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Abstract. We propose and illustrate a method for developing algorithms that can
adaptively learn from data streams that drift over time. As an example, we take
Hoeffding Tree, an incremental decision tree inducer for data streams, and use as
a basis it to build two new methods that can deal with distribution and concept
drift: a sliding window-based algorithm, Hoeffding Window Tree, and an adap-
tive method, Hoeffding Adaptive Tree. Our methods are based on using change
detectors and estimator modules at the right places; we choose implementations
with theoretical guarantees in order to extend such guarantees to the resulting
adaptive learning algorithm. A main advantage of our methods is that they re-
quire no guess about how fast or how often the stream will drift; other methods
typically have several user-defined parameters to this effect.

In our experiments, the new methods never do worse, and in some cases
do much better, than CVFDT, a well-known method for tree induction on data
streams with drift.

1 Introduction

Data streams pose several challenges on data mining algorithm design. Limited use of
resources (time and memory) is one. The necessity of dealing with data whose nature or
distribution changes over time is another fundamental one. Dealing with time-changing
data requires in turn strategies for detecting and quantifying change, forgetting stale
examples, and for model revision. Fairly generic strategies exist for detecting change
and deciding when examples are no longer relevant. Model revision strategies, on the
other hand, are in most cases method-specific.

Most strategies for dealing with time change contain hardwired constants, or else
require input parameters, concerning the expected speed or frequency of the change;
some examples are a priori definitions of sliding window lengths, values of decay or
forgetting parameters, explicit bounds on maximum drift, etc. These choices represent
preconceptions on how fast or how often the data are going to evolve and, of course, they
may be completely wrong. Even more, no fixed choice may be right, since the stream
may experience any combination of abrupt changes, gradual ones, and long stationary
periods. More in general, an approach based on fixed parameters will be caught in the
following tradeoff: the user would like to use large parameters to have more accurate
statistics (hence, more precision) during periods of stability, but at the same time use
small parameters to be able to quickly react to changes, when they occur.

Many ad-hoc methods have been used to deal with drift, often tied to particular algo-
rithms. In this paper, we propose a more general approach based on using two primitive
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design elements: change detectors and estimators. The idea is to encapsulate all the sta-
tistical calculations having to do with detecting change and keeping updated statistics
from a stream an abstract data type that can then be used to replace, in a black-box
way, the counters and accumulators that typically all machine learning and data mining
algorithms use to make their decisions, including when change has occurred.

We believe that, compared to any previous approaches, our approach better isolates
different concerns when designing new data mining algorithms, therefore reducing de-
sign time, increasing modularity, and facilitating analysis. Furthermore, since we crisply
identify the nuclear problem in dealing with drift, and use a well-optimized algorithmic
solution to tackle it, the resulting algorithms more accurate, adaptive, and time- and
memory-efficient than other ad-hoc approaches. We have given evidence for this supe-
riority in [3, 2, 4] and we demonstrate this idea again here.

We apply this idea to give two decision tree learning algorithms that can cope with
concept and distribution drift on data streams: Hoeffding Window Trees in Section 4
and Hoeffding Adaptive Trees in Section 5. Decision trees are among the most com-
mon and well-studied classifier models. Classical methods such as C4.5 are not apt
for data streams, as they assume all training data are available simultaneously in main
memory, allowing for an unbounded number of passes, and certainly do not deal with
data that changes over time. In the data stream context, a reference work on learning
decision trees is the Hoeffding Tree or Very Fast Decision Tree method (VFDT) for
fast, incremental learning [7]. The methods we propose are based on VFDT, enriched
with the change detection and estimation building blocks mentioned above.

We try several such building blocks, although the best suited for our purposes is
the ADWIN algorithm [3], described in Section 4.1. This algorithm is parameter-free
in that it automatically and continuously detects the rate of change in the data streams
rather than using apriori guesses, thus allowing the client algorithm to react adaptively
to the data stream it is processing. Additionally, ADWIN has rigorous guarantees of
performance (a theorem). We show that these guarantees can be transferred to decision
tree learners as follows: if a change is followed by a long enough stable period, the
classification error of the learner will tend, and the same rate, to the error rate of VFDT.

We test on Section 6 our methods with synthetic datasets, using the SEA concepts, in-
troduced in [11], and two sets from the UCI repository, Adult and Poker-Hand. We com-
pare our methods among themselves but also with CVFDT, another concept-adapting
variant of VFDT proposed by Domingos, Spencer, and Hulten [10]. A one-line con-
clusion of our experiments would be that, because of its self-adapting property, we
can present datasets where our algorithm performs much better than CVFDT and we
never do much worse. Some comparison of time and memory usage of our methods and
CVFDT is included.

