

Lecture Notes in Computer Science 5772
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Niall M. Adams Céline Robardet
Arno Siebes Jean-François Boulicaut (Eds.)

Advances
in Intelligent
Data Analysis VIII

8th International Symposium
on Intelligent Data Analysis, IDA 2009
Lyon, France, August 31 – September 2, 2009
Proceedings

13

Volume Editors

Niall M. Adams
Imperial College London
Department of Mathematics
South Kensington Campus, London SW7 2PG, UK
E-mail: n.adams@imperial.ac.uk

Céline Robardet
Jean-François Boulicaut
University of Lyon, INSA Lyon, LIRIS CNRS UMR 5205
Bâtiment Blaise Pascal, F-69621 Villeurbanne, France
E-mail: {celine.robardet,jean-francois.boulicaut}@insa-lyon.fr

Arno Siebes
University of Utrecht
Department of Information and Computer Science
Utrecht, The Netherlands
E-mail: Arno.Siebes@cs.uu.nl

Library of Congress Control Number: 2009933040

CR Subject Classification (1998): H.3, I.5, G.3, J.1, J.3, H.3.3, I.5.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-03914-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03914-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12745715 06/3180 5 4 3 2 1 0

Preface

The general theme of the Intelligent Data Analysis (IDA) Symposia is the in-
telligent use of computers in complex data analysis problems. The field has
matured sufficiently that some re-consideration of our objectives was required in
order to retain the distinctiveness of IDA. Thus, in addition to the more tradi-
tional algorithm- and application-oriented submissions, we sought submissions
that specifically focus on aspects of the data analysis process. For example, in-
teractive tools to guide and support data analysis in complex scenarios. With
the increasing availability of automatically collected data, tools that intelligently
support and assist human analysts are becoming important.

IDA-09, the 8th International Symposium on Intelligent Data Analysis, took
place in Lyon from August 31 to September 2, 2009. The invited speakers were
Paul Cohen (University of Arizona, USA) and Pablo Jensen (ENS Lyon, France).
The meeting received more than 80 submissions. The Programme Committee
selected 33 submissions for publication: 18 for full oral presentation, and 15
for poster and short oral presentation. Each contribution was evaluated by three
experts and has been allocated 12 pages in the proceedings. The accepted papers
cover a broad range of topics and applications, and include contributions on the
refined focus of IDA.

The symposium was supported by INSA Lyon (Institut National des Sciences
Appliquées de Lyon) and by IXXI (Rhône-Alpes region Complex Systems Insti-
tute). We also thank our generous sponsors, La Région Rhône-Alpes and Le
Ministère de l’Enseignement Supérieur et de la Recherche. We would like to
express our gratitude to the many people involved in the organization of the
symposium and the reviewing of submissions. The local Organizing Committee
was co-chaired by Guillaume Beslon and Céline Robardet, and the committee
members were Löıc Cerf, Serge Fenet, Pierre-Nicolas Mougel and David Parsons
(all at INSA Lyon, France). We thank them for making the conference an un-
forgettable event. We are grateful to Joaquina Labro from Insavalor s.a., who
managed the registration process. We are thankful for the support of the IDA
council, especially for the advice of Michael Berthold, Joost Kok, Xiaohui Liu
and José-Maria Peña. Finally we would like to thank Richard van de Stadt and
Springer for preparing the proceedings.

August 2009 Niall Adams
Céline Robardet

Arno Siebes
Jean-François Boulicaut

Conference Organization

Conference Chair

Jean-François Boulicaut University of Lyon, France

Programme Committee

Niall Adams
(PC Co-chair) Imperial College London, UK

Fabrizio Angiulli University of Calabria, Italy
Alexandre Aussem University of Lyon, France
Tony Bagnall University of East Anglia, UK
Riccardo Bellazzi University of Pavia, Italy
Bettina Berendt KU Leuven, Belgium
Daniel Berrar Systems Biology Institute, Tokyo, Japan
Michael Berthold University of Konstanz, Germany
Klemens Böhm University of Karlsruhe, Germany
Christian Borgelt European Centre for Soft Computing, Spain
Elizabeth Bradley University of Colorado, USA
Pavel Brazdil University of Porto, Portugal
Bruno Crémilleux University of Caen, France
Werner Dubitzky University of Ulster, UK
Sašo Džeroski Jozef Stefan Institute, Slovenia
Fazel Famili IIT - NRC, Canada
Jason Farquhar University of Nijmegen, The Netherlands
Ad Feelders University of Utrecht, The Netherlands
Ingrid Fischer University of Konstanz, Germany
Eibe Frank University of Waikato, New Zealand
Elisa Fromont University of Saint-Etienne, France
Johannes Fürnkranz TU Darmstadt, Germany
Alex Gammerman University of London, UK
Gérard Govaert TU Compiègne, France
Pilar Herrero Polytechnic University of Madrid, Spain
Alexander Hinneburg University of Halle, Germany
Frank Höppner University of Applied Sciences, Germany
Jaakko Hollmén Helsinki University of Technology, Finland
Eyke Hüllermeier University of Marburg, Germany
Daniel Keim University of Konstanz, Germany
Frank Klawonn University of Wolfenbuettel, Germany
Jiri Klema Czech Technical University, Czech Republic
Arno Knobbe Leiden University, The Netherlands

VIII Organization

Joost Kok Leiden University, The Netherlands
Peter Kokol University of Maribor, Slovenia
Walter Kosters Leiden University, The Netherlands
Paul Krause University of Surrey, UK
Rudolf Kruse University of Magdeburg, Germany
Evelina Lamma University of Ferrara, Italy
Pedro Larranaga TU Madrid, Spain
Mark Last Ben-Gurion University of the Negev, Israel
Nada Lavrac Jozef Stefan Institute, Slovenia
Steven Lemm Fraunhofer FIRST Institute, Germany
Hans-J. Lenz Free University Berlin, Germany
Xiaohui Liu Brunel University, UK
Rainer Malaka University of Bremen, Germany
Trevor Martin University of Bristol, UK
Dunja Mladenič Jozef Stefan Institute, Slovenia
Maria-Carolina Monard University of Sao Paulo, Brasil
Clayton Morrison University of Arizona, USA
Alberto Munoz Garcia Carlos III University, Spain
Mohamed Nadif Paris Descartes University, France
Detlef Nauck British Telecom, UK
Andreas Nürnberger University of Magdeburg, Germany
Tim Oates University of Maryland Baltimore, USA
Nicos Pavlidis Imperial College London, UK
Mykola Pechenizkiy TU Eindhoven, The Netherlands
José-Maria Peña TU Madrid, Spain
Ruggero Pensa University of Turin, Italy
Adriana Prado University of Antwerp, Belgium
Bhanu Prasad Florida A&M University, USA
Ronaldo Prati Universidade Federal do ABC, Brazil
Christophe Rigotti University of Lyon, France
Fabrizio Riguzzi University of Ferrara, Italy
Céline Robardet

(PC Co-chair) University of Lyon, France
Céline Rouveirol University Paris-Nord, France
Stefan Rüping TU Dortmund, Germany
Antonio Salmeron University of Almeria, Spain
Paola Sebastiani Boston University, USA
Arno Siebes (PC Co-chair) Utrecht University, The Netherlands
Maarten van Someren University of Amsterdam, The Netherlands
Myra Spiliopoulou Magdeburg University, Germany
Martin Spott British Telecom, UK
Stephen Swift Brunel University, UK
Dimitris Tasoulis Imperial College London, UK
Maguelonne Teisseire University of Montpellier, France

Organization IX

Hannu Toivonen University of Helsinki, Finland
Koji Tsuda Max Planck Institute, Germany
Allan Tucker Brunel University, UK
Antony Unwin University of Augsburg, Germany
Richard Weber University of Chile, Chile
Stefan Wrobel Fraunhofer IAIS, Germany

Local Arrangements Chairs

Guillaume Beslon University of Lyon, France
Céline Robardet University of Lyon, France

Local Organizing Committee

Löıc Cerf University of Lyon, France
Serge Fenet University of Lyon, France
Pierre-Nicolas Mougel University of Lyon, France
David Parsons University of Lyon, France

Additional Referees

Hidir Aras
Tassadit Bouadi
Sandra Bringay
Laurent Boyer
Matthias Bracht
Massimiliano Cattafi
Bertrand Cuissart
Frank Eichinger
Mohamed Elati
Fabio Fassetti
Denis Ferraretti
Maxim Foursa
Valentin Gjorgjioski
Henrik Grosskreutz
Ajay Jasra
Lisa Di Jorio
Joerg Kindermann

Inmaculada López
Antonio LaTorre
Dongning Luo
Florian Mansmann
Christian Moewes
Santiago Muelas
Pance Panov
Robert Porzel
Natalja Punko
Iead Rezek
Georg Ruß
Matthias Steinbrecher
Mika Sulkava
Gerben de Vries
David Weston
Christian von der Weth
Bernard Zenko

Table of Contents

Invited Papers

Intelligent Data Analysis in the 21st Century . 1
Paul Cohen and Niall Adams

Analyzing the Localization of Retail Stores with Complex Systems
Tools . 10

Pablo Jensen

Selected Contributions 1 (Long Talks)

Change (Detection) You Can Believe in: Finding Distributional Shifts
in Data Streams . 21

Tamraparni Dasu, Shankar Krishnan, Dongyu Lin,
Suresh Venkatasubramanian, and Kevin Yi

Exploiting Data Missingness in Bayesian Network Modeling 35
Sérgio Rodrigues de Morais and Alex Aussem

DEMScale: Large Scale MDS Accounting for a Ridge Operator and
Demographic Variables . 47

Stephen L. France and J. Douglas Carroll

How to Control Clustering Results? Flexible Clustering Aggregation 59
Martin Hahmann, Peter B. Volk, Frank Rosenthal,
Dirk Habich, and Wolfgang Lehner

Compensation of Translational Displacement in Time Series Clustering
Using Cross Correlation . 71

Frank Höppner and Frank Klawonn

Context-Based Distance Learning for Categorical Data Clustering 83
Dino Ienco, Ruggero G. Pensa, and Rosa Meo

Semi-supervised Text Classification Using RBF Networks 95
Eric P. Jiang

Improving k-NN for Human Cancer Classification Using the Gene
Expression Profiles . 107

Manuel Mart́ın-Merino and Javier De Las Rivas

Subgroup Discovery for Test Selection: A Novel Approach and Its
Application to Breast Cancer Diagnosis . 119

Marianne Mueller, Rómer Rosales, Harald Steck, Sriram Krishnan,
Bharat Rao, and Stefan Kramer

XII Table of Contents

Trajectory Voting and Classification Based on Spatiotemporal
Similarity in Moving Object Databases . 131

Costas Panagiotakis, Nikos Pelekis, and Ioannis Kopanakis

Leveraging Call Center Logs for Customer Behavior Prediction 143
Anju G. Parvathy, Bintu G. Vasudevan, Abhishek Kumar, and
Rajesh Balakrishnan

Condensed Representation of Sequential Patterns According to
Frequency-Based Measures . 155

Marc Plantevit and Bruno Crémilleux

ART-Based Neural Networks for Multi-label Classification 167
Elena P. Sapozhnikova

Two-Way Grouping by One-Way Topic Models . 178
Eerika Savia, Kai Puolamäki, and Samuel Kaski

Selecting and Weighting Data for Building Consensus Gene Regulatory
Networks . 190

Emma Steele and Allan Tucker

Incremental Bayesian Network Learning for Scalable Feature
Selection . 202

Grégory Thibault, Alex Aussem, and Stéphane Bonnevay

Feature Extraction and Selection from Vibration Measurements for
Structural Health Monitoring . 213

Janne Toivola and Jaakko Hollmén

Zero-Inflated Boosted Ensembles for Rare Event Counts 225
Alexander Borisov, George Runger, Eugene Tuv, and
Nuttha Lurponglukana-Strand

Selected Contributions 2 (Short Talks)

Mining the Temporal Dimension of the Information Propagation 237
Michele Berlingerio, Michele Coscia, and Fosca Giannotti

Adaptive Learning from Evolving Data Streams . 249
Albert Bifet and Ricard Gavaldà

An Application of Intelligent Data Analysis Techniques to a Large
Software Engineering Dataset . 261

James Cain, Steve Counsell, Stephen Swift, and Allan Tucker

Which Distance for the Identification and the Differentiation of
Cell-Cycle Expressed Genes? . 273

Alpha Diallo, Ahlame Douzal-Chouakria, and Francoise Giroud

Table of Contents XIII

Ontology-Driven KDD Process Composition . 285
Claudia Diamantini, Domenico Potena, and Emanuele Storti

Mining Frequent Gradual Itemsets from Large Databases 297
Lisa Di-Jorio, Anne Laurent, and Maguelonne Teisseire

Selecting Computer Architectures by Means of Control-Flow-Graph
Mining . 309

Frank Eichinger and Klemens Böhm

Visualization-Driven Structural and Statistical Analysis of Turbulent
Flows . 321

Kenny Gruchalla, Mark Rast, Elizabeth Bradley, John Clyne, and
Pablo Mininni

Distributed Algorithm for Computing Formal Concepts Using
Map-Reduce Framework . 333

Petr Krajca and Vilem Vychodil

Multi-Optimisation Consensus Clustering . 345
Jian Li, Stephen Swift, and Xiaohui Liu

Improving Time Series Forecasting by Discovering Frequent Episodes
in Sequences . 357

Francisco Mart́ınez-Álvarez, Alicia Troncoso, and José C. Riquelme

Measure of Similarity and Compactness in Competitive Space 369
Nikolay Zagoruiko

Bayesian Solutions to the Label Switching Problem 381
Kai Puolamäki and Samuel Kaski

Efficient Vertical Mining of Frequent Closures and Generators 393
Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, and Robert Godin

Isotonic Classification Trees . 405
Rémon van de Kamp, Ad Feelders, and Nicola Barile

Author Index . 417

Intelligent Data Analysis in the 21st Century

Paul Cohen1 and Niall Adams2

1 University of Arizona
cohen@cs.arizona.edu

2 Imperial College London
n.adams@imperial.ac.uk

Abstract. When IDA began, data sets were small and clean, data prove-
nance and management were not significant issues, workflows and grid
computing and cloud computing didn’t exist, and the world was not
populated with billions of cellphone and computer users. The original
conception of intelligent data analysis — automating some of the rea-
soning of skilled data analysts — has not been updated to account for
the dramatic changes in what skilled data analysis means, today. IDA
might update its mission to address pressing problems in areas such as
climate change, habitat loss, education, and medicine. It might anticipate
data analysis opportunities five to ten years out, such as customizing ed-
ucational trajectories to individual students, and personalizing medical
protocols. Such developments will elevate the conference and our com-
munity by shifting our focus from arbitrary measures of the performance
of isolated algorithms to the practical, societal value of intelligent data
analysis systems.

Each time we hold an IDA conference, a distinguished conference committee
thinks hard about a theme and a distinguished researcher writes a keynote lecture
about what Intelligent Data Analysis is or might be. We suspect that all this
hard thinking does not influence the kinds of papers we receive. Every conference
season we review and accept roughly the same kinds of papers as appear at the
data mining and machine learning conferences.

The subject of the conference should not be a fifteen year old vision of intel-
ligent data analysis, nor should the subject default to a sample of current work
in data mining and machine learning. The conference should provide a venue for
future interpretations of Intelligent Data Analysis. We should start publishing
in areas that are developing now and will reach full bloom in five years. At the
same time, we should stay true to the traditional goals of the IDA conference.

The first symposium on Intelligent Data Analysis was organized by Xiaohui
Liu and held in Baden-Baden in 1995, the same year as the first International
Conference on Knowledge Discovery and Data Mining. Professor Liu’s idea was
that data analysis, like other kinds of human expert problem solving, could be
done by computers:

[Computers] should also be able to perform complex and laborious
operations using their computational power so that the analysts can

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 1–9, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 P. Cohen and N. Adams

focus on the more creative part of the data analysis using knowledge
and experience. Relevant issues include how to divide up work between
human and computer; how to ensure that the computer and human stay
“in synch” as they work on parts of a data analysis problem; how to
seamlessly integrate human domain and common sense knowledge to
inform otherwise stupid search procedures such as stepwise regression;
how to present data so human eyes can see patterns; how to develop an
integrated data analysis environment...[6]

To a remarkable extent, these issues have been addressed and Liu’s vision of
automated data processing has been achieved. Computers do perform complex
and laborious operations, we have integrated data analysis environments (such
as R [7]) and packages of algorithms (such as weka [9]). The community has
settled on a small collection of common “generic tasks,” [1] such as prediction,
classification, clustering, model selection, and various kinds of estimation. These
tasks are more specific than “exploring a dataset,” and yet are general enough
to cover data from disparate domains such as finance and marketing, biology
and ecology, psychology and education. Less progress has been made toward
integrated, knowledge-intensive, human-computer systems, but, as we suggest
later in this paper, this goal might not be as desirable as we once thought. If the
IDA community has achieved most of its goals and abandoned those it cannot
achieve, what remains to be done? IDA is today a data mining conference, and
data mining has achieved the kind of maturity that produces only incremental
progress. What will our next challenges be?

