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Moreno-Pérez, J. Marcos Moreno-Vega, and David Pelta
(Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2008), 2009
ISBN 978-3-642-03210-3

Vol. 237. George A. Papadopoulos and Costin Badica (Eds.)
Intelligent Distributed Computing III, 2009
ISBN 978-3-642-03213-4

Vol. 238. Li Niu, Jie Lu, and Guangquan Zhang
Cognition-Driven Decision Support for Business Intelligence,
2009
ISBN 978-3-642-03207-3

Vol. 239. Zong Woo Geem (Ed.)
Harmony Search Algorithms for Structural Design
Optimization, 2009
ISBN 978-3-642-03449-7

Vol. 240. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Intelligent Computer Graphics 2009, 2009
ISBN 978-3-642-03451-0

Vol. 241. János Fodor and Janusz Kacprzyk (Eds.)
Aspects of Soft Computing, Intelligent Robotics and Control,
2009
ISBN 978-3-642-03632-3

Vol. 242. Carlos A. Coello Coello, Satchidananda Dehuri, and
Susmita Ghosh (Eds.)
Swarm Intelligence for Multi-objective Problems in Data
Mining, 2009
ISBN 978-3-642-03624-8

Vol. 243. Imre J. Rudas, János Fodor, and
Janusz Kacprzyk (Eds.)
Towards Intelligent Engineering and Information Technology,
2009
ISBN 978-3-642-03736-8

Vol. 244. Ngoc Thanh Nguyen, Rados law Piotr Katarzyniak,
and Adam Janiak (Eds.)
New Challenges in Computational Collective Intelligence,
2009
ISBN 978-3-642-03957-7

Vol. 245. Oleg Okun and Giorgio Valentini (Eds.)
Applications of Supervised and Unsupervised Ensemble
Methods, 2009
ISBN 978-3-642-03998-0



Oleg Okun and Giorgio Valentini (Eds.)

Applications of Supervised and
Unsupervised Ensemble Methods

123



Oleg Okun
Precise Biometrics AB
Scheelevagen 30, P.O. Box 798
220 07 Lund, Sweden
E-mail: oleg.okun@precisebiometrics.com,

olegokun@yahoo.com

Giorgio Valentini
Dipartimento di Scienze dell’Informazione
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Preface

This book contains the extended papers presented at the 2nd Workshop
on Supervised and Unsupervised Ensemble Methods and their Applications
(SUEMA) held on 21–22 July, 2008 in Patras, Greece, in conjunction with the
18th European Conference on Artificial Intelligence (ECAI 2008). This work-
shop was a successor of the smaller event held in 2007 in conjunction with
3rd Iberian Conference on Pattern Recognition and Image Analysis, Girona,
Spain. The success of that event as well as the publication of workshop pa-
pers in the edited book “Supervised and Unsupervised Ensemble Methods
and their Applications”, published by Springer-Verlag in Studies in Compu-
tational Intelligence Series in volume 126, encouraged us to continue a good
tradition.

The scope of both SUEMA workshops (hence, the book as well) is the
application of theoretical ideas in the field of ensembles of classification and
clustering algorithms to real/life problems in science and industry. Ensembles,
which represent a number of algorithms whose class or cluster membership
predictions are combined together to produce a single outcome value, have
already proved to be a viable alternative to a single best algorithm in various
practical tasks under different scenarios, from bioinformatics to biometrics,
from medicine to network security. The ensemble approach is caused to life
by the famous “no free lunch” theorem, stating that there is no absolutely
best algorithm to solve all problems. Although ensembles cannot be consid-
ered as absolute remedy of a single algorithm deficiency, it is widely believed
that ensembles provide a better answer to “no free lunch” theorem than a sin-
gle best algorithm. Statistical, algorithmical, representational, computational
and practical reasons can explain the success of ensemble methods.

The purpose of this book is to encourage practitioners in various branches
of science and techology to adopt the ensemble approach for their daily re-
search work. We hope that fourteen chapters composing the book will be a
good guide in the sea of numerous opportunities for ensemble methods.

The book has the following organization. Chapter 1 serves as a tutorial
introduction into ensemble pruning (selection) methods. Chapters 2 and 3
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concern classifier ensemble applications to email spam filtering. Chapter 4 de-
scribes facial expression recognition using ensembles of neural networks and
error/correcting output coding. Chapter 5 deals with gene function prediction
based on ensembles of support vector machines. Classification employing is
the concept of partitioner trees introduced in Chapter 6. Chapter 7 proposes
a new nearest neighbor-like technique to increase the diversity for ensembles
of decision trees. Semi-supervised ensemble clustering of remote sensing data
is considered in Chapter 8. Chapter 9 applies tenzor voting theory to image
classification and inpainting. Chapter 10 focuses on clustering ensembles and
semisupervised clustering under active constraints. Multi-class classification
when misclassification costs vary from class to class is presented in Chapter
11. Ensemble selection for weather forecasting and air pollution dispersion
prediction is explored in Chapter 12. Chapter 13 concentrates on embed-
ding feature selection into classifier ensemble training. Chapter 14 reports a
classifier ensemble application to decision support for intensive medical care.

The book is intended to be primarily a reference work. Hence, it could be
a good complement to two excellent books on the general ensemble method-
ology – “Combining pattern classifiers: methods and algorithms” by Lud-
mila Kuncheva (John Wiley & Sons, 2004) and “Decomposition methodology
for knowledge discovery and data mining: theory and applications” by Oded
Maimon and Lior Rokach (World Scientific, 2005). Extra primal sources of
information are proceedings of the biannual international workshop on Multi-
ple Classifier Systems (MCS) published by Springer-Verlag, and proceedings
of the International Conference on Information Fusion (FUSION) organized
by the International Society of Information Fusion (http://www.isif.org/).
Among other conferences of interest are International Conference on Ma-
chine Learning (ICML), European Conference on Machine Learning (ECML),
International Joint Conference on Artificial Intelligence (IJCAI), European
Conference on Artificial Intelligence (ECAI), and International Conference
on Machine Learning and Data Mining (MLDM) (proceedings of ECML and
MLDM are published by Springer-Verlag). Two international journals are
largely devoted to the topic of our book are Information Fusion published by
Elsevier and Journal of Advances in Information Fusion published by The
International Society of Information Fusion, but most machine learning jour-
nals such as Machine Learning, the Journal of Machine Learning Research
and the IEEE Transactions on Pattern Analysis and Machine Intelligence
dedicate large room to papers on ensemble methods. This list, though com-
prehensive, but is certainly incomplete.

We would like to express our gratitude to several people and organizations
who helped this book to appear. PASCAL 2 (Pattern Analysis, Statistical
Modelling and Computational Learning) European Network of Excellence
sponsorship of SUEMA’2008 is greatfully acknowledged.

We are thankful to Prof. Boi Faltings, Prof. Ioannis Vlahavas, and Prof.
Pavlos Peppas for the opponutinity to hold SUEMA’2008 in the ancient
Patras.
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The contributions of SUEMA’2008 participants to this book made it to
be born and we are grateful to all authors for their time, efforts, and warm
support of our undertaking.

Prof. Janusz Kacprzyk and Dr. Thomas Ditzinger from Springer-Verlag
deserved our special acknowledgment for warm welcome to our book and
their support and a great deal of encouragement. Finally, we thank all other
people in Springer who participated in the publication process.

Malmö (Sweden) and Genoa (Italy), Oleg Okun
June 2009 Giorgio Valentini
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An Ensemble Pruning Primer

Grigorios Tsoumakas, Ioannis Partalas, and Ioannis Vlahavas

Abstract. Ensemble pruning deals with the reduction of an ensemble of predictive
models in order to improve its efficiency and predictive performance. The last 12
years a large number of ensemble pruning methods have been proposed. This work
proposes a taxonomy for their organization and reviews important representative
methods of each category. It abstracts their key components and discusses their main
advantages and disadvantages. We hope that this work will serve as a good starting
point and reference for researchers working on the development of new ensemble
pruning methods.

1 Introduction

Ensemble methods [5, 13] have been a very popular research topic during the
last decade. It has attracted the interest of scientists from several fields including
Statistics, Machine Learning, Pattern Recognition, and Knowledge Discovery in
Databases. The success of ensemble methods arises largely from the fact that they
offer an appealing solution to several interesting learning problems of the past and
the present, such as improving predictive performance, learning from multiple phys-
ically distributed data sources, scaling inductive algorithms to large databases and
learning from concept-drifting data streams.

Typically, ensemble methods comprise two phases: the production of multiple
predictive models and their combination. Recent work [2, 4, 7, 9, 15, 16, 17, 21,
23, 28, 35] considers an additional intermediate phase that deals with the reduction
of the ensemble size prior to combination. This phase is commonly called ensem-
ble pruning , while other names include selective ensemble, ensemble thinning and
ensemble selection.

Ensemble pruning is important for two reasons: efficiency and predictive
performance. Having a very large number of models in an ensemble adds a lot of
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computational overhead. For example, decision tree models may have large mem-
ory requirements [16] and lazy learning methods have a considerable computational
cost during execution. The minimization of run-time overhead is crucial in certain
applications, such as stream mining. In addition, when models are distributed over
a network, the reduction of the number of models leads to the reduction of commu-
nication costs.

Equally important is the second reason, predictive performance. An ensemble
may consist of both high and low predictive performance models. The latter may
negatively affect the overall performance of the ensemble. In addition, an ensemble
may contain many models that are very similar to each other. This reduces its di-
versity and capability for error correction. Pruning low performance models while
maintaining a high diversity among the remaining members of the ensemble is typ-
ically considered a proper recipe for an effective ensemble.

Note that ensemble pruning is different from ensemble weighting [34], where the
decisions of all models in the ensemble are considered, but with a different weight.
Ensemble weighting is concerned solely with increasing the predictive performance,
as it needs to maintain all models of the ensemble.

One of the first ensemble pruning approaches is discussed in [24]. The 12 years
that followed have witnessed the development of several diverse methods for en-
semble pruning . This work proposes a taxonomy for their organization and reviews
important representative methods of each category. It steers clear of a mere enumera-
tion of particular approaches in the related literature and instead attempts to abstract
their key components, to discuss their main advantages and disadvantages and to
analyze their complexity whenever possible. We hope that this work will serve as
a good starting point and reference for researchers working on the development of
new ensemble pruning methods.

The remainder of this chapter is structured as follows. Section 2 contains back-
ground material on ensemble production and combination. Section 3 presents the
proposed taxonomy, introduces notation and discusses issues that are common for
all methods. Sections 4 to 7 review important representative methods of each cate-
gory in the taxonomy. Finally, the conclusions of this work are presented in Sect. 8.

2 Background

This section provides background material on ensemble methods. More specifically,
information about the different ways of producing models is presented as well as
different methods for combining the decisions of the models.

2.1 Producing the Models

An ensemble can be composed of either homogeneous or heterogeneous models.
Homogeneous models are derived from different executions of the same learning
algorithm. Such models can be produced by using different values for the parame-
ters of the learning algorithm, injecting randomness into the learning algorithm or
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through the manipulation of the training instances, the input attributes and the model
outputs [6]. Popular methods for producing homogeneous models are Bagging [3]
and Boosting [25] .

Heterogeneous models are derived from running different learning algorithms on
the same data set. Such models have different views about the data, as they make
different assumptions about it. For example, a properly trained neural network is
robust to noise in contrast to a decision tree.

2.2 Combining the Models

Common methods for combining an ensemble of predictive models include voting,
stacked generalization and mixture of experts.

In voting, each model outputs a class value (or ranking, or probability distribu-
tion) and the class with the most votes is the one proposed by the ensemble. When
the class with the maximum number of votes is the winner, the rule is called plu-
rality voting and when the class with more than half of the votes is the winner, the
rule is called majority voting. A variant of voting is weighted voting where the mod-
els are not treated equally as each of them is associated with a coefficient (weight),
usually proportional to its classification accuracy.

Let x be an instance and mi, i = 1, . . . ,k a set of models that output a probability
distribution mi(x,c j) for each class c j, j = 1, . . . ,n. The output of the (weighted)
voting method y(x) for instance x is given by the following mathematical expression:

y(x) = argmax
c j

k

∑
i=1

wimi(x,c j) ,

where wi is the weight of model i. In the simple case of voting (unweighted), the
weights are all equal to one, that is, wi = 1, i = 1, . . . ,k.

Stacked generalization [32], also known as Stacking, is a method that com-
bines models by learning a meta-level (or level-1) model that predicts the correct
class based on the decisions of the base level (or level-0) models. This model is
induced on a set of meta-level training data that are typically produced by ap-
plying a procedure similar to k-fold cross validation on the training data. The
outputs of the base-learners for each instance along with the true class of that in-
stance form a meta-instance. A meta-classifier is then trained on the meta-instances.
When a new instance appears for classification, the output of the all base-learners
is first calculated and then propagated to the meta-classifier, which outputs the final
result.

The mixture of experts architecture [12] is similar to the weighted voting method
except that the weights are not constant over the input space. Instead there is a gating
network which takes as input an instance and outputs the weights that will be used in
the weighted voting method for that specific instance. Each expert makes a decision
and the output is averaged as in the method of voting.



4 G. Tsoumakas, I. Partalas, and I. Vlahavas

3 A Taxonomy of Ensemble Pruning Methods

We propose the organization of the various ensemble pruning methods into the fol-
lowing categories:

• Ranking based. Methods of this category are conceptually the simplest. They
order the models of the ensemble once according to an evaluation function and
select models in this fixed order.

• Clustering based. Methods of this category comprise two stages. Initially, they
employ a clustering algorithm in order to discover groups of models that make
similar predictions. Subsequently, each cluster is separately pruned in order to
increase the overall diversity of the ensemble.

• Optimization based. Ensemble pruning can be posed as an optimization prob-
lem as follows: find the subset of the original ensemble that optimizes a measure
indicative of its generalization performance (e.g., accuracy on a separate valida-
tion set). Exhaustive search of the space of ensemble subsets is infeasible for a
moderate ensemble size.

• Other. This category includes methods that do not fall into one of the previous
categories.

Before proceeding to the description of the main characteristics of each category,
some common notation is introduced. The original ensemble is denoted as H =
{ht ,t = 1,2, . . . ,T}. All methods employ a function that evaluates the suitability of
single models, model pairs or ensembles of more than two models for inclusion in
the final ensemble. Evaluation is typically based on the predictions of the models
on a set of data, which will be called the pruning set. The role of the pruning set
can be performed by the training set, a separate validation set, or even a set of -
naturally existing or artificially produced - instances with unknown value for the
target variable. The pruning set will be denoted as D = {(xi,yi), i = 1,2, . . . ,N},
where xi is a vector with feature values and yi is the value of the target variable,
which may be unknown.

4 Ranking-Based Methods

The main point of differentiation among the methods of this category is the eval-
uation measure used for model ranking. Using the predictive performance of in-
dividual models is too simplistic and does not achieve satisfying results [24, 33].
Information-theoretic measures were also used in [33] for the evaluation of Bayesian
models, with equally disappointing results.

Kappa pruning [16] employs a diversity measure for evaluation. It ranks all pairs
of classifiers in H based on the κ statistic of agreement calculated on the training
set. Its time complexity is O(T 2N). Kappa pruning could be generalized by accept-
ing a parameter to specify any pairwise diversity measure for either classification
or regression models, in place of the κ statistic. However, it would still beg for one
fundamental theoretical question: Do two diverse pairs of models, lead to one di-
verse ensemble of four models? The intuitive answer is no. In fact, kappa pruning
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has been shown to be non-competitive for pruning classifier ensembles produced via
Bagging [20] .

An efficient and effective ranking-based pruning method for ensembles of classi-
fiers is orientation ordering [18]. A key concept in orientation ordering is the signa-
ture vector of a classifier ht : an N-dimensional vector with elements taking the value
+1 if ht(xi) = yi and -1 if ht(xi) �= yi. The average signature vector of all classifiers
in an ensemble is called the ensemble signature vector. It is indicative of the ability
of the ensemble to correctly classify each example in the pruning set (the training
set in this method) using majority voting for classifier combination. The reference
vector is a vector perpendicular to the ensemble signature vector that corresponds
to the projection of the first quadrant diagonal onto the hyper-plane defined by the
ensemble signature vector.

Orientation ordering ranks the classifiers by increasing value of the angle be-
tween their signature vector and the reference vector. Essentially this ordering gives
preference to models that correctly classify those examples that are incorrectly clas-
sified by the full ensemble. Orientation ordering is among the fastest methods for
ensemble pruning, with time complexity of O(T N). In addition, its predictive perfor-
mance is not significantly worse than state-of-the-art methods for pruning classifier
ensembles produced via Bagging [20] .

Another interesting issue in ranking-based ensemble pruning methods concerns
the choice of the final number of models from the obtained ranking. One approach
is to use a fixed user-specified amount or percentage of models. In kappa pruning,
for example, classifier pairs are selected in ascending order of agreement until a
specified number of models has been reached. If the goal of pruning is to improve
efficiency, then this approach can be used in order to obtain the desired amount of
models, which may be dictated by constraints (memory and speed) in the application
environment.

A second approach is to dynamically select the size based on the evaluation mea-
sure or the predictive performance of ensembles of different size. In orientation
ordering, for example, only the classifiers whose angle is less than π/2 are included
in the final ensemble, while in [33], the models whose evaluation measure is lower
than the average of all models are pruned. This approach is more preferable when
the goal of pruning is to improve predictive performance, as it is more flexible and
can sacrifice efficiency for effectiveness.

5 Clustering-Based Methods

The first issue for the methods of this category is the choice of a clustering algo-
rithm. Past approaches have used hierarchical agglomerative clustering [9], k means
[8, 15], and deterministic annealing [1].

Clustering algorithms are based on the notion of distance. Therefore, the second
issue for the clustering-based methods is the choice of an appropriate distance mea-
sure. The probability that classifiers do not make coincident errors on a separate
validation set was used as a distance measure in [9]. This measure is actually equal
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to one minus the double fault diversity measure [14]. The Euclidean distance in the
training set is used in [8, 15]. Actually, any distance measure suitable for nominal
(classifiers) or numeric (regressors) output could be used. Note that there is no need
for a labeled pruning set in this case [1]. Artificially generated data could be used
instead.

Another important issue concerns the process of pruning each cluster. An elegant
approach was used in [1], where a new model is trained for each cluster, using the
cluster centroids as values of the target variable. Another interesting approach is to
select from each cluster the single classifier that is most distant to the rest of the
clusters [9]. The approach followed in [15] was to iteratively remove models from
the least to the most accurate, until the accuracy of the entire ensemble starts to
decrease. This, however, does not guarantee the selection of a single model from
each cluster. The most accurate model of each cluster was selected in [8].

A final issue worth mentioning is the choice of the number of clusters. This could
be determined based on the performance of the method on a validation set [8]. In
[15], the number of clusters was gradually increased until the disagreement between
the cluster centroids started to deteriorate.

6 Optimization-Based Methods

In the following subsections we look into ensemble pruning methods that are based
on three different optimization approaches: genetic algorithms, semi-definite pro-
gramming and hill climbing. The last approach is examined at a greater level of
detail, as a large number of this kind of ensemble pruning methods have been re-
cently proposed.

6.1 Genetic Algorithms

The Gasen-b method [36] performs stochastic search in the space of model subsets
using a genetic algorithm. The ensemble is represented as a bit string, using one bit
for each model. Models are included into or excluded from the ensemble, depending
on the value of the corresponding bit. Gasen-b performs standard genetic operations
such as mutations and crossovers and uses default values for the parameters of the
genetic algorithm. The fitness function for an individual S ⊆ H is the accuracy of S
on a separate validation set using voting for model combination.

6.2 Semi-definite Programming

Zhang et al. [35] formulate the ensemble pruning problem as a mathematical
problem and apply semi-definite programming (SDP) techniques. In particular, the
authors initially formulated the ensemble pruning problem as a quadratic integer
programming problem that looks for a fixed-size subset of k classifiers with mini-
mum misclassification and maximum divergence.
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They subsequently found that this quadratic integer programming problem is sim-
ilar to the max cut with size k problem, which can be approximately solved using an
algorithm based on SDP. Their algorithm requires the number of classifiers to retain
as a parameter and runs in polynomial time.

6.3 Hill Climbing

Hill climbing search greedily selects the next state to visit from the neighborhood
of the current state. States, in our case, are the different subsets of models and the
neighborhood of a subset S ⊆ H consists of those subsets that can be constructed
by adding or removing one model from S. We focus on the directed version of hill-
climbing that traverses the search space from one end (empty set) to the other (com-
plete ensemble). An example of the search space for an ensemble of four models is
presented in Fig. 1.

h B1B, h B2 B, h B3B, h B4 B

 h2, h3, h4 h1, h3, h4 h1, h2, h4 h1, h2, h3
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Fig. 1 An example of the search space of hill climbing ensemble pruning methods for an
ensemble of 4 models

Depending on the direction of search, we have forward selection [4, 7, 16, 17, 33]
and backward elimination [2, 21, 33] methods. In both cases, the traversal requires
the evaluation of T (T+1)

2 subsets, leading to a time complexity of O(T 2g(T,N)). The
term g(T,N) concerns the complexity of the evaluation process, which is linear with
respect to N and ranges from constant to quadratic with respect to T , as we shall see
in the rest of this section.
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Similarly to ranking-based methods, the main component that differentiates hill
climbing ensemble pruning methods is the evaluation measure. Evaluation measures
can be grouped into two major categories: performance based and diversity based.

The goal of performance based measures is to find the model ht that maximizes
the performance of the ensemble produced by adding (removing) ht to (from) the
current ensemble. Their calculation depends on the method used for ensemble com-
bination, which usually is voting. Accuracy was used as an evaluation measure in
[7, 16, 33], while [4] experimented with several metrics, including accuracy, root-
mean-squared-error, mean cross-entropy, lift, precision/recall break-even point, pre-
cision/recall F-score, average precision and ROC area. Another measure is benefit
which is based on a cost model and has been used in [7].

The calculation of performance-based metrics requires the decision of the current
ensemble S on all examples of the pruning set. Therefore, the complexity of these
measures is O(|S|N). However, this complexity can be optimized to O(N) if the
predictions of the current ensemble are updated incrementally each time a model is
added to/removed from it.

It is generally accepted that an ensemble should contain diverse models in order
to achieve high predictive performance. However, there is no clear definition of di-
versity, neither a single measure to calculate it. In their interesting study, Kuncheva
and Whitaker [14] could not reach into a solid conclusion on how to utilize diversity
for the production of effective classifier ensembles . In a more recent theoretical and
experimental study on diversity measures [27], the authors reached to the conclu-
sion that diversity cannot be explicitly used for guiding the process of hill climbing
methods. Yet, certain approaches have reported promising results [2, 17, 21].

One issue worth mentioning here is how to calculate the diversity during the
search in the space of ensemble subsets. For simplicity we consider the case of
forward selection only. Let S be the current ensemble and ht ∈ H \ S a candidate
classifier to add to the ensemble.

One could compare the diversities of ensembles S′ = S ∪ ht for all candidate
ht ∈ H \ S and select the one with the highest diversity . Any pairwise and non-
pairwise diversity measure can be used for this purpose. The time complexity of
most non-pairwise diversity measures is O(|S′|N), while that of pairwise diversity
measures is O(|S′|2N). However, a straightforward optimization can be performed in
the case of pairwise diversity measures. Instead of calculating the sum of the pair-
wise diversity for every pair of classifiers in each candidate ensemble S′, one can
simply calculate the sum of the pairwise diversities only for the pairs that include
the candidate classifier ht . The sum of the rest of the pairs is equal for all candidate
ensembles. The same optimization can be achieved in backward elimination too.
This reduces their time complexity to O(|S|N).

Several methods [2, 17, 21, 27] use a different approach to calculate diversity
during the search. They use pairwise measures to compare the candidate classifier ht

with the current ensemble S, which is viewed as a single classifier that combines the
decisions of its members with voting. This way they calculate the diversity between
the current ensemble as a whole and the candidate classifier. Such an approach has
time complexity O(|S|N), which can be optimized to O(N) if the predictions of the
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current ensemble are updated incrementally each time a model is added to/removed
from it.

In the past, the widely known diversity measures disagreement, double fault,
Kohavi-Wolpert variance, inter-rater agreement, generalized diversity and difficulty
were used for hill climbing ensemble pruning in [27]. Four diversity measures de-
signed specifically for hill climbing ensemble pruning are introduced in [2, 17, 21].
We next present these measures using a common notation.

We can distinguish four events concerning the decision of the current ensemble
and the candidate classifier:

et f (xi) : y = ht(xi)∧ y �= S(xi)
e f t(xi) : y �= ht(xi)∧ y = S(xi)
ett (xi) : y = ht(xi)∧ y = S(xi)

e f f (xi) : y �= ht(xi)∧ y �= S(xi)

The complementariness [17] of a model hk with respect to an ensemble S and a
pruning set D is calculated as follows:

COMD(hk,S) =
N

∑
i=1

I(et f (xi)) ,

where I(true)= 1, I( f alse) = 0 and S(xi) is the classification of instance xi from the
ensemble S. This classification is derived from the application of an ensemble com-
bination method to S, which usually is voting. The complementariness of a model
with respect to an ensemble is actually the number of examples of D that are classi-
fied correctly by the model and incorrectly by the ensemble. A selection algorithm
that uses the above measure, tries to add (remove) at each step the model that helps
the ensemble to classify correctly the examples it gets wrong.

The concurrency [2] of a model hk with respect to an ensemble S and a pruning
set D is calculated as follows:

COND(hk,S) =
N

∑
i=1

(
2I(et f (xi))+ I(ett(xi))−2I(e f f (xi))

)
.

This measure is very similar to complementariness with the difference that it
takes into account two extra cases.

The focused ensemble selection method [21] proposes a measure that uses all the
events and also takes into account the strength of the current ensemble’s decision:

FES(hk,S) =
N

∑
i=1

(
NTiI(et f (xi))−NFiI(e f t (xi))+

+NFiI(ett(xi))−NTiI(e f f (xi))
)

,
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where NTi denotes the proportion of models in the current ensemble S that correctly
classify example xi, and NFi = 1−NTi denotes the number of models in S that
classify it incorrectly.

The margin distance minimization method [17] is based on the same concepts
as the orientation ordering ranking-based method (see Section 4). It searches for
the ensemble S with the minimum distance between its signature vector cS and a
predefined vector o placed in the first quadrant of the N-dimensional hyperplane.
Vector o corresponds to the ideal vector that correctly classifies all examples.

The method is based on a measure called margin. The margin, MARD(hk,S),
of classifier hk with respect to an ensemble S and a pruning set D is calculated as
follows:

MARD(hk,S) = d

(
o,

1
|S|+ 1

(
cS∪{hk}

))
,

where d is the Euclidean distance.

7 Other Methods

This category includes three approaches that do not belong to any of the previous
categories. The first one is based on statistical procedures for directly selecting a
subset of classifiers, the second is based on reinforcement learning and the third on
Boosting.

7.1 Statistical Procedures

Tsoumakas et al. [28, 29] prune an ensemble of heterogeneous classifiers using sta-
tistical tests that determine whether the differences in predictive performance among
the classifiers of the ensemble are significant. Only the classifiers with significantly
better performance than the rest are retained and subsequently combined with the
method of (weighted) voting.

Such statistical tests are called multiple comparisons procedures [10]. Three of
those that were used in [29] are Tukey’s test [30], Hsu’s test [11] and Scott & Knott’s
procedure [26], with the last one offering the largest benefit.

The disadvantage of these methods is that they do not take the diversity of the
ensemble into consideration. However, they could potentially play the role of a fast
preliminary filtering of low performing models in a large ensemble, followed by a
more advanced diversity-aware method.

7.2 Reinforcement Learning

Partalas et al. [22, 23] take a reinforcement learning approach to ensemble pruning.
In particular, the problem of pruning an ensemble of T classifiers is modeled as
an episodic task, where an agent takes T sequential actions, each corresponding to
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either the inclusion or exclusion of classifier ht ,t = 1, . . . ,T to or from the final
ensemble. The Q-learning algorithm [31] is then used to approximate the optimal
policy for this task.

7.3 Boosting

An approach similar to Boosting was used for pruning an ensemble of classifiers
produced via Bagging in [19]. The algorithm iteratively selects the classifier with
the lowest weighted error on the training set. Instance weights are initialized and
updated according to the AdaBoost algorithm. The only difference is that instead
of terminating the process when the weighted error is larger than 0.5, the algorithm
resets all instance weights and continues selecting models. The complexity of this
approach is O(T 2N).

This approach ranks individual classifiers, but it does so based on their weighted
error on the training set. Since at each step of the algorithm the instance weights
depend on the classifiers selected up to that step, we refrained from categorizing
this approach to ranking-based methods, where each model can be independently
evaluated and ranked independently of the currently selected models.

8 Conclusions

This work presented a taxonomy of ensemble pruning methods. We believe that
such a taxonomy is necessary for researchers working on new methods. It will help
them to identify the main categories of methods and their key points and to avoid
duplication of work. Due to the large amount of existing methods and the differ-
ent parameters of an ensemble selection framework (heterogeneous/homogeneous
ensemble, algorithms used, size of ensemble, etc), it is possible to devise a new
method, which may only differ in small, perhaps unimportant details from the ex-
isting methods. A generalized view of the methods, as offered from this work, will
help to avoid work towards such small differences, and perhaps may lead to novel
methods.

We do not argue that the proposed taxonomy is perfect. On the contrary, it is
just the first step in abstracting and categorizing the different methods. We made
an effort to include most of the important ensemble pruning methods, but no doubt,
some high quality methods may have been left outside this study. For example,
we have not considered instance-base ensemble pruning methods that dynamically
prune the ensemble for each test instance.

This work refrained from performing experimental comparisons between the
methods. However, we would like to stress the importance of the following guide-
lines for empirical ensemble pruning studies. Firstly, the ensemble should consist
of a moderate size of models (e.g., 100 or more). For small ensemble sizes (e.g.,
10 models), an exhaustive search for the best subset of models is computationally
feasible, and perhaps even faster than some more complex methods of the litera-
ture. Secondly, the study should include a large number of datasets, and include
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appropriate statistical tests for the comparison of different methods in order to de-
rive safe and useful conclusions.
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18. Martı́nez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Cohen,
W.W., Moore, A. (eds.) Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA, pp. 609–
616. ACM, New York (2006)
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Evade Hard Multiple Classifier Systems

Battista Biggio, Giorgio Fumera, and Fabio Roli

Abstract. Experimental and theoretical evidences showed that multiple classifier
systems (MCSs) can outperform single classifiers in terms of classification accu-
racy. MCSs are currently used in several kinds of applications, among which secu-
rity applications like biometric identity recognition, intrusion detection in computer
networks and spam filtering. However security systems operate in adversarial en-
vironments against intelligent adversaries who try to evade them, and are therefore
characterised by the requirement of a high robustness to evasion besides a high clas-
sification accuracy. The effectiveness of MCSs in improving the hardness of evasion
has not been investigated yet, and their use in security systems is mainly based on
intuitive and qualitative motivations, besides some experimental evidence. In this
chapter we address the issue of investigating why and how MCSs can improve the
hardness of evasion of security systems in adversarial environments. To this aim we
develop analytical models of adversarial classification problems (also exploiting a
theoretical framework recently proposed by other authors), and apply them to anal-
yse two strategies currently used to implement MCSs in several applications. We
then give an experimental investigation of the considered strategies on a case study
in spam filtering, using a large corpus of publicly available spam and legitimate
e-mails, and the SpamAssassin, widely used open source spam filter.

Keywords: multiple classifier systems, adversarial classification, hardness of eva-
sion, spam filtering.

1 Introduction

During the past ten years multiple classifier systems (MCS) have become an es-
tablished approach to design pattern classification systems. A large body of both
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experimental and theoretical evidence shows that MCSs can outperform a single
classifier in several real applications, in terms of classification accuracy (see, for in-
stance, [6, 8]). In particular, several authors showed that MCSs can allow to improve
the detection capability also in security applications like biometric authentication
and intrusion detection in computer networks [4, 11]. It is also worth noting that the
MCS classifier architecture is also used in commercial and open source spam fil-
ters. However, attaining a high classification accuracy or detection capability is not
sufficient in security applications, and, in particular, in so-called adversarial envi-
ronments, in which a security system faces an intelligent, adaptive adversary who
exploits the available or acquired knowledge about the system just to evade it.
Typical examples of this kind of applications are intrusion detection in computer
networks and spam filtering. A crucial issue in this kind of applications, besides
detection capability, is the hardness of evasion, which can be qualitatively defined
as the effort required to the attacker to evade the system. While the effectiveness
of MCSs in improving the detection capability has been deeply investigated so far,
no work has formally analysed yet their effectiveness in improving the hardness
of evasion of a classification system, although MCSs are widely used in adversar-
ial classification tasks as mentioned above. Actually, the issue of the hardness of
evasion has been addressed only recently in the machine learning and pattern recog-
nition literature, often with respect to specific tasks, classification systems and type
of attacks [5, 7] (for instance, the so-called good words attack against the text clas-
sifier used in most spam filters), and only in a few works under a more general
perspective [1, 3, 9] aimed at developing analytical models of adversarial classifi-
cation problems. With regard to the use of MCSs explicitly for the specific goal of
improving the hardness of evasion, to our knowledge it was proposed by some au-
thors for biometric tasks (see, for instance, [11]), but only by Perdisci et al. [10] for
intrusion detection tasks, while no works considered MCSs for this specific goal in
spam filtering tasks.

The aim of this chapter is to make a first step towards a better understanding
of why and how MCSs can improve the hardness of evasion of a security system
in adversarial classification problems, with respect to the use of a single classifier.
We focus, in particular, on two strategies commonly used to design MCSs, and ap-
plied also in security applications. The first strategy is often applied when a set of
heterogeneous features is available (as happens for instance in multimodal biomet-
ric identity verification tasks). In this case, it could be better to combine different
classifiers trained on disjoint and heterogeneous subsets of features (for instance, a
face classifier and a fingerprint classifier) instead of designing a single, “monolithic”
classifier based on all the available features [8]. This strategy is also used when the
feature set is very large (and not necessarily heterogeneous), since it is known that it
can help avoiding over-fitting. In this chapter we investigate whether such strategy
can be more effective than the use of a single classifier also in terms of hardness of
evasion, in adversarial classification tasks.

The second strategy we consider is commonly used to update real spam filters as
new kinds of attacks are detected, and was proposed in [10] explicitly for improving
the hardness of evasion in intrusion detection tasks. This strategy consists in adding
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detectors (often, made up as classifiers) based on new features to a classification
system. In this chapter we investigate whether this approach can be really effective
to improve the hardness of evasion in adversarial classification tasks, trying to pro-
vide some argument more formal than the intuitive one proposed in [10]. To this aim,
we will exploit a theoretical framework proposed by Dalvi et al. [3] for adversarial
classification problems.

Then, to experimentally investigate the above issues we consider a spam filtering
task as a case study, using a large corpus of publicly available spam and legitimate
e-mails, and a real and widely used open source spam filter, SpamAssassin.

The chapter is organised as follows. In Sect. 2.1 we give an overview of the
use of MCSs in security applications, and of the theoretical framework proposed
in [3] for adversarial classification problems. In Sect. 3 we describe how we model
an adversarial learning task in which the classifier is a MCS using the framework
in [3], and how we model such kinds of tasks to investigate the effectiveness of a
MCS against a single classifier, when both classifiers use the same feature set. The
experimental results are reported in Sect. 4.

2 Related Work

In this section we first give an overview of past work on MCSs for security applica-
tions, and then summarise a formal framework proposed in [3] to model adversarial
classification problems. Such framework will be exploited in Sect. 3.1 to analyse
one of the two strategies mentioned in the introduction for improving the hardness
of evasion of a security system.

2.1 Previous Works on Multiple Classifiers for Security
Applications

The use of MCSs to improve the detection accuracy has been recently proposed
by several authors for security applications, and in particular biometric authentica-
tion and verification [6, 8, 11] and intrusion detection in computer networks [4]. A
common scenario in these applications is the availability of heterogeneous features
coming from distinct pattern representations (for instance, features extracted from
face and fingerprint images in biometric tasks). In this case it is natural to design a
detection system based on the combination of different classifiers trained on disjoint
feature subsets corresponding to the different pattern representations. This is a well
known approach in the MCS field: if different sets of heterogeneous (and possibly
loosely correlated) features are available, designing a MCS as described above can
be simpler and more effective than designing a single classifier using all the avail-
able features (see for instance [8]). Moreover, if the overall number of features is
large, a single classifier could be more prone to over-fitting than a MCS. Another
motivation in the context of intrusion detection systems was pointed out in [4]: the
ensemble approach “reflects the behaviour of network security experts, who usually
look at different traffic statistics in order to produce reliable attack signatures.”
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The above arguments support the use of classifier ensembles to improve the ef-
fectiveness of security systems, in terms of attaining high detection rates. MCSs
have also been explicitly proposed to improve the hardness of evasion in biometric
tasks (see for instance [11]). To our knowledge, the only work which explicitly pro-
poses MCSs to this aim for intrusion detection tasks is [10], while we are unaware
of any work for spam filtering tasks. The approach followed in the mentioned works
to improve the hardness of evasion is to add to a MCS one or more classifiers trained
on new and different features. The motivations for biometric applications are very
intuitive: for instance, in [11] it is claimed that using different biometrics like face,
fingerprints, and speech allows to discourage attempts to evade a verification system,
since this would require the construction of different kinds of fake biometric traits
instead of only one. Similar qualitative arguments are given in [10] for intrusion
detection systems: combining classifiers trained on different feature spaces “forces
the attacker to devise a mimicry attack that evades multiple models of normal traffic
at the same time, which is intuitively harder than evading just one model”. We point
out that, besides experimental evidences, all the above motivations in favour or the
use of MCSs for the specific goal of improving hardness of evasion are only intuitive
and qualitative, and are not based on formal and more compelling arguments.

Looking to real security systems, it turns out that the design of many spam filters
and intrusion detection systems follows the approach based on combining an en-
semble of detectors. Consider for instance two well-known open source systems: the
SpamAssassin spam filter (http://spamassassin.apache.org) and the Snort intrusion
detection system (http://www.snort.org/). Both SpamAssassin and Snort consist of a
set of “tests” which check for different characteristics of input patterns (respectively
e-mails and network packets) to detect the presence of “signatures” denoting a ma-
licious origin of the pattern. Tests are often focused on specific signatures of known
attacks. They can be of very different kinds, ranging from simple and fixed feature
detectors (like a keyword detector in a spam filter) to arbitrarily complex classifiers
(like the text classifiers used in spam filters, also know as “bayesian classifiers” in
the spam filtering jargon). The outputs of all tests are then properly combined to
obtain a decision on the input pattern (either “legitimate” or not). In the case of Spa-
mAssassin, a score (a real number) is associated to each test. The scores of the tests
which are satisfied by an e-mail are first summed up, and then the e-mail is labelled
as spam, if the overall score exceeds a predefined threshold; otherwise the e-mail is
labelled as legitimate. In the case of Snort, a logic OR is computed on the boolean
outcomes of all tests (in other words, a network packet is considered as an attack,
if it satisfies at least one of the tests). The SpamAssassin and Snort architectures
make it easy to add new tests based on different features as new kinds of attacks
come up, and to delete existing tests related to attacks that are no more used. These
architectures are supported by experience and intuition that suggest the designer of
these kinds of security systems that the characteristics which allow detecting mali-
cious patterns can be very different and heterogeneous, and can change over time
due to new tricks used by spammers and hackers to defeat spam filters and intrusion
detection systems.
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We conclude by pointing out again that so far the hardness of evasion of security
systems based on MCSs for adversarial classification problems, in particular for
intrusion detection and spam filtering tasks, has been motivated only with intuitive
and qualitative arguments.

2.2 A Theoretical Framework for Adversarial Classification
Problems

As explained above, the few works that proposed so far the use of MCSs for im-
proving the hardness evasion in adversarial classification tasks were based only on
informal and empirical motivations. This is actually true also for most works that
proposed classification systems based on single classifiers. As mentioned in the in-
troduction, just a few works addressed so far the hardness of evasion of machine
learning systems under a more general perspective [1, 3, 9], in particular, to formally
analyse it. In this section we focus on the work by Dalvi et al. [3], who developed a
formal framework (the only one so far, to our knowledge) for adversarial classifica-
tion problems. In the following we summarise this framework, which will be applied
in Sect. 3 to model and analyse one of the MCS-based strategies considered in this
chapter for improving the hardness of evasion (namely, adding classifiers trained on
new features).

When machine learning or pattern recognition techniques are used in applications
like spam filtering, intrusion detection, biometric authentication, etc., their task can
be formalised as a two-class classification problem. Denoting with y the class label,
instances belong either to a positive class made up of malicious instances (y = +), or
to a negative class made up of innocent or legitimate instances (y =−). Instances are
represented as vectors of N feature values, and are considered as random variables
X = (X1, . . . ,Xi, . . . ,XN). A realisation of such a random variable is denoted as x =
(x1, . . . ,xi, . . . ,xN), where xi is a possible value of the feature Xi. It is assumed that
instances are generated i.i.d. according to a given distribution P(X), which can be
rewritten as P(X) = P(X |+)P(+)+ P(X |−)P(−). The feature space X is defined
as the set of all possible realisations of X .

The framework in [3] considers tasks in which the adversary can modify positive
instances (the ones generated by him) at the operation phase to make them being
misclassified as legitimate by the classifier, but it can not modify any negative in-
stance nor positive instances belonging to the training set. This happens in several
real applications. For instance, if a spam filter is trained off-line on a hand-labelled
corpora of e-mails, spammers can only modify their own spam e-mails to evade the
filter, but can not modify legitimate e-mails nor any spam e-mail in the training set.
In other cases, like intrusion detection systems trained online, the adversary can also
modify training instances: the model in [3] can not be directly applied to these kinds
of tasks.

In [3] it is further assumed that the classifier and the adversary act according
to given utility and cost functions. Denoting with yC (x) the decision function of
the classifier, whose output is intended to be the label assigned to the instance x,
the classifier’s utility function is denoted as UC(yC ,y), and represents the utility
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accrued by assigning to class yC (x) an instance x belonging to class y. It is reason-
able to assume that classifier’s utility is positive for correctly classified instances and
negative for misclassified ones, that is, UC(+,+) > 0, UC(−,−) > 0, UC(+,−)≤ 0
and UC(−,+)≤ 0. The cost for the classifier is assumed to be the one incurred for
measuring feature values. In the following the cost for measuring the i-th feature of
an input instance is denoted as Vi. The expression of the expected utility over the
distribution P(x,y) (the joint probability of pattern x being generated with true label
y) can be obtained taking into account that the adversary acts by first generating a
(positive) instance with a corresponding feature representation x, and then possibly
modifying it to some different instance x′ (if deemed necessary), with the aim of
evading the classifier. Such modification is denoted as a function A (x). For exam-
ple, spammers could add words which look legitimate to the body text of a spam
e-mail, and this could result in a different e-mail feature representation (depending
on the features used by the classifier). It follows that the expected utility for the
classifier is given by:

UC = ∑
(x,y)∈X ×Y

P(x,y)[UC(yC (A (x)),y)−
N

∑
i=1

Vi], (1)

where Y = {+,−} (note that, by the above assumptions, A (x) = x if y =−, namely
for each negative instance).

The adversary’s utility function is denoted similarly with UA(yc,y). In this case
a reasonable assumption is that UA(yc,y) takes on a positive value for positive in-
stances misclassified by the classifier as legitimate (UA(−,+) > 0), a negative value
for correctly classified positive instances (UA(+,+)≤ 0), and a zero value for nega-
tive instances (UA(−,−) = UA(+,−) = 0), whatever the label assigned by the clas-
sifier (in other words, the adversary’s utility is not affected by the correct or incorrect
classification of negative instances). The cost for the adversary is the one incurred
for modifying an instance x, according to the function A (x). It is assumed that the
cost is given by W (x,A (x)) = ∑N

i=1 Wi(x,A (x)), being Wi the cost for modifying
the i-th feature. Of course, Wi = 0 if the i-th feature is not changed,Wi > 0 otherwise.
The expected utility for the adversary is thus:

UA = ∑
(x,y)∈X ×Y

P(x,y)[UA(yC (A (x)),y)−W (x,A (x))]. (2)

Using the above model, the adversarial classification problem is formulated as
a game between classifier and adversary, in which the two players make one move
at a time. A move by the classifier consists in choosing a decision function yC (·)
to maximise his expected utility, taking into account both the training set and any
knowledge it may have about the strategy A (·) chosen in the previous move by
the adversary. Analogously, a move by the adversary consists in choosing a strat-
egy A (·) to maximise his own expected utility (Eq. (2)), taking into account the
available knowledge about the decision function chosen by the classifier in the pre-
vious move. Although game theory could, in principle, be applied to find the optimal
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sequence of moves by both players according to their utility and cost functions, it
was shown in [3] that this is computational intractable, and anyway it requires the
knowledge of the distribution P(x,y), which is unrealistic. Therefore, a simplified
single-shot version of the game was considered in [3]. Initially, the classifier con-
structs a decision function using a given training set, assuming it is untainted. Then
the adversary chooses his strategy A (·), assuming he has perfect knowledge of the
utility and cost functions of the classifier, and also of his classification algorithm
and the training set used. Finally, classifier moves again by choosing a new deci-
sion function, assuming he has perfect knowledge of the adversary’s utility and cost
functions, and that he also knows that the adversary has just made his move based
on perfect knowledge on the classifier. Under these assumptions, the optimal adver-
sary’s strategy for choosing A (·) turns out to be the following: for each positive
instance x, the adversary has to find a modification x′ which maximises the corre-
sponding summand in the expression of the adversary’s expected utility (2):

A (x) = arg max
x′∈X

[UA(yC (C (x′),+)−W(x,x′)]. (3)

Given the above definition of the adversary’s utility and cost functions, it is easy
to see that the adversary will change any given instance x, only if it is correctly
classified by the classifier as positive, and if there is any instance A (x) �= x which
is misclassified by the classifier as negative, and the modification cost W (x,A (x))
is lower than the utility gain UA(−,+)−UA(+,+). Otherwise, the best strategy is
to leave the instance x unchanged, namely A (x) = x.

In [3] the above framework was applied to find the optimal strategies of the ad-
versary and the classifier, when the classifier is a Naive Bayes. Experiments on a
spam filtering task quantitatively showed that the classifier performance can signifi-
cantly degrade, if the adversarial nature of this task is not taken into account, while
an adversary-aware classifier can perform much better.

The assumption that the adversary and the classifier have perfect knowledge of
each other is rather unrealistic in practical applications, as well as the assumption
that their behaviour can be modelled in terms of utility functions whose expected
value they aim to maximise. Despite this, we point out that this framework is the first
one proposed to model adversarial learning problems in the machine learning field,
and it is thus worth taking it into account to formally analyse strategies to improve
the hardness of evasion as the ones considered in this chapter.

3 Are Multiple Classifier Systems Harder to Evade?

In this section we develop formal models of adversarial classification problems in
which the classification system is made up of an MCS, with the aim of investigating
whether MCSs could improve the hardness of evasion. In particular, the model in
Sect. 3.1 is based on the framework developed in [3].
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3.1 Adding Features to a Classification System

In this section we consider a strategy proposed by several authors to design classi-
fiers for different security applications, and commonly used in real security systems,
as explained in Sect. 2.1. The strategy consists in adding to a given classifier ensem-
ble new classifiers trained on different features. We focus in particular on a simple
kind of combining function, which consists in thresholding the weighted sum of the
outputs provided by each classifier. The reason is that this combining function is
equivalent to the functions commonly used in spam filters and intrusion detection
systems, as the SpamAssassin and Snort software described in Sect. 2.1. In the fol-
lowing, we apply the framework of [3] to model a classifier based on this strategy,
and analyse whether and how such strategy can allow to improve the hardness of
evasion of the classifier, according to this framework.

We consider a classifier ensemble made up of N classifiers trained on different
feature subsets. We denote with si(x) the output provided by the i-th classifier for the
instance x (x can be considered the whole feature vector, while each classifier uses
only a subset of these features), and with t as the decision threshold. The decision
function we consider can be defined as:

yC (x) =
{

+, if∑N
i=1 si ≥ t,

−, if∑N
i=1 si < t.

(4)

We also consider Vi and Wi(x,A (x)) as the cost incurred respectively by the clas-
sifier for measuring the values of the i-th feature set of the instance x, and by the
adversary for modifying the same features of x.

In the framework of [3] the classifier strategy against the adversary leads to
choose a new decision function at each move. To apply the framework of [3] to
our case, we add the constraint that the new decision function is obtained by adding
one or more new classifiers to the previous ensemble. As in [3], we assume that the
initial classifier ensemble is trained on a given training set of untainted instances,
namely A (x) = x. Then the adversary reacts by devising a strategy A (x), which is
likely to decrease the classifier effectiveness. Next, some new classifiers are added
to the previous classifier ensemble. The adversary can in turn react again by devis-
ing a new strategy to defeat the new version of the MCS, and so on. The question
we will try to answer is: does adding new classifiers to a previous ensemble makes
it harder to evade?

Let us now define in details the adversary strategy, namely the optimal way in
which the adversary should choose the function A (x) against a given ensemble of
N classifiers. To this aim, we assume that the adversary knows the feature set used
by each of the individual classifiers, the score si(x), i = 1, . . . ,N provided by each
individual classifier for any positive instance x, and the threshold t. For the sake of
simplicity, we also assume that the cost Wi(x,A (x)) for modifying the i-th feature
set is equal to the absolute difference between the corresponding scores si(x) and
si(A (x)). This means that the total cost W (x,A (x)) equals the Manhattan distance
in the N-dimensional score space between the corresponding score vectors. In other
words, the higher the score reduction the adversary would like to attain, the more
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the changes he has to make to his positive instance. We point out that this is only
a simplifying assumption, since in practice a given reduction of the overall score
could be attained by different modifications to the same instance at the expense of
a different cost incurred by the adversary. However, modelling this fact is much
more complex, without any specific assumption about the nature of instances, of the
features used by the classifier and of the kinds of attacks used by the adversary. It
should be noted that an assumption similar to ours about the cost of modifying an
instance in a given feature space was made in [9]: in that work, the cost was assumed
to be a function of the distance between x and A (x) in the feature space.

The optimal strategy of the adversary in [3] is defined by Eq. (3). In our case,
denoting with ∆UA the difference UA(−,+)−UA(+,+), with the above definition
of the adversary’s cost function the optimal strategy against an ensemble of N clas-
sifiers can be rewritten as follows:

A (x) =

⎧
⎨
⎩

x′ �= x, if ∃x′ : yC (x′) =−,∆UA > W (x,x′),
x′ = argmaxx′′∈X ∆UA−W (x,x′′),

x, otherwise.
(5)

The above optimal strategy can be rephrased as finding, for any given instance x
which is correctly classified as positive by the classifier, namely ∑N

i=1 si(x) ≥ t,
an instance A (x) which is misclassified as negative by the classifier, namely
∑N

i=1 si(A (x)) < t, and for which the utility gain ∆UA exceeds the cost for mak-
ing the modification, which by the above assumptions is given by:

W (x,A (x)) =
N

∑
i=1

|si(x)− si(A (x))|. (6)

If no such instance can be found, then x is left unchanged. It is not difficult to see
that the minimum cost the adversary has to incur, so that the modified instance is
misclassified as negative, equals the difference between the total score given to x by
the classifier and the decision threshold t: ∑N

i=1 si(x)− t.
It is now possible to give a formal explanation, according to the framework in

[3], of the reasons why adding new classifiers to a given ensemble could improve
the hardness of evasion, as well as the detection capability. We consider the simplest
case in which the previous classifiers and the decision threshold t are left unchanged
at each move. A consequence of adding M new classifiers (M ≥ 1) to an existing
ensemble of N classifiers is that the score of any positive instance could increase,
under the reasonable assumption that the individual classifiers are well trained. In
particular, consider the optimal strategy A (x) against N classifiers. As seen above,
when this strategy leads the adversary to modify an instance x to a different instance
A (x) �= x, this allows to evade the classifier. Denoting with sk(x) the score provided
by an ensemble of k classifiers, this means that sN(x) = ∑N

i=1 si(A (x)) < t. However,
the modified instance obtained with the strategy devised against N classifiers is not
guaranteed to evade a new ensemble comprising M new classifiers. Indeed the new
score sN+M(x) will be given by the sum of the previous score and of the scores
of the new classifiers, sN(x)+ ∑N+M

i=N+1 si(x), which could exceed t. This means that
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the optimal strategy of the adversary against N classifiers is not guaranteed to be
optimal against M+N classifiers. Accordingly, the detection capability can improve
by adding new classifiers. Moreover, the evasion cost could increase by adding new
classifiers. Indeed, if the score for some positive instance x correctly classified by
the new classifier ensemble increases from sN(x) to sN+M(x) > sN(x), such increase
could make the difference sN+M(x)− t larger than the utility, UA(−,+), that the
adversary would gain by modifying x so that it is misclassified as negative. This
implies that there could be some positive instances that the adversary can afford to
modify to evade N classifiers, but not to evade N + M classifiers. This means that
the classifier has become harder to evade.

In the above model it is assumed that the adversary can modify only positive
instances, and the analysis was focused only on the classifier’s detection capability
on positive instances (namely, on the false negative error rate). Before concluding
this section it is worth discussing also the possible effects of adding classifiers,
to the classification accuracy on negative instances (the false positive error rate).
Under the same reasonable assumption above that the individual classifiers are well
trained, a negative instance x which is correctly classified as negative by an ensemble
of N classifiers (namely, sN(x) < t) is likely to be classified as negative also by an
ensemble of N + M classifiers, if the sum of the new scores ∑N+M

i=N+1 si(x), is lower
than t−sN(x). Moreover, instances erroneously classified as positive by N classifiers
(namely, sN(x)≥ t) could be correctly recognised as negative by a larger ensemble,
if ∑N+M

i=N+1 si(x) is negative and lower than t− sN(x).
To sum up, the above analysis provides the first, formal support to the strategy of

adding new classifiers trained on different features to a given classifier ensemble, to
improve both the detection capability and the hardness of evasion. In Sect. 4.1 we
will give an experimental evaluation on a case study related to spam filtering.

3.2 Splitting Features across an Ensemble of Classifiers

The second MCS-based strategy we consider is a design approach applied in several
applications to simplify the classifier design and to improve classification accuracy,
when the feature set is very large or is made up of heterogeneous feature subsets.
The approach consists in combining different classifiers trained on disjoint feature
subsets, instead of designing a single, “monolithic” classifier based on all the avail-
able features. It can be implemented naturally on heterogeneous features: a typical
example is the combination of a face classifier and a fingerprint classifier in bio-
metric tasks. The issue we address is the following: could this design approach be
exploited to improve the hardness of evasion of a security system in adversarial
classification tasks?

In this chapter we try to give a first answer to this question, without focusing
to any specific application. We will not apply the model in [3] as made for the
MCS-based strategy analysed in Sect. 3.1, since in this case we are not analysing a
defence strategy, but we are comparing two different classifier design approaches.
We develop instead a simple, general model of a classification system based on these
two classifier architectures (either a single classifier trained on a given feature set,
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or an ensemble of classifiers trained on disjoint subsets of the same feature set), and
a method for evaluating the corresponding hardness of evasion.

