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Abstract. Clustering data described by categorical attributes is a chal-
lenging task in data mining applications. Unlike numerical attributes, it
is difficult to define a distance between pairs of values of the same cate-
gorical attribute, since they are not ordered. In this paper, we propose a
method to learn a context-based distance for categorical attributes. The
key intuition of this work is that the distance between two values of a cat-
egorical attribute A; can be determined by the way in which the values
of the other attributes A; are distributed in the dataset objects: if they
are similarly distributed in the groups of objects in correspondence of
the distinct values of A; a low value of distance is obtained. We propose
also a solution to the critical point of the choice of the attributes A;.
We validate our approach on various real world and synthetic datasets,
by embedding our distance learning method in both a partitional and
a hierarchical clustering algorithm. Experimental results show that our
method is competitive w.r.t. categorical data clustering approaches in
the state of the art.

1 Introduction

Clustering is a popular data mining technique that enables to partition data
into groups (clusters) in such a way that objects inside a group are similar, and
objects belonging to different groups are dissimilar [I]. Clearly, the notion of
similarity is central in such a process. When objects are described by numerical
(real, integer) features, there is a wide range of possible choices. Objects can
be considered as vectors in a m-dimensional space, where n is the number of
features. Then, many distance metrics can be used in n-dimensional spaces.
Among them, probably the most popular metric is the Euclidean distance (or
2-norm distance), which is a special case of Minkowski distance (also called p-
norm distance). Given two objects, these measures only depend on the difference
between the values of the feature vectors.

In data mining applications, however, data are often described by categorical
attributes that take values in a (usually finite) set of unordered nominal values.
This makes impossible even to rank or compute differences between two values
of the feature vectors. For categorical data the simplest comparison measure
is overlap [2]. The proximity between two multivariate categorical entities is
proportional to the number of attributes in which they match. Other metrics,
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such as the Jaccard coefficient, are derived from overlap and have been adopted
in several (partitional and hierarchical) clustering algorithms [SI4lJ5].

Clearly, these distance metrics do not distinguish between the different values
taken by the attribute, since they only measure the equality between pair of val-
ues. This is a strong limitation for a clustering algorithm, since it prevents to cap-
ture similarities that are clearly identified by human experts. For instance, given
an attribute like city, which takes values in the set { Paris, Rome, Florence} it is
obvious that Florence is more similar to Rome than to Paris, from a geographic
point of view. However, in some other contexts, Paris might be more similar to
Rome, since both of them are capitals, and they may share similar behaviors.

In literature some measures that take into consideration the context of the
features, have also been employed but refer to continuous data, e.g., Mahalanobis
distance.

In this paper we present a new methodology to compute a context-based
distance between values of a categorical variable and apply this technique to
clustering categorical data with both partitional and hierarchical techniques.
For the introduction of our technique, consider the dataset described in figure
1(a)l with only two categorical attributes: City(Milan, Turin, Florence) and
Sex(M,F). The contingency table in Figure shows how these values are
distributed. We observe that City=Florence occurs only with Sex=Female, and
the City=Turin occurs only with Sex=~Male. The value City=Milan occurs both
with Sex=Male and Sex=Female. From this distribution of data, we infer that, in
this particular context, Florence is more similar to Milan than to Turin because
the probability to observe a person of a given sex is closer.

Sex City
Male T1.1r1n Turin Milan Florence
Female Milan
X Female 0 1 1
Male  Turin
) Male 2 1 0
Male Milan (b)
Female Florence
(a)

Fig. 1. A toy dataset (a) and its related contingency table (b)

From this example we can deduce that the distribution of the co-occurrence
table may help to define a distance between values of a categorical attribute. To
this purpose, we propose a two-step method:

1. for each categorical attribute X, first identify a suitable context constituted
by a set of attributes Y # X, such that each attribute belonging to the
context is correlated to the attribute X.

2. compute a distance matrix between any pair of values (z;, ;) of X: we take
into account the distribution of x; and z; in objects having the same values
for the context attributes.
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The key contribution of our work are the following:

— we introduce a new method to compute the distance between any pair of
values of a specific categorical attribute;

— we define a distance-learning approach which is independent of the employed
distance-based clustering;

— we show the impact of our approach within two different distance-based
clustering algorithms.

We will also show that our approach is scalable w.r.t. to the numbers of instances
in the dataset, and can manage thousands of categorical attributes.