We will address two perennial answers to this question before turning to some
new challenges.

1 Autonomous Expert Data Analysis

The kinds of autonomy we see in data analysis today are not the kinds we antic-
ipated in 1995. Following the “knowledge revolution” and the widespread com-
mercialization of expert systems, we expected intelligent data analysis systems
to attack data sets with the strategies of expert human data analysts. Few such
systems were built. It is worth reviewing one of them, built by Rob St. Amant as
part of his PhD research, to understand why there are not more systems like it.

Aide was a mixed-initiative planner for data exploration, meaning it and a
human user could explore a dataset together, with aide sometimes following the
user’s lead and sometimes striking out on its own [2,3]. Its knowledge about data
analysis was stored in plans and control knowledge. Plans contain sequences of
data-processing actions, as well as preconditions and postconditions. In general,
preconditions specify when a plan can be executed, not when it should be. When
more than one plan applies, control knowledge ranks them. It is the job of control
knowledge to make the data analysis follow a coherent path, rather than jumping
around (which would be hard for users to follow). Of course, a human user can
direct aide to do anything he or she pleases, so some control knowledge pertains
to inferring or anticipating the user’s focus.

Intelligent Data Analysis in the 21st Century 3

At the time, it made sense for aide to be a domain-independent data analyst,
so its plans and control knowledge referred to the form of data, not to its content
or what it represents. aide was based on the assumption that the random vari-
ables in a dataset were actually connected by causal or functional relations, and
the job of data analysis is to build one or more models of the variables and their
relations — one or more graphs, if you will, in which nodes represent variables
and arcs represent relations. aide was not a system for analyzing financial data,
or intelligence analysis, or phenotyping, all of which are today aided by domain-
specific tools. It was instead a system for general purpose data analysis. It was
shown to improve data exploration, in the sense that users of aide were able to
explore more of a dataset and figure out the relationships between variables more
thoroughly and accurately than users without aide. This test was appropriate
for a domain-independent data analysis tool, but it was not realistic: Generally
one approaches a dataset with particular questions in mind, not looking for all
significant relations between variables.

Although aide did a lot of things right — mixed initiative exploration, explicit
plans and control knowledge, a clear user interface, and plenty of data analysis
functionality — it could never work in practice. Its understanding of data (ran-
dom variables in functional or causal relations) and the user’s intentions was
too weak to be a basis for really focused and intelligent analysis. If intelligent
data analysis means something like expert systems for data exploration, then
these systems will have to be a lot more expert. They will have to specialize in
financial fraud data, or climate change data, and so on.

Another reason that programs like aide did not start a revolution might be
that they did little to help human analysts. We have been here before: At first
blush, stepwise multiple regression seems like an ideal use of computer power, but
in practice, instead of letting the machine explore huge numbers of regression
models, most analysts prefer to build them by hand. Ignorant of what is be-
ing modeled, stepwise multiple regression blunders through the hunt and rarely
brings home a tasty model; or it brings home too many, overlapping, similarly
performing models because it hasn’t the analyst’s knowledge to rank them. Aide
was more intelligent than stepwise multiple regression, but it probably wasn’t
intelligent enough to make analysts relinquish the creative parts of data analysis
they find relatively easy and enjoyable. Much of its knowledge and intelligence
was for planning analyses and working alongside analysts. The closest thing we
have seen to this functionality in commercial systems is the graphical language in
SPSS’s PASW Modeler, which allows analysts — but not the system — to plan
and program workflows for their analyses. By analogy, most cooks are happy
for assistance with chopping, stirring, mashing, scrubbing and cleaning, but few
cooks want help with inventing, menu planning, tasting, or observing the pleasure
their food brings to others; especially if the “help” results in an inferior meal.

If past is prologue, we should not expect the original vision of IDA, as exem-
plified by aide, to be productive in future. Modern data mining software can
chop, mash and scrub data, but we should not expect sophisticated analysis
— beautiful models, new discoveries, finding parallel phenomena in disparate

4 P. Cohen and N. Adams

datasets, clever workflows, detection of semantic anomalies, and the like — until
we make semantical reasoning about data a priority. By semantical reasoning,
we mean reasoning about the phenomena that data represents. Although it has
been a theme of every IDA conference, the IDA community evidently reserves se-
mantical reasoning about data for human data analysts, and very little has been
done to make machines that are capable of reasoning deeply about the content of
data. Of course, this attention to form instead of content characterizes virtually
all of Artificial Intelligence.

2 Challenge Problems

Periodically, IDA considers creating a community around challenge problems.
This has worked well in some fields, particularly robotic soccer and robotic
autonomous vehicles, and less well in others, notably the KDD Cup. Why are
some challenges successful and others less so? The organization that runs the
annual robotic soccer competitions has a fifty year goal: By the year 2050, develop
a team of fully autonomous, humanoid robots that can win against the human
world soccer champion team. [8] Progress toward this goal is steered by an expert
committee that changes the rules of the competition and adds new intermediate
challenges every year. These changes are monotonic in the sense that researchers
can base next year’s work on last year’s work, and new competitors can join
relatively easy by adopting state of the art technology. Robotic soccer has a
relatively low cost of admission. It is enormously popular and captures the hearts
and minds of participants and the general public. Bragging rights go to individual
teams, but the biggest winner is the community as a whole, which gains new
members and makes steady, impressive progress every year.

One methodological strength of robotic soccer is that individual algorithms
matter less than complete soccer-playing systems. The same was true in
St. Amant’s aide system. While it is desirable to include the fastest and most ac-
curate algorithms available, the marginal benefits of better algorithms will often
be negligible, especially over many datasets. Systems like aide introduce some
pragmatism into the evaluation of new algorithms. Perhaps your changepoint
analyzer, or decision tree inducer, or association rule miner is slightly faster or
more accurate than last year’s model on datasets of your own choosing, but
would a data analyst notice a difference if your new algorithm was substituted
for an old one in aide? Would the analyst be more productive? Admittedly,
this question might be harder to answer than a simple evaluation of speed or
accuracy, but it is the real usability question, whereas speed and accuracy are
only proxies for usability.

The KDD Cup does not encourage the development of complete systems, nor
does it steer the community toward any long-term goal [5]. The problems it poses
each year are important (several have been medical problems), but each is nar-
rowly defined by a data set and performance targets. These problems emphasize
high performance for individual algorithms, and do not require the development
of systems that are complete in any sense. Nor is a progression of data mining ca-
pabilities apparent in the choice of KDD Cup problems. One has the sense that

Intelligent Data Analysis in the 21st Century 5

the problems could have been offered to the community in a different order with
essentially the same results. The state of the art isn’t being steered.

3 New Challenges for Intelligent Data Analysis

The IDA community should pick one or more significant problems that depend on
intelligent data analysis, set a goal for a decade or longer in the future, and steer
ourselves to achieve it. The choice of problems should mirror our aspirations for
intelligent data analysis. Good problems will be bigger than individuals or small
groups of human analysts can manage. They will feature every aspect of data anal-
ysis: acquisition, cleaning, storage, markup, analysis, visualization, and archiving
and dissemination of results. They will require every kind of reasoning about data
and the algorithms that process it: reasoning about provenance, design of work-
flows, and interpretation of results. Most importantly, good challenge problems
will require machines to think about the phenomena that data represent — to
think about the content or semantics of data. Here are some examples:

The Scientific Discovery Challenge. By the year 2030, a computer program will
make a significant scientific discovery (indicated by publication in Science or
Nature, or a comparable venue, or by the granting of an important patent).
To qualify, the program will have to formulate a theory, direct the search for
evidence, analyze the data, and explain the theory and supporting evidence in a
formal language. Natural language understanding is not a necessary part of the
challenge problem, but the ability to find and reason about relevant knowledge in
the literature might be valuable. To demonstrate that it is more than an assistant
to a human scientist (who does the hard intellectual work) the program will have
to pass some tests that any human scientist is expected to pass; for example,
the program should be able to say whether and why a hypothetical result is
consistent or inconsistent with its theory.

A specific scientific discovery challenge could be to automatically construct
a gene regulatory network for an important cascade or developmental process.
Increasingly, biologists turn to modeling techniques that are familiar to us in the
IDA community: Stochastic processes, Bayesian networks, the Viterbi algorithm
and related methods. Today, there are only a few examples of automated con-
struction of gene regulatory networks, and those are single algorithms, rather
than systems that hypothesize a model by integrating the results of multiple
data mining algorithms, and gather data to support or contradict it.

The Global Quality-of-Life Monitoring System. By 2060, every living human will
have some kind of communication device that is at least as powerful, computa-
tionally, as today’s most advanced cell phones. Each human will be an intelligent
source of data. IDA can contribute to the infrastructure and algorithms necessary
to provide real-time, high-resolution fusion of the data in service of research and
policy. Challenges are to monitor habitat loss, species redistribution, erosion, wa-
ter quality and management, epidemics and pandemics, and other consequences
of climate change and population growth.

6 P. Cohen and N. Adams

A specific, relatively near-term challenge problem might go like this: Model the
population dynamics and food webs of foxes in London given data from a dedi-
cated web site where residents can report sightings, indicators (e.g., scat, prints),
and behaviors of foxes and other predators and prey. To qualify, a computer pro-
gram would have to demonstrate autonomy in several areas of intelligent data
analysis: Knowing what to do with new data (e.g., where to put it in a data set,
cleaning it, handling missing values, flagging anomalies); directing data-gathering
resources in an efficient way; planning a workflow of operations to build a specified
kind of model (e.g., a food web) and estimate its parameters; flagging parameter
values, data values, or model predictions that are unusual or anomalous (e.g., if
the model predicted a huge jump in the fox population of Islington).

Similar similar challenges might involve automated modeling of human popu-
lation dynamics, modeling effects of climate change through widely distributed
monitoring of spring blooming and densities of species, and modeling evaporation
(see below).

The Personalized Protocol. Some of the most important activities in life are con-
trolled by protocols and standards that make little if any provision for differences
between individuals. Procedures in intensive care, chemotherapy protocols, other
kinds of drug therapy, primary and secondary education, even the mutual funds
in which we invest, are quite generic, and rarely are tailored to particular individ-
uals. However, there are hints that personalized protocols are both effective and
profitable. Designer drugs, gene therapies, and “lifecycle” investments (which
adjust portfolio parameters according to one’s age and closeness to retirement)
are examples of protocols that are personalized to some degree. Personalization
requires data, of course, and the whole idea of personalizing medical care or
education might fail because of legal and ethical challenges. But let us imagine
that information technologies will permit us to both gather data and protect the
rights of the people who provide it. Then we can envision a Personalized Proto-
col Challenge: To personalize any high-value procedure to maximize its utility
to any individual.

As stated, this sounds like a planning problem or a sequential decision prob-
lem to be optimized by policy iteration, reinforcement learning, or a related
optimization method. However, the difficult work is not to run one of these algo-
rithms but to design the state space and objective function to be optimized. In
terms of the old dichotomy between model specification and model estimation,
data mining is pretty good at the latter, but the former is still in the realm of
intelligent data analysis, and, thus, is a fit challenge for us.

These challenges have several things in common: Each is significant and could
affect the survival of species, including our own. Each assumes enormous amounts
of data generated by distributed sources. The Large Hadron Collider is a point-
source of high-quality data, whereas the world’s citizens are a distributed source
of variable-quality data. Consequently, we will need new research in gathering,
cleaning, and fusing data, all of which arrives asynchronously, yet must some-
times be integrated to construct a temporal or developmental story. Each of the
challenges stresses our ability to model systems of dependencies, whether they

Intelligent Data Analysis in the 21st Century 7

are gene regulatory systems, ecologies, or social systems. Survival in the modern
world will require a new science of complex systems, and statistical methods for
discovering and estimating the parameters of these systems. The intelligent data
analysis community should not sit this one out, but should take advantage of
new opportunities for research and development.

Each of the challenges requires the IDA community to be more outward-
looking, less concerned with the arcana of algorithms, more concerned with
helping scientists ensure our future well-being. To respond effectively to any
of the challenges, we will have to think more about data provenance, metadata
and search for data, reasoning about the content or meaning of the data, user
interfaces, visualizations of results, privacy and other ethical issues, in addition
to the algorithmic research we usually do.

If we adopt a challenge that uses humans as data sources, such as the Global
Quality-of-Life Monitoring System, then we should recognize that humans are
both producers of raw data and consumers of knowledge, and the same com-
munication infrastructure that supports data capture can support knowledge
distribution. Said differently, there will be opportunities to engage people in sci-
ence and social science, to educate them, to empower them to influence policy,
and to create a sense that communities cross national borders. At the University
of Arizona this reciprocal relationship between scientists and citizens is called
citizen science. The science of evaporation provides a nice illustration. Evapora-
tion matters in Arizona and in the arid lands that comprise 30% of the Earth’s
land surface. (If current models of climate change are correct, this proportion
will increase dramatically.) More than 90% of the water that reaches the Sono-
ran Desert in Arizona evaporates back into the atmosphere, but scientists don’t
know how plants affect this process. There are no good analytical models of
evaporation. At the Biosphere 2 facility, scientists are studying empirically how
plant density and configurations affect evaporation, but it is slow work, and the
number of factors that affect the results are daunting. Recently, our colleague
Clayton Morrison, working with the Biosphere 2 scientists, built a version of
their experiment to be run by children in classrooms in Tucson [4]. The kids
benefit by being engaged in real science, run by local scientists, on locally im-
portant issues. The scientists benefit from data collected by the kids. And those
of us who live in arid lands benefit from the resulting science.

How can IDA participate in citizen science? A natural role for IDA is to
help scientists transform data into knowledge. In the evaporation experiment,
for instance, this means transforming spatial and temporal data into models
of evaporation that account for complex dependencies between types and dis-
tributions of plants and soils. Another natural role for IDA is to optimize the
tradeoff between the quality and quantity of data. Having monitored the gener-
ation every data point in the Tucson classrooms, we know that children produce
lower-quality data than trained scientists do. But there are many children and
relatively few trained scientists. We look forward to new methods for cleaning,
censoring, and otherwise editing enormous data sets that are a bit grubbier than
most scientists are used to.

8 P. Cohen and N. Adams

Whether IDA runs challenge problems of the kind we described earlier, or re-
mains a conventional conference, it should expand its view of the field. What has
been an algorithms conference should become a systems conference, where the
systems typically will have components for data gathering, data processing, and
disseminating results, and are built to solve problems that matter to society. We
should encourage papers on crowd sourcing, social network analysis, experimen-
tal economics, new data markup schemas, mobile education, and other topics in
the general areas of data gathering, data processing and disseminating results. We
might accept papers on the ethics of semiautomated decision-making (if a credit
scoring system misclassifies you, who is responsible, and what are the legal and
ethical considerations?). We should particularly value papers that demonstrate
reciprocity between citizens and scientists. The conference should recognize that
systems may be harder to evaluate than algorithms, especially when these sys-
tems include humans as data sources or expert data processors, and it should ad-
just reviewing criteria accordingly. New criteria should reward autonomous and
mixed-initiative analysis; integration of analysis with data management, workflow
management, and new ways to present and justify results; integration of multiple
data sets from different sources within analyses; and automated adjustment of al-
gorithm parameters, so they don’t have to be tuned by hand.

In conclusion, IDA can look forward to success if it organizes itself around
problems that both matter to society and afford opportunities for basic research.
These problems are not proxies for important problems (as robot soccer is a
proxy for more important things to do with teams of mobile robots) but are
themselves important. Good problems can be defined with a few, nontechnical
words, and they have clear criteria and metrics for success. The IDA community
could adopt one or a few, and organize annual challenges around them, using
them to steer research toward major, long-term goals. As a practical matter,
these problems should generate research funding for some years to come. Finally,
we will find that all good, important problems already have people working on
them: biologists, sociologists, economists, ecologists and so on. We should not
be scared away but should remember our heritage: The job of intelligent data
analysis is not to create more data analysis algorithms, but to make sense of data,
nearly all of which is generated by experts in fields other than our own. These
people need intelligent data analysis, and we need colleagues and intellectual
challenges, and something more substantial than a half-point improvement in
classification accuracy to demonstrate what we’re worth.