We first assume that a fixed feature set x1, . . . ,xn is available, and that all the
features are binary and take on the values 0 and 1. Without loosing generality we
assume that the value 1 of any feature denotes the presence of some “malicious”
characteristic in the input instance, while a 0 value denotes its absence. In the case
of a single classifier, denoting with x a feature vector and with yC (x) the decision
function, we assume that yC (x) is a thresholded weighted sum of the input features
x1, . . . ,xn, with weights w1, . . . ,wn:

yC (x) =
{

+, if∑n
i=1 wixi ≥ t,

−, if∑n
i=1 wixi < t.

(7)

Note that this kind of decision function, as well as the above assumption on the
features, fits several real classification systems for security tasks, like SpamAssassin
and Snort.

In the case of an MCS made up of N classifiers trained on N disjoint subsets of
the same n features, we assume that the individual classifiers have the same kind
of decision function (7). As a combining function, we consider the logical OR be-
tween the N boolean outputs of the individual classifiers, where the logical value
true is assumed to denote the positive class y = + (in other words, for an input
pattern being labelled as positive by the MCS, it is sufficient that at least one of the
individual classifiers labels it as positive). We consider a non-linear combining func-
tion because a linear one (a linear combination of the soft outputs of the individual
classifiers) would lead to the same kind of decision function as the one of the mono-
lithic classifier (since also the decision functions of individual classifiers is linear).
We consider in particular the logical OR because of its simplicity, and because it is
particularly suited to keep the false negative error rate low. We remind the reader
that this combining function is used in Snort. In principle, it could also be used to
combine different spam filters or different intrusion detection systems, whose out-
puts can be viewed as the features. Given that the value 1 of any feature denotes the
presence of some “malicious” characteristic in the input instance, it follows that all
the weights of both the monolithic classifier and the N individual classifiers of the
ensemble are non-negative (because it is reasonable that the presence of a “mali-
cious” characteristic must not decrease the overall score of a classifier). A scheme
of the two classifier architectures is shown in Fig. 1.

In the two classifier architectures above, the parameters to be set during the train-
ing phase are the number of individual classifiers in the MCS, the feature subset
associated to each individual classifier, and the values of the weights and of the de-
cision thresholds in the decision functions of the linear classifiers. These choices
will affect the effectiveness of the classifiers. The effectiveness has to be measured
in terms of both the classification accuracy and the hardness of evasion. Note that
in adversarial classification problems the classification accuracy should be intended
as a “static” characteristic of a classifier, in the sense that it is related to a fixed
strategy used by the adversary. Such strategy can be considered as represented by
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Fig. 1 The two classifier architectures considered in this section. A single, linear classifier
working on n features (top). N linear classifiers working on disjoint subsets of the same n
features, whose decisions are combined using the OR logical function (bottom)

the training instances. The hardness of evasion measures instead how easy is for the
adversary to evade the classifier using one or more different specific strategies. In
other words, it measures how vulnerable the classifier is to specific kind of attacks,
different than the ones represented in the training set. Therefore, when comparing
different security systems both measures have to be taken into account, as in the
scheme of Fig. 2. Ideally, a security system should be characterised both by a high
accuracy and a high hardness of evasion. In practice, a trade-off between the two
goals could be needed.

The classification accuracy can be evaluated in terms of the false positive and
false negative classification rates. Usually, the suitable trade-off between these mis-
classification rates is application-dependent. How to measure the hardness of eva-
sion is clearly application-dependent as well. In particular, it could depend on the
kind of classification system, on the knowledge the adversary has about it, and on
the kinds of attacks he could make. However in this section we consider a measure
of the hardness of evasion focused on comparing the two classifier architectures
we are interested in, without making any specific assumption on the application.
Concerning the adversary, we consider the worst case scenario for the classification
system, as in the framework in [3]: we assume that the adversary has full knowl-
edge of the classifier architecture, of the features and of the parameter values, and
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Fig. 2 An example of the two measures which should be used to evaluate the performance of
a classifier in a security system: the classification accuracy against a given strategy used by the
adversary (represented by training instances), and the hardness of evasion against new kinds
of attacks. Ideally, the classifier should exhibit both a higher accuracy and a high hardness of
evasion (upper right region in the accuracy-hardness of evasion plane)

is capable to evade any feature (namely, to turn the value of any feature from 1 to
0). We further assume that the adversary has to make the same effort to evade any
feature. We point out that this last assumption could not be true in practice. How-
ever, taking into account different costs for evading different features would make
our model much more complex, which is out of the scope of this chapter. Under the
above assumptions, the hardness of evasion can be defined as follows:

For a given feature set, the hardness of evasion is defined as the expected value of the
minimum number of features which have to be modified to evade the classifier.

Accordingly, a classifier A will be harder to evade than a classifier B, if the average
minimum number of features the adversary has to evade for evading A is higher
than for evading B. The whole classifier performance could thus be measured in
the accuracy-hardness of evasion plane of Fig. 2 by using a proper combination of
false positive and false negative classification rates in the Y axis (note that, in this
case, the accuracy increases for decreasing values in the corresponding axis) and
the average minimum number of features to evade for evading the whole classifier
in the X axis.

It is now possible to discuss, at least informally, whether and how the MCS classi-
fier architecture discussed above could be harder to evade than the monolithic classi-
fier. Consider a given positive instance whose feature vector x is correctly classified
by the monolithic classifier, namely, s(x) ≥ t (see Fig. 1). Under the above assump-
tions, to evade such classifier the adversary will have to modify such instance to
some instance with feature vector x′ with the aim of turning to 0 those features
which exhibit in x a value of 1 and are associated to the largest weights, until the
overall output of the classifier becomes lower than the threshold t: s(x′) < t. In-
stead, to evade the MCS the adversary has to evade all individual classifiers which
correctly classify an instance as positive, since they are combined with the logical
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OR function. Since the individual classifiers are assumed to implement the same
kind of decision function (7) as the monolithic classifier, the adversary will have to
apply the same strategy above against all the individual classifiers. More precisely,
let us denote with xm the feature vector of the m-th individual classifier. Assuming it
correctly classifies xm as positive (namely, sm(xm)≥ tm), the adversary will have to
modify his original instance to some other instance with feature vector x′m, in which
the features exhibiting in xm a value of 1 and are associated to the largest weights
are turned to 0, until the overall output of the m-th classifier becomes lower than
the threshold tm: sm(x′m) < tm. We point out again that this has to be done for each
individual classifier, which correctly classifies an instance as positive. It follows that
a proper choice of the feature subsets could force the adversary to evade on average
a higher number of features to evade an MCS with the above architecture, than to
evade the monolithic classifier. It should however be noted that the kind of MCS
considered in this section could exhibit a higher false positive error rate than the
monolithic classifier, since each individual classifier of the MCS is trained with a
smaller feature set, and an input instance is labelled as positive if at least one in-
dividual classifier labels it as positive. Accordingly, the attainable advantage of the
MCSs in terms of hardness of evasion could need to be traded-off for an increase in
false positives. In the following section, we experimentally investigate the hardness
of evasion of these two classifier architectures on the same case study as the one
considered for the MCS-based strategy analysed in Sect. 3.1.

4 A Case Study in Spam Filtering

In this section we apply the two formal models of Sect. 3 to a case study of a spam
filtering task, to experimentally analyse the hardness of evasion of the two corre-
sponding MCS-based strategies considered in this chapter. For our experiments we
use the well known open source SpamAssassin spam filter, whose architecture has
been described in Sect. 2.1, and a large and publicly available corpus of real spam
and legitimate e-mails.

We used the latest versions of SpamAssassin available at the time of carrying
out our experiments: version 3.2.4 for the experiments in Sect. 4.1, and 3.2.5 for
the ones in Sect. 4.2. We used the filter configuration named “bayes+net”, which
includes all the available tests (several hundreds). The outputs of all tests are binary
(either 0 or 1). Nine of the tests are associated to a text classifier with features corre-
sponding to terms in the e-mails’ header and body. The continuous-valued output of
the text classifier is discretized by default into nine disjoint intervals, each of which
is associated with a binary test. All the remaining tests consist in fixed feature detec-
tors. SpamAssassin is deployed with a default value for the weight of each test, and
a default value of 5 for the detection threshold. All these values can be modified by
the user. All the details about SpamAssassin, including the description of its tests,
can be found in http://spamassassin.apache.org/

The e-mail corpus we used is the TREC 2007 e-mail data set, available at
http://plg.uwaterloo.ca/∼gvcormac/treccorpus07/. It is made up of 75,419 real
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e-mail messages, received by a mail server between April 2007 and July 2007, and
contains 25,220 legitimate and 50,199 spam messages.

In Sects. 4.1 and 4.2 we describe the experiments aimed at evaluating the hard-
ness of evasion attainable respectively by adding new classifiers to a classifier en-
semble, and by using an ensemble of classifiers trained on disjoint subsets of given
feature set, instead of a single classifier trained on the whole feature set.

4.1 Adding Features to a Spam Filter

In this section we evaluate the hardness of evasion of the SpamAssassin filter, attain-
able by adding new tests (which can be thought as classifiers, as explained above)
to a previous set of tests (equivalently, to a previous classifier ensemble). We point
out that in our experiments the SpamAssassin tests can be considered as classifiers,
although most of them are fixed feature detectors, because we consider the case in
which the previous classifiers of the ensemble are not retrained, and neither their
weight nor the decision threshold is changed, after a new classifier are added. For
these experiments we used the first 10,000 messages of the TREC 2007 corpus, in
chronological order (1,969 legitimate e-mails and 8,031 spam e-mails), to train the
SpamAssassin text classifier. The remaining 65,419 e-mails were used as a test set.

In the model of Sect. 3.1 the adversary was assumed to be capable to modify
his instances to attain any modification he would like on the classifier’s outputs. In
practice this could be not always possible. However, it was very difficult to check
whether this is possible or not for all SpamAssassin’s tests. For the sake of sim-
plicity, we kept the above assumption and avoided to devise real modifications to
e-mails to attain the desired output changes. We point out that this assumption is to-
tally in favour of the adversary, since we are not setting any constraint on the actual
modifications which can be made on spam e-mails by him.

In the experiments we considered the following utility function of the classifier:
UC(+,+) = 1,UC(−,+) =−10,UC(+,−) =−1,UC(−,−) = 1, namely, it gains 1
for correct classifications, looses 1 for misclassifying a spam e-mail as legitimate,
and looses 10 for misclassifying a legitimate e-mail as spam. This is coherent with
the considered application, in which it is generally agreed that false positive errors
are much more harmful than false negative ones. The utility function of the ad-
versary was set to 0, except for the gain accrued for evading the classifier, namely
for spam e-mails misclassified as legitimate, for which two different values (1 and
5) were considered: UA(+,+) = UA(+,−) = UA(−,−) = 0,UA(−,+) = 1, 5. We
considered two different values of UA(−,+) to evaluate scenarios characterised by
a different value of the maximum cost the adversary can (or wants) to pay to evade
a spam filter. We point out that the above choices of the relative values of the utility
functions is somewhat arbitrary, besides the obvious constraints mentioned above,
due to the fact that such costs can not be precisely evaluated in practice (and it
could also be questionable that the real behaviour of a classification system and of
an adversary can be modelled in terms of such utility functions, as pointed out in
Sect. 2.2). However, we are interested here to the qualitative behaviour of the clas-
sifier’s and adversary’s performance (in terms of its expected utility), and different
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choices of the utility values would affect only the absolute values of their expected
utilities, not their qualitative behaviour.

Finally, we assumed that the cost Vi faced by the classifier for measuring the
features associated to the i-th text (or classifier) is zero, since such cost is just a neg-
ative constant added to the expected value of the utility function in the framework
of Sect. 3.1. The cost for the adversary was defined as explained in Sect. 3.1, as
the manhattan distance in classifiers’ outputs space between the outputs given to a
positive instance after and before the modification made by the adversary.

The addition of new classifiers at each move of the game was modelled as fol-
lows. Since the number of SpamAssassin tests is rather high (several hundreds),
we did not add just one test at each move. Instead we subdivided them into n dis-
joint subsets S1, . . . ,Sn, and added at each step all the tests of a given subset. For
the purposes of these experiments we chose n = 6. The number of test was set
to 119 for S1 and to 100 for all the other subsets, for a total of 619 tests. This
choice was made since only 619 out of all tests gave an output value of 1 for at
least one of the e-mails in our data set: we considered therefore only these 619
tests. In the real SpamAssassin filter new tests are usually added in response to
new spammers’ tricks. Accordingly, it would have been reasonable to subdivide
the tests taking into account their chronological order. Unfortunately the time in
which each test was introduced is not reported in the SpamAssassin documenta-
tion. So we had to resort to a random subdivision. To make experiments easily re-
producible, we sorted all tests alphabetically according to their names as listed in
http://spamassassin.apache.org/tests 3 2 x.html. The only exception were the nine
tests related to the text classifier, which were included in the first subset since it is
known that text classifiers are used in spam filters since several years.

The moves of the classifier and the adversary at each step of the game were
implemented according to the following procedure. At each step, we first evaluate
the performance of the classifier and the adversary after a new set of tests is added
to the classifier, and the adversary uses the strategy which was optimal against the
previous set of tests (in the first step, this means that the adversary does not modify
his instances). This simulates what happens in real cases, as soon as a spam filer
is updated. Then the optimal strategy of the adversary against the new set of tests
is computed, and the performances of the classifier and the adversary are evaluated
again. This simulates what happens when spammers devise new tricks to evade the
last version of a spam filter. This procedure can be formalised as follows:

1. R← /0, A 0(x) = x for all x
2. For k = 1, . . . ,n:

2.1 R← R
⋃

Sk

2.2 Evaluate the expected utility of the classifier and of the adversary, when the
classifier uses the tests in R and the adversary uses the strategy A k−1(x) which
was optimal for the previous set of tests

2.3 Compute the optimal adversarial strategy A k(x) against tests in R
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2.4 Evaluate the expected utility of the classifier and of the adversary, when the
classifier uses the tests in R and the adversary uses the corresponding optimal
strategy A k(x)

The adversary’s optimal strategy A k(x) at step k was computed as follows, ac-
cording to Sect. 3.1. Denoting the set of tests S1

⋃
. . .
⋃

Sk used by the classifier as
R, for any positive instance x correctly classified by the filter (namely yC (x) = +, or
equivalently ∑i∈R si(x) ≥ t), we compute the set of feasible values s′i for the scores
of tests in R which would correspond to an instance x′ classified as negative (namely
∑i∈R s′i < t), such that the corresponding cost W (x,x′) = ∑i∈R |s′i−si(x)| is minimum
and is lower than the utility gain. If such scores exist, then we assume that the ad-
versary evades the filters by modifying x, otherwise it is assumed that the adversary
can not afford to modify x to evade the filter.

The results are shown in Figs. 3 and 4, for both utility functions considered for
the adversary, in terms of the expected utility of the adversary and of the classifier,
as a function of the number of tests used in SpamAssassin. The results in the top-left
graph refer to the case in which the adversary does not modify his instances. As one
could expect, the expected utility of the classifier increases as the number of test
increases while the opposite happens for the adversary. This means that adding new
classifiers (tests) based on different features (without modifying the previous ones
nor the detection threshold) allowed to improve the detection capability. The only
exception is when going from 419 to 519 tests. The bottom-left graph shows what
happens when the adversary uses the optimal strategy against each set of tests. The
expected utility of the adversary significantly improves with respect to the previ-
ous case. The expected utility of the classifier still increases as the number of tests
increases, but obviously attains lower values than in the previous case. However,
it is worth noting that the improvement attained by the adversary, reported in the
top-right graph, tends to decrease as the number of tests increases. Similarly, the
decrease in the classifier’s expected utility tends to be higher for smaller number
of tests. The reason is that the modification cost the adversary has to face to evade
the classifier increases as the number of tests increases, until it exceeds the utility
gain for some positive instances, making it no more convenient to modify them.
This is a clear evidence that adding new classifiers based on different features can
allow to improve not only the classifier’s discriminant capability, but also its hard-
ness of evasion. Consider finally the bottom-right graph, corresponding to the case
when the classifier adds new tests, and the adversary uses the strategy which was
optimal against the previous set of tests. For smaller number of tests (up to 319),
the expected utility of the adversary is between the ones of the first two graphs:
this is reasonable, because it is now trying to evade only some of the tests used by
the classifier. However, for larger number of tests its expected utility is even worse
than the one it attained without trying to evade any test. The expected utility of the
classifier is instead very close to the one it attained when the adversary did not try
to evade any test. This means that the addition of new tests allowed to compensate
the actions made by the adversary to evade the previous tests. In other words, most
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spam e-mails which evaded the previous version of the filter were detected by the
new tests.

The behaviour of the expected utility for the two different values of the gain
accrued by the adversary for evading the classifier (Fig. 3 vs. Fig. 4) is similar,
with the obvious difference that the expected utility of the adversary is higher in the
graphs of Fig. 4 than in Fig. 3, since it can afford a higher cost to modify instances.
The opposite happens for the classifier.

These experimental results on a real case study give thus a quantitative confirma-
tion to the theoretical explanation given in Sect. 3.1 on the effectiveness of adding
new classifiers based on different features in improving both the detection capability
and the hardness of evasion of a security system like a spam filter.

Fig. 3 Expected utility for the adversary and the classifier, as a function of the size of the clas-
sifier ensemble, when UA(−,+) = 1. Top-left: the adversary does not modify his instances.
Bottom-left: the adversary uses the optimal strategy against the classifier. Top-right: the gain
and the loss in expected utility attained respectively by the adversary and the classifier, when
passing from the situation in the top-left graph to that in the bottom-left one, as a function
of the ensemble size. Bottom-right: for each ensemble size, the adversary uses the optimal
strategy against the previous set of rules

4.2 Splitting the Features of a Spam Filter across an Ensemble of
Classifiers

In this section we give an experimental evaluation of the classification accuracy
and the hardness of evasion of the two classifier design architectures modelled in
Sect. 3.2: a single linear classifier trained on a given set of features, and an ensem-
ble of linear classifiers trained on disjoint subsets of the same features and combined
with the OR logical function. The experiments were carried out on the TREC 2007
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Fig. 4 Expected utility for the adversary and the classifier, as a function of classifier ensemble
size, when UA(−,+) = 5. See caption of Fig. 3 for the other details

e-mail corpus described in Sect. 4.1. We used as feature set the tests of the SpamAs-
sassin filter (version 3.2.5) which gave an output value of 1 for at least one of the
e-mails of this data set. Their number was 549. To implement the monolithic linear
classifier and the individual classifiers of the ensemble we used a support vector
machine (SVM) with the linear kernel. Since nine of the SpamAssassin tests are
associated with a text classifier, they were not used as features of the MCS. The text
classifier itself was instead used as one of the individual classifiers of the ensemble.
In this case, given that its output is a real number in the interval [0,1] (with small
values denoting legitimate e-mails), we set a decision threshold of 0.5.

The first 10,000 e-mails of the data set, in chronological order (1,969 legitimate e-
mails and 8,031 spam e-mails), were used to train the SpamAssassin text classifier
and the individual classifiers of the MCS. The next 10,000 e-mails were used to
train the monolithic classifier (we avoided using to this aim the same first 10,000
e-mails used to train the text classifier, since its outputs were used as features of the
monolithic classifier). The remaining 55,419 e-mails were used as a test set. The
SVMs were trained using the publicly available libsvm software [2]. To carry out
multiple runs of the experiments, all the classifiers were trained on 2,000 e-mails
randomly extracted from the corresponding training sets described above.

The SVM parameters of the monolithic classifier were set through a 5-fold
cross validation on the training set, by minimising an objective function given by
100×FP+ FN, being FP and FN the two kinds of error rates. In other words, the
cost of false positive errors was fixed to be one hundred times higher than the cost
of false negative errors. The decision threshold of the SVM was fixed by minimis-
ing the same objective function. The same procedure was used to set the parameters
and the decision threshold of the individual classifiers of the MCS. However in this
case we fixed the cost of false positive errors to be one thousand times higher than
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Fig. 5 Top: classification accuracy of the monolithic classifier (solid circles) and of the two
MCSs (squares: three classifiers; white circles: eleven classifiers) in the T P,FP (ROC) plane.
Small circles and small squares represent the values attained in the five runs of the experi-
ments, while large ones represent the corresponding average values. The average ROC curve
of the monolithic classifier is also shown (solid line), together with its standard deviation
(dashed lines). Bottom: average FN rates with standard deviation as a function of the max-
imum number of features the adversary can evade. The FN rates when no feature is evaded
correspond to the ones in the left plot

the cost of false negative errors. The reason is that, differently from the features
of the monolithic classifier, the individual classifiers of the MCS have been com-
bined with the OR function, implying that the MCS labels an e-mail as spam, if at
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Fig. 6 Trade-off between the average classification accuracy (Y axis) and the average hard-
ness of evasion (X axis) of the monolithic classifier (dashed line) and of the two MCSs (solid
lines), over five runs of the experiments. Classification accuracy is measured as the false
negative error rate. The hardness of evasion is measured in terms of the average minimum
number of features the adversary has to evade, for evading the whole classifier. Horizontal
bars represent the standard deviation of classification accuracy over the five runs of the exper-
iments. Note that the area of the plot corresponding to the best accuracy-hardness of evasion
trade-off is the bottom-right one

least one of the individual classifiers labels it as spam; it is therefore necessary to
keep the false positive error rate of the individual classifiers of the MCS as low as
possible. The parameters of the SVMs were the regularisation parameter C and the
relative cost of false positive errors with respect to false negative ones, used in the
libsvm objective function of the SVM learning algorithm (denoted in the following
as wFP).1 For the monolithic classifier, the parameter values were chosen among
all the possible combinations of the C values {0.001,0.01,0.1,1,10,100}, and wFP

values {2,5,7,10,50,100}. For the individual classifiers of the MCS we considered
the same C values above and the wFP values {10,50,100,500,1000}.

As mentioned above, the MCS based on SpamAssassin tests was made up of the
SpamAssassin text classifier and of N−1 linear classifiers trained on disjoint subsets
of the 541 tests not associated to the text classifier. We considered two different
ensemble sizes: N = 3 (namely, the text classifier and two linear classifiers) and N =
11. The 541 available tests (features) were distributed uniformly among the linear
classifiers. The choice of which features associate to each classifier should be made
by taking into account the kinds of the features. For instance, heterogeneous features
could be fed to different classifiers. For the sake of simplicity, in our experiments
we randomly split the features into N disjoint subsets (we just checked whether the
false positive error rate of the MCS, estimated on the 2,000 e-mails of the training

1 We point out that the cost parameter wFP of the SVM learning algorithm could not reflect
the real cost considered in the task at hand: therefore its optimal value could be different
from the real cost.
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set, was higher than 0.01: in that case we disregarded the corresponding feature
splitting).

The experiments described above were repeated five times on different randomly
extracted training sets of the SVMs. Let us consider first the accuracy of the two
kinds of classifiers (the monolithic classifier and the MCS). We report it in the Re-
ceiver Operating Characteristic (ROC) plane, in which the Y axis corresponds to the
true positive classification rate (T P) and the X axis to the false positive rate (FP).
In Fig. 5 (top) we show the TP and FP values of the monolithic classifier and of the
two MCSs on the e-mails in the test set, obtained in the five runs of the experiments,
as well as their average values across the five runs. For the sake of completeness we
also report the whole ROC curve of the monolithic classifier (obtained by varying
the decision threshold of the SVM). It can be seen that the accuracy of the mono-
lithic classifier is slightly higher than the one of the two MCSs (it exhibits both
higher T P and lower FP values). We remind the reader that this accuracy refers to
the case when the adversary does not attack the classifiers. The hardness of evasion
is instead shown in Fig. 5 (bottom). Since we are assuming that the adversary can
only modify positive instances, only the FN rate can change under attack. Accord-
ingly, in Fig. 5 (bottom) we report the FN rate as a function of the maximum number
of features the adversary can evade. The FN rates for zero evaded tests correspond
to the values reported in Fig. 5 (top). Figure 5 (bottom) clearly shows that, although
the MCSs have a worse FN rate than the monolithic classifier when they are not
under attack, they are harder to evade. For instance, if the adversary evades at most
one feature, the FN rate of the two MCSs is between about 0.35 and 0.45, while
the FN rate of the monolithic classifier is about 0.70, and so on. In other words,
evading an MCS in which features are split across different classifiers required to
evade a higher number of features than in the case they were processed by a mono-
lithic classifier, as argued in Sect. 3.2, although this comes at the expense of a slight
increase in the false positive rate.

Consider finally a comprehensive plot showing the trade-off between the accu-
racy (when the adversary does not attack) and the hardness of evasion, as in the
scheme of Fig. 2. The accuracy (Y axis) is measured using the same trade-off be-
tween FP and FN rates as in the objective function of the monolithic classifier:
100× FP + FN. The hardness of evasion is measured as explained in Sect. 3.2,
as the average minimum number of features that have to be evaded to evade the
whole classifier. The accuracy-hardness of evasion trade-off attained by the mono-
lithic classifier and by the MCSs is shown in Fig. 6. From this plot it is easy to see
that the monolithic classifier attains a slightly higher accuracy (two to three times
better than the MCSs), at the expense of a lower hardness of evasion (up to two
times lower than that of the MCSs).

To sum up, the results presented in this section can be considered as the first
experimental evidence, based on a formal setting, that the MCS architecture based
on splitting features across different classifiers can be exploited in security tasks to
improve the hardness of evasion in security systems.
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5 Conclusions

Taking into account explicitly the presence of an intelligent, adaptive adversary in
the design of classification systems for security applications, with the aim of mak-
ing a classifier harder to evade, is a topic which has been addressed only recently
in the machine learning and pattern recognition literature. So far no general frame-
works exist yet to deal with this problem. In this chapter we addressed this issue
focusing on tasks like spam filtering and intrusion detection in computer networks,
and on a classifier architecture based on an ensemble of classifiers. This architec-
ture has been recently proposed by several authors and is used in commercial and
open source products, but is supported so far only on by empirical and intuitive mo-
tivations. We tried to give a first answer, based on more formal motivations, to the
questions of whether and how multiple classifier systems could allow to improve
the hardness of evasion of a classifier. We considered in particular a defence strat-
egy consisting in adding classifiers based on new features to a previous ensemble
(as usually done in spam filters and intrusion detection systems to deal with new
kinds of attacks), and to a design approach based on combining classifiers trained
on disjoint subsets of features, instead of designing a monolithic classifier trained
on the same features. We developed formal models of the corresponding classifica-
tion systems and of possible adversary’s strategies used to attack them (exploiting
the framework developed in [3] to analyse the former strategy). We then gave an
experimental evaluation on a case study related to the spam filtering task, using a
real spam filter and a large and publicly available corpus of real spam e-mails.

Our results can be exploited as a starting point of future works aimed at formu-
lating practical guidelines for the design of more robust classification systems in
security applications.
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A Personal Antispam System Based on a
Behaviour-Knowledge Space Approach

Francesco Gargiulo, Antonio Penta, Antonio Picariello, and Carlo Sansone

Abstract. In their daily work and common life, people suffer serious problems
with Unsolicited Commercial E-mails (UCE), commonly known as spam: common
people, small companies and large public or private institutions feel that spam has
weakened the reliability and effectiveness of email as an efficient tool for communi-
cating. To establish simple, fast and effective countermeasures against spam attacks
is a necessary strategy of a modern mailing management system. In this chapter we
describe a novel method for detecting spam messages, analyzing both text and im-
age attached components. In particular, we describe an architecture for deploying a
personal antispam system able to overcome some problems that are still besetting
the state-of-the-art spam filters. Text analysis is accomplished by considering recent
advances in both semantic and syntactic analysis; in addition, spammers tricks based
on images are also taken into account. A Behaviour Knowledge Space approach for
fusing the different results coming from the analysis of the different parts of the
e-mails enhances the performance of the proposed system, as described by the ex-
periments we have carried out.

Keywords: text-based and image-based spam, Singular Value Decomposition, La-
tent Semantic Analysis, Pattern Recognition, Image Analysis, combining classifiers,
Behaviour Knowledge Space.

1 Introduction

It is a well-known story that e-mail has grown from a tool used by few universities
and scientists to a ubiquitous communication tool, evolving from simple plain text
into a powerful multimedia message. At the same time, following the growth of
e-mail production and diffusion, spam has changed from a minor and sometimes
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bothering problem into a multi-billion dollar problem. The presence of spam, in
fact, can seriously compromise normal user activities, forcing to navigate through
mailboxes to find the - relatively few - interesting e-mails, thus wasting time and
bandwidth and occupying huge storage space.

The types of those messages vary: some of them contains advertisements, other
e-mails provide winning notifications, and sometimes we get messages with exe-
cutable files, which finally emerge as malicious codes, such as viruses and Trojan
horses. In addition, spam e-mails may often have unsuitable content (as a porno-
graphic material advertising) that is illegal and sometimes dangerous for non adult
users.

The recognition of spam content is not a trivial task: there are some factors that
are related to human perception, economic behavior, legal context, and that are
hardly measurable or summarized in adequate features. The very definition of spam
e-mails requires a common agreement that is not easy to find.

In our opinion, all kind of spam e-mails have several common characteristics,
such as: i) they are unsolicited, ii) they have a commercial content, even though
the content itself is continuously evolving, trying to outsmart the classical counter-
measures adopted by anti-spam filters. Consequently, a great variety of technical
methodology have been implemented in current anti-spam systems [6]. The com-
mon technical solutions propose filtering strategies based on sender address and/or
body content. We focused our attention on that measures related to e-mail contents,
in particular both texts and images, rather then on networking and identity strategies
[27], since our goal is to develop a personal antispam system.

In this chapter we combine the visual clues with the semantic information related
to the e-mail body, to determine whether a message is spam . In order to address the
problem of combining a non-constant number of modules, since it is not possible to
a priori know if there is one or more images attached to the e-mail and/or there is
textual information to be processed, we propose the use of a Behaviour Knowledge
Space [19] approach. This also allows us to easily include new modules into our
architecture that could be required for addressing new spammers’ tricks.

The chapter is organized as follows. After an overview of the related literature in
Sect. 2, Sect. 3 describes at a glance the main component of the proposed system.
In Sect. 4 and 5 we describe text and image features respectively, while in Sect. 6
we show how to combine them. In Sect. 7 several experiments are discussed, and
finally in Sect. 8 we report the conclusions of our work.

2 Related Work

In this work we approached the problem of detecting spam diffused through texts
and/or images. So, this section is divided into two parts, the first one related to text-
based spam detection and the second one to image-based spam detection.

Text-based: Textual filtering methods are widely deployed; they vary in the in-
spected content and the proposed methodology. Some filters consider only the
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header or the body of an e-mail, while other ones take both. These approaches
use different models, considering word-tokens, their frequencies and their combi-
nations. In rule based-filters [8] the users define some rules related to the headers
or the bodies, considering particular words as sign of spam content; anyway, this
simple solution is strongly dependent on how the words used by spammers can
change.

Differently, Signature-based methods do not really deal with whole messages
or specific tokens, transforming the message into a signature. Clearly, the meth-
ods effectiveness is related to the robustness of the signature function. Note that a
signature database must be distributed and kept up to date very frequently, due to
the rapid variation of spam e-mails. To this regard, some proposals are based on
collaborative solutions, in particular, on Peer-to-Peer (P2P) networks for signature
distribution [9, 30]. These approaches are not well suited for developing a personal
antispam system.

Other approaches consider spam detection as a binary classification problem and
several algorithms from the learning theory research field have been used. In these
solutions, e-mails are mapped into multidimensional space, each dimension rep-
resenting the words in the e-mail content; several measures are proposed such as
the terms-frequency (t f ) or the product between the documents-frequency (d f ) and
terms-frequency, as in [12]. Statistical filters based on the the Bayes theory have
been also investigated [1, 24].

One of the drawbacks of these methods is that they typically do not consider spe-
cific countermeasures for taking into account new spammer tricks, so a complete
retraining of the system is needed when these attacks arise. To this regard, it is inter-
esting to remark that a recent study [4] tried to model spam filtering as an adversarial
classification problem, in which an intelligent, adaptive adversary modifies patterns
to evade the classifier.

Image-based: Image spam has been extensively studied using several techniques
primarily developed from the Image Processing and Computer Vision community,
using features related to color distribution [2] or textual areas [2, 29]. A classifier is
usually trained on such features, trying to discriminate spam images from legitimate
ones. In [11], the authors present features that are focused on simple properties of the
image, making classification very fast. However, the authors completely disregard
the textual part of the emails.

Other approaches basically try the detect textual areas in images following the
idea that images which contain text are likely to be spam . In [28] the authors pro-
pose an algorithm for text localization. They construct a corner detection algorithm
based on a circular template to predict the corner points of the text in an image,
which is crucial for text localization. The same idea is presented in [7]. The method
proposed there extracts edge features of a binarized image by using higher-order
local autocorrelation, and then passes these features to a Support Vector Machine
(SVM) for classification . In [18] the authors try instead to extract connected com-
ponents from the image in order to detect the presence of an embedded text. A quite
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different approach is followed in Fumera et al. [13], where the authors propose to
process each image by using an OCR system for extracting embedded texts.

All these approaches, however, cannot be effectively used when text within im-
ages is intentionally distorted and/or obfuscated. As it was noted in [5], in fact,
now spammers try to make OCR and text detection techniques ineffective with-
out compromising human readability by placing text on non-uniform background,
or by using techniques like the ones exploited in CAPTCHAs1 (programs that
generate and grade tests that humans can pass but current computer programs
cannot).

3 System Architecture

As shown in Fig. 1, we design a system that integrates image-based and text-based
analysis. The mails, initially, are parsed by a Multipurpose Internet Mail Extensions
(MIME) parser that can retrieve the different parts of the e-mails: the text parts,
the attached images or text files, the email subject and the headers. The text is thus
processed by a Text Analyzer module according to the methodology described in
Sect. 4 and its output is a classification result obtained using the feature vector of
text part of input email. The images are forwarded to the Image Analyzer module
which gives another classification results for the feature vector that is extracted with
the techniques described in Sect. 5 for the image part of the email. We note that the
OCR output of the Image Analyzer could be also used by Text Analyzer in order
to build its feature vector. The Fusion block has the role to combine two outputs
furnishing the final classification of each e-mail using the strategy discussed starting
from Sect. 6.

Fig. 1 The proposed system architecture: the dashed line represents the OCR output that is
fed to the Text Analyzer

1 The term CAPTCHA (Completely Automated Turing Test To Tell Computers and Humans
Apart) was coined in 2000 by Luis von Ahn, Manuel Blum, Nicholas Hopper and John
Langford of Carnegie Mellon University. At that time, they developed the first CAPTCHA
to be used by Yahoo – http://www.captcha.net/
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Both the Text and the Image analyzer can be implemented by means of different
classifiers, each classifier using different features. Next, we will describe in detail
the different feature sets used and the combination process.

4 Textual Features

We propose a strategy based on text processing and analysis in order to process both
semantic and syntactic features. Generally speaking, our main idea is to characterize
how e-mails belonging to the same class (ham2 or spam) do have the same meanings
by means of using a set of semantic features in addition to the detection of special
characters (syntactic features) that are typically used in spam context.

In particular, at the semantic level we analyze the whole email content taking
into account the word localization in a given context, thus measuring the weight of
a single word in the document. In this way, we relate the emails content to certain
topic by looking at commonly shared words. A topic is described by a region of
multidimensional space formed by the vectors of words of different e-mails. In the
spam context, examples of e-mail topics are given in Table 1. In Sect. 4.1, we will
describe the model used to discover the semantic content of e-mails.

Table 1 The list of contents in spam mails

Spam Topics

Investment/Business
Health/Medicine

Games
Software

Leisure/Travel
Adult

Finance
Product/Service

The use of syntactic features is suitable to detect grammar anomalies in the texts.
Typically, the ham e-mails do not have particular occurrences of special characters:
these ones can be thus used as signs of low trustworthiness of the received e-mail;
the related developed methodology will be described in Sect. 4.2.

4.1 Semantic Features

We propose to use a feature set based on a modified version of Vector Space Model
(VSM) [23]. This model is based on the representation of documents as vectors in
multidimensional space. The representation of e-mail textual content in the vector
space model has a number of advantages, including the uniform treatment of queries

2 Legitimate (valid) email.
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and documents as vectors and the ability to differently weight the different terms;
however, it also suffers from its inability to cope with two classic problems arising
in natural languages [20], i.e., synonymy and polysemy.

We briefly recall that synonymy refers to a case where two different words (say
“pupil” and “scholar”) have the same meaning, and polysemy refers to the case
where a term such as “play” has multiple meanings according to different contexts.
In fact, as the worst case of the influence of synonymy on similarity measure, we
could have two orthogonal vectors with 0 as a result of cosine similarity even if there
are two different words that have the same meaning behind those two vectors. The
semantic correlation or disambiguation of the these terms can be made by looking
at the context in which they are placed, for example, the terms “scholar” can be cor-
related to “pupil” if the documents, in which they are found, also contain terms like
“school”, “book”, “pen” and so on. In that way the shared terms can increase the
value of similarity measures. The idea of looking at the whole email document can
be seen also as an overcoming of the independence hypothesis used in a Bayesian
filter technique known as bag-of-words model that is one most used approaches
to anti-spam filtering. In this model the relationships among a set of words (joint
distribution) are simply factorized.

In order to overcome the fault of the vector space model to capture the synonymy
and polysemy relationships, we choose a modified version of VSM, the Latent Se-
mantic Analysis or LSA [23]. Despite LSA being a traditional and well accepted
technique used to stick out the semantic contents in text-process community, there
are few applications of it in the spam framework. LSA is an application of Sin-
gular Value Decomposition (SVD) to a document-by-term M ×N matrix A. In
particular, SVD provides a suitable matrix decomposition as A = TSDT , where
S=diag(σ1, . . . ,σr) is an M×N matrix, σi =

√
λi is the ith singular value, λi ≥ λi+1

(λ1, . . . ,λr are the eigenvalues of AAT ), and r is the rank of A. Note that AT A has
the same eigenvalues as AAT .

In the LSA technique, a reduced version of A, Ak = TkSkDT
k , is used, with k

being a positive integer that is the maximum rank of A (Tk is of M× k, S is of
k×k, and Dk is of N×k). After that, we can have a representation of documents and
terms in the singular value space. We note that this operation does dimensionality
reduction since typically kM while documents can be still faithfully represented
in the reduced space.

The obtained approximation is computed by taking into account the distance be-
tween the two matrices A-Ak that is minimal according to the Frobenius norm [23].
In other words, we have a reduced space in which the words that have similar co-
occurrence patterns are projected (or collapsed) into the same point. The choice of k
has been empirically found, with 80 to 100 dimensions being sometimes the optimal
choice for collections of about 5,000 terms by 1,000 documents [10]. In order to
derive the features for training a classifier during the learning phase, we adopted as
text features the projection of the document onto the space obtained by SkDT

k . In the
testing phase, in addition to SkDT

k , we use Tk in order to compute the projection of
the input Q (Q is of N×1).
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Fig. 2 The different phases of the Text Analyzer

There are different steps used to process the text for generating feature in the
training and test phases. The different phases are depicted in Fig. 2 and they
consist in:

• The Preprocessing module uses a set of intelligent filters that we apply to the
email documents with or without the OCR recognized set of words. These filters
include:

– The classical stop word list filter that is used to delete the words that have no
particular meaning, e.g., adverbs and pronouns.

– An intelligent filter that is able to detect and reject the words that are not
human-understandable, e.g., sequences like “fsdrx”, “jkdld”. The filter is
based on a Support Vector Machine (SVM) classifier trained on several fea-
tures derived from bigrams and trigrams of English words. We also built a
feature vector containing the ratio between the correct bigrams (trigrams) and
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all the bigrams (trigrams) for a set of 170000 common English words. Note
that the use of this kind of filter has also the aim of enhancing the recognition
of the semantic content that can be used in particular spammer attacks, such as
the ones which put random words into e-mail texts, thus trying to reduce the
effectiveness of current antispam algorithms. This filter can be also employed
for rejection of words that are poorly recognized by the Optical Character
Recognition algorithms.

– A Part of Speech filter (POS) module that is able to detects nouns, verbs and
adjective; it is used to reject adjectives that typically do not give additional
information.

• The Stemming module implementing the well known Porter Stemmer algorithms
[26] that is used to remove the common morphological and inflexional endings
from words in English. The stemming and preprocessing modules together will
be called Text Processing (TP).

• The LSA module that implements the functionality of the model described above.
We computed the following features:

– Term Frequency (TF)

TFi j =
ni j

∑ j ni j
, (1)

where ni j is the number of occurrences of the term t j in the document di,
and the denominator is the sum of number of occurrences of all terms in the
document di.

– Inverse Document Frequency× Term Frequency

IDTFi j = T Fi j log
ND

Nti
D

, (2)

where N being the number of total documents in the corpus and Ntj the num-
ber of documents in the corpus, containing the term t j.

– Entropy Weight (WE) [22]:

W Ei j = T Fi j(1 +∑
j

pi j log2(pi j)
log2(N)

) , (3)

where pi j = T Fi j
T Fj

and T Fj is the frequency of the term t j on the whole docu-

ment collection.

4.2 Syntactic Features

We propose to use some syntactic features that can be extracted from mail texts in
order to distinguish valid and suspected mails.

Spammers, in fact, usually try to obfuscate the textual part of the e-mail body by
substituting some characters in order to bypass the effectiveness of antispam filters.
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So, we defined another set of features for obtaining a characterization of this kind
of obfuscated text. The features we have investigated are mainly based on the pres-
ence of special characters, i.e., those characters that should not frequently occur in a
legitimate text. The whole set we considered is made up of the following characters:
{ !, ”, #, $, %, &, ’, (, ), *, +, ,, -, . . . , /, @}. Starting from this set we defined six
syntactic features:

• text length: the number of characters of the whole text
• words number: the number of words in the text
• ambiguity: the ratio between the number of special and normal characters
• correctness: the ratio between the number of words that do not contain special

characters and the number of words that contain special characters
• special length: the maximum length of a continuous sequence of special

characters
• special distance: the maximum distance between two special characters belong-

ing to the above considered set.

5 Image Features

In [15], we proposed the approach for the detection of the image spam , in which two
different image processing techniques are used. The first technique directly extracts
some global features from each image attached to e-mails. Such features should also
be able to detect if images were adulterated or not by considering the complexity
of the image itself as it is perceived by a human being. The second technique is
carried out by means of two steps: first, there is a preprocessing phase with the use
of an OCR, then a feature extraction process, starting from the OCR output, tries to
characterize this output in order to detect if the embedded text has been voluntarily
obfuscated and/or distorted.

5.1 Visual Features

The first set of features that we called visual features, are directly obtained from the
image attached to emails. In order to give an image characterization that should be
able to discriminate between normal and adulterated images, we considered features
that describe the image texture from a statistic point of view. As said before, in fact,
spammers typically try to bypass filters that use an OCR for detecting texts within
an image by obfuscating such texts with the addition of some noise or by superim-
posing a texture (see also Fig. 3). So, texture detection can help in identifying those
images that contain spam messages.

For the sake of simplicity, we will consider features extracted from gray-level
images, but the same operators can be applied to color images too.

We will use {I (x,y) ,0≤ x≤ N−1,0≤ y≤M−1} to denote an N×M image
with G gray levels. All the considered statistical texture measures are based on the
co-occurrence matrices. Spatial gray level co-occurrence estimates image properties
related to second-order statistics. The G×G gray level co-occurrence matrix Pd for
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Fig. 3 Outputs obtained by applying gocr (available at http://jocr.sourceforge.net) to some
spam images

a displacement vector d = (dx,dy) is defined as follows. The entry (i, j) of Pd is the
number of occurrences of the pair of gray levels i and j which are a distance d apart.
Formally, it is given as:

Pd(i, j) = |{((r,s),(t,v)) : I(r,s) = i, I(t,v) = j}|,

where (r,s),(t,v) ∈ N ×M, (t,v) = (r + dx,s + dy), and | · | is the cardinality of
a set.

Regarding the choice of the displacement vector d, we considered the four direct
neighbors of each pixel, i.e., we used four pairs as values of dx and dy for calculating
the number of co-occurrences, namely (0,1), (1,0), (−1,0) and (0,−1). We do not
perform a normalization of Pd in order to preserve the dependence of the considered
features on the image size.

As suggested in [17], from the co-occurrence matrix it is possible to extract fea-
tures that can be used for detecting a texture within an image. In particular, we
calculated the following five features:

• Contrast
∑

i
∑

j
(i− j)2Pd(i, j)

is the difference in terms of visual properties that makes an object (or its represen-
tation within an image) distinguishable from other objects and the background.
In the visual perception of real world, contrast is determined by the difference in
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the color and brightness of the object and other objects within the same field of
view.

• Entropy:
−∑

i
∑

j
Pd(i, j)logPd(i, j)

is an index of the brightness variation among pixels.
• Energy:

∑
i

∑
j

P2
d (i, j)

is the spectral content of an image
• Correlation:

∑i ∑ j(i− µx)( j− µy)Pd(i, j)
σxσy

is an index of the correlation degree among pixels. Here µx and µy are the means
and σx and σy are the standard deviations of Pd(x) and Pd(y) respectively, where
Pd(x) = ∑ j Pd(x, j) and Pd(y) = ∑i Pd(i,y)

• Homogeneity:

∑
i

∑
j

Pd(i, j)
1 + |i− j|

is a measure of the brightness variation within the image. If the image is com-
pletely black or white, its homogeneity value will be the maximum. On the con-
trary, if the image contains many brightness variations, this value will be very
low.

Another category of features that can be used for characterizing images from a
global point of view is based on the complexity of an image for a human reader. We
have chosen to consider a feature also proposed in [5]:

• Perimetric Complexity is defined as the squared length of the boundary between
black and white pixels (the perimeter) in the whole image, divided by the black
area.

Note that, differently from [5], we evaluate the perimetric complexity on the
whole image after performing binarization with a fixed threshold.

5.2 OCR-Based Features

Here we propose to use the same features as considered in Sect. 4.2. In this case,
however, special characters are extracted from the output of an OCR that has re-
ceived an attached image as input.

We have noticed, in fact, that characters embedded into an image are intentionally
distorted and/or obfuscated in spam e-mails. Thus, most of the words cannot be
correctly detected, as we can see in Fig. 3. Furthermore, several special characters
that typically are not present in commonly used words can appear in the OCR output.
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6 Combining Text-Based and Image-Based Classifiers

It has been experimentally shown that the combination of an ensemble of classifiers
can be of great benefit in many practical pattern recognition applications. Through
the appropriate choice of a combination rule, it is possible to suppress the overall
effect of the independent errors in each observation domain, thus reaching perfor-
mance better than that of a single classifier.

The combination of classifiers is an important part of our architecture. Anyway,
there are some problems that must be taken into account in this case:

• It is necessary to define a method for combining a non-constant number of clas-
sifiers, since it is not possible to a priori know if there is one or more images
attached to the e-mail and/or there is textual information to be processed.

• Padding attacks should be avoided. That is, the possibility that an attacker puts
a spam message within a normal context, for example, by attaching an image
containing an embedded spam message to an e-mail that contains normal images.

As shown in Fig. 4 we used a two-stage approach. The first stage (denoted as
Classification in Fig. 4) consists in a simple 3-state logical OR, whose behavior
is described in Fig. 5. In this way we also consider the case in which a classifier
cannot be activated. It happens, for example, when there are no images within the
e-mail or when there are no words to be processed by the semantic analysis. In
this situation, we assume that the output of the classifier is undefined. Note that
through this approach we try to address the problem of padding attacks, too. Just
one correctly classified spam image, in fact, is sufficient so that the block of the
visual classifiers declares the email as spam.

Then, at the second stage we adopt a Behaviour Knowledge Space (BKS) com-
bining rule [19]. The idea behind this rule is to avoid making unjustified assumption
on the classifier ensemble such as classifier independence. In Fig. 6 an example of
how it works is shown.

A BKS is a K-dimensional space where each dimension corresponds to the deci-
sion of a classifier. Given an e-mail to be assigned to one of 2 possible classes, the
ensemble of K classifiers can in theory provide 2K different decisions.

We must also consider the case in which the output of the 3-state logical OR is
undefined. In other words, each set of classifiers can attribute a mail to one out of
three possible classes, i.e., {Spam, Ham, Undefined} and the number of different
decisions becomes 3K .

Each of these decisions constitutes one unit of the BKS. In the learning phase
each BKS unit can record 2 different values ei (say, eham and espam), by considering
that the actual classes are only ham and spam. Given a suitably chosen training
set, each sample x of this set is classified by all the classifiers and the unit that
corresponds to the particular decision of classifiers is activated. It records the actual
class of x, say Cj, by adding one to the value of e j. At the end of this phase, each
unit can calculate the best representative class associated to it, defined as the class
that exhibits the highest value of ei. This class corresponds to the most likely class,
given a decision of classifiers that activates that unit.
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Fig. 4 The proposed approach for combining text-based and image-based classifiers. “TP”
stands for Text Processing; it is described in Sect. 4.1

Fig. 5 The 3-state logical OR

In the operating mode, for each e-mail to be classified, the K decisions of the
classifiers are collected and the corresponding unit is selected. Then the e-mail is
assigned to the best representative class associated to that unit. Since we consider
all possible combinations of classifier outputs as the number of available classifiers
varies, we are implicitly handling the fact that the number of available classifiers
can be different for each e-mail.

It is worth noting that the proposed combining scheme could be also easily ex-
tended using different feature sets and different classifiers. This could be required,
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Fig. 6 The Behaviour Knowledge Space for combining classifiers

for example, for addressing new spammers’ tricks. In this case, the problem is that
the number of BKS unit grows exponentially, so that a larger training set would be
needed in order to achieve good classification results. However, as will be shown
in the next section, only a subset of all the possible units are typically activated in
practice, since some configurations of the decisions are not allowed.

7 Experimental Results

In this section, we will first describe the database used for assessing the effective-
ness of the proposed approach, then evaluate if the use of both visual and textual
features can improve the performance of the system with respect to the use of a sin-
gle set of features. Finally, we make a comparison of our approach with a state-of-
the-art anti-spam filter, i.e., SpamAssassin equipped with two different spam image
plug-ins.

Regarding the dataset whose details are given in Table 2, it is composed of 11652
e-mails, 9173 of which contain spam messages. E-mails were collected from the
mailboxes of some users of the studenti.unina.it mailserver during three
years (2005-2007). This mailserver hosts the mailboxes of all the students of the
University of Naples Federico II. Among these e-mails, 151 contain ham images
and 1802 contain spam images. Figs. 7 and 8 show some examples of the ham and
spam images from our dataset.

In the first stage of our architecture (Classification), we chose a Decision Tree
for implementing each classifier. In particular, a C4.5 (J48) coming from the open
source tool Weka3 was selected.

3 http://www.cs.waikato.ac.nz/ml/weka/
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Table 2 The dataset used in our tests

total # of e-mails e-mails with Images

Spam Ham Spam Ham
9173 2479 1802 151

Fig. 7 Some examples of ham images of the dataset used in our tests

Each single classifier was first trained on a set of 1000 mails (500 for each class)
different from those belonging to the dataset in Table 2. After completing the clas-
sifiers’ training, the whole dataset was split into two distinct subsets. Then, two
experiments have been done, each using one subset for training the BKS rule and
the other subset for testing. The results of the proposed system have been finally
summarized in the value of the classification accuracy, reported on the test set, and
compared with those obtained by the single classifiers.

In Fig. 9 the performance of single classifiers and that of the proposed system
are reported. It can be noted that the use of the BKS significantly improves the
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Fig. 8 Some examples of spam images of the dataset used in our tests

performance of the single classifiers. It must be remarked, in fact, that the visual-
based classifier operates on a subset of the whole dataset (only 1953 mails out of
11652). It is also interesting to note that the number of BKS units that are really
activated on the whole dataset is only 18, while their total number is 34, i.e., 81.
This confirms conclusions made in the previous section.

Finally, in Fig. 10 we report a comparison of the results obtained by our system
with those of SpamAssassin in its standard configuration and equipped with two
plug-ins devised for filtering image spam , namely Bayes-OCR4 and Fuzzy-OCR.

It clearly appears that our approach significantly outperforms both Bayes-OCR
and Fuzzy-OCR, by reaching a significantly higher accuracy. Finally, note the time
needed for processing the whole dataset by our system is practically the same as the
time spent by SpamAssassin with Fuzzy-OCR, while it is significantly faster than
SpamAssassin equipped with Bayes-OCR.

4 This plug-in is available for download at the
URL: http://prag.diee.unica.it/n3ws1t0/?q=node/107
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Fig. 9 The accuracy of the four considered single classifiers and of the proposed system.
Note that the last two single classifiers - third and fourth rows - processed only e-mails with
attached images

Fig. 10 Comparison between the proposed system and SpamAssassin with Bayes-OCR and
Fuzzy-OCR plug-ins

8 Conclusion

In this chapter we presented an approach for addressing the spam e-mail problems,
which takes into account some of the recent evolutions of the spammers’ tricks as
well as the limits of the known methodologies. We proposed to combine visual clues
with the semantic information related to the e-mail body by using the Behaviour
Knowledge Space rule. This approach allowed us to easily include new modules in
our architecture that could be required for addressing new spammers’ tricks.

Tests on a dataset of e-mails containing attached images confirmed the effective-
ness of the approach and its superiority over the widely used open-source tool such
as SpamAssassin.
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Since the proposed approach has been mainly designed for deploying a personal
antispam system, in the future we want to investigate how it is possible to further
improve its performance by customizing it for a specific user. This could be done
by developing a specific module for taking into account spam images received by
the user A that are considered as ham by the user B, such as, for example, those
related to a phishing attack against the user A. Moreover, we have planned to better
characterize the contribution in terms of CPU time of the various component of our
architecture in order to find the best tradeoff between accuracy and computational
complexity.
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Weighted Decoding ECOC for Facial Action
Unit Classification

Terry Windeatt

Abstract. There are two approaches to automating the task of facial expression
recognition, the first concentrating on what meaning is conveyed by facial expres-
sion and the second on categorising deformation and motion into visual classes.
The latter approach has the advantage that the interpretation of facial expression is
decoupled from individual actions as in FACS (Facial Action Coding System). In
this chapter, upper face action units (aus) are classified using an ensemble of MLP
base classifiers with feature ranking based on PCA components. When posed as a
multi-class problem using Error-Correcting-Output-Coding (ECOC), experimental
results on Cohn-Kanade database demonstrate that error rates comparable to two-
class problems (one-versus-rest) may be obtained. The ECOC coding and decoding
strategies are discussed in detail, and a novel weighted decoding approach is shown
to outperform conventional ECOC decoding. Furthermore, base classifiers are tuned
using the ensemble Out-of-Bootstrap estimate, for which purpose, ECOC decoding
is modified. The error rates obtained for six upper face aus around the eyes are
believed to be among the best for this database.

1 Introduction

The topic of this chapter concerns solving a supervised learning problem in face ex-
pression recognition using a combination of neural network classifiers. In the case
of face recognition, pattern features consist of real numbers representing different
aspects of facial features, as described in Sect. 4. In order to design the learning sys-
tem we follow the well established technique of dividing the example patterns into
two sets, a training set to design the classifier and a test set, which is subsequently
used to predict the performance when previously unseen examples are applied.