2 Related Work

Clustering is an important task in data mining, in information retrieval and in
a wide range of analytical and scientific applications [I]. The goal of clustering
is to find a partition of the instances according to a predefined distance measure
or an objective function to optimize. The problem is particularly difficult when
categorical attributes are involved in the clustering process. In literature, many
approaches to categorical data clustering have been proposed. Most of them try
to optimize a global objective function without using any notion of distance
between the values of the same attribute. Furthermore they suffer in terms of
efficiency and time complexity with large data sets.

One of the first work in the field of categorical clustering is K-MODES [3]. It
tries to extend K-Means algorithm for categorical data. A cluster is represented
as a data point which is composed by the most frequent value in each attribute
domain. Therefore, in K-MODES the similarity of an unlabeled data point and
a cluster representative can be simply calculated by the overlap distance [2].

Another approach to categorical clustering is ROCK [4]. It employs links to
measure similarity /proximity between pairs of data points. An instance belongs
to the neighborhood of another instance if the Jaccard similarity between them
exceeds a user-defined threshold. It heuristically optimizes a cluster quality func-
tion with respect to the number of links in an agglomerative hierarchical way.
The base algorithm has cubic complexity in the size of the data set, which makes
it unsuitable for large datasets.

LIMBO [5], is a scalable hierarchical categorical clustering algorithm built on
the Information Bottleneck framework. As a hierarchical algorithm, LIMBO is
not as fast as partitional methods. The algorithm builds Distributional Cluster
Features (DCF) trees to summarize the data in %k clusters, where each node
contains statistics on a subset of instances. Starting from DCF and the number
of clusters k a scan over the whole data set is performed to assign each instance
to the cluster with the closest DCF.

CLICKS [6] is a clustering algorithm based on graph/hypergraph partitioning.
In general the cost of clustering with graph structures is acceptable, provided
that the underlying data is low dimensional. CLICKS finds clusters in categorical
datasets based on a search method for k-partite maximal cliques. The vertices of
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the graph are the value of the different attributes and there is an edge between
two vertexes if the two attribute-values occur in the same instance. All maximal
k-partite cliques in the graph are enumerated and the support of the candidate
cliques within the original dataset is verified to form the final clusters.

Alternative approaches include combinatorial algorithms [7] and entropy-
based methods [8l[9]

A first attempt of computing a distance for categorical attributes is [I0] where
the authors propose a probabilistic framework which considers the distribution
of all the attributes in the dataset. However they only compare their approach
with K-MODES and on small and low dimensional datasets.

3 The DILCA Method

In this section we present DILCA (DIstance Learning in Categorical Attributes)
for computing distances between any pair of values of a categorical attribute.

Let us consider a set F = {X1,Xo,...,Xm} of m categorical attributes.
We refer to the cardinality of an attribute (or feature) X as |X|. Let D =
{di,ds,...,d,} be a dataset of instances defined over F'. We denote by z; a
specific value of an attribute X.

From the example in Section [I] it turns out that the distribution of values
of an attribute can be informative about the way in which another attribute
is distributed in the dataset objects. Thanks to this method we can infer a
context-based distance between any pair of values of the same attribute. In real
applications there are several attributes: for this reason our approach is based
on two steps:

1. selection of a relevant subset of the whole attributes set that we use as the
context for a given attribute;

2. computation of the distance measure between pair of values of the same
attribute using the context defined in the previous step.

Context selection. We investigate the problem of selecting a good (informa-
tive) set of features w.r.t. a given one. This is a classic problem in data min-
ing named feature selection. Feature selection is a preprocessing step of data
mining. Its goal is to select a subset of relevant and not redundant features
and discard all the other ones w.r.t. a given class attribute (supervised feature
selection [I1]). In this branch of research many approaches for measuring the
correlation/association between two variables have been proposed. An interest-
ing metrics is the Symmetric Uncertainty, introduced in [I2]. This measure is
a correlation-based measure inspired by information theory. Symmetric Uncer-
tainty is derived from entropy: it is a measure of the uncertainty of a random
variable. The entropy of a random variable X is defined as:

H(X) = - ZP(%') logy(P(x))



Context-Based Distance Learning for Categorical Data Clustering 87

where P(x;) is the probability of the value z; of X. The entropy of X after
having observed the values of another variable Y is defined as:

H(X|Y) = ZP (v5) ZP (@ilyi) loga (P(xily:))

where P(z;|y;) is the probability that X = z; after we have observed that Y = y;.
The information about X provided by Y is given by the information gain [13]
which is defined as follows:

G(X|Y) = H(X) - HX|Y)

When IG(X|Y) > IG(Z|Y) then the feature X is more correlated to Y than Z.
Moreover, the Information gain is symmetrical for two random variables X and
Y [12].