References

1. Chandrasekaran, B.: Generic tasks in knowledge-based reasoning: High-level build-
ing blocks for expert systems design. IEEE Expert 1(3), 23–30 (1986)

2. St. Amant, R., Cohen, P.R.: Interaction With a Mixed-Initiative System for Ex-
ploratory Data Analysis. Knowledge-Based Systems 10(5), 265–273 (1998)

3. St. Amant, R., Cohen, P.R.: Intelligent Support for Exploratory Data Analysis. The
Journal of Computational and Graphical Statistics (1998)

4. http://www.cs.arizona.edu/~clayton/evap-web/

http://www.cs.arizona.edu/~clayton/evap-web/

Intelligent Data Analysis in the 21st Century 9

5. http://www.sigkdd.org/kddcup/index.php

6. http://people.brunel.ac.uk/~csstxhl/IDA/IDA_1995.pdf

7. The R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria (2009),
http://www.R-project.org

8. http://www.robocup.org/

9. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

http://www.sigkdd.org/kddcup/index.php
http://people.brunel.ac.uk/~csstxhl/IDA/IDA_1995.pdf
http://www.R-project.org
http://www.robocup.org/

Analyzing the Localization of Retail Stores with
Complex Systems Tools

Pablo Jensen

Institut des Systèmes Complexes Rhône-Alpes, IXXI-CNRS,
Laboratoire de Physique, Ecole Normale Supérieure de Lyon and LET-CNRS,

Université Lyon-2, 69007 Lyon, France

Abstract. Measuring the spatial distribution of locations of many en-
tities (trees, atoms, economic activities, . . .), and, more precisely, the
deviations from purely random configurations, is a powerful method to
unravel their underlying interactions. I study here the spatial organiza-
tion of retail commercial activities. From pure location data, network
analysis leads to a community structure that closely follows the com-
mercial classification of the US Department of Labor. The interaction
network allows to build a ’quality’ index of optimal location niches for
stores, which has been empirically tested.

1 Introduction

Walking in any big city reveals the extreme diversity of retail store location
patterns. Fig. 1 shows a map of the city of Lyon (France) including all the drug-
stores, shoes stores and furniture stores. A qualitative commercial organisation
is visible in this map: shoe stores aggregate at the town shopping center, while
furniture stores are partially dispersed on secondary poles and drugstores are
strongly dispersed across the whole town. Understanding this kind of features
and, more generally, the commercial logics of the spatial distribution of retail
stores, seems a complex task. Many factors could play important roles, arising
from the distincts characteristics of the stores or the location sites. Stores differ
by product sold, surface, number of employees, total sales per month or inau-
guration date. Locations differ by price of space, local consumer characteristics,
visibility (corner locations for example) or accessibility. One could reasonably
think that to understand the logics of store commercial strategies, it is essen-
tial to take into account most of these complex features. This seems even more
necessary for finding potentially interesting locations for new businesses.

However, in this paper, I show that location data suffices to reveal many im-
portant facts about the commercial organisation of retail trade1. First, I quan-
tify the interactions among activities and group them using network analysis
tools. I find a few homogeneous commercial categories for the 55 trades in Lyon,
which closely match the usual commercial categories: personal services, home
1 C. Baume and F. Miribel (commerce chamber, Lyon) have kindly provided extensive

location data for 8500 stores of the city of Lyon.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 10–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Analyzing the Localization of Retail Stores with Complex Systems Tools 11

all stores
shoes
drugstores
furniture

1 km

Fig. 1. Map of Lyon showing the location of all the retail stores, shoe stores, furniture
dealers and drugstores

furniture, food stores and apparel stores. Second, I introduce a quality indica-
tor for the location of a given activity and empirically test its relevance. These
results, obtained from solely location data, agree with the retailing “mantra”:
the three points that matter most in a retailer’s world are: location, location
and . . . location.

2 Quantifying Interactions between Activities

Measuring the spatial distribution of industries [1], atoms [2], trees [3] or retail
stores [4,5] is a powerful method to understand the underlying mechanisms of
their interactions. Several methods have been developed in the past to quantify
the deviations of the empirical distributions from purely random distributions,
supposed to correspond to the non-interacting case [6,7,8,9]. Recently, a method
originally developed by G. Duranton and H. Overman [10], later modified by
Marcon and Puech [11] has been proposed. Its main interest is that it takes as
reference for the underlying space not a homogeneous one as for the former meth-
ods [6,7,8,9], but the overall spatial distribution of sites, thus automatically tak-
ing into account the many inhomogeneities of the actual geographical space. For
instance, retail stores are inhomogeneously distributed because of rivers, moun-
tains or specific town regulations (parks, pure residential zones, . . .). Therefore,
it is interesting to take this inhomogeneous distribution as the reference when
testing the random distribution of, for instance, bakeries, in town. Furthermore,
by using precise location data (x and y coordinates), this method avoids all
the well-known contiguity problems, summarized in the ‘modifiable areal unit
problem’ [12,13,14,15]. However, the method has two main drawbacks:

1. the need of precise location data (i.e. x and y coordinates, and not only
knowing that a site belongs to a given geographical area),

12 P. Jensen

2. the need for Monte Carlo simulations in order to compute the statistical
significance of the deviations from a random distribution.

Point (1) is probably going to be less crucial as precisely spatialized data becomes
more common. Moreover, it can be argued that, when only region-type data
exists, it can be more convenient to locate all the sites at the region centroid
and then apply the ’continuous’ method, thus avoiding contiguity problems.

2.1 Definitions of the Spatial Indicators

The indicators that are studied here deal with the problem of quantifying devia-
tions of empirical distribution of points from purely random and non-interacting
distributions. One can be interested in the interaction of a set of points between
themselves, or with some other set of points. From now on we shall work with
two different types of points: A and B. We define two indicators, refered to as
respectively the intra and inter coefficients [11], to characterize the (cumulative)
spatial interaction between sites closer than a distance r. The intra coefficient is
intended to measure the independence between points of type A, whereas the in-
ter coefficient describes the type of interactions of fixed A points with random B
points. One can also work with indicators characterizing the (differential) spatial
distributions between distances r and r + dr (with dr � r) [10]. Those last co-
efficients are potentially more sensitive to spatial variations of the distributions
because they do not integrate features from 0 to r. We shall start by calculating
the variance of the cumulative coefficient and then extend our results to other
quantifiers of spatial distributions.

We shall use the following definitions and notations:

– one has Nt sites, of which NA sites are of type A, and NB sites are of type
B,

– for any site S, one denotes by Nt(S, r), NA(S, r) and NB(S, r) the number
of respectively total, A and B sites that are at a distance lesser than r of
site S, where site S is not counted, whichever its state.

The notation NA(D) (resp. NB(D)) will denote the number of A (resp. B)
sites in a subset D of T , T being the set of all the points.

In this discrete model, the locations of stores A and B are distributed over the
total number of possible sites, with mutual exclusion at a same site. Therefore,
the geographical characteristics of the studied area are carried by the actual
locations of those possible Nt sites.

The coefficients that we introduce depend on the reference distance r, however
we shall drop this dependency in the notations, unless when strictly necessary.

2.2 Intra Coefficient

Let us assume that we are interested in the distribution of NA points in the set
T , represented by the subset {Ai, i = 1 . . .NA} ⊂ T . The reference law for this
set, called pure random distribution, is that this subset is uniformely chosen at

Analyzing the Localization of Retail Stores with Complex Systems Tools 13

random from the set of all subsets of cardinal NA of T : this is equivalent to an
urn model with NA draws with no replacement in an urn of cardinal Nt.

Intuitively, under this (random) reference law, the local concentration repre-
sented by the ratio NA(Ai, r)/Nt(Ai, r) of stores of type A around a given store
of type A should, in average, not depend on the presence of this last store, and
should thus be (almost) equal to the global concentration NA/Nt, this leads us
to introduce the following intra coefficient:

MAA =
Nt − 1

NA(NA − 1)

NA∑
i=1

NA(Ai, r)
Nt(Ai, r)

(1)

In this definition, the fraction 0/0 is taken as equal to 1 in the right hand term.
Under the pure randomness hypothesis, it is straightforward to check that the
average of this coefficient is equal to 1: for all r > 0, we have E[MAA] = 1.

We deduce a qualitative behaviour in the following sense: if the observed value
of the intra coefficient is greater than 1, we may deduce that A stores tend to
aggregate, whereas lower values indicate a dispersion tendency.

2.3 Inter Coefficient

In order to quantify the dependency between two different types of points, we set
the following context: the set T has a fixed subset of NA stores of type A, and the
distribution of the subset {Bi, i = 1 . . .NB} of type B stores is assumed to be uni-
form on the set of subsets of cardinal NB of T \{A1, . . . , ANA}. Just as in the intra
case, the presence of a point of type A at those locations, under this reference
random hypothesis, should not modify (in average) the density of type B stores:
the local B spatial concentration (NB(Ai, r)) / (Nt(Ai, r)−NA(Ai, r)) should be
close (in average) to the concentration over the whole town, (NB) / (Nt −NA).
We define the inter coefficient as

MAB =
Nt −NA

NANB

NA∑
i=1

NB(Ai, r)
Nt(Ai, r)−NA(Ai, r)

(2)

where NA(Ai, r), NB(Ai, r) and Nt(Ai, r) are respectively the A, B and total
number of points in the r-neighbourhood of point Ai (not counting Ai), i.e.
points at a distance smaller than r. It is straightforward to check that for all
r > 0, we have E[MAB] = 1.

We can also deduce a qualitative behaviour in the following sense: if the
observed value of the inter coefficient is greater than 1, we may deduce that A
stores have a tendency to attract B stores, whereas lower values mean a rejection
tendency.

3 Analyzing Retail Stores Interactions

I now analyze in detail the interactions of stores of different trades, using the
coefficients defined above.

14 P. Jensen

0 100 200 300 400
distance

0

0.2

0.4

0.6

0.8

1

M

Fig. 2. Evolution of the intra coefficient for bakeries in the city of Lyon with respect
to r, and (half) confidence interval with α = 0.05. Data from CCI Lyon.

The figure 2 shows the practical importance of variance calculations for eco-
nomic interpretations of the data. Although MAA remains well below the ref-
erence value (i.e. 1), bakeries are significantly dispersed only until 150m. For
longer distances, their spatial locations approach a random pattern.

In the two following tables, I present other examples of interaction coeffi-
cients at r = 100m, together with the confidence intervals, for Paris, thanks to
data kindly provided by Julien Frâıchard from INSEE. Table 1 shows the most
aggregated activities.

Table 1. The most aggregated activities

activity a confidence interval at 95 %
textiles 5.27366 [0.979 , 1.021]

second-hand goods 3.47029 [0.9951 , 1.0049]
Jewellery 2.81346 [0.987 , 1.013]

shoes 2.60159 [0.9895 , 1.0105]
furniture, household articles 2.49702 [0.9846 , 1.0154]

Overall, the same activities are concentrated in Lyon and Paris. A simple eco-
nomical rationale behind the concentrations or dispersions of retail activities is
the following. Locating many stores at similar locations has two contradictory
effects. First, it increases the attractiveness of the neighborhood by multiplying
the offers. Second, it divides the generated demand among the stores. For some
activities, the increase in demand is so high that it compensates the competi-
tion for customers. This is the case for when stores offer differentiated goods.
Inversely, for stores offering more comparable products (such as bakeries), con-
centration does not increase the demand, and therefore would lead to a strong
decrease in profit.

To illustrate the inter coefficient, I show in Table 2 the couples of activities
that attract the most each other.

Analyzing the Localization of Retail Stores with Complex Systems Tools 15

Table 2. The highest attractions between activities

activity 1 activity 2 a confidence interval at 95 %
clothes shoes 2.23216 [0.9978 , 1.0022]

Jewellery Leather articles 2.12094 [0.984 , 1.016]
second-hand goods household articles 2.10815 [0.9917 , 1.0083]

meat fruits, vegetables 1.85213 [0.9906 , 1.0094]

4 Finding Retail Stores Communities

From the interaction coefficients measured above, one can define a network
structure of retail stores. The nodes are the 55 retail activities (Table 3). The
weighted2 links are given by aAB ≡ log(MAB), which reveal the spatial attrac-
tion or repulsion between activities A and B3. This retail network represents
the first a social network with quantified “anti-links”, i.e. repulsive links be-
tween nodes4. The anti-links add to the usual (positive) links and to the absence
of any significant link, forming an essential part of the network. If only positive
links are used, the analysis leads to different results, which are less satisfactory
(see below).

To divide the store network into communities, I adapt the “Potts” algo-
rithm5 [19]. This algorithm interprets the nodes as magnetic spins and groups
them in several homogeneous magnetic domains to minimize the system energy.
Anti-links can then be interpreted as anti-ferromagnetic interactions between
the spins. Therefore, this algorithm naturally groups the activities that attract
each other, and places trades that repel into different groups. A natural def-
inition [19,20] of the satisfaction (−1 ≤ si ≤ 1) of site i to belong to group
σi is:

2 Important differences introduced by including weighted links are stressed for example
in [16].

3 For a pair interaction to be significant, I demand that both aAB and aBA be different
from zero, to avoid artificial correlations [17]. For Lyon’s city, I end up with 300
significant interactions (roughly 10% of all possible interactions), of which half are
repulsive.

4 While store-store attraction is easy to justify (the “market share” strategy, where
stores gather in commercial poles, to attract costumers), direct repulsion is gen-
erally limited to stores of the same trade which locate far from each other to
capture neighbor costumers (the “market power” strategy). The repulsion quan-
tified here is induced (indirectly) by the price of space (the sq. meter is too
expensive downtown for car stores) or different location strategies. For intro-
ductory texts on retail organization ans its spatial analysis, see [18] and the
Web book on regional science by E. M. Hoover and F. Giarratani, available at
http://www.rri.wvu.edu/WebBook/Giarratani/contents.htm.

5 Note that the presence of anti-links automatically ensures that the ground-state is
not the homogeneous one, when all spins point into the same direction (i.e. all nodes
belong to the same cluster). Then, there is no need then of a γ coefficient here.

16 P. Jensen

si ≡
∑

j �=i aijπσiσj∑
j �=i |aij |

(3)

where πσiσj ≡ 1 if σi = σj and πσiσj ≡ −1 if σi �= σj .
To obtain the group structure, I run a standard simulated annealing algorithm

[21] to maximize the overall site satisfaction:

K ≡
∑

i,j=1,55;i�=j

aijπσiσj (4)

Pott’s algorithm divides the retail store network into five homogeneous groups
(Table I, note that the number of groups is not fixed in advance but a variable of
the maximisation). This group division reaches a global satisfaction of 80% of the
maximum K value and captures more than 90% of positive interactions inside
groups. Except for one category (“Repair of shoes”), our groups are communities
in the strong sense of Ref. [20]. This means that the grouping achieves a positive
satisfaction for every element of the group. This is remarkable since hundreds of
“frustrated” triplets exist6. Taking into account only the positive links and using
the modularity algorithm [22] leads to two large communities, whose commercial
interpretation is less clear.

Two arguments ascertain the commercial relevance of this classification. First,
the grouping closely follows the usual categories defined in commercial classi-
fications, as the U.S. Department of Labor Standard Industrial Classification
System7 (see Table 1). It is remarkable that, starting exclusively from location
data, one can recover most of such a significant commercial structure. Such a
significant classification has also been found for Brussels, Paris and Marseilles
stores, suggesting the universality of the classification for European towns. There
are only a few exceptions, mostly non-food proximity stores which belong to the
“Food store” group. Second, the different groups are homogeneous in relation to
correlation with population density. The majority of stores from groups 1 and 2
(18 out of 26) locate according to population density, while most of the remain-
ing stores (22 out of 29) ignore this characteristic8. Exceptions can be explained
by the small number of stores or the strong heterogeneities9 of those activities.

6 A frustrated (A, B, C) triplet is one for which A attracts B, B attracts C, but A
repels C, which is the case for the triplet shown in Fig. 1.

7 See for example the U.S. Department of Labor Internet page:
http://www.osha.gov/pls/imis/sic manual.html.

8 To calculate the correlation of store and population density for a given activity,
I count both densities for each of the 50 Lyon’s sectors. I then test with standard
econometric tools the hypothesis that store and population densities are uncorrelated
(zero slope of the least squares fit), with a confidence interval of 80%.

9 Several retail categories defined by the Commerce Chamber are unfortunately het-
erogeneous: for example, “Bookstores and newspapers” refers to big stores selling
books and CDs as well as to the proximity newspaper stand. Instead, bakeries are
precisely classified in 4 different categories: it is a French commercial structure!

