is not WCR anymore. However, it is grWCR if and only if f is the zero-
function, which is a Π0

2 statement. Note that, this argument does not go through
as it stands, because there are some technical subtleties, but it gives the basic
intuition why grWCR is “harder” than WCR.

5 Confluence

We investigate the complexity of confluence (CRR). For proving Π0
2-completeness

of confluence one would like to use an extension of RM with the following rules:

run(x, y)→ T

run(x, y)→ q0(x, y)
q(x, f(y))→ T for every f ∈ Γ with δ(q, f) undefined

On first glance it seems that q0(s, t)→∗ T if the Turing machine M halts on all
configurations. However, a problem arises if s and t contain variables; e.g. if s or
t are variables themselves. We solve the problem as follows. For Turing machines
M we define the TRS SM to consist of the rules of the TRS RM extended by:

run(x, �)→ T (1)
run(�, y)→ q0(�, y) (2)
q(x, f(y))→ T for every f ∈ Γ with δ(q, f) undefined (3)

run(x, S(y))→ run(S(x), y) (4)
run(S(x), y)→ run(x, S(y)) . (5)

Then T and q0(�, s) are convertible using the rules (1)–(5) if and only if s is a
ground term of the form Sn(�).

Theorem 5.1. Uniform confluence CRR is Π0
2-complete.

Proof. For proving Π0
2-hardness we reduce the totality problem to confluence.

Let M be an arbitrary Turing machine. We consider the TRS SM defined above.
We employ type introduction [1]: we assign sort γ0 to Γ ∪ {�} and sort γ1 to
every symbol in {run, T}∪Q; the obtained many-sorted TRS is confluent if and
only if SM is. Note that the terms of sort γ0 are normal forms and for terms of γ1
with root symbol �= ‘run’ the reduction is deterministic (exhibits no branching).
Therefore it suffices to consider the case

s2 ←(2) s1 ←∗(4) run(t1, t2)→∗(5) s3 →(1) T

where t1, t2 ∈ Ter(Γ ∪ {�},X ). From the existence of such rewrite sequences we
conclude that there exists n ∈ N such that s1 ≡ run(�, Sn(�)), s3 ≡ run(Sn(�), �),
and s2 ≡ q0(�, Sn(�)). On the other hand for every n ∈ N such rewrite sequences
exist. As a consequence the TRS SM is confluent if and only if q0(�, Sn(�))→∗S T
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for every n ∈ N, and this holds if and only if M halts on q0Sn for every n ∈ N

by Corollary 3.4. This proves Π0
2-hardness.

To show that CRR is in Π0
2 let R be a TRS. Then R is confluent if and only

if the following formula holds:

CRR ⇐⇒ ∀t ∈ N. ∀r1, r2 ∈ N. ∃r′1, r′2 ∈ N.

(((t is a term) and (r1, r2 are reductions) and t ≡ first(r1) ≡ first(r2))

⇒ ((r′1 and r′2 are reductions)
and (last(r1) ≡ first(r′1)) and (last(r2) ≡ first(r′2))
and (last(r′1) ≡ last(r′2))))

.

By quantifier compression we can simplify the formula such that there is only
one universal followed by an existential quantifier. ��

6 Dependency Pair Problems

In this section we present the remarkable result that finiteness of dependency
pair problems, although invented for proving termination, is of a much higher
level of complexity than termination itself: it is Π1

1-complete, both uniform and
for single terms. This only holds for the basic version of dependency pairs; for
the version with minimality flag (as arising from TRS termination problems) we
show it is of the same level as termination itself. We emphasize that the variant
without minimality flag is commonly used: they arise for example from Haskell
termination problems [4], and transformations on dependency pair problems that
do not preserve the minimality flag.

For relations →1,→2 we write →1 /→2 for →∗2 · →1. For TRSs R, S instead
of SN(→R,ε/→S) we shortly write SN(Rtop/S); in the literature [5] this is called
finiteness of the dependency pair problem {R,S}. So SN(Rtop/S) means that
every infinite →R,ε ∪ →S reduction, that is, R-steps are allowed only at the top,
S-steps everywhere, contains only finitely many →R,ε steps.

The motivation for studying this comes from the dependency pair approach
[2] for proving termination. There a simple syntactic construction DP is given
such that for any TRS R we have

SN(DP(R)top/R)⇐⇒ SN(R).

In this way termination of a TRS can be proved by proving SN(Rtop/S) for
suitable TRSs R, S. This is the basis of nearly all termination proofs for TRSs
as they are generated by state-of-the-art termination provers.

The main result of this section is Π1
1-completeness of dependency pair prob-

lems SN(Rtop/S), even of SN(Stop/S), for both the uniform and the single term
variant, and also of SN(Rtop/S) restricting to the format in which roots in R
are marked. In the next section we will consider the variant SN(Rtop/min S) with
minimality flag which only makes sense for the uniform variant, and show that
it behaves like normal termination: it is Π0

2-complete.
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For proving Π1
1-hardness of SN(Stop/S) we now adopt Definition 3.1, the trans-

lation of Turing machines to TRSs. The crucial difference is that every step of
the Turing machine ‘produces’ one output pebble ‘•’. Thereby we achieve that
the TRS R•M is top-terminating even if M does not terminate.

Definition 6.1. For every Turing machine M = 〈Q,Γ , q0, δ〉 we define the TRS
R•M as follows. The signature Σ = Q ∪ Γ ∪ {�, •,T} where • is a unary symbol,
T is a constant symbol, and the rewrite rules of R•M are:

�→ •(r) for every �→ r ∈ RM

and rules for rewriting to T after successful termination:

q(x, 0(y))→ T whenever δ(q, S) is undefined
•(T)→ T .

Then we obtain the following lemma characterizing >M as defined in
Definition 2.4.

Lemma 6.2. For every Turing machine M = 〈Q,Γ , q0, δ〉 and n,m ∈ N we have
n >M m if and only if q0(Sn, Sm)→∗R•

M
T. ��

Moreover we define an auxiliary TRS Rpickn for generating a random natural
number n ∈ N in the shape of a term Sn(0(�)):

Definition 6.3. We define the TRS Rpickn to consist of the following three rules:

pickn→ c(pickn) pickn→ ok(0(�)) c(ok(x))→ ok(S(x)) .

Lemma 6.4. The TRS Rpickn has the following properties:

– pickn→∗ ok(Sn(0(�))) for every n ∈ N, and
– whenever pickn→∗ ok(t) for some term t then t ≡ Sn(0(�)) for some n ∈ N.

Now we are ready to prove Π1
1-completeness of dependency pair problems.

Theorem 6.5. Both SN(t, Rtop/S) and SN(Rtop/S) are Π1
1-complete.

Proof. We prove Π1
1-hardness even for the case where R and S coincide. We do

this by using that the set WF is Π1
1-complete, that is, checking well-foundedness

of >M. Let M be an arbitrary Turing machine. From M we construct a TRS S
together with a term t such that:

SN(Stop/S)⇐⇒ SN(t, Stop/S)⇐⇒ >M is well-founded .

Let S consist of the rules of R•M #Rpickn together with:

run(T, ok(x), ok(y))→ run(q0(x, y), ok(y), pickn) , (6)

and define t := run(T, pickn, pickn).
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As the implication from the first to the second item is trivial, we only have to
prove (1) SN(t, Stop/S) =⇒ >M is well-founded and (2) >M is well-founded =⇒
SN(Stop/S).

(1) Suppose SN(t, Stop/S) and assume there is an infinite descending >M-
sequence: n1 >M n2 >M . . .. Then we have:

run(T, pickn, pickn)→∗ run(T, ok(Sn1(0(�))), ok(Sn2(0(�)))) (∗)
→S,ε run(q0(Sn1(0(�)), Sn2(0(�))), ok(Sn2(0(�))), pickn)
→∗ run(T, ok(Sn2(0(�))), ok(Sn3(0(�))))
→S,ε . . .

Note that q0(Sni(0(�)), Sni+1(0(�))) →∗ T (for all i ≥ 1) because M computes
the binary predicate >M. So we have an infinite reduction starting from t, con-
tradicting SN(t, Stop/S). So there is no infinite descending >M-sequence.

(2) Suppose that >M is well-founded and assume that σ is a rewrite sequence
containing infinitely many root steps. Note that (6) is the only candidate for a
rule which can be applied infinitely often at the root. Hence all terms in σ have
the root symbol run. We consider the first three applications of (6) at the root
in σ. After the first application the third argument of run is pickn. Therefore
after the second application the second argument of run is a reduct of pickn
and the third is pickn. Then before the third application we obtained a term t
whose first argument is T, and the second and the third argument are reducts of
pickn. Observe from t on the rewrite sequence σ must be of the form as depicted
above (∗) (c.f. Lemma 6.4) for some n1, n2, . . . ∈ N. Then for all i ≥ 1: ni >M ni+1
since q0(Sni(0(�)), Sni+1(0(�)))→∗ T. This contradicts well-foundedness of >M.

It remains to prove that both SN(Rtop/S) and SN(t, Rtop/S) are in Π1
1. Let R

and S be TRSs. Then SN(Rtop/S) holds if and only if all→R,ε ∪ →S reductions
contain only a finite number of→R,ε steps. An infinite reduction can be encoded
as a function α : N → N where α(n) is the n-th term of the sequence. We can
express the property as follows:

SN(Rtop/S)⇐⇒ ∀α : N→ N.

((∀n ∈ N. α(n) rewrites to α(n+ 1) via →R,ε ∪ →S)⇒
∃m0 ∈ N. ∀m ≥ m0. ¬(α(m) rewrites to α(m+ 1) via →R,ε)) ,

containing one universal function quantifier in front of an arithmetic formula.
Here the predicate ‘n rewrites to m’ tacitly includes a check that both n and m
indeed encode terms (which establishes no problem for a Turing machine). For
the property SN(t, Rtop/S) we simply add the condition t = α(1) to restrict the
quantification to such rewrite sequences α that start with t. Hence SN(Rtop/S)
and SN(t, Rtop/S) are Π1

1-complete. ��

By the same argument as in this proof we obtain

SN(Rtop/S)⇐⇒ SN(t, Rtop/S)⇐⇒ >M is well-founded
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for R consisting of the single rule run(T, ok(x), ok(y)) →
run(q0(x, y), ok(y), pickn) and S consisting of the rules of R•M # Rpickn,
again for t = run(T, pickn, pickn). By considering run to be marked and all other
symbols to be unmarked, we conclude Π1

1-hardness and also Π1
1-completeness

for dependency pair problems SN(Rtop/S) satisfying the standard requirements:

– the root symbols of both � and r are marked for every rule �→ r in R;
– all other symbols in R and all symbols in S are unmarked.

We now sketch how this proof also implies Π1
1-completeness of the property SN∞

in infinitary rewriting, for its definition and basic observations see [9]. Since in
Theorem 6.5 we proved Π1

1-hardness even for the case where R and S coincide,
we conclude that SN(Stop/S) is Π1

1-complete. This property SN(Stop/S) states
that every infinite S-reduction contains only finitely many root steps. This is the
same as the property SNω when restricting to finite terms; for the definition of
SNω see [14] (basically, it states that in any infinite reduction the position of the
contracted redex moves to infinity). However, when extending to infinite terms
it still holds that for the TRS S in the proof of Theorem 6.5 the only infinite
S-reduction containing infinitely many root steps is of the shape given in that
proof, only consisting of finite terms. So SNω for all terms (finite and infinite)
is Π1

1-complete. It is well-known that for left-linear TRSs the properties SNω

and SN∞ coincide, see e.g. [14]. Since the TRS S used in the proof of Theorem
6.5 is left-linear we conclude that the property SN∞ for left-linear TRSs is Π1

1-
complete.

7 Dependency Pair Problems with Minimality Flag

A variant in the dependency pair approach is the dependency pair problem with
minimality flag. Here in the infinite→R,ε ∪ →S reductions all terms are assumed
to be S-terminating. This can be defined as follows. On the level of relations→1,
→2 we write →1 /min →2 = (→∗2 · →1) ∩→SN(→2), where the relation →SN(→2)
is defined to consist of all pairs (x, y) for which x and y are→2-terminating. For
TRSs R,S instead of SN(→R,ε /min →S) we shortly write SN(Rtop/min S). In [5]
this is called finiteness of the dependency pair problem (R,Q, S) with minimality
flag; in our setting the middle TRS Q is empty. Again the motivation for this
definition is in proving termination: from [2] we know

SN(DP(R)top/minR)⇐⇒ SN(R).

For SN(Rtop/min S) it is not clear how to define a single term variant, in particular
for terms that are not S-terminating. In this section we prove that SN(Rtop/min S)
is Π0

2-complete. For doing so first we give some lemmas.

Lemma 7.1. Let R,S be TRSs. Then SN(Rtop/min S) holds if and only if

(→R,ε ∪ →S)∩ →SN(→S)

is terminating.
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Proof. By definition SN(Rtop/min S) is equivalent to termination of
(→∗S · →R,ε)∩ →SN(→S). Since

(→∗S · →R,ε)∩ →SN(→S) ⊆ ((→R,ε ∪ →S)∩ →SN(→S))+,

the ‘if’-part of the lemma follows.
For the ‘only if’-part assume (→R,ε ∪ →S)∩ →SN(→S) admits an infinite

reduction. If this reduction contains finitely many →R,ε-steps, then this reduc-
tion ends in an infinite →S-reduction, contradicting the assumption that all
terms in this reduction are S-terminating. So this reduction contains infinitely
many →R,ε-steps, hence can be written as an infinite (→∗S · →R,ε)∩ →SN(→S)
reduction. ��

Lemma 7.2. Let R,S be TRSs. Then SN(Rtop/min S) holds if and only if for
every term t and every m ∈ N there exists n ∈ N such that

for every n-step (→R,ε ∪ →S)-reduction t = t0 → t1 → · · · → tn there
exists i ∈ [0, n] such that ti admits an m-step →S-reduction.

Proof. Due to Lemma 7.1 SN(Rtop/min S) is equivalent to finiteness of all (→R,ε

∪ →S)-reductions only consisting of →S-terminating terms. Since (→R,ε ∪ →S)
is finitely branching, this is equivalent to

for every term t there exists n ∈ N such that no n-step (→R,ε ∪ →S)-
reduction t = t0 → t1 → · · · → tn exists for which ti is →S-terminating
for every i ∈ [0, n].

Since→S is finitely branching,→S-termination of ti for every i ∈ [0, n] is equiv-
alent to the existence of m ∈ N such that no ti admits an m-step→S-reduction.
After removing double negations, this proves equivalence with the claim in the
lemma. ��

Theorem 7.3. The property SN(Rtop/min S) for given TRSs R,S is Π0
2-

complete.

Proof. SN(R) is Π0
2-complete and SN(R) is equivalent to SN(DP(R)top/minR),

so SN(Rtop/min S) is Π0
2-hard. That SN(Rtop/min S) is in Π0

2 follows from Lemma
7.2; note that the body of the claim in Lemma 7.2 is recursive. ��

8 Conclusion and Future Work

In this paper we have analysed the proof theoretic complexity, in terms of the
arithmetic and analytical hierarchy, of standard properties in term rewriting.
Extending the work of [12], we observed that not all properties are Π0

2-complete.
In particular, weak confluence turns out to be Σ0

1-complete, which is a lower class,
while dependency pair problems are Π1

1-complete, being a much higher class. In
future work, we will also further study the place in the analytic hierarchy of
properties of infinitary rewriting like WN∞.
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Abstract. This paper extends for the first time semantic interpretation
tools to infinite data in order to ensure Input/Output upper bounds on
first order Haskell like programs on streams. By I/O upper bounds, we
mean temporal relations between the number of reads performed on the
input stream elements and the number of output elements produced. We
study several I/O upper bounds properties that are of both theoretical
and practical interest in order to avoid memory overflows.

1 Introduction

Interpretations are a well-established verification tool for proving properties of
first order functional programs, term rewriting systems and imperative programs.

In the mid-seventies, Manna and Ness [1] and Lankford [2] introduced polyno-
mial interpretations as a tool to prove the termination of term rewriting systems.
The introduction of abstract interpretations [3] has strongly influenced the de-
velopment of program verification and static analysis techniques. From their
introduction, interpretations have been studied with hundreds of variations.

One variation of interest is the notion of quasi-interpretation [4]. It consists in
a polynomial interpretation with relaxed constraints (large inequalities, functions
over real numbers). Consequently, it no longer applies to termination problems
(since well-foundedness is lost) but it allows us to study program complexity in an
elegant way. Indeed, the quasi-interpretation of a first order functional program
provides an upper bound on the size of the output values in the input size.

The theory of quasi-interpretations has led by now to many theoretical devel-
opments [4], for example, characterizations of the classes of functions computable
in polynomial time and polynomial space. Moreover, the decidability of finding a
quasi-interpretation of a given program has been shown for some restricted class
of polynomials [5,6]. This suggests that quasi-interpretations can be interestingly
exploited also in practical developments.

Quasi-interpretations have been generalized to sup-interpretations which are
intensionally more powerful [7], i.e. sup-interpretations capture the complexity
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of strictly more programs than quasi-interpretations do. This notion has led to
a characterization of the NCk complexity classes [8] which is a complementary
approach to characterizations using function algebra presented in [9].

A new theoretical issue is whether interpretations can be used in order to infer
resource properties on programs computing over infinite data. Here we approach
this problem by considering lazy programs over stream data. Size upper bounds
on stream data are meaningless. However, other interesting measures can be
considered, e.g. size of stream elements and length of finite parts of streams.
Here we consider some I/O properties with regard to such kind of measures. In
particular, we would like to be able to obtain relations between the input reads
and the output writes of a given program, where a read (or write) corresponds
to the computation of a stream element in a function argument (resp. a stream
element of the result). In this paper we identify three stream I/O upper bounds
properties and we study criteria using interpretations in order to ensure them.

The first criterion, named Length Based I/O Upper Bound (LBUB), en-
sures that the number of output writes (the output length) is bounded by some
function in the number of input reads. This criterion is respected by programs
that need to read a finite amount of the input in order to produce a bounded
amount of the output. The second criterion, named Size Based I/O Upper Bound
(SBUB), ensures that the number of output writes is bounded by some function
in the input reads size. It extends the previous criterion to programs where the
output writes not only depend on the input structure but also on the input
values. Finally, the last criterion, named Synchrony Upper Bound (SUB), en-
sures upper bounds on the output writes size depending on the input reads size
in a synchronous framework, i.e. when the stream functions write exactly one
element for one read performed.

The above criteria are interesting since they ensure upper bound properties
corresponding to synchrony and asynchrony relations between program I/O.
Moreover, besides the particular criteria studied, this work shows that seman-
tic interpretation can be fruitfully exploited in studying programs dealing with
infinite data types. Furthermore, we carry out the treatment of stream prop-
erties in a purely operational way. This shows that semantic interpretation are
suitable for the usual equational reasoning on functional programs. From these
conclusions we aim our work to be a new methodology in the study of stream
functional languages properties.

Related works. Most of the works about stream properties considered stream
definability and productivity, a notion dating back to [10]. Several techniques
have been developed in order to ensure productivity, e.g syntactical [10,11,12],
data-flows analysis [13,14], type-based [15,16,17,18]. Some of these techniques
can be adapted to prove different properties of programs working on streams,
e.g. in [17], the authors give different hints on how to use sized types to prove
some kind of buffering properties. Unfortunately an extensive treatment using
these techniques to prove other properties of programs working on streams is
lacking.
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Outline of the paper. In Section 2, we describe the considered first order
stream language and its lazy semantic. In Section 3 we define the semantic
interpretations and their basic properties. Then, in Section 4, we introduce the
considered properties and criteria to ensure them. Finally, in the last section we
conclude.

2 Preliminaries

2.1 The sHask Language

We consider a first order Haskell-like language, named sHask. Let X , C and F
be disjoint sets denoting respectively the set of variables, the set of constructor
symbols and the set of function symbols. A sHask program is composed of a
set of definitions described by the grammar in Table 1, where c ∈ C, x ∈ X ,
f ∈ F . We use the identifier t to denote a symbol in C ∪ F . Moreover the
notation e, for some identifier e, is a short-hand for the sequence e1, . . . , en.
As usual, application associates to the left, i.e. t e1 · · · en corresponds to the
expression ((t e1) · · · ) en. In the sequel we will use the notation t −→e as a short
for the application t e1 · · · en. The language sHask includes a Case operator to
carry out pattern matching and first order function definitions. All the standard
algebraic data types can be considered. Nevertheless, to be more concrete, in
what follows we will consider as example three standard data types: numerals,
lists and pairs. Analogously to Haskell, we denote by 0 and postfix + 1 the
constructors for numerals, by nil and infix : the constructors for lists and by
( , ) the constructor for pairs.

Table 1. sHask syntax

p ::= x | c p1 · · · pn (Patterns)

e ::= x | t e1 · · · en | Case e of p1 → e1, . . . , pm → em (Expressions)

v ::= c e1 · · · en (Values)

d ::= f x1 · · · xn = e (Definitions)

Between the constants in C we distinguish a special error symbol Err of arity
0 which corresponds to pattern matching failure. In particular, Err is treated
as the other constructors, so for example pattern matching is allowed on it. The
set of Values contains the usual lazy values, i.e. expressions with a constructor
as the outermost symbol.

In order to simplify our framework, we will put some syntactical restrictions
on the shape of the considered programs. We restrict our study to outermost
non nested case definitions, this means that no Case appears in the e1, · · · , em

of a definition of the shape f −→x = Case e of p1 → e1, . . . , pm → em and we
suppose that the function arguments and case arguments are the same, i.e. x = e.
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The goal of this restriction is to simplify the considered framework. We claim
that it is not a severe restriction since every program can be easily transformed
in an equivalent one respecting this convention.

Finally, we suppose that all the free variables contained in the expression ei of
a case expression appear in the patterns pi, that no variable occurs twice in pi and
that patterns are non-overlapping. It entails that programs are confluent [19].

Haskell Syntactic Sugar. In the sequel we use the Haskell-like programming
style. An expression of the shape f −→x = Case x of p1 → e1, . . . , pk → ek will
be written as a set of definitions f −→p1 = e1, . . . , f

−→pk = ek. Moreover, we adopt
the standard Haskell convention for the parenthesis, e.g. we use f (x + 1) 0 to
denote ((f(x + 1))0).

2.2 sHask Type System

Similarly to Haskell, we are interested only in well typed expressions. For sim-
plicity, we consider only programs dealing with lists that do not contain other
lists and we assure this property by a typing restriction similar to the one of [18].

Definition 1. The basic and value types are defined by the following grammar:
σ ::= α | Nat | σ × σ (basic types)
A ::= a | σ | A× A | [σ] (value types)

where α is a basic type variable, a is a value type variable, Nat is a constant
type representing natural numbers, × and [ ] are type constructors. The set of
types contains elements of the shape A1 → (· · · → (An → A)), for every n ≥ 0.

Notice that the above definition can be extended to standard algebraic data
types. In the sequel, we use σ, τ to denote basic types and A, B to denote value
types. As in Haskell, there is restricted polymorphism, i.e. a basic type variable
α and a value type variable a represent every basic type and respectively every
value type. As usual, → associates to the right, i.e. the notation A1 → · · · →
An → A corresponds to the type A1 → (· · · → (An → A)). Moreover, for notational
convenience, we will use −→A → B as an abbreviation for A1 → · · · → An → B
throughout the paper.

In what follows, we will be particularly interested in studying expressions of
type [σ], for some σ, i.e. the type of finite and infinite lists over σ, in order to
study stream properties. Every function and constructor symbol t of arity n come
equipped with a type A1 → · · · → An → A. Well typed symbols, patterns and
expressions are defined using the type system in Table 2. Note that the symbol
Err can be typed with every value type A in order to get type preservation in
the evaluation mechanism. Moreover, it is worth noting that the type system,
in order to allow only first order function definitions, assigns types to constant
and function symbols, but only value types to expressions.

As usual, we use :: to denote typing judgments, e.g. 0 :: Nat denotes the fact
that 0 has type Nat. A well typed definition is a function definition where we
can assign the same value type A both to its left-hand and right-hand sides.
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Table 2. sHask type system

x :: A (Var)
e :: A p1 :: A · · · pm :: A e1 :: A · · · em :: A

Case e of p1 → e1, . . . , pm → em :: A
(Case)

t :: A1 → · · · → An → A
(Tb)

t :: A1 → · · · → An → A e1 :: A1 · · · en :: An

t e1 · · · en :: A (Ts)

Stream terminology. In this work, we are specifically interested in studying
stream properties. Since both finite lists over σ and streams over σ can be typed
with type [σ], we pay attention to particular classes of function working on [σ],
for some σ. Following the terminology of [14], a function symbol f is called a
stream function if it is a symbol of type f ::

−→
[σ]→ −→τ → [σ].

Example 1. Consider the following programs:

merge :: [α]→ [α]→ [α× α]
merge (x : xs) (y : ys) = (x, y) : (merge xs ys)

nat :: Nat→ [Nat]
nat x = x : (nat (x + 1))

merge and nat are two examples of stream functions

2.3 sHask Lazy Operational Semantics

We define a lazy operational semantics for the sHask language. The lazy seman-
tics we give is an adaptation of the one in [20] to our first order Haskell-like

Table 3. sHask lazy operational semantics

c ∈ C
c e1 · · · en ⇓ c e1 · · · en

(val)
e{e1/x1, · · · , en/xn} ⇓ v f x1 · · · xn = e

f e1 · · · en ⇓ v
(fun)

Case e1 of p11 → . . . → Case em of pm
1 → d1 ⇓ v v �= Err

Case e of p1 → d1, . . . , pn → dn ⇓ v
(cb)

Case e1 of p11 → . . . → Case em of pm
1 → d1 ⇓ Err Case e of p2 → d2, . . . , pn → dn ⇓ v

Case e of p1 → d1, . . . , pn → dn ⇓ v
(c)

e ⇓ c e1 · · · en Case e1 of p1 → . . . → Case en of pn → d ⇓ v

Case e of c p1 · · · pn → d ⇓ v
(pm)

e ⇓ v v �= c e1 · · · en

Case e of c p1 · · · pn → d ⇓ Err
(pme)

e′{e/x} ⇓ v

Case e of x→ e′ ⇓ v
(pmb)
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language, where we do not consider sharing for simplicity. The semantics is de-
fined by the rules of Table 3.

The computational domain is the set of Values. Values are particular ex-
pressions with a constructor symbol at the outermost position. Note that in
particular Err is a value corresponding to pattern matching errors. As usual in
lazy semantics, the evaluation does not explore the entire expression and stops
once the requested information is found. The intended meaning of the notation
e ⇓ v is that the expression e evaluates to the value v ∈ Values.

Example 2. Consider again the program defined in Example 1. It is easy to verify
that: nat 0 ⇓ 0 : (nat (0 + 1)) and merge (nat 0) nil ⇓ Err.

2.4 Preliminary Notions

We are interested in studying stream properties by operational finitary means,
for this purpose, we introduce some useful programs and notions.

First, we define the usual Haskell take and indexing programs take and !!
which return the first n elements of a list and the n-th element of a list, respec-
tively. As in Haskell, we use infix notation for !!.

take :: Nat→ [α]→ [α]
take 0 s = nil
take (x + 1) nil = nil
take (x + 1) (y : ys) = y : (take x ys)

!! :: [α]→ Nat→ α
(x : xs) !! 0 = x
(x : xs) !! (y + 1) = xs !! y

Second, we define a program eval that forces the (possibly diverging) full evalua-
tion of expressions to fully evaluated values, i.e. values with no function symbols.
We define eval for every value type A as:

eval :: A→ A
eval (c e1 · · · en) = Ĉ (eval e1) · · · (eval em)

where Ĉ is a program representing the strict version of the primitive construc-
tor c. For example in the case where c is + 1 we can define Ĉ as the program
succ :: Nat→ Nat defined by:

succ 0 = 0 + 1
succ (x + 1) = (x + 1) + 1

A set of fully evaluated values of particular interest is the set N = {n | n =
((· · · (0 + 1) · · · ) + 1)
︸ ︷︷ ︸

n times

and n :: Nat} of canonical numerals.

Then, we define a program lg that returns the number of elements in a finite
partial list:

lg :: [α]→ Nat
lg nil = 0
lg Err = 0
lg (x : xs) = (lg xs) + 1
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Example 3. In order to illustrate the behaviour of lg consider the expression
((succ 0) : (nil !! 0)). We have eval(lg ((succ 0) : (nil !! 0))) ⇓ 1.

Finally we introduce a notion of size for expressions:

Definition 2 (Size). The size of an expression e is defined as

|e| = 0 if e is a variable or a symbol of arity 0

|e| =
∑

i∈{1,...,n}
|ei|+ 1 if e = t e1 · · · en, t ∈ C ∪ F .

Note that for each n ∈ N we have |n| = n. Throughout the paper, F (e) denotes
the componentwise application of F to the sequence e, i.e. F (e1, · · · , en) =
F (e1), . . . , F (en). For example, given a sequence s = s1, · · · , sn, we will use the
notation |s| for |s1|, . . . , |sn|.

3 Interpretations

In this section, we introduce the interpretation terminology. The interpretations
we consider are inspired by the notions of quasi-interpretation [4] and sup-
interpretation [7] and are used as a main tool in order to ensure stream prop-
erties. They basically consist in assignments over non negative real numbers
following the terminology of [21]. Throughout the paper, ≥ and > denote the
natural ordering on real numbers and its restriction.

Definition 3 (Assignment). An assignment of a symbol t ∈ F ∪ C of arity
n is a function �t� : (R+)n → R

+. For each variable x ∈ X , we define �x� = X,
with X a fresh variable ranging over R

+. A program assignment is an assignment
�−� defined for each symbol of the program. An assignment is (weakly) monotonic
if for any symbol t, �t� is an increasing (not necessarily strictly) function with
respect to each variable, that is for every symbol t and all Xi, Yi of R

+ such that
Xi ≥ Yi, we have �t�(. . . , Xi, . . .) ≥ �t�(. . . , Yi, . . .).

Notice that assignments are not defined on the Case construct since we only
apply assignments to expressions without Case.

An assignment �−� can be extended to expressions canonically. Given an ex-
pression t e1 . . . en with m variables, its assignment is a function (R+)m → R

+

defined by:
�t e1 . . . en� = �t�(�e1�, · · · , �en�)

Example 4. The function �−� defined by �merge�(U, V ) = U+V , �( , )�(U, V ) =
U+V +1 and �:�(X,XS) = X+XS+1 is a monotonic assignment of the program
merge of example 1.

Now we define the notion of additive assignments which guarantees that the size
of a fully evaluated value is bounded by its assignment.
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Definition 4 (Additive assignment). An assignment of a symbol c of arity
n is additive if:

�c�(X1, · · · , Xn) =
∑n

i=1Xi + αc, with αc ≥ 1 if n > 0,
�c� = 0 otherwise.

The assignment �−� of a program is called additive assignment if each construc-
tor symbol of C has an additive assignment.

Definition 5 (Interpretation). A program admits an interpretation �−� if
�−� is a monotonic assignment such that for each definition of the shape f −→p = e
we have �f −→p � ≥ �e�.

Notice that if �t� is a subterm function (i.e. ∀i ∈ {1, n} �t�(X1, · · · , Xn) ≥
Xi), for every symbol t, then the considered interpretation is called a quasi-
interpretation in the literature (used for inferring upper bounds on values).
Moreover, if �t� is a polynomial over natural numbers and the inequalities are
strict then �−� is called a polynomial interpretation (used for showing program
termination).

Example 5. The assignment of example 4 is an additive interpretation of the
program merge. Indeed, we have:

�merge (x : xs) (y : ys)� = �merge�(�x : xs�, �y : ys�) By canonical extension
=�x : xs� + �y : ys� By definition of �merge�

=�x� + �xs� + �y� + �ys� + 2 By definition of �:�
=�(x, y) :(merge xs ys)� Using the same reasoning

Let→ be the rewrite relation induced by giving an orientation from left to right
to the definitions and let →∗ be its transitive and reflexive closure. We start by
showing some properties on monotonic assignments.

Proposition 1. Given a program admitting the interpretation �−�, then for
every closed expression e such that e→∗ d, we have: �e� ≥ �d�

Proof. The proof is by induction on the derivation length [22]. ��
Corollary 1. Given a program admitting the interpretation �−�, then for every
closed expression e such that e ⇓ v, we have: �e� ≥ �v�

Proof. The lazy semantics is just a particular rewrite strategy. ��

Corollary 2. Given a program admitting the interpretation �−�, then for every
closed expression e such that eval e ⇓ v, we have: �e� ≥ �v�

Proof. By induction on the structure of expressions. ��
It is important to relate the size of an expression and its interpretation.

Lemma 1. Given a program having an interpretation �−� then there is a func-
tion G : R

+ → R
+ such that for each expression e: �e� ≤ G(|e|)

Proof. By induction on the structure of expressions. ��
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4 Bounded I/O Properties and Criteria

In this section, we define distinct stream properties related to time and space
and criteria using interpretations to ensure them. A naive approach would be to
consider a time unit to be either a stream input read (the evaluation of a stream
element in a function argument) or a stream output write (the evaluation of a
stream element of the result). Since most of the interesting programs working on
streams are non-terminating, this approach fails. In fact, we need a more concrete
notion of what time should be. Consequently, by time we mean relations between
input reads and output writes, that is the ability of a program to return a certain
amount of elements in the output stream (that is to perform some number of
writes) when fed with some input stream elements.

4.1 Length Based I/O Upper Bound (LBUB)

We focus on the relations that provide upper bounds on output writes. We here
consider structural relations, that depend on the stream structure but not on the
value of its elements. We point out an interesting property giving bounds on the
number of generated outputs by a function in the length of the inputs. As already
stressed, the complete evaluation of stream expressions does not terminates. So,
in order to deal with streams by finitary means, we ask, inspired by the well
known Bird and Wadler Take Lemma [23], the property to hold on all the finite
fragments of the streams that produce a result.

Definition 6. A stream function f ::
−→
[σ] → −→τ → [σ] has a length based I/O

upper bound if there is a function F : R
+ → R

+ such that for every expression
si :: [σi] and for every expression ei :: τi, we have that:

∀ ni ∈ N, s.t. eval(lg(f (
−−−−−−→
take n s) −→e )) ⇓ m, F (max(|n|, |e|)) ≥ |m|

where (−−−−−−→take n s) is a short for (take n1 s1) · · · (take nm sm).

Let us illustrate the length based I/O upper bound property by an example:

Example 6. The function merge of example 1 has a length based I/O upper
bound. Indeed, consider F (X) = X , given two finite lists s, s′ of size n, n′ such
that n ≤ n′, we know that eval(lg (merge s s′)) evaluates to an expression m
such that m = n. Consequently, given two stream expressions e and e′ such that
eval(take n′ e′) ⇓ s′ and eval(take n e) ⇓ s, we have:

F (max(|n|, |n′|)) = F (max(n, n′)) = n′ ≥ n = |m|

4.2 A Criterion for Length Based I/O Upper Bound

We here give a criterion ensuring that a given stream has a length based I/O
upper bound. For simplicity, in the following sections, we suppose that the con-
sidered programs do not use the programs lg and take.
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Definition 7. A program is LBUB if it admits an interpretation �−� which
satisfies �+1�(X) = X + 1 and which is additive but on the constructor symbol :
where �:� is defined by �:�(X,Y ) = Y + 1.

We start by showing some basic properties of LBUB programs.

Lemma 2. Given a LBUB program, for every n :: Nat we have �n� = |n|.

Proof. By an easy induction on canonical numerals. ��

Lemma 3. Given a LBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program lg by �lg�(X) = X.

Proof. We check that the inequalities hold for every equation in the definition
of lg. ��

Lemma 4. Given a LBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program take by �take�(N,L) = N .

Proof. We check that the inequalities hold for every equation in the definition
of take. ��

Theorem 1. If a program is LBUB then each stream function in it has a length
based I/O upper bound.

Proof. Given a LBUB program, if eval(lg (f (
−−−−−−→
take n s) −→e )) ⇓ m then we know

that �lg (f (
−−−−−−→
take n s) −→e )� ≥ �m�, by Corollary 2. By Lemma 3, we obtain

that �f (
−−−−−−→
take n s) −→e � ≥ �m�. By Lemma 4, we know that �f (

−−−−−−→
take n s) −→e � =

�f�(�n� �e�). Applying Lemma 2, we obtain |m| = �m� ≤ �f�(|n|, �e�). Finally,
by Lemma 1, we know that there is a function G : R

+ → R
+ such that |m| ≤

�f�(|n|, G(|e|)). ��

Example 7. The merge program of example 1 admits the following additive inter-
pretation �merge�(X,Y ) = max(X,Y ), �( , )�(X,Y ) = X+Y+1 together with �:
�(X,Y ) = Y +1. Consequently, it is LBUB and, defining F (X) = �merge�(X,X)
we know that for any two finite lists s1 and s2 of length m1 and m2, we have
that if eval(lg(merge s1 s2)) ⇓ m then F (max(m1,m2)) ≥ |m| (i.e. we are able
to exhibit a precise upper bound).

4.3 Size Based I/O Upper Bound (SBUB)

The previous criterion guarantees an interesting homogeneous property on stream
data. However, a wide class of stream programs with bounded relations between
input reads and output writes do not enjoy it. The reason is just that some pro-
grams do not only take into account the structure of the input it reads, but also
its value. We here point out a generalization of the LBUB property by considering
an upper bound depending on the size of the stream expressions.
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Example 8. Consider the following motivating example:

append :: [α]→ [α]→ [α]
append (x : xs) ys = x : (append xs ys)
append nil ys = ys

upto :: Nat→ [Nat]
upto 0 = nil
upto (x + 1) = (x + 1) : (upto x)

extendupto :: [Nat]→ [Nat]
extendupto (x : xs) = append (upto x) (extendupto xs)

The program extendupto has no length based I/O upper bound because for each
number n it reads, it performs n output writes (corresponding to a decreasing
sequence from n to 1).

Now we introduce a new property dealing with size, that allows us to overcome
this problem.

Definition 8. A stream function f ::
−→
[σ]→ −→τ → [σ] has a size based I/O upper

bound if there is a function F : R
+ → R

+ such that, for every stream expression
si :: [σi] and for expression ei :: τi, we have that:

∀ ni ∈ N, s.t. eval(lg(f (
−−−−−−→
take n s) −→e )) ⇓ m, F (max(|s|, |e|)) ≥ |m|

where (
−−−−−−→
take n s) is a short for (take n1 s1) · · · (take nm sm).

Example 9. Since the program of example 8, performs n output writes for each
number n it reads, it has a size based I/O upper bound.

Notice that this property informally generalizes the previous one, i.e. a size based
I/O upper bounded program is also length based I/O program, just because size
always bounds the length. But the length based criterion is still relevant for two
reasons, first it is uniform (input reads and output writes are treated in the same
way), second it provides more accurate upper bounds.

4.4 A Criterion for Size Based I/O Upper Bound

We give a criterion ensuring that a stream has a size based I/O upper bound.

Definition 9. A program is SBUB if it admits an additive interpretation �−�
such that �+1�(X) = X + 1 and �:�(X,Y ) = X + Y + 1.

Lemma 5. Given a SBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program lg by �lg�(X) = X.

Proof. We check that the inequalities hold for every definition of lg. ��

Lemma 6. Given a SBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program take by �take�(N,L) = L.

Proof. We check that the inequalities hold for every definition of take. ��
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Theorem 2. If a program is SBUB then each stream function in it has a size
based I/O upper bound.

Proof. Given a SBUB program, then if eval(lg(f (
−−−−−−→
take n s) −→e )) ⇓ m, for

some stream function f, then �lg(f (
−−−−−−→
take n s) −→e )� ≥ �m�, by Corollary 2. By

Lemma 5, we obtain that �f (
−−−−−−→
take n s) −→e � ≥ �m�. By Lemma 6, we know that

�f (−−−−−−→take n s) −→e � = �f�(�s� �e�). Applying Lemma 2 (which still holds because
the interpretation of +1 remains unchanged), we obtain |m| = �m� ≤ �f�(�s�, �e�).
Finally, by Lemma 1, we know that there is a function G : R

+ → R
+ such that

|m| ≤ �f�(G(|s|), G(|e|)). ��

Example 10. The program extendupto of example 8 admits the following ad-
ditive interpretation �nil� = �0� = 0, �append�(X,Y ) = X + Y , �upto�(X) =
�extendupto�(X) = 2 × X2 together with �+1�(X) = X + 1 and �:�(X,Y ) =
X + Y + 1. Consequently, it is SBUB and, defining F (X) = �extendupto�(X)
we know that for any finite list s of size n, if eval(lg(extendupto s)) ⇓ m then
F (n) ≥ |m|, i.e. we are able to exhibit a precise upper bound. However notice
that, as already mentioned, the bound is less tight than in previous criterion.
The reason for that is just that size is an upper bound rougher than length.

4.5 Synchrony Upper Bound (SUB)

Sometimes we would like to be more precise about the computational complexity
of the program. In this case a suitable property would be synchrony, i.e. a finite
part of the input let produce a finite part of the output. Clearly not every
stream enjoys this property. Synchrony between stream Input and Output is a
non-trivial question that we have already tackled in the previous subsections by
providing some upper bounds on the length of finite output stream parts. In this
subsection, we consider the problem in a different way: we restrict ourselves to
synchronous streams and we adapt the interpretation methodology in order to
give upper bound on the output writes size with respect to input reads size.
In the sequel it will be useful to have the following program:

lInd :: Nat→ [α]→ [α]
lInd x xs = (xs !! x) : nil

We start to define the meaning of synchrony between input stream reads and
output stream writes:

Definition 10. A stream function f ::
−→
[σ] → −→τ → [σ] is said to be of type

“Read, Write” if for every expression si :: σi, ei :: τi and for every n ∈ N:

If eval (lInd n (f −→s −→e )) ⇓ v and eval (f (
−−−−−−→
lInd n s) −→e ) ⇓ v′ then v = v′

This definition provides a one to one correspondence between input stream reads
and output stream writes, because the stream function needs one input read in
order to generate one output write and conversely, we know that it will not
generate more than one output write (otherwise the two fully evaluated values
cannot be matched).
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Example 11. The following is an illustration of a “Read, Write” program:

sadd :: [Nat]→ [Nat]→ [Nat]
sadd (x : xs) (y : ys) = (add x y) : (sadd xs ys)

add :: Nat→ Nat→ Nat
add (x + 1) (y + 1) = ((add x y) + 1) + 1
add (x + 1) 0 = x + 1
add 0 (y + 1) = y + 1

In this case, we would like to say that for each integer n, the size of the n-th
output stream element is equal to the sum of the two n-th input stream elements.

Definition 11. A “Read, Write” stream function f ::
−→
[σ] → −→τ → [σ] has a

synchrony upper bound if there is a function F : R
+ → R

+ such that for every
expression si :: [σi], ei :: τi and for every n ∈ N:

If eval(si !! n) ⇓ wi and eval((f −→s −→e ) !! n) ⇓ v then F (max(|w|, |e|)) ≥ |v|

Another possibility would have been to consider a n to m correspondence be-
tween inputs and outputs. However such correspondences can be studied with
slight changes over the one-one correspondence.

4.6 A Criterion for Synchrony Upper Bound

We begin to put some syntactical restriction on the considered programs so that
each stream function symbol is “Read, Write” with respect to this restriction.

Definition 12. A stream function f ::
−→
[σ] → −→τ → [σ] is synchronously re-

stricted if it can be written (and maybe extended) by definitions of the shape:

f (x1 : xs1) · · · (xn : xsn) −→p = hd : (f xs1 · · · xsn
−→p )

f nil · · · nil −→p = nil

where xs1, . . . , xsn do not appear in the expression hd.

Now we may show the following lemma.

Lemma 7. Every synchronously restricted function is “Read, Write”.

Proof. By induction on numerals. ��

Definition 13. A program is SUB if it is synchronously restricted and admits
an additive interpretation �−� but on : where �:� is defined by �:�(X,Y ) = X.

Fully evaluated values, i.e. values v containing only constructor symbols, have
the following remarkable property.

Lemma 8. Given an additive assignment �−�, for each fully evaluated value v:
|v| ≤ �v�.
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Proof. By structural induction on fully evaluated values. ��

Theorem 3. If a program is SUB then each stream function in it admits a
synchrony upper bound.

Proof. By Lemma 7, we can restrict our attention to a “Read, Write” stream
function f ::

−→
[σ] → −→τ → [σ] s.t. ∀n ∈ N, we both have eval ((f −→s −→e ) !! n) ⇓ v

and eval(si !! n) ⇓ wi.
We firstly prove that eval (f

−−−−−→
(w : nil) −→e ) ⇓ v : nil. By assumption, we have

eval((f −→s −→e ) !! n) ⇓ v, so in particular we also have eval (((f −→s −→e ) !! n) :
nil) ⇓ v : nil. By definition of “Read, Write” function, eval ((f ((−→s !! n) :
nil) −→e ) ⇓ v : nil and since by assumption eval(si !! n) ⇓ wi we can conclude
eval (f

−−−−−→
(w : nil) −→e ) ⇓ v : nil. By Corollary 2, we have �f

−−−−−→
(w : nil) −→e � ≥

�v : nil�. By definition of SUB programs, we know that �:�(X,Y ) = X and,
consequently, �f�(�w : nil�, �e�) = �f�(�w�, �e�) ≥ �v : nil� = �v�. By Lemma 8,
we have �f�(�w�, �e�) ≥ |v|. Finally, by Lemma 1, there exists a function G :
R

+ → R
+ such that �f�(G(|w|), G(|e|)) ≥ |v|. We conclude by taking F (X) =

�f�(G(X), G(X)). ��

Example 12. The program of example 11 is synchronously restricted (it can be
extended in such a way) and admits the following additive interpretation �0� = 0,
�+1�(X) = X+1, �add�(X,Y ) = X+Y , �sadd�(X,Y ) = X+Y and �:�(X,Y ) =
X . Consequently, the program is SUB and admits a synchrony upper bound.
Moreover, taking F (X) = �sadd�(X,X), we know that if the k-th input reads
evaluate to numbers n and m then F (max(|m|, |n|)) is an upper bound on the k-th
output size.

5 Conclusion

In this paper, we have applied interpretation methods for the first time to a lazy
functional stream language, obtaining several criteria ensuring bound properties
on the input read and output write elements of a program working on stream
data. This shows that interpretations are a valid tool to well ensure stream func-
tion properties. Many interesting properties should be investigated, in particular
memory leaks and overflows [17,18]. These questions are strongly related to the
notions we have tackled in this paper. For example, consider the following:

odd :: [α]→ [α]
odd (x : y : xs) = x : (odd xs)

memleak :: [α]→ [α× α]
memleak s = merge (odd s) s

The evaluation of an expression memleak s leads to a memory leak. Indeed,
merge reads one stream element on each of its arguments in order to output one
element and odd needs to read two stream input elements of s in order to output
one element whereas s just makes one output for one input read. Consequently,
there is a factor 2 of asynchrony between the two computations on s. Which
means that merge needs to read sn and s2×n (where si is the i-th element of
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s) in order to compute the n-th output element. From a memory management
perspective, it means that all the elements between sn and s2×n have to be
stored, leading the memory to a leak. We think interpretations could help the
programmer to prevent such ”bad properties” of programs. Moreover, we think
that interpretations can be also exploited in the study of stream definitions, in
particular in the context of stream productivity, but we leave this subject for
further researchs.
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Abstract. We study Craig interpolation for fragments and extensions
of propositional linear temporal logic (PLTL). We consider various frag-
ments of PLTL obtained by restricting the set of temporal connectives
and, for each of these fragments, we identify its smallest extension that
has Craig interpolation. Depending on the underlying set of temporal
operators, this extension turns out to be one of the following three log-
ics: the fragment of PLTL having only the Next operator; the extension
of PLTL with a fixpoint operator μ (known as linear time μ-calculus);
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1 Introduction

Craig’s interpolation theorem in classical model theory dates back from the late
fifties [7]. It states that if a first-order formula φ (semantically) entails another
first-order formula ψ, then there is an interpolant first-order formula θ, such that
every non-logical symbol in θ occurs both in φ and ψ, φ entails θ and θ entails
ψ. The key idea of the Craig interpolation theorem is to relate different logical
theories via their common non-logical vocabulary. In his original paper, Craig
presents his work as a generalization of Beth’s definability theorem, according
to which implicit (semantic) definability is equivalent to explicit (syntactic) de-
finability. Indeed, Beth’s definability theorem follows from Craig’s interpolation
theorem, but the latter is more general.

From the point of view of applications in computer science, interpolation is
often a desirable property of a logic. For instance, in fields such as automatic
reasoning and software development, interpolation is related to modularization
[1, 10], a property which allows systems or specifications to be developed effi-
ciently by first building component subsystems (or modules). Interpolation for
� We are grateful to Alexandru Baltag for helpful comments and to Frank Wolter

for first raising the question. The first author was supported by a GLoRiClass fel-
lowship of the European Commission (Research Training Fellowship MEST-CT-
2005-020841) and the second author by the Netherlands Organization for Scientific
Research (NWO) grant 639.021.508 and by ERC Advanced Grant Webdam on Foun-
dation of Web data management.
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Fig. 1. Hierarchy of temporal languages

temporal logics is also an increasingly important topic. Temporal logics in gen-
eral are widely used in systems and software verification, and interpolation has
proven to be useful for building efficient model-checkers [8]. This is particularly
true of a strong form of Craig interpolation known as uniform interpolation,
which is quite rare in modal logic, but that the modal μ-calculus satisfies (see
[9]), whereas most temporal logics lack even Craig interpolation (see [17]).

We study Craig interpolation for fragments and extensions of propositional lin-
ear temporal logic (PLTL). We use the framework of [4] and work with a general
notion of abstract temporal language which allows us to consider a general notion
of extension of such languages. We consider different sets of temporal connectives
and, for each, identify the smallest extension of the fragment of PLTL with these
temporal connectives that has Craig interpolation. Depending on the set of tem-
poral connectives, the resulting logic turns out to be either the fragment of PLTL
with only the Next operator, or the extension of PLTL with a fixpoint operator
μ (known as linear time μ-calculus), or the fixpoint extension of the fragment of
PLTL with only the Until operator (which is the stutter-invariant fragment of lin-
ear time μ-calculus). The diagram in Figure 1 summarises our results. A simple
arrow linking two languages means that the first one is an extension of the second
one and a double arrow means that, furthermore, every extension of the first one
having Craig interpolation is an extension of the second one. Temporal languages
with Craig interpolation (in fact, uniform interpolation) are represented in a dou-
ble frame. Thus we have for instance that μTL(U) is the least expressive extension
of PLTL(F) with Craig interpolation.

Outline of the paper: In Section 2, we introduce a general notion of abstract
temporal language. We then introduce PLTL, some of its natural fragments and
its fixpoint extension known as linear time μ-calculus (μTL).

Section 3 contains some technical results that are used in subsequent sections.
One of these relates projective definability in PLTL to definability in the fixpoint
extension μTL. Another result relates in a similar way PLTL(U) and μTL(U).
Along the way, we show that μTL(U) is the stutter invariant fragment of μTL.
Stutter-invariance is a property that is argued by some authors [16] to be natural
and desirable for a temporal logic. Roughly, a temporal logic is stutter-invariant
if it cannot detect the addition of identical copies of a state.
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In Section 4, we give three positive interpolation results. Among the fragments
of PLTL obtained by restricting the set of temporal operators, we show that only
one (the “Next-only” fragment) has Craig interpolation. In fact, this fragment
satisfies a stronger form of interpolation, called uniform interpolation. The logics
μTL and μTL(U) also have uniform interpolation.

Section 5 completes the picture by showing that μTL and μTL(U) are the least
extensions of PLTL(F ) and PLTL(F<), respectively, with Craig interpolation.

2 Preliminaries

2.1 Abstract Temporal Languages

We will be dealing with a variety of temporal languages. They are all inter-
preted in structures consisting of a set of worlds (or, time points), a binary
relation intuitively representing temporal precedence, and a valuation of propo-
sition letters. In this section, we give an abstract model theoretic definition of
temporal languages.

A flow of time, or frame, is a structure T = (W,<), where W is a non-empty
set of worlds and < is a binary relation on W . We will focus here on Tω, the
class of linear orders of order type ω, i.e., frames (D,<) that are isomorphic to
(N, <), where N is the set of natural numbers with the natural ordering. We will
also freely use ≤ to denote the reflexive closure of <.

By a propositional signature we mean a finite non-empty set of propositional
letters σ = {pi | i ∈ I}. A pointed σ-structure is a structure M = (T , V, w)
where T = (W,R) is a frame, V : σ → ℘(W ) a valuation and w ∈ W a world.
The class of all pointed σ-structures is denoted by Str[σ] and we call them σ-
structures for short. Furthermore, for any class of frames T, StrT[σ] will denote
the class of σ-structures of which the underlying frame belongs to T. Let σ ⊆ τ
be propositional signatures. Given a τ -structure M = (T , V, w), we define its
σ-reduct M 	 σ as the σ-structure (T , V 	 σ,w) where V 	 σ is the restriction
of the valuation to the propositional letters in σ. We call M a τ-expansion of
M 	 σ. We also write K 	 σ for {M 	 σ |M ∈ K}. Let (T , V, w) be a σ-structure
and A ⊆ W a subset of its domain. By V [A/p], we will refer to the valuation
V extended with V (p) = A (p being a fresh proposition letter). We will refer to
the corresponding σ ∪ {p}-expansion of (T , V, w) by (T , V [A/p], w).

Definition 1 (Abstract temporal language). An abstract temporal lan-
guage (temporal language for short) is a pair L = (L, |=L), where L : σ %→ L[σ] is
a map from propositional signatures to sets of objects that we call formulas and
|=L is a relation between formulas and pointed structures satisfying the following
conditions, for all propositional signatures σ, τ :

1. Expansion property. If σ ⊆ τ then L[σ] ⊆ L[τ ]. Furthermore, for all
φ ∈ L[σ] and M ∈ Str[τ ], M |=L φ iff M 	 σ |=L φ. If M ∈ Str[σ] and
M |=L φ, then φ ∈ L[σ].
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2. Closure under uniform substitution. For all ψ ∈ L[σ], p /∈ σ and φ ∈
L[σ ∪ {p}], there is a formula of L[σ], which we will denote by φ[p/ψ], such
that for every (T , V, w) ∈ Str[σ] the following holds:

(T , V, w) |=L φ[p/ψ] iff (T , V ′, w) |=L φ

where V ′ = V [{w | (T , V, w) |=L ψ}/p].
3. Negation property. For each φ ∈ L[σ] there is a formula of L[σ], which

we will denote by ¬φ, s.t. for all M ∈ Str[σ], M |=L ¬φ iff M �|=L φ.

For any class of frames T, |=L,T will denote the restriction of |=L to pointed
structures based on T. For φ ∈ L[σ], we will use Modσ(φ) as shorthand for
{M ∈ Str[σ] | M |=L,T φ} and Modσ

T(φ) when restricting to a frame class T.
Whenever this is clear from the context, we will be omitting superscript and
subscripts in Modσ

T(φ) and |=L,T. We say that a class of pointed structures
K ⊆ StrT[σ] is definable in an abstract temporal language L (relative to the
frame class T) if there is a L-formula φ such that for every (T , V, w) ∈ StrT[σ],
(T , V, w) |= φ iff (T , V, w) ∈ K.

Definition 2 (Extension of a temporal language). Let L1 = (L1, |=L1),
L2 = (L2, |=L2) be temporal languages. L2 extends L1 (notation: L1 ⊆ L2) if for
all σ, for all φ ∈ L1[σ], there exists φ∗ ∈ L2[σ] such that Modσ(φ) = Modσ(φ∗).
Also, whenever L1 ⊆ L2, we say that L1 is a fragment of L2. Whenever restricting
attention to a frame class T we write L1 ⊆T L2.

The following notion is related to existential second-order quantification over
propositional letters. Allowing such a form of quantification in a given tempo-
ral language indeed amounts to considering its projective classes. It is a clas-
sical notion in abstract modal theory and it will be useful in the context of
Δ-interpolation (see Definition 15).

Definition 3 (Projective class). Let σ be a propositional signature, T a
frame class and let K ⊆ StrT[σ]. Then K is a projective class of a temporal
language L relative to T if there is a φ ∈ L[τ ] with τ ⊇ σ a propositional
signature, such that K = Mod(φ) 	 σ.

Lemma 1. Let T be a frame class. If L1 ⊆T L2, then every projective class of
L1 relative to T is also a projective class of L2 relative to T.

Definition 4 (Entailment). Let L be a temporal language, σ a propositional
signature, T a frame class and φ, ψ ∈ L[σ]. We say that φ entails ψ in L over T
and write φ |=L,T ψ if for any (T , V, w) ∈ StrT[σ], whenever (T , V, w) |=L,T φ,
then also (T , V, w) |=L,T ψ.

2.2 Propositional Linear Temporal Logic

Recall that Tω denotes the linear orders of order type ω. We now introduce the
syntax and semantics of PLTL, following the terminology of [11].
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Definition 5 (PLTL). Let σ be a propositional signature. The set of formulas
PLTL[σ] is defined inductively, as follows:

φ, ψ := At | � | ¬φ | φ ∧ ψ | φ→ ψ | φ ∨ ψ | Xφ | Fφ | F<φ | φUψ
where At ∈ σ. We use G and G< as shorthand for respectively ¬F¬ and ¬F<¬.
The relation |=PLTL between PLTL-formulas and structures (T , V, w) is defined
as follows (we only list the clauses of the temporal operators, the others are as
in the case of classical propositional logic):

– (T , V, w) |=PLTL Xφ iff there exists w′ such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= φ

– (T , V, w) |=PLTL Fφ iff there exists w′ such that w ≤ w′ and (T , V, w′) |= φ
– (T , V, w) |=PLTL F<φ iff there exists w′ such that w < w′ and (T , V, w′) |= φ
– (T , V, w) |=PLTL φUψ iff there exists w′ such that w ≤ w′, (T , V, w′) |= ψ

and for all w′′ such that w ≤ w′′ < w′, (T , V, w′′) |= φ

While the above definition in principle applies to arbitrary pointed structures,
the intended semantics will be, of course, in terms of structures based on frames
in Tω, and in what follows we will always restrict attention to such frames.

We define fragments PLTL(O) of PLTL by allowing in their syntax only a
subset O ⊆ {X,F<,F,U} of temporal operators. Note that PLTL(U,X) has the
same expressive power as PLTL, because Fφ can be defined as �Uφ and F<φ
as X(�Uφ). The same holds of PLTL(F<,X) and PLTL(F<,X,F), as Fφ can be
defined as φ∨F<φ. Nevertheless, it is known (see [15]), that φUψ can be defined
neither in PLTL(F) nor in PLTL(F<,X). Also Xφ and F<φ can be defined neither
in PLTL(U) nor in PLTL(F) (we will see why later on in this paper, once we
introduce the notion of stutter-invariance).

2.3 Linear Time μ-Calculus

A way of increasing the expressive power of temporal languages is to add a
fixpoint operator. On arbitrary structures, adding to PLTL the least fixpoint
operator μ gives the μ-calculus (see for instance [9]). Here, the class of intended
structures for μ-calculus is restricted to those based on Tw and the resulting
restricted temporal language is called μTL (see for instance [14]).

Definition 6 (μTL). Let σ be a propositional signature, and let V =
{x1, x2, . . .} be a disjoint countably infinite stock of propositional variables. We
define μTL[σ] as the set of all formulas without free variables that are generated
by the following inductive definition:

φ, ψ, ξ := At | � | ¬φ | φ ∧ ψ | φ→ ψ | φ ∨ ψ | Xφ | Fφ | F<φ | φUψ | μxi.ξ

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within
the scope of an even number of negations). We will use νxi.φ(xi) as shorthand for
¬μxi.¬φ(¬xi). The relation |=μTL is defined between μTL-formulas and pointed
structures (T , V, w) where T ∈ Tω. In order to define it inductively, we use an
auxiliary assignment to interpret formulas with free variables. The assignment g
maps each free variable of φ to a set of worlds. We let g[x %→ A] be the assignment
which differ from g only by assigning A to x and we only recall:
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– (T , V, w) |=μPLTL xi [g] iff w ∈ g(xi)
– (T , V, w) |=μPLTL μx.φ [g] iff ∀A ⊆W , if {v | (T , V, v) |=μTL φ [g[x %→ A]]} ⊆
A, then w ∈ A

To understand this, consider a μTL-formula φ(x) and a structure (T , V, w) to-
gether with a valuation g. This formula induces an operator Fφ taking a set
A ⊆ W to the set {v : (T , V, v) |=μTL φ(x) g[x %→ A]}. μTL is concerned
with least fixpoints of such operators. If φ(x) is positive in x, the operator Fφ

is monotone, i.e., x ⊆ y implies Fφ(x) ⊆ Fφ(y). Monotone operators Fφ al-
ways have a least fixpoint, defined as the intersection of all their prefixpoints:
⋂

{A ⊆W : {v : (T , V, v) |= φ(x) g[x %→ A]} ⊆ A} (see [3]). The formula μx.φ(x)
denotes this least fixpoint.

It is easy to see that, for formulas without free variables, the assignment
is irrelevant, and therefore |=μTL defines a binary relation between (the set of
sentences of) μTL and pointed structures. In this way, μTL is an abstract modal
language in the sense of Definition 1.

As before, we define a fragment μTL(O) for each O ⊆ {X,F<,F,U}. μTL(X)
already as the full expressive power of TL, since φUψ can be defined by μy.(ψ ∨
(φ ∧ Xy)), F<φ by μy.(Xφ ∨ Xy) and Fφ by μy.(φ ∨ Xy). Another fragment of
particular interest will be μTL(U). In μTL(U), we can still define Fφ in the usual
way by �Uφ, but we will see that Xφ and F<φ are not definable.

3 Projective Definability versus Definability with
Fixpoints

In this section,wediscuss two results that relateprojectivedefinability in languages
without fixpoint operators to explicit definability in the corresponding language
with fixpoint operators. Along the way, we also show that μTL(U) is the stutter-
invariant fragment of μTL. These results will be put to use in Section 4 and 5.

Theorem 1. Let σ be a propositional signature. For any K ⊆ StrTω
[σ], the

following are equivalent:

1. K is a projective class of PLTL(F<,X) relative to Tω

2. K is definable by a μTL sentence relative to Tω

Proof (Sketch). One direction follows from the fact that μTL is expressively
complete for MSO on Tω (see [3, 18]). For the other direction, the main idea is
that the existence of an accepting run of a Büchi automaton can be projectively
defined by means of a PLTL-formula using only the F< and X operators (this is
a refinement of a similar result for MSO, see [20]). ��
Below, we will show a similar theorem linking projective definability in PLTL(U)
(which was shown in [12, 19] to be the stutter-invariant fragment of PLTL) to
definability in μTL(U), which we show here to be the stutter-invariant fragment
of linear time μ-calculus. Before stating this second result, we first define stut-
tering. Intuitively, a stuttering of a linearly ordered structure M is a structure
obtained from M by replacing each world by a non-empty finite sequence of
worlds, all satisfying the same proposition letters.
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Definition 7 (Stuttering). Let σ be a propositional signature and M =
((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω

[σ]. We say that M′ is a stut-
tering of M if and only if there is a surjective function s : W ′ →W such that

1. s(w′) = w
2. for every wi, wj ∈W ′, wi < wj implies s(wi) ≤ s(wj)
3. for every wi ∈W ′ and p ∈ σ,wi ∈ V ′(p) iff s(wi) ∈ V (p)

Some notation will be useful later on. For any w ∈ W , we let s−1(w) = {w′ ∈
W ′ | s(w′) = w}. We also extend s and s−1 to subsets ofW ′ in the followingway: for
anyA′ ⊆W ′, A ∈W , we let s(A′) = {s(v′) | v′ ∈ A′} and s−1(A) =

⋃

v∈A s
−1(v).

Lemma 2. Let M = ((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω
[σ] and

M′ be a stuttering of M, then the following hold:

1. ∀v′ ∈W ′, ∀A′ ⊆W ′ such that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′:

((W ′, <), V ′[A′/p], v′) is a stuttering of ((W,<), V [s(A′)/p], s(v′))

2. ∀v ∈ W, ∀A ⊆W, ∀v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) is a stuttering of ((W,<), V [A/p], v)

Definition 8 (Stutter-Invariant Class of Pointed Structures). Let σ be
a propositional signature and K ⊆ StrTω

[σ]. Then K is a stutter-invariant class
relative to Tω iff for every M ⊆ StrTω

[σ] and for every stuttering M′ of M,
M ∈ K⇔M′ ∈ K.

Definition 9 (Stutter-free Pointed Structure). We say that a pointed
structure M is stutter-free whenever for all M′ such that M is a stuttering
of M′, M′ is isomorphic to M.

Only stutter-invariant classes of structures in StrTω
[σ] are definable in PLTL(U)

and μTL(U). This is known for PLTL(U) (see [12, 19]), but it also holds for
μTL(U).

Proposition 1. Let σ be a propositional signature. For every μTL(U)-sentence
φ in signature σ, Mod(φ) is stutter-invariant.

Proof. By induction on the sentence complexity. For the sake of the induction,
we can use expanded σ-structures as in classical model theory. Hence we consider
two base cases, one for propositional letters and one for propositional variables.
The propositional letter case is clear. We handle the propositional variable case
xi similarly, except that we use σ-models expanded with the value of xi (i.e.,
models considered together with a partial auxiliary valuation, so that xi can be
seen as a sentence). The induction hypothesis says that for any propositional
signature σ and μTL(U)-sentence φ of complexity n in signature σ, Mod(φ) is a
stutter-invariant invariant class. Now consider the case were φ is of complexity
n+1. We handle the Boolean connectives and the U operator as in the PLTL(U)
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case. Now suppose φ :≈ μx.ψ(x). We want to show that for every M ⊆ StrT[σ]
and for every stuttering M′ of M:

M = ((<,W ), V, w) ∈Mod(μx.ψ(x)) ⇔M′ = ((<,W ′), V ′, w′) ∈Mod(μx.ψ(x))

For the left to right direction, suppose ((W,<), V, w) |= μx.ψ(x), i.e., ∀A ⊆ W ,
if {v | ((W,<), V [A/p], v) |= ψ(p)} ⊆ A, then w ∈ A. Consider A′ ⊆ W ′ such
that {v | ((W ′, <), V ′[A′/p], v) |= ψ(p)} ⊆ A′. We want to show that w′ ∈ A′.
Let us first show that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′. For every v′ ∈ A′,
we have that ((W ′, <), V ′[A′/p], v′) |= ψ(p). Now by induction hypothesis for
any v ∈ s−1(s(v′)), ((W ′, <), V ′[A′/p], v) |= ψ(p) and by hypothesis on A′,
v ∈ A′. It follows from this property of A′ that M′ being a stuttering of M,
by Lemma 2 for any v′ ∈ W ′, ((<,W ′), V ′[A′/p], v′) is also a stuttering of
((<,W ), V [s(A′)/p], s(v′)) and by induction hypothesis:

((W ′, <), V ′[A′/p], v′) |= ψ(p) iff ((<,W ), V [s(A′)/p], s(v′)) |= ψ(p)

Hence {v | ((W,<), V [s(A′)/p], v) |= ψ(p)} ⊆ s(A′). But M |= μx.ψ(x). It follows
that w ∈ S(A′), so s(w) ∈ A′, i.e., w′ ∈ A′.

Now for the right to left direction, suppose ((W ′, <), V ′, w′) |= μx.ψ(x), i.e.,
∀A′ ⊆ W ′, if {v | (W ′, <), V ′[A′/p], v |= ψ(p)} ⊆ A′, then w′ ∈ A′. Consider
A ⊆ W such that {v | (W,<), V [A/p], v |= ψ(p)} ⊆ A. We want to show that
w ∈ A. M′ being a stuttering of M, by Lemma 2, for any v ∈ W , v′ ∈ s−1(v),
((<,W ′), V ′[s−1(A)/p], v′) is also a stuttering of ((<,W ), V [A/p], v) and by
induction hypothesis, for any v ∈ W, v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) |= ψ(p) iff ((W,<), V [A/p], v) |= ψ(p)

Hence {v | ((W ′, <), V ′[s−1(A)/p], v) |= ψ(p)} ⊆ s−1(A). But M′ |= μx.ψ(x). It
follows that w′ ∈ s−1(A), so s−1(w′) ⊆ A, i.e., w ∈ A. ��

Corollary 1. Let K ⊆ StrTω
[σ] be stutter-invariant and let φ ∈ μTL(U)[σ] be

a sentence such that for each stutter-free M ∈ StrTω
[σ], M |= φ if and only if

M ∈ K. Then φ defines K.

We now show that (over Tω) μTL(U) is the stutter-invariant fragment of μTL.
The proof is a variant of [19], where Peled and Wilke show that stutter-invariant
PLTL properties are expressible without X. We give it in detail, as the construc-
tion procedure below will be useful again later on in the paper.

Lemma 3. Let σ be a modal vocabulary. For every μTL sentence φ in vocabulary
σ, there exists a μTL(U) sentence φ∗ in vocabulary σ that agrees with φ on all
stutter-free σ-structures over Tω:

M |= φ↔ φ∗ for all stutter free pointed structures M ∈ StrTω
[σ]

Proof. Assume σ = {p0, . . . , pn−1}. The proof goes by induction on the structure
of φ. For convenience, we use expanded structures. The base case is clear: p∗ = p
for any propositional variable or letter p. Now as regards the induction step, we
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can set (¬ψ)∗ = ¬ψ∗, (ψ ∧ ξ)∗ = ψ∗ ∧ τ∗, (ψUξ)∗ = ψ∗Uξ∗, (μx.ψ)∗ = μx.ψ∗. If
φ is of the form Xψ, we let B be the set of all possible valuations σ → {⊥,�},
and for each g ∈ B, we let βg be the formula α0 ∧ . . . ∧ αn−1 where αj = pj if
g(pj) = � and αj = ¬pj if g(pj) = ⊥. Now observe that if g, g′ ∈ B are such
that g �= g′, then

M, w |= βg ∧ Xβg′ ↔ βgUβg′ for M ∈ StrT[σ] stutter-free

We have M, w |= Xψ if and only if every point in it satisfies the same set
of proposition letters and M, w |= ψ, or the valuation function doesn’t send
the same set of proposition letters to w and to its immediate successor w′ and
M, w′ |= φ. Thus we can set:

(Xψ)∗ =
∨

g∈G

((Gβg ∧ ψ∗) ∨
∨

g �=g′

(βgU(βg′ ∧ ψ∗)))

Theorem 2. Let φ ∈ μTL[σ] be a sentence such that Modσ(φ) is stutter-
invariant. Then there exists φ∗ ∈ μTL(U)[σ] such that Modσ(φ) = Modσ(φ∗).

Proof. Follows from Lemma 3 and Corollary 1.

Following [12], we now introduce a variant of the notion of projective class, that
we call harmonious projective class, which preserves stutter-invariance. Before
we define it, we first introduce the notion of a harmonious expansion. For any
propositional signature σ and worlds w,w′, we write w ≡σ w

′ if w and w′ satisfy
the same propositions in σ.

Definition 10 (Harmonious expansion). Let σ ⊆ τ be propositional signa-
tures and M ∈ StrTω

[τ ]. We say that M is a harmonious expansion of M 	 σ
whenever ∀w,w′ ∈ W such that w′ is a direct successor of w, w ≡σ w

′ implies
w ≡τ w

′.

Definition 11 (Harmonious projective class). Let σ be a propositional sig-
nature andK ⊆ StrTω

[σ]. ThenK is a harmonious projective class of a temporal
language L relative to Tω whenever there is φ ∈ L[τ ] with τ ⊇ σ such that for
all M ∈ StrTω [σ]: M ∈ K iff there is a harmonious τ -expansion M+ of M such
that M+ |= φ.

We will be using the following proposition in order to show Theorem 3. It refers
to the notion of ω-regular language, cf. [20]. We do not define this notion here as
it is not central in this paper. The proof of the proposition in [12] uses a notion
of stutter-invariant automata.

Proposition 2 ([12]). On Tω, harmonious projective classes of PLTL(U) define
exactly the stutter-invariant ω-regular languages.

Now we are able to show the following theorem:

Theorem 3. Let σ be a propositional signature. For any K ⊆ StrT[σ], the
following are equivalent:
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1. K is a harmonious projective class of PLTL(U) relative to Tω

2. K is definable by a μTL(U)-sentence φ relative to Tω

Proof. Follows from Theorem 1 and Proposition 2, because by [12, 19], PLTL(U)
is the stutter-invariant fragment of PLTL and by Theorem 2, μTL(U) is the
stutter-invariant fragment of μTL. ��

4 Temporal Languages with Craig Interpolation

In this section, we show that three of the temporal languages previously discussed
have Craig interpolation.

Definition 12 (Craig interpolation property). Let L be a temporal lan-
guage and T a frame class. Then L has the Craig interpolation property over
T whenever the following holds. Let φ ∈ L[σ], ψ ∈ L[σ′]. Whenever φ |=L,T ψ,
then there exists θ ∈ L[σ ∩ σ′] such that φ |=L,T θ and θ |=L,T ψ.

They even satisfy a stronger form of interpolation, which is called uniform inter-
polation. Intuitively, if a temporal language has uniform interpolation, it means
that the interpolant can be constructed so that it depends only on the signature
of the antecedent and its intersection with the signature of the consequent.

Definition 13 (Uniform Interpolation). Let L be a temporal language and
T a frame class. L has the uniform interpolation property over T if, for all
signatures σ ⊆ τ and for each formula φ ∈ L[τ ] there is a formula θ ∈ L[σ] such
that φ |=L θ and for each formula ψ ∈ L[τ ′] with τ ∩ τ ′ ⊆ σ, if φ |=L ψ then
θ |=L ψ.

Theorem 4. μTL has uniform interpolation over Tω.

Proof. MSO has uniform interpolation (for monadic predicates) on any class of
structures (so in particular on Tω) because it has set quantifiers (see [8]). By
[3, 18], μTL is expressively complete for MSO. Hence μTL uniform interpolants
can always be obtained via translation into MSO. ��

Theorem 5. μTL(U) has uniform interpolation over Tω.

Proof. Let σ ⊆ τ be modal signatures and let φ ∈ μTL(U)[τ ]. By Theorem 4,
there exists θ ∈ μTL[σ] such that φ |= θ and for each formula ψ ∈ μTL[τ ′] with
τ∩τ ′ ⊆ σ, if φ |= ψ, then θ |= ψ. Now let θ∗ ∈ μTL(U) be the formula that agrees
with θ on all stutter-free structures based on Tω (by Lemma 3, such a formula
exists). We want to show that φ |= θ∗ and that for each formula ψ ∈ μTL(U)[τ ′]
with τ ∩ τ ′ ⊆ σ, if φ |= ψ, then θ∗ |= ψ. Let SMod(φ) denote the set of stutter
free structures in Mod(φ). As Mod(φ) ⊆ Mod(θ), SMod(φ) ⊆ SMod(θ). Now
by construction of θ∗ also SMod(φ) ⊆ SMod(θ∗). Mod(φ) and Mod(θ∗) are
both stutter-invariant classes. It follows from Corollary 1 that the closure under
stuttering of SMod(φ) is included in the closure under stuttering of SMod(θ∗),
i.e., Mod(φ) ⊆Mod(θ∗), i.e., φ |= θ∗. The argument for θ∗ |= ψ is similar. ��
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Theorem 6. PLTL(X) has uniform interpolation over Tω.

Proof (Sketch). We will show something much stronger, namely that every pro-
jective class of PLTL(X) is definable by a PLTL(X)-formula.

Let φ ∈ PLTL(X)[σ ∪ {p}]. We will show how to construct a formula ψ ∈
PLTL(X)[σ] that defines the class of σ-reducts of models of φ. Let n be the maxi-
mal nesting depth of X-operators in φ. Intuitively, φ can only talk about the first
n world in the pointed structure (starting from the designated world). We can
represent every valuation of p in these n worlds by a set S ⊆ {0, . . . , n}, where
k ∈ S represents that p is true at the k-th world starting from the designated
world. For each S ⊆ {1, . . . , n} we define φS as follows: we replace each occur-
rence of p in φ that is in the scope k X-operators (k ≤ n) by � if k ∈ S and ⊥
otherwise. Then φ and φS are equivalent in all pointed structures in which the
valuation of p is as described by S. This can be shown by a formula induction.
Now, let ψ =

∨

S⊆{0,...,n} φ
S . Then ψ holds in a pointed σ-structure M iff M

has an expansion satisfying φ. ��

5 Interpolation Closure Results for Temporal Languages

In this section, we look at the fragments of PLTL that do not have Craig in-
terpolation, and we address the question how much expressive power must be
added in order to regain interpolation. We will phrase our main results in terms
of the notion of interpolation closure, which we define by taking inspiration from
abstract model theory (see [4]):

Definition 14 (Interpolation Closure). Let T be a frame class. L2 is the
interpolation closure of L1 over T if L1 ⊆T L2, L2 has interpolation over T,
and for every abstract temporal language L3, if L1 ⊆ L3 and L3 has Craig
interpolation on T, then L2 ⊆T L3.

5.1 The Interpolation Closure of PLTL(F<)

A useful tool for proving interpolation closure results is the following lemma
(see [4]):

Definition 15 (Δ-interpolation property). Let L be a temporal language
and T a frame class. Then L has the Δ-interpolation property over T whenever
the following holds: let σ be a propositional signature and K ⊆ StrT[σ], if both
K and K̄ are projective classes of L relative to T, there is a L-formula φ such
that K = Modσ

T(φ).

Lemma 4. Let L be a temporal language with Craig interpolation on Tω. Then
L has Δ-interpolation over Tω.

The proof of Lemma 4 is similar to the one given in [6] (we only need to remark that
the substitution property assumed here of abstract temporal languages is stronger
thanimplies the renaming property assumed in [6] of abstract modal languages).
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Now we will show that PLTL(F<,X) is contained in the interpolation closure
of PLTL(F<) over Tω. As an intermediate step, we show that in every extension
of PLTL(F<) having Craig interpolation, the property Xp is “definable”. By this,
we mean the following:

Lemma 5. Let L be an extension of PLTL(F<) with Craig-interpolation over
Tω. Then there is ξ ∈ L[{p}] such that Mod(ξ) =Mod(Xp).

Proof. Let q, r be new distinct propositional letters. Consider the two fol-
lowing projective classes of PLTL(F<): Mod(F<(p ∧ q) ∧ ¬F<F<q) 	 {p} and
Mod((F<(¬p∧ r)∧¬F<F<r)∨G<⊥) 	 {p}. As PLTL(F<) ⊆ L, these two classes
are also projective classes of L (by Lemma 1). They also complement each other,
as a {p}-structure belongs to the first class exactly when the first node of this
structure has a successor node where p holds and it belongs to the second class
in all other cases. By Δ-interpolation for L on T, it follows that the first class
is definable in L by means of some formula ξ in signature {p}, i.e., there is
ξ ∈ L[{p}] such that Mod(Xp) = Mod(ξ). ��

Theorem 7. Every extension of PLTL(F<) with Craig interpolation over Tω is
an extension of PLTL(F<,X) over Tω.

Proof. Let L be an extension of PLTL(F<) with Craig interpolation over Tω

and σ a propositional signature. We show by induction on the complexity of φ
(number of Boolean and temporal operators in φ) that for all φ ∈ PLTL(F<,X)[σ],
there exists φ′ ∈ L[σ] such that Mod(φ) = Mod(φ′). The base case is clear. The
induction hypothesis says that for all σ, for all φ ∈ PLTL(F<,X)[σ] of complexity
at most n, there exists φ′ ∈ L[σ] such that Mod(φ) = Mod(φ′). Now let φ be
of complexity n+ 1. If φ := Xψ, by induction hypothesis there exists ψ′ ∈ L[σ]
such that Mod(ψ) = Mod(ψ′). Pick any p /∈ σ. By Lemma 5 and the expansion
property we know:

1. There is ξ ∈ L[σ ∪ {p}] such that Mod(Xp) =Mod(ξ).

We will define φ′ as ξ[p/ψ′] ∈ L[σ] (by closure under uniform substitution of L,
such a formula exists). We need to show that Mod(Xψ) = Mod(ξ[p/ψ′]). From
1 we can derive as a particular case:

2. For any (T , V, w) ∈ StrT[σ ∪ {p}] where V (p) = {wi | (F, V, wi) |= ψ′},
(T , V, w) |= ξ iff there exists w′ ∈ D such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= p.

Now by closure under uniform substitution of L, 2 is equivalent to the following:

3. For any (T , V, w) ∈ StrT[σ], (F, V, w) |= ξ[p/ψ′] iff there exists w′ ∈ D such
that w < w′, there is no w′′ such that w < w′′ < w′ and (F, V, w′) |= p[p/ψ′].

Finally, ψ′ and p[p/ψ′] holding exactly in the same models, we can replace
p[p/ψ′] by ψ′ in the second member of the equivalence in 3. Hence Mod(Xψ) =
Mod(ξ[p/ψ′]). We can use similar arguments for the operator F< and for Boolean
connectives. ��
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By putting Lemma 4 to use, we now improve Theorem 7 and identify the inter-
polation closure of PLTL(F<).

Theorem 8. μTL is the interpolation closure of PLTL(F<,X) over Tω.

Proof. Let σ be a propositional signature. Now let K ⊆ StrTω
[σ] be definable by

a μTL-sentence φ in signature σ. As μTL is closed under negation, there is a μTL-
sentence ¬φ in signature σ, which defines the complement of K over StrTω

[σ].
It follows by Theorem 1 that both K and its complement are projective classes
of PLTL(F<,X). Now consider a temporal language L ⊇ PLTL(F<,X) with Craig
interpolation over Tω. By Lemma 1, K and its complement are also projective
classes of L and by Lemma 4, it follows that K is definable in L. ��

5.2 The Interpolation Closure of PLTL(F)

For the case of the stutter-invariant languages PLTL(F) and PLTL(U), we need
to refine the notion of Δ-interpolation, by considering harmonious projective
classes.

Definition 16 (Harmonious Δ-interpolation property). Let L be a tem-
poral language. Then L has the harmonious Δ-interpolation property over Tω

whenever the following holds. Let K be a class of L-structures based on Tω. If
both K and K̄ are harmonious projective classes of L relative to Tω, there is a
L-formula φ such that K = ModTω (φ).

Lemma 6. If L1 ⊆ L2, then every harmonious projective class of L1 is also a
harmonious projective class of L2.

Definition 17 (Harmonious temporal language). A temporal language L
is harmonious for Tω if the following holds. For every σ ⊆ τ propositional
signatures, there is a formula φ ∈ L[τ ] such that for every M ∈ StrTω

[τ ], M |= φ
if and only if M is an harmonious expansion of M 	 σ.

Proposition 3. PLTL(U) and its extensions are harmonious for Tω.

Proof. Fix σ ⊆ τ with |σ| = n, |τ\σ| = m. We can represent any valuation over
σ by a finite conjunction of atoms and negations of atoms. Let {σi | i ∈ 2n} be
the set of all such conjunctions. Also, for each σi, we define the corresponding
set {τ i

j | j ∈ 2m} as the set of conjunctions representing all possible ways of
extending to τ the valuation represented by σi. Now for every M ∈ StrT[τ ],

M |=
∧

i,j∈2n

(σiUσj →
∨

k,l∈2m

τ i
kUτ j

l )

if and and only if M is an harmonious expansion of M 	 σ, i.e., PLTL(U) is
harmonious. It is immediate from definition 2 that every extension of a temporal
language which is harmonious for Tω is also harmonious for Tω. ��

Lemma 7. Let L be a temporal language which has Craig interpolation and is
harmonious for Tω. Then L has harmonious Δ-interpolation over Tω.
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L being harmonious, we can use the formula φ in Definition 17 and appeal for
the proof of Lemma 7 to the same classical argument as for Lemma 4.

Theorem 9. Every extension of PLTL(F) with Craig interpolation over Tω is
an extension of PLTL(U) over Tω.

Proof. The reasoning is similar as in the case of Lemma 7 and Theorem 7, but
we consider Mod(pUq) =Mod(G(Fr → r) ∧ F(q ∧ r) ∧ G((r ∧ ¬q)→ p)) 	 {p, q}
and Mod(¬pUq) = Mod(Fq → (F(¬p ∧ r) ∧ G(Fr → ¬q))) 	 {p, q}. ��

Theorem 10. μTL(U) is the interpolation closure of PLTL(U) over Tω.

Proof. Let σ be a modal signature. Now let K ⊆ StrTω [σ] be definable by a
μTL(U)-sentence φ in signature σ. As μTL(U) is closed under negation, there is a
μTL(U)-sentence ¬φ in signature σ, which defines the complement K̄ ⊆ StrTω

[σ]
of K over StrTω [σ]. By Theorem 3, both K and K̄ are harmonious projective
classes of PLTL(U). Now consider a temporal language L ⊇ PLTL(U) with Craig
interpolation over T. By Lemma 6, K and K̄ are also harmonious projective
classes of L. By Proposition 3, L is harmonious and by Lemma 7, it follows that
K is definable in L, i.e., L ⊇ μTL(U). ��

6 Finite Linear Orders

We restricted our attention to the frame class Tω, but our results easily extend
to finite linear orders. Let Tfin be the class of frames (D,<) where D is a finite
set and < is a strict linear order on D. All the definitions and results that we
gave relative to Tω also apply to Tfin. An analogous of Theorem 1 for Tfin can be
obtained by considering automata on finite words. The proof of Proposition 2 can
similarly be adapted by considering stutter-invariant automata on finite words.
In the proof of Lemma 3, we can define (Xψ)∗ as

∨

g �=g′ (βgU(βg′ ∧ ψ∗)) (i.e., we
keep only the second disjoint, as no finite stutter free linear order exhibits two
successor points satisfying the same set of proposition letters). The remaining of
our arguments do not need any further adjustment.

7 Conclusions and Future Work

In this paper, we studied the temporal fragments of linear time μ-calculus satis-
fying Craig interpolation, showing essentially that there are only three distinct
such fragments: μTL itself, μTL(U), and PLTL(X). These results reconfirm the
robustness of (linear time) μ-calculus as compared to less expressive temporal
logics. We are currently working on extending our results to other flows of time
such as finite trees, infinite trees, and infinite linear orders other than the natu-
ral numbers (as in [5]). There are some important differences in these settings.
For example, it is known (see [2]) that the branching time temporal logic with
only Since and Until has Craig interpolation, while linear time fails to have this
property. Also there is still no definitive consensus on the appropriate notion of
stuttering for infinite branching time (see [13]).



Craig Interpolation for Linear Temporal Languages 301

References

[1] Amir, E., McIlraith, S.A.: Partition-based logical reasoning for first-order and
propositional theories. Artif. Intell. 162(1-2), 49–88 (2005)

[2] Areces, C., de Rijke, M.: Interpolation and bisimulation in temporal logic. In:
Guerra, R.J., de Queiroz, B., Finger, M. (eds.) Proceedings of WoLLIC 1998, pp.
15–21 (1998)

[3] Arnold, A., Niwinski, D.: Rudiments of μ-Calculus. Studies in Logic and Founda-
tions of Mathematics, vol. 146. North-Holland, Amsterdam (2001)

[4] Barwise, J., Feferman, S.: Model-theoretic logics. Springer, New York (1985)
[5] Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. System

Sci. 73(1), 1–24 (2007)
[6] ten Cate, B.: Model Theory for Extended Modal Languages. PhD thesis, Univer-

sity of Amsterdam, ILLC Dissertation Series DS-2005-01 (2005)
[7] Craig, W.: Three Uses of the Herbrand-Gentzen Theorem in Relating Model The-

ory and Proof Theory. Journal of Symbolic Logic 22(3), 269–285 (1957)
[8] D’Agostino, G.: Interpolation in non-classical logics. Synthese 164(3), 421–435

(2008)
[9] D’Agostino, G., Hollenberg, M.: Logical Questions Concerning the μ-Calculus:

Interpolation, Lyndon and Lös-Tarski. Journal of Symbolic Logic 65(1), 310–332
(2000)

[10] Gerard, R., de Lavalette, R.: Interpolation in computing science: the semantics of
modularization. Synthese 164(3), 437–450 (2008)

[11] Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)

[12] Etessami, K.: Stutter-Invariant Languages, ω-Automata, and Temporal Logic.
In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248.
Springer, Heidelberg (1999)

[13] Gross, R.: Invariance under stuttering in branching-time temporal logic. Master’s
thesis, Israel Institute of Technology, Haifa (2008)

[14] Kaivola, R.: Using Automata to Characterise Fixed Point Temporal Logics. PhD
thesis, University of Edinburgh (1997)

[15] Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, Los
Angeles (1968)

[16] Lamport, L.: What Good is Temporal Logic? In: Mason, R.E.A. (ed.) Proceedings
of the IFIP 9th World Computer Congress, pp. 657–668. North-Holland/IFIP
(1983)

[17] Maksimova, L.: Temporal logics with “the next” operator do not have interpolation
or the Beth property. Siberian Mathematical Journal 32(6), 989–993 (1991)

[18] Niwinski, D.: Fixed Points vs. Infinite Generation. In: Proceedings of LICS, pp.
402–409 (1988)

[19] Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997)

[20] Thomas, W.: Languages, automata, and logic. In: Handbook of formal Languages.
Beyond Words, vol. 3, pp. 389–455. Springer, New York (1997)



On Model Checking Boolean BI

Heng Guo, Hanpin Wang, Zhongyuan Xu, and Yongzhi Cao

Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronics Engineering and Computer Science,

Peking University, Beijing, China
{guoheng,whpxhy,xzy,caoyz}@pku.edu.cn

Abstract. The logic of bunched implications (BI), introduced by O’Hearn and
Pym, is a substructural logic which freely combines additive and multiplicative
implications. Boolean BI (BBI) denotes BI with classical interpretation of addi-
tives and its model is the commutative monoid. We show that when the monoid
is finitely generated and propositions are recursively defined, or the monoid is
infinitely generated and propositions are restricted to generator propositions, the
model checking problem is undecidable. In the case of finitely related monoid and
generator propositions, the model checking problem is EXPSPACE-complete.

1 Introduction

The logic of bunched implications (BI), introduced by O’Hearn and Pym [26], is a
substructural logic which freely combines additive and multiplicative implications. The
main purpose of BI is to reason about models which incorporate the notion of resource.
Its best-known application in computer science is separation logic, which is a Hoare
logic for reasoning about imperative program which can manipulate pointers [29]. Sev-
eral other similar resource logics are developed, such as spatial logic [9,10], which is
introduced independently, and context logic [6,7], which can be regarded as a general-
ization of BI and spatial logic.

Semantically, the models of BI vary from cartesian doubly closed categories, to par-
tially ordered commutative monoids [27]. The interpretation of BI in the categorical
models is necessarily intuitionistic. But the additive connectives can be interpreted
classically in the monoid models, in which the partial order becomes an equivalence
relation. This version of BI is called Boolean BI (BBI). Its expressivity is quite power-
ful [18], and has been shown to be a convenient way to characterize resource sensitive
systems. Indeed, separation logic is interpreted on a partial monoid of heaps, which
is a BBI model. Also the classical additives alongside multiplicative conjunction and
implication could be found in spatial logic and context logic.

In this paper, we mainly discuss the model checking problem of BBI, i.e. given an
element in a BBI model and a BI formula, decide whether the element satisfies the
formula. It is shown that the provability of BI can be decided by Resource Tablueax
(cf. [19]). However, this method cannot be applied to the model checking problem
directly.

To give a decidable condition, a notion of boundable resource model is introduced
in [2]. It is proved that the model checking problem in a boundable model is decidable.

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 302–316, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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However, this condition is given implicitly. To decide whether a model is boundable,
one need to check whether the quotient of the monoid divided by some equivalence
relations is finite. It is quite hard (and possibly undecidable) to verify this since there
are infinitely many such relations. Compared with their work, in this paper, we show
more explicit decidable conditions. To our best knowledge, there is not any other work
concerning the model checking problem for BI.

In separation logic, all products are obtained from two heaps with disjoint domains
(cf. [29]). But in general BBI model, the structure is less organized, since the generation
relation can be defined arbitrarily. Hence, we expect that the model checking problem
for BBI is quite complicated and would be decidable only under many restrictions.

First, we consider the propositions appeared in BI formulae. In a BBI model, a propo-
sition variable is interpreted by the set composed of elements satisfying the formula.
Obviously, when such a set is not recursive, we cannot check whether an element sat-
isfies this proposition. However, even if propositions are recursively defined, we show
that the model checking problem is undecidable for finitely generated free commutative
monoid, somehow the simplest model, by reduction from Hilbert 10th problem.

Inspired by the fact that in separation logic atomic assertions are interpreted on one
heap cell, we focus our attention on propositions that is satisfied by only one genera-
tor. But even with this restriction, the model checking problem is still undecidable in
infinitely generated commutative monoid. The technique we use is to simulate Minsky
Machine (cf. [25]), which is a classical and widely adopted method, like in the proof
of the undecidability of full propositional linear logic [23] and the bisimulation relation
between petri nets [20]. We should mention that although total monoid is a special case
of partial monoid, the model checking problem for quantifier free assertion in separa-
tion logic, which is interpreted on an infinitely generated partial monoid, in contrast, is
decidable [8].

To obtain decidable results, we put some additional restrictions on the model. We
consider the case that the monoid is finitely generated. A special case of the model
checking problem in this setting is equivalent to the word problem in monoids, which is
shown to be EXPSPACE-complete in finitely generated commutative monoids (cf. [24]).
This result sheds some light to the general problem and provides a complexity lower
bound. With the help of some results from [21] and [16], we reduce the model checking
problem to the problem of deciding whether two semi-linear sets overlap, which can be
solved with the cost of at most exponential space. It follows that the in this case, the
model checking problem is EXPSPACE-complete.

Furthermore, in the case of infinitely generated finitely related monoid, the model
checking problem can be reduced to the finitely generated case. Indeed, every finitely
generated monoid is finitely related (cf. [17]). Thus, for all finitely related monoid, the
model checking problem is EXPSPACE-complete.

Model checking and validity problems for the spatial assertion language of separa-
tion logic are solved in [8]. Several decidable fragments are discovered and discussed
[1,3]. In comparison, the model we considered is more general and its structure can be
more chaotic, and the formula is propositional. Thus, both our decidability and unde-
cidability results are essentially different from those of separation logic. It is easy to
extend our complexity results to the case of partial monoid.
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Interesting aspect of our undecidability proof is the explicit way of simulating Min-
sky Machine, which can be viewed as a sign of the strong expressivity of BBI and did
not appear in the literature before. The technique used in our decidability proof reveals
the relationship among BI formulae, rational sets in monoid and regular expressions.
It suggests a way to extend BI and provide the possibility to apply classical algebraic
results on the further analysis of BI or BBI.

In Section 2 we review some basic definitions and notations of BBI and semigroups.
In Section 3 we show undecidability results, and Section 4 decidability and complexity
results. Finally, in Section 5, some additional remarks are provided. For brevity, some
of the proofs are omitted.

2 Preliminaries

We start with some basic definitions and denotations.

2.1 Boolean BI

In BI, there are additive connectives of classical propositional logic (¬,∨,∧,→,�,⊥)
and multiplicative connectives (∗,−∗,�∗).

Definition 1 (BI formula). The set of BI formulae, denoted BI and ranged over by
ϕ,ϕ1,ϕ2, is defined by:

ϕ = p | � | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | �∗ | ϕ1 ∗ ϕ2 | ϕ1−∗ϕ2

in which p ranges over P , the set of atomic propositions.

Definition 2 (BBI Model). A BBI modelM is a commutative monoid {M, ε, ◦} (de-
notedM , for brevity), in which ◦ is the multiplication and ε its unit.

Henceforth monoid will be used to denote commutative monoid, if not explicitly stated.
An environment mapping is needed to interpret proposition variables. The image of

a proposition variable is the largest set in which every element satisfies it. By P(M) we
denote the power set ofM .

Definition 3 (Environment). An environment ρM , or ρ for short, is a function ρ : P →
P(M).

Definition 4 (Satisfaction Relation). The satisfaction relation for BBI is defined
inductively on the structure of the formulae as follows:

m |= p⇔ m ∈ ρ(p)
m |= � ⇔ always
m |= ¬ϕ⇔ m �|= ϕ

m |= ϕ1 ∧ ϕ2 ⇔ m |= ϕ1 andm |= ϕ2
m |= �∗ ⇔ m = ε

m |= ϕ1 ∗ ϕ2 ⇔ ∃m1,m2. m = m1 ◦m2 s.t. m1 |= ϕ1 andm2 |= ϕ2
m |= ϕ1−∗ϕ2 ⇔ ∀m1. m1 |= ϕ1. impliesm1 ◦m |= ϕ2



On Model Checking Boolean BI 305

Since the additive connectives are interpreted classically, we treat⊥, ∨, and→ as usual
abbreviations. Define ϕ1−∗∃ϕ2 = ¬(ϕ1−∗¬ϕ2). Then m |= ϕ1−∗∃ϕ2 iff ∃m1. m1 |=
ϕ1 andm1 ◦m |= ϕ2. It is a existence analogue of multiplicative implication.

Sometimes we use |=M to emphasize the underlying model for the satisfaction
relation.

We naturally extend the domain of environment function ρ from the set of proposi-
tions P to the set of BI formulae BI, ρ : BI → P(M), ρ(ϕ) = {m | m ∈ M ∧m |=
ϕ}. Thus, the model checking problem of deciding whetherm |= ϕ, is equivalent to the
problem of deciding whetherm ∈ ρ(ϕ).

ForM1,M2 ⊆M , define:

M1 ◦M2 = {m | ∃m1,m2. m = m1 ◦m2 ∧ m1 ∈M1 ∧m2 ∈M2}
M1 : M2 = {m | ∃m1. m1 ∈M2 ∧m ◦m1 |= M1}

Thus, we get:
ρ(ϕ1 ∗ ϕ2) = ρ(ϕ1) ◦ ρ(ϕ2)
ρ(ϕ1−∗∃ϕ2) = ρ(ϕ2) : ρ(ϕ1)

Note that ϕ1−∗ϕ2 = ¬(ϕ1−∗∃¬ϕ2). In the following, we will use −∗∃ when inducting
on the structure of a formula.

