
Evade Hard Multiple Classifier Systems

Battista Biggio, Giorgio Fumera, and Fabio Roli

Abstract. Experimental and theoretical evidences showed that multiple classifier
systems (MCSs) can outperform single classifiers in terms of classification accu-
racy. MCSs are currently used in several kinds of applications, among which secu-
rity applications like biometric identity recognition, intrusion detection in computer
networks and spam filtering. However security systems operate in adversarial en-
vironments against intelligent adversaries who try to evade them, and are therefore
characterised by the requirement of a high robustness to evasion besides a high clas-
sification accuracy. The effectiveness of MCSs in improving the hardness of evasion
has not been investigated yet, and their use in security systems is mainly based on
intuitive and qualitative motivations, besides some experimental evidence. In this
chapter we address the issue of investigating why and how MCSs can improve the
hardness of evasion of security systems in adversarial environments. To this aim we
develop analytical models of adversarial classification problems (also exploiting a
theoretical framework recently proposed by other authors), and apply them to anal-
yse two strategies currently used to implement MCSs in several applications. We
then give an experimental investigation of the considered strategies on a case study
in spam filtering, using a large corpus of publicly available spam and legitimate
e-mails, and the SpamAssassin, widely used open source spam filter.

Keywords: multiple classifier systems, adversarial classification, hardness of eva-
sion, spam filtering.

1 Introduction

During the past ten years multiple classifier systems (MCS) have become an es-
tablished approach to design pattern classification systems. A large body of both

Battista Biggio · Giorgio Fumera · Fabio Roli
Department of Electrical and Electronic Engineering, University of Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy
e-mail: {battista.biggio,fumera,roli}@diee.unica.it

O. Okun & G. Valentini (Eds.): Appli. of Supervised & Unsuper. Ensemble Meth., SCI 245, pp. 15–38.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

{battista.biggio,fumera,roli}@diee.unica.it

16 B. Biggio, G. Fumera, and F. Roli

experimental and theoretical evidence shows that MCSs can outperform a single
classifier in several real applications, in terms of classification accuracy (see, for in-
stance, [6, 8]). In particular, several authors showed that MCSs can allow to improve
the detection capability also in security applications like biometric authentication
and intrusion detection in computer networks [4, 11]. It is also worth noting that the
MCS classifier architecture is also used in commercial and open source spam fil-
ters. However, attaining a high classification accuracy or detection capability is not
sufficient in security applications, and, in particular, in so-called adversarial envi-
ronments, in which a security system faces an intelligent, adaptive adversary who
exploits the available or acquired knowledge about the system just to evade it.
Typical examples of this kind of applications are intrusion detection in computer
networks and spam filtering. A crucial issue in this kind of applications, besides
detection capability, is the hardness of evasion, which can be qualitatively defined
as the effort required to the attacker to evade the system. While the effectiveness
of MCSs in improving the detection capability has been deeply investigated so far,
no work has formally analysed yet their effectiveness in improving the hardness
of evasion of a classification system, although MCSs are widely used in adversar-
ial classification tasks as mentioned above. Actually, the issue of the hardness of
evasion has been addressed only recently in the machine learning and pattern recog-
nition literature, often with respect to specific tasks, classification systems and type
of attacks [5, 7] (for instance, the so-called good words attack against the text clas-
sifier used in most spam filters), and only in a few works under a more general
perspective [1, 3, 9] aimed at developing analytical models of adversarial classifi-
cation problems. With regard to the use of MCSs explicitly for the specific goal of
improving the hardness of evasion, to our knowledge it was proposed by some au-
thors for biometric tasks (see, for instance, [11]), but only by Perdisci et al. [10] for
intrusion detection tasks, while no works considered MCSs for this specific goal in
spam filtering tasks.

The aim of this chapter is to make a first step towards a better understanding
of why and how MCSs can improve the hardness of evasion of a security system
in adversarial classification problems, with respect to the use of a single classifier.
We focus, in particular, on two strategies commonly used to design MCSs, and ap-
plied also in security applications. The first strategy is often applied when a set of
heterogeneous features is available (as happens for instance in multimodal biomet-
ric identity verification tasks). In this case, it could be better to combine different
classifiers trained on disjoint and heterogeneous subsets of features (for instance, a
face classifier and a fingerprint classifier) instead of designing a single, “monolithic”
classifier based on all the available features [8]. This strategy is also used when the
feature set is very large (and not necessarily heterogeneous), since it is known that it
can help avoiding over-fitting. In this chapter we investigate whether such strategy
can be more effective than the use of a single classifier also in terms of hardness of
evasion, in adversarial classification tasks.

The second strategy we consider is commonly used to update real spam filters as
new kinds of attacks are detected, and was proposed in [10] explicitly for improving
the hardness of evasion in intrusion detection tasks. This strategy consists in adding

Evade Hard Multiple Classifier Systems 17

detectors (often, made up as classifiers) based on new features to a classification
system. In this chapter we investigate whether this approach can be really effective
to improve the hardness of evasion in adversarial classification tasks, trying to pro-
vide some argument more formal than the intuitive one proposed in [10]. To this aim,
we will exploit a theoretical framework proposed by Dalvi et al. [3] for adversarial
classification problems.

Then, to experimentally investigate the above issues we consider a spam filtering
task as a case study, using a large corpus of publicly available spam and legitimate
e-mails, and a real and widely used open source spam filter, SpamAssassin.

The chapter is organised as follows. In Sect. 2.1 we give an overview of the
use of MCSs in security applications, and of the theoretical framework proposed
in [3] for adversarial classification problems. In Sect. 3 we describe how we model
an adversarial learning task in which the classifier is a MCS using the framework
in [3], and how we model such kinds of tasks to investigate the effectiveness of a
MCS against a single classifier, when both classifiers use the same feature set. The
experimental results are reported in Sect. 4.

2 Related Work

In this section we first give an overview of past work on MCSs for security applica-
tions, and then summarise a formal framework proposed in [3] to model adversarial
classification problems. Such framework will be exploited in Sect. 3.1 to analyse
one of the two strategies mentioned in the introduction for improving the hardness
of evasion of a security system.

2.1 Previous Works on Multiple Classifiers for Security
Applications

The use of MCSs to improve the detection accuracy has been recently proposed
by several authors for security applications, and in particular biometric authentica-
tion and verification [6, 8, 11] and intrusion detection in computer networks [4]. A
common scenario in these applications is the availability of heterogeneous features
coming from distinct pattern representations (for instance, features extracted from
face and fingerprint images in biometric tasks). In this case it is natural to design a
detection system based on the combination of different classifiers trained on disjoint
feature subsets corresponding to the different pattern representations. This is a well
known approach in the MCS field: if different sets of heterogeneous (and possibly
loosely correlated) features are available, designing a MCS as described above can
be simpler and more effective than designing a single classifier using all the avail-
able features (see for instance [8]). Moreover, if the overall number of features is
large, a single classifier could be more prone to over-fitting than a MCS. Another
motivation in the context of intrusion detection systems was pointed out in [4]: the
ensemble approach “reflects the behaviour of network security experts, who usually
look at different traffic statistics in order to produce reliable attack signatures.”

