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Abstract. We propose a new algorithm for learning isotonic classifica-
tion trees. It relabels non-monotone leaf nodes by performing the isotonic
regression on the collection of leaf nodes. In case two leaf nodes with a
common parent have the same class after relabeling, the tree is pruned
in the parent node. Since we consider problems with ordered class labels,
all results are evaluated on the basis of L1 prediction error. We experi-
mentally compare the performance of the new algorithm with standard
classification trees.

1 Introduction

In many applications of data analysis it is reasonable to assume that the re-
sponse variable is increasing (or decreasing) in one or more of the attributes or
features. For example, the sale price of a house - all else equal - increases with lot
size, and according to economists people tend to buy less of a product if its price
increases. Such relations between response and attribute are called monotone.
Monotonicity constraints can, for example, also be found in medicine [20,6] and
law [12]. Besides being plausible, monotonicity may also be a desirable prop-
erty of a decision model for reasons of explanation, justification and fairness.
Pazzani et al.[17], show that rules learned with monotonicity constraints were
significantly more acceptable to medical experts than rules learned without the
monotonicity restrictions.

Because the monotonicity constraint is quite common in practice, many data
analysis techniques have been adapted to be able to handle such constraints.
In this paper we present a new algorithm, called ICT, for learning monotone
classification trees for problems with ordered class labels. Our approach differs
from earlier monotone tree algorithms such as [5,18,11] in that we adjust the
probability estimates in the leaf nodes in case of a violation. This is done in
such a way that, subject to the monotonicity constraint, the sum of absolute
prediction errors on the training sample is minimized. Another new element of
our algorithm is that we can also handle problems where some, but not all,
attributes have a monotone relation with the response. The performance of the
new algorithm is evaluated through experimental studies on real life data sets.

This paper is organized as follows. In the next section we introduce the basic
concepts and notation that will be used throughout the paper. Since the isotonic
regression is an important technique for our algorithm, we discuss it shortly in
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section 3. In section 4 we discuss the main contribution of this paper, the Isotonic
Classification Tree (ICT) algorithm. ICT is evaluated in section 5 where we
present the results of experiments on real data. Section 6 concludes.

2 Preliminaries

Let X be a feature space X = X1 × X2 × . . . × Xp consisting of vectors x =
(x1, x2, . . . , xp) of values on p features or attributes. We assume that each fea-
ture takes values xi in a linearly ordered set Xi. The partial ordering � on
X will be the ordering induced by the order relations of its coordinates Xi:
x = (x1, x2, . . . , xp) � x′ = (x′

1, x
′
2, . . . , x

′
p) if and only if xi ≤ x′

i for all i.
Furthermore, let Y be a finite linearly ordered set of classes. Without loss of
generality, we assume that Y = {1, 2, . . . , k} where k is the number of classes.

A monotone classification rule is a function c : X → Y for which

x � x′ ⇒ c(x) ≤ c(x′) (1)

for all instances x,x′ ∈ X . A data set {xi, yi}n
i=1 is monotone if for all i, j we

have xi � xj ⇒ yi ≤ yj.
The classification rules we consider are univariate binary classification trees.

For such trees, at each node a split is made using a test of the form Xi < d for
some d ∈ Xi, 1 ≤ i ≤ p. Thus, for a binary tree, in each node the associated set
t ⊂ X is split into the two subsets t� = {x ∈ t : xi < d} and tr = {x ∈ t : xi ≥ d}.
The classification rule that is induced by a decision tree T will be denoted by cT .

For any node or leaf t of T , the subset of the instance space corresponding to
that node can be written

t = {x ∈ X : a � x ≺ b} = [a,b) (2)

for some a,b ∈ X with a � b. Here X denotes the extension of X with infinity-
elements −∞ and ∞. In some cases we need the infinity elements so we can
specify a node as in equation (2).