Remarks. In the general semantics of BI, partial monoid, rather than total monoid,
is more widely adopted, since it is complete and reflects some intrinsic properties of
resources. Indeed, the heap model of separation logic is a partial monoid. However,
there is one way to transform a partial model into a total model. Define a special element
π, which does not satisfy any formulae, and let any undefined product of two elements,
or the product of π and any other element equal π. Then we get a total monoid and only
need to pay some attention for such π when handling the model checking problem.
Hence, for the simplicity of analysis, we adopt the notion of total monoid in this paper.

2.2 Semigroup Presentation

Since BBI models are monoids, we need the way to describe a monoid. We assume the
reader is familiar with some basic notions and results.

Let X be a set of generators or so-called alphabet and X∗ denotes the free monoid
generated byX . A relation C onX∗ is a congruence if it is an equivalence relation and
whenever (v, w) ∈ C then (v + u,w + u) ∈ C. For every relation R, it generates a
congruence≡R, which is the smallest congruence contains R.

If a semigroup M ∼= X∗/≡R, then the tuple (X ;R) is called a presentation of M .
For a little abuse of language, we write M = (X ;R). M is finitely generated (f.g.) if
there exists a presentation (X ;R) of M and X is finite, and is finitely related (f.r.) if
finiteR exists. By Redei’s theorem (cf. [28,14], also [17]), every f.g. commutative semi-
group is f.r. . For a f.g. monoid M = (X ;R), every element m in M is a congruence
class inX∗, denoted by [m]R, or [m] for short.

It is easy to see that a f.g. free commutative monoid is isomorphic to N
k, assuming

the cardinality of the generator set is k.
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3 Undecidability Results

In this section, we show two undecidability results. For a proposition p, if ρ(p) is a
recursive set and the model is a f.g. free monoid, the satisfiability problem is not decid-
able. Hence so is the model checking problem. For a given BBI model M = (X ;R),
if X and R is infinite, and for every p ∈ P , ρ(p) = {x} for some x ∈ X , the model
checking problem is also undecidable.

3.1 Recursively Defined Propositions

Obviously, for a proposition p, if ρ(p) is not recursive, to check m |= p is not com-
putable. However, even if ρ(p) is recursive, the model checking problem is still not
computable. Indeed, there is a recursive set that we cannot decide whether it is empty.
We will illustrate this using the result of Hilbert 10th Problem (H10).

Proposition 1 (Negative Solution of H10). Given a polynomial of several variables
P (k1, . . . , km) with integer coefficients, it is undecidable whether there is a vector
(k1, . . . , km) ∈ N

m1 that P (k1, . . . , km) = 0.

Thus, for any given polynomial P (k1, . . . , km), letX∗ ∼= N
m and ρ(p) = {xe1

1 . . . x
em
m

|P (e1, . . . , em) = 0}. Clearlyρ(p) is a recursive set since we can computeP (e1, . . . , em)
easily. But to model checking ε |= �−∗∃p is equivalent to decide whether the equation
P (k1, . . . , km) = 0 has solutions. Hence the model checking problem is undecidable.

Redei’s theorem [17] tells that every f.g. monoid is f.r. . But given a recursive relation
R, we cannot compute a finite relation R′ that ≡R is the same as ≡R′ . To see this,
let R = {(xe1

1 . . . x
em
n , ε)|P (e1, . . . , em) = 0} and again H10 reduces to it. Thus,

we cannot decide the structure of a f.g. monoid if the finite generation relation is not
given explicitly. In the following, when a monoidG = (X ;R) is finitely generated, we
assume that R is finite.

3.2 Infinitely Generated Monoid

F.g. free monoid is somehow the simplest monoid. It can be easily embedded into in-
finitely generated monoid and has an empty generation relation set, which is the major
obstacle to the model checking problem. Since in this model to model checking BBI
with recursively defined propositions is undecidable, later discussion will be restricted
on a certain kind of propositions.

In most of the settings, the resource model is discrete and properties of interest can
be decomposed into several atomic assertions based on a single piece of the resource.
For example, in separation logic, every formula is constructed from atomic assertions
interpreted on just one heap cell, like “x %→ −,−”. Hence, we focus our attention on the
proposition which holds only for one generator element. Given a monoidM = (X ;R),
we call a proposition p “generator proposition”, if ρ(p) = {x}, x ∈ X . It is an analogue
of the assertion “x %→ −,−” in separation logic. In the following, we will use px to
denote the proposition which holds on x.

1 In the original problem, the vector is required to be in Z
m. Here we slightly modify the

requirement and it is easy to show these two problems are equivalent.
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Many propositions can be constructed via generator propositions with BI connec-
tives. Especially, for a proposition p, if ρ(p) orM\ρ(p) is finite, then it can be expressed
through these propositions. The proposition defined in Section 3.1 cannot be expressed
via them, since we cannot construct a formula to compute polynomials.

However, in an infinitely generated monoid, even if only generator propositions ap-
pear in the formula, the model checking problem is still undecidable. We show this
by the reduction from the halting problem of Minsky machine [25]. This technique of
encoding Minsky Machine is widely used to prove undecidability results, like the unde-
cidability of full propositional linear logic [23] and bisimulation relation between petri
nets [20].

Definition 5 (Minsky Machine). A Minsky machine C with nonnegative counters c1,
. . . , cm is a program

1 : COMM1; . . . ;n : COMMn

where COMMn is a HALT-command and COMMi (i ∈ In−1
2) are commands of the

following two types (assuming k, k1, k2 ∈ In, j ∈ Im):

1. cj := cj + 1; goto k
2. if cj = 0 then goto k1 else (cj := cj − 1; goto k2)

Note that type 2 command is indeed a branch command. We call “if cj = 0 then goto
k1” the zero test part and “cj := cj − 1; goto k2” the decrease part.

Minsky machine is a deterministic computation model. During computation, current
value of relating counter determines to take which branch of type-2 command. Every
Minsky machine generates a corresponding sequence of executed command number, or
so called a run. If the machine halts, the sequence will be finite, ended with n. Otherwise
it will be infinite.

The status of a Minsky machine during the computation can be presented by a tu-
ple {k, c1, . . . , cm}, in which k is the current command line, i.e. next command to be
executed is COMMk, and {c1, . . . , cm} expresses the status of counters. The initial
state is {1, c1, . . . , cm} and {c1, . . . , cm} is considered as input. The halting problem
of Minsky machine is to decide with empty input, whether the program halts with empty
counters. It is known that even if a Minsky machine has only two counters, the halting
problem is undecidable. In the following, to construct our reduction, we encode a two-
counter Minsky machine in a countably infinitely generated monoid, and express the
halting property by a satisfaction relation between an element in that monoid and a BBI
formula.

Given Minsky machine C with two counters c1, c2 and commands COMMi (i ∈
In). We will construct an infinitely generated monoidMC = (XC ;RC) to simulate the
execution of C. Indeed, some congruence classes are corresponding to finite runs.

The generator setXC is composed of four parts: setQ for the current command line,
A1 and A2 for the current status of the two counters, S for the current position in a
command sequence, and a special generator halt.

We let Q = {qi|i ∈ In}. Here qi represents that the next command is COMMi. Let
Aj = {aj,i|i ∈ N} (j ∈ I2), aj,i represents that the current value of counter cj is i. In
our construction, the product qi ◦ a1,n ◦ a2,m corresponds to the state tuple (i, n,m).

2 In denote the set {1, 2, . . . , n}.
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The set S is a little more complex. Let I ′n = {1′, 2′, . . . , n′}. We use λk ∈ (In ∪
I ′n−1)

∗ to denote a command sequence of length k and λk[i] to denote the ith element
in λk. If λk[i] ∈ In−1, then it represents the ith command in this sequence is type 1
or the decrease part of type 2, and if λk[i] ∈ I ′n−1, it represents zero test part of type
2. λk[i] = n means the ith command is the HALT-command. We denote the command
sequence generated by the Minsky Machine C by λC . Every element in set S has two
indices, i and λk, denoted by si,λk

, which means the command sequence is λk and
the current command is λk[i]. It is easy to see that the cardinality of XC is countably
infinite.

Then we define the generation relationRC . Every equation inRC corresponds to one
step execution of C. For type-1 command COMMm “cj := cj + 1; goto r” (j ∈ I2),
if λk[i] = m (i �= k), then RC contains the following equations:

si,λk
◦ qm ◦ aj,t = si+1,λk

◦ qr ◦ aj,t+1(t ∈ N)

For type-2 command COMMm “if cj = 0 then goto r1 else (cj := cj − 1; goto r2)”
(j ∈ I2), if λk[i] = m (i �= k), then:

si,λk
◦ qm ◦ aj,t = si+1,λk

◦ qr2 ◦ aj,t−1(t ∈ N
+)

or λk[i] = m′ (i �= k), then:

si,λk
◦ qm ◦ aj,0 = si+1,λk

◦ qr1 ◦ aj,0

Finally, if λk[k] = n, then:

sk,λk
◦ qn ◦ a1,0 ◦ a2,0 = sk,λk

◦ halt

Example. We have finished the construction of the infinitely generated monoidMC =
(XC ;RC) corresponding to a Minsky machine C. Before proceeding to the reduction,
let’s give a simple example to illustrate how our construction goes. Let a Minsky ma-
chine C as following:

1. c1 := c1 + 1; goto 3.
2. c2 := c2 + 1; goto 2.
3. If c1 = 0 then goto 4 else (c1 := c1 − 1; goto 2).
4. HALT.

Note that C never halts, and λC is the infinite sequence {1, 3, 2, 2, 2, . . .}.
In our construction,Q = {qi|i ∈ I4}. The generation relation RC contains: (i �= k)

si,λk
◦ q1 ◦ a1,t = si+1,λk

◦ q3 ◦ a1,t+1 (if λk[i] = 1, t ∈ N)
si,λk

◦ q2 ◦ a2,t = si+1,λk
◦ q2 ◦ a2,t+1 (if λk[i] = 2, t ∈ N)

si,λk
◦ q3 ◦ a1,t = si+1,λk

◦ q2 ◦ a1,t−1 (if λk[i] = 3, t ∈ N
+)

si,λk
◦ q3 ◦ a1,0 = si+1,λk

◦ q4 ◦ a1,0 (if λk[i] = 3′)
sk,λk

◦ q4 ◦ a1,0 ◦ a2,0 = sk,λk
◦ halt (if λk[k] = 4)

For λ3 = {1′, 3, 5}, we can see that [s1,λ3 ◦ q1 ◦ a1,0 ◦ a2,0] contains only one element,
since the first command is not type 2. For λ4 = {1, 3′, 2, 2}, s1,λ4 ◦ q1 ◦ a1,0 ◦ a2,0 =
s2,λ4 ◦q3 ◦a1,1 ◦a2,0. The congruence class contains only these two elements, since the
zero test in COMM3 fails. Generally, the elements contained in the congruence class
[s1,λk

◦ q1 ◦ a1,0 ◦ a2,0] correspond to the longest common prefix of λk and λC .
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Lemma 1. For λk, assume the length of the longest common prefix of λk and λC is k′.
Every element in congruence class [s1,λk

◦ q1 ◦ a1,0 ◦ a2,0] has the form “st,λk
◦ qi ◦

a1,j1 ◦ a2,j2”, where t ≤ k′ + 1 and the tuple (i, j1, j2) is the state after executing first
t− 1 elements in λC , or “sk,λk

◦ halt”, when λk = λC .

Proof. It can be verified straightforwardly by induction on k′. ��

Thus, the Minsky machine C halts if and only if there exists some λk , such that sk,λk
◦

halt ∈ [s1,λk
◦ q1 ◦ a1,0 ◦ a2,0]. All we left to do is to express this property through

some satisfaction relation of BBI.
First define φas = (¬(¬�∗ ∗ ¬�∗)) ∧ (

∧

i ¬pqi) ∧ (¬phalt). For m |= φas, m |=
¬(¬�∗ ∗ ¬�∗). Thus m cannot be a product of any two non-unit elements in MC ,
it follows that m ∈ X . But m |= (

∧

i ¬pqi) ∧ (¬phalt), it implies that m ∈ S or
m ∈ A1 ∪A2. The reverse obviously holds. So ρ(ϕas) = S ∪A1 ∪A2.

We claim that the Minsky machine C halts if and only if q1 ◦ a1,0 ◦ a2,0 |= ϕ, where
ϕ = φas−∗∃(phalt ∗ φas). Clearly, ϕ is constructed via generator propositions.

If q1 ◦ a1,0 ◦ a2,0 |= ϕ holds, then there exists some s1, s2 ∈ S ∪ A1 ∪ A2, that
s2 ◦ halt ∈ [s1 ◦ q1 ◦ a1,0 ◦ a2,0]. If s1 ∈ A1 ∪ A2, then the congruence class s1 ◦
q1 ◦ a1,0 ◦ a2,0] contains only one element since no generation relation can be applied,
contradiction. Then s1 ∈ S, without loss of generality we can assume that s1 = s1,λk

for some λk, since we can discard the elements before s1 to get a new sequence. By
Lemma 1, s2 = sk,λk

, and hence C halts. On the other hand, if C halts and |λC | = k,
then by Lemma 1, sk,λC ◦ halt ∈ [s1,λC ◦ q1 ◦ a1,0 ◦ a2,0]. Hence q1 ◦ a1,0 ◦ a2,0 |= ϕ
holds.

Theorem 1. The model checking problem for countable infinitely generated monoid
against BI formulae in which only generator propositions appear is not decidable.

Remarks. Since total monoid is a special case of partial monoid, our undecidability
result is instantly generalized to the case of partial monoid. In separation logic, the
underlying model is a partially defined countably infinitely generated monoid. However,
unlike our result, the model checking problem for quantifier free assertions of separation
logic is decidable. This difference results from the organized structure of the model of
separation logic, whereas an arbitrary monoid could be far more chaotic.

4 Decidability and Complexity Results

In this section we show that the model checking problem for finite related monoid
against BI formulae, under the restriction of generator propositions, is decidable and
EXPSPACE-complete.

First we claim that for a infinitely generated finitely related monoid, the problem can
be reduced to the f.g. case. In fact, there are finitely many generation relations in such a
monoid. Thus only finitely many generators will appear in one congruence class. Then
there will be only finitely many generators involved in a model checking problem under
our assumptions. Every other generator can be treated as the same irrelevant generator.

Formally, given a monoid M = (X ;R), an element m, and a formula ϕ, where
X is infinite, R is finite, and m ∈ M . Without loss of generality, we can assume
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that generators appeared inm and R and generators whose corresponding propositions
appeared in ϕ are first k generators. Let δ be the homomorphism that maps every other
generator to the k + 1th generator. Then by the induction on the structure of ϕ, the
following lemma holds:

Lemma 2. m |=M ϕ iffm |=δ(M) ϕ.

In the following, we will deal with the f.g. monoid. We prove that in this case, to check
m |= ϕ is equivalent to check whether [m]R and some set related to ϕ in X∗ overlap.
Indeed, [m]R or every such set is computable semi-linear set and we can decide whether
their intersection is empty. To show this, first we cite some notations and results about
rational sets and semi-linear sets in [16].

Definition 6 (Rational Sets). Let M be a monoid (not necessarily be commutative).
The class of rational subsets of M is the least class E of subsets of M satisfying the
following conditions:

1. The empty set is in E ;
2. Each single element set is in E ;
3. IfX,Y ∈ E thenX ∪ Y ∈ E ;
4. IfX,Y ∈ E thenX ◦ Y ∈ E ;
5. IfX ∈ E thenX∗ ∈ E .

HereX∗ denotes the submonoid ofM generated byX . Note that a f.g. monoidM itself
is a rational set.

Definition 7 (Semi-linear Sets). A subsetX = {a} ◦B∗ with a ∈M , B ⊆M , andB
finite, is called linear. A finite union of linear sets is called semi-linear.

Clearly every semi-linear set is completely determined by the series of ai and Bi. Let
A = {a1, . . . , an}, B = {B1, . . . , Bn}. We call (A;B) the closed representation of a
semi-linear set.

Then we tabulate several useful results from [16].

Proposition 2. For a f.g. commutative monoidM , A subset X ⊆ M is rational iff it is
semi-linear.

Proposition 3 (Th III, Cor III.1 Cor III.4 in [16]). If X and Y are rational subsets
of a commutative monoid M , then their intersection X ∩ Y , difference Y \X (hence
X = M\X) and Y : X are rational.

Recall that ρ(ϕ1 ∗ ϕ2) = ρ(ϕ1) ◦ ρ(ϕ2), ρ(ϕ1−∗∃ϕ2) = ρ(ϕ2) : ρ(ϕ1). By induction,
it follows that for all formulae ϕ, ρ(ϕ) is semi-linear set.

Thus, if we can generate a closed representation of ρ(ϕ) and decide whether m
belongs to it, we can check m |= ϕ. However, we are not aware of a constructive way
to generate the closed representation ofX ∩ Y ,X ,X ◦ Y , and Y : X in the literature.
We transform this problem to a corresponding problem in X∗, in order to avoid the
complicated structure inM , which is caused by R.

Consider the canonical surjective morphism α : X∗ %→ M . It is easy to see that
α−1(m) = [m]R and m ∈ ρ(ϕ) is equivalent to [m]R ⊆ α−1(ρ(ϕ)). If ∃x, x ∈
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[m]R ∩ α−1(ρ(ϕ)), then α(x) ∈ ρ(ϕ). Thus, [m]R = [x]R ⊆ α−1(ρ(ϕ)). It implies
thatm ∈ ρ(ϕ) is equivalent to [m]R ∩ α−1(ρ(ϕ)) �= ∅.

Next we will show how to decide whether [m]R ∩ α−1(ρ(ϕ)) �= ∅. Indeed, [m]R is
also a semi-linear set. In [21], an algorithm has been developed to compute the closed
representation of a congruence class with the cost of at most exponential space.

Proposition 4 (Th.10 in [21]). Let f.g. monoid M = (X ;R), m ∈ M . There is
an algorithm which generates a closed representation of [m]R using at most space
2c·size(m,R), where c > 0 is some constant independent ofm and R.

Thus, we can generate the representation of [m]R for everym ∈M . In order to compute
the closed representation of α−1(ρ(ϕ)), we need to make induction on the structure of
ϕ. It is easy to verify the following lemma.

Lemma 3. For a f.g. monoidM = (X ;R) and BI formulae ϕ, ϕ1, and ϕ2, the follow-
ing holds:

– α−1(ρ(px)) = [x]R
– α−1(ρ(�)) = X∗

– α−1(ρ(¬ϕ)) = α−1(ρ(ϕ))
– α−1(ρ(ϕ1 ∧ ϕ2)) = α−1(ρ(ϕ1)) ∩ α−1(ρ(ϕ2))
– α−1(ρ(�∗)) = [ε]R
– α−1(ρ(ϕ1 ∗ ϕ2)) = α−1(ρ(ϕ1)) ◦ α−1(ρ(ϕ2))
– α−1(ρ(ϕ1−∗∃ϕ2)) = α−1(ρ(ϕ2)) : α−1(ρ(ϕ1))

Since α−1(ρ(px)) = [x]R, Proposition 4 also builds up the basis of our induction. To
compute the closed representations of X , X ∩ Y , X ◦ Y , and X : Y , we consider the
case of N

k, since for a generator set X , |X | = k, X∗ and N
k are isomorphic.

The case of generating the closed representation of X is the most complicated. We
need to compute the representation of a set in which every element is not larger than
any element in a given set.

Formally, define a partial order ≤ on N
k. For two vectors v = {v1, . . . , vk}, v′ =

{v′1, . . . , v′k} in N
k, v ≤ v′ iff ∀i, vi ≤ v′i, and v < v′ iff v ≤ v′ and ∃i, vi �= v′i.

Lemma 4. For a set of vectors B = {b1, . . . , bn} in N
k, the set m(B) = {a|a ∈

N
k, ∀bi ∈ B, a < bi or a and bi are not comparable. } is a semi-linear set, and there is

an algorithm which generates a closed representation of it.

Proof (sketch). Consider the kth component of one element in m(B). It must be sand-
wiched between the counterparts of two divisions of the vectors. Then the first k − 1
components of it should be smaller than or not comparable with the counterparts of the
smaller division. These elements compose an instance of lower dimension. Thus, the
closed representation can be generated inductively on the dimension k. ��

Lemma 5. For two semi-linear sets X,Y ⊆ N
k, given their closed representation

(AX ;BX), (AY ;BY ), there is an algorithm which generates a closed representation
ofX ,X ∩ Y , X + Y , and Y −X . 3

3 Note that the addition in N
k corresponds to the multiplication in free monoid. Thus, X + Y

and Y − X correspond X ◦ Y and Y : X, respectively.
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Proof. For two semi-linear sets X =
⋃

i(ai +B∗i ) and Y =
⋃

j(aj +B∗j ), it is easy to
see that

X + Y =
⋃

i,j((ai +B∗i ) + (aj +B∗j ))
X ∩ Y =

⋃

i,j((ai +B∗i ) ∩ (aj +B∗j ))
Y −X =

⋃

i,j((aj +B∗j )− (ai +B∗i ))
X =

⋂

i(ai +B∗i )

Then we only have to deal with linear sets.
“X + Y ”: For two linear sets a+B∗ and a′ +B′∗, their summation is:

(a+ a′) + (B ∪B′)∗

“X ∩ Y ”: For two linear sets a + B∗, a′ + B′∗ ⊆ N
k. Assume B = {b1, . . . , bn}

and B′ = {b′1, . . . , b′n′}, then every element in X ∩ Y corresponds to two vectors xi,
x′i ∈ N

k, which satisfies the following system of linear diophantine equations:

n
∑

i=1

bixi −
n′
∑

j=1

b′jx
′
j = a′ − a

Indeed, the solution of this system forms a semi-linear set, and there are many algo-
rithms devoted to this problem, e.g. [15,22].

“Y − X”: For two linear sets X = a + B∗ and Y = a′ + B′∗, assume B =
{b1, . . . , bn} and B′ = {b′1, . . . , b′n′}. We can see that

Y −X = {(a′ − a) +
n′
∑

i=1

(t′ib
′
i)−

n
∑

j=1

(tjbj)|t′i, tj ∈ N} ∩ N
k

It is similar to the “X ∩Y ” case. We can get the representation after solving the system
of linear diophantine equations:

(a′ − a) +
n′
∑

i=1

(t′ib
′
i)−

n
∑

j=1

(tjbj) =
k
∑

i=1

xiei

in which t′i, ti, xi are variables.
“X”: Assume X = a + B∗. For x ∈ N

k, if ∃bi ≤ x, then we can get the vector
x − bi still in N

k. Repeat this operation and finally we will get some x′ ∈ m(B). By
Lemma 4, a closed representation of m(B) is computable, denoted by

⋃

j(aj + B∗j ).
Thus, N

k is decomposed as:

N
k =

⋃

j

(aj +B∗j +B∗)

Assume we get a′ ∈ m(B) from a, a = a′+
∑n

i=1 ribi, and a′ ∈ at+B∗t . Such a′ might
not be unique but computable and the quantity is finite. SinceX ⊆ (at +B∗t +B∗),X
can be expressed as:

X =
⋃

a∈at+B∗
t +B∗

((at +B∗t +B∗)\X) ∪
⋃

j �=t

(aj +B∗j +B∗)



On Model Checking Boolean BI 313

(at + B∗t ) ∩B∗ = ∅ follows that (at +B∗t + B∗)\X contains two part: elements that
do not belong to a′ + B∗, and elements that belong to a′ + B∗ but are smaller than
a. The former can be expressed as ((at + B∗t )\{a′}) + B∗, and the latter is finite, all
semi-linear sets. It is easy to see that if there are more than one such a′ belong to the
same at +B∗t , we only need to consider one of them. This concludes our argument. ��

Mention that to decide whether two semi-linear sets overlap, we only need to compute
their intersection, which is already solved. Thus, we have provided a way to decide
whether [m]R ⊆ α−1(ρ(ϕ)), which is equivalent to m |= ϕ. It follows that the model
checking problem in this case is decidable.

As stated in Proposition 4, generating the closed representation of a congruence class
or the set defining a proposition costs exponential space. Solving the system of linear
diophantine system and other operations do not exceed the exponential space upper
bound. Thus the overall space cost is at most exponential w.r.t. the length of ϕ and the
sizes ofm, R, and all propositions appeared in ϕ.

To get the complexity lower bound, we need to introduce the word problem of
monoid. For a monoid, the word problem is to decide whether two words are in the
same congruence class. In a f.g. commutative monoid M = (X ;R), for two words u
and v, if u =

∏n
i=1 x

ri

i and v =
∏n

i=1 x
si

i (ri, si ∈ N), then the word problem is equal
to check whether v |=

∏n
i=1 p

ri
xi

or ε |=
∏n

i=1 p
ri
xi
−∗
∏n

i=1 p
si
xi

. It is known that the
word problem in a commutative monoid is EXPSPACE-complete (cf. [24]). Thus, the
model checking problem is EXPSPACE-hard.

In summary, the model checking problem for f.g. monoids under our restriction of
propositions is EXPSPACE-complete. Together with Lemma 2 and Redei’s theorem
[17], we conclude that:

Theorem 2. The model checking problem for finitely related monoid against BI formu-
lae in which only generator propositions appear is EXPSPACE-complete.

Remarks. If we want to do model checking in a partial monoid, first define a special
element π as stated before (Section 2). Then generate ρ(ϕ) normally, except that after
computing every representation of the set specified by the subformula of ϕ, eliminate
the component corresponding to π. Compute the congruence class [m] normally and it
is easy to see it does not contain π. Thus the partial monoid can be model checked like
total monoid.

5 Additional Remarks

In this section we provide additional remarks, along with some discussion of related
works and future work.

5.1 Fragments and Complexity

It is natural to ask whether the complexity lower bound of EXPSPACE could be reduced
if we only concern about some fragment of BI or for some special monoid. From our
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reduction, as long as the multiplicative conjunction or implication is considered, the
complexity cannot be lower.

For f.g. free monoid under our restriction of propositions, the model checking prob-
lem is PSPACE-complete. Indeed, the PSPACE-hardness follows from the result in [8],
since their proof of PSPACE-hardness does not employ any essential property of the
predicate or the partiality. For example, we can treat x %→ nil,nil as generator
proposition px. The upper bound results from the fact that the cost of exponential space
is caused by computing the congruence class, which is a singleton set in free monoid.

5.2 Automata Theory

Recall that Kleene theorem asserts that in a free commutative monoid, the class of
rational set is equal to the class of set which can be recognized by finite automata. It
is shown that in the case of finitely generated commutative monoid, Kleene Theorem
holds in a monoid iff it is rational (cf. [30]). For a BI formular ϕ, ρ(ϕ) is a rational set
in f.g. monoid. Thus ρ(ϕ) is recognizable by finite automata in a rational monoid. If
we extend BI with a new connective to characterize the set X∗ in the monoid, then a
set S is rational iff there is a ϕ that S = ρ(ϕ). Hence the language generated by this
kind of BI formula cannot be recognizable by finite automata in non-rational monoid.
As a comparison, it is shown that all languages generated by context logic formulae are
recognizable by finite automata (cf. [5]).

5.3 Model Checking Mobile Ambient

In [12,13,11], it is shown that if the calculus contains repetition or the logic contains
guarantee, the model checking problem is not decidable. The model they treated is a free
monoid if we omit the nesting of ambients. The guarantee connective is a counterpart of
multiplicative implication in BBI. The repetition is just a counterpart of the connective
discussed in Section 5.2 above. Introducing such a connective in BBI does not affect the
decidability of model checking problem for rational monoids, and hence free monoids.
Thus, the undecidability of their problem resulted from the nesting of ambients.

5.4 Model Checking BI and CBI

Our discussion is restricted in the domain of BBI. In the general monoid model of
BI, the interpretation of a formula is intuitionistic, according to a partial order, which
makes the structure of the model and the model checking problem more complicated.
The result showed here is just a special case. Maybe some requirement like ascending
chain condition is needed to obtain a decidability result.

Another line of future work is to solve the model checking problem for Classical BI
(CBI) (cf. [4]), which is an extension of BBI. In CBI, the model is more organized, sim-
ilar as an inverse monoid or a cancellative monoid. Thus, the decidable condition might
be loosened and the complexity might be reduced. Furthermore, the model adopted in
CBI is relational monoid. It is a generalization of partial and total monoid and was in-
troduced in [18]. The model checking problem in this semantic setting needs further
analysis.



On Model Checking Boolean BI 315

Acknowledgements

This work is supported by the National Grand Fundamental Research 973 Program
of China under Grant No.2009CB320701, the National Natural Science Foundation of
China under Grant No.60873061, and the National 863 Plans Projects of China under
Grant No.2006AA01Z160.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer,
Heidelberg (2004)

2. Biri, N., Galmiche, D.: A separation logic for resource distribution. In: Pandya, P.K., Rad-
hakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 23–37. Springer, Heidelberg
(2003)

3. Bozga, M., Iosif, R., Perarnau, S.: Quantitative separation logic and programs with lists. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
34–49. Springer, Heidelberg (2008)

4. Brotherston, J., Calcagno, C.: Classical bi: a logic for reasoning about dualising resources.
In: Proc. 36th ACM Symp. Principles of Prog. Lang (POPL 1909), pp. 328–339. ACM Press,
New York (2009)

5. Calcagno, C., Dinsdale-Young, T., Gardner, P.: Decidability of context logic (unpublished)
(2008), http://www.doc.ic.ac.uk/˜ccris/ftp/decidCL.pdf

6. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. In: Proc. 32th ACM
Symp. Principles of Prog. Lang (POPL 2005), pp. 271–282. ACM Press, New York (2005)

7. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic as modal logic: completeness and para-
metric inexpressivity. In: Proc. 34th ACM Symp. Principles of Prog. Lang (POPL 2007), pp.
123–134. ACM Press, New York (2007)

8. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a spa-
tial assertion language for data structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001)

9. Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients. In: Proc.
27th ACM Symp. Principles of Prog. Lang (POPL 2000), pp. 365–377 (2000)

10. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
11. Charatonik, W., Dal Zilio, S., Gordon, A.D., Mukhopadhyay, S., Talbot, J.-M.: The complex-

ity of model checking mobile ambients. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001.
LNCS, vol. 2030, pp. 152–167. Springer, Heidelberg (2001)

12. Charatonik, W., Dal-Zilio, S., Gordon, A.D., Mukhopadhyay, S., Talbot, J.-M.: Model check-
ing mobile ambients. Theor. Comput. Sci. 308(1-3), 277–331 (2003)

13. Charatonik, W., Talbot, J.-M.: The decidability of model checking mobile ambients. In:
Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 339–354. Springer,
Heidelberg (2001)

14. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 2. The American
Mathematical Society (1967)

15. Domenjoud, E., Lorraine, I.: Solving systems of linear diophantine equations: An alge-
braic approach. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 141–150. Springer,
Heidelberg (1991)

16. Eilenberg, S., Schutzenberger, M.-P.: Rational sets in commutative monoids. J. Algebra
13(2), 173–191 (1969)

http://www.doc.ic.ac.uk/~ccris/ftp/decidCL.pdf


316 H. Guo et al.

17. Freyd, P.: Redei’s finiteness theorem for commutative semigroups. Proc. of the AMS 19,
1003 (1968)

18. Galmiche, D., Larchey-Wendling, D.: Expressivity properties of boolean BI through rela-
tional models. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
357–368. Springer, Heidelberg (2006)
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Abstract. The prediction of resource consumption in programs has
gained interest in the last years. It is important for a number of ar-
eas, notably embedded systems and safety critical systems. Different
approaches to achieve bounded resource consumption have been anal-
ysed. One of them, based on an amortised complexity analysis, has been
studied by Hofmann and Jost in 2006 for a Java-like language.

In this paper we present an extension of this type system consisting
of more general subtyping and sharing relations that allows us to type
more examples. Moreover we describe efficient automated type-checking
for a finite, annotated version of the system. We prove soundness and
completeness of the type checking algorithm and show its efficiency.

Keywords: Type systems, Resource analysis, Semantics, OOP.

1 Introduction
The prediction of resource consumption in programs has gained interest in the
last years. It is important for a number of areas, in particular embedded sys-
tems and mobile computing. A variety of approaches to resource analysis have
been proposed based in particular on recurrence solving [AAG+07, Gro01],
abstract interpretation [GL98, NCQR05], sized types [HP99], and amortised
analysis [HJ03, HJ06, Cam08].

The amortised approach which the present paper belongs to is particularly
useful in situations where heap-allocated data structures must be costed whose
size is proportional to parts of the input. Typical examples are various sorting
algorithms where trees, lists, or heaps appear as intermediate data structures.
In such cases amortised analysis can infer very good bounds based on intu-
itive programmer annotations in the form of types and the solution of linear
inequations.

In [HJ06] amortised analysis has been applied to a Java-like class-based object-
oriented language without garbage collection, but with explicit deallocation sim-
ilar to C’s free(). The evaluation of such programs is carried out by maintaining
a set of free memory units called freelist. When an object is created, a number
of heap units required to store it is taken from the freelist if it contains enough
units, otherwise the program execution is aborted. Finally, each deallocated heap
unit is returned to the freelist.
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The goal of the analysis is to predict a bound on the initial size that the
freelist must have so that a given program may be executed without causing
unsuccessful abortion due to insufficient memory. This has been achieved by
combining amortized analysis [Tar85, Oka98] with type-based techniques in order
to define potentials.

Essentially each object is ascribed an abstracted portion of the freelist, re-
ferred to as potential, which is just a number, denoting the size of freelist por-
tion associated with the object. Any object creation must be paid for from the
potential in scope. The initial potential thus represents an upper bound on the
total heap consumption.

While type inference and automated type checking have already been de-
veloped for a functional language within the EmBounded Project ([HDF+05],
[HBH+07]), most of the properties of the type system for the Java-like language
(called Resource Aware JAva – RAJA) are still unknown.

This paper provides algorithmic typing rules for that system. We prove sound-
ness and completeness of algorithmic typing with respect to the declarative typ-
ing from [HJ06]. This allows for automatic type checking under relatively mild
annotations. In particular, we automatically construct types arising from sharing
and conditionals which had to be provided manually beforehand. This enables
a realistic implementation of the system which we also provide.

The notion of subtyping we use is slightly more flexible than the one from
[HJ06] and thus allows more examples to be typed. Semantic soundness of the
improved system is a direct extension of the soundness proof in [HJ06] and can
be found in the following manuscript: [HJR].
Contents. Section 2 describes briefly the system RAJA and motivates it
with some examples. In Section 3 we define the type-checking algorithm
and show its soundness and completeness w.r.t. the declarative system. We
then argue that typechecking can be performed efficiently, i.e. in small-degree
polynomial time. Finally, in Sections 4 and 5, we discuss future and related work.

2 FJEU and RAJA

Our formal model of Java, FJEU, is an extension of Featherweight Java (FJ)
[IPW99] with attribute update, conditional and explicit deallocation. It is thus
similar to Classic Java [FKF98]. An FJEU program C is a partial finite map from
class names to class definitions, which we also refer to as class table. Each class
table C implies a subtyping relation <: among the class names in the standard
way by inheritance. The syntax of FJEU is given in Fig. 1. The let-normal form
of terms was merely chosen to eliminate boring redundancies from our proofs. In
our implementation we transform nested expressions into let-normal form and
infer a type for the let expressions by a simple preprocessing.

We will use a couple of shorthand notations: We write S(C) to denote the
super-class D of a class C, provided that C has a super-class. We write A(C) to
denote the ordered set of attributes of C, including inherited ones, i.e. A(C) :=
{a1, . . . , ak} ∪̇A(D). We write C.ai to denote the class type of each attribute ai

of class C. Similarly we write M(C) to denote the set of all defined method names
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c ::= class C [extends D] {A1; . . . ; Ak; M1 · · ·Mj}
A ::= C a
M ::= C0 m(C1 x1, . . . , Cj xj){return e; }
e ::= x (Variable)

| null (Constant)
| new C (Construction)
| free(x) (Destruction)
| (C)x (Cast)
| x.ai (Access)
| x.ai<-x (Update)
| x.m(x1, . . . , xj) (Invocation)
| if x instanceof C then e1 else e2 (Conditional)
| let C x = e1 in e2 (Let)

Fig. 1. The syntax of FJEU

of C, including inherited ones. For a method m of class C we write Mbody(C,m)
to denote the term that comprises the method body of method m and C.m to
denote the method type of m in class C. We base our statical resource analysis
on the standard operational semantics that can be found in [HJR].

Example 1 (Copy of singly-linked lists). Suppose we have defined a class of singly-
linked lists in an object-oriented style which harnesses dynamic dispatch to obtain
the functionality of pattern-matching.Most programmerswould use this style only
for more complex tree-like data structures relying on “null” to model the empty
list. We use it here in order to have a simple enough running example.

class List { List copy(){return null;} }

class Nil extends List { List copy() { return this; }}

class Cons extends List { int elem; List next;

List copy(){ let List res = new Cons in

let List res1 = res.elem <- this.elem in

let List res2 = res1.next <- this.next.copy() in return res2;}}

2.1 The System RAJA

Definition 1. A RAJA program is an annotation of an FJEU class table C in
the form of a sextuple R = (C ,V ,♦(·),Aget(· , ·) ,Aset(· , ·) ,M(· , ·)) specified as
follows:

V is a possibly infinite set of views. A RAJA class or refined type consists of
a class C and a view r and is written Cr. We use the letters r, s, p, q to denote
views. The meaning of views is given by the maps:

1. ♦(·) assigns to each RAJA class Cr a number ♦(Cr) ∈ D, where D = Q
+ ∪∞.

2. Aget(· , ·) and Aset(· , ·) assign to each RAJA class Cr and attribute a ∈ A(C)
two views q = Aget(Cr, a) and s = Aset(Cr, a).

3. M(· , ·) assigns to each RAJA class Cr and method m ∈ M(C) having method
type E1, . . . , Ej → E0 a j-ary polymorphic RAJA method type M(Cr,m). A j-
ary polymorphic RAJA method type is a (possibly empty or infinite) set of j-
ary monomorphic RAJA method types. A j-ary monomorphic RAJA method
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type consists of j+1 views and two numbers p, q ∈ D, written r1, . . . , rj p/q−→r0.
We sometimes write Er1

1 , . . . , E
rj

j
p/q−→Er0

0 to denote an FJEU method type
combined with a corresponding monomorphic RAJA method type.

We introduce views and RAJA classes because we want to be able to assign
objects of the same class different potentials.The number ♦(·) will be used to
define the potential of a heap configuration under a given static RAJA typing.
The exact definition is omitted here for lack of space and can be found in [HJR].
Essentially, the potential of a program state is the sum of the annotations of all its
objects determined by their RAJA-type. Each access path (alias) to an object
makes a separate contribution to that sum. In reasonable typings of circular
data structures one arranges that all but finitely many paths make a nonzero
contribution.

IfD = C.a is the FJEU type of attribute a in C then the RAJA classDAget(Cr,a)

will be the type used when reading a, whereas the (intendedly stronger) type
DAset(Cr,a) must be used when updating a. The stronger typing is needed since
an update will possibly affect several aliases.

If a method m has a RAJA method type Er1
1 , . . . , E

rj

j
p/q−→Er0

0 then it may be
called with arguments v1 : Er1

1 , . . . , vj :Erj

j , whose associated potential will be
consumed, as well as an additional potential of p. Upon successful completion the
return value will be of type Er0

0 hence carry an according potential. In addition
to this a potential of another q units will be returned.

Example 2 (RAJA annotation of copy of singly-linked lists).
We aim at analysing the heap-space requirements of the program of Example 1.
It is clear that the memory consumption of a call l.copy() will equal the length
of the list l. To calculate this formally we use a view rich which assigns to
List itself the potential 0, to Nil the potential 0 and to Cons the potential 1.
Another view is needed to describe the result of copy() for otherwise we could
repeatedly copy lists without paying for it. Thus, we introduce another view
poor that assigns potential 0 to all classes. In the following we show the RAJA
annotation of Example 1 in the syntax of our implementation.
class List { rich, poor : pot = 0;

rich : List<poor>,0 copy(0) { return null; }

}

class Nil extends List { rich, poor : pot = 0;

rich : List<poor>,0 copy(0) { return this; }

}

class Cons extends List { rich : pot = 1; poor : pot = 0;

rich : List<rich,rich> next;

poor : List<poor,poor> next;

rich, poor: int elem;

rich : List<poor>,0 copy(0) { let List res = new Cons in

let List res1 = res.elem <- this.elem in

let List res2 = res1.next <- this.next.copy() in return res2; }

}
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The RAJA type of the method copy states that it is only defined in Listrich,
Nilrich and Consrich, but not in, e.g., Listpoor. It will consume the potential of this
and no additional potential. Upon successful completion the return value will
be of type Listpoor hence carry potential 0. In addition to this the method will
return no more potential. Thus, the typing amounts to saying that the memory
consumption of every call to copy is bounded by the potential of this, that in
case of Consrich is equal 1 and in case of Nilrich is equal 0. If a list of length n is
to be copied, the method will be called n+ 1 times, and the potential consumed
will be bounded by n. More examples can be found in the RAJA web page [raj].

RAJA Subtyping Relation. RAJA subtyping is an extension of FJEU sub-
typing (<:), which is based on inheritance. We provide here a new definition
of subtyping w.r.t. [HJ06]. There, a subtyping relation r � s on views was de-
fined, based on all classes of the class table. Then, subtyping of RAJA classes
Cr <: Ds was defined as C <: D and r � s. This made subtyping unnecessarily
rigid. For example Nilrich <: Nilpoor did not hold because rich � poor did not hold
due to the class Cons. The new subtyping relation is defined directly on refined
types. However, the straightforward definition where Cr <: Ds only depends on
C and D is unsound. It is necessary to analyse the subclasses of C and D as well
because resource usage is determined by the dynamic type of the expressions.

Definition 2 (Subtyping of RAJA types). We define a preorder <: on
RAJA types Cr, Ds where C <: D in C and r, s ∈ V , as the largest relation
(Cr <: Ds) such that Cr <: Ds ⇐⇒ for each E <: C, F <: D with E <: F :

♦(Er) ≥ ♦(F s) (2.1)

∀a ∈ A(F ) . (F.a)A
get(Er,a) <: (F.a)A

get(F s,a) (2.2)

∀a ∈ A(F ) . (F.a)A
set(F s,a) <: (F.a)A

set(Er,a) (2.3)

∀m ∈ M(F ) . ∀β ∈ M(F s,m) . ∃α ∈ M(Er,m) . (F.m)α <: (F.m)β (2.4)

where we extend <: to monomorphic RAJA method types as follows:

Definition 3 (Subtyping of RAJA methods). If D.m = E1, . . . , Ej → E0,
α = r1, . . . , rj

p/q−→r0 and β = s1, . . . , sj
t/u−→s0 then (D.m)α <: (D.m)β is defined

as p ≤ t and q ≥ u and Er0
0 <: Es0

0 and Esi

i <: Eri

i for i = 1, . . . , j.

Sharing Relation. The sharing relation 
(· |· ) is important for correctly using
variables more than once. In a RAJA program, if a variable is to be used more
than once, then the different occurrences must be given different types which are
chosen such that the individual potentials assigned to each occurrence add up to
the total potential available for that variable. For example if we have l : Listrich

we can use the variable l with the types Lists1 and Lists2 if 

(

Listrich |Lists1 , Lists2
)

holds. In [HJ06] sharing was defined on views, i.e. 
(r |s1, . . . , sn ) which is less
flexible and precludes several examples.
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Definition 4 (Sharing Relation). We define the sharing relation between
a single RAJA type Cr and a multiset of RAJA types Ds1 , . . . , Dsn written

(Cr |Ds1 , . . . , Dsn ) as the largest relation 
, such that if 
(Cr |Ds1 , . . . , Dsn )
then for all E <: C, F <: D with E <: F :

♦(Er) ≥
∑

i

♦(F si) (2.5)

∀i . Er <: F si (2.6)

∀a ∈ dom(A(F )) .

(

(F.a)A
get(Er,a)

∣

∣

∣
(F.a)A

get(F s1,a), . . . , (F.a)A
get(F sn,a)

)

(2.7)

We define sharing similarly to subtyping, so that the following can be proved:
subtyping and sharing coincide when the multiset of RAJA types consists of
only one element.

Lemma 1. Cr <: Cs ⇐⇒ 
(Cr |Cs )

Typing RAJA. The RAJA-typing judgment is formally defined by the rules in
Figure 2. The type system allows us to derive assertions of the form Γ

n
n′ e : Cr

where e is an expression or program phrase, C is an FJEU class, r is a view (so Cr

is a refined type). Γ maps variables occurring in e to refined types; we often write
Γx instead of Γ (x). Finally n, n′ are nonnegative numbers. The meaning of such a
judgment is as follows. If e terminates successfully in some environment η and heap
σ with unbounded memory resources available then it will also terminate success-
fully with a bounded freelist of size at least n plus the potential ascribed to η, σ
with respect to the typings in Γ . Furthermore, the freelist size upon termination
will be at least n′ plus the potential of the result with respect to the view r.

The typing rules extend the typing rules of FJEU. The most interesting ones are
(♦Share) and (♦Waste). First we notice that they are not syntax directed. Thus,
they need to be eliminated when we come to implement the system in the next
section. (♦Waste) corresponds to the rule of subsumption of subtyping systems
and weakens context, type, and effect. Herein, Γ <: Θ means ∀x ∈ Θ .Γx <: Θx.

The purpose of the (♦Share) rule is to ensure that a variable can be used
twice without duplication of potential. Suppose we have the following expression:

Γ, l :Listrich
n
n′ let nl = l.copy() in l.copy() : Listpoor (2.8)

If we allow the second call to the copy method we would be creating objects
without “paying” for it, which would be unsound. Since the method copy is
only defined for the view rich, the only possibility of typing (2.8) would be
that 


(

Listrich
∣

∣Listrich, Listrich
)

would hold, but it does not because ♦
(

Consrich
)

<

♦
(

Consrich
)

+ ♦
(

Consrich
)

. Notice that the declarative type system as it is gives
no procedure to find those intermediate views. To actually find them in order to
implement the system is not trivial and will be discussed in the next section.

The judgment � m : α ok means that α is a valid RAJA type for a method
m if the method body of m can be typed with the arguments, return type and
effects as specified in α. Programs, then, are well-typed if all method bodies
admit the announced type and, moreover, view and potential annotations are
compatible with subtyping. Formally,
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RAJA Typing Γ
n
n′ e : Cr

∅
♦(Cr) + 1

0 new C : Cr

(♦New)
x :Cr

0
♦(Cr) + 1 free(x) : Es

(♦Free)

C <: E

x :Er
0
0 (C)x : Cr

(♦Cast)
∅

0
0 null : Cr

(♦Null)
x :Cr

0
0 x : Cr

(♦V ar)

s = Aget(Cr, a) D = C.a

x :Cr
0
0 x.a : Ds

(♦Access)
Aset(Cr, a) = s C.a = D

x :Cr, y :Ds
0
0 x.a<-y : Cr

(♦Update)

Γ1
n
n′ e1 : Ds Γ2, x :Ds n′

n′′ e2 : Cr

Γ1, Γ2
n
n′′ let C x = e1 in e2 : Cr

(♦Let)

(

Eq1
1 , . . . , E

qj

j
n/n′
−−→Eq0

0

)

∈ M(Cr, m)

x :Cr, y1 :Eq1
1 , . . . , yj :Eqj

j

n
n′ x.m(y1, . . . , yj) : Eq0

0

(♦Invocation)

x ∈ Γ Γ
n
n′ e1 : Cr Γ

n
n′ e2 : Cr

Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Conditional)

	(Ds |Dq1 , . . . , Dqn ) Γ, y1 :Dq1 , . . . , yn :Dqn
n
n′ e : Cr

Γ, x :Ds
n
n′ e[x/y1, . . . , x/yn] : Cr

(♦Share)

n ≥ u n + u′ ≥ n′ + u Θ
u
u′ e : Ds Γ <: Θ Ds <: Cr

Γ
n
n′ e : Cr

(♦Waste)

RAJA Method Typing � m : α ok

m ∈ M(C) α = Er1
1 , . . . , E

rj

j
n/n′
−−→Er0

0 ∈ M(Cr, m) 	(Cr |Cq, Cs )

this :Cq, x1 :Er1
1 , . . . , xj :Erj

j

n + ♦(Cs)
n′ Mbody(C, m) : Er0

0
(♦MBody)� m : α ok

Fig. 2. Typing RAJA

Definition 5 (Well-typed RAJA-program). A RAJA-program
R = (C ,V ,♦(·),Aget(· , ·) ,Aset(· , ·) ,M(·, ·)) is well-typed if for all C ∈ C and
r ∈ V the following conditions are satisfied:

1. S(C) = D ⇒ Cr <: Dr

2. ∀a ∈ A(C) . (C.a)A
set(Cr,a) <: (C.a)A

get(Cr,a)

3. ∀m ∈ M(C) . ∀α ∈ M(Cr,m) . � m : α ok
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2.2 Algorithmic Views and Complete RAJA Programs

In this section we define algorithmic views which provide least upper and greatest
lower bounds for subtyping restricted to refinements of a fixed FJEU type and
also a formal addition operation on these refinements allowing us to infer the
necessary type of a variable from the types of its (multiple) occurrences. Finally,
they include operations to construct the intermediate views in method typings.

Recall the copy method of Example 2. We need one item of potential in order
to create a Conspoor object . We said before that this object creation will be payed
with the potential of this, but how exactly? In order to use the potential of the
variable this of RAJA-class Consrich, we put it in the context with a modified
type, for example, Consrich

.
−1, which is a view defined just like rich but with

potential 0 everywhere. Moreover we find another view with potential 1, which
we call 1(rich), such that 


(

Consrich
∣

∣

∣Consrich
.
−1,Cons1(rich)

)

holds. Then we can
derive: this :Consrich

.
−1 1

0 let List res = new Conspoor in . . . in return res;
The declarative rule gives no information about how to find the views q and

s. In order to find them algorithmically, we will introduce special algorithmic
views like rich

.
− 1 and 1(rich).

Definition 6 (Algorithmic views). Let R be a RAJA-program. We extend
the given set of views V by algorithmic views
δ, γ ::= s1 ∨ s2 | s1 ∧ s2 | s1 + s2 | s

.
− n | n(s) s, s1, s2 ∈ V , n ∈ D

by extending the given maps ♦(·),Aget(· , ·), Aset(· , ·), M(·, ·) according to Fig. 3.

Definition 7 (Complete RAJA-program). A RAJA-program
R = (C ,V ,♦(·),Aget(· , ·) ,Aset(· , ·) ,M(·, ·)) is complete if the following condi-
tions are satisfied. Let ∗ ∈ {∧,∨,+}.

1. s1 ∗ s2 ∈ V , for all s1, s2 ∈ V .
2. s

.
− n, n(s) ∈ V , for all s ∈ V , n ∈ D.

3. The annotation table of R satisfies the equations from Def. 6.

Given a RAJA program R we can complete it with algorithmic views. Cs1∨s2 is
the least upper bound of Cs1 and Cs2 and Cs1∧s2 is the greatest lower bound
of Cs1 and Cs2 . Cs1+s2 is defined such that 
(Cs |Cs1 , Cs2 ) is equivalent to
Cs <: Cs1+s2 . This way we can deal only with subtyping instead of sharing,
which is simpler and more intuitive. Finally, the views n(s) are neutral views
of potential n and set-views like s. They are intended to be used together with
the views s

.
− n, which are nothing but the view s, with n units of potential

stripped-off. This way, we get 

(

Cs
∣

∣

∣Cs
.
−n, Cn(s)

)

. These algorithmic views are
useful for implementing � m :α ok. If we need to use n units of potential of the
type Cs of this in the method body of a given method, we give this the type
Cs

.
−n and use the potential of Cn(s) in the method.
Of course, we are free to use the algorithmic views from the beginning and

in particular in the provided class and method typings. They may be seen as a
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Let C ∈ C , a ∈ A(C) and m ∈ M(C). We set:

♦(Cs1∧s2) = max( ♦(Cs1), ♦(Cs2))
♦(Cs1∨s2) = min( ♦(Cs1), ♦(Cs2))
♦̀ Cs1+s2

´
= ♦(Cs1) + ♦(Cs2)

♦
“
Cn(s)

”
= n

♦
“
Cs

.
−n

”
=

j
♦(Cs)

.
− n ♦(Cs) ≥ n

0 otherwise

M(Cs1∧s2, m) = M(Cs1, m) ∩ M(Cs2, m)
M(Cs1∨s2, m) = M(Cs1, m) ∪ M(Cs2, m)
M

`
Cs1+s2, m

´
= M(Cs1, m) ∩ M(Cs2, m)

M
“
Cn(s), m

”
= ∅

M
“
Cs

.
−n, m

”
= M(Cs, m)

Aget(Cs1∧s2, a) = Aget(Cs1, a) ∧ Aget(Cs2, a)
Aget(Cs1∨s2, a) = Aget(Cs1, a) ∨ Aget(Cs2, a)
Aget̀ Cs1+s2, a

´
= Aget(Cs1, a) + Aget(Cs2, a)

Aget
“
Cn(s), a

”
= 0(s)

Aget
“
Cs

.
−n, a

”
= Aget(Cs, a)

Aset(Cs1∧s2, a) = Aset(Cs1, a) ∨ Aset(Cs2, a)
Aset(Cs1∨s2, a) = Aset(Cs1, a) ∧ Aset(Cs2, a)
Aset̀ Cs1+s2, a

´
= Aset(Cs1, a) ∨ Aset(Cs2, a)

Aset
“
Cn(s), a

”
= Aset(Cs, a)

Aset
“
Cs

.
−n, a

”
= Aset(Cs, a)

Fig. 3. Definition of ♦(·), Aget(· , ·) , Aset(· , ·) , M(· , ·) of algorithmic views

shorthand for a longer table which includes them explicitly. We stress, though,
that efficient type checking for incomplete programs is not possible with the
techniques from this paper.

We do not consider typechecking of incomplete programs to be of any practi-
cal relevance. The following lemma summarizes the desirable order- and proof-
theoretic properties of algorithmic views:

Lemma 2. Let C,D ∈ C and s, s1, s2, . . . , sn, q1, q2, . . . , qn ∈ V .

1. Cs1∨s2 is the least upper bound of Cs1 and Cs2 .
2. Cs1∧s2 is the greatest lower bound of Csi .
3. 
(Cs |Cs1 , . . . , Csn ) ⇐⇒ Cs <: Cs1+...+sn .
4. If Cs <: Cs1+...+sn and Csi <: Cqi for all i, then Cs <: Cq1+...+qn .
5. Cs+0(s) = Cs.
6. If n ≤ ♦(Cs) then 


(

Cs
∣

∣

∣Cs
.
−n, Cn(s)

)

. Moreover, 
(Cs |Cs1 , Cs2 ) and

♦(Cs2) ≥ n imply Cs
.
−n <: Cs1 .

Algorithmic typechecking now faces one more obstacle. Officially, one method
can have infinitely many RAJA types. This does not compromise semantic type
soundness, but must of course be restricted to finitely many to enable algorithmic
type checking.

Moreover, the rule (♦Invocation) chooses non-deterministically one
monomorphic RAJA method type according to the given method call. In or-
der for algorithmic typing to be efficient (not NP-complete) we need to make
sure that there is an optimal such choice in any situation.

Definition 8. If α = r1, . . . , rj
p/p′

−−→r0 and β = s1, . . . , sj
n/n′

−−→s0 then α � β iff
p ≤ n and p− p′ ≤ n− n′.
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Definition 9. A RAJA-program is algorithmic if it is finite, complete, and for
all C, r,m the set M(Cr,m) is totally ordered by the ordering in Def. 8.

From now on we assume that all RAJA-programs are algorithmic without explicit
notice.

3 Algorithmic Typing of RAJA Programs

In this section we present an algorithm for typechecking RAJA programs. Al-
gorithmic type-checking must consist of syntax directed rules, thus, the rules
(♦Share) and (♦Waste) must be integrated in other rules. Instead of using
(♦Waste), we integrate subtyping in the rules.

The purpose of the (♦Share) rule is to ensure that a variable can be used more
than once without unsound incrementation of potential. The main challenge for
implementing it is that it contains no information about how to find the views q1
to qn for the different occurrences. The current implementation does not include
inference of these views. Instead, every variable occurrence has been annotated
with the corresponding view, which can be an algorithmic view. The task of
the type checker is then to check the correctness of the given sharing, or, more
exactly, since, as we saw in last section, using algorithmic views a sharing task
can be reduced into a subtyping task, the algorithm checks only subtyping. The
inference of these intermediate views remains under investigation.

The computed resource annotations in rules ( � Let) and ( � Cond.) are a
bit intricate. Ultimately, they are justified by soundness and completeness. Rule
(�Let) may be easier to understand if broken down into the two casesm ≥ n′ and
m < n′. In the latter case the output of the first computation suffices to satisfy
the second one. In the former case extra input potential must be provided for
the second computation. In rule (�Cond.) we must cater for both computations,
hence the max and the min. The adaptations u−n and u−m cater for the case
where, say, m ≥ n units were provided due to the max, yet the first branch of
the conditional was taken hence only n units “used” and vice versa.

In the rule ( � Inv.) we choose the minimal RAJA monomorphic type that
satisfies the subtyping conditions. Since the algorithmic system considers only
finite programs and the set of RAJA monomorphic types is totally ordered
according to �, every nonempty subset of M(Gr,m) has a minimal element.

We define the judgment ΔΨ n
n′ e◦ ⇔ Cγ inductively by the rules in Figure 4,

where Δ, e◦ and Cγ are inputs and Ψ , n and n′ are outputs. Δ is an FJEU
context, i.e. a map from variable names to FJEU types. Ψ is a map from variable
names to algorithmic views. Cγ is an algorithmic RAJA type, which is an FJEU
class refined with an algorithmic view and e◦ is an annotated FJEU expression.

The notation ΔΨ means that for every variable x ∈ Δ, if Δx = C and Ψx = δ
then ΔΨ

x = Cδ. We also use the notation ΔΨ1+Ψ2 for meaning that if ΔΨ1
x = Cδ1

and ΔΨ2
x = Cδ2 then ΔΨ1+Ψ2

x = Cδ1+δ2 . The meaning of ΔΨ1∧Ψ2 is similar. We
write x :Cr ,+ y :Ds for the following two cases. The usual case is x �= y and then
it means nothing but x :Cr , y :Ds. On the other hand, if x = y, then C = D too,
and the notation means x :Cr+s. We write ΔΨ∅ for meaning ΔΨ∅

x = C0(s) where
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Δx = C and s is one of the view annotations of x or any view if x is not used in
the program. The idea is to return neutral views for variables that are not used
in the given expression. Finally, let e◦ denote an annotated RAJA expression.
In summary, we define the partial function typecheck(Δ, e◦, Cγ) (Fig. 4).

Next, we define the algorithmic judgment �a m : α ok based on algorithmic
typing. (Fig. 4). The typechecking algorithm returns a greater context than the
declared one. This has to be checked. Moreover, it calculates the space consump-
tion u of the method body. If u ≤ n then n items are enough and we do not need
any potential from this. Otherwise, we calculate how many items of potential
we need from this, i.e. p = u

.
− n, and we of course have to check whether the

potential of this is at least p. Finally, the amount of freelist units u′ released by
the expression should be at least n′ + u− (n+ p).

In the following we show that the algorithmic typing system we just defined
is correct w.r.t. the declarative typing system of RAJA. If Γ is a RAJA context,
we write |Γ | for meaning its underlying FJEU context.

Lemma 3 (Soundness of algorithmic RAJA typing)
If ΔΨ n

n′ e◦ ⇔ Cγ then ΔΨ n
n′ e : Cγ .

Proof By induction on algorithmic typing derivations, using the (♦Waste) rule
and Lemma 2.

Lemma 4 (Soundness of algorithmic RAJA method typing). Given a
RAJA type Cr, a method m ∈ M(C) and a RAJA method type α ∈ M(Cr,m), if
�a m : α ok then � m : α ok.

Proof. Follows by Lemma 3.

The completeness proof is a bit more complicated than the soundness proof. The
reason for this is that we have eliminated the rules (♦Share) and (♦Waste) and
we have to show that typing derivations that use these rules are still admissible in
the algorithmic system. The following lemma states the admissibility of sharing
in the algorithmic system.

Lemma 5 (Share). Let ΔΨ , y1 :Dδ1 , . . . , yn :Dδn
n
n′ e◦ ⇔ Cγ . Then ΔΨ , x :

Dδ n
n′ e[x/y1, . . . , x/yn]◦ ⇔ Cγ where either δ = δ1+. . .+δn or δ = δ1∧. . .∧δn.

Proof. By induction on algorithmic typing derivations.

Lemma 6 (Waste). Let ΛΨ u
u′ e◦ ⇔ Dγ, Dγ <: Cδ and Δ <: Λ then

ΔΨ w
w′ e◦ ⇔ Cδ for some w ≤ u and w′ ≥ u′ + w − u.

Proof. By induction on algorithmic typing derivations.

Lemma 7 (Completeness of algorithmic RAJA typing).
If Γ n

n′ e : Cr then there is an annotated version e◦ of the expression e with
|Γ |Ψ u

u′ e◦ ⇔ Cr for some u ≤ n and u′ ≥ n′ + u− n so that Γ <: |Γ |Ψ .

Proof. By induction on typing derivations, using Lemma 5 and 6.



328 M. Hofmann and D. Rodriguez

Algorithmic RAJA Typing ΔΨ n
n′ e◦ ⇔ Cr

Dγ <: Cγ

ΔΨ∅
♦(Dγ) + 1

0 new D ⇔ Cγ

(�New)
Eq <: Cγ

ΔΨ∅ , x :Eq
0
0 xq ⇔ Cγ

(�V ar)

ΔΨ∅ , x :Cq
0

♦(Cq) + 1 free (xq) ⇔ Eγ
(�Free)

D <: E (or E <: D) Dq <: Cγ

ΔΨ∅ , x :Eq
0
0 (D)xq ⇔ Cγ

(�Cast)
ΔΨ∅

0
0 null ⇔ Cγ

(�Null)

Aget(Cr, a) = q C.a = E Eq <: Dγ

ΔΨ∅ , x :Cr
0
0 xr.a ⇔ Dγ

(�Access)

Aset(Eq, a) = s E.a = D F p <: Ds Eq <: Cγ

ΔΨ∅ , x :Eq,+ y :F p
0
0 xq.a ← yp ⇔ Cγ

(�Update)

ΔΨ ′ n
n′ e◦

1 ⇔ Dγ1 ΔΨ ′′
, x :Dγ1

m
m′ e◦

2 ⇔ Cγ2

ΔΨ ′+Ψ ′′ max( n, n + m− n′)
max( m′, m′ + n′ −m) let D x = e◦

1 in e◦
2 ⇔ Cγ2

(�Let)

x ∈ Δ ΔΨ ′ n
n′ e◦

1 ⇔ Cγ ΔΨ ′′ m
m′ e◦

2 ⇔ Cγ u = max( m, n)

ΔΨ ′∧Ψ ′′ u
min( n′ + u− n, m′ + u−m) if x instanceof E then e◦

1 else e◦
2 ⇔ Cγ

(�Cond.)

p/p′ = arg min{
(

Eq1
1 , . . . , E

qj

j
p/p′
−−→Eq0

0

)

∈ M(Gr, m) | ∀i . F ti
i <: Eqi

i , Eq0
0 <: Cγ }

ΔΨ∅ , x :Gr ,+ y1 :F t1
1 ,+ . . . ,+ yj :F tj

j

p
p′ xr.m (yt1

1 , . . . , y
tj

j ) ⇔ Cγ

(�Inv.)

Typecheck function

typecheck(Δ, e◦, Cγ) =
{

(Ψ, n, n′) if ΔΨ n
n′ e◦ ⇔ Cγ

fail otherwise

Algorithmic RAJA Method Typing �a m : α ok

α = Er1
1 , . . . , E

rj

j
n/n′
−−→Er0

0 ∈ M(Cr, m)

this :Cβ , x1 :Eβ1
1 , . . . , xj :Eβj

j

u
u′ Mbody(C, m)◦ ⇔ Er0

0

Eri
i <: Eβi

i p = u
.
− n u′ ≥ n′ + u − (n + p) ♦(Cr) ≥ p Cr

.
−p <: Cβ

�a m : α ok

Fig. 4. Algorithmic RAJA Typing
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Lemma 8 (Completeness of algorithmic RAJA method typing). Given
a RAJA type Cr, a method m ∈ M(C) and a RAJA method type α ∈ M(Cr,m),
if � m : α ok then �a m : α ok.

Proof. Follows by Lemma 7.

Lemma 9 (Efficiency of algorithmic RAJA typing).
ΔΨ n

n′ e◦ ⇔ Cr is decidable in polynomial time.

Proof (sketch). The syntax-directed backwards application of the algorithmic
typing rules produces a linear number of subtyping and sharing constraints.
Furthermore, the algorithmic view expressions occurring in these constraints are
themselves of linear size. It then suffices to restrict attention to the views that
occur as subexpressions of the ones appearing in the constraints. Their num-
ber is therefore polynomial in the size of the program. A complete table of the
subtyping and sharing judgments for this relevant subset can then be computed
iteratively in polynomial time. In practice, a goal-directed implementation per-
forms even better.

Lemma 10. Given a RAJAclass C, a view r, a method m ∈ M(C) and a
RAJAmethod type α ∈ M(Cr,m), � m : α ok is decidable.

Proof. Follows by Lemmas 4, 8 and 9.

Theorem 1 (Decidability of RAJA typing). Given a RAJA -Program R,
its well-typedness is decidable.

Proof. Follows by Lemma 10.

4 Related Work

Since [HJ06] several authors have made contributions towards costing heap con-
sumption of object-oriented programs. [MP07] uses methods from abstract in-
terpretation and term rewriting (quasi interpretations) to estimate the size of
data structures and thus indirectly heap consumption. The approach is promis-
ing, but aliasing does not seem to have been taken into account properly and
not many examples are given. The interpretation of methods must be provided
manually.

COSTA [AAG+07] is similar in that it assigns cost functions to methods and
program parts. These refer directly to heap consumption and are given as so-
lutions of automatically constructed recurrence systems. The main contribution
of COSTA is an improved solver for these recurrences. COSTA is not as general
as RAJA which, however, is not fully automatic.

Another promising fully automatic system is [GMC09] which works by in-
strumenting code with resource-counting, integer-valued “ghost”-variables and
using modern tools from static analysis for estimating their range of values.
The examples given are stunning, but do not involve dynamically allocated data
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structures. With further progress with automatic analysis of arithmetic rela-
tionships between integer variables systems like SPEED may eventually render
type-based analyses obsolete. More likely, however, is a combination of the two.

Finally, Java(X) [DTW07] is a type system quite similar to RAJA and de-
veloped independently which has, however, a different purpose, namely ensuring
the correct usage of resources like files etc. according to a specified protocol. The
paper [DTW07] does not present algorithmic type checking, let alone automatic
type inference; it is likely that the algorithmic system presented here could be
adapted to Java(X).

5 Conclusions

We have provided a type checking algorithm for RAJA programs and proved
its correctness and efficiency in the sense of polynomial-time computability. In
order to do this, we introduced algorithmic views which render the subtyping
lattice more well behaved and could also be a useful addition to the declarative
system which is exposed to the programmer. In this way, we were able to get rid
of most type annotations in method bodies although we still have to indicate
the types of multiple occurrences of a variable, i.e., how the potential belonging
to the variable is to be split among the different occurrences.

The algorithmic typechecking and the implementation allow us to investigate
larger examples which might prompt further extensions to RAJA. In particu-
lar, we would like to investigate the typability of the Iterator pattern and more
challengingly patterns involving callbacks like Observer. From a pragmatic view-
point, polymorphic quantification over views could be a useful extension, too.

Of course, full-blown type inference is also on our agenda, thus potentially
rendering RAJA into a push-button analysis.
Acknowledgment. We acknowledge support by the EU integrated project MO-
BIUS IST 15905. We thank Andreas Abel, Lennart Beringer and Steffen Jost
for valuable comments.
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Abstract. We present a new saturation-based decidability result for
inductive validity. Let Σ be a finite signature in which all function sym-
bols are at most unary and let N be a satisfiable Horn clause set without
equality in which all positive literals are linear. If N ∪ {A1, . . . , An →}
belongs to a class that can be finitely saturated by ordered resolution
modulo variants, then it is decidable whether a sentence of the form
∀x.∃�y.A1 ∧ . . . ∧ An is valid in the minimal model of N .

1 Introduction

We consider the problem of deciding whether a formula φ holds in the minimal
model of a given satisfiable Horn clause set N over a signature Σ, or equivalently
whether N ∪ {¬φ} does not have a Herbrand model over Σ. If so, we write this
relation as N |=Ind φ. If all signature symbols are at most unary and all posi-
tive literals in N are linear, even first-order unsatisfiability is still undecidable:
Consider a Post correspondence problem over the alphabet {a, b} with given
word pairs (ui, vi). We model words by monadic terms over the unary function
symbols a, b with empty word 0. Then the PCP has a solution iff the following
Horn clause set is unsatisfiable:

→ PCP(0, 0) PCP(a(x), a(x)) →
PCP(x, y) → PCP(ui(x), vi(y)) PCP(b(x), b(x)) →

Equivalently, it has a solution iff {→ PCP(0, 0), PCP(x, y) → PCP(ui(x), vi(y))}
|=Ind ∃x.PCP(a(x), a(x)) ∨ PCP(b(x), b(x)). In this paper, we identify a range of
classes of clause sets and of query formulas for which validity in the minimal model
is decidable. The main result is as follows:

Let N be a satisfiable set of Horn clauses without equality over a finite sig-
nature Σ and let {A1, . . . , An} be a set of atoms over Σ, where

(1) all function symbols in Σ are at most unary,
(2) all positive literals in N are linear, i.e. every variable occurs at most once,

and
(3) N ∪ {A1, . . . , An →} belongs to a class that can be finitely saturated by

ordered resolution (with variant subsumption and tautology deletion).

Then the problem
N |=Ind ∀x.∃y1, . . . , ym.(A1 ∧ . . . ∧An)

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 332–347, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is decidable, where x, y1, . . . , ym are the variables in A1, . . . , An. There are no
restrictions on purely negative clauses as well as no restrictions on the struc-
ture of the terms appearing in negative literals. Instead of proving N |=Ind

∀x.∃y1, . . . , ym.(A1∧. . .∧An), we refute N |=Ind ∃x.∀y1, . . . , ym.¬(A1∧. . .∧An).
The result also holds for an arbitrary positive quantifier-free query formula φ

in disjunctive normal form
∨

i

∧

j Ai,j , i.e. the problem N |=Ind ∀∃∗φ is decidable
if N can be finitely saturated together with the clauses Ai,1, . . . , Ai,ni →.

The first-order unsatisfiability problem for Horn classes satisfying condi-
tions (1)–(2) is still undecidable, as the above encoding of the PCP shows.
Therefore, the basis of our decidability result is finite first-order saturation (3).
The side conditions (1)–(2) as well as the restriction to variant subsumption and
tautology deletion for the saturation process are needed for our current proof.
The latter is not an essential restriction, since most decidability results based on
saturation show termination by restricting the depth of the occurring terms and
the number of variables in each clause, which corresponds exactly to a saturation
modulo variants and tautologies (cf. e.g. [9]).

The proof of our result is constructive. We demonstrate it on the example

NG = { → G(s(s(0)), s(0)) ,
G(x, y) → G(s(x), s(y)) ,

G(s(x), s(y)) → G(x, y) }

with query ∀x.∃y.G(y, x). In the minimal model ofNG, the relation G is the “one
greater” relation on the naturals. The clause set NG satisfies conditions (1)–(2)
and can be finitely saturated by ordered resolution, generating one additional
clause → G(s(0), 0). It can also be finitely saturated after adding G(y, x) →.

In [11], we have presented a superposition-based calculus that is complete
in the limit for unsatisfiability of queries of the form ∃∗∀∗(A1, . . . , An →) with
respect to minimal models of Horn clause sets. The basic idea of the calculus is
to treat the existentially quantified variables via an additional constraint. The
result is a constrained query clause of the form �v≈�x ‖A1, . . . , An → where the
existential variables �v are replaced in the constrained clause by fresh universally
quantified variables �x. The generalized ordered resolution rule of the calculus
takes care of the compatibility of constraints (Section 3). For our example, we
obtain the constrained query clause v≈x ‖G(y, x) →.

In general, the algorithm of [11] does not terminate, i.e. it does not decide
(and not even semi-decide) whether a given query holds in a minimal model.
This even holds on a set N and a constrained query clause that satisfy con-
ditions (1)–(3). For the above example, we can generate infinitely many non-
redundant constrained clauses of the form v≈xσn ‖G(y, x) → and v≈xσnτ ‖�
for σ0 = {x 
→ x}, σn+1 = {x 
→ s(xσn)} and τ = {x 
→ 0}. The contri-
bution of this paper is to generalize our previously developed constraint lan-
guage [11] to substitution expressions for the existentially quantified variables
(Section 2). For example a constraint v≈xσ∗ represents all possible constraints of
the form v≈xσn. Together with conditions (1)–(3), this enables the termination
of the query saturation process (Proposition 8). The finite saturation result with
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variant subsumption and tautology deletion is essential for the proof.
For the above example, we obtain the two additional constrained clauses
v≈xσ∗ ‖G(y, x) → and v≈xσ∗τ ‖� for σ = {x 
→ s(x)}, τ = {x 
→ 0}.

What remains to be shown is that the substitutions in the constraints of all
derived constrained empty clauses are covering, i.e. represent all possible instan-
tiations for the variables �x: If this is the case, then the clause set does not have
a Herbrand model over the given signature. The conjunction of all regular sub-
stitution expressions for the constrained empty clauses can be transformed into
a monadic Horn clause set containing only linear clauses whose head literal con-
tains all variables of the clause (Section 4). The initial substitution expressions
are covering iff a certain predicate P introduced in the translation is the total
relation in the minimal model of the generated Horn clause set. For our example,
this translation results in the following Horn clauses:

→ P1(0) P1(x) → P (x)
P (x) → P2(s(x)) P2(x) → P (x)

Deciding totality of P for such monadic clause sets is usually difficult. However,
several results are known about the decidability of emptiness. Applying predi-
cate completion [7], we can generate a Horn clause set for the complement of P ,
named P̌ , for any Horn clause set generated from a substitution expression, such
that P is total iff P̌ is empty in the respective minimal models (Section 4.1). The
clause set for P̌ does not contain function symbols in negative literals anymore.
Moreover, because of the restriction of the signature to unary function symbols,
the translation causes the clause set to contain monadic predicates only. These
properties enable the final decidability of the emptiness of P̌ by ordered resolu-
tion (Theorem 17). The complement P̌ of P for our example is defined by the
clauses

→ P̌1(s(x)) → P̌2(0)
P̌1(x), P̌2(x) → P̌ (x) P̌ (x) → P̌2(s(x))

that belong to a class where emptiness is known to be decidable by ordered
resolution [16, 15]. For the above clause set, the theory of the relation P̌ is empty
in the minimal model, hence N |=Ind ∀x.∃y.G(y, x) holds. Note that such clause
sets can in general not be represented by tree automata (even with constraints).

To the best of our knowledge, our result is the first decidability result for in-
ductive validity based on a finite first-order saturation concept for Horn clauses.
Related approaches to inductive reasoning based on superposition include the
works of Ganzinger and Stuber [10] and Comon and Nieuwenhuis [7]. Both are
also applicable to equational clauses, but did not lead to new decidability re-
sults. Other work in the area of automated inductive theorem proving includes
the test set calculi of Bouhoula et al. [2, 3] and approaches via term rewrite sys-
tems by Caferra and Zabel [4] and Kapur [13, 8]. All these approaches consider
only purely universal queries and do not admit quantifier alternations.

Due to space restrictions, some proofs have been excluded from this article.
An extended version is available as a technical report [12].
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2 Preliminaries

We build on the notions of [1, 17] and shortly recall here the most important
concepts as well as the specific extensions needed for the new calculus.

Terms and Clauses. Let Σ = (P ,F) be a signature consisting of a set P of
predicate symbols of fixed arity and a set F of function symbols of fixed arity,
and let X ∪ V be an infinite set of variables such that X , V , and F are disjoint
and V is finite. Elements of X are called universal variables and denoted as
x, y, z, and elements of V are called existential variables and denoted as v.

We denote by T (F , X) the set of all terms over F and X and by T (F) the
set of all ground terms over F . Throughout this article, we require that T (F) is
infinite. To improve readability, term tuples (t1, . . . , tn) will often be denoted by
�t. The variables occurring in a term t or a term tuple �t are denoted by vars(t)
or vars(�t), respectively.

An atom is an expression of the form P (t1, . . . , tn), where P ∈ P is a predicate
symbol of arity n and t1, . . . , tn ∈ T (F , X) are terms over the universal variables.
A clause is a pair of multisets of atoms, written Γ → Δ, interpreted as the
conjunction of all atoms in the antecedent Γ implying the disjunction of all
atoms in the succedent Δ. A clause is Horn if Δ contains at most one atom.
The empty clause is denoted by �. A Horn clause is universally reductive if all
variables of the antecedent appear also in the succedent.

Constrained Clauses. A (basic) substitution σ is a map from a finite set
X ′ ⊆ X of universal variables to T (F , X). The application of σ to a term t or a
term tuple �t is denoted by tσ or �tσ, respectively. The substitution σ is linear if
no variable occurs twice in the term set {xσ | x ∈ X ′}. The most general unifier
of two terms s, t is denoted by mgu(s, t).

Substitution expressions are build over substitutions and constructors ◦ (com-
position), | (disjunction), and ∗ (loop) of arity 2, 2 and 1, respectively. Substi-
tution expressions are denoted as σ̄, τ̄ . The symbols ◦ and | are written in infix
notation, and ∗ is written in postfix notation. We will often write σ̄ ◦ τ̄ as σ̄τ̄ .

The domain dom(σ̄) and the variable range VRan(σ̄) of a substitution expres-
sion are defined as follows: For a substitution σ : {x1, . . . , xn} → T (F , X), we
define dom(σ) = {x1, . . . , xn} and VRan(σ) = vars(x1σ, . . . , xnσ). For complex
expressions, we have

dom(σ̄ ◦ τ̄ ) = dom(σ̄) VRan(σ̄ ◦ τ̄) = VRan(τ̄ )
dom(σ̄1|σ̄2) = dom(σ̄1) ∪ dom(σ̄2) VRan(σ̄1|σ̄2) = VRan(σ̄1) ∩VRan(σ̄2)

dom(σ̄∗) = dom(σ̄) VRan(σ̄∗) = dom(σ̄)

A constrained clause v1≈x1σ̄, . . . , vn≈xnσ̄ ‖C, also written �v≈�xσ̄ ‖C, consists
of a sequence of equations v1≈x1σ̄, . . . , vn≈xnσ̄ called the constraint and a clause
C, such that {v1, . . . , vn} = V , x1, . . . , xn ∈ X are universal variables and σ̄ is
a substitution expression with domain {x1, . . . , xn}. We abbreviate �v≈�xσ ‖C as
�v≈�x ‖C if σ is the identity substitution on {x1, . . . , xn}.
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Orderings. Any ordering≺ on atoms can be extended to clauses in the following
way. We consider clauses as multisets of occurrences of atoms. The occurrence of
an atom A in the antecedent is identified with the multiset {A,A}; the occurrence
of an atom A in the succedent is identified with the multiset {A}. Now we lift
≺ to atom occurrences as its multiset extension, and to clauses as the multiset
extension of this ordering on atom occurrences.

An occurrence of an atom A in a clause C is maximal if there is no occurrence
of an atom in C that is strictly greater with respect to ≺ than the occurrence of
A. It is strictly maximal if there is no other occurrence of an atom in C that is
greater than or equal to the occurrence of A with respect to ≺. Throughout this
paper, we will assume a reduction ordering ≺ that is total on ground atoms.

Denotations and Models. We define the denotation [[σ̄]] of a substitution
expression σ̄ inductively as follows:

[[σ]] = {σ}
[[σ̄τ̄ ]] = {στ | σ ∈ [[σ̄]], τ ∈ [[τ̄ ]]}

[[σ̄1|σ̄2]] = [[σ̄1]] ∪ [[σ̄2]]
[[σ̄∗]] =

⋃

n≥0[[σ̄
n]]

Here σ̄0 denotes the substitution {x 
→ x | x ∈ dom σ̄}, and σ̄n+1 = σ̄ ◦ σ̄n.
Because of the associativity of substitution composition and of set union,

[[(σ̄1σ̄2)σ̄3]] = [[σ̄1(σ̄2σ̄3)]] and [[(σ̄1|σ̄2)|σ̄3]] = [[σ̄1|(σ̄2|σ̄3)]], i.e. ◦ and | are asso-
ciative. Hence we will identify (σ̄1σ̄2)σ̄3 and σ̄1(σ̄2σ̄3), writing both as σ̄1σ̄2σ̄3
(and analogously for |).

Moreover, we define �t[[σ̄]] =
{

�tσ | σ ∈ [[σ̄]]
}

. A substitution expression σ̄ with
domain {x1, . . . , xn} is covering for a set T ⊆ T (F , X)n if all ground instances
of elements of T are instances of an element of (x1, . . . , xn)[[σ̄]]. If σ̄ is covering
for T (F)n, we say that σ̄ is covering.

For a constrained clause �v≈�xσ̄ ‖C, let [[�v≈�xσ̄ ‖C]] be the (potentially infi-
nite) formula set [[�v≈�xσ̄ ‖C]] = {∀�y.�v≈�xσ → C | σ ∈ [[σ̄]]}, where the universal
quantifier ranges over the variables of �xσ and C. For a set N of constrained
clauses, let [[N ]] =

⋃

�v≈�xσ̄ ‖C∈N [[�v≈�xσ̄ ‖C]]. An interpretation I is said to model
N , written I |= N , if and only if the formula ∃�v.

∧

φ∈[[N ]] φ is valid in I. In this
case, I is called a model of N . A constrained clause set is satisfiable if it has a
model.

If M and N are two constrained clause sets, we write N |= M if each model
of N is also a model of M . If N is satisfiable and Horn, we write N |=Ind M if
the minimal model of N models M .

Two constrained clauses �v≈�xσ̄ ‖C and �v≈�xσ̄′ ‖C′ are variants if there is a
variable renaming π : VRan(σ̄) ∪ vars(C) → VRan(σ̄′) ∪ vars(C′) such that π
maps the variables of VRan(σ̄) to VRan(σ̄′), Cπ = C′, and [[σ̄π]] = [[σ̄′]]. If both
C and C′ are unconstrained, this reduces to the usual notion of variants. Note
that the denotations of variants agree up to renaming of universally quantified
variables. If σ̄ is a variable renaming and C does not contain any variables of
�v≈�xσ̄, then we abbreviate the constrained clause as ‖C. We call a constrained
clause ‖C unconstrained and identify it with its clausal part C.
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Inferences and Redundancy. An inference rule is a relation on constrained
clauses. Its elements are called inferences and written as

α1 ‖C1 . . . αk ‖Ck

α ‖C .
The constrained clauses α1 ‖C1, . . . , αk ‖Ck are called the premises and α ‖C
the conclusion of the inference. An inference calculus is a set of inference rules.

A constrained clause �v≈�xσ̄ ‖C is redundant with respect to a constrained
clause set N if C is a tautology or if there is a variant �v≈�xτ̄ ‖C of a constrained
clause in N such that [[σ̄]] ⊆ [[τ̄ ]]. An inference is called redundant with respect to
N if its conclusion is redundant wrt. N or if a premise C is redundant wrt. N \
{C}. A constrained clause set N is saturated (wrt. a given inference calculus) if
each inference with premises in N is redundant wrt. N .

A derivation is a finite or infinite sequence N0, N1, . . . such that for each i,
there is an inference with premises in Ni and conclusion �v≈�xσ̄ ‖C that is not
redundant wrt. Ni, such that Ni+1 = Ni ∪ {�v≈�xσ̄ ‖C}.

3 A Calculus for Constrained Clauses

In [11], we introduced a superposition based calculus that is sound and complete
for unsatisfiability of queries ∃∗∀∗(A1, . . . , An →) with respect to minimal Horn
clause models. The basic idea is to express the query as a constrained clause
where the constraint part allows a special treatment of the existential variables
appearing in a derivation.

We call a set of constrained Horn clauses of the form ‖Γ → A or �v≈�x ‖Γ →
an existential query problem. Each Horn clause as well as the negation of each
query of the form ∀�x.∃�y.A1 ∧ . . . ∧ An corresponds naturally to an existential
query problem. In the example presented in the introduction, where V = {v},
the unconstrained theory clause G(x, y) → G(s(x), s(y)) corresponds to the con-
strained clause v≈x ‖G(y1, y2) → G(s(y1), s(y2)), and the negation of the query
∀x.∃y.G(y, x) corresponds to the constrained clause v≈x ‖G(y, x) →.

In our current non-equational Horn setting, where all clauses containing a
positive literal will be unconstrained, the original calculus boils down to the
following single inference rule, which was originally not defined for substitution
expressions but for substitutions only:

Ordered Resolution:

Γ1 → A1 �v≈�xσ̄ ‖Γ2, A2 → Δ2

�v≈�xσ̄τ ′ ‖Γ1τ, Γ2τ → Δ2τ

where (1) τ is the most general unifier ofA1 and A2, (2) τ ′ : VRan(σ̄) → T (F , X)
maps y to yτ if y ∈ dom(τ) and to y otherwise, and (3) A1τ is strictly maximal
in (Γ1 → A1)τ and A2τ is maximal in (Γ2, A2 → Δ2)τ , where Δ2 is either
empty or contains a single atom. Note that the rightmost premise may also be
unconstrained.
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Ordered resolution can as usual be restricted by means of a literal selection
function. We now extend the calculus to an inference system consisting of or-
dered resolution and a melting rule. To define melting, we need the notion of an
ancestor. In an ordered resolution inference, the ancestors of the conclusion are
the rightmost premise and all of its ancestors.

Melting:
�v≈�xσ̄ ‖C �v≈�xσ̄τ̄ ′ ‖C′

�v≈�xσ̄′′ ‖C

if (1) �v≈�xσ̄ ‖C is an ancestor of �v≈�xσ̄τ̄ ′ ‖C′, and (2) �v≈�xσ̄τ̄ ′ ‖C′ is a variant
of �v≈�xσ̄τ̄ ‖C, and either (3.i) σ̄ is of the form σ̄ = σ̄1σ̄

∗
2 and σ̄′′ = σ̄1(σ̄2|τ̄ )∗, or

(3.ii) σ̄ is not of this form and σ̄′′ = σ̄τ̄∗.
The premise �v≈�xσ̄ ‖C is called the base clause for the melting, and the con-

clusion the melted clause. The ancestors of the conclusion are defined as the
ancestors of the base clause.

3.1 Soundness and Completeness

The melting rule introduces constrained clauses that do not directly follow from
the premises. For example, the clauses v≈x ‖G(y, x) → and v≈xσ ‖G(y, x) →
by themselves do not imply v≈xσ∗ ‖G(y, x) →. To establish the soundness of our
calculus, the main objective will be to prove that all elements of the conclusion’s
denotation in a melting inference step are really consequences of the premises.
Here it is essential that the leftmost premise of each ordered resolution inference
is unconstrained.

Lemma 1 (Soundness of Ordered Resolution). The ordered resolution rule
is sound.

Proof. For an inference
Γ1 → A1 �v≈�xσ̄ ‖Γ2, A2 → Δ2

�v≈�xσ̄τ ′ ‖Γ1τ, Γ2τ → Δ2τ
to be sound, it suffices that each inference

Γ1 → A1 �v≈�xσ ‖Γ2, A2 → Δ2

�v≈�xστ ′ ‖Γ1τ, Γ2τ → Δ2τ
for σ ∈ [[σ̄]] is sound. This is the case because of the soundness of the base
calculus rule from [11].

Note that the leftmost premise of each ordered resolution inference is uncon-
strained, which means that such an inference with rightmost premise �v≈�xσ̄ ‖C
and conclusion �v≈�xσ̄τ ‖D can also be made with any other constrained clause
�v≈�xσ̄′ ‖C with the same clausal part but a different constraint, then resulting
in �v≈�xσ̄′τ ‖D. Moreover, if the former inference is sound, so is the latter.

If a derivation starts from an existential query problem, then all stars appear-
ing in constraints during the derivation come from a melting step.



Deciding the Inductive Validity of ∀∃∗ Queries 339

Lemma 2 (Soundness of Melting). For derivations starting from an exis-
tential query problem, the melting rule is sound.

Proof. Consider a derivation step from a clause set N to N ′ where a melting
inference

�v≈�xσ̄1σ̄
∗
2 ‖C �v≈�xσ̄1σ̄

∗
2 τ̄

′ ‖C′

�v≈�xσ̄1(σ̄2|τ̄)∗ ‖C

is performed. We will show that, for each integer n ≥ 0, �v≈�xσ̄1(σ̄2|τ̄ )n ‖C is
implied by the constrained clauses in N .

Since the derivation started from constrained clauses whose constraints do not
contain any stars, the constrained clause �v≈�xσ̄1σ̄

∗
2 ‖C must have been derived

from a constrained clause �v≈�xσ̄1 ‖C to account for the star around σ̄2.
So the case n = 0 is trivial. If n > 0, assume that the constrained clause

�v≈�xσ̄1(σ̄2|τ̄ )n−1 ‖C is implied. Moreover, we may inductively assume that all
previous steps in the derivation are sound. Starting from �v≈�xσ̄1(σ̄2|τ̄ )n−1 ‖C,
we could do the same set of inference steps needed to derive �v≈�xσ̄1σ̄

∗
2 ‖C from

�v≈�xσ̄1 ‖C to derive the constrained clause �v≈�xσ̄1(σ̄2|τ̄ )n−1σ̄∗2 ‖C. This directly
implies �v≈�xσ̄1(σ̄2|τ̄)n−1σ̄2 ‖C.

Moreover, we could do the same set of inference steps needed to derive
�v≈�xσ̄1σ̄

∗
2 τ̄ ‖C from �v≈�xσ̄1σ̄

∗
2 ‖C to derive �v≈�xσ̄1(σ̄2|τ̄ )n−1τ̄ ‖C.

Thus, we know that both �v≈�xσ̄1(σ̄2|τ̄ )n−1σ̄2 ‖C and �v≈�xσ̄1(σ̄2|τ̄ )n−1τ̄ ‖C are
implied constrained clauses, and hence also �v≈�xσ̄1(σ̄2|τ̄ )n−1(σ̄2|τ̄ ) ‖C is implied,
which is what we wanted to prove.

The argument for a melting of type (3.ii) is similar.

Concerning completeness, we can make use of the following proposition, which
is an instance of [11, theorem 1]:

Proposition 3 (Completeness). Let N be a finite existential query problem,
let N∗ be a finite saturation of N with respect to ordered resolution, and let
�v≈�xσ̄1 ‖�, . . . , �v≈�xσ̄m ‖� be the constrained clauses in N∗ with empty clausal
part. Then N has a Herbrand model iff σ̄1| . . . |σ̄m is not covering.

As the ordered resolution rule alone is already complete, the same holds for the
combination of ordered resolution and melting.

Hence, provided saturation terminates, we can express the initial problem
whether N |=Ind ∀�x.∀�y.A1 ∧ . . . ∧An in terms of a coverage problem:

Corollary 4. Let N be a satisfiable set of unconstrained Horn clauses, N∗ a
finite saturation of N∪{�v≈�x ‖A1, . . . , An →}, and let �v≈�xσ̄1 ‖�, . . . , �v≈�xσ̄m ‖�
be the set of constrained clauses in N∗ with empty clausal part. The following
are equivalent:

(1) N |=Ind ∀�x.∃�y.A1 ∧ . . . ∧An

(2) σ̄1| . . . |σ̄m is not covering.
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3.2 Termination

We now show that, if a clause set N ∪{A1, . . . , An →} can be finitely saturated,
then our calculus finitely saturates N ∪{�v≈�x ‖A1, . . . , An →}. Termination also
ensures that the calculus is fair, i.e. that every possible inference between derived
constrained clauses will finally be redundant.

A derivation strategy that ensures termination is as follows:1

(1) Perform ordered resolution according to the strategy that saturates N ∪
{A1, . . . , An →}.

(2) Perform melting inferences eagerly.
(3) Directly after each melting inference step redo, starting from the melted

clause, all previous (non-redundant) resolution inferences that have the base
clause as an ancestor and all (non-redundant) meltings that are possible with
the newly derived clauses. This is called an elementary update. Afterwards
continue recursively for the repeated meltings. This whole procedure is called
an update.

During an update, clauses in the former derivation become redundant. This
means that they can and will be ignored for the rest of the derivation and are
effectively replaced by their more general counterparts. We will use this manner
of speaking in the following propositions.

Lemma 5. If clauses in a derivation are arranged in a graph defined by the
direct ancestor relation, this graph is a forest (a set of trees).

Proof. Initially, each clause forms its own tree, and no inference can connect
existing trees or introduce loops.

Lemma 6 (Termination of Updates). The update following a melting infer-
ence step terminates.

Proof. We consider only the case of a melting of type (3.i) as follows:

�v≈�xᾱσ̄∗ ‖C �v≈�xᾱσ̄∗τ̄ ′ ‖C′

�v≈�xᾱ(σ̄|τ̄ )∗ ‖C

The proof for a melting of type (3.ii) works similarly. Each elementary update
is terminating, since there are only finitely many inferences to repeat. We show
that the number of elementary updates in an update is finite and proceed by
induction over the depth of the base clause in the ancestor-based forest.

Let
�v≈�xβ̄ ‖E �v≈�xβ̄ρ̄′ ‖E′

�v≈�xβ̄1(β̄2|ρ̄)∗ ‖E
be a melting inference that is redundant before the current elementary update.
There are several possible cases, depending on whether and where one of the
premises of the initial melting appears as an ancestor of �v≈�xβ̄ρ̄′ ‖E′:
1 A more straightforward alternative is presented in [12].
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– �v≈�xᾱσ̄∗ ‖C is not an ancestor of �v≈�xβ̄ρ̄ ‖E. Then this melting is not af-
fected by the elementary update.

– E = C. Then also β̄ = ᾱσ̄∗, and the first elementary update leads to a
melting candidate

�v≈�xᾱ(σ̄|τ̄)∗ ‖C �v≈�xᾱ(σ̄|τ̄)∗ρ̄ ‖C
�v≈�xβ̄(σ̄|τ̄ |ρ̄)∗ ‖C

Since the original melting was redundant before, [[ρ̄]] ⊆ [[σ̄]]. So the new
melting candidate is also redundant and this branch of the update stops
here.

– �v≈�xᾱσ̄∗ ‖C is an ancestor of �v≈�xβ̄ ‖E, but not vice versa. Then β̄ = ᾱσ̄∗π̄
and the elementary update leads to a melting candidate

�v≈�xᾱ(σ̄|τ̄ )∗π̄ ‖E �v≈�xᾱ(σ̄|τ̄)∗π̄ρ̄ ‖E
�v≈�xᾱ(σ̄|τ̄)∗π̄1(π2|ρ̄)∗ ‖E

where π̄ = π̄1π̄
∗
2 , Since the original melting was redundant before, [[ρ̄]] ⊆ [[π̄2]].

So the new melting candidate is also redundant and this branch of the update
stops before the melting.

– �v≈�xβ̄ ‖E is an ancestor of �v≈�xᾱσ̄∗ ‖C. Then this melting has a base that
lies strictly above the base of the originally inspected melting in the ancestor-
based clause forest. Because of Lemma 5, we may inductively assume that
the update initiated by the melting of �v≈�xβ̄ ‖E terminates.

Lemma 7 (Uniqueness of Melting Steps). In a derivation, each constrained
clause (including its replacements) is the non-base clause for at most one melting
that occurs outside an update.

Proof. Consider the first melting step with a given base clause. Directly after
the melting has been performed, it becomes redundant. If one of the premises
is later in the derivation replaced during an update and the replacing premise
allows a new non-redundant melting, then this melting is executed during the
same update.

Theorem 8 (Termination). Let N ∪ {A1, . . . , An →} be a finite set of Horn
clauses that can be finitely saturated by ordered resolution. Then our calculus
finitely saturates the clause set N ∪ {�v≈�x ‖A1, . . . , An →}.

Proof. Let N∗ be a saturated constrained clause set derived from the set N ∪
{�v≈�x ‖A1, . . . , An →}. Because of the finite saturation of N ∪ {A1, . . . , An →},
only a finite number of clausal parts appears in N∗.

To show that N∗ is finite, consider again the ancestor-based forest for N∗,
where all “replaced” nodes (cf. the definition of updates) have been erased. We
call this forest G.

We will first show that G is finite. To do so, we will show that it has only
finitely many roots, is of finite depth, and is finitely branching.

Only the constrained clauses in N (or replacements thereof) can appear as
roots. We know that the set {C | (�v≈�xσ̄ ‖C) ∈ N∗} (modulo renaming of vari-
ables) is finite. Because of our strategy of applying the melting rule whenever
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possible, no two constrained clauses �v≈�xσ̄ ‖C and �v≈�xσ̄′ ‖C′ in a common
branch of G can be melted, so every branch in G contains at most a finite
number of nodes for each element of this set (one for each subset of vars(C),
since these correspond to the possibilities for VRan(σ̄) ∩ vars(C) and hence to
constrained C clauses in a branch that cannot be melted), i.e. the graph is of
finite depth.

Finally, each node in G has a finite arity: As only finitely many ordered
resolution inferences into the constrained clause at this point have been possible
(namely from some of the finitely many unconstrained clauses only), plus at
most one melting (cf. Lemma 7), the arity is finite.

So G is finite. It remains to show that only finitely many “replaced” con-
strained clauses have been excluded from G. We know from lemma 7 that there
has been at most one melting step per node in G outside of an update. By lemma
6, each of these caused only a finite number of replacements (i.e. deletions for
G). Hence N∗ is finite.