Analyzing the Localization of Retail Stores with Complex Systems Tools 17

Table 3. Retail store groups obtained from Pott’s algorithm. Our groups closely match
the categories of the U.S. Department of Labor Standard Industrial Classification (SIC)
System: group 1 corresponds to Personal Services, 2 to Food stores, 3 to Home Fur-
niture, 4 to Apparel and Accessory Stores and 5 to Used Merchandise Stores. The
columns correspond to: group number, activity name, satisfaction, correlation with
population density (U stands for uncorrelated, P for Population correlated) and finally
number of stores of that activity in Lyon. To save space, only activities with more than
50 stores are shown.

group activity s pop corr Nstores

1 bookstores and newspapers 1.00 U 250
1 Repair of electronic household goods 0.71 P 54
1 make up, beauty treatment 0.68 P 255
1 hairdressers 0.67 P 844
1 Power Laundries 0.66 P 210
1 Drug Stores 0.55 P 235
1 Bakery (from frozen bread) 0.54 P 93
2 Other repair of personal goods 1.00 U 111
2 Photographic Studios 1.00 P 94
2 delicatessen 0.91 U 246
2 grocery (surface < 120m2) 0.77 P 294
2 cakes 0.77 P 99
2 Miscellaneous food stores 0.75 P 80
2 bread, cakes 0.70 U 56
2 tobacco products 0.70 P 162
2 hardware, paints (surface < 400m2) 0.69 U 63
2 meat 0.64 P 244
2 flowers 0.58 P 200
2 retail bakeries (home made) 0.47 P 248
2 alcoholic and other beverages 0.17 U 67
3 Computer 1.00 P 251
3 medical and orthopaedic goods 1.00 U 63
3 Sale and repair of motor vehicles 1.00 P 285
3 sport, fishing, camping goods 1.00 U 119
3 Sale of motor vehicle accessories 0.67 U 54
3 furniture, household articles 0.62 U 172
3 household appliances 0.48 U 171
4 cosmetic and toilet articles 1.00 U 98
4 Jewellery 1.00 U 230
4 shoes 1.00 U 178
4 watches, clocks and jewellery 1.00 U 92
4 clothing 0.91 U 914
4 tableware 0.83 U 183
4 opticians 0.78 U 137
4 Other retail sale in specialized stores 0.77 U 367
4 Other personal services 0.41 U 92
4 Repair of boots, shoes -0.18 U 77
5 second-hand goods 0.97 U 410
5 framing, upholstery 0.81 U 135

5 From Interactions to Location Niches

Thanks to the quantification of retail store interactions, I can construct a mathe-
matical index to automatically detect promising locations for retail stores. Let’s

18 P. Jensen

-0.08 -0.06 -0.04 -0.02 0 0.02
Q

0

20

40

60

80

n
u

m
b

er
 o

f
b

ak
er

ie
s

all bakeries (244)
closed in 2004 (19)

all

closed
prob random = 3/1000

-0.1 -0.05 0 0.05
Q

0

500

1000

1500

2000

nu
m

be
r

of
 s

ite
s

all possible sites (~ 8000)
new bakeries x 10 (80 stores)

new

all

prob random < 5/100 000

(a) (b)

Fig. 3. The landscape defined by the quality index is closely correlated to the location
decisions of bakeries. (a) The 19 bakeries that closed between 2003 and 2005 had an
average quality of −2.2 x 10−3 to be compared to the average of all bakeries (4.6 x
10−3), the difference being signifcative with probability 0.997. Taking into account the
small number of closed bakeries and the importance of many other factors in the closing
decision (family problems, bad management...), the sensitivity of the quality index is
remarkable. (b) Concerning the 80 new bakeries in the 2005 database (20 truly new,
the rest being an improvement of the database), their average quality is −6.8 x 10−4,
to be compared to the average quality of all possible sites in Lyon (−1.6 x 10−2), a
difference significant with probability higher than 0.9999.

take the example of bakeries. The basic idea is that a location that gathers many
activities that are “friends” of bakeries (i.e. activities that attract bakeries) and
few “ennemies”, might well be a good location for a new bakery. The quality
QA(x, y) of an environment around (x,y) for an activity A as:

QA(x, y) ≡
∑

B=1,55

NB(x, y) (5)

where NB(x, y) represents the number of neighbor stores around x,y. To calculate
the location quality for an existing store, one removes it from town and calculates
Q at its location.

As often in social contexts, it is difficult to test empirically the relevance of
our quality index. In principle, one should open several bakeries at different lo-
cations and test whether those located at the “best” places (as defined by Q) are
on average more successful. Since it may be difficult to fund this kind of exper-
iment, I use location data from two years, 2003 and 2005. It turns out (Fig. 3)
that bakeries closed between these two years are located on significantly lower
quality sites. Inversely, new bakeries (not present in the 2003 database) do locate
preferently on better places than a random choice would dictate. This stresses
the importance of location for bakeries, and the relevance of Q to quantify the
interest of each possible site. Possibly, the correlation would be less satisfactory
for retail activities whose locations are not so critical for commercial success.

Analyzing the Localization of Retail Stores with Complex Systems Tools 19

6 Conclusions, Perspectives

Practical applications of Q are under development together with Lyon’s Chamber
of Commerce and Industry. A software called LoCo reads the location data of the
town(s) under investigation and gives in a few seconds the top quality regions.
this can help retailers to find good locations and/or city mayor’s in improving
commercial opportunities on specific town sectors. In a word, LoCo pumps the
cleverness of social actors, inscribed in the “optimal” town configuration, and
uses it to help finding good locations. Whether the actual store configuration is
optimal or not is an open question. Clearly, no one expects all retailers to be able
to choose the “best” location. However, one could argue that those that have
selected bad locations perish, leading to a not too bad overall configuration.
This analysis suggests a crude analogy with the Darwinian selection process,
with variation and selection, which would be interesting to discuss further.

References

1. Hoover, E.M.: Location Theory and the Shoe and Leather Industries. Harvard
University Press, Cambridge (1937)

2. Egami, T., Billinge, S.: Underneath the Bragg Peaks: Structural Analysis of Com-
plex Materials. Pergamon Materials Series (2003)

3. Ward, J.S., Parker, G.R., Ferrandino, F.J.: Long-term spatial dynamics in an old-
growth deciduous forest. Forest ecology and management 83, 189–202 (1996)

4. Hoover, E.M., Giarratani, F.: An Introduction to Regional Economics (1984)
5. Jensen, P.: Network-based predictions of retail store commercial categories and

optimal locations. Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics) 74 (2006)

6. Ripley, B.D.: The second-order analysis of stationary point processes. Journal of
Applied Probability 13, 255–266 (1976)

7. Besag, J.E.: Comments on ripley’s paper. Journal of the Royal Statistical Society
B 39, 193–195 (1977)

8. Ellison, G., Glaeser, E.L.: Geographic concentration in us manufacturing industries:
A dartboard approach. Journal of Political Economy 105, 889–927 (1997)

9. Maurel, F., Sedillot, B.: A measure of the geographic concentration of french man-
ufacturing industries. Regional Science and Urban Economics 29, 575–604 (1999)

10. Duranton, G., Overman, H.G.: Testing for localisation using micro-geographic data.
The Review of Economic Studies 72, 1077 (2005)

11. Marcon, E., Puech, F.: Measures of the geographic concentration of industries:
improving distance-based methods (2007)

12. Yule, G.U., Kendall, M.G.: An Introduction to the Theory of Statistics. Griffin,
London (1950)

13. Unwin, D.J.: Gis, spatial analysis and spatial statistics. Progress in Human Geog-
raphy 20, 540–551 (1996)

14. Openshaw, S.: The Modifiable Areal Unit Problem. Geo Books, Norwich (1984)
15. Briant, A., Combes, P.P., Lafourcade, M.: Do the size and shape of spatial units

jeopardize economic geography estimations (2007)
16. Barthelemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Rate equation

approach for correlations in growing network models. Physica A 346 (2005)

20 P. Jensen

17. Marcon, E., Puech, F.: Measures of the geographic concentration of industries:
Improving distance-based methods (2007)

18. Berry, B.J., Parr, J.B., Epstein, B.J., Ghosh, A., Smith, R.H.: Market Centers and
Retail Location: Theory and Application. Prentice-Hall, Englewood Cliffs (1988)

19. Reichardt, J., Bornholdt, S.: Detecting fuzzy communities in complex networks
with a potts model. Phys. Rev. Lett. 93 (2004)

20. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Publ. Natl. Acad. Sci. USA 101, 2658–2663 (2004)

21. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220, 671 (1983)

22. Newman, M.E.J., Girvan, M.: Community structure in social and biological net-
works. Proceedings of the National Academy Science USA 69, 7821–7826 (2004)

Change (Detection) You Can Believe in:
Finding Distributional Shifts in Data Streams

Tamraparni Dasu1, Shankar Krishnan1, Dongyu Lin2,
Suresh Venkatasubramanian3, and Kevin Yi4

1 AT&T Labs - Research
{tamr,krishnas}@research.att.com

2 University of Pennsylvania
dongyu@wharton.upenn.edu

3 University of Utah
suresh@cs.utah.edu

4 Hong Kong University of Science and Technology
yike@cse.ust.hk

Abstract. Data streams are dynamic, with frequent distributional
changes. In this paper, we propose a statistical approach to detecting
distributional shifts in multi-dimensional data streams. We use relative
entropy, also known as the Kullback-Leibler distance, to measure the
statistical distance between two distributions. In the context of a multi-
dimensional data stream, the distributions are generated by data from
two sliding windows. We maintain a sample of the data from the stream
inside the windows to build the distributions.

Our algorithm is streaming, nonparametric, and requires no distribu-
tional or model assumptions. It employs the statistical theory of hypoth-
esis testing and bootstrapping to determine whether the distributions are
statistically different. We provide a full suite of experiments on synthetic
data to validate the method and demonstrate its effectiveness on data
from real-life applications.

1 Introduction

The ability to discover trends, patterns and changes in the underlying processes
that generate data is one of the most critical problems in large-scale data anal-
ysis and mining. In this paper, we focus on the problem of finding distributional
shifts in multi-dimensional data streams. Data streams pose special challenges
since there are constraints on access, storage and duration of access to the data.
Streaming algorithms therefore need to be mindful of storage as well as compu-
tational speed. Since data streams are constantly changing, the algorithm needs
to adapt and reflect these changes in a computationally efficient manner. Dis-
tributional shifts can be spurious, caused by glitches in the data, or genuine,
reflecting changes in the underlying generative process. We will use the terms
distributional shifts and change detection interchangeably in this paper.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 21–34, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

22 T. Dasu et al.

To be a viable algorithm, any change detection mechanism has to satisfy a
number of criteria. Crucial features are:

– Generality: Applications for change detection come from a variety of
sources, and the notion of change varies from setting to setting. Thus, a
general approach to defining change is important.

– Scalability: Any approach must be scalable to very large (and streaming)
datasets. An important aspect of scalability is dealing with multidimensional
data. A change detection scheme must be able to handle multidimensional
data directly in order to capture spatial relationships and correlations.

– Statistical soundness: By connecting a change detection mechanism to
statistically rigorous approaches for significance testing, we quantify the abil-
ity to generalize while avoiding the arbitrariness of tuning parameters.

1.1 A Statistical Approach

A natural approach to detecting change in data is to model the data via a distri-
bution. Nonparametric methods make no distributional assumptions on the data.
Statistical tests that have been used in this setting include the Wilcoxon test,
the Kolmogorov-Smirnov test, and their variants. Here, as before, the approach
is to compute a test statistic (a scalar function of the data), and compare the
computed values to determine whether a change has occurred.

The above tests attempt to capture a notion of distance between two distribu-
tions. A measure that is one of the most general ways of representing this distance
is the relative entropy from information theory, also known as the Kullback-
Leibler (or KL) distance. The KL-distance has many properties that make it
ideal for estimating the distance between distributions [4, §12.8].

Intuitively, the KL-distance between distributions behaves like squared Eu-
clidean distance in Rd; here the “points” are distributions that lie on the sim-
plex, rather than vectors in Rd. Using the KL-distance allows us not only to
measure the distance between distributions, but attribute a meaning to this
value. Further, an information-theoretic distance can be defined independent of
the inherent dimensionality of the data, and is even independent of the spatial
nature of the data, when one invokes the theory of types. Thus, we can isolate
the definition of change from the data representation, cleanly separating the
computational aspects of the problem from the distance estimation itself.

There are advantages to the information-theoretic approach from a compu-
tational perspective as well. Tests like the Wilcoxon and Kolmogorov-Smirnov
cannot be easily extended to data in more than a single dimension. This is
principally because these tests rely on data being ordered (they are rank-based
statistics), and thus in two or more dimensions, the lack of a unique ordering
renders them ineffective.

2 Related Work

The Kullback-Leibler Distance. The Kullback-Leibler distance is one of
the most fundamental measures in information theory. It also has a natural

Change (Detection) You Can Believe in: Finding Distributional Shifts 23

interpretation as a distance function between distributions, being a special case
of an Ali-Silvey and Bregman distance. In both cases it emerges as the unique
measure satisfying certain axioms over the unit simplex. Due to its relation to
the log likelihood ratio and Neyman-Pearson classifiers, it has been used exten-
sively in classification and model selection problems in machine learning [17,18].
Most recently, Johnson and Gruner [12] have suggested the idea of using the
KL-distance to decode neural signals presented as time series. They also de-
velop the idea of using bootstrap methods to evaluate the significance of their
results.

Change Detection Schemes. A variety of change detection schemes have been
studied in the past, examining static datasets with specific structure [3], time
series data [13], and for detecting “burstiness” in data [15]. The definition of
change has typically involved fitting a model to the data and determining when
the test data deviates from the built model [11,9].

Ganti, Gehrke, Ramakrishnan and Loh [9] use a family of decision tree models
to model the data, and define change in terms of the distance between model
parameters that encode both topological and quantitative characteristics of the
decision trees. They use bootstrapping to determine the statistical significance
of their results.

The paper by Kifer, Ben-David and Gehrke [14] lays out a comprehensive non-
parametric framework for change detection in streams. They exploit order statis-
tics of the data, and define generalizations of the Wilcoxon and Kolmogorov-
Smirnoff test in order to define distance between two distributions. Aggarwal [1]
considers the change detection problem in higher dimensions based on kernel
methods; however, his focus is on detecting the “trends” of the data movement,
and has a much higher computational cost. Subramaniam et al. [21] propose
a distributed, streaming, outlier and change detection algorithm using kernel
methods in the context of sensor networks. Given a baseline data set and a set
of newly observed data, Song, Wu, Jermaine and Ranka [20] define a test statis-
tic called the density test based on kernel estimation to decide if the observed
data is sampled from the baseline distribution.

In statistical literature, Referential Distance (RD) methods are used primarily
for outlier detection. RD methods aim to detect outliers by computing a mea-
sure of how far a particular point is from the center of the data. The measure
of outlyingness of a data point is based on the Mahalanobis distance. In the
context of change detection, Referential Distance methods can be viewed as a
dimensionality reduction approach. These methods are effective in very high di-
mensions, where, due to data sparsity, space partitioning techniques are known
to be quite sensitive.

Computing Bootstraps. The bootstrap method was developed by Efron, and
the book by Efron and Tibshirani [7] is a definitive reference on bootstrap
techniques. KL-distance estimates have bias, and there has been some recent

24 T. Dasu et al.

work [19] (for parametric families of distributions) on improving the bootstrap
estimates of the KL-distance and removing bias.

Sampling from a Data Stream. Given a data stream of potentially un-
bounded size and a parameter k, the reservoir sampling algorithm of Vitter
[22] maintains a uniform sample of size k from the stream seen so far. This
algorithm works when data is only inserted into the stream. In streaming appli-
cations where the data expires after a certain age, it is nontrivial to extend the
reservoir sampling algorithm. Babcock et al. [2] introduce the notion of chain
sampling to solve the problem over a sliding window.

2.1 Our Contributions

In this paper, we present a general streaming algorithm for detecting distribu-
tional changes in multi-dimensional data streams within a statistical hypothesis
testing framework. This work is an extension of an extended abstract [6] that de-
scribed the basic framework of change detection using an information-theoretic
approach. We extend it in several directions, some of which include:

– Our approach is tailored for streaming computation. Every step of our algo-
rithm is amenable to streaming computation, and is space and time efficient.
It automatically adapts to changes, captures global and local shifts.

– Our use of the Kullback-Leibler (KL) distance as well as the bootstrap com-
putations are nonparametric, free of distributional and model assumptions,
making our method general and widely applicable.

– We present a novel space partitioning scheme called the kdq-tree that we
use to construct multi-dimensional histograms. Its size grows linearly with
the dimensionality and the size of the data, at the same time generates cells
with good aspect ratio. Both of these properties are important for accurate
histograms.

– We overcome the issue of data sparsity in very high dimensions by transform-
ing the original data to a lower dimensional space using referential distances
and applying the KL change detection to the transformed data.

– We provide a strong statistical basis for deciding distributional shifts in the
data stream using confidence intervals for sample proportions.

– Our method works naturally in a multivariate setting, unlike methods that
rely on order statistics [14], and has been tested on a wide range of data
streams including i.i.d., time series data with seasonality and trends, and
other types of distributional shifts.

3 Basic Overview of Our Approach

Let x1, x2, . . . be a stream of points in Rd. A window Wi,n denotes the se-
quence of points ending at xi of size n: Wi,n = (xi−n+1, . . . , xi), i ≥ n. We will

Change (Detection) You Can Believe in: Finding Distributional Shifts 25

drop the subscript n when the context is clear. Distances are measured between
distributions constructed from points in two windows Wt and Wt′ . The choice
of window size is not very crucial. Typically, we choose several windows whose
size increases exponentially and we can run our algorithm on each of them in-
dependently. In the rest of this paper, we will describe our method for a fixed
window size n.

Each window Wt defines an empirical distribution Ft. We maintain a sample
of size k from Wt in a streaming fashion using the chain sampling algorithm [2]
(see section 4.1). We compute the distance dt = d(Ft, Ft′) from Ft to Ft′ using
the samples, where t′ is either t − n (adjacent window model) or n (fix-slide
window model) depending on the sliding window model we are using. Section 4.4
describes the computation of dt in more detail. Formally, we assert the null
hypothesis

H0 : Ft = Ft′

and wish to determine the probability of observing the value dt if H0 is
true.