Below we will call min(t) = a the minimal element and max(t) = b the
maximal element of t. Together, we call these the corner elements of node t. If
min(t) ≺ max(t′) then node t contains points that are smaller than some points
in node t′, hence the monotonicity constraint requires that the label assigned to
node t should not be bigger than the label assigned to node t′. Therefore, we
call a pair of leaves t, t′ non-monotone if min(t) ≺ max(t′) and cT (t) > cT (t′)
[19]. A tree is non-monotone if it contains at least one non-monotone leaf pair.

It is customary to evaluate a classifier on the basis of its error-rate or 0/1 loss.
For classification problems with ordered class labels this choice is less obvious.
It makes sense to incur a higher cost for those misclassifications that are “far”
from the true label, than to those that are “close”. One loss function that has
this property is L1 loss:

L1(i, j) = |i − j| i, j = 1, . . . , k (3)
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where i is the true label, and j the predicted label. We note that this is not the
only possible choice. One could also choose L2 loss for example, or another loss
function that has the desired property that misclassifications that are far from
the true label incur a higher loss. Nevertheless, L1 loss is a reasonable candidate,
and in this paper we confine our attention to this loss function.

To illustrate the concepts introduced, we discuss a small example. Let Y =
{1, 2, 3} and suppose we have a tree with two input attributes with X1, X2 ∈
[0, 1]2. The tree is given in Figure 1 on the left. The corresponding partitioning
of the input space is depicted in Figure 1 on the right.
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Fig. 1. Left: Classification tree for three-class problem. Numbers in nodes are the
counts for class 1, 2 and 3 respectively. In the leaf nodes, the counts of the median class
are shown in boldface. The circled labels in the leaf nodes correspond to the labeled
regions in the picture on the right. Right: Partitioning of input space corresponding to
the tree on the left. The class labels assigned to the different rectangles are shown in
boldface. Rectangle t5 and t6 form a nonmonotone leaf pair.

To minimize L1 loss we allocate to the median in leaf nodes, which leads to
the class labels as shown in boldface in Figure 1 on the right. Leaf node t5 and
t6 form a nonmonotone pair, since t5 has a higher class label but contains points
that are smaller than some points in t6: the lower left corner of t5 is smaller than
the upper right corner of t6.

3 The Isotonic Regression

In this section we give a general description of the isotonic regression. In section 4
we discuss its application to making trees monotone.

Let Z = {z1, z2, . . . , zm} be a nonempty finite set of constants and let � be
a partial order on Z. Any real-valued function f on Z is isotonic with respect
to � if, for any z, z′ ∈ Z, z � z′ implies f(z) ≤ f(z′). We assume that each
element zi of Z is associated with a real number g(zi); these real numbers typ-
ically are estimates of the function values of an unknown isotonic function on
Z. Furthermore, each element of Z has associated a positive weight w(zi) that
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typically indicates the precision of this estimate. An isotonic function g∗ on Z
now is an isotonic regression of g with respect to the weight function w and the
partial order � if and only if it minimizes the sum

m∑

i=1

w(zi) [f(zi) − g(zi)]2 (4)

in the class of isotonic functions f on Z. Brunk [8] proved the existence of a
unique g∗.

Any real-valued function f on Z is antitonic with respect to � if, for any
z, z′ ∈ Z, z � z′ implies f(z) ≥ f(z′). The antitonic regression of g is defined
completely analogous to the isotonic regression as the function that minimizes
(4) within the class of antitonic functions. The isotonic regression with respect
to a partial order is equivalent to the antitonic regression with respect to the
inverse of that order.

The best time complexity known for an exact solution to the isotonic regres-
sion problem for arbitrary partial order is O(m4) [16]. It is based on a divide-
and-conquer strategy that involves solving at most m maximal flow problems.