Multiple Classifier Systems (MCS) have become an established method for im-
proving generalisation performance over a single classifier, and the relevant aspects
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are discussed in Sect. 2. The single classifier performance can be quite sensitive to
classifier parameters, and it has previously been shown [36] that an ensemble is less
sensitive to base classifier complexity. However, even though an ensemble is less
likely to over-fit, there is still the difficulty of tuning individual classifier param-
eters with respect to ensemble performance. Multi-layer perceptrons (MLP) make
powerful classifiers that may provide superior performance compared with other
classifiers, but are often criticized for the number of free parameters. The common
approach to adjusting parameters is to further divide the training set into two to pro-
duce a validation set. When the number of examples is in short supply, cross-fold
validation may be used. For example, in n-fold cross-validation, the set is randomly
split into n equal parts with (n-1) parts used for training and one part used as a vali-
dation set to tune parameters. Training is repeated n times with a different partition
each time, and the results averaged. However, it is known that these approaches to
validation are either inappropriate or very time-consuming. Ideally all the training
set should be used for training, so that there is no need for validation. However, this
requires that over-fitting be detected by looking at performance on only the training
set, which is a difficult problem. In this chapter the OOB estimate (Sect. 2), is used
to determine optimal parameters from the training set.

The problem of face expression recognition is difficult because facial expression
depends on age, ethnicity, gender, occlusions as well as pose and lighting variation
[41]. Facial action unit (au) classification is an approach to face expression recogni-
tion that decouples the recognition of expression from individual actions. In FACS
(facial action coding system) [27] the problem is decomposed into forty-four facial
action units, that includes six upper face aus around the eyes. This approach has
the potential of being applied to a much richer set of applications than an approach
that targets facial expression directly. However, the coding process requires skilled
practitioners and is time-consuming so that typically there are a limited number of
training patterns.

There are various approaches to determining features for discriminating between
aus. Originally, features were based on geometric measurements of the face that
were involved in the au of interest [27]. For example, features were extracted based
upon whether the eyes were open or closed, the degree of eye opening, and the loca-
tion and radius of the iris. More recently, holistic approaches based on PCA, Gabor
[11] and Haar wavelets represent a more general approach to extracting features [2],
and have been shown to give comparable results. The difficulty with these latter ap-
proaches is the large number of features. When combined with the limited number
of patterns, this can lead to the small sample-size problem, that is when the number
of patterns is less than or comparable to the number of features. A method of elimi-
nating irrelevant features is therefore required [3, 26]. In this chapter the Out-of-Bag
error estimate is used to optimise the number of features.

In previous work [41, 42] five feature ranking schemes were compared
using Gabor features in an MLP ensemble. The schemes were Recursive Feature
Elimination (RFE) [14] (Sect. 4) combined with MLP weights and noisy bootstrap,
Boosting (single feature selected each round), one-dimensional class-separability
measure and Sequential Floating Forward Search (SFFS). A full description of these
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feature selection techniques may be found in [41]. MLP weights combined with
RFE, Sect. 5, perform well for feature selection, even though it is known that MLP
weights are not good at selecting most relevant features [32]. It was shown that
ensemble performance is relatively insensitive to the feature-ranking method with
simple one-dimensional performing at least as well as multi-dimensional schemes.
This was a somewhat surprising conclusion, since it is known that sophisticated
multi-dimensional schemes out-perform one-dimensional schemes for single clas-
sifiers [14]. It was also shown that the ensemble using PCA features with its own
inherent ranking outperformed Gabor.

Error-Correcting Output Coding (ECOC) is a well-established method [9, 39]
for solving multi-class problems by decomposition into complementary two-class
problems, and is fully discussed in Sect. 3. However, the idea behind ECOC is quite
simple and so we introduce the main concept here. ECOC is a two-stage process,
coding followed by decoding. The coding step is defined by the binary k×b code
word matrix C that has one row (codeword) for each of k classes, with each column
defining one of b sub-problems that use a different labeling. Assuming each element
of C is a binary variable z a training pattern with target class ωl for l = 1...k is re-
labeled as class Ω1 if Ci j = z and as class Ω2 if Ci j = z. The two super-classes
Ω1 and Ω2 represent, for each column, a different decomposition of the original
problem. For example, if a column of C is given by [01001]T , this would naturally
be interpreted as patterns from class 2 and 5 being assigned to Ω1 with remaining
patterns assigned to Ω2. This is in contrast to the conventional One-versus-rest code,
which can be defined by the diagonal k× k code matrix. In the decoding step, an
unknown pattern is classified according to closest codeword.

In this chapter, features based on Principal Components Analysis (PCA) are used
with Error Correcting Output Coding (ECOC) and a weighted decoding strategy
based on bootstrapping individual base classifiers is proposed. The principle behind
weighted decoding is to reward classifiers that perform well. The weights in this
study are fixed in the sense that none change as a function of the particular pat-
tern being classified. Sometimes this is referred to as implicit data-dependence or
constant weighting. It is generally recognized that a weighed combination may in
principle be superior, but it is not easy to estimate the weights.

Although this chapter employs MLP ensembles, the techniques for OOB, fea-
ture selection and ECOC weighted decoding are suitable for any base classifier. The
chapter is organised as follows. Section 2 discusses ensemble techniques and Boot-
strapping , Sect. 3 the ECOC method including weighted decoding, Sect. 4 describes
the database and design decisions for au classification , and Sect. 5 compares 2-class
classification with weighted and conventional ECOC decoding.

2 Ensembles and Bootstrapping

For some classification problems, both two class and multiclass, it is known that
the lowest error rate is not always reliably achieved by trying to design a single best
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classifier. An alternative approach is to employ a set of relatively simple sub-optimal
classifiers and to determine a combining strategy that pools together the results. Al-
though various systems of multiple classifiers have been proposed, most use similar
constituent classifiers, which are often called base classifiers . A necessary condi-
tion for improvement by combining is that the results of the base classifiers are not
too well correlated, as discussed in [34]. There are some popular approaches for re-
ducing correlation that are based on perturbing feature sets, perturbing training sets
or injecting randomness [10]. For example two well-known training set perturbation
methods are Bagging [4] and Boosting [13] . All these perturbation techniques have
in common that each base classifier handles the same problem in the sense that the
class labelling is identical. There is another type of correlation reduction technique,
aimed solely at multiclass problems, that perturbs class labels. In a method like Er-
ror Correcting Output Coding (ECOC) each base classifier solves a sub-problem
that uses a different class labelling. Techniques like binary decision clustering [33]
and pairwise coupling [16] may also be considered in this category.

The architecture envisaged is a simple MCS framework in which there are par-
allel MLP base classifiers , as shown in Fig. 1. For realistic problems, slow con-
vergence and lack of guarantee of global minima are drawbacks of MLP training
[37]. An MLP Ensemble offers a way of solving some of these problems [15]. The
rationale is that it may be easier to optimise the design of a combination of rela-
tively simple MLP classifiers than to optimise the design of a single complex MLP
classifier. An MLP with random starting weights is a suitable base classifier since
randomisation is known to be beneficial in the MCS context. Problems of local min-
ima and computational slowness may be alleviated by the MCS approach of pooling
together the decisions obtained from locally optimal classifiers. However, there is
still the problem of tuning base classifiers.

Although it is known that diversity among base classifiers is a necessary condi-
tion for improvement in ensemble performance, there is no general agreement about
how to quantify the notion of diversity among a set of classifiers. Experimental ev-
idence in [21] casts doubt on the usefulness of diversity measures for predicting
ensemble accuracy. Diversity measures can be categorised into pair-wise and non-
pair-wise, but to apply pair-wise measures to finding overall diversity it is necessary
to average over the classifier set. These pair-wise diversity measures are normally
computed between pairs of classifiers and take no account explicitly of the target
labels. As explained in [35], the accuracy-diversity dilemma arises because when
base classifiers become very accurate their diversity must decrease, so that it is ex-
pected that there will be a trade-off. A class separability measure that combines
accuracy and diversity for two-class problems is described in [36]. For two-class
problems, over-fitting may be detected by observing the class separability measure
computed on the training set as it varies with base classifier complexity. In this chap-
ter a modified version of the class separability measure is proposed in Sect. 3.4 for
the weighted decoding strategy.

Bootstrapping is an ensemble technique which implies that if µ training patterns
are randomly sampled with replacement, (1− 1/µ)µ ≈ 37% of them are removed
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Fig. 1 Ensemble MLP architecture

with remaining patterns occurring one or more times. An advantage of Bootstrap-
ping is that the Out-of-Bootstrap (OOB) error estimate may be used to tune base
classifier parameters, and furthermore, the OOB is a good estimator of when to stop
eliminating features [40]. Normally, deciding when to stop eliminating irrelevant
features is difficult and requires a validation set or cross-validation techniques. The
base classifier OOB estimate uses the patterns left out of training, and should be
distinguished from the ensemble OOB. For the ensemble OOB, all training patterns
contribute to the estimate, but the only participating classifiers for each pattern are
those that have not been used with that pattern for training (that is, approximately
thirty-seven percent of classifiers). Note that OOB gives a biased estimate of the
absolute value of generalisation error [5], but for tuning purposes the estimate of the
absolute value is not important. The ensemble OOB estimate is incorporated into
the ECOC decoding strategy in Sect. 3.2.

3 Error-Correcting Output Coding ECOC

There are several reasons for decomposing the original multiclass problem into sep-
arate and complementary two-class problems. Firstly, some accurate and efficient
two-class classifiers do not naturally scale up to multiclass. Attention can then be
focused on developing an effective technique for the two-class case, without hav-
ing to consider explicitly the design and automation of the multiclass classifier. It
is also hoped that the parameters of a simple classifier run several times are easier
to determine than a complex classifier run once and may facilitate more efficient
solutions. Finally, solving different 2-class sub-problems, perhaps repeatedly with
random perturbation, may help to reduce error in the original problem.

It needs to be remembered however, that even if ECOC successfully produces
accurate and diverse classifiers, there is still the need to choose or design a suitable
combining strategy. Bagging and Boosting originally used respectively the major-
ity and weighted vote, which are both hard-level combining strategies. By hard-
level we mean that a single-hypothesis decision is taken for each base classifier, in
contrast with soft-level which implies a measure of confidence associated with the
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decision. The ECOC method was originally motivated by error-correcting princi-
ples, as discussed in Sect. 3.1 and used a Hamming Distance-based hard-level com-
bining strategy. When it could be shown that ECOC produced reliable probability
estimates [20], the decision-making strategy was changed to soft-level (L1 norm
Eq. (2)).

3.1 Motivation

First let us motivate the need for a suitable output coding by discussing the case of
Multi-layer Perceptron (MLP) network. A single multiple output MLP can handle a
multiclass problem directly. The standard technique is to use a k-dimensional binary
target vector that represents each one of k classes using a single binary value at the
corresponding position, for example [0, ...0,1,0, ...0] which is sometimes referred
to as one-per-class (OPC) encoding. The reason that a single multiclass MLP is
not a suitable candidate for use as a base classifier is that all nodes share in the
same training, so errors are far from independent and there is not much benefit to
be gained from combining. However a 2-class MLP is a suitable base classifier, and
independence among classifiers is achieved by the problem decomposition defined
by the coding method, as well as by injection of randomness through the starting
weights. Of course, no guarantee can be given that a single MLP with superior
performance will not be found, but the assumption is that even if one exists its
parameters would be more difficult to determine.

An alternative to OPC is distributed output coding [25], in which k binary vectors
are assigned to the k classes on the basis of meaningful features corresponding to
each bit position. For this to provide a suitable decomposition some domain knowl-
edge is required so that each classifier output can be interpreted as a binary feature
which indicates the presence or otherwise of a useful feature of the problem at hand.
The vectors are treated as code words so that a test pattern is assigned to the class
that is closest to the corresponding code word. It is this method of assigning, which
is analogous to the assignment stage of error-correcting coding, that provides the
motivation for employing ECOC in classification .

The first stage of the ECOC method, as described in Sect. 3.2, gives a strategy
to decompose a multiclass problem into complementary two-class sub-problems.
The second stage of the ECOC method is the decoding step, which was originally
based on error-correcting principles under the assumption that the learning task can
be modelled as a communication problem, in which class information is transmitted
over a channel [8]. In this model, errors introduced into the process arise from var-
ious sources including the learning algorithm, features and finite training sample.
The motivation for encoding multiple classifiers using an error-correcting code with
Hamming Distance-based decoding was to provide error insensitivity with respect to
individual classification errors. From the transmission channel viewpoint, we would
expect that the one-per-class and distributed output coding matrices would not per-
form as well as the ECOC matrix, because of inferior error-correcting capability.
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3.2 ECOC Algorithm and OOB Estimate

In the ECOC method, a k×b binary code word matrix C has one row (code word)
for each of k classes, with each column defining one of b sub-problems that use
a different labelling. Specifically, for the jth sub-problem, a training pattern with
target class wi (i = 1...k) is re-labelled either as class Ω1 or as class Ω2 depending
on the value of Ci j (typically zero or one). One way of looking at the re-labelling
is to consider that for each column the k classes are arranged into two super-classes
Ω1 and Ω2.

A test pattern is applied to the b trained classifiers forming vector

y = [y1,y2, ...yb]T , (1)

in which y j is the real-valued output of jth base classifier.
The distance between output vector and code word for each class is given by

L1
i =

b

∑
j=1
|Ci j− y j| . (2)

Equation (2) represents the L1 norm or Minkowski distance, but if y j in Eq. (2)
is taken as binary decision, this reduces to Hamming Distance. The decoding rule is
to assign a test pattern to the class corresponding to closest code word argmini(L1

i ).
A diagrammatic representation of the decoding step for a three class problem

is given in Fig. 2, in which the test pattern is assigned to the code word that has
minimum Hamming Distance compared with ECOC ensemble outputs.

Fig. 2 Representation of the Hamming-based decoding step for a three class problem

To obtain the ensemble OOB estimate, the pth pattern is classified using only
those classifiers that are in the set OOBm, defined as the set of classifiers for which
the pth pattern is out-of-bootstrap. For the OOB estimate, the summation in Eq. (2)
is therefore modified to
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L1
i = ∑

j∈OOBm

|Ci j− y j| . (3)

In other words it is necessary, for each pattern, to remember which classifier
used that pattern for training. In the decoding step the columns of ECOC matrix C
are removed if they correspond to classifiers that used the pth pattern for training.
Therefore, on average, the column size of the C is about one third of the total number
of classifiers.

3.3 Coding Strategies and Errors

When the ECOC technique was first developed it was believed that the ECOC code
matrix should be designed to have certain properties to enable it to generalise well
[9]. Various coding strategies have been proposed, but most ECOC code matri-
ces that have been investigated previously are binary and problem-independent,
that is pre-designed. Random codes have received much attention, and were first
mentioned in [8] as performing well in comparison with error-correcting codes.
In [9] random, exhaustive, hill-climbing search and BCH (Bose-Ray-Chaudhuri-
Hocquenghem) coding methods were used to produce ECOC code matrices for
different column lengths. Random codes were investigated in [24] for combining
Boosting with ECOC, and it was shown that a random code with a near equal col-
umn split of labels was theoretically better. Random codes were also shown in [18]
to give Bayesian performance if pairs of code words were equidistant, and it was
claimed that a long enough random code would not be outperformed by a pre-
defined code. In [38] a random assignment of class to codeword was suggested in
order to reduce sensitivity to code word selection.

According to error-correcting theory, an ECOC matrix designed to have d bits
error-correcting capability will have a minimum Hamming Distance 2d +1 between
any pair of code words. Assuming each bit is transmitted independently, it is then
possible to correct a received pattern having d or fewer bits in error, by assigning
the pattern to the code word closest in Hamming distance.

While in practice errors are not independent, the experimental evidence is that
application of the ECOC method does lead to reduced test error rate. From the
perspective of error-correcting theory, it is therefore desirable to use a matrix C
containing code words having high minimum Hamming Distance between any pair.
Besides the intuitive reason based on error-correcting theory, this distance property
has been confirmed from other perspectives. In [1] it was shown that a high mini-
mum distance between any pair implies a reduced upper bound on the generalisation
error, and in [18] it was shown for a random matrix that if the code is equidistant,
then decision-making is optimum.

Maximising Hamming Distance between any pair of code words is intended to
remove individual classification errors on the re-labelled training sets, but even if
classifiers are perfect (Bayesian) there will still be errors due to decoding. The
decoding errors can be categorised into those due to inability of sub-problems to
represent the main problem, and those due to the distance-based decision rule.
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Sub-problems are more independent and likely to benefit from combining if Ham-
ming distance between columns is maximised, remembering that a column and its
complement represent identical classification problems [9]. The distance-based ef-
fect on decoding error can be understood by analysing the relationship between
decoding strategy and Bayes decision rule. Consider that the decomposition of a
multiclass classification problem into binary sub-problems in ECOC can be inter-
preted as a transformation between spaces from the original output q to p, given in
matrix form by

p = CT q , (4)

where q are individual class probabilities.
Using the distance-based decision rule from (Eq. (2)) and Eq. (4)

L1
i =

b

∑
j=1

|(
k

∑
l=1

qlCl j)−Ci j| (5)

and knowing that ∑k
l=1 ql = 1, we have

L1
i = (1−qi)

b

∑
j=1

|Ci j−Cl j)| . (6)

From Eq. (6), we see that L1
i is the product of 1− qi and Hamming Distance

between code words. When all pairs of code words are equidistant, minimising L1

implies maximising posterior probability which is equivalent to Bayes rule

argmax
i

(qi) = argmin
i

(L1
i ) . (7)

From the foregoing discussion, the main considerations in designing ECOC ma-
trices are as follows

• minimum Hamming Distance between rows (error-correcting capability),
• variation of Hamming Distance between rows (effectiveness of decoding),
• number of columns (repetition of different parts of sub-problems),
• Hamming Distance between columns and complement of columns (indepen-

dence of base classifiers).

From the theory of error-correcting codes [23] we know that finding a matrix
with long code words, and having maximum and equal distance between all pairs of
rows is complex. In [39] we compare random, equidistant and non-equidistant code
matrices as number of columns is varied, but do not address explicitly the distance
requirement between columns. Lack of experimental results on equidistant codes
in previous work can be attributed to the difficulty in producing them. In [39] we
produced equidistant codes by using the BCH method [23], which employs alge-
braic techniques from Galois field theory. Although BCH has been used before for
ECOC, our implementation was different in that we first over-produced the number
of rows (BCH requires number to be power of 2), before selecting a subset of rows.
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Although various heuristics have been employed to produce better binary prob-
lem independent codes there appears to be little evidence to suggest that perfor-
mance significantly improves by a clever choice of code [8, 9]. A three-valued code
[1] was suggested which allows specified classes to be omitted from consideration
(don’t care for third value), thereby permitting integrated representation of methods
such as all-pairs-of-classes [16]. Theoretical and experimental evidence indicates
that, providing a problem-independent code is long enough and base classifier is
powerful enough, performance is not much affected [18]. In this chapter, a random
code with near equal split of labels in each column is used with b = 200 and k = 12.

In [7] problem-dependent codes were investigated and it is claimed that designed
continuous codes show more promise than designed discrete codes. A sub-class
problem-dependent code design is suggested in [12], in which SFFS is used to
split classes based on maximising mutual information between data and respective
class labels. In this chapter, it is proposed that a useful way to consider problem-
dependence is to consider it as a generate-and-test search in the coding-decoding
strategy. The question then is to decide how much intelligence is put into the coding
or the decoding step. In Section 3.4, we discuss a method of problem-dependent
decoding, that uses a random code with weighted decoding.

3.4 Weighted Decoding

One way to introduce problem-dependence is through the decoding scheme. First,
consider a modification of the decoding step in which each column of the ECOC
matrix is weighted. In the test phase, if the jth classifier produces an estimated
probability q̂ j that a test pattern comes from the super-class defined by the jth de-
composition. The pth test pattern is assigned to the closest code word, for which
weighted distance of the pth pattern to the ith code word is defined as

Dpi =
B

∑
j=1

α jl |Ci j− q̂p j| , (8)

where l = 1, . . . ,k and α jl in Eq. (8) allows for lth class and jth classifier to be
assigned a different weight.

Although this appears to be an obvious way to introduce weighted decoding,
there is a difficulty in estimation of the values of the weights. In this chapter we
propose a different weighted decoding scheme, that treats the outputs of the base
classifiers as binary features [43]. By using the diagonal matrix Ci j = 1 if and only if
i = j the problem is recoded as k 2-class problems where each problem is defined by
a different binary-to-binary mapping. There are many strategies that may be used to
learn this mapping, but we use a weighted vote with weights set by class-separability
measure applied to the training data, which was defined in [36].

Let zm j indicate the binary output of the jth classifier applied to the mth training
pattern, so that the output of base classifiers for the mth pattern is given by

zm = [zm1,zm2, ...zmb]T . (9)
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Assuming in Eq. (9) that a value of 1 indicates agreement of the output with target
label and 0 disagreement, we can define counts for jth classifier as follows

N11
j = zm j ∧ zn j

N00
j = z̄m j ∧ z̄n j

where the mth and nth pattern are chosen from different classes.
The weight for the jth output is then defined as

wj =
1
K

(
∑

all pairs

N11
j − ∑

all pairs

N00
j

)
, (10)

where K is a normalization constant and the summation is over all pairs of patterns
from different class.

The motivation behind Eq. (10) is that the weight is computed as the difference
between positive and negative correlation with respect to target class. In [36] this is
shown to be a measure of class separability.

4 Dataset and Feature Extraction

The Cohn-Kanade database [19] contains posed expression sequences from a frontal
camera from 97 university students. Each sequence goes from neutral to target dis-
play but only the last image is au coded. Facial expressions in general contain com-
binations of action units (aus), and in some cases aus are non-additive (one action
unit is dependent on another). To automate the task of au classification, a num-
ber of design decisions need to be made, which relate to the following 1) subset
of image sequences chosen from the database, 2) whether or not the neutral im-
age is included in training, 3)image resolution, 4)normalisation procedure, 5)size
of window extracted from the image, if at all, 6) features chosen for discrimination.
Furthermore classifier type/parameters, and training/testing protocol need to be cho-
sen. Researchers choose different decisions in these areas, and in some cases are not
explicit about which choice has been made. Therefore it is difficult to make a fair
comparison with previous results.

We concentrate on the upper face around the eyes, involving au1(inner brow
raised), au2(outer brow raised), au4(brow lowered), au5(upper eyelid raised),
au6(cheek raised), and au7(lower eyelid tightened). We use the MLP ensemble,
given in Fig. 1 and random training/test split of 90/10 repeated twenty times and
averaged. Other decisions we made were:

1. All image sequences of size 640 x 480 chosen
2. Last image in sequence (no neutral) chosen giving 424 images, 115 containing

au1
3. Full image resolution, no compression
4. Manually located eye centres plus rotation/scaling into 2 common eye coordi-

nates
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5. Window extracted of size 150 x 75 pixels centred on eye coordinates
6. Principal Components Analysis (PCA) applied to raw image with PCA ordering

With reference to decision 2, some studies use only the last image in the sequence
but others use the neutral image to increase the numbers of non-aus. Furthermore,
some researchers consider only images with single au, while others use combina-
tions of aus. We consider the more difficult problem, in which neutral images are
excluded and images contain combinations of aus. With reference to decision 4
there are different approaches to normalisation and extraction of the relevant facial
region. To ensure that our results are independent of any eye detection software, we
manually annotate the eye centres of all images, and subsequently rotate and scale
the images to align the eye centres horizontally. A further problem is that some pa-
pers only report overall error rate. This may be misleading since class distributions
are unequal, and it is possible to get an apparently low error rate by a simplistic
classifier that classifies all images as non-au. For the reason we report area under
ROC curve, similar to [3].

With reference to decision 6, PCA, or Karhunen-Loeve expansion [29], is a well-
known statistical method that was applied to the coding and decoding of images in
[30]. PCA minimises mean-squared error when a finite number of basis functions
are used in the expansion. Furthermore the entropy, defined in terms of average
squared coefficients used in the expansion, is also minimised. The latter property is
desirable for pattern recognition, in that features are clustered in the dimensionality
reduction process. In the context of face recognition, the principal components of the
distribution of faces are found, which is equivalent to finding the eigenvectors of the
set of face images. Each face image in the training set may be represented by a linear
combination of the ’eigenfaces’, which is the name given to each eigenvector in the
context of facial decomposition. The corresponding eigenvalues give a numerical
value of the importance of each eigenface for reconstruction of the original images.
Our purpose is not reconstruction, but we can characterise each image by the highest
eigenvalues thereby reducing dimensionality.

A summary of the method follows, but for full details see reference [30]. First
each 2-dim array of pixels of the window defined in decision 5 is represented by
a 1-dimensional vector of size 150 x 75 = 11250. Now it is desired to find the µ
orthonormal vectors u j with associated eigenvalues λ j of the covariance matrix W
of the training set. Given the training set of vectors xi, i = 1, . . . ,µ , xi ∈ RD,each
belonging to one of k classes {ω1,ω2, . . . ,ωk}, we compute the mean face image
given by

xmean = 1/µ
µ

∑
i=1

xi . (11)

The mean image in Eq. (11) is subtracted from each training set image to give

ti = xi− xmean . (12)
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Now the covariance matrix is given by

W = 1/µ
µ

∑
i=1

titi
T = BBT (13)

where B = [t1t2 . . . tµ ] and W is size D×D. Following [30], we solve the simpler
problem BT B, which is µ× µ , for obtaining the eigenvectors and eigenvalues.

Now the eigenvalues may be sorted to indicate the order of significance of the
eigenvectors. Thus each face image is represented by the set of real numbers, or
weights, corresponding to the P most significant eigenvalues, where P is to be de-
termined experimentally (using OOB). The low-dimensional representation of each
training pattern ti, given by uT

k (ti−xmean) for k = 1 . . .P is used to train the network.
An unknown test pattern tT is projected using uT

k (tT −xmean) for k = 1 . . .P and input
to the trained network for classification.

The ultimate goal in au classification is to detect combination of aus. In the
ECOC approach, a random 200× 12 code matrix is used to treat each au combi-
nation as a different class. After removing classes with less than four patterns this
gives a 12-class problem with au combinations as shown in Table 1. In Sect. 5,
to compare the ECOC results with 2-class classification, we compute test error by
interpreting super-classes as 2-class problems, defined as either containing or not
containing respective au. For example, sc2, sc3, sc6, sc11, sc12 in Table 1 are inter-
preted as au1, and remaining super-classes as non-au1.

Table 1 ECOC super-classes of action units and number of patterns

ID sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10 sc11 sc12

au {} 1,2 1,2,5 4 6 1,4 1,4,7 4,7 4,6,7 6,7 1 1,2,4
#pat 149 21 44 26 64 18 10 39 16 7 6 4

5 Experiments on Cohn-Kanade Database

This section contains three sets of example experiments aimed at 2-class and multi-
class formulations of au classification, for the Cohn-Kanade database described in
Sect. 4. The goal is to demonstrate that weighted decoding ECOC outperforms con-
ventional ECOC decoding, when base classifiers are tuned using OOB estimate.
For experiments on UCI benchmark data [22] that demonstrate the use of OOB for
ECOC ensemble design and provide an experimental comparison of feature selec-
tion schemes for ECOC ensembles, the reader is referred to [40, 42].

In the experiments in this section, the MLP ensemble uses two hundred single
hidden-layer MLP base classifiers , with Levenberg-Marquardt training algorithm
[17] and default parameters. Random perturbation of the MLP base classifiers is
caused by different starting weights on each run, combined with bootstrapped train-
ing patterns. In our framework, we vary the number of hidden nodes, with a single
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Fig. 3 Mean test error rates, True Positive and area under ROC for RFE MLP ensemble au1
classification for 90/10 and 50/50 train/test splits

node for linear perceptron, and keep the number of training epochs fixed at 20. For
a comparison of feature extraction, the first experiment uses Gabor features [11],
which have generally been found to give better performance than PCA for single
classifiers [28]. The second and third experiments use PCA as described in Sect. 4.

In the first experiment, which comes from [41], we use RFE with MLP weights
to rank Gabor features. RFE is a simple algorithm [14], and operates recursively as
follows:

1. Rank the features according to a suitable feature-ranking method
2. Identify and remove the r least ranked features

If r ≥ 2, which is usually desirable from an efficiency viewpoint, this produces
a feature subset ranking. The main advantage of RFE is that the only requirement
to be successful is that at each recursion the least ranked subset does not contain a

Table 2 Mean best test error rates for 2-class problems and area under ROC showing
nodes/features for au classification with optimized PCA features and MLP ensemble

Test error % Area under ROC

au1 9.4/16/28 0.97/16/36
au2 3.5/4/36 0.99/16/22
au4 9.1/16/36 0.95/16/46
au5 5.5/1/46 0.97/1/46
au6 10.5/1/36 0.94/4/28
au7 10.3/1/28 0.92/16/60
mean 8.1 0.96
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Fig. 4 Area under ROC at logarithmic scale for weighted decoding ECOC MLP ensemble
(the number of hidden nodes tried was 1, 4, and 16), trained for 20 epochs versus the number
of PCA features extracted

Table 3 Mean best test error rates and area under ROC for ECOC L1 norm decoding showing
nodes/features for au classification with optimized PCA features and MLP ensemble

Test error % Area under ROC

au1 10.3/1/10 0.92/16/46
au2 3.4/1/36 0.96/16/28
au4 12.0/16/28 0.92/4/28
au5 3.6/16/36 0.99/1/36
au6 13.1/1/77 0.88/1/77
au7 11.6/1/28 0.89/4/46
mean 9.0 0.93

strongly relevant feature [44]. It was found that lower test error was obtained with
non-linear base classifier and Fig. 3 shows test error rates, using an MLP ensemble
with 16 nodes. The minimum base error rate for 90/10 split is 16.5 percent achieved
for 28 features, while the ensemble is 10.0 percent at 28 features. Note that for 50/50
split there are too few training patterns for feature selection to have much effect.
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Table 4 Mean best test error rates and area under ROC for ECOC weighted decoding show-
ing nodes/features for au classification with optimized PCA features and MLP ensemble

Weighted error % Weighted ROC

au1 9.2/4/36 0.94/16/36
au2 2.8/16/22 0.98/1/46
au4 9.5/1/28 0.94/4/28
au5 3.2/1/36 0.99/1/36
au6 12.8/1/77 0.90/1/28
au7 10.9/4/46 0.92/1/36
mean 8.1 0.95

Since class distributions are unbalanced, the overall error rate may be mis-leading,
as explained in Sect. 4. Therefore, we show the true positive rate in Fig. 3 c) and area
under ROC in Fig. 3 d). Note that only 71 percent of au1s are correctly recognised.
However, by changing the threshold for calculating the ROC, it is clearly possible
to increase the true positive rate at the expense of false negatives.

The second set of experiments detects au1, au2, au4, au5, au6, au7 using six dif-
ferent 2-class classification problems, where the second class contains all patterns
not containing respective au. The MLP ensemble uses majority vote combining rule
and PCA features are used to train the base classifiers . The best error rate of 9.4
percent for au1 was obtained with 16 nodes and 28 features. The 9.4 percent error
rate for au1 is equivalent to 73 percent of au1s correctly recognised. The best en-
semble error rate, area under ROC with number of features and number of nodes
for all upper face aus are shown in Table 2. Note that number of nodes for best area
under ROC is generally higher than for best error rate, indicating that error rate is
more likely to be susceptible to over-fitting.

The third set of experiments uses ECOC method described in Sect. 3, and Fig. 4
shows area under ROC for the six aus, as number of PCA features is reduced. Ta-
ble 3 shows best L1 norm decoding classification error and area under ROC, while
Table 4 shows respective weighted decoding. It may be seen that weighted consis-
tently outperforms L1 norm decoding. Also it may be seen from Table 2 that 2-class
classification with optimized PCA features on average slightly outperforms ECOC.
However, the advantage of ECOC is that all problems are solved simultaneously, and
furthermore the combination of aus is recognized. As a 12-class problem, the mean
best error rate over the twelve classes defined in Table 1 is 38.2 percent, showing
that recognition of combination of aus is a difficult problem.

6 Discussion

The results for upper face aus, shown in Table 2 and Table 4, are believed to be
among the best on this database (recognising the difficulty of making fair compari-
son as explained in Sect. 3).There are two possible reasons why the ECOC decoding



Weighted Decoding ECOC for Facial Action Unit Classification 75

strategy works well. Firstly, the data is projected into a high-dimensional space
and therefore more likely to be linearly separable [6]. Secondly, although the full
training set is used to estimate the weights, each base classifier is bootstrapped and
therefore is trained on a subset of the data, which guards against overfitting. As
indicated in Sect. 2, bootstrapping also facilitates the OOB estimate for removing
irrelevant features without validation.

7 Conclusion

In this chapter, an information theoretic approach of coding and decoding has been
applied to both feature extraction and multi-class classification. For upper face
au classification, weighted decoding ECOC achieves comparable performance to
optimized 2-class classifiers. However, ECOC has the advantage that all aus are de-
tected simultaneously, and further work is aimed at determining whether problem-
dependent rather than random codes can improve results. Furthermore, the ultimate
aim of this work is to apply the technique to improve robustness of face verification
systems, and to better recognise driver fatigue.
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Prediction of Gene Function Using Ensembles of
SVMs and Heterogeneous Data Sources

Matteo Re and Giorgio Valentini

Abstract. The ever increasing amount of biomolecular data available in public
domain databases for a broad range of organisms coupled with recent advances
in machine learning research has stimulated interest in computational approaches
on gene function prediction. In this context data integration from heterogeneous
biomolecular data sources plays a key role. In this contribution we test the perfor-
mance of several ensembles of SVM classifiers, in which each component learner
has been trained on different types of data, and then combined using different ag-
gregation techniques. The compared combination methods are the widely adopted
linear weighted combination, the logarithmic weighted combination and the simi-
larity based decision template approach. The results show that heterogeneous data
integration through ensemble methods represents a valuable research line in gene
function prediction .

1 Introduction

Functional classification of unannotated genes and the improvement of the existing
gene functional annotation catalogs, are of capital importance in modern functional
genomics and bioinformatics. Gene functional classification may provide useful in-
sights in pharmacogenomics, being able to provide indications for the development
of target specific drugs. More in general, it plays a key role in molecular biology,
given its ability to detect previously unknown role of genes and their products in
physiological and pathological processes.

Nevertheless, the application of automated systems in this research area is
strongly limited by the intrinsic difficulty of this task, which is mainly caused
by the natural heterogeneity of the involved data. Different types of biomolecu-
lar data, ranging from expression profiles to phylogenetic gene-specific evolution
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rates and many others can in principle provide useful information for the automated
assessment of the functional role of genes. The extent of the degree to which the
presence of a specific type of experimental data could result in the improvement of
classification performance is expected to vary according to the specific gene and the
particular bio molecular process under investigation.

Several approaches for heterogeneous biomolecular data integration have been
proposed in the literature. The first one corresponds to the ”early integration”
technique, by which different vectorial data are concatenated [9]. Other methods
are based on modeling networks of functional relationships between proteins; in
this context graphical models provide a probabilistic framework for data integra-
tion [16]. Kernel methods and techniques based on kernel fusion methods represent
another important research area with significant applications in the integration of
different bio-molecular data sources for gene function prediction [8] .

In the aforementioned scenario the application of methods able to deal with both
different data sources and the problem to integrate the prediction obtained from dif-
ferent learners is clearly appealing. It is widely accepted that combining multiple
classifiers can provide advantages over the monolithic approach to pattern classi-
fier design [12], but a systematic evaluation of the impact on classification perfor-
mances of different combination rules suitable to merge the output of gene function
classifiers trained on different data sources, as today, has not been explored. To our
knowledge, only some works have been proposed, such as the ”late integration” of
kernels trained on different sources of data [9], or the Naive-Bayes integration of
the outputs of SVMs in the context of the hierarchical classification of genes [4].
In this work we investigate the effectiveness of three classifier fusion strategies us-
ing ensembles of Support Vector Machines [17] each of which trained to produce a
probabilistic-like classification output [10].

In the next section we present the ensemble methods we used in our experiments.
In Sect. 3 we describe the different types of high-throughput bio-molecular data and
the experimental setting we adopted to classify yeast genes according the highest
level classes of the FunCat taxonomy [11]. Section 4 presents the main results ob-
tained by comparing performances of single SVMs with respect to to ensembles
that merge 6 different sources of biomolecular data. The conclusions summarize the
main achievements and drawbacks of the proposed data fusion ensemble approach.

2 Methods

Ensembles of classifiers have enjoyed great attention because of their excellent gen-
eralization performance in a wide spectrum of applications. One of the main ideas
behind the effectiveness of ensemble systems is that if the single classifiers compos-
ing the ensemble are diverse, then they are expected to make different errors, and
combining the output produced by these classifiers can in principle reduce the error
through averaging [6].

Diversity can be achieved using different sources data, thus obtaining different
“views” of the same phenomenon. In particular the objective of data fusion is to
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extract complementary pieces of information from different data sources and then
merge them achieving a more informed decision about the phenomenon under anal-
ysis. Working with heterogeneous data sources, data fusion can be realized by means
of an ensemble system composed by learners trained on different datasets and then
combining the outputs of the component learners.

The continuous output assigned to an instance vector x by a binary classifier can
be interpreted as the support given by the membership of x to a specific functional
class.

In particular, with SVMs , a probabilistic output can be obtained by applying a
sigmoid fitting to their output [10]. As a consequence, a trained classifier computes
a function d j : X → [0,1] that estimates the probability that a given example x ∈ X
belongs to a specific class ω j. An ensemble combines the outputs of T base learn-
ers using a suitable combining function g to compute the overall support (e.g., the
probability) µ j for a given class ω j:

µ j(x) = g(d1, j(x), . . . ,dT, j(x)) . (1)

2.1 Linear Weighted Combination with Linear and Logarithmic
Weights

Among the algebraic combiners, the simplest is the mean rule, which calculates the
support µ j for the membership of a current instance x to the ω j class as the average
of all classifiers outputs:

µ j(x) =
1
T

T

∑
t=1

dt, j(x) . (2)

In our experiments we used the weighted average rule, in order to take into ac-
count the reliability of each base learner in the computation of the support µ j:

µ j(x) =
T

∑
t=1

wtdt, j(x) . (3)

The weights wt are usually computed using an estimate of the overall accuracy of
the base learners, but in our experimental setting, where the gene functional classes
are largely unbalanced (positive examples are fewer than negative ones), we chose
the F-measure (the harmonic mean between precision and recall) to compute the
weights:

wt =
Ft

∑T
t=1 Ft

. (4)

The F-measure Ft of the tth base learner can be estimated by “internal” cross-
validation on the training set.

It can be shown [5] that if we have T independent classifiers, each of which asso-
ciated with some performance measure (such as the accuracy or the F-measure ), the
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accuracy of an ensemble produced by combining the learners outputs by weighted
majority voting is maximized if the output weights satisfy the proportionality

wt ∝ log
pt

1− pt
, (5)

where pt is an estimate of the reliability of the tth base learner (e.g., accuracy or
F-measure ).

In our experiments we implemented the weighted logarithmic combination by
adding a small ε in order to avoid division by zero in Eq. 5, and then by normalizing
in order to obtain positive weights that sum to 1:

ŵt = ln
Ft + ε

1−Ft + ε
, (6)

wt =
ŵt − lnε

∑T
t=1(ŵt − lnε)

. (7)

Once computed the weights for each classifier, according to Eq. 4 for the linear
weighted combination or to Eq. 7 for logarithmic weighted combination, the final
decision D j : X → {0,1} of the ensemble is taken using the probability µ j for the
class ω j (Eq. 3):

D j(x) =
{

1, if µ j(x) > 0.5 ,
0, otherwise ,

(8)

where output 1 corresponds to positive and 0 to negative predictions for ω j.

2.2 Decision Templates

The main idea behind decision templates is to compare a“prototypical answer” of
the ensemble for the examples of a given class (the template), to the current answer
(the decision profile) of the ensemble to a specific example whose class needs to be
predicted [7].

The decision profile DP(x) for a instance x is a matrix composed by the dt, j ∈[0,1]
elements representing the support given by the tth classifier to class ω j. The deci-
sion profiles matrices are effective tools that allows us to effectively summarize the
information produced by all the members of an ensemble system and also provide
conceptual blocks at the basis of the decision template technique.

Decision templates DTj are the averaged decision profiles obtained from X j, the
set of training instances belonging to the class ω j:

DTj =
1
|X j| ∑

x∈X j

DP(x) . (9)

Note that the sum in Eq. 9 refers to matrices, and hence decision templates are
matrices with a number of rows equal to the number of the base learners and a
number of columns equal to the number of the classes.
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Given a test instance we first compute its decision profile and then we calculate
the similarity S j between DP(x) and the decision template DTj for each class ω j.
As similarity measure the Euclidean distance is usually applied:

S j(x) = 1− 1
TC

T

∑
t=1

C

∑
k=1

[DTj(t,k)−dt,k(x)]2 . (10)

The final decision of the ensemble is taken by assigning a test instance as:

D(x) = argmax
j

S j(x) . (11)

In our experimental setting we consider dichotomic problems, thus obtaining
two-columns decision template matrices. Note that for each gene functional class
we have two decision templates, one for the positive examples for that class (DTP)
and another one for the negatives (DTN).

It is easy to see that with dichotomic problems the similarity measure (Eq. 10)
for the positive (SP) and negative (SN) class becomes:

SP(x) = 1− 1
T

T

∑
t=1

[DTP(t,1)−dt,1(x)]2 , (12)

SN(x) = 1− 1
T

T

∑
t=1

[DTN(t,2)−dt,2(x)]2 (13)

and the final decision of the ensemble is

D(x) = arg max
{P,N}

(SP(x),SN(x)) . (14)

3 Experimental Setup

3.1 Heterogeneous Biomolecular Datasets

In order to test the effectiveness of fusion methods for various continuous-valued
predictions, we collected a set of data sources used in bioinformatics experiments,
published in literature or obtained from public databases. We chose to perform our
experiments using data collected on S. cerevisiae because it is among the most stud-
ied and well characterized model organisms and because of the great amount of
biomolecular data available for this species.

Biological functions are mediated in cell by several types of molecules but, in
the large majority of biological processes, the final effectors are proteins. Despite
the complexity of single proteins, the realization of a single biomolecular process
usually requires the coordinated action of more than a single molecule, and the com-
position of the set of molecules is expected to be highly informative. We thus de-
cided to use protein-protein interaction data collected from BioGrid [15], a database
of protein and genetic interactions from STRING [18], a collection of protein
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functional interactions inferred from heterogeneous data sources, comprising,
among the others, experimental data and information found in literature.

The evolutionary pressures acting during evolution on genes lead progressively to
a saturation of the number of mutations that can be tolerated without disrupting the
functionality of gene products and this reduces the ability to evolve new biomolecu-
lar functions. The conservative action of evolutionary pressures is particularly strong
for single-copy genes but act in a more relaxed fashion on members of clusters of
genes derived from duplication events in entire genomic regions. Provided the pres-
ence of multiple copies of a particular gene, the organism is allowed to explore
evolutionary paths that would be otherwise precluded and that can lead to the evo-
lution of novel functions by means of the changes occurring at nucleotide level in
DNA sequences encoding protein products. As the evolutionary time increases, the
genes belonging to the gene cluster will get even different at both nucleotide and
aminoacidic sequence level, but the relations between members of the same gene
families, which often share a similar biological role, can be detected using classi-
cal alignment approaches such as those proposed in [13] and [1]. The use of this
type of experimental data enables the detection and quantification (using opportune
similarity measures) of homology relationships occurring between genes through a
simple nucleotide sequences comparison. In the aim to catch homology and, hope-
fully, functional relations existing between genes belonging to the same functional
classes, we included as data source into our experimental framework the Pairwise
Similarity Smith-Waterman dataset published in [8] (data kindly provided by the
authors).

Even if protein-protein interactions and evolutionary signatures can provide use-
ful information for functional classification of genes, a potential source of informa-
tion about the functional role of a gene could be provided by the tight connection
between the structure of a protein and its ability to perform a particular biologi-
cal task. Proteins are constituted by structured regions usually referred as domains
joined by unstructured regions named loops. Each specific domain constituting a
protein performs a specific task (either structural or biochemical) and thus the pres-
ence of particular kinds of domains into the protein structure could be of capital
importance for the prediction of its function. In order to account for this source
of information we included data published in [2]. This dataset has been processed
in order to provide two types of information: the presence/absence of a particular
protein domain in the proteins encoded by genes comprised in the dataset and the
E-value assigned to each gene product to a collection of profile-HMMs, each of
which trained on a specific domain family. The E-values have been obtained by the
HMMR software toolkit (http://hmmer.janelia.org).

The activation of a gene (and its functional products) is strictly regulated in cell
in order to avoid interference between molecular processes, and this regulation is in
part realized by modulating the transcriptional state of the gene. Genes involved in
the realization of the same biological process are expected to show some similarities
in their expression profiles. We thus included into our experiment a dataset obtained
by the integration of microarray hybridization experiments published in [3, 14]. The
main data sets used in the experiments are summarized in Table 1.



Prediction of Gene Function Using Ensembles of SVMs 85

Table 1 Datasets

Data code Dataset examples features

L1 Protein domain binary 3529 4950
L2 Protein domain log-E 3529 5724
L3 Gene expression 4532 250
L4 PPI - BioGRID 4531 5367
L5 PPI - vonMering 2338 2559
L6 Pairwise similarity 3527 6349

3.2 The Functional Catalogue (FunCat)

In order to associate each of the genes constituting the aforementioned datasets, we
used functional annotations collected in the Functional Catalogue (FunCat index-
FunCat) database [11], version (2.1), initially developed at MIPS during the early
stages of sequencing of the yeast genome. The Functional Catalogue is constituted
by hierarchically structured controlled vocabulary of functional categories. FunCat
is the natural choice for our experiments, since it was originally developed to de-
scribe yeast functional processes.

In order to reduce the number of classification tasks required by the experimental
setting, we choose to consider only the first level FunCat classes. In other words, we
selected the roots of the trees of the FunCat forest (that is the most general and wide
functional classes of the overall taxonomy). We also removed in the list of the target
functional classes all the classes represented by less than 20 genes. This restricted
our classifications to only 16 functional classes:

01:METABOLISM
02:ENERGY
10:CELL CYCLE AND DNA PROCESSING
11:TRANSCRIPTION
12:PROTEIN SYNTHESIS
14:PROTEIN FATE (folding,modification,destination)
16:PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT
(structural or catalytic)
18:REGULATION OF METABOLISM AND PROTEIN FUNCTION
20:CELLULAR TRANSPORT AND TRANSPORT ROUTES
30:CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM
32:CELL RESCUE, DEFENSE AND VIRULENCE
34:INTERACTION WITH THE ENVIRONMENT
40:CELL FATE
41:DEVELOPMENT(Systemic)
42:BIOGENESYS OF CELLULAR COMPONENTS
43:CELL TYPE DIFFERENTIATION
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3.3 Base Learners Tuning and Generation of Optimized
Classifiers

The construction of an ensemble of classifiers trained to perform functional classi-
fication using heterogeneous data (as for any ensemble of classifiers) requires the
definition of two key points: the way the base learners have to be trained and a
strategy to combine the output of the different learner components. This section is
dedicated to the former question while the second one has just be treated in Sect. 2.

Being the main objective of this experiment, the evaluation of different strategies
of fusion of the continuous output, produced by different classifiers on heteroge-
neous datasets, is done in the simplest way of adapting the single sources of data:
through the intersection between all the datasets. This led to the definition of a com-
mon set constituted by 1901 genes.

For each of the 16 target functional classes we tuned the base learners as binary
classifiers (thus labeling samples as belonging to the “target functional class” or to
“other functional classes”) using a classical inner cross-validation tuning scheme.

More precisely, each dataset was split into a training set and a test set (composed,
respectively, by the 70% and 30% of the available samples) and the resulting training
set was further split into 3 balanced folds, meaning that the proportion of positive
and negative samples constituting each fold was kept equal for each fold.

The balanced folds have been used to perform a 3-folds cross validation for model
selection. The averaged accuracy, precision, recall and F-measure across folds were
collected for each combination of a list of tuning parameters. We chose RBF gaus-
sian kernels for all the training tasks involved in the experiment, tuning each SVM
for a cost ranging from 10−2 to 102 and a value of sigma varying in the same range.
During the tuning stage we experienced problems in tuning the learners dedicated
to the classification of the Pairwise similarity dataset, for which only negative clas-
sifications were produced in 11 out of 16 learning tasks. We thus changed the tuning
setting for this dataset by using a polynomial kernel and varying the degree hyper-
parameter from 2 to 5 while keeping the cost varying from 10−2 to 102.

Among the commonly used performance metrics suitable to drive the optimiza-
tion process, considering that negative examples are fewer than positive examples,
we decided to tune the base learners by choosing the set of parameters producing
the maximum averaged F-measure during the tuning stage. Once defined the best
set of parameters associated to each learner in each learning task, we used them to
train the optimal model on the whole training set.

The generalization performance has been estimated on the separated test set.
For the experiments we used the Lagrange cluster composed by 208 nodes

equipped with Intel Xeon 3.16 GHz QuadCore processors and 16 GB of RAM mem-
ory at each node (http://www.cilea.it).

4 Results

The performance characteristics obtained in the learning tasks associated to the pre-
diction of the FunCat functional classes are reported in Table 2.
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The table reports the F-measures obtained through the evaluation of the test set
(570 genes) using the best models selected by internal 3-folds cross-validation. The
first column refers to the FunCat identifiers of first-level functional classes. The next
6 columns (from L1 to L6) correspond to single SVMs trained respectively on the
six datasets described in Table 1. Lavg represents the averaged results of the single
SVMs across the six datasets, and the three last columns refers respectively to the
weighted linear, logarithmic and decision template ensembles. The performance of
the best performing single learner and the best performing ensemble are highlighted
in boldface.

Note that among the first level FunCat functional classes, the “DEVELOP-
MENT(Systemic)” class, (class ID: 41) is not reported because, after the intersection
of the data sources described in Table 1, it failed to reach the minimum amount of
positive samples (20 genes belonging to the target functional class) required by our
experimental protocol.

Looking at the last row of Table 2, we see that, on average, data integration
methods through ensembles provide better results than single SVMs trained on ho-
mogeneous bio-molecular data, independently of the applied combination rule. In
particular, decision templates largely outperform both the single SVMs and the other
ensembles. Performance of the weighted and logarithmic ensembles is quite com-
parable, better than the average single SVM and in most cases better than the single
SVM trained on a single data set.

F-measures are summarized in Fig. 1: all ensemble methods outperform the F-
measure obtained, on average, by the single SVMs . The best single SVM for each

Table 2 F-measures computed on the test sets (see text for more details)

FunCat
class L1 L2 L3 L4 L5 L6 Lavg Elin Elog EDT

01 0.6240 0.6486 0.4854 0.6461 0.5283 0.7576 0.6150 0.7835 0.7860 0.7845
02 0.2258 0.3478 0.2941 0.2318 0.3125 0.4000 0.3020 0.2857 0.3125 0.4324
10 0.5240 0.6819 0.1916 0.4059 0.3800 0.5963 0.4632 0.5887 0.5887 0.6666
11 0.5607 0.7213 0.2395 0.4397 0.4524 0.5693 0.4971 0.5673 0.5673 0.6722
12 0.6060 0.6616 0.3207 0.4793 0.7361 0.5181 0.5536 0.6814 0.6412 0.6715
14 0.4331 0.5622 0.4221 0.6234 0.2772 0.6191 0.4895 0.6776 0.6581 0.6846
16 0.3771 0.4661 0.2561 0.4086 0.2040 0.5146 0.3710 0.5217 0.4978 0.5543
18 0.0000 0.0526 0.1764 0.2352 0.0000 0.2857 0.1249 0.2424 0.2424 0.3333
20 0.4457 0.6461 0.2733 0.4588 0.1492 0.4802 0.4088 0.5828 0.5212 0.5465
30 0.0975 0.3913 0.1818 0.2702 0.0000 0.4266 0.2279 0.2285 0.2352 0.5769
32 0.2278 0.2650 0.2025 0.3146 0.0000 0.2684 0.2130 0.1842 0.1351 0.2500
34 0.3023 0.3544 0.0909 0.2133 0.0000 0.1834 0.3023 0.1764 0.1764 0.4509
40 0.2307 0.2745 0.1250 0.1250 0.0000 0.3000 0.1758 0.1304 0.1304 0.3409
42 0.4129 0.5524 0.0847 0.0344 0.1068 0.4052 0.2660 0.4736 0.3333 0.5279
43 0.4150 0.6016 0.2000 0.2000 0.0000 0.4153 0.3053 0.3956 0.3414 0.4600
AVG 0.3655 0.4818 0.2363 0.3391 0.2098 0.4493 0.3544 0.4347 0.4111 0.5302
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Fig. 1 Comparison of the F-measures achieved in gene prediction: Lavg stands for the aver-
age across SVM base learners; Lbest for the best single SVM; Elin, Elog, Edt for weighted
linear, logarithmic and decision template ensembles

task outperforms weighted linear and logarithmic ensembles, but decision templates
are in most cases better than the best single SVM .

5 Discussion

The prediction of the functional class of genes using heterogeneous data sources
is among the most difficult problems in bioinformatics. The difficulty of the task
comes mainly from the not very definition of the “biological process” entity, due
to the high number of interconnections linking biological processes, and due to the
different relevance of diverse biomolecular datasets with respect to different func-
tional classes. A dataset providing critical information for the prediction of a partic-
ular functional class could merely represent noise in a classification task targeting a
different functional class.

As shown by data reported in Table 2, the best performing ensemble system out-
performs, on average, the base learners in all the functional classification tasks. The
winner combination method in 13 out of 15 cases is the ensemble based on de-
cision templates . If compared with results obtained by the best performing base
learner, the best performing ensemble systems win in 8 out of 15 cases. This comes
as a surprise because of the presence (in these ensembles) of the base learners of
very poor performance (as reported in the cases of tasks aimed to predict the 20
(CELLULAR TRANSPORT AND TRANSPORT ROUTES), 32 (CELL RESCUE
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DEFENSE AND VIRULENCE) and 42 (BIOGENESIS OF CELLULAR COMPO-
NENTS) FunCat classes. In this work we did not explore the effects on ensembles
performance of methods that selects subsets of base learners. Indeed, in this pre-
liminary test, we were mainly interested in the evaluation of the potential benefits
introduced by the use of data fusion methods in complex functional prediction tasks,
but base learner selection approaches will be the object of future investigations.

Despite the expected negative effects of poor performing base learners on the en-
semble performance, the ensemble systems are surprisingly robust as demonstrated
by the results obtained in the test prediction of the class 34 (INTERACTION WITH
THE ENVIRONMENT). In this classification task, despite the presence of 4 out of
6 base learners with accuracy around 20% or less, and the remaining learners with
an F-measure of 0.3023 and 0.3544 (L1 and L2, respectively), the decision templates
based ensemble system outperforms the best base learner by about 10%. This could
be interpreted as the ability of the different data sources to provide diverse pieces of
information.