A longer version of this paper [5] with additional theoretical results and experiments,
is available from the first author webpage.

2 A Methodology for Adaptive Stream Mining

The starting point of our work is the following observation: In the data stream mining
literature, most algorithms incorporate one or more of the following ingredients: win-
dows to remember recent examples; methods for detecting distribution change in the
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input; and methods for keeping updated estimations for some statistics of the input. Our
claim is that by basing mining algorithms on well-designed, well-encapsulated mod-
ules for these tasks, one can often get more generic and more efficient solutions than
by using ad-hoc techniques as required. Similarly, we will argue that our methods for
inducing decision trees are simpler to describe, adapt better to the data, perform better
or much better, and use less memory than the ad-hoc designed CVFDT algorithm, even
though they are all derived from the same VFDT mining algorithm.

A similar approach was taken in [2] and in [4]. In [2] a general framework for change
detection and prediction was presented. It is shown that change detection may be moni-
tored using appropriate statistics like statistical charts, CUSUM, and EWMA. CUSUM
charts may be very competitive, but they need that users choose the correct values for
the parameters. In [4] using our approach, simple adaptive closed-tree mining adaptive
algorithms are given. Using a general methodology to identify closed patterns based
in Galois Lattice Theory, three closed tree mining algorithms were developed: an in-
cremental one INCTREENAT, a sliding-window based one, WINTREENAT, and finally
one that mines closed trees adaptively from data streams, ADATREENAT.

3 Incremental Decision Trees: Hoeffding Trees

Classical decision tree learners such as ID3, C4.5, and CART assume that all training
examples can be stored simultaneously in main memory, and are thus severely limited
in the number of examples they can learn from. In particular, they are not applicable
to data streams, where potentially there is no bound on number of examples and these
arrive sequentially.

Domingos and Hulten [7] developed Hoeffding trees, an incremental, anytime de-
cision tree induction algorithm that is capable of learning from massive data streams,
assuming that the distribution generating examples does not change over time.

Hoeffding trees exploit the fact that a small sample can often be enough to choose
an optimal splitting attribute. This idea is supported mathematically by the Hoeffding
bound, which quantifies the number of observations (in our case, examples) needed to
estimate some statistics within a prescribed precision (in our case, the goodness of an
attribute). VFDT (Very Fast Decision Trees) is the implementation of Hoeffding trees,
with a few heuristics added, described in [7]; we basically identify both in this paper.

4 Decision Trees on Sliding Windows

We propose a general method for building incrementally a decision tree based on a
keeping sliding window of the last instances on the stream. To specify one such method,
we specify how to:

– place one or more change detectors at every node that will raise a hand whenever
something worth attention happens at the node

– create, manage, switch and delete alternate trees
– maintain estimators of only relevant statistics at the nodes of the current sliding

window
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We call Hoeffding Window Tree any decision tree that uses Hoeffding bounds, main-
tains a sliding window of instances, and that can be included in this general framework.
Figure 1 shows the pseudo-code of HOEFFDING WINDOW TREE.

HOEFFDING WINDOW TREE(Stream, δ)

1 � Let HT be a tree with a single leaf(root)
2 � Init sufficient node statistics at root
3 for each example (x, y) in Stream
4 do HWTREEGROW((x, y), HT, δ)

HWTREEGROW((x, y), HT, δ)

1 � Sort (x, y) to leaf l using HT
2 � Update sufficient node statistics
3 at leaf l and nodes traversed in the sort
4 if this node has an alternate tree Talt

5 HWTREEGROW((x, y), Talt, δ)
6 � Compute information gain G for each attribute
7 if G(Best Attr.)−G(2nd best)> ε =

√
R2 ln(1/δ)/(2n)a

8 then
9 � Split leaf on best attribute

10 for each branch
11 do � Start new leaf
12 and initialize sufficient node statistics
13 if one accuracy change detector has detected change
14 then
15 � Create an alternate tree with the new best attribute at its root, if there is none
16 if existing alternate tree is more accurate
17 then
18 � replace current node with alternate tree

a Here δ′ should be the Bonferroni correction of δ to account for the fact that many tests are
performed and we want all of them to be simultaneously correct with probability 1 − δ.
It is enough e.g. to divide δ by the number of tests performed so far. The need for this
correction is also acknowledged in [7], although in experiments the more convenient option
of using a lower δ was taken. We have followed the same option in our experiments for fair
comparison.