To determine this, we generate a set of B bootstrap estimates d̂i, i = 1 . . .B.
These estimates form an empirical distribution from which we construct a critical
region [dH0(α),∞], where α denotes the desired significance level of the test. If
dt falls into this region, we consider that H0 is invalidated. Since we test H0 at
every time step, in order to improve robustness, we only signal a change after
we have accumulated a statistically significant run of invalidations. A simple,
but naive, approach is to signal a change after we see γn distances larger than
dH0(α) in a row, where γ is a small constant defined by the user. The idea is
that a true change should be more persistent than a false alarm, which might
be transient, and we term γ the persistence factor.

We can, however, use the theory of confidence intervals for sample propor-
tions to determine whether the change is persistent. Under the null hypothe-
sis, we expect an α proportion of distances to fall in the critical region. Due
to sampling variability this proportion will change but stay statistically close
to α. The statistical closeness is measured by a confidence interval containing
the sample proportion of distances that fall in the critical region. Let ϕ(w) be
the observed proportion of distances that fall in the critical region [d0(α),∞]
in the interval of length w. Then the lower bound, α̂lo, is given by [8] α̂lo =
(ϕ(w)+z2

1−α/2/2w−z1−α/2
√

f(ϕ, w))/(1+z2
1−α/2/w) where f(ϕ, w) = ϕ(w)(1−

ϕ(w))/w + z2
1−α/2/4w2 and zq represents the q-quantile of the standard normal

distribution with mean 0 and variance 1. We use the lower bound α̂lo of this
confidence interval to determine a change (the upper bound is not relevant). If α
is smaller than α̂lo, we declare a statistically significant distributional shift. This
approach removes the strict requirement of consecutive runs of null hypothesis
invalidations to signal a change. If no change has been reported, we update the
windows and repeat the procedure. The high-level algorithm is summarized in
Algorithm 1.

26 T. Dasu et al.

Algorithm 1. Change detection algorithm (for a fixed window size)
t ← 2n; t′ ← n;
Construct chain sample of size k from windows Wt and Wt′ ;
Compute dt = d(Ft, Ft′);
Compute bootstrap estimate d̂i, i = 1, . . . , B and critical region [dH0(α),∞];
ϕ ← 0;
while not at end of stream do

if dt > dH0(α) then
ϕ ← ϕ + 1; w ← w + 1;
Compute α̂lo;
if α < α̂lo then
Signal change;
ϕ ← 0; w ← 0;
Start over;

end if
else
w ← w + 1;

end if
Slide window Wt (and Wt′ if required);
Update dt;

end while

4 Details of the Algorithm

We start by defining the Kullback-Leibler distance, also called the relative en-
tropy [4, Sec 2.3], which is used to compare distributions.

Definition 1. The relative entropy or Kullback-Leibler distance between two
probability mass functions p(x) and q(x) is defined as1

D(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

,

where the sum is taken (in the discrete setting) over the atoms of the space of
events X .

4.1 Constructing a Distribution from a Stream

To map our data streams to distributions, we use a spatial partitioning scheme
(discussed in Section 4.3) to assigns points to cells. For a window W of size n and
a sampling parameter k, we perform chain sampling [2] to maintain a sample
of size k in W . When a data item xi arrives at time i, it is chosen to be in
the sample with probability 1/ min (i, n) (the original paper has an error in this
expression). If the item is chosen, the algorithm also selects the timestamp of
the element that will replace this item when it expires. This is done by choosing

1 All logarithms are base 2 in this paper.

Change (Detection) You Can Believe in: Finding Distributional Shifts 27

a random index j between i + 1, i + 2, . . . , i + n. When the item xj with the
chosen timestamp arrives, it is stored, and the timestamp of the item that will
replace xj is selected. This builds a chain of items to use when the current
sample expires. The above algorithm maintains a sample of size one inside the
window. To produce a sample of size k, we perform k independent trials of the
same algorithm. We have developed a template-based implementation of the
chain sampling algorithm in C++ which makes it portable in a wide class of
data streams.

Let PW (a) = N(a|W)
k , where N(a | W) is the number of points that fall into

cell a. Then PW forms an empirical distribution that the sequence of points
maps to. To address the issue of zero counts in cells, we use a simple correction
suggested by Krichevsky and Trofimov [16]. They replace the estimate Pw(a) by
the estimate Pw(a) = N(a|w)+0.5

k+|A|/2 , where A is the set of cells in space.
Given two windows W1, W2, the distance from W1 to W2 is

D(W1‖W2) =
∑
a∈A

PW1(a)
PW1(a)
PW2(a)

.

The justification for this approach comes from the theory of types, due to
Csiszár and Körner [5]. It has been shown by Gutman [10] that empirical distri-
butions constructed as above retain (asymptotically) the same classifier proper-
ties as true distributions; moreover, the relative ratios that we construct are the
maximum likelihood estimators for the true distribution of the data.

4.2 Bootstrap Methods and Hypothesis Testing

The bootstrapping procedure works as follows: given the empirical distributions
P̂ derived from the counts P (see Section 4.1), we sample m sets S1, . . . Sm, each
of size 2n, with replacement. Treating the first n elements Si1 as coming from
one distribution F , and the remaining n elements Si2 = Si−Si1 as coming from
the other distribution G, we compute bootstrap estimates d̂i = D(Si1‖Si2).

Once we fix the desired significance level α, we choose the (1 − α)-percentile
of these bootstrap estimates as dH0(α). We call [dH0(α),∞] the critical region,
if d̂ > dH0(α), the measurement is statistically significant and invalidates H0.
Bootstrap procedures are a form of Monte Carlo sampling over an unknown
distribution. Asymptotically, the bootstrap sample distribution approaches the
true underlying distribution.

4.3 Data Structures

From now on, we will assume that the data points in the streams lie in a d-
dimensional unit hypercube. The structure that we propose, called a kdq-tree,
is a combination of two space partitioning schemes, the k-d-tree and the quad
tree, and has the advantages of both structures.

We will describe the structure in two dimensions; generalization to high di-
mensions will be obvious. A kdq-tree is a binary tree, each of whose nodes is

28 T. Dasu et al.

associated with a box Bv. The box associated with the root v is the entire unit
square, which is then divided into two halves by a vertical cut passing through
its center. The two smaller boxes are then associated with the two children of
the root vl and vr. We then construct the trees rooted at vl and vr recursively,
and as we go down the tree, the cuts alternate between vertical and horizontal,
just like a k-d-tree. We stop the recursion if either the number of points in the
box is below τ , or all the sides of the box have reached a minimum length δ,
where τ and δ are user specified parameters.

The following properties follow from a simple analysis of the structure.

Proposition 1. For a kdq-tree built on n points in d dimensions,

1. it has at most O(dn log(1
δ)/τ) nodes;

2. its height is at most O(d log(1
δ));

3. it can be constructed in time O(dn log(1
δ));

4. the aspect ratio (max. dimension/min. dimension) of any cell is at most 2.

We can see that the kdq-tree’s size scales linearly as the dimensionality and the
size of data, at the same time it generates nicely shaped cells. It is also very cheap
to maintain the counts associated with the nodes, as the cost is proportional to
the height of tree.

We build the kdq-tree on the first window W1, and use the cells induced by
this tree as the types to form the empirical distributions for both W1 and W2
until a change has been detected, at which point we rebuild the structure. The
same structure is also used to compute the bootstrap estimates.

4.4 Maintaining the KL-Distance

Let Pv (resp. Qv) be the number of points from the set W1 (resp. W2) that
are inside the cell associated with the leaf v of the kdq-tree. We would like to
maintain the KL-distance between P = {Pv} and Q = {Qv}. Since |W1|, |W2| are
known, as is L, the number of leaves in the kdq-tree, we can maintain D(P‖Q)
by computing the auxiliary quantity

D̃(P‖Q) =
∑

v

(Pv + 1/2) log
Pv + 1/2
Qv + 1/2

.

and computing D(P‖Q) from D̃(P‖Q), |W1|, |W2| and L. Since the counts Pv, Qv

can be updated in O(d log(1
δ)) time per time step, the KL-distance can also be

maintained incrementally in the same time bound.

4.5 High Dimensions: Referential Distance

In high dimensions space partitioning techniques could be unreliable due to
sparseness of the data. One way to address this problem is to map the original
data point x ∈ Rd to a scalar value. One of the computationally simple and

Change (Detection) You Can Believe in: Finding Distributional Shifts 29

statistically attractive scalar distances is the Mahalanobis distance. The Ma-
halanobis distance, D(x, μ, Σ) = (x − μ)tΣ−1(x − μ) measures the statistical
distance between x ∈ Rd and the mean μ ∈ Rd, scaled by the dispersion matrix
Σ. In general, we can replace the mean with any reference point μ ∈ Rd and
compute the referential distance of the point x.

Given the two windows, W1 and W2, we maintain a chain sample of the
data within each window. We compute the mean and covariance matrix of the
sample points in W1 and compute the Mahalanobis distance windows D1 =
{D(x, μ, Σ)|x ∈ W1} and D2 = {D(x, μ, Σ)|x ∈ W2}. We can apply our orig-
inal change detection algorithm on these two windows treating them as a one-
dimensional stream. We provide experimental justification for this approach over
the KL-approach in high dimensions in Section 5.

5 Experiments

To demonstrate the generality of our change detection scheme, we conducted a
series of experiments with various kinds of datasets. We performed experiments
to compare the behavior of the Kullback-Leibler (KL) and the Referential Dis-
tance (RD) methods. The datasets consist primarily of synthetic data, which are
generated according to mixtures of standard distributions, continuous as well as
discrete. An advantage of using these simulated datasets is that we can control
change events and see how the change detection mechanism reacts to different
types of change. We also included two real life data sets drawn from critical
applications, discussed in detail in Section 5.1.

We conducted exhaustive experiments to investigate the behavior of the KL
distance and the change detection algorithm. Our experiments indicated that
the KL distance detects distributional changes effectively for different ranges
of values of the important parameters of the underlying distributions such as
the mean, the standard deviation and correlation coefficient. In order to test
the efficacy of the change detection method, we constructed experiments where
we varied the window size, the significance level, the bootstrap sample size, as
well as the dimension and correlation structure between individual components.
We refer the reader to [6] that provides details on our prior experiments and
results. Due to space constraints, we limit ourselves to reporting the results of
the experiments to test the efficiency and speed of our algorithm. As indicated
by Proposition 1, incremental updates can be performed very efficiently, in time
O(d log(1

δ)) per time step; the initial construction takes O(kdn log(1
δ)) time, as

we need to repeat for the B bootstrap samples, but it still grows linearly in
both d and n. To see how fast our scheme runs in practice, we measure the two
kinds of cost on the streams with varying window sizes, and report the averages
in Table 2. The other parameters assume their default values in Table 1. These
running times were obtained from our code on a MacBook Pro laptop with a
2.8GHz Intel Core 2 Duo processor and 4GB memory.

Comparing KL and RD. Next, we conducted several experiments to compare
the behavior of the KL and RD methods. We report three interesting cases here.

30 T. Dasu et al.

Table 1. Default parameters values

Parameter Symbol Value
Min. cell side δ 2−10

Max. points in a cell τ 100
Chain sample size k 0.4n
Significance Level α 1%

bootstrap samples B 800

Table 2. Running times with varying n
and d

d n Construction (sec) Update (msec)
4 10000 3.87 0.011
6 10000 4.61 0.019
8 10000 4.68 0.023
10 10000 5.23 0.027
10 20000 11.31 0.029
10 30000 19.83 0.029
10 40000 26.45 0.027

Each example is accompanied by a figure, (for example Figure 2) where the
first panel is a spatial representation using a two-dimensional projection of the
multidimensional data stream. Each period between change points is shown in
different colors: blue red and green. The second panel shows a temporal repre-
sentation of the stream by plotting a single arbitrarily chosen dimension against
time. Changes detected by the KL and RD methods are shown as elongated tick
marks on the X-axis, with red indicating changes detected by KL and black
tick marks denoting changes detected by RD. Tick marks of different lengths
correspond to changes reported at different significance levels α. Typically, ev-
ery sharp distributional changes results in two changes being reported. The first
change occurs when the windows start encountering the new distribution. As the
new distribution fills up the windows, the mix of the old and new changes and
when the new distribution is sufficiently dominant, another change is detected.
If the change is sustained or gradual, changes will be reported continuously until
the stream stabilizes.

Gradual change in 3-D data stream. The first experiment involved a 3-
dimensional data stream where each component is a mixture of Gaussian and

(a) (b)

Fig. 1. (a) 2-D projection of a 3-D data stream exhibiting gradual change. The two
initial clusters (blue) merge gradually over time (red) and separate suddenly (green).
(b) Time series plot of one of the three variables to illustrate the stream behavior over
time. Different colors (blue, green, red) are used to denote the stream between different
change points. Both the methods report changes during the gradual transition of the
stream (red).

Change (Detection) You Can Believe in: Finding Distributional Shifts 31

(a) (b)

Fig. 2. (a) 2-D projection of a 100-D data stream which has level shifts and dispersion
changes. (b) Time series plot of one of the variables. Tick marks of varying lengths
indicate the different significance levels α=0.01, 0.05, 0.10. The KL method generates
numerous alarms (red tick marks) while the RD method (black tick marks) generates
alarms only near the change points.

Uniform distributions. The spatial representation is shown in Figure 1 (a) in
blue, red and green. The temporal representation in Figure 1(b) shows that the
data stream starts with two clusters (blue) of equal mass that start moving
together at t=2000 and continue to get closer (red) until t=8000. At t=8000,
they shift abruptly, as shown in green in Figure 1(a) and (b). The period of
gradual change is punctuated by alarms denoted by long tick marks (KL=red,
RD=black, α=0.01), which stop once the distribution becomes stable.

High dimensional (100-D) stream: level shift and dispersion change.
The second experiment consisted of a 100-dimensional stream where each com-
ponent was a mixture of standard distributions. The spatial representation in
Figure 2(a) depicts a 2-D projection of the 100-D data stream. The stream has
two change points, one at t=1000 and another at t=2250. The mean and the dis-
persion of the cluster change at each of the change points. We tested for change
at three different levels of significance (α=0.01, 0.05, 0.01). KL generates nu-
merous alarms even when the stream is stable indicating that KL is sensitive in
higher dimensions. The RD method detects changes only near the change points.

(a) (b)

Fig. 3. (a) 5-D data stream where the mass shifts from one cluster to another. (b)
Both the KL and RD method detect the change in density.

32 T. Dasu et al.

Shift in mass from one cluster to another in 5-D. The third experiment is
based on a 5-dimensional stream, which starts with two clusters of equal mass.
The mass shifts from one cluster to another at the change point t=5000, as
shown in Figure 3. Both KL and RD are able to detect the mass shift, shown in
Figure 3(b).

5.1 Real Life Applications

We applied our algorithm based on the KL and RD methods to two real life
applications, each of which generates a multi-dimensional data stream. The ap-
plications are of critical importance to a large telecommunications corporation.

File Descriptor Streams. The calls made on a telecommunications network
are logged and written to files in a highly specialized format. The files are gath-
ered and processed for billing and network performance measurement purposes.
A file monitoring process tracks the file stream by gathering at short intervals of
times, file descriptors such as number of files received, their sizes and other char-
acteristics. For the purposes of this paper, we track the sizes of three important
file types across 3058 instances.

In Figure 4(b), the three file descriptor variables are shown as different col-
ored dots. They are plotted on a staggered axis for better visual effect. The file
descriptor data stream is well behaved as expected, since it is generated by a well
designed, well established data gathering process, except for occasional hiccups
caused by maintenance. Both the KL and RD methods detect the single change
that was caused by a temporary software glitch shown by the red and black tick
marks on the X-axis. The processing center was not aware of these distributional
changes until we alerted them to it. They tracked down the glitch and improved
their work flow, preventing significant revenue loss caused by unlogged calls.

Fig. 4. Real Life Applications: (a) A file descriptor data stream generated during the
processing of hundreds of thousands of files a day. The stream is stable except for a
software glitch that caused a small change, detected by both KL and RD. (b) A server
usage data stream characterized by volatility and change. Note: For the purpose of
presentation in this plot, we shifted the means of the three variables in both plots (a)
and (b).

Change (Detection) You Can Believe in: Finding Distributional Shifts 33

Server Usage Streams. The second application concerns monitoring the per-
formance and resource usage of a cluster of servers that supports an important
e-commerce application. The application is critical enough that the servers need
to be up all the time. For the purpose of this paper, we used three variables
measured at 317,980 time points from this real-time data stream.

In Figure 4(a) we show a small section (t = 250000 to t = 300000) of the
server usage data stream. It is extremely volatile and as a result, both the KL
and RD methods detect changes (overlapping red and black tick marks) at reg-
ular intervals that correspond to the window size used in the change detection
method. When a data stream is as volatile and dynamic as the server usage
stream, change is constant. In such situations, engineers often focus on high-
level aggregates like univariate moving average methods and threshold based
techniques developed through consultation with subject matter experts.