18 B. Biggio, G. Fumera, and F. Roli

The above arguments support the use of classifier ensembles to improve the ef-
fectiveness of security systems, in terms of attaining high detection rates. MCSs
have also been explicitly proposed to improve the hardness of evasion in biometric
tasks (see for instance [11]). To our knowledge, the only work which explicitly pro-
poses MCSs to this aim for intrusion detection tasks is [10], while we are unaware
of any work for spam filtering tasks. The approach followed in the mentioned works
to improve the hardness of evasion is to add to a MCS one or more classifiers trained
on new and different features. The motivations for biometric applications are very
intuitive: for instance, in [11] it is claimed that using different biometrics like face,
fingerprints, and speech allows to discourage attempts to evade a verification system,
since this would require the construction of different kinds of fake biometric traits
instead of only one. Similar qualitative arguments are given in [10] for intrusion
detection systems: combining classifiers trained on different feature spaces “forces
the attacker to devise a mimicry attack that evades multiple models of normal traffic
at the same time, which is intuitively harder than evading just one model”. We point
out that, besides experimental evidences, all the above motivations in favour or the
use of MCSs for the specific goal of improving hardness of evasion are only intuitive
and qualitative, and are not based on formal and more compelling arguments.

Looking to real security systems, it turns out that the design of many spam filters
and intrusion detection systems follows the approach based on combining an en-
semble of detectors. Consider for instance two well-known open source systems: the
SpamAssassin spam filter (http://spamassassin.apache.org) and the Snort intrusion
detection system (http://www.snort.org/). Both SpamAssassin and Snort consist of a
set of “tests” which check for different characteristics of input patterns (respectively
e-mails and network packets) to detect the presence of “signatures” denoting a ma-
licious origin of the pattern. Tests are often focused on specific signatures of known
attacks. They can be of very different kinds, ranging from simple and fixed feature
detectors (like a keyword detector in a spam filter) to arbitrarily complex classifiers
(like the text classifiers used in spam filters, also know as “bayesian classifiers” in
the spam filtering jargon). The outputs of all tests are then properly combined to
obtain a decision on the input pattern (either “legitimate” or not). In the case of Spa-
mAssassin, a score (a real number) is associated to each test. The scores of the tests
which are satisfied by an e-mail are first summed up, and then the e-mail is labelled
as spam, if the overall score exceeds a predefined threshold; otherwise the e-mail is
labelled as legitimate. In the case of Snort, a logic OR is computed on the boolean
outcomes of all tests (in other words, a network packet is considered as an attack,
if it satisfies at least one of the tests). The SpamAssassin and Snort architectures
make it easy to add new tests based on different features as new kinds of attacks
come up, and to delete existing tests related to attacks that are no more used. These
architectures are supported by experience and intuition that suggest the designer of
these kinds of security systems that the characteristics which allow detecting mali-
cious patterns can be very different and heterogeneous, and can change over time
due to new tricks used by spammers and hackers to defeat spam filters and intrusion
detection systems.

Evade Hard Multiple Classifier Systems 19

We conclude by pointing out again that so far the hardness of evasion of security
systems based on MCSs for adversarial classification problems, in particular for
intrusion detection and spam filtering tasks, has been motivated only with intuitive
and qualitative arguments.

2.2 A Theoretical Framework for Adversarial Classification
Problems

As explained above, the few works that proposed so far the use of MCSs for im-
proving the hardness evasion in adversarial classification tasks were based only on
informal and empirical motivations. This is actually true also for most works that
proposed classification systems based on single classifiers. As mentioned in the in-
troduction, just a few works addressed so far the hardness of evasion of machine
learning systems under a more general perspective [1, 3, 9], in particular, to formally
analyse it. In this section we focus on the work by Dalvi et al. [3], who developed a
formal framework (the only one so far, to our knowledge) for adversarial classifica-
tion problems. In the following we summarise this framework, which will be applied
in Sect. 3 to model and analyse one of the MCS-based strategies considered in this
chapter for improving the hardness of evasion (namely, adding classifiers trained on
new features).

When machine learning or pattern recognition techniques are used in applications
like spam filtering, intrusion detection, biometric authentication, etc., their task can
be formalised as a two-class classification problem. Denoting with y the class label,
instances belong either to a positive class made up of malicious instances (y = +), or
to a negative class made up of innocent or legitimate instances (y =−). Instances are
represented as vectors of N feature values, and are considered as random variables
X = (X1, . . . ,Xi, . . . ,XN). A realisation of such a random variable is denoted as x =
(x1, . . . ,xi, . . . ,xN), where xi is a possible value of the feature Xi. It is assumed that
instances are generated i.i.d. according to a given distribution P(X), which can be
rewritten as P(X) = P(X |+)P(+)+ P(X |−)P(−). The feature space X is defined
as the set of all possible realisations of X .

The framework in [3] considers tasks in which the adversary can modify positive
instances (the ones generated by him) at the operation phase to make them being
misclassified as legitimate by the classifier, but it can not modify any negative in-
stance nor positive instances belonging to the training set. This happens in several
real applications. For instance, if a spam filter is trained off-line on a hand-labelled
corpora of e-mails, spammers can only modify their own spam e-mails to evade the
filter, but can not modify legitimate e-mails nor any spam e-mail in the training set.
In other cases, like intrusion detection systems trained online, the adversary can also
modify training instances: the model in [3] can not be directly applied to these kinds
of tasks.

In [3] it is further assumed that the classifier and the adversary act according
to given utility and cost functions. Denoting with yC (x) the decision function of
the classifier, whose output is intended to be the label assigned to the instance x,
the classifier’s utility function is denoted as UC(yC ,y), and represents the utility

20 B. Biggio, G. Fumera, and F. Roli

accrued by assigning to class yC (x) an instance x belonging to class y. It is reason-
able to assume that classifier’s utility is positive for correctly classified instances and
negative for misclassified ones, that is, UC(+,+) > 0, UC(−,−) > 0, UC(+,−)≤ 0
and UC(−,+)≤ 0. The cost for the classifier is assumed to be the one incurred for
measuring feature values. In the following the cost for measuring the i-th feature of
an input instance is denoted as Vi. The expression of the expected utility over the
distribution P(x,y) (the joint probability of pattern x being generated with true label
y) can be obtained taking into account that the adversary acts by first generating a
(positive) instance with a corresponding feature representation x, and then possibly
modifying it to some different instance x′ (if deemed necessary), with the aim of
evading the classifier. Such modification is denoted as a function A (x). For exam-
ple, spammers could add words which look legitimate to the body text of a spam
e-mail, and this could result in a different e-mail feature representation (depending
on the features used by the classifier). It follows that the expected utility for the
classifier is given by:

UC = ∑
(x,y)∈X ×Y

P(x,y)[UC(yC (A (x)),y)−
N

∑
i=1

Vi], (1)

where Y = {+,−} (note that, by the above assumptions, A (x) = x if y =−, namely
for each negative instance).