Fig. 1. Hoeffding Window Tree algorithm

4.1 HWT-ADWIN: Hoeffding Window Tree Using ADWIN

Recently, we proposed an algorithm termed ADWIN [3] (for Adaptive Windowing) that
is an estimator with memory and change detector. We use it to design HWT-ADWIN, a
new Hoeffding Window Tree that uses ADWIN as a change detector. The main advan-
tage of using a change detector as ADWIN is that as it has theoretical guarantees we can
extend this guarantees to the learning algorithms. ADWIN keeps a variable-length win-
dow of recently seen items, with the property that the window has the maximal length
statistically consistent with the hypothesis “there has been no change in the average
value inside the window”.
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ADWIN is parameter- and assumption-free in the sense that it automatically detects
and adapts to the current rate of change. Its only parameter is a confidence bound δ,
indicating how confident we want to be in the algorithm’s output, inherent to all algo-
rithms dealing with random processes.

Also important for our purposes,ADWIN does not maintain the window explicitly, but
compresses it using a variant of the exponential histogram technique in [6]. This means
that it keeps a window of length W using only O(log W ) memory and O(log W ) pro-
cessing time per item, rather than the O(W ) one expects from a naı̈ve implementation.

4.2 CVFDT

As an extension of VFDT to deal with concept change Hulten, Spencer, and Domin-
gos presented Concept-adapting Very Fast Decision Trees CVFDT [10] algorithm. We
review it here briefly and compare it to our method.

CVFDT works by keeping its model consistent with respect to a sliding window of
data from the data stream, and creating and replacing alternate decision subtrees when
it detects that the distribution of data is changing at a node. When new data arrives,
CVFDT updates the sufficient statistics needed to compute most heuristic measures,
including information gain at its nodes by incrementing the counts nijk corresponding
to the new examples and decrementing the counts nijk corresponding to the oldest
example in the window, which is effectively forgotten. CVFDT is a Hoeffding Window
Tree as it is included in the general method previously presented.

Two external differences among CVFDT and our method is that CVFDT has no
theoretical guarantees (as far as we know), and that it uses a number of parameters,
with default values that can be changed by the user - but which are fixed for a given
execution. Besides the example window length, it needs:

1. T0: after each T0 examples, CVFDT traverses all the decision tree, and checks
at each node if the splitting attribute is still the best. If there is a better splitting
attribute, it starts growing an alternate tree rooted at this node, and it splits on the
currently best attribute according to the statistics in the node.

2. T1: after an alternate tree is created, the following T1 examples are used to build
the alternate tree.

3. T2: after the arrival of T1 examples, the following T2 examples are used to test the
accuracy of the alternate tree. If the alternate tree is more accurate than the current
one, CVDFT replaces it with this alternate tree (we say that the alternate tree is
promoted).

The default values are T0 = 10, 000, T1 = 9, 000, and T2 = 1, 000. One can interpret
these figures as the preconception that often about the last 50, 000 examples are likely
to be relevant, and that change is not likely to occur faster than every 10, 000 examples.
These preconceptions may or may not be right for a given data source.

The main internal differences of HWT-ADWIN respect CVFDT are:

– The alternates trees are created as soon as change is detected, without having to
wait that a fixed number of examples arrives after the change. Furthermore, the
more abrupt the change is, the faster a new alternate tree will be created.
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– HWT-ADWIN replaces the old trees by the new alternates trees as soon as there is
evidence that they are more accurate, rather than having to wait for another fixed
number of examples.

These two effects can be summarized saying that HWT-ADWIN adapts to the scale of
time change in the data, rather than having to rely on the a priori guesses by the user.

5 Hoeffding Adaptive Trees

In this section we present Hoeffding Adaptive Tree as a new method that evolving
from Hoeffding Window Tree, adaptively learn from data streams that change over time
without needing a fixed size of sliding window. The optimal size of the sliding window
is a very difficult parameter to guess for users, since it depends on the rate of change of
the distribution of the dataset.

In order to avoid to choose a size parameter, we propose a new method for managing
statistics at the nodes. The general idea is simple: we place instances of estimators of
frequency statistics at every node, that is, replacing each nijk counters in the Hoeffding
Window Tree with an instance Aijk of an estimator.