4 Substitution Expressions as Clause Sets

Quantor elimination [6] allows to decide whether a finite disjunction σ1| . . . |σn of
basic substitutions is covering. To do so, the problem is reduced to an emptiness
problem that is trivially decidable.

For substitution expressions, we follow a related approach. We will transform
a substitution expression σ̄ into a set Nσ̄ of Horn clauses, such that σ̄ is covering
iff a predicate Pσ̄ arising in the transformation is the total relation in the minimal
model of Nσ̄, i.e. iff Nσ̄ |=Ind ∀�x.Pσ̄(�x). Then a completion procedure allows us
to generate a Horn clause set Ňσ̄ for the complement of Pσ̄, named P̌σ̄, such that
Pσ̄ is total in the minimal model of Nσ̄ iff P̌σ̄ is empty in the minimal model of
Ňσ̄, and such that this emptiness can be decided by ordered resolution.

For the rest of this chapter, we require that any two substitutions appearing
in a substitution expression are named differently, i.e. we never write {x 
→
x} ◦ {x 
→ x} as σ ◦ σ, but possibly as σ1 ◦ σ2.

Definition 9 (Substitutions and Predicates). Given a substitution expres-
sion σ̄, we assign a predicate Pτ̄ to every substitution expression τ̄ that is a
subexpression of σ̄. If τ̄ is a substitution or disjunction or loop, we let Pτ̄ be a
fresh predicate of arity | dom(τ̄ )|. We set Pτ̄ = Pτ̄1 if τ̄ = τ̄1τ̄2 is a composition.

Definition 10 (Substitutions and Clauses). We translate substitution ex-
pressions σ̄ to clause sets N0

σ̄ (which is just an intermediate representation) and
Nσ̄ as follows. Let Pglue be a fresh predicate of arity 0. This predicate will be
used as a means to glue together the sets corresponding to different substitution
expressions. We assume an ordering on the domain dom(σ̄) = {x1, . . . , xn} of
any given substitution and write �x = dom(σ̄) if x1 < . . . < xn. Expressions of
the form R[B/A] denote textual replacement of every occurrence of atom A in
the clause set R by the atom B.
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N0
σ = {Pglue → Pσ(�xσ)} where �x = dom(σ)

N0
σ̄τ̄ = N0

τ̄ ∪N0
σ̄ [Pτ̄ (dom(τ̄ ))/Pglue]

N0
σ̄∗ = {Pglue → Pσ̄∗(dom(σ̄))} ∪N0

σ̄ [Pσ̄∗(dom(σ̄))/Pglue]
∪ {Pσ̄(dom(σ̄)) → Pσ̄∗(dom(σ̄))}

N0
σ̄1|σ̄2

= N0
σ̄1
∪ {Pσ̄1(�x1) → Pσ̄1|σ̄2(�y)} ∪N0

σ̄2
∪ {Pσ̄2(�x2) → Pσ̄1|σ̄2(�y)}

where �xi = dom(σ̄i) and �y = dom(σ̄1|σ̄2)

The set Nσ̄ arises from N0
σ̄ by deletion of all occurrences of Pglue.

Example 11. We consider the two substitutions σ = {x 
→ s(x)} and τ = {x 
→
0}. Then N0

σ = {Pglue → Pσ(s(x))} and N0
τ = {Pglue → Pσ(s(x))}.

The set Nσ∗ consists of the clauses → Pσ∗(x), Pσ∗(x) → Pσ(s(x)), and
Pσ(x) → Pσ∗(x) and Nσ∗τ = {→ Pτ (0), Pτ (x) → Pσ∗τ (x), Pσ∗τ (x) → Pσ(s(x)),
Pσ(x) → Pσ∗τ (x)}. (Note that Pσ∗τ equals Pσ∗ .) Nσ∗τ builds terms bottom-up:
The first clause creates the constant 0, the second clause enters the σ loop, and
the last two clauses allow to repeatedly wrap applications of s( ) around the
term.

We will now show that each clause set Nσ̄ describes exactly the (instances of
the) term tuples generated by the respective substitution expression σ̄, provided
that this substitution stems from a derivation.

Definition 12. Let �v≈�xσ̄1, . . . , �v≈�xσ̄n be finitely many constraints appearing in
a derivation starting from an existential query problem. Then σ̄1| . . . |σ̄n is called
a derivation substitution.

The clauses in N0
σ̄ and Nσ̄ are particularly simple. On the one hand, all terms

appearing on the left hand side are variables, on the other hand, the clauses are
universally reductive, i.e. all these variables also occur in the head, a property
that is necessary for the applicability of the completion procedure we will use
later on:

Proposition 13 (Universal Reductiveness of Nσ̄). Let σ̄ be a derivation
substitution. Then Nσ̄ is universally reductive.

Proposition 14 (Equivalence of Substitution Expressions and
Clauses). Let σ̄ be a derivation substitution. Then �t ∈ �x[[σ̄]] iff Pσ̄(�t)
can be derived from Nσ̄ by resolution.

Since resolution is first-order complete, we can conclude that the terms entailed
by Nσ̄ are exactly those covered by σ̄:

Corollary 15. Let σ̄ be a derivation substitution. Then Nσ̄ |= Pσ̄(�t) iff σ̄ is
covering for {�t}, i.e. the set

{

�t | Nσ̄ |= Pσ̄(�t)
}

is the maximal set for which σ̄ is
covering.
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4.1 Predicate Completion

Now that we know how to transform σ̄ into an equivalent set Nσ̄ of Horn clauses,
we will concentrate on how to decide whether Pσ̄ is the total relation in the
minimal model of Nσ̄.

Comon and Nieuwenhuis [7] introduced a predicate completion procedure
based on Clark’s completion [5] and quantifier elimination [6]. Given a universally
reductive Horn clause set R over a finite signature Σ, this procedure computes
a set R′ of (possibly equational) clauses. Let Ň arise from R′ by replacing each
atom P (�t) by ¬P̌ (�t). Then R |=Ind P (�x) iff Ň |=Ind ¬P̌ (�x). For general non-
equational clause sets R, the clauses in Ň are of the form Γ → P̌ (�t) ∧E, where
E is a conjunction of syntactic equations. E.g., {Q(s(x)) → P (x, x, z)} is trans-
formed to {Q̌(s(x)) → P̌ (x, y, z), x�y}. In the case of derivation substitutions,
however, Ň does not contain equations and falls into a class for which emptiness
is decidable by ordered resolution (Theorem 17).

Proposition 16 (Shape of Ňσ̄). Let σ̄ be a derivation substitution such that
all substitutions appearing in σ̄ are linear. For the predicates in Nσ̄, the algorithm
by Comon and Nieuwenhuis computes clauses of the following types:

(1) → P̌ (�t)
(2) P̌1(�x) → P̌ (�t)
(3) P̌1(�x), P̌2(�x) → P̌ (�x)

The positive literal of each computed clause is linear.

That all negative literals contain only variables is inherited from Nσ̄. That no
equations appear is due to the linearity of all positive literals in Nσ̄.

In the example presented in the appendix, all predicates are monadic. When
there is more than one existential variable or when the signature contains func-
tion symbols of arity at least two, also predicates of higher arity appear in Ň .

Theorem 17 (Decidability of Coverage). Let σ̄ be a derivation substitution
over a finite signature such that all basic substitutions in σ̄ have a unary domain
and are linear. It is decidable whether σ̄ is covering.

Proof. We translate σ̄ into a clause set Nσ̄. All predicates in Nσ̄ are unary. The
resulting clause set Ňσ̄ defining the completion of all appearing predicates again
contains only clauses of the form P̌1(x), . . . , P̌n(x) → P̌ (t) (Proposition 16).
Weidenbach [16] showed that such a clause set is equivalent to a so-called sort
theory, a clause set in which additionally all clauses are shallow. For sort theories,
emptiness is decidable by ordered resolution [16, 15]. Emptiness of P̌σ̄ in turn is
equivalent to the coverage of the substitution σ̄ (completion and Corollary 15).

5 Decidability of Inductive Validity

As a combination of our complete and terminating ordered resolution calculus
for constrained clauses and the completion-based treatment of the substitution
expressions that can appear during saturation, we obtain the following decid-
ability result:
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Theorem 18. Let N∪{A1, . . . , An →} be a set of Horn clauses without equality
over a finite signature Σ, where

(1) all function symbols in Σ are at most unary,
(2) all positive literals in N are linear, and
(3) N ∪ {A1, . . . , An →} can be finitely saturated by ordered resolution,

Let x, y1, . . . , ym be the variables in A1, . . . , An. Then it is decidable whether
N |=Ind ∀x.∃y1, . . . , ym.(A1 ∧ . . . ∧An).

Proof. By Corollary 4 and Theorem 8, the clause set N ∪{v≈x ‖A1, . . . , An →}
can be finitely saturated by ordered resolution with melting, such that the de-
duced constrained clauses v≈xσ̄1 ‖�, . . . , v≈xσ̄k ‖� with empty clausal part in
the saturated set correspond to a substitution expression σ̄ = σ̄1| . . . |σ̄k that is
covering iff N |=Ind ∀x.∃y1, . . . , ym.(A1 ∧ . . . ∧An).

Since the domain dom(σ̄) = {x} of σ̄ contains only one element andΣ contains
only unary function symbols, the domain of all basic substitutions appearing in σ̄
has cardinality 1. These substitutions are also linear because all positive literals
in N are linear and hence the most general unifiers appearing in each resolution
step are linear. Hence coverage of σ̄ is decidable by Theorem 17.

6 Conclusion

We have shown that the problem N |=Ind ∀∃∗(A1 ∧ . . .∧An) is decidable over a
finite signature consisting of constants and unary function symbols if all positive
literals in N are linear and N ∪ {A1, . . . , An →} belongs to a class that can
be finitely saturated by first-order ordered resolution (with variant subsumption
and tautology deletion). Our proof is constructive and based on an ordered
resolution calculus for constrained clauses �v≈�xσ̄ ‖C and predicate completion.

Among the related work on automated inductive theorem proving, the ap-
proach most closely related to ours is the one by Comon and Nieuwenhuis [7].
Given a universally reductive clause set N and a query ∀∗C, they use Clark’s
completion to compute a so-called I-axiomatization M and check the first-order
satisfiability of N ∪M ∪ {C}. This method is complete but not terminating. In
fact, since M is a clause set over the original predicates P (and not over P̌ ), it
is usually not Horn nor does the saturation of N ∪M ∪ {C} terminate.

Another general method based on saturation is the one by Ganzinger and
Stuber [10]. Given a universally reductive clause set N and a query ∀∗C, they
basically saturate N ∪ {C}. Even if N ∪ {C} saturates finitely, this results in a
non-complete procedure. They also present a way to guarantee completeness, at
the cost that the resulting algorithm almost never terminates.

A subtle, but important difference between both these methods and ours is
that we add the negated query to N for saturation (while they add the query
positively), which makes all derived clauses also hold in the minimal model.

Another intensely studied approach is via test sets [13, 2, 3]. Test set methods
are complete for several classes of equational clauses or rewrite systems and
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universal queries. Termination results for these approaches usually require strong
properties like a terminating rewrite system on constructor terms.

Approaches in the tradition of Caferra and Zabel [4] or Kapur [13, 8] also
provide decision procedures. However, they also consider only term rewrite sys-
tems. Related publications by Peltier [14] require that N has a unique Herbrand
model (not only a unique minimal one), which leads back to I-Axiomatizations.

In summary, our approach is the first to yield a both terminating and complete
algorithm to decide the inductive validity of queries that contain a ∀∃∗ quantifier
alternation.

Extensions of the approach might include a relaxation of its side conditions.
Although both the superposition calculus of [11] and the completion procedure
of [7] are also applicable to clauses containing equality literals, it is not obvious
how to extend this treatment of equality also to clauses containing substitution
expressions. The main problem here is that term rewriting cannot easily be
extended to the rewriting of substitution expressions.

However, since both our resolution calculus and the completion procedure
work equally well on ∀∗∃∗ queries, on clauses over an arbitrary signature, and
on clauses containing non-linear positive atoms, the reduction to an emptiness
problem is also possible in these extended settings. The resulting set Ř may
contain both non-monadic predicates and equational atoms. It is a natural next
step to explore under which conditions these extensions lead to predicates P̌
that are nevertheless defined in such a way that emptiness remains decidable.

Acknowledgements. We thank our reviewers for their detailed and valuable
comments. Matthias Horbach and Christoph Weidenbach are supported by the
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Abstract. One of Courcelle’s celebrated results states that if C is a class of
graphs of bounded tree-width, then model-checking for monadic second order
logic (MSO2) is fixed-parameter tractable (fpt) on C by linear time parameterised
algorithms. An immediate question is whether this is best possible or whether the
result can be extended to classes of unbounded tree-width.

In this paper we show that in terms of tree-width, the theorem can not be ex-
tended much further. More specifically, we show that if C is a class of graphs
which is closed under colourings and satisfies certain constructibility conditions
such that the tree-width of C is not bounded by log16 n then MSO2-model check-
ing is not fpt unless SAT can be solved in sub-exponential time. If the tree-width
of C is not poly-log. bounded, then MSO2-model checking is not fpt unless all
problems in the polynomial-time hierarchy can be solved in sub-exponential time.

1 Introduction

In 1990, Courcelle proved a fundamental result stating that every property of graphs
definable in monadic second-order logic with edge set quantification (MSO2) can be
decided in linear time on any class C of graphs of bounded tree-width. Courcelle’s
theorem has important consequences both in logic and in algorithm theory. In the design
of efficient algorithms on graphs, it can often be used as a simple way of establishing
that a property can be solved in linear time on graph classes of bounded tree-width.
Besides being of interest for specific algorithmic problems, results such as Courcelle’s
and similar algorithmic meta-theorems lead to a better understanding how far certain
algorithmic techniques, dynamic programming and decomposition in the case of MSO2,
range and establish general upper bounds for the parameterised complexity of a wide
range of problems. See [9,10] for recent surveys on algorithmic meta-theorems.

From a logical perspective, Courcelle’s theorem establishes a sufficient condition
for tractability of MSO2 formula evaluation on classes of graphs or structures: what-
ever the class C may look like, if it has bounded tree-width, then MSO2-model check-
ing is tractable on C. An obvious question to ask is how tight Courcelle’s theorem is,
i.e. whether it can be extended to classes of unbounded tree-width and if so, how large
the tree-width of graphs in the class can be in general. Given the considerable interest in
Courcelle’s theorem, it is somewhat surprising that not much is known about such limits
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for MSO2 model checking. Recently, the question has informally been raised in the com-
munity and has led, e.g., to a conjecture by Grohe [9, Conjecture 8.3] that MSO-model
checking is not fixed-parameter tractable on any class C of graphs which is closed under
taking subgraphs and whose tree-width is not poly-logarithmically bounded, i.e. there
are no constants c, d such that tw(G) ≤ d · logc |G| for all G ∈ C. But to the best of
my knowledge, the question has so far not been studied systematically. This is the main
motivation for the work reported in this paper.

It follows from the NP-completeness of 3-colourability on planar graphs [8] that
MSO-model checking is not fixed-parameter tractable on the class of planar graphs (un-
less P = NP). Furthermore, it is a simple consequence of the excluded grid theorem
that on minor- or topological-minor closed classes of graphs of unbounded tree-width,
MSO-model checking is not fpt unless P = NP (see Section 2). In this paper we es-
tablish a strong intractability result by showing that in terms of tree-width, Courcelle’s
theorem can not be extended much further to classes of unbounded tree-width. Through-
out the paper, we will work with coloured graphs, i.e. we will fix a set Γ of edge and
vertex colours. A class C of graphs is said to be closed under Γ -colourings if whenever
G ∈ C andG′ is obtained from G by recolouring, i.e. the underlying undirected graphs
are isomorphic, then G′ ∈ C. We will mostly consider classes of graphs closed under
colourings. An alternative characterisation is to consider relational structures over a sig-
nature σ with at most binary relation symbols. We can then fix a class C′ of graphs and
consider the class of all finite σ-structures whose Gaifman-graphs are in C. However,
in this paper we prefer to work with coloured graphs rather than Gaifman-graphs of
structures. Given a class C of graphs, we write MC(MSO2, C) for the model-checking
problem for MSO2 on C (see Section 2 for details).

Definition 1.1. The tree-width of a class C of graphs is strongly unbounded by a func-
tion f : N → N if there is a polynomial p(x) such that for all n 1) there is a graphG ∈ C
of tree-width between n and p(n) whose tree-width is not bounded by f(|G|) and 2)
given n,Gn can be constructed in time 2(|n|u)ε

, for some ε < 1, where |n|u denotes the
unary encoding of n. The tree-width of C is strongly unbounded poly-logarithmically if
it is strongly unbounded by logc n, for all c.

Essentially, strongly means that a) there are not too big gaps between the tree-width
of graphs witnessing that the tree-width of C is not bounded by f(n) and b) we can
compute such witnesses efficiently. We will see below why this condition is needed.
The following is the main result of the paper. Let Γ be a set of colours with at least one
edge and two vertex colours.

Theorem 1.2. Let C be a constructible class of Γ -coloured graphs closed under
colourings.
1. If the tree-width of C is strongly unbounded poly-logarithmically then MC(MSO2, C)

is not in XP, and hence not fpt, unless all problems in NP (in fact, all problems in
the polynomial-time hierarchy) can be solved in sub-exponential time.

2. If the tree-width of C is strongly unbounded by log16 n then MC(MSO2, C) is not in
XP unless SAT can be solved in sub-exponential time.

See Section 2 for a definition of FPT and XP. We refer to Definition 3.6 for a precise
definition of constructible classes but will explain the concept informally below. Let
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us give some applications of the theorem. For c > 0 let Cc be the class of all graphs
G of tree-width at most logc |G|. This class is constructible and hence its closure un-
der colourings has intractable MSO2 model-checking, if c > 16. Similarly, the class
of planar graphs of tree-width at most logc n is constructible. Finally, all (topological)
minor-closed classes of unbounded tree-width are constructible and rich. All these ex-
amples show that Courcelle’s theorem can not be extended to classes of graphs with
only poly-logarithmic or a logc n bound on the tree-width, for c > 16.

High level description of the proof. Let us give an intuitive account of the proof of the
previous theorem. Clearly, with today’s methods we cannot hope to prove that MSO2-
model-checking is fixed-parameter intractable for a class of graphs without relating
it to assumptions in complexity theory. Consequently, we prove that MC(MSO2, C) is
fixed-parameter intractable for a class C by reducing an NP-complete problem P to
MC(MSO2, C) such that if there is an fpt-algorithm for MC(MSO2, C), then P can be
solved in sub-exponential time 2o(n). More precisely, for each language P ∈ NP we
construct a formula ϕP and then, given a word w, we construct a graph Gw ∈ C such
that Gw |= ϕP if, and only if, w ∈ P . We will see that the number of vertices of

Gw can be bounded by 2|w|
1
y , for some y > 1, so that if there was an algorithm for

MC(MSO2, C) with running time f(|ϕ|) · |G|c then this would imply that w ∈ P could

be decided in time O(2c|w|
1
y ) = 2o(|w|). Here, Condition 1) of Definition 1.1 ensures

that C contains a graphGw the word w can be reduced to and Condition 2) ensures that
we can compute it in time sub-exponential in the length of |w|. For this reduction to
work, we need some intermediate steps.

It is well-known that MSO2-model checking is fixed-parameter intractable on the
class of coloured grids (see Figure 1), which can be seen as follows: suppose P can be
solved by a non-deterministic Turing-machine M in time nc, where n is the length of
the input. Given a word w of length n, we choose a (nc × nc)-grid Gw and label its
top-most row by w from left to right. From the Turing-machineM deciding P we can
compute an MSO2-formula ϕM depending only onM such that Gw |= ϕM if, and only
if, w is accepted by M and hence w ∈ P . Essentially, the MSO formula uses the grid to
guess the computation table of a successful run ofM on w. Hence, an fpt-algorithm for
MSO-model checking on grids yields a polynomial time algorithm for P .

Clearly, if we are just given a class of graphs of tree-width not bounded poly-
logarithmically, then there is no guarantee that it contains any grids. But we will show
that we can define grids in graphs of this class by MSO2-formulas. Adapting a recent
proof by Reed and Wood, we first show that if G is a graph of large tree-width then
it contains a large structure which we call coloured pseudo-wall. Pseudo-walls do not
actually occur as minors or subgraphs of G but as topological minors of certain inter-
section graphs formed by sets of disjoint paths in G. However, it turns out that this is
enough to define coloured grids in coloured pseudo-walls by MSO2-formulas. It follows
that if the tree-width of G is not bounded by k then we can define an (l × l)-grid in
G in MSO2, where l is roughly 10

√
k (see Theorem 3.5 for details), and this grid can be

coloured. We call a class constructible if we can construct these pseudo-walls in graphs
G ∈ C in polynomial time and it is such classes with which we work in this paper (see
Definition 3.6 for details).
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The important aspect here is that the size of the grids we define is polynomially
related to the tree-width of the graph, in contrast to the grids guaranteed by the excluded
grid theorem (see Theorem 3.1), where the tree-width is exponentially larger than the
grids we are guaranteed to find. Hence, using pseudo-walls, if the tree-width of a graph
is logc n then we can define (l× l)-grids inG for l ∼= log

c
10 n and this is enough for the

reduction sketched above to work.
Obtaining sub-exponential time algorithms for problems such as TSP or SAT is an

important open problem in the algorithms community and the common assumption is
that no such algorithm exists. This has led to the exponential-time hypothesis (ETH)
which says that there is no such sub-exponential time algorithm for SAT, a hypothesis
widely believed in the community.

Let us briefly comment on the restrictions imposed on the classes C we study here.
While every graph of large enough tree-width contains large pseudo-walls, we do not
yet know if we can always compute these structures in polynomial time (and hence we
impose the additional restriction to constructible classes). It is conceivable that large
pseudo-walls can indeed be computed in polynomial time. This would essentially show
that all classes are constructible and effectively remove this condition from our main
result. We pose this question as an open problem.

As mentioned above, Grohe conjectured that MSO-model checking is not fpt on any
class of graphs closed under subgraphs and whose tree-width is not poly-logarithmically
bounded. The statement of the conjecture and the main result of this paper are incom-
parable as I require closure under colourings whereas Grohe does not. On the other
hand, the conjecture requires closure under subgraphs which I do not. Note that while
tree-width is preserved by taking subgraphs, logarithmic tree-width is not, i.e. a graph
whose tree-width is bounded by logn may contain a subgraph of order m whose tree-
width is not bounded by logm. Closure under subgraphs therefore does rule out natural
examples of graph classes. For instance, the class of all graphs of tree-width at most
logn is not closed under subgraphs. On the other hand, Grohe’s conjecture does not
require colours or constructibility conditions and refers to classes of plain graphs.

Note that it is important for our results that we work with MSO2 and allow quan-
tification over sets of edges as well as over sets of vertices. If we only consider vertex
set quantification, i.e. deal with MSO1, then the theorem is false, as for instance, MSO1-
model checking is fpt on the class of cliques.

Following Courcelle’s theorem, a series of algorithmic meta-theorems for first-order
logic on planar graphs [7], (locally) minor-free graphs [6,2] and various other classes
have been obtained. Again, no deep lower bounds, i.e. intractability conditions, are
known (see [10] for some simple bounds and [9,10] for recent surveys of the topic). The
aim of this paper is to initiate a thorough study of sufficient conditions for intractability
in terms of structural properties of input instances.

Organisation. We recall monadic second-order logic and what we need about its pa-
rameterised complexity in Section 2. The main result is then proved as follows. To show
that MC(MSO2, C) is hard on classes C of tree-width not poly-logarithmically bounded,
we first use a result by Reed and Wood [12] to show that any graph of large enough
tree-width contains a structure that is grid-like enough for our purposes. This is proved
in Section 3. While these structures do not exist as minors in the graphs, they turn out
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a) b)

Fig. 1. a) A (4 × 5)-grid and b) an elementary wall of order 5

to be MSO2-definable, which is is shown in Section 4. To use the MSO2-definability
for our result, we introduce a new kind of interpretations between structures, called
MSO2−MSO2-transductions (see Section 5). Finally, in Section 6, we combine all this
to show the main result of the paper. Due to space restrictions, some proofs have been
removed from this abstract. See http://arxiv.org/abs/0904.1302 for a full version.

2 Complexity of Monadic Second-Order Logic

We first need some notation and a few concepts from graph theory. We refer to [3] for
background on graphs. For k ≥ 1, we define [k] := {1 . . . , k}. All graphs in this paper
are finite and undirected. We write V (G) for the set of vertices and E(G) for the set of
edges in a graphG. A graphH is a sub-division ofG (a 1-subdivision) if H is obtained
fromG by replacing edges in G by paths of arbitrary length (of length 2, resp.).H is a
topological minor of G if a subgraphG′ ⊆ G is isomorphic to a sub-division of H .

An elementary wall W is a graph as in Figure 1b). The cycles of minimal length
in W are called bricks. A wall is a subdivision of an elementary wall. The height of a
wall is the number of rows of bricks and its width the number of columns of bricks. An
l×k-wall is a wall of height l and width k and a wall of order l is an l× l-wall. Finally,
the nails of a wall are the vertices of degree 3 in it together with the 4 corners. Hence,
in an elementary wall all vertices are nails whereas in a general wall only the vertices
of the underlying elementary wall are nails.

For the purpose of this paper, it might be easier to think of k × k-grids instead of
k×k-walls and everything would go through with grids also. The important property of
walls is that their maximum degree is 3. And if a graph H of degree ≤ 3 is a minor of
G, thenH is also a topological minor of G (see [3, Prop. 1.7.2]). Hence, a sub-division
of H actually occurs as subgraph of G. Defining topological minors in MSO2 is much
easier than defining minors as we do not need contraction. We will therefore work with
walls instead of grids in this paper.

I assume familiarity with basic notions of mathematical logic (see e.g. [4]). In this
paper we will only consider signatures σ := {E,B1, . . . , Bs, C1, . . . , Ct} of coloured
graphs, where E denotes the edge relation, Bi the colours of edges and Ci the colours
of vertices. We allow multiple colours per edge or vertex. We denote σ-structures by
Roman letters A,G,H, .... If R ∈ σ is a relation symbol and A a σ-structure, we write
R(A) for the interpretation of R in A.
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The class of formulas of monadic second-order logic with edge set quantification
over a signature σ, denoted MSO2[σ], is defined by the rules for first-order logic with
the following additional rules: if X is a second-order variable either ranging over sets
of vertices or over sets of edges and ϕ ∈ MSO2[σ∪̇{X}], then ∃Xϕ ∈ MSO2[σ] and
∀Xϕ ∈ MSO2[σ] with the obvious semantics where, e.g., a formula ∃Fϕ, F being a
variable over sets of edges, is true in a structure A if there is a subset F ⊆ E(A) such
that (A,F ) |= ϕ. If ϕ(x) is a formula with a free variable x and A is a structure, we
write ϕ(A) for the set {a : A |= ϕ[a]}. See [11] for more on MSO.

In [15], Vardi proved that model checking for MSO2 is PSPACE-complete on the class
of all graphs. The complexity of model-checking problems can elegantly be studied in
the framework of parameterised complexity (see [5] for background on parameterised
complexity). If C is a class of σ-structures, we define the parameterised model-checking
problem MC(MSO2, C) for MSO2 on C as the problem to decide, given G ∈ C and ϕ ∈
MSO2[σ], if G |= ϕ. The parameter is |ϕ|. The problem is fixed-parameter tractable
(fpt), or in the class FPT, if there is a computable function f : N → N and k ∈ N,
such that for all G ∈ C and ϕ ∈ MSO2[σ], G |= ϕ can be decided in time f(|ϕ|) ·
|G|k. The problem is in the class XP, if it can be decided in time |G|f(|ϕ|). FPT in the
parameterised world corresponds to polynomial-time in the classical framework as the
class of problems that can be solved efficiently. XP can be seen as the parameterised
exponential-time and is obviously a much larger class of problems than FPT.

Tree-width is a global connectivity measure of graphs that was introduced by Robert-
son and Seymour in their graph minor series. We refer the reader to [3] for a definition
of tree-width. Let f : N → N be a function and C be a class of graphs. The tree-width
of C is bounded by f , if tw(G) ≤ f(|G|) for all G ∈ C. C has bounded tree-width if its
tree-width is bounded by a constant. Many natural classes of graphs, for instance series-
parallel graphs, are found to have bounded tree-width.The following lemma, whose
proof is standard, will be needed below.

Lemma 2.1. Let M be a non-deterministic Turing-machine. There is a formula ϕM ∈
MSO2 such that for all words w ∈ Σ∗, if G is a k × k-wall whose top-most row is
coloured by w from the left, then G |= ϕM if, and only if, M accepts w in at most k
steps. Furthermore, the formula ϕM can be constructed effectively from M . The same
holds ifM is an alternating Turing-machine with a bounded number of alternations, as
they are used to define the polynomial-time hierarchy.

Lemma 2.1 together with Theorem 3.1 shows that if C is closed under (topological)
minors and has unbounded tree-width, then MC(MSO2, C) is not fpt unless P = NP.

3 Pseudo-walls in Graphs

One of the fundamental results of Robertson and Seymour’s theory of graph minors is
the excluded grid theorem [14], saying that there is a computable function f : N → N

such that every graph of tree-width at least f(k) contains a k × k-grid as a minor. The
best explicit bound known for the function f is given by the following theorem.

Theorem 3.1 (Robertson, Seymour, Thomas [13]). Every graph of tree-width at least
202·k5

contains a k × k grid as a minor.
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Robertson et al. [13] also proved that there are graphs of tree-width proportional to
k2 log k that do not containGk×k as a minor. So far this is the best lower bound known
for the function f above. In particular it is open whether f(k) above can be bounded by
a polynomial. In [12] Reed and Wood consider a different type of obstructions to small
tree-width, called grid-like minors. A grid-like minor of order l in a graph G is a set
P of paths in G such that the intersection graph I(P) contains a Kl-minor, where Kl

denotes the complete graph on l vertices. Here, the intersection graph of a setP of paths
is the graph with vertex set P and an edge between two paths P,Q ∈ P if P ∩Q �= ∅.
If P ,Q are sets of paths inG, we write I(P ,Q) for I(P∪̇Q), the intersection graph of
their disjoint union.

Theorem 3.2 (Reed, Wood [12]). Every graph of tree-width at least ck4√log k con-
tains a grid-like minor of order k, for some constant c. Conversely, every graph that
contains a grid-like minor of order l has tree-width at least � l

2� − 1.

While I do not yet know how to use this result directly, we can use its proof to find the
structures in G we need.

Definition 3.3. A pseudo-wall of order l in G is a pair (P ,Q) of sets of disjoint paths
in G such that I(P ,Q) is a wall of order l.

We will see below that every graph of large enough tree-width contains a large pseudo-
wall and that these can be defined in MSO2. Essentially, to show that MSO2 model-
checking is fixed-parameter intractable on a class C of large enough tree-width, we will
use pseudo-walls in a similar way as walls are used in Lemma 2.1. In particular, we
want to label the top-most row of the pseudo-wall by a word w over a finite alphabet.
However, pseudo-walls do not occur as subgraphs of the graphs G, which makes la-
belling them somewhat more difficult. Instead, we have to colour the graph G so that
this colouring induces the labelling of the pseudo-wall it contains. The main difficulty
is that the colouring of G must induce a unique labelling of the pseudo-wall and that
both the pseudo-wall as well as its labelling can be defined insideG by MSO2-formulas.
Unfortunately, this makes the definition of a coloured pseudo-wall technically some-
what more complicated. Let Σ be a set of colours and let B be an additional colour for
edges and R an additional colour for vertices. Let Γ := {B,R} ∪̇Σ.

A Σ-coloured pseudo-wall of order l in a Γ -coloured graph G is a triple (P ,Q, A)
such that one of the following holds:

Simple pseudo-walls. I(P ,Q) is a 1-subdivision of an elementary wall W of order
l such that the vertices of W (which we called nails above) are exactly the paths in
P . See Figure 2 for an illustration. Figure 2 a) shows the pseudo-wall, where the solid
black circles are the vertices from P and squares denote the vertices from Q. Figure 2
b) shows how (a part of) this pseudo-wall corresponds to paths in G, where dashed
lines represent paths in Q and solid lines paths in P . Note, though, that in general the
paths could intersect in much more complicated ways than displayed and that paths can
intersect more than 3 other paths although walls have maximal degree 3.

Let P := {P1, . . . , Pk} be such that P1 . . . Pl form the nails of the top-most row of
W in order from left to right. Recall that each Pi is a path in G. Then A is the path
in G obtained from the “concatenation” P1 · P2 · · ·Pk, i.e. V (A) :=

⋃

1≤i≤k V (Pi)
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a) a simple pseudo-wall b) its generation from disjoint paths

Fig. 2. A simple pseudo-wall and the paths P (solid) and Q (dashed) generating it

and E(A) consists of
⋃

1≤i≤k E(Pi) together with additional edges connecting one
endpoint of Pi to an endpoint of Pi+1, for 1 ≤ i < k, so that this results in a path.

Furthermore, the edges in E(A) are coloured by colour B ∈ Γ . The two endpoints
of each Pi are coloured byR and the vertices in the paths P1, . . . , Pl carry colours from
Σ so that all vertices in a path Pi are coloured by the same colour from Σ.

This colouring ofG induces a labelling of the wall of order lwhere the nails v1, . . . , vl

in the top-most row are labelled so that vi is labelled by the colour Ci ∈ Σ of the path
Pi. If w := C1 · · ·Cl is the sequence of colours on P we say that (P ,Q, A) encodes
the word w ∈ Σ∗.

The motivation behind simple pseudo-walls is as follows. If we find this structure in a
graphG then the pathA tells us what the top-most row of the wall is and it also gives us
an order on the vertices of the top-most row. Colouring A by B will enable us to define
this coloured pseudo-wall in MSO2. If we want to encode a wordw := w1, . . . , wl ∈ Σ∗

in the wall then we can simply label the paths P1, . . . , Pl inG which form the top-most
row of the wall byw1, . . . , wl and this induces the correct labelling of the wall I(Q,P).

Complex pseudo-walls. Complex walls are structures as illustrated in Figure 3. Essen-
tially, they consist of a subdivisionW ′ of a wallW in I(P ,Q). To define the colouring
of the wall, there will be additional paths in I(P ,Q) connecting some of the vertices of
the top-most row ofW ′ to the path A so that the order is preserved, i.e. the paths do not
“cross”. We can then colour the path A and thereby induce a colouring of the top-most
row.

Formally, for complex coloured pseudo-walls,A is a path inG such that each U ∈ P
has exactly one endpoint inA and no path inQ has an endpoint inA. Furthermore, there
are subsets P ′ ⊆ P and Q′ ⊆ Q such that I ′ := I(P ′,Q′) is a wall of order l.

Let T ⊆ I′ be the top-most row of the wall and let x1 . . . xk be the vertices of T in
order from left to right. Let I := {i1, . . . , il} be the index set such that xi1 is the top-left
corner, xil

is the top-right corner and (xij )1<j<l lists the vertices in T of degree 3 in
order from left to right. For 1 < s < t ≤ l let T (s, t] be the segment of T between
xis and xit including the latter but not the former. We define T [0, 1] to be the segment
containing the vertices xi1 , . . . xi2 . Now, the sets Pr := P \ P ′ and Qr := Q \ Q′

induce disjoint paths P1 . . . Pl in I := I(P ,Q) (i.e. each Pi consists of a set of paths
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Fig. 3. A complex pseudo-wall

in G) such that 1) one endpoint of each path Pi in I is incident to a vertex xi of the
top-most row of the wall so that each T (s, t], for 1 < s < t ≤ l, contains exactly one
xi and T [0, 1] contains 2 and 2) for the other endpoint ui of Pi in I(P ,Q) (which is a
path in G) we have {vi} = ui ∩ A, where vi ∈ V (G), and 3) v1, . . . , vl occur in this
order on A.

Now suppose v1 . . . vl are coloured by C1 . . . Cl respectively. Then this colouring
induces the labelling of I(P ′,Q′) where xis gets colour Cs, 1 ≤ s ≤ l. We say that
(P ,Q, A) encodes the word w := C1 . . . Cl.

A crucial feature of pseudo-walls in coloured graphs is that they are unique in the
sense that if G is a graph coloured by {B,R}∪̇Σ, then every pseudo-wall (P ,Q, A) in
G encodes the same word w (there may be no coloured pseudo-wall in G).

This is obvious for simple pseudo-walls, as the path A is uniquely determined by its
colouring (B-edges and the Pi’s separated by R-vertices) and this uniquely determines
the colouring of the wall and hence the encoded word. For complex walls, the path A is
again determined by its colouring and this fixes the order of the colours occurring onA
and hence on the wall. Here we use that the paths connectingA to the wall preserve the
order.

Definition 3.4. We say that a graph G encodes w ∈ Σ∗ if it contains a Σ-coloured
pseudo-wall encoding w. We say that G encodes w with power k, for some k ≥ 1, if G
contains a Σ-coloured pseudo-wall of order |w|k encoding w.

The proof of the next theorem is essentially the proof of Theorem 3.2 with some modi-
fications to get coloured pseudo-walls instead of grid-like minors.

Theorem 3.5. There is a constant c such that if G is a graph of tree-width at least
c ·m8 ·

√

log(m2), then G contains a Σ-coloured pseudo-wall of order m.

We can now give a formal definition of constructible classes of graphs.

Definition 3.6. Let C be a class of graphs closed under Γ -colourings. C is called con-
structible if in every graph G ∈ C of tree-width at least c · m8 ·

√

log(m2), where c
is from Theorem 3.5, we can compute in polynomial time a coloured pseudo-wall of
orderm.
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It is conceivable that the large pseudo-walls whose existence we proved above can al-
ways be computed in polynomial time. This would imply that all classes of graphs are
constructible. We leave this for future research.

Theorem 3.5 shows that in any graph of sufficiently large tree-width we find a large
pseudo-wall. We will show below that this is enough to define large walls in graphs of
large tree-width by means of MSO2-formulas. It follows from Theorem 3.5 above that
if C is a class of graphs of unbounded tree-width which is closed under colouring then
for each w ∈ Σ∗, C contains a graph encoding w. In fact, for each c ≥ 1, G contains a
graph encoding w with power c. The following lemma summarises what we will need
about colourings in the following sections.

Lemma 3.7. Let C be a class of graphs closed under Γ -colourings and let w ∈ Σ∗ be
a word of length m. If there is a graph G ∈ C of tree-width c · (mk)8 ·

√

log(mk)2,
where c is the constant from Theorem 3.5, whose tree-width is not bounded by log8k |G|
then there is a graphG ∈ C encodingw with power k such that |G| < 2c′·m

1
y , for some

constants y > 1 and c′ := c(k) depending on k but not on w.

4 Defining Coloured Pseudo-walls in Graphs of Large Tree-Width

In this section we aim at defining Σ-coloured pseudo-walls in graphs of large enough
tree-width in MSO2. Fix a set Σ of colours and let Γ := Σ ∪̇ {B,R} be as defined in
Section 3. Let G be a Γ -coloured graph and P ,Q, A ⊆ E(G) be sets of edges. For
(P ,Q, A) to be a Σ-coloured pseudo-wall in G, we first need to say that P and Q are
sets of pairwise disjoint paths in G. Note that P induces a set of pairwise disjoint paths
if, and only if, i) every vertex v ∈ G is incident to at most two edges in P and ii)
the subgraph of G induced by the edges in P is acyclic. This can easily be defined in
MSO2 and we will see the formulas below for the more complicated case of paths and
acyclicity in I(P ,Q). Furthermore, we have to say that the edges of A, and only those,
are coloured by B. Now, we have to distinguish between simple and complex coloured
pseudo-walls. This can easily be done in MSO2 as in the first case

⋃

P∈P P ⊆ A (at
least in the pseudo-walls generated in the previous section, in general pseudo-walls
this is only true for the paths in the top-most row, but that could equally be used to
distinguish the two types of walls) whereas this fails in the second. We will present the
case for simple pseudo-walls explicitly. The other case follows using the same ideas.

We first need a few auxiliary formulas. To ease the presentation we assume that no
path P occurs in both P and Q. This is guaranteed by the pseudo-walls generated in
Section 3 but we could also easily modify the formulas below to avoid this assumption
(see also Section 5).

In what follows we will use MSO2-formulas, interpreted in G, to speak about the
intersection graph I := I(P ,Q). To increase readability of formulas we agree on
the following convention: lower case letters are used for first-order variables, variables
P,Q, ... range over sets of edges and variables E,F,H range over sets of vertices. It
may seem bizarre to use F,H for a set of vertices. The reason will become clear below
as we will be using variables E for sets of vertices in G which represent sets of edges
in I. As a final piece of notation, we write “P ∈ P” to say that P is a component of



358 S. Kreutzer

P , i.e. one of the paths in P , and analogously for Q ∈ Q. Furthermore, we will write
x ∈ V (P ) for the formula ∃yPxy to say that x is adjacent to an edge in P .

Recall that for two paths P ∈ P and Q ∈ Q there is an edge {P,Q} ∈ E(I) if
P ∩ Q �= ∅ in G. As P and Q are sets of disjoint paths, there are no three distinct
paths in P ∪Q intersecting in a single vertex. Hence, we can represent edges {P,Q} ∈
E(I) by a vertex v ∈ V (P ∩ Q). However, in MSO2 we cannot pick a single vertex
from V (P ∩ Q) and therefore will represent the edge {P,Q} by the set V (P ∩ Q).
Let ϕE(x) := ∃P ∈ P ∃Q ∈ Q x ∈ V (P ∩ Q), inc(x, P ) := x ∈ V (P ) and
x ∼ y := ∃P ∈ P ∃Q ∈ Q x, y ∈ V (P ∩ Q) be MSO2-formulas, where we will
usually write ∼(x, y) in infix notation. ∼ defines an equivalence relation on the set of
vertices satisfying ϕE(x) and we can represent edges in I by equivalence classes of ∼
in G. Hence, I is isomorphic to the graph I := (V,E, σ) with vertex set V := P ∪ Q
and edge set E := {[x]∼ : x ∈ ϕE(G)}, where a vertex P ∈ V is incident with an
edge e ∈ E if there is a vertex v ∈ e ∩ P (and hence e ⊆ P ). I is MSO2-definable in
G, by the formulas ϕE , inc and ∼ with parametersP ,Q and we can represent variables
over elements of I by variables ranging over sets of edges in G by enforcing that these
are interpreted by a path from either P or Q. VariablesX over sets of elements of I can
be represented in G by pairs XP , XQ of variables ranging over sets of edges so that a
set X ⊆ V (I) is represented by the pair of sets XP := X ∩ P and XQ := X ∩ Q.
Finally, sets F ⊆ E(I) of edges can be represented by sets F ′ ⊆ ϕE(G) closed under
∼ so that if {P,Q} ∈ F then V (P ∩ Q) ⊆ F ′. Using this idea we can then say about
I, and hence about I, that I is a wall as follows: 1) There are two sets H,V ⊆ E(I) of
edges, each of which induces a set of pairwise vertex disjoint paths in I (which we will
think of as horizontal and vertical paths in a wall). 2) For all P ∈ H andQ ∈ V , P ∩Q
is connected and V (P ∩Q) ∩ V (H) = ∅ for all H ∈ (V ∪ H) \ {P,Q}. 3) There is
a path L ∈ V such that the intersection of L with each Q ∈ H contains an endpoint of
Q (we think of L as the left-most vertical path in the wall). Once we have L, we can
give the horizontal paths P ∈ H a direction, where we say that p ∈ V (P ) is to the left
of p′ ∈ V (P ), if the subpath of P containing p′ and a vertex in L also contains p. 4)
There is a path T ∈ H such that the intersection of T with each P ∈ V contains an
endpoint of P (T is the top-most horizontal path in the wall). We can now use T to give
the vertical paths P ∈ V a direction and say that p ∈ V (P ) is above p′ ∈ V (P ), if the
subpath of P containing p′ and a vertex in T also contains p. 5) For each path P ∈ V
except L there is a path P ′ ∈ V (the path immediately to the left of P ) such that for
all Q ∈ H: if p ∈ V (P ∩ Q) and p′ ∈ V (P ′ ∩ Q) are vertices in the intersection of
Q and P , P ′ resp., then p′ is to the left of p in Q and there is no S ∈ H such that any
s ∈ V (S ∩ Q) lies in the subpath of Q between p and p′. The analogue condition for
horizontal paths.

To demonstrate the idea of the MSO2-formalisation we give precise formulas for
the set H in Condition 1. It will be clear that the other conditions can be formalised
analogously. We have to say that there is a set H ⊆ E(I) of edges inducing a set of
pairwise disjoint paths in I. To define this in G, we first need a formula Path(P,Q,H)
saying that there is a path from P ∈ P ∪ Q to Q ∈ P ∪ Q using only edges from
H , where H is a subset of ϕE(G), closed under ∼, representing edges in I. The usual
way of expressing that two vertices x, y in a graph are connected within a set H of
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edges is to say that all sets U of vertices which contain x and are closed under the edge
relation H also contain y. In our case, sets of vertices of I are represented by pairs of
sets UP ⊆ P and UQ ⊆ Q consisting of connected components of P and Q. Hence,
the idea above is expressed by the formula Path(P,Q,H) defined as

∀UP ⊆ P∀UQ ⊆ Q
(

(

P ∈ UP ∪ UQ ∧
∀X,Y ∈ P ∪ Q

[

X ∈ UP ∪ UQ ∧ ∃e(e ∈ H ∧ inc(e,X) ∧ inc(Y )))
→ Y ∈ UP ∪ UQ

])

→ Q ∈ UP ∪ Uq

)

where we write X ∈ UP ∪ UQ to say that X is a component either of UP or UQ and
UP ⊆ P to say that UP is a set of components of P . Now, we can say that H induces a
set of pairwise disjoint paths as follows. We first say that every vertex in H has degree
at most 2: ∀P ∈ P ∪ Q

(

∃≤2f ∈ H inc(f, P )), where ∃≤2f... is an abbreviation for:
there are at most 2 edges f such that .... To say that H induces an acyclic graph we say
that for all P ∈ P ∪ Q, if P is incident to an edge e := {P,Q} ∈ H then there is no
path from P to Q in H− e. The latter can be expressed using the formula Path above.
This concludes the formalisation of Condition 1).

Clearly, if V and H satisfy the conditions above, then they generate a wall in I and
conversely, the disjoint horizontal and vertical paths of a wall satisfy the conditions.
Hence, I is a wall if such V and H exist containing all vertices and edges of I. Formal-
ising all this gives us a formula which says ofP ,Q that the pair (P ,Q) is a pseudo-wall.
Note that so far we have not used the additional path A. Hence, if we are not interested
in coloured pseudo-walls but simply in pseudo-walls we can use this formula.

We now proceed to define coloured walls and the induced colouring of I(P ,Q).
From the formalisation above we now have sets H,V containing the horizontal and
vertical paths of the wall as well as two paths L, T giving the top-most row and left-
most column. The left-most row gives us an ordering on the top-most row and all we
have to do is to define the colours of the vertices on the top-most row from the additional
path A, which is easily done. Hence, we can write formulas ϕC(P ), for C ∈ Σ which
are true for the vertices in the wall coloured byC. Complex pseudo-walls can be defined
analogously. Taken together, we have a formulaϕU (P ,Q, A) which says that (P ,Q, A)
is a coloured pseudo-wall. Here, the sets P and Q define the vertices of the pseudo-wall
whereas A is an additional parameter used in the formulas. It will be convenient to
take the sets T, L defining the top- and left-most row and column as parameters also
rather than defining them. Hence, we have a formula ϕU (P ,Q, A, L, T ) which says
that (P ,Q, A) is a Σ-coloured pseudo-wall with left-most column L and top-most row
T , formulas ϕE(x,P ,Q, A, L, T ), inc(x, P,P ,Q, A, L, T ) and ∼(x, y,P ,Q, A, L, T )
defining the edge relation of the pseudo-wall and formulas ϕB(x,P ,Q, A, L, T ) and
ϕC(P,P ,Q, A, L, T ), where C ∈ Σ∪̇{R}, defining the colours.

All formulas together define, in graphs of large enough tree-width coloured properly,
a large wall whose top-most row is labelled by a word over Σ. Hence, if C is a class
of graphs of unbounded tree-width, closed under colourings, we can define arbitrarily
large coloured walls in C. We know already that (presumably) MSO2-model checking is
not fixed-parameter tractable on the class of coloured walls. To prove the main result
of this paper we need a way to translate MSO2-formulas ϕ over walls to MSO2-formulas
ϕ∗ over the graphs in which we define the walls. We could do this in an ad-hoc way



360 S. Kreutzer

and modify the formulas ϕU ... for each given formula ϕ. We find it more convenient,
though, to treat these modifications uniformly within the framework of interpretations.
In the next section we therefore introduce a new form of interpretations which simplifies
dealing with the intersection graphs we have to define and which might also be useful
elsewhere.

5 MSO2–MSO2-Transductions

In this section we introduce a class of interpretations, called MSO2−MSO2-transductions,
between classes of graphs which allow us to define one class B of graphs inside another
class C so that we can translate MSO2-formulas over B to MSO2-formulas saying the
same over the graphs in C. Unlike first-order interpretations, MSO2−MSO2-transductions
associate with every structure a class of structures and in this sense resemble MSO-
transductions as, e.g., studied by Courcelle. Let σ := {E,B1, . . . , Bt, C1, . . . , Cs} be
a signature of coloured graphs as defined in Section 2. Let τ be a signature.

Definition 5.1 (MSO2−MSO2-transduction). LetU := U1, . . . , Uk andX :=X1, . . . , Xl

be tuples of binary relation symbols. An MSO2−MSO2-transduction of σ in τ with pa-

rameters U,X is a tuple Θ :=
(

ϕU (U1, . . . , Uk, X),
(

ϕi,j
E (x), inci,j

E (x, P,Q), ∼i,j

(x)
)

1≤i<j≤k
,
(

ϕi,j
F (x)

)

1≤i<j≤k,F∈{B1,...,Bt}, (ϕC(P )i)C∈σ,1≤i≤k

)

, where P,Q

are unary second-order variables and x is a first-order variable, such that for all
τ -structures A and sets U,X ⊆ E(A) with (A,U,X) |= ϕU :

– ∼i,j defines an equivalence relation on ϕi,j
E (A)

– for all x ∈ V (A) and 1 ≤ i < j ≤ k, if (A,U,X) |= ϕi,j
E (x) then there are

exactly two sets Pi ⊆ Ui and Pj ⊆ Uj such that (A,U,X) |= inci,j
E (x, Pi, Pj) and

if (A,U,X) |= x ∼i,j y then (A,U,X) |= inci,j
E (y, Pi, Pj)

– for all F ∈ {B1, . . . , Bt}, ϕF (A) ⊆ ϕE(A).

We abbreviate MSO2−MSO2-transductions of σ in τ as σ-τ -transductions. Let Θ be a
σ-τ -transduction. To every τ -structure A, Θ associates a class Θ(A) of σ-structures
defined as follows. If U1, . . . , Uk, X1, . . . , Xl ⊆ E(A) are sets of edges such that
(A,U,X) |= ϕU , then we define the structure B := Θ(A,U,X) as follows:

– V (B) := ˙⋃
1≤i≤kVi where Vi := {V ⊆ Ui : V is a connected component of Ui}

– E(B) := ˙⋃
1≤i<j≤kE

i,j where Ei,j := {[v]∼i,j : v ∈ ϕi,j
E (A)} and the Ei,j are

taken to be disjoint.
– an edge e ∈ Ei,j is incident to vertices P ∈ Vi and Q ∈ Vj if A |= inci,j(e, P,Q)

for some Q ∈ Vj and likewise for P ∈ Vj .
– an edge e ∈ Ei,j , for 1 ≤ i < j ≤ k, is coloured by F , where F ∈ σ is binary, if
A |= ϕi,j

F (e).
– a vertex P ∈ Vi it coloured by C ∈ σ, where C is unary, if (A,U,X) |= ϕi

C(P ).

Hence, with every structureA and satisfying assignmentU1, . . . , Uk, X ofϕU the trans-
duction Θ associates structures whose universes consist of the connected components
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of the Ui. For classes A of τ -structures we define Θ(A) := {B : B ∈ Θ(A) for some
A ∈ A}. The definition of the edge relation may seem to be overly complicated, as
we define the edges and their incidence by different formulas and furthermore do it
separately for each pair i, j. The reason is that we want to use MSO2-formulas over the
structuresΘ(A) and hence have to be able to quantify over sets of edges in B ∈ Θ(A).
As MSO2 does not allow quantification over arbitrary binary relations, we have to en-
code edges by individual elements of A and then use sets over vertices to encode sets
of edges.

As all interpretations, MSO2−MSO2-transductions define a way of transforming one
class of structures into another and on the other hand, provide a translation of MSO2-
formulas ϕ over σ-structures into MSO2-formulas ϕ∗ over τ -structures so that if ϕ is
a formula with free variables F1, . . . , Fl, X1, . . . , Xs, y1, . . . , yr, where the Fi’s are
binary, the Xi’s are unary and the yi’s are individual variables, then ϕ∗ is a formula
with free variables (Fi)∗1, . . . , (Fi)∗k, (Xi)∗1, . . . , (Xi)∗k, and (Yi)∗1, . . . , (Yi)∗k, where
the (Fi)∗j ’s are binary and all other unary. In addition, the parametersU,X of the trans-
duction occur free in ϕ∗. We refer to the full version for details.

Lemma 5.2 (interpretation lemma). Let A be a τ -structure and U,X ⊆ E(A) be such
that (A,U,X) |= ϕU . LetB := Θ(A,U,X). For allϕ ∈ MSO2[σ], (A,U,X) |= Θ(ϕ)
if, and only if, B |= ϕ.

Corollary 5.3. Let ϕ ∈ MSO2[σ] and ψ := ∃U∃Xϕ∗ ∈ MSO2[τ ]. For all τ -structures
A, A |= ψ iff there is a B ∈ Θ(A) such that B |= ϕ.

6 Putting It All Together

In this section we prove Theorem 1.2. Let Σ := {C1, . . . , Cl}, with l ≥ 2, be a set
of colours and Γ := Σ ∪̇ {B,R}, where B is a binary and R a unary relation symbol.
Let C be a constructible class of Γ -coloured graphs closed under colourings such that
the tree-width of C is strongly unbounded by log8k n, for some k ≥ 1. We first observe
that the formulas ϕU (P ,Q, A, L, T ), ϕE , inc,∼, ϕB, ϕC as constructed in Section 4
can be used to define an MSO2−MSO2-transduction Θ such that Θ(C) is the class of
coloured walls in graphs G ∈ C. Here, we take U := P ,Q as the parameters defining
the vertex set of the resulting graphs and X := A,L, T as additional parameters used
in the transduction.

By Lemma 3.7, Θ(C) contains for each w ∈ Σ∗ a wall encoding w with power k,
i.e. there is a (|w|k × |w|k)-wall in Θ(C) whose top-most row is labelled by w from the
left. In particular, as SAT can be solved in time quadratic in the size of the input by a
non-deterministic Turing-machine, if k ≥ 2 then for each CNF formula w of lengthm,
Θ(C) contains a wall of size m2 ×m2 labelled by w.

Now take a formula ϕCNF which, on a wall W encoding w, checks whether w
correctly encodes a CNF-formula and whether the order of W is at least |w|2. This
can be done by simulating a non-deterministic Turing machine doing this test. Let
ψCNF := ∃PQALT (ϕU ∧ Θ(ϕCNF)) and let CCNF := {A ∈ C : A |= ψCNF} ⊆ C. By
the interpretation Lemma 5.2, CCNF contains for each CNF-formula w a graph G ∈ C
encodingw with power 2 and conversely each graphG ∈ CCNF encodes a CNF-formula
with power 2.
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Now, let ϕ be the MSO2-sentence from Section 2 which, by simulating an appro-
priate Turing-machine, is true in a wall of order |w|2 encoding a CNF-formula w if,
and only if, w is satisfiable and let ϑ := Θ(ϕ). It follows that if the tree-width of C is
strongly unbounded by log16 n, then model-checking ϑ := Θ(ϕ) in CCNF is equivalent
to solving SAT. If in addition C is constructible then this allows us to formally define a
subexponential time reduction from SAT to C as follows. Given a CNF-formula w, we

construct a graph G ∈ C such that G encodes w with power 2 and |G| < 2c·|w|
1
y , for

some y > 1 and c > 0. By definition of constructibility and strongly unboundedness,
such a graph G exists in C and can be constructed in time |G|r, for some fixed r > 0,

and hence in time < (2|w|
1
y )r = 2r·|w|

1
y . Now suppose MC(MSO2, C) was in XP, i.e.

for some computable function f , given a graph G ∈ C and ϕ ∈ MSO2, G |= ϕ could
be decided in time |G|f(|ϕ|). Hence, we could decide if G |= ϑ, where ϑ is the formula

defined above, in time |G|f(|ϑ|) < 2f(|ϑ|)·|w|
1
y . Taken together, we could decide if w is

satisfiable in time < 2(r+f(|ϑ|))·|w|
1
y , for fixed r, y > 1 and a fixed formula ϑ. Hence,

SAT would be decidable in sub-exponential time.
The same argument shows that if C is a rich and constructible class of Γ -coloured

graphs closed under colourings whose tree-width is effectively not bounded by log8·k n
and L is a problem that can be decided by a non-deterministic Turing-machine in time
nk, then MC(MSO2, C) is not in XP unless L can be solved in sub-exponential time.
This implies Theorem 1.2. The extension to the polynomial time hierarchy follows as
we can simulate alternating Turing-machines with bounded number of alternations in
MSO2 in the same way as non-deterministic Turing-machines.

Acknowledgements. I would like to thank Mark Weyer for pointing out that the result
proved here readily extends to problems in the polynomial time hierarchy.
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Abstract. It it shown that the first-order theory of an automatic struc-
ture, whose Gaifman graph has bounded degree, is decidable in doubly
exponential space (for injective automatic presentations, this holds even
uniformly). Presenting an automatic structure of bounded degree whose
theory is hard for 2EXPSPACE, we also prove this result to be optimal.
These findings close the gap left open in [14].

1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used finite
automata to decide, e.g., Presburger arithmetic [5]. Automaton decidable theo-
ries [9] and automatic groups [6] are similar concepts. A systematic study was
initiated by Khoussainov and Nerode [10] who also coined the name “automatic
structure”. In essence, a structure is automatic if the elements of the universe
can be represented as strings from a regular language (an element can be repre-
sented by several strings) and every relation of the structure can be recognized
by a finite automaton with several heads that proceed synchronously. Auto-
matic structures received increasing interest over the last years [3,11,12,15,1].
One of the main motivations for investigating automatic structures is that their
(first-order) theories can be decided uniformly (i.e., the input is an automatic
presentation and a first-order sentence). But even the theory of a specific au-
tomatic structure might be far from efficient: There exist automatic structures
with a nonelementary theory. This motivates the search for subclasses of auto-
matic structures with elementary theory. The first such class was identified by
the second author in [14] who showed that the theory of every automatic struc-
ture of bounded degree can be decided in triply exponential alternating time with
linearly many alternations. A structure has bounded degree, if in its Gaifman
graph, the number of neighbors of a node is bounded by some fixed constant.
The paper [14] also presents a specific automatic structure of bounded degree
whose theory is hard for doubly exponential alternating time with linearly many
alternations. Hence, an exponential gap between the upper and lower bound
remained. An upper bound of 4-fold exponential alternating time with linearly
many alternations was shown for tree automatic structures (which are defined
analogously to automatic structures using tree automata) of bounded degree.

� The second author is supported by the DFG research project GELO.
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Our paper [12] proves a triply exponential space bound for the theory of an in-
jective ω-automatic structure (that is defined via Büchi-automata) of bounded
degree; this result was recently applied to one-dimensional cellular automata [7].
Here, injectivity means that every element of the structure is represented by a
unique ω-word from the underlying regular language.

In this paper, we achieve three goals: (i) We close the complexity gaps from
[14] for automatic structures of bounded degree. (ii) We investigate, for the first
time, the complexity of the uniform theory (where the automatic presentation
is part of the input) of automatic structures of bounded degree. (iii) We refine
our complexity analysis using the growth function of a structure. This function
measures the size of a sphere in the Gaifman graph depending on the radius of
the sphere. The growth function of a structure of bounded degree can be at most
exponential.

Our main results are the following:

(a) The uniform theory for injective automatic presentations is 2EXPSPACE-
complete. The lower bound already holds in the non-uniform setting, i.e. there
exists an automatic structure of bounded degree with a 2EXPSPACE-complete
theory.

(b) For every automatic structure of bounded degree, where the growth func-
tion is polynomially bounded, the theory is in EXPSPACE, and there exists an
example with an EXPSPACE-complete theory.

In addition, the full version [13] of this extended abstract also contains anal-
ogous results for tree-automatic structures that had to be left out for space
restrictions:

(c) The uniform theory for injective tree automatic presentations belongs to
4EXPTIME; the non-uniform one to 3EXPTIME for arbitrary tree automatic
structures, and to 2EXPTIME if the growth function is polynomial. Our bounds
for the non-uniform problem are sharp, i.e., there are tree automatic struc-
tures of bounded degree (and polynomial growth) with a 3EXPTIME-complete
(2EXPTIME-complete, resp.) first-order theory.

We conclude this paper with some results on the complexity of first-order frag-
ments with fixed quantifier alternation depth one or two on automatic structures
of bounded degree. For a full version of this paper see [13].

2 Preliminaries

Let Γ be a finite alphabet and w ∈ Γ ∗ be a finite word over Γ . The length of w
is denoted by |w|. We also write Γn = {w ∈ Γ ∗ | n = |w|}.

Let exp(0, x) = x and exp(n + 1, x) = 2exp(n,x) for x ∈ N. We assume basic
knowledge in complexity theory. For k ≥ 1, we denote with kEXPSPACE (resp.
kEXPTIME) the class of all problems that can be accepted in space (resp. time)
exp(k, nO(1)) on a deterministic Turing machine. For 1EXPSPACE we write just
EXPSPACE, EXPTIME is to be understood similarly. A problem is called ele-
mentary if it belongs to kEXPTIME for some k ∈ N.
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Recall that emptiness and inclusion of the languages of finite nondetermin-
istic automata are complete for NL (nondeterministic logspace) and PSPACE
(polynomial space), resp..

2.1 Structures and First-Order Logic

A signature is a finite set S of relational symbols, where every symbol r ∈ S
has some fixed arity mr. The notion of an S-structure (or model) is defined as
usual in logic. We only consider relational structures. Sometimes, we will also use
constants, but in our context, a constant c can be replaced by the unary relation
{c}. Let us fix an S-structure A = (A, (rA)r∈S), where rA ⊆ Amr . To simplify
notation, we will write a ∈ A for a ∈ A. For B ⊆ A we define the restriction
A	B = (B, (rA ∩ Bmr )r∈S). Given further constants a1, . . . , ak ∈ A, we write
(A, a1, . . . , ak) for the structure (A, (rA)r∈S , a1, . . . , ak). In the rest of the paper,
we will always identify a symbol r ∈ S with its interpretation rA. A congruence
on the structure A = (A, (r)r∈S) is an equivalence relation ≡ on A such that for
every r ∈ S and all a1, b1, . . . , amr , bmr ∈ A we have: If (a1, . . . , amr) ∈ r and
a1 ≡ b1, . . . , amr ≡ bmr , then also (b1, . . . , bmr) ∈ r. As usual, the equivalence
class of a ∈ A w.r.t. ≡ is denoted by [a]≡ or just [a] and A/≡ denotes the set of
all equivalence classes. We define the quotient structureA/≡ = (A/≡, (r/≡)r∈S),
where r/≡ = {([a1], . . . , [amr ]) | (a1, . . . , amr ) ∈ r}.

The Gaifman-graph G(A) of the S-structure A is the symmetric graph on
the universe A of A, which contains an edge between a and b if and only if
there exists a tuple (a1, . . . , amr) ∈ r in some of the relations r ∈ S such that
a and b both belong to {a1, . . . , amr}. With dA(a, b), where a, b ∈ A, we denote
the distance between a and b in G(A), i.e., it is the length of a shortest path
connecting a and b in G(A). For a ∈ A and d ≥ 0 we denote with SA(d, a) =
{b ∈ A | dA(a, b) ≤ d} the d-sphere around a. If A is clear from the context,
then we will omit the subscript A. We say that the structure A is locally finite
if its Gaifman graph G(A) is locally finite (i.e., every node has finitely many
neighbors). Similarly, the structure A has bounded degree, if G(A) has bounded
degree, i.e., there exists a constant δ such that every a ∈ A is adjacent to at
most δ many other nodes in G(A); the minimal such δ is called the degree of A.
For a structure A of bounded degree we define its growth function gA : N → N as
gA(n) = max{|SA(n, a)| | a ∈ A}. Note that if the function gA is not bounded
then gA(n) ≥ n for all n ≥ 1. For us, it is more convenient to not have a
bounded function describing the growth. Therefore, we define the normalized
growth function g′A by g′A(n) = max{n, gA(n)}. Note that gA and g′A are different
only in the case that all connected components of A contain at most m elements
(for some fixed m). Clearly, g′A(n) can grow at most exponentially if A has
bounded degree. We say that A has exponential growth if g′A(n) ∈ 2Ω(n). If
g′A(n) ∈ nO(1), then A has polynomial growth.

We consider (first-order) formulas with equality over the signature S. The
quantifier depth of a formula ϕ is the maximal nesting of quantifiers in ϕ. A
formula without free variables is called closed. The theory of A, denoted by
Th(A), is the set of all closed formulas ϕ with A |= ϕ.
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2.2 Structures from Automata

Automatic Structures. Next we introduce automatic structures, more details
can be found in [10,3]. Let us fix n ∈ N and a finite alphabet Γ . Let $ /∈ Γ be an
additional padding symbol. For words w1, w2, . . . , wn ∈ Γ ∗ we define the convo-
lution w1⊗w2⊗· · ·⊗wn, which is a word over the alphabet (Γ ∪{$})n, as follows:
Let wi = ai,1ai,2 · · · ai,ki with ai,j ∈ Γ and k = max{k1, . . . , kn}. For ki < j ≤ k
define ai,j = $. Then w1⊗· · ·⊗wn = (a1,1, . . . , an,1) · · · (a1,k, . . . , an,k). Thus, for
instance aba⊗bbabb = (a, b)(b, b)(a, a)($, b)($, b). An n-ary relation R ⊆ (Γ ∗)n is
called automatic if the language {w1 ⊗ · · · ⊗wn | (w1, . . . , wn) ∈ R} is a regular
language.

An m-dimensional (synchronous) automaton over Γ is just a finite automaton
A = (Q,Δ, q0, F ) over (Γ∪{$})m such that L(A) ⊆ {w1⊗· · ·⊗wn | w1, . . . , wm ∈
Γ ∗}. Such an automaton defines an m-ary relation

R(A) = {(w1, . . . , wm) | w1 ⊗ · · · ⊗ wm ∈ L(A)} .

We define the size |A| of A as max{1, |Δ|} ·m. Reasonably assuming that every
state is the target state of some transition and that every letter from Γ appears
in some transition (implying |Γ |, |Q| ≤ |Δ|) , the size |A| bounds the number of
bits needed to store A (up to some polynomial).

An automatic presentation is a tuple P = (Γ,S, A0, A=, (Ar)r∈S), where: (i)
Γ is a finite alphabet, (ii) S is the signature of P (as before mr is the arity of the
symbol r ∈ S), (iii) A0 is an automaton over the alphabet Γ , (iv) for every r ∈ S,
Ar is an mr-dimensional automaton over Γ with R(Ar) ⊆ L(A0)mr , and (v) A=
is a 2-dimensional automaton over Γ such that R(A=) ⊆ L(A0)2 is a congruence
on the structure (L(A0), (R(Ar))r∈S). This presentation P is injective if R(A=)
is the identity relation on L(A0). The structure presented by P is the quotient
A(P ) = (L(A0), (R(Ar))r∈S)/R(A=). A structureA is automatic if there exists an
automatic presentation P such that A � A(P ). We will write [u] for the element
[u]R(A=) (u ∈ L(A0)) of the structure A(P ). The presentation P has bounded
degree if the structure A(P ) has bounded degree. The size of the presentation
P = (Γ,S, A0, A=, (Ar)r∈S) is |P | = |A0|+|A=|+

∑

r∈S |Ar|. Note that |S| ≤ |P |
and mr ≤ |P | for all r ∈ S.

Typical examples of automatic structures are (N,+) and (Q,≤). Examples of
automatic structures of bounded degree are transition graphs of Turing machines
and Cayley-graphs of automatic groups [6] as well as the queue structure [16]
(the set of finite words together with functions prefixing and suffixing a word by
a fixed letter). There are automatic structures A of bounded degree with growth
gA(n) ∈ 2Θ(

√
n) [13].

We will consider the following classes of automatic presentations1:

– SA: the class of all automatic presentations.
– SAb: the class of all automatic presentations of bounded degree.
– iSAb: the class of all injective automatic presentations of bounded degree.

1 The letter S in the below classes refers to “string”, the full paper [13] also contains
classes starting with T that refers to “tree”.
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The Model Checking Problem. For the above classes of automatic presen-
tations, we will be interested in the following decision problems.

Definition 2.1. Let C be a class of automatic presentations. Then the model
checking problem MC(C) for C denotes the set of all pairs (P, ϕ) where P ∈ C,
and ϕ is a closed formula over the signature of P such that A(P ) |= ϕ.

If C = {P} is a singleton, then the model checking problem MC(C) for C can
be identified with the theory of the structure A(P ). An algorithm deciding the
model checking problem for a class C decides the theories of each element of C
uniformly.

The following two results are the main motivations for investigating automatic
structures.

Proposition 2.2 (cf. [10]). There is an algorithm that computes, from an au-
tomatic presentation P = (Γ,S, A0, A=, (Ar)r∈S) and a formula ϕ(x1, . . . , xm),
an m-dimensional automaton A over Γ with R(A) = {(u1, . . . , um) ∈ L(A0)m |
A(P ) |= ϕ([u1], . . . , [um])}.

The automaton is constructed by induction on the structure of the formula ϕ:
disjunction corresponds to the disjoint union of automata, existential quantifi-
cation to projection, and negation to complementation. The following result is
a direct consequence.

Theorem 2.3 (cf. [10]). The model checking problem MC(SA) for all auto-
matic presentations is decidable. In particular, the theory Th(A) of every auto-
matic structure A is decidable.

Strictly speaking, [10] devices algorithms that, given an automatic presentation
and a closed formula, decide whether the formula holds in the presented struc-
ture. But a priori, it is not clear whether it is decidable, whether a given tuple
(Γ,S, A0, A=, (Ar)r∈S) is an automatic presentation. Prop. 2.5(a) below shows
that SA is indeed decidable in polynomial space, which then completes the proof
of this theorem.

Thm. 2.3 holds even if we add quantifiers for “there are infinitely many x
such that ϕ(x)” [2,3] and “the number of elements satisfying ϕ(x) is divisible
by k” (for k ∈ N) [11]. This implies in particular that it is decidable whether an
automatic presentation describes a locally finite structure. But the decidability
of the theory is far from efficient, since there are automatic structures with a
nonelementary first-order theory [3]. An example for this is the infinite binary
tree with the prefix relation, see e.g. [4, Example 8.3]. A locally finite example
can be obtained by taking the disjoint union of all finite binary-labeled linear
orders, see e.g. [4].

Preliminary Complexity Results. It will be convenient to work with injec-
tive automatic presentations. The following lemma says that this is no restriction,
if we allow an exponential jump in complexity.
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Lemma 2.4 ([10, Cor. 4.3]). From P ∈ SA we can compute in time 2O(|P |)

an injective automatic presentation P ′ ∈ iSA with A(P ) � A(P ′).

Next, we give complexity bounds for the class of all automatic structures as well
as for those of bounded degree.

Proposition 2.5. (a) The class SA is PSPACE-complete and (b) the class SAb
belongs to EXPTIME.

Proof. Statement (a) is shown in the full version [13]. For (b) we can assume by
(a) that the input indeed belongs to SA (which can be checked in polynomial
space and therefore in exponential time). In exponential time, the automatic
presentation can then be transformed into an equivalent injective one P ∈ iSA
of exponential size. Using simple automata constructions, we can compute a 2-
dimensional automaton A for the edge relation of the Gaifman-graph of A(P )
(in fact, A can be computed in time polynomial in |P |). Since P is injective (i.e.
every equivalence class [u] is the singleton {u}), A(P ) is of bounded degree iff A
(seen as a transducer) is finite-valued. But this is decidable in time polynomial
in |P | [17]. Since P is exponential in the input, this completes the proof. ��
In contrast to this decidability results, it is undecidable, whether a given au-
tomatic structure of bounded degree has polynomial growth, see the complete
version [13].

Finally, since we deal with structures of bounded degree, it will be important
to estimate the degree of such a structure given its presentation. Such estimates
are provided by the following result.

Proposition 2.6. The following holds:

(a) If P ∈ iSAb, then the degree of A(P ) is bounded by exp(1, |P |O(1)).
(b) If P ∈ SAb, then the degree of A(P ) is bounded by exp(2, |P |O(1)).

Proof. For statement (a) let P ∈ iSAb. From P we can construct a 2-dimensional
automaton A of size |P |O(1) that accepts the edge relation of the Gaifman graph
of A(P ). Then the degree of A(P ) equals the maximal out-degree of the relation
R(A). For string transducers, this number is exponential in the size of A, i.e., it
is in exp(1, |P |O(1)) [17].

For P ∈ SAb, the bound exp(2, |P |O(1)) follows immediately from Lemma 2.4
and (a). ��
The bound in Prop. 2.6 for P ∈ iSAb is sharp, see the complete version [13] for
an example.

3 Upper Bounds

It is the aim of this section to give an algorithm that decides the theory of an
automatic structure of bounded degree. The algorithm from Thm. 2.3 (that in
particular solves this problem) is based on Prop. 2.2, i.e., the inductive construc-
tion of an automaton accepting all satisfying assignments. Differently, we base
our algorithm on Gaifman’s Thm. 3.1, i.e., on the combinatorics of spheres. We
therefore start with some model theory.
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3.1 Model-Theoretic Background

For a structure A, a = (a1, . . . , ak) ∈ Ak and d ≥ k ≥ 0, we denote with A[d, a]
the induced substructure A	

⋃k
i=1 S(7d−i, ai). The following locality principle of

Gaifman implies that super-exponential distances cannot be handled in first-
order logic:

Theorem 3.1 ([8]). Let A be a structure, a, b ∈ Ak and d ≥ 0 such that
(A[d+ k, a], a) � (A[d+ k, b], b) (i.e. there is an isomorphism between the two
induced substructures A[d + k, a] and A[d + k, b] that maps the ith component
of a to the ith component of b for all 1 ≤ i ≤ k). Then, for every formula
ϕ(x1, . . . , xk) of quantifier depth at most d, we have: A |= ϕ(a) ⇐⇒ A |= ϕ(b).

Let S be a signature and let k, d ∈ N with 0 ≤ k ≤ d. A potential (d, k)-sphere
is a tuple (B, b) such that B is an S-structure, b ∈ Bk, and B = B[d, b]. There
is only one potential (d, 0)-sphere namely the empty sphere ∅. For our later
applications, B will be always a finite structure, but in this subsection finiteness
is not needed. The potential (d, k)-sphere (B, b) is realized in the structure A if
there exists a ∈ Ak such that (A[d, a], a) � (B, b).

Let σ = (B, b) be a potential (d, k)-sphere and let σ′ = (C, c, c) be a potential
(d, k + 1)-sphere (k + 1 ≤ d, c ∈ Ck, c ∈ C). Then σ′ extends σ (abbreviated
σ � σ′) if σ � (C[d, c], c). The following definition is the basis for our decision
procedure.

Definition 3.2. Let A be an S-structure, ψ(y1, . . . , yk) a formula of quantifier
depth at most d, and let σ = (B, b) be a potential (d+ k, k)-sphere. The Boolean
value ψσ ∈ {0, 1} is defined inductively as follows:

– If ψ(y1, . . . , yk) is an atomic formula, then

ψσ = 1 ⇐⇒ B |= ψ(b). (1)

– (¬θ)σ = 1− θσ and (α ∨ β)σ = max{ασ, βσ}
– If ψ(y1, . . . , yk) = ∃yk+1θ(y1, . . . , yk, yk+1) then

ψσ = max{θσ′ | σ′ is a potential(d+ k, k + 1)-sphere with (2)
σ � σ′ that is realized in A} .

The following result ensures for every closed formula ψ that ψ∅ = 1 if and only
if A |= ψ. Hence the above definition can possibly be used to decide validity of
the formula ϕ in the structure A.

Proposition 3.3. Let S be a signature, A an S-structure, a ∈ Ak, ψ(y1, . . . , yk)
a formula of quantifier depth at most d, and σ = (B, b) a potential (d + k, k)-
sphere with

(A[d + k, a], a) � σ . (3)

Then A |= ψ(a) ⇐⇒ ψσ = 1.
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Proof. We prove the lemma by induction on the structure of ψ. First assume
that ψ is atomic, i.e. d = 0. We have

ψσ = 1
(1)⇐⇒ B |= ψ(b)

(3)⇐⇒ A[0 + k, a] |= ψ(a) ⇐⇒ A |= ψ(a) ,

where the last equivalence holds since ψ is atomic. The cases ψ = ¬θ and ψ =
α ∨ β are straightforward.

We finally consider the case ψ(y1, . . . , yk) = ∃yk+1θ(y1, . . . , yk, yk+1). First
assume that ψσ = 1. By (2), some potential (d+k, k+1)-sphere σ′ is realized in
A with σ � σ′ and θσ′ = 1. Since σ′ is realized, there exist a′ ∈ Ak, a′ ∈ A with

(A[d+ k, a′, a′], a′, a′) � (B′, b, b) = σ′ . (4)

By induction, we have A |= θ(a′, a′) and therefore A |= ψ(a′). From (4), σ � σ′,
and (3), we also obtain

(A[d+ k, a′], a′) � (A[d + k, a], a)

and therefore by Gaifman’s Thm. 3.1 A |= ψ(a).
Conversely, let a ∈ A with A |= θ(a, a). Let σ′ = (B′, b, b) be the unique (up

to isomorphism) potential (d+ k, k + 1)-sphere such that

(A[d+ k, a, a], a, a) � (B′, b, b) . (5)

Then (3) implies σ � σ′. Moreover, by (5), σ′ is realized in A, and A |= θ(a, a)
implies by induction θσ′ = 1. Hence, by (2), we get ψσ = 1 which finishes the
proof. ��

3.2 The Decision Procedure

Now suppose we want to decide whether the closed formula ϕ holds in an au-
tomatic structure A of bounded degree. By Prop. 3.3 it suffices to compute the
Boolean value ϕ∅. This computation will follow the inductive definition of ϕσ

from Def. 3.2. Since every (d, k)-sphere that is realized in A is finite, we only
have to deal with finite spheres. The crucial part of our algorithm is to determine
whether a finite potential (d, k)-sphere is realized in A. In the following, for a
finite potential (d, k)-sphere σ = (B, b1, . . . , bk), we denote with |σ| the number
of elements and with δ(σ) the degree of the finite structure B.

For a class of automatic presentations C the realizability problem REAL(C)
for C denotes the set of all pairs (P, σ) where P ∈ C and σ is a finite potential
(d, k)-sphere over the signature of P for some 0 ≤ k ≤ d such that σ can be
realized in A(P ). In the complexity estimates in the following lemma, σ is the
input potential (d, k)-sphere and P is the input automatic presentation.

Lemma 3.4. REAL(iSA) can be solved in space |σ|O(|P |) · 2O(δ(σ)).

Proof. Let P = (Γ,S, A0, A=, (Ar)r∈S) ∈ iSA. Let σ = (B, b1, . . . , bk) and let
c1, . . . , c|σ| be a list of all elements of B; every bi occurs in this list. Let EA(P )
(resp. EB) be the edge relation of the Gaifman graph G(A(P )) (resp. G(B)).
Then σ is realized in A(P ) iff there are u1, . . . , u|σ| ∈ Γ ∗ with
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(a) ui ∈ L(A0) for all 1 ≤ i ≤ |σ|,
(b) ui �= uj for all 1 ≤ i < j ≤ |σ|,
(c) For all r ∈ S: (ui1 , . . . , uimr

) ∈ R(Ar) if and only if (ci1 , . . . , cimr
) ∈ rB, and

(d) there is no v ∈ L(A0) such that, for some 1 ≤ j ≤ |σ| and 1 ≤ i ≤ k with
d(cj , bi) < 2d−i, we have: (uj , v) ∈ EA(P ) and v /∈ {up | (cj , cp) ∈ EB}.

Then (a-c) express that the mapping ci 
→ ui is well-defined and an embedding of
B intoA(P ). In (d), (uj , v) ∈ EA(P ) implies that v belongs to

⋃

1≤i≤k S(2d−i, ui).
Hence (d) expresses that all elements of

⋃

1≤i≤k S(2d−i, ui) belong to the image
of this embedding.

Using standard automata constructions for Boolean operations and projec-
tion, we can construct a |σ|-dimensional automaton A over the alphabet Γ that
checks (a-d). A detailed size estimate shows that A has at most exp(1, |σ|O(|P |) ·
2O(δ(σ))) many states. Hence checking emptiness of its language (and therefore
realizability of σ in A(P )) can be done in space logarithmic to the number of
states, i.e., in space |σ|O(|P |) · 2O(δ(σ)) which proves the statement. ��
In the following, for an automatic presentation P of bounded degree, g′P denotes
the normalized growth function g′A(P ) of the structure A(P ). In the complexity
estimates in the following theorem, ϕ is the input sentence and P is the input
automatic presentation.

Theorem 3.5. MC(iSAb) can be solved in space g′P (2|ϕ|)O(|P |) exp(2, |P |O(1)).

Proof. It suffices by Prop. 3.3 to compute the Boolean value ϕ∅. Recall the
inductive definition of ϕσ from Def. 3.2 that we now translated into an algorithm
for computing ϕ∅. Such an algorithm has to handle potential (d, k)-spheres for
1 ≤ k ≤ d ≤ |ϕ| (d is the quantifier rank of ϕ) that are realized in A(P ). The
number of nodes of a potential (d, k)-sphere realized in A(P ) is bounded by
k · g′P (2d) ≤ g′P (2|ϕ|)O(1) since k < 2|ϕ| ≤ g′P (2|ϕ|). The number of relations of
A(P ) as well as each arity is bounded by |P |. Hence, any potential (d, k)-sphere
can be stored in space |P | · g′P (2|ϕ|)O(|P |) = g′P (2|ϕ|)O(|P |).

The set of (d, k)-spheres with 0 ≤ k ≤ d (ordered by the extension relation �)
forms a tree of depth d+1. The algorithm visits the nodes of this tree in a depth-
first manner and descents when unraveling an existential quantifier. Hence, we
have to store d + 1 ≤ |ϕ| many spheres, for which space |ϕ| · g′P (2|ϕ|)O(|P |) =
g′P (2|ϕ|)O(|P |) is sufficient.

Moreover, during the unraveling of a quantifier, the algorithm has to check re-
alizability of a potential (d, k)-sphere for 1 ≤ k ≤ d. Any such sphere has at most
g′P (2|ϕ|)O(1) many elements and the degree δ of A is bounded by exp(1, |P |O(1))
by Prop. 2.6(a). Hence, by Lemma 3.4, realizability can be checked in space
g′P (2|ϕ|)O(|P |) · exp(2, |P |O(1)).

At the end, we have to check whether a tuple b satisfies an atomic formula
ψ(y), which is trivial. Thus, the totally needed space is at most g′P (2|ϕ|)O(|P |) ·
exp(2, |P |O(1)). ��
We derive a number of consequences on the combined and expression complexity
of automatic structures of bounded degree. The first one concerns the combined
complexity and is a direct consequence of Thm. 3.5:



Automatic Structures of Bounded Degree Revisited 373

Corollary 3.6. The following holds:

(a) MC(iSAb) is in 2EXPSPACE.
(b) MC(SAb) is in 3EXPSPACE.

Proof. Statement (a) follows from Thm. 3.5 and the fact that (i) g′A(2|ϕ|) ≤ δ2
|ϕ|

if δ is the degree of A(P ) and (ii) Prop. 2.6(a), which allows to bound δ by
2|P |O(1)

. Statement (b) follows from (a) and Lemma 2.4, which allows to make
an automatic presentation injective with an exponential blow up. ��

Next we concentrate on the expression complexity, i.e., we fix the structure.

Corollary 3.7. If A is an automatic structure of bounded degree, then Th(A)
belongs to 2EXPSPACE. If in addition, A has also polynomial growth, then Th(A)
belongs to EXPSPACE.

Proof. Since A is automatic, it has a fixed injective automatic presentation P ,
i.e., |P | is a fixed constant. Hence, the first statement follows immediately from
Thm. 3.5. If A has in addition polynomial growth, then, again, the claim follows
immediately from Thm. 3.5 since g′A(2|ϕ|)O(|P |) = 2O(|ϕ|). ��

4 Lower Bounds

In this section, we will prove that the upper bounds for the expression complexi-
ties (Cor. 3.7) are sharp. This will imply that the upper bounds for the combined
complexity for injective automatic presentations from Thm. 3.5 is sharp as well.

For a binary relation r and m ∈ N we denote with rm the m-fold composition
of r. The following lemma is folklore.

Lemma 4.1. Let the signature S contain a binary symbol r. From a given num-
ber m (encoded unary), we can construct in linear time a formula ϕm(x, y) such
that for every S-structure A and all elements a, b ∈ A we have: (a, b) ∈ r2m

if
and only if A |= ϕm(a, b).

For a bit string u = a1 · · · am (ai ∈ {0, 1}) let val(u) =
∑m−1

i=0 ai+12i be the
integer value represented by u. Vice versa, for 0 ≤ i < 2m let binm(i) ∈ {0, 1}m

be the unique string with val(binm(i)) = i.

Theorem 4.2. There exists a fixed automatic structure A of bounded degree
such that Th(A) is 2EXPSPACE-hard.

Proof. Let M be a fixed Turing machine with a space bound of exp(2, n) such
that M accepts a 2EXPSPACE-complete language; such a machine exists by
standard arguments. Let Γ be the tape alphabet, Σ ⊆ Γ be the input alphabet,
and Q be the set of states. The initial (resp. accepting) state is q0 ∈ Q (resp.
qf ∈ Q), the blank symbol is � ∈ Γ \ Σ. Let Ω = Q ∪ Γ . A configuration of
M is described by a string from Γ ∗QΓ+ ⊆ Ω+ (later, symbols of configurations
will be preceded with additional counters). For two configurations u and v with
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|u| = |v| we write u  M v if u can evolve with a single M -transition into v.
Note that there exists a relation αM ⊆ Ω3 × Ω such that for all configurations
u = a1 · · · am and v = b1 · · · bm (ai, bi ∈ Ω) we have u  M v if and only if

∀i ∈ {2, . . . ,m− 1} : (ai−1aiai+1, bi) ∈ αM . (6)

Let Δ = {0, 1,#} ∪ Ω, and let π : Δ → Ω ∪ {#} be the projection morphism
with π(a) = a for a ∈ Ω∪{#} and π(0) = π(1) = ε. For m ∈ N, a string x ∈ Δ∗

is an accepting 2m-computation if x can be factorized as x = x1#x2# · · ·xn#
for some n ≥ 1 such that:

– For every 1 ≤ i ≤ n there exist ai,0, . . . , ai,2m−1 ∈ Ω such that xi =
∏2m−1

j=0 binm(j)ai,j .
– For every 1 ≤ i ≤ n, π(xi) ∈ Γ ∗QΓ+.
– π(x1) ∈ q0Σ∗�∗ and π(xn) ∈ Γ ∗qfΓ

+

– For every 1 ≤ i < n, π(xi)  M π(xi+1).

From M we now construct a fixed automatic structure A of bounded degree. We
start with the following regular language U0:

U0 = π−1((Γ ∗QΓ+#)∗) ∩ (7)

(0+Ω({0, 1}+Ω)∗1+Ω#)+ ∩ (8)

0+q0({0, 1}+Σ)∗({0, 1}+�)∗#Δ∗ ∩ (9)
Δ∗qf (Δ \ {#})∗# (10)

A string x ∈ U0 is a candidate for an accepting 2m-computation of M . With
(7) we describe the basic structure of such a computation, it consists of a list
of configurations separated by #. Moreover, every symbol in a configuration is
preceded by a bit string, which represents a counter. By (8) every counter is
non-empty, the first symbol in a configuration is preceded by a counter from 0+,
the last symbol is preceded by a counter from 1+. Moreover, by (9), the first
configuration is an initial configuration, whereas by (10), the last configuration
is accepting (i.e. the state is qf ).

For the further considerations, let us fix some x ∈ U0. Hence, we can write x
as x = x1#x2# · · ·xn# such that:

– For every 1 ≤ i ≤ n, there exist mi ≥ 1, ai,0, . . . , ai,mi ∈ Ω and counters
ui,0, . . . , ui,mi ∈ {0, 1}+ such that xi =

∏mi

j=0 ui,jai,j .
– For every 1 ≤ i ≤ n, ui,0 ∈ 0+, ui,mi ∈ 1+, and π(xi) ∈ Γ ∗QΓ+.
– π(x1) ∈ q0Σ∗�∗ and π(xn) ∈ Γ ∗qfΓ

+

We next want to construct, from m ∈ N, a small formula expressing that x is
an accepting 2m-computation. To achieve this, we add some structure around
strings from U0. Then the formula we are seeking has to ensure two facts:

(a) The counters behave correctly, i.e. for all 1 ≤ i ≤ n and 0 ≤ j ≤ mi, we
have |ui,j | = m and if j < mi, then val(ui,j+1) = val(ui,j) + 1. Note that
this enforces mi = 2m − 1 for all 1 ≤ i ≤ n.
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(b) For two successive configurations, the second one is the successor configura-
tion of the first one, i.e., π(xi)  M π(xi+1) for all 1 ≤ i < n.

In order to achieve (a), we introduce the following three binary automatic
relations:

σ0 = {(0v#, v0#) | v ∈ (Δ \ {#})∗}+

σΩ =
(

{(au, ua) | u ∈ {0, 1}+, a ∈ Ω}+(#,#)
)+

δ =
(

{(ua, va) | a ∈ Ω, u, v ∈ {0, 1}+, |u| = |v|,

val(v) = val(u) + 1 mod 2|u|}+(#,#)
)+

Hence, σ0 cyclically rotates every configuration to the left for one symbol, pro-
vided the first symbol is 0, whereas σΩ shifts all Ω-symbols one step to the
right in every configuration. The relation δ increments every counter modulo
2length of the counter. The crucial fact is the following:

Fact 1. For everym ∈ N, the following two properties are equivalent (recall that
x ∈ U0):

– ∃y1, y2 ∈ Δ∗ : δ(x, y2), σm
0 (x, y1), σΩ(y1, y2).

– For all 1 ≤ i ≤ n and 0 ≤ j ≤ mi, we have |ui,j| = m and if j < mi, then
val(ui,j+1) = val(ui,j) + 1.

Assume now that x ∈ U0 satisfies one (and hence both) of the two properties
from Fact 1 for some m. It follows that mi = 2m − 1 for all 1 ≤ i ≤ n and

x = x1#x2# · · ·xn#, where xi =
2m−1
∏

j=0

binm(j)ai,j for every 1 ≤ i ≤ n . (11)

In order to establish (b) we need additional structure. The idea is, for every
counter value 0 ≤ j < 2m, to have a word yj that coincides with x, but has all
the occurrences of binm(j) marked. Then an automaton can check that successive
occurrences of the counter binm(j) obey the transition condition of the Turing
machine. There are two problems with this approach: first, in order to relate x
and yj , we would need a binary relation of degree 2m (for arbitrary m) and,
secondly, an automaton cannot mark all the occurrences of binm(j) at once
(for some j). In order to solve these problems, we introduce a binary relation μ,
which for every x ∈ U0 as in (11) generates a binary tree of depth m with root x;
this will be the only relation in our automatic structure that causes exponential
growth. This relation will mark in x every occurrence of an arbitrary counter.
For this, we need two copies 0 and 0 of 0 as well as two copies 1 and 1 of 1. For
b ∈ {0, 1}, we define the mapping fb : {0, 0, 1, 1}∗{0, 1}+ → {0, 0, 1, 1}+{0, 1}∗
as follows (where u ∈ {0, 0, 1, 1}∗, c ∈ {0, 1}, and v ∈ {0, 1}∗):

fb(ucv) =

{

ucv if b �= c

ucv if b = c
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We extend fb to (({0, 0, 1, 1}∗{0, 1}+Ω)+#)∗ as follows: For w = w1a1 · · ·w�a�

with wi ∈ {0, 0, 1, 1}∗{0, 1}+ and ai ∈ Ω∪Ω# let fb(w) = fb(w1)a1 · · · fb(w�)a�.
Since fb can be computed with a synchronized transducer, the relation μ = f0∪f1
(here fb is viewed as a binary relation) is automatic.

Let x ∈ U0 as in (11), let the word y be obtained from x by overlining or
underlining each bit in x, and let u ∈ {0, 1}m be some counter. We say the
counter u is marked in y if every occurrence of the counter u is marked by
overlining each bit, whereas all other counters contain at least one underlined
bit.

Fact 2. Let x ∈ U0 be as in (11).

– For every counter u ∈ {0, 1}m, there is a unique y such that (x, y) ∈ μm and
u is marked in y.

– If (x, y) ∈ μm, then there exists a unique counter u ∈ {0, 1}m such that u is
marked in y.

Now, we can achieve our final goal, namely checking whether two successive
configurations in x ∈ U0 represent a transition of the machineM . Let the counter
u ∈ {0, 1}m be marked in y. We describe a finite automaton A1 that checks on
the string y, whether at position val(u) successive configurations in x are “locally
consistent”. The automaton A1 searches for the first marked counter in y. Then
it stores the next three symbols a1, a2, a3 from Ω (if the separator # is seen
before, then only one or two symbols may be stored), walks right until it finds
the next marked counter, reads the next three symbols b1, b2, b3 from Ω, and
checks whether (a1a2a3, b2) ∈ αM , where αM is from (6). If this is not the
case, then A1 will reject, otherwise it will store b1b2b3 and repeat the procedure
described above. Let U1 = L(A1). Together with Fact 1 and 2, the behavior
of A1 implies that for all x ∈ U0 and all m ∈ N, x represents an accepting
2m-computation of M iff x satisfies the formula

Φ(x) = ∃y1, y2 (δ(x, y2) ∧ σm
0 (x, y1) ∧ σΩ(y1, y2)) ∧ ∀y (μm(x, y) → y ∈ U1) .

Let us now fix some input w = a1a2 · · ·an ∈ Σ∗ with |w| = n, and let an+1 = �
and m = 2n. Thus, w is accepted by M if and only if there exists an accepting
2m-computation x such that in the first configuration of x, the tape content is
of the form w�+. It remains to add some structure that allows us to express the
latter by a formula. But this is straightforward: Let � be a new symbol and let

Π = Δ ∪ {0, 0, 1, 1, �};

this is our final alphabet. Define the binary automatic relations ι01 and ιa (a ∈ Ω)
as follows:

ι01 = {(u � av, ua � v) | a ∈ {0, 1}, u, v ∈ Δ∗} ∪ {(0v, 0 � v) | v ∈ Δ∗}
ιa = {(u � av, ua � v) | u, v ∈ Δ∗} .
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Then, the first configuration of x has a tape from w�+ if and only if x satisfies
the formula

Ψ(x) = ∃y0, z0, . . . , yn+1, zn+1
(

ιm01(x, y0) ∧ ιq0(y0, z0)

∧
n+1
∧

i=1

ιm0,1(zi−1, yi) ∧ ιai(yi, zi)
)

.

Then, A = (Π∗, σ0, σΩ , δ, μ, ι01, (ιa)a∈Ω, U0, U1) is an automatic structure of
bounded degree such that M accepts w iff the formula ∃x ∈ U0 (Φ(x) ∧ Ψ(x))
holds in A. Lemma 4.1 allows to compute in time O(log(m)) = O(n) an equiva-
lent formula over the signature of A. This concludes the proof. ��

The proof of the next result is in fact a simplification of the proof of Thm. 4.2,
since we do not need counters. In particular, the μ-relation in the proof of
Thm. 4.2, which was responsible for exponential growth, is not needed:

Theorem 4.3. There exists a fixed automatic structure A of bounded degree and
polynomial growth (in fact linear growth) such that Th(A) is EXPSPACE-hard.

5 Bounded Quantifier Alternation Depth and Open
Problems

In this section we state some facts about first-order fragments of fixed quantifier
alternation depth. These results can be deduced by reusing the construction from
Section 4.

For n ≥ 0, a Σn-formula is a formula in prenex normal form, where the quan-
tifier prefix consists of n alternating blocks and the first block is a block of exis-
tential quantifiers. The Σn-theory of a structureA is the set of all Σn-formulas in
Th(A). For a class C of automatic presentations, the Σn-model checking problem
Σn-MC(C) of C denotes the set of all pairs (P, ϕ) where P ∈ C, and ϕ belongs
to the Σn-theory of A(P ). The following result can be found in [3]:

Theorem 5.1 (cf. [3]). The problem Σ1-MC(SA) is in PSPACE. Moreover,
there is a fixed automatic structure with a PSPACE-complete Σ1-theory.

From our construction in the proof of Thm. 4.3, we can slightly sharpen the
lower bound in this theorem:

Theorem 5.2. There exists a fixed automatic structure of bounded degree and
polynomial growth (in fact linear growth) with a PSPACE-complete Σ1-theory.