4 Isotonic Classification Trees

The ICT algorithm can in principle be combined with any standard classifica-
tion tree algorithm. Here we modify a cart-like algorithm [7] to incorporate the
monotonicity constraints. The main principle of ICT is that it makes trees mono-
tone by relabeling its leaf nodes. This is done in such a way that of all monotone
trees that can be obtained by relabeling the leaf nodes, the one produced by ICT
has lowest absolute error on the training data. The relabeling is not computed
directly, but is obtained by first adjusting the probability estimates in the leaf
nodes (using the isotonic regression), and then allocating each leaf node to the
(smallest) median of its estimated class distribution.

We first discuss the growing of trees in ICT. Then we discuss the adjustment
of probability estimates in the leaf nodes, and the corresponding relabeling,
which may lead to pruning the tree. We also discuss the incorporation of partial
monotonicity constraints in ICT.

4.1 Growing Trees

Let T̃ denote the collection of leaf nodes of tree T , n(t, j) denote the number of
observations in t with class label j, and let

P̂j(t) =
n(t, j)
n(t)

, t ∈ T̃

denote the relative frequency of class label j in node t. Furthermore, let

F̂i(t) =
∑

j≤i

P̂j(t), t ∈ T̃
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denote the unconstrained maximum likelihood estimate of

Fi(t) = P (y ≤ i | x ∈ t), t ∈ T̃ .

Because the median is known to minimize L1 loss, we allocate to the (smallest)
median of the estimated class distribution:

c(t) = min
i

: F̂i(t) ≥ 0.5, (5)

The standard tree growing algorithm is modified in such a way that it records
the corner elements of each node. Since the aim is to minimize L1 loss, the risk
for each node is set to be the mean absolute error for that node:

r(t) =
∑

i:xi∈t

|yi − c(t)|
n(t)

,

where c(t) denotes the class allocated to node t and n(t) denotes the number of
observations in node t.

To compute the impurity of a node, we use the gini index combined with
absolute error:

i(t) =
∑

j �=k

|j − k|P̂j(t)P̂k(t), j, k ∈ Y

As usual, ICT chooses the split that maximizes impurity reduction.

4.2 Making the Tree Monotone

Let (T̃ ,�) be the partial order � over T̃ with

t � t′ ⇔ min(t) ≺ max(t′), t, t′ ∈ T̃ ,

that is, t precedes t′ if t contains points that are smaller than some points in t′.
Define

F ∗
i (t), i = 1, 2, . . . , k − 1; t ∈ T̃

as the antitonic regression of g(t) = F̂i(t) with weights w(t) = n(t) and partial
order (T̃ ,�), for each value i = 1, 2, . . . , k−1. Of course, F ∗

k (t) = 1 for all t ∈ T̃ .
Note that F ∗ satisfies the stochastic order constraint

t � t′ ⇒ F ∗
i (t) ≥ F ∗

i (t′), i = 1, . . . , k. (6)

Subsequently, we allocate t to the smallest median of F ∗(t):

c∗(t) = min
i

: F ∗
i (t) ≥ 0.5 (7)

Because F ∗ satisfies (6), we have that c∗ satisfies the monotonicity constraint
[14]

t � t′ ⇒ c∗(t) ≤ c∗(t′)
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Furthermore, it can be shown [10,3] that c∗(t) minimizes L1 loss

n∑

i=1

|yi − c(t(xi))|

within the class of monotone integer-valued functions c(·) on T̃ , where t(xi) =
t ∈ T̃ : xi ∈ t. In other words, of all monotone classifiers on T̃ , c∗ is among
the ones (there may be more than one) that minimize L1 loss on the training
sample.