The proteins involved in the interaction with the environment are characterized
by very peculiar chemical and physical properties, as in the case of cell membrane
spanning proteins (expected to be over represented in this functional class), which
are composed by hydrophilic and hydrophobic alternate regions, making them easily
detectable by protein-domain detection methods and sharing features making them
the objective of evolutionary pressures easily detectable by local alignment methods.
The ability of ensemble methods to correctly predict this FunCat functional class
thus comes as a little surprise, being the aforementioned source of information well
represented by 3 out of 6 data sources (the Protein domain binary, Protein domain
Log-E and Pairwise similarity, Table 1).

It should be also noted that the realization of the complex pathways enabling the
cell to correctly interact with its environment requires the interaction between a high
number of proteins, making the proteins interaction data sources potentially infor-
mative. This indicates that in some cases the poor performance (either of the base
learners or of the ensemble systems) could be explained by the absence of datasets
containing relevant information with respect to the specific functional prediction
task. We thus plan to extend the number of the datasets to be included in the future
analysis.

6 Conclusions

In this work we investigated the impact on yeast genes functional classification per-
formance. Our experiments consisted in the integration (by mean of a simple in-
tersection procedure) of 6 different data sources and in the training (using standard
tuning protocols) of 6 SVMs. We then tested linear weighted average, logarithmic
weighted average and the decision template techniques to combine the output of the
6 base learners and we evaluated the performance of the single learners and of the
ensemble systems. The aforementioned protocol was repeated (in separated binary
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classification tasks) for each FunCat functional class performed on the common set
of genes shared by all the data sources to be integrated.

Our experiments demonstrated the potential benefits introduced by the use of
ensemble-based prediction systems in functional classification of genes. The en-
semble systems were able to outperform the best performing base learner in 8 out of
15 classification tasks. Considering that poor performance of base learners is func-
tional class specific, by appropriately combining subsets of base learners for each
specific FunCat class we could, in principle, improve the performances of SVM
ensembles. In conclusion, the results obtained with simple combination strategies
show that heterogeneous data integration through ensemble methods represents a
valuable research line in gene function prediction indexgene function prediction.
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Partitioner Trees for Classification:
A New Ensemble Method

Georg Krempl and Vera Hofer

Abstract. Two major types of ensemble methods exist: while the first type is based
on the idea of varying the training data (Boosting, Bagging), the second type tries to
exploit information on each classifier’s area of expertise (Grading, Delegating, Ar-
bitrating). This paper presents a new ensemble method called partitioner trees that
combines both approaches. Information on misclassifications is used to train meta
classifiers called partitioners and to split training data into disjoint subsets. On these
subsets succeeding specialised classifiers are constructed. This process yields a bi-
nary decision tree with partitioners on the inner nodes to perform the splitting and
specialised local classifiers on the leaves for final classification. Partitioner trees are
compared to five other ensemble methods in experiments on four different datasets.
The results show that on large datasets partitioner trees have a similar classifica-
tion accuracy as AdaBoost , and are superior to those of other meta classifier based
ensemble methods. In addition, partitioner trees outperform most other ensemble
methods in regard to training time and allow for adaptively tuning parameters.

Keywords: multiple classifier systems, decision tree, error-based training data vari-
ation, referee, voting with meta classifiers, large datasets.

1 Introduction

Classifier ensembles are based on the idea of combining error diverse classifiers.
Partridge and Yates [15] provide definitions of error diversity and discuss ap-
proaches to create error diverse neural networks [9] . They conclude that the most
promising approaches are to vary the training data and the network architecture of
a neural network, while varying the initial weights and the number of nodes is least
useful.
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The approach of varying training data randomly is used by Bootstrap aggrega-
tion, or Bagging, a method proposed by Breiman [2]. Different subsets of the train-
ing data are created by randomly selecting instances from the original data. Since
this is done with replacement, an instance present in the original training data might
be present once or more often in a new training set, or might not be present at all.
Then each classifier is trained on a different subset. Finally, new instances are clas-
sified by combining the prediction of all classifiers by majority voting.

Instead of leaving the variation of training data to chance, Boosting techniques
use systematic variation. A very famous and powerful representative of this tech-
nique initially proposed by Schapire [12] is AdaBoost presented by Freund and
Schapire [6]. Here each classifier focuses on the instances that his predecessors
misclassified. This is done by assigning misclassified instances more weight within
the dataset. New instances are then classified by combining the predictions of all
classifiers by weighted majority voting. Due to weighting the data during the train-
ing process all but the first classifier are trained on data that systematically differ in
their composition from the new data on which the classifiers are used later.

A more complex way of combining classifiers is to use meta classifiers . Chen
and Stolfo [4] proposed such techniques and suggested arbiters and combiners. Ini-
tially, several error-diverse base classifiers are trained. In their first approach in-
stances on which predictions are ambiguous are used to train a so-called arbiter.
This arbiter then decides which base classifier to use for the final decision. In their
second approach new features are derived from the base classifiers’ predictions. On
this derived features a combiner is trained to finally predict the correct class. Thus,
the final decision can differ from all of the base classifiers’ decisions. Another ap-
proach that uses such information about previous misclassification as input for a
succeeding classifier is Stacked Generalisation, or Stacking, proposed by Wolpert
[14]. In this approach the training data is first split into two disjoint subsets, then
several base learners are trained on one subset and tested on the other. Their predic-
tions are used as inputs for a second level of classifiers which are trained to predict
the correct value of the response variable.

Combinations of the idea of Boosting and using meta classifiers to assess each
classifier’s expertise on a new instance are also discussed in literature. On the one
hand, uncertain instances can be delegated to other classifiers based on the base clas-
sifier’s own confidence in its predictions. Such a method of Delegating is suggested
by Ferri et al. [5], where succeeding classifiers are solely trained on instances on
which its predecessors where uncertain.

On the other hand, an external classifier can be trained to assess the quality of a
classifier’s prediction. Such an approach is Arbitrating between classifiers proposed
independently by Ortega and by Koppel and Argamon [8]. They propose training
a referee for each base classifier which estimates its reliability on a new instance.
The estimates of all referees are used to arbitrate between the base classifiers and to
select one classifier whose prediction is finally used.

Another approach that uses an external classifier is grading, proposed by Seewald
and Fürnkranz [13]. Instead of selecting only the classifier with the highest reliabil-
ity they combine the prediction of all trustworth classifiers. This combination of the
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predictions of a subset of base classifiers is done either by voting or by weighting
these predictions by their confidence estimates.

The subsequent sections present a new approach using a referee as a partitioner
to split the data into two disjoint subsets depending on the referee’s prediction of a
base classifier’s reliability. Thus, the subsets are assumed to be more diverse against
each other in respect to the base classifier than the original dataset in the sense that
one subset contains the instances which are classified correctly by the base classifier
, whereas the other subset comprises the instances for which the base classifier fails.
Instead of keeping the initial base classifier for instances where it succeeded, the
preliminary base classifier is discarded. Thus, on both subsets a new specialised
local classifier must be trained. New instances are then assigned by the partitioner
to one of the two new local classifiers. By iterating this approach a partitioner tree
with partitioners on the inner nodes and local classifiers on the leaves is created.

The rest of this chapter is structured as follows. The next section provides a
discussion of technical details and questions imposed by the construction and ap-
plication of such partitioner trees. The section begins with the presentation of an
algorithm for constructing and applying partitioner trees and continues with a dis-
cussion of its background. Further considerations deal with details on parameter
settings and finally an analysis of the computational complexity is provided. In the
third section, questions on the performance of the algorithm are addressed by an
experimental comparison with other ensemble methods. Finally, the results are dis-
cussed and a conclusion with outlook to future research is given.

2 Partitioner Trees

2.1 Algorithm

Partitioner trees construct a decision tree by means of meta classifiers that predict
the performance of a base classifier , called preliminary classifier. According to this
idea, the data is split into two disjoint subsets that differ in regard to their difficulty
of classification using the preliminary classifier. Thus, the classification results of a
preliminary classifier are used to train a partitioner. If the partitioner predicts that the
preliminary classifier is correct, an instance is assigned to the left node, otherwise
to the right one. Hence, any partitioner collects the instances that are expected to
be easily classified by the preliminary classifier on the left hand side and the more
difficult instances on the right hand side. Once a split has been designed, the pre-
liminary classifier is no longer necessary and therefore dismissed. Then the process
is restarted on each node by creating new specialised preliminary classifiers on the
assigned training instances. Thus, the training data is systematically varied by error-
based splitting , i.e. by splitting the data depending on the classification error of the
preliminary classifier.

Splitting by the partitioner results in a usually unbalanced binary tree. On the
inner nodes only meta classifiers , the partitioners, exist, whereas on the leaves
the local base classifiers are applied to finally predict the class membership of an
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instance. Going deeper into the tree the degree of specialisation increases. Since
more difficult cases are separated from others, it is possible to apply appropriate
local base classifiers on the leaves.

A tree of classifiers is constructed by iterating the process of

1. creating a preliminary classifier,
2. testing and dismissing this preliminary classifier,
3. using information on the accuracies of the preliminary classifier to train a meta

classifier (a so-called partitioner),
4. using this partitioner to split the data into two disjoint subsets,
5. repeating this process by training a preliminary classifier on each subset,
6. deciding for each branch whether to continue with partitioning and branching or

to stop by using the preliminary classifier as local classifier.

New instances are then predicted by

1. using the (first) partitioner to decide which branch to follow,
2. using the next partitioner on this branch to descend further in the tree and iterating

this process until
3. a leaf is reached and its local classifier is used to predict the instance.

Remaining questions concern the construction phase on the one hand and the
classification phase, on the other hand: each splitting step involves finding two clas-
sifiers, whereby only the partitioner is important for the assignment of an instance to
the final local classifier. The question is on which dataset the two classifiers should
be trained. A further question is how to apply the partitioner to a specific instance.
The construction phase and the classification phase are addressed below.

2.1.1 Construction Phase

The data available for training are (xi,yi), where xi = (xi1, . . . ,xip) ∈ X , and yi ∈
{−1,1} indicating class membership, and i = 1, . . . ,n. Presently, only the binary
classification problem is considered. X is an appropriate feature space. The algo-
rithm does not require the data to be quantitative.

Initially, a preliminary classifier G(x) is designed on the training data (xi,yi), and
also applied to (xi,yi) to predict the class membership of the data by resubstitution

ŷi = G(xi).

From this prediction, a new dichotom response variable, ρ , is derived

ρi =
{

1 . . . ŷi = yi

−1 . . . otherwise

Hence, ρ measures whether the prediction of G was correct or not. This is shown in
the left column of Fig. 1.
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Now a new classifier, M(x), referred to as partitioner, is trained on the entire
dataset (xi,yi) to predict the value of ρ . The predicted values ρ̂ are then used to split
the training data into two disjoint subsets C and D such that

C = {(xC
i ,yC

i )}= {(xi,yi) | ρ̂ = 1} D = {(xD
i ,yD

i )} = {(xi,yi) | ρ̂ =−1}

The first subset contains all instances where the partitioner predicts that a base clas-
sifier (preliminary classifier) is correct. This process is shown in the right column of
Fig. 1.

If sufficient instances are in each of the two subsets, the process can be iterated.
In this case, a new preliminary learner is trained and applied on each of the subsets,

Fig. 1 Creation of the first partitioner

Fig. 2 Partitioner tree construction
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C and D, to obtain new partitioners MC(x) and MD(x). If one subset becomes too
small, there are two possible ways to proceed. First, the partitioner can be modified
to create subsets more commensurated in size. Second, the process can be finalised
by learning a local classifier L(x) on the complete training set. In the latter case both
subsets C and D are merged into a single training set. However, even the preliminary
learner might be used as a local classifier to reduce the training time. Currently, the
problem of sample size in a node is addressed by training a local classifier on the
data in this specific node.

The iteration on the second level of the partitioner tree is depicted in Fig. 2. In
the case of a dichotom response variable, the resulting tree will be a binary tree as
shown in Fig. 3. This tree will typically not be balanced, since the right side with
more difficult instances will require more layers of classifiers than the left side with
easier instances.

Fig. 3 Finished partitioner tree of tree depth 3

2.1.2 Application to New Data

New instances xN
i are first assigned to a local classifier on a leaf of the partitioner

tree which is then used to predict their class membership. The assignment starts at
the first partitioner which is connected to two other nodes in the tree. Differently to
the construction phase, not the value of ρ̂i = M(xN

i ), but the probability estimation
p̂i of the first partitioner pi = P(ρi = 1) is used to select one of the two succeeding
nodes. This succeeding node is either an inner node with a partitioner. In this case the
process is repeated by using this local partitioner to estimate a new value of p̂i and
the algorithm descends to the corresponding node. Or the node is a leaf with a local
classifier. Then the local classifier L(x) is used to predict the final class membership
of the new instance. If p̂i = 0.5 for a split into the left node or the right node, both
nodes are selected and the final results is derived from weighing the results of both
branches. More details on this problem are given below in Sect. 2.2.1.
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2.2 Discussion

The algorithm described uses three types of classifiers: the preliminary classifiers
G(x) which are only used to train the partitioners M(x) that predict the performance
of the preliminary classifiers, and the local base classifiers L(x) on the leaves used
for final classification . Whereas the local base classifiers should exhibit high accu-
racy, the partitioners are assumed to make consistent decisions. However, the size of
the tree will be smaller for more accurate preliminary classifiers. Furthermore, the
partitioner tree does not require highly accurate preliminary classifiers, since they
are dismissed later. This means that misclassifications by preliminary base classi-
fiers at the beginning can be compensated by later classifiers. Therefore it is possible
to start with fast and simple classifiers and increase the degree of sophistication with
the tree depth. The additional computational costs of more sophisticated classifiers
in deeper layers of the tree are compensated by the smaller number of instances that
will arrive in those layers. Thus the speed of the ensemble should not be significantly
affected.

The dismission of the preliminary classifier might need further justification, since
the following simpler approach would also be possible: What happens if the prelim-
inary classifier is kept for later classifications and, like before, the meta classifier
is trained to predict its misclassifications? Then the meta classifier can be applied
on new data, maybe even before the preliminary classifier, to predict misclassifica-
tions of the preliminary classifier and to filter those instances out, which are likely
to be misclassified. In contrast to a partitioner tree , the instances are filtered out
after the classifier used for final prediction has been trained on them. This raises an
important question: are the remaining instances, which are predicted to be correctly
classified, representative for the instances, which the preliminary classifier classifies
really correctly? The answer to this question would only be yes, if the meta classifier
would not make any wrong predictions. In such a case, a perfect ensemble could be
created by using the preliminary classifiers’ prediction or its inverse, depending on
the judgement of the meta classifier . In practice, however, this is very unlikely.

Partitioner trees relax this problem of accurately predicting misclassifications to
the easier problem of splitting data systematically and consistently into two subsets.
Dismissing the preliminary classifier means that misclassifications of the partitioner
are irrelevant as long as they occur consistently during training and on new data:
During training and application the same partitioner assigns the instances to a local
classifier. Thus, the instances assigned during training are expected to be representa-
tive for the instances assigned to the local classifier when the ensemble is applied to
new data. This higher representativeness compared to the simpler approach justifies
the additional complexity, since it might yield more accurate classifiers and thus a
lower test error.

2.2.1 Parameters

The algorithm requires two kinds of parameters to be set: First, the types of classi-
fiers used as partitioners and local classifiers. Second, the stop criteria for branching.
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Choice of Classifiers Types

Base classifiers are used for two different tasks in the algorithm, for partitioning
(actually predicting misclassifications) on the one hand and for classifying the data
on the other hand. For the first task, consistency in predictions is crucial, while
accuracy is not. For the second task, which concerns preliminary classifiers and
final local classifiers, accuracy is the primary issue. Although it would be possible
to use a different types of classifier for each task, this paper focuses on partitioner
trees using the same type of classifier for both tasks.

While all kinds of classification techniques including ensembles of classifiers
themselves can be considered to be used as base classifiers, the choice has to be
made with regard to three aspects: First, the time needed to train and to apply the
classifier. Second, the capability of a classifier to estimate class probabilities and
third the levels of the response variable. Further necessary considerations are the
classifiers’ complexity and its dependence on the full training data. In [7] the choice
of this parameter was discussed and it was shown, that among others decision trees
are a good choice as classification method for local classifiers and partitioners.

Tree Depth and Stop Criteria

The tree depth d, defined as the number of levels of partitioners in the tree, can either
be fixed in advance or determined indirectly. In the first case, the tree is branched
until the defined depth is reached. In the second case, the definition of additional stop
criteria is required. They can be based on a minimal subset size, on a maximum time
limit or on the accuracy of the predictors in a branch. While the first and second are
obvious, two approaches exist for using the accuracy: either a maximum accuracy
is reached, for instance, when a classifier is perfect (this can happen if in one subset
only instances of one class are left or if the instances there are easily separable), or
the accumulated performance of both branches drops below the performance of its
preceding branch.

These four parameters have to be chosen with regard to the size of the training
set, the number of features in the data, the base classifiers used and the available
training time. Since the training data is split into smaller subsets, in general, 2d -
times more training data is needed than for a single classifier1. Using other stop
criteria than a fixed tree depth leads to a typically unbalanced, but better adopted
tree, since the tree focuses on the more difficult instances. Using a decrease in the
prediction accuracy as stop criterion suffices, as will be shown in Sect. 3.2. How-
ever, a reasonable minimum subset size might be defined, depending on the dataset
size. Nevertheless training a partitioner tree can be done without explicit parameter
tuning by simply requiring a decreasing error in each branch.

1 This factor is a lower bound, provided that the data is splitted always into two equally
sized subsets at each node. In practice, even more training data might be required. The
imbalance of the binary tree increases this effect, since the deeper right side will typically
get less than 50 % of all instances assigned. This is due to the fact that the preliminary
classifiers will achieve an accuracy of at least 50 %.
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Cut Threshold

In Sect. 2.1.2 a partitioner assigns a new instance based on its estimated conditional
probability p̂i to belong to the left side. If p̂i ≥ 0.5, an instance is assigned to the
successing node on the left side. If p̂i≤ 0.5, an instance is assigned to the successing
node on the right side. As discussed above, this can lead to cases, where an instance
is assigned to several leaves, whose predictions are combined using the instances’
estimated probabilities of belonging to each of the leaves. It should be noted that this
only occurs if p̂i is exactly equal to 0.5 in at least one partitioner. The justification
in such cases is obvious: Since both succeeding branches have exactly the same
estimated conditional probability, both should be treated equally. However, it might
be useful to consider both succeeding branches also in cases, where p̂i is not exactly
but close to 0.5, thus in cases, where both succeeding nodes are similarly likely.
Nevertheless the more likely branch should be weighted higher. Since its higher
estimated conditional probability will increase the relative weight of its succeeding
branch, this is guaranteed.

The question which arises is, up to which point a succeeding branch should be
considered. Should both branches be also considered in extreme cases, where the
estimated conditional probability of one succeeding branch is nearly zero and of the
other is nearly one? One option is to rely on the self-regulating mechanism of the
weights. If one estimated conditional probability is very low in a branch, the esti-
mated probability of the resulting leaf and thus its weight will be automatically low.
In extreme cases, branches might get zero weight, if in the branch the conditional
probability is zero.

Another option is to introduce a threshold for the probabilities to be considered.
If for a new instance the estimated conditional probability of a branch is below this
threshold, this succeeding branch is not considered and treated as it was cut out of
the model. Such a cut threshold thus guarantees that only branches with a certain
minimum likeliness are considered.

Technically this cut threshold can be applied either to each of the conditional
probabilities estimated by the partitioners in the tree or to the resulting estimated
probabilities of the leaves. In this case, leaves whose estimated probability is below
the threshold, are not considered. While both approaches are possible, only the first
one is considered in this paper. Thus before assigning a new instance to one branch,
the conditional probability p̂i assigned by partitioner Mi is adjusted.

Three cases can be distinguished. First, p̂i is nearly 0.5. In this case, the instance
will be assigned to both succeeding branches, but each branch will be weighted
with its estimated probability. Second, p̂i is below the cut threshold τ , in which
case the left succeeding branch is ignored and the instance is assigned to the right
branch. Thus the succeeding branch on the right side gets all the weight. Finally, the
opposite is done, when p̂i is greater than 1− τ . In this case the succeeding branch
on the right side is very unlikely, thus ignored. This adjustment of the conditional
probability based on the cut threshold can be written as
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p̂i =

⎧⎨
⎩

p̂i . . . τ ≤ p̂i ≤ 1− τ
0 . . . p̂i < τ
1 . . . p̂i > 1− τ

The cut threshold τ can thus take values between 0 and 0.5. For τ = 0, the
weighted predictions of all leaves are combined for the final classification of a new
instance. For τ = 0.5, only the best branch is considered, except if two branches have
exactly the same predicted probability, in which case both are considered. Figure 4
illustrates the effect of τ on the voting weights in the tree.

Fig. 4 Effect of the cut threshold τ on the voting weights

2.2.2 Computational Complexity

Training

In the following, d denotes the tree depth, i.e. the maximum number of arcs between
the topmost node and a node at the bottom of the tree; n denotes the number of
training instances available, i.e. the size of the training set; i denotes the index of a
level, where the topmost level is denoted as level 0. Thus the index of the lowermost
level is identical to the tree depth d.

Assuming a perfectly balanced binary tree, each level holds 2i nodes. This means
that a (balanced) partitioner tree of tree depth d holds 2(d+1)−1 nodes, where on all
but the nodes on the last layer only partitioners occur. Such a tree would hold 2d−1
partitioners and 2d local classifiers. For training such a tree, 2(d+1)−1 (preliminary
and local) base classifiers and 2d − 1 partitioners must be trained, altogether 3 ∗
2d − 2 classifiers. Considering only the number of classifiers would lead to a time
and space complexity of O(2d) for training such a partitioner tree . This is, however,
inadequate, as discussed below.



Partitioner Trees for Classification: A New Ensemble Method 103

The training time of each single classifier for a given parameter setting mainly
depends on the number of its training instances. This number is for all the classi-
fiers on one level limited by the total number of training instances. For a perfectly
balanced partitioner tree , on each level the total number of training instances used
by classifiers of this level is equal to n. For unbalanced partitioner trees , which are
more likely to occur, this number will even decrease with tree depth, since more and
more classifiers become leaves and their training instances are not used in deeper
levels. Mathematically, the number ni of training instances used in a level i can be
written as ni = ∑k∈Li

nk, where Li is the set of classifiers on level i and nk is the
number of instances used by classifier k for training.

If the computational cost of training a classifier Ck would linearly depend on
nk, the computational cost of training all classifiers of level i would be bounded
by O(ni). Thus the cost of training the ensemble Li of classifiers on level i would
be equal to the cost of training a single classifier on all ni instances. However, if
the computational complexity of training a classifier increases, the relative cost of
training the ensemble compared to a single classifier decreases. This is due to the
fact that the training data was split into 2i subsets, as discussed in Sect. 2.2.1. This
means that the computational time complexity of training the ensemble has an upper
bound of Q(nd), where Q(·) denotes the computational time complexity of training
a single classifier.

It should be noted that this asymptotic bound does not consider the positive effect
discussed above, namely the decrease of ni for deeper levels in unbalanced parti-
tioner trees . Furthermore it should be remarked, though, that this training process
can easily be parallelised, since all classifiers of one level can be trained parallely.
Thus, the training time complexity could be even further reduced on a multipro-
cessor grid, unlimited parallel processing capacities presumed. To summarise it can
be concluded, that the training time of a partitioner tree should be lower than the
training time of other serially constructed ensembles, which do not split the training
data, for example AdaBoost2.

Prediction

Assuming a cut threshold of τ = 0.5, the prediction of a new instance will involve at
most d + 1 classifiers. Thus prediction time complexity is bounded by O(d), which
is equivalent to the asymptotic time complexity of an AdaBoost ensemble with d
classifiers. Computational cost will increase with a decrease of τ and reach O(2d)
for τ = 0.

However one can conclude, that for τ = 0.5, the computational time complexity
of training and applying a partitioner tree with tree depth d is not bigger than the
computational time complexity of training and applying an AdaBoost ensemble.

2 AdaBoost with d classifiers will also have an asymptotic training time complexity of
Q(nd), but since the training data is not split into smaller subsets, it will not profit from
the effects described above.
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3 Experiments

The experiments with this new meta-algorithm should answer three main questions.
First, how should the parameters discussed in the previous section be chosen? Sec-
ond, does this new way of employing a meta classifier yield any benefit compared
to other meta classifier approaches? This leads to the third question, namely if there
are datasets on which this algorithm performs better than other approaches. If so, is
it possible to determine the characteristics of those datasets?

A parameter which needs to be chosen is the cut threshold. To study the effect
of this cut threshold on the performance, different parameter settings (50%, 40%,
25%, 10% and 0%) are compared. The choice of the other parameters was discussed
in the conference paper presented at SUEMA 2008 ([7]). It was shown that decision
trees serve as a suitable classification method for both local base classifiers and
partitioners. Since this method yields good results without explicit parameter fine-
tuning, it is used to compare different ensemble techniques. As discussed in this
conference paper, an increase in the misclassification rate is used as stop criterion.
This assures adaptive behaviour with regard to the training data but might cause
overfitting. Approaches to avoid this overfitting are subject of current research.

3.1 Experimental Setup

To answer the questions posed above, an experimental comparison is made between
the partitioner tree approach and other ensemble techniques. All experiments are
done using the R environment for statistical computing [11]. All ensemble meth-
ods are coded directly in R and tested on identical hardware to guarantee an unbi-
ased training time comparison. For this paper, the following ensemble methods are
compared:

• Boostrap aggregation (Bagging , [2]), with different numbers of base classifiers
(5, 8, 11, 20, 50, 100).

• Adaptive boosting (AdaBoost , [6]), with different numbers of base classifiers (5,
8, 11, 20, 50, 100).

• A simplified version of the arbitrating approach (Simplified Arbitrating, ex-
plained below), with different numbers of base classifiers (2, 5, 8, 11, 20).

• Grading (Grading, [13]), with different numbers of base classifiers (2, 5, 8, 11,
20).

• Delegating (Delegating, [5]), with different delegating proportions (40 %, 50%
and 60 %).

Arbitrating was simplified by using the class probabilities predicted by the base
classifiers as features for the meta classifiers . Unlike the method proposed in [8],
additional information about the inner states of the base classifiers cannot be used
by the meta classifiers . Thus, this simplified version might have a lower perfor-
mance. However this simplification allows to compare also the effect of employing
meta classifiers at different positions. This comparison would be biased if additional
information was provided to the meta classifiers of only one ensemble method.
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The delegating proportion was chosen as suggested by Ferri, Flach and Hernan-
dez-Orallo to values near 50 %. All ensembles used decision trees as classifiers,
which were provided by the R package rpart [3].

3.1.1 Datasets and Methodology

For a comparison with other ensemble methods, experiments on various datasets
are required. These datasets should differ in their characteristics, i.e. in the number
of instances and the type of attributes. Therefore the performance on four different
datasets from the University of California at Irvine (UCI) Machine Learning Reposi-
tory ([1]) is compared. These datasets are the adult dataset, the spambase dataset, the
credit approval dataset and the sonar (mines versus rocks) dataset. Their character-
istics are listed in Table 1. All datasets are binary classification classification!binary
problems, even though the partitioner tree approach could with minor changes also
be used with multiclass classification problems, but this would be beyond the scope
of this work.

Table 1 Datasets characteristics

Dataset Attribute Types Instances Attributes Balancea

Adult Numerical, Categorical 65122 14 24.08 %
Spambase Numerical 4601 57 39.40 %
Credit Approval Numerical, Categorical 690 15 44.49 %
Sonar Numerical 208 60 46.63 %

a Percentage of positives in the dataset.

For the experiments a 5-fold-cross-validation was used and the performance on
the test sets of each of the five runs was used for evaluation. As prediction qual-
ity performance measures, the area under the curve (AUC, [10]) and the overall
misclassification rate (OMR) are calculated using the predicted class membership
probabilities over all five test sets. In addition, the time needed for training the en-
semble is reported. For each ensemble method the results of the best parameter
setting with regards to the area under the curve are used for the comparison with the
other methods.

To study the effect of the number of training instances all methods were also eval-
uated on reduced variants of the two biggest datasets (adult and spambase dataset).
For these reduced variants only the first 50 %, 25 % or 10 % of the instances in the
training set of each run were used for training. However, the test sets for each run
were the same as for the unreduced variants.

3.2 Results

The experimental results indicate that the larger the number of training instances
available, the better is the performance of the partitioner tree compared to all other
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Table 2 Comparison of AUC-best methods

Area Under the Curve

Adult Spambase Credit Sonar

Method 100% 50% 25% 10% 100% 50% 25% 10% 100% 100%

Single 0.843 0.850 0.844 0.855 0.893 0.904 0.903 0.871 0.897 0.758
Part.Tree 0.896 0.895 0.895 0.859 0.969 0.948 0.931 0.881 0.889 0.767
Bagging 0.862 0.864 0.8655 0.871 0.941 0.949 0.949 0.952 0.927 0.859
Adaboost 0.902 0.907 0.905 0.903 0.987 0.983 0.977 0.969 0.915 0.916
Simp.Arbit. 0.739 0.734 0.741 0.750 0.899 0.879 0.874 0.863 0.844 0.710
Grading 0.858 0.862 0.864 0.867 0.942 0.946 0.944 0.947 0.919 0.843
Delegating 0.850 0.854 0.859 0.856 0.898 0.897 0.907 0.869 0.892 0.778

Overall Misclassification Rate

Adults Spambase Credit Sonar

Method 100% 50% 25% 10% 100% 50% 25% 10% 100% 100%

Single 0.217 0.211 0.216 0.160 0.103 0.111 0.107 0.138 0.154 0.293
Part.Tree 0.141 0.180 0.184 0.151 0.080 0.106 0.115 0.146 0.180 0.298
Bagging 0.212 0.207 0.196 0.156 0.094 0.094 0.096 0.104 0.139 0.255
Adaboost 0.184 0.183 0.182 0.171 0.046 0.050 0.064 0.075 0.144 0.168
Simp.Arbit. 0.154 0.153 0.156 0.151 0.095 0.109 0.119 0.140 0.167 0.284
Grading 0.216 0.203 0.207 0.156 0.095 0.095 0.100 0.107 0.141 0.269
Delegating 0.147 0.146 0.147 0.150 0.090 0.095 0.100 0.116 0.148 0.245

Training time (in seconds)e

Adults Spambase Credit Sonar

Method 100% 50% 25% 10% 100% 50% 25% 10% 100% 100%

Single 122.8 49.21 21.01 5.46 14.16 6.44 2.99 1.03 0.54 0.67
Part.Tree 913.6 442.5 90.40 21.75 65.82 38.50 15.95 6.36 4.96 4.37
Bagging 6150 4902 1830 255.2 1442 649.3 294.3 105.5 55.85 76.78
Adaboost 3701 1527 1096 120.9 1082 877.3 362.2 67.92 89.86 111.8
Simp.Arbit. 747.9 728.6 697.7 15.68 173.7 30.69 34.32 18.40 7.44 4.15
Grading 3795 2255 671.8 150.8 722.4 313.3 136.3 47.48 30.41 36.80

Parameter setting of AUC-best method

Adults Spambase Credit Sonar

Method 100% 50% 25% 10% 100% 50% 25% 10% 100% 100%

Part.Treea (0.50) (0.00) (0.00) (0.40) (0.00) (0.10) (0.00) (0.00) (0.10) (0.00)
Part.Treed 66.00 62.80 12.20 3.60 6.20 7.80 4.80 4.00 4.20 3.00
Baggingb (50) (100) (100) (50) (100) (100) (100) (100) (100) (100)
Adaboostb (20) (11) (50) (20) (50) (100) (100) (50) (100) (100)
Simp.Arbit.b (2) (2) (11) (2) (5) (2) (5) (8) (5) (2)
Gradingb (20) (20) (20) (20) (20) (20) (20) (20) (20) (20)
Delegatingc (0.40) (0.40) (0.50) (0.50) (0.60) (0.60) (0.60) (0.60) (0.40) (0.50)
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Fig. 5 Receiver Operating Characteristics on the UCI Adult dataset

methods. This is true for both the quality of prediction, measured in AUC or (Over-
all Misclassification Rate) OMR, and for the training time. While the partitioner tree
method is outperformed on small datasets, the AdaBoost and the partitioner tree ap-
proach show the best prediction quality among all compared ensemble methods on
large datasets. However the partitioner tree approach needs far less training time
than AdaBoost . On the largest dataset (Adult), the partitioner tree reaches an AUC
of 0.8957, which is 0.0059 less than the AUC of 0.9016 achieved by AdaBoost .
In terms of OMR, the partitioner tree achieves the lowest misclassification rate of
0.1406 and thus outperforms AdaBoost (OMR of 0.1836) by 0.043. In terms of the
training time the partitioner tree needed 913.62 seconds for training, thus only ap-
proximately one fourth of the training time of AdaBoost (3701.28 seconds). On the
spambase dataset, AdaBoost was better in terms of the prediction accuracy (AUC of
0.9870 compared to 0.9687, OMR of 0.0459 compared to 0.0798), but again worse
in terms of training time (1081.81 seconds compared to 65.82 seconds). For those
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Fig. 6 Receiver Operating Characteristics on the UCI Spambase dataset

two datasets, all other ensemble methods yielded worse classification accuracy than
the partitioner trees . Figure 5 shows the receiver operating characteristics (ROC)
on the adult dataset, Fig. 6 shows the same for the spambase dataset. It should be
remarked that on the large datasets AdaBoost did yield its best results with less than
the possible 100 classifiers, thus raising the number of classifiers further would not
have increased its performance. Grading might have profitted from additional clas-
sifiers, but was due its need of a meta classifier per base classifier already as slow
as AdaBoost with 50 instances. Therefore no additional experiments with a higher
number of base classifiers were done.

On the datasets with a reduced number of training instances the performance of
the partitioner tree dropped very fast compared to the other ensemble methods. On
the two small datasets (Credit, Sonar) the partitioner tree did not yield a satisfy-
ing accuracy compared to the other methods. The detailed experimental results are
shown in Table 2.
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Fig. 7 Dependency on dataset size (Adult dataset)

In Table 2, the tuned parameters were: when marked with a - the cut threshold
τ; when marked with b - the number of base classifiers; when marked with c - the
delegating proportion; when marked with d - the observed average number of base
classifiers in the model. When marked with e, it meant that due to a programming
error, the training time was not calculated for delegating.

3.2.1 Comparison to Other Meta Classifier Ensembles

The partitioner tree approach achieved better prediction accuracy than the other
meta classifier-based ensemble methods on the two large datasets. On the adult and
spambase dataset, the other best meta classifier ensemble was Grading with an AUC
by 0.0379 lower on the adult and by 0.028 lower on the spambase dataset. The other
best meta classifier-ensemble in terms of the OMR was Delegating with a misclas-
sification rate worse by 0.68 % on the adult and worse by 1.06 % on the spambase
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Fig. 8 Dependency on dataset size (Spambase dataset)

dataset. On the smaller datasets, these methods performed better than the partitioner
tree approach but also worse than Bagging.

3.2.2 Dataset Size Dependency

The strong dependency on the dataset size is in accordance to the theoretical consid-
erations in Sect. 2.2: since the training data is partitioned into two disjoint subsets in
each inner node, the number of training instances available for a predictor decreases
very fast. Therefore the algorithm requires a bigger number of training instances
than other ensemble techniques if overfitting should be avoided. However, this be-
haviour is also the cause of a very positive effect: the very fast training speed. This
correlation between the number of training instances available and the quality of
prediction and the training time is shown in Fig. 8 for the spambase dataset and in
Fig. 7 for the adult dataset.
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This dependency also allows to determine large datasets as the domain for this
partitioner tree . As a rule of thumb, the number of training instances should be at
least greater than five thousand instances, depending on the dataset characteristics.
Below this number of instances this ensemble method might suffer from overfitting
and a lack of training instances in deeper nodes. To overcome this limitations, two
strategies might be of interest for further research.

First, overfitting might be avoided by using a validation set several ways for ob-
taining such a subset during training from the training data and using it during the
construction of the partitioner tree are possible and are currently under research.

Another strategy which might lead to a better performance on smaller datasets
is the relaxation of the partitioning by the partitioners. Instead of strictly disjoint
subsets smoother partitionings could be used, in a similar way as the cut threshold
proposed for the application phase. Such a soft partitioning could be achieved by
weighting instances differently in each subset instead of assigning them to only one
subset. However, such an approach would also forfeit the fast training speed of the
ensemble. Since the training time is often negligible on small datasets this could be
still an interesting extension.

3.3 Conclusion

The new binary tree based ensemble method presented in this chapter has shown that
it is a good ensemble method for classification when sufficiently training instances
are available. Basic considerations anticipate the empirically proven good perfor-
mance with regards to classification accuracy and speed on large datasets, where the
method achieves a similar classification accuracy as AdaBoost but is at least four
times faster in training. Compared to other meta classifier based ensemble methods,
this method achieves a far better accuracy on large datasets in the experiments. Fur-
thermore this method can be trained in an adaptive way without explicit parameter
tuning, which leads to an additional training time advantage over other ensemble
methods.

However the accuracy on smaller datasets was not competitive and methods to
overcome this weakness will be subject of future research. One promising strategy
is to prevent overfitting by specially adjusted methods. Another approach to further
improve accuracy might be the use of more sophisticated methods on deeper levels
in the tree. Finally it will be investigated whether the effects of dataset size observed
with this algorithm can be generalised.

Although in this chapter only binary classification classification!binary problems
were discussed, this algorithm could also be applied to multiclass classification or
regression problems, which is subject of current research.
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Disturbing Neighbors Diversity for Decision
Forests

Jesús Maudes, Juan J. Rodrı́guez, and César Garcı́a-Osorio

Abstract. Ensemble methods take their output from a set of base predictors. The
ensemble accuracy depends on two factors: the base classifiers accuracy and their
diversity (how different these base classifiers outputs are from each other). An ap-
proach for increasing the diversity of the base classifiers is presented in this paper.
The method builds some new features to be added to the training dataset of the base
classifier. Those new features are computed using a Nearest Neighbor (NN) clas-
sifier built from a few randomly selected instances. The NN classifier returns: (i)
an indicator pointing the nearest neighbor and, (ii) the class this NN predicts for
the instance. We tested this idea using decision trees as base classifiers . An experi-
mental validation on 62 UCI datasets is provided for traditional ensemble methods,
showing that ensemble accuracy and base classifiers diversity are usually improved.

Keywords: diversity, ensemble of decision trees, Kappa-Error movement diagrams.

1 Introduction

Ensembles are classifiers that combine predictions from other classifiers. The com-
bined classifiers in an ensemble are called base classifiers. Some ensemble combi-
nation schemes have became popular and they have proved to be successful. Many
of them use a set of base classifiers which are computed using the same algorithm.

Ensembles overall accuracy requires base classifiers not to predict wrongly the
class of the same instances. They need to be diverse in order to complement each
other. So, how can a set of base classifiers generated from the same algorithm pro-
vide those different outputs from the same inputs? Diversity has been achieved on
ensembles using different strategies, most of them are based on modifying the train-
ing dataset of the base classifiers.
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In Bagging [4] diversity comes from randomly picking different instances for
training each base classifier . The Random Subspaces method [12] chooses different
subsets of attributes for training each base classifier. Random Forest [5] is a variant
of Bagging using Decision Trees as base classifiers. In this type of random trees, the
selection of the attribute for a decision node is done using only a random subset of
the attributes.

Boosting [10] iteratively trains the base classifiers by modifying the weights of
instances to train the current classifier. These new weights are computed from the
training error of the previous base classifier, so each new base classifier becomes
more specialized in instances that have been misclassified before.

Some of these methods are constrained to use a specific base classifier that pro-
vides the desired diversity (e.g. Random Trees), and some others get diversity in a
way that cannot be used into other ensemble methods (e.g., Boosting re-weighting).
One important advantage of our approach is that it can be applied to any base method
within any ensemble technique. For example, in this work the experimental valida-
tion is focused mainly on ensembles of Decision Trees.

On the other hand, resampling in Bagging and random feature selection in Ran-
dom Subspaces could be considered as ways of getting diversity that can be adopted
directly in other combination schema. Diversity in these methods is acquired by
adding some randomness to the training process of the base classifiers (i.e. random
resampling, random features selection). In this work, we extend this collection of
methods with another approach to supply diversity. We think our method belongs to
such group because:

• Our method does not need to take into account the ensemble method in which it is
going to be used (like it happens with resampling and random feature selection).
Moreover, we can apply our method to these ensemble algorithms mentioned be-
fore, which have their own way of getting diversity, making their base classifiers
even more diverse and improving the overall ensemble method performance.

• It brings a random component that makes the base classifiers to be built in a
different way each time.

In order to inject randomness, we use the prediction from a not very accurate
classifier. This classifier is built each time with a very small subset of instances of
the whole training set picked randomly. We have used a Nearest Neighbor classifier
for this purpose. The NN output is used to build new features that disturb or alter
the predictions that the base classifier would do using the raw dataset alone. That is
why we call our method Disturbing Neighbors.

The chapter is organized as follows. Section 2 describes the Disturbing Neigh-
bor method. Section 3 compares our method with the state of the art ensembles of
Decision Trees and contains the experimental validation. Section 4 analyzes what
components of our method are essential and what algorithm steps could be discarded
without getting significantly worse results. Section 5 gives the conclusions.
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Algorithm 1. Disturbing Neighbor Base Classifier Training. 1-Nearest Neighbor
function has been specified separately in order to emphasize that (i) it only returns
the nearest neighbor index (not the predicted class), and (ii) distance is computed
by taking into account only a random subset from the original features

Function DN-BaseClassifierTrainer

input : D: Training Dataset with l features and n instances,
m: Small integer,
BCT : Training algorithm of a base classifier BC

output: A classifier trained using a DN variant of BC base method that can be used as a base
classifier in an ensemble method

variables:
RndDimensions: Array [1..l] of Boolean
RndNeighbors: Array [1..m] of instances from D
D′ : Augmented Dataset initially empty

begin
Set randomly more than l/2 elements of RndDimensions to True and the rest to False
Fill randomly RndNeighbors with m instances belonging to D forall x ∈D do

x′ ← x i← NearestNeighbor( x, RndNeighbors, RndDimensions) Append
m new boolean attributes into x′, taking all false values except the one in i position
p← class of RndNeighbors [i] Append p as a new feature of x′ Insert x′ into D′
dataset

end
Train a BC classifier using D′ and BCT Return BC;

end

Function NearestNeighbor
input : x:training dataset instance,
Neighbors: Array [1..m] of instances,
BooleanMask: Array [1..l] of Boolean

output: i:integer indicating the nearest neighbor
begin

Get the Nearest Neighbor to x in Neighbors by computing the Euclidean Distance where
only dimensions set to True in BooleanMask are used Return the index in Neighbors of
the 1-NearestNeighbor

end

2 Method

The method presented here can generate different base classifiers by adding new
features to the training data. This new features are different each time, making the
base classifiers diverse. The algorithm is shown in Fig. 1.

Given a training dataset D, the method:

1. takes m randomly selected instances from D to build a 1-NN classifier, where m
is a small integer provided as parameter,
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2. discards, randomly too, less than 50% of attributes of D; Euclidean distances for
the 1-NN classifier are calculated without using the discarded attributes. This is
like calculating the distances in a projected space.

Then, for each training instance x in D, we add the following m+1 new features:

1. The class predicted by the 1-NN classifier is added as a new feature.
2. Additional m boolean features are added, one for each of the m selected instances.

These features are all false but the one corresponding with the nearest neighbor
to instance x.

Table 1 Some instances from the Iris dataset augmented by new dimensions computed using
Disturbing Neighbors (DN). Features prefixed by Nearest have been added by the DN method.
Nearest Class attribute represents the Nearest Neighbor prediction, and Nearest i is T (true)
when the i-th neighbor is the nearest one
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setosa F F F F F F F T F F 4.7 3.2 1.3 0.2 setosa
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virginica F F F F F F F F T F 6.1 2.6 5.6 1.4 virginica
versicolor F F F F F F T F F F 4.9 2.5 4.5 1.7 virginica

Table 1 shows some instances from the Iris dataset with these new added features.
In this table m has been set to ten. The attribute Nearest Class is the 1-NN predic-
tion, and the boolean attributes Nearest n represent which one of the ten randomly
selected instances is the nearest neighbor. The result is an augmented dataset that
can be used for training any base method in an ensemble, regardless the ensemble
and the base classifier.

Figure 1 shows the effect of using the boolean attributes on the 1-NN classifica-
tion of the conus-torus artificial data set [13]. In this dataset it is difficult to compute
a boundary separating each region. We can use this figure to try to analyze how the
diversity is provided:

• Figure 1 (bottom) shows how the original space in the upper part of Fig. 1 is
divided into Voronoi regions corresponding to each neighbor. These regions are
different each time a DN classifier is built. The added boolean attributes deter-
mine the region each instance belongs to. The division of the space in regions



Disturbing Neighbors Diversity for Decision Forests 117

2 4 6 8 10

2

3

4

5

6

7

8

9

10

2 4 6 8 10

2

3

4

5

6

7

8

9

10

Fig. 1 Conus-torus dataset (top) and its Voronoi regions derived from 10 Neighbors (bottom)
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Fig. 2 C4.5 tree (left) and DN-C4.5 tree (right) for Iris dataset. Note that some splitting
nodes from the DN-C4.5 use the Nearest Neighbor and the Nearest Class (Nearest Neighbor
prediction)

provides extra expressiveness to the base method. For example, if DN is applied
to a Decision Tree , the splitting nodes not only can split data by an attribute
value, but they can change a membership of patterns as shown in Fig. 2. If a re-
gion has a lot of instances belonging to a class, it could be used to split a tree
node. So, each time, different neighbors will produce different boolean values,
and these values will produce a different base classifier, making the whole set of
base classifiers diverse.

• Although it is not expected that the 1-NN class prediction would be very accurate,
it could be accurate enough to make it one of the principal features to be taken
into account by the base method. For example, if Decision Trees are used as base
classifiers probably there will be one splitting node using 1-NN class prediction
next to the tree root (see Nearest Class node in Fig. 2). Different neighbors will
make different predictions, and these predictions will produce again diverse base
classifiers .

• Finally, the random feature selection for computing Euclidean distances in-
creases that diversity. Even if two classifiers would use almost the same m neigh-
bors, both the 1-NN output and the Voronoi regions would be different if the
distances are calculated using different subsets of attributes.

So the 1-NN alters or disturbs the base construction method on these three ways,
and that is why we call it Disturbing Neighbors (DN). A base classifier trained with
the augmented dataset probably does not perform better than when it is trained with
the original dataset, but when DN is used in base classifiers within an ensemble,
all the randomness in DN makes this set of base classifiers diverse, and the overall
accuracy of the ensemble is improved, as shown in Sect. 3.

Finally, note that computationally parallelizable ensemble methods (i.e. Bag-
ging, Random Subspaces or Random Forest), keep this algorithmic property when
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Disturbing Neighbors are used. For our experiments we use m = 10, so computa-
tional cost does not grow significantly by using our variant of classifiers based on
decision trees .

3 Results

Disturbing Neighbors were implemented in Java within WEKA environment [17].
We tested our method using WEKA ensemble implementations. Default WEKA
parameters were used unless otherwise indicated. We compared our method with:

• Bagging [4].
• Random Forest [5].
• Boosting: We used AdaBoost [10] and MultiBoost [16]. In both Boosting ver-

sions we considered resampling and reweighting variants, which are respectively
denoted as (S) or (W) in tables. In reweighting variant all the instances from the
training dataset are used by each base classifier, but in each new round Boosting
changes the weight distribution to focus on hard to classify instances. In resam-
pling variant base classifiers are trained only with a sample of the training set
according to such Boosting weight distribution.

• Random Subspaces [12]: We tested two configurations, picking 50% and 75% of
the original problem dimensions.

The size of the ensemble was 50 in all the experiments. The base methods used
for testing were:

• For Boosting , Bagging and Random Subspaces, the base method was J.48 De-
cision Trees (WEKA implementation of Quinlan C4.5 Decision Tree [15]). We
tested the ensembles with plain J.48, and with J.48 disturbed by our method (DN-
Decision Trees). The parameter m, the number of neighbors, was set to ten.

• For Random Forest obviously Decision Trees are used as base classifiers. The
ensemble was also tested with the plain Decision Trees and with the disturbed
variant (DN-Decision Trees).

We also included in the study an ensemble with fifty DN-Decision Trees as base
classifiers to check if they perform well by their own without any sophisticated com-
bination schema, just a simple average of the predictions generated by the individual
base classifiers . We denote this method by DN-Ensemble from now on.

Finally, we wanted to know if k-NN accuracy was strong enough to be the main
reason the disturbed classifiers could improve ensemble accuracy. So, we included
IBk (WEKA implementation of k-NN [1]) to the test. We tested using fixed k = 1 and
variable k configurations. This last configuration uses an optimized k value for each
data set. The optimal k is obtained through cross validation. NN methods are very
robust with respect to variations of data set, so they do not improve very much when
combined with standard ensembles [9]. Thus, we have not considered ensembles of
k-NN in our test. In particular, Bagging using 1-NN as base classifiers is equivalent
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Table 2 Summary of the data sets used in the experiments. Field id will be used later in
Figs. 5-9

id Dataset #N #D #E #C

1 abalone 7 1 4177 28
2 anneal 6 32 898 6
3 audiology 0 69 226 24
4 autos 15 10 205 6
5 balance-scale 4 0 625 3
6 breast-w 9 0 699 2
7 breast-y 0 9 286 2
8 bupa 6 0 345 2
9 car 0 6 1728 4

10 credit-a 6 9 690 2
11 credit-g 7 13 1000 2
12 crx 6 9 690 2
13 dna 0 180 3186 3
14 ecoli 7 0 336 8
16 glass 9 0 214 6
16 heart-c 6 7 303 2
17 heart-h 6 7 294 2
18 heart-s 5 8 123 2
19 heart-statlog 13 0 270 2
20 heart-v 5 8 200 2
21 hepatitis 6 13 155 2
22 horse-colic 7 15 368 2
23 hypo 7 18 3163 2
24 ionosphere 34 0 351 2
25 iris 4 0 150 3
26 krk 6 0 28056 18
27 kr-vs-kp 0 36 3196 2
28 labor 8 8 57 2
29 led-24 0 24 5000 10
30 letter 16 0 20000 26
31 lrd 93 0 531 10

id Dataset #N #D #E #C

32 lymphography 3 15 148 4
33 mushroom 0 22 8124 2
34 nursery 0 8 12960 5
35 optdigits 64 0 5620 10
36 page 10 0 5473 5
37 pendigits 16 0 10992 10
38 phoneme 5 0 5404 2
39 pima 8 0 768 2
40 primary 0 17 339 22
41 promoters 0 57 106 2
42 ringnorm 20 0 300 2
43 sat 36 0 6435 6
44 segment 19 0 2310 7
45 shuttle 9 0 58000 7
46 sick 7 22 3772 2
47 sonar 60 0 208 2
48 soybean 0 35 683 19
49 soybean-small 0 35 47 4
50 splice 0 60 3190 3
51 threenorm 20 0 300 2
52 tic-tac-toe 0 9 958 2
53 twonorm 20 0 300 2
54 vehicle 18 0 846 4
55 vote1 0 15 435 2
56 voting 0 16 435 2
57 vowel-context 10 2 990 11
58 vowel-nocontext 10 0 990 11
59 waveform 40 0 5000 3
60 yeast 8 0 1484 10
61 zip 256 0 9298 10
62 zoo 1 15 101 7

#N: Numeric features, #D: Discrete features, #E: Examples, #C: Classes

to 1-NN [6]. Moreover, Bagging can slightly degrade the performance of stable
algorithms (e.g., k-NN) [3].

For validation we used the 62 UCI datasets [2] in Table 2 and 5× 2 stratified
cross validation, which provides an acceptable number of repetitions [7]. Results
are summarized in Tables 3-6.

Table 3 shows the methods using the average ranks from [8]. A number is as-
signed to each method and data set corresponding to its rank position in such dataset.
If there are ties, average ranks are assigned. Then, for each method, the average po-
sition is calculated over all datasets (see first column of Table 3). The methods are
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Table 3 Ensemble methods sorted by their average rank

Average Rank Method

6.28 DN-MultiBoost (S)
6.73 DN-Random Forest
7.12 DN-MultiBoost (W)
8.01 DN-AdaBoost (S)
8.09 DN-AdaBoost (W)
8.27 MultiBoost (S)
8.65 Random Forest
8.84 DN-Subspaces (50%)
9.23 MultiBoost (W)
9.65 DN-Bagging

10.03 DN-Subspaces (75%)
10.11 AdaBoost (S)
10.23 AdaBoost (W)
11.54 k-Nearest Neighbor
11.90 Bagging
12.31 Subspaces (50%)
14.07 DN-Ensemble
14.31 Subspaces (75%)
14.61 1-Nearest Neighbor

then ordered using these values. We can see that all undisturbed ensemble methods
were improved by their DN version.

Let us consider only methods in the experiment having a DN version and an
undisturbed version. Table 4 shows rank positions of these methods according to
Table 3. Table 4.a shows the DN versions, whereas Table 4.b shows the undis-
turbed versions. Relative order between methods is practically the same regardless
of whether the DN version is used or not. The only exceptions are Bagging and Ran-
dom SubSpaces(50%). So DN version improvements seem to be somehow indepen-
dent of combination schemes. That is why DN can be thought of as an enhancement
of an existing ensemble method. This hypothesis is also supported by the ranking
of the DN-Ensemble in Table 3. The average ranking of this ensemble is even worse
than k-NN, and it shows that simply using DN-base classifiers does not ensure the
best possible ensemble.

The improvement of using DN versions is quantified in Table 5 that shows wins,
ties and loses of disturbed ensemble versions against undisturbed versions. Accord-
ing to the sign test [8], for 62 data sets, one method is better than other with signif-
icance level of 5%, if the number of wins plus half the ties is greater or equal than
39. Hence, for all the methods in Table 5 the DN version is significantly better.

Table 3 shows that 1-NN and k-NN seem to poorly perform in the experiments.
Thus we can think that DN versions are not improved by the k-NN algorithm
strength, but rather by the diversity induced by the random neighbors selection.
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Table 4 Ranking based on average ranks of disturbed and undisturbed variants of ensem-
ble methods. Table a ranks disturbed variants, whereas Table b ranks undisturbed variants.
Methods not preserving the relative order are marked in bold

Rank Disturbed Method

1 DN-MultiBoost (S)
2 DN-Random Forest
3 DN-MultiBoost (W)
4 DN-AdaBoost (S)
5 DN-AdaBoost (W)
8 DN-Subspaces (50%)

10 DN-Bagging
11 DN-Subspaces (75%)

a.

Rank Undisturbed Method

6 MultiBoost (S)
7 Random Forest
9 MultiBoost (W)

12 AdaBoost (S)
13 AdaBoost (W)
15 Bagging
16 Subspaces (50%)
18 Subspaces (75%)

b.