Let us now move on to Σ2-formulas and structures of arbitrary growth:

Theorem 5.3. Σ2-MC(SA) is in EXPSPACE. Moreover, there exists a fixed au-
tomatic structure of bounded degree with an EXPSPACE-complete Σ2-theory.
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For n ≥ 3, the precise complexity of the Σn-theory of an automatic structure of
bounded degree remains open. From our results, it follows that the complexity
is somewhere between EXPSPACE and 2EXPSPACE.

Conjecture 5.4. For n ≥ 3, Σn-MC(SAb) is in EXPSPACE.

A possible attack to this conjecture would follow the line of argument in the proof
of Thm. 3.5 and would therefore be based on Gaifman’s theorem. To make this
work, the exponential bound in Gaifman’s theorem would have to be reduced
which leads to the following conjecture:

Conjecture 5.5. Let A be a structure, a, b ∈ Ak, and d, n ≥ 0 such that the
spheres of radius d ·2n around a and b are isomorphic. Then, for everyΣn-formula
ϕ(x1, . . . , xk) of quantifier depth at most d, we have: A |= ϕ(a) iff A |= ϕ(b).
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Nondeterminism and Observable Sequentiality

James Laird

Department of Computer Science, University of Bath

Abstract. We give operational, intensional and extensional character-
izations of a class of higher-order functionals which may be computed
sequentially but nondeterministically.

Sequential algorithms on concrete data structures have been shown to
correspond to (deterministic) “observably sequential functionals”, which
can be computed in observably sequential PCF (SPCF), and in fact, in
an affine version of SPCF in which there are no nested or recursively
defined functions.

In this work, we extend these results to a setting with nondeterminism.
The main new step is to define notions of concrete data structure in which
the sets of cells, values and events are ordered. The nondeterministic
states over an ordered CDS form a biorder in (essentially) the sense of
Berry, and we show that co-stable and continuous functions, and stable
and continuous functions on these biorders each correspond to states on
a function-space concrete data structure (non-deterministic sequential
algorithms), proving Cartesian closure for the corresponding categories.

We use these results to define a category of “convex sequential algo-
rithms” which combine both stable and co-stable states, and use these
give a model of SPCF extended with non-deterministic choice, for which
we prove universality at finite types, and thus full abstraction.

1 Introduction

Capturing non-deterministic behaviour in higher-order, sequential functional
languages presents a challenge for denotational semantics. Domain theoretic ap-
proaches to describing functions accurately up to total correctness are liable to
encounter problems in reflecting sequentiality, as in the deterministic case. On
the other hand, describing the branching behaviour of nondeterministic func-
tional programs in intensional representations such as game semantics has also
proved (perhaps surprisingly) difficult. In particular, combining the notion of
innocence with non-determinism is problematic [6].

In this paper, we shall develop an account based on the notions of observably
sequential functional and sequential algorithms. (Deterministic) observably se-
quential functionals were introduced by Cartwright and Felleisen [3], as a model
for SPCF — a functional language in which different evaluation strategies for
functions are observable, due to the presence of errors and simple control jumps.
The original notion of observably sequential functional combines extensional and
intensional aspects, but a purely intensional characterization was given in terms

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 379–393, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



380 J. Laird

of sequential algorithms on sequential data structures in [4], whilst a purely ex-
tensional characterization has been given in terms of “bistable biorders” [12].
In fact, an apparently much weaker version of SPCF, in which functions cannot
share variables with their arguments is still sufficient to define the computable
observably sequential functionals.

The object of this paper is to develop an analogous tripartite description of non-
deterministic observably sequential functions, giving purely extensional (biorder)
and purely intensional characterizations, both of which yield fully abstract models
of SPCF with nondeterministic choice, and of its affinely typed restriction. The
extensional aspect of our account is provided by biorders essentially related to
Berry’s original bidomains [1]. This builds on previous work by the author describ-
ing fully abstract models of sequential languages such as the lazy λ-calculus using
these domains [11]. However, although these models technically carry all observ-
able information about program behaviour, they do not do so in a transparent
way. Sequential algorithms on concrete data structures (or, more generally, games
and strategies), by contrast, offer an intuitively appealing model of computation,
in particular, by exposing the nature of interaction between function and argu-
ment. Thus the main contribution of this paper is to develop a suitable notion
of nondeterministic sequential algorithm making this possible, and exhibiting the
correspondence with stable and continuous functions. This requires an ordering
on cells and values (i.e. game positions), to reflect the fact that (for example) any
program which may diverge in response to a given argument, may also diverge in
response to an argument with a wider range of behaviours. Since it proves to be
impossible to fully “sequentialize” the states of ordered concrete data structures
interpreting terms in the model, so that there is a unique sequence of moves to
each position, our semantics may be seen as employing an intrinsically positional
form of games [8], in an essential way.

Our fully abstract model of non-deterministic SPCF may be compared with
the game semantics of an analogous prototypical non-deterministic functional
language with state (erratic Idealized Algol) described by Harmer and McCusker
[7]. The latter is given by representing strategies as pairs of their sets of diver-
gent and non-divergent traces. Denotations in our may-and-must testing seman-
tics are, similarly, “convex sequential algorithms” given by a pair of sequential
algorithms consisting of a may interpretation and a must-interpretation.

2 Nondeterministic Observably Sequential PCF

Observably sequential PCF is Scott’s PCF extended with a set of “error” terms
and a simple control operator capturing statically bound exceptions. We form
“erratic SPCF”, or ESPCF by adding nondeterministic binary choice to SPCF
(with a single error, !). (A possible interpretation is that ! represents deadlock,
distinct from livelock/divergence.)

Types are given by the following grammar:

T ::= bool | nat | S × T | S → T
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To the simply-typed λ-calculus with products over these types, we add the fol-
lowing typed constants:

Arithmetic — Numerals, Booleans, successor, predecessor, zero-testing.
Error — ! : T .
Conditional — If : bool× (B ×B) → B,
Recursion — Fixpoint combinators YT : (T → T ) → T at each type T .
Control — strict? : (T → B) → bool, which returns tt if its argument is

strict, ff it is non-strict (and both if it is a choice between strict and non-
strict functions).

Choice — + : B ×B → B (will be written infix).

The operational semantics for programs — closed terms of basic type — is
based on evaluation contexts, which are given by the grammar:

E[ ] ::=[ ]|E[ ]M | If 〈E[ ],M〉]M | strict?E[ ] | strict? λk.E[ ] |πi E[·]| opE[ ]
where op is drawn from the arithmetic operations. We write Ek[ ] for an evalu-
ation context which does not capture the variable k. The basic, non-arithmetic
reduction rules are as follows:

E[(λx.M)N ] −→ E[M [N/x]]
E[πi〈M,N〉] −→ E[πiM ] i ∈ {1, 2}
E[strict?λk.Ek[k]] −→ E[tt]
E[strict?λk.v] −→ E[ff ]
E[If 〈tt,M〉] −→ E[π1M ]
E[If 〈ff ,M〉] −→ E[π2M ]
E[YM ] −→ E[M (Y M)]
E[M1 +M2] −→ E[Mi] i ∈ {1, 2}

For a program M (closed term of ground type) we write M ⇓ if there exists
a terminating reduction of M (i.e. if M : nat, then M −→∗ C where C is a
numeral, or E[!]), and M ⇑ if there exists a non-terminating reduction of M —
i.e. a ω-chain {Mi | i ∈ ω} such that Mi −→Mi+1 for all i.

We derive a notion of of observational approximation for each test, and for
both combined: given terms M,N : T ,

– M �� N if for all compatible program contexts C[·], C[M ] ⇓ implies C[N ] ⇓.
– M �⊥ N if for all compatible program contexts C[·], C[N ] ⇑ implies C[M ] ⇑.
– M ��

⊥ N if M �� N and M �⊥ N . ��
⊥=��

⊥ ∩(��
⊥)c.

The first two relations represent a form of partial correctness — one with re-
spect to error, and one with respect to divergence. The combination successfully
captures a form of total correctness — e.g. M ��

⊥ n if and only if M may reduce
only to n, and cannot diverge or produce an error.

We give an example showing the limits of observable sequentiality in a non-
deterministic functional setting, and illustrating one difficulty in giving a fully
abstract semantics for it. Given M,N : bool let M ;N = If 〈M, 〈N,N〉〉. Then
the terms λxy.x; y, λxy.y;x, λxy.y;x, λxy.y;x; y of type bool → bool → bool
are pairwise (may or must) observationally distinguishable.
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However the terms λxy.x; y + y;x and λxy.x; y;x+ y;x; y are may-and-must
equivalent — both terms nondeterministically choose an order in which to test
both arguments, and then return either the left or right one. To distinguish them
it would be necessary to determine the order in which the arguments were tested
after the final value has been returned. This suggests that a strongly sequential
representation of program-argument interaction as sequences of moves is not
what is required.

3 Ordered Concrete Data Structures

Concrete data structures [2] consist of sets of cells, values, events (which are pairs
of cells and values), and an enabling relation between set of events and values.
The idea is that each step of a sequential computation is represented as an
event (the filling of a cell with a value), which may be dependent on a previous
events having occurred (as specified by the enabling relation). Deterministic
programs are interpreted as states, which specify a unique value for filling enabled
cells. Thus they are represented as sets of events which satisfy two conditions:
consistency — every cell must be filled with a unique value — and safety — for
every filled cell there is a finite chain of enablings of filled cells within the state,
back to an “initial cell”.

In order to model nondeterministic computation we must clearly drop the
consistency condition. Instead, we place an ordering on cells and values, and re-
quire upwards closure under this ordering. To model the “observably sequential”
character of the computation, we include a distinct “failure element”, •, with
which cells may be filled. This has a different meaning depending on the kind
of failure being tested for: filling a cell with • in the stable (total correctness)
model represents divergence, whereas failing to fill an enabled cell represents
failure due to error. Conversely, in the co-stable (partial correctness) model, •
represents error and an unfilled cell represents divergence.

Definition 1. A (filiform) ordered concrete data structure (ocds) A is a tu-
ple (CA, VA, A, EA) where CA, VA are partial orders not containing the distin-
guished element •, EA ⊆ CA×VA is a set of events and  A⊆ (EA∪{∗})×CA is
an enabling relation such that (c, v)  c′ implies c ≤ c′. We shall further assume
that every ocds is bounded (every cell dominates finitely many cells and every
value is dominated by finitely many values).

An interesting subclass of ocds is obtained by imposing the further condition
that if (c1, v)  c′ and (c2, v) ∈ EA then (c2, v)  c′, so that  is equivalent to
a relation between values and cells. Then we may think of cells and values as
positions in a game in which Player moves are events, and Opponent moves are
enablings. These “graph game” ocds form full Cartesian closed subcategories of
our categories of ocds and stable or co-stable maps.

We write E•(A) for the partial order EA ∪ (CA × {•}), with (c, •) ≤ (c′, v) if
c ≤ c′.

So, for example, for any set X we have a “powerdomain” ocds ˜X with a single
cell which may be filled by any element of X : ˜X = ({c}, X, {c} ×X, (•, c)).
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Definition 2. A proof P of an event e is a finite sequence of events 〈(ci, vi) | i ≤
n〉 such that ∗  c0, en = e and eα  cα+1 for i ≤ n.

We write x  ∗ e if there is a proof of e, all of the elements of which are in x
(we write x  ∗ c if x  ∗ (c, •)).

Note that, given a proof 〈(ci, vi)| i ≤ n〉 of a cell d, ci < d for all i ≤ n, so in a
bounded ocds, every cell has at most finitely many proofs.

A state of an ocds A is an upper set x ⊆ E•(A) satisfying:

Safety. If e ∈ x then there exists e′ ≤ e such that x  ∗ e′.

A state is finite-branching if every cell which contains infinitely many values also
contains •.

We write D(M) for the set of states of the ocds M , and Dfin(M) for the
finitely branching states.

So, for any set X , the states of ˜X are the full set of events (up-closure of (c, •))
and for any Y ⊆ X , the state {(c, v) | v ∈ y}. The finitely branching states are
the full state, and those for which the set of values filling c is finite.

We write F (x) for the set of filled cells of the state x over M — i.e. F (x) =
{c ∈ Cm | ∃a.(c, a) ∈ x}. We write A(x) for the set of accessible cells (enabled
but unfilled) from x: {c ∈ CM | x  ∗ c ∧ c �∈ F (x)}. For a set of values V , we
write x+(c, V ) for the state

⋃

{x+(c, v) | v ∈ V }. We say that a state x ∈ D(A)
is total if x ⊆ EA.

We now describe how to construct biorders from the sets of all states, and
sets of finite states of an ordered CDS. A (meet) biorder [1,5] is a set D with
partial orders ',≤s such that:

– (D,') (the extensional order) is a meet semi-lattice.
– (D,≤s) (the stable order) is included in (D,'), the meet operator is mono-

tone with respect to ≤s, and its unit is the ≤s-least element in (D,≤s).

A join biorder is the dual of a meet biorder — in this case we refer to the dual
of the stable order ≤s, as the co-stable order ≤c.

To generate a biorder from the set of (all, or just finitely branching) states of
an ocds, we take the extensional order to be reverse inclusion (meet biorder) or
inclusion (join biorder), and define the stable coherence relation (i.e. the relation
of being bounded above in the stable order, or below in the co-stable order) on
states as follows: x ↑ y if

(c, v) ∈ x implies (c, v) ∈ y or (c, •) ∈ x
(c, v) ∈ y implies (c, v) ∈ x or (c, •) ∈ y,

Since every cell in a state which is filled with • is also filled with any acceptable
value, two coherent states may differ only according to which cells are filled
with •.

In ˜X, the full state (up-closure of (c, •)) is stably coherent with all other
states; every other pair of states is incoherent.

We may define the stable order by x ≤s y if y ⊆ x and x ↑ y — i.e. if (c, v) ∈ x
then (c, v) ∈ y or (c, •) ∈ x. Clearly, this is a well-defined order.
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Lemma 1. x ↑ y if and only if x and y are bounded above in ≤s.

Proof. If x ↑ y, then the set z of events in e ∈ x∩y such that there exists an event
e′ ≤ e with a proof in x ∩ y is clearly a well-defined state. It remains to show
that x ≤s z. So suppose (c, v) ∈ x. Then there exists (c′, v′) ∈ x with a proof
{e1, . . . , en} in x. If {e1, . . . , en} ⊆ y, then (c, v) ∈ z as required. Otherwise,
there exists i with (ci, vi) �∈ y and hence (ci, •) ∈ x. So (c, •) ∈ x as required.

(Dfin(M),⊇) is evidently a semi-lattice with respect to the union operation, with
unit E•(M). Thus to show that (Dfin(M),⊇,≤s) is a meet biorder, it suffices
to observe that if x ↑ y then x ∪ y ↑ x. (Suppose (c, v) ∈ x ∪ y, then (c, v) ∈ x
(as required) or else (c, v) ∈ y, and since y ↑ x, we have either (c, •) ∈ y ⊆ x ∪ y
or else (c, v) ∈ x.)

Similarly, if the co-stable order is defined x ≤c y if x ⊆ y and x ↑ y, then
(D(M),⊆,≤c) is a join biorder.

Requiring the extensional order to be complete leads to the notions of meet
and join bicpo. If X,Y are directed sets, we define X ≤s Y (resp. X ≤c Y ) if for
all (x, y) ∈ X×Y , there exists (x′, y′) ∈ X×Y with x ' x′, y ' y′ and x′ ≤s y

′.

– A meet bicpo is a meet biorder in which the extensional order is a dcpo,
the meet operation is continuous, and for any directed sets X,Y , X ≤s Y
implies

⊔

X ≤s

⊔

Y . (So the stable order is also complete.)
– A join bicpo is a join biorder in which the extensional order is a dcpo, and

for any directed sets X,Y , X ≤c Y implies
⊔

X ≤c

⊔

Y .

(Note that these are not dual.)

Proposition 1. For any ordered cds M , (D(M),⊆,≤c) is a join bicpo and
(Dfin(M),⊇,≤s) is a meet bicpo.

Proof. It remains to show that the intersection operation on directed sets of
states is well defined. Let S ⊆ Dfin(M) be a ⊇-directed set of states. Then

⋂

S
is a state (and thus a ⊇-supremum):

Safety If e ∈
⋂

S is ≤-minimal then there is a proof of e in each state x ∈ S.
But there are only finitely many proofs of e, and thus at least one proof
occurs in every state in S, and thus in

⋂

S.
Finite Branching If {v | (c, v) ∈

⋂

S} is infinite, then {v | (c, v) ∈ x} is infinite
in each x ∈ S and so (c, •) ∈

⋂

S as required.

If X ≤s Y then
⋂

X ≤s

⋂

Y : suppose, for example, that (c, v) ∈
⋂

X , but
(c, v) �∈

⋂

Y — i.e. there exists y ∈ Y with (c, v) �∈ Y . Then for all x ∈ X ,
(c, v) ∈ X , and there exists y′ ∈ Y with x ≤s y

′ and y′ ⊆ y, and so (c, v) �∈ y
and hence (c, •) ∈ x, and so (c, •) ∈

⋂

X as required.

Lemma 2. (Dfin(A),≤s) is algebraic.

Proof. An element of (Dfin(A),≤s) is (stably) compact if it contains finitely many
filled cells which are not filled with •. For any state x, we write K(x) for the set
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of compact stable approximants to the state x. For any element x, the set K(x) is
directed — if a, b ∈ K(x) then their meet (as defined above) is in K(x). Any proof
P of an event in x corresponds to a compact approximant yp = P ∪ {(c, •) | c ∈
F (x)} ≤s x and the intersection of all such approximants is x.

3.1 Stable Functions and Sequentiality

A '-continuous function f : D → E between algebraic meet bicpos is stable —
in the sense of having a trace — if and only if it is conditionally multiplicative —
i.e. for any x, y ∈ D which are stably coherent, f(x�y) = f(x)�f(y). Similarly, a
continuous function between join bicpos is co-stable if it is conditionally additive
(i.e. preserves joins of coherent pairs). Note that this implies that for any set X
bounded below in the co-stable order, f(

⊔

X) =
⊔

{f(x) | x ∈ X}.
So we may define categories B — of meet bicpos and continuous, stable func-

tions, and BC — of complete biorders and continuous co-stable functions. These
are both Cartesian closed [1], having products defined pointwise, with internal
homs being sets of continuous and stable/co-stable functions, with the standard
definition of extensional and stable orderings, dualized to give the co-stable order
— i.e.

f ≤c g if for all x, y ∈ D,x ≤c y =⇒ f(x) ≤c g(y) and g(y) = f(y) � g(x).

By Proposition 1, we may define two categories in which objects are ordered con-
crete data structures — OC, in which morphisms from A to B are ⊆-continuous
and conditionally additive functions from D(A) to D(B) — and OCfin, in
which morphisms from A to B are ⊇-continuous conditionally multiplicative
functions from Dfin(A) to Dfin(B). Both have all small products, with the
product of two ordered ocds being (C1, V1, E1, 1) × (C2, V2, E2, 2) = ((C1 +
C2), V1 ∪ V2, {(c.i, v) | (c, v) ∈ Ei, i ∈ {1, 2}} ∪ V1 ∪ V2, {(c.2, v) | (c, v) ∈
E2}, {(c.i, v), c.i) | (c, v), c ∈ Ei, i ∈ I}.

There are evident fully faithful functors from OC into BC, and fromOCfin into
B which preserve products (up to isomorphism). Hence to establish Cartesian
closure of OC and OCfin, it suffices to define an exponent ocds A ⇒ B for
each A,B, such that D(A ⇒ B) ∼= [D(A), D(B)] in BC and Dfin(A ⇒ B) ∼=
[Dfin(A), Dfin(B)]. This is the key result of the paper, since it establishes that
every stable and continuous function between sets of (finite/infinite branching)
states of an ocds is computed by a unique sequential algorithm.

Sequential data structures were introduced in order to describe sequential
functions [9]. Essentially, a function between (orders generated from) sequential
data structures is Kahn-Plotkin sequential if any argument (state) x, and cell
c which is accessible in f(x), and filled in f(y) can be associated with a cell,
accessible from x, which must be filled in any state y such that c is filled in
f(y). In this original setting, divergence is represented implicitly, by not filling
an enabled cell, whereas, in effect, we require “sequentiality with respect to
the token •” (which may represent either error, or divergence). Thus we may
translate the original definition of Kahn-Plotkin sequentiality to the current
setting by (essentially) replacing the role of “accessible cell” with that of “cell
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filled with •”, and “filled cell” with “enabled cell not filled with •”. (We also
replace the inclusion relation on states (which, in the original setting, is the
stable order) with coherence.

Definition 3. A function f : D(A) → D(B) (or from Dfin(A) to Dfin(B))
is •-sequential if whenever (c, •) ∈ f(x) then either of the following conditions
hold:

– For all y with x ↑ y, (c, •) ∈ f(y)
– There exists (c′, •) ∈ x such that ∀z ↑ x.(c′, •) ∈ f(z) implies (c, •) ∈ f(z).

Given a state x and an event (c, a) with x  ∗ c, we write x+ (c, a) for the state
x ∪ {e | (c, a) ≤ e}.

Proposition 2. Any conditionally additive ⊆-continuous function from D(A)
to D(B) is •-sequential.

Proof. Suppose f : D(A) → D(B) is conditionally additive and ⊆-continuous.
For any x ∈ D(A) such that (c, •) ∈ f(x) but (c, •) �∈ f(x ∩ EA), the set
Y = {(x∩EA) + (c′, •) | c′ ∈ A(x∩EA)} is pairwise coherent with

⋃

Y = x. So
(c, •) ∈ f(x) =

⋃

{f(y) | y ∈ Y } — i.e. there exists c′ with f(c, •) ∈ ((x∩EA) +
(c′, •)) as required.

Proposition 3. Any conditionally multiplicative ⊇-continuous function from
Dfin(A) to Dfin(B) is •-sequential.

Proof. Suppose f : Dfin(A) → Dfin(B) is conditionally multiplicative and ⊇-
continuous. For any x ∈ Dfin(A) such that (c, •) ∈ f(x) but (c, •) �∈ f(x ∩EA),
we show that there exists z such that x ∩ EA ⊆ z ⊆ x and the set of cells filled
with • in z is finite, from which •-sequentiality follows as for Prop. 2.

Let S be the set of states y such that x ∩ EA ⊆ y ⊆ x, and the set of cells
filled (with •) in x but not in y is finite. Then S is ⊇-directed, with least upper
bound x ∩ EA, so by continuity, there exists y ∈ S with (c, •) �∈ f(y). Let
z = (x∩EA)∪ (x− y), so that y ∪ z = x, and hence (c, •) ∈ f(z) by conditional
multiplicativity (and the set of cells filled with • in z is finite).

3.2 Nondeterministic Sequential Algorithms

We will now show that OC and OCfin are Cartesian closed by defining an expo-
nent ocds, and showing that D(A ⇒ B) ∼= [D(A), D(B)] and Dfin(A ⇒ B) ∼=
[Dfin(A), Dfin(B)].

– The cells of A⇒ B are pairs of a total, finite state of A and a cell of B:
CA⇒B = (D(A) ∩ Pfin(EA)) × CB — with (x, c) ≤ (x′, c′) if x ⊆ x′ and
c ≤ c′.

– A value of A ⇒ B is either a cell from A or a value from B — the order
being determined pointwise from that of VB and the dual of CA:
VA⇒B = Cc

A * VB



Nondeterminism and Observable Sequentiality 387

– A cell (x, c) of A ⇒ B may be filled with a cell accessible from x in A or a
value filling c in B:
E(A⇒ B) = {((x, c), c′) | x  ∗

A c′} ∪ {((x, c), v) | (c, v) ∈ EB}
– A cell (x, c) is initial if x is the empty state and c is initial:
∗  (x, c) if x = {} and ∗  c.
A cell (x, c) filled with an A-cell c′ enables another cell by filling c′ in A:
((x, c′), c)  (y, c′′) if c′ = c′′ and ∃V ⊆ VA.y = x+ (c, V )
A cell (x, c) filled with a B-value v enables another cell as in B:
((x, c), v)  (y, c′) if x = y and (c, v)  B c′.

As a simple example, consider the exponent ocds ˜∅X ⇒ ˜∅. There is a single
total state of ˜0X — the empty state {}. Thus there is a single cell in ˜∅X ⇒ ˜∅ —
({}, c), where c is the initial cell in ˜0. The values that can fill this cell are initial
cells in ˜∅X —- i.e. {c.i | i ∈ X}. Thus this ocds is equivalent (i.e. there are
isomorphisms of cells and values preserving the event and enabling relations) to
˜X. More particularly, note that if A is any non-empty ocds, there is a morphism
strict? from A ⇒ ˜X into {̃tt,ff} such that (c, tt) ∈ strict?(x) iff there exists an
(initial) cell c′ in A with (({}, c), c′) ∈ x and (c,ff) ∈ strict?(x) if there exists
a value v ∈ X with (({}, c), v) ∈ x. This will be the denotation of the strict?
operator.

We first show how to obtain a continuous, co-stable function from a (possibly
infinitely branching) sequential algorithm. Given a sequential algorithm σ ∈
D(A⇒ B), define: fun(σ)(x) =

{(c, a) ∈ E•(B) | ∃x′ ⊆fin x.((x′, c), a) ∈ σ ∨ ∃c′.(c′, •) ∈ x ∧ ((x′, c), c′) ∈ σ}

To show that this is well-defined, we first observe that for any x, fun(σ)(x) is
a state — upwards closure is a consequence of upwards closure for σ, whilst if
(c, a) ∈ fun(σ)(x), then there exists ((y, c), b) ∈ σ with y ⊆ x, and a proof of
(y, c) in σ which therefore restricts to a proof of c in f(y).

Lemma 3. fun(σ) is a stable and continuous function.

Proof. fun(σ) is clearly continuous with respect to inclusion. To show that it
preserves coherence, suppose x ↑ y. We show that if (c, v) ∈ fun(σ)(x ∪ y) then
(c, v) ∈ fun(σ)(x) or (c, •) ∈ fun(σ)(y).

Suppose (c, v) ∈ fun(σ)(x ∪ y) but (c, v) �∈ fun(σ)(x). Then there exists w ⊆
x ∪ y with ((w, c), v) ∈ σ but w �⊆ x. Suppose P is a proof of ((w, c), v) in σ
and let ((w′, c′), a′) be the least element of P such that w′ �⊆ x. Then there
is an immediately preceding event ((w′′, c′), c′′) such that w′ = w′′ + (c′′, V )
for some set of values V , including a value u such that (c′′, u) �∈ x. Because
w′ ⊆ x ∪ y, (c′′, u) ∈ y and so (c′′, •) ∈ y by coherence of x and y, and hence
(c′, •) ∈ fun(σ)(y) and hence (c, •) ∈ fun(σ)(y) as required.

Similarly, if (c, v) ∈ f(x ∪ y) then either (c, v) ∈ f(x) or (c, v) ≥ (c, •) ∈ f(y),
and so f(x ∪ y) ⊆ f(x) ∪ f(y).
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Lemma 4. If σ ↑ τ then fun(σ) ↑ fun(τ).

Proof. It is straightforward to show that fun(σ)(x) ≤s fun(τ)(x) for all x, so
suppose x ↑ y and (c, a) ∈ fun(σ)(x) — we need to show that (c, a) ∈ fτ (x) or
(c, a) ∈ fun(σ)(y). By Lemma 3, if (c, a) �∈ fun(σ)(y), then (c, •) ∈ fun(σ)(x),
and so we may assume that a = •.

So there exists an event ((z, c), a) ∈ σ with z ⊆ x and either a = • or else
there exists z + (c′, •) ⊆ x such that ((z, c), c′) ∈ σ. But this latter case reduces
to the first one, since either ((z, c), c′) ∈ τ (and so (c, •) ∈ fun(τ)(x) and we are
done), or else ((z, c), •) ∈ σ.

Assuming (c, •) �∈ fun(σ)(y), let P be a proof of ((z, c), •) in σ, and let
((z′, c′), e′) be the least element of P such that z′ �⊆ y. Then there must be an im-
mediately preceding event in P of the form ((z′′, c′), c′′), where z′ = z′′ +(c′′, V )
for some V , and hence z′′ + (c′′, •) ⊆ x by coherence. If ((z′′, c′), c′′) ∈ τ then
(c, •) ∈ fun(τ)(x). Otherwise ((z′′, c′), •) ∈ σ and so (c′, •) ∈ fun(σ)(y).

For any sequential algorithms σ, τ ∈ D(A ⇒ B), fun(σ ∪ τ) = fun(σ) � fun(τ)
by construction. Thus we have defined a continuous and conditionally additive
map from D(A⇒ B) to [D(A), D(B)]

We now show that that function fun is an isomorphism by defining an inverse.
Given a conditionally additive function f : D(A) → D(B), we define strat(f) ∈
D(A⇒ B) as follows:

{((x, c), a) ∈ E•(A⇒ B) | (c, a) ∈ f(x) ∨ (c′ ∈ CA ∧ (c, •) ∈ f(x+ (c′, •)))}
Lemma 5. For any conditionally additive continuous function f : D(A) →
D(B), strat(f) is a well-defined sequential algorithm.

Proof. (Sketch.) It is straightforward to show that this is an up-closed set of
events. So it remains to show that every event ((x, c), a) in strat(f) has a proof
in strat(f). We construct such a proof using the sequentiality property for stable
and continuous functions.
Let P = 〈(di, vi) | i < l〉 be a proof of c in f(x). For each integer j, we define an
event ej = ((xj , cj), aj) ∈ strat(f) such that  e0, and for all j:

– xj ⊆ x and cj ≤ c
– Either ej = ((x, c), a) or ej  ej+1.
– cj = di for some i ≤ j, and if aj ∈ V (B), then aj = vi for some i ≤ j.

Starting with x0 = {} and c0 = d0, we form xj+1 by adding all events in x
which are fillings of cj to xj , and cj+1 to be the next reachable cell in the proof
P . If this is filled in f(xj+1), by a value v such that (cj+1, v) s in P , then we
may set aj+1 = v, otherwise, by the sequentiality property for f we may find a
cell c′ ∈ A(xj+1) ∩ F (x) such that (cj , •) ∈ f(xj+1 + (c′, •)) and so we may set
aj+1 = c′. By compactness of (x, c), there exists n with xn = x and cn = c, and
so 〈ej | j ≤ n〉 is a proof of (x, c) in strat(f)

We may also verify that strat( ) preserves the inclusion and coherence relations,
so that continuity and co-stability are consequences of the following.

Theorem 1. The maps strat and fun are inverse isomorphisms.
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Corollary 1. The category OC of ordered concrete data structures and co-stable
⊆-continuous functions is Cartesian closed.

The above results may be adapted to give an isomorphism between [Dfin(A),
Dfin(B)] and Dfin(A⇒ B) in B for any A,B. We first observe that the opera-
tion strat produces finite-branching states from ⊇-continuous functions.

Proposition 4. If f : Dfin(A) → Dfin(B) is stable continuous then strat(f) is
finite-branching.

Proof. Suppose the set of a such that {a ∈ V (A ⇒ B) | ((x, c), a) ∈ strat(f)
is infinite. If there are infinitely many v such that ((x, c), v) ∈ strat(f), then
((x, c), •) ∈ strat(f) because f(x) is finite-branching by definition.

So suppose there are infinitely many cells c′ such that ((x, c), c′) ∈ strat(f).
Let S be the set of states y such that y ≤s x and A(x)−F (y) is finite. Then for
any y ∈ S there exist infinitely many cells c′ ∈ A(x) such that (c′, •) ∈ y and
(c, •) ∈ f(x+(c′, •)). Hence (c′⊥) ∈ f(y) for all y ∈ S, and S is ⊇-directed with
supremum x, and thus (c, •) ∈ f(x) by continuity, and so ((x, c), •) ∈ strat(f) as
required.

However, the function fun(σ) is not ⊇-continuous in general, even for finite-
branching (or even, deterministic) σ. Take, for example, the strategy from ̂1ω to
̂∅ which queries each cell in ̂1ω in turn — i.e. σ = {(xi, c

′), c.i) | i ∈ ω}, where
xi = {(c.j, ∗) | j ≤ i} . Let yi = xi∪{(c.j,⊥) | j > i} — then (c′,⊥) ∈ fun(σ)(yi)
for all i, but fun(σ)(

⋂

i∈ω yi) = {}.
So to extract a stable continuous function from a finite-branching sequential

algorithm, we need to take account of the possibility of “livelock” in the in-
teraction between function and argument. We may do this using the algebraic
structure of domains of finite branching strategies.

Proposition 5. strat : [Dfin(A), Dfin(B)] → Dfin(A⇒ B) is an isomorphism.

Proof. Define func(σ) : Dfin(A) ⇒ Dfin(B) by func(σ)(x) =
⊔

{fun(σ)(y) | y ∈
K(x)}. This is a continuous function by definition, and is stable thanks to the
stability of the least upper bound operator.

For any f , func(strat(f))(y) = fun(strat(f)(y) = f(y) for compact states y,
and thus func · strat = I, and since every finite and total state is compact, we
also have strat(fun(σ)) = σ for all sequential algorithms σ.

We may also give a more direct characterization of the ⊇-continuous function
corresponding to a finite branching sequential algorithm, by expilcitly describing
the livelocks which lead to divergence (in similar style to [7]). By including these,
⊇-continuity of the fun operation may be recovered.

For any finite branching sequential algorithm σ : A ⇒ B, a livelock of σ
at c is a total state x ∈ Dfin(A) such that there exists an ω-chain of events
〈((xi, c), ci) | i ∈ ω〉 in σ such that ((xi, c), ci)  (xi+1, c) for each i, and

⋃

i∈ω xi =
x. Let σ	 be the set of tuples ((x, c), •) ∈ (Dfin(A)×CB)×{•} such that x is a
livelock of σ at c. Using the fact that from each chain of approximants 〈xi | i ∈ ω〉
to x such that (c, •) ∈ f(xi) for each i we may derive a livelock for x at c, and
vice-versa, we prove:
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Proposition 6. func(σ) = fun(σ ∪ σ	).

3.3 Convex Sequential Algorithms

As we shall show, the two categories of sequential algorithms give a full char-
acterization of the behaviour of each ESPCF program with respect to may and
must testing — hence we may construct a fully abstract model in the category
of ocds and pairs consisting of a co-stable function between the join bicpos of
states and a stable function between the meet bicpos of finite-branching states.

However, it remains to identify which such pairs may arise as the denotation of
a term — there is no program with the denotation {(c, tt)} under may-testing
interpretation and the denotation {(c,ff)} under must testing interpretation,
for example. To give a may-and-must testing model with a (finite) definability
property, we introduce the notion of convex sequential algorithm.

Definition 4. A convex state of the ocds A is a pair (x, x) ∈ D(A) ×Dfin(A)
such that x ↑ x ( coherence) and A(x ∪ x) = ∅, ( repleteness). Informally, we
may explain these conditions: the components of a convex state can only differ
with respect to deadlock/livelock behaviour, and at any enabled cell, must either
fill it with a value, or fail due to explicit livelock or deadlock.
Let Dcx(A) be the set of convex states of A.

Convex sequential algorithms from A to B are convex states of A ⇒ B. We
may compare these to the nondeterministic strategies defined in [7], which are
represented as pairs of sets of non-divergent traces, and of divergent (livelocked
or deadlocked) traces, respectively. A convex sequential algorithm is represented
as a pair of a set of active or deadlocked positions, and a set of active or livelocked
positions.

Convex sequential algorithms are composed pointwise: given (σ, σ) ∈ Dcx(A⇒
B) and (τ , τ ) ∈ Dcx(B ⇒ C), σ; τ = ((strat(fun(τ ) · fun(σ)), (strat(func(τ ) ·
func(σ)). To establish that that this is a convex sequential algorithm, we observe
that composition of sequential algorithms respects the coherence relation (as for
Lemma 4), and:

Lemma 6. A pair of sequential algorithms (σ, σ) ∈ D(A⇒ B)×Dfin(A⇒ B)
is replete if and only if for all replete pairs of states (x, x) ∈ D(A) ×Dfin(A),
(fun(σ)(x), func(σ)(x) is replete.

Proof. If (σ, σ) is replete, then for any enabled cell c in (fun(σ)(x), fun(σ)(x), we
may compute a chain of substates yi ⊆ x ∪ x cells ((yi, c), yi+1) ∈ σ ∪ σ such
that either (((yn, c), v) ∈ σ ∪ σ, where v fills c, for some n, or else y1, . . . , yn, . . .
is is a livelock in x at c.

Conversely, for any pair (σ, σ′) ∈ D(A⇒ B)×Dfin(A⇒ B), failure replete-
ness entails the existence of a specific x such that fun(σ)(x) and fun(σ′)(x) are
not replete.

So we may form a category OScx in which morphisms from A to B are convex
states of A⇒ B, with composition defined pointwise. Cartesian closed structure
derives from that of OC,OCfin. OScx is also cpo-enriched: we may show that
for any chain X of states in (Dcx(A),⊆ × ⊇), (

⋃

π1X,
⋂

π2X) is a convex state.
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4 Denotational Semantics of Erratic SPCF

The denotational semantics of erratic SPCF in OScx (and thus by projection,
in OC and OCfin) is a straightforward extension of the interpretation of PCF in
a cpo-enriched Cartesian closed category. Specifically, we have the following:

– Ordered concrete data structures ˜B with which to interpret the basic type B
over the value-set B, with associated arithmetic and conditional operations.

– A morphism strict? : ([[T ]] → B) → {̃tt,ff} with which to interpret strict? :
(T → B) → bool,

– A sequential algorithm ({(c, •)}, {}) ∈ Dcx([[T ]]) for each T , with which to
interpret !.

– A binary operation (pairwise union) with which to interpret nondeterministic
choice.

We refer to e.g. [12] for more details of the semantics of SPCF.

Proposition 7. The interpretation of ESPCF in OScx is sound with respect to
��

⊥: if π1[[M ]] ⊆ [[N ]] then M �� N , and if π2[[M ]] ⊇ π2[N ]] then M �⊥ N .

Proof. We prove that if M is not a value, or !, then πi[[M ]] =
⋃

{πi[[N ]] |M −→
N} for i ∈ {1, 2}. Computational adequacy, and thus inequational soundness,
follows the standard impredicative argument.

Full abstraction with respect to may-and-must testing is shown by establishing
that (each type in) the convex model has a basis of elements which are definable
(i.e. denotations of terms). We may derive such a basis from the fact that all
elements of finite types are ESPCF definable, which has a simple proof based on
the claim that every such type is a retract of a product of Boolean types. This
is similar to results for SPCF itself — we refer to [14,12,13] for further details
and discussion.

A termM of SPCF is affinely typed if (i) it contains no instances of the fixpoint
combinator (ii) for every subterm of the form N N ′, the free variables of N and
N ′ are disjoint. Sharing of variables is permitted between paired subterms, and
thus across the conditional. An affinely definable retraction T �U is given by a
pair of terms inj : T → U and proj : U → T which are affinely typable, and
such that λx.proj(inj x) denotes the identity.

Lemma 7. There is an affinely definable retraction bool → bool � bool ×
bool× bool× bool.

Proof. Each convex sequential algorithm f : [[bool]] → [[bool]] can be recon-
structed from four pieces of information: whether it represents a strict function
(under may-testing, and must-testing interpretations), and the values of f([[tt]]),
f([[ff ]]) and f([[tt]] ∪ [[ff ]]). If f is strict, then we compute f(x) by testing x and
returning the relevant value. Otherwise, return f([[tt]]).



392 J. Laird

Hence the following terms define a retraction of bool→ bool into bool4.

inj = λf.〈strict?f, f tt, f ff , f (tt + ff)〉
proj = λx.λy.If 〈π1x, 〈If 〈y, 〈If 〈y, 〈π2x, π4x〉〉, π3x〉〉, π2x〉

Simple inductions yield booln → bool� bool4n and thus:

Proposition 8. For every finite type T , there exists n such that T � booln

Hence universality holds for all finite types. To prove full abstraction, observe
that:

Lemma 8. For any type T , there exists a chain of types 〈Ti | i ∈ ω〉, and chains
of pairs of ESPCF-definable morphisms 〈(fi : [[Ti]] → [[T ]], gi : [[T ]] → [[Ti]]) | i ∈
ω〉 such that for all e ∈ [[T ]], e =

⊔

i∈ω fi(gi(e)).

Proof. Take e.g. nati =booli, with the evident chain of embeddings/projections.

Theorem 2. The convex model of SPCF is fully abstract with respect to may-
and-must testing.

So by the definability theorem for finite types, every finitary ESPCF term M is
may-and-must equivalent to an affinely-typed term.

5 Conclusions and Further Directions

We have described representations of higher-order functionals with bounded non-
determinism as non-deterministic sequential algorithms. Several avenues for fur-
ther research are open.

Universal Types. For the sake of simplicity, we have proved full abstraction
via retractions of finite types into finite products of the Boolean type only.
However, it is possible to show that the type nat→ bool is universal (with
respect to affinely typable retractions).

Powerdomains. Erratic SPCF lacks a powerdomain construction; modelling
such a construction would provide a clearer link to domain theoretic accounts
of nondeterminism. It appears that it is possible to do so by moving to a more
explicitly game semantic setting, in which strategies satisfy some confluence
properties (a restriction on history sensitivity). We may then give a model
of intuitionistic linear logic in which the ! represents a powerdomain.

Unbounded nondeterminism. The constructions described here extend to
yield an equivalence between stable and monotone but non-continuous func-
tions, and sequential algorithms on unbounded ocds, with the significant dif-
ference that proofs of cells become possibly infinite ordinal chains of events.
These may be used to interpret, for example, countable nondeterminism.

Bidomains as games. We have yet to describe algebraically the biorders which
arise as sets of states of ocds, as was done for bistable biorders and sequen-
tial data structures [10]. A possible route is via the relationship of ocds and
nondeterministic sequential algorithms to bistructures [5].
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Abstract. We introduce a spatial modal logic based on cone-shaped
cardinal directions over the rational plane and we prove that, unlike
projection-based ones, such as, for instance, Compass Logic, its satis-
fiability problem is decidable (PSPACE-complete). We also show that
it is expressive enough to subsume meaningful interval temporal logics,
thus generalizing previous results in the literature, e.g., its decidability
implies that of the subinterval/superinterval temporal logic interpreted
over the rational line.

1 Introduction

Spatial reasoning has both a strong theoretical relevance and applications in
many areas of computer science, including robotics, natural language processing,
geographical information systems [1, 5, 12]. However, despite the widespread
interest in the topic, few techniques have been developed to automatically (and
efficiently) reason about spatial relations over infinite structures. As a matter of
fact, spatial reasoning has been mainly investigated in quite restricted algebraic
settings.

In this paper, we introduce a novel spatial modal logic, called Cone Logic,
which allows one to reason about cone-shaped directional relations between
points in the rational plane. While the satisfiability problem for spatial modal
logics with projection modalities turns out to be highly undecidable [7, 9],
we prove that Cone Logic enjoys a decidable satisfiability problem (in fact,
PSPACE-complete) by taking advantage of a suitable filtration technique. We
also show that Cone Logic subsumes interesting interval temporal logics such
as the temporal logic of subintervals/superintervals, thus generalizing previous
results in the literature [3] and basically disproving a conjecture by Lodaya [6].

2 Syntax and Semantics of Cone Logic

In this section, we introduce syntax and semantics of Cone Logic. Let P = Q×Q

denote the rational plane and let p = (x,y) be one of its points. We denote by

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 394–408, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

{angelo.montanari,pietro.sala}@dimi.uniud.it
gabriele.puppis@comlab.ox.ac.uk


A Decidable Spatial Logic with Cone-Shaped Cardinal Directions 395

p

UR(p)UL(p)

LR(p)LL(p)

p

North

West East
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Fig. 1. The four quadrants and the cone-shaped cardinal directions

LL(p), LR(p), UL(p), and UR(p) the open lower-left, lower-right, upper-left, and
upper-right quadrants of p, respectively, which are defined as follows:

LL(p) =
{
(x ′,y′) : x ′ < x, y′ < y

}
LR(p) =

{
(x ′,y′) : x ′ > x, y′ < y

}

UL(p) =
{
(x ′,y′) : x ′ < x, y′ > y

}
UR(p) =

{
(x ′,y′) : x ′ > x, y′ > y

}
.

Note that, up to a rotation of the axes, these open quadrants can be viewed
as the Frank’s cone-shaped cardinal directions ‘North’, ‘West’, ‘East’, ‘South’
[4] (see Figure 1). Similarly, one can denote by LL+(p), LR+(p), UL+(p), and
UR+(p) the semi-closed quadrants of p, which are defined in the natural way,
e.g., LL+(p) = {(x ′,y′) : x ′ � x, y′ � y} \ {p}.

Given a set Prop of propositional variables, formulas of Cone Logic are built
up from Prop using the boolean connectives ¬ and ∨ and eight modal operators

, , , , +, +, +, and +. The size |ϕ| of a formula ϕ is given
by the number of its subformulas (for instance, a ∨ ¬ ¬b is a formula
of size 7). Formulas of Cone Logic are evaluated over (labeled regions of) the
rational plane. Precisely, let P = (P,σ) be a labeled region, where P ⊆ P is a
non-empty subset of the rational plane and σ : P → P(Prop) is a labeling
function. We define the semantics of a formula with respect to a distinguished
initial point p ∈ P as follows:

• P,p � a iff a ∈ σ(p),
• P,p � ¬ϕ iff P,p �� ϕ,

• P,p � ϕ1 ∨ ϕ2 iff P,p � ϕ1 or P,p � ϕ2,

• P,p � ϕ (resp., P,p � +ϕ) iff P contains a point q such that q ∈ LL(p)
(resp., q ∈ LL+(p)) and P,q � ϕ (and similarly for the other modal operators

, , , +, +, and +).

We further use shorthands such as ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ = ¬ ¬ϕ,
ϕ = ϕ, ϕ = ϕ, ϕ = ϕ, ϕ = ϕ, etc.

Cone Logic is well-suited for expressing spatial relationships between points,
curves, and regions inside the rational plane. Below, we give an intuitive account
of its expressiveness through a couple of examples. To begin with, we show how
to define an a-labeled open rectangular region, whose edges are aligned with the
x- and y-axes, by means of a Cone Logic formula:
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...
b1 ...

bn ...

...
bn ...

b1 ...

...
b1 ...

bn ...

a

c
b1

bn

Fig. 2. A labeled rational plane satisfying ϕ<

ϕ = a ∧ b ∧ c ∧ d ∧ e

∧ (a → a ∧ a ∧ a ∧ a) ∧ (¬a ↔ b ∨ c ∨ d ∨ e)
∧ (b → b) ∧ (c → c) ∧ (d → d) ∧ (e → e).

The second example uses two symmetric modal operators, namely, and ,
to enforce non-trivial spatial relationships between labeled regions of the ra-
tional plane. Let Prop be a signature containing n + 2 propositional variables
a,b1, ...,bn, c and let < be the partial order over Prop such that a < bi < c,
for every 1 � i � n, and bi �< bj, for every pair of distinct indices 1 � i, j � n.
We shortly write p � q (resp., p � q) whenever p = q or p < q (resp., p > q).
Consider now the (Hintikka-like) formula induced by the partial order <:

ϕ< =
∨

p∈Prop
p ∧

∧

p�=q

¬(p ∧ q)

∧
∧

p∈Prop

(

p →
∧

q�p

q ∧
∧

q�p

q ∧
∨

q�p

q ∧
∨

q�p

q
)

.

The unique (up to homeomorphism) labeled rational plane that satisfies ϕ< is
depicted in Figure 2. Notice that (i) for every propositional variable bi, with
1 � i � n, the bi-labeled region is an (infinite) union of disjoint open rectangles
(in fact, the coordinates of their corners are given by pairs of irrational numbers)
and (ii) the bi-labeled open rectangles are arranged densely in the rational plane,
that is, for all indices 1 � i, j, k � n, with i �= j, all bi-labeled points (x1,y1),
and all bj-labeled points (x2,y2), with x1 < x2 and y1 > y2, there is a bk-labeled
point (x,y) such that x1 < x < x2 and y1 > y > y2.

The satisfiability problem for Cone Logic consists of deciding whether a given
formula ϕ holds at some point of a labeled region of the rational plane. In
particular, we are interested in satisfiability problems under interpretation over
(open or closed) rectangular regions, namely, regions of the form I×J, with I and J
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being two fixed (open or closed) intervals of the rational line1. As a matter of fact,
note that the whole rational plane P is homeomorphic to any open rectangular
region of the form I × J, with I = (x0, x1) and J = (y0,y1). Moreover, any
formula ϕ interpreted over an open rectangular region of the form I × Q, with
I = (x0, x1), can be rewritten into an equi-satisfiable formula ϕ′ interpreted over
the semi-closed rectangular region I ′ ×Q, where I ′ = [x0, x1]. Taking advantage
of the reducibility of the satisfiability problem over open rectangular regions to
that over semi-closed rectangular regions, we can restrict our attention to labeled
regions of the form P = (I × Q,σ), where I is a closed (non-singleton) interval
(hereafter, we call such structures labeled stripes).

The relationships between Cone Logic and spatial logics with projection
modalities deserve a little discussion. Projection-based spatial logics (most no-
tably, Compass Logic [13]) are two-dimensional modal logics whose accessibility
relations allow one to move along one of the two coordinates while keeping the
other coordinate constant. On the one hand, Cone Logic inherits from projection-
based modal logics some of their desirable features. For instance, it allows one to
write suitable formulas that constrain labels to occur along some distinguished
axes, e.g., the formula a ∧ ¬a ∧ ¬a ∧ ¬a forces a to hold at
the origin or at some point over the positive x-axis. On the other hand, unlike
projection-based modal logics, only a bounded number of constraints ‘along the
axes’ can be enforced by Cone Logic. We will see that such a limitation can be
traded for a positive decidability result.

Hereafter, for the sake of simplicity, we constrain Cone Logic formulas to
quantify over open quadrants only, that is, to make use of the modal operators

, , , and only. However, the achieved results (in particular, the tree
pseudo-model property proved in Section 4 and the PSPACE decision procedure
described in Section 5) can be naturally generalized to the case of unrestricted
Cone Logic formulas.

3 Basic Machinery: Types, Dependencies, and Shadings

Let us fix a labeled region P = (P,σ) and a formula ϕ of Cone Logic. In the
sequel, we compare points in P with respect to the set of subformulas of ϕ they
satisfy. To do that, we introduce the key notions of ϕ-atom, ϕ-type, ϕ-cluster,
and ϕ-shading.

First of all, we denote by Cl(ϕ) the set of all subformulas of ϕ and of their
negations (we identify ¬¬α with α, ¬ α with ¬α, etc.). A ϕ-atom is any
non-empty set A ⊆ Cl(ϕ) such that (i) for every formula α ∈ Cl(ϕ), α ∈ A iff
¬α �∈ A and (ii) for every formula γ = α ∨ β ∈ Cl(ϕ), γ ∈ A iff α ∈ A or
β ∈ A (intuitively, a ϕ-atom is a maximal locally consistent set of subformulas
of ϕ). The cardinality of Cl(ϕ) is linear in |ϕ|, while the number of ϕ-atoms is
(at most) exponential in |ϕ|. We then associate with each point p ∈ P the set of

1 Hereafter, square brackets are used to denote closed intervals, e.g., [0, 1], while
round brackets are used to denote open intervals, e.g., (0, 1). Semi-open intervals are
represented by mixing the two notations, e.g., [0, 1).
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all formulas α ∈ Cl(ϕ) such that P,p � α. Such a set is called ϕ-type of p and
it is denoted by TypeP(p). We have that every ϕ-type is a ϕ-atom, but not vice
versa.

Given an atom A, we denote by ReqLL(A) (resp., ReqLR(A), ReqUL(A), ReqUR

(A)) the set of all formulas α ∈ Cl(ϕ) such that α ∈ A (resp., α ∈
A, α ∈ A, α ∈ A); similarly, we denote by ObsLL(A) (resp., ObsLR(A),
ObsUL(A), ObsUR(A)) the set of all formulas α such that α ∈ A and α ∈ Cl(ϕ)

(resp., α ∈ Cl(ϕ), α ∈ Cl(ϕ), α ∈ Cl(ϕ)). We call formulas belonging
to one of the first (resp., last) four sets requests (resp., observables). Taking
advantage of these sets, for each direction D ∈ {LL,LR,UL,UR}, we define two
transitive relations D−� and D��� between atoms as follows:

A D−�A ′ iff

{
ReqD(A) ⊇ ReqD(A ′) ∪ ObsD(A ′)

ReqD̄(A ′) ⊇ ReqD̄(A) ∪ ObsD̄(A)

A D���A ′ iff

{
ReqD(A) ⊇ ReqD(A ′)

ReqD̄(A ′) ⊇ ReqD̄(A)

where D̄ denotes the direction opposite to D (e.g., LL = UR). Note that A D−�A ′

(resp., A D���A ′) iff A ′ D−�A (resp., A ′ D���A). Moreover, the relations D−� and
D��� satisfy the view-to-type dependency property, namely, for every pair of points
p,q in P and every direction D ∈ {LL,LR,UL,UR},

q ∈ D(p) implies TypeP(p) D−� TypeP(q)

D(q) ⊆ D(p) implies TypeP(p) D��� TypeP(q).

Below, we introduce analogous notions for regions. First, we define a ϕ-
cluster as any non-empty set C of atoms. Then, for a cluster C and a direc-
tion D ∈ {LL,LR,UL,UR}, we denote by ReqD(C) and ObsD(C), respectively,
the set

⋃

A∈C ReqD(A) and the set
⋃

A∈C ObsD(A). Moreover, given a pair of
clusters C,C′, we write C D−�C′ (resp., C D���C′) whenever A D−�A ′ (resp.,
A D���A ′) holds for all pairs of atoms A ∈ C and A ′ ∈ C′. Finally, we asso-
ciate with each non-empty region P ′ of P its ϕ-shading, which is defined as the
set TypeP(P ′) =

{
TypeP(p) : p ∈ P ′} of the ϕ-types of all points of P ′.

Note that, for every labeled region P = (P,σ), the formula ϕ holds at some
point p of P iff the shading TypeP(P) contains an atom A such that ϕ ∈ A.
Hereafter, we shall omit the argument ϕ, thus calling a ϕ-atom (resp., a ϕ-type,
a ϕ-cluster, etc.) simply an atom (resp., a type, a cluster, etc.).

4 From the Rational Plane to the Infinite Binary Tree

In this section, we aim at establishing a tree (pseudo-)model property for sat-
isfiable formulas of Cone Logic. This is done by introducing a suitable notion
of decomposition of a labeled region (more precisely, of a labeled stripe) and by
iteratively applying it in order to obtain an infinite decomposition tree structure
that correctly represents the original model.
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Fig. 3. Shading sequences (a), stripe expressions (b), and decompositions (c)

4.1 Shading Sequences and Stripe Expressions

To start with, we consider the shadings of the vertical straight lines inside a
labeled rational plane. A shading sequence is a non-empty finite sequence S of
atoms and clusters such that, for every 1 � i � |S|, if S(i) is an atom, then
1 < i < |S| and both S(i − 1) and S(i + 1) are clusters. Shading sequences allow
one to represent the types that appear along some vertical straight lines of a
labeled rational plane. As an example, Figure 3(a) depicts a labeled vertical line
with an associated shading sequence S = C1A2 C3 C4.

To represent the shadings of the two vertical borders of a labeled stripe, we
introduce the notion of stripe expression, which is a pair E = (L,R) of (left and
right) shading sequences having equal length (|L| = |R|) and such that, for every
1 � i � |E| (= |L| = |R|), L(i) is an atom (resp., a cluster) iff R(i) is an atom
(resp., a cluster). We call any pair of the form

(

L(i),R(i)
)

, with 1 � i � |E|,
a matched pair. As an example, Figure 3(b) depicts the left border and the
right border of a labeled stripe, together with the associated stripe expression
E = (L,R), where L = C1A2 C3A3 C3 and R = C1A1 C1A2 C3. We say that
an atom A is featured by the left (resp., right) sequence of a stripe expression
E = (L,R) if there is an index 1 � i � |E| such that A = L(i) (resp., A = R(i)) or
A ∈ L(i) (resp., A ∈ R(i)), depending on whether L(i) (resp., R(i)) is an atom
or a cluster. By a slight abuse of notation, we denote by

⋃

1�i�|E| L(i) (resp.,
⋃

1�i�|E| R(i)) the set of all atoms featured by the left (resp., right) sequence of
the stripe expression E = (L,R).

For every labeled stripe P, there is a stripe expression E whose left (resp., right)
sequence features all and only the types of the points along the left (resp., right)
border of P. However, for a given stripe expression E, there might exist no labeled



400 A. Montanari, G. Puppis, and P. Sala

stripe P such that the shading of the left (resp., right) border of P coincides with
the set of atoms featured by the left (resp., right) shading sequences of E. In the
following, we show how to get rid of such a problem. As a first step, we enforce
suitable consistency conditions on any stripe expression E = (L,R):
(C1) for every 1 � i < j � |E|, L(i) D���L(j) and R(i) D���R(j) hold for both

D = UL and D = UR;
(C2) for every 1 � i � |E|, if L(i) and R(i) are clusters, then L(i) D���L(i) and

R(i) D���R(i) hold for both D = UL and D = UR;
(C3) for every 1 � i � |E|, L(i) D���R(i) (and hence R(i) D̄���L(i)) holds for both

D = LR and D = UR;
(C4) for every 1 � i � |E|, if L(i) and R(i) are atoms (resp., clusters), then

L(i) LR−�R(j) and L(i) UR−�R(k) (and hence R(j) UL−� L(i) and R(k) LL−�L(i))
hold for all 1 � j < i (resp., 1 � j � i) and all i < k � |L| (resp.,
i � k � |L|).

We compare stripe expressions with respect to their generality by introduc-
ing a suitable partial order �. Given two stripe expressions E = (L,R) and
E ′ = (L′,R ′), we write E � E ′ if |E| = |E ′| and, for every index 1 � i � |E|,
we have either L(i) = L′(i) and R(i) = R ′(i), or L(i) ⊆ L′(i) and R(i) ⊆ R ′(i),
depending on whether L(i), R(i), L′(i), R ′(i) are atoms or clusters. Unless other-
wise stated, we tacitly assume that a stripe expression is maximal with respect
to the above-defined partial order �. Note that a cluster appearing in a (max-
imal) stripe expression may contain an exponential number of distinct atoms;
however, thanks to consistency conditions, the set of all its atoms can be char-
acterized in terms of the sets of its requests and observables, namely, for every
(maximal) stripe expression E = (L,R), every index 1 � i � |E|, and every atom
A, we have that A belongs to the cluster C = L(i) (resp., C = R(i)) if and
only if ReqD(A) = ReqD(C) and ObsD(A) ⊆ ObsD(C) hold for all directions
D ∈ {LL,LR,UL,UR}. This allows us to succinctly represent the two clusters of a
matched pair of a (maximal) stripe expression by the sets of their requests and
observables, whose size is linear in |ϕ|. In addition, we can assume every (max-
imal) stripe expression E = (L,R) to contain pairwise distinct matched pairs
(

L(i),R(i)
)

. From the above, it follows that the length |E| of any (maximal) stripe
expression E = (L,R) is at most 4 · |ϕ|. At worst, for every pair of distinct indices
1 � i < j � |E|, if L(i), R(i), L(j), and R(j) are clusters, then, for both D = UR

and D = UL, we have ReqD(L(j)) ⊆ ReqD(L(i)), ReqD(R(j)) ⊆ ReqD(R(i)),
and either ReqD(L(j)) � ReqD(L(i)) or ReqD(R(j)) � ReqD(R(i)), and in both
shading sequences there exist an atom between any pair of consecutive clusters.
Hence, every (maximal) stripe expression can be represented using polynomial
space with respect to |ϕ|.

4.2 Recursive Decompositions of Stripes

Roughly speaking, conditions C1-C4 above provide us with a guarantee that the
natural spatial interpretation of a stripe expression E is consistent with view-to-
type dependencies. To enforce the fulfillment of the existential requests of the



A Decidable Spatial Logic with Cone-Shaped Cardinal Directions 401

atoms featured by the two shading sequences of E, we further need to introduce a
suitable notion of decomposition. We start by dividing a given labeled stripe into
a pair of (thiner) adjacent labeled sub-stripes and then we recursively apply the
decomposition to every emerging sub-stripe. This yields an infinite tree-shaped
decomposition of the initial structure, where each vertex of the tree represents a
labeled (sub-)stripe (and, thus, it is associated with a stripe expression) and each
edge represents a containment relationship between two labeled (sub-)stripes.

To start with, we introduce a suitable equivalence relation between shading
sequences. Two shading sequences S and S ′ are said to be equivalent if
i) every cluster S(i) of S (resp., S ′(i ′) of S ′) is also a cluster of S ′ (resp., S);
ii) every atom S(i) of S (resp., S ′(i ′) of S ′) either is an atom of S ′ (resp., S)

or it belongs to the two adjacent clusters S(i − 1) = S(i + 1) in S (resp.,
S ′(i ′ − 1) = S ′(i ′ + 1) in S ′).

As an example, the shading sequences S = C1A1 C1 C2 and S ′ = C1 C2 C2 are
equivalent, provided that A1 ∈ C1, while the shading sequences S = C1A1 C2 C2
and S ′ = C1 C2 C2 are not equivalent (unless A1 ∈ C1 and C1 = C2).

Decompositions of stripe expressions are defined as follows. Let E = (L,R)
be a stripe expression. A decomposition of E is any pair of stripe expressions
(E1,E2), with E1 = (L1,R1) and E2 = (L2,R2), such that the following matching
conditions hold:
(M1) L1 and L are equivalent;
(M2) R2 and R are equivalent;
(M3) R1 and L2 are equivalent.
We say that a matched pair

(

L(i),R(i)
)

of the stripe expression E corresponds
to a matched pair

(

L1(i1),R1(i1)
)

(resp.,
(

L2(i2),R2(i2)
)

) of the stripe expres-
sion E1 (resp., E2) under the decomposition (E1,E2) of E if there exists an index
1 � i2 � |E2| (resp., 1 � i1 � |E1|) such that (i) L(i) ∈

= L1(i1), (ii) R(i)
∈
= R2(i2),

and (iii) R1(i1)
∈
= L2(i2), where ∈

= denotes either the equality relation =, the
membership relation ∈, or the containment relation - depending on the form of
its left and right arguments (namely, whether they are atoms or clusters). As an
example, Figure 3(c) depicts a decomposition of the stripe expression E = (L,R),
where L = C1A2 C3A3 C3 and R = C1A1 C1A2 C3. Note that, under such a
decomposition, the matched pair (C3,C1) of E corresponds to the matched pairs
(C3,C1), (A3,A ′

2), (C3,C3) of E1 and to the matched pairs (C1,C1), (A ′
2,A1),

(C3,C1) of E2. By iteratively applying decompositions, starting from a given
stripe expression, one obtains an infinite tree-shaped structure, called decompo-
sition tree.

Definition 1. A decomposition tree is an infinite complete binary labeled tree
T = (V ,E, ↓1, ↓2), where
• V is the set of tree vertices;
• ↓1 and ↓2 are the two successor relations;
• E is a labeling function associating a stripe expression E(v) with each v ∈ V

such that the pair
(

E(↓1(v)),E(↓2(v))
)

is a decomposition of E(v).
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Note that, for every pair of vertices v and v ′ at the same level of a decomposition
tree T = (V ,E, ↓1, ↓2), if v ′ is right-adjacent to v (even without being its sibling)
and E(v) = (Lv,Rv) and E(v ′) = (Lv′ ,Rv′) are the associated stripe expressions,
then the sequence Rv turns out to be equivalent to the sequence Lv′ .

Let T = (V ,E, ↓1, ↓2) be a decomposition tree. We impose suitable conditions
on T which guarantee that every existential request of every atom featured by a
stripe expression E(v) is eventually fulfilled by an observable of an atom featured
by a (possibly different) stripe expression E(v ′). Given a stripe expression E(v) =
(L,R), let us denote by E(v)[L] (resp., E(v)[R]) its left shading sequence L (resp.,
right shading sequence R). In the following, we consider a generic vertex v of
T and we look at the right-oriented (i.e., LR- and UR-oriented) requests of the
atoms featured by E(v)[L]; symmetrically, we look at the left-oriented (i.e., LL-
and UL-oriented) requests of the atoms featured by E(v)[R].

Let us consider the UR-requests of a left shading sequence E(v)[L]. Given a
vertex v of T, an index 1 � i � |E(v)|, and a subformula α ∈ ReqUR

(

E(v)[L](i)
)

,
we say that the UR-request α is

(F1) postponed at position i of vertex v, if we have α ∈ ReqUR

(

E(v)[R](i)
)

;
(F2) fulfilled at position i of vertex v, if we have α ∈ ObsUR

(

E(v)[R](j)
)

for some
index i � j � |E(v)|;

(F3) partially fulfilled at position i of vertex v, if there is an index 1 � i1 �
|E(↓1(v))| such that (i) the UR-request α is fulfilled at position i1 of vertex
↓1(v) and (ii) the matched pair

(

E(v)[L](i),E(v)[R](i)
)

of E(v) corresponds
to the matched pair

(

E(↓1 (v))[L](i1),E(↓1 (v))[R](i1)
)

of E(↓1 (v)) under
the decomposition

(

E(↓1(v)),E(↓2(v))
)

of E(v).

Similar definitions can be given for the LR-requests of a left shading sequence
E(v)[L] and for the UL-/LL-requests of a right shading sequence E(v)[R].

We say that a decomposition tree T is globally fulfilled if, for every vertex
v, every index 1 � i � |E(v)|, and every direction D ∈ {LR,UR} (resp., D ∈
{UL, LL}), the following conditions hold:

(G1) if v is the root, then ReqD

(

E(v)[R](i)
)

= ∅ (resp., ReqD

(

E(v)[L](i)
)

= ∅);
(G2) for every subformula α ∈ ReqD

(

E(v)[L](i)
)

(resp., ReqD

(

E(v)[R](i)
)

) and
every infinite path π that starts at v, there is a vertex v ′ in π (possibly v ′ =
v) such that either α �∈ ReqD

(

E(v ′)[L](i ′)
)

(resp., α �∈ ReqD

(

E(v ′)[R](i ′)
)

)
for all positions i ′ of vertex v ′ or α is postponed (F1), fulfilled (F2), or
partially fulfilled (F3) at some position i ′ of vertex v ′.

We are now ready to establish a tree (pseudo-)model property for satisfiable
formulas of Cone Logic. The next theorem states that (i) given a globally fulfilled
decomposition tree T, there is a labeled stripe P = (I × Q,σ) whose shading
coincides with the set of all atoms that are featured by the expressions of T

(soundness) and (ii) given a labeled stripe P = (I × Q,σ), there is a globally
fulfilled decomposition tree T whose expressions feature (at least) the types of
all points of P (completeness). The proof is omitted for the lack of space (it will
be included in the extended version of the paper).
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Theorem 1. Soundness. For every globally fulfilled decomposition tree T =
(V ,E, ↓1, ↓2), there is a labeled stripe P = (I×Q,σ) such that

TypeP

(

I×Q
)

=
⋃

v∈V
1�i�|E(v)|

(

E(v)[L](i) ∪ E(v)[R](i)
)

.

Completeness. Conversely, for every labeled stripe P = (I × Q,σ), there is a
globally fulfilled decomposition tree T = (V ,E, ↓1, ↓2) such that

TypeP

(

I× Q
)

⊆
⋃

v∈V
1�i�|E(v)|

(

E(v)[L](i) ∪ E(v)[R](i)
)

.

5 Reducing Cone Logic to a Proper Fragment of CTL

In this section we briefly describe a decision procedure that solves the satis-
fiability problem for Cone Logic taking advantage of the tree (pseudo-)model
property stated in Section 4. According to such a property, the problem of es-
tablishing whether or not a Cone Logic formula ϕ is satisfiable can be reduced
to the problem of checking the existence of a globally fulfilled decomposition
tree T that features a (ϕ-)atom A such that ϕ ∈ A. The effectiveness of such
an approach stems from the fact that the properties that characterize a globally
fulfilled decomposition tree can be expressed in a proper fragment of CTL. The
satisfiability problem for Cone Logic can thus be decided in (at most) exponential
time [8]. Given the state of the art of the decision procedures for CTL, deciding
the satisfiability problem for Cone Logic turns out to be quite efficient from a
practical point of view. In the following, we show that the satisfiability problem
for Cone Logic is actually in PSPACE. In the next section, we will prove that
the PSPACE complexity bound is strict, namely, that the satisfiability problem
for Cone Logic is PSPACE-hard.

Theorem 2. The satisfiability problem for Cone Logic, interpreted over the
rational plane, is in PSPACE.

Proof (sketch). We first show how to reduce the satisfiability problem for a Cone
Logic formula ϕ to the satisfiability problem for a suitable CTL formula −�ϕ, which
is a conjunction of CTL formulas of the forms λ, AG λ, EF λ, AGEX λ, AG δ, and
AG (λ → AF δ), where λ is a propositional formula and δ is a CTL formula that
uses the modal operator AX in a positive way only ((and it has no occurrences
of other modal operators). Let us call these formulas basic CTL formulas.

To start with, we introduce three distinguished propositional variables, say, 0,
1, and 2, to encode the two successor relations ↓1 and ↓2 of a decomposition tree
T in a labeled tree structure T . For each vertex v of T , we associate either 0, 1,
and 2 with v depending on whether v is the root, v =↓1(u), or v =↓2(u) for some
parent vertex u. Such a labeling can be enforced by means of a suitable con-
junction of basic CTL formulas over the signature {0, 1, 2} (see below). Next, the
stripe expressions associated with T vertices can be encoded as follows. Since the
number of shading sequences can be exponential in |ϕ|, we need to encode one by
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one the elements that belong to each atom featured by each shading sequence.
To this end, we introduce a new set Σ of propositional variables latomi , lclusteri ,
ratomi , rclusteri , lobsi,α,D, lreqi,α,D, robsi,α,D, and rreqi,α,D, for every index 1 � i � 4 · |ϕ|,
every subformula α of ϕ, and every direction D ∈ {LL, LR,UL,UR}. Intuitively,
the propositional variable latomi (resp., lclusteri ) holds at a given vertex v of T if
and only if the position i of the left shading sequence E(v)[L] in T contains an
atom (resp., a cluster). Similarly, the propositional variable lobsi,α,D (resp., lreqi,α,D)
holds at a given vertex v of T if and only if the subformula α belongs to the set
of observables ObsD

(

E(v)[L](i)
)

(resp., the set of requests ReqD

(

E(v)[L](i)
)

) of
the atom/cluster at position i of the left shading sequence E(v)[L]. Analogous
encodings are given for the right shading sequence E(v)[R]. Since the number
of subformulas α of ϕ is linear in |ϕ| and the length of a (maximal) stripe ex-
pression E(v) is at most 4 · |ϕ|, the above-defined propositional variables allow
one to represent E(v) in polynomial space. The (local) consistency conditions
C1–C4 can be easily expressed by means of a propositional formula λC1–C4 over
the signature Σ and hence they can be enforced globally in the labeled tree
structure T by requiring that the basic CTL formula AG λC1–C4 holds at the
root of T . Similarly, the matching conditions M1–M3, which impose further re-
strictions on the stripe expressions associated with pairs of adjacent vertices,
can be expressed by means of a basic CTL formula of the form AG δM1–M3
over the signature {0, 1, 2}∪ Σ, where δM1–M3 contains only positive occurrences
of the modal operator AX (and no occurrences of other modal operators). As
for the conditions of global fulfillment, we can enforce Condition G1 by a simple
propositional formula λG1 over the signature Σ and Condition G2 by a conjunc-
tion of basic CTL formulas of the form AG (λi,D,α → AF δi,D,α), where i
ranges over {1, ..., 4 · |ϕ|}, D ranges over {LL, LR,UL,UR}, α is a subformula of
ϕ, λi,D,α is a propositional formula over the signature Σ, and δi,D,α is a CTL
formula over the signature {0, 1, 2}∪Σ that contains only positive occurrences of
the modal operator AX (and no occurrences of other modal operators). Finally,
the existence of a (ϕ-)atom A in T such that ϕ ∈ A can be enforced by a basic
CTL formula of the form EF λϕ. The size of all the above formulas is polyno-
mial in |ϕ|. Altogether, we have that for any formula ϕ of Cone Logic, we can
(effectively) build an equi-satisfiable conjunction of basic CTL formulas −�ϕ over
the signature {0, 1, 2}∪ Σ in polynomial time.

We conclude the sketch of the proof by outlining a PSPACE procedure that
checks whether the resulting formula −�ϕ is satisfiable or not. First, we write −�ϕ as
the conjunction of the following three CTL formulas:
−�ϕtree = (0 ∧ ¬1 ∧ ¬2) ∧ AGAX

(

¬0 ∧ ¬(1 ∧ 2)
)

∧ AG
(

EX 1 ∧ EX 2
)

−�ϕpath = AG λC1–C4 ∧ AG δM1–M3 ∧ λG1 ∧
∧

i,D,α
AG

(

λi,D,α → AF δi,D,α
)

−�ϕinit = EF λϕ

The formula −�ϕtree defines a labeled tree structure T where each vertex has two
distinguishable successors, the formula −�ϕpath verifies that T correctly represents
a globally fulfilled decomposition tree T, and the formula −�ϕinit checks that
T features an atom A such that ϕ ∈ A. Since −�

ϕpath contains only positive
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occurrences of the modal operators AG , AF , and AX , we can turn −�ϕpath into
an equivalent LTL formula −�ϕLTL

path by replacing all occurrences of AG , AF , and
AX by G, F, and X, respectively. Formally, we have that for any labeled tree
structure T , −�ϕ holds at the root of T if and only if (i) −�ϕtree and −�ϕinit hold at
the root of T and (ii) −�ϕLTL

path holds along all infinite paths of T . By taking ad-
vantage of the structure of −�ϕLTL

path (no G operator is nested into an F operator),
it is possible to show that there exists a deterministic Büchi automaton Apath ,
which can be computed in polynomial time2, that recognizes the ω-language
of all linear models of −�ϕLTL

path. Given the automaton Apath over the input al-
phabet {0, 1, 2} × P(Σ), we build a non-deterministic Büchi automaton A∃

path

that recognizes the projection language π0,1,2
(

L ω(Apath)
)

. We have that A∃
path

recognizes the ω-language {0} · {1, 2}ω if and only if there exists a labeled tree
structure T that satisfies both −�ϕtree and −�ϕLTL

path . Since the inclusion problem for
regular ω-languages is in PSPACE [10], this gives a procedure that decides, in
polynomial space, whether both formulas −�ϕtree and −�

ϕpath hold at the root of
some labeled tree structure T . Verifying whether −�ϕinit holds at the root of T as
well amounts to solve a reachability problem over a slightly modified version of
the non-deterministic Büchi automaton A∃

path . �

6 Cone Logic and Interval Temporal Logics

In this section, we prove that Cone Logic subsumes an interesting interval tempo-
ral logic, calledDD̄YȲ-logic, which comprises four modal operators 〈D〉, 〈D̄〉, 〈Y〉,
and 〈Ȳ〉. Intuitively, these operators quantify over sub-intervals, super-intervals,
‘younger intervals’, and ‘elder intervals’. From now on, we assume that the un-
derlying temporal domain is (homeomorphic to) the linear ordering (Q,<) of
the rational numbers and that intervals are non-singleton closed convex subsets
of such an ordering, namely, sets of the form [x,y] = {z ∈ Q : x � z � y}, where
x,y ∈ Q and x < y. We shortly denote by I the set of all intervals over (Q,<).

The four interval relations D, D̄, Y, and Ȳ and the semantics of DD̄YȲ-logic
are defined as follows. Let I = [x,y] and I ′ = [x ′,y′] be two intervals. If x < x ′ <
y′ < y, then we say that I ′ is a (strict) sub-interval of I, or, conversely, that I is
a (strict) super-interval of I ′. Similarly, if x ′ > x and y′ > y, we say that I ′ is
younger than I, or, conversely, that I is elder than I ′. It is worth noticing that the
younger-interval relation Y and the elder-interval relation Ȳ can be characterized
as unions of standard Allen’s relations [2] (for instance, the relation Y is the union
of the ‘later’ relation L, the ‘immediately after’, or ‘meet’, relation A, and the
‘overlap’ relation O). As for the semantics of DD̄YȲ-logic, let P = (I,σ) be an
interval structure, where σ is a valuation function that maps intervals in I to

2 First, we turn each conjunct of −
ϕLTL
path into an equivalent deterministic Büchi au-

tomaton and then we compute the product automaton for the whole formula −
ϕLTL
path.

The resulting automaton has size polynomial in |−
ϕLTL
path |, provided that the transition

labels are symbolically represented by means of suitable propositional formulas over
the signature {0, 1, 2} ∪ Σ.
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Fig. 4. A π-labeled region delimiting (pseudo)interval-points

sets of propositional variables. The formulas of DD̄YȲ-logic are built up from
propositional variables using the boolean connectives and the modal operators
〈D〉, 〈D̄〉, 〈Y〉, and 〈Ȳ〉, with the obvious semantics (for instance, P, I � 〈D〉ϕ
holds iff there is a sub-interval I ′ of I such that P, I ′ � ϕ).

In [6] Lodaya conjectured the undecidability of the satisfiability problem for
the fragment of DD̄YȲ-logic that features the two modal operators 〈D〉 and 〈D̄〉
only when interpreted over various classes of linear orderings. Here, we partially
disprove such a conjecture by showing that formulas of DD̄YȲ-logic, interpreted
over the rational line, can actually be translated into equi-satisfiable formulas
of Cone Logic. Such a translation exploits the fact that there exists a natural
bijection between intervals I = [x,y] in I and points p = (x,y), with x < y,
of the rational plane (hereafter, we call these points interval-points). Moreover,
the region of all and only the interval-points of the rational plane can somehow
be described by a suitable formula of Cone Logic. More precisely, let !, ⊥, and
π be three fresh propositional variables and let ψπ be the following formula of
Cone Logic:

ψπ = (! ∨ ⊥ ∨ π) ∧ (¬! ∨ ¬⊥) ∧ (¬! ∨ ¬π) ∧ (¬⊥ ∨ ¬π)

∧ (! → ! ∧ !) ∧ (⊥ → ⊥ ∧ ⊥)

∧ (π → +! ∧ +⊥) ∧ ( π ∧ π → π ∨ π ∨ π).

Consider now a labeled rational plane P = (P,σ) that satisfies ψπ. We can
partition P in three regions, namely, (i) the region !P of all !-labeled points,
(ii) the region ⊥P of all ⊥-labeled points, and (iii) the region πP of all π-labeled
points (see Figure 4). The region πP has the form of a ‘thin’ oriented trajectory
inside the rational plane such that, for every pair of points p,q ∈ πP, there
exists another point r ∈ πP such that either r ∈ UR(p) and q ∈ UR(r), or
r ∈ LL(p) and q ∈ LL(r). Even though we cannot claim that πP coincides with
the diagonal {(x, x) : x ∈ Q} and !P coincides with the set of all interval-points
of the rational plane, we can prove the following proposition.

Proposition 1. For every formula ϕ of Cone Logic and every labeled rational
plane P = (P,σ) that satisfies ϕπ = ϕ ∧ ψπ, there is a labeled rational plane
P ′ = (P,σ ′) that satisfies ϕπ and such that (i) the π-labeled region πP′ coincides
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with the diagonal {(x, x) : x ∈ Q} and (ii) the !-labeled region !P′ coincides with
the set of all interval-points of the rational plane.

Proof. Let P = (P,σ) be a model of the formula ϕπ = ϕ ∧ ψπ. Without loss of
generality, we can assume that for every x ∈ Q, there is a π-labeled point of the
form p = (x,y), with y ∈ Q (this follows easily from Theorem 1). We can thus
view the region πP as the graph of a strictly increasing function fπ : Q → Q

such that, for every point p = (x,y), π ∈ σ(p) if and only if fπ(x) = y. Thus,
we can denote by f−1

π the inverse of fπ, which is a strictly increasing function as
well, and we can introduce the (monotone) transformation t that maps any point
p = (x,y) to the point t(p) = (x, f−1

π (y)). We then exploit such a transformation
to define a new labeling function σ ′ as follows: for every point p, we let σ ′(p) =
σ(t(p)). By definition of t, the resulting structure P ′ = (P,σ ′) is homeomorphic
to P and hence it also satisfies the formula ϕπ. Moreover, by construction, the
region πP′ coincides with the diagonal {(x, x) : x ∈ Q} and, similarly, the region
!P′ coincides with the set of all interval-points of the rational plane. �

Proposition 1 yields a straightforward translation of any given formula ϕ of
DD̄YȲ-logic into an equi-satisfiable formula ϕ′ of Cone Logic, which is obtained
by first replacing in ϕ every occurrence of the subformula 〈D〉α (resp., 〈D̄〉α,
〈Y〉α, 〈Ȳ〉α) with the formula (! ∧ α) (resp., (! ∧ α), (! ∧

α), (! ∧ α)) and then adding the conjunct ψπ to the resulting formula.
Taking advantage of such a translation and of the decision procedure described
in Section 5, we immediately obtain that the satisfiability problem for DD̄YȲ-
logic is in PSPACE. As a matter of fact, this subsumes previous results from
[3]. Moreover, from [11] we know that the satisfiability problem for D-logic, that
is, the interval temporal logic that features the subinterval operator 〈D〉 only,
and hence that for DD̄YȲ-logic, is PSPACE-hard. Summing up, we have the
following corollary.

Corollary 1. The satisfiability problem for Cone Logic, interpreted over the
rational plane, and that for DD̄YȲ-logic, interpreted over the rational line, are
PSPACE-complete.

7 Conclusions

We would like to conclude by mentioning some natural generalizations of our
work. First, we may consider various possible extensions of Cone Logic. For
instance, we may think of evaluating formulas of (extended) Cone Logic over
multi-dimensional spaces (in general, 2n distinct cone-shaped directions exist in
a space with n dimensions) and/or to partition the two-dimensional space into
more than four cone-shaped cardinal directions (the same for higher-dimensional
spaces). In all such cases, we believe it possible to generalize the achieved results
in a rather natural way, preserving the tree pseudo-model property of the logic
and, possibly, the PSPACE-completeness of its satisfiability problem. Further
generalizations envisage the use of region-based spatial logics. As an example,
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the correspondence between intervals over the rational line and points over the
rational plane can be lifted to higher-dimensional objects, proving, for instance,
that a suitable spatial logic based on rectangular regions, that is, 2-dimensional
intervals, is subsumed by a 4-dimensional point-based modal logic very similar
to Cone Logic. This establishes an interesting bridge between Cone Logic and
modal logics of topological relations. Finally, it is worth studying the satisfiability
problem for Cone Logic, and, similarly, forDD̄YȲ-logic, interpreted over different
(classes of) structures, e.g., the infinite discrete grid or the Euclidean plane.
Even though we expect the satisfiability problem to remain decidable, radically
different approaches might be necessary to cope with spaces having discrete or
Euclidean topologies.
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Focalisation and Classical Realisability

Guillaume Munch-Maccagnoni�

Université Paris 7

Abstract. We develop a polarised variant of Curien and Herbelin’s λ̄μμ̃
calculus suitable for sequent calculi that admit a focalising cut elimina-
tion (i.e. whose proofs are focalised when cut-free), such as Girard’s
classical logic LC or linear logic. This gives a setting in which Kriv-
ine’s classical realisability extends naturally (in particular to call-by-
value), with a presentation in terms of orthogonality. We give examples of
applications to the theory of programming languages.

1 Introduction

When Curien and Herbelin unveil in [1] the computational structure of the se-
quent calculus, they exhibit a model of computation with a simple interaction
between code v and environment e inside commands c = 〈v || e〉 that recalls ab-
stract machines. This is called the λ̄μμ̃ calculus but, following Herbelin [2], we
will call it system L, as a reference to the tradition of giving sequent calculi
names that begin with this letter.

When the proofs from sequent calculus are represented this way, the symmetry
of the logic is reflected in the fact that it is the same syntax that describes code
(v) and environment (e). In particular, each half of the command can bind the
other half with the syntax μx.c′ (where μ is a binder, and the variable x is bound
in the command c′ – we in fact merge in a single letter Curien-Herbelin’s μ and
μ̃). This leads to computational ambiguities of the following form:

c [μy.c′/x] ?← 〈μx.c ||μy.c′〉 ?→ c′ [μx.c/y]

In the special case of classical logic, x and y can both be fresh in c and c′. The
above can therefore lead to the identification of c and c′ without any further
assumption (Lafont’s critical pair).

If the goal is to find a computational interpretation of classical sequent cal-
culus, then such ambiguities have to be lifted. Curien and Herbelin [1] have
achieved an important step in this direction when they have shown that solving
the critical pair in favour of the left reduction above yields a computation that
corresponds to usual call-by-value (CBV), while the converse choice yields one
that corresponds to call-by-name (CBN).
Focalisation. Here we tackle this problem from the point of view of focalisation
[3,4]. In the realm of logic programming, Andreoli’s focalisation [3] divides the
� Partially funded by INRIA Saclay and the University of Pennsylvania.

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 409–423, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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connectives of linear logic (LL) among two groups we shall call the positives
and the negatives. The distinction is motivated by the fact that they can be
subject to different assumptions during proof-search. Not long after Andreoli’s
work, Girard [4] considered focalisation as a way to determinise classical sequent
calculus with the classical logic LC, which gives an operational status to these
polarities. In the first part of the paper (Section 2) we give a syntax for LC and LL
derived from Curien-Herbelin’s calculus, the focalising system L (Lfoc). Despite
the age of LC and the proximity of this logic with programming languages, it is
the first time that such a term language is presented, thus answering a question
from Girard [4] (see comparison with other works).

The positives are the tensor ⊗, whose (right-)introduction rule we represent
with a pair (·, ·), and the plus ⊕, whose (right-)introduction rules we repre-
sent with the two injections ı1(·) and ı2(·). A formula whose main connective
is positive is decomposed hereditarily until an atom or a negative connective is
reached. This means that Andreoli’s proof-search recipe builds (normal) terms
that belong to the following category of values :

V ::= x | t− | (V, V ) | ı1(V ) | ı2(V )

where x is a positive variable and the term t− represents a negative proof.
The negatives are the par ` and the with &. Their property is that they

are invertible, that is they can be decomposed as early as possible during proof-
search, a property better reflected with pattern-matching. Keeping such pattern-
matching as little bureaucratic as possible, we represent the (right-)introductions
of ` and & respectively with the binders μ(x, y).c and μ(ı1 (x) .c | ı2 (y) .c′).

The above formulation with values justifies that we see ⊗ and ⊕ as the connec-
tives for the strict pair and the strict sum (the basic datatypes of ML), as much
as the invertibility gives ` and & a lazy computational behaviour. Focalisation
therefore gives classical sequent calculus a crisp computational interpretation
that goes past the dichotomy between CBV and CBN that prevails in the works
on the duality of computation [1,5]: lazy and strict no longer qualify strategies
of evaluation, but connectives of the logic instead, and CBV and CBN become
mixed in the same system.

Credit should be given to the authors who first stated the link between
focalisation and the values that underpins our syntax. This was not immedi-
ate as Girard’s formulation of LC used the stoup, a distinguished formula in the
sequents. Because the relation was “in the air” before being properly written
down, it is hard to go back at the roots of the discovery, but we should mention
that the work of Curien and Herbelin [1] had an early occurrence of values explic-
itly defined as terms in the stoup, though they were not in the above recursive
form. The link later became more precise with the works of Dyckhoff-Lengrand
[6] and Zeilberger [7].

(As far as classical logic is concerned, we shall in fact present a variant of LC
that we call LKpol and that, like LL, has the four binary connectives ⊗,`,&,⊕.
One finds LC back by using the encodings of ∨ and ∧ found in the original
article [4].)
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Realisability. In the second part of the paper (Section 3) we extend Krivine’s
classical realisability for CBN λ calculus [8] to our setting. In realisability we
define for each formula A what it does mean for a term of our language to
behave according to (or to realise) A – when formulae are seen as specifications
for programs. The definition involves orthogonality between terms and is free
from any reference to LKpol or LL. But the main result (adequacy) states that a
term of type A also realises A. It therefore provides a justification of the rules
of logic.

The commands of L remind the computer scientist of the interaction of a
program with data which is found in the theory of automata. We can there-
fore make a helpful analogy with finite automata in order to introduce classical
realisability.

The analogy replaces the terms of L by words and the states of some NFA
A = (S,Σ,R, s0, SF ). Let us write 〈ω || s〉 to symbolise the interaction of a word
ω ∈ Σ∗ with A in some state s ∈ S. One writes 〈a.ω || s〉 → 〈ω || s′〉 when
(s, a, s′) ∈ R is a transition of the automaton. Orthogonality between words of
Σ∗ and states of S is defined by taking a set of elements of the form 〈ω || s〉 called
an observation ⊥⊥. This observation has to be saturated, that is to say that if
〈ω || s〉 → 〈ω′ || s′〉 ∈ ⊥⊥, then 〈ω || s〉 ∈ ⊥⊥. One writes ω⊥⊥s when 〈ω || s〉 ∈ ⊥⊥.

For a given observation ⊥⊥, one then defines L⊥ = { s ∈ S | ∀ω ∈ L, ω⊥⊥s } for
all L ⊆ Σ∗ and S⊥ = { ω ∈ Σ∗ | ∀s ∈ S, ω⊥⊥s } for all S ⊆ S. Sets of the form
L⊥ or S⊥ are not ordinary, with the S⊥ being regular languages. Moreover, if one
takes ⊥⊥ to be the smallest observation for which one has ε⊥⊥sF for all sF ∈ SF ,
then {s0}⊥ is the language recognised by A. In addition, the co-linearity of s
and s′, that is to say {s}⊥ = {s′}⊥, corresponds to the Nerode equivalence of
states s and s′. The equivalence class of s is therefore given by {s}⊥⊥.

With orthogonality, it is therefore possible to express concisely the main axes
of the theory.1 The intuitions given by orthogonality remain valid with classical
realisability, but now we have a much more expressive model of computation
that extends λ calculus. Formulae of the logic replace regular expressions, and
the sets of terms that realise some formula replace regular languages.

Applications. In the third part of the paper (Section 4) come applications. We
first show this method allows us to easily show properties of normalisation, type
safety or parametricity.

System L can be compared to λ calculus when it comes to the study of pro-
gramming: in particular the notion of evaluation order is better treated. In sup-
port of this argument, we show classical realisability is discriminating enough
to show a clear distinction and relation between the universal quantification
coming from proof theory and polymorphism obtained through value restriction
(Section 4, “the two quantifications”). This issue is indeed related to the order
of evaluation imposed by quantifications.

We of course do not claim that second order classical predicate calculus is as
such a satisfactorymodel of computation with respect to the current programming
1 See Terui’s [9] for an earlier appearance of notions of automata theory in an orthog-

onal setting derived from Ludics.
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practice. But, as we show, classical realisability accepts in a modular way exten-
sions of the language.

Comparison with Other Works

Danos-Joinet-Schellinx’s LKη
pol. The paper [10] already considered the four

connectives ⊗,`,&,⊕ at the same time in a derivative of LC called LKη
pol (which

was no more a syntax than LC), but we provide an additional justification for this
choice: it is the division of the connectives between strict and lazy that justifies
the number of connectives. Also, we chose to get rid of the “η-restriction” of
LKη

pol, hence our choice of the name LKpol.

The “duality of computation”. The works of Curien-Herbelin and Wadler
[1,5] present a “duality of computation” that appears as the result of a nec-
essary arbitrary choice between CBN and CBV. Laurent established the link
with polarities [11], but the duality remained formulated as a dichotomy. On the
contrary, Lfoc is a syntax where eager and lazy coexist (as was the case in the
non-written two-sided version of LC mentioned by Girard in [4]). The duality of
computation is therefore formulated the level of the connectives, as the symme-
try between code and environment. This duality is now distinct from the one
between positives and negatives.

Comparison with LLP as a candidate syntax for LC. The question of giving
a representation of LC’s proofs, asked by Girard in [4], is ancient. Laurent gave
LLP’s polarised proof nets as an answer [11]; but it should be said LC’s proofs
(or equivalently LKpol’s) are not represented directly in proof nets but through a
translation into LLP that introduces modalities. This representation overshadows
the notions of evaluation order and values that underlie LC and LKpol, notions
that are important in classical logic as underlined in the syntax we propose.

Ludics. We borrow some terminology from Girard’s Ludics [12], as well as the
the idea of reconstructing types from behaviours. We do not claim however our
work should be seen as an alternative version of Ludics, mainly because a syntax
based on binders like ours does not offer a proper treatment for the notion of
“location” which is prominent in this work.

In addition, we mention the related works of Zeilberger and Terui, from which the
present work, which dates back to [13], is independent (except for the more recent
Section 4, “The Two Quantifications”, where credit is given). Both Zeilberger [7]
and Terui [9] proposed focalised calculi inspired by Girard’s Ludics [12]. This
prompts a comparison with our proposal.

We share with Zeilberger’s Calculus of Unity the computational interpretation
of the polarities in a calculus that mixes CBV and CBN. Yet Zeilberger’s syntax,
being of higher order, is not a syntax in the conventional and finitary sense of
the word.

Terui’s Computational Ludics [9] tries to remain closer to Ludics although it
does not feature “locations”; and the emphasis is more on the study of complexity.
Computational Ludics is fully linear, unlike our setting which can be classical or
feature exponentials.
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The incentive we have for insisting on using variables and binders, unlike Lu-
dics and like Zeilberger and Terui, is that it allows us to remain conventional. For
the same reason we chose here to avoid formal pattern-matching and synthetic
connectives, unlike Zeilberger and Terui, and we claim to get a syntax that is
closer to the tradition of term syntaxes for logic. (Curien and the author’s [14]
defines however a variant of our syntax that treats patterns as first-class citizens.)

2 Focalising System L

Here we define the syntax and the reduction rules of Lfoc.

Syntax. Positive and negative variables are respectively written x, y, z . . . and
α, β, γ . . . One defines the sets T+ and T− of the positive and negative terms t+
and t−, as well as the set C of commands c:

κ ::= α | x
t ::= t+ | t−
t+ ::= x | μα.c

| (t, t) | ıi(t) (for i ∈ {1, 2}) (⊗,⊕i)
| μ	 (κ).c | {t} (!, ∃)

t− ::= α | μx.c
| μ(κ, κ).c | μ(ı1 (κ) .c | ı2 (κ) .c) (`,&)
| 	 (t) | μ{κ}.c (?, ∀)

c ::= 〈t+ || t−〉 | 〈t− || t+〉
with μ(κ, κ′).c undefined when κ = κ′. Variables that come before a dot in the
syntax are bound by the binder μ, and terms and commands are always taken
modulo α-equivalence.
FV (·) denotes the set of the free variables of its argument. T 0

+ , T 0
− , C0 are

the sets of the closed terms and commands. In the command 〈t || t′〉, t is called
the counter-term of t′ and t′ the counter-term of t.

Formulae. Positive atoms are written X,Y . Formulae A,B, positive formulae
P,Q and negative formulae N,M are given by:

A ::= P | N
P ::= X |A⊗A |A⊕A | !A | ∃X A

N ::= X⊥ |A`A |A&A | ?A | ∀X A

(exponentials are given but will only be used for LL). The polarity of a formula
is therefore the polarity of its main connective; but it should be noted that it
does not introduce constraints of polarity on the logical systems we introduce:
our syntax is only polarised at the level of the dynamics, with shifts of polarities
left implicit.
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One-sided sequents.The literature admits two traditions on sequents:Gentzen’s
two-sided sequents (Γ  Δ) and Girard’s one-sided sequents ( Γ ). An advantage
of the latter is that there is half less rules. The syntax could admit both writings
and it might be helpful to clarify the link between the two.

Gentzen’s tradition makes a distinction between being on the right of the
sequent (〈t|) and being on the left of the sequent (|t〉). In 〈t ||u〉, we shall call
〈t| the code and |u〉 the environment as a legacy of the λ̄μμ̃ calculus [1] or of
Krivine’s weak head reduction machine [8]. (For instance, 〈ı1(t)| shall represent
the first injection of a strict sum applied to t, while |ı1(t)〉 shall represent the
first projection applied to the lazy pair given by the counter-term.)

Girard’s tradition, with all the formulae on the right, does not make the
distinction between 〈t| and |t〉. As a consequence the syntax has to be quotiented
with a new α-equivalence, 〈t ||u〉 ≡ 〈u || t〉. As this paper is in Girard’s tradition,
this α-equivalence will hold. Reasoning as such modulo the left-right symmetry
blurs the interpretation in terms of abstract machines, but this simplifies the
presentation. But a presentation of the present system with two-sided sequents
will appear in a long version of the paper.