The Symmetrical Uncertainty is then defined as follows:

G(X]Y)

SUXY) =2 H(X)+ H(Y)

This measure varies between 0 and 1 (1 indicates that knowledge of the value
of either X or Y completely predicts the value of the other variable; 0 indicates
that X and Y are independent). The advantage of Symmetrical Uncertainty
(SU) w.r.t. Information Gain is that this measure is not biased by the number
of values of an attribute.

During the first step, we select a set of context attributes for a given target
attribute X. This context, named context(X), is such that the attributes Y
belonging to this set have a high value of SU(X,Y’). Determining an adequate
number of attributes for context(X) is not trivial. We propose to use an heuristic
to set this number. The heuristic is based on the mean value of SU for a specific
target attribute X. Given a target attribute X we want to compute SU(X,Y),
for each attribute Y # X. We denote this Symmetric Uncertainty SUx(Y) =
SU(X,Y). The mean of this quantity is:

Lyerx SUx(Y)

E[SUx| = Fl—1

To determine the context of an attribute X we use the features that satisfy the
following inequality:

context(X) ={Y # X st. SUx(Y) > cE[SUx]}

where ¢ € [0,1] is a trade-off parameter that controls the influence of the
mean value. According to this heuristic, at least one attribute is assigned to
context(X). This is simple to demonstrate: if SUx (Y) is the same for all Y then
SUx(Y) = E[SUx] for all Y; in this case all Y would be selected in context(X).
If there exists at least one attribute Y such that SUx(Y') > E[SUx], then those
attributes Y would be selected.
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Distance computation. The second step of our approach consists in com-
puting the distance between each pair of values of the considered feature. To
compute this distance between x; and x; where z; € X, z; € X we use the
following formula:

d(ws, ;) = > > (P(xilyr) — Plajlyr))? (1)

Y €context(X) yr €Y

For each context attribute ¥ we compute the conditional probability for both
values x; and x; given the values y; € Y and then we apply the Euclidean
distance. Our intra-attribute distance measure is an application of the Euclidean
distance. As such, our definition of distance is a metric.

We introduce now our algorithm which, for each attribute X, computes the
similarity matrices between any pair of values of X.

Algorithm [ shows the procedure adopted to compute the correlation ma-
trix between each pair of features based on Symmetric Uncertainty. This al-
gorithm takes as parameter the entire data set D. Function feature(D) re-
turns the set of all the features contained in D. Then the algorithm computes
the co-occurrence table (COxy) between each pair of attributes using func-
tion ComputeCoOccurrenceTable(D, X,Y). It computes the joint probability
of (X,Y). These tables are used to compute the Symmetric Uncertainty between
attributes to be stored in matrixSU.

Algorithm 2] computes the distance matrix between the values of the target
attribute X. At the first line it selects the vector storing the correlation between
X and all other features Y. During the second step it computes the mean of the
vector and then it selects the features that will be included in the context of X.
When the features are chosen, the distance matrix for the values of attribute X
is built, using ().

Algorithm 1. computeCorrelationMatrix (D)
1: for all X,Y € feature(D)|X #Y do

2:  COxy = ComputeCoOccurrenceTable(D,X,Y")
3: matrizSU[X][Y] = SU(COxy)

4: end for

5: return matrizSU

Complexity. Before computing the distance matrix, we must compute [ =
m * (m — 1)/2 matrices COx y. These | matrices store the co-occurrence of
the values between any pair of attributes. To build these matrices we need to
perform a complete scan of the entire data set. We use the co-occurrence matrices
to compute matrixSU. matrixSU is m X m, where m is the number of attributes
in the dataset. Using matrizSU we can compute E[SUx]| and then select the
right context making use of o. To compute the distance matrix for each attribute
we can use | co-occurrence matrices without the necessity of further scans of the
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Algorithm 2. DILCA (matrizSU,X ,0)

: VectorSUx = MatrizSU[X]
E = computeMean(VectorSUx)
context(X) =0
for all y € VectorSUx do
if VectorSUx[y] > oF then
insert(Y ,context(X))
end if
end for
for all z;,z; € X|z; # x; do

10:  DistanceMatriz|z;][z;] \/ZYEComezt(X)Z key( (xilyr) — P(x;5|yr))?
11: end for
12: return DistanceMatrixx

dataset. From this, we derive that our algorithm only needs to scan the entire
dataset once. In conclusion, our approach is O(nm?), with n the number of
instances and m the number of involved attributes.