Table 5 Comparison of methods with and without DN based diversity

Method Win-Tie-Loss

Bagging 50-1-11
Subspaces (50%) 50-3-9
Subspaces (75%) 54-3-5
AdaBoost (W) 47-0-15
AdaBoost (S) 49-1-12
MultiBoost (W) 47-1-14
MultiBoost (S) 48-0-14
Random Forest 40-3-19

Table 6 Comparison of ensemble methods with the k-Nearest Neighbor classifier

Method Win-Tie-Loss

DN-Ensemble 26-2-34
DN-Bagging 41-0-21
DN-Subspaces (50%) 40-1-21
DN-Subspaces (75%) 36-2-24
DN-AdaBoost (W) 39-0-23
DN-AdaBoost (S) 39-1-22
DN-MultiBoost (W) 39-0-23
DN-MultiBoost (S) 40-1-21
DN-Random Forest 44-2-16

Table 6 also shows the same by comparing each DN method against k-NN. We can
see that k-NN is significantly worse than all the DN-methods except DN-Ensemble
and DN-Subspaces (75%).
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We also tested diversity improvement of DN-Trees using the Kappa statistic [14].
Kappa measures how diverse two classifiers are, it can take values ranged from −1
to 1. A Kappa value equal to 1 means that both classifiers agree in every example, a
value equal to 0 means that there is no agreement above that expected by chance, and
negative Kappa values happen when there is disagreement between the classifiers.
Then Kappa values are used to draw Kappa-Error Diagrams [14]. Figure 3 shows an
example for krk dataset with Bagging and AdaBoost methods. For each pair of base
classifiers we plot a point (x,y), where x is kappa measure for these two classifiers,
and y is the average error of them. So ideally pairs of base classifiers would be close
to left bottom corner, because it means they are accurate and diverse.

In Fig. 3 we see DN-clouds slightly displaced to the left of undisturbed ensembles
clouds. It means that DN-methods are more diverse. Figure 4 shows Kappa-Error
Movement Diagram. This diagram is based on the corresponding Kappa-Error dia-
gram for each dataset. All diagrams are scaled using the maximum and minimum
values of Kappa and Error. Each method considered (i.e., Bagging, Adaboost with
resampling, Multiboost with resampling, Random Forest and Random Subspaces
50% attributes variant) is represented by an arrow pointing from the centre of the
undisturbed version cloud to the centre of the DN version cloud. We can see a lot
of arrows pointing left, which means a generalized improvement of diversity. The
longer the arrow, the bigger the relative difference.

Finally, Figs. 5 to 9 show Kappa-Error Relative Movement Diagrams for each
ensemble method. These diagrams are obtained gathering all arrows in Fig. 4 for
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Fig. 4 Kappa-Error Movement Diagram for the 62 datasets. Each arrow points from the
center of the non-DN version cloud of a method to the center of the DN version cloud

an ensemble, and translating the starting point of every arrow to the origin of co-
ordinates. Numbers represents the dataset id field in Table 2. This kind of diagram
is a very convenient way of summing up the results shown in Fig. 4. The majority
of arrows point to left, which is an indicator of diversity. Many arrows also point
upward, showing that generally the increase of diversity is at the expense of the
individual base classifier accuracy.

4 Lesion Study

There are three elements in the DN-base classifier construction: (i) Random Fea-
ture Selection is applied to compute 1-NN distances, (ii) m new boolean features
are added indicating the Nearest Neighbor, and (iii) another extra feature is added
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Fig. 5 Kappa-Error Relative Movement Diagram for Bagging

containing the Nearest Neighbor class prediction. It is very interesting to make an
experimental study to point out which of these three elements are critical for DN
accuracy, and which of them are not essential.

For this purpose, we create five new variants of DN:

1. DNC is a variant that does not apply random feature selection, neither it takes
into account which is the nearest neighbor. It only computes the nearest neighbor
class prediction. DNC variant can be shown as a type of Cascading [11] where
the 1-NN classifier plays the role of Level1 classifier, and the tree plays the role
of Level2 classifier. However, Cascading generally uses the whole dataset for
training Level1 classifier, whereas DN uses only a few, m, instances.

2. The DNN variant does not apply random feature selection and does not takes
the 1-NN prediction. It only uses the m binary attributes indicating which is the
nearest neighbor.

3. The DNNC variant does not apply random feature selection but considers both
1-NN prediction and m binary attributes.

4. The DNCR variant is very similar to DNC because the 1-NN classifier prediction
is also taken into account. The difference is that DNCR computes 1-NN distances
using the random feature selection .
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5. The DNNR variant is very similar to DNN because it also uses the m binary fea-
tures. The difference is that DNNR computes 1-NN distances using the random
feature selection as well.

According to this nomenclature, the DN method itself could be rewritten as
DNNCR because it applies the three mentioned elements (N: the Nearest neighbor
from the m instances, C: the nearest neighbor Class prediction, R: Random feature
selection).

The ensemble methods considered in Sect. 3 have been grouped into nine
families:

1. Bagging.
2. Random Forest.
3. Random Subspaces using 50% of original features.
4. Random Subspaces using 75% of original features.
5. Reweighting AdaBoost.
6. Resampling AdaBoost.
7. Reweighting MultiBoost.
8. Resampling MultiBoost.
9. DN-Ensembles.

All families except DN-Ensembles consist of seven methods: the plain ensemble
without any DN variant, the DN variant (DNNCR), and the five variants described
before. For DN-Ensembles only six methods are considered, because there is no
plain ensemble.

Average ranks have been computed for each family using again the same 62 UCI
datasets and 5× 2 stratified cross validation. According to [8] using the two-tailed
Nemenyi test, for 62 datasets a classifier performs better than other with significance
level 5%, if the difference between their average ranks is greater than a critical value
of 1.144 when seven methods are compared (i.e. all families except DN-Ensemble
family), or 0.958 when six methods are compared (i.e. the DN-Ensemble family).

Tables 7-10 show the results for each family. Vertical lines with whiskers on
the left side of each table group methods that are not significantly worse than the

Table 7 Average Rankings for Bagging, Random Forest and DN-Ensemble variants

Average
Rank Method

3.01 DNNC-Bagging
3.16 DN-Bagging
3.88 DNC-Bagging
3.91 DNN-Bagging
3.94 DNNR-Bagging
4.60 DNCR-Bagging
5.50 Bagging

Average
Rank Method

3.40 DN-R Forest
3.60 DNNR-R Forest
3.95 DNNC-R Forest
4.10 DNCR-R Forest
4.10 DNC-R Forest
4.34 DNN-R Forest
4.52 R Forest

Average
Rank Method

2.48 DNNC-Ensemble
2.74 DN-Ensemble
2.97 DNN-Ensemble
3.40 DNNR−Ensemble
4.49 DNC-Ensemble
4.91 DNCR-Ensemble
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Table 8 Average Rankings of Random Subspaces variants

Average
Rank Method

3.19 DNNC-Subspaces (50%)
3.22 DN-Subspaces (50%)
3.44 DNN-Subspaces (50%)
4.00 DNC-Subspaces (50%)
4.02 DNNR-Subspaces (50%)
4.32 DNCR-Subspaces (50%)
5.81 Subspaces (50%)

Average
Rank Method

2.85 DN-Subspaces (75%)
2.98 DNNC-Subspaces (75%)
3.59 DNN-Subspaces (75%)
3.61 DNNR-Subspaces (75%)
4.16 DNC-Subspaces (75%)
4.64 DNCR-Subspaces (75%)
6.17 Subspaces (75%)

Table 9 Average Rankings of AdaBoost variants

Average
Rank Method

3.23 DN-AdaBoost (W)
3.49 DNNR-AdaBoost (W)
3.73 DNNC-AdaBoost (W)
3.82 DNN-AdaBoost (W)
4.01 DNC-AdaBoost (W)
4.54 DNCR-AdaBoost (W)
5.18 AdaBoost (W)

Average
Rank Method

3.09 DNN-AdaBoost (S)
3.41 DNNR-AdaBoost (S)
3.57 DN-AdaBoost (S)
3.83 DNNC-AdaBoost (S)
4.16 DNC-AdaBoost (S)
4.61 DNCR-AdaBoost (S)
5.32 AdaBoost (S)

Table 10 Average Rankings of MultiBoost variants

Average
Rank Method

3.51 DNNC-MultiBoost (W)
3.53 DN-MultiBoost (W)
3.62 DNNR-MultiBoost (W)
3.69 DNN-MultiBoost (W)
4.06 DNCR-MultiBoost (W)
4.13 DNC-MultiBoost (W)
5.45 MultiBoost (W)

Average
Rank Method

3.39 DNNC-MultiBoost (S)
3.40 DN-MultiBoost (S)
3.77 DNN -MultiBoost (S)
4.05 DNNR-MultiBoost (S)
4.06 DNC-MultiBoost (S)
4.22 DNCR-MultiBoost (S)
5.12 MultiBoost (S)

first ranked method, whereas vertical lines with whiskers on the right side of each
table group methods that are not significantly better than the last ranked method.
Table 7 shows that all variants have no significant performance difference in the
Random Forest family. But in the rest of families, DN variant is always in the top
group whereas the plain method is always ranked at last position, except for DN-
Ensembles, where there is no plain method.
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Table 11 Average Rankings for all variants. Benefit is computed as the average rank dif-
ference when using a DN variant compared to using none for the same ensemble method

Average
Rank Benefit Method

20.67 8.34 DNNC-MultiBoost (S)
21.95 7.06 DN-MultiBoost (S)
22.64 6.37 DNN -MultiBoost (S)
22.84 6.69 DN-Random Forest
22.86 6.15 DNC-MultiBoost (S)
23.01 6.52 DNNR-Random Forest
24.17 4.84 DNNR-MultiBoost (S)
24.29 8.19 DNNR-MultiBoost (W)
24.33 8.15 DNN -MultiBoost (W)
24.40 8.08 DNNC-MultiBoost (W)
24.61 4.40 DNCR-MultiBoost (S)
24.83 4.70 DNNC-Random Forest
24.92 7.56 DN-MultiBoost (W)
25.43 7.06 DNC-MultiBoost (W)
25.95 3.58 DNN -Random Forest
26.90 7.59 DNN -AdaBoost (S)
26.99 7.49 DNNC-AdaBoost (S)
27.00 7.48 DNNR-AdaBoost (S)
27.02 5.47 DNCR-MultiBoost (W)
27.46 7.02 DN-MultiBoost (S)
27.52 2.01 DNCR-Random Forest
27.72 1.81 DNC-Random Forest
28.34 6.81 DN-AdaBoost (W)
28.44 6.71 DNN -AdaBoost (W)
29.01 MultiBoost (S)
29.19 5.29 DNC-AdaBoost (S)
29.19 12.82 DNNC-Subspaces (50%)
29.23 5.91 DNNR-AdaBoost(W)
29.43 5.06 DNCR-AdaBoost(S)
29.53 Random Forest
29.73 5.42 DNNC-AdaBoost(W)
30.32 11.69 DN-Subspaces (50%)

Average
Rank Benefit Method

30.06 4.54 DNC-AdaBoost (W)
31.12 10.09 DNC-Subspaces (50%)
31.16 10.85 DNN -Subspaces (50%)
31.55 9.43 DNNC-Bagging
32.48 MultiBoost (W)
32.82 2.32 DNCR-AdaBoost (W)
33.01 9.01 DNNR-Subspaces (50%)
33.19 7.78 DNC-Bagging
33.31 7.66 DN-Bagging
33.58 8.44 DNCR-Subspaces (50%)
33.75 14.55 DNNC-Subspaces (75%)
34.26 14.04 DN-Subspaces (75%)
34.48 AdaBoost (S)
34.69 6.29 DNN -Bagging
35.15 AdaBoost (W)
36.15 4.82 DNCR-Bagging
36.15 4.82 DNNR-Bagging
37.14 11.16 DNN -Subspaces (75%)
37.60 10.69 DNC-Subspaces (75%)
37.93 10.37 DNNR-Subspaces (75%)
39.11 k-Nearest Neighbor
40.93 7.37 DNCR-Subspaces (75%)
40.98 Bagging
42.02 Subspaces (50%)
45.98 DNNC-Ensemble
48.08 DN-Ensemble
48.30 Subspaces (75%)
48.38 DNN -Ensemble
49.57 1-Nearest Neighbor
50.56 DNNR-Ensemble
51.55 DNC-Ensemble
54.49 DNCR-Ensemble

In all families, except for Random Forest, the variants that use the m binary fea-
tures, indicating the Nearest Neighbor (from now on VariantsN), never fall into
the group of methods that are not significantly better than the last ranked method.
Moreover:

• VariantsN always take at least the two top places in all families.
• VariantsN are always in the group of methods that are not significantly worse

than the first ranked one.
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On the other hand, except for Random Forest, there is always a DNCR or a DNC

method in the second from last place. In DN-Ensemble, Random Subspaces (75%)
and the four Boosting families DNCR and DNC variants fill the bottom places along
with the respective plain version if any. Many of these variants even do not show a
significant improvement over their plain variant.

There are only three cases with significant difference between applying or not
random feature selection to distances computation. In Bagging, and both AdaBoost
variants the DNC option is significantly better than the DNCR. In the rest of families
there is no significant difference between such options, and in all families there is no
significant difference between DNR and DNNR, and between DNand DNNC versions.

In four families the DN variant ranks better than the DNNC, and in the other five
happens the opposite. In all families except for Random Forest and both Boost-
ing reweighting variants, DNN variant ranks better than DNNR, and DNC variant
ranks better than DNCR only in two families. So, using or not a random subspace
of features for 1-NN distances does not seem very important in the schemes con-
sidered. However, reducing input space dimensionality is an interesting option for
big datasets, in order to achieve a slightly reduction in distance computation without
significant accuracy loss.

We can conclude that using the m features pointing the Nearest Neighbor is the
common characteristic to all successful variants in all families. Using the 1-NN
prediction or the random feature selection do not seem to be essential.

Table 11 shows the average ranks for all methods and variants. The column
benefit in the DN variant rows indicates the gain of the DN version regarding the
plain ensemble. Although some relative positions in family ranks are swapped
from the overall rank, swaps always happen between non-significantly different
methods.

This overall rank shows that the order between the families of ensembles from
Table 3 is preserved when the new DN variants are considered. So the improvement
of using the DN method seems to be uniform among all the ensembles algorithms.

5 Conclusion

This paper presents the method for improving diversity of base classifiers in ensem-
bles. Our method builds some new features to be added to the training set. These
attributes are different for each base classifier, making base classifiers diverse.

The new features disturb the normal training of the base classifier and are ob-
tained from the use of an 1-NN classifier. The instances (Disturbing Neighbors)
used for the 1-NN classifier are a very small subset of the whole training dataset
selected randomly for each base classifier and being the source of diversity for the
ensemble.

An experimental validation has been provided showing that the idea presented
in this paper improves accuracy in all considered ensembles of decision trees. Di-
agrams based on Kappa statistic have been introduced (Kappa-Error Movement
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Diagram and Kappa-Error Relative Movement Diagram) showing that diversity is
also improved.

A lesion study has been made in order to clarify what DN algorithm ingredients
are essential. It seems that the 1-NN predictions and the use of a random subset of
input space dimensions for computing the neighbors distances do not give any sig-
nificant improvement, whereas using a set of extra binary features pointing which
one is the nearest neighbor is the key of the success of the method. So 1-NN method
does not seem to be replaceable by another method that just provides a class pre-
diction. It is needed that such classifier also provides the way of dividing the input
space into random regions, as the Nearest Neighbors do.

Acknowledgements. This work has been supported by the “Junta de Castilla y León” project
BU007B08.

References

1. Aha, D., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1),
37–66 (1991)

2. Asuncion, A., Newman, D.J.: UCI machine learning repository.,
http://www.ics.uci.edu/˜mlearn/MLRepository.html

3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bag-
ging, boosting, and variants. Mach. Learn. 36(1-2), 105–139 (1999)

4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Bruno Caprile, B., Merler, S., Furlanello, C., Jurman, G.: Exact bagging with k-nearest

neighbour classifiers. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS,
vol. 3077, pp. 72–81. Springer, Heidelberg (2004)

7. Dietterich, T.G.: Approximate statistical test for comparing supervised classification
learning algorithms. Neural Comp. 10(7), 1895–1923 (1998)
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Improving Supervised Learning with Multiple
Clusterings

Cédric Wemmert, Germain Forestier, and Sébastien Derivaux

Abstract. Classification task involves inducing a predictive model using a set of
labeled samples. The accuracy of the model usually increases as more labeled sam-
ples are available. When one has only few samples, the obtained model tends to
offer poor results. Even when labeled samples are difficult to get, a lot of unlabeled
samples are generally available on which unsupervised learning can be done. In this
chapter, a way to combine supervised and unsupervised learning in order to use both
labeled and unlabeled samples is explored. The efficiency of the method is evaluated
on various UCI datasets and on the classification of a very high resolution remote
sensing image when the number of labeled samples is very low.

Keywords: semi-supervised learning, clustering, few labeled data.

1 Introduction

The number of labeled samples is a crucial issue for supervised classification. If too
few examples are given to a classical algorithm, the induced predictive model will
have poor performance. Sadly, in many real-world applications, labeled samples are
difficult to obtain. This is often due to the cost of a human manual labeling. For
example, we can cite all the problems where the user only gives few examples, and
the system has to find similar objects in a database (content-base image retrieval,
online web-page recommendation, . . . ). In these cases, only few labeled samples
are available although many unlabeled data are present (all the other instances in
the database). In web-page recommendation, a user labels interesting pages. It is not
possible to ask for the user to produce other samples as he might not know them.
The same problem appears with online shop services when a user buys a product and
the system wants to automaticaly advise him on other related products. The system
only knows which products the user bought and the product rating (collaborative
filtering).

Cédric Wemmert · Germain Forestier · Sébastien Derivaux
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Another challenging problem is to compute a high accuracy classification when
the ratio between the number of available labeled data and the number of features is
very small. If the number of features is high, the standard classifiers will need a lot
of training samples to perform a relevant classification. This observation is known
as the Hughes phenomenon [9]. In remote sensing, the hyperspectral sensors can
produce data with a very large number of bands, up to 200 (which means 200 real
values for each pixel). With such data, more details can be observed in the land
cover, i.e., the number of classes of interest is increased. More features and more
classes involve more samples, which are generally expensive and time consuming to
acquire. The same observation can be highlighted with the object-oriented analysis
of Very High Resolution images. With this kind of images, a first step of segmenta-
tion is commonly performed to build “geographical objects”. These objects are then
characterized by many different features (spectral, spatial or contextual). Thus, the
dataset to classify is often composed of objects described by a lot of features, but
with very few or no samples.

Despite the fact that labeled samples are rare and insufficient, compared to the
dataspace dimension, unlabeled samples are generally available in great quantities.
Some research work revealed that these samples can be used to improve supervised
classification. The main idea is to partially classify the unlabeled samples using the
labeled ones, and then to use them to induce a new model [2, 15, 17].

Our method is slightly different of the existing ones, as we use multiple unsuper-
vised classifications to create new features describing the labeled samples. Then, a
supervised classification is applied to this new data space. As unsupervised classifi-
cation creates clusters that tend to maximize intra-cluster similarity and inter-cluster
dissimilarity, no labeled sample is needed. The clustering may be seen as a way to
resume the distribution of the samples. It is sometimes used to reduce data before
classification step.

If two classes form a highly homogeneous cloud in the feature space, one can
not expect a clustering to separate them. Even if our approach can weaken this
condition, it must be kept in mind.

In this chapter, we first present some related works and justify our method in
Sect. 2. Then, the algorithm is described in Sect. 3. In Sect. 4, we present many
experiments made on UCI datasets. The results that we obtain are compared with
classical supervised methods to quantify the improvement given by the unsupervised
clustering . We also present some results obtained on the real-world data extracted
from a VHSR (Very High Spatial Resolution) remote sensing image of the urban
area of Strasbourg (France). Finally, we give conclusions and draw some perspec-
tives about future work.

2 Related Works

Many previous works have shown that unlabeled data can help to improve the qual-
ity of classification when very few labeled samples are available [2, 4, 7, 11, 15].
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The first way to exploit unlabeled objects is the co-training method proposed in
[2]. The main idea is to use two complementary classifications to iteratively label
the unlabeled data. This assumes that two independent and complementary feature
sets exist on the data.

To extend this method and avoid the independence and redundancy of the feature
sets, which is not realistic in real problems, Goldman and Zhou presented in [7]
a co-training strategy which uses unlabeled data to improve the performance of a
supervised classifier. Their method uses two different supervised learners which can
select some unlabeled data to label the other learner in an iterative way. Experiments
have shown that the method increases the accuracy of the ID3 algorithm. More
recently, Raskutti et al. [16] present a co-training method that does not necessary
need two complementary supervised learning algorithms. The idea is to produce an
alternate view on the data by performing an unsupervised classification algorithm on
the whole dataset (labeled and unlabeled). Then, the original view and the view built
from the clustering are used to create two independent predictors for co-training. In
[20], the authors present a co-training approach which assumes to have two views
of the data. The method uses the correlation between the two views to produce extra
positive and negative samples in an iterative process. Experiments, where only one
labeled sample is available, show that the method outperforms other co-training
approaches.

Unlike co-training, ASSEMBLE [1] can build semi-supervised ensembles of any
size and does not require the domain to have multiple views. ASSEMBLE incorpo-
rates self-labeled examples in a Boosting framework. At each iteration of ASSEM-
BLE examples from the unlabeled set are labeled by the current ensemble and added
to the training set. In [4], the empirical study of various semi-supervised learning
techniques on a variety of datasets is presented. Different experiments are made to
evaluate the influence of the size of the labeled and unlabeled sets, or the effect of
noise in the samples. The paper concludes that the performance of the methods is
heavily dependent of the field of application and the nature of the dataset. However,
using labeled and unlabeled samples improves the accuracy in most of the cases.

A more recent approach was discussed in [3]. The idea is to simultaneously com-
pute the clustering and the classification , instead of proceeding in two sequential
steps. To achieve this goal, the authors define an objective function that evaluate not
only the classification ability but also the clustering ability by mixing two terms: the
misclassification rate (for the supervised part) and the clustering impurity (for the
unsupervised aspect). A quite similar method is presented in [6] and applied to real
marketing datasets.

In the field of remote sensing image classification, some previous work to
take advantage of unlabeled data in the classification process was undertaken by
Shahshahani and Landgrebe [18]. They proposed three methods to incorporate si-
multaneously labeled and unlabeled samples in parametric, nonparametric and semi-
parametric classifiers. They also gave some results on a small extract of an AVIRIS
remote sensing image to show the enhancement of the classification performance.

Later, in [8], the authors presented a new covariance matrix estimator. It produces
classification with a higher accuracy that the standard covariance matrix estimation
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methods, when using a limited training data set. Some experiments on the classifi-
cation of an agricultural zone of the Nevada, based on an AVIRIS image, showed
the efficiency of the estimator on real problems.

More recently, Jia et al. [10] introduced a new method to deal with hyperspectral
data. The idea is to cluster the training data and then to associate spectral clusters
with information classes, thus building a cluster-space classification. Then, each
pixel is classified according to its cluster membership and the membership of the
cluster to information classes.

Morgan et al. [13] proposed another approach to solve the problem of the
small amount of labeled data. It consists in using a feature reduction scheme that
adaptively adjusts itself to the size of the samples dataset. Some experiments are
presented on hyperspectral data obtained with the HyMap sensor (Hyperspectral
Mapper). The results show that even if the feature space was reduced and the num-
ber of samples was very low, the classifications produced have a high accuracy.

The method presented in this paper is slightly different from the ones discussed
above. All the co-training methods use the labeled and unlabeled samples together
in the training step. If more labeled samples are available, the training step needs to
be executed again, which is often costly. In our approach, the unsupervised classi-
fication can be seen as a pre-processing step, which is performed only once. Then,
depending on the availability of labeled samples, the supervised classification can
be computed. This training part is very quick as the number of samples is very small.

3 Description of the Method

3.1 Improving Supervised Classification with Clustering

To better understand how clustering can improve supervised classification, we
present here an example of an artificial dataset built from the UCI iris dataset. We
selected only two features (petalwidth and sepallength), but we retained the 150 in-
stances and the three classes (iris-virginica, iris-versicolor and iris-setosa). We also
selected 6 instances as labeled samples (2 labeled samples per class). The dataset to
be classified is presented on Fig. 1.

We performed a simple C4.5 supervised classification of this dataset.Using the
six labeled instances shown in Fig. 1, we obtained the following results (see also
Table 1 for details on different accuracy rates and Table 2 for the confusion matrix
of the result):

• Correctly classified instances: 51.3%
• Incorrectly classified instances: 48.6%
• Kappa statistic: 0.27
• Mean absolute error: 0.3244
• Root mean squared error: 0.5696
• Relative absolute error: 73.0%
• Root relative squared error: 120.8%
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Fig. 1 The original dataset to be classified: the labeled samples used for classification are the
6 instances surrounded by a black squares

Table 1 Detailed accuracy by class for the first result

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

Iris-setosa 0.12 0 1 0.12 0.214 0.56
Iris-versicolor 0.6 0.53 0.361 0.6 0.451 0.535
Iris-virginica 0.82 0.2 0.672 0.82 0.739 0.81

Weighted avg. 0.513 0.243 0.678 0.513 0.468 0.635

Table 2 Confusion matrix for the first result

Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa 6 44 0
Iris-versicolor 0 30 20
Iris-virginica 0 9 41

It is obvious that these bad results are due to the (arbitrary) bad choice of the
labeled samples and the low ratio between the number of labeled samples and the
number of instances to classify (4%). This is to illustrate the fact that the user does
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Table 3 Detailed accuracy by class for the enhanced dataset

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

Iris-setosa 1 0.07 0.877 1 0.935 0.965
Iris-versicolor 0.46 0.09 0.719 0.46 0.561 0.685
Iris-virginica 0.82 0.2 0.672 0.82 0.739 0.81

Weighted avg. 0.76 0.12 0.756 0.76 0.745 0.82

Table 4 Confusion matrix for the enhanced dataset

Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa 50 0 0
Iris-versicolor 7 23 20
Iris-virginica 0 9 41

not necessary know how the dataset is organized, and where the chosen samples are
localed in the data space.

Now let us perform three clusterings of the complete dataset to enhance the data
description. We used the classical k-means algorithm with 2, 3 and 4 clusters. Then,
we ran again the C4.5 algorithm on the new enhanced dataset, now containing five
features: the two original attributes and three nominal attributes corresponding to
each clustering result, respectively: (sepallength, petalwidth, kmeans2, kmeans3,
kmeans4). The results are the following:

• Correctly classified instances: 76%
• Incorrectly classified instances: 24%
• Kappa statistic: 0.64
• Mean absolute error: 0.16
• Root mean squared error: 0.4
• Relative absolute error: 36.0%
• Root relative squared error: 84.8%

The results are much better: all the accuracy rates and the statistical quality cri-
teria are higher (Table 3), and as shown in Table 4, the problem with the iris-setosa
class has been partially solved.

3.2 The Proposed Method

The main idea of the proposed method is to improve the classification by first pro-
ducing a clustering on the dataset. The clustering, computed on all the labeled and
unlabeled objects, regroups the similar objects together, maximizing the intracluster
similarity and the intercluster dissimilarity. If the classes of the problem are well
separated in the feature space, we should be able to associate to each cluster one of
the classes, using the class of the labeled samples which belong to the cluster.
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Unfortunately, in real problems, classes are generally not well separated. It is
then possible to have samples from different classes in one cluster, or no sample in
others. To address this issue, the proposed method uses a combination of multiple
clusterings.

Let X denote a set of n data objects x j ∈X . We consider a q-class classification
problem with m labeled and l unlabeled objects where m is very low and l >> m.

Let L be the set of labeled objects of X :

L = ((x1,y1), . . . ,(xm,ym)) , (1)

where yi ∈ {1, . . . ,q} are the target values of the samples.
Let U be the set of unlabeled objects of X :

U = (xm+1, . . . ,xm+l) . (2)

A clustering is a partition of X into k clusters, and is represented as an n-
dimensional cluster labeling vector

C =
(
C j)n

j=1 ∈ C n , (3)

where C = {c1, . . . ,ck}. We consider here b clusterings of the dataset X , repre-
sented as a n×b matrix of cluster labeling vectors. Let C denote this set of cluster-
ings, C = {C1, . . . ,Cb}. The idea is to transform each labeled sample xi, ∀i < m, a
new feature vector

v(xi) =
(
Ci

1, . . . ,C
i
b,yi
)

, (4)

where Ci
j is the cluster label assigned by the jth clustering method Cj to xi. Then,

a predictive model P : X → {1, . . . ,q} can be induced from this new dataset V =
{v(xi)}m

i=1, using a classical supervised learning method. Finally, the label P(xi) is
assigned to each unlabeled object xi of U .

The complete process of classification is given in Algorithm 2.

Algorithm 2. Classification with few labeled data
1: apply b clustering algorithms to the dataset X and to form C = {C1, . . . ,Cb}
2: for all xi ∈L do
3: v(xi) =

(
Ci

1, . . . ,C
i
b,yi
)

where Ci
k is the cluster label assigned to xi by the kth clustering

method Ck and yi is the class label of xi
4: end for
5: apply a supervised learning method to produce a predictive model P from V = {v(xi)}m

i=1

6: for all x j ∈U do

7: assign P(C j
1, . . . ,C

j
b) to x j , where C j

k is the cluster label given to x j by the kth clustering
method Ck

8: end for
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4 Experiments

4.1 Artificial Benchmark Evaluation

The method described in the previous section has been evaluated on various datasets
of the UCI repository [14]. Table 5 presents information about these datasets.

To apply the proposed method, we first had to choose how many clusterings will
be run on the dataset (i.e., how many attributes each object in the new data space will
have), and then the different clustering methods. We chose four different configura-
tions to study the importance of the number of clusterings. The four configurations
are referred as follows:

1. simple: one EM (Expectation-Maximization [5])
2. low: one EM and one KMeans [12]
3. medium: two EM and two KMeans
4. high: c EM and c KMeans (with c the number of classes of the datasets).

Table 5 Information about the different datasets

Dataset Nb. classes Nb. attributes Nb. objects

iris 3 4 150
wine 3 13 178
ionosphere 2 34 351
diabetes 2 8 768
breast-w 2 9 699
anneal 5 38 898

Each method was run with a number of clusters equal to the number of classes ac-
tually present in the dataset, except for the high configuration, where the clustering
method k ∈ {2, . . . ,c} had k clusters. The four configurations were compared with
other algorithms, taken in different families of learning algorithms: the standard
tree inducer C4.5, Naive Bayes and 1-nearest-neighbor (1-NN) algorithm. Results
are presented in Tables 6 and 7. The number of samples used is indicated at the be-
ginning of each line. We chose to evaluate the method when 2,4,8 and 16 samples
per class were available.

For the four configurations of the proposed method, 50% of the remaining data
were used for the unsupervised learning, and the other 50% for the evaluation of
the method. We chose to use the Naive Bayes classifier as the supervised method in
Algorithm 2.

As performance may greatly differ depending on the labeled set, the experiments
were carried out 20 times and the results were averaged. At each run, the different
sets are filled with randomly chosen samples.

The proposed method outperformed the supervised learning when the number of
samples was very low (2 or 4 samples per class). For example, it can be noticed on
the breast-w dataset that with two samples the high configuration reaches 95.73%
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Table 6 Results of the proposed method with 4 configurations, according to the different
datasets with 2,4,8 and 16 labeled samples available. Values correspond to the means and
the standard deviations on 20 runs

Dataset Simple Low Medium High

iris

(2) 72.43(±16.7) 71.18(±21.5) 84.10(±9.9) 82.92(±12.0)
(4) 83.62(±10.9) 87.75(±7.9) 84.57(±11.4) 87.90(±5.8)
(8) 89.92(±5.2) 88.81(±5.2) 90.32(±5.5) 89.84(±3.9)

(16) 88.43(±5.2) 89.02(±4.9) 89.51(±5.2) 91.47(±5.7)

wine

(2) 79.83(±22.0) 85.29(±14.5) 93.78(±3.6) 90.29(±9.6)
(4) 90.90(±7.8) 92.47(±8.9) 96.02(±2.2) 94.52(±3.4)
(8) 95.19(±2.6) 94.09(±4.0) 96.36(±2.0) 96.10(±2.1)

(16) 94.69(±3.7) 95.46(±3.6) 96.23(±2.4) 94.77(±3.5)

breast-w

(2) 84.34(±18.8) 85.73(±18.1) 95.39(±1.1) 95.73(±2.1)
(4) 90.09(±14.3) 92.30(±9.7) 94.51(±1.5) 95.49(±1.7)
(8) 94.65(±1.7) 94.94(±1.7) 94.96(±1.0) 95.60(±1.6)

(16) 94.93(±1.2) 94.70(±1.4) 95.25(±1.4) 96.29(±1.4)

diabetes

(2) 52.63(±9.5) 54.96(±9.7) 55.75(±5.6) 59.78(±6.3)
(4) 52.38(±5.7) 53.53(±6.5) 58.05(±10.6) 57.89(±8.2)
(8) 57.89(±8.6) 57.17(±8.0) 56.62(±8.1) 62.97(±6.9)

(16) 58.53(±8.7) 58.89(±8.0) 61.86(±4.6) 62.65(±8.7)

ionosphere

(2) 57.53(±14.8) 59.08(±13.6) 67.87(±13.1) 62.39(±14.5)
(4) 59.42(±12.0) 64.83(±12.0) 67.65(±10.6) 69.30(±10.2)
(8) 67.47(±10.8) 68.07(±11.0) 70.36(±11.8) 70.39(±10.7)

(16) 69.69(±7.8) 69.78(±9.5) 72.50(±4.3) 76.03(±7.1)

anneal

(2) 61.68(±9.1) 56.48(±14.5) 67.05(±8.4) 68.96(±7.0)
(4) 67.60(±9.0) 62.51(±12.2) 73.57(±5.2) 75.65(±4.4)
(8) 68.94(±7.9) 72.08(±5.6) 76.22(±4.0) 78.14(±4.1)

(16) 71.76(±6.4) 68.78(±7.5) 76.35(±5.2) 79.95(±3.6)

instead of 83.52% for the best supervised approach (1-NN). One can notice that the
best accuracy amongst the different configurations is reached with the medium and
high ones.

This result enforces the intuitive feeling that adding more clusterings improves
the result, as the objects are described with more details (i.e. have more attributes).
Figures 2 (a),(b),(c) and (d) illustrate this result and show the increase of accuracy
according to the number of available samples.

This figure also illustrates that when the number of samples increases, the super-
vised approaches give better results. For example, when 16 samples are available,
the supervised methods outperformed the proposed approach on 5 of the 6 datasets.
It confirms that supervised methods need several examples to produce efficient pre-
dictive models.

As stated in Introduction, if the data distribution is not correlated with the class
information, using clustering is useless. This affirmation can be study on the anneal
dataset, where the proposed semi-supervised approach obtains worse results than
1-nearest-neighbor, regardless of the number of available samples.
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Table 7 Results for classical methods according to the different datasets with 2,4,8 and 16
labeled samples available. Values correspond to the means and the standard deviations on 20
runs

Dataset C4.5 1-NN NB

iris

(2) 55.97(±13.1) 79.58(±13.9) 65.00(±15.5)
(4) 80.94(±11.9) 87.17(±12.0) 84.49(±11.7)
(8) 90.16(±4.8) 94.52(±3.7) 92.06(±4.3)

(16) 93.14(±4.2) 95.98(±2.1) 95.29(±2.9)

wine

(2) 50.35(±6.9) 88.14(±6.3) 55.47(±17.6)
(4) 70.24(±12.4) 90.36(±6.5) 70.78(±11.6)
(8) 84.61(±5.9) 93.12(±4.3) 92.53(±6.2)

(16) 86.85(±3.8) 95.77(±2.2) 95.62(±3.2)

breast-w

(2) 63.38(±16.9) 83.52(±17.3) 83.03(±15.2)
(4) 85.97(±9.1) 94.29(±3.0) 84.21(±16.8)
(8) 89.34(±3.2) 94.72(±2.0) 94.46(±1.7)

(16) 90.06(±2.6) 94.45(±2.7) 95.07(±1.7)

diabetes

(2) 52.45(±6.8) 55.56(±7.4) 51.83(±5.0)
(4) 63.03(±5.7) 58.49(±5.6) 55.05(±6.0)
(8) 63.99(±4.9) 63.34(±5.2) 64.02(±5.86)

(16) 66.20(±5.0) 65.16(±3.7) 68.82(±3.2)

ionosphere

(2) 52.56(±10.2) 56.32(±9.6) 58.51(±9.4)
(4) 63.58(±8.3) 67.18(±9.5) 63.02(±10.4)
(8) 69.52(±8.7) 73.10(±9.2) 82.05(±5.5)

(16) 81.56(±5.5) 78.88(±7.7) 82.94(±4.2)

anneal

(2) 54.55(±10.6) 72.02(±8.6) 45.09(±8.9)
(4) 72.94(±10.0) 81.89(±4.6) 69.51(±7.9)
(8) 83.80(±5.6) 87.18(±3.3) 85.16(±5.2)

(16) 92.27(±3.6) 90.09(±2.1) 88.80(±2.8)

We also evaluated the influence of the size of the dataset available for the unsu-
pervised learning. Figures 2 (e) and (f) show the evolution of the accuracy according
to the size of the dataset used for the unsupervised learning (10%, 25% and 50% of
the datasets).

Figure 2 (f), corresponding to the evaluation on the wine dataset, indicates that
the increase of unlabeled samples available helps to produce better results. This is
due to the ability of the clustering to better grasp the dataset when the density of
objects increases.

4.2 Real Data Evaluation

As presented in Introduction, in the field of remote sensing classification , the prob-
lem of the low ratio between the number of features and the number of samples is
really important when dealing with hyperspectral data or with very high resolution
images. Indeed, in this last case, the classification is basically done in two steps:
segmentation of the image is performed, producing a set of regions (i.e., groups of
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Fig. 2 (a),(b),(c) and (d) show the accuracy according to the number of available samples;
(e) and (f) show the accuracy according to the size of the dataset used for the unsupervised
learning

homogeneous pixels); then, these regions are characterized by many features (spec-
tral attributes, geometrical features, spatial attributes, etc.). Thus, we have a new
dataset to classify, composed of few regions (compared to the number of pixels in
the image), but characterized by more features.

We present here an experiment of the classification of a very high remote sensing
image showing an urban area of the city of Strabourg (France). The input data is a
pan-sharpened Quickbird image with 4 spectral bands and a spatial resolution of 0.7
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Fig. 3 Extract of the Quickbird image

meter, i.e., a pixel on the image represents a square of 0.7× 0.7m on the ground.
The image is given in Fig. 3.

After having computed the segmentation of this image by using the watershed
segmentation algorithm [19], we characterized each region found by the following
attributes:

• 8 attributes representing the mean and the standard deviation of each spectral
channel of the pixels composing the region;

• 8 attributes representing the mean and the standard deviation of the value of each
spectral channel over the sum of all channels values;

• 2 features representing the mean and the standard deviation of the mean of all
spectral channels;

• 2 features calculated as the mean and the standard deviation of the NDVI (Nor-
malized Difference Vegetation Index) of pixels composing the region;

• 1 attribute representing the area covered by the region;
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Table 8 Results on the remote sensing dataset with different number of samples (1, 2, 4, 8,
16 and 32). Values correspond to the means and the standard deviations on 100 runs

Samples Low Medium High C4.5 1-NN NB

1 65.6(±21.2) 90.7(±14.7) 89.2(±16.4) 35.2(±10.4) 67.1(±19.2) 57.4(±23.8)
2 88.7(±16.6) 97.0(±8.1) 97.4(±8.2) 48.9(±17.4) 83.0(±16.4) 61.6(±18.1)
4 96.7(±8.1) 98.7(±2.7) 99.0(±2.5) 72.2(±14.9) 97.4(±3.9) 83.1(±15.0)
8 98.6(±2.8) 98.8(±2.7) 99.0(±2.3) 87.0(±10.5) 98.9(±2.7) 95.7(±7.4)

16 98.4(±3.4) 98.4(±3.1) 99.0(±2.8) 91.0(±8.5) 99.5(±1.8) 98.8(±3.0)
32 98.4(±4.1) 98.1(±4.7) 99.5(±2.1) 95.6(±6.6) 99.9(±1.1) 99.2(±2.8)

• 1 attribute calculated as the elongation of the shape represented by the region;
• 1 attribute measuring the fitting of the shape represented by the region and its

oriented bounding box.

As a result, the dataset generated is composed of 186 objects described by 23
features, divided in three classes. As in the previous experiment, we chose three
different configurations to study the importance of the number of clusterings. The
three configurations are referred to as low (two EM clusterers), medium (two EM
and two KMeans) and high (6 EM and 6 KMeans). We also compare the result
with three classical supervised classification methods (C4.5, 1-NearestNeighbor and
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Fig. 4 Evaluation of the accuracy on the remote sensing dataset compared to the number of
samples
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Naive Bayes). Again, the experiment is performed 100 times and the results are
averaged. At each run, the different sets are filled with randomly chosen samples.
The results obtained with different number of samples are given in Table 8.

Again, these results confirm that more clusterings improve the result, as the high
configuration is almost always the best when only few samples are available. We
also notice that the result is only better than with the supervised 1-NN method when
there are very few labeled objects (less than 16, which corresponds to less than 10%
of the data). Figure 4 illustrates this and shows the increase of accuracy according to
the number of available samples. It confirms that the minimal number of samples is
needed for supervised methods in order to produce efficient results. But this lack of
information can be balanced by the use of many clusterings on the unlabeled data.

5 Conclusion

In this chapter, it has been shown that many clustering results can be combined
through supervised classification in order to achieve better accuracy. The method
presented has shown good results when the number of labeled samples is very low
and when many unlabeled samples are available.

Nevertheless some questions remain open. How many clustering algorithms
should be used ? Is it better to enhance diversity amongst them ? How to detect
in advance if a specific dataset can use this method ? These few questions give us
some directions to consider in order to improve the present work.
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The Neighbors Voting Algorithm and Its
Applications

Gabriele Lombardi, Elena Casiraghi, and Paola Campadelli

Abstract. In the last ten years the tensor voting framework (TVF), proposed by
Medioni at al., has proved its effectiveness in perceptual grouping of arbitrary di-
mensional data. In the computer vision and image processing fields, this algorithm
has been applied to solve various problems like stereo-matching, 3D reconstruction,
and image inpainting . In this paper we propose a new technique, inspired to the
TVF, that allows to estimate the dimensionality and normal orientation of the mani-
folds underlying a given point set. These features are encoded in tensors that can be
considered as weak classifiers, whose combination is then used as a strong classifier
to solve different classification problems. To prove the effectiveness of the described
algorithm, three problems are considered: clustering by dimensionality estimation,
image classification by manifold learning, and image inpainting by texture learning.

Keywords: tensor voting, ensemble methods, clustering, classification, image
inpainting.

1 Introduction

The Tensor Voting Framework (TVF) proposed in [5] by Medioni at al. and further
developed over the past ten years [8, 11] is a computational framework that can ad-
dress a wide range of computer vision problems in a unified way. The framework
has been designed based on perceptual principles, formulated by Gestalt psychol-
ogists in order to infer salient structures from sparse and noisy data. It has been
successfully applied to image processing problems, such as stereo matching [9, 12],
image repairing [6], boundary inference [16], and motion segmentation [13].

The TVF is a general methodology suitable for problems of any dimensional-
ity that can be formulated as a perceptual organization problem. In [10] Medioni
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at al. applied tensor voting to the problem of learning a target function from a set
of points. To this aim, they proposed a new implementation which can deal effi-
ciently with data in arbitrary dimensional spaces; their technique prevents voting
fields pre-computation and storing, and prevents numeric integrations too. In [2] a
new algorithm to efficiently compute tensorial votes is presented; it employs a new
family of decay functions to reduce the additive noise effects on the inferred struc-
ture. In [15] Medioni and Tang described an augmentation of the TVF consisting in
the estimation of the manifold curvature and its usage to the aim of improving the
manifold inference precision.

Although TVF could be applied to data of arbitrary dimension, its high time and
space complexity discourages its application in case of high dimensional spaces,
in fact its time complexity O(N2D3) is grows cubically with respect to the space
dimensionality. To overcome this problem we have developed an approximation of
TVF, named Neighbors Voting algorithm NV, which is iterative and consists in the
generation of tensorial votes between neighboring points. NV is computationally
more efficient, in fact, its time complexity is O(N2D2), and the single vote genera-
tion operations can be easily implemented by using SIMD microprocessor instruc-
tions, resulting in a much faster computational tool.

Like TVF, the NV algorithm is iterative and consists in the generation of tenso-
rial votes between neighboring points. In this paper, which is an extension of the
previous work [3], where NV was at first introduced, we will show that each pair
‘point-tensor’ can be considered as a (weak) classifier for the classification prob-
lem; the combination of weak classifiers is then used as a strong classifier to infer
the dimension of the underlying manifold. In this work, we demonstrate the ef-
ficiency and effectiveness of our approach by applying it to solve three different
problems (clustering , classification , and image inpainting ) on both synthetic and
real data.

The paper is organized as follows. Section 2 briefly recalls the theory underlying
the TVF. Section 3 presents the NV theory and describes the developed algorithm.
Section 4 describes three applications based on the NV algorithm. Section 5 dis-
cusses the results achieved by the three applications. Section 6 reports about con-
clusions and future work.

2 The Tensor Voting Framework

The TVF is summarized in this section. Our notation uses capital letters for ma-
trices, bold characters for matrices and vectors, all the vectors are column-vectors,
calligraphic capital letters are sets. To maintain uncluttered notation, function pa-
rameters are not reported when their meaning is clear from the context.

The TVF is a mechanism that forces the interaction among input tokens (points)
in order to infer salient perceptual structures.

Each token is associated with a local potential orientation of the manifold go-
ing through it, and the orientation information is propagated from each token to
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its neighbors via a voting operation. Votes are cast from one location to another,
forcing orientation updates. This information diffusion process allows to character-
ize the tokens so that:

• tokens that receive no vote can be classified as outliers,
• tokens that receive votes from almost every direction identify a locally unoriented

manifold,
• tokens that receive votes mainly from a well defined direction describe an ori-

ented manifold.

More precisely, every token is a location where an orientation is defined. To man-
age orientations, symmetric non-negatively defined second order tensors1 are used.
The eigensystem of these structures, in ℜn, consists of n orthonormal eigenvectors,
and n non-negative associated eigenvalues. The eigenvectors describe the orienta-
tion of the underlying manifold, whilst the eigenvalues give a confidence for each
direction; geometrically, each tensor represents a hyper-ellipsoid.

Each vote cast by emitters is itself a tensor.
Given the eigensystem (X,Λ), where X is an orthogonal matrix composed

column wise by the orthonormal eigenvectors, and Λ is a diagonal matrix con-
taining the corresponding eigenvalues, the associated tensor can be computed as:
T = XΛXT = ∑n

i=1 λiei · eT
i , where the λi are the eigenvalues in non-increasing or-

der, and the ei are the corresponding eigenvectors. T can be decomposed into base
tensors as follows:

T =
n−1

∑
i=1

(
(λi−λi+1)

i

∑
j=1

e j · eT
j

)
+ λn

n

∑
j=1

e j · eT
j , (1)

with n non-zero eigenvalues and 1 ≤ i ≤ n. The last term in Eq. 1 is an unoriented
(ball) tensor, the other n− 1 terms are oriented tensors. The (λi−λi+1) and the λn

coefficients are called saliency values and are denoted by si.
Each decomposed tensor term is useful to identify a manifold dimensionality: as

an example, in ℜ2 the ball tensor identifies filled regions, and the oriented tensor
(stick) describes curves.

Tensor composition can be obtained summing tensors component by component,
thus allowing to merge uncertainties and to reinforce coherent orientations.

In the TVF, each token casts tensorial votes to neighboring tokens, and it is up-
dated by substituting its tensor with the sum of received votes.

The voting fields, emitted by tokens, play a central role in the data information
propagation process, so that the vote generating function must be chosen carefully.
The simplest voting field is the stick field in ℜ2: given a stick tensor Estick (emitter),
and a point p (receiver), the vote Vstick computed in p, shown in Fig. 1 represents
the most likely normal, in p, to the curve that we want to infer, according to the
curve’s normal defined by the voter Estick .

1 From now on, they will be simply referred as tensors.
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Estick

Vstick

oc

p

θ

Fig. 1 Stick vote in ℜ2: in p the best orientation Vstick is the normal to the osculating
circle oc

The vote Vstick can be computed as follows:

Vstick(p) = DF(p)
[−sin(2θ )

cos(2θ )

][−sin(2θ ) cos(2θ )
]

, (2)

where the dependency of Vstick from Estick is in the computation of the angle θ , and
DF(·) is the decay function that controls the vote intensity with respect to the length
s and curvature k of the arc c. More precisely:

DF(p;σ) = exp

(
− s(p)2 + ck(p)2

σ2

)
. (3)

The parameter σ controls the scale, whereas the constant c is used to maintain the
isotropy. The arc length and the curvature are calculated as follows:

s(p) = θ‖p‖
sin(θ) , k(p) = 2sin(θ)

‖p‖ . (4)

Moreover, the decay function is forced to zero when θ > π
4 .

Given the stick field in ℜ2, the ball field can be obtained integrating the stick one
over all its possible rotations, that is:

Vball(p) =
∫ π

0
Rα Vstick(Rα p)RT

α dα , (5)

where Rα represents a 2×2 rotation matrix.
The voting algorithm is conceptually a simple task: given a set of points {pi ∈

ℜD}, a ball tensor (identity) is generated as initial emitter for each pi; then voting
passes are iterated at least two times to improve the manifold orientation estimation
encoded in the set of tensors Ti associated with the points. A voting pass consists of
the following steps:

1. each receiver is initialized with a null tensor;
2. for each emitter (pi,Ti):

a. determine the set of receivers (p j,T j) distant less than 3σ from the voter2;

2 The radius depends on the voting field edge size. The value 3σ allows to capture more
than the 99% of the decay volume.
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b. for each receiver j compute the vote V j
i cast to it by the emitter i as follows:

i. decompose Ti as defined in Eq. (1), thus obtaining the base tensors Ti,k,
with 1≤ k ≤ D, where D is space dimensionality;

ii. for each base tensor Ti,k compute the tensorial vote V j
i,k casted according

to the associated voting field; as an example, in ℜ2 the computed votes are:
the stick vote (see Eq. (2), and the ball one (see Eq. (5));

iii. compute the emitted vote as V j
i = ∑k skV j

i,k where sk are the saliency values
of Ti;

c. update the receiver’s tensor by adding V j
i to it.

After each voting pass execution, the output tensors accumulated in the receivers
can be used as emitters during the next voting pass.

The TVF is a general technique that could be applied in arbitrary dimensional
spaces; nevertheless, when the space dimensionality is high this method cannot
be used in practice, due to its high time and space complexity. Indeed, due to the
curse of dimensionality, its time and space complexity grows as Θ(N log(N)D3) and
O(N2D3), where N is the number of data points and D is the space dimensionality3.
The technique proposed in this paper is much faster in high dimensional spaces; it
has a lower time complexity (Θ(N log(N)D2)), and has less memory requirements
(O(ND2)). The drawback is that the NV technique is an approximation of the TVF,
thus generating less precise results.

3 The Neighbors Voting Algorithm

In this section we describe an algorithm that is a simplified version of the TVF; it
obtains similar results with a lower time and space computational cost. To reduce the
complexity we simplify the vote generation algorithm by avoiding the base tensors
decomposition step, so that each emitter directly generates the vote on each receiver.
Moreover, our voting scheme approximates tensor orientation, thus preventing the
time-consuming tensor rotation operations. To compensate for the missing informa-
tion we add a nonlinear filtering step that allows to generate local classification for
the manifold dimensionality.

As in the TVF, the initialization of the NV algorithm associates ball tensors to
each point pi in the D dimensional space, so that “tokens” are defined with the
pairs (pi,Ti). With this initialization no information is available about the manifold
orientations, so that the first voting pass is different from the others; in [10] Medioni
et. al. give the following equation to compute the ball tensorial vote cast from the
emitter i to the receiver j:

T j
i = W j

i

(
I− (p j−pi) · (p j−pi)T

‖ p j−pi ‖2

)
, (6)

3 The N log(N) part of the Θ(·) mean-case complexity notation is due to the (realistic) hy-
pothesis that there are approximately log(N) neighbors for each data point and the used
data structure allows to find them in logarithmic time.
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where W j
i = DF(p j−pi) is the ball decay function, that is the unnormalized Gaus-

sian function. Summing over all the emitters i, we obtain the vote at the receiver j:

T j = ∑
∀i

T j
i = W jI−∑

∀i
W j

i
(p j−pi) · (p j−pi)T

‖ p j−pi ‖2 = W jI−A j (7)

where ‖ · ‖ is the Euclidean norm, W j = ∑∀iW
j

i , and A j = ∑∀i W
j

i
(p j−pi)·(p j−pi)T

‖p j−pi‖2 .

Based on the consideration that:

T j

‖ T j ‖ = I− A j

‖A j ‖ ⇔‖ A j ‖= W j , (8)

which is demonstrated in Appendix, the computation of T j can be substituted by
T j

‖T j‖ = I − A j

‖A j‖ when ‖ A j ‖= W j; nevertheless, since the second order tensor

T̂ j = I− A j

‖A j‖ is generally positive semi-definite, in the first voting pass of the NV

algorithm we always compute T̂ j as the vote at receiver j, also when the condition in
Eq. (8) does not hold. This is useful for it not only simplifies the computation of the
first voting pass, but also enforces the classified dimensionality d to be 0 < d < D,
and ∀ j,‖ T̂ j ‖≤ 1.

In the NV algorithm, the first voting pass uses as its input a set of data points, and
generates as output a set of tokens (point,tensor) describing the manifold’s normal
space . The voting passes executed after the first are different, since the input of the
algorithm is no more a set of points, but a set of tokens, that is a set of (point, tensor)
pairs. To exploit this information, each emitter (pi,Ti) generates tensor votes equal
to W iTi, where W i is a weight computed according to the unnormalized Gaussian
decay function centered in pi. To face additive noise and to cast strongest votes in
the direction tangent to the underlying manifold, the decay function is elongated
proportionally to a scale parameter σ in the tangent space, and proportionally to a
noise standard deviation parameter γ (γ ≤ σ ) in the normal space.

To build such a Gaussian function, we at first classify the dimensionality of the
underlying manifold by selecting the maximum saliency value, sh; then, we synthe-
size the precision matrix Pi = XiΛiXT

i , describing the Gaussian function, by setting
the eigenvalues in the diagonal matrix Λi to λk = 1

σ 2 for 1≤ k ≤ h, and λk = 1
γ2 for

h < k ≤ D, while Xi is the matrix of the eigenvectors of the tensor obtained from
the previous voting pass. Once the precision matrix is obtained the scaling values
W i are computed and used to cast tensorial votes.

3.1 Statistical Interpretation

In the described NV settings, each emitter token (pi,Ti) can be viewed as a local
weak classifier iteratively trained by an information diffusion process. This method
can be compared to belief propagation (BP, [1]) and to similar techniques where
every node of a dependency graph is iteratively updated using information from
neighboring nodes.
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After the training step, the vote W iT j
i cast from the emitter i to the receiver po-

sition p j, can be considered as the precision matrix of the following unnormalized
Gaussian function:

N(x;p j,W
iT j

i ) = e−(x−p j)T W iT j
i (x−p j)/2 , (9)

which is proportional to the probability density function P(x ∈Mp j |(pi,Ti)), as-
signing to each point x∈ℜD the probability to be on the manifold Mp j , conditioned
on (pi,Ti).