More precisely, we present three variants of a Hoeffding Adaptive Tree or HAT, de-
pending on the estimator used:

– HAT-INC: it uses a linear incremental estimator x̂k = (1− 1/N)x̂k−1 + 1/N ·xk.
– HAT-EWMA: it uses an Exponential Weight Moving Average (EWMA) (α = .01)

x̂k = (1 − α)x̂k−1 + α · xk.
– HAT-ADWIN : it uses an ADWIN estimator. As the ADWIN instances are also

change detectors, they will give an alarm when a change in the attribute-class statis-
tics at that node is detected, which indicates also a possible concept change.

The main advantages of this new method over a Hoeffding Window Tree are:

– All relevant statistics from the examples are kept in the nodes. There is no need of
an optimal size of sliding window for all nodes. Each node can decide which of the
last instances are currently relevant for it. There is no need for an additional win-
dow to store current examples. For medium window sizes, this factor substantially
reduces our memory consumption with respect to a Hoeffding Window Tree.

– A Hoeffding Window Tree, as CVFDT for example, stores only a bounded part of
the window in main memory. The rest (most of it, for large window sizes) is stored
in disk. For example, CVFDT has one parameter that indicates the amount of main
memory used to store the window (default is 10,000). Hoeffding Adaptive Trees
keeps all its data in main memory.

5.1 Example of Performance Guarantee

In this subsection we show a performance guarantee on the error rate of HAT-ADWIN
on a simple situation using discrete attributes. Roughly speaking, it states that after a
distribution and concept change in the data stream, followed by a stable period, HAT-
ADWIN will start, in reasonable time, growing a tree identical to the one that VFDT
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would grow if starting afresh from the new stable distribution. Statements for more
complex scenarios are possible, including some with slow, gradual, changes, but require
more space than available here.

Theorem 1. Let D0 and D1 be two distributions on labelled examples. Let S be a data
stream that contains examples following D0 for a time T , then suddenly changes to us-
ing D1. Let t be the time that until VFDT running on a (stable) stream with distribution
D1 takes to perform a split at the node. Assume also that VFDT on D0 and D1 builds
trees that differ on the attribute tested at the root. Then with probability at least 1 − δ:

– By time t′ = T +c ·V 2 ·t log(tV ), HAT-ADWIN will create at the root an alternate
tree labelled with the same attribute as VFDT(D1). Here c ≤ 20 is an absolute
constant, and V the number of values of the attributes.1

– this alternate tree will evolve from then on identically as does that of VFDT(D1),
and will eventually be promoted to be the current tree if and only if its error on D1

is smaller than that of the tree built by time T .

If the two trees do not differ at the roots, the corresponding statement can be made for
a pair of deeper nodes.

Lemma 1. In the situation above, at every time t + T > T , with probability 1 − δ we
have at every node and for every counter (instance of ADWIN) Ai,j,k

|Ai,j,k − Pi,j,k| ≤
√

ln(1/δ′)T

t(t + T )

where Pi,j,k is the probability that an example arriving at the node has value j in its
ith attribute and class k.

Observe that for fixed δ′ and T this bound tends to 0 as t grows.
To prove the theorem, use this lemma to prove high-confidence bounds on the esti-

mation of G(a) for all attributes at the root, and show that the attribute best chosen by
VFDT on D1 will also have maximal G(best) at some point, so it will be placed at the
root of an alternate tree. Since this new alternate tree will be grown exclusively with
fresh examples from D1, it will evolve as a tree grown by VFDT on D1.

6 Experimental Evaluation

We tested Hoeffding Adaptive Trees using synthetic and real datasets. In the experi-
ments with synthetic datasets, we use the SEA Concepts [11]. In the longer version of
this paper [5], a changing concept dataset based on a rotating hyperplane is also used. In
the experiments with real datasets we use two UCI datasets [1] Adult and Poker-Hand
from the UCI repository of machine learning databases. In all experiments, we use the

1 This value of t′ is a very large overestimate, as indicated by our experiments. We are working
on an improved analysis, and hope to be able to reduce t′ to T + c · t, for c < 4.
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Table 1. SEA on-line errors using discrete attributes with 10% noise

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 16.99% 16.08% 14.82%
HAT-EWMA 16.98% 15.83% 14.64 %
HAT-ADWIN 16.86% 15.39% 14.73 %

HAT-INC NB 16.88% 15.93% 14.86%
HAT-EWMA NB 16.85% 15.91% 14.73 %
HAT-ADWIN NB 16.90% 15.76% 14.75 %

CVFDT |W | = 1, 000 19.47% 15.71% 15.81%
CVFDT |W | = 10, 000 17.03% 17.12% 14.80%

CVFDT |W | = 100, 000 16.97% 17.15% 17.09%

values δ = 10−4, T0 = 20, 000, T1 = 9, 000, and T2 = 1, 000, following the original
CVFDT experiments [10].