6 Conclusion and Discussion

We have presented an efficient, nonparametric, fully streaming algorithm for
detecting distributional changes in multi-dimensional data streams within a sta-
tistically rigorous hypothesis testing framework. We describe a novel data struc-
ture, the kdq-tree, to maintain general purpose multi-dimensional histograms
that offer a granular summarization of the data stream. We draw upon the
Kullback-Leibler distance to measure the distance between data stream distri-
butions, either using the original data or its referential distance. We have tested
it exhaustively and found it to be effective in both synthetic and real-life appli-
cations.

We are investigating potential extensions to this work. One aspect of our focus
is incorporating dimensionality reduction techniques like LSH (Locality Sensitive
Hashing) or MDS (Multi-Dimensional Scaling) to deal with high dimensional
data sets. We have preliminary results using LSH that are encouraging.

References

1. Aggarwal, C.C.: A framework for diagnosing changes in evolving data streams. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 575–586 (2003)

2. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over stream-
ing data. In: SODA, pp. 633–634 (2002)

3. Chawathe, S.S., Abiteboul, S., Widom, J.: Representing and querying changes in
semistructured data. In: ICDE 1998, pp. 4–13 (1998)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons,
Inc., Chichester (1991)

5. Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memo-
ryless Systems. Academic Press, London (1981)

6. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic
approach to detecting changes in multi-dimensional data streams. In: Interface
2006 (2006)

34 T. Dasu et al.

7. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall,
Boca Raton (1993)

8. Fleiss, J.L., Levin, B., Paik, M.: Statistical Methods for Rates and Proportions,
3rd edn. John Wiley and Sons, New York (2003)

9. Ganti, V., Gehrke, J., Ramakrishnan, R., Loh, W.-Y.: A framework for measuring
differences in data characteristics. pp. 126–137 (1999)

10. Gutman, M.: Asymptotically optimal classification for multiple tests with empiri-
cally observed statistics. IEEE Trans. Inf. Theory 35, 401–408 (1989)

11. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
KDD, pp. 97–106 (2001)

12. Johnson, D., Gruner, C.: Information-theoretic analysis of neural coding. Journal
of Computational Neuroscience 10, 47–69 (2001)

13. Keogh, E., Lonardi, S., Chiu, B.Y.: Finding surprising patterns in a time series
database in linear time and space. In: KDD, pp. 550–556 (2002)

14. Kifer, D., Ben-David, S., Gehrke, J.: Detecting changes in data streams. In: Pro-
ceedings of the 30th International Conference on Very Large Databases, pp. 180–
191 (2004)

15. Kleinberg, J.: Bursty and hierarchical structure in streams. Data Mining and
Knowledge Discovery 7(4), 373–397 (2003)

16. Krichevsky, R.E., Trofimov, V.K.: The performance of universal encoding. IEEE
Trans. Inf. Theory 27, 199–207 (1981)

17. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. In: 31st
Annual Meeting of the ACL, pp. 183–190 (1993)

18. Pietra, S.D., Pietra, V.D., Lafferty, J.: Inducing features of random fields. IEEE
Trans. Pattern Analysis and Machine Intelligence 19, 380–393 (1995)

19. Shibata, R.: Bootstrap estimate of Kullback-Liebler information for model selec-
tion. Statistica Sinica 7, 375–394 (1997)

20. Song, X., Wu, M., Jermaine, C., Ranka, S.: Statistical change detection for multi-
dimensional data. In: ACM SIGKDD 2007, pp. 667–676 (2007)

21. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.:
Online outlier detection in sensor data using non-parametric models. In: VLDB
2006, pp. 187–198 (2006)

22. Vitter, J.S.: Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software 11, 37–57 (1985)

Exploiting Data Missingness in
Bayesian Network Modeling

Sérgio Rodrigues de Morais1 and Alex Aussem2

1 University of Lyon, LIESP, INSA-Lyon, 69622 Villeurbanne, France
sergio.rodrigues-de-morais@insa-lyon.fr

2 University of Lyon, LIESP, UCBL, 69622 Villeurbanne, France
aaussem@univ-lyon1.fr

Abstract. This paper proposes a framework built on the use of Bayesian
networks (BN) for representing statistical dependencies between the ex-
isting random variables and additional dummy boolean variables, which
represent the presence/absence of the respective random variable value.
We show how augmenting the BN with these additional variables helps
pinpoint the mechanism through which missing data contributes to the
classification task. The missing data mechanism is thus explicitly taken
into account to predict the class variable using the data at hand. Exten-
sive experiments on synthetic and real-world incomplete data sets reveals
that the missingness information improves classification accuracy.

Keywords: Bayesian networks, missing data mechanism, pattern recog-
nition, classification.

1 Introduction

The methods for coping with missing values can be grouped into three main cat-
egories [1]: inference restricted to complete data, imputation-based approaches,
and likelihood-based approaches. Unfortunately, these methods are based on the
assumption that the mechanism of missing data is ignorable. Under this assump-
tion, the missing values can be inferred from the available data. This assumption
is hard to test in practice (Statistical tests have been proposed, but these are
restricted to a certain class of problems) and the decrease in accuracy may be
severe when the assumption is violated. Some mechanisms leading to missing
data actually possess information and the missingness of some variables can be
a predictive information about other variables. Since the missingness mechanism
contains information independent of the observed values, it requires an approach
that can explicitly model the absence of data elements.

Encountering a situation where a portion of the missing data is inaccessible
should not discourage the researcher from applying a statistically principled
method. Rather, the attitude should be to account for as much of the mechanism
as possible, knowing that these results will likely be better than those produced
by naive methods. Moreover, the missing data mechanism is rarely completely
inaccessible. Often, the mechanism is actually made up of both accessible and

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 35–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

36 S. Rodrigues de Morais and A. Aussem

inaccessible factors. Thus, although a researcher may not be confident that the
data present a purely accessible mechanism, covering as much of the mechanism
as possible should be regarded as beneficial rather than detrimental.

In this study, we experiment a new graphical method of treating missing val-
ues, based on Bayesian networks (BN). We describe a novel approach that uses
explicitly the information represented by the absence of data to help detect the
missing mechanism and reduce the classification error. We create an additional
dummy boolean variable to represent missingness for each existing variable that
was found to be absent (missingness indicator approach). The advantages of us-
ing BNs include the following: (1) they can be used to predict a target variable
in the face of uncertainty. (2) BNs can provide a valid output when any subset
of the modeled variables is present. (3) The graphical structure of the BN rep-
resenting the joint probability distribution of the variables can be used to help
identify the missingness mechanism. Imputation and classification are handled
the same way. To perform imputation, we treat each attribute that contains miss-
ing values as the class attribute, then fill each missing value for the selected class
attribute with the class predicted from the model. The model include original
random variable and artificially created variables for representing missingness.
Our approach is based on the identification of relevant subsets of variables that
jointly prove useful to construct an efficient classifier from data. We solve this
feature subset selection (FSS) problem using Markov boundary (MB for short)
learning techniques. A Markov boundary of a variable T is any minimal subset
of U (the full set of variables) that renders the rest of U independent of T . Our
idea is to train a classifier with these relevant variables as input to impute the
missing entries of T . Once the missing data are imputed, visual inspection of the
induced graph reveals useful information on the the missing data mechanism.
Several experiments on synthetic and real-world incomplete data sets will be
conducted to illustrate the usefulness of this approach.

2 Background

2.1 Deletion Process

According to [2], the assumptions about the missing data mechanisms may be
classified into three categories: 1) missing completely at random (MCAR): the
probability that an entry is missing is independent of both observed and un-
observed values in the data set; 2) missing at random (MAR): the probability
that an entry is missing is a function of the observed values in the data set;
3) informatively missing (IM) or Non-MAR (NMAR): the probability that an
entry is missing depends on both observed and unobserved values in the data
set. In order to specify the deletion processes, a dummy binary variable Ri may
be associated with each random variable Xi. When Ri takes value ‘1’, the entry
Xi = xi is not observed and vice-versa. When the probability distribution of
each Ri is independent of X1, . . . , Xn, the data may be seen as MCAR. When
this probability distribution is a function of the observed values in the data set,

Exploiting Data Missingness in Bayesian Network Modeling 37

data are MAR. Now, when this probability distribution is a function of the ob-
served and unobserved entries, data are IM. For instance, when machine learning
algorithms are applied to data collected during the course of clinical care, the
absence of expected data elements is common and the mechanism through which
a data element is missing often involves the clinical relevance of that data ele-
ment in a specific patient [3,4]. Hence the need for methods that help to detect
the censoring mechanism. Notice however that no method can tell for sure, un-
der all scenarios, from the data alone whether the missing observations are IM
(although it is possible to distinguish between MCAR and MAR).

2.2 Related Work

Recent studies have investigated the impact of imputation with Machine learn-
ing (ML) methods on the accuracy of the subsequently performed classification
[5,6,4,7]. In contrast to statistical methods, ML algorithms generate a model
from data that contain missing values, and then use the model to perform clas-
sification that imputes the missing values. These methods do not concentrate
solely on identifying a replacement for a missing value, but on using available
information to preserve relationships in the entire dataset. These studies have
empirically been shown to perform better than ad-hoc methods. However they
are not meant to detect the missing mechanism nor to use such mechanisms
to improve accuracy of prediction. Indeed, unless auxiliary information is avail-
able, modeling an IM mechanism is usually not possible because the missing data
mechanism in this case depends on the missing data themselves. Nonetheless,
Jamshidian et al. [8] propose a simple postmodeling sensitivity analysis to dis-
tinguish between the missing data mechanisms of MCAR and IM. Their method
is built upon the premise that if data are MCAR, the maximum likelihood es-
timates obtained based on various randomly selected subsets of the data, of the
same size, would have the same asymptotic distribution, whereas this would not
hold for data that are IM. Therefore, if a significant disagreement is observed
between the two distributions, then this constitutes grounds to believe that the
data are not MCAR and are possibly IM.

Recently, [3] experimented with a method of treating missing values in a clini-
cal data set by explicitly modeling the absence of data. They showed that in most
cases a Naive Bayesian network trained using the explicit missing value treat-
ments performed better. However there method is unable to pinpoint explicitly
the missing mechanism and their experiments focus on small clinical datasets
and thus the results may not generalize to other settings. Note also that sev-
eral approaches have been designed with a view to be ‘robust’ to the missing
data mechanism [9,10]. No assumption about the unknown censoring mecha-
nism is made, hence the ”robustness”. However, the utility of these methods is
questionable when the percentage of missing data is high.

Our approach is different here in that we try to model the missing data mecha-
nism explicitly and take it into account to impute the missing data using the data
at hand. Moreover, we use highly scalable FSS methods based on recent Markov
boundary learning algorithms to infer only the relevant variables because only a

38 S. Rodrigues de Morais and A. Aussem

subset of the variables provided with explicit representations for absent values
should contribute information. Once again, we do not claim that our method is
able to detect the IM mechanism from data alone under all scenarios but its aim
is to raise a flag if data are ”possibly” IM, as done in [8].

2.3 Bayesian Networks

For the paper to be accessible to those outside the domain, we recall briefly
the principles of Bayesian networks. Formally, a BN is a tuple < G, P >, where
G =< V , E > is a directed acyclic graph (DAG) with nodes representing the
random variables V and P a joint probability distribution on V . A BN structure G
entails a set of conditional independence assumptions. They can all be identified
by the d-separation criterion [11]. We use X ⊥G Y |Z (resp. X ⊥P Y |Z) to denote
the assertion that X is d-separated from Y given Z in G (resp. in P). If < G, P >
is a BN, X ⊥P Y |Z if X ⊥G Y |Z. The converse does not necessarily hold. We
say that < G, P > satisfies the faithfulness condition if the d-separations in G
identify all and only the conditional independencies in P , i.e., X ⊥P Y |Z iff
X ⊥G Y |Z. A Markov blanket MT of a variable T is any set of variables such
that T is conditionally independent of all the remaining variables given MT .

Definition 1. MT is a Markov blanket of the T iff for all X �∈ MT ∪ {T },
X ⊥P T |MT .

A Markov boundary, denoted by MBT , of T is any Markov blanket such that
none of its proper subsets is a Markov blanket of T .

Theorem 1. Suppose < G, P > satisfies the faithfulness condition. Then for all
T , the set of parents, children of T , and parents of children of T is the unique
Markov boundary of T .

More thorough discussion Bayesian networks and Markov boundaries can be
found in [12] for instance. From Theorem 1, a principled solution to the feature
subset selection problem is to determine MBT . MBT contains all and only the
relevant variables that jointly prove useful to construct an efficient classifier from
data.

2.4 Markov Boundary Learning Algorithms

In recent years, there have been a growing interest in inducing the MB automat-
ically from data. Very powerful correct, scalable and data-efficient constraint-
based (CB) algorithms have been proposed recently [13,14,15,16]. They search
the MB of a variable without having to construct the whole BN first. Hence their
ability to scale up to thousands of variables. CB methods systematically check
the data for independence relationships to infer the structure. Typically, the al-
gorithms run a χ2 independence test in order to decide upon the acceptance or
rejection of the null hypothesis of conditional independence (i.e., X ⊥P Y |Z).

When no entry is missing in the database, the MB can be estimated efficiently
with these methods. Unfortunately, when some entries are reported as unknown,

Exploiting Data Missingness in Bayesian Network Modeling 39

the simplicity and efficiency of these methods are lost. The EM algorithm [2], the
Markov chain Monte Carlo (MCMC) methods [17] including Gibbs sampling [18]
are popular solutions to handle incomplete data sets with Bayesian networks,
but all the above methods are based on the assumption that the mechanism
of missing data is ignorable. Notice that all those methods do not make use of
explicit representations of the missingness mechanisms with the aim of improving
accuracy, that is, they are only based on observed values of the original random
variables.

3 The Imputation Model

The problem of finding relevant predictive features is achieved in the context of
determining the Markov boundary of the class variable that we want to predict.
However, as some of these variables may have incomplete records as well, the
idea is to induce a broader set of features that would not be strictly relevant for
classification purposes, if the data set was complete, but that are still associated
to the target. Therefore, the MB learning algorithm is called several times re-
cursively to construct a local BN around the target. We call MBLearning the
generic procedure applied for seeking the Markov boundary of a target from a
data set. This procedure can be replaced by any of the current state-of-the-art
Markov boundary searching algorithms, such as [13,14,15,16]. The local graph
provides a broader picture of the features that carry some information about the
target variable. If the data set was complete, these additional variables would
deteriorate classification accuracy due to increasing design cost. This is not the
case here as the variables in the true Markov boundary may be missing. A sec-
ond important characteristic of the method presented in this section is that the
scope of the search process is augmented by the addition of artificially created
variables that explicitly represent missingness.

The iterative algorithm is called Growing Markov Boundary (GMB for short).
GMB receives four parameters: the target variable (T), the maximal number of
iterations (r), the maximal acceptable ratio for missing values (α) and the data
set (D). GMB proceeds as follows: first the scope of variables (U) is created in
line 1 of the algorithm. U is composed by all the original random variables (Xi)
and artificially created variables (Ri) representing missingness of their respective
random variables. MBLearning is then first run on the target variable T (line 2).
It is then run again repeatedly on the adjacent nodes and so on up to a radius of r
around the target node (lines 5-13). A similar approach was proposed in [19], but
it does not take into account missingness as a possible piece of information. After
finishing the feature subset selection process, GMB creates at line 14 the local
BN including the selection of existing and the dummy variables. The user-defined
radius of the Bayesian network constructed by GMB (r) trades off accuracy and
scalability. MissRatio(X) is the missing rate of X .

It is important to note that MBLearning builds the MB in the presence of
missing data. As discussed above, the structural learning can be performed with
EM or MCMC techniques. In this study, we adopt the simple ‘available case anal-
ysis’ (ACA), i.e., the χ2 for the test X ⊥P Y |Z is calculated on the cases having

40 S. Rodrigues de Morais and A. Aussem

Algorithm 1. GMB
Require: T : target variable; r: maximal number of iterations for FSS; α: maximal

acceptable ratio for missing values; D: data set.
Ensure: BN: Bayesian network.

1: U = (Xi..n ∪ Ri..n)
2: Set1 ← MBLearning(T,U)
3: V ← Set1 ∪ T
4: I ← 1
5: while I < r do
6: Set2 ← ∅
7: for all (Xi ∈ Set1, such that MissRatio(Xi) ≥ α) do
8: Set2 ← Set2 ∪MBLearning(Xi,U)
9: end for

10: Set1 ← Set2
11: V ← V ∪ Set2
12: I ← I + 1
13: end while

14: BN ← Build Bayesian Network for V

non missing values for X , Y and ∀j, Zj ∈ Z. Of course, this will bias results if
the remaining cases are not representative of the entire sample. Note however
that ACA is not a valid procedure, even for MAR data, but its implementation
is straightforward. Still, good performances are obtained in practice as we will
see next. The MBOR algorithm [14] is used to implement MBLearning.