4 Experiments and Results

In this section we present a comprehensive evaluation of our approach. Since
our method enables to use distance based approaches for clustering, we cou-
pled it with two standard methods: a partitional one, and a hierarchical one.
We compared both of them with state-of-the-art techniques for categorical data
clustering.

Evaluation Measures for Clustering. Determine the clustering quality pro-
vided by an algorithm is often a hard and subjective task. Therefore, we use
two objective criteria to evaluate the results: Accuracy and Normalized Mutual
Information.

The first considers the original class label as a mean to evaluate clustering
results. Assume that the instances in D have been already classified in p classes
{p1,p2,...,pp}. Consider a clustering algorithm that partitions D into ¢ clusters
{cli,cla, ..., clc}. We refer to a one-to-one mapping, f, from classes to clusters,
such that each class p; is mapped to the cluster cl; = f(p;). The classification
error of the mapping is defined as:

.
E=>IpiN f(pi)l

i=1

where |p; N f(p;)| measures the number of objects in class p; that received the
wrong label. The optimal mapping between clusters and classes is the one that
minimizes the classification error. We use F,,;,, to denote the classification error
of the optimal mapping. Then to obtain the Accuracy we compute the following
formula:
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B .
Acc=1-— """
|D|

The second metrics provides an information that is independent of the number
of clusters [I4]. This measure takes its maximum value when the clustering
partition matches completely the original partition. We can consider NMI as an
indicator of the purity of the clustering results. NMI is computed as the average
mutual information between any pair of clusters and classes:

C P B n*N;j

Zi:l Z]‘:l Lij log nin;
C n; P ) n;
VE nilog ™ S nslog 7

where n;; is the cardinality of the set of objects that occur both in cluster ¢ and
in class j; n; is the number of objects in cluster ¢; n; is the number of objects in
class j; n is the total number of objects. C' and P are respectively the number
of clusters and the number of classes.

NMI =

Datasets for Categorical Clustering Evaluation. For the evaluation of
our distance learning approach on categorical data, we used two collections of
datasets. The first collection consists in real world data sets downloaded from the
UCI Machine Learning Repository [I5]. The second collection contains synthetic
datasets produced by a data generator [16] using Gaussian distributed random
attributes. The main characteristics of these datasets are summarized in Table[Il
Notice that Breast-w and Sonar contain numerical variables. Indeed, they have
been discretized using the supervised method proposed in [17].

Table 1. Datasets characteristics

Dataset Type Instances Features Values Classes

Votes Real 435 16 32 2
Mushroom Real 8124 22 117 2
Breast-w  Real 699 9 29 2
Sonar Real 208 60 81 2
SynA Synth 1000 50 1000 5
SynB Synth 3000 20 600 4

4.1 Experimental Settings and Results

Here, we report on the performance results of K-MODESp;,ca (DILCA cou-
pled with a simple K-MODES algorithm) and HCLp;ca (DILCA coupled with
Ward hierarchical clustering (HCL). We compared them with ROCK [4] and
LIMBO [5]. For all the algorithms we set the number of clusters equal to the
number of classes. We implemented K-MODESp;;ca within the WEKA plat-
form [I7], a Java open source library that provides machine learning and data
mining algorithms. HCLprrca was implemented over the Java Murtagh’s im-
plementation of HCI[Y.

! http://astro.u-strasbg.fr/~{}fmurtagh/mda-sw/
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We run the experiments on a PC with a 1.86GHz Intel Pentium M processor,
1024MB of RAM running Linux. For each particular algorithm we used the
following setting:

— For K-MODESp ,ca we varied parameter o between 0 to 1 (with steps of
0.1) and we report the value which gave the best results. Since the initial
partition is random, we run many times the algorithm and then we report
the average result in terms of accuracy and Normalized Mutual Information.

— For HCLprrca we varied parameter o between 0 to 1 with step of 0.1 and we
report the value which gave the best results. Since the hierarchical algorithm
returns a dendrogram which, at each level, contains a different number of
clusters, we considered the level corresponding to the number of clusters
equal to the number of classes.

— For ROCK we set the threshold parameter between 0.2 to 1 with steps of
0.05. Also for this algorithm we retained the best obtained result.

— For LIMBO we set ¢ parameter between 0 to 1 with steps of 0.25 and we
report the best obtained result. This parameter influences the information
loss during the merging phase.