In all tables, the result for the best classifier for a given experiment is marked in
boldface, and the best choice for CVFDT window length is shown in italics.

We included an improvement over CVFDT (which could be made on the original
CVFDT as well). If the two best attributes at a node happen to have exactly the same
gain, the tie may be never resolved and split does not occur. In our experiments this
was often the case, so we added an additional split rule: when G(best) exceeds by three
times the current value of ε(δ, . . .), a split is forced anyway.

We have tested the three versions of Hoeffding Adaptive Tree, HAT-INC, HAT-
EWMA(α = .01), HAT-ADWIN, each with and without the addition of Naı̈ve Bayes
(NB) classifiers at the leaves. As a general comment on the results, the use of NB clas-
sifiers does not always improve the results, although it does make a good difference in
some cases; this was observed in [8], where a more detailed analysis can be found.

First, we experiment using the SEA concepts, a dataset with abrupt concept drift, first
introduced in [11]. This artificial dataset is generated using three attributes, where only
the two first attributes are relevant. All three attributes have values between 0 and 10.
We generate 400,000 random samples. We divide all the points in blocks with different
concepts. In each block, we classify using f1 + f2 ≤ θ, where f1 and f2 represent the
first two attributes and θ is a threshold value.We use threshold values 9, 8, 7 and 9.5 for
the data blocks. We inserted about 10% class noise into each block of data.

We test our methods using discrete and continuous attributes. The on-line errors re-
sults for discrete attributes are shown in Table 1. On-line errors are the errors measured
each time an example arrives with the current decision tree, before updating the statis-
tics. Each column reflects a different speed of concept change. We observe that CVFDT
best performance is not always with the same example window size, and that there is
no optimal window size. The different versions of Hoeffding Adaptive Trees have a
very similar performance, essentially identical to that of CVFDT with optimal window
size for that speed of change. More graphically, Figure 2 shows its learning curve using
continuous attributes for a speed of change of 100, 000. Note that at the points where
the concept drift appears HWT-ADWIN, decreases its error faster than CVFDT, due to
the fact that it detects change faster.



Adaptive Learning from Evolving Data Streams 257

10

12

14

16

18

20

22

24

26

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

31
6

33
7

35
8

37
9

40
0

Examples x 1000

E
rr

o
r 

R
at

e 
(%

)

HWT-ADWIN
CVFDT

Fig. 2. Learning curve of SEA Concepts using continuous attributes

10%

12%

14%

16%

18%

20%

22%

1.000 5.000 10.000 15.000 20.000 25.000 30.000

O
n

-l
in

e 
E

rr
o

r

CVFDT
HWT-ADWIN

0

0,5

1

1,5

2

2,5

3

3,5

CVFDT
w=1,000

CVFDT
w=10,000

CVFDT
w=100,000

HAT-INC HAT-EWMA HAT-
ADWIN

M
em

o
ry

 (
M

b
)

1000
10000
100000

a) b)

Fig. 3. a) On-line error on UCI Adult dataset, ordered by the education attribute and b) Memory
used on SEA Concepts experiments

We test Hoeffding Adaptive Trees on two real datasets in two different ways: with
and without concept drift. We tried some of the largest UCI datasets [1], and report
results on Adult and Poker-Hand. For the Covertype and Census-Income datasets, the
results we obtained with our method were essentially the same as for CVFDT (ours did
better by fractions of 1% only) – we do not claim that our method is always better than
CVFDT, but this confirms our belief that it is never much worse.

An important problem with most of the real-world benchmark data sets is that there
is little concept drift in them [12] or the amount of drift is unknown, so in many research
works, concept drift is introduced artificially. We simulate concept drift by ordering the
datasets by one of its attributes, the education attribute for Adult, and the first (un-
named) attribute for Poker-Hand. Note again that while using CVFDT one faces the
question of which parameter values to use, our method just needs to be told “go” and
will find the right values online.