To illustrate, we continue the example introduced in section 2. The monotonic-
ity violation between t5 and t6 is resolved by performing the antitonic regression
on F̂1(t), and on F̂2(t), t ∈ {t4, t5, t6, t7}. Note that we have the total order
t4 � t5 � t6 � t7 on the leaf nodes in this particular case. The solution is
to average F̂1(t5) with F̂1(t6) and F̂2(t5) with F̂2(t6) with n(t5) and n(t6) as
weights:

F ∗
1 (t5) = F ∗

1 (t6) =
5 + 10
25 + 35

=
1
4

F ∗
2 (t5) = F ∗

2 (t6) =
10 + 30
25 + 35

=
2
3

Using these revised estimates we assign to the median, meaning we assign to class
2 in both t5 and t6. Note that the L1 error of the original nonmonotone tree is:
25+15+15+10=65. By relabeling leaf node t5 to class 2, the error increases to
70. This is the best possible monontone relabeling of the leaf nodes; for example,
relabeling t6 to class 3 would increase the error to 90.

4.3 ICT Pruning

After relabeling the leaf nodes, there may be pairs t� and tr with common parent
t that have been assigned the same class label. In that case, the tree is pruned
in t, and we apply the normal allocation rule (5) to t. This may result in a non-
monotone tree, in which case the leaf nodes are relabeled again. Also note that
pruning may create a new pair t′�, t′r with the same class label and a common
parent t′ in which case the algorithm will prune in t′.

4.4 Algorithm Outline

The ICT algorithm is summarized in Algorithm 1. The algorithm takes as input
a tree T , and returns a monotone tree T ′ which is a possibly relabeled and
pruned version of T .

If the tree is monotone, it is returned unchanged. However, if the tree is non-
monotone, the antitonic regression computes the new probability estimates in
line 4-6. In line 7-10 the leaf nodes are subsequently relabeled. Line 11-14 prune
away leaf nodes with the same class label and common parent. The resulting
tree may be nonmonotone, hence the recursive call to ICT in line 15.

It should be noted that we combine the ICT algorithm with cost-complexity
pruning in the following way. Let T1 > T2 > . . . > {t1} denote the tree sequence
produced by standard cost-complexity pruning, where t1 denotes the root node
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Algorithm 1. ICT(T )
1: if T is monotone then
2: return T
3: else
4: for i ∈ {1, . . . , k − 1} do
5: F ∗

i ← AntitonicRegression(T̃ ,�,n(t) : t ∈ T̃ ,F̂i(t) : t ∈ T̃ )
6: end for
7: for all t ∈ T̃ do
8: F ∗

k (t)← 1
9: cT (t)← mini F ∗

i (t) ≥ 0.5
10: end for
11: while there are t�, tr ∈ T̃ with common parent t and cT (t�) = cT (tr) do
12: T ← prune T in t
13: cT (t)← mini F̂i(t) ≥ 0.5
14: end while
15: T ′ ← ICT(T )
16: return T ′

17: end if

of the tree, and Tj > Tk means Tk is obtained by pruning Tj in one or more
nodes. We apply ICT pruning to every tree in this sequence (except the root
of course) to obtain a sequence of monotone trees T ′

1 > T ′
2 > . . . > {t1}. This

sequence may be shorter than the original sequence, since sometimes two trees
from the original cost-complexity sequence are pruned back to the same tree by
ICT.

4.5 Partial Monotonicity

In many applications there will be attributes for which there is no reason to
assume that they have a monotone relation with the class label. Therefore we
extended the ICT algorithm to be able to handle such cases.

The ICT algorithm for partial monotonicity is largely the same as it is for
complete monotonicity. We just need to change the partial order used in the
antitonic regression and the check that determines if two leafs are non-monotone.

First we define a partially monotone classification rule. Let X be defined as
before, and let Z = ×Zi, i = 1, . . . , q. The values Zi may be either ordered or
unordered. A classification rule c : X × Z → Y is monotone in X iff

∀x,x′ ∈ X , ∀z ∈ Z : x � x′ ⇒ c(x, z) ≤ c(x′, z)

Our orginal ordering on T̃ was defined in such a way that t � t′ if node t
contained elements that were smaller than some elements of t′. This was the
case when min(t) ≺ max(t′). Now we have to add the constraint that t and t′

should have overlapping values on Z. Hence, we define a new partial order (T̃ ,�)
with t ⊂ X ×Z as follows:

t � t′ ⇔ min(tX) ≺ max(t′X) ∧ tZ ∩ t′Z �= ∅, t, t′ ∈ T̃ .