Duality. Girard’s one-sided tradition requires that we replace the connective
of negation ¬ by a morphism ·⊥ on formulae. (The two-sided version will show
it is of course possible to have this negation in the syntax, and it will clearly
appear that this negation which changes the polarity is different from the ones
that appear in works where there is a choice between CBV and CBN, such
as Wadler’s Dual Calculus [5].) To each positive formula P (respectively each
negative formula N) corresponds a negative dual formula P⊥ (resp. positive
N⊥) given by:

(X)⊥ def.= X⊥ (X⊥)
⊥ def.= X

(A⊗B)⊥ def.= A⊥ `B⊥ (A`B)⊥ def.= A⊥ ⊗B⊥

(A⊕B)⊥ def.= A⊥ &B⊥ (A&B)⊥ def.= A⊥ ⊕B⊥

(∃X A)⊥ def.= ∀X A⊥ (∀X A)⊥ def.= ∃X A⊥

(!A)⊥ def.= ?A⊥ (?A)⊥ def.= !(A⊥)

One therefore has by definition A⊥⊥ = A for each formula A.
Contexts, judgements. Γ,Δ . . . denote contexts : sets of elements of the form
x : N or α : P . The sequents of Lfoc are judgements of the form:

c : ( Γ )  t+ : P | Γ  t− : N | Γ
In  t+ : P | Γ (resp.  t− : N | Γ ), formula P (resp. N) is said to be principal.
This should not to be confused with the notion of stoup, since the latter requires
additional constraints of linearity.
Substitution. For each formulae A,P and each atom X one defines the formula
A [P/X ]; the important cases are X [P/X ] = P and X⊥ [P/X ] = P⊥.
Systems. Rules for typing Lfoc in one-sided MALL, LKpol and LL are given Fig. 1,
2 and 3.
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MALL
Identity group:

(ax+)
� x : P | x : P ⊥ (ax−)

� α : N | α : N⊥

c : (� κ : A, Γ )
(μ)

� μκ.c : A | Γ

� t : A | Γ � u : A⊥ | Δ
(cut)

〈t || u〉 : ( � Γ, Δ)

Logic group:
� t : A | Γ � u : B | Δ

(⊗)
� (t, u) : A ⊗ B | Γ, Δ

c : ( � κ : A, κ′ : B, Γ )
(`)

� μ(κ, κ′).c : A ` B | Γ

c : ( � κ : A, Γ ) c′ : ( � κ′ : B, Γ )
(&)

� μ(ı1 (κ) .c | ı2 (κ′) .c′) : A & B | Γ

� t : A | Γ
(⊕i)� ıi(t) : A1 ⊕ A2 | Γ

� t : A[P/X] | Γ
(∃)

� {t} : ∃X A | Γ

c : ( � κ : A, Γ )
(∀) (X �∈ FV (Γ ))

� μ{κ}.c : ∀X A | Γ

Fig. 1. The multiplicative additive linear logic MALL

LKpol: MALL + the following structural group:

c : ( � Γ )
(w)

c : ( � κ : A, Γ )
c : (� κ : A, κ′ : A,Γ )

(c)
c[κ/κ′] : (� κ : A, Γ )

Fig. 2. The constructive classical logic LKpol

LL: MALL + the following structural group:
� t : A | Γ

(?d)
� 	 (t) : ?A | Γ

c : (� κ : A, ?Γ )
(!)

� μ	 (κ).c : !A | ?Γ

c : ( � Γ )
(?w)

c : ( � x : ?A, Γ )
c : (� x : ?A, y : ?A, Γ )

(?c)
c[x/y] : (� x : ?A, Γ )

Fig. 3. The linear logic LL

Focalising Weak Head Reduction

We now move on to defining the cut-elimination protocol based on focalisation.
Values. Values and positive values are defined as follows:

V ::= V+ | t− V+ ::= x | (V, V ) | ıi(V ) | μ	 (κ).c | {V }
(It therefore holds, by convention, that any negative term is a value.)

The set of values is written V.
Head Reduction. Execution on the calculus is defined as a relation of head-
reduction on C.
μ-reduction:

〈μα.c || t−〉 →μ− c[t−/α] 〈μx.c ||V+〉 →μ+ c[V+/x]
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β-reduction:
〈(V, V ′) ||μ(κ, κ′).c〉 →β c[V, V ′/κ, κ′] (⊗/`)

〈

ıi(V )
∣

∣

∣

∣μ(ı1 (κ1) .c1 | ı2 (κ2) .c2)
〉

→β ci [V /κi] (⊕i/&)

〈{V } ||μ{κ}.c〉 →β c [V /κ] (∃/∀)
〈

μ	 (κ).c
∣

∣

∣

∣

	 (V )
〉

→β c [V /κ] (!/?)

(In case the polarities of the V ’s and of the κ’s do not match each other, the
relation →β is not defined.)

ς-reduction2. In case the above rules cannot reduce a command, the following
reductions make new cuts appear:

if t �∈ V or t′ �∈ V then 〈(t, t′) ||u−〉 →ς

〈

t
∣

∣

∣

∣

∣

∣μκ.
〈

t′
∣

∣

∣

∣μκ′.〈(κ, κ′) ||u−〉
〉

〉

if t �∈ V then 〈ıi(t) ||u−〉 →ς

〈

t
∣

∣

∣

∣μx.〈ıi(x) ||u−〉
〉

if t �∈ V then 〈{t} ||u−〉 →ς

〈

t
∣

∣

∣

∣μx.〈{x} ||u−〉
〉

if t �∈ V then
〈	 (t)

∣

∣

∣

∣V+
〉

→ς

〈

t
∣

∣

∣

∣

∣

∣μx.
〈	 (x)

∣

∣

∣

∣V+
〉

〉

Head reduction:

→ def.= →μ− ∪ →μ+ ∪ →β ∪ →ς

Church-Rosser. By definition, → has no critical pair. This implies the Church-
Rosser property when → is extended to sub-commands. (We have in fact an
Orthogonal Pattern Rewrite System, which implies confluence [15].)

Subject reduction. Focalising system L enjoys subject reduction in both LKpol
and LL. (Proof is routine since each connective has a constructor.)

Example. We give the example of the implication, writing v the code and e the
environment as in Curien-Herbelin’s [1]. Take:

A→ B
def.= A⊥ `B λκ.v

def.= μ(κ, κ′).〈v ||κ′〉 (κ′ �∈FV(v))

v · e def.= (v, e) v v′
def.= μκ.〈v || v′ · κ〉 (κ �∈FV(v,v′))

One has the following derivations:

 v : B | κ : A⊥, Γ
(abs)

 λκ.v : A→ B | Γ
 v : A→ B | Γ  v′ : A | Δ

(app)
 v v′ : B | Γ,Δ

We study two particular cases for A→ B:
Case A,B negative. This corresponds to CBN. One has, for a positive value E:

〈v v′ ||E〉 → 〈v || v′ · E〉 〈λα.v || v′ ·E〉 → 〈v [v′/α] ||E〉

2 Terminology borrowed from Wadler [5]. Forbidding non invertible constructs
⊗, ⊕, ∃, ? to contain non-values similarly to [4] would be an alternative to the →ς

reduction, which is therefore available as a convenience. Notice one of course has to
arbitrarily decide the evaluation order of the strict pair (·, ·).
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These are the rules of reduction of a Krivine machine in weak head reduction (as
in Krivine’s [8]), whose stacks are values; or again the rules of the λ̄μμ̃ calculus
in CBN [1].

Case A,B positive. One would expect this to correspond to CBV, and indeed
one has:

〈v v′ || e〉 → 〈v || v′ · e〉 〈λx.v || v′ · e〉 �3 〈v′
∣

∣

∣

∣μx.〈v || e〉
〉

(where � is the contextual closure of →). Together with 〈V ||μx.c〉 → c [V /x],
this looks like the rules of the CBV λ̄μμ̃ calculus, but the translation of Curien-
Herbelin’s CBV calculus using this encoding of implication fails because the
environment can be of the form μα.c instead of μx.c. As studied by Laurent
[11] in the case of LLP, the proper translation of the CBV λ̄μμ̃ calculus in
LKpol requires that we define implication with ´(P⊥ ` Q), where the positive
connective ´ is an unary tensor that plays in classical logic the role that ! has in
LLP: changing the polarity.

3 Realisability

This section defines a tool for the study of untyped Lfoc based on Krivine’s clas-
sical realisability for CBN λ calculus [8]. We first define a notion of orthogonality
between closed terms.

Definition 1. A subset ⊥⊥ of C0 is saturated whenever:

c→ c′, c′ ∈ ⊥⊥ =⇒ c ∈ ⊥⊥
In the rest of the paper, ⊥⊥ is some saturated subset of C0 and we say that t
is orthogonal to u, and we write t⊥⊥u, when 〈t ||u〉 ∈ ⊥⊥. Because we follow the
tradition of single-sided sequents (〈t ||u〉 ≡ 〈u || t〉), one has t⊥⊥u equivalent to
u⊥⊥t.
Definition 2. Let T ∈ P(T 0

+). One defines T⊥=
{

t− ∈ T 0
−
∣

∣ ∀t+ ∈ T, t+⊥⊥t−
}

.
Similarly for T ∈ P(T 0

−), one defines T⊥ =
{

t+ ∈ T 0
+

∣

∣ ∀t− ∈ T, t+⊥⊥t−
}

.
A behaviour (terminology borrowed from Girard’s Ludics [12]) is some subset
of T 0

+ or of T 0
− of the form T⊥.

Depending on the polarity of ∅, one either has ∅⊥ = T 0
+ or ∅⊥ = T 0

− ; disam-
biguation will be provided by the context.

Proposition 3 (Basic properties of the orthogonal). Let T and U be two
subsets of T 0

+ or T 0
−. (1) One has T ⊂ T⊥⊥. (2) If T ⊆ U then U⊥ ⊆ T⊥. (3)

One has T⊥⊥⊥ = T⊥. (4) T is a behaviour if and only if T = T⊥⊥. (5) If U is
a set of subsets of T 0

+ (resp. of T 0
−), then one has (

⋃

U)⊥ =
⋂
{

T⊥ ∣
∣ T ∈ U

}

.

Behaviours. We define for each formula a corresponding behaviour.

Definition 4. Parameters R,S . . . are the members of the set Π def.
= P(T 0

+∩V).
The language of formulae is extended with parameters: when R is a parameter,
R is an atomic positive formula and R⊥ is an atomic negative formula.
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Definition 5. Let T and U be two subsets of T 0
+ or T 0

−. One defines:

T × U = { (t, u) | t ∈ T, u ∈ U }
T + U = { ı1(t) | t ∈ T } ∪ { ı2(u) | u ∈ U }

´T =
{

{u}
∣

∣ u ∈ T
}

!T =
{

μ	 (κ).c
∣

∣ V ∈ T⊥
V ⇒ c [V /κ] ∈ ⊥⊥

}

Definition 6. To each closed positive formula P one associates a behaviour
|P | ∈ P(T 0

+) and to each closed negative formula N one associates a behaviour
|N | ∈ P(T 0

−). For any term t, one says t realises A, and one writes t � A,
whenever t ∈ |A|. The definition is given by induction on the size of the formula:

|R| = R⊥⊥ |R⊥| = R⊥

|A⊗B| = (|A| × |B|)⊥⊥ |A`B| = (|A⊥| × |B⊥|)⊥

|A⊕B| = (|A|+ |B|)⊥⊥ |A&B| = (|A⊥|+ |B⊥|)⊥

|!A| = (!|A|)⊥⊥ |?A| = (!|A⊥|)⊥

|∃X A| =
(

⋃

R∈Π

´ |A [R/X ]|
)⊥⊥

|∀X A| =
(

⋃

R∈Π

´ ∣∣A⊥ [R/X ]
∣

∣

)⊥

We therefore have by definition that for any closed formula A, one has |A|⊥ =
|A⊥|. As a consequence we get an equivalent formulation of realisability, closer
to the historical definitions [16]: t realises A if and only if ∀u (u � A⊥ ⇒ t⊥⊥u).
Generation lemma. What follows is the main lemma required by the main
result of the section.

Definition 7.

1. Let T be a behaviour and U ⊆ T . U generates T if T = U⊥⊥.
2. Let T be a behaviour. The set TV of the values of T is T ∩ V.

Lemma 8 (Generation). If A is a closed formula, then |A| is generated by the
set of its values.

The proof requires the lemmas that follow.

Lemma 9. If T is a behaviour, then TV
⊥⊥ ∩ V = TV.

Lemma 10. Let T and U be two behaviours. The following properties hold:

1. TV
⊥⊥ × UV

⊥⊥ ⊆ (T × U)V
⊥⊥;

2. TV
⊥⊥ + UV

⊥⊥ ⊆ (T + U)V
⊥⊥;

3. ´(TV
⊥⊥) ⊆ (´TV)⊥⊥.

Proof. (1) Let t ∈ TV
⊥⊥ and u ∈ UV

⊥⊥; let v ∈ (T × U)V
⊥. If t, u ∈ V,

then (t, u) ∈ TV × UV by lemma 9. Yet, by definition, (T × U)V = TV × UV,
hence (t, u)⊥⊥v. Otherwise, the result follows by saturation of ⊥⊥, since 〈(t, u) || v〉
reduces by →ς to an element of ⊥⊥. (2) and (3): same reasoning. ��
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Proof (Generation lemma). We sketch some key cases of the proof. By induction
on the size of A. Case A negative: the result is trivial. Case A = R: |A| = R⊥⊥

and R is a set of values. Case A = B⊗C: |B|× |C| is equal to |B|V
⊥⊥× |C|V

⊥⊥

by induction hypothesis, and is therefore included in (|B| × |C|)V
⊥⊥ by lemma

10. Hence |A| is generated by (|B| × |C|)V. ��

Corollary 11 (Substitution). Let A a formula with FV (A) of the form {X}
and P a closed positive formula. |P |V is a parameter and one has:

|A [P/X ]| = |A [|P |V/X ]|

Adequacy lemma. The main result of this section affirms that well-typed terms
belong to the behaviours described by their types.

Theorem 12 (Adequacy lemma, LKpol). Let c be a command (respectively t
a term) typable in LKpol, of type c : ( κ1 : A1, . . . , κn : An) (resp.  t : B | κ1 :
A1, . . . , κn : An) where the formulae A1, . . . , An (resp. and B) are closed. For
all closed terms u1, . . . , un, if u1 � A⊥

1 , . . . , un � A⊥
n , then c [−→ui/−→κi ] ∈ ⊥⊥ (resp.

t [−→ui/−→κi ] � B).

Proof. By induction on the derivation of c and t. The actual induction hypothesis
has to be generalised to non-closed formulae, but we can nevertheless sketch the
proof with the significant case of activation. Suppose  μκ.c : B | Γ comes from
c : ( κ : B | Γ ). Let V ∈ |B⊥|V. One has 〈V ||μκ.c [−→ui/−→κi ]〉 → c [V,−→ui/κ,−→κi ].
Yet c [V,−→ui/κ,−→κi ] ∈ ⊥⊥ by induction hypothesis; hence V⊥⊥μκ.c [−→ui/−→κi ] by satu-
ration. Therefore μκ.c [−→ui/−→κi ] ∈ |B⊥|V

⊥, which is equal to |B| by the generation
lemma. ��

The adequacy lemma holds if one substitutes “LL” for “LKpol”. However, classical
realisability would give no quantitative result in relation to linearity.

4 Applications

We show some of the consequences of the adequacy lemma. Proofs are given to
show their brevity. In the following,  refers equally to typability in LKpol and
typability in LL.

Because realisability works with closed terms, we introduce a negative con-
stant, tp (for “top-level”), seen as a pattern matching with no branch, that shall
serve as an initial environment which is closed.
Normalisation and type safety. The following is an instance of the disjunc-
tion property. Such a result usually follows from a cut-elimination theorem and
a property of subject reduction.

Example 13. Let a formula of the form A1 ⊕ A2 and t ∈ T 0
+ such that  t :

A1 ⊕A2. Then there exists i ∈ {1, 2} and a closed value V of the same polarity
as Ai such that 〈t || tp〉 →∗ 〈ıi(V ) || tp〉.
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Proof. Take C the set of the 〈ıi(V ) || tp〉 with i ∈ {1, 2} and V a closed value
of the same polarity as Ai. Take ⊥⊥ =

{

c ∈ C0
∣

∣ ∃c0 ∈ C, c→∗ c0
}

. For all V ∈
|Ai|V one has ıi(V )⊥⊥tp, hence tp ∈ (|A1|V + |A2|V)⊥. By proposition 10 and the
generation lemma, one therefore has tp � A1

⊥&A2
⊥. Since the adequacy lemma

gives t � A1 ⊕A2, one has t⊥⊥tp. ��

This example generalises in two directions: (1) With the positive formula left
unspecified ( t : P ), one gets a result of normalisation in head reduction
(〈t || tp〉 →∗ 〈V || tp〉).3 (2) The result generalises to other positive positive for-
mulae: a tensor yields a pair of values, and more generally one has a property of
type safety for combinations of ⊗ and ⊕. This implies type safety for higher-level
constructs: a function from A to P supplied with the proper argument yields a
result of the expected form. We therefore have an alternative to the traditional
acceptation of type safety, where one usually proves subject reduction and other
syntactical properties.
Parametricity. We prove the uniformity of the universal quantification in an
example – which of course generalises.

Example 14. Let t be a term typable of type  t : ∀X(X ⊗X → X ⊗X). Let V1
and V2 be two positive values. One has 〈t || {(V1, V2) · tp}〉 →∗ 〈(Vi, Vj) || tp〉 for
some i, j ∈ {1, 2}.

Proof. Indeed, take ⊥⊥ =
{

c ∈ C0
∣

∣ ∃i, j ∈ {1, 2}, c→∗ 〈(Vi, Vj) || tp〉
}

and R =
{V1, V2} ∈ Π . One derives 〈t || {(V1, V2) · α}〉 : ( α : R⊗R). Yet tp � R⊥ `R⊥.
By the adequacy lemma, one therefore has t⊥⊥{(V1, V2) · tp}. ��

The Two Quantifications

Zeilberger motivated the use of focalisation in order to explain the “imperfec-
tions” of realistic typed programming languages such as the value restriction for
intersection types in CBV [18]. We show here how classical realisability concisely
accounts for such imperfections.

We have shown above that the adequacy lemma by itself gives some form of
type safety and normalisation. We can therefore use it as a criterion to test new
rules. One of its major advantages is its modularity. Suppose a feature is added
to the system under the form of a new connective, with dual inference rules ♥
and ♠. Ensuring that adequacy holds refines into two stages:

(1) Find dual behaviours that correspond to ♥ and ♠, i.e. for which the
induction step of adequacy can be shown.

(2) Show that the behaviours of ♥ and ♠ are generated by their values, so
that the generation lemma holds.

Modularity comes from the fact that, as one can see, only the rules ♥ and ♠
are involved.
3 As far as strong normalisation is concerned, it should be possible to adapt the tech-

nique developed by Lengrand and Miquel [17] for a non-polarised and non-confluent
symmetric calculus.
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As an example, we apply our method to the possible definitions of ∀ and ∃. The
remarks that follow are however general and apply as well to other “intersection
types” such as the binary intersection type and first-order universal quantification.

The first definition that comes to mind for the behaviours of the second-order
quantifications ∀X A and ∃X A is the following:

|∀X A| ?=
⋂

R∈Π

|A [R/X ]| |∃X A| ?=
(

⋃

R∈Π

|A [R/X ]|
)⊥⊥

They are dual behaviours by a basic property of the orthogonal, and this defi-
nition corresponds to the following inference rules:

 t : A[P/X ] | Γ
 t : ∃X A | Γ

 t : A | Γ
(X �∈ FV (Γ ))

 t : ∀X A | Γ

Hence this quantification passes the first test. But |∀X P | fails to pass the
second test, because of:

Proposition 15. An intersection of behaviours generated by their values is not
generated by its values in general.

The proof will be given in a long version of the paper. This remark corresponds in
particular to the well-known fact that the first implementations of polymorphism
in CBV were unsound in the presence of side-effects (here, control operators of
classical logic).4

Two distinct solutions that pass the test and that therefore fit the deductive
frame of LKpol and LL exist.

A first solution: introducing a shift. The impossibility of a positive ∀ is noted by
Girard when he develops the denotational semantics of classical logic [4]. The
connective ∀ is therefore given the negative polarity in LC. The typing rules of
second-order quantification of Fig. 1 introduce to this effect a construct that
forces the polarity. This corresponds to a Curry-style version of the usual quan-
tification (“ΛX”) of Church-style system F , which already appeared in Lengrand-
Miquel’s symmetric and Curry-style adaptation of Fω [17].

A second solution: introducing a value restriction. The second solution restricts
the introduction of universal quantification to values, a method found in poly-
morphism à la ML. It yields quantifications that are different from the first ones,
and to make the distinction we shall write them

∀

and

∃

. Value restriction cor-
responds to the following modification of the above tentative behaviour so that
it validates the generation lemma:

| ∀X A| def.=
(

⋂

R∈Π

|A [R/X ]|V
)⊥⊥

(and dually for

∃

).
4 Specifically, SML/NJ’s type system was unsound due to the presence of call/cc, as

discovered by Harper and Lillibridge in 1991
[http://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html].
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As we will see, they are not the usual quantifications, but they are related to
∀ and ∃ as follows: if we consider that μ{κ}.c – the construct for ∀ – corresponds
to a shift of polarity at the level of terms that could be made explicit in the
types – with an unary connective (written ˆ) of the negative polarity – then one
has the type equality | ∀X ˆA| = |∀X A| (and dually for

∃

).
Now, the adequacy lemma is obtained at the price of the following restriction

over the typing rules:

 t : A[P/X ] | Γ
 t :

∃

X A | Γ
 V : A | Γ

(X �∈ FV (Γ ))
 V :

∀

X A | Γ

(Now trying to prove subject reduction for LKpol and LL enriched with these
rules would be harder, because there are no corresponding constructs in the
syntax. With classical realisability, the fact that there are no constructs makes
the proof of adequacy even simpler than for ∀ and ∃.)
Comparison of the two solutions. Although related, the two kinds of quan-
tification are different, since the latter connective will enjoy paradoxical prop-
erties such as the fact that

∀

X (A ⊕ B) is the same type as (

∀

X A) ⊕ (

∀

X B).
This shows that

∀

is not a proper universal quantification for classical logic.
(More precisely, one can prove that for a wide range of observations the equal-
ity of behaviours | ∀X (A⊕B)| = |( ∀

X A)⊕ (

∀

X B)| holds. By the standards of
realisability, this allows one to consider the corresponding type coercions.)

This recalls what Girard called the “shocking equalities” of the quantification
of Ludics [19]. Now, since our definition of ∀ definitely yields the usual quantifi-
cation of classical logic, one would tend to question the use of the paradoxical∀

. Value restriction and its “shocking equalities” are in fact interesting from
the computer scientist’s point of view, because it gives more sub-typing rules.
One example is the intersection type, for which a “shocking” equality such as
|(P1 ∩ P2)⊗Q| = |(P1 ⊗Q) ∩ (P2 ⊗Q)|, that is to say the possibility of intro-
ducing coercions between these two types, is desirable.

5 Conclusion

The present work is not only a concise synthesis but also an extension of distinct
works of proof theory: the development of proof syntaxes for sequent calculi
initiated by Herbelin and Curien [1]; the study of focalisation and polarisation
initiated by Andreoli [3] and Girard [4]; and Krivine’s realisability [16,8] that
exposes the computational content of proofs.

Yet the result is surprisingly close to the theory of programming languages,
as shown by the analogy of Section 1, the status given to values, or the presence
of a distinction between “eager” and “lazy” connectives.

There are many leads for future works, the most obvious being: (1) We would
like to study the recent results on the computational content of specific formulae
[20,8,21] from the point of view of polarisation. (2) We would like to study the
practical counterparts to the good theoretical properties of LC’s translation of
∧ and ∨ that are exposed in [4]. For instance, it should be possible to base on
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the present work an extraction procedure for your favourite theorem prover that
relies on this translation, which should be compared to extant procedures.
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Abstract. For a two-variable formula B(X,Y) of Monadic Logic of Or-
der (MLO) the Church Synthesis Problem concerns the existence and
construction of a finite-state operator Y=F(X) such that B(X,F(X)) is
universally valid over Nat.

Büchi and Landweber (1969) proved that the Church synthesis
problem is decidable.

We investigate a parameterized version of the Church synthesis
problem. In this extended version a formula B and a finite-state operator
F might contain as a parameter a unary predicate P.

A large class of predicates P is exhibited such that the Church problem
with the parameter P is decidable.

Our proofs use Composition Method and game theoretical techniques.

1 Introduction

Two fundamental results of classical automata theory are decidability of the
monadic second-order logic of order (MLO) over ω = (N, <) and computability
of the Church synthesis problem. These results have provided the underlying
mathematical framework for the development of formalisms for the description of
interactive systems and their desired properties, the algorithmic verification and
the automatic synthesis of correct implementations from logical specifications,
and advanced algorithmic techniques that are now embodied in industrial tools
for verification and validation.

Decidable Expansions of ω. Büchi [1] proved that the monadic theory of
ω = (N, <) is decidable. Even before the decidability of the monadic theory
of ω has been proved, it was shown that the expansions of ω by “interesting”
functions have undecidable monadic theory. In particular, the monadic theory
of (N, <,+) and the monadic theory of (N, <, λx.2× x) are undecidable [15,20].
Therefore, most efforts to find decidable expansions of ω deal with expansions
of ω by monadic predicates.

Elgot and Rabin [5] found many interesting predicates P for which MLO over
(N, <, P ) is decidable. Among these predicates are the set of factorial numbers
{n! | n ∈ N}, the sets of k-th powers {nk | n ∈ N} and the sets {kn | n ∈ N} (for
k ∈ N ).

The Elgot and Rabin method has been generalized and sharpened over the
years and their results were extended to a variety of unary predicates

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 424–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(see e.g., [18,16,3]). In [11,14] we provided necessary and sufficient conditions
for the decidability of monadic (second-order) theory of expansions of the linear
order of the naturals ω by unary predicates.

Church’s Problem. What is known as the “Church synthesis problem” was
first posed by A. Church in [4] for the case of (ω,<). The Church problem is
much more complicated than the decidability problem for MLO. Church uses
the language of automata theory. It was McNaughton (see [9]) who first observed
that the Church problem can be equivalently phrased in game-theoretic language
and in recent years many authors took up the generalizations of such games for
various applications of the algorithmic theory of infinite games (see e.g., [6,10]).
McNaughton considered games over ω. We consider such games over expansions
of ω by unary predicates.

Let M = (N, <, P ) be the expansion of ω by a unary predicate P . Let
ϕ(X1, X2, Z) be a formula, where X1, X2 and Z are set (monadic predicate)
variables. The McNaughton game GM

ϕ is defined as follows.

1. The game is played by two players, called Player I and Player II.
2. A play of the game has ω rounds.
3. At round i ∈ N: first, Player I chooses ρX1(i) ∈ {0, 1}; then, Player II chooses
ρX2(i) ∈ {0, 1}. Both players can observe whether i ∈ P .

4. By the end of the play two predicates ρX1 , ρX2 ⊆ N have been constructed1

5. Then, Player I wins the play if M |= ϕ(ρX1 , ρX2 , P ); otherwise, Player II
wins the play.

What we want to know is: Does either one of the players have a winning strategy
in GM

ϕ ? If so, which one? That is, can Player I choose his moves so that, whatever
way Player II responds we have ϕ(ρX1 , ρX2 , P )? Or can Player II respond to
Player I’s moves in a way that ensures the opposite?

At round i, Player I has access only to ρX1(0) . . . ρX1(i−1), ρX2(0) . . . ρX2(i−
1) and P (0) . . . P (i).

Hence, a strategy of Player I can be defined as a function which assigns to
any finite sequence

(ρX1(0), ρX2(0), P (0)) . . . (ρX1(i− 1), ρX2(i− 1), P (i− 1)) (∗, ∗, P (i))

a value in {0, 1} which is taken to be ρX1(i).
At round i, Player II has access only to ρX1(0) . . . ρX1(i), ρX2(0) . . . ρX2(i−1)

and P (0) . . . P (i).
Hence, a strategy of Player II can be defined as a function which assigns to

any finite sequence

(ρX1(0), ρX2(0), P (0)) . . . (ρX1(i− 1), ρX2(i− 1), P (i− 1)) (ρX1(i), ∗, P (i))

a value in {0, 1} which is taken to be ρX2(i).

1 We identify monadic predicates with their characteristic functions.
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Since strategies are functions from finite strings (over a finite alphabet) to
{0, 1} we can classify them according to their complexity. The recursive strate-
gies, the finite-memory strategies, i.e., the strategies computable by finite-state
transducers are defined in a natural way (see Sect. 3).

We investigate the following parameterized version of the Church synthesis
problem.

Synthesis Problems for M = (N, <, P ), where P ⊆ N

Input: an MLO formula ϕ(X1, X2, Z).
Task: Check whether Player I has a finite-memory winning strategy in GM

ϕ

and if there is such a strategy - construct it.

To simplify notations, games and the synthesis problem were previously de-
fined for formulas with three free variables X1, X2 and Z. It is easy to gener-
alize all definitions and results to formulas ψ(X1, . . . , Xm, Y1, . . . Yn, Z1, . . . , Zl)
with many variables. In this generalization at round β, Player I chooses val-
ues for X1(β), . . . , Xm(β), then Player II replies by choosing the values to
Y1(β), . . . , Yn(β) and the structure M provides the interpretation for Z1, . . . Zl.
Note that, strictly speaking, the input to the synthesis problem is not only a for-
mula, but a formula plus a partition of its free-variables to Player I’s variables
and Player II’s variables and parameter’s variables.

In [2], Büchi and Landweber prove the computability of the synthesis problem
in ω = (N, <) (no parameters).

Theorem 1.1 (Büchi-Landweber, 1969). Let ϕ(X̄, Ȳ ) be a formula, where
X̄ and Ȳ are disjoint lists of variables. Then:
Determinacy: One of the players has a winning strategy in the game Gω

ϕ .
Decidability: It is decidable which of the players has a winning strategy.
Finite-state strategy: The player who has a winning strategy, also has a

finite-state winning strategy.
Synthesis algorithm: We can compute for the winning player in Gω

ϕ a finite-
state winning strategy.

The determinacy part of the theorem follows from the topological arguments.
In particular for every expansion M of ω by unary predicates, the game GM

ϕ is
determinate.

Let M be an expansion of ω by unary predicates. We proved in [12], that there
is an algorithm which for every MLO formula ϕ decides who wins GM

ϕ if and only
if the monadic theory of M is decidable. Moreover, we proved that if the monadic
theory of M is decidable, then the player who has a winning strategy in GM

ϕ has
a recursive MLO -definable winning strategy which is computable from ϕ.

The finite-state strategy part of Theorem 1.1 fails for decidable expansions
of ω. For example, let Fac = {n! | n ∈ N} be the set of factorial numbers. The
monadic theory of Mfac := (N, <,Fac) is decidable by [5]. Let ϕ(X1, X2, Z) be
a formula which specifies that t ∈ X1 iff t+1 ∈ Z (hence for the game GMfac

ϕ the
moves of Player II are irrelevant). It is easy to see that Player I has a winning
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strategy in GMfac
ϕ , yet Player I has no finite-state winning strategy in this game.

The results of this paper imply that the synthesis problem for (N, <,Fac) is
decidable.

Main Result. Our main result describes a large class of predicates P such that
the synthesis problem for (N, <, P ) is decidable.

An ω-sequence ai is said to be ultimately periodic with lag l and period d if
ai = ai+d for i > l.

Definition 1.2. Let k̄ = (k1 < k2 < . . . ki < . . . ) be an increasing ω-sequence
of integers.

1. k̄ is sparse if for each d there is n such that ki+1 − ki > d for each i > n.
k̄ is effectively sparse if there is an algorithm that for each d computes n
such that ki+1 − ki > d for each i > n.

2. k̄ is ultimately reducible if for every m > 1 the sequence ki mod m is ulti-
mately periodic. k̄ is effectively ultimately reducible if there is an algorithm
that for each m computes a lag and a period of ki mod m.

Definition 1.3. Let ER be the class of increasing recursive ω-sequences of in-
tegers which are effectively sparse and effectively ultimately reducible.

Let P ⊆ N be a predicate. We denote by Enum(P ) the sequence (k1, k2 . . . ki . . . )
which enumerates the elements of P in the increasing order. Often we do not
distinguish between P and Enum(P ), In particular we say that a predicate is
ER predicate if Enum(P ) is in ER. The class ER contains many interesting
predicates. It contains the set Fact={n! | n ∈ N} of factorial numbers, the sets
{kn | n ∈ N}, the sets {nk | n ∈ N}. It has nice closure properties, e.g. if k̄ and
l̄ are in ER then {ki + li | i ∈ N}, {ki × li | i ∈ N}, and {kli

i | i ∈ N} are in ER.
In [18], Siefkes introduced ER predicates and generalized Elgot-Rabin con-

traction method to prove that for every ER predicate P the monadic theory of
M = (N, <, P ) is decidable. Our main results show that the synthesis problem
for each predicate P ∈ ER is decidable.

Theorem 1.4 (Main). Let P be an ER predicate and let M = (N, <, P ).
There is an algorithm that for every MLO formula ϕ(X1, X2, Z) decides whether
Player I has a finite-memory winning strategy in GM

ϕ , and if so constructs such
a strategy.

Our algorithm is based on game theoretical techniques and the composition
method developed by Feferman-Vaught, Shelah and others.

Organization of the paper. The article is organized as follows. The next sec-
tion recalls standard definitions about the monadic second-order logic of order,
and summarizes elements of the composition method. In Section 3, we introduce
game-types, define games on game types and show that these game are reducible
to the McNaughton games. Section 4 consider games over finite chains. Sufficient
conditions are provided for existence of a finite state strategies which uniformly
wins over a class of finite chains.
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Section 5 describes an algorithm for the synthesis problem over the expansions
of ω by ER predicates, and proves the soundness of the algorithm, i.e., if the
algorithm outputs a strategy for GM

ϕ , then it is a finite state strategy which
wins ϕ over M. The proof of completeness appears in the full version of this
paper [13]. Further results and open questions are discussed in Sect. 6.

2 Preliminaries and Background

We use i, j, n, k, l,m, p, q for natural numbers. We use N for the set of natural
numbers and ω for the first infinite ordinal. We use the expressions “chain” and
“linear order” interchangeably. A chain with m elements will be denoted by m.

We use P(A) for the set of subsets of A.

2.1 The Monadic Logic of Order (MLO)

Syntax. The syntax of the monadic second-order logic of order - MLO has in
its vocabulary individual (first order) variables t1, t2 . . ., monadic second-order
variables X1, X2 . . . and one binary relation < (the order).

Atomic formulas are of the form X(t) and t1 < t2. Well formed formulas
of the monadic logic MLO are obtained from atomic formulas using Boolean
connectives ¬,∨,∧,→ and the first-order quantifiers ∃t and ∀t, and the second-
order quantifiers ∃X and ∀X . The quantifier depth of a formula ϕ is denoted by
qd(ϕ).

We use upper case letters X , Y , Z,... to denote second-order variables; with
an overline, X̄, Ȳ , etc., to denote finite tuples of variables.

Semantics. A structure is a tuple M := (A,<M, P̄M) where: A is a non-empty
set, <M is a binary relation on A, and P̄M :=

(

PM
1 , . . . , PM

l

)

is a finite tuple
of subsets of A.

If P̄M is a tuple of l sets, we call M an l-structure. If <M linearly orders A,
we call M an l-chain. When the specific l is unimportant, we simply say that
M is a labeled chain.

Suppose M is an l-structure and ϕ a formula with free-variables among
X1, . . . , Xl. We define the relation M |= ϕ (read: M satisfies ϕ) as usual, un-
derstanding that the second-order quantifiers range over subsets of A.

Let M be an l-structure. The monadic theory of M, MTh(M), is the set of
all formulas with free-variables among X1, . . . , Xl satisfied by M.

From now on, we omit the superscript in ‘<M’ and ‘P̄M’. We often write
(A,<) |= ϕ(P̄ ) meaning (A,<, P̄ ) |= ϕ.

For a chain M = (A,<, P̄ ) and a subset I of A, we denote by M
⎪

⎪

⎪

⎪I the
subchain of M over the set I.

2.2 Elements of the Composition Method

Our proofs make use of the technique known as the composition method de-
veloped by Feferman-Vaught and Shelah [8,17]. To fix notations and to aid the
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reader unfamiliar with this technique, we briefly review the definitions and re-
sults that we require. A more detailed presentation can be found in [19] or [7].

Let n, l ∈ N. We denote by Formn
l the set of MLO formulas with free variables

among X1, . . . , Xl and of quantifier depth ≤ n.

Definition 2.1. Let n, l ∈ N and let M,N be l-structures. The n-theory of M
is Thn(M) := {ϕ ∈ Formn

l | M |= ϕ}. If Thn(M) = Thn(N ), we say that M
and N are n-equivalent and write M≡n N .

Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set Formn
l is

infinite. However, it contains only finitely many semantically distinct formulas.
So, there are finitely many ≡n-equivalence classes of l-structures. In fact, we can
compute characteristic formulas for the ≡n-equivalence classes:

Lemma 2.2 (Hintikka Lemma). For n, l ∈ N, we can compute a finite set
Charn

l ⊆ Formn
l such that:

– For every ≡n-equivalence class C there is a unique τ ∈ Charn
l such that for

every l-structure M: M∈ C iff M |= τ .
– Every MLO formula ϕ(X1, . . . Xl) with qd(ϕ) ≤ n is equivalent to a (fi-

nite) disjunction of characteristic formulas from Charn
l . Moreover, there is

an algorithm which for every formula ϕ(X1, . . . Xl) computes a finite set
G ⊆ Charqd(ϕ)

l of characteristic formulas, such that ϕ is equivalent to the
disjunction of all the formulas from G.

Any member of Charn
l we call a (n, l)-Hintikka formula or (n, l)-characteristic

formula. We use τ , τi, τ j to range over the characteristic formulas and G,Gi, G
′

to range over sets of characteristic formulas.

Definition 2.3 (n-Type). For n, l ∈ N and an l-structure M, we denote by
typen(M) the unique member of Charn

l satisfied by M and call it the n-type of
M.

Thus, typen(M) determines Thn(M) and, indeed, Thn(M) is computable from
typen(M).

Definition 2.4 (Sum of chains). (1) Let l ∈ N, I := (I,<I) a chain and
S := (Mα | α ∈ I) a sequence of l-chains. Write Mα := (Aα, <

α, P1
α, . . . , Pl

α)
and assume Aα ∩ Aβ = ∅ whenever α �= β are in I. The ordered sum of S is
the l-chain

∑

I
S := (

⋃

α∈I

Aα, <
I,S,

⋃

α∈I
P1

α, . . . ,
⋃

α∈I

Pl
α), where

if α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <I,S a iff β <I α or β = α and b <α a.

If the domains of the Mα’s are not disjoint, replace them with isomorphic l-
chains that have disjoint domains, and proceed as before.

(2) If for all α ∈ I, Mα is isomorphic to M for some fixed M, we denote
∑

I S by M×I.
(3) If I = ({0, 1}, <) and S = (M0,M1), we denote

∑

I S by M0 +M1.
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We will use only special cases of this definition in which the index chain I and
the summand chains Mα are finite or of the order type ω.

The next proposition says that taking ordered sums preserves ≡n-equivalence.

Proposition 2.5. Let n, l ∈ N. Assume:

1. (I,<I) is a linear order,
2.
(

M0
α | α ∈ I

)

and
(

M1
α | α ∈ I

)

are sequences of l-chains, and
3. for every α ∈ I, M0

α ≡n M1
α.

Then,
∑

α∈I M0
α ≡n

∑

α∈I M1
α.

This allows us to define the sum of formulas in Charn
l with respect to any linear

order.

Definition 2.6. (1) Let n, l ∈ N, I := (I,<I) a chain, H := (τα | α ∈ I) a
sequence of (n, l)-Hintikka formulas. The ordered sum of H, (notations

∑

I H or
∑

α∈I τα), is an element τ of Charn
l such that:

if S := (Mα | α ∈ I) is a sequence of l-chains and typen(Mα) = τα for
α ∈ I, then

typen(
∑

I
S) = τ.

(2) If for all α ∈ I, τα = τ for some fixed τ ∈ Charn
l , we denote

∑

α∈I τα by
τ × I.

(3) If I = ({0, 1}, <) and H = (τ0, τ1), we denote
∑

α∈I τα by τ0 + τ1.

The following fundamental result of Shelah can be found in [17]:

Theorem 2.7 (Addition Theorem). The function which maps the pairs of
characteristic formulas to their sum is a recursive function. Formally, the func-
tion λn, l ∈ N.λτ0, τ1 ∈ Charn

l .τ0 + τ1 is recursive.

We often use the following well-known lemmas:

Lemma 2.8. For every n ∈ N there is N0(n) such that for every sentence ϕ of
the quantifier depth at most n and every m ≥ N0:

ϕ is satisfiable over the m-element chain iff it is satisfiable over the
m+N0-element chain, i.e., m ≡n m+N0.

Furthermore, N0 is computable from n.

Lemma 2.9. For every n ∈ N there is N1(n) such that for every M = (A,<, P ):
if n1 > n2 ≥ N1 and n1 = n2 mod N1, then M× n1 ≡n M× n2. Moreover, N1
is computable from n.

3 Game Types

In this section we introduce game-types; their role for games is similar to the role
of types for MLO . We define games on game types and show that these game
are reducible to the McNaughton games. But first we introduce a terminology,
define finite-memory strategies and fix some notational conventions.
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Let M :=
(

N, <, P̄
)

be an l-chain and let ρ := (ρX1(0), ρX2(0)) . . .
(ρX1(i), ρX2(i)) . . . be a play. We denote by M�ρ the expansion of M by the
predicates ρX1 and ρX2 . We say that the m-type of ρ is τ if τ = typem(M�ρ).
Whenever M is clear from the context we write typem(ρ) for typem(M�ρ).

A strategy for Player I for games over l-chains is a transducer which consists
of a set Q - memory states, an initial state qinit, the memory update functions
μ1 : Q × {0, 1}l → Q and μ2 : Q × {0, 1} → Q, and the output function
θ : Q→ {0, 1}.

A strategy is finite-memory (or finite-state) if its set of memory states is finite.
During a play at round i, Player I first updates the state according to μ1

and the values of predicates P̄ (i), then outputs its value according to θ , and
then after a move of Player II update the state according to μ2. Hence, a play
ρ := (ρX1(0), ρX2(0)) . . . (ρX1(i), ρX2(i)) . . . is consistent with such a strategy
if there are q0, q′0 . . . qiq

′
i such that q0 = μ1(qinit, P̄ (0)), ρX1(i) = θ(qi), q′i =

μ2(qi, ρX2(i)) and qi+1 = μ1(q′i, P̄ (i+ 1)).

Notational Conventions

1. In Hintikka’s Lemma we considered formulas with the free variables among
X1, . . . , Xl. It is trivially can be extended to formulas with free second-order
variables in any finite list V̄ . In particular we use Chark(X,Y, Z) for the set
of Hintikka formulas of quantifier depth k with free variables X,Y, Z.

2. Whenever we deal with the synthesis problem over an l-chain M =
(N, <, P1, . . . , Pl), we will often replace variables Zi by the predi-
cate Pi; in particular we will write “ϕ(X1, X2, P1, . . . , Pl)” instead of
“ϕ(X1, X2, Z1, . . . , Zl)”

3. By Lemma 2.2, for every formula ϕ(X1, X2, P ) of a quantifier depth n there
is G ⊆ Charn(X1, X2, P ) such that ϕ is equivalent to the disjunction of all
formulas from G. Moreover, G is computable from ϕ. We often identify ϕ
with this set G and write “GM

G ” instead of “GM
ϕ ”.

Definition 3.1. Let M be an l-chain, st be a strategy, and G ⊆
Charm(X1, X2, P̄ ). st wins G over M iff the m-type of every play (on M )
consistent with st is in G.

Definition 3.2 (Game Types). Let n ∈ N.

Game type of a chain. Let M :=
(

A,< P̄
)

be an l-chain, where (A,<) is
finite or of order type ω. The n-game-type of M is defined as:
game-typen(M) := {G ⊆ Charn(X1, X2, P̄ ) | Player I wins GM

G }.
Formal game-type. A formal (n, l)-game-type is an element2 of

P(P(Charn(X1, X2, P̄ ))), where P̄ is an l-tuple (P1, . . . , Pl) of variables.
We denote by Gtypen

l the set of formal (n, l)-game-types.

Let F be a function from N into Gtypen
1 and G ⊆ Charn(X1, X2, P ). We consider

the following ω-game Game(F,G).
2 Recall that P(A) stands for the set of subsets of A.
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Game(F,G): The game has ω rounds and it is defined as follows:
Round i: Player I chooses Gi ∈ F (i). Then, Player II chooses τi ∈ Gi.
Winning conditions: Let τi (i ∈ N) be the sequence of moves of Player II

in the play. Player I wins the play if Σiτi ∈ G.

The following lemma is immediate:

Lemma 3.3. if ∀i
(

F1(i) ⊆ F2(i)
)

, G1 ⊆ G2 and Player I wins Game(F1, G1),
then Player I wins Game(F2, G2).

The following proposition plays an important role in our proofs:

Proposition 3.4. Assume that F (i) (i ∈ N) is ultimately periodic. Then, it is
decidable which of the players wins Game(F,G), Moreover, the winner has a
finite-memory winning strategy which is computable from G.

4 Winning Strategies over Classes of Finite Chains

In the introduction we defined McNaugton’s games over expansions of ω. In this
subsection we will consider the games over expansions of finite chains. These
games are defined similarly. The only difference is that these games are of finite
length. The games over an l-chains with m elements have m rounds.

The following lemma says that there is a sentence which uniformly expresses
that Player I has a winning strategy in the game with winning condition ϕ.

Lemma 4.1. For every ϕ there is a formula win(ϕ) such that for every finite l-
chain M, Player I has a winning strategy in GM

ϕ iff M |= win(ϕ). Furthermore,
win(ϕ) is computable from ϕ.

Proof. (Sketch) In [11] we proved much stronger result (Theorem 2.3 in [11])
which says that there is a formula winϕ such if M is an expansion of ω, then
Player I has a winning strategy in GM

ϕ iff M |= winϕ. ��

Recall that we identify a subset G of Charm(X1, X2, P̄ ) with the disjunction
∨τ∈Gτ . In particular, for G ⊆ Charm(X1, X2, P̄ ) we write win(G) for win(∨G).

For C ⊆ P(Charm(X1, X2, P̄ )) we write Win(C) for ∧G∈Cwin(G). Win(C)
expresses that Player I has a winning strategy for every G ∈ C.

Definition 4.2 (Residual). For τ ∈ Charm and G ⊆ Charm, define resτ (G)
as resτ (G) := {τ ′ | τ + τ ′ ∈ G}; define Res(G) as Res(G) := {resτ (G) | τ ∈ G}.
Assume that ρ is a partial play of type τ . Player I can win resτ (G) after ρ iff he
has a strategy which ensures that every extension of ρ wins G.

Let st be a strategy of Player I and C be a class of chains. We say that st
wins ϕ over C iff st is a winning strategy in GM

ϕ for every M∈ C.

Lemma 4.3. Assume that M0 and M1 are finite l-chains. If M0 |= win(G)
and M1 |= Win(Res(G)) then Player I has a finite-memory strategy which wins
G over the class {M0 +M1 × k | k ∈ N} of l-chains.

Proof. Let k0 and k1 be the length of M0 and M1 respectively. Consider the
following strategy of Player I:
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Play first k0 rounds according to his winning strategy for win(G). For every
j ∈ N if the m-type of the play after k0 + jk1 rounds is τ then play the next k1
rounds according to the winning strategy for win(resτ (G)).

It is easy to show by the induction on j that if a play ρ is played according
to this strategy, then after k0 + jk1 rounds its m-type is in G. Therefore, it is a
winning strategy for Player I.

Player I needs only a finite memory to keep the information about the m-type
of the play τi up to each round i. After a round i he should add to τi−1 the type
of the play during the round i, i.e., to add to τi−1 the m-type of one element
chain expanded by the predicates ρX1(i), ρX1(i) and P (i). Player I can calculate
in a finite memory whether the current round number is k0 +jk1 for some j ∈ N.
Hence, this strategy is a finite-memory strategy. ��
Definition 4.4. Let M be an l-chain, st be a strategy, and G ⊆
Charm(X1, X2, P̄ ). st realizes G on M if it wins GM

G and for every m-type
τ ∈ G there is a play ρ consistent with st such that typem(M�ρ) = τ ,

In other words st realizes G in M , if st wins GM
G and there is no G1 � G such

that st wins GM
G1

. Recall that for n ∈ N we also denote by n the finite chain with
n elements.

Lemma 4.5. 1. If for n1 < n2 a strategy realizes G over chains n1 and n2,
then Win(Res(G)) is satisfiable over the chain n2 − n1.

2. If for n1 < n2 a strategy realizes G over n1 and wins G over n2, then
Win(Res(G)) is satisfiable over n2 − n1.

Proof. (1) follows from (2). (2) follows from the definition of Win and Definitions
4.2 and 4.4. ��
Proposition 4.6. For m ∈ N, let n be an upper bound on the quantifier depth
of win(G) for every G ⊆ Charm

2 , and let N0 be computed from n as in Lemma
2.8. For every i ∈ [0, N0 − 1) the following are equivalent:

1. Player I has a finite-memory strategy which wins G over the class {t > N0 |
t mod N0 = i} of finite chains.

2. Player I has a finite-memory strategy which wins G over an infinite subclass
of {t > N0 | t mod N0 = i}.

3. There is a finite-memory strategy which realizes G1 ⊆ G over n1 and over
n2 for some n2 > n1 ≥ N0 such that n1 mod N0 = n2 mod N0 = i.

4. There is G1 ⊆ G such that N0 |= win(G′) for every G′ ∈ Res(G1), and
N0 + i |= win(G1).

Proof. The implication (1) ⇒ (2) is immediate.
(2) ⇒ (3). If a strategy wins G over M then it realizes a subset of G. Since

the set of subset of G is finite, it follows that there is a subset of G which is
realized infinitely often and therefore at least twice.

(3) ⇒ (4) follows from Lemmas 2.8 and 4.5.
(4) ⇒ (1) follows from Lemma 4.3. ��

Proposition 4.6 is crucial for the design of our algorithm, due the decidability
of (4).



434 A. Rabinovich

5 Algorithm

In this section we describe an algorithm for the synthesis problem for the ex-
pansions of ω by ER predicates. For every MLO formula ϕ(X1, X2, P ), first
construct a set of the characteristic formulas G such that ϕ is equivalent to their
disjunction and then use the following algorithm.

Synthesis algorithm over M := (N, <, P ) where P is in ER

Instance: m ∈ N.
Task: Find the set Out = {G ⊆ Charm(X1, X2, P ) | Player I has a finite-
memory winning strategy in GM

G }, and for each G ∈ Out construct a finite-
memory strategy st(G) which wins G over M.

We prove the soundness of the algorithm, i.e., if G ∈ Out, then there is a finite-
state strategy which wins G overM. The proof of the reverse implication appears
in the full version of this paper [13].

Let us first illustrate some ideas of the algorithm for Mex := (N, <, Pex),
where Pex := (kl | l ∈ N) and kl+1 − kl = l!. Let st be a finite-memory strat-
egy. Note that there is lst(m) such that for every G ⊆ Charm: st wins G on
Mex

⎪

⎪

⎪

⎪[klst ,∞) iff st wins G on Mex

⎪

⎪

⎪

⎪[kl,∞) for every l ≥ lst . Recall that
M
⎪

⎪

⎪

⎪I is the subchain of M over the set I.
We can compute U∞

st := {G ⊆ Charm | st wins G on Mex

⎪

⎪

⎪

⎪[kl,∞) for
every l ≥ lst}. For l ∈ N we can compute V l

st := {G ⊆ Charm | st wins
G on Mex

⎪

⎪

⎪

⎪
[0, kl)} which is a periodic sequence. From U∞

st and {V l
st}∞l=0

we can compute Outst := {G ⊆ Charm | st wins G on Mex}. Of course, we
could compute Outst directly from the description of st . However, our algorithm
computes U := {G ⊆ Charm | there is a finite-memory strategy st such that
G ∈ U∞

st }, and the sequence V l := {G ⊆ Charm | there is a finite-memory
strategy st which wins G on Mex

⎪

⎪

⎪

⎪[0, kl)}. The sequence {V l}∞l=0 is periodic.
From U and {V l}∞l=0 we can compute the desirable Out.

An important property of Pex is that for every n, and every l > n the distance
between l-th and l + 1-th elements of Pex is equal modulo n to the distance
between n-th and the n+1-th elements of Pex. Usually, this property fails for ER
predicates; however, the sequence of the distances modulo n behaves periodically.
Our algorithm is more subtle than the above sketch for Pex and relies on this
periodicity.

Conventions. Let τ(X1, X2) be an m-type for m > 0. There is a unique m-
type τ∗(X1, X2, P ) such that τ → (τ∗(X1, X2, P ) ∧ ∀t¬P (t)). We often will
not distinguish between τ and the corresponding τ∗. In particular, for m-type
τ1(X1, X2, P ) we write τ+τ1 instead of τ∗+τ1. We also lift this correspondence to
sets ofm-types;; for a set G ⊆ Charm

2 we denote by G the set G∗ := {τ∗ | τ ∈ G}.
Now we are going to describe our algorithm.
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Step 1

1. Compute One :=
{

G ⊆ Charm(X1, X2, P ) | Player I has a strategy which
wins G over one element structure (0, <, {0}).
For G ∈ One, we denote by st1(One, G) the corresponding winning strategy.

2. Let N0 be defined fromm as in Proposition 4.6. For i = 0, . . .N0−1 compute
CWIN i :=

{

G ⊆ Charm(X1, X2) | Player I has a finite-memory strategy
which winsG over the class {t > N0 | t mod N0 = i}

}

. This set is computable
by condition (4) of Proposition 4.6.
For G ∈ CWIN i, we denote by st1(i, G) the corresponding finite-memory
winning strategy; this strategy is computable by Lemma 4.3, since the con-
dition (4) of Proposition 4.6 holds.

Step 2. Let k̄ := k0 < k1 < · · · < ki < . . . be the enumeration of the elements of
P in the increasing order. Compute l and p such that for every n greater than l:

1. kn+1 − kn > N0 and
2. (kn+1 − kn) mod N0 = (kn+p+1 − kn+p) mod N0

3. For j < p, set dj := kl+j+1 − kl+j mod N0.

(To compute such l and p we need our assumption that P ∈ ER.)

Step 3. Let F : N → Gtypem(X1, X2, P ) be defined as follows:

F (i) =
{

One if i is even
CWIN dj if i = 2s+ 1 and s mod p = j

Note that F is a periodic sequence.
Use Proposition 3.4 to compute the set U :=

{

G ⊆ Charm(X1, X2, P ) | Player
I has a finite-memory strategy which wins Game(F,G)

}

.
For G ∈ U , we denote by stmain(F,G) the corresponding finite-memory win-

ning strategy.
Now, for G ∈ U we describe a finite-memory strategy st3(F,G) which wins G

over the class {Mi := M
⎪

⎪

⎪

⎪[kl+pi,∞) | i ∈ N} of chains.
We organize our description of how strategy st3(F,G) behaves on Mi :=

M
⎪

⎪

⎪

⎪
[kl+pi,∞) in sessions. For s ∈ N, the session 2s is played on the one element

subchain of Mi isomorphic to (0, < {0}); the session 2s + 1 will be played on
the subchain M

⎪

⎪

⎪

⎪(kl+pi+s, kl+pi+s+1) which is isomorphic to the (kl+pi+s+1 −
kl+pi+s)-element chain expanded by the empty predicate.

Session 0. Let G0 be the first move of stmain(F,G). Then Player I will move
according to his winning strategy in st1(One, G0). After a move of Player II, the
m-type of the partial play ρ0 is some τ0 ∈ G0.

Session 2s + 1. Let G2s+1 be the move of Player I according to stmain(F,G)
after a partial play G0τ0G1τ1 . . .G2sτ2s. Then Player I will play according to his
strategy in st1(d(s mod p), G2s+1) until he reads one on P (recall that dj , were
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defined in Step 2). At this point the type of a subplay ρ2s+1 during this round
will be τ2s+1 ∈ G2s+1.

Session 2s. (s > 0) Let G2s be the move of Player I according to stmain(F,G)
after a partial play G0τ0G1τ1 . . .G2s−1τ2s−1. Player I will move according to his
winning strategy in st1(One, G2s). After a move of Player II, the m-type of the
partial play ρ2s during this session will be some τ2s ∈ G2s.

Observe that this is indeed a finite-memory strategy. Like in the proof of
Lemma 4.3, Player I can compute in a finite memory at each session s the m-
type τs of the subplay during session s, and then after this session to supply
only this m-type to stmain(F,G) (and not the whole history G0τ0 . . . Gsτs).

This strategy wins G because the sequence G0τ0 . . . Gsτs . . . played over the
sessions is consistent with the wining strategy stmain(F,G) in Game(F,G).

Step 4. We are going to compute the set V :=
{

G ⊆ Charm(X1, X2, P ) | Player
I has a strategy which wins G over M

⎪

⎪

⎪

⎪[0, kl+pi) for some i ∈ N)
}

.
Let n be the quantifier depth of win(G).
By our choice of N0, l and p (in Step 1 and Step 2) we know that for every i:

M
⎪

⎪

⎪

⎪[kl+i, kl+i+1) ≡n M
⎪

⎪

⎪

⎪[kl+i+p, kl+i+1+p))

Hence, for every i:

M
⎪

⎪

⎪

⎪[kl+pi, kl+pi+p) =
∑p−1

s=0 M
⎪

⎪

⎪

⎪[kl+pi+s, kl+pi+s+1) ≡n

≡n
∑p−1

s=0 M
⎪

⎪

⎪

⎪[kl+s, kl+s+1) = M
⎪

⎪

⎪

⎪[kl, kl+p)

Let N1 := N1(n) be defined as in Lemma 2.9. From the above equivalence,
Lemma 2.9 and Proposition 2.5, it follows that for every i there is j ≤ N1 such
that

M
⎪

⎪

⎪

⎪[kl, kl+pi) ≡n M
⎪

⎪

⎪

⎪[kl, kl+pj)

and hence, M
⎪

⎪

⎪

⎪[0, kl+pi) ≡n M
⎪

⎪

⎪

⎪[0, kl+pj).
Therefore, V =

{

G ⊆ Charm(X1, X2, P ) | M
⎪

⎪

⎪

⎪[0, kl+pj) |=
win(G) for some j ≤ N1

}

. To compute the right hand side we need to check
a finite set of games over finite chains. Hence, this is computable and therefore,
V is computable.

For G ∈ V , let lG ≤ N1 be such that M
⎪

⎪

⎪

⎪[0, kl+plG) |= win(G) and let
st4(V,G) be the corresponding strategy which wins G over M

⎪

⎪

⎪

⎪[0, kl+plG).

Step 5. Output Out := {G ⊆ Charm(X,Y, P ) | ∃G1 ∈ V such that resτ (G) ∈ U
for every τ ∈ G1}.

For every G ∈ Out we describe a finite-memory strategy st(G) which wins G
over M. Assume G ∈ Out and let G1 ∈ V be such that resτ (G) ∈ U for every
τ ∈ G1. Since G1 ∈ V , there is lG1 and a strategy st4(V,G1) which wins G1 over
M
⎪

⎪

⎪

⎪[0, kl+plG1
).

Player I will play the first l+p×lG1 rounds according to this winning strategy.
Let ρ be a play according to this strategy, and let τ be its m-type and let G2 =
resτ (G). The rest of the game Player I will play according to his finite-memory
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strategy st3(F,G2) computed in the Step 3 Clearly, the described strategy is a
finite-memory strategy.

The m-type of the whole play is in τ + G2 = G. Therefore, the described
strategy is winning in GM

G . This completes the description of our algorithm and
the proof that if G ∈ Out , then Player I has a finite-memory winning strategy
in GM

G .

6 Further Results and Open Questions

We proved that the finite-memory synthesis problem is decidable for the expan-
sions of ω by the predicates from ER. In [12] it was proved that the decidability
of the monadic theory of M is equivalent to the decidability of the recursive
strategy synthesis problem for M.

The question whether the decidability of the monadic theory of M implies
the decidability of the finite-memory synthesis problem for M remains open.

A natural question to consider is the synthesis problem for strategies between
finite-memory and recursive ones, e.g., the strategies computable by push-down
automata.

There are some minor modifications of the McNaughton games to the games
with look-ahead. Let M = (N, <, P ) be the expansion of ω by a unary predicate
P . Let h1, h2 be integers (look-ahead) of the players. Let ϕ(X1, X2, Z) be a
formula. The game GM

ϕ (h1, h2) with look-ahead h1 for Player I and look-ahead
h2 for Player II is defined as follows. The game is played by two players and each
of its plays has ω rounds.

1. At round i ∈ N: first, Player I chooses ρX1(i) ∈ {0, 1}; then, Player II chooses
ρX2(i) ∈ {0, 1}. Player I can observe whether i+ h1 ∈ P and Player II can
observe whether i+ h2 ∈ P

2. By the end of the play two predicates ρX1 , ρX2 ⊆ N have been constructed.
3. Then, Player I wins the play if M |= ϕ(ρX1 , ρX2 , P ); otherwise, Player II

wins the play.

The proof of the next proposition is similar to the proof of Theorem 1.4.

Proposition 6.1. Let P be an ER predicate, and h1, h2 integers and let
M = (N, <, P ). There is an algorithm that for every MLO formula ϕ(X1, X2, Z)
decides whether Player I has a finite-memory winning strategy in GM

ϕ (h1, h2),
and if so, constructs such a strategy.

It is easy to modify our proofs and to show that it is decidable whether Player
II has a finite-memory winning strategy.

Section 1 (page 426) gives an example of the game GMfac
ϕ where Player I has a

winning strategy, yet he has no finite-memory winning strategy. Note that for this
particular game, Player I has a finite-memory one-look-ahead winning strategy,
i.e., he has a finite-memory winning strategy in GMfac

ϕ (1, h2) for every h2.
Relying on the definability results in [12] we can prove the following

Proposition.
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Proposition 6.2 (Determinacy for look-ahead finite-memory strategy).
Let P be an ER predicate, and let M = (N, <, P ). For every MLO formula
ϕ(X1, X2, Z) there is h such that one of the players has a finite-memory winning
strategy in GM

ϕ (h, h). Furthermore, there is an algorithm that computes such h and
a finite-memory winning strategy for the winner in GM

ϕ (h, h).

It is plausible that in our proofs the compositional methods can be hidden and
a presentation can be given based on automata theoretic concepts. The logical
n-types can be replaced by “n-types”, using semigroups or automata rather than
formulas to describe properties of words. The only place where automata based
techniques might fail is in the proof of Proposition 3.4.
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Abstract. Separation logic is a Hoare-style logic for reasoning about
programs with heap-allocated mutable data structures. As a step toward
extending separation logic to high-level languages with ML-style general
(higher-order) storage, we investigate the compatibility of nested Hoare
triples with several variations of higher-order frame rules.

The interaction of nested triples and frame rules can be subtle, and
the inclusion of certain frame rules is in fact unsound. A particular com-
bination of rules can be shown consistent by means of a Kripke model
where worlds live in a recursively defined ultrametric space. The result-
ing logic allows us to elegantly prove programs involving stored code.
In particular, it leads to natural specifications and proofs of invariants
required for dealing with recursion through the store.

1 Introduction

Many programming languages permit not only the storage of first-order data, but
also forms of higher-order store. Examples are code pointers in C, and ML-like
general references. It is therefore important to have modular reasoning prin-
ciples for these language features. Separation logic is an effective formalism for
modular reasoning about pointer programs, in low-level C-like programming lan-
guages and, more recently, also in higher-level languages [6,7,9,13]. However, its
assertions are usually limited to talk about first-order data.

In previous work, we have begun the study of separation logic for languages
with higher-order store [2,12]. A challenge in this research is the combination
of proof rules from separation logic for modular reasoning, and proof rules for
code stored on the heap. Ideally, a program logic for higher-order store provides
sufficiently expressive proof rules that, e.g., can deal with recursion through the
store, and at the same time interact well with (higher-order) frame rules, which
enable modular program verification.

Our earlier work shows that separation logic is consistent with higher-order
store. However, the formulation of [2,12] has a shortcoming: code is treated like
any other data in that assertions can only mention concrete commands. For
modular reasoning, it is clearly desirable to abstract from particular code and
instead (partially) specify its behaviour. For example, when verifying mutually
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recursive procedures on the heap, one would like to consider each procedure
in isolation, relying on properties but not the implementations of the others.
The recursion rule in [2,12] does not achieve this. A second, and less obvious
consequence of lacking behavioural specifications for code in assertions is that
one cannot take full advantage of the frame rules of separation logic. For instance,
the language in [2] can simulate higher-order procedures by passing arguments
through the heap, but the available (higher-order) frame rules are not useful
here because an appropriate specification for this encoding is missing.

In this article, we address these shortcomings by investigating a program logic
in which stored code can be specified using Hoare triples, i.e., an assertion lan-
guage with nested triples. This is an obvious idea, but the combination of nested
triples and frame rules turns out to be tricky: the most natural combination
turns out to be unsound.

The main technical contributions of this paper are therefore: (1) the obser-
vation that certain “deep” frame rules can be unsound, (2) the suggestion of a
“good” combination of nested Hoare triples and frame rules, and (3) the ver-
ification of those by means of an elegant Kripke model, where the worlds are
themselves world-dependent sets of heaps. The worlds form a complete metric
space and (the denotation of) the tensor ⊗, needed to generically express higher-
order frame rules, is contractive; as a consequence, our logic permits recursively
defined assertions.

After introducing the syntax of language and assertions in Section 2 we dis-
cuss some unsound combinations of rules in Section 3, which also contains the
suggested set of rules for our logic. The soundness of the logic is then shown in
Section 4.

2 Syntax of Programs and Assertions

We consider a simple imperative programming language extended with oper-
ations for stored code and heap manipulation. The syntax of the language is
shown in Fig. 1. The expressions in the language are integer expressions, vari-
ables, and the quote expression ‘C’ for representing an unevaluated command
C. The integer or code value denoted by expression e1 can be stored in a heap
cell e0 using [e0]:=e1, and this stored value can later be looked up and bound
to the (immutable) variable y by let y=[e0] in D. In case the value stored in cell
e0 is code ‘C’, we can run (or “evaluate”) this code by executing eval [e0]. Our
language also provides constructs for allocating and disposing heap cells such as
e0 above. We point out that, as in ML, all variables x, y, z in our language are
immutable, so that once they are bound to a value, their values do not change.
This property of the language lets us avoid side conditions on variables when
studying frame rules. Finally, we do not include while loops in our language,
since they can be expressed by stored code (using Landin’s knot).

Our assertion language is standard first-order intuitionistic logic, extended
with separating connectives emp, ∗, the points-to predicate 
→ [13], and with
recursively defined assertions. The syntax of assertions appears in Fig. 1. Each
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d ∈ Exp ::= 0 | −1 | 1 | . . . | d1+d2 | . . . | x integer expressions, variable
| ‘C’ quote (command as expression)

C ∈ Com ::= [e1]:=e2 | let y=[e] in C | eval [e] assignment, lookup, unquote
| let x=new (e1, . . . , en) in C | free e allocation, disposal
| skip |C1;C2 | if (e1=e2) thenC1 else C2 no op, sequencing, conditional

P, Q ∈Assn ::= false | true | P ∨ Q | P ∧ Q | P ⇒ Q intuitionistic-logic connectives
| ∀x.P | ∃x.P | int(e) | e1=e2 | e1≤e2 quantifiers, atomic formulas
| e1 �→ e2 | emp | P ∗ Q separating connectives
| {P}e{Q} | P ⊗ Q | . . . Hoare triple, invariant extension

Fig. 1. Syntax of expressions, commands and assertions

assertion describes a property of states, which consist of an immutable stack and
a mutable heap. Formula emp means that the heap component of the state is
empty, and P ∗ Q means that the heap component can be split into two, one
satisfying P and the other satisfying Q, both evaluated with respect to the same
stack. The points-to predicate e0 
→ e1 states that the heap component consists
of only one cell e0 whose contents is (some approximation of) e1.

One interesting aspect of our assertion language is that it includes Hoare
triples{P}e{Q} and invariant extensions P⊗Q; previous work [4,2] does not treat
them as assertions, but as so-called specifications, which form a different syntactic
category. Intuitively, {P}e{Q} means that e denotes code satisfying {P} {Q},
and P ⊗Q denotes a modification of P where all the pre- and post-conditions of
triples inside P are ∗-extended with Q. For instance, the assertion (∃k. (1 
→k)∧
{emp}k{emp}) ⊗ (2 
→0) is equivalent to (∃k. (1 
→ k) ∧{2 
→0}k{2 
→0}). This
assertion says that cell 1 is the only cell in the heap and it stores code k that
satisfies the triple {2 
→0} {2 
→0}. This intuition of the ⊗ operator can also be
seen in the set of axioms in Fig. 2, which let us distribute ⊗ through all the
constructs of the assertion language.

Note that since triples are assertions, they can appear in pre- and post-
conditions of triples. This nested use of triples is useful in reasoning, because
it allows one to specify stored code behaviourally, in terms of properties that
it satisfies. Another important consequence of having these new constructs as
assertions is that they allow us to study proof rules for exploiting locality of
stored code systematically, as we will describe shortly.

The last case . . . in Fig. 1 represents pre-defined assertions, including recur-
sively defined ones. In particular, it contains all recursively defined assertions

P ◦ R
def= (P ⊗ R) ∗ R

{P}e{Q}⊗R ⇔{P ◦ R}e{Q ◦ R} (κx.P ) ⊗R ⇔ κx.(P ⊗R) (κ ∈ {∀, ∃}, x /∈ fv(R))
(P ⊗ R)⊗ R′ ⇔ P ⊗ (R ◦ R′) (P ⊕ Q)⊗R ⇔ (P ⊗R) ⊕ (Q⊗ R) (⊕∈ {⇒, ∧, ∨, ∗})

P ⊗ R ⇔ P (P is one of true, false, emp, e=e′, e �→e′ and int(e))

Fig. 2. Axioms for distributing − ⊗ R
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of the form R = P ⊗ R, where R does not appear in P . These assertions are
always well-defined (because ⊗ is “contractive” in its second argument, as shown
in Lemma 4), and they let us reason about self-applying stored code, without
using specialized rules [2]. We will say more about the use of recursively defined
predicates and their existence in Sections 3 and 4.1

We shall make use of two abbreviations. The first is P ◦ R, which stands for
(P ⊗R) ∗R (already used in Fig. 2). This abbreviation is often used to add an
invariantR to a Hoare triple{P}e{Q}, so as to obtain{P ◦R}e{Q ◦R}. We use ◦
instead of ∗ here to extend not only P by R but also ensure, via ⊗, that all Hoare
triples nested inside P preserve R as an invariant. The ◦ operator has been intro-
duced in [11], where it is credited to Paul-André Melliès and Nicolas Tabareau.
The second abbreviation is for the “ 
→” operator: e1 
→P [e2]

def= e1 
→ e2 ∧P [e2]
and e1 
→P [ ] def= ∃x. e1 
→P [x]. Here x is a fresh (logic) variable and P [·] is an
assertion with an expression hole, such as{Q} · {R}, int(·), · = e or · ≤ e.

3 Proof Rules for Higher-Order Store

In our formal setting, reasoning about programs is done by deriving the judge-
ment Γ  P , where P is an assertion expressing properties of programs and Γ
is a list of variables containing all the free variables in P . For instance, to prove
that command C stores at cell 1 the code that initializes cell 10 to 0,2 we need
to derive Γ  {1 
→ }‘C’{1 
→{10 
→ } {10 
→0}}. In this section, we describe
inference rules and axioms for assertions that let one efficiently reason about
programs. We focus on those related to higher-order store.

Standard proof rules. The proof rules include the standard proof rules for
intuitionistic logic and the logic of bunched implications [8] (not repeated here).
Moreover, the proof rules include variations of standard separation logic proof
rules, see Fig. 3.3 The figure neither includes the rule for executing stored code
with eval [e] nor the frame rule for adding invariants to triples; the reason for
this omission is that these two rules raise nontrivial issues in the presence of
higher-order store and nested triples, as we will now discuss.

Frame rule for higher-order store. The frame rule is the most important
rule in separation logic, and it formalizes the intuition of local reasoning, where

1 More generally, we may need to solve mutually recursive assertions 〈R1, . . . , Rn〉 =
〈P1 ⊗(R1 ∗ . . .∗Rn), . . . , Pn ⊗(R1 ∗ . . .∗Rn)〉 in order to deal with mutually recursive
stored procedures. For brevity we omit formal syntax for such; see Theorem 12 for
the semantic existence proof.

2 One concrete example of such a command C is [1]:=‘[10]:=0’.
3 The Update, Free and Skip rules in the figure are not the usual small axioms in

separation logic, since they contain assertion P describing the unchanged part. Since
we have the standard frame rule for ∗, we could have used small axioms instead here.
But we chose not to do this, because the current non-small axioms make it easier to
follow our discussions on frame rules and higher-order store in the next subsection.
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Deref

Γ, x �{P ∗ e �→ x}‘C’{Q}
Γ �{∃x.P ∗ e �→ x}‘let x=[e] in C’{Q}

(x �∈fv(e,Q))
Update

Γ �{e �→ ∗ P}‘[e] := e0’{e �→ e0 ∗ P}
New

Γ, x �{P ∗ x �→ e}‘C’{Q}
Γ �{P}‘let x=new e in C’{Q}

(x �∈fv(P, e, Q))
Free

Γ �{e �→ ∗ P}‘free(e)’{P}

Skip

Γ �{P}‘skip’{P}

Seq

Γ �{P}‘C’{R} Γ �{R}‘D’{Q}
Γ �{P}‘C; D’{Q}

If

Γ �{P ∧ e0=e1}‘C’{Q} Γ �{P ∧ e0 �=e1}‘D’{Q}
Γ �{P}‘if (e0=e1) then C else D’{Q}

Conseq

Γ � P ′⇒P Γ � Q ⇒Q′

Γ � {P}e{Q} ⇒{P ′}e{Q′}

Fig. 3. Proof rules from separation logic

proofs focus on the footprints of the programs we verify. Developing a similar
rule in our setting is challenging, because nested triples allow for several choices
regarding the shape of the rule. Moreover, the recursive nature of the higher-
order store muddies the water and it is difficult to see which choices actually
make sense (i.e., do not lead to inconsistency).

To see this problem more clearly, consider the rules below:

Γ �{P}e{Q}
Γ �{P � R}e{Q � R}

and
Γ �{P}e{Q} ⇒{P � R}e{Q � R}

for � ∈ {∗, ◦}.

Note that we have four choices, depending on whether we use � = ∗ or � = ◦
and on whether we have an inference rule or an axiom. If we choose ∗ for �, we
obtain shallow frame rules that add R to the outermost triple{P}e{Q} only; they
do not add R in nested triples appearing in pre-condition P and post-condition
Q. On the other hand, if we choose ◦ for �, since (A ◦ R) = (A ⊗ R ∗ R), we
obtain deep frame rules that add the invariant R not just to the outermost triple
but also to all the nested triples in P and Q.

The distinction between inference rule and axiom has some bearing on where
the frame rule can be applied. With the axiom version, we can apply the frame
rule not just to valid triples, but also to nested triples appearing in pre- or post-
conditions. With the inference rule version, however, we cannot add invariants
to (or remove invariants from) nested triples.

Ideally, we would like to have the axiom versions of the frame rules for both
∗ and ◦. Unfortunately, this is not possible for ◦. Adding the axiom version for
◦ makes our logic unsound. The source of the problem is that with the axiom
version for ◦, one can add invariants selectively to some, but not necessarily all,
nested triples. This flexibility can be abused to derive incorrect conclusions.
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Concretely, with the axiom version for ◦ we can make the following derivation:

Γ �{P ◦ S}e{Q ◦ S}
Γ �{P}e{Q} ⊗S

⊗-Dist

Γ �{P}e{Q} ⇒{P ◦ R}e{Q ◦ R}
Frame

Γ �{P}e{Q} ⊗S ⇒{P ◦ R}e{Q ◦ R} ⊗ S
⊗-Mono

Γ �{P ◦ R}e{Q ◦ R} ⊗ S

Γ �{(P ◦ R) ◦ S}e{(Q ◦ R) ◦ S}
⊗-Dist

ModusPon

Here we use the distribution axioms for ⊗ in Fig. 2 and the monotonicity of
−⊗R. This derivation means that when adding R to nested triples, we can skip
the triples in the S part of the pre- and post-conditions of{P ◦S}e{Q ◦S}. This
flexibility leads to the unsoundness:

Proposition 1. Adding the axiom version of the frame rule for ◦ renders our
logic unsound.

Proof. Let R be the predicate defined by R = (3 
→ {1 
→ } {1 
→ }) ⊗ R. Then,
we can derive the triple:

(†)
k � {2 �→ {1�→ } {1�→ } ◦ R}k{2 �→ ◦ R}

k � {
(

2 �→ {1�→ } {1�→ } ◦ 1 �→
)

◦ R}k{
(

2 �→ ◦ 1 �→
)

◦ R}
k � {2 �→ ‘free(−1)’ ∗ 1 �→ ∗ R}k{2 �→ ∗ 1 �→ ∗ 3 �→ {1�→ ∗ R} {1�→ ∗ R}}

Here the first step uses the derivation above for adding invariants selectively,
and the last step uses the Consequence axiom with the below two implications:

2 �→ {1�→ } {1�→ } ◦ 1�→ ◦ R ⇐⇒ 2 �→ {1�→ ∗ 1�→ ∗ R} {1�→ ∗ 1�→ ∗ R} ∗ 1�→ ∗ R
⇐⇒ 2 �→ {false} {false} ∗ 1�→ ∗ R
⇐= 2 �→‘free(−1)’ ∗ 1�→ ∗ R

2 �→ ◦ 1�→ ◦ R ⇐⇒ 2 �→ ∗ 1�→ ∗ R ⇐⇒ 2 �→ ∗ 1�→ ∗ ((3 �→ {1�→ } {1�→ })⊗ R)
⇐⇒ 2 �→ ∗ 1�→ ∗ 3 �→ {1�→ ∗ R} {1�→ ∗ R}.

Consider C ≡ let x=[2] in [3]:=x. When P [y] ≡ {1 
→ }y{1 
→ } ⊗R,

� {2�→P [ ] ∗ 3�→P [ ]}‘C’{2�→P [ ] ∗ 3�→P [ ]}
� {2 �→ {1�→ } {1�→ } ◦ R}‘C’{2 �→ ◦ R}

Now we instantiate k in (†) with C, discharge the premise of the resulting deriva-
tion with the above derivation for C, and obtain

� {2 �→ ‘free(−1)’ ∗ 1 �→ ∗ R}‘C’{2 �→ ∗ 1 �→ ∗ 3 �→ {1�→ ∗ R} {1�→ ∗ R}}
� {2 �→ ‘free(−1)’ ∗ 1 �→ ∗ R}‘C; free(2)’{1 �→ ∗ 3 �→ {1�→ ∗ R} {1�→ ∗ R}}

Here the second step uses the rules Free and Seq in Fig. 3. But the post-
condition of the conclusion here is equivalent to 1 
→ ∗R by the definition of R
and the distribution axioms for ⊗. Thus, as our rule for eval will show later, we
should be able to conclude that

 {2 
→ ‘free(−1)’ ∗ 1 
→ ∗R}‘C; free(2); eval [3]’{1 
→ ∗ 3 
→ {1 
→ ∗R} {1 
→ ∗R}}
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However, since −1 is not even an address, the program (C; free(2); eval [3]) always
faults, contradicting the requirement of separation logic that proved programs
run without faulting. ��

Notice that in the derivation above it is essential that R is a recursively defined
assertion, otherwise we would not obtain that 2 and 3 point to code satisfying
the same P .

Fortunately, the second best choice leads to a consistent proof system:

Proposition 2. Both the inference rule version of the frame rule for ◦ and the
axiom version for ∗ are sound in our semantics, which will be given in Section 4.
In fact, the semantics also validates the following more general version of the
rule for ◦:

Γ  P

Γ  P ⊗R

Rule for executing stored code. An important and challenging part of the
design of a program logic for higher-order store is the design of a proof rule for
eval [e], the command that executes code stored at e. Indeed, the rule should
overcome two challenges directly related to the recursive nature of higher-order
store: (1) implicit recursion through the store (i.e., Landin’s knot), and (2)
extensional specifications of stored code.

These two challenges are addressed, using the expressiveness of our assertion
language, by the following rule for eval [e]:

Eval

Γ, k  R[k] ⇒{P ∗ e 
→R[ ]}k{Q}
Γ  {P ∗ e 
→R[ ]}‘eval [e]’{Q}

This rule states that in order to prove {P ∗ e 
→R[ ]}‘eval [e]’{Q} for executing
stored code in [e] under the assumption that e points to arbitrary code k (ex-
pressed by the which is an abbreviation for ∃k.e 
→ R[k]), it suffices to show
that the specification R[k] implies that k itself fulfils triple{P ∗ e 
→R[ ]}k{Q}.

In the above rule we do not make any assumptions about what code e actually
points to, as long as it fulfils the specification R. It may even be updated between
recursive calls. However, for recursion through the store, R must be recursively
defined as it needs to maintain itself as an invariant of the code in e.

The Eval rule crucially relies on the expressiveness of our assertion language,
especially the presence of nested triples and recursive assertions. In our previous
work, we did not consider nested triples. As a result, we had to reason explicitly
with stored code, rather than properties of the code, as illustrated by one of our
old rules for eval [2]:

OldEval

Γ  {P}‘eval [e]’{Q} ⇒ {P}‘C’{Q}
Γ  {P ∗ e 
→ ‘C’}‘eval [e]’{Q ∗ e 
→ ‘C’}
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EvalNonRec1

Γ �{P ∗ e �→ ∀y.{P} {Q}}‘eval [e]’{Q ∗ e �→ ∀y.{P} {Q}}
EvalNonRecUpd

Γ �{P ∗ e �→ ∀y.{P ∗ e �→ } {Q}}‘eval [e]’{Q}
EvalRec

Γ �{P ◦ R}‘eval [e]’{Q ◦ R}
(where R = (e �→ ∀y.{P} {Q} ∗ P0) ⊗ R)

Fig. 4. Derived rules from Eval

Here the actual code C is specified explicitly in the pre- and post-conditions of
the triple. In both rules the intuition is that the premise states that the body of
the recursive procedure fulfils the triple, under the assumption that the recursive
call does so as well. In the Eval rule this is done without direct reference to the
code itself, but rather via a k satisfying R. The soundness proof of OldEval

proceeded along the lines of Pitts’ method for establishing relational properties
of domains [10]. On the other hand, Eval relies on the availability of recursive
assertions, the existence of which is guaranteed by Banach’s fixpoint theorem.

From the Eval rule one can easily derive the axioms of Fig. 4. The first two
axioms are for non-recursive calls. This can be seen from the fact that in the
pre-condition of the nested triples e does not appear at all or does not have a
specification, respectively. Only the third axiom EvalRec allows for recursive
calls. The idea of this axiom is that one assumes that the code in [e] fulfils the
required triple provided the code that e points to at call-time fulfils the triple as
well. Let us look at the actual derivation of EvalRec to make this evident. We
write S[k] ≡ ∀y.{P ◦R}k{Q ◦R} such that for the original R of rule EvalRec

we have R ⇔ (e 
→S[ ] ∗ (P0 ⊗R)). Note that Γ contains the variables y which
may appear freely in P and Q.

Γ, k  (∀y.{P ◦R}k{Q ◦R}) ⇒{P ◦R}k{Q ◦R}
Γ, k  S[k] ⇒{(P ⊗R) ∗ (P0 ⊗R) ∗ e 
→ S[ ]}k{Q ◦R}
Γ  {(P ⊗R) ∗ (P0 ⊗R) ∗ e 
→ S[ ]}‘eval [e]’{Q ◦R}

Eval

Γ  {P ◦R}‘eval [e]’{Q ◦R}
Conseq

Conseq

FOL

In the derivation tree above, the axiom used at the top is simply a first-order ax-
iom for ∀ elimination. The quantified variables y are substituted by the variables
with the same name from the context. After an application of the EvalRec rule
those variables y can then be substituted further.

The use of recursive specification R = (e 
→ ∀y.{P} {Q}∗P0)⊗R is essential
here as it allows us to unroll the definition so that the Eval rule can be applied.
Note that in the logic of [5], which also uses nested triples but features neither
a specification logic nor expresses any frame rules or axioms, such recursive
specifications are avoided. This is possible under the assumption that code does
not change during recursion. One can then express the recursive R above as
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⊗-Frame

Γ � P

Γ � P ⊗R

∗-Frame

Γ �{P}e{Q} ⇒{P ∗ R}e{Q ∗ R}

Eval

Γ, k � R[k] ⇒{P ∗ e �→R[ ]}k{Q}
Γ �{P ∗ e �→ R[ ]}‘eval [e]’{Q}

Fig. 5. Proof rules specific to higher-order store

follows (we can omit the P0 now, as this is only needed for mutually recursively
defined triples):

e 
→{e 
→ k ∗ P}k{e 
→ k ∗Q} .
The question however remains how the assertion can be proved for some concrete
‘C’ in [e]. In loc.cit. this is done by an induction on some appropriate argument,
as total correctness is considered only. Note that our old OldEval can be viewed
as a fixpoint induction rule for proving such specifications, if one quantifies
away the concrete appearances of ‘C’. In any case, our new Eval is obviously
elegant to use, and it does not only allow for recursion through the store but
also disentangles the reasoning from the concrete code stored in the heap.

To conclude this section, Fig. 5 summarizes a particular choice of proof-rule
set from the current and previous subsections. Soundness is proved in Section 4.

4 Semantics of Nested Triples

This section develops a model for the programming language and logic we have
presented. The semantics of programs, given in the next subsection using an
untyped domain-theoretic model, is standard. The following semantics of the
logic is, however, unusual; it is a possible world semantics where the worlds
live in a recursively defined metric space. Finally, we discuss the existence of
recursively defined assertions, which have been used in the previous sections.

Semantics of expressions and commands. The interpretation of the pro-
gramming language is given in the category Cppo⊥ of pointed cpos and strict
continuous functions, and is the same as in our previous work [2]. That is, com-
mands denote strict continuous functions C�η ∈ Heap � Terr(Heap) where

Heap = Rec(Val) Val = Integers⊥⊕Com⊥ Com = Heap �Terr(Heap) (1)

In these equations, Terr(D) = D⊕{error}⊥ denotes the error monad, and Rec(D)
denotes records with entries from D and labelled by positive natural numbers.
Formally, Rec(D) =

(
∑

N⊆finNats+(N→D↓)
)

⊥ where (N→D↓) is the cpo of maps
from the finite address set N to the cpo D↓ = D−{⊥} of non-bottom elements
of D. We use some evident record notations, such as {|!1=d1, . . . , !n=dn|} for the
record mapping label !i to di, and dom(r) for the set of labels of a record r.
The disjointness predicate r#r′ on records holds if r and r′ are not ⊥ and have
disjoint domains, and a partial combining operation r · r′ is defined by

r · r′ def= if r#r′ then r ∪ r′ else ⊥ .
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�skipη h
def= h

�C1;C2η h
def= if �C1η h ∈ {⊥, error} then �C1η h else �C2η(�C1η h)�

if e=e′ thenC1 else C2

�
η

h
def= if {�e1η , �e2η} ⊆ Com⊥ then ⊥

else if (�eη =
�
e′�

η
) then �C1η h else �C2η h

�let x=new e1, ..., en in Cη h
def= let 
 = min{
 | ∀
′. (
≤
′<
+n) ⇒ 
′ /∈ dom(h)}

in �Cη[x �→�] (h · {|
= �e1η , . . . , 
+n−1= �enη|})
�free eη h

def= if �eη /∈ dom(h) then error
else (let h′ s.t. h = h′ · {|�eη =h(�eη)|} in h′)

�[e1]:=e2η h
def= if �e1η /∈ dom(h) then error else (h[�e1η �→ �e2η])

�let x=[e] in Cη h
def= if �eη /∈ dom(h) then error else �Cη[x �→h(�e�η)] h

�eval [e]η h
def= if (�eη /∈ dom(h) ∨ h(�eη) /∈ Com) then error

else (h(�eη))(h)

Fig. 6. Interpretation of commands �Cη ∈ Heap � Terr(Heap)

The interpretation of commands is repeated in Fig. 6 (assuming h �= ⊥). The
interpretation of the quote operation, ‘C’, uses the injection of Com into Val .
The interpretation of the remaining expressions is entirely standard and omitted.

A solution to equation (1) for Heap can be obtained by the usual inverse limit
construction [14] in the category Cppo⊥. This solution is an SFP domain (e.g.,
[15]), and thus comes equipped with an increasing chain πn : Heap → Heap of
continuous projection maps, satisfying π0 = ⊥,

⊔

n∈ω πn = idHeap , and πn◦πm =
πmin{n,m} . The image of each πn is finite, hence each πn(h) is a compact element
of Heap. Moreover, the projections are compatible with composition of heaps:
we have πn(h · h′) = πn(h) · πn(h′) for all h, h′.

Semantic domain for assertions. A subset p ⊆ Heap is admissible if ⊥ ∈ p
and p is closed under taking least upper bounds of ω-chains. It is uniform [3] if
it is closed under the projections, i.e., if p satisfies that h ∈ p ⇒ πn(h) ∈ p for
all n. We write UAdm for the set of all uniform admissible subsets of Heap. For
p ∈ UAdm, p[n] denotes the image of p under πn. Note that also p[n] ∈ UAdm.

The uniform admissible subsets will form the basic building block when in-
terpreting the assertions of our logic. Since assertions in general depend on in-
variants for stored code, the space of semantic predicates Pred will consist of
functions W → UAdm from a set of “worlds,” describing the invariants, to the
collection of uniform admissible subsets of heaps. But, the invariants for stored
code are themselves semantic predicates, and the interaction between Pred and
W is governed by (the semantics of) ⊗. Hence we seek a space of worlds W that
is “the same” as W → UAdm. We obtain such a W using metric spaces.

Recall that a 1-bounded ultrametric space (X, d) is a metric space where
the distance function d : X × X → R takes values in the closed interval [0, 1]
and satisfies the strong triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)}, for
all x, y, z ∈ X . An (ultra-)metric space is complete if every Cauchy sequence
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has a limit. A function f : X1 → X2 between metric spaces (X1, d1), (X2, d2) is
non-expansive if for all x, y ∈ X1, d2(f(x), f(y)) ≤ d1(x, y). It is contractive if
for some δ < 1, d2(f(x), f(y)) ≤ δ · d1(x, y) for all x, y ∈ X1.

The complete, 1-bounded ultrametric spaces and non-expansive functions be-
tween them form a Cartesian closed category CBUlt . Products in CBUlt are
given by the set-theoretic product where the distance is the maximum of the
componentwise distances, and exponentials are given by the non-expansive func-
tions equipped with the sup-metric. A functor F : CBUltop ×CBUlt −→ CBUlt
is locally non-expansive if d(F (f, g), F (f ′, g′)) ≤ max{d(f, f ′), d(g, g′)} for all
non-expansive f, f ′, g, g′, and it is locally contractive if d(F (f, g), F (f ′, g′)) ≤ δ ·
max{d(f, f ′), d(g, g′)} for some δ < 1. By multiplication of the distances of (X, d)
with a shrinking factor δ < 1 one obtains a new ultrametric space, δ · (X, d) =
(X, d′) where d′(x, y) = δ · d(x, y). By shrinking, a locally non-expansive functor
F yields a locally contractive functor (δ · F )(X1, X2) = δ · (F (X1, X2)).

The set UAdm of uniform admissible subsets of Heap becomes a complete, 1-
bounded ultrametric space when equipped with the following distance function:
d(p, q) def= if (p �=q) then (2−max{i∈ω | p[i]=q[i]}) else 0. Note that d is well-defined:
first, because π0 = ⊥ and ⊥ ∈ p for all p ∈ UAdm the set {i ∈ ω | p[i] = q[i]}
is non-empty; second, this set is finite, because p �= q implies p[i] �= q[i] for all
sufficiently large i by the uniformity of p, q and using

⊔

n∈ω πn = idHeap .

Theorem 3. There exists an ultrametric space W and an isomorphism ι from
1
2 · (W → UAdm) to W in CBUlt .

Proof. By an application of America & Rutten’s existence theorem for fixed
points of locally contractive functors on complete ultrametric spaces [1], applied
to F (X,Y ) = 1

2 · (X → UAdm). See [3] for details of a similar application. ��

We write Pred for 1
2 · (W → UAdm) and ι−1 : W ∼= Pred for the inverse to ι.

For an ultrametric space (X, d) and n ∈ ω we use the notation x n= y to mean
that d(x, y) ≤ 2−n. By the ultrametric inequality, each n= is an equivalence
relation on X [3]. Since all non-zero distances in UAdm are of the form 2−n for
some n ∈ ω, this is also the case for the distance function on W . Therefore, to
show that a map is non-expansive it suffices to show that f(x) n= f(y) whenever
x

n= y. The definition of Pred has the following consequence: for p, q ∈ Pred,
p

n= q iff p(w) n−1= q(w) for all w ∈W . This fact is used repeatedly in our proofs.
For p, q ∈ UAdm, the separating conjunction p ∗ q is defined as usual, by

h ∈ p∗q def⇔ ∃h1, h2. h = h1 ·h2∧h1 ∈ p∧h2 ∈ q. This operation is lifted to non-
expansive functions p1, p2 ∈ Pred pointwise, by (p1 ∗ p2)(w) = p1(w) ∗ p2(w).
This is well-defined, and moreover determines a non-expansive operation on the
space Pred. The corresponding unit for the lifted ∗ is the non-expansive function
emp=λw.{{||} ,⊥} (i.e., p ∗ emp= emp ∗ p= p, for all p). We let emp = ι(emp).

Lemma 4. There exists a non-expansive map ◦ : W × W → W and a map
⊗ : Pred ×W → Pred that is non-expansive in its first and contractive in its
second argument, satisfying q ◦ r = ι(ι−1(q)⊗ r ∗ ι−1(r)) and p⊗ r = λw.p(r ◦w)
for all p∈Pred and q, r∈W .



Nested Hoare Triples and Frame Rules for Higher-Order Store 451

Proof. The defining equations of both operations give rise to contractive maps,
which have (unique) fixed points by Banach’s fixed point theorem. ��

Lemma 5. (W, ◦, emp) is a monoid in CBUlt. Moreover, ⊗ is an action of this
monoid on Pred.

Proof. First, emp is a left-unit for ◦, emp◦q = ι((λw.ι−1(emp)(q◦w))∗ι−1(q)) =
ι(ι−1(q)) = q. Using this, one shows that it is also a right-unit for ◦. Next, one
shows by induction that for all n ∈ ω, ◦ is associative up to distance 2−n, from
which associativity follows. By the 1-boundedness of W the base case is clear.
For the inductive step n > 0, by definition of the distance function on Pred it
suffices to show that for all w ∈ W , ι−1((p ◦ q) ◦ r)(w) n−1= ι−1(p ◦ (q ◦ r))(w).
This equation follows from the definition of ◦ and the inductive hypothesis.

That ⊗ forms an action ofW on Pred follows from these properties of ◦. First,
p ⊗ emp = λw.p(emp ◦ w) = p since emp is a unit for ◦. Next, (p ⊗ q) ⊗ r =
λw.p(q ◦ (r ◦ w)) = λw.p((q ◦ r) ◦ w) = p⊗ (q ◦ r) by the associativity of ◦. ��

Semantics of triples and assertions. Since assertions appear in the pre-
and post-conditions of Hoare triples, and triples can be nested inside assertions,
the interpretation of assertions and triples must be defined simultaneously. To
achieve this, we first define a notion of semantic triple.

Definition 6 (Semantic triple). A semantic Hoare triple consists of predi-
cates p, q ∈ Pred and a strict continuous function c ∈ Heap � Terr(Heap),
written {p}c{q}. For w ∈ W , a semantic triple {p}c{q} is forced by w, denoted
w |={p}c{q}, if for all r ∈ UAdm and all h ∈ Heap:

h ∈ p(w) ∗ ι−1(w)(emp) ∗ r ⇒ c(h) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r),

where Ad(r) denotes the least downward closed and admissible set of heaps con-
taining r. A semantic triple is valid, written |= {p}c{q}, if w |= {p}c{q} for
all w ∈ W . We extend semantic triples from Com = Heap � Terr(Heap) to all
d ∈ Val, by w |={p}d{q} iff d = c for some command c ∈ Com and w |={p}c{q}.
A triple holds approximately up to level k, w |=k{p}d{q}, if w |={p}πk; d;πk{q}.

Thus, semantic triples bake in the first-order frame property (by conjoining r),
and “close” the “open” recursion (by applying the world w, on which the triple
implicitly depends, to emp). The admissible downward closure that is applied
to the entire post-condition is in line with a partial correctness interpretation
of triples. In particular, it entails that the sets {c ∈ Com | w |=k {p}c{q}} and
{c ∈ Com | w |={p}c{q}} are admissible and downward closed subsets of Com .
Finally, semantic triples are non-expansive, in the sense that if w n=w′ for n>0
and w |={p}c{q}, then w′ |=n−1 {p}c{q}. This observation plays a key role in the
following definition of the semantics of nested triples. Another useful observation
is that w |={p}c{q} is equivalent to ∀k ∈ ω.w |=k{p}c{q}.

Assertions are interpreted as elements P �η ∈ Pred. Note that (UAdm,⊆) is a
complete Heyting BI algebra. Using the pointwise extension of the operations of
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�trueη w = Heap �P ∧ Qη w = �P η w ∩ �Qη w

�falseη w = {⊥} �P ∨ Qη w = �P η w ∪ �Qη w

�empη w = {{||} , ⊥} �P ∗ Qη w = �P η w ∗ �Qη w

�e1 �→ e2η w = {h | h � {|�e1η = �e2η|}} �P ⊗ Qη w = (�P η ⊗ ι(�Qη))w
�e1 = e2η w = {h | h �= ⊥ ⇒ �e1η = �e2η} �∀x.P η w =

⋂

d∈Val �P η[x:=d] w

�∃x.P η w = {h | ∀n ∈ ω. πn(h) ∈
⋃

d∈Val �P η[x:=d] w}
�P ⇒ Qη w = {h | ∀n ∈ ω. πn(h) ∈ �P η w implies πn(h) ∈ �Qη w}

�{P}e{Q}η w = Ad{h ∈ Heap | rnk(h) > 0 ⇒ w |=rnk(h)−1{�P η} �eη {�Qη}}

Fig. 7. Semantics of assertions

this algebra to the set of non-expansive functions W → UAdm, we also obtain a
complete Heyting BI algebra on Pred = 1

2 · (W → UAdm) which soundly models
the intuitionistic predicate BI part of the assertion logic. Moreover, the monoid
action of W on Pred serves to model the invariant extension of the assertion
logic. In order to define a non-expansive interpretation of nested triples we will
use the following definition:

Definition 7 (Rank of a heap). If h is a compact element of Heap, then the
least r for which πr(h) = h is the rank of h, abbreviated rnk(h), otherwise the
rank is undefined.