4 Experiments

We report now the results of our experiments on synthetic and real-world data.
The focus of the experiments was to determine whether missingness contains
information value or not. Our specific aims are : (1) to provide a graphical rep-
resentation of the statistical relationships between the existing variables and the
dummy missingness variables (2) to help identify the mechanism of the missing
data, (3) to gain insight on the applicability and limitations of BN methods for
handling missing data, and (4) to assess the merits of including missing data for
imputation and classification problems. The improvement in performance was
used as a measure of the information value provided by missingness. In the anal-
ysis, we compared the performance of prediction models using data sets with
and without explicit representations of the absence of data elements.

4.1 Synthetic Data

Whittaker reports a data set [20] that involves six boolean risk factors X1, . . . , X6
observed in a sample of 1841 employees of a Czech car factory. Ramoni and Sebas-
tiani [9] considered these data and used a structure learning algorithm to output

Exploiting Data Missingness in Bayesian Network Modeling 41

a structure that they used afterwards as a toy problem to learn the conditional
probability tables from incomplete data sets. In these experiments, we use the
same toy problem to illustrate our method. We assess how the use of explicit
representation of missing data affects classification across a range of different
amounts of missing values, sample size and missing data mechanisms. X6 is our
target variable. We caused about 5%, 15% and 25% of the values to be missing
according to MCAR, MAR and IM mechanisms by modifying the probability
tables of the toy BN reported in [9]. Fig. 1 illustrates each of the three missing
mechanisms. The original BN consists of the 6 random variables X1, . . . , X6 in
plain line. Three sample sizes (i.e., 500, 1500 and 5000) are considered in the
experiments.

Fig. 1. Graphical representation of the MCAR, MAR and IM missing data mechanism
on the BN reported by Ramoni and Sebastiani [9]. Ri takes value ‘1’, when Xi is
missing.

We run GMB(X6) for r = 1, 2, 3 and the local BN output by GMB was used
as the classifier for X6 using standard inference techniques. Fig. 5 summarizes
the variability of the Kappa measure by 10-fold cross validation. The Kappa
distribution over 50 data sets is illustrated in the form of boxplots. The Kappa
measure assesses improvement over chance. The following ranges of agreement
for the Kappa statistic suggested in the literature are: poor K < 0.4, good 0.4 <
K < 0.75 and excellent K > 0.75. As may be seen in Fig. 5, the prediction value
derived from missing data appears to be useful for increasing the accuracy of the
toy problem when the percentage of missing data is superior to 5%. The term
‘MB’ denotes the classifier using only the MB of the variable (without the use of
the dummy variables Rj). The analysis presented here suggests that attention
to missing data may improve the prediction accuracy. Further conclusions can
be drawn from these results. In the MCAR case, the inclusion of the dummy
variables cannot improve classification because they are independent of all the
variables. The observed improvement for r > 1 is only due to the additional Xj

variables that are found useful when others are missing. A radius r > 1 was not
found to improve significantly the classification, compared to r = 1, when data
are missing by MAR or IM. The usefulness of the dummy variables increases
with the ratio of missing data when data are IM. This is very noticeable on the
lower right plot (IM, 5000 instances and 25% missing data). Finally, the size of
the data set has little influence on the results when data is MAR and IM.

42 S. Rodrigues de Morais and A. Aussem

4.2 Detecting the Missing Mechanism

In this section, we illustrate on a toy problem how augmenting the data with the
missingness variables may, in some cases, help pinpoint the mechanism of missing
data. A simple way to detect this mechanism is by visually inspecting the graph
(DAG) induced by the BN structure learning algorithm. Under the faithfulness
condition, the BN encodes the augmented probability distribution including the
dummy boolean variables expressing missingness. It is important to note that the
detection (when possible) of the IM mechanisms must necessarily be preceded
by an imputation phase as explained below. Imputation of any variable X can
easily be carried out by inferring the missing entries of X in the local network
induced by GMB(X).

Fig. 2. Toy network. The values of variable X are missing according to the IM mech-
anism. The missing rate, p, is varied from 0 (not missing) to 1/2 (50% missing rate).

Consider the toy BN presented in Fig. 2 for the sake of illustration. As may
be observed, the missing mechanism is IM because the absence of X depends on
the value of X which is missing. We generated 1000 independent and identically
distributed samples from this BN for various values of p. Notice that for p = 1/2,
X is always missing when X = 1, therefore the Y does not carry any information
anymore to impute X (the edge Y → X is lost) so the edge X → RX can not
be induced from the available data anymore. Similarly, when p = 0, X is not
missing, RX is a constant and the edge (X → RX) does not exist anymore.
In this experiment, GMB is run on X with parameters, r and α, set to r = 1,
and α = 0.01, for varying values of p ∈ [0, 1/2]. The goal is study to what
extent the imputation of X thanks to Y can help detect the edge X → RX .
Fig. 3 summarizes the accuracy of the detection process (i.e., the number of
times the edge between X and RX is detected divided the number of runs) as a
function of the missing data ratio and the number of instances on the data set.
As expected, the accuracy of the detection process increases with the number of
instances. Interestingly, the non-ignorable missing mechanism is rapidly detected
as p increases and falls off rapidly as p approaches 1/2. Finally, provided that the
information carried by Y is sufficient to impute X with reasonable assuredness
and that the missing rate is sufficiently high, it is possible to detect that the
missing data mechanism for X is non-ignorable.

Consider now a real-world data set, namely the Congressional Voting Records,
available from the Machine Learning Repository. We would like to shed some
light into the unknown missing mechanism in a real scenario. The data set
describes votes for each of the 435 member of the US House of Represen-
tative on the 16 key issues during the 1984. Hence, the data set consists of
435 cases on 17 binary attributes. X1 (Class Name - democrat or republican),

Exploiting Data Missingness in Bayesian Network Modeling 43

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Missing Rate

Ac
cu

ra
cy

 100 inst.
 500 inst.
1500 inst.
5000 inst.

Fig. 3. Average accuracy, over 1000 runs, in detecting the IM mechanism of toy problem
shown in Fig. 2, for 500, 1500 and 5000 instances, as a function of the missing rate p.

0 2.33 4.93 7.36 10.05 11.82 14.56 16.80 18.69 21.71
0

0.2

0.4

0.6

0.8

1

Average Missing Rate (%)
A

v
e
r
a
g
e
 K

a
p
p
a

MB
GMB(r=1)
GMB(r=2)

Fig. 4. Left: Bayesian network representing the joint probability distribution of the
variables on the Congressional Voting Records Data Set X4 is our class variable. Center:
conditional probability tables used for the Rj variables according to the number of
parents. Right: average prediction accuracy as a function of the missing rate.

X2 (handicapped-infants), X3 (water-project-cost-sharing), X4 (adoption-of-the-
budget-resolution), X5 (physician-fee-freeze), X6 (el-salvador-aid), X7 (religious-
groups-in-schools), X8 (anti-satellite-test-ban), X9 (aid-to-nicaraguan-contras),
X10 (mx-missile), X11 (immigration), X12 (synfuels-corporation-cutback), X13
(education-spending), X14 (superfund-right-to-sue), X15 (crime), X16 (duty-free-
exports), X17 (export-administration-act-south-africa). We consider X4 as our
target variable. There are 289 values reported as unknown. Although these miss-
ing entries amount to 4% of the data set, the number of incomplete cases is 203,
more than 45% of the total. An important feature of this data is that unknown
entries, and hence what member of the US House of Representative did not vote
on, can be predictive.

To learn the structure, we run GMB(Xj) for r = 1 on each existing variable
Xj in the network and we used the BN output by GMB as the classifier us-
ing standard inference techniques to fill in the missing entries for Xj . When all
missing values were imputed, the overall structure was constructed and oriented
by standard CB techniques. The resulting DAG depicted in Figure 4 provides
a complete picture of the missing mechanisms. As may be seen, X12 and X13
are MCAR as their respectively dummy variables are singletons; X3, X5, X6,
X7, X9 and X10 are MAR; X4 and X17 seem to be IM because R4 and R17

44 S. Rodrigues de Morais and A. Aussem

MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.1

0.2

0.3

0.4

0.5

K
a

p
p

a

MCAR, 500 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.1

0.2

0.3

0.4

K
a

p
p

a

MCAR, 500 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

−0.1

0

0.1

0.2

K
a

p
p

a

MCAR, 500 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0.35

0.4

0.45

0.5

0.55

K
a

p
p

a

MAR, 500 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0.3

0.4

0.5

0.6

K
a

p
p

a
MAR, 500 instances, 15% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)
−0.1

0

0.1

0.2

0.3

0.4

0.5

K
a

p
p

a

MAR, 500 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.1

0.2

0.3

0.4

0.5

0.6

K
a

p
p

a

IM, 500 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

−0.1

0

0.1

0.2

0.3

0.4

K
a

p
p

a

IM, 500 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

−0.2

−0.1

0

0.1

0.2

0.3

0.4

K
a

p
p

a

IM, 500 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0.2

0.3

0.4

0.5

K
a

p
p

a

MCAR, 1500 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0.05

0.1

0.15

0.2

0.25

K
a

p
p

a

MCAR, 1500 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

−0.05

0

0.05

0.1

0.15

0.2

K
a

p
p

a
MCAR, 1500 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0.4

0.45

0.5

K
a

p
p

a

MAR, 1500 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

K
a

p
p

a

MAR, 1500 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.1

0.2

0.3

0.4

0.5
K

a
p

p
a

MAR, 1500 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0.2

0.3

0.4

0.5

K
a

p
p

a

IM, 1500 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.1

0.2

0.3

K
a

p
p

a

IM, 1500 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

−0.1

0

0.1

0.2

0.3

0.4

K
a

p
p

a

IM, 1500 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0.3

0.35

0.4

0.45

0.5

K
a

p
p

a

MCAR, 5000 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0.05

0.1

0.15

0.2

K
a

p
p

a

MCAR, 5000 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.05

0.1

0.15

0.2

K
a

p
p

a

MCAR, 5000 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0.44

0.46

0.48

0.5

K
a

p
p

a

MAR, 5000 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0.3

0.35

0.4

0.45

0.5

K
a

p
p

a

MAR, 5000 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0.1

0.2

0.3

0.4

0.5

K
a

p
p

a

MAR, 5000 instances, 25% missing data

MB GMB(r=1) GMB(r=2) GMB(r=3)

0.25

0.3

0.35

0.4

0.45

0.5

K
a

p
p

a

IM, 5000 instances, 5% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.05

0.1

0.15

0.2

0.25

K
a

p
p

a

IM, 5000 instances, 15% missing data
MB GMB(r=1) GMB(r=2) GMB(r=3)

0

0.1

0.2

0.3

K
a

p
p

a

IM, 5000 instances, 25% missing data

Fig. 5. Accuracy of GMD for MCAR, MAR and IM missing data mechanisms on
synthetic data, for 5%, 15% and 25% missing values, and 500, 1500 and 5000 instances

Exploiting Data Missingness in Bayesian Network Modeling 45

are directly linked to their corresponding variable. Variables ‘adoption-of-the-
budget-resolution’ and ‘export-administration-act-south-africa’ are expected to
be non-ignorable. Moreover, even if ‘party affiliation’ is not directly associated
to ‘aid-to-nicaraguan-contras’ and ‘export-administration-act-south-africa’, their
missingness do carry some information. Nonetheless, explicit inclusion of miss-
ingness information was not found to have any significant effect on the accuracy
of classification. It not surprising as the missing entries amounts to only 4% in
total. This is in agreement with the previous conclusions on synthetic data. In
order to analyse the impact of missing data on the Congressional Voting Records
Data Set, the probability tables of the missingness variables Rj were modified
as illustrated on Figure 4 (middle) in order to increase the ratio missing data.
The network was used for generating several data sets of 435 samples (as in the
original data set), but with increasing amounts of missing data. Three probabil-
ity tables are considered according to the number of parents. The parameter p
was varied from 0 to 0.9 in order to generate data sets with different amounts of
missing data. The average prediction accuracy, over 200 experiments, is reported
on the right plot as a function of the missing rate. Again, we observe significant
improvements for missing rates above 5% with GMB(X4), for both r = 1 and
r = 2, compared to using solely the Markov boundary of X4.

5 Conclusion

In this article, we addressed data missingness issue when building a classifier.
Although absence of data is usually considered a hindrance to accurate predic-
tion, our conclusion is that the absence of some data elements in the data sets
can be informative when the percentage of missing data is greater than 5%.
Our approach provides a graphical representation of the statistical relationships
between the existing variables and the dummy missingness variables that may
help identify the mechanism of the missing data. In certain cases, our method
was able to detect non-ignorable non-response from data alone after the missing
data were imputed. Therefore, it would be interesting for work to be performed
to ascertain the probability distributions for which the IM detection is possible.

References

1. Little, R., Rubin, D.: Statistical analysis with missing data. Wiley Interscience,
Hoboken (2002)

2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39(1), 1–38 (1977)

3. Lin, J., Haug, P.: Exploiting missing clinical data in Bayesian network modeling
for predicting medical problems. Journal of Biomedical Informatics 41, 1–14 (2008)

4. Siddique, J., Belin, T.: Using an approximate Bayesian bootstrap to multiply im-
pute nonignorable missing data. Computational Statistics & Date Analysis 53,
405–415 (2008)

5. Saar-Tsechansky, M., Provost, F.: Handling missing values when applying classifi-
cation models. Journal of Machine Learning Research 8, 1625–1657 (2007)

46 S. Rodrigues de Morais and A. Aussem

6. Farhangfara, A., Kurganb, L., Dyc, J.: Impact of imputation of missing values on
classification error for discrete data. Pattern Recognition 41, 3692–3705 (2008)

7. Corani, G., Zaffalon, M.: Learning reliable classifiers from small or incomplete data
sets: The naive credal classifier 2. Journal of Machine Learning Research 9, 581–621
(2008)

8. Jamshidian, M., Mata, M.: Postmodeling sensitivity analysis to detect the effect
of missing data mechanisms. Multivariate Behavioral Research 43, 432–452 (2008)

9. Ramoni, M., Sebastiani, P.: Robust learning with missing data. Machine Learn-
ing 45(2), 147–170 (2001)

10. Aussem, A., Rodrigues de Morais, S.: A conservative feature selection algorithm
with missing data. In: IEEE International Conference on Data Mining ICDM 2008,
Pisa, Italy, pp. 725–730 (2008)

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

12. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs
(2004)

13. Peña, J., Nilsson, R., Björkegren, J., Tegnér, J.: Towards scalable and data effi-
cient learning of Markov boundaries. International Journal of Approximate Rea-
soning 45(2), 211–232 (2007)

14. Rodrigues de Morais, S., Aussem, A.: A novel scalable and data efficient feature
subset selection algorithm. In: Daelemans, W., Goethals, B., Morik, K. (eds.)
ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 298–312. Springer,
Heidelberg (2008)

15. Tsamardinos, I., Brown, L., Aliferis, C.: The max-min hill-climbing Bayesian net-
work structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

16. Yaramakala, S., Margaritis, D.: Speculative Markov blanket discovery for optimal
feature selection. In: IEEE International Conference on Data Mining, pp. 809–812
(2005)

17. Myers, J., Laskey, K., Levitt, T.: Learning Bayesian networks from incomplete
data with stochastic search algorithms. In: Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence, UAI 1995 (1995)

18. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 6(6), 721–741
(1984)

19. Peña, J.M., Björkegren, J., Tegnér, J.: Growing Bayesian network models of gene
networks from seed genes. Bioinformatics 40, 224–229 (2005)

20. Whittaker, J.: Graphical Models in Applied Multivariate Analysis. Wiley, New
York (1990)

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 47–58, 2009.
© Springer-Verlag Berlin Heidelberg 2009

DEMScale: Large Scale MDS Accounting for a Ridge
Operator and Demographic Variables

Stephen L. France1 and J. Douglas Carroll2

1 Lubar School of Business, UW – Milwaukee, 3202 N. Maryland Avenue., Milwaukee,
Wisconsin, 53201-0742
france@uwm.edu

2 Rutgers University, Graduate School of Management, Newark, New Jersey, 07102-3027
dcarroll@rci.rutgers.edu

Abstract. In this paper, a method called DEMScale is introduced for large scale
MDS. DEMScale can be used to reduce MDS problems into manageable sub-
problems, which are then scaled separately. The MDS items can be split into
sub-problems using demographic variables in order to choose the sections of the
data with optimal and sub-optimal mappings. The lower dimensional solutions
from the scaled sub-problems are recombined by taking sample points from
each sub-problem, scaling the sample points, and using an affine mapping with
a ridge operator to map the non-sample points. DEMScale builds upon the
methods of distributional scaling and FastMDS, which are used to split and
recombine MDS mappings. The use of a ridge regression parameter enables
DEMScale to achieve stronger solution stability than the basic distributional
scaling and FastMDS techniques. The DEMScale method is general, and is
independent of the MDS technique and optimization method used.

Keywords: MDS, Visualization, Ridge Operator, PCA.