Here tX denotes the projection of t on the monotone attributes X.
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5 Experiments

In order to evaluate the proposed algorithm, we performed a number of experi-
ments. This section contains information on the datasets, how we pre-processed
the data, the experiments and their results. The programs were implemented
in R1.

5.1 Datasets

We selected a number of datasets where monotonicity constraints are likely to
apply. We used the KC4, PC3, PC4 and PC5 datasets from the NASA Metrics
Data Program [15], the Acceptance/Rejection, Employee Selection, Lecturers
Evaluation and Social Workers Decisions from A. Ben-David [4], the Windsor
Housing dataset [1], the Den Bosch Housing dataset [9], as well as several datasets
from the UCI Machine Learning Repository [2]. All datasets except Den Bosch
Housing are publicly available. Table 1 lists all the datasets used.

5.2 Pre-processing of the Data

ICT makes the harmless assumption that all monotone attributes have an in-
creasing relation with the response. This means that if the actual relation is
decreasing, the attribute values have to be inverted. We tested this by looking
at the correlation between the attribute and the response. In case of a nega-
tive correlation between some attribute x and the response, we transformed the
values of x as follows:

xi = xmax − xi + xmin, i = 1, . . . , n (8)

with xmax = max(x), and xmin = min(x).
For datasets with a numeric response that is not a count (Auto MPG, Boston

Housing, CPU Performance, Windsor Housing and Den Bosch Housing) we dis-
cretized the response values into four separate intervals, each interval containing
roughly the same number of observations.

For all datasets from the NASA Metrics Data Program the attribute
ERROR COUNT was used as the response. All attributes that contained missing
values were removed. Furthermore, the attribute MODULE was removed because
it is a unique identifier of the module and the ERROR DENSITY was removed be-
cause it is a function of the response variable. On the remaining attributes we
used the function stepAIC with backward elimination in R to fit a linear model;
attributes that did not occur in the final model were removed from the dataset.
Since the distribution of ERROR COUNT was highly skewed (most modules have
zero errors) we sampled the modules with zero errors to create a more balanced
distribution. High error counts are less frequent than low error counts. In order
to increase frequencies, the higher counts were merged into a single class. For
example, for KC4, all class labels greater than five were set to five.
1 http://www.r-project.org/
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For the CPU Performance dataset the machine cycle time in nanoseconds was
converted to clock speed in Khz, in order to make it positively correlated with
the class label. From this dataset the attributes Vendor Name, Model Name and
ERP were removed.

From the Den Bosch Housing dataset the independent attributes year,
x-coordinate and y-coordinate were removed.

5.3 Relabeling toward Monotonicity

Besides enforcing a monotone model, one can also use prior knowledge about
monotonicity by relabeling the dataset to make it monotone. As shown in [22,13],
models learned on relabeled datasets on average perform better than models
learned with the original class labels.

Therefore, we also tested ICT on relabeled versions of the original datasets.
We computed y∗ as the relabeling of the observations that minimizes

ntrain∑

i=1

|yi − y′
i|

within the class of monotone relabelings y′. Here ntrain denotes the number
of observations in the training sample. The test data was not relabeled in the
experiments.

Table 1 summarizes for all datasets the cardinality, the number of attributes
after pre-processing, the number of distinct class labels and the L1 distance
between y and y∗. For example, to make the Australian Credit data monotone
we have to relabel for a total absolute error of 14. Since Australian Credit has a
binary class label, this means that 14 observations have to be relabeled.