The Adult dataset aims to predict whether a person makes over 50k a year, and
it was created based on census data. Adult consists of 48,842 instances, 14 attributes
(6 continuous and 8 nominal) and missing attribute values. The Poker-Hand dataset
consists of 1,025,010 instances and 11 attributes. Each record of the Poker-Hand dataset
is an example of a hand consisting of five playing cards drawn from a standard deck of
52. Each card is described using two attributes (suit and rank), for a total of 10 predictive
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Table 2. On-line classification errors for CVFDT and Hoeffding Adaptive Trees on Poker-Hand
data set

NO ARTIFICIAL

DRIFT DRIFT

HAT-INC 38.32% 39.21%
HAT-EWMA 39.48% 40.26%
HAT-ADWIN 38.71% 41.85%
HAT-INC NB 41.77% 42.83%
HAT-EWMA NB 24.49% 27.28%
HAT-ADWIN NB 16.91% 33.53%
CVFDT |W | = 1, 000 49.90% 49.94%
CVFDT |W | = 10, 000 49.88% 49.88 %
CVFDT |W | = 100, 000 49.89% 52.13 %

attributes. There is one Class attribute that describes the ”Poker Hand”. The order of
cards is important, which is why there are 480 possible Royal Flush hands instead of 4.

Table 2 shows the results on Poker-Hand dataset. It can be seen that CVFDT remains
at 50% error, while the different variants of Hoeffding Adaptive Trees are mostly below
40% and one reaches 17% error only. In Figure 3 we compare HWT-ADWIN error
rate to CVFDT using different window sizes. We observe that CVFDT on-line error
decreases when the example window size increases, and that HWT-ADWIN on-line
error is lower for all window sizes.

7 Time and Memory

In this section, we discuss briefly the time and memory performance of Hoeffding
Adaptive Trees. All programs were implemented in C modifying and expanding the
version of CVFDT available from the VFML [9] software web page. We have slightly
modified the CVFDT implementation to follow strictly the CVFDT algorithm explained
in the original paper by Hulten, Spencer and Domingos [10]. The experiments were
performed on a 2.0 GHz Intel Core Duo PC machine with 2 Gigabyte main memory,
running Ubuntu 8.04.

Consider the experiments on SEA Concepts, with different speed of changes: 1, 000,
10, 000 and 100, 000. Figure 3 shows the memory used on these experiments. HAT-INC
and HAT-EWMA, are the methods that use less memory. The reason for this fact is that
they don’t keep examples in memory as CVFDT, and that they don’t store ADWIN data
for all attributes, attribute values and classes, as HAT-ADWIN. We have used the default
10, 000 for the amount of window examples kept in memory, so the memory used by
CVFDT is essentially the same for W = 10, 000 and W = 100, 000, and about 10
times larger than the memory used by HAT-INC memory.

Figure 4 shows the number of nodes used in the experiments of SEA Concepts. We
see that the number of nodes is similar for all methods, confirming that the good results
on memory of HAT-INC is not due to smaller size of trees.

Finally, with respect to time we see that CVFDT is still the fastest method, but HAT-
INC and HAT-EWMA have a very similar performance to CVFDT, a remarkable fact
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Fig. 4. a) Number of Nodes used on SEA Concepts experiments and b) Time on SEA Concepts
experiments

given that they are monitoring all the change that may occur in any node of the main
tree and all the alternate trees. HAT-ADWIN increases time by a factor of 4, so it is still
usable if time or data speed is not the main concern.

8 Conclusions and Future Work

We have presented a general adaptive methodology for mining data streams with con-
cept drift, and and two decision tree algorithms. We have proposed three variants of
Hoeffding Adaptive Tree algorithm, a decision tree miner for data streams that adapts
to concept drift without using a fixed sized window. Contrary to CVFDT, they have
theoretical guarantees of performance, relative to those of VFDT.

In our experiments, Hoeffding Adaptive Trees are always as accurate as CVFDT
and, in some cases, they have substantially lower error. Their running time is similar in
HAT-EWMA and HAT-INC and only slightly higher in HAT-ADWIN, and their memory
consumption is remarkably smaller, often by an order of magnitude.

We can conclude that HAT-ADWIN is the most powerful method, but HAT-EWMA
is a faster method that gives approximate results similar to HAT-ADWIN. An obvious fu-
ture work is experimenting with the exponential smoothing factor α of EWMA methods
used in HAT-EWMA.

We would like to extend our methodology to ensemble methods such as boosting,
bagging, and Hoeffding Option Trees.
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