The interpretation of assertions is spelled out in detail in Fig. 7. The interpreta-
tion of a nested triple{P}e{Q} is not independent of the heap, unlike the (more
traditional) semantics of “top-level” triples, i.e. |={p}c{q}. More precisely, the
definition in Fig. 7 means that triples as assertions depend on the rank of the
current heap. This is necessary to provide a non-expansive function from W to
UAdm that provides enough “approximation information.” Simpler definitions
like {h ∈ Heap |w |= {P �η} e�η {Q�η}} are heap independent but not non-
expansive. A similar approach has been taken in [3] to force non-expansiveness
for a reference type constructor for ML-style references.

As a consequence of this interpretation, the axiom {{A}e{B}∧A}e{B} does
not hold; the inner triple is only approximately valid up to the level of the rank
of the argument heap. Analogously, the following rule does not appear to be
sound in our semantics:

{A}e{B}⇒{P}e′{Q}
{{A}e{B}∧ P}e′{Q}

The opposite direction does actually hold. Axioms and rules like these are used,
e.g., in [5] in proofs for recursion through the store; instead we use (EVAL).

Soundness of the proof rules. We prove soundness of the proof rules listed
in Sections 2 and 3. We first consider the distribution axioms for −⊗R in Fig. 2.

Lemma 8 (⊗-Dist, 1). The axiom (P ⊗Q)⊗R⇔ P ⊗ (Q ◦R) is valid.

Proof. An instance of the fact that ⊗ is a monoid action (Lemma 5). ��
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Lemma 9 (⊗-Dist, 2). The axiom{P}e{Q} ⊗R⇔{P ◦R}e{Q ◦R} is valid.

Proof. The statement follows from the following claim: for all p, q, r ∈ Pred,
strict continuous c : Heap � Terr(Heap) and all w ∈ W , ι(r) ◦ w |={p}c{q} iff
w |={p⊗ ι(r) ∗ r}c{q ⊗ ι(r) ∗ r}. The proof of this claim uses the equation

(p⊗ ι(r) ∗ r)(w) ∗ ι−1(w)(emp) = p(ι(r) ◦ w) ∗ ι−1(ι(r) ◦ w)(emp),

which is a consequence of the definitions of ⊗ and ◦. ��

The proofs of the remaining distribution axioms are easy since the logical con-
nectives are interpreted pointwise, and emp and (e1 
→ e2) are constant.

Next, we consider the rules for higher-order store given in Fig. 5.

Lemma 10 (⊗-Frame). The ⊗-Frame rule is sound: if h ∈ p(w) for all h ∈
Heap and w ∈ W , then h ∈ (p⊗ ι(r))(w) for all h ∈ Heap, w ∈W and r ∈ Pred.

Proof. Assume ∀h.∀w.h∈ p(w). Let r∈Pred, w∈W and h∈Heap. We show that
h∈ (p⊗ ι(r))(w). Note that (p⊗ ι(r))(w)= p(ι(r) ◦w) by the definition of ⊗. So,
for w′ def= ι(r) ◦w, the assumption shows that h∈ p(w′)= (p⊗ ι(r))(w). ��

Lemma 11 (∗-Frame).{P}e{Q} ⇒{P ∗R}e{Q ∗R} is valid for all P,Q,R, e.

Proof. We show that for all w∈W , p, q, r∈Pred and c∈Com , if w |={p}c{q},
then w |={p ∗ r}c{q ∗ r}. This implies the lemma as follows. If k is the rank of
πn(h) and πn(h)∈ {P}e{Q}�w, then w |=k−1 {P �η} e�η {Q�η}. This lets us
conclude w |=k−1 {P ∗R�η} e�η {Q ∗R�η}, which in turn implies that πn(h)
belongs to {P ∗R}e{Q ∗R}�w.

Assume w |={p}c{q}. We must show that w |={p ∗ r}c{q ∗ r}. Let r′ ∈ UAdm
and assume h ∈ (p ∗ r)(w) ∗ ι−1(w)(emp) ∗ r′ = p(w) ∗ ι−1(w)(emp) ∗ (r(w) ∗ r′).
Since w |={p}c{q}, it follows that c(h)∈Ad(q(w) ∗ ι−1(w)(emp) ∗ (r(w) ∗ r′)) =
Ad((q ∗ r)(w) ∗ ι−1(w)(emp) ∗ r′), which establishes w |={p ∗ r}c{q ∗ r}. ��

The proofs of the remaining rules (i.e., Eval and those in Fig. 3) are similar but
omitted due to lack of space.

Semantics of recursive assertions. The following general fixed point theorem
is a consequence of Banach’s fixed point theorem, and it allows us to introduce
recursively defined assertions in the logic, as used in previous sections.

Theorem 12 (Mutually recursive predicates). Let I be a set and suppose
that, for each i ∈ I, Fi : PredI → Pred is a contractive function. Then there
exists a unique p = (pi)i∈I ∈ PredI such that Fi(p) = pi, for all i ∈ I.

Note that this theorem is sufficiently general to permit the mutual recursive
definition of even infinite families of predicates.

As established in Lemma 4, ⊗ is contractive in its right-hand argument. Thus,
for fixed P and η, the map F (r) = P �η ⊗ ι(r) on Pred is contractive and
has a unique fixed point, r. Given an equation R = P ⊗ R we take r as the
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interpretation of R, and note that indeed R�η = r = P �η ⊗ ι(r) = P ⊗R�η.
Along the same lines, we can interpret mutually recursive assertions: R1 = P1⊗
(R1 ∗ . . . ∗ Rn), . . . , Rn = Pn ⊗ (R1 ∗ . . . ∗ Rn). Using the non-expansiveness
of ∗ as an operation on Pred, these equations give rise to contractive functions
Fi(r1, . . . , rn) = Pi�η ⊗ ι(r1 ∗ . . . ∗ rn).
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A Complete Characterization of Observational
Equivalence in Polymorphic λ-Calculus with

General References�
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Tohoku University
sumii@ecei.tohoku.ac.jp

Abstract. We give the first sound and complete proof method for ob-
servational equivalence in full polymorphic λ-calculus with existential
types and first-class, higher-order references. Our method is syntactic
and elementary in the sense that it only employs simple structures such
as relations on terms. It is nevertheless powerful enough to prove many
interesting equivalences that can and cannot be proved by previous ap-
proaches, including the latest work by Ahmed, Dreyer and Rossberg
(POPL 2009).

1 Introduction

Data abstraction and local state are both known to introduce interesting
properties—in particular, observational equivalences—into computer programs.
Methodology for reasoning about such properties has been a major challenge in
the fundamental research on programming languages (e.g., [13, 18]).

Recently, Ahmed, Dreyer and Rossberg [3] developed a technique, based on
step-indexed Kripke-style logical relations, for proving observational equivalence
in polymorphic λ-calculus with both abstract types and references. While their
technique is (to our knowledge) the first “direct”—i.e., without encoding into
other languages such as polymorphic π-calculus [16] or continuation passing
style [12]—proof method for observational equivalence in this language, it is in-
complete and specialized for particular cases (generative abstract data types).
Indeed, some interesting equivalences cannot be proved by their method [3,
Section 5.7 and 5.8]. Independently, Birkedal, Støvring and Thamsborg [5, 6]
have also developed logical relations in a language with polymorphic (and recur-
sive) types and references. However, they are also incomplete and not yet useful
enough for reasoning about observational equivalence involving local state in
general [6, Section 1 and 6] [5, Section 1].

In this paper, we take a different approach, based on Sumii et al.’s environ-
mental bisimulation [10, 19, 23, 24], and give the first sound and complete proof
method for observational equivalence in call-by-value λ-calculus with impredica-
tive universal and existential types, as well as “full” references (i.e., references

� Appendices online: http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/polyref.pdf

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 455–469, 2009.
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are first-class values and all values can be referred to, including functions and
references themselves). Our development is not only complete, but also arguably
simpler than other theories in that it only requires elementary notions such as
terms, values, relations and sets without explicit need for metric spaces or step
indices. Although observational equivalence is clearly undecidable in any Turing-
complete language (in our case, general recursion can be encoded via higher-order
references [15, Exercise 13.5.8]), we believe that our approach is useful for un-
derstanding and reasoning about information hiding in a wide range of settings
including ours.

The rest of this paper is structured as follows. Section 2 discusses related
work and our contributions with respect to it. Section 3 describes our language.
Section 4 defines environmental bisimulation for this language and Section 5
develops up-to techniques. Section 6 proves the characterization theorem by
using the up-to techniques. Section 7 proves examples of equivalences from [3]
and Section 8 concludes with more comments.

2 Related Work

The classic references on observational equivalences introduced by polymorphic
types are Reynolds’ relational parametricity [18] and Mitchell’s representation
independence [14]. Establishing a similar theory for local state has turned out
to be highly challenging. The classic reference here is Meyer and Sieber [13].
Pitts and Stark [17] developed syntactic logical relations (i.e., logical relations
over the term model) for λ-calculus with ML-like references. Their references
are limited to the first order in the sense that only integers—not functions, nor
references themselves—can be referred to. This is due to a difficulty involved
in the circularity of “references to (functions containing) references.” Ahmed,
Appel and Virga [2] used step indices [4] to break this circularity, though they
worked on a unary (rather than binary) model and type safety (rather than
observational equivalence). A recent paper by Ahmed, Dreyer and Rossberg [3]—
discussed in Section 1, 7 and 8—follows this line of work. Another line of work
has been carried out by Birkedal et al. [5–7]. To the best of our knowledge, our
method can prove strictly more examples of equivalences than all of the above
approaches (though this is hard to prove generally, because completeness by itself
does not always mean an automatic proof; recall that observational equivalence
is undecidable in our language).

Abramsky, Honda and McCusker [1] (as well as Laird [11] and Tzevelekos [25])
developed a fully abstract game (or trace) semantics for simply typed λ-calculus
with general references. They did not treat polymorphism, however. Our theory
is more elementary in the sense that it requires very little machinery other than
the syntax and operational semantics of the language itself, enabling the simple
treatment of complex combinations like polymorphism and state. (Of course,
this does not devalue game semantics at all: their whole point is syntax-freedom,
while ours is the complete opposite, i.e., “semantics-freedom.”)

Environmental bisimulation was first devised for untyped λ-calculus with en-
cryption [23]. Since then, it has been applied to various languages, including
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polymorphic λ-calculus with existential types [24] and untyped λ-calculus with
general references [10][19, Section 4]. The technical contributions of the present
paper with respect to these are: (1) the combination of polymorphic types and
references, which required careful handling of store typing (e.g., Definition 3
and 4), (2) the combination of small-step semantics and existential types, re-
quiring a subtle adjustment to the context closure operation (Definition 9) and
therefore to the up-to context technique (Definition 10), (3) a more powerful
up-to reduction technique (Definition 7 and 8) that allows renaming of fresh
locations, and (4) bisimulation proofs for non-trivial examples of observational
equivalence in the present language, many of which have been considered hard
traditionally (see, e.g., [3, 13, 17]).

Gordon [9] (as well as a number of papers that followed) considered bisimula-
tions for functional languages with input and output effects (and for object cal-
culi). To our knowledge, none of them treated references. Lassen et al. [12, 21]
developed normal form bisimulations for polymorphic λ-calculus with control op-
erators (and references) or in continuation passing style. Normal form bisimula-
tions are generally incomplete with respect to contextual equivalence in languages
without control operators (or in direct style) [21, Section 1][12, Section 1.1].

To summarize, the main thrust of our work is to give actual evidence that en-
vironmental bisimulations scale easily to various languages, including the present
one with both polymorphism and state, which has been considered difficult in
the long history of research in this area (again see [3, 13, 17] for instance).

3 The Language

The syntax of our language is given in Figure 1. It is a standard polymorphic
λ-calculus with existential types and references. We assume an infinite set of
locations Loc and write loc(M) for the set of locations that appear in term M .
We use meta-variables C,D, . . . for location-free (and possibly open) terms. We
often omit type annotations when they are unimportant. We adopt the standard
notion of bound variables and α-equivalence, and write FV (M) and FTV (τ)
for free variables and free type variables of M and τ , respectively. We use the
nullary tuple 〈〉 and the nullary product type 1 as the unit value and the unit
type.

The typing rules and the left-to-right, call-by-value reduction relation are
given by judgments of the forms S, Γ,Σ  M : τ and s � M → t � N , where S
is a set of type variables, Γ is a type environment (a partial map from variables
to types), Σ is a store typing (a partial map from locations to closed types),
and s and t are stores (a partial map from locations to values). Their definitions
are standard [15]. Key rules involving polymorphism and state are shown in
Figure 2 in the appendices. As usual, S, Γ , and Σ are omitted when they are
empty. We write � for the reflexive and transitive closure of →. In examples,
we use integers and Booleans, which are easy to add as primitives or encode as
functions. We write {x 
→ v} for a finite map {(x, v)} in general. We also write
f{x 
→ v} for {(x, v)}∪{(y, f(y)) | y �= x}, and f *{x 
→ v} for f{x 
→ v} only
if x �∈ dom(f) (it is undefined otherwise).
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ρ, σ, τ ::= type
α type variable
τ → σ function type
∀α. τ universal type
∃α. τ existential type
τ1 × · · · × τn product type
τ ref reference type

L, M, N, C, D ::= term
x variable
λx : τ. M abstraction
MN application
Λα. M type abstraction
M [τ ] type application
pack (τ, M) as ∃α. σ packing
open M as (α, x) in N opening
〈M1, . . . , Mn〉 tupling
#i(M) projection

 location
ref M allocation
! M dereference
M := N update
M1

ptr
= M2 ? N1 : N2 pointer equality

U, V, W ::= value
x variable
λx : τ. M function
Λα. M type function
pack (τ, V ) as ∃α. σ package
〈V1, . . . , Vn〉 tuple

 location

E ::= evaluation context
[ ] hole
EM application (left)
V E application (right)
pack (τ, E) as ∃α. σ packing
open E as (α, x) in M opening
〈V1, . . . , Vm, E, Mm+1, . . . , Mn〉 tupling
#i(E) projection
ref E allocation
! E dereference
E := M update (left)
V := E update (right)
E

ptr
= M ? N1 : N2 pointer equality (left)

V
ptr
= E ? N1 : N2 pointer equality (right)

Fig. 1. Syntax

For simplicity, we (very) often use the abbreviation a to mean the se-
quence a1, . . . , an when n is unimportant, for any kind of meta-variable
a. Furthermore, we often write op(a, b, . . . , c) to mean the sequence
op(a1, b1, . . . , c1), . . . , op(an, bn, . . . , cn) for various (meta-level) operators op.
For instance, x : τ means x1 : τ1, . . . , xn : τn. We always take care that these
notations do not create confusion or introduce ambiguity.

The following lemma is important for the “up-to reduction” technique ex-
plained in Section 5. Here, we use permutations π on locations because they
behave better than substitutions [8].

Lemma 1. Reduction is deterministic up to renaming of fresh locations. That
is, if s � M → t � N and s � M → t0 � N0, then t0 � N0 = π(t � N) for some
permutation π on Loc \ dom(s).

Proof. By induction on the derivation of s � M → t � N .

Note that the above property is not trivial. For instance, reduction would be
non-deterministic (even modulo renaming of fresh locations) under the presence
of deallocation [22], which disallows the general up-to reduction technique.

The following definition and lemma observe that contexts are reduced either
“by themselves without using the value in the hole” or else “by destructing the
value in the hole.”
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Definition 1. Variable x is at the destruction position in term M if M is of
the form E[xV ], E[x[τ ]], E[open x as (α, y) in N ], E[#i(x)], E[!x], E[x :=V ],
E[x

ptr
= V ? N1 : N2] or E[V

ptr
= x ? N1 : N2].

Note that destruction positions are different from redex positions, e.g., when
M = V x. Recall also that our reduction is call-by-value.

Lemma 2 (context reduction). Suppose α, x : τ  C1 : τ . If C1 is not a value
and not of the form E[ref V ], and if no xi ∈ {x} is at the destruction position
in C1, then for some C2 with α, x : τ  C2 : τ , we have

s � θC1 → s � θC2

for any s and θ = [V /x][ρ/α] with Σ  s and Σ  V : θτ .

Proof. By induction on the syntax of C1. All cases are trivial, given the standard
type soundness theorems (i.e., progress and preservation).

4 Environmental Bisimulation

We now define our environmental bisimulation. Readers are referred to previous
work for more comprehensive introduction to environmental bisimulations, for
polymorphic types (with big-step semantics) [24] or local state (with small-step
semantics) [19, Section 1 and 4]. (A subsection in a recent paper [22, Section 1.3]
would perhaps be the easiest introduction, even though their language is untyped
and includes deallocation.)

Definition 2. A concretion environment Δ is a partial map from type variables
to pairs of closed types. We define Δ1(α) = σ and Δ2(α) = σ′ if Δ(α) = (σ, σ′).
We extend their domain from type variables to types in the obvious manner.

Intuitively, Δ(α) = (σ, σ′) means that the abstract type α is implemented by σ
on the left hand side of equivalence, and by σ′ on the right.

Definition 3. A typed value relation R is a set of triples of the form (V, V ′, τ).
We write Δ, (Σ,Σ′)  R if Σ  V : Δ1(τ) and Σ′  V ′ : Δ2(τ) for all
(V, V ′, τ) ∈ R.

Intuitively, R represents the “knowledge” of a context and (V, V ′, τ) ∈ R means
V (resp. V ′) is known under type τ to the context on the left (resp. right) hand
side. Note that τ may be open (with FTV (τ) ⊆ dom(Δ)), while V and V ′ are
closed (though they may still contain locations). Intuitively, free type variables
in τ represent names of abstract data types.

Definition 4. An environmental relation X is a set of tuples of the form
(Δ,R, s � M, s′ � M ′, τ) or (Δ,R, s, s′) with appropriate typing, i.e.,
– Δ, (Σ,Σ′)  R,
– Σ  M : Δ1(τ) with Σ  s, and
– Σ′  M ′ : Δ2(τ) with Σ′  s′

for some Σ and Σ′.
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Again, note that τ may be open and contain free (i.e., abstract) type variables,
while M and M ′ are closed.

Informally, X is a set of the states of a program and a context. (Δ,R, s �
M, s′ � M ′, τ) ∈ X means program M (resp. M ′) of type τ is running under
store s (resp. s′) on the left (resp. right) hand side, while (Δ,R, s, s′) ∈ X
means that the two programs have stopped with stores s and s′, respectively.
In both cases, R represents the knowledge of the context (i.e., the environment)
that has already been given out by the programs.

Definition 5. The context closure (Δ,R)� of R under Δ is defined as:
{ ([V /x]Δ1(C), [V

′
/x]Δ2(C), τ) | dom(Δ), x : τ  C : τ, (V , V

′
, τ ) ∈ R }

Informally, context closure represents synthesis of knowledge by contexts. With
types omitted and infix notation used, it simply says: if V RV ′

, then ([V /x]C)R�

([V
′
/x]C). Recall that our context C is just a term with free variables x.

The intuitions above lead to the following definition of environmental bisimu-
lation, which asserts thatX is preserved by execution (reduction and evaluation)
of the program and by observations (application, type application, opening, pro-
jection, allocation, dereference, update, and pointer equality) from the context.

Definition 6. X is an environmental simulation if:

1. For any (Δ,R, s � M, s′ � M ′, τ) ∈ X,
(a) [Reduction] If s � M → t � N , then s′ � M ′ � t′ � N ′ for some t′ and N ′

with (Δ,R, t � N, t′ � N ′, τ) ∈ X.
(b) [Evaluation] If M = V , then s′ � M ′ � t′ � V ′ for some t′ and V ′ with

(Δ,R ∪ {(V, V ′, τ)}, s, t′) ∈ X.
2. For any (Δ,R, s, s′) ∈ X,
(a) [Application] If (λx :Δ1(τ1).M, λx :Δ2(τ1).M ′, τ1→ τ2) ∈ R, then

(Δ, R, s�[W/x]M, s′�[W ′/x]M ′, τ2) ∈ X for any (W,W ′, τ1) ∈ (Δ,R)�.
(b) [Type Application] If (Λα.M, Λα.M ′, ∀α. τ) ∈ R, then (Δ, R,

s� [Δ1(σ)/α]M, s′ � [Δ2(σ)/α]M ′, [σ/α]τ) ∈ X for any σ with FTV (σ) ⊆
dom(Δ).

(c) [Opening] If (pack (σ, V ) as ∃α.Δ1(τ), pack (σ′, V ′) as ∃α.Δ2(τ),
∃α. τ) ∈ R, then (Δ ∪ {α 
→ (σ, σ′)},R∪ {(V, V ′, τ)}, s, s′) ∈ X for some
α.

(d) [Projection] If (〈V1, . . . , Vn〉, 〈V ′
1 , . . . , V

′
n〉, τ1 × · · · × τn) ∈ R, then (Δ,R∪

{(Vi, V
′
i , τi)}, s, s′) ∈ X for any i ∈ {1, ..., n}.

(e) [Allocation] (Δ,R ∪ {(!, !′, τ ref)}, s * {! 
→W}, s′ * {!′ 
→W ′}) ∈ X for
any ! �∈ dom(s), !′ �∈ dom(s′) and (W,W ′, τ) ∈ (Δ,R)�.

(f) If (!, !′, τ ref) ∈ R, then
i. [Dereference] (Δ,R ∪ {(s(!), s′(!′), τ)}, s, s′) ∈ X.
ii. [Update] (Δ,R, s{! 
→ W}, s′{!′ 
→ W ′}) ∈ X for any (W,W ′, τ) ∈

(Δ,R)�.
(g) [Pointer Equality] If (!, !′1, τ ref) ∈ R and (!, !′2, τ ref) ∈ R, then !′1 = !′2.



A Complete Characterization of Observational Equivalence 461

X is an environmental bisimulation if both X and X−1 are environmental sim-
ulations, where

X−1 = {(Δ−1,R−1, s′ � M ′, s � M, τ) | (Δ,R, s � M, s′ � M ′, τ) ∈ X}
∪ {(Δ−1,R−1, s′, s) | (Δ,R, s, s′) ∈ X}

R−1 = {(V ′, V, τ) | (V, V ′, τ) ∈ R}
and Δ−1 is defined (at the risk of confusion with the inverse map) by
dom(Δ−1) = dom(Δ) and Δ−1(α) = (σ′, σ) for any α with Δ(α) = (σ, σ′).
Environmental bisimilarity ∼ is the largest environmental bisimulation, which
exists because all the conditions above are monotone on X, i.e., the union of
environmental (bi)simulations is again an environmental (bi)simulation.

5 Up-to Techniques

As we shall prove in Section 6, environmental bisimilarity characterizes observa-
tional equivalence. However, the above definition by itself is not yet convenient
enough for proving instances of observational equivalence between programs. As
in concurrency theory [20], various up-to techniques are useful for getting rid
of this inconvenience. Below, we report a few of such up-to techniques in our
setting.

Definition 7. The reduction (and renaming) closure X→ of X is defined as

X→ = {(Δ,R, s � M, s′ � M ′, τ) |
s � M � t � N, s′ � M ′ � t′ � N ′, (Δ,R, t � N, t′ � N ′, τ) ∈ π1(X)}

∪ {(Δ,R, s � M, s′ � M ′, τ) | s � M diverges}
∪ {(Δ,R, s � M, s′ � M ′, τ) |

s � M � t � V, s′ � M ′ � t′ � V ′, (Δ,R∪ {(V, V ′, τ)}, t, t′) ∈ π1(X)}
∪ {(Δ,R, s, s′) | (Δ,R, s, s′) ∈ π1(X)}

where

π1(X) = {(Δ,π1(R), π(s) � π(M), s′ � M ′, τ) | (Δ,R, s � M, s′ �M ′, τ) ∈ X}
∪ {(Δ,π1(R), π(s), s′) | (Δ,R, s, s′) ∈ X}

π1(R) = {(π(V ), V ′, τ) | (V, V ′, τ) ∈ R}.

In short, X→ is the set of elements that reduce or evaluate to some element of
X (modulo renaming of locations). We “cross-sell” up-to reduction and up-to
renaming, because our reduction is deterministic only up to renaming of fresh
locations (Lemma 1).

Definition 8. X is an environmental simulation up-to reduction (and renam-
ing) if the conditions of Definition 6 hold with all the positive occurrences of X
replaced by X→.

Lemma 3 (soundness of up-to reduction). Suppose X is an environmental
simulation up-to reduction. Then X→ is an environmental simulation.
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Proof. We check each condition of Definition 6 for each element of X→ by ex-
panding Definition 7. Details are found in Appendix A.

The next up-to technique is the most powerful one.

Definition 9. The context (and environment) closure X� of X is defined as:

X� = {(Δ, R, s � [V /y]Δ1
0(E)[M ], s′ � [V

′
/y]Δ2

0(E)[M ′], τ) |
(Δ0,S, s � M, s′ � M ′, τ0) ∈ X,
Δ ⊆ Δ0, R ⊆ (Δ0,S)�, FTV (R) ⊆ dom(Δ),
(V , V

′
, τ ) ∈ S, dom(Δ0), y : τ  E[τ0] : τ, FTV (τ) ⊆ dom(Δ)}

∪ {(Δ,R, s � M, s′ � M ′, τ) |
(Δ0,S, s, s′) ∈ X, Δ ⊆ Δ0, R ⊆ (Δ0,S)�, FTV (R) ⊆ dom(Δ)
(M,M ′, τ) ∈ (Δ0,S)�, FTV (τ) ⊆ dom(Δ)}

∪ {(Δ,R, s, s′) |
(Δ0,S, s, s′) ∈ X, Δ ⊆ Δ0, R ⊆ (Δ0,S)�, FTV (R) ⊆ dom(Δ)}

Here, E[τ0] denotes an evaluation context E with a hole of type τ0, rather than
a type application.

As in Definition 5, the above definition is easier to understand if we omit types
(and stores), and use an infix notation S |= M X M ′ for (S,M,M ′) ∈ X .
– If S |= M X M ′ and V S V ′

, then R |= ([V /y]E[M ]) X� ([V
′
/y]E[M ′]) for

any R ⊆ S�.
– If S ∈ X and M S� M ′, then R |= M X� M ′ for any R ⊆ S�.
– If S ∈ X , then R ∈ X� for any R ⊆ S�.

Here, up-to context and up-to environment (the subset inclusion R ⊆ S�) are
cross-sold because of small-step semantics: during reduction under context E or
C, newly known values need to be substituted into their holes, but they cannot
be added to R until the reduction terminates.

In the first item above, the restriction to evaluation contexts E is impor-
tant (the up-to technique would otherwise be unsound in general) but is not a
weakness of our approach: see Section 6.

Definition 10. X is an environmental simulation up-to reduction and context
(and environment) if the conditions of Definition 6 hold with all the positive
occurrences of X replaced by (X�)→.

It is also possible to consider just X� in place of (X�)→. We here consider the
latter because we often want to use up-to reduction and up-to context at the
same time.

Lemma 4 (soundness of up-to reduction and context). Suppose X is an
environmental simulation up-to reduction and context. Then X� is an environ-
mental simulation up-to reduction (so (X�)→ is an environmental simulation).

Proof. We check each condition of Definition 8 for each element of X� by ex-
panding Definition 9. Details are in Appendix B.

The last one is specific to calculi with generative names (like our locations).
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Definition 11. The allocation closure Xν of X is defined as

Xν = {(Δ,R, s � M, s′ � M ′, τ) | (Δ,R, s � M, s′ � M ′, τ) ∈ X}
∪ {(Δ,R, s, s′) | (Δ,S, t, t′) ∈ X, (R, s, s′) ∈ (Δ,S, t, t′)ν}

where

(Δ,S, t, t′)ν = { (R, s, s′) | R = S ∪ {(!, !′, τ ref)}, (V , V
′
, τ) ∈ (Δ,R)�,

s = t * {! 
→ V }, s′ = t′ * {!′ 
→ V
′} }.

Informally, Xν is an extention of X with extra locations ! and !
′
allocated (and

initialized with V and V
′
) by the context. (This extention is limited only to

elements of the form (Δ,R, s, s′) in the definition above. A similar extention is
also possible for (Δ,R, s � M, s′ � M ′, τ), but is less useful because M and M ′

often contain the extended locations ! and !
′
. See, e.g., Example 2 and 3.)

This time, the definition of up-to can almost be obtained by replacing positive
X with ((Xν)�)→ in Definition 6. However, Condition 2a, 2b and 2(f)ii require
adjustments, as underlined below. Such adjustments were unnecessary in up-to
reduction (and context) roughly because reduction (and context) closure does
not essentially increase (Δ,R, s, s′) ∈ X . This is not the case in allocation clo-
sure. Note also that the underlined conditions are still necessary for soundness,
e.g., when the observed terms are functions that take n locations as arguments
and return true if and only if these locations are pairwise different.

Definition 12. X is an environmental simulation up-to reduction, context, and
allocation (or just an environmental simulation up-to in short) if:

1. For any (Δ,R, s � M, s′ � M ′, τ) ∈ X,
(a) If s �M → t � N , then s′ �M ′ � t′ �N ′ for some t′ and N ′ with (Δ,R, t �

N, t′ � N ′, τ) ∈ ((Xν)�)→.
(b) If M = V , then s′ � M ′ � t′ � V ′ for some t′ and V ′ with (Δ,R ∪

{(V, V ′, τ)}, s, t′) ∈ ((Xν)�)→.
2. For any (Δ,R, s, s′) ∈ X,
(a) If (λx :Δ1(τ1).M, λx :Δ2(τ1).M ′, τ1 → τ2) ∈ R, then (Δ, S, t �

[W/x]M, t′ � [W ′/x]M ′, τ2) ∈ ((Xν)�)→ for any (S, t, t′) ∈ (Δ,R, s, s′)ν

and (W,W ′, τ1) ∈ (Δ,S)�.
(b) If (Λα.M, Λα.M ′, ∀α. τ) ∈ R, then (Δ, S, t � [Δ1(σ)/α]M, t′ �

[Δ2(σ)/α]M ′, [σ/α]τ) ∈ ((Xν)�)→ for any (S, t, t′) ∈ (Δ,R, s, s′)ν and σ
with FTV (σ) ⊆ dom(Δ).

(c) If (pack (σ, V ) as ∃α.Δ1(τ), pack (σ′, V ′) as ∃α.Δ2(τ), ∃α. τ) ∈ R, then
(Δ ∪ {α 
→ (σ, σ′)},R∪ {(V, V ′, τ)}, s, s′) ∈ ((Xν)�)→ for some α.

(d) If (〈V1, . . . , Vn〉, 〈V ′
1 , . . . , V

′
n〉, τ1 × · · · × τn) ∈ R, then (Δ,R ∪

{(Vi, V
′
i )}, s, s′) ∈ ((Xν)�)→ for any i ∈ {1, ..., n}.

(e) No condition required (item left only for the sake of consistent numbering).
(f) If (!, !′, τ ref) ∈ R, then

i. (Δ,R ∪ {(s(!), s′(!′), τ)}, s, s′) ∈ ((Xν)�)→.
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ii. (Δ,S, t{! 
→ W}, t′{!′ 
→ W ′}) ∈ ((Xν)�)→ for any (S, t, t′) ∈
(Δ,R, s, s′)ν and (W,W ′, τ) ∈ (Δ,S)�.

(g) If (!, !′1, τ ref) ∈ R and (!, !′2, τ ref) ∈ R, then !′1 = !′2.

Lemma 5 (soundness of up-to reduction, context, and allocation). Sup-
pose X is an environmental simulation up-to reduction, context, and alloca-
tion. Then Xν is an environmental simulation up-to reduction and context (so
((Xν)�)→ is an environmental simulation).

Proof. We check each condition of Definition 10 for each element of Xν by
expanding Definition 11. Details in Appendix C.

6 The Characterization Theorem

We now prove that environmental bisimilarity coincides with a form of observa-
tional equivalence. Let ≡ be the largest environmental relation such that ≡� ⊆ ≡
and for any (Δ,R, s � M, s′ � M ′, τ) ∈ ≡, s � M converges if and only if s′ � M ′

does. It exists because the union of all such environmental relations trivially
satisfies the same property (X appears only once in a negative position in each
clause of Definition 9).

The relation ≡ corresponds to the conventional definition of contextual equiv-
alence in the following way. Take two closed values V and V ′ of type τ . If
(∅, {(V, V ′, τ)}, ∅, ∅) ∈ ≡, then (∅, ∅, ∅ � [V/x]C, ∅ � [V ′/x]C) ∈ ≡� by Defini-
tion 9 for any well-typed C. Therefore, [V/x]C and [V ′/x]C coterminate by
the definition above. Conversely, if V and V ′ coterminate under arbitrary (well-
typed) contexts, then {(∅, {(V, V ′, τ)}, ∅, ∅)}� satisfies the above property. Hence
(∅, {(V, V ′, τ)}, ∅, ∅) ∈ ≡.

Although the argument above assumed closed values, it is also straightforward
to treat open terms N and N ′, by taking V = λx.N and V ′ = λx.N ′ for
{x} ⊇ FV (N)∪FV (N ′) as in previous work [24, Section 6] [10, Appendix A.2].

Lemma 6 (soundness of environmental bisimulation). Environmental
bisimilarity ∼ is included in ≡.

Proof. Let � be the environmental similarity. By Lemma 4, (��)→ is an envi-
ronmental simulation and therefore �� ⊆ (��)→ ⊆ �. By symmetry, 6� ⊇ 6
(where 6 denotes �−1). Hence ∼� = (�∩6)� ⊆ (��∩6�) ⊆ (�∩6) = ∼. Also,
by Condition 1a and 1b of Definition 6, for any (Δ,R, s � M, s′ � M ′, τ) ∈ ∼,
s � M converges if and only if s′ � M ′ does. Hence ∼ ⊆ ≡.

Lemma 7 (completeness). ≡ is an environmental bisimulation.

Proof. By checking each condition of Definition 6 for each element of ≡, expand-
ing Definition 9. Again, details are found in Appendix D.

Theorem 1 (characterization). Environmental bisimilarity ∼ equals obser-
vational equivalence ≡.
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7 Examples

Below, we present examples of equivalence proofs by our environmental bisim-
ulation. In each example, we prove the equivalence of the first two terms by
constructing an environmental bisimulation X up-to reduction, context, and al-
location. More examples are given in Appendix E.

Example 1 (abstract counters with and without bounds checking [3, Section 5.1]).
Let

mkCnt = (let x = ref 0 in cntx) mkCnt ′ = (let x = ref 0 in cnt ′x)
cntx = pack (int, 〈incrx, chkx〉) as τ cnt ′x = pack (int, 〈incrx, chk ′〉) as τ
chkx = λz. z ≤ !x chk ′ = λz. true
incrx = λ . ++x τ = ∃α. (1 → α)× (α→ bool)

using standard syntactic sugar such as ++x = (x := !x+ 1; !x). Then mkCnt
and mkCnt ′ are equivalent because of the following X .

X = {(∅, ∅, ∅ �mkCnt , ∅ �mkCnt ′, τ)}
∪ {(Δ,R, s, s′) |

R={(incr �, incr �′ ,1 → α), (chk �, chk ′, α→ bool), (1, 1, α), . . . , (n, n, α)},
Δ={α 
→ (int, int)}, s = {! 
→ n}, s′ = {!′ 
→ n}, n ∈ {0, 1, 2, . . .}}

Let us check that X is indeed an environmental bisimulation up-to reduction,
context, and allocation. Most conditions hold just by construction. The only
cases that need to be checked are Condition 2a for the first and second elements of
the above R. Both of them are straightforward, given the fact that (W,W ′,1) ∈
(Δ,R)� implies W = W ′ = 〈〉 and (W,W ′, α) ∈ (Δ,R)� implies W = W ′ ∈
{1, 2, . . . , n} (immediate from Definition 5).

Example 2 (irreversible state change [3, Section 5.5], or the “awkward” exam-
ple [17, Example 5.9]). Below is an example that can be proved by recent work [3]
but cannot by classic one [17]. This example uses no existential types, but is still
interesting because of local state. (It can easily be turned into an equivalence
involving packages, like Example 3.)

M = (let x = ref 0 in Vx) M ′ = V ′

Vx = λf. x := 1; f〈〉; !x V ′ = λf. f〈〉; 1 τ = (1 → 1) → int

for which we take

X = {(∅, ∅, ∅ � M, ∅ � M ′, τ)}
∪ {(∅,R, s, ∅) | R = {(V�, V

′, τ)}, s = {! 
→ i}, i ∈ {0, 1}}
∪ {(∅,R, s * t � N, t′ � N ′, int) |

R = {(V�, V
′, τ), (k, k

′
, ρ ref)}, s = {! 
→ 1},

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (∅,R)�,

(N,N ′, int) ∈ {(E1[...[En[C; ! !]; ! !]...]; ! !, E1[...[En[C; 1]; 1]...]; 1)}(∅,R)}.
Here, T (Δ,R) denotes closure under contexts in T , i.e.,

T (Δ,R) = {([V /x]Δ1(C), [V
′
/x]Δ2(C′), τ) | (C,C′) ∈ T , (V , V

′
, τ) ∈ R,

dom(Δ), x : τ  C : τ, dom(Δ), x : τ  C′ : τ}.
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The irreversible change of state is represented by the requirement s = {! 
→ 1}
in the third subset of X above. Stores t and t′ account for locations k and k

′

(and their contents) created by the contexts. The most important technique
here is the inclusion of all contexts of the form E1[. . . [En[C; ! !]; ! !] . . . ]; ! ! and
E1[. . . [En[C; 1]; 1] . . . ]; 1, representing nested calls to V� and V ′. Then, the only
non-trivial case to prove is Condition 1a for N and N ′, which follows from
Lemma 2.

Example 3 (well-bracketed state change [3, Section 5.7], credited to Jacob
Thamsborg). This is an existential variant of a negative example in [3] (i.e.,
they could not prove it).

M = pack (int ref, 〈ref 1, λx. Vx〉) as σ M ′ = pack (1, 〈〈〉, λ . V ′〉) as σ
Vx = λf. (x := 0; f〈〉;x := 1; f〈〉; !x) V ′ = λf. (f〈〉; f〈〉; 1)
σ = ∃α. α× (α→ τ) τ = (1 → 1) → int

The difficulty of this example lies in how to represent the fact that the mutations
x := 0 and x := 1 are “well-bracketed,” i.e., whenever x is mutated to 0, it will
eventually be restored to 1.

Consider first the context’s observations on M . By opening and projection,
the context learns some location ! under an abstract type α (with store {! 
→ 1})
and the function λx. Vx of type α→ τ . By applying the latter to the former, it
then learns function V�. This function can be applied to some f = λ . [V /x]C
(where V are taken from the context’s knowledge), yielding a term N1 of the
form [V /x]C1; ! := 1; [V /x]D1; ! ! with store {! 
→ 0}. By Lemma 2, any non-
value of the form [V /x]C1 either reduces to another term of the same form, or
else “uses” some Vi. In the former case, the form of N1 does not change. In the
latter case, suppose Vi = V� and N1 = E[V�W ] for some E and W , that is, N1
makes a nested call to V� (otherwise, the form of N1 does not change, either).
Then N1 reduces to a term of the form E[[V /x]C2; ! := 1; [V /x]D2; ! !] and the
above arguments can be repeated for the subterm [V /x]C2; ! := 1; [V /x]D2; ! !.
(Similar arguments apply to V ′ as well.) To enumerate all such terms that are
possible under the store {! 
→ 0}, we define a binary relation T 0

� on contexts by
induction, using free variable v as a hole to substitute V� (or V ′).
– (C; ! := 1;D; ! !) T 0

� (C;D; 1)
– If E[vW ] T 0

� E′[vW ], then E[C; ! := 1;D; ! !] T 0
� E′[C;D; 1]

On the other hand, if [V /x]C converges to value 〈〉, then [V /x]C; !:=1; [V /x]D; ! !
reduces to [V /x]D; ! ! with store {! 
→ 1}. Similarly, E[[V /x]C; ! :=1; [V /x]D; ! !]
reduces to E[[V /x]D; ! !]. We therefore define another binary relation T 1

� on
contexts to enumerate possible terms under the store {! 
→ 1}.
– (D; ! !) T 1

� (D; 1)
– If E[vW ] T 0

� E′[vW ], then E[D; ! !] T 1
� E′[D; 1]

Again by Lemma 2, any non-value of the form [V /x]D either reduces to the
same form or makes a nested call to V�. Hence the additional rules:
– If E[vW ] T 1

� E′[vW ], then E[C; ! := 1;D; ! !] T 0
� E′[C;D; 1]

– If E[vW ] T 1
� E′[vW ], then E[D; ! !] T 1

� E′[D; 1]
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This concludes the definition of T 0
� and T 1

� . The following lemmas—
proved by simple case analysis on the derivations of E[vW ] T 0

� E′[vW ] and
E[vW ] T 1

� E′[vW ]—are used when [V /x]D converges to value 〈〉 and therefore
E[[V /x]D; ! !] reduces to E[1].
– If E[vW ] T 1

� E′[vW ], then E[1] T 1
� E′[1].

– If E[vW ] T 0
� E′[vW ], then E[1] T 1

� E′[1].
Then, take:

X = {(∅, ∅, ∅ � M, ∅ � M ′, σ)}
∪ {(Δ,R, s, ∅) |

s = {! 
→ 1}, Δ = {α 
→ (int ref,1)},
R = {(!, 〈〉, α), (λx. Vx, λ . V

′, α→ τ), (V�, V
′, τ)}}

∪ {(Δ, R, s * t � N, t′ � N ′, int) |
(N,N ′, int) ∈ T 0

�
(Δ,R)

, s = {! 
→ 0}, Δ = {α 
→ (int ref,1)},
R = {(!, 〈〉, α), (λx. Vx, λ . V

′, α→ τ), (V�, V
′, τ), (k, k

′
, ρ ref)}

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (Δ,R)�}

∪ {(Δ, R, s * t � N, t′ � N ′, int) |
(N,N ′, int) ∈ T 1

�
(Δ,R)

, s = {! 
→ 1}, Δ = {α 
→ (int ref,1)},
R = {(!, 〈〉, α), (λx. Vx, λ . V

′, α→ τ), (V�, V
′, τ), (k, k

′
, ρ ref)}

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (Δ,R)�}

Thanks to the construction of T 0
� and T 1

� with the lemmas above, the proof that
X is a bisimulation up-to is routine, using Lemma 2 for reduction of the terms
N and N ′.

8 Conclusion

We have presented the first complete, purely syntactic (“semantics-free,” as op-
posed to syntax-free) proof technique for observational equivalences in polymor-
phic λ-calculus with full references, with non-trivial examples that could not be
proved previously. Although we omitted explicit recursion, recursive functions
can be encoded [15, Exercise 13.5.8]. Treatment of recursive types (either equi-
recursive or iso-recursive) is also straightforward (see, e.g., [24]). Deallocation
and pointer arithmetic (by defining stores as partial maps from locations to ar-
rays of values) can also be added without essential difficulty, though deallocation
introduces non-determinism [22] and invalidates the up-to reduction technique
in general (but “up-to deterministic reduction” is still possible).

Of course, the above facts do not mean other approaches are useless. On the
contrary, the inclusion of an infinite number of contexts in examples with call-
backs suggests that, at least for some special cases, more convenient techniques
(like [3]) can be devised to reduce the “size” of the set to be constructed by the
user. (On the other hand, those examples have also shown that, with the help of
Lemma 2, our “brute-force” method is often simple enough.) Logical relations
are also better at giving a compositional model of universal types, as in [3] and
[5, 6].
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As we have shown in recent work [22], our approach is applicable to more
general properties other than observational equivalence, such as memory safety
and space improvement. It would also be possible to adapt them to our typed
setting. Contrary to the previous (too negative) conjecture [24, Section 8], it is
possible as well to use our method to prove free theorems à la Wadler [26] based
on parametricity [18]. Work is ongoing on this topic.

Acknowledgements. Derek Dreyer first referred me to his work with Ahmed and
Rossberg [3], from which I took examples in the present paper. Some of the
anonymous reviewers found (and even corrected) a number of serious typos in a
previous version of this paper.
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Abstract. This paper investigates a non-commutative first-order se-
quent calculus NCLK. For that, this paper extends a non-commutative
positive fragment to a full first-order sequent calculus LK− having
antecedent-grouping and no right exchange rule. This paper shows (1)
NCLK is equivalent to LJ, (2) NCLK with the exchange rule is equiv-
alent to LK, (3) LK− is equivalent to LJ, and (4) translations between
LK− and NCLK.

1 Introduction

Substructural logics, which are logical systems without some of the contraction
rule, the weakening rule, and the exchange rule, have been actively studied in
both mathematical logic and computer science. For example, linear logic, which
is a logical system without the contraction rule, is successful [3].

We will present a first-order sequent calculus NCLK without the exchange
rule, called Non-Commutative First-Order Sequent Calculus. The system has
the same language of the first-order classical sequent calculus LK, but has only
a restricted set of inference rules. We will show the system is equivalent to the
first-order intuitionistic sequent calculus LJ. We will also show the system NCLK
becomes equivalent to LK when the exchange rule is added to the system. This
shows the exchange rule gives a classical principle. We respect order of formulas
in a sequent in the system, but conjunction and disjunction are proved to be
commutative according to its inference rules.

Substructural logic without the exchange rule that has non-commutative con-
junction and disjunction has been studied, but substructural logic without the
exchange rule that has commutative conjunction and disjunction has not been
fully studied yet. Recently several interesting results have been discovered for
this kind of substructural logic. [1] showed a positive fragment of infinitary Peano
Arithmetic without the exchange rule has 1-backtracking game theoretic seman-
tics. [2] showed a positive fragment of infinitary Peano Arithmetic without the
exchange rule is equivalent to a positive fragment of infinitary Heyting Arith-
metic with the law of excluded middle for Σ0

1 -formulas.
This paper will first investigate an underlying logic for those papers. Those

papers discussed arithmetic, but we restrict our attention to only its underlying
logic, and show the logic itself has a surprising property, that is, the equivalence
to LJ. Those papers discussed only a positive system that does not have implica-
tion, but we extend a positive fragment to a full logic LK− with implication. The

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 470–484, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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system LK− has a sequent having antecedent-grouping and does not have the
right exchange rule. Formulas in the antecedent are grouped and structural rules
can be used only inside a group. This system is proved to be equivalent to LJ.
A key of the equivalence proof is analyzing the minimum length of succedents
of sequents in a given proof.

Secondly, we will give the system NCLK, which is obtained from LK− by
coding grouping information by the length of a sequence of formulas. We will
give translations between NCLK and LK− and show they preserve provability.
Combining the equivalence between LK− and LJ, these translations will prove
the equivalence between NCLK and LJ. On the other hand, when we add the
exchange rule to NCLK, the coding information will be lost and it is proved to
become equivalent to LK.

Technical novelties of this paper are (1) the extension of the non-commutative
positive fragment [1,2] to the full non-commutative logic LK− with implication,
(2) the equivalence between LK− and LJ, (3) the definition of NCLK by coding
grouping information by the length of a sequence of formulas, and (4) translations
between LK− and NCLK.

[2] showed the fragment of arithmetic without the exchange rule is equivalent
to the fragment of intuitionistic arithmetic with the law EM1 of excluded middle
for Σ0

1 formulas. On the other hand, our system LK− is equivalent to LJ. We can
explain reasons for the difference for EM1 in the following way. The first reason
is that the minimum length of the succedents in the sequents in the proof is a key
for proving the equivalence. When a proof is given in LK−, we can immediately
find the minimum length. On the other hand, when a proof is given in the system
in [1,2], since it is an infinitary system, we cannot find the minimum, and instead
we can only have flag formulas that are some Π0

1 -formulas. For case analysis by
flag formulas, [2] needed EM1. The second reason is that we can directly show
LK− does not derive EM1, and on the other hand we can drive EM1 in the
system in [1,2] by using infinitary logic and true atomic formulas.

[4,5] investigated the sequent calculus obtained from LK by restricting the
implication right rule to only intuitionistic sequents and showed the system is
equivalent to LJ. Our system NCLK will give another way of restriction to LK
so that the resulting system becomes equivalent to LJ.

A potential application of these systems LK− and NCLK will be program
extraction, since it is equivalent to first-order intuitionistic logic.

Section 2 defines and discusses LK−. We give definitions of LK and LJ in
Section 3. Section 4 proves the implication from LK− to LJ and Section 5 proves
the other implication from LJ to LK−. We define and discuss NCLK in Section
6. Section 7 gives the translations between NCLK and LK−, and shows the
equivalence between NCLK and LJ.

2 The System LK−

Definition 2.1 (language). The language is a first-order language generated
from the following symbols. We have variables x, y, z, . . .. We have constants and
function symbols. Terms are constructed from variables, constants, and function
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symbols, and denoted by s, t, . . .. We have predicate symbols including 0-ary
predicate symbols 1 and ⊥, which mean the truth and the falsity respectively.
Atomic formulas are constructed from predicate symbols and terms, and denoted
by a, b, . . .. Formulas are defined by

A, B, C, D, . . . ::= a|A ∧ B|A ∨ B|A → B|∀xA|∃xA.

We will write ¬A for A→⊥. A[t/x] is the formula obtained from A by replacing
x by t.

A sequent is of the form Γ � A1, . . . , An where Γ is a sequence of formulas and
n occurrences of the symbol −.

In the sequent Γ0,−, Γ1,−, Γ2, . . . ,−, Γn � A1, . . . , An where Γi is a sequence
of formulas and does not contain the symbol −, the group Γ0 means the initial
group, and the i-th group Γi corresponds to Ai.

Γ, Δ, Π, Σ, . . . denote a sequence of both formulas and symbols −. We will
write −n for −, . . . ,− (n times). |Γ | denotes the number of the formulas in Γ .
�−Γ denotes the number of the − symbols in Γ .

We respect order of formulas in a sequence and a sequent.
We have the following inference rules:

Γ1, A, Γ2 � Δ, A
(Ax)

Γ � Δ,1 (Ax1)
Γ1,⊥, Γ2 � Δ

(Ax⊥)

Γ,− � Δ, A ∧ B, A Γ,− � Δ, A ∧ B, B

Γ � Δ, A ∧ B
(∧R)

Γ1, A ∧ B, Γ2, A � Δ

Γ1, A ∧ B, Γ2 � Δ
(∧L1)

Γ1, A ∧ B, Γ2, B � Δ

Γ1, A ∧ B, Γ2 � Δ
(∧L2)

Γ,− � Δ, A ∨ B, A

Γ � Δ, A ∨ B
(∨R1)

Γ,− � Δ, A ∨ B, B

Γ � Δ, A ∨ B
(∨R2)

Γ1, A ∨ B, Γ2, A � Δ Γ1, A ∨ B, Γ2, B � Δ

Γ1, A ∨ B, Γ2 � Δ
(∨L)

Γ, A � Δ, A → B

Γ � Δ, A → B
(→R1)

Γ,− � Δ, A → B, B

Γ � Δ, A → B
(→R2)

Γ1, A → B, Γ2,− � Δ, A Γ1, A → B, Γ2, B � Δ

Γ1, A → B, Γ2 � Δ
(→L)

Γ,− � Δ, ∀xA, A

Γ � Δ, ∀xA
(∀R)

Γ1, ∀xA, Γ2, A[t/x] � Δ

Γ1, ∀xA, Γ2 � Δ
(∀L)

Γ,− � Δ, ∃xA, A[t/x]
Γ � Δ, ∃xA

(∃R)
Γ1, ∃xA, Γ2, A � Δ

Γ1, ∃xA, Γ2 � Δ
(∃L)

Γ � Δ
Γ,− � Δ, A

(weak R) Γ � Δ
Γ, A � Δ

(weak L)

where the conclusion does not contain free occurrences of x in the rules (∀R)
and (∃L).
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Intuitive meaning of provable sequents is given as follows: If
Γ0,−, Γ1, . . . ,−, Γn � A1, . . . , An is provable, then (1) Γ0 � is true, or (2)
Γ0,−, Γ1, . . . ,−, Γi � Ai is true for some i. Each inference rule is sound by this
interpretation. Theorem 4.1 will provide more information.

We explain this system with some examples.

Example 2.2. The first example shows its conjunction is commutative.

−, A ∧ B,−, B � B ∧ A, B
(Ax)

−, A ∧ B,− � B ∧ A, B
(∧L2)

−, A ∧ B,−, A � B ∧ A, A
(Ax)

−, A ∧ B,− � B ∧ A, A
(∧L1)

−, A ∧ B � B ∧ A
(∧R)

Example 2.3. The next example shows how this system respects the order of
formulas. We have three provable sequents

−, A,−, B � A,⊥,
−, A,−, B � ⊥, A,
−, A,−, B � ⊥, B.

On the other hand the sequent

−, A,−, B � B,⊥

is not provable. The first sequent is provable since the initial and the first groups
give the assumption A, which proves the first formula A. The second sequent is
provable since the initial, the first, and the second groups give the assumptions
A, B, which prove the second formula A. The third sequent is provable similarly
to the second sequent, since the initial, the first, and the second groups give the
assumptions A, B, which prove the second formula B. Formally the first sequent
is proved by

−, A � A
(Ax)

−, A,− � A,⊥ (weak R)

−, A,−, B � A,⊥ (weak L)

and the second and the third sequents are proved by (Ax).
On the other hand, ths fourth sequent is not provable, since we have neither of

the following cases: (1) the initial group is empty, which proves the contradiction,
nor (2) the initial and the first groups give the assumption A, which proves the
first formula B, nor (3) the initial, the first, and the second groups give the
assumptions A, B, which prove the second formula ⊥.

Example 2.4. The third example gives an example with implication.
.... π1

−,¬(A ∨ B),− � ¬A ∧ ¬B,¬A

.... π2

−,¬(A ∨ B),− � ¬A ∧ ¬B,¬B

−,¬(A ∨ B) � ¬A ∧ ¬B
(∧R)
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where the proof π1 is

−, ¬(A ∨ B), −, A, −, − � ¬A ∧ ¬B, ¬A, A ∨ B, A
(Ax)

−, ¬(A ∨ B), −, A, − � ¬A ∧ ¬B, ¬A, A ∨ B
(∨R1)

−, ¬(A ∨ B), −, A, ⊥ � ¬A ∧ ¬B, ¬A
(Ax⊥)

−, ¬(A ∨ B), −, A � ¬A ∧ ¬B, ¬A
(→L)

−, ¬(A ∨ B), − � ¬A ∧ ¬B, ¬A
(→R1)

and the proof π2 is similar to π1.

We will show some structural rules are admissible in this system. (Γ )0 is defined
to be Γ if Γ does not contain −. (Γ,−, Π)0 is defined to be Γ if Γ does not
contain −.

Proposition 2.5. The following are admissible.

Γ1, Γ2 � Δ

Γ1, A, Γ2 � Δ
(weak L2)

Γ1, Γ2 � Δ1, Δ2

Γ1,−, Γ2 � Δ1, A, Δ2
(weak R2)

(�−Γ2 = |Δ2|, (Γ2)0 = φ)

Γ � Δ
Π, Γ � Σ, Δ

(weak R3)
(�−Π = |Σ|)

Γ1,−, A, Γ2 � Δ

Γ1, A,−, Γ2 � Δ
(move)

Γ1, A, Γ2, A, Γ3 � Δ

Γ1, A, Γ2, Γ3 � Δ
(cont L)

Γ1, A, B, Γ2 � Δ

Γ1, B, A, Γ2 � Δ
(exch L)

These are proved by induction on proofs. For example, in order to prove
(weak L2) is admissible, we assume a proof π of Γ1, Γ2 � Δ and construct
a proof of Γ1, A, Γ2 � Δ. The idea is just adding A to the antecedent in
each sequent in π. Formally we consider cases according to the last rule used
in π.

Let the rule be (Ax) and its conclusion be Γ ′1, B, Γ ′2 � Δ′, B. We have to
show Γ ′′1 , B, Γ ′′2 � Δ′, B where Γ ′′1 , Γ ′′2 is obtained from Γ ′1, Γ

′
2 by adding A.

Γ ′′1 , B, Γ ′′2 � Δ′, B is provable by (Ax).
Let the rule be (∨R1) that derives Γ1, Γ2 � Δ′, B∨C from Γ1, Γ2,− � Δ′, B∨

C, B. We have to show Γ1, A, Γ2 � Δ′, B ∨ C. By induction hypothesis we have
Γ1, A, Γ2,− � Δ′, B ∨ C, B. By (∨R1), we have Γ1, A, Γ2 � Δ′, B ∨ C. Other
cases are proved similarly.

3 First-Order Sequent Calculi

This section gives definitions of LK and LJ in a familiar way.
We define the first-order classical sequent calculus LK. The language is de-

fined to be the same as that of LK− except its sequents are of the form
A1, . . . , An � B1, . . . , Bm (n, m ≥ 0) for formulas A1, . . . , An, B1, . . . , Bm.
Γ, Δ, Π, Σ, . . . denote a sequence of formulas.
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We have the following inference rules.

A � A
(Ax) � 1 (Ax1) ⊥ � (Ax⊥)

Γ � Δ, A Γ � Δ, B

Γ � Δ, A ∧ B
(∧R)

Γ, A � Δ

Γ, A ∧ B � Δ
(∧L1)

Γ, B � Δ

Γ, A ∧ B � Δ
(∧L2)

Γ � Δ, A

Γ � Δ, A ∨ B
(∨R1)

Γ � Δ, B

Γ � Δ, A ∨ B
(∨R2)

Γ, A � Δ Γ, B � Δ

Γ, A ∨ B � Δ
(∨L)

Γ, A � Δ, B

Γ � Δ, A → B
(→R)

Γ � Δ, A Γ, B � Σ

Γ, A → B � Δ, Σ
(→L)

Γ � Δ, A

Γ � Δ, ∀xA
(∀R)

Γ, A[t/x] � Δ

Γ, ∀xA � Δ
(∀L)

Γ � Δ, A[t/x]
Γ � Δ, ∃xA

(∃R)
Γ, A � Δ

Γ, ∃xA � Δ
(∃L)

Γ � Δ
Γ � Δ, A

(weak R) Γ � Δ
Γ, A � Δ

(weak L)

Γ � Δ, A, A

Γ � Δ, A
(cont R)

Γ, A, A � Δ

Γ, A � Δ
(cont L)

Γ � Δ1, B, A, Δ2

Γ � Δ1, A, B, Δ2
(exch R)

Γ1, B, A, Γ2 � Δ

Γ1, A, B, Γ2 � Δ
(exch L)

where the conclusion does not contain free occurrences of x in the rules (∀R)
and (∃L).

We define the first-order intuitionistic sequent calculus LJ. The language
is the same as that of LK except that its sequents are intuitionistic sequents
A1, . . . , An � B or A1, . . . , An �. The inference rules are the same as those of
LK except that their sequents are restricted to intuitionistic sequents.

4 Implication from LK− to LJ

This section proves the direction from LK− to LJ.
For a given proof π, we define ||π|| as the minimum length of the succedents of

the sequents in π. We define (Γ0,−, Γ1,−, Γ2, . . . ,−, Γn)+ as Γ0, Γ1, Γ2, . . . , Γn

if Γ0, . . . , Γn do not contain any − symbol.

Theorem 4.1. If we have a proof of the sequent Γ0,−, Γ1,−, Γ2, . . . ,−, Γn �
A1, A2, . . . , An in LK− where n ≥ 0 and Γ0, . . . , Γn do not contain any − symbol,
and i is the minimum length of the succedents of the sequents in the proof, then
we have the following:

(1) i = 0 and Γ0 � is provable in LJ, or
(2) i > 0 and Γ0, . . . , Γi � Ai is provable in LJ.
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The idea is analyzing the uppermost sequent Γ � Δ, A with its succedent of
length i in the proof. We sketch the proof. Suppose the sequent Γ � Δ, A is
such a sequent. Since left rules and (→R1) do not change the length of some
succedent, right logical rules except (→R1) decrease the length of succedents by
1, and (weak R) increases the length of the succedent by 1, the inference rule
deriving Γ � Δ, A must be axioms or right logical rules except (→R1). Then we
can show Γ � A is provable in LJ. If it is an axiom, Γ � A is provable in LJ by
the corresponding axiom. If it is a right logical rule, we use induction hypothesis
for its subproofs. For example, if it is

A, B,−,− � A ∧ B, A
(Ax)

A, B,−,− � A ∧ B, B
(Ax)

A, B,− � A ∧ B
(∧R)

and i = 1, then the minimum length of succedents in each subproof is 2. By
induction hypothesis for each subproof, we have A, B � A and A, B � B in LJ,
so we have A, B � A ∧ B in LJ by (∧R).

Since right logical rules except (→R1) decrease the length of succedents by
1, possible inference rules under Γ � Δ, A are left rules, (→R1), or (weak R).
Those inference rules preserve provability of the i-th formula A from the first
i + 1 groups of its antecedent in LJ. Hence, in the conclusion of the given proof,
the sequent of the i-th formula A from the first i + 1 groups of its antecedent is
provable in LJ.

Theorem 4.2. If LK− proves Γ0,−, Γ1 � A, then LJ proves Γ0, Γ1 � A.

Proof. Let π be the proof and i be ||π||. Then i is 0 or 1. By Theorem 4.1 with
n = 1, we have (1) i = 0 and Γ0 � is provable in LJ, or (2) i = 1 and Γ0, Γ1 � A
is provable in LJ. If i = 1, we have the claim. If i = 0, by weakening to Γ0 �, we
have the claim. �

5 Implication from LJ to LK−

This section proves the implication from LJ to LK−.

Proposition 5.1. If Γ � Δ is provable in LJ where |Δ| = 0, 1, then −|Δ|, Γ � Δ
is provable in LK−.

The proof idea is simulating each inference rule of LJ by inference rules of LK−.
One difference is that a logical rule in LK− has a redundant principal formula.
For example, the right conjunction rule in LK− is

Γ,− � Δ, A ∧ B, A Γ,− � Δ, A ∧ B, B

Γ � Δ, A ∧ B
(∧R)

and on the other hand the right conjunction rule in LJ is
Γ � A Γ � B

Γ � A ∧ B
(∧R)

This difference is covered by putting A∧B by (weak R2) in Proposition 2.5. The
other difference is the existence of −, which is handled by moving − by (move)
in Proposition 2.5.
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Theorem 5.2 (Equivalence between LK− and LJ). −, Γ � A is provable
in LK− if and only if Γ � A is provable in LJ.

Proof. The implication from the left-hand side to the right-hand side is proved
by Theorem 4.2. The implication from the right-hand side to the left-hand side
is proved by Proposition 5.1. �

6 Non-Commutative Sequent Calculus NCLK

This section discusses NCLK and shows it becomes equivalent to LK when we
add the exchange rule to it.

We define Non-Commutative First-Order Sequent Calculus NCLK.

Definition 6.1 (NCLK). Its language is the same as that of LK. Note that its
sequents are of the form A1, . . . , An � B1, . . . , Bm (n, m ≥ 0) where Ai, Bi are
formulas. Γ, Δ, Π, Σ . . . denote a sequence of formulas.

The inference rules are given as follows.

Γ1, A, Γ2 � Δ, A
(Ax)

Γ � Δ,1 (Ax1)
Γ1,⊥, Γ2 � Δ

(Ax⊥)

Γ,1 � Δ, A ∧ B, A Γ,1 � Δ, A ∧ B, B

Γ � Δ, A ∧ B
(∧R)

Γ1, A ∧ B, Γ2, A � Δ, D, D

Γ1, A ∧ B, Γ2 � Δ, D
(∧L1)

Γ1, A ∧ B, Γ2, B � Δ, D, D

Γ1, A ∧ B, Γ2 � Δ, D
(∧L2)

Γ,1 � Δ, A ∨ B, A

Γ � Δ, A ∨ B
(∨R1)

Γ,1 � Δ, A ∨ B, B

Γ � Δ, A ∨ B
(∨R2)

Γ1, A ∨ B, Γ2, A � Δ, D, D Γ1, A ∨ B, Γ2, B � Δ, D, D

Γ1, A ∨ B, Γ2 � Δ, D
(∨L)

Γ, A � Δ, A → B, A → B

Γ � Δ, A → B
(→R1)

Γ,1 � Δ, A → B, B

Γ � Δ, A → B
(→R2)

Γ1, A → B, Γ2,1 � Δ, D, A Γ1, A → B, Γ2, B � Δ, D, D

Γ1, A → B, Γ2 � Δ, D
(→L)

Γ,1 � Δ, ∀xA, A

Γ � Δ, ∀xA
(∀R)

Γ1, ∀xA, Γ2, A[t/x] � Δ, D, D

Γ1, ∀xA, Γ2 � Δ, D
(∀L)

Γ,1 � Δ, ∃xA, A[t/x]
Γ � Δ, ∃xA

(∃R)
Γ1, ∃xA, Γ2, A � Δ, D, D

Γ1, ∃xA, Γ2 � Δ, D
(∃L)

Γ � Δ
Γ, A � Δ, B

(sweak)
1, Γ � Δ

Γ � Δ
(1E)

Γ � ⊥, Δ

Γ � Δ
(⊥E)

where the conclusion does not contain free occurrences of x in the rules (∀R)
and (∃L).

(sweak) means symmetric weakening.
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Intuitive meaning of provable sequents is given as follows: If Π, A1, . . . , An �
B1, . . . , Bn is provable, then (1) Π � is true, or (2) Π, A1, . . . , Ai � Bi is true
for some i. If A1, . . . , An � C1, . . . , Cm, B1, . . . , Bn is provable, then (1) � Ci is
true for some i, or (2) A1, . . . , Ai � Bi is true for some i.

This system is obtained from LK− by coding grouping information by the
length of a sequence of formulas. We explain it by example.

Example 6.2. The sequent

A1,−, A2, A3,−, A4,−, A5, A6 � B1, B2, B3

in LK− is coded by the sequent

A1,1, A2, A3,1, A4,1, A5, A6 � B1, B1, B1, B2, B2, B3, B3, B3

in NCLK. The atomic formula 1 is used for separating groups. The group
1, A5, A6 corresponds to B3, B3, B3. The group 1, A4 corresponds to B2, B2.
The group 1, A2, A3 corresponds to B1, B1, B1. We can decode this information
by counting formulas from the right to the left on both sides. This translation
is formally defined in Definition 7.5.

We explain this system by the same examples as those in Section 2.

Example 6.3. The first example shows its conjunction is commutative.

A ∧ B,1, B � B ∧ A, B, B
(Ax)

A ∧ B,1 � B ∧ A, B
(∧L2)

A ∧ B,1, A � B ∧ A, A, A
(Ax)

A ∧ B,1 � B ∧ A, A
(∧L1)

A ∧ B � B ∧ A
(∧R)

Example 6.4. The next example shows how this system respects the order of
formulas. We have three provable sequents

A, B � A,⊥,
A, B � ⊥, A,
A, B � ⊥, B.

On the other hand the sequent

A, B � B,⊥

is not provable. The first sequent is provable since A � A is true. The second
sequent is provable since A, B � A is true. The third sequent is provable since
A, B � B is true. Formally the first sequent is proved by

A � A
(Ax)

A, B � A,⊥ (sweak)

and the second and the third sequents are proved by (Ax). On the other hand,
the fourth sequent is not provable, since A � B is not true and A, B � ⊥ is not
true.
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Example 6.5. The third example gives an example with implication.
.... π1

¬(A ∨ B),1 � ¬A ∧ ¬B,¬A

.... π2

¬(A ∨ B),1 � ¬A ∧ ¬B,¬B

¬(A ∨ B) � ¬A ∧ ¬B
(∧R)

where the proof π1 is

¬(A ∨ B), �, A, �, � � ¬A ∧ ¬B, ¬A, ¬A, A ∨ B, A
(Ax)

¬(A ∨ B), �, A, � � ¬A ∧ ¬B, ¬A, ¬A, A ∨ B
(∨R1)

¬(A ∨ B), �, A, ⊥ � ¬A ∧ ¬B, ¬A, ¬A, ¬A
(Ax⊥)

¬(A ∨ B), �, A � ¬A ∧ ¬B, ¬A, ¬A
(→L)

¬(A ∨ B), � � ¬A ∧ ¬B, ¬A
(→R1)

and the proof π2 is similar to π1.

Remark. (1) Every rule except (1E) and (⊥E) preserves |Γ | − |Δ|.
(2) (⊥E) is necessary for making a binary left logical rule for the empty

succedent admissible. It is used in the proof of Theorem 7.6. For example, the
following is admissible.

Γ1, A ∨ B, Γ2, A � Γ1, A ∨ B, Γ2, B �
Γ1, A ∨ B, Γ2 � (∨L)

(3) (1E) is necessary since � 1 ∨ ⊥,⊥ would not be provable otherwise,
though it is indeed provable by

1 � 1 ∨ ⊥,1 (Ax 1)

� 1 ∨ ⊥ (∨R1)

1 � 1 ∨ ⊥,⊥ (sweak)

� 1 ∨⊥,⊥ (1E)

Proposition 6.6. (1) The following are admissible.

Γ1, Γ2 � Δ1, Δ2

Γ1, A, Γ2 � Δ1, B, Δ2
(sweak2)

(|Γ2| = |Δ2|)
Γ1, A, A, Γ2 � Δ1, B, B, Δ2

Γ1, A, Γ2 � Δ1, B, Δ2
(scont)

(|Γ2| = |Δ2|)
Γ1, Γ2 � Δ

Γ1, A, Γ2 � Δ
(weak L) Γ � Δ

Γ � ⊥, Δ
(⊥I)

Γ1,1, Γ2 � Δ

Γ1, A, Γ2 � Δ
(replace L)

(2) The following is admissible.

Γ � Δ1, A, A, Δ2

Γ � Δ1, A, Δ2
(cont R)

(3) The following is admissible.

Γ1,1, A, Γ2 � Δ1, B, B, Δ2

Γ1, A, Γ2 � Δ1, B, Δ2
(1E2)

(|Γ2| = |Δ2|)
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The claims in (1) are proved by induction on the proof. The claim (2) is proved
by induction on the proof by using (weak L) in (1). The claim (3) is proved by
(scont) and (replace L) in (1).

We define the system NCLK+EX as NCLK with (exch L) and (exch R).

Γ � Δ1, A, B, Δ2

Γ � Δ1, B, A, Δ2
(exch R)

Γ1, A, B, Γ2 � Δ

Γ1, B, A, Γ2 � Δ
(exch L)

Proposition 6.7. The following are admissible in NCLK+EX.
Γ, A, A � Δ

Γ, A � Δ
(cont L) Γ � Δ

Γ � Δ, A
(weak R)

Proof. (cont L) is proved by

Γ, A, A � Δ

Γ, A, A � ⊥,⊥, Δ
(⊥I)twice

Γ, A, A � Δ,⊥,⊥ (exch R)several times

Γ, A � Δ,⊥ (scont)

Γ, A � ⊥, Δ
(exch R)several times

Γ, A � Δ
(⊥E)

(weak R) is proved by

Γ � Δ
Γ,1 � Δ, A

(sweak)

1, Γ � Δ, A
(exch L)several times

Γ � Δ, A
(1E)

�

We will write Γ �T Δ to denote that the sequent Γ � Δ is provable in the
system T .

Theorem 6.8 (Equivalence between NCLK+EX and LK).
Γ �NCLK+EX Δ if and only if Γ �LK Δ.

Proof. From the right-hand side to the left-hand side. The claim is proved by
induction on the proof.

If the last rule is a logical rule, then add some formulas by weakening in
Propositions 6.6 and 6.7 and use the corresponding logical rule. We give some
interesting cases.

Case (→R). We suppose

Γ, A � Δ, B

Γ � Δ, A → B
(→R)

Then we have
.... IH

Γ, A � Δ, B

Γ, A,1 � Δ, A → B, A → B, B
(weak L)(weak R)(exch R)

Γ, A � Δ, A → B, A → B
(→R2)

Γ � Δ, A → B
(→R1)
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Case (→L). We suppose

Γ � Δ, A Γ, B � Σ

Γ, A → B � Δ, Σ
(→L)

Then we have
.... IH

Γ � Δ, A

Γ, A → B,1 � Δ, Σ,⊥, A
(W )

.... IH

Γ, B � Σ

Γ, A → B, B � Δ, Σ,⊥,⊥ (W )

Γ, A → B � Δ, Σ,⊥ (→L)

Γ, A → B � ⊥, Δ, Σ
(exch R)several times

Γ, A → B � Δ, Σ
(⊥E)

where (W ) denotes several steps of (weak L), (weak R), and (exch R).
If the last rule is a structural rule, then it is covered by Propositions 6.6 and

6.7
From the left-hand side to the right-hand side. It is proved by induction on a

proof since every rule is sound in LK. �

7 Translations between LK− and NCLK

This section shows the equivalence between LK− and NCLK by giving transla-
tions which preserve provability.

First we prepare several admissible rules in LK− for the equivalence proof.

Proposition 7.1. The following are admissible in LK−.

Γ1,1, Γ2 � Δ

Γ1, Γ2 � Δ
(1E)

Γ1,−, Γ2 � Δ1, A, A, Δ2

Γ1, Γ2 � Δ1, A, Δ2
(cont R)

(�−Γ2 = |Δ2|)
Γ1,−, Γ2 � Δ1,⊥, Δ2

Γ1, Γ2 � Δ1, Δ2
(⊥E)

(�−Γ2 = |Δ2|)

They are proved by induction on the proof.
We give a translation from NCLK to LK−. To translate Γ � Δ, we insert

the same number of − symbols as |Δ| into Γ in front of each formula from the
rightmost formula of Γ . For example, the sequent A1, A2, A3, A4 � B1, B2 in
NCLK is translated into the sequent A1, A2,−, A3,−, A4 � B1, B2 in LK−.

Definition 7.2 (Translation from NCLK to LK−). Γ � Δ is mapped to
Γ−|Δ| � Δ, where (Γ0, A1, A2, . . . , An)−n is defined as Γ0,−, A1,−, A2, . . . ,−, An

and (A1, A2, . . . , Am)−n (m < n) is defined as −n−m,−, A1,−, A2, . . . ,−, Am.

Theorem 7.3. Γ �NCLK Δ implies Γ−|Δ| �LK− Δ.
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Proof. By induction on the proof. Cases are considered according to the last
rule.

If the last rule is (Ax), (Ax1), and (Ax⊥), it is proved by (Ax), (Ax1), and
(Ax⊥) respectively.

If the last rule is a right logical rule except (→R1), we first use (1E) in
Proposition 7.1, and then use the corresponding logical rule.

If the last rule is a left logical rule except (→L) or (→R1), we first use (cont R)
in Proposition 7.1, and then use the corresponding logical rule.

If the last rule is (→L), we suppose

Γ1, A → B, Γ2,1 � Δ, D, A Γ1, A → B, Γ2, B � Δ, D, D

Γ1, A → B, Γ2 � Δ, D
(→L)

Let n be |Δ, D|. We have

.... IH

(Γ1, A → B, Γ2)−n,−,� � Δ, D, A

(Γ1, A → B, Γ2)−n,− � Δ, D, A
(�E)

.... IH

(Γ1, A → B,Γ2)−n,−, B � Δ, D, D

(Γ1, A → B, Γ2)−n, B � Δ, D
(cont R)

(Γ1, A→B,Γ2)−n�Δ, D
(→L)

If the last rule is (sweak), we have

Γ � Δ
Γ,− � Δ, B

(weak R)

Γ,−, A � Δ, B
(weak L)

If the last rule is (1E) and (⊥E), the claim is proved by (1E) and (⊥E) in
Proposition 7.1 respectively. �

Example 7.4. The NCLK-proof of A∧B � B ∧A in Example 6.3 is translated
into the LK−-proof

−, A ∧ B, −, �, −, B � B ∧ A, B, B
(Ax)

−, A ∧ B, −, �, B � B ∧ A, B
(cont R)

−, A ∧ B, −, � � B ∧ A, B
(∧L2)

−, A ∧ B, − � B ∧ A, B
(�E)

−, A ∧ B, −, �, −, A � B ∧ A, A, A
(Ax)

−, A ∧ B, −, �, A � B ∧ A, A
(cont R)

−, A ∧ B, −, � � B ∧ A, A
(∧L1)

−, A ∧ B, − � B ∧ A, A
(�E)

−, A ∧ B � B ∧ A
(∧R)

Next, we define a translation from LK− to NCLK. To translate Γ � Δ, we
replace − by 1 in Γ , and the succedent is produced from Δ by multiplying the
i-th formula by ni + 1 when the i-th group in Γ has ni formulas. An example is
given in Example 6.2. An denotes A, . . . , A (n times).

Definition 7.5 (Translation from LK− to NCLK). Γ � Δ is mapped to
Γ � ΔΓ , where Γ is defined as Γ0,1, Γ1,1, Γ2, . . . ,1, Γn and (A1, . . . , An)Γ

is defined as A
|Γ1|+1
1 , A

|Γ2|+1
2 , . . . , A

|Γn|+1
n if Γ is Γ0,−, Γ1,−, Γ2, . . . ,−, Γn and

Γi does not contain −.

Theorem 7.6. Γ �LK− Δ implies Γ �NCLK ΔΓ .
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Proof. By induction on the proof.
Case (→L). We suppose

Γ1, A → B, Γ2,− � Δ, A Γ1, A → B, Γ2, B � Δ

Γ1, A → B, Γ2 � Δ
(→L)

Case 1. Δ is not empty. Let D be the last formula of Δ and Γ be Γ1, A→B, Γ2.
We use (→L) with induction hypothesis in the following way.

.... IH

Γ 1 , A → B, Γ 2 ,1 � ΔΓ , A

.... IH

Γ 1 , A → B, Γ 2 , B � ΔΓ , D

Γ 1 , A → B, Γ 2 � ΔΓ
(→L)

Case 2. Δ is empty.
.... IH

Γ1, A → B, Γ2,1 � A

Γ1, A → B, Γ2,1 � ⊥, A
(⊥I)

.... IH

Γ1, A → B, Γ2, B �
Γ1, A → B, Γ2, B � ⊥,⊥ (⊥I)twice

Γ1, A → B, Γ2 � ⊥ (→L)

Γ1, A → B, Γ2 � (⊥E)

Case (∧L1) and Δ = φ.

Γ1, A ∧ B, Γ2, A �
Γ1, A ∧ B, Γ2, A � ⊥,⊥ (⊥I)twice

Γ1, A ∧ B, Γ2 � ⊥ (∧L1)

Γ1, A ∧ B, Γ2 � (⊥E)

Cases of other left logical rules with the empty succedent are similarly proved.
Case (weak R).

Γ � ΔΓ

Γ ,1 � ΔΓ , A
(sweak)

Case (weak L). If Δ is not empty, this is proved by (sweak). If Δ is empty,
this is proved by (weak L) in Proposition 6.6. �

Example 7.7. The LK−-proof of −, A∧B � B∧A in Example 2.2 is translated
into the NCLK-proof

�, A ∧ B, �, B � B ∧ A, B ∧ A, B, B
(Ax)

�, A ∧ B, � � B ∧ A, B ∧ A, B
(∧L2)

�, A ∧ B, �, A � B ∧ A, B ∧ A, A, A
(Ax)

�, A ∧ B, � � B ∧ A, B ∧ A, A
(∧L1)

�, A ∧ B � B ∧ A, B ∧ A
(∧R)

Actually these two translations are the inverses of each other with respect to
provability. Let the sequent Γ � Δ in NCLK be translated into the sequent
(Γ � Δ)1 in LK− and the sequent Π � Σ in LK− be translated into the sequent
(Π � Σ)2 in NCLK. By (1E2) in Proposition 6.6 (3) and (1E), we can show
that if ((Γ � Δ)1)2 is provable in NCLK, then Γ � Δ is provable in NCLK. By
(cont R) and (1E) in Proposition 7.1, we can also show that if ((Π � Σ)2)1 is
provable in LK−, then Π � Σ is provable in LK−.

Finally we show the equivalence.
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Theorem 7.8 (Equivalence between NCLK and LJ). Γ �NCLK A if and
only if Γ �LJ A.

Proof. From the left-hand side to the right-hand side.
By Theorem 7.3, Γ−1 �LK− A. By Theorem 4.2, Γ �LJ A.
From the right-hand side to the left-hand side.
By Proposition 5.1, −, Γ �LK− A. By Theorem 7.6, 1, Γ �NCLK A|Γ |+1. By

(1E) and (cont R) in Proposition 6.6 (2), we have Γ �NCLK A. �

8 Concluding Remarks

We gave the non-commutative first-order sequent calculus NCLK and showed
that it is equivalent to the first-order intuitionistic sequent calculus LJ. We also
showed that it becomes equivalent to the first-order classical sequent calculus LK
when we add the exchange rule to the system. In order to do that, we extended
the non-commutative positive fragment to the system LK− having antecedent-
grouping and no right exchange rule. We showed the equivalence between LK−

and LJ. We also gave translations between LK− and NCLK.
The cut elimination theorem holds in LK−. It is proved by extending Theorem

4.1 and using the cut elimination theorem for LJ. The cut elimination theorem
is also proved to hold for NCLK by using that for LK− and the translations.

The systems NCLK and LK− give a starting point for research on logical
systems based on non-commutative sequents. They will clarify those systems
and enable us to extend them.
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Abstract. One-counter processes are pushdown processes over a single-
ton stack alphabet (plus a stack-bottom symbol). We study the prob-
lems of model checking asynchronous products of one-counter processes
against 1) first-order logic FO(R) with reachability predicate, 2) the fi-
nite variable fragments FOk(R) (k ≥ 2) of FO(R), 3) EF-logic which
is a fragment of FO2(R), and 4) all these logics extended with simple
component-wise synchronizing predicates. We give a rather complete pic-
ture of their combined, expression, and data complexity. To this end, we
show that these problems are poly-time reducible to two syntactic restric-
tions of Presburger Arithmetic, which are equi-expressive with first-order
modulo counting theory of (N, <), for which we give optimal quantifier
elimination procedures. In particular, these problems are all shown to be
in PSPACE, which is in sharp contrast to the closely related problem of
model checking FO(R) over pushdown processes (with one stack) which
has nonelementary complexity. Finally, we apply our proof method to
give a fixed automatic (and so rational) graph whose modal logic theory
has nonelementary complexity, solving a recently posed open question.

1 Introduction

Pushdown automata (PDA) are a natural model for sequential programs with
recursive calls and their model checking problems have been studied extensively.
It is well-known that, over PDA, the problems of model checking first-order
logic with reachability predicate FO(R) and monadic second-order logic MSO

are decidable in nonelementary recursive time [20]. In fact, PDA (even with
one control state) can easily generate natural numbers (N,+1) with a successor
relation (a.k.a. S1S) and the infinite binary tree with two successor relations
(a.k.a. S2S). Since the FO(R) theory of S2S and the MSO theory of S1S have
nonelementary complexity [4,24], the same lower bound can be deduced for PDA.
In contrast, when considering modal and temporal logics — such as EF-logic,
LTL, CTL, and μ-calculus — the complexity of model checking PDA is at most
EXPTIME [3,5,27,28].

One-counter processes (OCPs) are PDA over a singleton stack alphabet (plus
a non-removable stack-bottom symbol). The problems of model checking basic
modal logic, EF-logic, and μ-calculus over one-counter processes have been stud-
ied, and their complexity are lower than the corresponding problems for general

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 485–499, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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PDA [8,10,11,23]. On the other hand, since OCPs can easily generate S1S, it
follows from [24] that model checking MSO over OCPs is nonelementary. The
complexity of model checking FO(R) over OCPs is, however, unknown. Unlike
the case of general PDA, it is easy to show that OCPs cannot generate a graph
isomorphic to S2S. Furthermore, the FO theory of S1S with linear order is only
PSPACE-complete [7,24].

PDA are well-known to be incapable of modeling concurrent programs. One
common way to obtain concurrent behavior from pushdown processes is to con-
sider (finite) products of graphs generated by PDA. An asynchronous product
of k PDA P1, . . . ,Pk can be construed as a concurrent system with processes
P1, . . . ,Pk, each behaving independently (i.e. the processes do not interact).
Therefore, reachability for an asychronous product of PDA can trivially be re-
duced to the reachability problems for each of its components. Note that taking
synchronized products — the most general notion of products — of PDA (resp.
OCPs) easily yield a model that is as powerful as Turing machines (resp. Minsky
counter machines). There are several reasons for studying model checking prob-
lems over simple models of concurrent programs such as asynchronous products
of PDA and OCPs. First, Wöhrle and Thomas [29] have recently shown that,
when combined with logics such as FO(R) and EF-logic, asynchronous products
are powerful enough for modeling a finite amount of synchronization (synchro-
nization can be embedded in the formulas). Second, asynchronous products of
PDA and OCPs are some of the most basic nontrivial concurrent models that
are subsumed by more complex models such as ground tree rewrite systems [16],
PAD [18], automatic graphs [2], and rational graphs [19]. Some open problems
in the more general settings (such as the complexity of model checking EF-logic
[18,26]) seem difficult already in the restricted settings.

In this paper, we consider model checking problems of OCPs, as well as asyn-
chronous products of OCPs (ΠOCPs), with respect to specifications in 1) FO(R),
2) the k-variable fragments FOk(R) (k ≥ 2) of FO(R), and 3) EF-logic which is a
fragment of FO2(R). We also study these logics extended with simple component-
wise synchronizing unary predicates testing whether component i and j are the
same elements, which we denote by FOS(R), FOk

S(R), and EFS-logic. We give
a rather complete picture of their combined complexity (i.e. inputs consist of
systems and specifications), expression complexity (i.e. inputs consist only of
specifications with a fixed system), and data complexity (i.e. inputs consist only
of systems with a fixed specification).

Our results are summarized in Table 1 and Table 2 together with the recent
result from [8]. In particular, all our results are within PSPACE, in contrast to

Table 1. Results for OCPs

FO(R)
FO2(R) EF-logic

FO4(R)
Combined PSPACE PSPACE in PNP & PNP[log]-hard [8]
Expression PSPACE in P in P [8]

Data PH PH in PNP & PNP[log]-hard [8]
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Table 2. Results for ΠOCPs

FO(R)
FO2(R) EF-logic EFS-logicFO4(R)

FOS(R)
Combined PSPACE PSPACE PSPACE PSPACE
Expression PSPACE in P in P PSPACE

Data PH PH in PNP & PNP[log]-hard PH

PDA whose expression complexity for FO(R) is nonelementary [4]. Our upper
bounds are shown by first introducing two syntactic restrictions L and L′ of
Presburger Arithmetic, for which we give optimal quantifier elimination pro-
cedures, and showing that the ΠOCPs model checking problems are poly-time
reducible to either L or L′. Note that, to obtain a sharp upper bound, we can-
not consider only OCPs (without products) and apply Feferman-Vaught type
of composition methods (e.g. see [17,22,29]) as the resulting algorithm will run
in time that is nonelementary in the formula size. Concerning our lower bound
results, in contrast to the result in [8] that model checking EF-logic is in PNP,
data complexity of FO2(R) over OCPs is already hard for every level of PH.
On the other hand, the expression complexity of FO2(R) over ΠOCPs is in P.
This generalizes one of the key results in [8] that the expression complexity of
EF-logic over OCPs (without products) is in P. However, for each k > 3, we can
show that the expression complexity of FOk(R) is PSPACE-complete already for
OCPs. Also, notice that the combined complexity of EF-logic becomes PSPACE,
which holds already for products of two OCPs. Finally, notice that adding simple
synchronization relations to EF-logic causes the expression and data complexity
to increase significantly. In fact, we shall use its proof method to give a fixed
automatic (and so rational) graph whose modal logic theory has nonelementary
complexity, answering a recently posed question in [1,26].

The paper is organized as follows. We fix some necessary notations and defi-
nitions in Section 2. In Section 3 we define two syntactic restrictions L and L′ of
Presburger Arithmetic and prove that model checking problems for OCPs and
ΠOCPs are poly-time reducible checking formulas in these restricted logics. In
Section 4 we give optimal quantifier elimination procedures for L and L′ and
deduce optimal upper bounds for all problems in Table 1 and Table 2. We prove
our lower bounds results for OCPs and ΠOCPs in Section 5. In Section 6 we
give a fixed automatic graph whose modal logic has nonelementary complexity.
Finally, we conclude in Section 7 with future work. Due to space constraints,
most proofs have been relegated to the full version.

2 Preliminary

General Notations. Let Z denote the set of integers. Let N = Z≥0. For i, j ∈ N,
we use [i, j] to denote {i, i+ 1, . . . , j}. As usual, the notations (i, j), (i, j], and
[i, j) denote the subsets of [i, j] with the appropriate endpoints omitted. We
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use a + bN to mean the arithmetic progression {a + bk : k ∈ N}. Given n sets
S1, . . . , Sn, their product Πn

i=1Si is the set {(s1, . . . , sn) : ∀i ∈ [1, n](si ∈ Si)}.
As usual, for a set S, we use S∗ to denote the set of all finite strings over S. In
the sequel, we use pi to denote the ith prime number, e.g., p1 = 2.

Computational Complexity. We assume familiarity with complexity classes
L, P,Σp

k , PH, NP, PSPACE and EXPTIME (see [12]). The class PNP (resp. PNP[log])
consists of problems solvable by deterministic poly-time Turing machines with
polynomially (resp. logarithmically) many calls to an NP oracle [13]. As usual,
for each n ∈ Z>0, we use n-EXPTIME to denote the class of problems solvable in
n-fold exponential time. A problem is said to be elementary if it is in n-EXPTIME
for some n ∈ Z>0; otherwise, it is nonelementary. We assume familiarity with
the alternating Turing machines (ATMs) [12]. Recall that the class of problems
solvable by logspace (resp. poly-time) ATMs coincides with P (resp. PSPACE).
An ATM with not-states (i.e. states that invert the outcome of the run) can be
simulated by one without them without any extra space or time [12].

Graphs. Let Σ be a finite set of actions. A Σ-labeled graph is a tuple G =
(V, {Ea}a∈Σ), where V is a set of vertices of G, and each Ea ⊆ V × V is a
binary edge relation (a.k.a. transition relation) over V . Whenever Σ is clear
from the context, we shall omit mention of Σ. We also denote Ea by →a, and
write v →a v

′ instead of (v, v′) ∈→a. For each Σ′ ⊆ Σ, the transitive closure of
(
⋃

a∈Σ′ →a

)

is denoted by →∗
Σ′ . We also write → for →Σ .

Asynchronous products. Let Σ1, . . . , Σr be r pairwise disjoint sets of actions.
Let Σ be their union. For each i ∈ [1, r], let Gi = (Vi, {Ea}a∈Σi) be a Σi-
labeled graph. An asynchronous product of G1, . . . , Gr is the graph Πr

i=1Gi :=
(V, {Ea}a∈Σ), where V := Πr

i=1Vi and, whenever a ∈ Σi, u = (u1, . . . , ur),
and v = (v1, . . . , vr), we have (u, v) ∈ Ea iff (ui, vi) ∈ Ea and uj = vj for
all j �= i. Intuitively, the product is “asynchronous” as each edge relation in
Πr

i=1Gi changes at most one component in each vertex of Πr
i=1Gi, i.e., causing

no interaction between different components. See [22,29] for more details.

Other logical structures. We define S1S< to be the structure (N, <), i.e.,
natural numbers with a (binary) linear order relation <. The structure (N,+)
consists of natural numbers with a ternary relation + interpreted as additions
over N. See [12,25] for more details.

One-counter processes. A one-counter process (OCP) over an action alphabet
Σ is a tuple O = (Q, δ+, δ0), whereQ is a finite set of control states, δ+ ⊆ Q×Σ×
Q×{−1, 0, 1} is a finite set of non-zero transitions, and δ0 ⊆ Q×Σ×Q×{0, 1}
is a finite set of zero transitions. Transitions of the form (q, a, q′,−1), (q, a, q′, 0),
and (q, a, q′, 1) are, respectively, called pop transitions, internal transitions, and
push transitions. The size |O| of O is defined as |Q| + |δ0| + |δ+|. The OCP O
generates the graph G(O) = (Q × N, {Ea}a∈Σ), where ((q, n), (q′, n + k)) ∈ Ea

iff either n = 0 and (q, a, q′, k) ∈ δ0, or n > 0 and (q, a, q′, k) ∈ δ+.



Model Checking FO(R) over One-Counter Processes and beyond 489

An asynchronous product O of r OCPs is simply a tuple of r OCPsO1, . . . ,Or

over pairwise disjoint action alphabets Σ1, . . . , Σr, whose control states need not
be parwise disjoint. The product O has action labels Σ := Σ1 ∪ . . . ∪Σr. Then,
the graph G(O) generated by O is defined to be the Σ-labeled graph Πr

i=1G(Oi).
The system O also defines another graph GS(O), which is simply G(O) expanded
with the “synchronizing” edge relations {=i,j}1≤i�=j≤r that are defined as

=i,j := {(c, c) : ci = cj},

where c = (c1, . . . , cr). In other words, the relation =i,j contains all self-loops in
G(O) restricted to tuples, where ith and jth component agree. The graph GS(O)
has action labels Σ ∪ {(i, j)}1≤i�=j≤r.

Logics. We assume familiarity with first-order logic FO (see [15]). If the free
variables of φ ∈ FO are amongst x1, . . . , xn, we may write φ(x1, . . . , xn) instead
of φ. Given a graph G = (V, {Ea}a∈Σ) and a tuple v = (v1, . . . , vn) ∈ V n, we
write G |= φ[v] to mean that φ is true in G over the valuation which assigns vi

to xi. The same notations can be easily defined when dealing with (N,+). The
quantifier rank of φ ∈ FO is the maximum quantifier nesting depth in φ.

The k-variable first-order logic FOk is the restriction of FO to formulas using
at most k variables. Over Σ-labeled graphs, the logic FO(R) (resp. FOk(R)) is
the extension of FO (resp. FOk) with binary relations RΣ′ (for each Σ′ ⊆ Σ)
interpreted as the transitive closure relation →∗

Σ′ (see [29]). Denote RΣ by R.
In the sequel, we often use →∗

Σ′ to denote RΣ′ .
Formulas in the basic modal logic ML over Σ-labeled graphs are built from

the following grammar: φ, ψ ::= ! | ¬ψ | φ ∨ ψ | 〈a〉φ (a ∈ Σ). Given a graph
G = (V, {Ea}a∈Σ) and each φ ∈ ML, define a set [[φ]]G ⊆ V as follows:

(1) [[!]]G = V ; (2) [[¬φ]]G = V − [[φ]]G
(3) [[φ ∨ ψ]]G = [[φ]]G ∪ [[ψ]]G
(4) [[〈a〉φ]]G = {u ∈ V : ∃v ∈ V (u→a v and v ∈ [[φ]]G)}

As usual, use ⊥, φ ∧ ψ, and [a]φ to denote ¬!, ¬(¬φ ∨ ¬ψ), and ¬〈a〉¬φ, re-
spectively. The logic ML(R) is the extension of ML with reachability modalities
〈RΣ′〉 (for eachΣ′ ⊆ Σ), where [[〈RΣ′〉φ]]G := {u ∈ V : ∃v ∈ V (u→∗

Σ′ v and v ∈
[[φ]]G)}. For the purpose of this paper, the EF-logic is the logic ML(R). [This is
a slightly more general logic than the commonly considered EF-logic, which is
more convenient to work with in our cases. However, all our results will hold as
well for the restricted EF-logic.] There is an easy standard translation (see [15])
from formulas in ML (resp. ML(R)) to formulas in FO2 (resp. FO2(R)) with one
free variable. Over ΠOCPs, we shall use FOS(R), FOk

S(R), MLS(R), and the
EFS-logic to denote the logics FO(R), FOk(R), ML(R), and the EF-logic with
synchronizing predicates {=i,j}, interpreted over graphs of the form GS(O).

The model checking problems for any of the above logic L over OCPs (resp.
ΠOCPs) can be defined in the obvious way, i.e., with respect to the graph G(O)
generated by the input OCP (resp. ΠOCPs). The input formulas are permitted to
have free variables, which are to be interpreted as configurations in G(O), where
numbers are represented in binary. Also, if L is FOS(R), FOk

S(R), MLS(R), or
the EFS-logic, the interpretation is over GS(O).
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The first-order modulo counting logic FOMOD extends FO with the modulo
counting quantifiers ∃p,q, for each q ∈ Z>0 and p ∈ [0, q). In this paper, we
consider FOMOD only over (N, <). The semantics of FOMOD is defined over (N, <)
as follows: (N, <) |= ∃p,qxφ(x, b) iff the number l := |{a ∈ N : (N, <) |= φ(a, b)}|
is either infinite or finite and l ≡ p (mod q). See [21] for more details.

Alternation rank. Given an FO formula φ, push all the negations to atomic
propositions level. The alternation rank AL(φ) of φ is then defined as the maxi-
mum number of alternations of operators in {∀,∧} and operators in {∃,∨} over
all paths from the root to the leaves in the parse tree of φ.

Gödel encoding. For the purpose of this paper, we define the Gödel function
G : Z>0 → {0, 1}ω mapping positive integers to infinite binary words as follows:
if n = Πi>0p

ji

i , where ji ∈ N and pi the ith prime, then define G(n) = j′1j
′
2 . . .,

where j′i = 0 if ji = 0 and j′i = 1 if ji > 0.

3 The Logics L and L′

We define our first syntactic restriction L of Presburger Arithmetic, to which we
will reduce the model checking of FO(R) over ΠOCPs.

Definition 1. The syntax of the logic L is as follows. Atomic propositions are
of the form:

– x ∼ y + c, where ∼∈ {≤,≥,=},
– x ∼ c, where ∼∈ {≤,≥,=},
– x ≡ y + c (mod d), where c ∈ [0, d− 1], and
– x ≡ c (mod d), where c ∈ [0, d− 1].

Here, x and y can take any variables, while c and d are constant natural num-
bers, given in binary representations. We then close the logic under boolean com-
binations, and existential and universal quantifications. The semantics is given
directly from Presburger Arithmetic. The expression x ≡ y + c (mod d) is to be
interpreted as the Presburger formula ∃z( x = y + c+ dz ∨ x+ dz = y + c ).

Intuitively, the logic L is the fragment of Presburger Arithmetic that permits
only inequality tests, addition with constants, and modulo tests. We now im-
pose some further syntactic restrictions to our logic L, to which model checking
FO2(R) over ΠOCPs is still poly-time reducible.