Table 1. Dataset charasterics and relabeling information

Dataset cardinality #attributes #labels
∑ |yi − y∗

i |
Australian Credit 690 14 2 14
Auto MPG 392 7 4 23
Boston Housing 506 13 4 28
Car Evaluation 1728 6 4 21
Den Bosch Housing 119 8 4 10
Empoyee Rej/Acc 1000 4 9 1161
Employee selection 488 4 9 104
Haberman survival 306 3 2 55
Lecturers evaluation 1000 4 5 364
CPU Performance 209 6 4 26
Pima Indians 768 8 2 53
Social Workers Decisions 1000 10 4 375
Windsor Housing 546 11 4 134
KC4 122 4 6 80
PC3 320 15 5 1
PC4 356 16 6 6
PC5 1032 21 6 141
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5.4 Experimental Results

Each of the datasets was randomly divided one hundred times into a training
set consisting of four fifth of the data and a test set consisting of the remaining
one fifth of the data. On every training set a tree was grown, after which cost
complexity pruning was applied to obtain a sequence of trees. The ICT algorithm
was applied to each tree in this sequence to obtain a sequence of monotone trees.
Subsequently, the test set was used to select the best tree from the original
sequence and to select the best tree from the monotone sequence. The test errors
of the best standard trees and the best monotone trees were averaged over the
one hundred repititions of the experiment.

Table 2 shows the results of the experiments on all datasets. The errors are
indicated as the mean absolute error on the test sample. For each column the
mean error and the standard deviation of this mean error are indicated, separated
by a ± sign. The lowest error and the lowest number of leafs for each dataset
are printed in boldface.

First we consider the results with the original class labels. In that case ICT al-
most always has a slightly lower error than the standard tree. The two exceptions

Table 2. Results of monotone trees (ICT) and standard trees

Dataset Label Error ICT Error Standard #Leafs ICT #Leafs Standard
Australian y 0.1426±0.0070 0.1431±0.0068 3.4300±1.9553 3.3500±2.2490
Credit y∗ 0.1418±0.0078 0.1426±0.0071 3.3600±1.9515 3.5700±2.9241
Auto MPG y 0.2982±0.0292 0.3045±0.0282 9.2800±2.7746 10.6300±5.3497

y∗ 0.2985±0.0295 0.2982±0.0293 10.1100±2.7484 12.3800±4.5964
Boston y 0.3966±0.0370 0.4050±0.0376 8.3100±3.1065 7.7100±4.9222
Housing y∗ 0.3861±0.0334 0.3935±0.0339 8.3200±2.7957 8.5700±5.2073
Car y 0.0871±0.0181 0.0836±0.0164 27.6200±5.4417 32.4400±8.4271
Evaluation y∗ 0.0897±0.0190 0.0849±0.0184 28.2300±5.3802 32.3100±7.8787
Den Bosch y 0.4922±0.0832 0.5165±0.0852 5.5200±1.5274 5.6600±1.9396
Housing y∗ 0.4755±0.0829 0.4856±0.0841 5.5100±1.4106 5.5500±1.6840
Employee Rej/Acc y 1.2764±0.0407 1.2926±0.0415 10.3400±3.9778 8.2200±3.4629

y∗ 1.1773±0.0242 1.1627±0.0208 17.0600±2.2103 19.3900±1.1538
Employee y 0.4348±0.0369 0.4590±0.0395 23.6900±4.3128 26.9500±8.4452
Selection y∗ 0.3829±0.0265 0.3822±0.0304 23.9100±2.9063 27.6300±3.9457
Haberman y 0.2585±0.0146 0.2605±0.0139 2.6000±2.1742 1.9900±1.6112
Survival y∗ 0.2482±0.0164 0.2484±0.0164 3.8300±2.0003 4.3200±2.4980
Lecturers y 0.4764±0.0267 0.4903±0.0267 19.9000±5.1981 19.9200±8.9563
Evaluation y∗ 0.4151±0.0233 0.3832±0.0157 21.5300±3.5773 28.7900±3.1311
CPU Performance y 0.4556±0.0540 0.4773±0.0554 8.3300±2.3401 9.2900±4.4818