Since

P
(
x ∈Mp j

)
= N(x;p j,T j) = N(x;p j,∑

∀i
W iT j

i )

= ∏
∀i

N(x;p j,W
iT j

i ) = ∏
∀i

P
(
x ∈Mp j |(pi,Ti)

)
, (10)

the accumulated vote T j represents the joint distribution in p j; therefore, the
strong dimensionality classifier obtained by employing P

(
x ∈Mp j

)
is an ensem-

ble classifier made by combining the weak classifiers obtained by employing the
P
(
x ∈Mp j |(pi,Ti)

)
for each i.

4 Applications of the Neighbors Voting Algorithm

In this section we show how NV can be reinterpreted to perform clustering , classi-
fication and image inpainting . Experimental results on both synthetic and real data
will be reported in Sect. 5.

4.1 Point Clustering

Given a set of points P = {pi}, the NV algorithm can be used to train an ensemble
classifier in order to learn the manifold underlying the data. Each point pi can then
be classified according to the dimensionality of the inferred manifold going through
it; point clustering is therefore realized by grouping points belonging to inferred
manifolds with the same dimensionality.

With the aim of manifold dimensionality inference, the NV algorithm starts from
a set of pairs (pi,Ti) and iterates voting passes in order to modify (train) the Tis by
means of the information exchanged among neighboring points. This information
diffusion process allows to improve the dimensionality and local orientation estima-
tion, encoded in Ti, with respect to the underlying manifold going through pi.

After each voting pass the inferred dimensionality information is reinforced by
applying a nonlinear filtering as follows:

1. the eigensystem Ti = XiΛiXT
i is computed;

2. the saliency values are computed as described in Sect. 2;
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3. the maximum saliency value, sh, is found to select the most likely dimensionality
of the underlying manifold;

4. a new eigenvalue matrix Λ i is generated by setting to zero the eigenvalues corre-
sponding to the tangent directions and to one the others;

5. the resulting tensor is Ti = XiΛ iXT
i .

The described algorithm allows to efficiently classify the dimensionality of the
underlying manifold going through each input data point, so that points related to
manifolds with different dimensionality can be separated.

4.2 Classification

The general classification problem can be stated as follows: given a set of training
data, that is, points in a space S ⊆ ℜD with associated labels taken from a finite
set L = {λl}L

l=1, a classifier is trained to learn the unknow classification function
f : S→L , that is, the function that takes points in S and maps them in L . After the
training phase, the classification consists in using the classifier instead of the real
but unknown function f (·) in order to distinguish data points belonging to different
classes.

In this section we describe how the NV algorithm can be employed to train a set
of classifiers allowing to:

• recognize points belonging to one class, thus creating a two-class classifier dis-
criminating in-class/off-class points (see Sect. 4.2.1);

• recognize points belonging to different classes, thus creating a multi-class clas-
sifier (see Sect. 4.2.2).

4.2.1 Two-Class Classifier

The NV algorithm can be used to train a two-class classifier, since the computed
(trained) tokens can be used as an estimation of the unknown function f (·), by rein-
terpreting them as Gaussian functions as in Eq. (9) and combining them as described
in Eq. (10).

More precisely, given a set of points p j ⊂ S, taken from a class λl̄ ∈L = {0,1},
it is possible to map them from their original space S, to a ‘better shaped’ space
S̃, where the given points are interpreted as points drawn from the manifold Ml̄ .
Therefore, the problem of recognizing whether an unknown point x ∈ S belongs to
λl̄ , can be restated as the problem of discovering if the point x̃ ∈ S̃4, is part of the
manifold Ml̄ from which the training points are drawn.

Considering that the real manifold is not known, and that most of the times it is
a manifold with boundaries, the solution to this problem cannot be found in prac-
tice (in fact the classification problems are generally ill posed); for this reason a
probabilistic approach is required.

4 x̃ is the projection of x into S̃.
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Therefore Ml̄ can be represented by means of a real valued function: f̂ (·|x) :
S→ [0,1] that can be interpreted as the PDF of a Bernoulli random variable, param-
eterized by the point x ∈ S to be classified. The two classes of f̂ (·|x) represent the
on-manifold/off-manifold classes.

The function f̂ is learned by employing the NV algorithm; after the training pro-
cess each token (p j,T j) contains a tensor that allows to compute a local estimation
of the probability pl̄, j of the point x to be on the same manifold of p j. This esti-
mation is computed as described in Eq. (10), that is, pl̄, j = P

(
x ∈Mp j

)
. This is a

Bernoulli probability distribution that can be employed as f̂ for the simplest case
where only one trained token (p j,T j) is used for classification . If N trained tokens
are used to perform classification, the function f̂ must be computed as the composi-
tion of N Bernoulli distributions and must remain a valid Bernoulli distribution. In
this work f̂ is a Bernoulli distribution whose parameter, pl̄ , is fixed to the maximum
of the N Bernoulli distributions parameters, that is,

pl̄ = max j=1,..,N

{
pl̄, j

}
= max j=1,..,N

{
P
(
x ∈Mp j

)}
. (11)

4.2.2 Multi-class Classifier

When the training set is composed of points belonging to L different classes, that is,
each training point is associated with a label λl in a set L = {λl}L

l=1, the problem
can be solved by combining L two-class classifiers, each trained to recognize the
elements of one class, as previously described. With this setting, each manifold
can be learned separately, allowing for a simple trained data composition for new
classification problems5.

Given a point x to be classified, consider the N trained two-class classifiers based
on Bernoulli distributions with parameters pl = maxi=1,..,N{pl,i}. The classification
is performed by choosing the class index l̄ depending on the pl values. In this work,
we have experimented with two strategies (see also Sect. 5.2).

• The first strategy chooses the class l̄ that maximizes pl , that is, l̄ = argmaxl pl;
note that, although this choice is not exact from the probability theory point of
view, in practice it may achieve good results (see Sect. 5). Furthermore, this
simple technique can be viewed as a generalization of the nearest neighbor clas-
sifier when all the Gaussian functions are equally scaled and isotropic; indeed,
the Gaussian giving the highest probability value is the one whose mean is the
training point p that is the nearest neighbor to x.

• The second strategy is to consider all the 2L possible events; that is, point x
may be drawn from exactly one manifold, from none, or from more than one
manifold at the same time (junction point). To perform classification , given a
binary vector with L values, b = {bl}L

l=1, where bl represents the fact that x

5 As an example consider the practical case where a lot of classes are already trained and
can be correctly classified, and a new class must be classified as well. In this case, it may
be convenient to learn only one manifold without affecting the already trained classifiers.
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belongs or not to the class l, it is possible to compute the probability of the
configuration represented by b as

P(b) =
L

∏
l=1

pbl
l (1− pl)1−bl . (12)

Among the 2L possible configurations, the preferred configuration is the one that
maximizes P(b), that is, b = argmaxb P(b).

4.2.3 Scaling Parameters

The described classification algorithm is based on a set of Gaussian functions whose
precision matrix is computed through the NV algorithm. This algorithm generates
tensors with a well understood orientation but with an uncontrolled scale.

Therefore, after the training step, the trained tensors must be rescaled to con-
trol the f̂ function approximation. To this aim, every Gaussian is scaled so that the
tangent space uncertainty is fixed to an a priori σ value. To do this we normalize
the tensors by dividing them by their spectral norm times σ2 so that the covariance
matrix spectral norm becomes exactly σ2, that is,

T j =
T j

σ2 ‖ T j ‖ . (13)

4.3 Image Inpainting with NV

In [6] a TVF-based image inpainting technique was proposed. In this section we
describe how to solve this problem in a similar way, by using a NV-based technique.

Given an image region, a set Ω of (2r + 1× 2r+ 1)-pixels sub-images (training
patches) can be extracted; each patch can be seen as a vector in ℜ(2r+1)2

. The NV
algorithm is then applied to Ω to obtain a set of trained tensors T that describe an
estimate of the underlying manifold; therefore, they can be used to recover missing
information.

A ‘patch vector’ p containing unspecified coefficients identifies the submanifold
M ⊂ ℜ(2r+1)2

. To recover the missing information in p, we select from the set of
tensors T = {(pi,Ti)} the pair (ph,Th) so that the distance ‖ p̃− p̃h ‖ is minimum
with respect to all the training patches6. Let d be the estimated dimensionality of
the manifold underlying ph, T be the tangent space identified by the tensor Th, and
e j (1≤ j ≤ d) be its column vectors, the inferred patch p̄ can be computed as

p̄ =
(p̃h−ph) · p̄′
‖ p̃h−ph ‖2 p̄′+ ph , (14)

where

6 We represent with the notation x̃ the projection of a point x ∈ℜ(2r+1)2
on M .
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p̄′ =
d

∑
l=1

el · (p̃h−ph)el . (15)

These equations compute p̄ as the point nearest to p̃h and constrained on the linear

space span
〈
{e j}d

j=1

〉
∩M .

Every patch p̄, inferred for a partially specified patch p, is an estimate of the
unknown real patch and contains the estimated pixel gray levels p̄x,y. Inferring over-
lapping patches allows to generate different gray level estimates for the same pixel;
their mean value is the maximum likelihood estimation of the unknown pixel gray
level. Given an unknown image region, its boundary patches are the easiest to re-
cover since they have less unknown coordinates.

Based on these considerations, the inpainting algorithm proceeds by iterating the
following steps:

1. the external edge pixels, pi, of the unknown region are morphologically identi-
fied;

2. for each pi:

a. a partially specified patch is centered on pi and its unknown pixel values are
inferred;

b. the inferred pixel values are accumulated in a working image and a counter
image is used to count the number of contributions for each pixel;

3. the maximum value mc in the counter image is found and the gray levels of pixels
pk with at least

⌈ 8
9 mc
⌉

contributions are estimated by averaging7;
4. the pixels pk are removed from the unknown region.

These steps are iterated until the unknown region becomes empty. This algorithm
stops after few steps and has proved to produce promising results that are described
in Sect. 5.

5 Results

In this section we report quantitative and qualitative results obtained by the algo-
rithms presented in the previous section. In Sect. 5.1 the results of clustering ex-
periments performed on synthetic data are reported, while in Sect. 5.2 and Sect. 5.3
we present the performance obtained by testing our classification and inpainting
algorithms on real images.

5.1 Clustering Results

To test our point clustering algorithm we perform experiments by creating two man-
ifolds, M and N , of dimensionality d and e, respectively (with d �= e); M and N
are embedded in ℜD, and M ∩N �= /0. Two sets of points PM and PN , contain-
ing approximately 200 points each, are drawn from M and N , respectively, and

7 The threshold value
⌈ 8

9 mc
⌉

has been experimentally set.
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Fig. 2 Top row: the input dataset and the obtained clusters shown with their normal space
estimations. Central and bottom plots: saliency values after 1 and 5 voting passes

P = PM ∪PN is used as input to the NV algorithm (with 5 voting passes) whose
aim is to classify each point as belonging to either M or N .

As an example, consider the dataset depicted in the left of Fig. 2: it contains
a curve intersecting a surface in ℜ3. After 5 voting passes of the NV algorithm,
tensors are normally oriented with respect to the underlying manifolds; therefore, we
compute the saliency values of each tensor and use them to infer the dimensionality
of the manifold.

In the plots of Fig. 2 three saliency values for each data point are shown after
the first and the last voting passes, respectively; note that after the last voting pass
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Fig. 3 Top: the input dataset clustered in four clusters: cylinder (points), sphere (asterisks),
bottom circle (crosses), central bottom vertex (point). Middle and bottom: saliency values
showing that in this case the dimensionality is not well defined; indeed, for the cylinder’s
points it is possible to choose between several 1D circles (solution selected by NV) and one
cylindrical 2D surface
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Fig. 4 Examples of mouse images

Fig. 5 Mouse sub images. Top row: sub-images of the anterior and posterior limbs. Bottom
row: sub-images of the abdominal area, genital area, head, and tail

the saliency values are either ≈ 1, or ≈ 0. Therefore, they clearly identify the di-
mensionality of the manifold. In the top-right of Fig. 2 the clustered geometrical
structures are shown for the dataset shown on the left.

In Fig. 3 another example is shown, where the NV algorithm detects four clusters,
for both these tests we used σ = 0.1 and γ = σ/10. The clustering algorithm has
been executed 10 times by varying M and N .

The clustering code has been implemented in Matlab; when executed on an Intel
Centrino Duo 2.0GHz CPU with 2.0GB RAM, it takes about 3 s to partition the set
P , composed of 222 points, in two clusters. Notice that a Matlab implementation
of TVF, written with respect to the Matlab optimization manual, took about 126 s to
process the same dataset. Also notice that a C/C++ implementation of the NV can
provide a very efficient TVF approximation8.

8 We have published the open-source project OpenTVF containing some TVF-based algo-
rithms; a C++ implementation of the NV algorithm will be soon available in that library.
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5.2 Classification Results

The classification algorithm described in Sect. 4.2.2 was employed to solve an image
classification problem. More precisely, given mouse images such as those shown in
Fig. 4, the goal is to localize five anatomical parts: the head, the anterior limbs, the
abdominal area, the posterior limbs, the genital area, and the tail. This application
is helpful to pharmacologists who need to measure the response of the animal to the
administration of drugs [14].

To automatically solve the problem of mouse image segmentation we have em-
ployed our ensemble classifier method to classify sub-images, randomly extracted
from the mouse images in order to recognize those centered on the anatomical parts
of interest.

More precisely, the image set is composed of 261 mouse images; for each image
and for each anatomical part, ROI, we extracted the sub-image centered in the center
of mass, R = (xR,yR), of the ROI, and other 4 sub-images centered on the points
R1 = (xR−w,yR), R2 = (xR +w,yR), R3 = (xR,yR−h), and R4 = (xR,yR +h), where
w and h correspond to 1

3 of the width and the height of the ROI9. In this way we have
built, for each anatomical part of interest, about 1300 sub-images approximately
centered on it. Therefore, our set is composed of about 10400 sub-images; examples
of the sub-images are shown in Fig. 5.

To perform classification , we at first encoded the mouse sub-images by applying
a filter bank, BankG, composed of Gabor filters at four different scales and eight
different orientations. Each sub-image is therefore represented by a vector of 32

Table 1 Comparison of the mean (standard deviation) accuracy values achieved by the tested
classification algorithms. Columns stand for different train/test ratios while rows correspond
to classification algorithms

1/5 1/10 1/20 1/40

NV 98.59% (0.16%) 97.55% (0.22%) 96.04% (0.34%) 93.88% (0.45%)
NN 98.35% (0.21%) 96.81% (0.32%) 95.12% (0.54%) 92.00% (0.55%)

PPNN 98.21% (0.21%) 97.09% (0.30%) 95.37% (0.34%) 92.95% (0.59%)
PCF 87.63% (3.55%) 84.76% (4.25%) 81.12% (4.01%) 83.58% (3.75%)

Table 2 Average training and classification times for NV and TVF

1/5 1/10 1/20 1/40

training (NV) 58 ms 117 ms 212 ms 406 ms
training (TVF) 291 ms 409 ms 652 ms 1206 ms

testing 2.9 ms 6.5 ms 12.7 ms 25.1 ms

9 The four sub-images centered in Ri (i=1, ..,4) have been extracted to train the classifier in
order to recognize sub-images not perfectly centered on the ROI.
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Fig. 6 Mean ROC curves obtained testing the classification algorithms for two train/test ra-
tios: 1/5 and 1/10
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Fig. 8 Comparison between the NV and TVF training times for the same classification al-
gorithm. Columns stand for different train/test ratios while rows correspond to classification
algorithms

features corresponding to the response of each filter in the central pixel of the sub-
image, C = (x,y).

Since the results obtained with this method were not satisfactory, we looked for
a more discriminative feature space. To this aim, on each sub-image we have eval-
uated the response of BankG not only in the pixel C = (x,y), but also in the four
pixels P1 = (x−w,y), P2 = (x−w,y), P3 = (x,y−w), P4 = (x,y + w), where w
is the half size of the employed Gabor filter (this size varies at different scales),
thus obtaining a feature vector of 160 elements. To reduce the dimensionality of
the input vectors while maintaining the most significant features, we applied the
Principal Component Analysis (PCA) to the training samples. Keeping the 90% of
the variance in the training data, we obtained feature vectors with no more than 40
components10.

With this dataset we performed four experiments by varying the train/test ratio
on the set of values

{
1
5 , 1

10 , 1
20 , 1

40

}
. To have an unbiased evaluation scheme, for

each train/test ratio we repeated the experiment ten times by randomly choosing the
training and test sets and then computed the average classification performance.

10 Note that by varying the training set the projected datasets may have different dimension-
alities.
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Fig. 9 Four images with unknown regions (left column) and the inpainted result (right col-
umn)
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The first row of Table 1 reports the mean classification accuracy and the stan-
dard deviation achieved in these experiments by fixing the σ parameter11 to 150
(see Sect. 3) and by employing the first classification strategy. Results obtained by
employing the second classification method are not reported here because they are
similar. Notice that the achieved results are promising even when the number of
training examples is small.

To further prove the efficacy of the NV algorithm for classification tasks, we have
compared its performance to three algorithms described in [4]: Nearest Neighbor
(NN), Parzen Probabilistic Neural Network (PPNN), and the minimization of the
Perceptron Criterion Function (PCF). As can be seen in Table 1, their results are
always worse than those obtained by NV, and the decrease in performance is even
more significant when the training set becomes smaller.

For clarity of presentation, Figs. 6 and 7 show the mean ROC curves obtained by
the four classification algorithms.

The training and classification algorithms have been executed on an Intel Cen-
trino Duo 2.0GHz CPU with 2.0GB RAM by using Matlab. In Table 2 and Fig. 8,
the average training and testing times are reported12; it can be noticed in Fig. 8 that
the computation times are linearly dependent with respect to the train/test ratio.

5.3 Inpainting Results

We have tested our image inpainting algorithm on a set of 50 generic images, where
the unknown region and the training region have been manually chosen. We have
used 7× 7 square patches, σ = 0.2, and γ = σ/10. Experiments have proved that
good inpainting results can be obtained by employing the first voting pass only, thus
increasing the efficiency of the overall algorithm. In Fig. 9 examples of inpainting
results are shown.

The inpainting algorithm has demonstrated to be very efficient during the recon-
struction step; the time complexity is indeed dominated by the training step. Using
an Intel Centrino Duo 2.0GHz CPU with 2.0GB RAM, our Matlab implementation
has taken on about 18 s to infer, on average, 1171 pixel values per image, starting
from a training set of about 550 training patches.

6 Conclusions and Future Work

In this work we have described the theory and applications of the NV algorithm,
which is an efficient approximation of the TVF technique, developed to overcome
the high time and space complexity that discourage the TVF usage. The NV algo-
rithm is an iterative procedure based on the tensorial vote cast between neighboring
points; considering each pair (point, tensor) as a weak classifier, their combination
is employed to build a strong classifier.

11 The value of σ is chosen so that it is approximately equal to one third of the mean intra-
class points distance evaluated over the training data.

12 These times are referred to Matlab implementations of NV and TVF.
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To prove the efficacy of the developed algorithm, the NV has been applied to
solve three problems on both synthetic and real data: point clustering , image clas-
sification , and image inpainting .

The achieved results and the time-space complexity of the developed applications
prove the efficacy of the NV algorithm and show that although being an approxi-
mation of the TVF technique, it can be successfully applied to solve problems in
arbitrary dimensional spaces.

Future work will be aimed at both the improvement of the point clustering , im-
age classification and image inpainting algorithms and at the application of the NV
algorithm to solve other problems. Furthermore, we plan to modify the implemen-
tation of the NV algorithm in order to make it more efficient, both by computing
tensorial votes only when strictly needed and by employing appropriate data struc-
tures (e.g., ANN-trees [7]) to use range queries for computing the Gaussian values
only for neighboring points.

Finally, considering the promising results achieved by the NV, we are planning
to apply it to solve other problems on real data; more precisely, we are working on
the spam-classification task. Our preliminary results achieved on that classification
problem are very promising.

Acknowledgements. The authors would like to thank Phd. Gianpaolo Rando and Prof. Adri-
ana Maggi (gianpaolo.rando@unimi.it) of Dipartimento di Scienze Farmacologiche of the
Università degli Studi di Milano for providing the mouse images used for the classification
experiments.

Appendix

In this appendix the proofs of the results used in Sect. 3 are reported.

At first, representing the spectral norm with ‖ · ‖ and defining s j
i = (p j−pi)

‖p j−pi‖ , we

demonstrate that ‖W jI ‖= W j ≥‖A j ‖:

‖ A j ‖ = ‖∑
∀i

W j
i

(p j−pi) · (p j−pi)T

‖ p j−pi ‖2 ‖=

= ‖∑
∀i

W j
i s j

i (s
j
i )

T ‖≤∑
∀i

W j
i ‖ s j

i (s
j
i )

T ‖︸ ︷︷ ︸
1

= W j . (16)

Next, we prove that:

T j

‖ T j ‖ = I− A j

‖A j ‖ ⇔‖ A j ‖= W j . (17)

At first, we note that if ‖ A j ‖= W j, it must be because

‖∑
∀i

W j
i s j

i (s
j
i )

T ‖= ∑
∀i

W j
i ‖ s j

i (s
j
i )

T ‖ . (18)
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Since ∀i, j we have that W j
i > 0 ∧ ‖ s j

i ‖= 1, from Eq. (18) it follows that

∀i, j,k;‖ s j
i s j

k ‖= 1. Therefore rank(A j) = 1 and min
(

λ
(

A j

‖A j‖
))

= 0, where λ (·) is

the function that computes the eigenvalues of a given matrix. Thanks to this demon-
stration we can write:

T j = W jI−A j = W j
(

I− A j

W j

)
⇒ T j

W j = I− A j

W j ⇒
T j

‖ A j ‖ = I− A j

‖ A j ‖ (19)

and

‖ T j ‖=‖A j ‖‖ I− A j

‖ A j ‖ ‖=‖A j ‖

⎛
⎜⎜⎜⎝1−min

(
λ
(

A j

‖ A j ‖
))

︸ ︷︷ ︸
0

⎞
⎟⎟⎟⎠=‖A j ‖ . (20)

Thus, we have demonstrated the ‘if’ part of Eq. (17); the ‘only if’ part can be
demonstrated in a similar way.
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Clustering Ensembles with Active Constraints

Muna Al-Razgan and Carlotta Domeniconi

Abstract. In this work we combine clustering ensembles and semi-supervised clus-
tering to address the ill-posed nature of clustering. We introduce a hybrid approach
that extends our previous work on clustering ensembles to situations where some
knowledge from the end user is available, by enforcing constraints during the parti-
tioning process. The experimental results show that our constrained ensemble tech-
nique is capable of producing a partition that is as good as, or better, than those
computed by other semi-supervised clustering approaches.

1 Introduction

Clustering is the process of discovering homogeneous groups or clusters according
to a given similarity measure. Clustering is well suited for data analysis. However,
clustering is susceptible to several difficulties. It is well known that off-the-shelf
clustering methods may discover different structures in a given set of data. This is
because each clustering algorithm has its own bias resulting from the optimization
of different criteria. Furthermore, there is no ground truth against which the clus-
tering result can be validated. Thus, no cross-validation technique can be carried
out to tune input parameters involved in the clustering process. Recently, clustering
ensembles have emerged as a technique for overcoming problems with clustering
algorithms. A clustering ensemble consists of different partitions. These partitions
can be obtained from multiple applications of any single algorithm with different
initializations, from various bootstrap samples of the available data, or from the ap-
plication of different algorithms to the same dataset. Clustering ensembles offer a
solution to challenges inherent to clustering arising from its ill-posed nature: they
can provide more robust and stable solutions by making use of the consensus across
multiple clustering results, while averaging out emergent spurious structures that
arise due to the various biases to which each participating algorithm is tuned.
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Although clustering is traditionally an unsupervised learning problem, in some
applications the end user can provide limited information about the data. Semi-
supervised clustering uses prior knowledge to guide the clustering process, and to
provide results that adhere to the user’s preference. As such, semi-supervised clus-
tering techniques promise an ease of use and a natural approach along with accurate
results.

In this work, we extend our previous clustering ensemble technique [1] to situ-
ations where some knowledge is available from the end user. Our newly proposed
method combines the clustering ensemble’s ability to overcome the ill-posed nature
of clustering with the semi-supervised clustering’s ability to leverage an end user’s
knowledge. Our technique enforces knowledge-based constraints during the parti-
tioning process of each ensemble’s component to improve the quality of the overall
ensemble. To generate useful domain knowledge, our method takes an active ap-
proach, and capitalizes on those points that are not easily clustered by the ensemble.
By enforcing the resulting constraints at the components’ level, we ensure that the
corresponding structure they represent is carried into the consensus function, and
therefore into the consensus partition.

Our method of generating clustering components relies on a locally adaptive clus-
tering algorithm (called LAC) [6, 7] that depends on two input parameters. The first
one is common to all clustering algorithms: the number of clusters k to be discov-
ered in the data. The second one (called h) controls the strength of the incentive
to cluster on more features (more details are provided in Sect. 3). Our technique
embeds constraints into the individual partitionings of each LAC component, when
different values of h are used. We assume that the number of clusters k is fixed.
Our constrained clustering ensemble approach can be easily extended to any clus-
tering algorithm with prior knowledge. The major challenge we face is finding a
method of incorporating constraints to improve upon the demonstrated reliability of
weighted clustering ensembles. Our solution proposes a consensus function that is
then mapped to a graph partitioning problem.

2 Related Work

Our approach is motivated by the work in [5], where the authors use the ensemble
methodology to produce a consensus partition, and then apply labeled data to as-
sign clusters to classes. The authors in [5] aim at labeling points more accurately,
whereas our approach aims at enhancing clustering ensembles by enforcing con-
straints during the partitioning process. In [8] the authors combine different clus-
terings obtained via the k-means algorithm. The clusterings produced by k-means
are mapped into a co-association matrix, which provides a measure of similarity
between pairs of points. Kuncheva et al. [13] extend the work in [8] by choosing at
random the number of clusters for each ensemble member. The authors in [16] in-
troduce a meta-clustering procedure: first, each clustering is mapped into a distance
matrix; then, the multiple distance matrices are combined; and finally, a hierarchi-
cal clustering method is introduced to compute a consensus clustering. In [10] the
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author proposes a similar approach, where a graph-based partitioning algorithm is
used to generate the combined clustering.

The authors in [15] propose the COP-Kmeans algorithm as a variation of k-
means, where constraints are embedded during the clustering process: each point is
assigned to the closest cluster that will enact the least violation of constraints. The
algorithm will not assign the point if no such cluster can be found. Two additional
constraint-based variants of k-means are Seeded-KMeans and Constrained-KMeans
[4]. In both algorithms, the given labeled data are used to initialize a seeded set; the
constraints obtained from this labeled set are then used to guide the k-means algo-
rithm. Seeded-KMeans allows its constraints to be violated in successive iterations,
while Constrained-KMeans enforces the constraints in each iteration. The approach
proposed in [9] imputes information from the co-association values generated from
a clustering ensemble. Such imputed constraints have proven to achieve more accu-
rate results than random constraints. The technique discussed in this Chapter uses
this method for selecting constraints as its basis.

3 Locally Adaptive Clustering

In this section we briefly describe the Locally Adaptive Clustering algorithm [6, 7]
used to generate the clustering components of our ensembles. Locally Adaptive
Clustering (LAC) is a soft feature selection procedure that assigns weights to fea-
tures according to the local variance of data along each dimension. Dimensions
along which data are loosely clustered receive a small weight, which has the ef-
fect of elongating distances along that dimension. Features along which data man-
ifest a small variance receive a large weight, which has the effect of constricting
distances along that dimension. Thus the learned weights perform a directional lo-
cal reshaping of distances which allows a better separation of clusters, and there-
fore the discovery of different patterns in different subspaces of the original input
space.

Let us consider a set of n points in some space of dimensionality D. A weighted
cluster is a subset of data points, together with a vector of weights w = (w1, . . . ,wD)t ,
such that the points in the cluster are close to each other according to the L2 norm
distance weighted using w. The component wj measures the degree of participation
of feature j to the cluster. The problem is how to estimate the weight vector w for
each cluster in the dataset.

In traditional clustering, the partition of a set of points is induced by a set of
representative vectors, also called centroids or centers. The partition induced by
discovering weighted clusters is formally defined as follows.

Definition 0.1. : Given a set S of n points x∈ℜD, a set of k centers {c1, . . . ,ck}, c j ∈
ℜD, j = 1, . . . ,k, coupled with a set of corresponding weight vectors {w1, . . . ,wk},
w j ∈ℜD, j = 1, . . . ,k, partition S into k sets:
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S j = {x|(
D

∑
s=1

wjs(xs− c js)2)1/2 (1)

< (
D

∑
s=1

wli(xs− cls)2)1/2,∀l �= j}, j = 1, . . . ,k ,

where wjs and c js represent the sth components of vectors w j and c j respectively
(ties are broken randomly).

The set of centers and weights is optimal with respect to the Euclidean norm, if they
minimize the error measure:

E1(P,W ) =
k

∑
j=1

D

∑
s=1

(wjs
1
|S j| ∑

x∈S j

(c js− xs)2) , (2)

subject to the constraints ∀ j, ∑s w js = 1. P and W are (D× k) matrices whose
columns are c j and w j respectively, i.e., P = [c1 . . .ck] and W = [w1 . . .wk]. For
shortness of notation, we set Xjs = 1

|S j | ∑x∈S j
(c js−xs)2, where |S j| is the cardinality

of set S j. Xjs represents the average distance from the centroid c j of points in cluster
j along dimension s. The solution

(P∗,W∗) = arg min
(P,W)

E1(P,W)

will discover one dimensional clusters: it will put maximal (unit) weight on the
feature with smallest dispersion Xjs within each cluster j, and zero weight on all
other features. Our objective, instead, is to find weighted multidimensional clusters,
where the unit weight gets distributed among all features according to the respective
dispersion of data within each cluster. One way to achieve this goal is to add the
regularization term ∑D

s=1 wjslogwjs, which represents the negative entropy of the
weight distribution for each cluster. It penalizes solutions with maximal weight on
the single feature with smallest dispersion within each cluster. The resulting error
function is

E2(P,W) =
k

∑
j=1

D

∑
s=1

(wjsXjs + hwjslogwjs) , (3)

subject to the same constraints ∀ j, ∑s w js = 1. The coefficient h ≥ 0 is a parameter
of the procedure; it controls the strength of the incentive for clustering on more
features. Increasing (decreasing) its value will encourage clusters on more (less)
features. This constrained optimization problem can be solved by introducing the
Lagrange multipliers. It gives the solution

w∗js =
exp(−Xjs/h)

∑D
s=1 exp(−Xjs/h)

, (4)

c∗js =
1
|S j| ∑x∈S j

xs . (5)
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Solution (4) puts increased weights on features along which the dispersion Xjs is
smaller, within each cluster. The degree of this increase is controlled by the value
h. Setting h = 0 places all weight on the feature s with smallest Xjs, whereas setting
h = ∞ forces all features to be given equal weight for each cluster j.

A search strategy needs to be designed to find a partition P that identifies the
solution clusters. We proposed the approach [7] that progressively improves the
quality of initial centroids and weights, by investigating the space near the centers
to estimate the dimensions that matter the most. Well-scattered points in S are first
chosen as the k centroids. All weights are initially set to 1/D. Given the initial
centroids c j, for j = 1, . . . ,k, the corresponding sets S j are computed as previously
defined. The average distance Xjs along each dimension from the points in S j to c j is
then computed. The smaller Xjs, the stronger is the degree of participation of feature
s to cluster j. The value Xjs is used in an exponential weighting scheme to credit
weights to features (and to clusters), as given in Eq. (4). The computed weights
are used to update the sets S j, and therefore the centroids’ coordinates as given in
Eq. (5). The procedure is iterated until convergence is reached.

LAC has shown a highly competitive performance with respect to other state-of-
the-art subspace clustering algorithms [6, 7]. Despite its strong performance, LAC’s
dependence on the setting of h is a liability. Improving upon this aspect of LAC’s
performance is desirable, and we have sought such improvement through the devel-
opment of a clustering ensemble technique that makes use of pairwise constraints.
Informative constraints are actively identified by leveraging different runs of the
LAC algorithm, each using a different value of the h parameter. We describe the
details of this process in the following section.

4 Selecting Informative Constraints

A number of semi-supervised clustering algorithms have been proposed [4, 15].
However, most of these techniques construct must-link and cannot-link constraints
by first randomly selecting pairs of points, and then querying an oracle expert for
information about their relationship (i.e., whether the two points belong to the same
cluster or not). Although this method is relied on by many researchers, it has the
liability of not improving the clustering process to its fullest potential. Because the
selection process is random, and does not seize on associations available in the raw
data, this method neglects a very important source of information.

To avoid these limitations, we follow the approach described in [9] to generate
constraints. The authors base their method on the relationships between intra-cluster
and inter-cluster points. The authors begin by mapping the results of k-means to a
co-association matrix, whose element of position (i, j) is equal to one if points xi

and x j are placed in the same cluster, and zero otherwise. The algorithm is then
run ν times, and the resulting ν matrices are averaged into a final matrix T. With
a sufficient number of base clusterings, the relationship between two data points
becomes apparent in the final matrix T. The entry Ti j indicates the portion of the ν
clusterings in which two data points xi and x j were assigned to the same cluster. A
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value of Ti j = 1 indicates that the points were assigned to the same cluster in each
of the ν matrices, and therefore represents a very high probability that the points
belong to the same class. A value of Ti j = 0, on the other hand, indicates that the
points were never assigned to the same cluster, and therefore represents a very low
probability that the points belong to the same class.

However, it is possible that the value of Ti j is neither Ti j ≈ 1 nor Ti j ≈ 0. In
particular, if Ti j ≈ 0.5, there will be a great deal of uncertainty about the placement
of the corresponding two points. To solve this ambiguity, the authors in [9] set two
threshold values, tc and tm, to identify the pairs of points that were easily clustered
or separated. Then, they select the pairs (xi,x j) for which the entry value is such
that tc ≤ Ti j ≤ tm, and query the oracle expert about the placement of such pairs. If
the points (xi,x j) are to be clustered together, a must-link constraint is generated;
otherwise, a cannot-link constraint is generated.

Since this method proved to be effective, we adopted it to select a set of
constraints. We run the LAC algorithm m times. Each partition ν gives a co-
association matrix Tν , from which we compute the average co-association matrix
T = 1

m ∑m
ν=1 Tν . We then select all pairs of points (xi,x j) such that Ti j ∈ [tc, tm].

This selection mechanism allows to identify pairs of points with great uncertainty
regarding their clustering placement. Thus, querying an oracle about their underly-
ing relationships adds valuable information which cannot be derived from the data
alone.

This process generates two constraint sets (M,C), where M corresponds to must-
link constraints, and C corresponds to cannot-link constraints. We use these con-
straints to form a chunklet graph as discussed in the following section. The pseudo
code for the imputation of constraints is given in Algorithm 3.

Algorithm 3. Imputation of Constraints (IC) Algorithm
Input: m partitions of n data points

1. For each partition ν = 1, . . . ,m:

• Build the co-association matrix Tν of size n×n

Tνi j =
{

1 if xi,x j are in the same cluster in partition ν
0 if xi,x j are in different clusters in partition ν

2. Compute the final co-association matrix T from all Tν where ν = 1, . . . ,m:

T =
1
m

m

∑
ν=1

Tν

3. Select all pairs (or a random sample) (xi,x j) such that Ti j ∈ [tc,tm]
4. Query the oracle for the selected pairs (xi,x j)
5. Construct constraint sets (M,C)

Output: The resulting constraint sets (M,C)
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5 Chunklet Graph

In order to embed constraints into subspace clusterings, we organize the constraints
into a graph called chunklet graph. In the following, we describe the procedure to
construct such graph.

A chunklet is a group of points that belong to the same cluster, although the
identity of the cluster is unknown [3]. The size of the chunklet is equal to the
number of points it contains, e.g., the chunklet � = (x1,x2) has size
s(�) =2.

Each chunklet is formed by must-link constraints (M) obtained from the oracle
expert. If the oracle imposes a must-link between points x1 and x2, then the chunklet
�1 = (x1,x2) is formed. Following the formation of chunklets through must-link
constraints, a transitive closure process, in which chunklets are merged, is initiated.
For example, if there is a must-link constraint between (x1,x2) and between (x1,x3),
then by transitive closure the chunklet�2 = (x1,x2,x3) is formed.

Once chunklets are formed and all transitive closures completed, a graph is cre-
ated using the cannot-link constraints imposed by the oracle expert. These con-
straints prevent the assignment of some chunklets to the same cluster. For example,
if there is a cannot-link constraint between the pair (x3,x5) and we have the chunklet
�3 = (x4,x5), then our previously cited chunklet�2 = (x1,x2,x3) will be prevented
from the assignment to the same cluster as chunklet�3.

A cannot-link constraint is represented on the graph as an edge between two ver-
tices, where each vertex corresponds to one chunklet. In this way the entire chunklet
graph is obtained, where a chunklet is a vertex and each cannot-link constraint is an
edge. Edges indicate that the corresponding vertices (chunklets) should be assigned
to different clusters.

Thus, this procedure generates a chunklet graph Gch = (V,E), where V is a
set of vertices (or chunklets) constructed from the must-link constraints M, and
|V | is the total number of chunklets. E is the set of edges, and an edge Ei j ex-
ists between vertices (chunklets) vi and v j iff there exist xi ∈ vi, x j ∈ v j such that
(xi,x j) ∈ C. The pseudo code of the chunklet graph construction is presented in
Algorithm 4.

Algorithm 4. Chunklet Graph (CG) Algorithm
Input: Constraint sets (M,C)

1. Compute the transitive closure for all the must-link constraints M
2. Build chunklets vi using the must-link constraints
3. Construct the chunklet graph Gch = (V,E), where V corresponds to the set of chunklets

and Ei j = 1 iff there exist xi ∈ vi, x j ∈ v j such that (xi,x j) ∈C

Output: The resulting graph Gch
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6 Chunklet Assignment

Chunklet assignment is the process of assigning vertices (chunklets) in the graph
to the appropriate centroid without violating any of the must-link or cannot-link
constraints. We consider each chunklet as a group of points, and assign all points
in the chunklet to the closest centroid which does not violate any constraint. LAC
provides a set of k centroids {c1, . . . ,ck}, and a set of k weight vectors {w1, . . . ,wk},
where each weight vector reflects the relevance of features within the corresponding
cluster. Given a vertex (chunklet) vi, we calculate the weighted Euclidean distances
between all the points x j ∈ vi and each centroid cl , where l = 1, . . . ,k, and look for
the centroid ct that satisfies

ct = argmin
l

(d(vi,cl)), (6)

where d(vi,cl) = ∑|vi|
j=1

√
∑D

s=1 wls(x js− cls)2, D is the dimensionality of the data,
and wl is the weight vector associated with centroid cl . To assign a chunklet to a
centroid, we need to consider possible cannot-link constraints involving the chun-
klet. Three cases which require different centroid assignment strategies are given
below.

Case 1. vi is an isolated chunklet that does not have an edge in the graph Gch. We
assign this chunklet to the centroid ct = argminl(d(vi,cl)).

Case 2. vi is a chunklet that has at least one neighbor in the graph Gch, and none
of its neighbors has been assigned to a centroid. As before, we assign vi to the
centroid ct = argminl(d(vi,cl)).

Case 3. vi ia a chunklet that has at least one neighbor in the graph Gch that has
been assigned to a centroid. We construct the set of centroids Ri to which the
neighboring nodes of vi have been assigned. We then assign vi to the centroid
ct = argminl(d(vi,cl)) such that ct /∈ Ri.

This procedure assigns chunklets to centroids according to the local similari-
ties being discovered by the subspace clustering algorithm. The pseudo code of the
chunklet assignment procedure is given in Algorithm 5.

7 Constrained-Weighted Bipartite Partitioning Algorithm
(C-WBPA)

Our aim is to generate robust and stable solutions via a consensus clustering method
that makes use of prior knowledge under the form of must-link and cannot-link con-
straints. We generate contributing clusterings by running the LAC algorithm mul-
tiple times by changing the h parameter. In details, the overall process works as
follows.

We generate imputed constraints using the approach described in Sect. 4. Once
we have identified the proper constraints, we build the chunklet graph as illus-
trated in Sect. 5. We then incorporate the graph into the clustering ensemble
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Algorithm 5. Chunklet Assignment (CA) Algorithm
Input: Chunklet graph Gch, centroids {cν

1 , . . . ,cν
k }, and weights {wν

1 , . . . ,wν
k }

1. Create a matrix O = zeros(u,k), where u is total number of points in all chunklets of
Gch

2. For each vertex Vi ∈ Gch, we consider three cases:

a. Chunklet vi does not have a neighbor in the graph Gch. Assign chunklet vi to the
closest centroid:

i. ct = argminl(d(vi,cl)), such that d(vi,cl) = ∑|vi|
j=1

√
∑D

s=1 wls(x js−cls)2

ii. ∀x j ∈ vi, O j,t = 1

b. Chunklet vi does not have a neighbor that has been assigned to a centroid.

i. Assign chunklet vi to closet centroid ct as above
ii. ∀x j ∈ vi, O j,t = 1

c. Chunklet vi has at least one neighbor that has been assigned to a centroid.

i. Construct the set of centroids Ri to which the neighboring chunklets of vi have
been assigned

ii. Find the closest centroid ct to chunklet vi as described above, satisfying the con-
dition ct /∈ Ri

iii. ∀x j ∈ vi, O j,t = 1

Output: The resulting matrix O

components without violating any cannot-link constraint using the procedure de-
scribed in Sect. 6. The assignment strategy is applied to each component of the
ensemble.

Since LAC produces weighted clusters, we use this information to assign the
vertices of the chunklet graph to the closest centroid. For each partition produced
by the LAC algorithm we embed the given constraints, by assigning each chunklet
to the centroid that minimizes the sum of the weighted distances between all the
points in each chunklet. This assignment will produce a matrix O of 0 and 1 values,
where the number of rows is equal to the number of points in the chunklet graph,
and the number of columns is equal to k (the number of clusters) (see Algorithm 5).
An entry Oi, j = 1 means that the point i is highly likely to belong to cluster j. We
also ensure the assignment of chunklets connected by an edge to different centroids.

For points xi not involved in the constraint sets, and for each clustering ν =
1, . . . ,m, we follow our consensus clustering approach WBPA [1] as described
in the following. The weighted distance of xi from cluster Cl is given by dil =√

∑D
s=1 wls(xis− cls)2. Let Di = maxl{dil} be the largest distance of xi from any

cluster. We want to define the probability associated with cluster Cl given that we
have observed xi. Given a point xi, the cluster label Cl is assumed to be a ran-
dom variable from a distribution with probabilities {P(Cl|xi)}k

l=1. We provide a
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nonparametric estimation of such probabilities based on the data and on the cluster-
ing result. We do not make any assumption about the specific form (e.g., Gaussian)
of the underlying data distributions, thereby avoiding parameter estimation of mod-
els, which is problematic in high dimensions when the available data are limited.

In order to embed the clustering result in our probability estimations, the smaller
the distance dil is, the larger the corresponding probability credited to Cl should be.
Thus, we can define {P(Cl|xi)} as follows:

P(Cl|xi) =
Di−dil + 1

kDi + k−Σldil
, (7)

where the denominator serves as a normalization factor in order to guarantee
Σ k

l=1P(Cl|xi) = 1. We observe that ∀l = 1, . . . ,k and ∀i = 1, . . . ,n P(Cl|xi) > 0.
In particular, the added value of 1 in Eq. (7) allows for a non-zero probability
P(CL|xi) when L = argmaxl dil

1. In this last case P(Cl|xi) assumes its minimum
value P(CL|xi) = 1/(kDi + k−Σldil). For smaller distance values dil , P(Cl|xi) in-
creases proportionally to the difference Di−dil: the larger the deviation of dil from
Di, the larger the increase. As a consequence, the corresponding cluster Cl becomes
more likely, as it is reasonable to expect based on the information provided by the
clustering process. Thus, Eq. (7) provides a nonparametric estimation of the poste-
rior probability associated to each cluster Cl .

We can now construct the vector Pi of posterior probabilities associated with xi:

Pi = (P(C1|xi),P(C2|xi), . . . ,P(Ck|xi))t , (8)

where t denotes the transpose of a vector.
We initialize a matrix N to zero values, where the number of rows are equal to

n (total number of points), and the number of columns are equal to k (the number
of clusters). We then start filling the matrix N for each point x. For the points par-
ticipating in the chunklet graph, we retrieve their row value from the i-th row of the
matrix O and assign it to N (i-th row of N). For points not involved in the constraint
set, we extract their probability vectors Pi and assign it to Ni. We follow the above
procedure for each partition. Finally, we construct the following AN matrix:

AN = (N1N2 . . .Nm) , (9)

where the dimensionality of AN is (n× km).
Based on AN we can now define a bipartite graph to which our consensus par-

tition problem maps. Consider the graph G = (V,E) with V and E constructed as
follows. V = VC ∪V I , where VC contains km vertices, each representing a cluster
of the ensemble, and V I contains n vertices, each representing an input data point.
Thus |V | = km + n. The edge Ei j connecting the vertices Vi and Vj is assigned a
weight value defined as follows. If the vertices Vi and Vj represent both clusters or
both instances, then E(i, j) = 0; otherwise, if vertex Vi represents an instance xi and

1 Any small positive constant achieves this goal, with the normalization factor properly ad-
justed.
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vertex Vj represents a cluster Cν
j (or vice versa) then the corresponding entry of E is

AN(i,k(ν−1)+ j). We run METIS [12] on the resulting graph to compute a k-way
partitioning of the vertices that minimizes the edge weight-cut. The partition of the
instance vertices gives the consensus clustering we seek.

The steps of the algorithm, which we call C-WBPA (Constrained-Weighted Bi-
partite Partitioning Algorithm), are summarized in Algorithm 6.

Algorithm 6. Constrained-Weighted Bipartite Partitioning Algorithm (C-WBPA)

Input: n points x ∈ RD, and k

1. Run LAC m times with different h values. Obtain the m partitions:
{cν

1 , . . . ,cν
k },{wν

1 , . . . ,wν
k }, ν = 1, . . . ,m

2. (M,C)= IC(m partitions of n points) (Algorithm 3)
3. Gch= CG(M,C) (Algorithm 4)
4. For each partition ν = 1, . . . ,m:

a. Oν = CA(Gch,{cν
1 , . . . ,cν

k },{wν
1 , . . . ,wν

k }) (Algorithm 5)
b. ∀ xi not involved in any constraint:

i. Compute dν
il =

√
∑D

s=1 wν
ls(xis−cν

ls)
2

ii. Set Dν
i = maxl{dν

il }
iii. Compute P(Cν

l |xi) = Dν
i −dν

il +1
kDν

i +k−∑l dν
il

iv. Set Pν
i = (P(Cν

1 |xi),P(Cν
2 |xi), . . . ,P(Cν

k |xi))t

c. Initialize Nν (n,k) = zeros

i. ∀xi not involved in constraints, Nν
i = Pν

i , [i-th row of Nν is set equal to Pν
i ]

ii. ∀xi in constraints, Nν
i = Oν

i , [i-th row of Nν is set equal to Oν
i ]

5. Construct the matrix AN as in Eq. (9)
6. Construct the bipartite graph G = (V,E), where V = VC ∪V I , |V I | = n and V I

i ≡ xi,
|VC |= km and VC

j ≡Cj (a cluster of the ensemble). Set E(i, j) = 0 if Vi and Vj are both
clusters or both instances. Set E(i, j) = AN(i,k(ν−1)+ j) if Vi represents an instance
xi, and Vj represents a cluster Cν

j (or vice versa)
7. Run METIS [12] on the resulting graph G

Output: The resulting k-way partition of the n vertices in V I

8 Empirical Evaluation

In our experiments, we used eight real datasets. The characteristics of all datasets
are given in Table 1. Iris, Breast, Letter(A,B), Wine and Ionosphere are from the
UCI Machine Learning Repository [2]. WDBC is the Wisconsin Diagnostic Breast
Cancer dataset [14]. Ling-Spam and 20 Newsgroups are two high dimensional text
datasets. The documents in each dataset were preprocessed by eliminating stop
words (based on a stop words list) and stemming words to their root source. As



186 M. Al-Razgan and C. Domeniconi

Table 1 Characteristics of the datasets

Dataset k D n (points-per-class)

Iris 3 4 150 (50-50-50)
WDBC 2 31 424 (212-212)
Breast 2 9 478 (239-239)
Letter(A,B) 2 16 1555 (789-766)
Wine 3 13 178 (59-71-48)
Ionosphere 2 33 239 (126-113)
Newsgroups(ele-med) 2 321 1971 (981-990)
Ling-Spam 2 350 906 (453-453)

feature values in the vector space model we have used the frequency of the terms
in the corresponding document. To reduce the dimensionality of the data, we fol-
lowed the procedure presented in [11]. In particular, a global unsupervised feature
selection procedure, based on frequent itemset mining, was applied. The objective
of this step is to identify sets of terms that co-occur frequently in the given corpus
of documents. Such terms become the features used in the final representation of
documents.

Ling-Spam is a mixture of spam messages (453) and valid messages (561) sent
via the linguist list, a moderated (hence, spam-free) list about the profession and
science of linguistics. The original size of the dictionary is 24627. After processing
the data as described above, the dictionary size was reduced to 350. 20 Newsgroups
is a collection of 20,000 messages collected from 20 different netnews newsgroups.
One thousand messages from each of the 20 newsgroups were chosen at random
and partitioned by newsgroups name. In our experiments we consider the categories
medical (990) and electronics (981). The original size of the dictionary is 24546;
after processing the data, the dictionary size was reduced to 321.

Since METIS [12] requires balanced datasets, we performed random sampling
on Breast, WDBC, Ionosphere, and Ling-Spam. In each case, we sub-sampled the
most populated class: from 357 to 212 for WDBC, from 444 to 239 for Breast , from
225 to 113 for Ionosphere, and from 561 to 453 for LingSpam. Also for the Letter
dataset, we used the classes “A” and “B” (balanced).

We compare our constrained clustering ensemble techniques (C-WBPA) with
other semi-supervised clustering approaches: COP-Kmeans [15] and Seeded-COP-
Kmeans. We run COP-Kmeans ten times with random initialization. Seeded-COP-
Kmeans is initialized using the chunklet graph constructed as in Sect. 5. In par-
ticular, the centroids are initialized using the vertices with cannot-link constraints
among them. We compute the mean vectors of the points contained in each corre-
sponding chunklet. These mean vectors are the initial centroids. If the number of
selected chunklets is less than k, we choose as additional centroids the points that
are the farthest from the already chosen centroids.
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Fig. 1 Constrained clustering ensembles results
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Evaluating the quality of clustering is in general a difficult task. Since class labels
are available for the datasets used here, we evaluate the results by computing the
error rate according to the confusion matrix.

8.1 Analysis of the Results

The same set of constraints is used for C-WBPA, COP-Kmeans, and Seeded-COP-
Kmeans. As value of k, the actual number of classes in the data is used. Figure 1
plots the error rates (%) and standard deviations obtained for an increasing number
of constraints for each dataset. Each figure clearly shows the improvement of our
algorithm C-WBPA with respect to the other techniques. The trends of the error
rate clearly depend on the data distribution. We notice the smooth trends of our
technique (C-WBPA) with respect to the other techniques and an increasing number
of constraints.

Our technique achieves the lowest error rate with a small number of constraints
in most cases. Under these conditions, the clustering components are likely to be
diverse; thus, the ensemble method is able to filter out the uncorrelated errors made
by the individual clusterings. As a consequence, if limited information is available,
C-WBPA can achieve a good result. This characteristic makes our approach a valu-
able asset to be used with very limited knowledge, with no need to query the oracle
for more information.

Increasing the number of constraints made available to each component may
induce a high degree of correlation between them, causing diversity to decrease.
This phenomenon might be the reason for the stable error rate of C-WBPA for in-
creasing constraints. We emphasize the large improvements obtained by C-WBPA
for the high dimensional datasets (NewsGroup, Ling-Spam) we tested. This is
because the LAC technique is designed to handle data with high dimensional-
ity, while any variation of k-means tends to break down for datasets with high
dimensionality.

9 Conclusions

We have introduced a new constrained ensemble technique for clustering. Con-
strains are bootstrapped in an active fashion through the ensemble, and embedded
during the partitioning process carried out by each component. The experimental
results show that our constrained ensemble can provide solutions that are superior
to other semi-supervised clustering approaches. In our future work, we will consider
the design of a semi-supervised clustering method that embeds constraints directly
in the final consensus function. In addition, we will investigate techniques to embed
constraints across different ensemble components.

Acknowledgements. This work was in part supported by NSF CAREER Award IIS-0447814.
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Verifiable Ensembles of Low-Dimensional
Submodels for Multi-class Problems with
Imbalanced Misclassification Costs

Sebastian Nusser, Clemens Otte, and Werner Hauptmann�

Abstract. In this chapter, we discuss different strategies of extending an ensemble
approach based on local binary classifiers to solve multi-class problems. The en-
sembles of binary classifiers were developed with the objective of providing inter-
pretable submodels s for use in safety-related application domains. The ensembles
assume highly imbalanced misclassification costs between the two classes. The ex-
tension to multi-class problems is not straightforward because common multi-class
extensions might induce inconsistent decisions. We propose a solution of this prob-
lem that avoids such inconsistencies by introducing a hierarchy of misclassification
costs. We show that by following such a hierarchy it becomes feasible to extend the
binary ensemble, to maintain the desirable properties (that is, the good interpretabil-
ity) of the binary ensemble, and to achieve a good predictive performance.

1 Introduction

Safety-related systems are systems whose malfunction or failure may lead to death
or serious injury of people, loss or severe damage of equipment, or environmen-
tal harm. They are deployed, for instance, in aviation, automotive industry, medical
systems and process control. In [16] we proposed a binary ensemble framework for
use in safety-related domains. The main design criterion of this approach is to pro-
vide an ensemble of binary classification models that only uses small subspaces of
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the complete input space enabling the visual interpretation of the models. Because
machine learning approaches are regarded with suspiciousness in the field of safety-
related domains, the possibility to visualize each submodel greatly facilitates the
domain experts’ acceptance of the data-driven generated models. An interpretable
solution is often required for applications where the available training data is too
sparse and the number of input dimensions is too large to sufficiently apply statisti-
cal risk estimation methods in practical application tasks.

In most cases, high-dimensional models are required to solve a given problem.
Unfortunately, such high-dimensional models are hard to verify (curse of dimen-
sionality), may tend to overfitting, and the interpolation and extrapolation behavior
is often unclear. An example of such counterintuitive and unintended behavior is
illustrated in Fig. 1, where the prediction of the model changes in a region not cov-
ered by the given data set. Such behavior becomes even more likely and much more
difficult to discover in the high-dimensional case. Our ensemble approach provides
an insight into each submodel, which can be evaluated according domain knowledge
and, thus, the correct interpolation and extrapolation behavior of the model can be
guaranteed.