The adversary’s utility function is denoted similarly with UA(yc,y). In this case
a reasonable assumption is that UA(yc,y) takes on a positive value for positive in-
stances misclassified by the classifier as legitimate (UA(−,+) > 0), a negative value
for correctly classified positive instances (UA(+,+)≤ 0), and a zero value for nega-
tive instances (UA(−,−) = UA(+,−) = 0), whatever the label assigned by the clas-
sifier (in other words, the adversary’s utility is not affected by the correct or incorrect
classification of negative instances). The cost for the adversary is the one incurred
for modifying an instance x, according to the function A (x). It is assumed that the
cost is given by W (x,A (x)) = ∑N

i=1 Wi(x,A (x)), being Wi the cost for modifying
the i-th feature. Of course, Wi = 0 if the i-th feature is not changed,Wi > 0 otherwise.
The expected utility for the adversary is thus:

UA = ∑
(x,y)∈X ×Y

P(x,y)[UA(yC (A (x)),y)−W (x,A (x))]. (2)

Using the above model, the adversarial classification problem is formulated as
a game between classifier and adversary, in which the two players make one move
at a time. A move by the classifier consists in choosing a decision function yC (·)
to maximise his expected utility, taking into account both the training set and any
knowledge it may have about the strategy A (·) chosen in the previous move by
the adversary. Analogously, a move by the adversary consists in choosing a strat-
egy A (·) to maximise his own expected utility (Eq. (2)), taking into account the
available knowledge about the decision function chosen by the classifier in the pre-
vious move. Although game theory could, in principle, be applied to find the optimal

Evade Hard Multiple Classifier Systems 21

sequence of moves by both players according to their utility and cost functions, it
was shown in [3] that this is computational intractable, and anyway it requires the
knowledge of the distribution P(x,y), which is unrealistic. Therefore, a simplified
single-shot version of the game was considered in [3]. Initially, the classifier con-
structs a decision function using a given training set, assuming it is untainted. Then
the adversary chooses his strategy A (·), assuming he has perfect knowledge of the
utility and cost functions of the classifier, and also of his classification algorithm
and the training set used. Finally, classifier moves again by choosing a new deci-
sion function, assuming he has perfect knowledge of the adversary’s utility and cost
functions, and that he also knows that the adversary has just made his move based
on perfect knowledge on the classifier. Under these assumptions, the optimal adver-
sary’s strategy for choosing A (·) turns out to be the following: for each positive
instance x, the adversary has to find a modification x′ which maximises the corre-
sponding summand in the expression of the adversary’s expected utility (2):

A (x) = arg max
x′∈X

[UA(yC (C (x′),+)−W(x,x′)]. (3)

Given the above definition of the adversary’s utility and cost functions, it is easy
to see that the adversary will change any given instance x, only if it is correctly
classified by the classifier as positive, and if there is any instance A (x) �= x which
is misclassified by the classifier as negative, and the modification cost W (x,A (x))
is lower than the utility gain UA(−,+)−UA(+,+). Otherwise, the best strategy is
to leave the instance x unchanged, namely A (x) = x.

In [3] the above framework was applied to find the optimal strategies of the ad-
versary and the classifier, when the classifier is a Naive Bayes. Experiments on a
spam filtering task quantitatively showed that the classifier performance can signifi-
cantly degrade, if the adversarial nature of this task is not taken into account, while
an adversary-aware classifier can perform much better.

The assumption that the adversary and the classifier have perfect knowledge of
each other is rather unrealistic in practical applications, as well as the assumption
that their behaviour can be modelled in terms of utility functions whose expected
value they aim to maximise. Despite this, we point out that this framework is the first
one proposed to model adversarial learning problems in the machine learning field,
and it is thus worth taking it into account to formally analyse strategies to improve
the hardness of evasion as the ones considered in this chapter.

3 Are Multiple Classifier Systems Harder to Evade?

In this section we develop formal models of adversarial classification problems in
which the classification system is made up of an MCS, with the aim of investigating
whether MCSs could improve the hardness of evasion. In particular, the model in
Sect. 3.1 is based on the framework developed in [3].

22 B. Biggio, G. Fumera, and F. Roli

3.1 Adding Features to a Classification System

In this section we consider a strategy proposed by several authors to design classi-
fiers for different security applications, and commonly used in real security systems,
as explained in Sect. 2.1. The strategy consists in adding to a given classifier ensem-
ble new classifiers trained on different features. We focus in particular on a simple
kind of combining function, which consists in thresholding the weighted sum of the
outputs provided by each classifier. The reason is that this combining function is
equivalent to the functions commonly used in spam filters and intrusion detection
systems, as the SpamAssassin and Snort software described in Sect. 2.1. In the fol-
lowing, we apply the framework of [3] to model a classifier based on this strategy,
and analyse whether and how such strategy can allow to improve the hardness of
evasion of the classifier, according to this framework.

We consider a classifier ensemble made up of N classifiers trained on different
feature subsets. We denote with si(x) the output provided by the i-th classifier for the
instance x (x can be considered the whole feature vector, while each classifier uses
only a subset of these features), and with t as the decision threshold. The decision
function we consider can be defined as:

yC (x) =
{

+, if∑N
i=1 si ≥ t,

−, if∑N
i=1 si < t.

(4)

We also consider Vi and Wi(x,A (x)) as the cost incurred respectively by the clas-
sifier for measuring the values of the i-th feature set of the instance x, and by the
adversary for modifying the same features of x.

In the framework of [3] the classifier strategy against the adversary leads to
choose a new decision function at each move. To apply the framework of [3] to
our case, we add the constraint that the new decision function is obtained by adding
one or more new classifiers to the previous ensemble. As in [3], we assume that the
initial classifier ensemble is trained on a given training set of untainted instances,
namely A (x) = x. Then the adversary reacts by devising a strategy A (x), which is
likely to decrease the classifier effectiveness. Next, some new classifiers are added
to the previous classifier ensemble. The adversary can in turn react again by devis-
ing a new strategy to defeat the new version of the MCS, and so on. The question
we will try to answer is: does adding new classifiers to a previous ensemble makes
it harder to evade?

Let us now define in details the adversary strategy, namely the optimal way in
which the adversary should choose the function A (x) against a given ensemble of
N classifiers. To this aim, we assume that the adversary knows the feature set used
by each of the individual classifiers, the score si(x), i = 1, . . . ,N provided by each
individual classifier for any positive instance x, and the threshold t. For the sake of
simplicity, we also assume that the cost Wi(x,A (x)) for modifying the i-th feature
set is equal to the absolute difference between the corresponding scores si(x) and
si(A (x)). This means that the total cost W (x,A (x)) equals the Manhattan distance
in the N-dimensional score space between the corresponding score vectors. In other
words, the higher the score reduction the adversary would like to attain, the more

Evade Hard Multiple Classifier Systems 23

the changes he has to make to his positive instance. We point out that this is only
a simplifying assumption, since in practice a given reduction of the overall score
could be attained by different modifications to the same instance at the expense of
a different cost incurred by the adversary. However, modelling this fact is much
more complex, without any specific assumption about the nature of instances, of the
features used by the classifier and of the kinds of attacks used by the adversary. It
should be noted that an assumption similar to ours about the cost of modifying an
instance in a given feature space was made in [9]: in that work, the cost was assumed
to be a function of the distance between x and A (x) in the feature space.