y∗ 0.4323±0.0486 0.4324±0.0453 8.5900±1.9700 9.8800±2.7016
Pima y 0.2586±0.0145 0.2619±0.0144 5.6300±3.1866 4.6700±3.1464
Indians y∗ 0.2580±0.0130 0.2576±0.0117 4.3900±2.7299 4.5200±3.9936
Social Workers y 0.4707±0.0209 0.4772±0.0181 9.3300±4.3579 7.6100±4.5436
Decisions y∗ 0.4309±0.0163 0.4045±0.0137 12.6700±3.6350 27.4500±4.7298
Windsor y 0.6244±0.0328 0.6619±0.0364 17.0100±5.1198 15.5400±12.8860
Housing y∗ 0.5992±0.0333 0.6103±0.0377 18.7900±4.2433 24.9500±12.0566
KC4 y 1.1871±0.1349 1.2358±0.1474 4.4300±2.2031 4.6300±3.2649

y∗ 1.0153±0.1298 1.0174±0.1349 4.8400±1.5681 5.0900±1.7529
PC3 y 0.5357±0.0440 0.5363±0.0394 2.6000±1.3780 2.4900±1.5986

y∗ 0.5351±0.0443 0.5359±0.0399 2.6100±1.4695 2.4900±1.5986
PC4 y 0.5735±0.0492 0.5835±0.0543 4.9500±2.9418 4.5100±3.0600

y∗ 0.5886±0.0617 0.5928±0.0632 5.4200±3.2167 5.1900±4.0394
PC5 y 0.4960±0.0188 0.4948±0.0242 6.1600±4.1310 5.8400±4.5543

y∗ 0.4939±0.0189 0.4904±0.0229 6.1111±4.4006 6.8800±5.1410
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are the Car evaluation data and dataset PC5. There is no clear winner on the
tree size criterion.

On the relabeled data the conclusions are quite different. Now there is no
clear winner in terms of the error but ICT clearly has the smaller trees.

Comparing the error on the relabeled and original data, we can conclude that
it is beneficial to relabel the training data, since it tends to reduce the error.

It should be noted that the differences found were small, and nowhere signifi-
cant. Nevertheless it is safe to conclude that in the datasets studied, enforcing a
monotone model does not lead to a degradation of the predicitive performance.
Hence, when a monotone model is required, or just preferred, such a model can
be obtained without loss of predicitive accuracy.

Finally, we discuss our experiments with partially monotone trees. One of
the important problems is how to determine which attributes are to be con-
strained, and which are not. In practice such information may be obtained from
domain experts. Here we used a data-based test proposed by [21]. This some-
times resulted in the removal of the constraint for a particular attribute, but the
results did not improve compared to complete monotonicity, and are therefore
not reported.

6 Conclusions

We have presented a new algorithm, called ICT, for learning monotone classi-
fication trees from data. ICT differs from existing monotone tree algorithms in
that it relabels the leaf nodes of the tree in case of monotonicity violations: ICT
produces the monotone relabeling that minimizes absolute error on the training
sample. Furthermore, in contrast to existing monotone tree algorithms, ICT can
also be applied to partially monotone problems.

Our experiments have shown that ICT usually performed slightly better than
standard trees on the original data. After relabeling, the performance of ICT and
the standard tree algorithm was virtually identical. It should be noted however
that a standard tree algorithm applied to monotone data does not necessarily
produce a monotone tree. Therefore, if a monotone model is required, application
of a standard algorithm to relabeled data may not be sufficient. Furthermore,
on the relabeled data ICT on average produced smaller trees than the standard
algorithm. This warrants the conclusion that ICT trees are easier to understand
than their somewhat larger and possibly non-monotone counterparts.
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