Fig. 1 Counterintuitive extrapolation behavior in a region not covered by the given data set.
This two-class problem is solved by a support vector machine (SVM) with an acceptable
classification performance on the given data. However, in a region not covered by any data
the decision of the SVM changes arbitrarily
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The extension of our binary classification ensemble to multi-class problems is not
straightforward since commonly used methods like one-against-one or one-against-
rest voting [6, 12] may introduce inconsistencies. We will show that such inconsis-
tencies can be avoided by introducing a hierarchy of misclassification costs.

The crucial aspect is to find a suitable trade-off between generation of an in-
terpretable and verifiable model and realization of a high predictive accuracy. In
most situations, more complex models will be able to achieve a better predic-
tive performance on the available data compared to simpler models. However, a
higher complexity of the model will usually lead to an increased effort for model
verification.

This contribution is organized as follows: in Sect. 2 we recall our binary ensem-
ble approaches for use in safety-related domains. In Sect. 3, two commonly used
approaches of extending binary classifiers to multi-class problems are briefly dis-
cussed and the inconsistencies are illustrated that might arise when applying them.
Section 4 extends the binary classification framework to also solve multi-class prob-
lems. Experiments on well-known benchmark problems are discussed in Sect. 5 and
Sect. 6 concludes this chapter.

2 The Binary Ensemble Framework

This section introduces the basic concepts of our ensemble approach that was first
introduced in [16]. In Sect. 4, these algorithms are extended to solve multi-class
problems. The original algorithms are designed to solve a binary classification prob-
lem. The task is to find an appropriate estimate of the unknown function f : V n→Y ,
where V n = X1×X2× . . .×Xn =×n

i=1Xi with Xi ⊆ IR is the input space and Y is
the target value, given an observed data set: D = {(v1,y1), ...,(vm,ym)} ⊂V n×Y .

Basic Idea. Our ensemble framework is motivated by Generalized Additive Mod-
els [11, 17] and separate-and-conquer approaches [8]. It can be interpreted as a vari-
ant of the projection pursuit [7, 13]. Both approaches (cf. Sect. 2.1 and Sect. 2.2) are
designed to find an estimate of the unknown function f : V n→ IK, where IK = {0,1}
is the set of class labels. Our approaches are based on the projection of the high-
dimensional data to low-dimensional subspaces. Submodels g j are trained on these
subspaces. By regarding only low-dimensional subspaces a visual interpretation be-
comes feasible and, thus, the avoidance of unintended extrapolation behavior is
possible. The ensemble of submodels boosts the overall predictive accuracy and
overcomes the limited predictive performance of each single submodel , while the
global model remains interpretable.

Projection of High-Dimensional Data Set. The projection π maps the n-dimen-
signal input space V n to an arbitrary subspace of V n. This mapping is determined
by a given index set β ⊂ {1, ...,n}. The index set defines the dimensions of V n that
will be included in the subspace Vβ . Thus, the projection π on the input space V n

given the index set β is defined as:
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πβ (V n) = Vβ =×i∈β Xi . (1)

Submodels. The j-th submodel is defined as:

g j : πβ j
(V n)→ IK, (2)

where β j denotes the index set of the subspace where the classification error of
the submodel g j is minimal. The best projections can be determined, for instance,
by a wrapper method for feature selection [15] that performs an exhaustive search
through all possible feature combinations. For high-dimensional problems we ad-
vise to perform a preceding feature selection [9] in order to reduce the computa-
tional costs. The final function estimate f̂ of the global model is determined by the
aggregation of the results of all submodels g j(πβ j

(v)).

2.1 DecisionTree-Like Ensemble Model

This approach replaces the classification nodes in a common decision tree by strong
classifiers. The classification nodes in the tree are restricted to two input dimen-
sions. This facilitates the visualization of the relevant decision region and avoids
overfitting. The best submodel g j is used to divide the training set into new subsets
Dnew

θ := {(v,y)|g j(πβ j
(v)) = θ}, where θ ∈ IK. The submodels for these subsets

are built recursively until an appropriate termination criterion is fulfilled. The leaf
nodes of the tree represent the final classification labels.

2.2 Non-Hierarchical Ensemble Model

This method incorporates prior knowledge about the subgroups of the given prob-
lem and avoids hierarchical dependencies of the submodels as in the DecisionTree-
like Ensemble Model approach. It is required that the so-called preferred class
cpre f must not be misclassified by any of the trained submodels: ∀y = cpre f :
|y− g(πβ (v))| = 0. This requirement typically leads to imbalanced misclassifica-
tion costs.

The submodels are trained on low dimensional projections of the high dimen-
sional input space with the objective to avoid the misclassification of the preferred
class cpre f . The submodels greedily separate the samples of the other class from the
preferred class samples. Missed samples of the other class are used to build further
submodels.

The final function estimate is the disjunctive combination of all learned
submodels

f̂ (v) =
∨

(g j ,β j)∈Exp

g j

(
πβ j

(v)
)

, (3)

where Exp is the set of all learned submodels and their corresponding index sets.
For the sake of simplicity it is defined that the preferred class cpre f is always
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encoded as 0 (interpreted as boolean false) and the other class is always encoded
as 1 (interpreted as boolean true) by the submodels g j.

2.3 An Illustrative Example

The CUBES data set is generated from four Gaussian components in a three-
dimensional space. This data set is illustrated in Fig. 2. For each Class 1 cluster
50 samples are drawn from N(ei,0.2I), where ei is a unit vector and I is the identity
matrix. 100 samples of the Class 0 cluster are scattered around the origin, drawn
from N((0,0,0)T ,0.2I). All submodels are trained as SVMs with a Gaussian kernel
and the parameter set γ = 0.2 and C = 5.

DecisionTree-like Ensemble Model. This method does not require a predefined
default class. However, if a default class is given by the application, it can be con-
sidered by different misclassification costs when learning the submodels of the tree-
like model. In this toy example, we ignore information about the default class. At the
initial state, all two-dimensional projections of the CUBES data set are very similar.
The best two-dimensional submodel g1 is depicted in Fig. 3(a). It uses the projection
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Fig. 2 Three-dimensional CUBES data set: Class 1 samples are marked with circles and
Class 0 samples are marked with crosses
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(c) Tree structure of the DecisionTree-like Ensemble Model

Fig. 3 DecisionTree-like Ensemble Model and the CUBES data set: Class 1 samples are
marked with circles and Class 0 samples are marked with crosses. The decision boundaries
are drawn as solid lines

πβ1
(v) with β1 = {2,3}. This submodel assigns 103 data points to Class 1 (2 errors)

and 147 data points to Class 0 (49 errors). It is not possible to build other submodels
for the data points that are assigned to Class 1, but for Class 0 a second submodel
can be built. This model, g2 with β2 = {1,2}, is depicted in Fig. 3(b). It assigns
50 data points to Class 1 (1 error) and 97 data points to Class 0 (0 errors). Fur-
ther improvements are not possible. The final model, which is depicted in Fig. 3(c),
misclassifies three Class 0 samples. All other data points are correctly assigned to
their corresponding class label. The confusion matrix of the final DecisionTree-like
Ensemble Model is shown in Table 1(a).

Non-Hierarchical Ensemble Model. Class 0 is chosen as the default class, cpre f =
0. That is, Class 0 must not be misclassified by any learned submodel. This can
be achieved, for instance, by using imbalanced misclassification costs for Class 1
and Class 0. The best submodel g1, see Fig. 4(a), uses the projection πβ1

(v) with
β1 = {1,2}. 53 data points from Class 1 are misclassified by this submodel. Thus, in
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Table 1 Confusion matrices of the CUBES data set

(a) DecisionTree-like Ensemble
Model

predicted class
true class Class 0 Class 1

Class 0 97 3
Class 1 0 150

(b) Non-Hierarchical Ensemble
Model

predicted class
true class Class 0 Class 1

Class 0 100 0
Class 1 4 146

the next iteration new submodels are trained only on samples, which are predicted as
Class 0 by the first submodel: Dnew = {(v,y)|g1(πβ1

(v)) = 0}. In Fig. 4(b) the pro-
jection πβ2

(v) with β2 = {2,3} of the data set Dnew and the corresponding submodel
g2 are shown. This submodel misclassifies four Class 1 samples. Given the chosen
parameter set, no further improvements are possible. The final predictive model is
f̂ (v) = g1(πβ1

(v))∨ g2(πβ2
(v)). The overall performance of the Non-Hierarchical

Ensemble Model is shown in Table 1(b): avoiding the misclassification of the default
class cpre f = 0 leads to four misclassified Class 1 samples.
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Fig. 4 Non-Hierarchical Ensemble Model and the CUBES data set: Class 1 samples are
marked with circles and Class 0 samples are marked with crosses. The decision boundaries
are drawn as solid lines

3 Multi-class Extensions of Binary Classifiers

There are two commonly used approaches to extend binary classifiers to solve multi-
class problems: (1) a one-against-one extension and (2) a one-against-rest extension.
A detailed comparison of these methods and an experimental evaluation for support
vector machines is given in [12]. Figure 5 illustrates both approaches.
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Fig. 5 Illustration of multi-class extensions based on binary classifiers. There are three
classes: A, B, C. The discriminant functions are given as solid lines. Regions with possible
inconsistent decisions are labeled with question marks

One-against-rest multi-class extension. This method constructs k classifiers (k =
|IK| is the number of class labels, IK = {c1,c2, . . . ,ck}). The model fck

for class
ck ∈ IK is trained on all samples of class ck against all samples from the remaining
classes which are combined to a new class c∗k = IK\ ck – for the sake of simplicity
the class label of c∗k is set to −1. A new data point v is assigned according to:

f (v) = argmax
c∈IK

fc(v) .

One-against-one multi-class extension. This method builds k(k−1)/2 classifiers,
each for the pair-wise combination of the classes ck,cl ∈ IK, k �= l. The final classi-
fication is performed by majority voting – that is the most frequent predicted class
label is returned as prediction of the multi-class model.

Risk of inconsistent decisions. The issue of inconsistent decisions of combining
binary classifiers to multi-class classifiers is addressed in [19], for instance. As il-
lustrated in Fig. 5, there can be regions of the input space where the decision of the
multi-class models might be inconsistent. Those regions are marked with question
marks in each figure. For the one-against-rest method, there are two possibilities
of an inconsistent decision: (1) there are several binary classifiers predicting differ-
ent class labels for one given data point. Such regions are (A,B ?), (A,C ?), (B,C ?).
(2) there are regions, where all classifiers are predicting the “rest” class, (A,B,C ?).
For the one-against-one method, there is only one kind of inconsistent decisions
possible: several binary classifiers are predicting different class label for one given
data point. The problem of several classifiers predicting different class labels can be
solved by assigning the class label at random [12] or to assign the data point to the
class with the highest posterior probability [19]. The second kind of inconsistent de-
cisions of the one-against-rest method can be acceptable for some problems, where
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“no decision” might be better than a “wrong decision”. Otherwise, one can use the
same strategy as for the other kind of inconsistent decisions.

4 The Multi-class Ensemble Framework

Mainly, there are two possibilities of extending the binary ensembles of low-
dimensional submodels, cf. Sect. 2, in order to deal with multi-class problems:

1. The multi-class decision is made on the level of the submodels (Ensemble of
Multi-Class Submodels, cf. Sect. 4.1).

2. Submodels are binary classifiers, the multi-class classification task is performed
by the ensemble. There are two variants:

a. the Hierarchical Separate-and-Conquer Ensemble (cf. Sect. 4.2) and
b. the One-versus-Rest Ensemble (cf. Sect. 4.3).

Another algorithm based on one-against-one classifier combination is given in [18].
This algorithm uses a one-against-one approach to extend binary classifiers to solve
multi-class problems. The important similarity of this approach compared to our
framework is that it is also based on a reduction of the dimensionality on the level
of the submodels. In contrast to our approach, the number of dimensions of the sub-
models is not limited – all input dimensions that provide statistically sufficient infor-
mation are included in the training set to build a single submodel to separate the pair
of classes. Our approach may use several submodels with limited dimensionality to
solve the same subproblem while each submodel remains visually interpretable.

For safety-related problems it is important to take into account that the commonly
used strategies of extending binary classifiers to multi-class classifiers, which are
illustrated in Fig. 5, may lead to regions with inconsistent decisions. In order to
avoid an unintended labeling, the inconsistent decisions are solved according to a
hierarchy of misclassification costs: for a given new data point v the class label is
chosen which has the largest misclassification penalty.

4.1 Ensemble of Multi-Class Submodels

Using local multi-class models in a Non-Hierarchical Ensemble Model requires a
hierarchy of misclassification costs, that is, it is assumed that there exists an ordering
of the class labels, which allows statements like: “class c1 samples should never be
misclassified, class c2 samples might be misclassified only as class c1 samples, class
c3 might be classified as class c1 or c2 samples, ...”

penalty(c1) > penalty(c2) > penalty(c3) > ... (4)

Such a hierarchy of misclassification costs leads to a confusion matrix as depicted
in Table 2. This issue is closely related to ordinal classification problems. An SVM-
based approach for ordinal classification can be found in [3].
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Table 2 Confusion Matrix for multi-class submodels in a Non-Hierarchical Ensemble
Model. The following hierarchy of misclassification costs is assumed: penalty(c1) >
penalty(c2) > penalty(c3) > penalty(c4) > penalty(...)

predicted class
true class c1 c2 c3 c4 ...

c1 h1,1 0 0 0 ...
c2 h2,1 h2,2 0 0 ...
c3 h3,1 h3,2 h3,3 0 ...
c4 h4,1 h4,2 h4,3 h4,4 ...
... ... ... ... ... ...

Combining multi-class submodels of a Non-Hierarchical Ensemble Model be-
comes difficult because one can only rely on the prediction of the class ck, which
has the minimal misclassification cost – all other class label predictions might be
false positives. Thus, it is necessary to include all samples that are not predicted as
class ck in the training for the next submodel. This fact leads directly to the Hierar-
chical Separate-and-Conquer Ensemble approach, which is described in Sect. 4.2.

The extension of the DecisionTree-like Ensemble Model approach to solve a
multi-class problem is straightforward – a novel subtree is generated for each class
predicted by the multi-class submodel of the current node. The final classification
decision is determined by the leaf node of the learned tree – similar to the standard
decision tree approaches. To avoid inconsistent decisions it is also encouraged to
use a hierarchy of misclassification costs in this approach.

4.2 Hierarchical Separate-and-Conquer Ensemble

This approach requires a hierarchy of the misclassification costs as already intro-
duced for the Ensemble of Multi-Class Submodels approach. It is related to the
commonly used one-against-rest approach. Instead of building all one-against-rest
combinations of models, the class with the minimal classification costs is separated
from all samples of the other classes via binary submodels. This approach is illus-
trated in Fig. 6. The procedure is the same as for the Non-Hierarchical Ensemble
Model, which is described in Sect. 2.2. If the problem is solved for this class or
there are no further improvements possible, all samples of this class are removed
from the training data set and the procedure is repeated for the class which has now
the smallest misclassification costs. This procedure is repeated until the data set of
the next iteration has only a single class label. The resulting binary classifiers are
evaluated according to the misclassification hierarchy, that is in the first step all sub-
models of the class with minimal misclassification costs are evaluated. If the novel
sample cannot be assigned to the class with minimal misclassification costs, the
procedure is repeated for the next class in the hierarchy of misclassification costs.
If no submodel predicts the novel sample the sample is assigned to the class with
maximal misclassification costs.
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predicted class
true class A B C

A 36 0 0
B 0 38 0
C 0 6 41

(b) Confusion matrix

Fig. 6 Hierarchical Separate-and-Conquer Ensemble trained on the data from Fig. 5. The
following hierarchy of misclassification costs is assumed: penalty(A) > penalty(B) >
penalty(C)

4.3 One-versus-Rest Ensemble

This approach follows the one-against-rest multi-class classification approach. It is
illustrated in Fig. 7. For every class ck ∈ IK versus c∗k = IK \ ck a complete binary
Non-Hierarchical Ensemble Model f̂ck

(v) is trained. The class c∗k is chosen as the
preferred class cpre f to avoid the misclassification of any sample belonging to IK\ck.
For the sake of simplicity c∗k is encoded as −1. The resulting binary models can be
combined by determining the maximum: f̂ (v) = argmaxck∈IK f̂ck

(v) .
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predicted class
true class A B C ?

A 22 0 0 14
B 0 31 0 7
C 0 0 41 6

(b) Confusion matrix. The last column
denotes missed samples

Fig. 7 One-versus-Rest Ensemble trained on the data from Fig. 5. Each model for class ck

is trained with the objective to avoid the misclassification of the samples belonging to c∗k =
IK\ck



202 S. Nusser, C. Otte, and W. Hauptmann

This approach is the easiest way to extend the binary submodeling approach to
multi-class modeling, but it shows a lack of performance for overlapping data sets:
it is possible that certain data points are assigned to the class c∗k by every submodel
and some classes cannot be separated from the other classes due to overlapping of
the classes in all projections. This approach still yields ambiguous decisions within
the input space, as shown in Fig. 7. Such ambiguities can be resolved by following
the hierarchy of misclassification costs.

4.4 An Illustrative Example (Cont’d)

We extend the example which is discussed in Sect. 2.3 to a four-class prob-
lem: the Class 2 samples are drawn from N((0.0,0.0,0.0)T ,0.2I), the Class 3
samples are drawn from N((0.5,0.5,0.5)T ,0.2I), the Class 4 samples are drawn
from N((1.0,1.0,1.0)T ,0.2I), and the samples of Class 1 are drawn from N(ei +
i/2,0.2I), i = {0,1,2}. For this multi-class problem the following hierarchy of mis-
classification costs is assumed:

penalty(Class 4) > penalty(Class 3) > penalty(Class 2) > penalty(Class 1).

Ensemble of Multi-Class Submodels. The submodel of the root node of the En-
semble of Multi-Class Submodels approach is shown in Fig. 8(a). All predicted
Class 1 samples are Class 1 samples, thus there is no further subtree-building needed
for predicting Class 1. The second submodel, Fig. 8(b), is trained on all samples that
are predicted as Class 2 by the submodel of the root node. The same holds for the
third and fourth submodel, Fig. 8(c)&(d), that are trained on the samples predicted
as Class 3 and Class 4, respectively. Further submodels cannot improve the overall
performance of the global model. The final classification consists of four decision
nodes and the maximal tree depth is two.

Hierarchical Separate-and-Conquer Ensemble. This approach solves the prob-
lem with four submodels, all shown in Fig. 9. The first submodel separates most of
the Class 1 samples from the samples of the other classes. The remaining Class 1
samples are removed by the second submodel – further improvements in predicting
Class 1 are not possible. Thus, according to the hierarchy of misclassification costs,
the third submodel separates the samples drawn from Class 2 from the samples of
Class 3 and Class 4. Finally, the fourth submodel separates the Class 3 samples
from the Class 4 samples.

One-versus-Rest Ensemble. This example shows the limitations of the One-
versus-Rest Ensemble approach: it is not possible to build one-versus-rest models
for Class 2, Class 3, and Class 4 without misclassifying samples from Class 1.
The only models returned by this approach are the same as shown in Fig. 9(a) and
Fig. 9(b), that is, only Class 1 samples can be predicted correctly, all other samples
are predicted as ‘don’t know’.
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Fig. 8 Ensemble of Multi-Class Submodels approach and the Multi-Class CUBES data set:
Class 1 samples are shown as circles, Class 2 samples are shown as crosses, Class 3 sam-
ples are shown as downward-pointing triangles, and Class 4 samples are shown as upward-
pointing triangles. The decision borders of the submodels are drawn as solid lines

5 Experiments

Our ensemble methods are compared with a common support vector machine
(SVM) implementation (libSVM from [4]) and a CART classification tree (treefit
in MATLAB). The SVM and the classification tree are trained with a cost matrix
in order to simulate the hierarchy of misclassification costs. Within Table 4, the
Non-Hierarchical Ensemble Model is abbreviated as NHEM and the DecisionTree-
like Ensemble Model is abbreviated as DTEM. The method in [18] is a variation
of the Non-Hierarchical Ensemble Model that uses the Kolmogorov-Smirnoff test
in order to select all the variables with different cumulative distributions condi-
tional to the class labels as input of the submodels. The multi-class extensions of
the ensemble models are abbreviated as HSCE (Hierarchical Separate-and-Conquer
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Fig. 9 Hierarchical Separate-and-Conquer Ensemble and the Multi-Class CUBES data set:
Class 1 samples are shown as circles, Class 2 samples are shown as crosses, Class 3 sam-
ples are shown as downward-pointing triangles, and Class 4 samples are shown as upward-
pointing triangles. The decision borders of the submodels are drawn as solid lines

Ensemble), OvRE (One-versus-Rest Ensemble), and EMCS (Ensemble of Multi-
Class Submodels) within Table 5. The submodels of our ensemble models are SVMs
with Gaussian kernels. The parameter sets of the SVMs are chosen manually in or-
der to obtain smooth decision surfaces within the submodels. The same parameter
sets are used for the high-dimensional SVM. For feature selection, our ensemble
methods perform an exhaustive search through all possible pairs of features.

For every classifier one can obtain a confusion matrix as depicted in Table 3.
Based on these confusion matrices, we are computing three evaluation measures

in order to evaluate the performance of the learned solutions. First, the overall pre-
dictive error of the model is estimated by:
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Table 3 Confusion matrix of a multi-class classifier (counts of data samples). The rows and
columns are sorted according to the hierarchy of misclassification costs (cf. Sect. 4.1). The
following ordering of the confusion matrix is assumed: penalty(c1) > penalty(c2) > .. . >
penalty(ck)

predicted class
true class c1 c2 . . . ck

c1 h1,1 h1,2 . . . h1,k
c2 h2,1 h2,2 . . . h2,k
...

...
...

. . .
...

ck hk,1 hk,2 . . . hk,k

êrr =
1
m

(
m−

k

∑
i=1

hi,i

)
,

where m denotes the number of all data points.
The second evaluation measure, the critical error, concerns only the samples that

violate the predefined hierarchy of misclassification costs:

êrrcrit =
1
m

k

∑
i=1

k

∑
j=i+1

hi, j .

The critical error is the more important error measurement because it corresponds
to a violation of the given domain knowledge.

As the third evaluation measure, the one-point-estimate of the area under the
ROC curve (AUC), cf. [5], is used:

AUC = max

{
1
k
,1− 1

k

k

∑
i=1

k

∑
j=1,i�= j

ni, j

}
,

where ni, j = hi, j/∑k
l=1 hi,l .

5.1 Binary Classification Problems

Hepatitis data set. The task of this data set is to predict whether a patient with
hepatitis will die (Class 1) or survive (Class 2). Class 2 is chosen as the default
class, cpre f = 2. The original data set from [1] consists of 155 instances and 20
attributes. There are lots of missing values. We are ignoring all dimensions with
more than eight missing values. The instances of the resulting data set that still have
missing values are removed from the data set. Hence, the final data set used within
our experiments consists of 143 instances and 14 attributes.
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Respiratory data set (RDS). This data set2 consists of 85 clinical records (each
17 attributes) for premature newborn children with two types of respiratory distress
syndrome: Hyaline Membrane Disease (Class 2) and non-HMD (Class 1). The two
classes require immediate and completely different treatments, therefore an accurate
classification is crucial within the first few hours after delivery. The default class is
set to cpre f = 2.

Wisconsin Breast Cancer data set (WBC). This database consists of 699 in-
stances and nine attributes. There are 16 missing attribute values – samples with
missing values are ignored within our experiments. The task is to determine whether
a sample is benign (Class 0) or malignant (Class 1). Class 1 is chosen as the default
class cpre f = 1.

5.2 Multi-class Classification Problems

DERMATOLOGY data set. This example is a challenging problem in derma-
tology [10]. The task is to discriminate six differential diagnostics of erythemato-
squamous diseases, namely: Psoriasis (Class 1), Seboreic Dermatitis (Class 2),
Lichen Planus (Class 3), Pityriasis Rosea (Class 4), Cronic Dermatitis (Class
5), Pityriasis Rubra Pilaris (Class 6). All these diseases share the clinical fea-
tures of erythema and scaling – with minor differences. The data set consists
of 366 records and each record has 33 attributes. The age attribute of the orig-
inal data set from the UCI Machine Learning Repository [1] is omitted here,
because is has some missing values. The following hierarchy of misclassifica-
tion costs is assumed: penalty(Class 6) > penalty(Class 5) > penalty(Class 4) >
penalty(Class 3) > penalty(Class 2) > penalty(Class 1).

LYMPH data set. This data set consists of 148 instances and 19 attributes. It
concerns a four-class problem. The classes are: Class 1 (normal find), Class 2
(metastases), Class 3 (malign lymph), and Class 4 (fibrosis). The following hier-
archy of misclassification costs is assumed: penalty(Class 2) > penalty(Class 3)
> penalty(Class 4) > penalty(Class 1).

NEWTHYROID data set. This problem concerns another typical medical data
screening application. The classification task is to predict whether a patient’s thy-
roid belongs to the class euthyroidism (normal = Class 1), hyperthyroidism (hyper
= Class 2) or hypothyroidism (hypo = Class 3). The data set consists of 215 records
and each record is described by five attributes. The following hierarchy of misclassi-
fication costs is assumed: penalty(Class 3) > penalty(Class 2) > penalty(Class 1).

5.3 Comparison of the Ensemble Methods

Table 4 and Table 5 summarize the experiments performed on the benchmark data
sets. Most of the data sets can be obtained from [1] – except for the RESPIRATORY
data set.

2 http://www.bangor.ac.uk/∼mas00a/activities/real data.htm
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Table 4 10-fold cross-validation on binary classification problems. The error is averaged over
10 random fold initializations. #M denotes the number of models or the number of decision
nodes within the decision tree. #D denotes the number of dimensions per (sub-) model or the
dimensionality of the splits within the tree

Method #M #D
êrr êrrcrit AUC

mean (std) mean (std) mean (std)

HEPATITIS data set
NHEM 2 2 16.71% (9.26) 2.43% (4.79) 0.660 (0.150)

SZEPANNEK 1 7 18.71% (8.84) 3.43% (5.12) 0.631 (0.136)

DTEM 5 2 19.43% (9.69) 6.29% (6.52) 0.668 (0.149)

libSVM 1 14 21.00% (10.09) 7.43% (6.33) 0.646 (0.150)

treefit 12 1 21.21% (9.33) 7.86% (7.90) 0.646 (0.134)

RESPIRATORY data set
NHEM 4 2 10.13% (10.31) 4.88% (8.68) 0.898 (0.112)

SZEPANNEK 1 10 11.13% (10.79) 6.13% (8.24) 0.891 (0.115)

DTEM 2 2 13.00% (11.08) 7.25% (7.98) 0.873 (0.117)

libSVM 1 17 9.88% (10.10) 5.75% (8.41) 0.899 (0.110)

treefit 5 1 19.00% (14.49) 6.00% (9.65) 0.813 (0.142)

WISCONSIN BREAST CANCER data set
NHEM 4 2 5.96% (6.89) 0.93% (1.27) 0.949 (0.051)

SZEPANNEK 1 9 4.85% (2.34) 2.26% (1.77) 0.947 (0.028)

DTEM 5 2 3.99% (2.26) 1.25% (1.44) 0.961 (0.024)

libSVM 1 9 4.85% (2.34) 2.26% (1.77) 0.947 (0.028)

treefit 41 1 6.84% (3.43) 2.32% (1.80) 0.932 (0.034)

The evaluation measures are estimated by a 10-fold-cross-validation procedure
[14] where the data set is divided into 10 roughly equal-sized subsets (folds). The
models are trained on the data of nine folds and the remaining fold is used as an eval-
uation set. This is repeated for every single fold. Furthermore, we used 10 different
fold initializations.

The binary classification ensembles show a good performance on the tested data
sets. The predictive performance is competitive to the libSVM solutions while the
interpretability of the ensemble models is much better than the interpretability of the
higher-dimensional SVMs. The result on the multi-class data sets is quite similar.
The One-versus-Rest Ensemble achieves a very good performance in terms of the
critical error. On the other hand, the overall error of this approach is worse compared
to all other methods. This poor performance is due to the large number of samples
that are missed by the submodels and are always assigned to the “other” class. Nev-
ertheless, samples that are labeled as “unrecognized” might be acceptable for some
application problems. The Hierarchical Separate-and-Conquer Ensemble approach
provides a good trade-off between the predictive performance and the interpretation
of the models compared to the SVM solution that achieves the least overall error on
all data sets but incorporates always the complete input space. The critical error of
the Ensemble of Multi-Class Submodels approach is quite large in all experiments,
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Table 5 10-fold cross-validation on multi-class classification problems. The error is averaged
over 10 random fold initializations. Missed samples of the One-versus-Rest Ensemble are
ignored when computing the AUC

Method #M #D
êrr êrrcrit AUC missed

mean (std) mean (std) mean (std) samples

DERMATOLOGY data set
HSCE 7 2 10.31% (5.27) 2.33% (2.15) 0.889 (0.056)

SZEPANNEK 5 15 5.42% (3.69) 1.06% (1.80) 0.940 (0.044)

EMCS 10 2 5.56% (3.68) 3.17% (2.90) 0.927 (0.058)

OvRE 12 2 24.83% (6.96) 0.36% (0.94) 0.970 (0.045) [22.6%]
libSVM 1 33 3.39% (2.84) 1.94% (2.25) 0.963 (0.035)

treefit 11 1 5.64% (3.65) 1.47% (1.95) 0.944 (0.044)

LYMPH data set
HSCE 6 2 18.64% (9.52) 4.93% (5.89) 0.837 (0.131)

SZEPANNEK 3 7 18.00% (10.53) 5.71% (6.18) 0.838 (0.143)

EMCS 9 2 17.43% (10.37) 6.79% (7.49) 0.814 (0.152)

OvRE 16 2 36.29% (11.87) 4.00% (5.59) 0.876 (0.133) [26.6%]
libSVM 1 18 22.07% (10.99) 4.50% (6.15) 0.768 (0.167)

treefit 15 1 29.29% (11.86) 6.00% (6.94) 0.764 (0.139)

NEWTHYROID data set
HSCE 3 2 4.19% (5.03) 1.10% (2.86) 0.962 (0.063)

SZEPANNEK 2 5 4.10% (4.64) 1.71% (3.80) 0.955 (0.076)

EMCS 3 2 4.00% (4.53) 2.57% (3.79) 0.939 (0.087)

OvRE 4 2 6.38% (5.63) 0.90% (2.41) 0.975 (0.062) [4.7%]
libSVM 1 5 4.62% (4.56) 1.90% (3.71) 0.949 (0.075)

treefit 6 1 4.29% (4.36) 1.29% (2.12) 0.957 (0.052)

because the hierarchy of misclassification costs is ignored for this method within
our experiments. On the other hand, this ensemble approach is the only variant that
does not require a hierarchy of misclassification costs to build a multi-class model.
While interpreting the decision boundaries of a high-dimensional SVM is infeasi-
ble, all ensemble approaches allow a visualization of the submodels and, thus, they
facilitate the incorporation of domain knowledge via an interactive model selection
process that increases the confidence about the learned solution.

5.4 Comparison of Different Feature Selection Methods

In the second experimental setting, we investigate the influence of the dimensional-
ity of each submodel on the predictive error of the learned ensemble models. There-
fore, the Hierarchical Separate-and-Conquer Ensemble is extended in order to use
other feature selection methods: instead of the wrapper feature selection with the
restriction to two-dimensional projections, the algorithm can use the Kolmogorov-
Smirnoff test to determine all variables that have different conditional cumulative
probability distributions given the class labels (cf. [18]) or it can use only those
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Fig. 10 Comparison of different feature selection methods on several benchmark data sets.
KS – feature selection based on the Kolmogorov-Smirnoff test, DT - feature selection based
on a decision tree, all – using all features, and 2D – only two-dimensional projections of the
data set

variables that are used for the decision nodes within a CART model [2], which uses
the Gini’s diversity index as split criterion. In this study, we divided the data sets
into four roughly equal-sized folds and we repeated the experiments for 100 differ-
ent fold initializations. The results of this study are illustrated in Fig. 10. All results
are obtained by applying the Non-Hierarchical Ensemble Model algorithm on the
same data sets as in the previous study. For each data set the Non-Hierarchical En-
semble Model is trained with four different settings: (1) use only two-dimensional
projections, (2) use Kolmogorov-Smirnoff test to determine all dimensions that have
different conditional cumulative distributions per class label, (3) use all dimensions
that are used by a decision tree learner, and (4) use all dimensions for learning the
submodel. Since (2-4) can exploit a higher dimensionality, these variants are re-
stricted to one submodel per class label.

There is no general trend which feature selection method performs best in all sit-
uations. The best predictive performance depends more on the structure of the data
set than on the feature selection method itself. There is also a significant difference
between the feature selection method based on the Kolmogorov-Smirnoff test and
the decision tree-based feature selection method on the LYMPH and RESPIRATORY
data sets. If one compares the average dimensionality of the submodels (which can
be seen as an indicator of the interpretability of the models) for each different feature
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selection method the restriction to only two-dimensional submodels is competitive
compared to the other approaches and provides an appropriate trade-off between
interpretability and predictive performance.

6 Conclusions

In order to successfully apply machine learning approaches in the field of safety-
related application problems it is crucial to provide interpretable and verifiable mod-
els. Unfortunately, it is infeasible to interpret high-dimensional models efficiently.
Therefore, for safety-related problems, high-dimensional models are not to be ap-
plied. On the other hand, simple models which are easier to interpret show a lack
of predictive performance. The framework proposed within this chapter provides a
good trade-off between, on the one hand, the interpretation and verification of the
learned (sub-)models, avoiding an unintended extrapolation behavior, and, on the
other hand, the achievement of a high predictive accuracy. Each submodel can be
visually interpreted and the ensemble of the submodels compensates for the lim-
ited predictive performance of each single submodel. In contrast to dimensionality
reduction methods, which combine several dimensions of the input space, the sub-
models are trained on the original dimensions, allowing domain experts to evaluate
the trained models directly. In our experiments, the benchmark data sets were suc-
cessfully tested and provided competitive results.
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Independent Data Model Selection for Ensemble
Dispersion Forecasting

Angelo Ciaramella, Giulio Giunta, Angelo Riccio, and Stefano Galmarini

Abstract. This work aims at introducing an approach to analyze the independence
between different data model in a multi-model ensemble context. The models be-
long to operational long-range transport and dispersion models, but they are also
used for the real-time simulation of pollutant dispersion or the accidental release of
radioactive nuclides in the atmosphere. In order to compare models, an approach
based on the hierarchical agglomeration of distributions of predicted radionuclide
concentrations is proposed. We use two different similarity measures: Negentropy
information and Kullback-Leibler divergence. These approaches are used to analyze
the data obtained during the ETEX-1 exercise, and we show how to exploit these ap-
proaches to select subsets of independent models whose performance is comparable
to those from the whole ensemble.

Keywords: ensemble classifier, independence, data dimensionality, air pollutant
dispersion.

1 Introduction

Standard meteorological/air quality practice, such as the prediction of the future
state of the atmosphere, typically proceeds conditionally on one assumed model.
The model is the result of the work of many area-expert scientists, e.g., meteorolo-
gists, computational scientists, statisticians, and others.

Angelo Ciaramella · Giulio Giunta · Angelo Riccio
Dept. of Applied Science, University of Naples “Parthenope”, Isola C4,
Centro Direzionale I-80143, Napoli, Italy
e-mail: {angelo.ciaramella,giulio.giunta}@uniparthenope.it
angelo.riccio@uniparthenope.it

Stefano Galmarini
European Commission - DG Joint Research Centre, Institute for Environment and
Sustainability, Ispra, Italy
e-mail: stefano.galmarini@jrc.it

O. Okun & G. Valentini (Eds.): Appli. of Supervised & Unsuper. Ensemble Meth., SCI 245, pp. 213–231.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

{angelo.ciaramella,giulio.giunta}@uniparthenope.it
angelo.riccio@uniparthenope.it
stefano.galmarini@jrc.it


214 A. Ciaramella et al.

Nowadays, several models are available for the forecast of variables of meteo-
rological and/or air quality interest, but, even when using the same ancillary (e.g.
initial and boundary) data, they could give different answers to the scientific ques-
tion at hand. This is a source of uncertainty in drawing conclusions, and the typical
approach, that is of conditioning on a single model deemed to be “the best”, ignores
this source of uncertainty and underestimates the possible effects of a false forecast.

Ensemble prediction aims at reducing this uncertainty by means of techniques
designed to strategically sample the forecast pdf, e.g. the breeding of growing modes
[20] or singular vectors [17] in the weather forecasting field. In recent years, a large
literature has evolved toward the use of multi-model ensemble systems to improve
weather, climate and air quality predictions, too [15]. This trend stems from many
needs: spotting flood events; evaluating the effects of pollutant emissions; delivering
more accurate seasonal and inter-annual weather predictions, etc.

The multimodel approach has been successfully applied to atmospheric disper-
sion predictions [8, 9, 10] where the uncertainty of weather forecast sums and mixes
with that stemming from the description of the dispersion process. The methodol-
ogy relies on the analysis of the forecasts of several models used operationally by
national meteorological services and environmental protection agencies worldwide
to forecast the evolution of accidental releases of harmful materials. The objectives
are clear: after the release of hazardous material into the atmosphere, it is extremely
important to support the decision-making process with any relevant information and
to provide a comprehensive analysis of the uncertainties and the confidence that can
be put into the dispersion forecast. Galmarini et al. [9] showed how the intrinsic
differences among the models can become a useful asset to be exploited for the sake
of a more educated support to decision making by means of the definition of ad-
hoc parameters and treatments of model predictions. They proposed the so called
‘Median Model’, defined as a new set of model results constructed from the me-
dian of model predictions. The Median Model was shown to outperform the results
of any single deterministic model in reproducing the concentration of atmospheric
pollutants measured during the ETEX experiment [11].

Moreover, in [19] an approach for the statistical analysis of multi-model ensem-
ble results is presented. The authors used a well-known statistical approach to mul-
timodel data analysis, i.e. Bayesian Model Averaging (BMA), which is a standard
method for combining predictive distributions from different sources. Moreover,
similarities and differences between models were explored by means of correlation
analysis.

However, we have to note that, if different models are used to simulate the same
phenomenon, e.g. weather, climate or the dispersion of radioactive material, they
probably will give similar responses. Potentially, model ensemble results may lead
to erroneous interpretations, and this is more probable if models are strongly depen-
dent. Models are certainly more or less dependent in the case of ensemble dispersion
forecasting , since they often share similar initial/boundary data, numerical methods,
parameterizations, and so on.

In this work, we use a statistical approach to analyze the independence be-
tween data model distributions and to select the models that have similar behavior.
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Substantially, we use the agglomerative clustering approach to obtain a dendrogram
that describes the relations between model data.

To compare models, we propose to use the entropy information approach. On the
one hand, we consider as “distance” the Kullback-Leibler (KL) divergence [4, 16]
. This divergence can be considered as a kind of distance between two probability
densities, because it is always nonnegative, and zero if and only if the two distribu-
tions are equal.

On the other hand, Negentropy can be considered as a non-Gaussianity measure
and, if we consider the residues between two distributions, we can estimate how
these two distributions are different. We use approximations of Negentropy provid-
ing a very good compromise between the properties of the two classic non-Gaussian
measures given by kurtosis and skewness [13].

In Sect. 2 the so called ‘Median Model’ approach to aggregate multiple predic-
tions is briefly recalled. In Sect. 3 we introduce KL and Negentropy divergence and
the agglomerative clustering. In Sect. 4 we show some results obtained from the
application of these two techniques to data from the ETEX-1 experiment [11].

2 The ‘Median Model’ Approach

This work concerns the analysis of multi-model ensemble results from the ENSEM-
BLE system [3, 9, 10, 18]. ENSEMBLE (ensemble.jrc.ec.europa.eu) is a web based
platform for the real-time exchange and ensemble treatment of operational atmo-
spheric dispersion model predictions produced by different models world-wide.
This project now aggregates the expertise of more than 25 research groups (at-
mospheric modelers, decision makers and technical advisors) and the results of
almost 40 models. It is essentially based on the graphical representation and sta-
tistical treatment of multi-model dispersion and deposition forecast of radioactive
and non-radioactive material in the atmosphere.

A series of activities, supported by the European Commission, IAEA (Interna-
tional Atomic Energy Agency) and WMO (World Meteorological Organization),
underlined the importance to assess the reliability of model results, prior to their use
as support to decision making. This was the aim of experimental campaigns, such
as ATMES [14], ANATEX [6], CAPTEX [7] and the first and second European
tracer experiments (ETEX-1 and ETEX-2) [11], as well as model inter-comparison
exercises like RTMOD [2, 12].

The ETEX databases have been used in many inter-comparison studies. In Ta-
ble 1 we show some results of the ENSEMBLE inter-comparison exercise applied
to the ETEX data. The statistical treatment of multi-model ensemble results were
based on the so-called ‘Median Model’, defined as the median value of all model re-
sults for each spatio-temporal location. Galmarini et al. [9, 10] already noted that the
Median Model turned out to be superior to any single model in reproducing the mea-
sured cloud of the ETEX-1 experiment. Table 1 shows the root mean square error,
correlation coefficient, FA2, FA5 and FOEX indexes of each model. FA2 and FA5
give the percentage of model results within a factor of 2 and 5, respectively, of the
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Table 1 Root mean square error (RMSE), correlation coefficient (CC) and percentage of cou-
ple measured-modeled data within a factor of 2 (FA2) and 5 (FA5). The last column (FOEX)
gives the percentage of over-prediction (> 0) or under-predictions (< 0). In the second last
row, median model results, averaged over models from m01 to m16 are shown. In the last
row, the median model results averaged over all models are shown

RMSE CC FA2 FA5 FOEX

m01 4.76 0.17 14.25 37.65 77
m02 0.71 0.30 22.00 45.91 61
m03 6.04 0.22 19.13 42.04 55
m04 7.4e8 0.17 0.00 0.00 100
m05 2.05 0.27 13.02 32.72 71
m06 7.56 0.17 22.91 47.37 2
m07 0.93 0.26 19.98 42.91 36
m08 0.72 0.23 8.11 18.08 -42
m09 2.19 0.17 16.47 37.47 11
m10 1.81 0.41 15.11 35.32 17
m11 2.88 0.27 15.90 37.76 14
m12 2.27 0.26 21.00 42.43 34
m13 3.19 0.08 21.94 45.63 50
m14 3.06 0.13 12.34 28.35 56
m15 3.76 0.05 15.89 34.65 11
m16 8.53 0.08 21.97 44.39 36
m17 1.31 0.32 10.24 23.01 0
m18 2.89 0.20 17.61 37.82 -4
m19 1.47 0.27 21.81 46.12 76
m20 0.45 0.08 20.24 46.64 -8
m21 5.32 0.22 18.90 43.00 45
m22 1.79 0.24 27.96 54.76 21
m23 0.53 0.24 11.33 26.32 -28
m24 2.22 0.20 21.67 47.59 44
m25 3.27 0.24 22.93 46.64 50
m26 1.20 0.08 10.82 27.09 -7
MM 1-16 1.30 0.29 24.14 48.38 15
MM 1-26 1.15 0.30 26.43 50.99 13

corresponding measured value, while FOEX is the percentage of modeled con-
centration values that overestimate (positive) or underestimate (negative) the cor-
responding measurement.

Labels from m01 to m16 refer to the results from the sixteen models already
reported in [9, 10]; from that time, several other models have been added to the
ENSEMBLE system (labeled m17-m26 in Table 1). Table 1 also shows the values of
statistical indexes for the Median Model, both using only models from m01 to m16
(label ‘MM 1-16’), and all models from m01 to m26 (label ‘MM 1-26’). Notably, the
statistical performance of the Median Model outperforms that of any single model
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Fig. 1 RMSE errors of ‘median models’. The kth median model results were calculated using
data from {ri}i=1,...,k; ri denotes the models with the ith highest RMSE

in most cases; also, a noteworthy result is the additional improvement of the Median
Model performance when all twenty-six models are included in the statistics.

However, we can look at the same data from a different perspective: sort mod-
els in descending order using the root mean square error as ordering criteria, and
denote by {ri}i=1,...,26 the permuted labels, so that r1 indicates the model with the
highest RMSE, r2 the second highest, and so on. The median value can be recalcu-
lated at each spatio-temporal location using data from the first k models, i.e. from
{r j} j=1,...,k, with k∈ {1,2, . . . ,26}. Of course there are twenty-six ‘median models’,
now, depending on how many models are included in the statistics. Figure 1 shows
the root mean square errors of these median models. As expected, the root mean
square error decreases as the number of models included in the statistics increases;
there is a drastic reduction after a few models, followed by a more slowly decreasing
trend. This means that better predictive capabilities are obtained at the expense of a
greater complexity (measured by the number of models), but just a few models are
needed for a drastic reduction of the ensemble root mean square error.

This work is motivated by this consideration: select the ‘best’ subset of models
without excessively sacrificing performance. In order to do that, we explored the
possibility to select a subset, based on Negentropic or Kullback-Leibler divergence
measures. These measures are well known information-theoretic criteria for measur-
ing statistical independence and are widely used in statistics and signal processing.
The idea behind the use of these criteria is based on the possibility to select a sub-
set of model data that are really independent, thus avoiding wasteful procedures in
collecting data from a large number of models.
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3 Negentropy-Based Hierarchical Agglomeration

3.1 Kullback-Leibler Divergence

The KL divergence is defined between two discrete n-dimensional probability den-
sity functions p = [pi . . . pn] and q = [q, . . .qn] as

KL(p||q) =
n

∑
i=1

pi log

(
pi

qi

)
. (1)

This is known as the relative entropy. It satisfies the Gibbs’ inequality

KL(p||q) ≥ 0 , (2)

where equality holds only if p≡q. In general KL(p||q) �= KL(q||p). In our experi-
ments we use the symmetric version [4] that can be defined as

KL =
KL(p||q)+ KL(q||p)

2
. (3)

The relative entropy is important in pattern recognition as well in information the-
ory. It is also used in Independent Component Analysis to estimate the independence
between distributions [13].

3.2 Negentropy Information

The definition of Negentropy JN is given by

JN(x) = H(xGauss)−H(x) , (4)

where xGauss is a Gaussian random vector of the same covariance matrix as x and
H(·) is the differential entropy. Negentropy can also be interpreted as a measure
of non-Gaussianity [13]. The classical method to approximate Negentropy relies
on using higher-cumulants, through polynomial density expansion. However, such
cumulant-based methods sometimes provide a rather poor approximation. A special
approximation is obtained if one uses two functions G1 and G2, which are chosen so
that G1 is odd and G2 is even. Such a system of two functions can measure the two
most important features of non-Gaussian 1-D distributions. The odd function mea-
sures the asymmetry, and the even function measures the dimension of bimodality
vs. peak at zero, closely related to sub- vs. super-gaussianity. Then the Negentropy
approximation of equation (4) is:

JN(x) ∝ k1E{G1(x)}2 + k2(E{G2(x)}−E{G2(υ)})2 , (5)

where υ is a Gaussian variable of zero mean and unit variance (i.e. standardized),
the variable x is assumed to have also zero mean and unit variance and k1 and k2 are
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positive constants. We note that choosing the functions Gi that do not grow too fast,
one obtains more robust estimators.

In this way approximations of Negentropy that give a very good compromise
between the properties of the two classic non-Gaussianity measures given by kur-
tosis and skewness can be obtained [1, 5, 13]. They are conceptually simple, fast to
compute, yet have appealing statistical properties, especially robustness.

3.3 Agglomerative Approach

We remark that our aim is to agglomerate by an unsupervised method the distribu-
tions obtained from the different models of the ensemble. Substantially the aim is
to build a hierarchical tree (dendrogram) that permits to cluster models that have
similar behavior. To obtain the dendrogram we calculate the dissimilarity matrix
between the distributions of the models by using the Negentropy or the Kullback-
Leibler divergence . The densities of the distributions are calculated with a sim-
ple non-parametric method. In particular, in our experiments we used a histogram
approach.

Using this information we apply the agglomerative hierarchical clustering ap-
proach to obtain the dendrogram. In this case we use complete linkage or furthest
neighbor

d(r,s) = max(J(Xr,Xs)) , (6)

where Xr and Xs are two distributions and J(·, ·) is one of the two entropy
information.

4 Experimental Results

We apply this approach to the analysis of multi-model ensemble results. In [10],
Galmarini et al. already showed how to exploit multi-model ensemble results to im-
prove the forecast; the analysis of model results showed that while the single models
produced a wide spectrum of time evolution of the concentration, the Median Model,
on the contrary, provided a more accurate reproduction of the concentration trend
and estimate of the cloud persistence at sampling locations.

In this work we show how the Negentropic or KL-based approaches allow to
derive results that are comparable with the Median Model ones.

These approaches discriminate between data that are less dependent (in the sta-
tistical sense), so that ‘redundant’ information can be more easily discarded and
equivalent performance can be achieved with considerably fewer models.

The ensemble analyzed in this work is an extended version of that originally
presented in [10]. To summarize, we are looking at 26 simulations [19] of the
ETEX-1 experiment [11]. The ETEX-1 experiment concerned the release of pseudo-
radioactive material on 23 October 1994 at 16:00 UTC from Monterfil, southeast of
Rennes (France). Briefly, a steady westerly flow of unstable air masses was present
over central Europe. Such conditions persisted for the 90 h that followed the release
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Fig. 2 ETEX-1 observations

with frequent precipitation events over the advection area and a slow movement to-
ward the North Sea region. In Fig. 2 we show the integrated concentration after 78
hours from release.

Several independent groups worldwide tried to forecast these observations. Each
simulation, and therefore each ensemble member, is produced with different atmo-
spheric dispersion models and is based on weather fields generated by (most of the
time) different Global Circulation Models (GCM). All the simulations relate to the
same release conditions. For details on the groups involved in the exercise and the
model characteristics, refer to [10] and [19].

In order to test the usefulness of these two information-theoretic approaches,
we analyze two kind of dataset: the first dataset is made by the integrated surface
concentrations from 26 models; the second dataset is made by the instantaneous
surface concentrations from the same models, which are available every three hours
up to three days from the start of release. The dendrogram was calculated for both
dataset.

The dendrogram obtained by using the Negentropy information on the integrated
concentrations after 78 hours is plotted in Fig. 3. We mark that the information
related to models on the abscissa and the information related to model similarities
obtained with the Negentropy on the ordinate. In Fig. 4 we plot the dendrogram
obtained by using the KL divergence.

We observe that different clusters are obtained. In fact, in the Negentropy based
dendrogram we can observe four mainly independent agglomerations (visualized by
using different colors). These clusters are partially present in the KL dendrogram,
though in this dendrogram we obtain, apparently, more than four agglomerations.
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Fig. 4 Details of the dendrogram obtained by using the KL divergence

We can identify data that have similar behavior by analyzing the different clus-
ters. For example, in Fig. 5 we show the data distributions in one of the clusters
(blue cluster in the Negentropy dendrogram). The visualized models are m14, m21,
m01, m15, m06 and m24, respectively.

In Fig. 6 we show the distributions in the red cluster of the Negentropy dendro-
gram. In this case the models are m09, m11, m13, and m16. We can stress that this
cluster contains models that have a comparable distribution.
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a) b)

c) d)

e) f)

Fig. 5 Distributions after 78 hours of the models m14 (a), m21 (b), m01 (c), m15 (d), m06
(e), and m24 (f)

Moreover, models m02, m23 and m08 (Fig. 7) are far from the other clusters.
They have similar distributions but they are more diffusive than the others (see
Fig. 7). We, however, noticed that the same three models are agglomerated together
in the KL dendrogram but they belong to another extended cluster.

We also noticed from the KL dendrogram that some models probably are erro-
neously assigned to some agglomerations. For example, model m16 is associated
together with the model m25, but we can observe that its distribution is closer to
that of model m13 than m25. In fact, in the Negentropy based dendrogram models
m13 and m16 are agglomerated. Moreover model m13 in the KL dendrogram is ag-
glomerated with model m06, but, as we can see in Figs. 8c and 8d, they have a rather
different distribution. In Fig. 8 we plot the distributions of all these models.

In order to identify the group of models that more appropriately describe ob-
servations, we re-apply the clustering approaches also including the distribution of
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a) b)

c) d)

Fig. 6 Distributions after 78 hours of the models m09 (a), m11 (b), m13 (c), and m16 (d)

a) b)

c)

Fig. 7 Distributions after 78 hours of the models m02 (a), m23 (b), and m08 (c)
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a) b)

c) d)

Fig. 8 Distributions after 78 hours of the models m16 (a), m25 (b), m13 (c), and m06 (d)

observed values. This distribution is named m00. In Fig. 9 we plot the two dendro-
grams. We note that in the Negentropy dendrogram the model m00 is agglomerated
in the blue cluster, together with models m01 and m15. Instead, in the KL dendro-
gram it is associated only with model m14.

We also used Negentropy and KL divergence to analyze instantaneous concen-
trations. The interest in this kind of analysis is related to the possibility to assess the
effectiveness of this clustering approach in reproducing the results already outlined
in [9, 10], but using a fewer number of models.

In Fig. 10 we show the dendrograms applied to instantaneous concentrations de-
rived by the Negentropy and KL algorithms. The different colors distinguish models
for a given threshold dissimilarity value: models indicated with the same color are
joined together at a dissimilarity value lower than the threshold. For both approaches
we cut the dendrograms by selecting six clusters.

The repartition into ‘independent’ clusters can be exploited to calculate some
useful statistics already used in the ENSEMBLE project, e.g., the APL (Above Per-
centile Level) index.

In [9], the APLp(x,y,t) is defined as the pth percentile from all models at a spe-
cific time t and spatial location (x,y). The APLp is defined as the two-dimensional
surface obtained for all (x,y) locations of the domain at time t. The ‘Median Model’
is nothing else than the APL50.

In [10] it was outlined that the Median Model effectively and systematically fil-
ters erroneous results from the ensemble distribution, so it is much more conserva-
tive to use the Median Model results than to rely on a single model, even if it is
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Fig. 9 Details of the dendrograms: (top) by using Negentropy ; (bottom) by using KL

deemed to be the ‘best’, especially for the organization of countermeasures and the
assessment of consequences in the case of accidental radionuclide release.

In [10] the APL index was calculated using all available models, but this index
can be straightforwardly estimated using a subset of models, too. In order to select
a subset of models, we calculated the centroid of each cluster and, for each cluster,
we selected the model closest (in the mean square sense) to the respective centroid.
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Fig. 10 Details of the dendrograms derived from the instantaneous concentrations: (top) by
using Negentropy ; (bottom) by using KL



Independent Data Model Selection for Ensemble Dispersion Forecasting 227

Fig. 11 APL50 from all models (adapted from [10]) (left column); observations (middle col-
umn); and APL50 from the six models selected from each cluster (right column) using Negen-
tropy as dissimilarity measure at T0+24 (uppermost row), T0+48 (middle row) and T0+60
(lowermost row)

Figures 11 and 12 compare the observed values with APL50 and APL75, both with
the results obtained from all models and from the six models selected by using the
Negentropy as dissimilarity measure. Results for the KL divergence do not differ
significantly; hence, they are omitted. In Figs. 11 and 12 T0+XX stands for the
prediction made XX hours after the starting of simulation.