The optimal strategy of the adversary in [3] is defined by Eq. (3). In our case,
denoting with ∆UA the difference UA(−,+)−UA(+,+), with the above definition
of the adversary’s cost function the optimal strategy against an ensemble of N clas-
sifiers can be rewritten as follows:

A (x) =

⎧
⎨
⎩

x′ �= x, if ∃x′ : yC (x′) =−,∆UA > W (x,x′),
x′ = argmaxx′′∈X ∆UA−W (x,x′′),

x, otherwise.
(5)

The above optimal strategy can be rephrased as finding, for any given instance x
which is correctly classified as positive by the classifier, namely ∑N

i=1 si(x) ≥ t,
an instance A (x) which is misclassified as negative by the classifier, namely
∑N

i=1 si(A (x)) < t, and for which the utility gain ∆UA exceeds the cost for mak-
ing the modification, which by the above assumptions is given by:

W (x,A (x)) =
N

∑
i=1

|si(x)− si(A (x))|. (6)

If no such instance can be found, then x is left unchanged. It is not difficult to see
that the minimum cost the adversary has to incur, so that the modified instance is
misclassified as negative, equals the difference between the total score given to x by
the classifier and the decision threshold t: ∑N

i=1 si(x)− t.
It is now possible to give a formal explanation, according to the framework in

[3], of the reasons why adding new classifiers to a given ensemble could improve
the hardness of evasion, as well as the detection capability. We consider the simplest
case in which the previous classifiers and the decision threshold t are left unchanged
at each move. A consequence of adding M new classifiers (M ≥ 1) to an existing
ensemble of N classifiers is that the score of any positive instance could increase,
under the reasonable assumption that the individual classifiers are well trained. In
particular, consider the optimal strategy A (x) against N classifiers. As seen above,
when this strategy leads the adversary to modify an instance x to a different instance
A (x) �= x, this allows to evade the classifier. Denoting with sk(x) the score provided
by an ensemble of k classifiers, this means that sN(x) = ∑N

i=1 si(A (x)) < t. However,
the modified instance obtained with the strategy devised against N classifiers is not
guaranteed to evade a new ensemble comprising M new classifiers. Indeed the new
score sN+M(x) will be given by the sum of the previous score and of the scores
of the new classifiers, sN(x)+ ∑N+M

i=N+1 si(x), which could exceed t. This means that

24 B. Biggio, G. Fumera, and F. Roli

the optimal strategy of the adversary against N classifiers is not guaranteed to be
optimal against M+N classifiers. Accordingly, the detection capability can improve
by adding new classifiers. Moreover, the evasion cost could increase by adding new
classifiers. Indeed, if the score for some positive instance x correctly classified by
the new classifier ensemble increases from sN(x) to sN+M(x) > sN(x), such increase
could make the difference sN+M(x)− t larger than the utility, UA(−,+), that the
adversary would gain by modifying x so that it is misclassified as negative. This
implies that there could be some positive instances that the adversary can afford to
modify to evade N classifiers, but not to evade N + M classifiers. This means that
the classifier has become harder to evade.

In the above model it is assumed that the adversary can modify only positive
instances, and the analysis was focused only on the classifier’s detection capability
on positive instances (namely, on the false negative error rate). Before concluding
this section it is worth discussing also the possible effects of adding classifiers,
to the classification accuracy on negative instances (the false positive error rate).
Under the same reasonable assumption above that the individual classifiers are well
trained, a negative instance x which is correctly classified as negative by an ensemble
of N classifiers (namely, sN(x) < t) is likely to be classified as negative also by an
ensemble of N + M classifiers, if the sum of the new scores ∑N+M

i=N+1 si(x), is lower
than t−sN(x). Moreover, instances erroneously classified as positive by N classifiers
(namely, sN(x)≥ t) could be correctly recognised as negative by a larger ensemble,
if ∑N+M

i=N+1 si(x) is negative and lower than t− sN(x).
To sum up, the above analysis provides the first, formal support to the strategy of

adding new classifiers trained on different features to a given classifier ensemble, to
improve both the detection capability and the hardness of evasion. In Sect. 4.1 we
will give an experimental evaluation on a case study related to spam filtering.

3.2 Splitting Features across an Ensemble of Classifiers

The second MCS-based strategy we consider is a design approach applied in several
applications to simplify the classifier design and to improve classification accuracy,
when the feature set is very large or is made up of heterogeneous feature subsets.
The approach consists in combining different classifiers trained on disjoint feature
subsets, instead of designing a single, “monolithic” classifier based on all the avail-
able features. It can be implemented naturally on heterogeneous features: a typical
example is the combination of a face classifier and a fingerprint classifier in bio-
metric tasks. The issue we address is the following: could this design approach be
exploited to improve the hardness of evasion of a security system in adversarial
classification tasks?

In this chapter we try to give a first answer to this question, without focusing
to any specific application. We will not apply the model in [3] as made for the
MCS-based strategy analysed in Sect. 3.1, since in this case we are not analysing a
defence strategy, but we are comparing two different classifier design approaches.
We develop instead a simple, general model of a classification system based on these
two classifier architectures (either a single classifier trained on a given feature set,

Evade Hard Multiple Classifier Systems 25

or an ensemble of classifiers trained on disjoint subsets of the same feature set), and
a method for evaluating the corresponding hardness of evasion.

We first assume that a fixed feature set x1, . . . ,xn is available, and that all the
features are binary and take on the values 0 and 1. Without loosing generality we
assume that the value 1 of any feature denotes the presence of some “malicious”
characteristic in the input instance, while a 0 value denotes its absence. In the case
of a single classifier, denoting with x a feature vector and with yC (x) the decision
function, we assume that yC (x) is a thresholded weighted sum of the input features
x1, . . . ,xn, with weights w1, . . . ,wn:

yC (x) =
{

+, if∑n
i=1 wixi ≥ t,

−, if∑n
i=1 wixi < t.

(7)

Note that this kind of decision function, as well as the above assumption on the
features, fits several real classification systems for security tasks, like SpamAssassin
and Snort.

In the case of an MCS made up of N classifiers trained on N disjoint subsets of
the same n features, we assume that the individual classifiers have the same kind
of decision function (7). As a combining function, we consider the logical OR be-
tween the N boolean outputs of the individual classifiers, where the logical value
true is assumed to denote the positive class y = + (in other words, for an input
pattern being labelled as positive by the MCS, it is sufficient that at least one of the
individual classifiers labels it as positive). We consider a non-linear combining func-
tion because a linear one (a linear combination of the soft outputs of the individual
classifiers) would lead to the same kind of decision function as the one of the mono-
lithic classifier (since also the decision functions of individual classifiers is linear).
We consider in particular the logical OR because of its simplicity, and because it is
particularly suited to keep the false negative error rate low. We remind the reader
that this combining function is used in Snort. In principle, it could also be used to
combine different spam filters or different intrusion detection systems, whose out-
puts can be viewed as the features. Given that the value 1 of any feature denotes the
presence of some “malicious” characteristic in the input instance, it follows that all
the weights of both the monolithic classifier and the N individual classifiers of the
ensemble are non-negative (because it is reasonable that the presence of a “mali-
cious” characteristic must not decrease the overall score of a classifier). A scheme
of the two classifier architectures is shown in Fig. 1.