Definition 2. Define the logic L′ as follows. The only variables allowed are xi

and yi, where i ∈ Z>0. The atomic propositions of L′ are given as follows for
each i ∈ Z>0:

– xi ∼ yi + c and yi ∼ xi + c,
– xi ∼ c and yi ∼ c,
– xi ≡ yi + c (mod d) and yi ≡ xi + c (mod d), and
– xi ≡ c (mod d) and yi ≡ c (mod d).
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Here, c and d are constant natural numbers given in binary. We then close the
logic under boolean combinations, and existential and universal quantifications.

The logic L′ allows only two variables xi and yi to be related. In fact, if we only
allow x1 and y1 as variables, then L′ coincides with FO2 fragment of L.

We shall briefly discuss the expressive power of L in terms of subsets of N
k that

can be defined in the logics. It can be shown that L coincides with the FOMOD
theory over (N, <). In fact, [21] shows that FOMOD theory over (N, <) admits a
quantifier elimination, when the vocabulary is expanded with congruence tests.
Therefore, L subsumes FOMOD over (N, <). To show that L ⊆ FOMOD(N, <),
observe that expressions of the form x ∼ y+c can easily be replaced by equivalent
FO formulas over (N, <). Also, the atomic formula x ≡ y + c (mod d) can be
defined as

∧d−1
a=0(y ≡ a (mod d) ↔ x ≡ a+c (mod d)), and congruence tests x ≡

a (mod d) can be defined in FOMOD over (N, <) as ∃a,dy(y < x). The expressive
power of FOMOD over (N, <) was shown in [21] to be strictly in between FO over
(N, <) and Presburger Arithmetic. For example, it was shown that Presburger
formulas of the form x = 2y is not definable in FOMOD over (N, <). Finally, we
shall emphasize that the proof in [21] of quantifier elimination for FOMOD over
(N, <) expanded with congruence tests is nonconstructive.

The membership problem of the logic L is as follows: given φ(x) ∈ L, where
x = (x1, . . . , xn) and a tuple a ∈ N

n in binary, decide whether N |= φ(a). The
membership problem for L′ can be defined similarly. We now state a propo-
sition, which can be proved easily (but somewhat tedious) using the result in
[8, Lemma 4.6].

Proposition 3. There is a poly-time reduction from the problem of model check-
ing FOS(R) (resp. FO2(R)) over ΠOCPs to the membership problem for L (resp.
L′). Furthermore, the alternation rank of the output formula in L (resp. L′) is
the same as the alternation rank of the input formula in FOS(R) (resp. FO2(R))
up to addition by a small constant.

4 Upper Bounds

In this section, we shall show that the combined and data complexity of FOS(R)
over ΠOCPs are, respectively, in PSPACE and PH. We then show that the ex-
pression complexity of FO2(R) is in P. To deduce a PNP upper bound for data
complexity of EF-logic over ΠOCPs, it suffices to invoke the Feferman-Vaught
type of composition method for EF-logic [22] and use the PNP algorithm for
model checking EF-logic over OCPs from [8]. Observe that these will give the
claimed upper bounds in Table 1 and Table 2.

4.1 Combined and Data Complexity of FOS(R)

Theorem 4. The combined and data complexity FOS(R) over ΠOCPs are in
PSPACE and in PH, respectively.

By Proposition 3, to deduce this theorem it suffices to prove the following
proposition.
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Proposition 5. The membership problem of L-formulas is in PSPACE. More-
over, fixing the alternation rank of input formulas, the problem is in PH.

The proof is done via a quantifier elimination technique (e.g. see [12] for an
overview). Loosely speaking, our proof can be thought of as an extension of
Ehrenfeucht-Fräıssé games on linear orders (e.g. see [15]) with modulo tests. We
first define an equivalence relation ≡k

p,m on tuples of natural numbers.

Definition 6. Given two (k + 1)-tuples a = (a0, . . . , ak), b = (b0, . . . , bk) of
natural numbers such that a0 = b0 = 0 and two numbers p,m > 0, we write
a ≡k

p,m b iff for all i, j ∈ [0, k] the following statements hold:

1. |ai − aj | < pm implies |ai − aj | = |bi − bj|,
2. |bi − bj| < pm implies |ai − aj | = |bi − bj |,
3. |ai − aj | ≥ pm iff |bi − bj | ≥ pm,
4. ai ≡ bi (mod p),
5. ai ≤ aj iff bi ≤ bj.

It is easy to see that, given m′ ≥ m > 0, we have a ≡k
p,m′ b implies a ≡k

p,m b.
Similarly, if p|p′, then a ≡k

p′,m b implies a ≡k
p,m b. The following lemma can be

used to eliminate a quantifier.

Lemma 7. Given two (k+1)-tuples a = (a0, . . . , ak), b = (b0, . . . , bk) of natural
numbers such that a0 = b0 = 0 and two numbers p,m > 0, if a ≡k

p,3m b, then for
all a′ ∈ N, there exists b′ ∈ N such that a, a′ ≡k+1

p,m b, b′.

Let us consider only tuples a = (a0, . . . , ak) of natural numbers satisfying a0 = 0.
Given an ≡k

p,3m-equivalence class C and an ≡k+1
p,m -equivalence class C′, we say

that C′ is consistent with C if there exist a tuple a = (a0, . . . , ak) of natural
numbers and a number a′ ∈ N such that a0 = 0, a ∈ C, and (a, a′) ∈ C′. The
following lemma shows that we need not consider large numbers when eliminat-
ing a quantifier.

Lemma 8. Let a = (a0, . . . , ak) be a tuple of natural numbers and C be its
≡k

p,3m-equivalence class. Then, every ≡k+1
p,m -equivalence class has a representative

in the set {(a, a′) : 0 ≤ a′ ≤ max(a) + pm+ p}.

Define r(0,m) := m and r(n + 1,m) := 3r(n,m), for n ∈ N. By induction,
we have r(n,m) = 3nm. Let us now define the notion of offsets and periods of
formulas in L. If φ are atomic formulas of the form x ∼ y + c, x ∼ c, x ≡ y + c
(mod d), or x ≡ c (mod d), then offsets of φ are defined to be the integer c. If φ is
not an atomic formula, then its offset is the largest offset of atomic subformulas
of φ. If φ are atomic formulas of the form x ∼ y + c or x ∼ c, then its period
is defined to be 1. If φ are atomic formulas of the form x ≡ y + c (mod d) or
x ≡ c (mod d), then its period is defined to be d. Otherwise, if φ is not an atomic
formula, its period is defined to be the least common multiple of the periods of
each of its atomic subformulas. For p,m ∈ Z>0, define Lp,m to be formulas in
L, whose periods divide p and whose offsets are smaller than m.



Model Checking FO(R) over One-Counter Processes and beyond 493

Lemma 9. Let p,m ∈ Z>0. Suppose a = (a0, . . . , ak), b = (b0, . . . , bk) are tuples
of natural numbers satisfying a0 = b0 = 0 and a ≡k

p,r(n,m) b. Then, given a
formula φ(x1, . . . , xk) in Lp,m of quantifier rank n,

(N,+) |= φ(a1, . . . , ak) ⇔ (N,+) |= φ(b1, . . . , bk).

We are now ready to prove Proposition 5.

Proof (of Proposition 5). We now give a poly-time ATMM which checks whether
(N,+) |= φ(a1, . . . , an) for given a formula φ(x1, . . . , xn) and a n + 1-tuple
a = (a0, . . . , an), where a0 = 0. First, push all the negations downward to the
atomic propositions level, which can be done easily. Suppose that p and m be,
respectively, the period and offset of the input formula. Now if φ is an atomic
proposition (i.e. inequality, or modulo tests), it is easy to see that M can check
it in poly-time. If φ is ψ ∨ψ′ (resp. ψ∧ψ′), then existentially (resp. universally)
guess ψ or ψ′ and check the guessed formula. If φ is of the form ∃xψ(y, x) (resp.
∀xψ(y, x)) and has quantifier rank k, then M existentially (resp. universally)
guesses a number an+1 not exceeding max(a)+pr(k,m)+p ≤ max(a)+p3km+p
and check whether (N,+) |= ψ(a, an+1). The upper bound for an+1 is sufficient
due to Lemma 8.

To analyze the running time of M , notice that the maximum number that
M can guess on any of its run on input φ of quantifier rank h and a tuple a of
natural numbers (in binary) is max(a) + Σh

j=0(pr(j,m) + p) ≤ max(a) + p(h+
1)3hm+p(h+1), which can be represented using polynomially many bits. [Note
that p and m are represented in binary and so the guessed number is polynomial
in log(p) and log(m).] This implies that membership of L-formulas is in PSPACE.
Finally, notice that the number of alternations used by M corresponds to the
alternation rank of φ. Therefore, considering only formulas of fixed alternation
rank, the membership problem for L-formulas is in PH. ��

4.2 Expression Complexity of FO2(R)

Theorem 10. The expression complexity of FO2(R) over ΠOCPs is in P.

Define L′
p,m to be the set of all formulas in L′ whose periods divide p and whose

offsets do not exceed m. Let L′
p,m(n) to be the set of all formulas in L′

p,m that
use only variables in {x1, . . . , xn} ∪ {y1, . . . , yn}. For all fixed p,m, n ∈ Z>0, the
membership problem of L′

p,m(n) is as follows: given φ(x, y) ∈ L′
p,m(n) and two

tuples a, b ∈ N
n of numbers in binary representation, decide whether (N,+) |=

φ(a, b). By Proposition 3, Theorem 10 follows from the following proposition.

Proposition 11. For fixed p,m, n ∈ Z>0, the membership problem of L′
p,m(n)

is in P.

This proposition can also be proved via quantifier elimination. The intuition that
we can obtain a poly-time algorithm is from a two-pebble Ehrenfeucht-Fräıssé
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games over linear orders (see [15]), which can only distinguish small linear orders
(i.e. only linear in the quantifier rank of the FO2(R) formula). The proof is similar
to the case for FO(R), but is much more tedious.

5 Lower Bounds

In order to facilitate our lower bound proofs in this section, we shall define
a 2-player game, called the buffer game, which we shall prove to be PSPACE-
complete. First, let LDIV be the set of quantifier-free L-formulas in 3-CNF (i.e.
in CNF and each clause has exactly three literals) with one free variable x, whose
atomic propositions are of the form x ≡ 0 (mod p) where p is a prime number.
The buffer game is played by Player ∃ and Player ∀. An arena of the buffer
game is a tuple (v, k, φ), where v is a finite and strictly increasing sequence of
positive integers, k is the number of integers in v, and φ a formula of LDIV.
The buffer game with arena (v, k, φ), where v = (v1, . . . , vk), has k + 1 rounds
and is played as follows. Each round r defines a positive number mr, which
represents the current buffer value. At round 0, Player ∃ chooses a number m0
to be written to the buffer. Suppose that 0 < r ≤ k, and m0, . . . ,mr−1 are
the buffer values chosen from the previous rounds. At even (resp. odd) round
r, Player ∃ (resp. Player ∀) rewrites the buffer by a number mr ≥ mr−1 of his
choosing such that mr ≡ mr−1 (mod Πvr

j=1pj), i.e., mr = mr−1 + c
(

Πvr

j=1pj

)

for
some c ∈ N. In particular, by Chinese remainder theorem, this condition implies
that, for each 1 ≤ j ≤ vr, pj |mr iff pj |mr−1. In other words, each player is not
allowed to “overwrite” some divisibility information in the buffer. Player ∃ wins
if (N,+) |= φ(mk). Otherwise, Player ∀ wins. The problem BUFFER is defined
as follows: given an arena (v, k, φ) of the buffer game, where each number is
represented in unary, decide whether Player ∃ has a winning strategy. For each
n ∈ N, we define the problem BUFFERn to be the restriction of the problem
BUFFER which takes only an input arena of the form (v, n, φ).

Lemma 12. The problem BUFFER is PSPACE-complete. The problem BUFFERk

is Σp
k+1-complete.

Loosely speaking, by applying Gödel encoding one can encode each truth val-
uation for boolean formulas into a number. Therefore, boolean formulas can
be reduced to statements about divisibility. Furthermore, a block of ∃ (resp.
∀) quantifers in a quantified boolean formula can be reduced into a choice of
number at a single round in the buffer game for Player ∃ (resp. Player ∀).

We now use the buffer game to prove our first lower bound result for the
problem of model checking OCPs.

Proposition 13. Combined complexity of FO2(R) on OCPs is PSPACE-hard.
For every k ∈ N, there is a fixed formula φk of FO2(R) with k + c quantifier
alternations, for some small constant c ∈ N, such that checking φk over OCPs
is Σp

k-hard.

To prove this theorem, we first state a standard lemma, whose proof can be
found in [8,11] (similar proof techniques have been used earlier in [14]).
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Lemma 14. Given a LDIV-formula φ, we can compute in polynomial time an
OCP O with a fixed set Γ of action symbols and an initial state qI such that, for
each positive integer m, it is the case that G(O), (qI ,m) |= α iff (N,+) |= φ(m),
where α is a small fixed EF formula.

The crucial idea in the proof of the above lemma is that both divisibility and
indivisibility tests of the form p|x or p� |x can be reduced to a certain reachability
question for an appropriate OCP O by embedding a cycle of length p in O.

Proof (sketch of Proposition 13). We give a poly-time reduction from BUFFER.
Given an arena A = (v, k, φ), we compute an FO2(R) sentence φ′, and a OCP
O = (Q, δ+, δ0) such that Player ∃ has a winning strategy in A iff G(O) |= φ′.
Let v = (v1, . . . , vk). As we shall see, φ′ depends only on k and has quantifier
rank k + c for some small constant c ∈ N, which by Lemma 12 will prove the
desired lower bound for data complexity.

We now run the algorithm given by Lemma 14 on input φ to compute a OCP
O1 = (D, δ+1 , δ

0
1) with initial state qI ∈ D. The key now is to build on top of O1

and the fixed formula α (which can be thought of as an FO2(R) formula) so as
to encode the initial guessing of numbers.

The structure of our output OCP O can be visualized as

B0 → B1 . . .→ Bk → O1.

The number k+1 of blocks Bi in O corresponds to the number of rounds played
in the buffer game. The initial state is in block B0. Our output FO2(R) formula
will have k + 1 leading (alternating) quantifiers so as to ensure that each player
moves in their designated rounds. One variable will be used for storing the last
buffer value from the previous round, while the other is used for storing the
buffer value after the designated player has made his move. We now describe
how to ensure that at each round i (i > 0) the player can only add numbers that
are in the set Hi := {c

(

Πvi

j=1pj

)

: c ∈ N}. Define the function g : Z>0 → Z>0 as
g(s) := Πs

j=1pj. Note that g grows exponentially in s, which is why we cannot
simply embed a cycle of length g(vi) in Bi, for each i ∈ [1, k]. On the other hand,
notice that Hi is Z− Li, where Li :=

(

⋃

1≤j≤vi

⋃

a∈(0,pj) a+ Npj

)

∪ Z<0.
In turn, Li can be characterized as the set of weights of paths in a small finite

graph Gi from a vertex s to a vertex t, where the weight of a path is the sum
of the weights of its edges (which we shall allow to be only either -1,0, or 1). In
fact, Gi will have O(Σvi

j=1pj) vertices, which is polynomial in vi. For example,
the set (1+ 2N)∪ (1+3N)∪ (2+3N)∪Z<0 corresponds to the weights of s→∗ t
paths in the graph in Figure 1.

Furthermore, the graph Gi can be thought of as an OCP. Adding the self-
loop transitions (s, loops, s, 0) and (t, loopt, t, 0) on states s and t, the binary
relation {((s, a), (t, a+ b)) : b ∈ Hi} can then be expressed in FO2(R) as ¬(x→∗

y) ∧Eloops
(x, x) ∧Eloopt

(y, y). Therefore, we shall embed the modified OCP Gi

into Bi, where t will be the entry state for block Bi+1 of O. [Bk+1 shall be
interpreted as O1.]
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Fig. 1. The s →∗ t path-weights in this graph equals (1+2N)∪(1+3N)∪(2+3N)∪Z<0

Finally, using this idea, it is not difficult to compute the desired FO2(R)
sentence by mimicking the k + 1 rounds of the game by using at most k + c
alternating quantifiers (using only the variables x and y). The end buffer value
m, which needs to be checked against φ, can be checked against α instead. ��

We can also apply Lemma 12 to prove the following lower bound.

Proposition 15. The combined complexity of model checking EF-logic over an
asynchronous product of two one-counter processes is PSPACE-hard.

Intuitively, instead of simulating each alternation in the buffer game as values
in the two variables x and y, we can simulate them as values in two different
counters. We can make sure that the divisibility information is not “overwritten”
by encoding it as a non-fixed formula.

We saw in the previous section that the expression complexity of FO2(R) over
ΠOCPs is in P. In contrast, we can show that this is not the case for FO4(R)
even over OCPs (without products).

Proposition 16. The expression complexity of FO4(R) (without equality rela-
tion) over OCPs is PSPACE-hard.

The fixed graph is in fact (N, <). The proof adapts the technique in [9] of
succinctly encoding addition arithmetic on large numbers using the successor
relations and linear order < with only four variables.

We already saw that the data complexity of EF-logic over ΠOCPs is PNP. In
contrast, we can show the following proposition.

Proposition 17. For each k ∈ N, there is a fixed EFS-logic formula φk such
that model checking φk over ΠOCPs is Σp

k-hard.

Intuitively, by using the synchronization constraints, one can faithfully simulate
two variables x and y in any given FO2(R) formula as values of two different
counters. This idea can easily be adapted for showing the following proposition
by appealing to Proposition 16.

Proposition 18. The expression complexity of EFS-logic over ΠOCPs is hard
for PSPACE.
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6 Modal Logic over Automatic Graphs

Automatic graphs [2] are those graphs G = (V, {Ea}a∈Σ), where V is a regular
subset of Σ∗ for some finite alphabet Σ, and each edge relation Ea ⊆ Σ∗×Σ∗ is
recognizable by a synchronous transducer over Σ. We briefly recall the definition
of synchronous transducers — see [2] for more details. A synchronous transducer
R over Σ is a finite word-automaton over the product alphabet Σ⊥×Σ⊥, where
Σ⊥ := Σ ∪ {⊥} and ⊥ /∈ Σ. Given v, w ∈ Σ∗ where v = a1 . . . an and w =
b1 . . . bm, define v⊗w to be the word c1 . . . ck overΣ⊥×Σ⊥, where k = max(n,m)
and

ci =

⎧

⎨

⎩

(ai, bi) if i ≤ min(n,m),
(⊥, bi) if n < i ≤ m,
(ai,⊥) if m < i ≤ n.

The edge relation definable by R consists of each ordered pair (v, w) ∈ Σ∗×Σ∗

such that the word v⊗w is accepted by R (in the usual automata sense). Rational
graphs [19] are similar to automatic graphs, but use a more general notion of
transducers.

The FO (resp. ML) theories of automatic (resp. rational) graphs are known
to be decidable, e.g., see [2,1]. In fact, the infinite binary tree S2S with a linear
order is automatic [2], which implies that model checking FO over automatic
graphs is nonelementary. Recently, the authors of [26] and [1] asked whether the
complexity of model checking ML over, respectively, automatic graphs and ratio-
nal graphs is nonelementary. We shall show that this is the case in the stronger
sense by establishing a fixed automatic graph whose ML theory is nonelementary.
Since automatic graphs are rational [19], the same can be said about rational
graphs. Our proof uses the proof method for Proposition 17. Due to space limit,
we shall only define a graph T whose modal logic theory we claim to be nonele-
mentary. Its proof can be found in the full version. Furthermore, one can easily
check that the graph T is automatic.

We denote by S2S< := ({0, 1}∗, succ0, succ1,≺) the infinite binary tree with
a descendant relation, i.e., succ0 := {(w,w0) : w ∈ {0, 1}∗}, succ1 := {(w,w1) :
w ∈ {0, 1}∗}, and ≺ := {(w,wv) : w, v ∈ {0, 1}∗}. Although the FO theory
of S2S< was proved to be nonelementary in [4], it is not easy to see whether
FOk suffices from the proof. Nevertheless, one can easily show that FO4 suffices
as follows. Using Stockmeyer’s well-known results [24] that equivalence of star-
free regular expressions is nonelementary, one can immediately deduce that FO3

theory over all finite linear orders with a unary predicate is nonelementary, since
there is a linear-time translation from star-free regular expressions to equivalent
FO3 formulas (e.g. see [6]). One may then use the linear-time reduction given in
[4] from FO theory of binary strings to FO theory of S2S<, which incurs only an
extra variable. So, we have the following proposition.
Proposition 19. The FO4 theory of S2S< is nonelementary.
Now define the graph

T := 〈{0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}∗;
{succi

0}4
i=1, {succi

1}4
i=1, {≺i}4

i=1, {=i,j}1≤i<j≤4, {Gi}4
i=1〉.



498 A.W. To

where the edge relations are defined as follows:

– succi
0 := {

(

w,w′
)

: w′
i = wi0 and ∀j �= i(wj = w′

j)}. This relation takes the
ith component to its left child.

– succi
1 := {

(

w,w′
)

: w′
i = wi1 and ∀j �= i(wj = w′

j)}. This relation takes the
ith component to its right child.

– ≺i:= {
(

w,w′
)

: wi ≺ w′
i and ∀j �= i(wj = w′

j)}. This relation takes the ith
component to its descendant.

– =i,j := {
(

w,w′
)

: wi = wj and ∀k(wk = w′
k)}. This relation simply loops if

the ith component equals the jth component.
– Gi := {

(

w,w′
)

: ∀j �= i(wj = w′
j)}. This relation takes the ith component to

any other word (i.e. global modality).

Proposition 20. The graph T is automatic and its ML theory is nonelementary.

Theorem 21. There exists a fixed automatic (and so rational) graph whose ML

theory is nonelementary.

7 Future Work

We conclude now with several future work. We would like to determine the
expression complexity of FO3(R) over OCPs and ΠOCPs. Our lower bound proof
for FO4(R) does not hold since FO3(R) cannot succinctly encode arithmetic of
large numbers using only successors and linear orders [9]. We would also like to
study the combined complexity of EF-logic over asynchronous products of PDA.
It is known to be PSPACE-hard [27] and decidable (by applying the compositional
method [22]), but no better upper or lower bound is known. [In fact, it seems not
clear how to adapt the proof of PSPACE upper bound for PDA to asynchronous
products.] On the other hand, it follows from the proof of Theorem 21 that model
checking EFS-logic over asynchronous products of PDA is nonelementary.
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11. Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-
checking and model-checking of one-counter automata. Inf. Comput. 188(1), 1–19
(2004)

12. Kozen, D.C.: Theory of Computation. Springer, Heidelberg (2006)
13. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst.

Sci. 36(3), 490–509 (1988)
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Abstract. We study the confluence of Ehrhard and Regnier’s differential nets
with exponential promotion, in a pure setting. Confluence fails with promotion
and codereliction in absence of associativity of (co)contractions. We thus intro-
duce it as a necessary equivalence, together with other optional ones. We then
prove that pure differential nets are Church-Rosser modulo such equivalences.
This result generalizes to linear logic regular proof nets, where the same notion
of equivalence was already studied in the literature, but only with respect to the
problem of normalization in a typed setting. Our proof uses a result of finiteness
of developments, which in this setting is given by strong normalization when
blocking a suitable notion of “new” cuts.

1 Introduction

The inception of Linear Logic (LL, [1]) in the 80’s has reinforced the bridge between logic
and computer science already established by the Curry-Howard correspondence years
before. LL is in fact a refinement of intuitionistic and classical logic brought forth by a fine
semantical analysis. One of its main features is the introduction of two dual modalities, the
exponentials ! and ?, regulating the use of structural rules (weakening and contraction),
which on the program side correspond to erasure and duplication of resources.

This endeavour, among other things, led the way to a new, parallel syntax of proofs,
proof nets. These are the syntax of choice for LL, especially when considering cut elim-
ination. In fact one of the main advances of LL over classical logic is that, though
preserving an involutive negation (and therefore two-sided sequents), it also preserves
properties of intuitionistic logic lacking in the classical framework. One of these, cen-
tral to our work, is confluence of cut elimination, i.e. the independence of the result of
the cut elimination procedure with respect to the actual cuts one decides to reduce.

A further semantical analysis led by Ehrhard [2] has recently provided LL with new
models based on topological vector spaces where we can take the derivative of an object.
The efforts of the same author and Regnier have permitted to lift such operations to syntax,
giving rise to Differential Linear Logic (DiLL, [3]), and their syntax, differential nets.
Three new rules are introduced to handle the !-modality (coweakening, cocontraction
and codereliction) which are duals to the LL rules handling ?. In the proofs as programs
paradigm, codereliction allows to introduce depletable resources, which may be asked for
many times but may be used just one time, nondeterministically choosing which query
they satisfy. This feature configures differential nets as a promising logical framework to
extend the Curry-Howard correspondence to nondeterminism and concurrency (see [4]).

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 500–514, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Actually, [3] gives the syntax for the promotion free fragment of DiLL only, giving
rise to differential interaction nets, a nondeterministic example of Lafont’s interaction
nets [5]. By modelling nondeterminism by formal sums confluence remains an impor-
tant property, which is however straightforward in an interaction net paradigm, where
no reduction can change the other ones. Here we will extend such property to the whole
of differential nets. Promotion in proof nets is handled by boxes, synchronized areas of
proofs enabling to mark what is to be erased or duplicated. Boxes break the interaction
net paradigm: there are cuts (the commutative ones) which can be changed by other
reductions, so confluence is definitely more delicate.

Part of a previous work of ours [6] was focused on proving confluence for the in-
tuitionistic fragment, which used the recursive types needed to translate λ-calculus.
There we observed that confluence fails without keeping into account some semanti-
cally grounded equivalences, namely associativity of contractions and cocontractions.
A fully quotienting syntax as the one used in [7] for LL is seemingly out of reach in
DiLL. Our solution in [6] was employing generalized (co)contraction cells in the style
of [8], and some additional reductions.

Here we generalize the result in three ways. By concentrating on the computational
contents rather than the logical one, we consider pure nets, where types (i.e. formulae)
play no role whatsoever, not even recursive ones. Furtherly, the needed equivalences
are settled to the maximum extent by means of. . . equivalences on nets. We thus gen-
eralize the equivalences and reductions of [9], providing as a byproduct the first proof
of confluence1 for such LL proof nets with equivalences in the completely pure case, as
previous works concentrated on normalization in the typed one. Finally, we are able to
introduce one more equivalence potentially giving the right to always consider boxes
without sums inside (the bang sum equivalence).

This result has several ramifications. As is evident in [10], this is the first step in
proving strong normalization in the typed case2. Furtherly, as can be deducted from [9],
this can be the ground for new work on calculi with explicit substitutions: whether by
extending some results to untyped calculi; or by considering explicit substitutions for
nondeterministic calculi akin to Boudol’s λ-calculus with resources (see [6]).

Our technique, reminiscent of the work done on LL in [10], uses a finite development
theorem used to prove a strong confluence property of a suitable notion of parallel
reduction.

1.1 Rewriting Theory Modulo Equivalence

The aim of this section is making the reader acquainted with the notion of rewriting
modulo equivalence, to the extent needed for our purposes. We refer to [11, Section
14.3] for more in-depth details and proofs.

Let (S ,→) be an abstract reduction system and let ∼ be an equivalence relation on S .
As usual,

=→ and
∗→ denote the reflexive and reflexive-transitive closures of→ respec-

tively. Take a symmetric relation �− � such that �− �∗ = ∼, possibly ∼ itself. Let s � t (t and
s are joinable modulo ∼) if s

∗→∼ ∗← t. We say then that→ is

1 To be precise, the stronger result of being Church-Rosser modulo (see Section 1.1).
2 Actually the subject of a future submission by the author and Pagani.
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– locally confluent modulo ∼ if←→ ⊆ �;
– confluent modulo ∼ if

∗←∼ ∗→ ⊆ �;
– locally coherent with �− � if �− �→ ⊆ �;
– Church-Rosser modulo ∼ (or CR∼) if ≈ ⊆ �, where ≈ := (→ ∪ ← ∪ ∼)∗;
– strongly normalizing modulo ∼ (or SN∼) if→∼ is SN, where3→∼ := ∼→∼;
– strongly Church-Rosser modulo ∼ if ∼ =← =→∼ ⊆ =→∼ =←;

The last definition is our terminology, while the rest follows [11]. Being Church-Rosser
modulo ∼ is the most important property of all those concerning confluence. In partic-
ular it implies the unique normal form modulo ∼ property, (≈ = ∼ on normal forms),
which again implies that in order to compute the normal form one can use just regular
reductions, without ever be forced to ∼-convert in order to get the result4. Contrary to
what happens in regular reduction, CR∼ is strictly stronger than plain confluence in
absence of WN [11, Remarks 14.3.6, Exercise 14.3.7]. Following are some important
lemmas: the first is a generalization of Newman’s Lemma, the last is a trivial result we
did not find in the literature which we will need in our proof.

Lemma 1 (Huet). If→ is SN∼, locally confluent modulo ∼ and locally coherent with
�− �, then it is CR∼.

Lemma 2 (van Oostrom).→ is CR∼ iff
∗→ is strongly CR∼.

Lemma 3. If→ is strongly CR∼, then it is CR∼.

Proof. Straightforward induction: to show that ∼ ∗← ∗→∼ is joinable, we proceed by in-
duction first on one side, then on the other.

2 The System

A net is intuitively a network of cells linked by wires connecting their ports. A little
more formally, a net π is given by the following data.

– A set p(π) of ports.
– A set c(π) of cells; to each cell c is assigned a symbol σ(c) in a given alphabet, a

port in p(π) called principal, and a number of other, auxiliary ones. How the latter
are treated distinguishes between two kinds of cells: in non commutative ones,
auxiliary ports are a finite sequence, in commutative ones they form a finite set.
Every port in p(π) can be associated with at most one cell; a port associated with
a cell is called connected, otherwise it is free. Free ports (also called conclusions)
are denoted by fp(π). The number of auxiliary ports is determined by the symbol
σ(c).

– A set w(π) of wires, which can be either unordered pairs {p, q} of ports, or dead-
locks, i.e. wires not connecting any port (intuitively short circuited wires). Each
port is in exactly one wire. A directed wire is an ordered pair (p, q) such that {p, q}
is a wire. Terminal wires are the directed ones going to the free ports.

3 Here like in the rest of the paper, := means “defined as”.
4 This also means there is never the need to perform conversion steps in order to ready some

redexes, i.e. make them visible.
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⊗ ∗ ` ∗ ? ? ?2 ?
!
! ?0 ?

tensor par dereliction contraction weakening
(commutative)

1 ∗ ⊥ ∗ ! ! !2 !
?
? !0 !

one bottom codereliction cocontraction coweakening
(commutative)

!
∑

i λi?
? ! box of DiLLk+1 (

∑
i λi polynet of DiLLk)

Fig. 1. The cells of differential nets. The labels in { !, ?, ∗ } assigned to ports will be needed only
later (see page 507).

An elementary path in π is one in the graph trivially obtained by taking cells and free
ports as nodes and directed wires as edges, which moreover does not intersect itself5. A
polynet is a formal sum of nets, or equivalently a multiset of nets, all sharing the same
free ports. At times we distinguish nets (thus singletons) from polynets by calling them
simple.

2.1 Statics

DiLL0 nets and polynets are built from all the symbols in Figure 1 but the box one.
These are exactly the differential interaction nets presented in [3]. For the moment let
us ignore the labels we assign to the ports in the figure, which will be needed only later
(see page 507). As usual, the apex of the cell represents the principal port, while the
auxiliary ones are depicted on the opposite side.

In order to add boxes, one proceeds by induction, by considering them as cells having
a whole polynet as symbol. Let DiLLk+1 nets and polynets be the ones built from all the
cells of Figure 1 where for each box its symbol is a polynet π in DiLLk and there is
a bijection between its ports and fp(π). The symbol σ(B) of a box B is also called its
contents. We will denote by !π a generic box having π as contents. A DiLL polynet π is
one of DiLLk for any k; if such k is minimal, we say that k is the depth of π (in fact, the
maximal number of nested boxes). A port is active if it is either a principal one, or an
auxiliary one of a box. A wire linking two active ports is a cut.

Figures 5 and 6 will show examples of differential nets. The explicit marking of ports
is dropped as they can always be identified with the extremities of wires.

Let p!(π), fp!(π) c!(π) and w!(π) be the set of all occurrences of ports, free ports, cells
and wires respectively occurring in π, including in all the contents of the boxes in π.
We can slice those sets by depth, so we will denote by pi(π), fpi(π) ci(π) and wi(π) the

5 Technically, one prohibits the repetition of unoriented wires and that three ports of the same
cell be crossed by the path.
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corresponding elements of the nets contained in i nested boxes, where i is called the
depth of the element in π6.

Correctness Criterion. As usual, the nets blindly built with the cells available are
not in general “correct”, where the word can take the meaning of unsequentializable
in sequent calculus, or having deranged computational behaviour. Since [12] one of
the most used correctness criteria for proof nets is that of switching acyclicity. Given a
DiLL net, a switching path is an elementary one which does not traverse two auxiliary
ports of any ` or contraction cell (does not bounce “above” it). A DiLL polynet is
called a DiLL proof net (or differential proof net) if it is switching acyclic, i.e. it has
no deadlocks nor switching cycles, and inductively all box contents are also switching
acyclic. From now on we will deal almost only with proof nets.

2.2 Dynamics

As with various calculi, the reduction of differential nets can be defined as the context
closure of a set of reduction rules, presented as pairs of redexes and contracta. A linear
context δ[ ] is a simple net δ together with a subset Hδ of its free ports (the hole of
δ[ ]). It is linear as it is not a sum and the hole is not inside a box. Given a simple net λ
and a bijection σ between Hδ and fp(λ), the plugging δ[λ] of a simple net λ in the hole
of δ[ ] amounts to identifying the ports according to σ and welding the wires that come
together in this way7, as shown in Figure 2. This definition is then extended by linearity
when we plug a polynet, by setting δ

[∑
i λi
]

:=
∑

i δ[λi].

δ

pkp1

Hδ

[
λ

σ(p1)σ(pk)

]
:= δ λ

Fig. 2. Plugging of a net in a context

Finally, contexts generalize the concept in the following way. A linear context δ[ ]
is a context; furthermore if ω[ ] is a context then δ[ω[ ]] for δ[ ] linear8, ω[ ] + π for π
polynet and !ω[ ] (i.e. a box containing a context) are also contexts. Plugging is easily
extended to all contexts. The context closure R̃ of a relation R is then defined by π R̃ σ
iff π = ω[λ], σ = ω[μ] and λ R μ.

We are now able to define multiplicative reduction
m→ and the exponential one

e→ by
context closure of the rules of Figure 3, which are pairs consisting of a simple net (the
redex) and a polynet (the contractum). Each redex here is identified by a unique cut.
The union

me→ of the two reduction is the cut elimination of DiLL.

6 All of this can be defined more formally by an inductive definition. Nevertheless we leave it to
the reader as an easy exercise.

7 For the quite delicate technical details the reader is referred to [13].
8 Composition of contexts should be defined, but it is trivial once plain plugging is defined.
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` ⊗ m→ ` ⊗⊗ ⊥ 1
m→ ?!π

e→ π ?!
e→

!π
α

e→ !π
α

εε2
e→ ε

ε0
+

ε0
ε εε0

e→ 0

α ?2
e→ ?2

?2

α

α
α ?0

e→ ?0

?0

!π
!

e→ !2

!π
!0

!π
!

?2

?2

Fig. 3. The multiplicative and exponential reduction rules of DiLL. ε and ε denote either ? and ! or
vice versa. α denotes any symbol among !2, !0 or a box symbol π. In particular weakening against
coweakening reduces to the empty net. We make implicit use of the rule for context plugging
of sums: the π inside boxes is a polynet. For example the dereliction on box rule may introduce
sums.

ε2

ε2 a�− � ε2

ε2

!π
?2

p�−� !π
?2

!π + σ
s�−� !2

!σ

!π

?2

?2

ε2

ε0 n→ !

π
?0

+

�

p→ !2

!�

!π

?2

?2

!0
z→ !0

?0

?0

with π, σ � 0.

Fig. 4. Top: the rules for associative equivalence a∼, the push one
p∼ and the bang sum one s∼; �− �

denotes a one-step conversion. Bottom: the rules for neutral reduction
n→, the pull one

p→ and the
bang zero one

z→. The condition π, σ � 0 applies to all rules.

2.3 Equivalences and Canonical Reductions

As we will show as a remark at page 506, the reductions just presented fail to give
a confluent system: we cannot ignore associativity of (co)contractions and neutrality
of (co)weakening over (co)contraction. This prompts us to introduce the former as
an equivalence and the latter as a reduction. As we need anyway to consider reduc-
tion modulo an equivalence, we also study other equivalences (backed by semantical
and observational equivalence) which are optional though must be taken together. Each
equivalence is accompanied by a reduction which in a sense settles a zeroary case of the
equivalence. Reversing each of these gives unwanted looping reductions. The associa-
tive, push and bang sum equivalences, together with the neutral, pull and bang zero
reductions (which do not reduce cuts), are shown in Figure 4. The π, σ � 0 condition
is needed, lest one would be able to spawn trees of contractions from nothing, giving
looping reductions.
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!π!

!

b

a
e→ !2

!π!0

!π
!

?2

?2! e∗→ !2

!π!0

!0

!π!

!

?2

+ !2!2

!π!0

!0

!π!

!0

!π!0

!

?2
?2

Fig. 5. Reduction of a box with two coderelictions on it. Starting with codereliction b swaps
the two linear copies of !π and therefore both the cocontraction and contraction trees in the last
addend.

The push equivalence9 has already been studied in the literature on proof nets and
explicit substitutions [8,9]. The pull reduction may seem somewhat complicated, how-
ever it is a generalization of the reduction pulling out weakenings from boxes [9]. The
usual reduction can be reobtained when having � = 0, which by means of a z-reduction
and some n ones gives the expected result. Such form (which in fact contains a sort of
on-the-fly s-conversion) is required in order to get local coherence10.

The part about sums inside boxes was already known to be valid semantically and
observationally: we give here some syntactic ground to using it. From the point of view
of semantics it is interesting to note that it implements the well known exponential
isomorphism !A ⊗ !B � !(A & B) from linear logic (see [2]).

From now on ∼ and
c→ (canonical reduction) will denote either a∼ and

n→ or the union
of the a, p and s conversions and the npz-reduction respectively. By checking the cases
not already proved in the literature, one gets the following.

Proposition 4 (stability of correctness). If π is switching acyclic and π
mec−→ π′ or

π ∼ π′ then π′ is switching acyclic also.

Examples and remarks. Figure 5 gives the reason to employ associative equivalence,
showing the reduction of the coderelictions on box critical peak, which cannot be joined
with regular reductions. One reduction only is shown, as the other is symmetric. Other
critical peaks due to the codereliction on box rule (namely when against dereliction and
contraction) show that also the n-reductions cannot be left out. One can already see two
big differences with respect to LL and the work done with it in [10]: firstly, sums may
arise even without the “logical” step of dereliction on box; moreover, the codereliction
on box rule, which reduces a commutative cut, changes the possible cuts on all other
cuts of the box. These problems prevent an immediate adaptation of the measures used
in [10]. The nets in Figure 6 are examples already known in LL showing issues about
correctness and types.

9 Though an equivalence is not directed, the name comes from [14] and [6] where it was a
reduction. We felt like keeping it for its good pairing with the pull reduction.

10 The problem arises in a p-equivalence and n-reduction critical peak, as the latter may eliminate
a contraction of one of the addends in the box.
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!

?1

⊥ me∗←−
!

? 1

1

!

?⊥
⊥

me∗−→
!

? ⊥
1

(a) Non-confluence in absence of switching acyclicity.

!?2
? ?2

? e→ !?2
?

? ! ?2
? e→ ?2

?
! ?2

?

(b) Non-termination of exponential reduction with switching acyclicity.

Fig. 6. Issues with confluence. Figure 6(a) shows the need for correctness. The example shown is
even simply typed. Figure 6(b) shows how in the pure case even the exponential reduction alone
is not terminating.

3 The Finite Development Theorem

In [15], Danos proved the counterpart of the finite development theorem for MELL, and
Pagani and Tortora de Falco did the same for the whole of second order LL in [10]. In
this setting the actual definition of what a “new” redex is gets more technical.

3.1 Marking New Cuts

We define a notion of new and old cuts, by leaving a mark on the new ones. Marks
are cells of a new symbol with two ports and no reduction rule, graphically depicted by
little circles. Its main purpose is to block reductions and equivalences (for example a
mark between two contractions blocks the a-conversion).

Ideally, these marks are placed during reduction to block “new” wires. By new we
mean two kinds of wires: those that in a typed setting would decrease the logical com-
plexity of the cut formula, and those that before the reduction were exponential clashes.
The latter are peculiar to a truly untyped setting, and are brought by the opening box
and neutral reductions, which erase an exponential port. For example, if we erase marks
from the net shown in Figure 8, and we fire the dereliction against box redex we end up
with a valid multiplicative cut which was a clash before. Rather than lock this special
kind of “new” wires during reduction, we can lock all potentially dangerous clashes
since the start, as markings will prevent new clashes from arising. We thus need to
define what an exponential clash is.

Let τ be the partial function from p!(π) to the labels { !, ?, ∗ } thus defined. On ports
of cells it gives the values already shown in Figure 1; on the ports of marks it is unde-
fined; for p ∈ fp!(π) we set τ(p) = ? if p is over an auxiliary port of a box, we leave it
undefined otherwise. τ provides for a sort of pre-typing. A directed wire (p, q) is called
a !-wire (resp. ?-wire) if τ(p) = ? and τ(q) = ! (resp. vice versa), where however we let
at most one of the two be undefined. In any case ! and ?-wires are called exponential
(which applies to undirected wires also). An exponential clash (simply clash from now



508 P. Tranquilli

` ⊗ m→ ? !
e→ ? ! π e→ π

Fig. 7. The modified reduction rules of DiLL◦

? ! ! ?2

(a) A DiLL◦ net πwhere marks are
compulsory, such that (π◦�)◦ = π.

?2
?

! ?2
?

(b) The normal form in DiLL◦ of the
non-terminating net of Figure 6(b).

Fig. 8. Examples for DiLL◦

on) is a wire {p, q} such that one of τ(p), τ(q) is ! (resp. ?) and the other is defined but
not ? (resp. !)11.

DiLL◦ is the system given by polynets with marks and without clashes, and by chang-
ing some rules to introduce the mark as depicted in Figure 7. It is immediate to see that
the absence of clashes is preserved by reduction, as the new wires which could bring
close unmatched ports are interrupted by marks. From the point of view of DiLL, clash-
freeness imposes just that some marks be added: given any DiLL polynet π, we define
the injection π◦ in DiLL◦ by placing a mark interrupting each clash. Conversely, DiLL◦

can be clearly surjected on DiLL by erasing all marks. We call this surjection π◦�. The
net π in Figure 8(a) is an example of DiLL◦ net enjoying (π◦�)◦ = π. On the other hand,
if σ is the net in Figure 6(b), then σ◦ = σ and it is strongly normalizing to the net in
Figure 8(b).

3.2 Measuring Exponential Reduction

Ideally, we may regard exponential reduction as a procedure that “slides” cells along
exponential paths in the net, with ! and ? cells sliding in opposite direction. We thus
assign to each cut a natural number, indicating how far the two cells around it are
from the end of the path they are sliding on. After a reduction however many cuts
may have arisen. So we will employ the multiset of the weights of the cuts and the
multiset order12. Global additive duplication poses another problem. In [6] we settled it
by employing multisets of multisets. Here however we estimate how many addends can
sprout during reduction, so we can use this value and count each cut as many times as
there can be addends containing it. We will also need to get an estimate of the number
of copies (both regular and linear) of a box.

11 More intuitively: !-wires and ?-wires are those that in a typing attempt would get an outer-
most ! or ? respectively, while clashes would give a failure to unify an outermost exponential
modality.

12 Multisets (here presented as [a1, . . . , ak] with additive notation) over a well founded set are
well ordered by the transitive closure of A + [a] > A + B with ∀b ∈ B : b < a.
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Table 1. Rules for the ?-weight (top), the ! one (middle) and the spread sp (bottom). In the spread
formula (which ranges over derelictions and coderelictions at depth 0) we use the notation ?(c)
and !(c) for the corresponding measure on the wire from the principal port of c.

e

e2

e2

?2 : ?(e) = ?(e1) + ?(e2);
f e

e
!2 : ?(e) = ?( f );

f
! π

e1

ek

: ?(ei) =

⎧⎪⎪⎨⎪⎪⎩
?( f )(1 +

∑k
j=1 !(ej)) if π = 0,

?( f )(1 +
∑k

j=1 !(ej))
∑
λ∈π sp(λ)?(eλi ) otherwise;

otherwise : ?(e) is a variable if e is terminal at depth 0, ?(e) = 1 otherwise.

e

e2

e2

!2 : !(e) = !(e1) + !(e2);
f e

e
?2 : !(e) = !( f );

e
!π

fk

f1

: !(e) =

⎧⎪⎪⎨⎪⎪⎩
1 +
∑k

j=1 !( fj) if π = 0,
(1 +
∑k

j=1 !( fj))
∑
λ∈π sp(λ) otherwise.

epf
: !(e) = !( f )

if p ∈ fp0(σ(B)) for a box B, p is above an auxiliary port,
and f is the wire corresponding to p outside the box,

otherwise : !(e) is a variable if e is terminal at depth 0, !(e) = 1 otherwise.

sp(λ) =
∏

c∈c0(λ)
σ(c)=?

!(c) ·
∏

c∈c0(λ)
σ(c)=!

?(c)

Exponential Paths. An !-path (resp. ?-path) is an elementary path made only of !-
wires (resp. ?-wires), not traversing any mark, dereliction or codereliction (though it
may end on them). In either case, the path is called exponential. All cells internal
to an exponential path must necessarily be contractions, cocontractions or boxes. The
main technical advantage of DiLL◦ over DiLL is that in it no reduction can open new
exponential paths.

Next we define by mutual induction three basic measures on which we will base the
measure of the whole net. Two of them, the ?-weight ?(e) and the !-weight !(e), are on
wires. The third, the spread sp(λ), is defined on simple subnets of the given net13. For
the purpose of working modularly with the measures, we introduce variables on the
terminal wires over fp0(π). We will thus consider variables !(d) (resp. ?(d)) with d a
terminal wire.

Weighting wires and estimating addends. Table 1 provides the laws for ?(e) (resp.
!(e)), giving them depending on an adjacent cell. By the absence of clashes there is no

13 Without getting into details, a subnet of π is a properly formed net given by a subset of cells
and wires of π, all taken from the same depth (but then including all the elements contained in
its boxes).
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ambiguity in the definitions. By eλ we denote the wire corresponding to e inside a box,
in the net λ of the box contents. At the bottom we also show the law for the spread. No-
tice that all measures are polynomials with natural coefficients. Notice also that there is
a circular dependency between the three measures, so the next lemma is not trivial.

Lemma 5. Given a DiLL◦ proof net π, ?(e), !(e) and sp(λ) are defined for all e ∈ w!(π)
and all λ simple subnets of π at any depth.

Proof (sketch). One proceeds by a primary induction on the depth: supposing all the
(polynomial) measures have been defined inside all boxes, one can

– define !(e) by induction on the maximal length of ?-paths starting from e (instanti-
ating the variables of the ?-conclusions inside boxes in the process);

– only then, define ?(e) by induction on the maximal length of !-paths (relying also
on the measures inside boxes just instantiated);

– finally define the spread from the two. ��

Weighting nets and polynets. The weight |e| of a wire is ?(e) + !(e). Let !cw0(λ) (resp.
b0(λ)) be the set of exponential cuts (resp. boxes) at depth 0 of a simple net λ. Let us
fix a polynet π, and let c(B) (the count of the box B) denote ?(e)(1 +

∑
j !( f j)) with e

and f j the wires on the principal and the auxiliary ports of B respectively. Then for each
sum (i.e. multiset) ρ of subnets of π we define by induction on their depth the following
multiset (λ will denote a generic simple subnet):

‖ρ‖ :=
∑

λ∈ρ
sp(λ) ‖λ‖ , ‖λ‖ := [ |e| | e ∈ !cw0(λ) ] +

∑

B∈b0(λ)

c(B) ‖σ(B)‖ ,

Finally, the polynomial measure of the whole net (a special case of the measure already
given) can be instantiated with 1 for all variables to get an actual number.

Notice that this measure depends monotonously from the weight of each part of the
net. This intuition will be given a solid ground by Lemma 7.

Intuitive ideas of the measures. As already hinted at the begin of this section, these
measures should help to estimate how far each cut has to go in both directions to arrive
at a “dead end” (for DiLL◦, the logical rules), and how many times each cut should be
accounted for.

Morally !(e) measures the size of the tree of cocontractions above e (which is invari-
ant under associativity). The most important feature is that it counts all the coderelic-
tions linked to e. On boxes we count

– the !-weight on the auxiliary ports because the codereliction against box rule creates
a contraction and a codereliction; plus one to count the box itself, especially if it
has no auxiliary ports;

– multiplied by the spread of the contents in order to be invariant by s-conversion,
and keep such invariants even if the sum inside. . . spreads.

Dually ?(e) measures the size of the tree of contractions above e. The rule when e is on
an auxiliary port of a box B contains:
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λ := ?2
?

?
! ? !2

!

!

(6, 1) (6, 2) (2, 1) (1, 1)
sp = 2

(1, 12)

sp = 62 · 122

e→ ?2
?

?
!2

! ? !2
!

! ? !2
!0

?2 !

(5, 1) (5, 2) (4, 2) (2, 1) (1, 1) (1, 8) (1, 9)
sp = 2

(1, 2) (2, 1) (1, 1)

(1, 1)
sp = 52 · 22 · 1 · 9

=: μ

Fig. 9. An example of calculated measures. Each relevant wire e is labelled by the pair (!(e), ?(e)).
Cuts are specially marked.

– ?( f ) because the contractions on the principal port of B may shift to auxiliary ports
during reduction;

– the sum of !-weights of the auxiliary wires because codereliction against box cre-
ates contractions; plus 1 to provide something to decrease when a cut enters a box
(box against box and those similar);

– the ?-measures inside because either by opening the box or by p-conversion the
contraction trees inside can pour outside; summed, to respect both p-conversion and
s-conversion; this sum is weighted with the spread to prevent a reduction generating
a sum inside from increasing such weight.

As already hinted, sp(λ) estimates how many addends may have a reduct of λ. This is
achieved by morally multiplying all the possible number of choices potentially to be
done in λ. Now sums arise

– on (co)dereliction against co(co)ntraction reductions, so the size of the tree of
co(co)ntractions on the principal port of a (co)dereliction should estimate what
choices that (co)dereliction may do;

– on (co)dereliction against box rules, when the box contains an actual sum; however
the spread of a box contents are already accounted for in both the !-weight and the
?-weight.

Finally the cuts inside a box B count c(B) times as this number estimates how many
regular and linear copies of its contents may be done, and all cuts count sp(λ) times to
account for additive duplication.

Before sketching the proofs, we show in Figure 9 an example of reduction step where
we have calculated (in the way indicated by Lemma 5) all the relevant measures of the
two nets. It turns out that ‖λ‖ = 5184(12[3]+[8, 13, 13]), while ‖μ‖ = 900(9[3]+[7, 10]),
which is indeed lower (though in a quite coarse way).

Replacement and Modularity Lemmas. In the following, we will consider the exten-
sional (i.e. pointwise) order ≤ on non-zero values for all the polynomials.

For different simple nets λ, μ, we distinguish the weights calculated on one or the
other by putting them as superscripts, as in ?λ(e). Suppose λ and μ are two nets with
identified terminal wires C. We say that λ can replace μ if for each terminal wire d we
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have that !λ(d) ≤ !μ(d) and ?λ(d) ≤ ?μ(d) (one of the comparisons may be a trivial one
among the same variables). An induction on the context reveals the following lemma.

Lemma 6 (replacement). Suppose λ can replace μ, ω[ ] is a linear context with ω[λ]
and ω[μ] proof nets. Then for each e wire in the context ω, ?ω[μ](e) ≤ ?ω[λ](e) and
!ω[μ](e) ≤ !ω[λ](e).

In the following the weight |D| of a set of wires D is the multiset of the weights of
its wires. A terminal wire is dormant if it connects an active port or two free ones.
Dormant wires are those that can become cuts when glued in a context. The proof of
the following lemma, which we omit, is an induction on the depth of the hole in the
context.

Lemma 7 (modularity). Take λ and μ1, . . . , μn simple nets andω[ ] a context such that
ω[λ] and ω[μi] are all DiLL◦ pure proof nets. Suppose moreover that:

– for every i we have that μi can replace λ;
–
∑

i sp(μi) ≤ sp(λ);
– if n = 0, then ‖λ‖ > [ ], otherwise for every i we have ‖μi‖ + |Di|μi < ‖λ‖, (resp. ≤)

where Di is the set of active wires in μi that are not dormant in λ.

Then we have the pointwise inequality
∥∥∥ω[∑i μi

]∥∥∥ < ‖ω[λ]‖ (resp. ≤).

Thanks to modularity, the following result is up to mechanical checks which we omit
altogether.

Lemma 8. ‖ . ‖ has the following properties.

– if π
e→ π′ then ‖π′‖ < ‖π‖;

– if π
mc→ π′ then ‖π′‖ ≤ ‖π‖;

– if π ∼ π′ then ‖π′‖ = ‖π‖.
Theorem 9 (finite developments). Reduction on DiLL◦ is SN.

Proof (sketch). Only m and c remain to be settled. For all reductions, the pair given by(‖π‖ , #m(π) + #c(π)
)

strictly decreases for lexicographic ordering, where #m just counts
the multiplicative cells in π, and #c weights coweakenings, weakenings and boxes con-
taining 0 in the following inductive way:

#c(π) := 1 + #!0 (π) + #?0 (π) +
∑

B∈b0(π)

(1 + deg(B)) #c(σ(B))

where #!0 and #?0 count coweakenings and weakenings at depth 0, and the degree deg(B)
is the number of ports of B. ��

4 Proving Confluence

Recall that ∼ and c may be a-equivalence and n-reduction, or full asp-equivalence
and nzp-reduction. Some of the diagrams show we cannot separate s-equivalence from
the p one (and their associated reductions). Checking all local confluence and local
coherence diagrams as indicated by Lemma 1, gives the following proposition, which
then finally leads the way to the main theorem of the work.
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Proposition 10. Reduction in DiLL◦ is CR∼, and so are m and ec alone.

Main Theorem. Reduction of DiLL pure proof nets is CR∼, and so are m and ec alone.

Proof. Using DiLL◦ we define a parallel reduction→� . Let π →� σ iff π◦ mec∗−→ � in DiLL◦

and σ = �◦�. Then

–
mec→ ⊆ →� ⊆ mec∗−→, so that→� ∗ = mec∗−→ (notice π◦ cannot block any reduction);

– →� is strongly CR∼ because
mec∗−→ is so in DiLL◦: if π →� σ◦�1 , σ◦�2 with π◦ mec∗−→ σ1, σ2,

then σ1, σ2
mec∗−→ ρ, and then (σ◦�i )◦ mec∗−→ ρ, because (σ◦�i )◦ has less marks than σi as

the latter is clash-free. In the end σ◦�1 , σ
◦�
2 →� ρ◦�.

Then we conclude, as →� is CR∼ by Lemma 3 (→� is reflexive as (π◦)◦� = π), which
means that→� ∗ = mec∗−→ is strongly CR∼, which in turn by Lemma 2 gives Church-Rosser
modulo ∼ for the ordinary reduction14. It is not hard to give parallel reductions for the
ec and m ones and do the same. ��

A Conclusion: The Case for MELL. Our system of reductions and equivalences bears
close resemblance to the one developed for MELL in [9]. In fact, stripping DiLL of all its
differential features, the only difference is the absence in [9] of anything related to the
p-reduction. In MELL the p-reduction is given by simply pulling out a weakening out
of a box, which in DiLL can be done by a concatenation of p, z and n reduction steps.
In [16], the author calls such a variant a total p-reduction, which was here omitted
because of its redundancy in DiLL. First, we argue that without such a step the CR∼
property is broken, as shown by the following coherence critical peak, leading to two
normal forms which are not directly equivalent15:

!
?0

?2
p�−� !

?0
?2

n→ !

Then a direct consequence of the Main Theorem is the following, which may prove
useful in the study of calculi with explicit substitutions.

Theorem 11. MELL pure proof nets, with a and p equivalences together with n and
total p reduction is CR∼.
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Abstract. We analyse the computational complexity of finding Nash
equilibria in stochastic multiplayer games with ω-regular objectives.
While the existence of an equilibrium whose payoff falls into a certain
interval may be undecidable, we single out several decidable restrictions
of the problem. First, restricting the search space to stationary, or pure
stationary, equilibria results in problems that are typically contained in
PSpace and NP, respectively. Second, we show that the existence of an
equilibrium with a binary payoff (i.e. an equilibrium where each player ei-
ther wins or loses with probability 1) is decidable. We also establish that
the existence of a Nash equilibrium with a certain binary payoff entails
the existence of an equilibrium with the same payoff in pure, finite-state
strategies.

1 Introduction

We study stochastic games [21] played by multiple players on a finite, directed
graph. Intuitively, a play of such a game evolves by moving a token along edges of
the graph: Each vertex of the graph is either controlled by one of the players, or
it is stochastic. Whenever the token arrives at a non-stochastic vertex, the player
who controls this vertex must move the token to a successor vertex; when the
token arrives at a stochastic vertex, a fixed probability distribution determines
the next vertex. A measurable function maps plays to payoffs. In the simplest
case, which we discuss here, the possible payoffs of a single play are binary (i.e.
each player either wins or loses a given play). However, due to the presence of
stochastic vertices, a player’s expected payoff (i.e. her probability of winning)
can be an arbitrary probability.

Stochastic games with ω-regular objectives have been successfully applied in
the verification and synthesis of reactive systems under the influence of random
events. Such a system is usually modelled as a game between the system and
its environment, where the environment’s objective is the complement of the
system’s objective: the environment is considered hostile. Therefore, the research
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in this area has traditionally focused on two-player games where each play is
won by precisely one of the two players, so-called two-player zero-sum games.
However, the system may comprise of several components with independent
objectives, a situation which is naturally modelled by a multiplayer game.

The most common interpretation of rational behaviour in multiplayer games
is captured by the notion of a Nash equilibrium [20]. In a Nash equilibrium, no
player can improve her payoff by unilaterally switching to a different strategy.
Chatterjee & al. [7] gave an algorithm for computing a Nash equilibrium in
a stochastic multiplayer games with ω-regular winning conditions. We argue
that this is not satisfactory. Indeed, it can be shown that their algorithm may
compute an equilibrium where all players lose almost surely (i.e. receive expected
payoff 0), while there exist other equilibria where all players win almost surely
(i.e. receive expected payoff 1).

In applications, one might look for an equilibrium where as many players as
possible win almost surely or where it is guaranteed that the expected payoff of
the equilibrium falls into a certain interval. Formulated as a decision problem,
we want to know, given a k-player game G with initial vertex v0 and two thresh-
olds x, y ∈ [0, 1]k, whether (G, v0) has a Nash equilibrium with expected payoff
at least x and at most y. This problem, which we call NE for short, is a gen-
eralisation of the quantitative decision problem for two-player zero-sum games,
which asks whether in such a game player 0 has a strategy that ensures to win
the game with a probability that lies above a given threshold.

In this paper, we analyse the decidability of NE for games with ω-regular
objectives. Although the decidability of NE remains open, we can show that
several restrictions of NE are decidable: First, we show that NE becomes de-
cidable when one restricts the search space to equilibria in positional (i.e. pure,
stationary), or stationary, strategies, and that the resulting decision problems
typically lie in NP and PSpace, respectively (e.g. if the objectives are specified
as Muller conditions). Second, we show that the following qualitative version of
NE is decidable: Given a k-player game G with initial vertex v0 and a binary
payoff x ∈ {0, 1}k, decide whether (G, v0) has a Nash equilibrium with expected
payoff x. Moreover, we prove that, depending on the representation of the ob-
jective, this problem is typically complete for one of the complexity classes P,
NP, co-NP and PSpace, and that the problem is invariant under restricting the
search space to equilibria in pure, finite-state strategies.

Our results have to be viewed in light of the (mostly) negative results we
derived in [26]. In particular, it was shown in [26] that NE becomes undecidable
if one restricts the search space to equilibria in pure strategies (as opposed to
equilibria in possibly mixed strategies), even for simple stochastic multiplayer
games. These are games with simple reachability objectives. The undecidability
result crucially makes use of the fact that the Nash equilibrium one is looking
for can have a payoff that is not binary. Hence, this result cannot be applied to
the qualitative version of NE, which we show to be decidable in this paper. It
was also proven in [26] that the problems that arise from NE when one restricts
the search space to equilibria in positional or stationary strategies are both
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NP-hard. Moreover, we showed that the restriction to stationary strategies is at
least as hard as the problem SqrtSum [1], a problem which is not known to lie
inside the polynomial hierarchy. This demonstrates that the upper bounds we
prove for these problems in this paper will be hard to improve.

Due to lack of space, some of the proofs in this paper are either only sketched
or omitted entirely. For the complete proofs, see [27].

Related Work. Determining the complexity of Nash equilibria has attracted
much interest in recent years. In particular, a series of papers culminated in the
result that computing a Nash equilibrium of a two-player game in strategic form
is complete for the complexity class PPAD [12,8]. However, the work closest to
ours is [25], where the decidability of (a variant of) the qualitative version of NE
in infinite games without stochastic vertices was proven. Our results complement
the results in that paper, and although our decidability proof for the qualitative
setting is structurally similar to the one in [25], the presence of stochastic vertices
makes the proof substantially more challenging.

Another subject that is related to the study of stochastic multiplayer games
are Markov decision processes with multiple objectives. These can be viewed
as stochastic multiplayer games where all non-stochastic vertices are controlled
by one single player. For ω-regular objectives, Etessami & al. [16] proved the
decidability of NE for these games. Due to the different nature of the restrictions,
this result is incomparable to our results.

2 Preliminaries

The model of a (two-player zero-sum) stochastic game [9] easily generalises to
the multiplayer case: Formally, a stochastic multiplayer game (SMG) is a tuple
G = (Π,V, (Vi)i∈Π , Δ, (Wini)i∈Π) where

– Π is a finite set of players (usually Π = {0, 1, . . . , k − 1});
– V is a finite, non-empty set of vertices ;
– Vi ⊆ V and Vi ∩ Vj = ∅ for each i �= j ∈ Π ;
– Δ ⊆ V × ([0, 1] ∪ {⊥})× V is the transition relation;
– Wini ⊆ V ω is a Borel set for each i ∈ Π .

The structure G = (V, (Vi)i∈Π , Δ) is called the arena of G, and Wini is called the
objective, or the winning condition, of player i ∈ Π . A vertex v ∈ V is controlled
by player i if v ∈ Vi and a stochastic vertex if v �∈

⋃

i∈Π Vi.
We require that a transition is labelled by a probability iff it originates in a

stochastic vertex: If (v, p, w) ∈ Δ then p ∈ [0, 1] if v is a stochastic vertex and
p = ⊥ if v ∈ Vi for some i ∈ Π . Additionally, for each pair of a stochastic vertex v
and an arbitrary vertex w, we require that there exists precisely one p ∈ [0, 1]
such that (v, p, w) ∈ Δ. Moreover, for each stochastic vertex v, the outgoing
probabilities must sum up to 1:

∑

(p,w):(v,p,w)∈Δ p = 1. Finally, we require that
for each vertex the set vΔ := {w ∈ V : exists p ∈ (0, 1] ∪ {⊥} with (v, p, w) ∈ Δ}
is non-empty, i.e. every vertex has at least one successor.
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A special class of SMGs are two-player zero-sum stochastic games (2SGs).
These are SMGs played by only two players (player 0 and player 1) and one
player’s objective is the complement of the other player’s objective, i.e. Win0 =
V ω \Win1. An even more restricted model are one-player stochastic games, also
known as Markov decision processes (MDPs), where there is only one player
(player 0). Finally, Markov chains are SMGs with no players at all, i.e. there are
only stochastic vertices.

Strategies and strategy profiles. In the following, let G be an arbitrary SMG.
A (mixed) strategy of player i in G is a mapping σ : V ∗Vi → D(V ) assigning
to each possible history xv ∈ V ∗Vi of vertices ending in a vertex controlled by
player i a (discrete) probability distribution over V such that σ(xv)(w) > 0 only
if (v,⊥, w) ∈ Δ. Instead of σ(xv)(w), we usually write σ(w | xv). A (mixed)
strategy profile of G is a tuple σ = (σi)i∈Π where σi is a strategy of player i in G.
Given a strategy profile σ = (σj)j∈Π and a strategy τ of player i, we denote by
(σ−i, τ) the strategy profile resulting from σ by replacing σi with τ .

A strategy σ of player i is called pure if for each xv ∈ V ∗Vi there exists w ∈ vΔ
with σ(w | xv) = 1. Note that a pure strategy of player i can be identified with
a function σ : V ∗Vi → V . A strategy profile σ = (σi)i∈Π is called pure if each
σi is pure.

A strategy σ of player i in G is called stationary if σ depends only on the
current vertex: σ(xv) = σ(v) for all xv ∈ V ∗Vi. Hence, a stationary strategy
of player i can be identified with a function σ : Vi → D(V ). A strategy profile
σ = (σi)i∈Π of G is called stationary if each σi is stationary.

We call a pure, stationary strategy a positional strategy and a strategy profile
consisting of positional strategies only a positional strategy profile. Clearly, a
positional strategy of player i can be identified with a function σ : Vi → V .
More generally, a pure strategy σ is called finite-state if it can be implemented
by a finite automaton with output or, equivalently, if the equivalence relation
∼ ⊆ V ∗ × V ∗ defined by x ∼ y if σ(xz) = σ(yz) for all z ∈ V ∗Vi has only
finitely many equivalence classes. Finally, a finite-state strategy profile is a profile
consisting of finite-state strategies only.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game.
We call the tuple (G, v0) an initialised SMG. A strategy (strategy profile) of
(G, v0) is just a strategy (strategy profile) of G. In the following, we will use the
abbreviation SMG also for initialised SMGs. It should always be clear from the
context if the game is initialised or not.

Given an initial vertex v0 and a strategy profile σ = (σi)i∈Π , the conditional
probability of w ∈ V given the history xv ∈ V ∗V is the number σi(w | xv) if
v ∈ Vi and the unique p ∈ [0, 1] such that (v, p, w) ∈ Δ if v is a stochastic vertex.
We abuse notation and denote this probability by σ(w | xv). The probabilities
σ(w | xv) induce a probability measure on the space V ω in the following way: The
probability of a basic open set v1 . . . vk ·V ω is 0 if v1 �= v0 and the product of the
probabilities σ(vj | v1 . . . vj−1) for j = 2, . . . , k otherwise. It is a classical result
of measure theory that this extends to a unique probability measure assigning a
probability to every Borel subset of V ω, which we denote by Prσ

v0
.
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For a strategy profile σ, we are mainly interested in the probabilities pi :=
Prσ

v0
(Wini) of winning. We call pi the (expected) payoff of σ for player i and the

vector (pi)i∈Π the (expected) payoff of σ.

Subarenas and end components. Given an SMG G, we call a set U ⊆ V a
subarena of G if 1. U �= ∅; 2. vΔ∩U �= ∅ for each v ∈ U , and 3. vΔ ⊆ U for each
stochastic vertex v ∈ U .

A setC ⊆ V is called an end component of G ifC is a subarena, and additionally
C is strongly connected: for every pair of vertices v, w ∈ C there exists a sequence
v = v1, v2, . . . , vn = w with vi+1 ∈ viΔ for each 0 < i < n. An end component C
is maximal in a set U ⊆ V if there is no end component C′ ⊆ U with C � C′. For
any subset U ⊆ V , the set of all end components maximal in U can be computed
by standard graph algorithms in quadratic time (see e.g. [13]).

The central fact about end components is that, under any strategy profile, the
set of vertices visited infinitely often is almost surely an end component. For an
infinite sequence α, we denote by Inf(α) the set of elements occurring infinitely
often in α.

Lemma 1 ([13,10]). Let G be any SMG, and let σ be any strategy profile of G.
Then Prσ

v ({α ∈ V ω : Inf(α) is an end component}) = 1 for each vertex v ∈ V .

Moreover, for any end component C, we can construct a stationary strategy
profile σ that, when started in C, guarantees to visit all (and only) vertices in C
infinitely often.

Lemma 2 ([13,11]). Let G be any SMG, and let C be any end component of G.
There exists a stationary strategy profile σ with Prσ

v ({α ∈ V ω : Inf(α) = C}) = 1
for each vertex v ∈ C.

Values, determinacy and optimal strategies. Given a strategy τ of player i
in G and a vertex v ∈ V , the value of τ from v is the number valτ (v) :=
infσ Prσ−i,τ

v (Wini), where σ ranges over all strategy profiles of G. Moreover,
we define the value of G for player i from v as the supremum of these values,
i.e. valGi (v) = supτ valτ (v), where τ ranges over all strategies of player i in G.
Intuitively, valGi (v) is the maximal payoff that player i can ensure when the game
starts from v. If G is a two-player zero-sum game, a celebrated theorem due to
Martin [19] states that the game is determined, i.e. valG0 = 1 − valG1 (where the
equality holds pointwise). The number valG(v) := valG0 (v) is consequently called
the value of G from v.

Given an initial vertex v0 ∈ V , a strategy σ of player i in G is called optimal
if valσ(v0) = valGi (v0). A globally optimal strategy is a strategy that is optimal
for every possible initial vertex v0 ∈ V . Note that optimal strategies do not need
to exist since the supremum in the definition of valGi is not necessarily attained.
However, if for every possible initial vertex there exists an optimal strategy, then
there also exists a globally optimal strategy.
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Objectives. We have introduced objectives as abstract Borel sets of infinite
sequences of vertices; to be amendable for algorithmic solutions, all objectives
must be finitely representable. In verification, objectives are usually ω-regular
sets specified by formulae of the logic S1S (monadic second-order logic on infi-
nite words) or LTL (linear-time temporal logic) referring to unary predicates Pc

indexed by a finite set C of colours. These are interpreted as winning conditions
in a game by considering a colouring χ : V → C of the vertices in the game.
Special cases are the following well-studied conditions:

– Büchi (given by a set F ⊆ C): the set of all α ∈ Cω such that Inf(α)∩F �= ∅.
– co-Büchi (given by set F ⊆ C): the set of all α ∈ Cω such that Inf(α) ⊆ F .
– Parity (given by a priority function Ω : C → N): the set of all α ∈ Cω such

that min(Inf(Ω(α))) is even.
– Streett (given by a set Ω of pairs (F,G) where F,G ⊆ C): the set of all
α ∈ Cω such that for all pairs (F,G) ∈ Ω with Inf(α) ∩ F �= ∅ it is the case
that Inf(α) ∩G �= ∅.

– Rabin (given by a set Ω of pairs (F,G) where F,G ⊆ C): the set of all
α ∈ Cω such that there exists a pair (F,G) ∈ Ω with Inf(α) ∩ F �= ∅ but
Inf(α) ∩G = ∅.

– Muller (given by a family F of sets F ⊆ C): the set of all α ∈ Cω such that
there exists F ∈ F with Inf(α) = F .

Note that any Büchi condition is a parity condition with two priorities, that any
parity condition is both a Streett and a Rabin condition, and that any Streett
or Rabin condition is a Muller condition. (However, the translation from a set
of Streett/Rabin pairs to an equivalent family of accepting sets is, in general,
exponential.) In fact, the intersection (union) of any two parity conditions is a
Streett (Rabin) condition. Moreover, the complement of a Büchi (Streett) con-
dition is a co-Büchi (Rabin) condition and vice versa, whereas the class of parity
conditions and the class of Muller conditions are closed under complementation.
Finally, note that any of the above condition is prefix-independent : for every
α ∈ Cω and x ∈ C∗, α satisfies the condition iff xα does.

Theoretically, parity and Rabin conditions provide the best balance of expres-
siveness and simplicity: On the one hand, any SMG where player i has a Rabin
objective admits a globally optimal positional strategy for this player [4]. On
the other hand, any SMG with ω-regular objectives can be reduced to an SMG
with parity objectives using finite memory (see [24]). An important consequence
of this reduction is that there exist globally optimal finite-state strategies in
every SMG with ω-regular objectives. In fact, there exist globally optimal pure
strategies in every SMG with prefix-independent objectives [17].

In the following, for the sake of simplicity, we will only consider games where
each vertex is coloured by itself, i.e. C = V and χ = id. We would like to point
out, however, that all our results remain valid for games with other colourings.
For the same reason, we will usually not distinguish between a condition and its
finite representation.
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Decision problems for two-player zero-sum games. The main computa-
tional problem for two-player zero-sum games is computing the value (and opti-
mal strategies for either player, if they exist). Rephrased as a decision problem,
the problem looks as follows:

Given a 2SG G, an initial vertex v0 and a rational probability p, decide
whether valG(v0) ≥ p.

A special case of this problem arises for p = 1. Here, we only want to know
whether player 0 can win the game almost surely (in the limit). Let us call the
former problem the quantitative and the latter problem the qualitative decision
problem for 2SGs.

Table 1 summarises the results about the complexity of the quantitative and
the qualitative decision problem for two-player zero-sum stochastic games de-
pending on the type of player 0’s objective. For MDPs, both problems are de-
cidable in polynomial time for all of the aforementioned objectives (i.e. up to
Muller conditions) [3,13].

Table 1. The complexity of deciding the value in 2SGs

Quantitative Qualitative

(co-)Büchi NP ∩ co-NP [6] P-complete [14]
Parity NP ∩ co-NP [6] NP ∩ co-NP [6]
Streett co-NP-complete [4,15] co-NP-complete [4,15]
Rabin NP-complete [4,15] NP-complete [4,15]
Muller PSpace-complete [3,18] PSpace-complete [3,18]

3 Nash Equilibria and Their Decision Problems

To capture rational behaviour of (selfish) players, John Nash [20] introduced
the notion of, what is now called, a Nash equilibrium. Formally, given a strategy
profile σ in an SMG (G, v0), a strategy τ of player i is called a best response to σ if
τ maximises the expected payoff of player i: Prσ−i,τ

′

v0
(Wini) ≤ Prσ−i,τ

v0
(Wini) for

all strategies τ ′ of player i. A Nash equilibrium is a strategy profile σ = (σi)i∈Π

such that each σi is a best response to σ. Hence, in a Nash equilibrium no player
can improve her payoff by (unilaterally) switching to a different strategy. For
two-player zero-sum games, a Nash equilibrium is nothing else than a pair of
optimal strategies.

Proposition 1. Let (G, v0) be a two-player zero-sum game. A strategy profile
(σ, τ) of (G, v0) is a Nash equilibrium iff both σ and τ are optimal. In particular,
every Nash equilibrium of (G, v0) has payoff (valG(v0), 1− valG(v0)).

So far, most research on finding Nash equilibria in infinite games has focused on
computing some Nash equilibrium [7]. However, a game may have several Nash
equilibria with different payoffs, and one might not be interested in any Nash
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equilibrium but in one whose payoff fulfils certain requirements. For example,
one might look for a Nash equilibrium where certain players win almost surely
while certain others lose almost surely. This idea leads to the following decision
problem, which we call NE:1

Given an SMG (G, v0) and thresholds x, y ∈ [0, 1]Π , decide whether there
exists a Nash equilibrium of (G, v0) with payoff ≥ x and ≤ y.

Of course, as a decision problem the problem only makes sense if the game and
the thresholds x and y are represented in a finite way. In the following, we will
therefore assume that the thresholds and all transition probabilities are rational,
and that all objectives are ω-regular.

Note that NE puts no restriction on the type of strategies that realise the
equilibrium. It is natural to restrict the search space to equilibria that are
realised in pure, finite-state, stationary, or even positional strategies. Let us
call the corresponding decision problems PureNE, FinNE, StatNE and PosNE,
respectively.

In a recent paper [26], we studied NE and its variants in the context of simple
stochastic multiplayer games (SSMGs). These are SMGs where each player’s
objective is to reach a certain set T of terminal vertices : vΔ = {v} for each
v ∈ T . In particular, such objectives are both Büchi and co-Büchi conditions.
Our main results on SSMGs can be summarised as follows:

– PureNE and FinNE are undecidable;
– StatNE is contained in PSpace, but NP- and SqrtSum-hard;
– PosNE is NP-complete.

In fact, PureNE and FinNE are undecidable even if one restricts to instances
where the thresholds are binary, but distinct, or if one restricts to instances
where the thresholds coincide (but are not binary). Hence, the question arises
what happens if the thresholds are binary and coincide. This question motivates
the following qualitative version of NE, a problem which we call QualNE:

Given an SMG (G, v0) and x ∈ {0, 1}Π, decide whether (G, v0) has a
Nash equilibrium with payoff x.

In this paper, we show that QualNE, StatNE and PosNE are decidable for
games with arbitrary ω-regular objectives, and analyse the complexities of these
problems depending on the type of the objectives.

4 Stationary Equilibria

In this section, we analyse the complexity of the problems PosNE and StatNE.
Lower bounds for these problems follow from our results on SSMGs [26].

Theorem 1. PosNE is NP-complete for SMGs with Büchi, co-Büchi, parity,
Rabin, Streett, or Muller objectives.
1 In the definition of NE, the ordering ≤ is applied componentwise.
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Proof. Hardness was already proven in [26]. To prove membership in NP, we
give a nondeterministic polynomial-time algorithm for deciding PosNE. On input
G, v0, x, y, the algorithm simply guesses a positional strategy profile σ (which is
basically a mapping

⋃

i∈Π Vi → V ). Next, the algorithm computes the payoff zi

of σ for each player i by computing the probability of the event Wini in the
Markov chain (Gσ , v0), which arises from G by fixing all transitions according to
σ. Once each zi is computed, the algorithm can easily check whether xi ≤ zi ≤ yi.
To check whether σ is a Nash equilibrium, the algorithm needs to compute, for
each player i, the value ri of the MDP (Gσ−i , v0), which arises from G by fixing
all transitions but the ones leaving vertices controlled by player i according to
σ (and imposing the objective Wini). Clearly, σ is a Nash equilibrium iff ri ≤ zi

for each player i. Since we can compute the value of any MDP (and thus any
Markov chain) with one of the above objectives in polynomial time [3,13], all
these checks can be carried out in polynomial time. ��
To prove the decidability of StatNE, we appeal to results established for the
Existential Theory of the Reals, ExTh(R), the set of all existential first-order
sentences (over the appropriate signature) that hold in R := (R,+, ·, 0, 1,≤). The
best known upper bound for the complexity of the associated decision problem
is PSpace [2], which leads to the following theorem.

Theorem 2. StatNE is in PSpace for SMGs with Büchi, co-Büchi, parity,
Rabin, Streett, or Muller objective.

Proof (Sketch). Since PSpace = NPSpace, it suffices to provide a nondeter-
ministic algorithm with polynomial space requirements for deciding StatNE. On
input G, v0, x, y, where w.l.o.g. G is an SMG with Muller objectives Fi ∈ 2V ,
the algorithm starts by guessing the support S ⊆ V ×V of a stationary strategy
profile σ of G, i.e. S = {(v, w) ∈ V ×V : σ(w | v) > 0}. From the set S alone, by
standard graph algorithms (see [3,13]), one can compute (in polynomial time)
for each player i the following sets:

1. the union Fi of all end components (i.e. bottom SCCs) C of the Markov
chain Gσ that are winning for player i, i.e. C ∈ Fi;

2. the set Ri of vertices v such that Prσ
v (Reach(Fi)) > 0;

3. the union Ti of all end components of the MDP Gσ−i that are winning for
player i.

After computing all these sets, the algorithm evaluates a suitable existential
first-order sentence ψ, which can be computed in polynomial time from G, v0,
x, y, (Ri)i∈Π , (Fi)i∈Π and (Ti)i∈Π over R and returns the answer to this query.
The sentence ψ states that there exists a stationary Nash equilibrium of (G, v0)
with payoff ≥ x and ≤ y whose support is S. ��

5 Equilibria with a Binary Payoff

In this section, we prove that QualNE is decidable. We start by characterising
the existence of a Nash equilibrium with a binary payoff in any game with prefix-
independent objectives.
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5.1 Characterisation of Existence

For a subset U ⊆ V , we denote by Reach(U) the set V ∗ ·U · V ω; if U = {v}, we
just write Reach(v) for Reach(U). Finally, given an SMG G and a player i, we
denote by V >0

i the set of all vertices v ∈ V such that valGi (v) > 0. The following
lemma allows to infer the existence of a Nash equilibrium from the existence of
a certain strategy profile. The proof uses so-called threat strategies (also known
as trigger strategies), which are the basis of the folk theorems in the theory of
repeated games (cf. [22, Chapter 8]).

Lemma 3. Let σ be a pure strategy profile of G such that, for each player i,
Prσ

v0
(Wini) = 1 or Prσv0

(Reach(V >0
i )) = 0. Then there exists a pure Nash equilib-

rium σ∗ with Prσ
v0

= Prσ∗

v0
. If, additionally, all winning conditions are ω-regular

and σ is finite-state, then there exists a finite-state Nash equilibrium σ∗ with
Prσ

v0
= Prσ∗

v0
.

Proof (Sketch). Let Gi = ({i,Π \ {i}}, V, Vi,
⋃

j �=i Vj , Δ,Wini, V
ω \ Wini) be

the 2SG where player i plays against the coalition Π \ {i} of all other players.
Since the set Wini is prefix-independent, there exists a globally optimal pure
strategy τi for the coalition in this game [17]. For each player j �= i, this strategy
induces a pure strategy τj,i in G. To simplify notation, we also define τi,i to be an
arbitrary finite-state strategy of player i in G. Player i’s equilibrium strategy σ∗i
is defined as follows:

σ∗i (xv) =

{

σi(xv) if Prσ
v0

(xv · V ω) > 0,
τi,j(x2v) otherwise,

where, in the latter case, x = x1x2 with x1 being the longest prefix of xv such
that Prσ

v0
(x1 · V ω) > 0 and j ∈ Π being the player that has deviated from σ,

i.e. x1 ends in Vj ; if x1 is empty or ends in a stochastic vertex, we set j = i.
Intuitively, σ∗i behaves like σi as long as no other player j deviates from playing
σj , in which case σ∗i starts to behave like τi,j .

If each Wini is ω-regular, then each of the strategies τi can be chosen to be
a finite-state strategy. Consequently, each τj,i can be assumed to be finite-state.
If additionally σ is finite-state, it is easy to see that the strategy profile σ∗, as
defined above, is also finite-state.

Note that Prσ∗

v0
= Prσ

v0
. We claim that σ∗ is a Nash equilibrium of (G, v0). ��

Finally, we can state the main result of this section.

Proposition 2. Let (G, v0) be any SMG with prefix-independent winning con-
ditions, and let x ∈ {0, 1}Π. Then the following statements are equivalent:
1. There exists a Nash equilibrium with payoff x;
2. There exists a strategy profile σ with payoff x such that

Prσ
v0

(Reach(V >0
i )) = 0 for each player i with xi = 0;

3. There exists a pure strategy profile σ with payoff x such that
Prσ

v0
(Reach(V >0

i )) = 0 for each player i with xi = 0;
4. There exists a pure Nash equilibrium with payoff x.
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If additionally all winning conditions are ω-regular, then any of the above state-
ments is equivalent to each of the following statements:

5. There exists a finite-state strategy profile σ with payoff x such that
Prσ

v0
(Reach(V >0

i )) = 0 for each player i with xi = 0;
6. There exists a finite-state Nash equilibrium with payoff x.

Proof. (1.⇒ 2.) Let σ be a Nash equilibrium with payoff x. We claim that σ is
already the strategy profile we are looking for: Prσ

v0
(Reach(V >0

i )) = 0 for each
player i with xi = 0. Towards a contradiction, assume that Prσ

v0
(Reach(V >0

i )) >
0 for some player i with xi = 0. Since V is finite, there exists a vertex v ∈ V >0

i

and a history x such that Prσv0
(xv · V ω) > 0. Let τ be an optimal strategy for

player i in the game (G, v), and consider her strategy σ′ defined by

σ′(yw) =

{

σ(yw) if xv � yw,
τ(y′w) otherwise,

where, in the latter case, y = xy′. A straightforward calculation yields that
Pr(σ−i,σ

′)
v0

(Wini) > 0. Hence, player i can improve her payoff by playing σ′

instead of σi, a contradiction to the fact that σ is a Nash equilibrium.
(2. ⇒ 3.) Let σ be a strategy profile of (G, v0) with payoff x such that

Prσ
v0

(Reach(V >0
i )) = 0 for each player i with xi = 0. Consider the MDP M

that is obtained from G by removing all vertices v ∈ V such that v ∈ V >0
i

for some player i with xi = 0, merging all players into one, and imposing the
objective

Win =
⋂

i∈Π
xi=1

Wini ∩
⋂

i∈Π
xi=0

V ω \Wini .

The MDP M is well-defined since its domain is a subarena of G. Moreover,
the value valM(v0) of M is equal to 1 because the strategy profile σ induces a
strategy σ inM satisfying Prσ

v0
(Win) = 1. Since each Wini is prefix-independent,

so is the set Win. Hence, there exists a pure, optimal strategy τ in (M, v0). Since
the value is 1, we have Prτ

v0
(Win) = 1, and τ induces a pure strategy profile of

G with the desired properties.
(3. ⇒ 4.) Let σ be a pure strategy profile of (G, v0) with payoff x such that

Prσ
v0

(Reach(V >0
i )) = 0 for each player i with xi = 0. By Lemma 3, there exists

a pure Nash equilibrium σ∗ of (G, v0) with Prσ
v0

= Prσ∗

v0
. In particular, σ∗ has

payoff x.
(4.⇒ 1.) Trivial.
Under the additional assumption that all winning conditions are ω-regular,

the implications (2.⇒ 5.) and (5.⇒ 6.) are proven analogously; the implication
(6.⇒ 1.) is trivial. ��

As an immediate consequence of Proposition 2, we can conclude that finite-state
strategies are as powerful as arbitrary mixed strategies as far as the existence of
a Nash equilibrium with a binary payoff in SMGs with ω-regular objectives is
concerned. (This is not true for Nash equilibria with a non-binary payoff [25].)
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Corollary 1. Let (G, v0) be any SMG with ω-regular objectives, and let x ∈
{0, 1}Π. There exists a Nash equilibrium of (G, v0) with payoff x iff there exists
a finite-state Nash equilibrium of (G, v0) with payoff x.

Proof. The claim follows from Proposition 2 and the fact that every SMG with
ω-regular objectives can be reduced to one with prefix-independent ω-regular
(e.g. parity) objectives. ��

5.2 Computational Complexity

We can now describe an algorithm for deciding QualNE for games with Muller
objectives. The algorithm relies on the characterisation we gave in Proposition 2,
which allows to reduce the problem to a problem about a certain MDP.

Formally, given an SMG G = (Π,V, (Vi)i∈Π , Δ, (Fi)i∈Π) with Muller objec-
tives Fi ⊆ 2V , and a binary payoff x ∈ {0, 1}Π, we define the Markov decision
process G(x) as follows: Let Z ⊆ V be the set of all v such that valGi (v) = 0 for
each player i with xi = 0; the set of vertices of G(x) is precisely the set Z, with
the set of vertices controlled by player 0 being Z0 := Z ∩

⋃

i∈Π Vi. (If Z = ∅,
we define G(x) to be a trivial MDP with the empty set as its objective.) The
transition relation of G(x) is the restriction of Δ to transitions between Z-states.
Note that the transition relation of G(x) is well-defined since Z is a subarena
of G. We say that a subset U ⊆ V has payoff x if U ∈ Fi for each player i
with xi = 1 and U �∈ Fi for each player i with xi = 0. The objective of G(x)
is Reach(T ) where T ⊆ Z is the union of all end components U ⊆ Z that have
payoff x.

Lemma 4. Let (G, v0) be any SMG with Muller objectives, and let x ∈ {0, 1}Π.
Then (G, v0) has a Nash equilibrium with payoff x iff valG(x)(v0) = 1.

Proof. (⇒) Assume that (G, v0) has a Nash equilibrium with payoff x. By Propo-
sition 2, this implies that there exists a strategy profile σ of (G, v0) with payoff x
such that Prσv0

(Reach(V \ Z)) = 0. We claim that Prσ
v0

(Reach(T )) = 1. Oth-
erwise, by Lemma 1, there would exist an end component C ⊆ Z such that
C �∈ Fi for some player i with xi = 1 or C ∈ Fi for some player i with xi = 0,
and Prσ

v0
({α ∈ V ω : Inf(α) = C}) > 0. But then, σ cannot have payoff x, a

contradiction. Now, since Prσ
v0

(Reach(V \ Z)) = 0, σ induces a strategy σ in
G(x) such that Prσ

v0
(B) = Prσ

v0
(B) for every Borel set B ⊆ Zω. In particular,

Prσ
v0

(Reach(T )) = 1 and hence valG(x)(v0) = 1.
(⇐) Assume that valG(x)(v0) = 1 (in particular, v0 ∈ Z), and let σ be an op-

timal strategy in (G(x), v0). From σ, using Lemma 2, we can devise a strategy σ′

such that Prσ′

v0
({α ∈ V ω : Inf(α) has payoff x}) = 1. Finally, σ′ can be extended

to a strategy profile σ of G with payoff x such that Prσ
v0

(Reach(V \Z)) = 0. By
Proposition 2, this implies that (G, v0) has a Nash equilibrium with payoff x. ��

Since the value of an MDP with reachability objectives can be computed in poly-
nomial time (via linear programming, cf. [23]), the difficult part lies in computing
the MDP G(x) from G and x (i.e. its domain Z and the target set T ).
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Theorem 3. QualNE is in PSpace for games with Muller objectives.

Proof. Since PSpace = NPSpace, it suffices to give a nondeterministic al-
gorithm with polynomial space requirements. On input G, v0, x, the algorithm
starts by computing for each player i with xi = 0 the set of vertices v with
valGi (v) = 0, which can be done in polynomial space (see table 1). The intersec-
tion of these sets is the domain Z of the Markov decision process G(x). If v0 is
not contained in this intersection, the algorithm immediately rejects. Otherwise,
the algorithm proceeds by guessing a set T ′ ⊆ Z and for each v ∈ T ′ a set
Uv ⊆ Z with v ∈ Uv. If, for each v ∈ T ′, the set Uv is an end component with
payoff x, the algorithm proceeds by computing (in polynomial time) the value
valG(x)(v0) of the MDP G(x) with T ′ substituted for T and accepts if the value
is 1. In all other cases, the algorithm rejects.

The correctness of the algorithm follows from Lemma 4 and the fact that
Prσ

v0
(Reach(T ′)) ≤ Prσ

v0
(Reach(T )) for any strategy σ in G(x) and any subset

T ′ ⊆ T . ��
Since any SMG with ω-regular can effectively be reduced to one with Muller ob-
jectives, Theorem 3 implies the decidability of QualNE for games with arbitrary
ω-regular objectives (e.g. given by S1S formulae). Regarding games with Muller
objectives, a matching PSpace-hardness result appeared in [18], where it was
shown that the qualitative decision problem for 2SGs with Muller objectives is
PSpace-hard, even for games without stochastic vertices. However, this result
relies on the use of arbitrary colourings.

With similar arguments as for games with Muller objectives, we can show
that QualNE is in NP for games with Streett objectives, and in co-NP for games
with Rabin objectives. A matching NP-hardness result for games with Streett
objectives was proven in [25], and the proof of this result can easily be modified
to prove co-NP-hardness for games with Rabin objectives; both hardness results
hold for games with only two players and without stochastic vertices.

Theorem 4. QualNE is NP-complete for games with Streett objectives, and
co-NP-complete for games with Rabin objectives.

Since any parity condition can be turned into both a Streett and a Rabin con-
dition where the number of pairs is linear in the number of priorities, we can
immediately infer from Theorem 4 that QualNE is in NP∩co-NP for games with
parity objectives.

Corollary 2. QualNE is in NP ∩ co-NP for games with parity objectives.

It is a major open problem whether the qualitative decision problem for 2SGs
with parity objectives is in P. This would imply that QualNE is decidable in
polynomial time for games with parity objectives since this would allow us to
compute the domain of the MDP G(x) in polynomial time. For each d ∈ N, a
class of games where the qualitative decision problem is provably in P is the class
of all 2SGs with parity objectives that uses at most d priorities [5]. For d = 2,
this class includes all 2SGs with a Büchi or a co-Büchi objective (for player 0).
Hence, we have the following theorem.
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Theorem 5. For each d ∈ N, QualNE is in P for games with parity winning
conditions that use at most d priorities. In particular, QualNE is in P for games
with (co-)Büchi objectives.

6 Conclusion

We have analysed the complexity of deciding whether a stochastic multiplayer
game with ω-regular objectives has a Nash equilibrium whose payoff falls into
a certain interval. Specifically, we have isolated several decidable restrictions of
the general problem that have a manageable complexity (PSpace at most). For
instance, the complexity of the qualitative variant of NE is usually not higher
than for the corresponding problem for two-player zero-sum games.

Apart from settling the complexity of NE (where arbitrary mixed strategies
are allowed), two directions for future work come to mind: First, one could study
other restrictions of NE that might be decidable. For example, it seems plausible
that the restriction of NE to games with two players is decidable. Second, it
seems interesting to see whether our decidability results can be extended to
more general models of games, e.g. concurrent games or games with infinitely
many states like pushdown games.
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Abstract. We classify the complexity of the satisfiability problem for
extensions of CTL and UB. The extensions we consider are Boolean com-
binations of path formulas, fairness properties, past modalities, and for-
gettable past. Our main result shows that satisfiability for CTL with all
these extensions is still in 2EXPTIME, which strongly contrasts with
the nonelementary complexity of CTL∗ with forgettable past. We give
a complete classification of combinations of these extensions, yielding a
dichotomy between extensions with 2EXPTIME-complete and those
with EXPTIME-complete complexity. In particular, we show that sat-
isfiability for the extension of UB with forgettable past is complete for
2EXPTIME, contradicting a claim for a stronger logic in the literature.
The upper bounds are established with the help of a new kind of pebble
automata.
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1 Introduction

Branching-time logics like CTL are an important framework for the specification
and verification of concurrent and reactive systems [6,13,1]. Their history reaches
almost thirty years back, when Lamport discussed the differences between linear-
time and branching-time semantics of temporal logics in 1980 [19]. The first
branching-time logic, called UB, was proposed the year after by Ben-Ari, Pnueli,
and Manna, introducing the concept of existential and universal path quantifi-
cation [2]. By extending UB with the “until” modality, Clarke and Emerson
obtained the computational tree logic CTL [5], the up to date predominant
branching-time logic.

Since then, many extensions of these logics have been considered. Some of
these extensions aimed at more expressive power, others were introduced with
the intention to make specification easier. In this paper, we consider four of these
extensions that have been discussed at length in the literature, namely Boolean
combinations of path formulas, fairness, past modalities, and forgettable past.

Combining these extensions, we obtain a wealth of branching-time logics.
Many of the logics have been studied for their expressive power, the complexity of
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their satisfiability and model checking problems, and for optimal model checking
algorithms. Nevertheless, for most of these logics the picture is still incomplete.

In this work, we complete the picture for the complexity of the satisfiability
problem. Concretely, we completely classify the complexity of satisfiability for
all branching-time logics obtained from UB and CTL by any combination of the
extensions listed above.

Let us take a look at those parts of the picture that are already there. The
classical results in the area are the proofs of EXPTIME-completeness for sat-
isfiability of UB [2] and CTL [8]. In the following paragraphs, we review known
results for the extensions we consider.

Boolean Combinations of Path Formulas. Both, UB and CTL, require that every
temporal operator is immediately preceded by a path quantifier. Emerson and
Halpern were the first to study a logic that also allows Boolean combinations of
temporal operators, i.e., of path formulas, as in E(Fp ∧ ¬Fq) [8]. They called
these logics UB+ and CTL+ and obtained the following hierarchy on their ex-
pressive power: UB ≺ UB+ ≺ CTL ≡ CTL+. Concerning complexity1, CTL+

has been shown to be complete for 2EXPTIME by Johannsen and Lange [15].
The precise complexity of UB+ is unknown.

Fairness. CTL cannot express fairness properties, e.g., that there exists a path
on which a proposition p holds infinitely often. Therefore, Emerson et al. in-
troduced ECTL by extending CTL with a new temporal operator F∞, such
that EF∞p expresses the property above. The logic combining ECTL with the
extension discussed before, ECTL+, roughly corresponds to the logic CTF of [7].

The logic CTL∗ of Emerson and Halpern extends ECTL+ with nesting of
temporal operators as in EG(p ∨Xp) [9]. Satisfiability for CTL∗, and therefore
for ECTL+, is 2EXPTIME-complete [26,11].

Past Modalities. While being common in linguistics and philosophy, past modal-
ities are mostly viewed only as means to make specification more intuitive in
computer science. For a discussion of this issue and of the possible different se-
mantics of past modalities, we refer to [16,21]. We adopt the view of a linear,
finite, and cumulative past, which is reflected in our definition of semantics of
branching-time logics based on computation trees.

We use PCTL to refer to the extension of CTL with the past counterparts
of the CTL temporal operators, and likewise for other logics. While PCTL is
strictly more expressive than CTL [16], this is not the case for PCTL∗ and
CTL∗ [14,20]. In both cases, past modalities do not increase the complexity:
PCTL is EXPTIME-complete [16] and PCTL∗ has recently been shown to be
2EXPTIME-complete by Bozzelli [3].