First, it can be noted that the use of percentiles effectively filters erroneous results
(e.g. extremely diffusive models, as m08 and m23 in Fig. 7) and compares favorably
with observations. Figures 11 and 12 also show the APL surfaces at the same per-
centiles, calculated using six models, one from each cluster, as explained before.
Though there are some differences concerning the absolute values, the area spanned
by nonzero concentrations can be hardly distinguished, e.g., a small subset provide
results similar to those from the whole ensemble.

It must be outlined that, in the absence of measurements for model validation,
nobody can say a priori whether a model forecast will be reliable or not. In gen-
eral, ensemble results represent a conservative choice than those produced by single
models. In the case of a parsimonious choice of ‘representative models’, they must
be carefully selected; the Negentropic or KL-divergence based procedures seem to
preserve the main characteristics of ensemble results.

The empirical support to this statement is shown in Table 2, where the RMSE,
FA2, FA5 and FOEX indexes are reported for the six models closest to the respective
cluster centroid; as can be seen, the use of a single model is risky, since they usually
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Fig. 12 APL75 from all models (adapted from [10]) (left column); observations (middle col-
umn); and APL75 from the six models selected from each cluster (right column) using Negen-
tropy as dissimilarity measure at T0+24 (uppermost row), T0+48 (middle row) and T0+60
(lowermost row)

compare unfavorably with the Median Model (usually larger RMSE and lower FA2
and FA5 indexes), but the Median Model calculated over these six models (last row
in Table 2) performs as well as, or even better than, the Median Model calculated
over all 26 models (compare results from the last row with those from the Median
Models in Table 1).

Table 2 Root mean square error (RMSE), correlation coefficient (CC), FA2, FA5 and FOEX
indexes (look at Fig. 1 for their definition) for the six models from the six clusters identified
using the Negentropy as dissimilarity measure In the last row, the same indexes calculated
from the ‘median model’ results averaged over these six models (‘MM’ label)

RMSE CC FA2 FA5 FOEX

m05 2.05 0.27 13.02 32.72 71
m07 0.93 0.26 19.98 42.91 36
m10 1.81 0.41 15.11 35.32 17
m19 1.47 0.27 21.81 46.12 76
m24 2.22 0.20 21.67 47.59 44
m25 3.27 0.24 22.93 46.64 50
MM 1.10 0.31 22.91 48.53 33
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Table 3 Root mean square error (RMSE), correlation coefficient (CC), FA2, FA5 and FOEX
indexes (look at caption 1 for their definition) calculated from the median of models within
each cluster identified using the Negentropy as dissimilarity measure

RMSE CC FA2 FA5 FOEX

M1 1.81 0.41 15.11 35.32 17
M2 1.47 0.27 21.81 46.12 76
M3 0.69 0.31 17.51 37.06 2
M4 1.56 0.27 24.58 50.15 14
M5 1.46 0.21 24.62 50.78 -4
M6 3.27 0.24 22.93 46.64 50

We think that the complementary between these models is not a fortuitous event,
and this is highlighted by results in Table 3, where the same indexes are calcu-
lated from the median of models within each cluster. As can be seen, the average
over subset of dependent, i.e., correlated, models does not improve significantly the
performance of these ensembles (even though there are some clusters with a large
number of models).

5 Conclusions

In this work an approach to analyze the independence between different data model
describing atmospheric dispersion processes has been introduced.

The proposed approach is based on the Negentropy information or the Kullback-
Leibler divergence . By using this information a hierarchical agglomeration can be
obtained. The dendrogram describes the relations between data model distributions.
The approach is used to analyze the data obtained during the ETEX-1 exercise.

Since model performance can be a case-dependent property, in the absence of
measurements for model validation nobody can say a-priori whether a model fore-
cast will be reliable or not. In general the results obtained by [10] with the Median
Model seem to be more conservative than those produced by single models.

From the presented results, the Negentropic or KL-based approaches allow to
derive results that are comparable with the Median Model ones. These approaches
discriminate between data models that are less dependent (in the statistical sense),
so that ‘redundant’ information can be more easily discarded and equivalent perfor-
mance can be achieved with considerably fewer models.
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Integrating Liknon Feature Selection and
Committee Training

Erinija Pranckeviciene

Abstract. We address a practical application of feature selection and training a com-
mittee of classifiers in high dimensional classification problems. Embedded Liknon
feature selection method is integrated into the training of a committee of classifiers
via external K-fold crossvalidation with an inner loop. In problems, characterized
by nonlinear class separation, the Liknon-selected feature profiles, optimal for lin-
ear class separation, also identify the relevant feature subspaces. The capabilities of
the proposed approach are illustrated in a benchmark of NIPS2003 feature selection
challenge.

Keywords: feature selection, Liknon, committee of classifiers, multiple classifier
system, NIPS2003 feature selection challenge, high data dimensionality, feature fil-
tering, linear programming, support vector machine.

1 Introduction

Ensemble methods are used in many real life classification problems [18]. A great
variety of methods exist for building multiple classifier systems [14] . We focus on
the ensemble of classifiers trained on different subsets of features that are selected
in disjoint partitions of the data [23]. Such ensemble exploits a variety of the local
data representations [4, 5], reduces the error variance [26] and is useful in problems,
characterized by high data dimensionality and small sample size.

Integrated feature selection and ensemble training were applied in handwrit-
ten character recognition [8] and classification of biomedical data [19, 21]. An
ensemble, built by random subspace method [13] in feature space, was used for
accumulation of interpretable feature profiles of biomedical spectra [2]. Usually size
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of the optimal feature subset is not known. Finding the optimal subset of the original
features by the state-of-the-art methods, such as floating forward feature selection
(FFFS) [25], may be very time consuming in high dimensional data. Small sample
size constrains the size of a validation set. Without proper validation, feature se-
lection is prone to overfitting and selection bias [1]. Integration of feature selection
and committee training helps in overcoming the mentioned problems. We explore
Liknon feature selection for the training of the committee of classifiers. This ap-
proach appeared among the top-ranked methods in Agnostic Learning versus Prior
Knowledge (ALvsPK) challenge [12, 22].

Embedded feature selection method Liknon, also known as Linear Programming
Support Vector Machine [3, 7] , produces a small subset of features, optimal for
linear class separation. In Liknon, a number of features in the selected subset is
bounded by the number of the available training samples. In disjoint data partition
into K-folds, K linear discriminants are obtained by solving Liknon. Large weights
of the discriminant identify feature subsets of various sizes, in which a “linear part”
of the relevance of the features for class separation is signified. Such feature subsets
are used for training a committee of linear or nonlinear classifiers.

Our study is organized as follows. Section 2 explains the method, the data par-
titioning and the Liknon feature selection. A practical example is presented by
classifying an artificial “Banana” dataset. Section 3 overviews a benchmark of the
NIPS2003 feature selection (NIPS2003 FS) challenge [10, 11] in terms of the char-
acteristics of the feature subsets and the achieved classification performance of the
various feature selection methods. In Sect. 4, the performance of the investigated
method is analyzed by comparing it with the methods in the benchmark. Section 5
concludes the study.

2 Computational Paradigm and Parameters

Training a committee via feature selection includes several independent steps:
choice of a crossvalidation scheme, feature selection method and selection of a base
classifier.

1. Choice of a crossvalidation scheme. Training an ensemble requires some data
partitioning scheme. Relevant approaches include Bagging and Boosting. We use
an external K-fold crossvalidation, usually 5 or 10, with an inner loop. In the
outer loop the data is subdivided into Fold Training and Fold Test sets. Further,
in the inner loop, the Fold Training set is randomly partitioned M times into
two: a balanced Training set and the remaining Monitoring set. In every split, the
Training set is used for feature selection and the Monitoring set for assessment
of the selected features. Monitoring helps in alleviation of the overfitting and
feature selection bias. Further validation can be performed on the independent
Validation/Test sets, if such datasets are available. The proposed procedure is
presented in the top panel of Fig. 1.
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2. Feature selection. In Liknon feature selection, a sequence of linear discrimi-
nants of increasing complexity defines the feature subsets of the increasing size.
Such a sequence is obtained by solving Liknon NM times on the Training set
with the different, increasing NM values of a regularization parameter. The per-
formance of each discriminant in the sequence is assessed on the Monitoring
set. A balanced error rate (BER) [11] is the optimality criterion. BER is com-

puted from the confusion matrix

(
t p f p
f n tn

)
of a classifier in the following way:

BER = 1
2

(
f p

( f p+t p) + f n
( f n+tn)

)
, where t p is the true positive, f p is the false posi-

tive, f n is the false negative and tn is the true negative. In case of the unbalanced
classes, the BER accounts for a contribution to the classification error of the ma-
jority and the minority class equally. The optimal feature subset is determined by
the Liknon discriminant with minimum Monitoring BER. The determination of
the optimal Liknon discriminant is illustrated in the bottom panel of Fig. 1. The
feature subsets, determined by the optimal discriminants in M random splits, dif-
fer. The M optimal subsets identified in a single fold can be united into a profile
of features.

3. Choice of a base classifier. The type of a base classifier is determined either
by the problem-oriented knowledge, or selected from a pool of candidates. In
the latter case, several different classifiers are trained on the K feature profiles,
obtained in folds. The type of the classification rule, best suited to the data, is
selected by comparing the overall performances of the classifiers. The classifier
with the best performance across all the M Fold Training splits is selected as
base. The K individual base classifiers, trained in each fold, are combined into
the committee. We use a majority voting as a combination method.

The K folds, M splits, and testing of the NM values of the regularization pa-
rameter require the K×M×NM of Liknon optimizations. The classification of the
“Banana” dataset [6] will be used to illustrate the outlined approach in the subse-
quent sections. Details of the Liknon feature selection method are presented in the
following section.

2.1 Liknon-Based Feature Selection

Liknon, originally introduced by [7], was found useful in applications of profiling of
gene expression microarrays and face recognition, in which the data dimensionality
exceeds the available number of samples by orders of magnitude [3, 21]. Liknon
implements a linear rule for two-class classification:

ys = sign(xswT + w0) , (1)

where xs = [x1
s , . . . ,x

D
s ] are D-dimensional samples, y = [y1, . . . ,yN ] is a vector of

class labels, assuming values +1 for the positive class and−1 for the negative class,
s = 1, . . . ,N indicates the sample index, N = N1 +N2 is the total number of samples



236 E. Pranckeviciene

Fig. 1 Scheme of training the committee via feature selection. Top panel: Independent parts
of the procedure. The data is partitioned into K-folds, with an inner loop in each, in which M
random splits into the Training and Monitoring sets are performed. Optimal Liknon features
are selected in the splits. The M feature subsets are either combined into a single feature
profile, or used in an ensemble, which can be considered as a special type of the classifier.
A type of a base classifier is selected from several candidates. The base classifier has best
overall performance in M splits and K folds. Bottom panel: Selection of the optimal Liknon
discriminant in the single split
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in the two classes. The weight vector w is obtained by solving the optimization
problem:

(w∗, . . . ,ξ ∗1 , . . . ,ξ ∗N) =
argmin

(w,ξ1, . . . ,ξN)
(‖w‖1 +C ∑N

s=1 ξs
)

,

s.t.:

ys
(
xswT + w0

)
+ ξs ≥ 1 ,

ξs ≥ 0 ,

s = 1, . . . ,N . (2)

The ξs are slack variables. The ∗ denotes the optimal solution. The L1 norm is
‖w‖1 = ∑D

j=1 |wj|. The solution w∗ is sparse. Because of sparsity, it is used for
feature selection. Features that are important for classification are identified by large
weights w∗j of the vector w∗.

The solution w∗ is obtained by means of the Linear Programming (LP) optimiza-
tion method. Because of the properties of the LP method, the number of selected
features is bounded by the number of samples in the training set. If feature to sample
ratio is high, then the Liknon solution will have small number of non-zero weights
w∗j . Let x f

s1 and x f
s2 denote the feature f values for the data samples s1 and s2 of the

opposite classes. The f denotes the feature index, where f = [1, . . . ,D]. The param-
eter C controls the sparseness of the solution. It controls selection of the individual
features by bounding the absolute difference between the classes:

|a f |= |
N1

∑
s1=1

x f
s1−

N2

∑
s2=1

x f
s2| , |a f | >

1
C

. (3)

A group of the individual features, in which the difference (3) between the classes
is greater than 1

C , is included into the Liknon feature subset. Descending ordering

of the class differences (3) of the individual features |a f
max| ≥ . . . ≥ |a f

min| deter-
mines the order of the C computation. A sequence of the C values is computed
by setting the parameter equal to the inverse of every member of the sequence,

1
|a f

max|
≤ . . . ≤ 1

|a f
min|

as C = 1
|a f | , f = [1, . . . ,D]. This sequence of the C values is

used to compute a sequence of Liknon discriminants. In case of a high data dimen-
sionality, the number of the C values has to be reduced, in order to avoid a com-
putational burden. The reduction is performed by sampling |a f | from the interval
[|a f

max|, |a f
min|]. The underlying idea is thoroughly explained in [24].

The difference a f represents the dot product of the feature values and the class
labels [21]. The absolute value of a f can be used for univariate feature filtering.
First, the features are ranked by the decreasing value of |a f |, and some percentage
of low-|a f |-value features is discarded. Liknon feature selection is performed on
the rest. In general, the ranking of the individual features by the absolute difference
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between the two classes (3) is different from the ranking by the distances between
the class means1.

2.2 Banana Example: Classification in Nonlinear Class
Separation

In the artificial, noise-augmented Banana dataset, the classes are nonlinearly sepa-
rated. The dimensionality of the dataset is D = 100, a number of samples in both
classes is N1 + N2 = 210 + 190. Features 29 and 30 separate the two classes non-
linearly. In the remaining 98 features, both classes are distributed normally N(0,1).
The distributions of the class data in features, containing structure and no struc-
ture, are presented in the right and left top panels of Fig. 2. The Validation set was
generated independently, by using the same “Banana” data model, implemented in
PRTools [6], and the same Matlab script as for generating the Training data. We per-
form Liknon feature/classification model selection in 5-fold crossvalidation (K = 5)
with a single (M = 1) random split in the inner loop. The number of the C values in
this example is NM = 8. Table 1 summarizes the sizes of the data partitions.

Table 1 Sizes of the data partitions in the Banana example

Fold Training Fold Test Training Monitoring Validation

152+168 38+42 76+76 76+92 1981+2019

The absolute values of the weights of the optimal discriminants w∗ selected in
each fold, identify the relevant features. They are shown as a heat map in the right
bottom panel of Fig. 2. The color-coded values of the discriminant weights are inter-
preted as the indicators of the feature importance. The ground truth features 29 and
30 have large weights in all folds. The classification performances of linear Fisher
and nonlinear NN3 classifiers trained using the optimal feature subsets in folds, are
presented in Table 2. The BERs attained in Fold Test and the independent Validation
sets are presented graphically in the left bottom panel of Fig. 2. Overall, the classi-
fication performance of the NN3 rule is superior in this example. NN3 achieved the
best performance in Fold 3, in which the smallest and cleanest feature subset was
identified.

In the Banana example the Liknon-identified feature subsets include the ground
truth features, adequately representing a character of class separation in various
“projections” of feature and sample spaces. The classification performances of the
different classifiers are constrained by a capability of the classifiers to handle a
complexity of the classification problem. Liknon generates the multivariate feature

1 For example, percentages of disagreeing ranks of the features, ordered by |a f |, and by
the difference between the means, of the NIPS2003 FS training datasets are: ARCENE -
66.90%; DEXTER - 24.61%; DOROTHEA - 59.48%; GISETTE - 3.28%; MADELON -
5.20%.
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Fig. 2 Feature/classification model selection in Banana example. The top panel shows the
class distributions in relevant and noisy features. Liknon feature profiles, identified in folds,
are presented in the bottom right panel. The performances of the individual Fisher and NN3
classifiers, trained on the Liknon feature profiles in folds, are shown in the bottom left panel

Table 2 Fold Test BER of Fisher and NN3 classifiers in the Banana example

Fold 1 2 3 4 5

NN3 0.0521 0.0625 0.0104 0.0208 0.0313
Fisher 0.1354 0.1250 0.1354 0.0938 0.0938

subsets, optimal for linear separation. If the classes are nonlinearly separated, then
the Liknon discriminant defines the linear boundary with some margin, outside of
which classes are linearly separated. Liknon features account for that “linear part”
of the class separation. By comparing the performances of the nonlinear versus the
linear classifier, trained using the selected feature subsets, we gain an insight into
the character of the class separation. The small balanced error rate and an agreement
between the values of the BER, attained on Fold Test and Validation sets, point to
the classifier, which suits the classification problem better. Performance of the NN3
committee, trained on Liknon feature profiles in more complex cases of class sepa-
ration, is investigated further by using the datasets of the benchmark of NIPS2003
FS challenge.
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3 The Benchmark of NIPS2003 Feature Selection Challenge

The benchmark of NIPS2003 feature selection challenge is a platform for testing
feature selection methods. The datasets of the NIPS2003 FS benchmark represent
two class high-dimensional classification problems. The original data is augmented
with probes - the fake features [10, 11]. Ground truth about the feature identity
(useful or probe) enables an assessment of the feature selection method. In the
benchmark the methods are assessed on-line, by submitting the labels of the Test
set, assigned by the classifier, and the list of features to the benchmark website [17].
Three complex, nonlinear datasets were used in our study: ARCENE - mass spectra
data, GISETTE - handwritten digit recognition data, and MADELON - the artifi-
cially generated data. The dimensionality, the sizes of the data sets, percentage of
probes and a number of feature selection methods, which performed feature selec-
tion in the benchmark to date, are presented in Table 3.

Table 3 Characteristics of the NIPS2003 FS benchmark datasets

Dataset ARCENE GISETTE MADELON

Dimensionality 10000 5000 500
Total probes% 30 50 96

Training 44+56 3000+3000 1000+1000
Validation 44+56 500+500 300+300
Test 310+390 3250+3250 900+900

Number of feature selection
methods in the benchmark
to date 440 241 320

3.1 Performance, Size and Purity of the Feature Subsets in the
Benchmark

Feature selection and training of a classifier are intrinsically combined. Different
rules may improve their classification performance with the different features. A
classifier trained on a probe-free feature subset of the optimal size is expected to
have improved performance. For the three datasets, distributions of the BER of the
benchmark methods with respect to the size and purity of the feature subsets, show
an association of the better classification performance with the purer feature sub-
sets. The size of a multivariate feature subset is measured by a percentage of the
total features, and the purity is a percentage of the useful (alternative to probes)
features in the feature subset. We summarize the observed trends2 in Figs. 3, 4 and
5. Continuous size and purity of a feature subset, were mapped into the categories,
representing the intervals of a fixed percentage as < 10%, 10%−20%, and so on, till
100%. The Test BER was mapped into the performance categories. The cut-points

2 The exploratory analysis was carried out by SPSS(v.16) package.
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of the categories were set equal to the 25%, 50% and 75% percentiles, ensuring the
approximately equal number of cases in each category. The top panels of the Figs. 3,
4 and 5 show how the benchmark methods are distributed with respect to the size
and purity of the feature subsets. The performance categories, defined by the at-
tained Test BER values, are indicated by different colors. The names of the methods
are displayed in an optimized way. The bottom panels represent the box-whisker
plots of the attained Test BER within the categories of the subset size, clustered by
the purity. The box plots summarize the characteristics of the Test BER. The black
line represents a median, the first and third quartiles bound the box, the whiskers in-
dicate the minimum and maximum values, which are not statistically outlying. The
outliers are denoted by circles and extremes are denoted by asterisks. The number
of cases in the category is shown in a text-box over each box-whisker plot.

In ARCENE, the quarter of the methods, achieving the best performance, at-
tained the Test BER below 0.22 and close to 0.11. A majority of those methods
selected/used the feature subsets of the sizes of up to 30%, in which more than 80%
were the useful features, see Fig. 3. The best attainable classification performance
associates with the purer subsets of the smaller size. The best method on ARCENE
dataset is New-Bayes-nn+v which is: “Bayesian neural network with two hidden
layers (20 and 8 units), applied to a set of features selected by examining the ARD
hyperparameters found in New-Bayes-lr-sel and New-Bayes-nn-sel. An ARD prior
was used here as well to allow some of the features to have more influence than oth-
ers. The model was fitted to both the training and validation data”[17]. The number
of features in this method is 100, all useful. The best performing methods used pure
subsets of the size of up to 20%.

In GISETTE, the half of the best performing methods attained the Test BER
below 0.0258, close to 0.007. The feature subsets of the better performing methods
had sizes from 10% to 40%, in which from 80% to 100% were the useful features
(see Fig. 4). The box-whisker plots of the Test BER in the size categories show a
trend towards the association of the purity of the feature subset with an improving
classification performance. However, best performance is attained in a group of 21
methods, using small subsets, containing only up to 60% of the useful features. This
group comprises recently developed methods, setting a new performance threshold
for the benchmark [11].

In MADELON, the half of the best methods attained the Test BER below 0.1156
and operated on the pure and small feature subsets, containing only 4% of the total
number of features (see Fig. 5). The best performance was achieved on the subsets
of the size of up to 4%, out of which more than 95% were useful features. Note that
MADELON dataset contains 96% of probes.

The observed benchmark results on the three datasets, except for several meth-
ods, exhibit a trend of association between the purity of the feature subsets and
improved classification performance. A considerable improvement can be gained
by combining a pure subset with an appropriate classification method.
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Fig. 3 ARCENE. Top panel: The purity and size of the feature subsets of the benchmark
methods in the different categories of the Test BER. Bottom panel: The Test BER in the
different categories of the feature subsets of the best quarter of the methods

4 NN3 Committee and Liknon Feature Profiles in the
Benchmark

In this section, we set the NN3 committee , trained on the Liknon feature pro-
files, against only those benchmark methods, which did not use Validation set for
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Fig. 4 GISETTE. Top panel: The purity and size of the feature subsets of the benchmark
methods in the different categories of the Test BER. Bottom panel: The Test BER in the
different categories of the feature subsets of the best half of the methods

training, since Validation set was not used for feature selection and training in our
study. Table 4 summarizes a number of the original challenge entries, their mean
and median Test BER, the Test BERs of NN3 baseline and NN3 committee , a per-
centage of features and useful features (size and purity) in the feature subsets, used
by the committee .
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Fig. 5 MADELON. Top-panel: The purity and size of the feature subsets of the benchmark
methods in the different categories of the Test BER. Bottom-panel: The Test BER in the
different categories of the feature subsets of the best half of the methods

The computational parameters of building the NN3 committee on Liknon feature
profiles are presented in Table 5. The committee comprises the K expert NN3 clas-
sifiers, trained on Liknon feature profiles. The decisions of the experts are combined
by voting. NN3, trained using all training samples on all useful features, provides
a baseline performance of the rule, without the feature selection. Normally, in real
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Table 4 Summary of the performance of the methods compared to NN3 committee

Dataset ARCENE GISETTE MADELON

Number of the original entries 180 94 108

Test BER

Mean 0.2543 0.065 0.212
Median 0.2209 0.0268 0.1542

NN3 baseline 0.1749 0.0258 0.0994
NN3 committee 0.1877 0.0292 0.1144

Size and purity

Features # 345 (3.45%) 357 (7.14%) 21 (4.20%)
Useful # 282 (81.74%) 354 (99.16%) 14 (66.67%)

Table 5 Data partitions and computational parameters for NN3 committee training

Dataset ARCENE GISETTE MADELON

Discarded features % 85 95 98

Training 30+30 150+150 300+300
Monitoring 5+15 2250+2250 500+500
Fold Test 9+11 600+600 200+200

M #splits 5 5 5
K #experts 5 5 5
NM # C values 8 8 8

life, such baseline can not be computed, because we do not have information about
the feature identity.

The NN3 committee belongs to the group of the best performing original
challenge methods. The Liknon feature profiles contain less than 10% of the to-
tal features and more than 65% of the useful features. Liknon-identified features are
optimal for linear class separation. The classes in ARCENE, GISETTE and MADE-
LON are separated in a complex, nonlinear way. In these difficult problems, after
the Liknon-based univariate filtering (discussed in Sect. 2.1) small and pure feature
subsets were identified. It is an encouraging result for possible applications of Li-
knon feature selection in the cases of nonlinear class separation. The positions of
the NN3 committee and baseline among the other, better performing original meth-
ods in the NIPS2003 FS challenge, are presented in Figs. 6, 7 and 8. For ARCENE
and GISETTE datasets, the improved classification performance is associated with
the larger subset sizes than those of Liknon-identified subsets. The limit for a size
of the Liknon feature subset is set by the initial filtering and a partitioning of the
data into K folds, determining the number of samples for training and monitoring.
Although the NN3 committee appeared in the group of the best performing meth-
ods, the NN3 rule might not be the most appropriate classifier for the types of the
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Fig. 6 ARCENE. The NN3 committee and baseline among the best performing original
methods of the NIPS2003 FS challenge. The two methods are indicated by the square marker

Fig. 7 GISETTE. The NN3 committee and baseline among the best performing original
methods of the NIPS2003 FS challenge.The two methods are indicated by the square marker

benchmark data. The Test BER of the NN3 baseline is outperformed by Bayesian
Neural Network and kernel methods.

The NN3 classifiers trained on the feature subsets selected in the disjoint partition
into K-folds, made a diverse committee . The performance of the committee is better
than the majority of the individual classifiers. The characteristic of the individual
classifiers for ARCENE and MADELON datasets are presented in Tables 6 and 7.

A variance of Fold Test BER and Validation BER arises due to the different train-
ing sets in folds and different feature profiles. Smaller values of the Validation and
Fold Test BERs may be interpreted as indicators of more relevant and purer feature



Integrating Liknon Feature Selection and Committee Training 247

Fig. 8 MADELON. The NN3 committee and baseline among the best performing original
methods of the NIPS2003 FS challenge.The two methods are indicated by the square marker

Table 6 ARCENE. Performance of the individual NN3 experts in folds and the committee

Fold Validation BER Test BER Fold Test BER features/probes

1 0.2597 0.2166 0.0556 103/20 (19.42%)
2 0.1599 0.2015 0.1667 99/14 (14.14%)
3 0.2484 0.2335 0.0 91/15 (16.48%)
4 0.3052 0.2214 0.1111 103/20 (19.42%)
5 0.2378 0.2650 0.1111 95/36 (37.89%)

Committee 0.1810 0.1877 - 345/63 (18.26%)

Table 7 MADELON. Performance of the individual NN3 experts in folds and the committee

Fold Validation BER Test BER Fold Test BER features/probes

1 0.2133 0.1911 0.1875 15/4 (26.67%)
2 0.1550 0.1406 0.1400 10/0 (0%)
3 0.2267 0.2139 0.1525 6/0 (0%)
4 0.1200 0.1089 0.1400 12/1 (8.33%)
5 0.1217 0.1156 0.1500 15/2 (13.33%)

Committee 0.1183 0.1144 - 21/7 (33.33%)

subsets (MADELON). One should be cautious when interpreting the estimates com-
puted from small samples (ARCENE) because of high variance of such estimates.
Several methodologies for a determination of “enough samples” for training [16]
and testing [9] were suggested in the specific applications.
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5 Conclusion

Our study practically addressed the integration of Liknon feature selection into the
committee training for high-dimensional classification problems. As a computational
paradigm for building the committee, we suggested K-fold external cross-validation
with the inner loop, in which the feature selection is performed. Generally, other fea-
ture selection methods can be used within this framework. In the present study we
focused on the embedded Liknon feature selection method, which finds the subset
optimal for linear class separation, that can be also used in the cases of nonlinear
class separation. We showed this in the controlled way by classifying the “Banana”
dataset. The most appropriate base classifier was selected by comparing several dif-
ferent classifiers trained on Liknon feature profiles in all folds. In the cases of the
complex nonlinear class separation, the performance of the NN3 committee trained
on Liknon feature profiles, compared favorably with the performance of the best part
of the original NIPS2003 FS challenge methods on three benchmark datasets.

In our study we have chosen a simple nonlinear classification rule as a base clas-
sifier. Indeed, a neural net or a support vector machine with nonlinear kernel could
constitute a committee . Such complex classifiers would involve an additional tuning
of the parameters, hence additional validation. We avoided more validation and used
a simple model. In feature selection, the performances of the individual experts can
be taken into account in assessing a purity (relevance) of the feature subset, provided
there are enough samples for training and testing. The benchmark results showed
the trend of the association between the improved classification performance and
the purity of the feature subsets.

Usually, in the assessment of the feature selection/classification method by its
performance, it is difficult to foresee whether the features are relevant or not, or if
the subset size is optimal or not, or if a method is capable of handling a complexity
of the data or not. Efforts are being made towards development of a methodology
[15] for choosing an appropriate classification rule, also in problems characterized
by a deficit of the training data [20].

We presented a brief overview of the performance of a variety of feature selection
methods in relation to the size and purity of the feature subsets. We believe that
a reader, interested in feature selection, gained some insights about the attainable
performances in the benchmark of the NIPS2003 FS challenge. The details of the
original challenge methods are very well explained in the book on feature selection
and extraction [10].
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Evaluating Hybrid Ensembles for Intelligent
Decision Support for Intensive Care

Pedro Gago and Manuel Filipe Santos

Abstract. The huge amount of data available in an Intensive Care Unit (ICU)
makes ICUs an attractive field for data analysis. However, effective decision support
systems operating in such an environment should not only be accurate but also as au-
tonomous as possible, being capable of maintaining good performance levels with-
out human intervention. Moreover, the complexity of an ICU setting is such that
available data only manages to cover a limited part of the feature space. Such char-
acteristics led us to investigate the development of ensemble update techniques ca-
pable of improving the discriminative power of the ensemble. Our chosen technique
is inspired by the Dynamic Weighted Majority algorithm, an algorithm initially de-
veloped for the concept drift problem. In this paper we will show that in the problem
we are addressing, simple weight updates do not improve results, whereas an ensem-
ble, where we allow not only weight updates, but also the creation and eliminations
of models, significantly increases classification performance.

Keywords: classifier ensemble, data dimensionality.

1 Introduction

Since the 1960’s computer applications whose purpose was that of supporting the
decision making process have been designed [26]. Even though the first computer
applications in business environments were intended to make easier operational ac-
tivities like order processing, billing or inventory control, the need arose for tools
that could ease the tasks related to decision support [1].
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In the medical area several expert systems were built and deployed [2, 11, 20].
However, the failure rate was high as the effort required to update the knowledge
base was excessive and the scope of the expert systems was very limited.

Researchers started shifting their attention to the automation of the knowledge
acquisition process by using methods from several areas of expertise (e.g. machine
learning, statistics). Knowledge Discovery from Databases (KDD) [5] is well suited
for this task. In fact, given that there is enough data, KDD techniques make knowl-
edge acquisition easier, thus simplifying the task of building decision support tools.
However, despite KDD being a semi-automatic process, the predictive models still
need to be re-evaluated on a regular basis to detect any loss of predictive accuracy.
In fact, model performance is known to degrade over time as the world does not
remain in a stationary state [9] (e.g. in the medical area new drugs and therapeutic
procedures are constantly being developed). Whenever performance drops below
acceptable values it is necessary to repeat the KDD process or, at the very least,
retrain the models using the latest data. Thus, an adaptive Decision Support System
(DSS) must include mechanisms to detect the degradation in performance and to act
accordingly in order to maintain the needed performance levels [18]. Moreover, it
is now well established that prediction accuracy can usually be improved by using
ensembles of prediction models instead of a single model [4, 12]. Despite ensemble
performance being usually better than that of a single model the quality of ensemble
predictions also degrades with the passing of time [9].

In this paper we present several experiments aiming at predicting the final out-
come for patients staying in an Intensive Care Unit (ICU). Our final goal is that of
building a DSS connected to the hospital’s computer network allowing for real-time
prediction and continuous performance assessment. The prediction is the result of
an ensemble of classifiers, composed of both neural networks and decision trees as
it has been shown that the different model types contribute to a lower number of
coincident failures, thus increasing the ensemble performance [31]. Whenever nec-
essary the system automatically alters the ensemble, either by changing the models
weights, by deleting poor performing models or by adding new models.

In Sect. 2 we present some previous work in this area that led to the develop-
ment of the INTCare System (that is described in Sect. 3). In Sect. 4 we present an
overview the overall problem we are trying to solve and also describe the data used
in the experiments presented in this paper. Section 5 contains a brief overview of re-
lated work. In Sect. 6 we describe the experimental setting and in Sect. 7 we present
the experimental results. Finally, Sect. 8 includes the discussion of the results and
in Sect. 9 we present conclusions and pointers to future work.

2 Previous Work

Artificial Intelligence techniques have been used in order to enhance Decision Mak-
ing Support Systems (DMSS). One can find examples of Artificial Neural Net-
works (ANN) and Genetic Algorithms [8] , Decision Trees (DT) [27], Fuzzy Logic
[16] and Data Mining (DM) [18] embedded in decision support systems. Likewise,
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agents are becoming commonplace as they provide a useful abstraction that facili-
tates systems conceptualization. An example of use of agents in the medical area is
the AMPLIA system [29]. In an ICU setting the Guardian system [13] monitors and
makes diagnoses of intensive-care patients. Another system, the Rihad ICU Program
[3] was used to predict death.

In our previous work, several DM models were applied to ICU data [22, 23, 24].
These studies used off-line learning, where all data was stored and then accessed
repeatedly by the DM algorithms. The clinical data was collected during the EU-
RICUS II research programme [19], which involved a massive study in 42 ICUs
from 9 countries during a period of 10 months, from 1998 to 1999. The database
included thousands of daily records related to bedside measurements of critically
ill patients, including features such as: the case mix - an information that remains
unchanged during the patient’s stay in the ICU (e.g. age or admission origin); the
intermediate outcomes - being triggered from four monitored biometrics (e.g. the
systolic blood pressure or urine output); and the patient’s state - based on daily or-
gan failure scores (e.g. SOFA index [30]) and the final outcome (death/no death).
Intermediate outcomes are represented by the number of Events and Critical Events
per day - the number of daily occurrences of values out of the established limits for
four physiologic variables that are monitored continuously. These four variables are
the Heart Rate, the Systolic Blood Pressure, the Oxygen Saturation and the Urine
Output. A group of clinical specialists determined the intervals considered normal
for each of these parameters [24]. This vast amount of information was modeled by:

• A Learning Classifier System to predict the length of stay (short or prolonged)
and the outcome (death/no death) of patients from the HGSA ICU, attaining
accuracy of 72% [23];

• A clustering framework to organ dysfunction diagnosis [22], where patients were
segmented into clusters (using a Self-Organizing Map) and then each cluster was
processed with the C.5 DT algorithm (the classification accuracies of the clusters
ranged from 74% to 98%); and

• An ANN approach [24], where easily acquired daily inputs (the intermediate
outcomes) were fed into Multilayer Perceptrons in order to predict the failure
of six organic systems (e.g. liver or respiratory systems), achieving the overall
accuracy of 70%.

The outputs of the organ failure prediction models are measured by the SOFA (Se-
quential Organ Failure Assessment) score, which provides values within the range
0, 1, 2 (normal function) and 3, 4 (failure). As for mortality assessment, the value
one indicates in-hospital death while zero represents no in-hospital death. Interme-
diate values can be read as probabilities of occurrence. The results obtained proved
the usefulness of the DM approach but, at the same time, suggested the need for
more work in order to gain:

• real time data collection from bed-side monitors;
• real time outcome and intermediate outcomes prediction;
• scenario evaluation;
• increased predictive accuracy over time;
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• explanation capabilities;
• simulation of therapeutic procedures consequences;
• control of effectors (e.g. infusion pumps).

To achieve these objectives the INTCare project was started.

3 INTCare System

INTCare is an agent based system, composed by several semi-autonomous agents in
charge for the functionalities inherent to the system. Conceptually, it can be viewed
as set of four subsystems (Fig. 1): Data Entry, Knowledge Management, Inference
and Interface. Formally, the INTCare system is defined as a tuple Ξ = 〈CINTCare ,
∆INTCare, app, acde, adm, ap f , ami, adr, apd , asc, aint , aic〉, where:

- CINTCare is the context and corresponds to a logical theory, represented as a triple
〈Lg,Ax,∆〉, where Lg stands for an extension to the language of programming
logic, Ax is a set of axioms over Lg, and ∆ is a set of inference rules;

- ∆INTCare is the set of bridge rules defining the interaction among the systems’
components (the agents);

- app, . . . ,aic are the system agents.

This formalism corresponds to a logical framework, suitable to specify agent-
oriented systems based on the notion of context logic, and some properties of object-
oriented design such abstraction, encapsulation, modularity and hierarchy [21]. In
this work, the agents are represented as logical theories with a specific context (dif-
ferent agents may involve different contexts). Several agents (i.e. contexts) can be
put together and be able to reason about the behavior of the entire system as a (het-
erogeneous) logical theory. A set of special rules called bridge-rules is applied to
provide the interface among agents and systems of agents. These rules describe the
agents’ reactions to events occurring in their environment. The agents include a set
of event types, and a set of time points. Next, the overall system is described making
use of this formalism, explaining it in some detail.

3.1 Description of the Agents

The INTCare agents follow the subordinated architecture [32]; they are social com-
putational entities, semi-autonomous, reactive, with internal-state, and pre-defined
goals incited by the system creators, whose activity contributes to the goal of the
overall system. In a technical perspective the INTCare agents are high granularity
objects aggregating a great number of capacities.

The social model is static, pre-defined, and incorporated into the system by the
developers. The intelligent behavior, the accuracy, the robustness, the flexibility and
efficiency of this kind of system emerges from the agents and their interaction. The
overall behavior is the combined result of its purpose and its interaction with the
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environment [28]. All agent interactions are defined by using events. The next lines
describe the agents’ functionalities and the associated events:

• Clinical Data Entry (acde) agent is responsible for the capture of clinical data
from the medical and nursing staff;

• Pre-Processing (app) agent is responsible for the correct linking of all the values
in order to create a valid (even if limited in scope) medical record for the patient.
It proceeds with the copy of the values entered by the medical and nursing staff
(or recorded via the bedside monitors), examines them and derives new fields, if
necessary (such as Critical Events);

• Data Mining (adm) agent belongs to the Knowledge Management sub-system
and is responsible for the retrieval of the relevant data (readdw) in order to make
possible the application of AI algorithms to train new models (train), whenever
requested by the Performance (ap f ) agent, storing them into the Knowledge Base
(updatemodels). After training, the models are stored in the Knowledge Base;

• The Performance (ap f ) agent pro actively scans the the Data Warehouse for
updates that allow statistics collection (e.g. discharge data that may or may not
confirm a prediction made) so that it is able to calculate a set of assessment
parameters maintained in the Performance Database. The evaluation metrics in-
clude classification accuracy, sensitivity and specificity values [24]. These statis-
tics are updated every time new relevant information is collected. Whenever the
collected statistics show that the performance has fallen bellow a predefined
threshold (a configuration parameter), some action must be taken by the data min-
ing agent in order to try to improve the performance of the system (messagedm);

• Model Initialization (ami) agent populates the Knowledge Base with the models
obtained from off-line training. This agent is currently used only when first start-
ing INTCare. This agent may be asked to perform a conversion before loading
the models into the Knowledge Base;

• Data Retrieval (adr) agent is an information agent, whose only objective is that of
retrieving, from the Data Warehouse, the information requested by the interface
agent (getdata) and returning it (senddata);

• Prediction (apd) agent answers user questions by applying the adequate models
(getmodels, predict) contained in the Knowledge Base to the data stored in the
Data Warehouse. Next, results are sent back to the calling agent (senddata) and if
the calling agent is the interface agent, the prediction made is recorded into the
Data Warehouse (updatedw);

• Scenario Evaluation (asc) agent makes it possible to the doctor to create and eval-
uate what-if scenarios. After receiving the data from the interface agent, the sce-
nario evaluation agent requests a forecast from the prediction agent (reprediction),
the scenario is then stored in the Scenarios Database (storescenario) and the result
is sent back to the interface agent (sendresult);

• Interface (aint) agent allows (web-based) interaction with the system by provid-
ing an easy way for doctors to request prognostics and evaluate scenarios. When-
ever new data is needed, this agent messages the data retrieval agent (messagedr).
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Fig. 1 INTCare’s architecture

4 Problem Description

As described earlier we are currently developing an intelligent Decision Support
System called INTCare [6]. Operating in an ICU setting, INTCare uses data avail-
able in the first 24 hours, after ICU admission in order to predict the patient’s out-
come (the patient status at the time of hospital discharge: dead or alive) and also
to predict organ failure for six organ or systems (cardiovascular, respiratory, hep-
atic, renal, central nervous system and hematologic). Initially, the models included
in INTCare were obtained via batch off-line training even though the INTCare’s
architecture allows for integration with the Hospital’s Electronic Patient Records.
Such integration will allow INTCare to be semi-autonomous as it will be possible
to automatically collect data both for making predictions and to the evaluation of
its predictive performance. This autonomous behavior demands the inclusion of ad-
justment mechanisms into INTCare, making it capable of maintaining an acceptable
performance as time passes.

In this paper we present the results of several experiments on the use of this
information to build a predictive model that maintains an interesting predictive per-
formance in the ICU. In particular, we are going to address the problem of creat-
ing a system capable of predicting hospital mortality for ICU patients using data
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collected during the first 24 hours after ICU admission. Moreover, such a system
must be able to function without human intervention, i.e. it must automatically ad-
just to new data. We are interested in comparing the performance of a static en-
semble system with that of several dynamic ensemble systems. It is our belief that
the dynamic systems better suit the problem at hand as the data available is never
enough to cover the diversity of patients and the related clinical phenomena that
occur in an ICU and thus the training set does not contain enough examples to com-
pletely describe the concept being investigated.

4.1 Data Description

The available data is composed of data collected during the first day of ICU stay
for approximately 13000 patients. Outcome information was added to each record,
indicating the status of the patient at the time of hospital discharge (dead or alive).

Four variables contain the information that remains unchanged during the pa-
tient’s stay, including the site where the patient came from, the type of admission,
the patient’s age and the Simplified Acute Physiology Score (SAPS II) score [15]
(SAPS II is a severity of disease classification system). The remaining variables
(except for the outcome) contain values collected during the patient’s first day in
the ICU. The remaining attributes were derived from the information available on
the intermediate outcomes, which are defined from four monitored characteristics:
the systolic blood pressure, the heart rate, the oxygen saturation and the urine out-
put (UR). The information regarding these monitored biometrics was condensed
into 12 variables (3 for each characteristic) indicating the existence and duration of
what was defined as relevant clinical events. Information regarding the definition of
events and critical events may be found in [25]. Finally, the last attribute denotes the
patient’s final outcome (status at the time of hospital discharge).

5 Related Work

The weight update procedure we use to supervise the ensemble is inspired by both
the Weighted Majority algorithm [17] and the Dynamic Weighted Majority (DWM)
[10]. Even though DWM is intended to track concept drift we found the general idea
appealing and decided to investigate the use of a similar algorithm in a more stable
task of predicting the outcome of patients in a ICU.

Even if inspired by DWM, our implementation is different in several details. One
of the most relevant is that we do not use incremental learning algorithms. After
being included in our ensemble the models (or experts) are not modified in any
way, only their weights are changed as determined by the algorithm. Unlike DWM,
the creation and elimination of experts is not directly dependent on any individual
prediction made. Rather it is the result of the overall prediction results over the entire
batch of records being processed.



258 P. Gago and M.F. Santos

6 Experimental Setting

Two different ensemble evolution strategies were evaluated and compared to a “tra-
ditional” ensemble (Configuration A). In the first one (Configuration B) the model
weights are changed after the evaluation of each batch of records. The weights up-
date procedure is also included in the second configuration (Configuration C). Also,
in this configuration new models are created using the records in each batch and
the poor performing models (those with negative weights) are removed from the
ensemble.

In order to investigate the effect of evaluating batches of records of different sizes
we tested batches of 10, 20, 50, 100 and 200 records. The rationale behind this is
that bigger batches may reduce the responsiveness of the system and thus lower its
tendency for over training.

The same initial ensemble is used for each configuration. This ensemble was cre-
ated using a process similar to the Random Subspace Method [7]. In our approach
all the available training records ( 1

3 of the records, random selection) are used when
creating a new model but each attribute has only a 50% chance of being selected.
Our initial ensemble is composed of 50 models, 25 of which are neural networks ,
with the other 25 being decision trees . The algorithms used for model creation were
those present in the Weka tool [33]. We used j48 for decision trees and the multi-
layer perceptron for neural networks . Both algorithms were run with the default
parameter values. In our base ensemble, all the models are assigned the same initial
weight ( 1

50 ).
In configurations B and C, in order to evaluate the effects of allowing changes

in the model’s weights we decided to adjust the weights after each prediction. The
models that had made a correct prediction had their weights increased. Those who
failed had their weights reduced. We started by doing this after each prediction, but
then investigated whether evaluating batches of records before making the weights
updates would lead to better results. We tested updating the weights after each batch
of 10, 20, 50, 100 and 200 records. After each batch of predictions (of size N) we
had the number of correct predictions (C). First we calculated the fraction of the
increment for each weight:

P =
C− N

2
N
2

, (1)

where P is positive if the model is correct in more than half of the records in the
batch being considered. It is zero for those cases where exactly half of the answers
are correct and it is negative for the remaining cases. If all the predictions are correct,
the value for P is 1, if all are wrong the value is -1. The weight update is then
the result of Eq. (2), where wi stands for the weight of model i (by dividing P by

1
10∗number o f models we assure that the weight changes are not too abrupt (the initial

weights are set to 1
number o f models )).

wi = wi + P
1

10 ∗ number o f models
. (2)
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In configuration C new models were added to the ensemble after the evaluation
of each batch of records. Two new models are created: one decision tree and one
neural network. Both are trained on that batch of records using the same method
described above for the initial training of the ensemble. The correspondent weight
is equal to the average of the weights of the other models in the ensemble. Next, we
present the algorithm (as in DWM, we used the term “expert” instead of “model”).
The function Increment computes the value of the increment as described in Eq. (1)
and U pdateWeights updates the experts weights as indicated in Eq. (2). DeleteNeg
removes from the ensemble all experts with negative weights. Moreover, Create-
DecTree creates a decision tree and Create-NNetwork creates a neural network.
Both functions use the records from the last evaluated batch. Finally, the function
Normalize normalizes the experts’ weights (so that the sum of the weights is 1). The
system outputs its prediction (answer) for the record under evaluation.

Weight Updates Algorithm

{x,y} : training data
{e,w}1

m : set of experts and their weights
p : number of records in each batch
n : total number of records
δi : fraction of weight increment for expert i

num = 0
for i = 1,...,n

answer← 0
for j = 1, ..., m

predicted← Classify(e j,xi )
answer← answer + predicted * wj

if (predicted = yi) num j← num j + 1; end if
end for
output answer
if (i mod p = 0)

δ ← Increment(num, p)
w← UpdateWeights(w,δ )
{e,w} ← DeleteNeg({e,w})
m← m + 1
em← Create-DecTree(precords)
wm← w̄
m← m + 1
em← Create-NNetwork(precords)
wm← w̄
w← Normalize(w)

end if
end for

To evaluate the results we used the average of the values of the area under the
Receiver Operating Characteristic curve (AUC ROC) obtained after 30 runs of each
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experiment. The ROC curves are often used in the medical area to evaluate com-
putational models for decision support, diagnosis and prognosis [14, 34]. A model
presenting an AUC of 1 has perfect discriminative power (perfect predictive ability)
while a value of 0.5 corresponds to random guessing.

7 Results

We divided the available data into two mutually exclusive datasets. Models were
created using the first dataset. Those models were then evaluated using the sec-
ond dataset. Several experiments were conducted with different parameter settings
with regard to the frequency of weights updates and the possibility of creating new
models.

We started by evaluating the performance of the static ensemble (no changes are
made to the ensemble during the evaluation of the records). With no changes in the
ensemble composition the AUC ROC was 78.80%±0.93 %.

Next we tested configurations B and C by investigating the effect of using dif-
ferent intervals for evaluation before the weights were changed. Different configu-
rations include weight changes after every record was evaluated or after batches of
10, 20, 50, 100 or 200 records. In Table 1 we present the AUC under the ROC curve
for each of the configurations considered, allowing us to see the ensembles with bet-
ter discrimination capabilities (better able to distinguish between the patients with
outcome 0 or 1).

Table 1 Results for the ensemble evolution (% of AUC ROC). B - weight updates. C - weight
updates and model creation and elimination

Config. B C

1 78.79±0.93 –
10 78.72±0.93 85.05±0.07
20 78.61±0.93 84.83±0.10
50 78.44±0.92 84.58±0.15
100 78.03±0.92 84.41±0.21
200 77.45±0.91 82.94±0.33

These results seem to indicate that it is better to update the models weights im-
mediately after the evaluation of each record. In order to further clarify this point
we decided to evaluate the ROCs in a segmented manner. Considering batches of
200 records and computing the AUC ROC for each of the batches we got the results
shown in Fig. 2. The graph shows an example of the evolution of the partial AUC
ROC values for one of the experiment runs.

We can clearly see that after the first weight update, the performance of the en-
semble using configuration C is significantly better than that of the static ensemble
(configuration A). However, even if the overall trend is positive, there are some
batches of records where the AUC ROC value drops. That may be explained by the
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Fig. 2 Evolution of AUC ROC values over time

variables we used and by the composition of the batches. Indeed, there are some
medical conditions that cannot be detected by analyzing the available variables (e.g.
a patient with head trauma often has normal values for the four characteristics in-
cluded in this work or a patient that rejects some therapeutic procedures due to his
religious beliefs). Batches with a higher number of such records are likely to lead
to lower AUC ROC values. The increase in discriminative power may be better per-
ceived in Fig. 3. Here we show the increase in AUC ROC after each batch of 200
records is processed.

Fig. 3 AUC ROC increase
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Fig. 4 AUC ROC variation with weights updated after 50 or after 200 records

It is clear that there is a real gain in using the evolution algorithm (configuration
C) as opposed to a merely static ensemble (configuration A). Indeed, after the first
two batches the increase in AUC ROC is always greater than 4% except for one
batch.

Finally, Fig. 4 shows the differences in performance for configuration C when
different batch sizes are considered. In order to allow a clear understanding we plot-
ted only those values for batches of 50 and batches of 200 records.

8 Discussion

Ensemble methods are known to improve results when compared to those from
single classifiers. Our tests show that allowing for dynamic adjustments ensemble
(both in terms of models’ weights and in terms of number of models) leads to overall
better discriminative power of our ensemble classifier. Moreover, the intervals at
which such changes are made seem to be an issue worthy of further study as different
values were obtained with different intervals. Finally, the issue of whether or not to
change the ensemble composition seems to point to a solution where the creation
and elimination of models is encouraged.

The size of the batches used is still an open issue as smaller batch sizes increase
the number of models in the ensemble and may prove impractical in a real setting.
Indeed, Fig. 4 seems to suggest that in the short term smaller batches are recom-
mended. However, if we examine more closely the right side of that figure (after
allowing the ensemble to evolve over several batches of records) it seems that the
performance of the second ensemble is converging to (if not surpassing) that of
the first ensemble. This suggests investigating update procedures with batches of
increasing size.
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9 Conclusion

Future decision supports systems must be capable of adapting to changes in their
environment [18, 28]. In the medical area this will allow for an easier integration
of these tools in everyday use as its reliability tends to increase. In this paper we
presented the results of a set of experiments in building the adaptive module of a de-
cision support system (INTCare). Considering the available data, both in the present
time and in the foreseeable future we tested dynamic hybrid ensemble architectures
allowing for unassisted operation while maintaining acceptable performance. We
concluded that for our problem one should allow for dynamic ensembles with the
addition of new models after each batch of records is examined and the elimination
from the ensemble of those models that have negative weights.

Future work includes extending the architecture to include organ failure predic-
tion. Other necessary developments include the need to incorporate all the available
data as it is being registered. For patients staying several days in the ICU the predic-
tion models must take into account not only data from the initial 24 hours but also all
the data stored since then. Moreover, relevant clinical information is possibly hid-
den in the sequence in which clinical adverse events occur. As the INTCare system
has access to data collected via bedside monitoring, this seems to be an interesting
path to be explored.
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6. Gago, P., Santos, M.F., Silva, Á., Cortez, P., Neves, J., Gomes, L.: Intcare: a knowledge
discovery based intelligent decision support system for intensive care medicine. J. Deci-
sion Syst. 14(3), 241–259 (2005)

7. Ho, T.-K.: The random subspace method for constructing decision forests. IEEE Trans.
Pattern Analysis Mach. Intell. 20(8), 832–844 (1998)



264 P. Gago and M.F. Santos

8. Kim, Y., Street, W.N.: An intelligent system for customer targeting: a data mining ap-
proach. Decision Support Syst. 37(2), 215–228 (2004)

9. Klinkenberg, R., Ruping, S.: Concept drift and the importance of examples. In: Franke,
J., Nakhaeizadeh, G., Renz, I. (eds.) Text Mining - Theoretical Aspects and Applications,
pp. 55–77. Physica-Verlag, Heidelberg (2003)

10. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: A new ensemble method for
tracking concept drift. In: Proc. 3rd IEEE Int. Conf. Data Mining, Melbourne, FL, pp.
123–130. IEEE Comp. Soc., Los Alamitos (2003)

11. Kulikowski, C.A., Weis, S.M.: Representation of expert knowledge for consultation: the
CASNET and EXPERT projects. In: Artificial Intelligence in Medicine, pp. 21–56. West-
view Press, Boulder (1982)

12. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Inter-
science, Hoboken (2004)

13. Larssan, J.E., Hayes-Roth, B.: Guardian: an intelligent autonomous agent for medical
monitoring and diagnosis. Intell. Syst. and their Appl. 13(1), 58–64 (1998)

14. Lasko, T.A., Bhagwat, J.G., Zou, K.H., Ohno-Machado, L.: The use of receiver operating
characteristic curves in biomedical informatics. J. Biomedical Informatics 38(5), 404–
415 (2005)

15. Le Gall, J.R., Lemeshow, S., Saulnier, F.: A new simplified acute physiology score
(saps ii) based on a European/North American multicenter study. J Amer. Med. As-
soc. 270(24), 2957–2963 (1993)

16. Lin, C., Hsieh, P.-J.: A fuzzy decision support system for strategic portfolio management.
Decision Support Syst. 38(3), 383–398 (2004)

17. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Information and Com-
putation 108(2), 212–261 (1994)

18. Michalewicz, Z., Schmidt, M., Michalewicz, M., Chiriac, C.: Adaptive Business Intelli-
gence. Springer, Heidelberg (2006)

19. Miranda, D., Nat, R., Nijk, A., Schaufeling, W., Lapichino, G.: Nursing activities score.
Critical Care Medicine 31(2), 374–382 (2003)

20. Pople, H.: Evolution of an expert system: from Internist to Caduceus. In: de Lotto, I.,
Stefanelli, M. (eds.) Artificial Intelligence in Medicine, pp. 179–208. Elsevier Science
Publisher, Amsterdam (1985)

21. Santos, M.F.: Sistemas de Classificação em Ambientes Distribuidos. PhD thesis, Univer-
sidade do Minho (1999)
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