In the two classifier architectures above, the parameters to be set during the train-
ing phase are the number of individual classifiers in the MCS, the feature subset
associated to each individual classifier, and the values of the weights and of the de-
cision thresholds in the decision functions of the linear classifiers. These choices
will affect the effectiveness of the classifiers. The effectiveness has to be measured
in terms of both the classification accuracy and the hardness of evasion. Note that
in adversarial classification problems the classification accuracy should be intended
as a “static” characteristic of a classifier, in the sense that it is related to a fixed
strategy used by the adversary. Such strategy can be considered as represented by

26 B. Biggio, G. Fumera, and F. Roli

Fig. 1 The two classifier architectures considered in this section. A single, linear classifier
working on n features (top). N linear classifiers working on disjoint subsets of the same n
features, whose decisions are combined using the OR logical function (bottom)

the training instances. The hardness of evasion measures instead how easy is for the
adversary to evade the classifier using one or more different specific strategies. In
other words, it measures how vulnerable the classifier is to specific kind of attacks,
different than the ones represented in the training set. Therefore, when comparing
different security systems both measures have to be taken into account, as in the
scheme of Fig. 2. Ideally, a security system should be characterised both by a high
accuracy and a high hardness of evasion. In practice, a trade-off between the two
goals could be needed.

The classification accuracy can be evaluated in terms of the false positive and
false negative classification rates. Usually, the suitable trade-off between these mis-
classification rates is application-dependent. How to measure the hardness of eva-
sion is clearly application-dependent as well. In particular, it could depend on the
kind of classification system, on the knowledge the adversary has about it, and on
the kinds of attacks he could make. However in this section we consider a measure
of the hardness of evasion focused on comparing the two classifier architectures
we are interested in, without making any specific assumption on the application.
Concerning the adversary, we consider the worst case scenario for the classification
system, as in the framework in [3]: we assume that the adversary has full knowl-
edge of the classifier architecture, of the features and of the parameter values, and

Evade Hard Multiple Classifier Systems 27

Low accuracy,
low hardness of

evasion

Low accuracy,
high hardness of

evasion

High accuracy,
low hardness of

evasion

High accuracy,
high hardness of

evasion

Accuracy

Hardness of evasion

Fig. 2 An example of the two measures which should be used to evaluate the performance of
a classifier in a security system: the classification accuracy against a given strategy used by the
adversary (represented by training instances), and the hardness of evasion against new kinds
of attacks. Ideally, the classifier should exhibit both a higher accuracy and a high hardness of
evasion (upper right region in the accuracy-hardness of evasion plane)

is capable to evade any feature (namely, to turn the value of any feature from 1 to
0). We further assume that the adversary has to make the same effort to evade any
feature. We point out that this last assumption could not be true in practice. How-
ever, taking into account different costs for evading different features would make
our model much more complex, which is out of the scope of this chapter. Under the
above assumptions, the hardness of evasion can be defined as follows:

For a given feature set, the hardness of evasion is defined as the expected value of the
minimum number of features which have to be modified to evade the classifier.

Accordingly, a classifier A will be harder to evade than a classifier B, if the average
minimum number of features the adversary has to evade for evading A is higher
than for evading B. The whole classifier performance could thus be measured in
the accuracy-hardness of evasion plane of Fig. 2 by using a proper combination of
false positive and false negative classification rates in the Y axis (note that, in this
case, the accuracy increases for decreasing values in the corresponding axis) and
the average minimum number of features to evade for evading the whole classifier
in the X axis.

It is now possible to discuss, at least informally, whether and how the MCS classi-
fier architecture discussed above could be harder to evade than the monolithic classi-
fier. Consider a given positive instance whose feature vector x is correctly classified
by the monolithic classifier, namely, s(x) ≥ t (see Fig. 1). Under the above assump-
tions, to evade such classifier the adversary will have to modify such instance to
some instance with feature vector x′ with the aim of turning to 0 those features
which exhibit in x a value of 1 and are associated to the largest weights, until the
overall output of the classifier becomes lower than the threshold t: s(x′) < t. In-
stead, to evade the MCS the adversary has to evade all individual classifiers which
correctly classify an instance as positive, since they are combined with the logical

28 B. Biggio, G. Fumera, and F. Roli

OR function. Since the individual classifiers are assumed to implement the same
kind of decision function (7) as the monolithic classifier, the adversary will have to
apply the same strategy above against all the individual classifiers. More precisely,
let us denote with xm the feature vector of the m-th individual classifier. Assuming it
correctly classifies xm as positive (namely, sm(xm)≥ tm), the adversary will have to
modify his original instance to some other instance with feature vector x′m, in which
the features exhibiting in xm a value of 1 and are associated to the largest weights
are turned to 0, until the overall output of the m-th classifier becomes lower than
the threshold tm: sm(x′m) < tm. We point out again that this has to be done for each
individual classifier, which correctly classifies an instance as positive. It follows that
a proper choice of the feature subsets could force the adversary to evade on average
a higher number of features to evade an MCS with the above architecture, than to
evade the monolithic classifier. It should however be noted that the kind of MCS
considered in this section could exhibit a higher false positive error rate than the
monolithic classifier, since each individual classifier of the MCS is trained with a
smaller feature set, and an input instance is labelled as positive if at least one in-
dividual classifier labels it as positive. Accordingly, the attainable advantage of the
MCSs in terms of hardness of evasion could need to be traded-off for an increase in
false positives. In the following section, we experimentally investigate the hardness
of evasion of these two classifier architectures on the same case study as the one
considered for the MCS-based strategy analysed in Sect. 3.1.

4 A Case Study in Spam Filtering

In this section we apply the two formal models of Sect. 3 to a case study of a spam
filtering task, to experimentally analyse the hardness of evasion of the two corre-
sponding MCS-based strategies considered in this chapter. For our experiments we
use the well known open source SpamAssassin spam filter, whose architecture has
been described in Sect. 2.1, and a large and publicly available corpus of real spam
and legitimate e-mails.

We used the latest versions of SpamAssassin available at the time of carrying
out our experiments: version 3.2.4 for the experiments in Sect. 4.1, and 3.2.5 for
the ones in Sect. 4.2. We used the filter configuration named “bayes+net”, which
includes all the available tests (several hundreds). The outputs of all tests are binary
(either 0 or 1). Nine of the tests are associated to a text classifier with features corre-
sponding to terms in the e-mails’ header and body. The continuous-valued output of
the text classifier is discretized by default into nine disjoint intervals, each of which
is associated with a binary test. All the remaining tests consist in fixed feature detec-
tors. SpamAssassin is deployed with a default value for the weight of each test, and
a default value of 5 for the detection threshold. All these values can be modified by
the user. All the details about SpamAssassin, including the description of its tests,
can be found in http://spamassassin.apache.org/

The e-mail corpus we used is the TREC 2007 e-mail data set, available at
http://plg.uwaterloo.ca/∼gvcormac/treccorpus07/. It is made up of 75,419 real

Evade Hard Multiple Classifier Systems 29

e-mail messages, received by a mail server between April 2007 and July 2007, and
contains 25,220 legitimate and 50,199 spam messages.