In Table 2l we report the result of the comparative evaluation with other clus-
tering algorithms. For each dataset we report the average Accuracy in percentage
and the average Normalized Mutual Information achieved by each algorithm. In
almost all the experiments, our approach achieves the best results in at least one
category of clustering, and in some cases (Sonar and Votes), the performance
parameters are sensibly better than in ROCK and LIMBO. The only exception
is SynA, where NMI computed for ROCK is slightly higher than NMI achieved
by HCLp;ca. However, the Accuracy measured for ROCK is lower than the
one achieved by HCLprrca. Moreover, we observed that ROCK is very sensi-
tive to the parameter value, and in many cases this algorithm produces one giant
cluster that includes instances from more classes.

Table 2. Experiments on real and synthetic data

K-MODESprrca HCLprrca ROCK LIMBO
Dataset Acc. NMI Acc. NMI Acc. NMI  Acc. NMI
Sonar 71.63% 0.9912 55.29 % 0.0191 56.25 % 0.0093 66.35% 0.0843
Votes 87.59% 0.4892 89.89% 0.5195 83.90% 0.3446 87.12% 0.4358
Breast-w  95.99% 0.7435 94.13% 0.6650 76.68% 0.2570 55.94% 0.0009
Mushroom 89.02% 0.5518 89.02% 0.5938 50.57% 0.05681 88.95% 0.5522
SynA 89.50% 0.7864 94.30% 0.8641 80.3% 0.8965 87.6% 0.7540
SynB 100% 1.0000 100% 1.0000 100% 1.0000 26.77% 0.0017

Impact of o. To evaluate the impact of o parameter we use Mushroom and
Votes datasets. For each dataset we plot the behavior of K-MODESp;rca. We
let vary the parameter o from 0 to 1 with steps of 0.1. When the parameter
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is equal to 0 all the features are included in the context. We observed that the
influence of different settings of o w.r.t. accuracy is small (curves are omitted
here). In both datasets, the variation in accuracy is very low (less than 0.50%).
Although there is no general law about how to choose this parameter, we estimate
that its impact is less important than standard clustering parameters (such as,
the number of clusters, or other algorithm-specific parameters).

4.2 Scalability of DILCA

We introduce now a study on the scalability of our distance learning approach, by
analyzing the overall computational time of K-MODESp;,c4 and HCLp o4,
and the portion of time needed to perform distance computation (DILCA). We
evaluate the scalability varying the two dimensions of the dataset that may have
an impact on time performances.

The first dimension is the number of instances. For this purpose, we generated
30,000 synthetic instances described by 100 attributes, then we built 30 datasets
containing from 1000 to 30,000 instances. We report the results in Figure
The second dimension is the number of attributes: we generated a synthetic
dataset consisting in 5,000 attributes and 1,000 instances. Then we built 10
datasets containing from 100 to 5000 features. The results are depicted in Figure
We perform also some experiments to evaluate the impact of parameter o
on running time using the complete dataset (see Figure .

As the value of o enables to select a different number of attributes in the
context of the target attribute, this parameter could have an impact on the
time performances of our approach. In Figure we observe how changes of o
influence the execution time of our algorithms. For the part that computes the
distance we can see that the higher the value of o the lower the time used to
build the intra-attribute distance matrix.

We also compared HCLpr,ca with LIMBO (which is also hierarchical) on the
scalability w.r.t. the number of features. We used another synthetic dataset with
1,000 instances and 1,000 attributes from which we built 10 datasets containing
a variable number of features: from 100 to 1,000 features. We report the results
in figure In Figure we show a comparison between the two algorithms
on the dataset composed by an increasing number of instances. We observe
that HCLprrca is faster than LIMBO w.r.t. the size and dimensionality of the
dataset.

Finally, we also investigated on the time spent by the HCLp;rc 4 to perform
clustering. In Figure we report the time spent by the three parts of HCL
coupled with DILCA. The three curves represent respectively the time spent
by DILCA to compute distances, the time spent to compute the point-to-point
distance matrix given as input to the hierarchical algorithm, and the effective
time spent by Ward algorithm to build the dendrogram. In any case the most
consistent portion of the overall computation time is employed to calculate the
point-to-point distance measure between each pair of instances.
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Fig. 2. Time performances of DILCA

5 Conclusion

We introduced a scalable approach to learn a context-based distance between val-
ues of categorical attributes. We showed the effective impact of this approach on
two distance-based clustering approaches. We believe that the proposed method
is general enough and it can be applied to any data mining task that involves cate-
gorical data and requires distance computations. As a future work we will investi-
gate the application of our distance learning approach to different distance-based
tasks such as: outlier detection and nearest neighbors classification. Moreover, us-
ing this distance it will be possible to compute distances between objects described
by both numerical and categorical attributes.
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