Forgettable Past. Once past modalities are available, restricting their scope is a
natural way to facilitate their use in specification. To this end, Laroussinie and
Schnoebelen introduced a new operator N for “from now on” to forget about

1 The complexity of a logic always refers to the complexity of its satisfiability problem.
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the past [20]. I.e., past modalities in the scope of a N-operator do not reach
further back than the point where the N-operator was applied. For results on
the expressive power of this operator, see [20].

Satisfiability for the extension of PCTL with the N-operator, PCTL+N, was
claimed to be in EXPTIME by Laroussinie and Schnoebelen [21]. In contrast
to this, a nonelementary lower bound for PCTL∗+N was shown in [28]. Never-
theless, the latter logic is known to be no more expressive than CTL∗ [20].

The logic PECTL++N, i.e., CTL with all the extensions considered here, also
has the same expressive power as CTL∗ [20]. But the proof uses the separation
result of Gabbay for liner temporal logic [12], causing a nonelementary blow-up.
No elementary upper bound for the complexity of satisfiability for PECTL++N
is known so far.

In this paper, we completely classify the complexity of satisfiability for all
branching-time logics obtained from UB and CTL by combination of the exten-
sions discussed above. In detail, we obtain the following results:

– We show that satisfiability for all of these logics that allow Boolean com-
binations of path formulas is 2EXPTIME-complete, improving the known
lower bound for CTL+ to UB+.

– Likewise, we show that all logics with forgettable past are 2EXPTIME-
hard, even if only the past modality P for “somewhere in the past” is allowed.
This contradicts the claim of Laroussinie and Schnoebelen of EXPTIME
membership for PCTL+N in [21].

– We show that all logics that include neither Boolean combinations of path
formulas nor forgettable past are in EXPTIME.

– Finally, we show a 2EXPTIME upper bound for PECTL++N, i.e., for
CTL with all the considered extensions. This strongly contrasts but does
not contradict the nonelementary complexity of PCTL∗+N, although both
logics are equally expressive.

The upper bounds are obtained by translation into alternating tree automata
[25]. To prove the upper bound for PECTL++N, we introduce the model of
k-weak-pebble hesitant alternating tree automata and show that their nonempti-
ness problem is in 2EXPTIME. These automata differ from the one-pebble
alternating Büchi tree automata of [28] in two respects. First, they use a differ-
ent acceptance condition to handle fairness, as proposed by Kupferman, Vardi,
and Wolper for an automata model for CTL∗ model checking [18]. Second, the
model allows more than one pebble, but only of a weak kind. These pebbles are
used to handle forgettable past and Boolean combinations of path formulas.

Due to lack of space all proofs are omitted, except for some proof sketches.
They are available in the full version of the paper [27].

Note

Tragically, Volker Weber died in the night of April 6-7, 2009, right after sub-
mitting this paper to CSL 2009. An obituary is printed in the proceedings.
Most of the remarks by the reviewers were incorporated by his advisor, Thomas
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Schwentick. However, major changes were avoided (and had not been requested
by the reviewers). The help of the reviewers is gratefully acknowledged.

2 Preliminaries

This section contains the definitions of branching-time logics and tree automata.
Both are with respect to infinite trees, which we are going to define first.

A tree is a set T ⊆ N
∗ such that if x · c ∈ T with x ∈ N

∗ and c ∈ N, then
x ∈ T and x · c′ ∈ T for all 0 < c′ < c. The empty string ε is the root of T
and for all c ∈ N, x · c ∈ T is called a child of x. The parent of a node x is
sometimes denoted by x · −1. We use Tx := {y ∈ N

∗ | x · y ∈ T } to denote the
subtree rooted at the node x ∈ T . The branching degree deg(()x) is the number
of children of a node x. Given a set D ⊆ N, a D-tree is a computation tree such
that deg(()x) ∈ D for all nodes x.

A path π in T is a prefix-closed minimal set π ⊆ T , such that for every x ∈ π,
either x has no child or there is a unique c ∈ N with x · c ∈ π. We use “≤” (“<”)
to denote the (strict) ancestor-relation on T .

A labeled tree (T, V ) over a finite alphabet Σ consists of a tree T and a la-
beling function V : T → Σ, assigning a symbol from Σ to every node of T . We
are mainly interested in the case where Σ = 2PROP for some set PROP of propo-
sitions. Such computation trees result from the unfolding of Kripke structures.
In the following, we consider only computation trees and refer to them as trees.
We identify (T, V ) with T .

2.1 Branching-Time Logics

We shortly define the branching-time logics we are going to study. These defini-
tions are mainly standard.

We start by defining the logic incorporating all the extensions discussed in
the introduction. The state formulas ϕ and path formulas ψ of PECTL++N are
given by the following rules:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Eψ | Nϕ
ψ ::= ϕ | ψ ∧ ψ | ¬ψ | Xϕ | ϕUϕ | F∞ϕ | Yϕ | ϕSϕ

where p ∈ PROP for some set of propositional symbols PROP. PECTL++N is
the set of all state formulas generated by these rules.

We use the usual abbreviations true, false, ϕ ∨ ϕ,ϕ→ ϕ,ϕ↔ ϕ, and

Aψ := ¬E¬ψ Fϕ := trueUϕ Gϕ := ¬F¬ϕ
G∞ϕ := ¬F∞¬ϕ Pϕ := trueSϕ Hϕ := ¬P¬ϕ

The semantics of PECTL++N is defined with respect to a computation tree T ,
a node x ∈ T , and, in case of a path formula, a path π in T starting at the root
of T . We omit the rules for propositions and Boolean connectives.
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T, x |= Eψ iff there exists a path π in T , such that x ∈ π and T, π, x |= ψ

T, x |= Nϕ iff Tx, ε |= ϕ

T, π, x |= ϕ for a state formula ϕ, iff T, x |= ϕ

T, π, x |= Xϕ iff T, π, x · c |= ϕ, where c ∈ D and x · c ∈ π
T, π, x |= ϕ1Uϕ2 iff there is a node y ≥ x in π, such that T, π, y |= ϕ2

and for all x ≤ z < y we have T, π, z |= ϕ1

T, π, x |= F∞ϕ iff there are infinitely many nodes y ∈ π such that T, π, y |= ϕ

T, π, x |= Yϕ iff x �= ε and T, π, x · −1 |= ϕ

T, π, x |= ϕ1Sϕ2 iff there is a node y ≤ x in π, such that T, π, y |= ϕ2

and for all y < z ≤ x we have T, π, z |= ϕ1

A formula ϕ is called satisfiable if there is a tree T such that T, x |= ϕ.
All other logics we consider are syntactical fragments of PECTL++N.

UB+ ϕ := p | ϕ ∧ ϕ | ¬ϕ | Eψ
ψ := ϕ | ψ ∧ ψ | ¬ψ | Xϕ | Fϕ

UB+P+N ϕ := p | ϕ ∧ ϕ | ¬ϕ | EXϕ | EFϕ | AFϕ | Pϕ | Nϕ
PECTL ϕ := p | ϕ ∧ ϕ | ¬ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ) | EF∞ϕ | Yϕ | ϕSϕ

2.2 Weak-Pebble Automata

We introduce alternating tree automata equipped with a weak kind of pebbles.
We call these pebbles weak as they can only be used to mark a node while the
automaton inspects the subtree below2. In particular, a weak-pebble automaton
can only see the last pebble it dropped.

For a given setX , we use B+(X) to denote the set of positive Boolean formulas
over X , i.e., formulas built from true, false and the elements of X by ∧ and ∨.
A subset Y ⊆ X satisfies a boolean formula α ∈ B+(X) if and only if assigning
true to the elements in Y and false to the elements in X \ Y makes α true.

Definition 2.1. A k-weak-pebble alternating tree automaton (k-WPAA) is a
tuple A = (Q,Σ,D, q0, δ, F ), such that Q is a finite set of states, Σ is a finite
alphabet, D a finite set of arities, q0 ∈ Q is the initial state, F is an acceptance
condition, and δ is a transition function

δ : Q×Σ ×D × B → ({drop,lift} ×Q) ∪ B+((D ∪ {−1, 0, root})×Q)

such that δ(q, σ, d, false) �= (lift, p), no Boolean combination δ(q, σ, d, b) con-
tains any (d′, p) with d′ ∈ D and d′ > d, and no Boolean combination δ(q, σ, d,
true) contains any (−1, p).

2 A similar restriction on pebbles was considered in [23].
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In the following definition of the semantics of a k-WPAA, we will use tuples
ȳ = (y1, . . . , yk) ∈ (D∗∪{⊥})k, called pebble placements, to denote the positions
of the pebbles, where “⊥” means that the pebble is not placed. As k-WPAA will
be restricted to use their pebbles in a stack-wise fashion, pebble 1 being the first
pebble to be placed, there will always be an i ∈ [1, k], such that yj �= ⊥ for all
j ≤ i and yj = ⊥ for all j > i. I.e., i is the maximal index of a placed pebble
and we will refer to it by mpp(ȳ). Note that mpp(ȳ) = 0 if and only if no pebble
is placed and that ympp(ȳ) is the position of the last placed pebble otherwise.

Definition 2.2. A configuration (q, x, ȳ) ∈ Q×D∗× (D∗∪{⊥})k of a k-WPAA
A = (Q,Σ,D, q0, δ, F ) consists of a state, the current position in the tree, and
the positions of the pebbles.

A run r of A on a Σ-labeledD-tree (T, V ) is a N-tree (T ′, V ′), whose nodes are
labeled by configurations of A and that is compatible with the transition func-
tion. More precisely, the root of T ′ must be labeled by (q0, ε, ȳ) with mpp(ȳ) = 0,
and for every node v ∈ T ′ labeled by (q, x, ȳ) the following conditions depending
on δ hold, where d := deg(x) and b = true if and only if ympp(ȳ) = x.

δ(q, V (x), d, b) = (drop, p): If mpp(ȳ) < k, then v has a child labeled with
(q, x, ȳ′), where y′mpp(ȳ)+1 = x and y′j = yj for all j �= mpp(ȳ)+1. Otherwise,
i.e., if all pebbles are already placed, the transition cannot be applied.

δ(q, V (x), d, b) = (lift, p): By Definition 2.1, b = true and therefore ympp(ȳ) = x.
Then v has a child labeled with (q, x, ȳ′), where y′mpp(ȳ) = ⊥ and y′j = yj for
all j �= mpp(ȳ).

δ(q, V (x), d, b) = α for a boolean combination α ∈ B+((D∪{−1, 0, root})×Q):
There has to be a set Y ⊆ (D ∪ {−1, 0, root}) × Q, such that Y satisfies
α, and, for every (c, p) ∈ Y , there is a child v · c of v in T ′ such that v · c
is labeled by (p, x · c, ȳ), where x · 0 and x · root denote the node x itself.
Additionally, we require that Y does not contain a tuple (−1, q) if x = ε and
that Y contains a tuple (root, q) only if x = ε.

We call a run r accepting if every infinite path of r satisfies the acceptance
condition and every finite path ends in a configuration where a transition to the
Boolean combination true applies. A labeled tree (T, V ) is accepted by A if and
only if there is an accepting run of A on (T, V ). The language of A is the set of
trees accepted by A and denoted L(A).

Definition 2.3. A symmetric k-weak-pebble alternating tree automaton is a tu-
ple A = (Q,Σ, q0, δ, F ), such that Q is a finite set of states, Σ is a finite alphabet,
q0 ∈ Q is the initial state, F is an acceptance condition, and

δ : Q×Σ × B → ({drop,lift} ×Q) ∪ B+(({�,♦,−1, 0, root})×Q)

is a transition function such that δ(q, σ, false) �= (lift, p) and δ(q, σ, true) does
not contain any (−1, p).

The semantics of a symmetric k-WPAA are defined as for (nonsymmetric)
k-WPAA, except for the last case, δ(q, V (x), d, b) = α, where we require that for
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every tuple (♦, p) ∈ Y there is child of v in T ′ labeled by (p, x · c) for some child
x · c of x in T , and for every tuple (�, p) ∈ Y and every child x · c of x in T ,
there is child of v in T ′ labeled by (p, x · c). The conditions on tuples (−1, p),
(0, p), and (root, p) remain unchanged.

So far, we have not specified the acceptance conditions for our automata. For
our purposes, hesitant alternating tree automata as introduced by Kupferman,
Vardi, and Wolper are a good choice [18]. They allow for an easy translation
from CTL∗ [18] and have proved useful in studies of CTL∗ with past [17,3].

A k-weak-pebble hesitant alternating tree automaton (k-WPHAA for short)
A = (Q,Σ,D, q0, δ, F ) is a k-WPAA with F = 〈G,B〉, G,B ⊆ Q, that satisfies
the following conditions:

– There exists a partition of Q into disjoint sets Q1, . . . , Qm and every set Qi

is classified as either existential, universal, or transient.
– There exists a partial order ≤ between the sets Qi, such that every transition

from a state in Qi leads to states contained either in the same set Qi or in
a set Qj with Qj < Qi.

– If q ∈ Qi for a transient set Qi, then δ(q, σ, d, b) contains no state from Qi.
– If Qi is an existential set, q ∈ Qi and δ(q, σ, d, b) = α, then α contains only

disjunctively related tuples with states from Qi.
– If Qi is a universal set, q ∈ Qi and δ(q, σ, d, b) = α, then α contains only

conjunctively related tuples with states from Qi.

Every infinite path π in a run of a k-WPHAA gets trapped in an existential or a
universal set Qi. The acceptance condition 〈G,B〉 is satisfied by π, if either Qi

is existential and inf(π) ∩G �= ∅, or Qi is universal and inf(π) ∩B = ∅, where
inf(π) denotes the set of states that occur infinitely often on π.

We also consider symmetric k-WPHAA. Here, we additionally require that
for every existential (resp. universal) set Qi and every state q ∈ Qi, δ(q, σ, d, b)
does not contain a tuple (�, p) (resp. (♦, p)) with p ∈ Qi.

The size of an automaton is defined as the sum of the sizes of its components.
Note that this includes the size of D in the case of nonsymmetric automata.

If we remove the pebbles from our automata, we obtain (symmetric) two-way
hesitant alternating tree automata. Such an automaton has a transitions function
of the form δ : Q×Σ → B+(({�,♦,−1, 0, root})×Q) in the symmetric case and
is obtained from the above definitions in a straightforward way.

Symmetric two-way HAA have been used by Bozzelli to prove membership in
2EXPTIME for CTL∗ with past [3]. Opposed to the definition given there, we
do not enforce that infinite paths in a run move only downward in the tree from
a certain point on. Therefore, our results on symmetric two-way HAA are not
implied by [3]. Nevertheless, the restricted version of [3] would suffice to prove
our results on the complexity of branching-time logics.

3 Complexity of Satisfiability

We give a complete classification of the complexity of the satisfiability problem
for all branching-time logics obtained from UB and CTL by any combination of
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the extensions discussed above. As our main theorem, we proof 2EXPTIME-
completeness for all logics including forgettable past or Boolean combinations of
path formulas.

Theorem 3.1. The satisfiability problems for all branching-time logics that are
a syntactical fragment of PECTL++N and that syntactically contain UB+ or
UB+P+N are complete for 2EXPTIME.

The upper bound is proved in Section 3.2 with the help of weak-pebble alter-
nating tree automata. There, we also show that satisfiability for all remaining
logics is in EXPTIME.

The lower bounds on UB+P+N and UB+ are proved next.

3.1 Lower Bounds

We obtain both results by reduction from the 2n-corridor tiling game, which is
based on the 2n-corridor tiling problem. An instance I = (T,H, V, F, L, n) of
the latter problem consists of a finite set T of tile types, horizontal and vertical
constraints H,V ⊆ T ×T , constraints F,L ⊆ T on the first and the last row, and
a number n given in unary. The task is to decide, whether T tiles the 2n ×m-
corridor for some number m of rows, respecting the constraints. We assume
w.l.o.g. that there is always a possible next move for both players.

The game version of this problem corresponds to alternating Turing Machines:
The 2n-corridor tiling game is played by two players E and A on an instance I
of the 2n-corridor tiling problem. The players alternately place tiles row by row
starting with player E and following the constraints, as the opponent wins oth-
erwise. E wins the game if a row consisting of tiles from L is reached. To decide
whether E has a winning strategy in such a game is complete for AEXPSPACE
[4], which is the same as 2EXPTIME.

Proposition 3.2. Satisfiability for UB+P+N is 2EXPTIME-hard.

Proof. Given an instance I = (T,H, V, F, L, n) of the 2n-corridor tiling game,
we build a UB+P+N-formulas ϕI that is satisfiable if and only if player E has
a winning strategy on I.

We encode such a winning strategy as a finite T -labeled tree as described in
[28]: The levels of the tree alternately correspond to moves of E and A, and
every node representing a move of E has one child for every next move of A. As
each player always has a possible move, the only way to win for E is to reach a
line with tiles from L. Therefore, every path in the encoding has to represent a
tiling respecting all constraints.

The formula ϕI = ϕs ∧ ϕn ∧ ϕt consists of three parts: The formula ϕs de-
scribes the structure of the encoding and ϕn introduces a numbering of the nodes
representing one line of the tiling using the propositions q0, . . . , qn−1 as shown
in Figure 1. Both are UB-formulas and can be taken from [28].

The formula ϕt is used to describe the actual tiling. It states that every node
corresponding to a position in the tiling is labeled with exactly one proposition
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· · ·

Fig. 1. A path in the encoding of a winning strategy for the 2n-corridor tiling game
with m rows [28]

pt, representing the tile t ∈ T , and that all constraints are respected. We use ϑ
as an abbreviation for ¬q ∧¬q# ∧¬P(q# ∧P(¬q# ∧Pq#)), expressing that the
current node represents a position in the tiling and that there is at most one row
above. This, together with the N-operator, will allow us to check the vertical
constraints.

ϕt = AG([¬q ∧ ¬q#] → [
∨

t∈T

(pt ∧
∧

t�=t′∈T

¬pt′) ∧ θH ∧ θV ∧ θA]) ∧ θA′ ∧ θF ∧ θL

θH = ¬
n−1
∧

i=0

qi →
∧

t∈T

(pt → AX
∨

(t,t′)∈H

pt′)

θV = NAXAG([ϑ ∧
n−1
∧

i=0

(qi ↔ PHqi)] →
∧

t∈T

(pt →
∨

(t,t′)∈V

PHpt′))

We omit the formulas corresponding to the constraints F and L.
The subformulas θA and θA′ enforce that every possible move of A is repre-

sented, where θA′ treats the special case of the first row of the tiling.

θA = q0 → NAXAG([ϑ ∧ ¬q0 ∧
n−1
∧

i=1

(qi ↔ PHqi)]

→
∧

t∈T

(pt →
∧

(t,t′)∈H

[EXpt′ ∨PH
∨

(t′′,t′) �∈V

pt′′ ]))

θA′ = AG([¬q0 ∧ ¬P(q# ∧P¬q#)] →
∧

t∈T

(pt →
∧

(t,t′∈H)

EXpt′))

Note that a model for ϕI might encode several possible moves for E and moves
of E and A might be represented more than once. But by removing duplicates
and restricting to one arbitrary move for E at every position where E has to
move, we obtain a winning strategy for E on I from a model for ϕI . For the
reverse direction, a winning strategy for E can be directly turned into a model
for ϕI . ��

Concerning Boolean combinations of path formulas, we can refine the proof of
2EXPTIME-hardness for CTL+ by Johannsen and Lange [15] to show the
following theorem.

Proposition 3.3. Satisfiability for UB+ is 2EXPTIME-hard.
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The proof is by reduction from the 2n-corridor tiling game. The main idea is to
use a numbering of the rows modulo three to able to express that a path reaches
up to the next row, but not beyond, without the U-operator. The details can be
found in the full version.

3.2 Upper Bound

We prove the upper bound of Theorem 3.1 in two steps. First, we show how to
translate a PECTL-formula into a two-way hesitant alternating tree automaton,
thereby giving an exponential time algorithm for PECTL-satisfiability. After-
wards, we extend this construction to PECTL++N and weak-pebble automata.

Theorem 3.4. The satisfiability problem for PECTL is EXPTIME-complete.

Proof. The lower bound follows from the EXPTIME-hardness of CTL. To
prove the upper bound, we extend the construction from [25] that translates
a given CTL-formulas into an alternating Büchi tree automaton.

Let ϕ be a PECTL-formula and PROPϕ the set of proposition symbols occur-
ring in ϕ. We construct a symmetric two-way hesitant alternating tree automata
Aϕ = (Q,Σ, q0, δ, 〈G,B〉) with Σ = 2PROPϕ , such that ϕ holds at the root of
some Σ-labeled tree (T, V ) if and only if Aϕ accepts this tree. The result follows
since nonemptiness for these automata is in EXPTIME (Theorem 4.6).

Let ψ denote the dual of a formula ψ. The dual of a formula is obtained by
switching ∧ and ∨, and by negating all other maximal subformulas, identifying
¬¬ψ and ψ. E.g., the dual of p ∨ (¬q ∧EGp) is ¬p ∧ (q ∨ ¬EGp).

The set Q of states of Aϕ is based on the Fisher-Ladner-closure of ϕ. It
contains ϕ, (EXEF∞ψ) ∧ ψ for every subformula EF∞ψ of ϕ, and is closed
under subformulas and negation. The initial state is ϕ. The set G contains all
formulas of the form ¬E(χUψ), ¬A(χUψ), and (EXEF∞ψ) ∧ ψ, the set B all
formulas of the form ¬EXEF∞ψ. The transition function is defined as follows,

δ(true, σ) = true δ(p, σ) = true if p ∈ σ
δ(false, σ) = false δ(p, σ) = false if p �∈ σ
δ(ψ ∧ ξ, σ) = (0, ψ) ∧ (0, ξ) δ(¬ψ, σ) = δ(ψ, σ, b)
δ(EXψ, σ) = (♦, ψ) δ(Yψ, σ) = (−1, ψ)

δ(EF∞ψ, σ) = (♦,EF∞ψ) ∨ (0, (EXEF∞ψ) ∧ ψ)
δ(E(χUψ), σ) = (0, ψ) ∨ ((0, χ) ∧ (♦,E(χUψ))
δ(A(χUψ), σ) = (0, ψ) ∨ ((0, χ) ∧ (�,A(χUψ))

δ(χSψ, σ) = (0, ψ) ∨ ((0, χ) ∧ (−1, χSψ))

where the notion of dual is extended to the transition function δ in the obvious
way, e.g., δ(E(χUψ), σ) = (0, ψ) ∧ ((0, χ) ∨ (�,¬E(χUψ)).

To show that Aϕ is a hesitant automaton, we have to define the partition of
Q. The formulas (EXEF∞ψ) ∧ ψ, EXEF∞ψ, and EF∞ψ form an existential
set. Likewise, (¬EXEF∞ψ) ∨ ¬ψ, ¬EXEF∞ψ, and ¬EF∞ψ form a universal
set. Every other formula ψ ∈ Q constitutes a singleton set {ψ}. These sets are all
transient, except for the sets {E(χUψ)} and {¬A(χUψ)}, which are existential,
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and the sets {¬E(χUψ)} and {A(χUψ)}, which are universal. The partial order
on these sets is induced by the subformula relation. ��

We extend this construction to prove our result on PECTL++N. To this end,
we have to find a way to deal with the N-operator and Boolean combinations of
path formulas. As we will see, pebbles can be used to handle both.

To obtain the desired result, it is important3 that the number of pebbles an
automaton uses does not depend on the formula from which it is constructed.
But if we translate a PECTL++N-formula into an equivalent pebble automaton
along the lines of the above construction, the number of pebbles depends on
the nesting depth of N-operators and Boolean combinations of path formulas.
To avoid this, we show that we can restrict to formulas with limited nesting.
But there is a price we have to pay: We will only obtain an equisatisfiable
formula/automaton but not an equivalent one as in the proof of Theorem 3.4.
Nevertheless, this will suffice to obtain our complexity result.

We say that a PECTL++N-formula is in normal form, if it does not contain
any nesting of N-operators, all path quantifiers that are followed by a Boolean
combination of path formulas are not nested and occur only in the scope of an N-
operator, and finally all Boolean combinations of path formulas are in negation
normal form.

Lemma 3.5. Every PECTL++N-formula ϕ can be efficiently transformed into
a PECTL++N-formula ψ in normal form with |ψ| = O(|ϕ|), such that ψ is
satisfiable if and only if ϕ is satisfiable.

We show that any PECTL+-formula in normal form can be translated into a
k-WPHAA with only two pebbles. This completes the proof of Theorem 3.1 as
nonemptiness for these automata is in 2EXPTIME by Theorem 4.1.

Lemma 3.6. Given a PECTL++N-formula ϕ in normal form, we can con-
struct a symmetric 2-WPHAA Aϕ of size O(|ϕ|), such that L(Aϕ) �= ∅ if and
only if ϕ is satisfiable.

Proof. We extend the proof of Theorem 3.4, showing how to use pebbles to
handle the additional features of PECTL++N. Since ϕ is given in normal form,
two pebbles will suffice.

The handling of the N-operator is straightforward: We only have to drop the
pebble and never lift it again. As k-WPHAA are not allowed to move above
a pebble in a tree, the dropping of the pebble corresponds accurately to the
meaning of the N-operator.

3 Comment byThomasSchwentick: this remarkmight puzzle the reader in the light of the
results of Section 4. In an earlier version of the paper, the upper bound on the branch-
ing width in Proposition 4.5 was 2O(nk), hence the need to bound the number k of peb-
bles. However, shortly before submission time, Volker discovered that this upper bound
can be improved to 2n2 ·(k+1), thus resolving the need to bound the number of pebbles.
Seemingly, he did not find time to fully adapt (and simplify) the paper accordingly.
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The handling of Boolean combinations of path formulas is more involved and
mainly a matter of synchronization. An automaton corresponding to the formula
E(F∞p ∧ F∞q) cannot simply split into two automata corresponding to F∞p
and F∞q, respectively, as these two automata need to run on the same path in
the tree. I.e., they have to be synchronized.

We will achieve synchronization using two different techniques. To this end,
let Eψ be a subformula of ϕ such that ψ is a Boolean combination of path
formulas ρ1, . . . , ρl and π a path on which we want to evaluate ψ. For some of
the path formulas ρi, it is the case that if they hold on π, then a finite prefix
suffices to witness this, e.g., if ρi = pUq. For other path formulas we have to
consider the whole, probably infinite path π. What thereof is the case depends
on the temporal operator and whether it appears negated or not.

To evaluateEψ at a node u, Aϕ will first guess a finite prefix of a path. The inten-
tion is that this prefix can serve as a witness for all path formulas ρi that allow for a
finite witness, either to show that they hold or that they do not hold on this path.

Those parts of ψ that refer to the finite prefix are now checked by Aϕ while
moving up the tree again. E.g., if ρi = Fp, then the subautomaton Aρi corre-
sponding to ρi will run upwards looking for a node v labeled by p. As there is
only one path going upward in a tree, we get synchronization for free. But we
have to make sure that v is a descendant of u. Therefore, the second pebble has
to be dropped at u before the automaton starts to guess the finite prefix. This
allows Aρi to reject when it reaches the pebble position without having seen a
state labeled by p. On the other hand, if ρi = FPp, it is important that the
second pebble can be lifted again as the witness might be above u in this case.

We still have to synchronize those subautomata that correspond to path for-
mulas talking about the infinite suffix of the path. But there are only two types
of conditions left, namely those of the form Gχ and those of the form F∞χ.
We can easily see that if a path satisfies a positive Boolean combination of such
conditions, then every suffix of this path does so as well. This allows us to deploy
the following technique.

Roughly speaking, we want to reduce the satisfiability problem for ϕ to satisfi-
ability over a restricted class of models, where the suffixes of witnessing paths for
Boolean combinations of path formulas are labeled by additional propositions.
More precisely, for a subformula Eψ of ϕ we introduce a new propositional sym-
bol pψ and add to ϕ the new conjunct AG(¬pψ ∨ EGpψ). The automaton we
are going to construct for this extended formula will, when evaluating Eψ, work
as follows: It will drop the pebble and guess a prefix of a path on which ψ is
supposed to hold. But this prefix has to end in a node labeled by pψ. The condi-
tions on this finite prefix can be checked as described above. For the conditions
on the suffix, we use the labeling to synchronize the independent subautomata
corresponding to conditions to be checked.

Note that we cannot guaranty that there is only one path labeled by pψ. But
we can simply check that the conditions hold on all paths labeled by pψ as there
is at least one such path. Please also note that this technique cannot be used for
the conditions on the finite prefix of the path as the labeling is not allowed to
depend on the node at which Eψ is evaluated. ��
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4 Nonemptiness of Weak-Pebble Automata

The complexity of the nonemptiness problem for weak-pebble alternating tree
automata is analyzed in this section.

Theorem 4.1. The nonemptiness problem for (symmetric) k-weak-pebble hesi-
tant alternating tree automata is complete for 2EXPTIME.

We prove this theorem for the case of nonsymmetric automata by reduction
to the nonemptiness problem for Rabin tree automata [22,24]. Afterwards, we
generalize the result to symmetric automata by observing that every symmetric
k-WPHAA accepts a tree of bounded branching degree.

Definition 4.2. A nondeterministic Rabin tree automaton (NRA) A is a tuple
(Q,Σ,D, q0, δ, F ), such that Q is a finite set of states, Σ is a finite alphabet, D a
finite set of arities, q0 ∈ Q is the initial state, F is a set {〈G1, B1〉, . . . , 〈Gm, Bm〉}
with Gi, Bi ⊆ Q, and δ : Q × Σ ×D → 2Q∗

is a transition function, such that
δ(q, σ, d) ⊆ Qd for all q ∈ Q, σ ∈ Σ, and d ∈ D.

We omit the (straightforward) definition of a run. An infinite path π in a run
of A satisfies the acceptance condition F = {〈G1, B1〉, . . . , 〈Gm, Bm〉} if and only
if there exists a pair 〈Gi, Bi〉 ∈ F such that inf(π)∩Gi �= ∅ and inf(π)∩Bi = ∅.

A run r on a tree T is accepting iff every infinite path of r satisfies the
acceptance condition and we have δ(q, V (x), 0) = {ε} for every finite path ending
in a state q at a leaf x of T ,where ε denotes the sequence of states of length 0.

The last part of the definition is nonstandard and used to avoid the requirement
that every path of T is infinite. Note that A rejects a finite path if δ(q, V (x), 0) = ∅.

The nonemptiness problem for these automata is NP-complete in general, but
it can be solved in polynomial time if the number of tuples in the acceptance
condition is bounded by a constant [11]. For our purposes, one tuple suffices.

Proposition 4.3 ([11]). The nonemptiness problem for nondeterministic Ra-
bin tree automata whose acceptance condition contains only one tuple can be
decided in polynomial time.

Together with the following translation, this yields Theorem 4.1 for the case of
nonsymmetric k-WPHAA.

Lemma 4.4. For every k-WPHAA A = (QA, Σ,D, q
0
A, δA, 〈GA, BA〉), there is

a nondeterministic Rabin tree automaton B = (QB, Σ,D, q
0
B, δB, {〈GB, BB〉}),

such that L(A) = L(B) and the number of states of B is at most doubly expo-
nential in |QA|. Moreover, B can be constructed from A in exponential space.

Proof. We start with the observation that we can restrict to homogeneous runs of
A, i.e., to runs where A always behaves in the same way when being in the same
configuration. Formally, we call a run r homogeneous, if whenever two nodes of
r are labeled by the same configuration, then the set of labels occurring at there
children is also the same. If A has an accepting run, it also has an accepting
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homogeneous run. This follows immediately from the existence of memoryless
winning strategies for two-player parity games on infinite graphs [10,29].

Next, we describe how to construct the automaton B from A. When running
on a tree T , B will guess a homogeneous run r of A and accept if and only if
the guessed run r is accepting. Of course, B cannot guess r at once. Instead, B
will guess at every node x ∈ T how A behaved at x during r. The consistency
of these guesses has to be checked by B. Additionally, B has to check whether
the guessed run is accepting.

To perform these tasks, B needs to maintain some information about the
guessed run r of A. More precisely, the state taken by B at a node x ∈ T
will contain several sets of states of A that describe r at x. Additionally, there
will be some information that will be used to verify that all infinite paths in
r going through x satisfy the acceptance condition of A. This information will
not uniquely determine r, but it will be sufficient to ensure the existence of an
accepting run. A description of the information B stores in its states along with
a formal definition of B can be found in the full version. ��

To transfer this result to the case of symmetric automata, we have to deal with
the fact that these automata accept trees of arbitrary, even infinite branching
degree. But we can show that a symmetric k-WPHAA always accepts a tree
whose branching degree is at most exponential in the size of the automaton.

Proposition 4.5. For every symmetric k-WPHAA A with n states:
If L(A) �= ∅, then A accepts a tree whose branching degree is at most 2n2·(k+1).

This can be proved similarly to a corresponding result for symmetric alternating
one-pebble Büchi automata in [28]. See the full version for details.

Now, we can adapt Lemma 4.4 to symmetric k-WPHAA simply by considering
every possible branching degree smaller than the bound provided by Proposition
4.5. This yields the upper bound of Theorem 4.1 for symmetric k-WPHAA. The
matching lower bound follows from the 2EXPTIME-hardness of PECTL++N
via Lemma 3.6 and Proposition 4.5.

Reviewing the proof of Lemma 4.4, we observe that the resulting NRA B is
only of exponential size if A does not use any pebbles, i.e., if A is a (symmetric)
two-way HAA. This yields the following theorem, which has been proved before
by Bozzelli for a slightly more restricted model [3].

Theorem 4.6. The nonemptiness problem for (symmetric) two-way hesitant
alternating tree automata is complete for EXPTIME.

5 Conclusions

In this paper, we considered the branching-time logics UB and CTL and their
extensions by Boolean combinations of path formulas, fairness, past modalities,
and forgettable past. While we think that this set of extensions is a reasonable
choice, there are certainly other extensions or restrictions, such as existential or
universal fragments, that deserve attention.
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We gave a complete classification of the complexity of the satisfiability prob-
lem for these logics, obtaining a dichotomy between EXPTIME-complete and
2EXPTIME-complete logics. There are many open questions concerning the
expressive power of these logics and the complexity of their model checking
problems that should be addressed in future work.
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Obituary Notice by Thomas Schwentick

We mourn the loss of Volker Weber, who died suddenly and unexpectedly on
the 7th of April 2009. He was 30 years old. Volker began his scientific work at
the faculty of Mathematics and Computer Science of the Philipps-Universität
in Marburg. The main results of his masters thesis were published in a leading
theoretical Computer Science conference.

Since October 2005, Volker worked as a researcher and PhD student at the
Technische Universität Dortmund. His dissertation dealt with the complexity
and expressiveness of hybrid logics, and was at the time of his death close to
completion. Volker had fast become one of the leading experts in the field of
hybrid logics. The scientific community knew him as a talented but modest
researcher. Interacting with him was both personally and scientifically enriching.

Furthermore, Volker was actively involved in the self-administration of the
faculty. In particular, he always had an open ear for the opinions of students
and worked hard in various committees to improve the teaching offered by the
faculty. Not least, Volker was an inspiring and committed teacher of Computer
Science.

We will miss him deeply, as a friend, as a researcher and as a colleague.
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Abstract. This paper investigates a methodology of using FM
(Fraenkel-Mostowski) sets, and the ideas of nominal set theory, to adjoin
name generation to a semantic theory. By developing a domain theory
for concurrency within FM sets the domain theory inherits types and op-
erations for name generation, essentially without disturbing its original
higher-order features. The original domain theory had a metalanguage
HOPLA (Higher Order Process Language) and accordingly this expands
to a metalanguage, Nominal HOPLA, with name generation (closely re-
lated to an earlier language new-HOPLA). Nominal HOPLA possesses an
operational and denotational semantics which are related via soundness
and adequacy results, again carried out within FM sets.

Introduction

Fraenkel-Mostowski (FM) set theory provided an early example of a set the-
ory violating the Axiom of Choice (AC). It did this by building a set theory
around a basic set of finitely permutable atoms A. Functions had to respect the
permutability of atoms, which was sufficient to disallow functions required to
fulfill AC. Atoms share the same properties as names in computer science. Most
often the precise nature of names is unimportant; what matters is their ability
to identify and their distinctness. For this reason FM set theory has begun to
play a foundational role in computer science, especially in syntax, making formal
previously informal and often inaccurate assumptions about, for example, the
freshness of variables in substitution[2,3]. This paper turns FM set theory to the
problem of adjoining names and name generation to a semantic theory, a domain
theory for concurrency.

At heart what makes FM set theory important for treating names are adjunc-
tions associated with new-name abstraction. The simplest and best-known ad-
junction, implicit in [3], is for the category of nominal sets (those FM sets which
remain invariant under all finite permutations of names). Its right adjoint δ con-
structs a form of function space consisting of ‘new-name abstractions’. Closely
related though less well-known are the adjunctions in FM sets on which this
paper hinges. Here the associated functors can only be defined locally w.r.t. the
sets of names involved.

Importantly, aside from these name features, FM set theory behaves much
like more familiar set theories such as ZF, which is invaluable in transferring
developments in a name-free setting into FM sets. For us it will mean that a
path-based domain theory for concurrency can be systematically extended with
name generation by working within FM set theory.

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 546–560, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In the domain theory a process denotes a set of paths in a path order, speci-
fying the type of computations it can do. Path sets provide a fully-abstract de-
notational semantics for the higher order process language HOPLA[4]. HOPLA
was extended with name generation to a language new-HOPLA, able to express
for example the pi-Calculus, Higher-Order pi-Calculus and mobile ambients[8].
But providing a denotational semantics was problematic. With the then stan-
dard way to adjoin name generation to a category of domains, by moving to a
functor category, indexing both processes and their types by the current set of
names, it became difficult to show that enough function spaces existed (there is
an error in [6]). These problems are obviated by working within FM set theory.
The way is open to developing more complicated semantics, such as that based
on presheaves over path categories, within FM sets.1

1 FM Sets

We provide a brief introduction to Fraenkel-Mostowski (FM) sets[2,3].
Fix an infinite set of names (or ‘atoms’) written A. A finite permutation of

A is a permutation σ of A such that σa �= a for only finitely many a ∈ A. The
collection of all finite permutations of A forms a group. The group is generated
by all transpositions (ab) which swap a name a and a name b.

Imagine building a hierarchy of sets as in ZF, but starting from A rather
than the empty set. The permutation action on the collection of atoms induces
a permutation action · on the hierarchy of elements by ∈-recursion, giving rise
to a notion of support. A set s ⊆ A supports the element x if for any finite
permutation σ such that σa = a for all a ∈ s it is also the case that σ · x = x.
If x has a finite support then it has a smallest finite support, written supp(x).
The FM sets are defined to be those elements with hereditarily finite support.

The collection of all FM sets and finitely-supported functions forms a category
FMSet which has subcategories FMSets comprising sets and functions all of
whose supports are contained in the finite set of names s. The subcategory NSet
(= FMSet∅) of nominal sets consists of those FM sets and functions with empty
support.

FM sets allow the usual operations of set theory, though with the proviso
that elements must always have finite support. In addition there are important
operations associated with names. The binary predicate x # y expresses that
two FM sets x and y have disjoint supports. If f : A → X is a finitely-supported
function and X is a FM set then fresh a in fa denotes the unique x ∈ X such
that fa = x for any a ∈ A such that a # 〈f, fa〉 as long as such an a ∈ A

exists. When X = {!,⊥} then f : A → X is a predicate on A and fresh a in fa
coincides with Na.fa where Nis the ‘new’ quantifier of Pitts and Gabbay. This
permits the definition of the α-equivalence relation∼α between pairs 〈x, a〉 where
x is an FM set and a is a name, by setting

〈x1, a1〉 ∼α 〈x2, a2〉 iff Nb. (a1b) · x1 = (a2b) · x2.

1 This paper summarises Turner’s PhD thesis[5], where all proofs and a fuller set of
references can be found; we apologise for the paucity of references forced here.
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The α-equivalence class {〈a, x〉}∼α is an FM set written [a].x. Note that
supp([a].x) = supp(x) \ {a} so that a is ‘bound’ in [a].x. The operation of
concretion acts so ([a].x)@b =def (ab) · x provided [a].x # b. We write Abs(A)
for the class of α-equivalence classes.

1.1 Name Generation in Nominal Sets

Defining
X ⊗ Y =def {〈x, y〉 | x # y}

gives a tensor ⊗ on NSet. Provided X is a nominal set, α-equivalence ∼α re-
stricts to an equivalence relation on X×A. The quotient (X×A)/∼α is written
δX . For example,

δA = {fresh b in [b].a | a ∈ A} ∪̇ {fresha in [a].a} ∼= A ∪̇ {∗}.

The operation δ is the object part of a right adjoint to (−)⊗A; the counit is
given by concretion @. The right adjoint δ constructs a form of function space:
for a nominal set X , the nominal set δX consists of ‘new-name abstractions’ x′

which applied to a fresh name a yield x′@a in X . New-name abstractions in δX
capture the effect of new-name generation, albeit in a rather subtle way.

1.2 Name Generation in FM Sets

Unfortunately (−)⊗ A is no longer a functor on the larger category FMSet. If
names are to appear explicitly in our syntax, in operations and types (the case
for Nominal HOPLA—though not new-HOPLA2) we are led outside NSet, and
name generation requires an alternative to the adjunction (−)⊗ A 7 δ.

Turner[5] exhibits a suitable adjunction in FM sets given by the situation

(−)#a : FMSets � FMSets∪̇{a} : δa

now local to a finite set of names s with a ∈ A \ s. The left adjoint (−)#a is
defined on objects by X#a =def {x ∈ X | a # x} and on arrows by restriction.
The right adjoint δa can be described as a subset of α-equivalence classes x′: on
objects

δaX =def {x′ ∈ Abs(A) | Nb. x′@b ∈ (ab) ·X},
and if f : X → Y is an arrow of FMSets∪̇{a} and x′ ∈ δaX then
δaf(x′)=deffresh b in [b].

(

((ab) · f)(x′@b)
)

. The unit has components ξX : x 
→
fresh b in [b].x and the counit, ζX : x′ 
→ x′@a. Notice that if X has empty sup-
port then X is a nominal set and δaX = δX . In particular δaA = δA ∼= A ∪̇ {∗}.
Also if s′ ⊆ s it follows that s′ and A \ s′ are both objects of FMSets. In
this case δas′ = {fresh b in [b].c | c ∈ s′} ∼= s′ via the isomorphism above, and
δa(A \ s′) = {fresh b in [b].c | c ∈ A \ s′} ∪̇ {fresh b in [b].b} ∼= (A \ s′) ∪̇ {∗}.
2 A parallel to this paper showing how nominal sets NSet are sufficient to produce

an adequate denotational semantics for new-HOPLA is underway.
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1.3 Name Generation in FM Preorders

We will see that the adjunction for name generation can be imported into other
structures, of which preorders are the simplest. An FM-preorder is defined,
as usual, to comprise 〈P,≤P〉 where P and ≤P are both FM sets such that ≤P

is a reflexive and transitive binary relation on P. The ∈-recursive nature of
the permutation action on FM sets gives rise to a permutation action on FM-
preorders, where σ · P = {σ · p | p ∈ P} and p ≤P p

′ if and only if σ · p ≤σ·P
σ · p′. Functions in FMSet must be finitely-supported so we define the category
FMPre to consist of FM-preorders and finitely-supported monotone functions
(again the standard definition). For s a finite set of names, FMPres is the
subcategory of FMPre consisting of only those objects and arrows which are
supported by s.

FM-preorders inherit mechanisms for name generation directly from those in
FM sets. Let s be a finite set of names and a /∈ s. For 〈P,≤P〉 an object of
FMPres, define

〈P,≤P〉#a = 〈P#a,≤P#a〉

ordered by ≤#a
P the restriction of ≤P. For 〈P,≤P〉 an object of FMPres∪̇{a},

define δa〈P,≤P〉 = 〈δaP,≤δaP〉 where for p′1 and p′2 elements of δaP

p′1 ≤δaP p
′
2 ⇔def Nb. p′1@b ≤(ab)·P p

′
2@b.

Taking their action on maps to be that of the corresponding functors on FMSet,
we obtain a functor (−)#a : FMPres → FMPres∪̇{a} and its right adjoint δa.
The adjunction shares the same unit ξ and counit ζ as those for FM-sets.

2 A Linear Category of FM Domains

The development of the domain theory in FM-sets here is substantially the
same as an earlier domain theory developed in traditional set theory [4]. The
one extra constraint here is that all sets (so subsets and functions) must be
finitely-supported.

The objects of the linear category FMLin are FM-preorders P, thought of as
consisting of computation paths with the preorder p ≤ p′ expressing how a path p
extends to a path p′. A path order P determines a domain ̂P, that of its path sets,
finitely-supported down-closed sets w.r.t. ≤P, ordered by inclusion. The arrows
of FMLin, linear maps, from P to Q are finitely-supported functions from ̂P

to ̂Q which preserve joins of finitely-supported subsets. The category FMLin
is monoidal-closed with a tensor given by the product P × Q of FM-preorders
and a corresponding function space by P

op ×Q. The category has all biproducts
(where the objects are given by disjoint juxtaposition of preorders) which serve
as both products and coproducts.

In fact, the category FMLin will have enough structure to form a model
of Girard’s (classical) linear logic[1]. As usual, one can move to more liberal
maps through the use of a suitable comonad (an exponential of linear logic often
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written !). Here, !P, for an FM-preorder P, will (essentially) consist of the isolated
elements of the domain ̂P under inclusion—!P can be thought of as consisting of
compound paths, associated with several runs. The coKleisli category of ! consists
of FM-preorders which consist of continuous functions between the domains of
path sets. However, in the regime of FM sets, we will have to exercise some care
in choosing what ‘continuous’, and also ‘isolated’, are to mean if fundamental
operations of name generation are to be continuous.

2.1 Name Generation in FMLin

FMLin inherits name generation from FMPre. Let s ⊆fin A and a ∈ A \ s.
There is a name-generation adjunction

(−)#a+ 7 δ+a : FMLins � FMLins∪̇{a}.

Here FMLins is the subcategory of FMLin whose objects and arrows are all
supported by s. The key laws are isomorphisms

φP : ̂P#a ∼= ̂P#a and θQ : δâQ ∼= ̂δaQ

natural in P in FMPres and Q in FMPres∪̇{a}. The isomorphisms and inverses
are given concretely as follows:

φP(x) =def {p ∈ x | a # p} and φ−1
P (x) =def x ∪

⋃

b#x,P(ab) · x

θ
(a)
Q (y′) =def {q′ | Nb. q′@b ∈ y′@b} and θ−1

Q (y) =def fresh b in [b].{q | [b].q ∈ y}.

Define the functor (−)#a+ : FMLins → FMLins∪̇{a} to act as (−)#a on objects
and take f : P →

L
Q to φQ ◦ f#a ◦ φ−1

P : P
#a → Q

#a, and δ+a similarly.

In [5] it is shown that these functors are well-defined, and that the composite
bijection

FMLins∪̇{a}(P
#a,Q) ∼= FMPres∪̇{a}(P

#a, ̂Q) ∼= FMPres(P, δâQ) ∼=
FMPres(P,̂δaQ) ∼= FMLins(P, δaQ),

got via the isomorphism θQ, extends to an adjunction with unit ̂ξ and counit ̂ζ.

3 Continuity in FM Domains

Linear maps are too restrictive to give a semantics for concurrent processes. In[4]
the solution was to turn from linear to continuous maps, which preserve only
directed joins, via a suitable comonad on FMLin. But this is not appropriate in
the FM setting: the desired semantics for name generation is not directed-join
continuous!
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3.1 Continuity and Name Generation

To see this, we consider a term construction new a.t inspired by new-HOPLA[8].
Imagine that t denotes a process whose actions lie within the set of names A;
so its denotation [[t]] is an element of Â. By definition the term newa.t denotes
an element of ̂δA; its denotation [[new a.t]] is given as θA([a].[[t]]), where θA :
δa(̂A) ∼= ̂δaA is the isomorphism described in the previous section. The term
newa.t denotes a process with actions of the form [b].c and [c].c from δaA.

Consider now an open term newa.(−). Substitution into newa.(−) replaces
a with a name a′ fresh w.r.t. the argument being substituted, if necessary.
Consequently, the substitution of A, with empty support, results in denota-
tion θA([a].A) which can be shown to contain [a].a. Whereas, the substitution of
s ⊆fin A, results in denotation θA([a′].s), with a′ /∈ s, a denotation which cannot
contain [a].a. As A =

⋃

s⊆finA s is a directed join, this shows that new a.(−) does
not yield a directed-join continuous function.

3.2 FM-Continuity

It makes little difference to classical domain theory whether one uses increasing
(ordinal-indexed) sequences or directed sets, because the Axiom of Choice (AC)
can be used to move between the two. However, AC does not hold in the theory
of FM sets, and this equivalence breaks down. A particular difference is that
in any sequence in FM set theory with support s each element of the sequence
must also have support s; this ‘uniformity’ of support does not hold for directed
sets in general.

Definition 1. An FM set X has uniform support s if every element x ∈ X
is supported by s. An FM-directed set is a directed set with uniform support.
If P, Q are FM-preorders, say that a function f : ̂P → ̂Q is FM-continuous if
it is finitely-supported and preserves joins of FM-directed sets. (Note FM-linear
maps are FM-continuous.)

If X has uniform support then it can be wellordered within FM set theory: AC
gives an (external) wellordering and the uniformity ensures that this wellordering
is itself finitely-supported. Approximation by FM-directed sets and approxima-
tion by (ordinal-indexed) sequences are equivalent in FM set theory.

Returning to the example of newa.(−), notice that the directed set {s | s ⊆fin

A} does not have a uniform support. Let X ⊆ ̂A be directed with uniform
support s. Then every x ∈ X is either a subset of s or a superset of A \ s, so
X is finite. Since X is also directed it contains a maximum element. As a direct
consequence, newa.(−) is FM-continuous.

3.3 FM-Isolated Elements

We investigate the structure of isolated elements of domains ̂P, for P an FM-
preorder, with respect to FM-directed sets.
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Definition 2. An element P ∈ ̂P is FM-isolated (or simply isolated) iff for
all FM-directed sets X ⊆ ̂P, if P ⊆

⋃

X then there exists x ∈ X such that
P ⊆ x.

For example, every element of ̂A is isolated, because any FM-directed subset of
̂A contains a maximum element (see above). More generally,

Definition 3. For P a FM-preorder, F a finite subset of P and s a finite set
of names containing supp(P), define 〈F 〉s =def

⋃

σ#s σ · F ; write 〈F 〉s↓ for the
down-closure of 〈F 〉s.

Every x ∈ ̂A is of this form: either x is finite and hence x = 〈x〉supp(x) or else x
is cofinite and hence x = 〈{a}〉supp(x) for any a ∈ x. In general:

Lemma 1. If F ⊆fin P and s is a finite set of names that supports P then 〈F 〉s↓
is isolated in ̂P. Conversely, if P ∈ ̂P is isolated and supp(P,P) ⊆ s then there
exists F ⊆fin P such that P = 〈F 〉s↓.

3.4 The Category FMCts

Let FMCts be the category with objects FM-preorders and arrows from P to
Q the FM-continuous functions from ̂P to ̂Q.

We can characterise FM-continuous maps in terms of FM-linear maps whose
source is under an exponential !. It is sensible to define !P as comprising the FM-
isolated elements of ̂P ordered by inclusion. However, with an eye to defining
recursive types, we instead define !P to be the equivalent FM-preorder with
elements 〈F 〉s where F ⊆fin P and s supports P; its order is given by taking
P ≤!P P

′ whenever ∀p ∈ P∃p′ ∈ P ′. p ≤P p
′.

Each ̂P is the free FM-directed-join completion of !P. (The order ̂P is algebraic
with respect to approximation by FM-directed sets.) It follows that ! extends
to functor making an adjunction FMLin(!P,Q) ∼= FMCts(P,Q), where the
inclusion is right adjoint to the !. Its unit ηP : P →

C
!P is given concretely by

ηPX = {P ∈ !P | P ⊆ X}. The adjunction satisfies the conditions Benton et al
proposed for a model of linear logic[1].

3.5 Name Generation in FMCts

We inherit adjunctions

(−)#a++ 7 δ++
a : FMCtss � FMCtss∪̇{a}

supporting name generation in FMCts from the adjunctions (−)#a+ 7 δ+a on
the linear categories. Here s ⊆fin A and a ∈ A\s and FMCtss is the subcategory
of FMCts supported by s. In detail, (−)#a++ and δ++

a act respectively as (−)#a

and δa on objects. The arrow f : P →
C

Q of FMCtss is taken to the composite

f#a++ =def φQ ◦ f#a ◦φ−1
P and the arrow g : P →

C
Q of FMCtss∪̇{a} is taken to
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δ++
a g =def θQ ◦ δag ◦ θ−1

P . These definitions coincide with those of (−)#a+ and
δ+a on linear arrows.

Via an isomorphism !((−)#a) ∼= (!(−))#a, analogous to φ−1 of section 2.1, we
obtain as a composite the bijection

FMCtss∪̇{a}(P
#a,Q) ∼= FMLins∪̇{a}(!(P

#a),Q) ∼= FMLins∪̇{a}((!P)#a,Q)
∼= FMLins(!P, δaQ) ∼= FMCtss(P, δaQ),

of the adjunction (−)#a++ 7 δ++
a , with unit ̂ξ and counit ̂ζ —see [5].

The machinery of freshness, the functors (−)#a and the isomorphisms φP :
̂P

#a → ̂P#a, can be extended to model freshness with respect to a finite set
of names s. This is used to capture ‘freshness assumptions’ in the type system:
a variable of type P

#s insists that it receives input that is fresh for s, and a
term of type P

#s avoids the names in s in its evaluation. Concretely, P
#s =

{p ∈ P | p # s} with order given by the restriction of the order on P, while
φ

(s)
P x = {p ∈ x | p # s}, for x ∈ ̂P#s.

4 Nominal HOPLA

Nominal HOPLA is an expressive calculus for higher-order processes with non-
determinism and name-binding. It can be seen as a straightforward extension of
HOPLA with terms of the form new a.t and t[a] which arise directly from the
adjunction (−)#a++ 7 δ++

a . Its syntax is defined in FM sets.

4.1 Syntax

Fix a set of term variables x, y, . . . and a set of type variables P, . . ., each invariant
under the permutation action. Types are given by the grammar

P,Q ::= P | !P | Q→P | δP |
⊕

�∈LP� | μjP . P ,

where P is a type variable, P is a list of type variables, and μjP . P binds P ,
and a nominal set L is used to index components of a sum type (a biproduct in
FMLin).

A closed type is a type with no free variables, and in the following, closed
types are normally simply called ‘types’.

Terms and actions are given by mutually recursive grammars. Terms are
given by the following grammar, where x ranges over variables, a ranges over
names, s over finite sets of names, p over actions, ! over labels and P over types.

t, u ::= x | rec x.t |
∑

i∈Iti | !t | [u > p(x:P # s) => t] |
λ x.t | t(u:P) | newa.t | t[a] | !:t | π�t | abs t | rep t

The forms rec x.t, [u > p(x:P # s) => t] and λ x.t all bind x in t, and the set of
free variables of t is defined in the usual way. The form newa.t binds the name
a in t. In a nondeterministic sum the mapping i 
→ ti is a finitely supported
function from a nominal set I. Write nil for the empty sum.
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Actions. play a central role in the operational semantics of Nominal HOPLA—
section 4.3. The grammar of actions, labelling the transitions in the operational
semantics, is given as follows where t ranges over closed terms, a ranges over
names and ! over labels.

p ::= ! | !:p | t 
→ p | abs p | new a. p

The form newa. p binds the name a in p.
Actions and terms form nominal sets where the permutation actions are given

by the obvious structural recursion.

Substitution. Substitution t[v/y] of term v for variable y in a term t is defined
as usual. The substitution is capture-avoiding in both variables and names, in the
sense that for substitution into a term of the forms rec x.t, [u > p(x:P # s) => t]
and λ x.t the variable x is assumed not to be free in v, and for substitution into
a term of the form new a.t the name a is chosen to be fresh for v.

4.2 Typing Rules

For Terms. An environment Γ = x1 : P1
#s1 , . . ., xn : Pn

#sn where x1, · · · , xn

are distinct variables, P1, · · · ,Pn are types and s1, · · · , sn are finite sets of names.
The intended meaning of x : P

#s is that the variable x takes values of type P

that are assumed to be fresh for s.
Terms of Nominal HOPLA are typed with judgements of the form Γ  s t : P,

where Γ is an environment, s is a finite set of names, t is a term and P is a type.
The type P describes the actions that the term may perform. The environment
Γ records types and freshness assumptions for the variables of t. The set s
represents the ‘current’ set of names.

Structural rules. Weakening: the environment may be extended with extra vari-
ables. Exchange: two variables in the environment may be exchanged. Contrac-
tion: a pair of variables (with equal types) may be replaced by a single variable.
In addition to these standard rules are two rules associated with names:

Fresh-Weakening. It is possible to impose extra freshness assumptions on a
variable.

Γ, x : Q
#s′′

 s t : P

Γ, x : Q
#s′

 s t : P

(s′′ ⊆ s′ ⊆ s)

Support-Weakening. It is possible to extend the ‘current’ set s of names.

Γ  s′ t : P

Γ  s t : P
(s′ ⊆ s)

Variable. A bare variable is typed by the environment in the obvious fashion.

−
x : P

#∅  ∅ x : P
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Prefix. The term constructor ! takes a term t to a term !t that intuitively
may perform an anonymous action ! and resume as t. The possible action ! is
recorded in the type.

Γ  s t : P

Γ  s !t : !P

Match. A term of the form [u > q(x:Q
′ # s′) => t] intuitively matches the

output of u against the action q and feeds the resumption of u into the variable
x in t. If x has some freshness assumptions imposed on it then u and q must
satisfy those assumptions. The side condition that s′′ ⊆ s \ s′ is assumed.

Γ, x : Q
′#s′

 s t : P Λ  s′′ u : Q  s′′ Q : q : Q
′

Γ,Λ#s′  s [u > q(x:Q
′ # s′) => t] : P

Recursion. A term of the form recx.t intuitively acts as its unfolding
t[rec x.t/x], so that x must be of the same type as t.

Γ, x : P
#∅  s t : P

Γ  s rec x.t : P

Function Abstraction and Application. A term t of type P may be abstracted
with respect to the free variable x of type Q to leave a term λ x.t of type Q→P

that can in turn be applied to a term of type Q in the usual fashion.

Γ, x : Q
#∅  s t : P

Γ  s λ x.t : Q→P

Γ  s t : Q→P Λ  s u : Q

Γ,Λ  s t(u:Q) : P

Labelling and Label Projection. The actions of a term t may be ‘tagged’ with
a label !0 by forming the term !0:t. The effect of the term former π�0 is that
terms of the form π�0t can perform only the actions of t that are tagged by the
label !0. In both of these rules the support of !0 must be contained in s.

Γ  s t : P�0

Γ  s !0:t :
⊕

�∈LP�

Γ  s t :
⊕

�∈LP�

Γ  s π�0t : P�0

Nondeterministic Sum. A term
∑

i∈Iti makes a nondeterministic choice amongst
its components and behaves as the chosen component. The mapping i 
→ Γ  si

ti : P must be supported by s.

Γ  si ti : P each i ∈ I
Γ  s

∑

i∈Iti : P

Recursive Type Folding and Unfolding. As the recursively-defined type μjP . P

is isomorphic (and not equal) to its unfolding Pj[μP . P/P ] it is necessary to
record any uses of the isomorphism abs = rep−1 in the syntax of the term.

Γ  s t : Pj [μP . P/P ]
Γ  s abs t : μjP . P

Γ  s t : μjP . P

Γ  s rep t : Pj [μP . P/P ]
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Name Abstraction and Application. The only alteration to the syntax of terms
over that of conventional HOPLA is the following pair of term formers. Intu-
itively the term new a.t can perform the same actions as t with the name a
bound, whereas the term t[a] takes the outputs of t, which contain a bound
name since t is of type δP, and instantiates that name as a. In both cases the
side-condition a /∈ s is assumed.

Γ#a  s∪̇{a} t : P

Γ  s newa.t : δP
Γ  s t : δP

Γ#a  s∪̇{a} t[a] : P

For Actions. Actions are typed by judgements of the form  s P : p : P
′ where

s is a finite set of names and P and P
′ are types. Intuitively, a term of type P

may perform an action p and resume as a term of type P
′.

 s′ P : p : P
′

 s P : p : P
′ (s′ ⊆ s) −

 ∅ !P : ! : P

 s P : p : P
′  s u : Q

 s Q→P : u 
→ p : P
′

 s P�0 : p : P
′

 s

⊕

�∈LP� : !0:p : P
′

 s Pj [μP . P/P ] : p : P
′

 s μjP . P : abs p : P
′

 s∪̇{a} P : p : P
′

 s δP : newa. p : δP′

Substitution respects the type system of Nominal HOPLA, as long as freshness
assumptions are themselves respected.

Lemma 2 (Syntactic Substitution Lemma). Suppose that t and v satisfy
Γ, y : R

#r  s t : P and Δ  s1 v : R where s1 ∩ r = ∅ and the variables in Γ are
distinct from those in Δ. Then Γ,Δ#r  s∪s1 t[v/y] : P.

4.3 Operational Semantics

Nominal HOPLA is given an operational semantics in the style of a labelled
transition system. That a term t such that  t : P may perform an action p

such that  P : p : P
′ and resume as the term t′ is written P : t

p−→ t′. The
operational semantics of closed, well-typed terms are defined below.

P : t[rec x.t/x]
p−→ t′

P : rec x.t
p−→ t′

P : ti0
p−→ t′

P :
∑

i∈Iti
p−→ t′

−
!P : !t !−→ t

P : t[u′/x]
p−→ t′ Q : u

q−→ u′  Q : q : Q
′

P : [u > q(x:Q
′ # s′) => t]

p−→ t′

P : t
p−→ t′

δP : new a.t
new a. p−→ new a.t′

δP : t
new a. p−→ new a.t′

P : t[a]
p−→ t′

P : t[u/x]
p−→ t′

Q→P : λ x.t
u�→p−→ t′

Q→P : t
u�→p−→ t′

P : t(u:Q)
p−→ t′
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P�0 : t
p−→ t′

⊕

�∈LP� : !0:t
�0:p−→ t′

⊕

�∈LP� : t
�0:p−→ t′

P�0 : π�0t
p−→ t′

Pj [μP . P/P ] : t
p−→ t′

μjP . P : abs t
abs p−→ t′

μjP . P : t
abs p−→ t′

Pj [μP . P/P ] : rep t
p−→ t′

The following lemma demonstrates that the operational semantics given above
interacts well with the type system described above.

Lemma 3. If P : t
p−→ t′ then  t : P and there exists a unique P

′ such that
the judgement  P : p : P

′ holds; furthermore  t′ : P
′.

4.4 Denotational Semantics

Types and Environments. A closed type denotes a nominal preorder (an FM-
preorder with empty support). We will specify the preorder inductively by rules
saying what paths belong to types (judgements p : P) and what the preorder is
on them (judgements p ≤P p

′). (The method is inspired by [7].) The language of
paths is given by

p ::= Q | Q 
→ p | !:p | abs p | newa. p,

where Q is a set of paths of the form 〈{p1, . . . , pn}〉s, ! is a label and a is a name.

p1 : P . . . pn : P

〈{p1, . . . , pn}〉s : !P
Q : !Q p : P

Q 
→ p : Q→P

p : P�0

!0:p :
⊕

�∈LP�
(!0 ∈ L)

p : Pj [μP . P/P ]
abs p : μjP . P

p : P

new a. p : δP

where the ordering ≤P of paths of type P is given recursively as follows.

P �P P
′

P ≤!P P
′

Q′ ≤!Q Q p ≤P p
′

Q 
→ p ≤Q→ P Q
′ 
→ p′

p ≤P�0
p′

!0:p ≤⊕
�∈LP�

!0:p
′

p ≤Pj[μP . P/P ] p
′

abs p ≤μjP . P abs p′
p ≤P p

′

newa. p ≤δP new a. p′

Here, P �P P
′ means that for all p ∈ P there exists p′ ∈ P ′ such that p ≤P

p′. It is straightforward to show that these definitions construct path orders
that are nominal preorders and hence objects of FMPre∅. As in HOPLA, in a
recursively-defined type μjP . P each path is of the form abs p which means there
is an isomorphism rep : μjP . P ∼= Pj[μP . P/P ] : abs, where abs(p) =def abs p
and rep(abs p) =def p.

An environment x1 : P1
#s1 , . . ., xn : Pn

#sn (with freshness constraints con-
tained in s0) denotes an object P

#s1
1 & · · ·& P

#sn
n . Notice that such an object is

isomorphic to ̂P1
#s1 × · · · ×̂Pn

#sn

via the isomorphisms φ(s) and m, and it will
be convenient to use a ‘tuple’ notation for environments in the following.
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Terms and Actions. Typing judgements Γ  s t : P denote arrows

[[Γ  s t : P]] : [[Γ ]] →
C

P

in FMCtss. The denotation of a typing judgement is built by recursion on
the derivation of the typing judgement, making use of the various universal
constructions available in FM domains. Typing judgements  s P : p : P

′ denote
arrows

[[  s P : p : P
′]] : P →

C
!P′

in FMCtss by recursion on the structure of p as shown below. Intuitively the
arrow [[  s P : p : P

′]] matches its input against the action p and returns a
collection of possible resumptions after performing p. When the types are clear
we abbreviate [[Γ  s t : P]] and [[  s P : p : P

′]] to [[t]] and [[p]].

Prefixing and Matching. The adjunction FMLin(!P,Q) ∼= FMCts(P,Q) gives
the semantics for an anonymous prefix action, written !. The unit η acts as a
constructor for this action, taking a term t to the prefixed term !t as follows.

Definition 4. Suppose that Γ  s !t : !P is derived from Γ  s t : P. Let γ ∈̂[[Γ ]]
and P ∈ !P. Then P ∈ [[Γ  s !t : !P]]〈γ〉 iff P ⊆ [[Γ  s t : P]]〈γ〉.

The denotation of the judgement  ∅ !P : ! : P is simply the identity map. The
counit ε acts as a destructor for the ! action, intuitively ‘matching’ a ! action
in the output of a term u and passing the resumption after performing the ! to
a term t.

Definition 5. Suppose that γ ∈ ̂[[Γ ]] and λ ∈̂[[Λ#s′
]] and p ∈ P. Then p ∈

[[Γ,Λ#s′  s [u > q(x:Q
′ # s′) => t] : P]]〈γ, λ〉 iff there exists Q ∈ !Q′ such that

p ∈ [[t]]〈γ,Q〉, Q ∈
(

[[q]] ◦ [[u]]
)

〈λ〉 and Q # s′.

Names and Binding The adjunction (−)#a++ 7 δ++
a gives rise to the denota-

tional semantics for terms of the form new a.t and t[a]. Concrete definitions of
these operations are given here.

Definition 6. Suppose Γ  s newa.t : δP is derived from Γ#a  s∪̇{a} t : P where
a /∈ s. Let γ ∈̂[[Γ ]], let b be a fresh name and let p ∈ P. Then, new b. p ∈ [[Γ  s

newa.t : δP]]〈γ〉 iff (ab) · p ∈ [[Γ#a  s∪̇{a} t : P]]〈γ〉.

Definition 7. Suppose Γ#a  s∪̇{a} t[a] : P derives from Γ  s t : δP where
a /∈ s. Let γ ∈̂[[Γ#a]] and let p ∈ P. Then, new a. p ∈ [[Γ  s t : δP]]〈γ〉 iff
p ∈ [[Γ#a  s∪̇{a} t[a] : P]]〈γ〉.

The structural rules simply adjust the types of the denotations without substan-
tially altering their semantics. They make use of the cartesian structure of each
FMCtss; weakening corresponds to projection, for example. The semantics of
the first new structural rule (fresh-weakening) comes from the obvious inclusion



Nominal Domain Theory for Concurrency 559

(−)#a ⇒ (−) combined with the isomorphism φ, and the second new structural
rule (support-weakening) from the inclusion FMCtss′ ↪→ FMCtss. The de-
notational semantics of the remaining constructs follows that of HOPLA in [4]
very closely. The semantics of higher-order processes arises from the cartesian-
closed structure of FMCtss. The semantics of labelled processes is based on
the biproducts in the linear category; injection into the biproduct corresponds
to tagging the outputs of a process with a particular label, and projection to
matching against a label. Via cartesian closure a hom-set of FMCtss inherits
a partial order by inclusion, which in particular has all joins of ω-chains. This
provides a standard semantics to recursion in the language. The semantics of
nondeterministic sums is given by union.

Substitution amounts to composition of denotations. However, care must be
taken to ensure that all the relevant freshness assumptions are satisfied.

Lemma 4 (Semantic Substitution Lemma). Suppose that Γ, y : R
#r  s t :

P and Δ  s1 v : R where s1 ∩ r = ∅ and the variables in Γ are distinct from
those in Δ. Then

[[Γ,Δ#r  s∪s1 t[v/y] : P]] = [[Γ, y : R
#r  s t : P]] ◦

(

1Γ &[[Δ  s1 v : R]]#r++).

5 Soundness and Adequacy

The possibility of observing an action p of a process f is caught by a judgement
P : t

p−→ t′. In fact the match operator reduces these general observations to
observations of just ! actions, because to observe the action p in the term t is
the same as to observe a ! action in the term [t > p(x:P # s) => !nil].

Lemma 5 (Soundness). If !P : t !−→ t′ and s is a finite set of names such
that supp(t, t′) ⊆ s then [[  s !t′ : !P]] ⊆ [[  s t : !P]].

Define a logical relation X �P t between subsets X ⊆ P and terms such that
 t : P by way of an auxiliary relation p ∈P t between paths p ∈ P and terms

such that  t : P as shown in 5. The intuition behind the statement that p ∈P t
is that p is a computation path of type P that the process t may perform. Its
definition is by recursion on the structure of paths.

X �P t⇐⇒ ∀p ∈ X. p ∈P t

P ∈!P t⇐⇒ ∃t′. !P : t !−→ t′ and P �P t
′

Q 
→ p ∈Q→ P t⇐⇒ ∀u. (Q �Q u⇒ p ∈P t(u:Q))
new a. p ∈δP t⇐⇒ Na. p ∈P t[a]

!0 : p ∈⊕
�∈LP�

t⇐⇒ p ∈P�0
π�0t

abs p ∈μjP . P t⇐⇒ p ∈Pj [μP . P/P ] rep t

This relation can be used to demonstrate that if a path p appears — seman-
tically — in the denotation [[t]] then the term t can — operationally — perform
the path p.
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Lemma 6. Suppose Γ  s t : P where Γ = x1 : P1
#s1 , . . ., xn : Pn

#sn . For each
i ∈ {1, . . . , n} let γi ∈ ̂Pi

#si

and let vi be a closed term such that  s\si
vi : Pi

and γi �Pi
vi. Then

[[Γ  s t : P]]〈γ1, . . . , γn〉Γ �P t[v]

where t[v] is the term obtained by simultaneously substituting each xi with vi.

Lemma 7. If  s P : p : P
′ and X �P t and P ∈ [[p]]X then there exists t′ such

that P : t
p−→ t′ and P �P′ t′.

We obtain the main theorem of this paper, namely the adequacy of the denota-
tional semantics of Nominal HOPLA with respect to observations of ! actions.

Theorem 1 (Adequacy). [[  t : !P]] �= ∅ if and only if there exists t′ such
that !P : t !−→ t′.

Nominal HOPLA subsumes new-HOPLA and inherits its expressiveness. What
of full abstraction? Names introduce new subtleties. The obstacle to full abstrac-
tion and a tentative proposal to achieve it are described in [5].
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G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 61–84. Springer, Heidelberg
(1993)

2. Gabbay, M.J.: A Theory of Inductive Definitions with Alpha-Equivalence. PhD the-
sis, Cambridge University (2001)

3. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13, 341–363 (2001)

4. Nygaard, M., Winskel, G.: Domain theory for concurrency. Theor. Comput.
Sci. 316(1-3), 153–190 (2004)

5. Turner, D.C.: Nominal Domain Theory for Concurrency. PhD thesis, Cambridge
University (submitted) (2008), http://www.cl.cam.ac.uk/~dct25/

6. Winskel, G.: Name generation and linearity. In: LICS 2005: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science, Washington, DC, USA,
pp. 301–310. IEEE Computer Society Press, Los Alamitos (2005)

7. Winskel, G., Larsen, K.G.: Using information systems to solve recursive domain
equations effectively. Extended abstract: Springer Lecture Notes in Computer Sci-
ence, vol. 173. Full version: Technical Report UCAM-CL-TR-51, University of Cam-
bridge, Computer Laboratory (1984)

8. Winskel, G., Zappa Nardelli, F.: new-HOPLA: a higher-order process language with
name generation. In: Proc. of 3rd IFIP TCS, pp. 521–534 (2004)

http://www.cl.cam.ac.uk/~dct25/


The Ackermann Award 2009

Johann A. Makowsky and Alexander Razborov

Members of EACSL Jury for the Ackermann Award

The fifth Ackermann Award is presented at this CSL’09, held in Coimbra, Por-
tugal. This is the third year in which the EACSL Ackermann Award is generously
sponsored. Our sponsor is the world’s leading provider of personal peripherals,
Logitech S.A., situated in Romanel, Switzerland1.

Eligible for the 2009 Ackermann Award were PhD dissertations in topics
specified by the EACSL and LICS conferences, which were formally accepted
as PhD theses at a university or equivalent institution between 1.1. 2007 and
31.12. 2008. The Jury received 12 nominations for the Ackermann Award
2009. The candidates came from 10 different nationalities from Europe, North
America and Asia and received their PhDs in 9 different countries in Europe
and North America.

The topics covered the full range of Logic and Computer Science as represented
by the LICS and CSL Conferences. All the submissions were of very high standard
and contained outstanding results in their particular domain. In the past the Jury
reached a consensus to give more than one award. This time, in spite of the extreme
high quality of the nominated theses, the Jury decided finally, to give for the year
2009 only one award. The 2009 Ackermann Award winner is

Jakob Nordström

for his thesis Short Proofs May Be Spacious: Understanding Space in Resolution
issued by the Royal Institute of Technology, Stockholm, Sweden, May 2008,
supervised by Prof. Johan H̊astad.

The Jury wishes to congratulate the recipient of the Ackermann Award for
his outstanding work and wishes him a successful continuation of his career.

The Jury wishes also to congratulate all the remaining candidates for their
outstanding work. The Jury encourages them to continue their scientific careers,
and hopes to see more of their work in the future.

Jakob Nordström

Citation. Jakob Nordström receives the 2009 Ackermann Award of the Euro-
pean Association of Computer Science Logic (EACSL) for his thesis

Short Proofs May Be Spacious: Understanding Space in Resolution.
1 We would like to thank Daniel Borel, Co-founder and Chairman of the Board of

Logitech S.A, for his generous support of the Ackermann Award for the years 2007-
2009. For a history of the company, founded in 1981 in Switzerland, consult
http://www.logitech.com
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The thesis greatly advances our understanding of space-related measures in proof
complexity. It completely fills the last remaining gap in the picture of most basic
relations between space and other fundamental complexity measures like length
or width for the system of propositional resolution. The result confirms that
space is indeed an inherently independent measure by exhibiting natural con-
tradictions possessing very short and narrow refutations but no low-space refu-
tation. This solution of a well-known open problem complements and contrasts
with previously known simulations in the opposite direction.

Background of the thesis. There are many good reasons that make the
system of propositional resolution (formally introduced by Robinson in 1965)
one of the most popular and widely studied propositional proof systems, both
by theoreticians and practitioners.

On the automated theoremproving side,propositional resolutionmakes the core
of one of the most known technique in the field, first-order resolution. As exem-
plified by the work of several previous Ackermann Award winners, the presence
of unification does bring about a new level of interesting and difficult complexity
questions. But all the same, the apparent simplicity of the propositional case is very
deluding, and many fundamental problems here still remain unresolved.

It is worth noting that resolution often appears in automated theorem prov-
ing without invitation. For example, the famous DPLL algorithm developed by
Davis, Putnam (1960) and Davis, Putnam, Logemann, Loveland (1962) before
Robinson’s work, still forms the basis for may efficient SAT solvers, as well as for
many implementations of first-order theorem provers. The proof-search heuris-
tic in this algorithm is represented by the choice of the branching literal, and,
abstracting from the issue of finding the best heuristics, we arrive at the proof
system that is nowadays called tree-like resolution (more modern versions of this
algorithm result in unrestricted resolution). Any lower bounds proved for this
system automatically translate into ultimate (i.e., regardless of the effort invested
into making good branching choices) limitations of any DPLL-like algorithm.

On the theoretical side, propositional resolution had been considered in Proof
Complexity (Tseitin 1968) well before the formal inauguration of the subject
(Cook 1975). Tseitin worked with (and proved conclusive lower bounds for) its
weaker version that has become known as regular resolution. The most natural
problem of extending his result by removing the assumption of regularity had
to wait for yet another 10 years to be solved (Haken 1985). Since the work of
Haken, various methods of analyzing minimal refutation size in resolution (that
essentially amount to inherent limitations on the running time of DPLL-like
procedures) have been developed (Ben-Sasson and Wigderson 2000; Raz 2001;
Razborov 2001-2004), and by now the program of understanding resolution proof
complexity for the most frequently used “benchmark” contradictions (pigeon-
hole-principle, Tseitin tautologies, random 3-CNFs) is more or less complete.

This reasonably satisfactory situation pertains only to the size (aka length) of
resolution proofs. From both practical and theoretical perspective, in many
situations more elaborate complexity measures capture the essence of the prob-
lem better.



The Ackermann Award 2009 563

The first “non-standard” measure for resolution was considered by Ben-Sasson
and Wigderson in 2000: this is refutation width defined as the maximal number
of literals in a clause appearing in the given refutation. They proved a surprising
simulation stating that any short proof can be made (somewhat) narrow.

While running-time is the ultimate measure of interest, running-space is ar-
guably more restrictive constraint in practice with direct fatal effects on time.
Theoretically, running-space is captured by the model of space complexity (Es-
teban and Torán 2001; Alekhnovich, Ben-Sasson, Razborov, Wigderson 2001).
Assume that we download our axioms to RAM only as we need them, and, in
order to free memory, we may also discard those intermediate theorems that
are no longer needed. In the space model we measure the maximal amount of
“information” (details vary in different versions) we should keep in memory at
any particular moment.

Atserias and Dalmau proved in 2003 another surprising simulation: every low-
space proof can be made narrow and hence (for certain trivial reasons) short. An
intriguing problem left open by this research was whether any form of the con-
verse is true, and if good upper bounds on length or width imply at least some
non-trivial information about minimal space. This question was discussed in many
previous papers, but there was no consensus on what the right answer should be.
These papers, however, identified a prominent family of candidate contradictions
for separating space from length, so-called pebbling contradictions. It is worth not-
ing that although space lower bounds were proved already in the original papers
by Esteban et. al, Alekhnovich et. al, all of them dealt with tautologies that were
known to be complex also in terms of resolution length. In particular, previously
known methods did not seem to work for the pebbling contradictions.

Nordström’s thesis. The main contribution of the thesis consists in the ulti-
mate solution of this open problem. But before supplying a few more details, let
us make one technical remark.

As the author himself admits, the thesis represents work in progress, and it was
written in the midst of intensive research. This fact is reflected by the ascending
stricture of the text: different chapters prove increasingly strong versions of the
main result. In particular, its final version in Chapter 11 was found roughly at
the time the thesis went to press, and the proofs are rather sketchy. But since it
is very plausible that it is this version that will make its way to textbooks, we
will focuss on it nonetheless.

The main result was already informally formulated in the previous section.
Numerically, there exist explicit families of 3-CNF contradictions with O(n)
clauses that possess a resolution refutation of constant width and linear length
O(n) (both are optimal), but such that the clause space of any refutation of
this contradiction is Ω(n/ logn) (which is also best possible). It rules out any
hope to gain information about space from the existence of short and/or narrow
resolution refutations. In a sense, it is only this result that firmly established
our belief that space complexity is really an independent complexity measure
that can not be derived from the others. This fills the last remaining gap in the
picture of basic relations between length, width and space.



564 J.A. Makowsky and A. Razborov

In his proof Jakob Nordström significantly develops and enhances techniques
based upon an important concept of pebbling. These techniques go back to the
197th, and it was very insightful and surprising to see that their modification
can be helpful for solving this prominent open problem. The proof, however, con-
tains many elements that are entirely new and are likely to be used elsewhere.
In particular, the concept of an XOR-pebbling contradiction introduced in the
thesis readily generalizes to arbitrary k-CNFs, thereby yielding an useful struc-
tural result whose potential importance stretches well beyond pebbling-related
contradictions.

Another contribution of the thesis establishes a trade-off between the complex-
ity measures in question. Nordström exhibits explicit contradictions that possess
either length-efficient or space-efficient refutations, but these two requirements
can not be fulfilled simultaneously.

The thesis is based upon papers published in STOC06 (Best Student Paper
Award, submitted to SIAM Journal on Computing), STOC08 and FOCS08.
Parts of this research are co-authored with his advisor Johan H̊astad (Royal
Institute of Technology, Stockholm), as well as Eli Ben-Sasson (Technion–Israel
Institute of Technology, Haifa).

Biographic Sketch. Karl Jakob Nordström was born April 11, 1972, in Swe-
den. He currently is a postdoctoral fellow at the Massachusetts Institute of
Technology (MIT). He received his Master of Science in Computer Science and
Mathematics at Stockholm University in 2001, and his PhD in Computer Sci-
ence at the Royal Institute of Technology (KTH) in 2008, while being a re-
search assistant sponsored by the President of KTH. In 2006 he received the
best student paper award at 38th ACM Symposium on Theory of Computing
(STOC’06).

1997-1998 he served as a military interpreter at the Swedish Armed Forces
Language Institute, where he graduated as the best student of the 1998 class. He
still works as an interpreter and translator between Russian and Swedish/English,
and was engaged as interpreter for among others His Majesty the King of Swe-
den, the Prime Minister of Sweden, the Speaker of the Swedish Parliament and
the Supreme Commander of the Swedish Armed Forces. 2001-2002 he was the
Secretary of the Swedish Association of Military Interpreters, and 2002-2005
served as its President.

In 1992 he received his Diploma in Choir Conducting with extended Music
Theory from Tallinn Music Upper Secondary School, Estonia, and in 1994 he
founded the vocal ensemble Collegium Vocale Stockholm, which he led till 1999.
Throughout the 90s, the ensemble gave a number of concerts presenting mainly
Renaissance and Baroque music.

The Ackermann Award

The EACSL Board decided in November 2004 to launch the EACSL Outstand-
ing Dissertation Award for Logic in Computer Science, the Ackermann Award,
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The award2. is named after the eminent logician Wilhelm Ackermann (1896-
1962), mostly known for the Ackermann function, a landmark contribution in
early complexity theory and the study of the rate of growth of recursive func-
tions, and for his coauthorship with D. Hilbert of the classic Grundzüge der
Theoretischen Logik, first published in 1928. Translated early into several lan-
guages, this monograph was the most influential book in the formative years of
mathematical logic. In fact, Gödel’s completeness theorem proves the complete-
ness of the system presented and proved sound by Hilbert and Ackermann. As
one of the pioneers of logic, W. Ackermann left his mark in shaping logic and
the theory of computation.

The Ackermann Award is presented to the recipients at the annual confer-
ence of the EACSL. The Jury is entitled to give more than one award per year.
The award consists of a diploma, an invitation to present the thesis at the CSL
conference, the publication of the abstract of the thesis and the citation in the
CSL proceedings, and travel support to attend the conference.

The Jury for the Ackermann Award consists of eight members, three of
them ex officio, namely the president and the vice-president of EACSL, and
one member of the LICS organizing committee. The current jury consists of
R. Alur (Philadelphia, USA) J. van Benthem (Amsterdam, The Netherlands),
P.-L. Curien (Paris, France) A. Dawar (Cambridge, U.K., Member of the EACSL
Board) A. Durand (Paris, France) M. Grohe (Berlin, Germany), M. Hyland
(Cambridge, U.K.), J.A. Makowsky (Haifa, Israel, President of EACSL), G.
Plotkin (Edinburgh, U.K., LICS Organizing Committee) and A. Razborov
(Chicago, USA).

Previous winners of the Ackermann Award were

2005, Oxford:
Miko�laj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from The Netherlands, and
Stefan Milius from Germany.

2007, Lausanne
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

Detailed reports on their work appeared in the CSL’05, CSL’06, CSL’07 and
CSL’08 proceedings, and are also available via the EACSL homepage.

2 Details concerning the Ackermann Award and a biographic sketch of W. Ackermann
was published in the CSL’05 proceedings and can also be found at
http://www.eacsl.org/award.html



Author Index

Abel, Andreas 40
Accattoli, Beniamino 55
Adler, Isolde 71
Alur, Rajeev 86
Atserias, Albert 102
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Ĉırstea, Corina 179
Cockett, Robin 194
Coquand, Thierry 2

Dezani-Ciancaglini, Mariangiola 209
Duparc, Jacques 225

Egger, Jeff 240
Endrullis, Jörg 255

Facchini, Alessandro 225
Ferreira, Gilda 3

Gaboardi, Marco 271
Geuvers, Herman 255
Gheerbrant, Amélie 287
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Péchoux, Romain 271
Puppis, Gabriele 394

Rabinovich, Alexander 117, 424
Razborov, Alexander 561
Reus, Bernhard 440
Rodriguez, Dulma 317
Ronchi Della Rocca, Simona 209
Roux, Cody 147

Sala, Pietro 394
Santocanale, Luigi 194
Schwinghammer, Jan 440
Simpson, Alex 240
Straßburger, Lutz 163
Sumii, Eijiro 455

Tatsuta, Makoto 470
Terui, Kazushige 163
To, Anthony Widjaja 485
Tranquilli, Paolo 500
Turner, David 546

Ummels, Michael 515

Wang, Hanpin 302
Weber, Volker 530
Weidenbach, Christoph 332
Weinstein, Scott 86
Weyer, Mark 71, 102
Winskel, Glynn 546
Wojtczak, Dominik 515

Xu, Zhongyuan 302

Yang, Hongseok 440

Zantema, Hans 255


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Algebra for Tree Languages
	Forcing and Type Theory
	Functional Interpretations of Intuitionistic Linear Logic
	Introduction
	Intuitionistic Linear Logic
	Verifying System

	A Basic Interpretation of Pure ILL$^\omega$
	Characterisation

	Some Interpretations of ILL$^\omega$
	Relation to Standard Interpretations of IL$^\omega$
	Modified Realizability
	Gödel's Dialectica Interpretation
	Diller-Nahm Interpretation

	References

	Fixed-Point Definability and Polynomial Time

	Special Invited Talk to Commemorate the Centenary of Stephen Cole Kleene
	Kleene’s Amazing Second Recursion Theorem

	Contributed Papers
	Typed Applicative Structures and Normalization by Evaluation for System F$^ω$
	Introduction and Related Work
	Syntax
	Abstract Normalization by Evaluation
	Type Structures
	Type Substructures and the Fundamental Theorem for Kinding
	NbE for Types and Its Soundness

	Type Groupoids
	Type Groupoids and the Fundamental Theorem of Type Equality
	Completeness of NbE for Types

	Object Structures
	Realizability Type Structure and the Fundamental Theorem of Typing
	Soundness of NbE for Objects
	Completeness of NbE for Objects

	Conclusion
	References

	Jumping Boxes
	Introduction
	Graph Reduction Reloaded
	$\lambda$-Structures, $\lambda$-Trees
	Sharing Reductions and Explicit Substitutions

	Jumps
	Correctness Criterion
	$\lambda_J$-Boxes
	Readback of $\lambda_J$-Dags
	Reductions

	Conclusions and Further Work
	References

	Tree-Width for First Order Formulae
	Introduction
	Well-Known Definitions
	First Order Tree-Width
	Computing Stratified Tree Decompositions
	Query Evaluation on Bounded First Order Tree-Width
	Relation to Similar Notions
	Conclusion
	References

	Algorithmic Analysis of Array-Accessing Programs
	Introduction
	Programs
	Reachability
	Programs, Automata and Logics on Data Words
	Background
	Extended Data Automata
	Restricted Doubly-Nested Loops
	Undecidable Extensions
	Expressiveness

	Related Work
	References

	Decidable Relationships between Consistency Notions for Constraint Satisfaction Problems
	Introduction
	Some Examples
	On Characterization Results and CSPs
	New Results

	Preliminaries
	Generalized Pebble Game
	Definition of the Game
	Examples
	Definability
	Treewidth Duality

	Application: Decidable Relative Consistency Results
	Decidable Criterion for Arc-Consistency
	Concluding Remarks
	References

	Cardinality Quantifiers in MLO over Trees
	Introduction
	Organization

	Infinity Quantifier
	Preliminaries
	Trees
	MLO and the Composition Method

	D-Nodes versus U-Nodes and Relevant Branches
	Condition B
	Formalization of Condition Ba
	Formalization of Condition Bc

	The Full Binary Tree and the Cantor Space
	Formalizing Condition C
	Summary of the Proofs
	Further Results
	References

	From Coinductive Proofs to Exact Real Arithmetic
	Introduction
	Induction and Coinduction
	Program Extraction from Proofs
	Coinductive Definition of Uniform Continuity
	Digital Systems
	Conclusion
	References

	On the Relation between Sized-Types Based Termination and Semantic Labelling
	Introduction
	Preliminaries
	Sized-Types Based Termination
	Annotating Constructor Types with a max Symbol
	First-Order Semantic Labelling
	First-Order Case
	Higher-Order Semantic Labelling
	Higher-Order Case
	References

	Expanding the Realm of Systematic Proof Theory
	Introduction
	Preliminaries: Sequents and Hypersequents
	Substructural Hierarchy
	From $N_2$-Axioms to Sequent Rules
	From $P_3'$-Axioms to Hypersequent Rules
	Rule Completion and Cut-Elimination
	A Case Study: Abelian and Łukasiewicz Logics
	Concluding Remarks
	References

	EXPTIME Tableaux for the Coalgebraic μ-Calculus
	Introduction
	The Coalgebraic $\mu$-Calculus
	The Model-Checking Game
	Tableaux for the Coalgebraic $\mu$-Calculus
	The Tableau Game
	Complexity
	Conclusions
	References

	On the Word Problem for ΣΠ-Categories, and the Properties of Two-Way Communication
	The Construction of Free $\Sigma\Pi$-Categories
	$\Sigma\Pi$-Categories

	Softness
	Weak Disjointeness
	Bouncing
	The Decision Procedure
	References

	Intersection, Universally Quantified, and Reference Types
	Syntax and Reduction Rules
	Types and Type Theory
	The Typing System
	Conclusion
	References

	Linear Game Automata: Decidable Hierarchy Problems for Stripped-Down Alternating Tree Automata
	Introduction
	Preliminaries
	Weak Automata
	Borel Classes and Wadge Reductions
	Linear Game Automata
	A Normal Form

	Deciding the Borel Hierarchy
	Patterns Menagerie
	Effective Characterization

	The Weak Index Hierarchy
	Introducing the Hierarchy
	The Conjecture
	Weak Index of LGA-Recognizable Sets

	The Wadge Hierarchy
	The Difference Hierarchy
	Bestiarum Vocabulum
	Two Simple Operations on Sets of Trees
	Computing Wadge Degrees

	Conclusion
	References

	Enriching an Effect Calculus with Linear Types
	Introduction
	A Basic Effect Calculus
	The Enriched Effect Calculus
	Models
	Morphisms of Models
	Embedding an Effect-Calculus Model in an Enriched Model
	References

	Degrees of Undecidability in Term Rewriting
	Introduction
	Preliminaries
	Translating Turing Machines
	Weak Confluence
	Confluence
	Dependency Pair Problems
	Dependency Pair Problems with Minimality Flag
	Conclusion and Future Work
	References

	Upper Bounds on Stream I/O Using Semantic Interpretations
	Introduction
	Preliminaries
	The sHask Language
	sHask Type System
	sHask Lazy Operational Semantics
	Preliminary Notions

	Interpretations
	Bounded I/O Properties and Criteria
	Length Based I/O Upper Bound (LBUB)
	A Criterion for Length Based I/O Upper Bound
	Size Based I/O Upper Bound (SBUB)
	A Criterion for Size Based I/O Upper Bound
	Synchrony Upper Bound (SUB)
	A Criterion for Synchrony Upper Bound

	Conclusion
	References

	Craig Interpolation for Linear Temporal Languages
	Introduction
	Preliminaries
	Abstract Temporal Languages
	Propositional Linear Temporal Logic
	Linear Time -Calculus

	Projective Definability versus Definability with Fixpoints
	Temporal Languages with Craig Interpolation
	Interpolation Closure Results for Temporal Languages
	The Interpolation Closure of PLTL (F<)
	The Interpolation Closure of PLTL (F)

	Finite Linear Orders
	Conclusions and Future Work
	References

	On Model Checking Boolean BI
	Introduction
	Preliminaries
	Boolean BI
	Semigroup Presentation

	Undecidability Results
	Recursively Defined Propositions
	Infinitely Generated Monoid

	Decidability and Complexity Results
	Additional Remarks
	Fragments and Complexity
	Automata Theory
	Model Checking Mobile Ambient
	Model Checking BI and CBI

	References

	Efficient Type-Checking for Amortised Heap-Space Analysis
	Introduction
	FJEU and RAJA
	The System RAJA
	Algorithmic Views and Complete RAJA Programs

	Algorithmic Typing of RAJA Programs
	Related Work
	Conclusions
	References

	Deciding the Inductive Validity of∀∃* Queries
	Introduction
	Preliminaries
	A Calculus for Constrained Clauses
	Soundness and Completeness
	Termination

	Substitution Expressions as Clause Sets
	Predicate Completion

	Decidability of Inductive Validity
	Conclusion
	References

	On the Parameterised Intractability of Monadic Second-Order Logic
	Introduction
	Complexity of Monadic Second-Order Logic
	Pseudo-walls in Graphs
	Defining Coloured Pseudo-walls in Graphs of Large Tree-Width
	MSO2–MSO2-Transductions
	Putting It All Together
	References

	Automatic Structures of Bounded Degree Revisited
	Introduction
	Preliminaries
	Structures and First-Order Logic
	Structures from Automata

	Upper Bounds
	Model-Theoretic Background
	The Decision Procedure

	Lower Bounds
	Bounded Quantifier Alternation Depth and Open Problems
	References

	Nondeterminism and Observable Sequentiality
	Introduction
	Nondeterministic Observably Sequential PCF
	Ordered Concrete Data Structures
	Stable Functions and Sequentiality
	Nondeterministic Sequential Algorithms
	Convex Sequential Algorithms

	Denotational Semantics of Erratic SPCF
	Conclusions and Further Directions
	References

	A Decidable Spatial Logic with Cone-Shaped Cardinal Directions
	Introduction
	Syntax and Semantics of Cone Logic
	Basic Machinery: Types, Dependencies, and Shadings
	From the Rational Plane to the Infinite Binary Tree
	Shading Sequences and Stripe Expressions
	Recursive Decompositions of Stripes

	Reducing Cone Logic to a Proper Fragment of CTL
	Cone Logic and Interval Temporal Logics
	Conclusions
	References

	Focalisation and Classical Realisability
	Introduction
	Focalising System L
	Realisability
	Applications
	Conclusion
	References

	Decidable Extensions of Church’s Problem
	Introduction
	Preliminaries and Background
	The Monadic Logic of Order (MLO)
	Elements of the Composition Method

	Game Types
	Winning Strategies over Classes of Finite Chains
	Algorithm
	Further Results and Open Questions
	References

	Nested Hoare Triples and Frame Rules for Higher-Order Store
	Introduction
	Syntax of Programs and Assertions
	Proof Rules for Higher-Order Store
	Semantics of Nested Triples
	References

	A Complete Characterization of Observational Equivalence in Polymorphic λ-Calculus with General References
	Introduction
	Related Work
	The Language
	Environmental Bisimulation
	Up-to Techniques
	The Characterization Theorem
	Examples
	Conclusion
	References

	Non-Commutative First-Order Sequent Calculus
	Introduction
	The System LK−
	First-Order Sequent Calculi
	Implication from LK− to LJ
	Implication from LJ to LK−
	Non-Commutative Sequent Calculus NCLK
	Translations between LK− and NCLK
	Concluding Remarks
	References

	Model Checking FO(R) over One-Counter Processes and beyond
	Introduction
	Preliminary
	The Logics $L$ and $L'$
	Upper Bounds
	Combined and Data Complexity of  FO$ _S$(R)
	Expression Complexity of  FO$^2$(R)

	Lower Bounds
	Modal Logic over Automatic Graphs
	Future Work
	References

	Confluence of Pure Differential Nets with Promotion
	Introduction
	Rewriting Theory Modulo Equivalence

	The System
	Statics
	Dynamics
	Equivalences and Canonical Reductions

	The Finite Development Theorem
	Marking New Cuts
	Measuring Exponential Reduction

	Proving Confluence
	References

	Decision Problems for Nash Equilibria in Stochastic Games
	Introduction
	Preliminaries
	Nash Equilibria and Their Decision Problems
	Stationary Equilibria
	Equilibria with a Binary Payoff
	Characterisation of Existence
	Computational Complexity

	Conclusion
	References

	On the Complexity of Branching-Time Logics
	Introduction
	Preliminaries
	Branching-Time Logics
	Weak-Pebble Automata

	Complexity of Satisfiability
	Lower Bounds
	Upper Bound

	Nonemptiness of Weak-Pebble Automata
	Conclusions
	References

	Nominal Domain Theory for Concurrency
	FM Sets
	Name Generation in Nominal Sets
	Name Generation in FM Sets
	Name Generation in FM Preorders

	A Linear Category of FM Domains
	Name Generation in FMLin

	Continuity in FM Domains
	Continuity and Name Generation
	FM-Continuity
	FM-Isolated Elements
	The Category FMCts
	Name Generation in FMCts

	Nominal HOPLA
	Syntax
	Typing Rules
	Operational Semantics
	Denotational Semantics

	Soundness and Adequacy
	References


	Appendix
	The Ackermann Award 2009

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