In Sects. 4.1 and 4.2 we describe the experiments aimed at evaluating the hard-
ness of evasion attainable respectively by adding new classifiers to a classifier en-
semble, and by using an ensemble of classifiers trained on disjoint subsets of given
feature set, instead of a single classifier trained on the whole feature set.

4.1 Adding Features to a Spam Filter

In this section we evaluate the hardness of evasion of the SpamAssassin filter, attain-
able by adding new tests (which can be thought as classifiers, as explained above)
to a previous set of tests (equivalently, to a previous classifier ensemble). We point
out that in our experiments the SpamAssassin tests can be considered as classifiers,
although most of them are fixed feature detectors, because we consider the case in
which the previous classifiers of the ensemble are not retrained, and neither their
weight nor the decision threshold is changed, after a new classifier are added. For
these experiments we used the first 10,000 messages of the TREC 2007 corpus, in
chronological order (1,969 legitimate e-mails and 8,031 spam e-mails), to train the
SpamAssassin text classifier. The remaining 65,419 e-mails were used as a test set.

In the model of Sect. 3.1 the adversary was assumed to be capable to modify
his instances to attain any modification he would like on the classifier’s outputs. In
practice this could be not always possible. However, it was very difficult to check
whether this is possible or not for all SpamAssassin’s tests. For the sake of sim-
plicity, we kept the above assumption and avoided to devise real modifications to
e-mails to attain the desired output changes. We point out that this assumption is to-
tally in favour of the adversary, since we are not setting any constraint on the actual
modifications which can be made on spam e-mails by him.

In the experiments we considered the following utility function of the classifier:
UC(+,+) = 1,UC(−,+) =−10,UC(+,−) =−1,UC(−,−) = 1, namely, it gains 1
for correct classifications, looses 1 for misclassifying a spam e-mail as legitimate,
and looses 10 for misclassifying a legitimate e-mail as spam. This is coherent with
the considered application, in which it is generally agreed that false positive errors
are much more harmful than false negative ones. The utility function of the ad-
versary was set to 0, except for the gain accrued for evading the classifier, namely
for spam e-mails misclassified as legitimate, for which two different values (1 and
5) were considered: UA(+,+) = UA(+,−) = UA(−,−) = 0,UA(−,+) = 1, 5. We
considered two different values of UA(−,+) to evaluate scenarios characterised by
a different value of the maximum cost the adversary can (or wants) to pay to evade
a spam filter. We point out that the above choices of the relative values of the utility
functions is somewhat arbitrary, besides the obvious constraints mentioned above,
due to the fact that such costs can not be precisely evaluated in practice (and it
could also be questionable that the real behaviour of a classification system and of
an adversary can be modelled in terms of such utility functions, as pointed out in
Sect. 2.2). However, we are interested here to the qualitative behaviour of the clas-
sifier’s and adversary’s performance (in terms of its expected utility), and different

30 B. Biggio, G. Fumera, and F. Roli

choices of the utility values would affect only the absolute values of their expected
utilities, not their qualitative behaviour.

Finally, we assumed that the cost Vi faced by the classifier for measuring the
features associated to the i-th text (or classifier) is zero, since such cost is just a neg-
ative constant added to the expected value of the utility function in the framework
of Sect. 3.1. The cost for the adversary was defined as explained in Sect. 3.1, as
the manhattan distance in classifiers’ outputs space between the outputs given to a
positive instance after and before the modification made by the adversary.

The addition of new classifiers at each move of the game was modelled as fol-
lows. Since the number of SpamAssassin tests is rather high (several hundreds),
we did not add just one test at each move. Instead we subdivided them into n dis-
joint subsets S1, . . . ,Sn, and added at each step all the tests of a given subset. For
the purposes of these experiments we chose n = 6. The number of test was set
to 119 for S1 and to 100 for all the other subsets, for a total of 619 tests. This
choice was made since only 619 out of all tests gave an output value of 1 for at
least one of the e-mails in our data set: we considered therefore only these 619
tests. In the real SpamAssassin filter new tests are usually added in response to
new spammers’ tricks. Accordingly, it would have been reasonable to subdivide
the tests taking into account their chronological order. Unfortunately the time in
which each test was introduced is not reported in the SpamAssassin documenta-
tion. So we had to resort to a random subdivision. To make experiments easily re-
producible, we sorted all tests alphabetically according to their names as listed in
http://spamassassin.apache.org/tests 3 2 x.html. The only exception were the nine
tests related to the text classifier, which were included in the first subset since it is
known that text classifiers are used in spam filters since several years.

The moves of the classifier and the adversary at each step of the game were
implemented according to the following procedure. At each step, we first evaluate
the performance of the classifier and the adversary after a new set of tests is added
to the classifier, and the adversary uses the strategy which was optimal against the
previous set of tests (in the first step, this means that the adversary does not modify
his instances). This simulates what happens in real cases, as soon as a spam filer
is updated. Then the optimal strategy of the adversary against the new set of tests
is computed, and the performances of the classifier and the adversary are evaluated
again. This simulates what happens when spammers devise new tricks to evade the
last version of a spam filter. This procedure can be formalised as follows:

1. R← /0, A 0(x) = x for all x
2. For k = 1, . . . ,n:

2.1 R← R
⋃

Sk

2.2 Evaluate the expected utility of the classifier and of the adversary, when the
classifier uses the tests in R and the adversary uses the strategy A k−1(x) which
was optimal for the previous set of tests

2.3 Compute the optimal adversarial strategy A k(x) against tests in R

Evade Hard Multiple Classifier Systems 31

2.4 Evaluate the expected utility of the classifier and of the adversary, when the
classifier uses the tests in R and the adversary uses the corresponding optimal
strategy A k(x)

The adversary’s optimal strategy A k(x) at step k was computed as follows, ac-
cording to Sect. 3.1. Denoting the set of tests S1

⋃
. . .
⋃

Sk used by the classifier as
R, for any positive instance x correctly classified by the filter (namely yC (x) = +, or
equivalently ∑i∈R si(x) ≥ t), we compute the set of feasible values s′i for the scores
of tests in R which would correspond to an instance x′ classified as negative (namely
∑i∈R s′i < t), such that the corresponding cost W (x,x′) = ∑i∈R |s′i−si(x)| is minimum
and is lower than the utility gain. If such scores exist, then we assume that the ad-
versary evades the filters by modifying x, otherwise it is assumed that the adversary
can not afford to modify x to evade the filter.

The results are shown in Figs. 3 and 4, for both utility functions considered for
the adversary, in terms of the expected utility of the adversary and of the classifier,
as a function of the number of tests used in SpamAssassin. The results in the top-left
graph refer to the case in which the adversary does not modify his instances. As one
could expect, the expected utility of the classifier increases as the number of test
increases while the opposite happens for the adversary. This means that adding new
classifiers (tests) based on different features (without modifying the previous ones
nor the detection threshold) allowed to improve the detection capability. The only
exception is when going from 419 to 519 tests. The bottom-left graph shows what
happens when the adversary uses the optimal strategy against each set of tests. The
expected utility of the adversary significantly improves with respect to the previ-
ous case. The expected utility of the classifier still increases as the number of tests
increases, but obviously attains lower values than in the previous case. However,
it is worth noting that the improvement attained by the adversary, reported in the
top-right graph, tends to decrease as the number of tests increases. Similarly, the
decrease in the classifier’s expected utility tends to be higher for smaller number
of tests. The reason is that the modification cost the adversary has to face to evade
the classifier increases as the number of tests increases, until it exceeds the utility
gain for some positive instances, making it no more convenient to modify them.
This is a clear evidence that adding new classifiers based on different features can
allow to improve not only the classifier’s discriminant capability, but also its hard-
ness of evasion. Consider finally the bottom-right graph, corresponding to the case
when the classifier adds new tests, and the adversary uses the strategy which was
optimal against the previous set of tests. For smaller number of tests (up to 319),
the expected utility of the adversary is between the ones of the first two graphs:
this is reasonable, because it is now trying to evade only some of the tests used by
the classifier. However, for larger number of tests its expected utility is even worse
than the one it attained without trying to evade any test. The expected utility of the
classifier is instead very close to the one it attained when the adversary did not try
to evade any test. This means that the addition of new tests allowed to compensate
the actions made by the adversary to evade the previous tests. In other words, most

32 B. Biggio, G. Fumera, and F. Roli

spam e-mails which evaded the previous version of the filter were detected by the
new tests.

The behaviour of the expected utility for the two different values of the gain
accrued by the adversary for evading the classifier (Fig. 3 vs. Fig. 4) is similar,
with the obvious difference that the expected utility of the adversary is higher in the
graphs of Fig. 4 than in Fig. 3, since it can afford a higher cost to modify instances.
The opposite happens for the classifier.

These experimental results on a real case study give thus a quantitative confirma-
tion to the theoretical explanation given in Sect. 3.1 on the effectiveness of adding
new classifiers based on different features in improving both the detection capability
and the hardness of evasion of a security system like a spam filter.

Fig. 3 Expected utility for the adversary and the classifier, as a function of the size of the clas-
sifier ensemble, when UA(−,+) = 1. Top-left: the adversary does not modify his instances.
Bottom-left: the adversary uses the optimal strategy against the classifier. Top-right: the gain
and the loss in expected utility attained respectively by the adversary and the classifier, when
passing from the situation in the top-left graph to that in the bottom-left one, as a function
of the ensemble size. Bottom-right: for each ensemble size, the adversary uses the optimal
strategy against the previous set of rules

4.2 Splitting the Features of a Spam Filter across an Ensemble of
Classifiers

In this section we give an experimental evaluation of the classification accuracy
and the hardness of evasion of the two classifier design architectures modelled in
Sect. 3.2: a single linear classifier trained on a given set of features, and an ensem-
ble of linear classifiers trained on disjoint subsets of the same features and combined
with the OR logical function. The experiments were carried out on the TREC 2007

Evade Hard Multiple Classifier Systems 33

Fig. 4 Expected utility for the adversary and the classifier, as a function of classifier ensemble
size, when UA(−,+) = 5. See caption of Fig. 3 for the other details

e-mail corpus described in Sect. 4.1. We used as feature set the tests of the SpamAs-
sassin filter (version 3.2.5) which gave an output value of 1 for at least one of the
e-mails of this data set. Their number was 549. To implement the monolithic linear
classifier and the individual classifiers of the ensemble we used a support vector
machine (SVM) with the linear kernel. Since nine of the SpamAssassin tests are
associated with a text classifier, they were not used as features of the MCS. The text
classifier itself was instead used as one of the individual classifiers of the ensemble.
In this case, given that its output is a real number in the interval [0,1] (with small
values denoting legitimate e-mails), we set a decision threshold of 0.5.

The first 10,000 e-mails of the data set, in chronological order (1,969 legitimate e-
mails and 8,031 spam e-mails), were used to train the SpamAssassin text classifier
and the individual classifiers of the MCS. The next 10,000 e-mails were used to
train the monolithic classifier (we avoided using to this aim the same first 10,000
e-mails used to train the text classifier, since its outputs were used as features of the
monolithic classifier). The remaining 55,419 e-mails were used as a test set. The
SVMs were trained using the publicly available libsvm software [2]. To carry out
multiple runs of the experiments, all the classifiers were trained on 2,000 e-mails
randomly extracted from the corresponding training sets described above.

The SVM parameters of the monolithic classifier were set through a 5-fold
cross validation on the training set, by minimising an objective function given by
100×FP+ FN, being FP and FN the two kinds of error rates. In other words, the
cost of false positive errors was fixed to be one hundred times higher than the cost
of false negative errors. The decision threshold of the SVM was fixed by minimis-
ing the same objective function. The same procedure was used to set the parameters
and the decision threshold of the individual classifiers of the MCS. However in this
case we fixed the cost of false positive errors to be one thousand times higher than

34 B. Biggio, G. Fumera, and F. Roli

Fig. 5 Top: classification accuracy of the monolithic classifier (solid circles) and of the two
MCSs (squares: three classifiers; white circles: eleven classifiers) in the T P,FP (ROC) plane.
Small circles and small squares represent the values attained in the five runs of the experi-
ments, while large ones represent the corresponding average values. The average ROC curve
of the monolithic classifier is also shown (solid line), together with its standard deviation
(dashed lines). Bottom: average FN rates with standard deviation as a function of the max-
imum number of features the adversary can evade. The FN rates when no feature is evaded
correspond to the ones in the left plot

the cost of false negative errors. The reason is that, differently from the features
of the monolithic classifier, the individual classifiers of the MCS have been com-
bined with the OR function, implying that the MCS labels an e-mail as spam, if at

Evade Hard Multiple Classifier Systems 35

Fig. 6 Trade-off between the average classification accuracy (Y axis) and the average hard-
ness of evasion (X axis) of the monolithic classifier (dashed line) and of the two MCSs (solid
lines), over five runs of the experiments. Classification accuracy is measured as the false
negative error rate. The hardness of evasion is measured in terms of the average minimum
number of features the adversary has to evade, for evading the whole classifier. Horizontal
bars represent the standard deviation of classification accuracy over the five runs of the exper-
iments. Note that the area of the plot corresponding to the best accuracy-hardness of evasion
trade-off is the bottom-right one

least one of the individual classifiers labels it as spam; it is therefore necessary to
keep the false positive error rate of the individual classifiers of the MCS as low as
possible. The parameters of the SVMs were the regularisation parameter C and the
relative cost of false positive errors with respect to false negative ones, used in the
libsvm objective function of the SVM learning algorithm (denoted in the following
as wFP).1 For the monolithic classifier, the parameter values were chosen among
all the possible combinations of the C values {0.001,0.01,0.1,1,10,100}, and wFP

values {2,5,7,10,50,100}. For the individual classifiers of the MCS we considered
the same C values above and the wFP values {10,50,100,500,1000}.

As mentioned above, the MCS based on SpamAssassin tests was made up of the
SpamAssassin text classifier and of N−1 linear classifiers trained on disjoint subsets
of the 541 tests not associated to the text classifier. We considered two different
ensemble sizes: N = 3 (namely, the text classifier and two linear classifiers) and N =
11. The 541 available tests (features) were distributed uniformly among the linear
classifiers. The choice of which features associate to each classifier should be made
by taking into account the kinds of the features. For instance, heterogeneous features
could be fed to different classifiers. For the sake of simplicity, in our experiments
we randomly split the features into N disjoint subsets (we just checked whether the
false positive error rate of the MCS, estimated on the 2,000 e-mails of the training

1 We point out that the cost parameter wFP of the SVM learning algorithm could not reflect
the real cost considered in the task at hand: therefore its optimal value could be different
from the real cost.

36 B. Biggio, G. Fumera, and F. Roli

set, was higher than 0.01: in that case we disregarded the corresponding feature
splitting).

The experiments described above were repeated five times on different randomly
extracted training sets of the SVMs. Let us consider first the accuracy of the two
kinds of classifiers (the monolithic classifier and the MCS). We report it in the Re-
ceiver Operating Characteristic (ROC) plane, in which the Y axis corresponds to the
true positive classification rate (T P) and the X axis to the false positive rate (FP).
In Fig. 5 (top) we show the TP and FP values of the monolithic classifier and of the
two MCSs on the e-mails in the test set, obtained in the five runs of the experiments,
as well as their average values across the five runs. For the sake of completeness we
also report the whole ROC curve of the monolithic classifier (obtained by varying
the decision threshold of the SVM). It can be seen that the accuracy of the mono-
lithic classifier is slightly higher than the one of the two MCSs (it exhibits both
higher T P and lower FP values). We remind the reader that this accuracy refers to
the case when the adversary does not attack the classifiers. The hardness of evasion
is instead shown in Fig. 5 (bottom). Since we are assuming that the adversary can
only modify positive instances, only the FN rate can change under attack. Accord-
ingly, in Fig. 5 (bottom) we report the FN rate as a function of the maximum number
of features the adversary can evade. The FN rates for zero evaded tests correspond
to the values reported in Fig. 5 (top). Figure 5 (bottom) clearly shows that, although
the MCSs have a worse FN rate than the monolithic classifier when they are not
under attack, they are harder to evade. For instance, if the adversary evades at most
one feature, the FN rate of the two MCSs is between about 0.35 and 0.45, while
the FN rate of the monolithic classifier is about 0.70, and so on. In other words,
evading an MCS in which features are split across different classifiers required to
evade a higher number of features than in the case they were processed by a mono-
lithic classifier, as argued in Sect. 3.2, although this comes at the expense of a slight
increase in the false positive rate.

Consider finally a comprehensive plot showing the trade-off between the accu-
racy (when the adversary does not attack) and the hardness of evasion, as in the
scheme of Fig. 2. The accuracy (Y axis) is measured using the same trade-off be-
tween FP and FN rates as in the objective function of the monolithic classifier:
100× FP + FN. The hardness of evasion is measured as explained in Sect. 3.2,
as the average minimum number of features that have to be evaded to evade the
whole classifier. The accuracy-hardness of evasion trade-off attained by the mono-
lithic classifier and by the MCSs is shown in Fig. 6. From this plot it is easy to see
that the monolithic classifier attains a slightly higher accuracy (two to three times
better than the MCSs), at the expense of a lower hardness of evasion (up to two
times lower than that of the MCSs).

To sum up, the results presented in this section can be considered as the first
experimental evidence, based on a formal setting, that the MCS architecture based
on splitting features across different classifiers can be exploited in security tasks to
improve the hardness of evasion in security systems.

Evade Hard Multiple Classifier Systems 37

5 Conclusions

Taking into account explicitly the presence of an intelligent, adaptive adversary in
the design of classification systems for security applications, with the aim of mak-
ing a classifier harder to evade, is a topic which has been addressed only recently
in the machine learning and pattern recognition literature. So far no general frame-
works exist yet to deal with this problem. In this chapter we addressed this issue
focusing on tasks like spam filtering and intrusion detection in computer networks,
and on a classifier architecture based on an ensemble of classifiers. This architec-
ture has been recently proposed by several authors and is used in commercial and
open source products, but is supported so far only on by empirical and intuitive mo-
tivations. We tried to give a first answer, based on more formal motivations, to the
questions of whether and how multiple classifier systems could allow to improve
the hardness of evasion of a classifier. We considered in particular a defence strat-
egy consisting in adding classifiers based on new features to a previous ensemble
(as usually done in spam filters and intrusion detection systems to deal with new
kinds of attacks), and to a design approach based on combining classifiers trained
on disjoint subsets of features, instead of designing a monolithic classifier trained
on the same features. We developed formal models of the corresponding classifica-
tion systems and of possible adversary’s strategies used to attack them (exploiting
the framework developed in [3] to analyse the former strategy). We then gave an
experimental evaluation on a case study related to the spam filtering task, using a
real spam filter and a large and publicly available corpus of real spam e-mails.

Our results can be exploited as a starting point of future works aimed at formu-
lating practical guidelines for the design of more robust classification systems in
security applications.

Acknowledgements. We would like to thank Nilesh Dalvi and Mausam for providing us the
code used in [3].

References

1. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning
be secure? In: Proc. 2006 ACM Symp. Inf., Computer and Communications Security,
Taipei, Taiwan, pp. 16–25. ACM, New York (2006)

2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/˜cjlin/libsvm

3. Dalvi, N., Domingos, P., Mausam, S.S., Verma, D.: Adversarial classification. In: Proc.
10th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Seattle, WA, pp.
99–108. ACM, New York (2004)

4. Giacinto, G., Roli, F., Didaci, L.: Fusion of multiple classifiers for intrusion detection in
computer networks. Pattern Recognition Letters 24(12), 1795–1803 (2003)

5. Globerson, A., Roweis, S.T.: Nightmare at test time: robust learning by feature deletion.
In: Cohen, W.W., Moore, A. (eds.) Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA,
pp. 353–360. ACM, New York (2006)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

38 B. Biggio, G. Fumera, and F. Roli

6. Haindl, M., Kittler, J., Roli, F. (eds.): MCS 2007. LNCS, vol. 4472. Springer, Heidelberg
(2007)

7. Jorgensen, Z., Zhou, Y., Inge, M.: A multiple instance learning strategy for combating
good word attacks on spam filters. J. Mach. Learn. Research 9, 1115–1146 (2008)

8. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans. Pattern
Analysis and Mach. Intell. 20(3), 226–239 (1998)

9. Lowd, D., Meek, C.: Adversarial learning. In: Press, A. (ed.) Proc. 11th ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining, Chicago, IL, pp. 641–647. ACM,
New York (2005)

10. Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to harden
payload-based anomaly detection systems. In: Proc. IEEE Int. Conf. Data Mining, Hong
Kong, pp. 488–498. IEEE Comp. Soc., Los Alamitos (2006)

11. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Hei-
delberg (2006)

	Evade Hard Multiple Classifier Systems
	Introduction
	Related Work
	Previous Works on Multiple Classifiers for Security Applications
	A Theoretical Framework for Adversarial Classification Problems

	Are Multiple Classifier Systems Harder to Evade?
	Adding Features to a Classification System
	Splitting Features across an Ensemble of Classifiers

	A Case Study in Spam Filtering
	Adding Features to a Spam Filter
	Splitting the Features of a Spam Filter across an Ensemble of Classifiers

	Conclusions
	References