1 Introduction

Multidimensional scaling (MDS) can be described as a set of techniques for interpreting
similarity or dissimilarity data. Typically, an MDS procedure takes proximity data as
input and then embeds the data in a metric (usually Euclidean) space. The proximity
data may be gathered directly or calculated from a higher dimensional configuration
using an appropriate metric. The original MDS techniques such as classical
multidimensional scaling (CMDS) [33][34] and Kruskal’s distance based metric and
nonmetric scaling [17][18] were initially designed to deal with small scale data sets.
Over the last 40 years researchers in psychometrics, statistics, and data mining have
developed techniques to scale up MDS in order to improve MDS as a tool for large
scale exploratory data analysis and visualization.

CMDS [33]-[34] is based on a singular value decomposition of a derived “scalar
products” matrix. Kruskal’s MDS procedure [17][18] is based upon fitting the best
ordinary least squares (OLS) approximation to the distances in the low dimensional
space (dij). The original STRESS function is given in (1). The STRESS function is
typically optimized using a gradient descent algorithm or by function majorization [12].

48 S.L. France and J.D. Carroll

We abbreviate this variant of MDS as DMMDS (distance based metric MDS). Variants
on STRESS include SSTRESS [31], which uses squared distances, and the Sammon
mapping criterion [27], which is designed to account for nonlinearity in data structures.

()2
2ˆ

ij ij ij
i j i j

STRESS d d d= −∑∑ ∑∑ (1)

MDS is often used as a ‘visualization’ procedure, with the derived lower
dimensional solution being plotted visually. MDS procedures have been combined
with visual mapping tools such as GGobi [29]. Modern visualization techniques need
to be able to cope with the large scale data sets prevalent in the modern world.
Assuming symmetric input, a total of n × (n - 1) / 2 distinct distances/dissimilarities
are required as input for MDS procedures. Even for moderate sized data sets, these
data require a large amount of memory. This memory requirement restricts the use of
MDS for large data sets. Table 1 lists some of the main papers that present methods
for scaling up MDS to larger data sets. Our definition of MDS is rather narrow,
including only techniques directly related to CMDS or DMMDS; we do not include
neural network based learning techniques, such as self organizing maps. We split the
innovations into several categories. The categories are the initialization of a starting
solution (IN), fast heuristic optimization techniques (OP), and techniques for reducing
the memory required by the MDS algorithm for storing distance information (RE).

Table 1. Literature summary for large scale MDS

Authors MDS IN OP RE Description

Basalaj (1999) [1] DS Y Clustering groups + add points

Brandes and Pich (2007) [4] CS Y MetricMap - Nystrom

Brodbeck and Girarfin (1998) [5] DS Y Y Stoc. scaling + interpolation

Chalmers (1996) [6] DS Y Y Stochastic scaling

De Silva and Tenenbaum (2004) [7] CS Y LandmarkMDS - Nystrom

Faloutsos and Lin (1995) [8] CS Y Fastmap - Nystrom

Groenen and Heiser (1996) [10] DS Y Tunnelling heuristic

Groenen, Heiser, and Meulman (1999) [11] DS Y Distance Smoothing

Groenen, Mathar, and Heiser (1995) [12] DS Y Function majorization

Heiser and de Leeuw (1986) [14] CS Y SMACOF – Iterative updates

Jourdan and Melancon (2004) [16] DS Y Stoc. scaling + bins

Morrison and Chalmers (2002) [20] DS Y Stoc. scaling + bins

Morrison, Ross, and Chalmers (2003) [21] DS Y Stoc. scaling + bins

Naud (2004, 2006) [22, 23] DS Y distributional scaling

Platt (2006) [25] CS Y Nystrom algorithms

Trosset and Groenen (2005) [35] CS Y Y Fast initial Construction

Wang, Wang, Shasta, and Zhang (2005) [36] CS Y MetricMap - Nystrom

Williams and Muntzer (2004) [37] DS Y Y Progressive stoc. scaling

 DEMScale: Large Scale MDS Accounting for a Ridge Operator 49

Basalaj [1] develops an incremental scaling technique that uses a minimum
spanning tree to order objects in terms of structural importance, performs full scaling
on a subset of the most important points, and then uses single scaling (minimizing
STRESS while only allowing the configuration of one point to change) on each of the
remaining points in turn. Naud [22][23] develops a variant of Basalaj’s technique,
choosing points close to the center of k-Means clustering solutions rather than using a
minimum spanning tree, and incrementally adding multiple points rather than adding
single points.

Quist and Yona [26] introduce a technique called distributional scaling. They split
the solution points into k clusters, as per Naud, but they then scale the points in each
of these clusters, creating a separate lower dimensional embedding for each cluster.
They then use an affine transformation to map the points together, based upon a
solution created from sample points selected from each cluster. FastMDS [38] splits
the source matrix into separate sub-matrices randomly and performs classical MDS on
each of these submatrices. Sampling points are taken from each of the submatrices
and then classical MDS is performed on the sample points. FastMDS configures the
overall solution using an affine mapping, in a similar way to [26].

There are several techniques that perform CMDS on a subset of the points to be
scaled and then fill in the remaining points using a mapping or triangulation relative
to the original data. These techniques include FastMap [8], MetricMap [36], and
Landmark MDS [7]. FastMap, MetricMap, and Landmark MDS are all variants on the
Nyström approximation of the eigenvectors and eigenvalues of a matrix [25].

Chalmers [6] develops an algorithm that for each solution point stochastically
selects a subset of points for calculating the STRESS measure. Two lists of points are
created at each iteration. If a randomly generated point has a smaller distance than the
maximum on the first list then the point is added to the first list, otherwise it is added
to the second list. The first neighborhood list becomes more local as the algorithm
progresses while the second list remains random. [20][21] develop a hybrid approach,
combining [6] with an interpolation method described in [5].

2 Methodology

In this paper we generalize, empirically test, and expand on the techniques developed
for distributional scaling and FastMDS. Both distributional scaling and FastMDS
work in a similar manner, but for different varieties of MDS. The advantages of these
techniques over the others described are that optimal mappings (assuming a global
optimum has been found for distance based techniques) can be guaranteed for the
subsets of the solution that are scaled separately and that the procedure used to split
and recombine solutions is independent of the type of MDS used. DEMScale can be
used to reduce MDS problems into manageable sub-problems, which are then scaled
separately. The lower dimensional solutions are recombined by taking sample points
from each sub-problem, scaling the sample points, and using an affine mapping with a
ridge operator to map the non-sample points.

Using DEMScale, one can take advantage of the optimal subset property by
splitting solutions using demographic variables, thus controlling the subsets of the
data across which there is optimal solution recovery. Consider the following situation.

50 S.L. France and J.D. Carroll

Patients in a large scale epidemiological study are scaled based upon answers to a
large scale questionnaire and measurements from health indicators. One researcher is
interested in exploring differences between males and females and between different
socioeconomic groups within prescribed geographic areas. A second researcher is
interested in differences between smokers and non-smokers for subjects in different
socio-economic groups. For researcher 1, the MDS problem could be split via
geographical location, giving optimal mappings for all subjects in a single
geographical location. For researcher 2, the MDS problem could be split by socio-
economic group, giving optimal mappings for all subjects in certain socioeconomic
groups. DEMScale is independent of the variety of MDS used and the algorithm is as
general as possible. At a minimum, the maximum size of the subgroups of items to be
scaled must be specified. If the data items are not split using demographic variables,
then the data are split randomly in step 3.

3 DEMScale Algorithm

1. Set the maximum number of input items to be scaled at any one time as Maxopt.
Set Divide to be the reciprocal of the proportion of items in each group that are to
be scaled in the combined solution.

2. Split the data set into groups G1,⋅⋅⋅,Gn, based upon chosen demographic variables
or by any other grouping method (e.g., a clustering solution). If the demographic
variables are ordered (with the variable ordered last the most important not to split
on), then iterate through the list, splitting using each demographic variable until all
groups have less than Maxopt variables. If not using any grouping method at this
stage then there is one group, G1, containing all of the items in the dataset.

3. If |Gi| > Maxopt for Group i then split the Group into floor(|Gi| / Maxopt) + 1
groups randomly.

4. Calculate a distance matrix for each group so there are matrices D1,…..,Dn.
5. Calculate a lower dimensional solution using MDS for each group to retrieve lower

dimensional solutions L1,…..,Ln. This step is independent of the type of MDS
solution used.

6. Take s = floor(|Gi| / Divide)} items randomly from each Li, combine these items,
and calculate the distance matrix Dn+1 from the combined items.

7. Use MDS to calculate a lower dimensional embedding M from Dn+1.
8. Use (3) to calculate affine least squares mappings between each subset of s points

of Li and each Mi for i = 1 to n, where Mi is the subset of M corresponding to the
points sampled from Li.

9. For each Li, use A to calculate the final mapping LiA of all of the points in Li.

For each subset of items, the affine mapping is used to calculate the position of each
of the points not included in the sample points in the main solution. The least squares
function to be minimized for the estimation of the affine mapping is given in (2).

 i i i iMin ′ ′+ λ(M - S A) (M - S A) A A (2)

Mi is an s × d subset of M, corresponding to the points sampled from Li, s is the
number of sample points taken, and d is the number of dimensions of the mapping.

 DEMScale: Large Scale MDS Accounting for a Ridge Operator 51

Si is an s × (d + 1) matrix containing a column of 1’s and the columns of the lower
dimensional solution for the s points sampled from Li.

A is a (d + 1) × d matrix of the estimated affine mapping from the points in the sub-
solution to the final mapping.

The mapping is solved using (3).

1
1i i d i

−
+

′ ′λA = (S S + I) S M (3)

If λ = 0 for the affine mapping, then DEMScale reduces to distributional scaling
for DMMDS and to FastMDS for CMDS. The rationale behind ridge regression is
that standard ordinary least squares (OLS) regression is liable to over fit the training
data, leading to sub-optimal results when applied to test data. By the Gauss-Markov
theorem, OLS regression provides the best unbiased estimator for the regression
problem, but a biased estimator such as ridge regression [15][19] may give a more
reliable predictor when the estimators are used on data drawn from the same
population as the test data used to fit the regression equation. In the case of
DEMScale, we hypothesize that the use of ridge regression will lessen the chance of
over fitting on the sample points and lead to more stable mappings.

4 Computational Complexity

The worst case computational complexity of DEMScale can be calculated based upon
the MDS technique used, the method of optimization or calculation of the solution,
and the maximum number of items in each subgroup. One can calculate the
computational complexity relative to the original problem. Take the worst case
running time for the original MDS problem to be (4), where f(N) is a function of the
number of points N in the solution. One can make the assumption that f(N) is
monotone increasing with N, as in the context of MDS it would be nonsensical for
solution time to decrease with increasing problem size.

() ()()CC full O f N= (4)

Consider the situation where Maxopt = M and M ≤ N. The N items are split into
subgroups of points, where the maximum size of the subgroups of points is M.
Consider the points evenly split between groups (with remainder points split
randomly amongst groups) then an inequality for the minimum number of subgroups
n is given in (5), where ⎟Gi⎜ is the number of items in group i.

() 1N M n N M N M≤ = ≤ +⎡ ⎤⎢ ⎥ , where iG M≤ (5)

The MDS procedure must be run for each subgroup. A formula for the worst case
complexity for the n DEMScale sub-problems is given in (6).

() ()() ()()() 1CC DS O N M f M≤ + × (6)

Theorem: Given the function k1⋅Np < f(N) < k2⋅Nq for all N, arbitrary constants k1 and
k2, and some p ≥ 1 and q ≥ p, then the N items to be scaled can be split into any

52 S.L. France and J.D. Carroll

number of groups with any permutation of items in groups so that ⎟Gi⎜ ≤ M and
equation (6) still holds.

Partition the problem into two distinct cases:

Case 1: The number of groups n is minimal and n = ⎡N / M⎤. This case is covered by
(6) as n < ((N / M) + 1) and by assumptions of monotonicity f(⎟Gi⎜) ≤ f(M) for all
subgroups i. This gives (7).

() () ()() ()() ()()()1 2 1nO f G f G f G O N M f M+ + ⋅⋅⋅ + ≤ + × (7)

Case 2: The number of groups n > ⎡N / M⎤. One needs to show that for any item
splitting scheme G2 with n2 > ⎡N / M⎤ subgroups there is an item splitting scheme G1
with n1 = ⎡N / M⎤ subgroups, so that given = k1⋅Np < f(N) < k2⋅Nq and p ≥ 1 and q ≥ p
then the inequality holds.

() ()() () ()()2 11 12 2 1 1n nO f G f G O f G f G+ ⋅⋅⋅ + ≤ + ⋅⋅ ⋅ + (8)

Without any loss of generality one can create a permutation of the groups so the
groups are ordered in decreasing size.

1 21 22 2 2 2p p pn pnG G G G≥ ≥ ⋅ ⋅ ⋅ ≥ ⋅ ⋅⋅ ≥ (9)

Now there is some G1 so that all the N items are divided amongst n1 = ⎡N / M⎤
subgroups so that ⎟G1i⎜ ≤ M for all i and that there are either M or M - 1 items in each
group. Take each of the items in groups

1 12 pnG + to
2

2 pnG and add them iteratively to

one of the groups 12G to
1

2nG with the least number of items. At each stage the

change in the value of the computational requirements is equal to (10).

() ()() () ()()2 1 2 2 1 2i i j jf G f G f G f G+ − − − − (10)

As ⎟G2i⎜ ≥⎟G2j⎜, then for any polynomial function f(N) = k1⋅Np where p ≥ 1, (10) is
positive. As each change is positive and the permutation scheme with n1 = ⎡N / M⎤
groups (call this G1) has a greater value than the starting permutation scheme then
(11) holds.

() () ()() ()() ()()()
21 22 2 2 1nO f G f G f G O N M f M+ + ⋅⋅⋅ + ≤ + × , (11)

for arbitrary n2 > ⎡N / M⎤ and for f(N) = k1⋅Np where p ≥ 1.
The theorem follows by using the squeeze theorem with f(N) = k1⋅Np and f(N) =

k2⋅Nq, as both these polynomials are continuous for all N.
For example, consider an MDS algorithm with computational complexity O(N4).

An example would be Isomap [32], which has a dynamic programming step with
O(N4) that dominates the other steps). If the maximum subgroup size M is set as N1/2
then the computational complexity for the subgroup calculations is given as (12).

()() ()1 1 2 4/2 5/21O N N O N− + × ≈ (12)

 DEMScale: Large Scale MDS Accounting for a Ridge Operator 53

If the number of sample points taken from each of the runs is less than N1/2 then the
complexity of this step is O(N2). For the example given, there are approximately N1/2
(the number of subgroups) affine mappings. The complexity of the affine mapping is
dominated by the calculation of Li′ Li. (as other matrix calculations involve s × (d + 1)
or (d + 1) × (d + 1) items). The matrix Li has N1/2 × (d + 1) items and N1/2 affine
mappings have a complexity of N1/2 × [(d + 1)2⋅N1/2]= k⋅N, where k = (d + 1)1/2. Thus
the overall complexity is given in (13) and the complexity of performing MDS on the
subgroups dominates the computational complexity of the other stages.

()5/ 2 2 5/2
1 2 3CC k N k N k N O N= ⋅ + ⋅ + ≈ (13)

5 Experimentation and Results

The experimentation on DEMScale has two major purposes. The first is to check the
accuracy of the DEMScale mappings relative to mappings created using the entire set
of data at one time. The second is to find the optimal ridge regression parameter, λ,
and to show that the use of ridge regression helps stabilize the affine mapping and
thus produce more reliable solutions. In order to test the stability of the mapping, one
must compare the solutions constructed with affine mappings on the same sub-
solutions, but using differently randomly selected sets of sample points. The average
similarity between solutions can then be taken as a measure of stability.

In order to ensure that the results are not skewed by the peculiarities of the MDS
technique used, DEMScale was tested with both CMDS and DMMDS. We
implemented DMMDS using three different MDS functions (STRESS, SSTRESS,
and SAMMON) and optimized these functions using a second order gradient descent
algorithm. Newton gradient based optimization sets convergence criterion as a
gradient step per variable, so S ≅ 1 / (N × d), where N is the number of points and d is
the dimensionality of the derived solution. Thus, the computational complexity can
be considered per iteration when comparing between running MDS on all items and
running MDS on multiple subsets of items. DEMScale was tested on multiple
datasets, which are summarized in Table 2.

Table 2. Experimental datasets

Data Dims Type Data set description
fbis 2463 Sparse Count TREC (1999)
isolet 617 Real Fanty and Cole (1990) [9]
CRM 142 Real Neslin, Gupta, Kamakura, Lu, Mason

(2006) [24]
Madelon 31472 Real TREC (1999)

As different MDS techniques are being tested, comparison metrics independent of

the MDS technique are required. In order to compare the accuracy of the solution
recovery, the inter-item distances from the derived solution must be compared with
the input proximities. In order to test the stability of the affine mapping, the inter-item

54 S.L. France and J.D. Carroll

distances must be compared between solutions mapped from the same sub-solutions,
but with different items sampled for the affine mapping. To compare configurations,
we use the congruence coefficient [3], which gives the uncentered correlation between
distances in the solutions being compared. We tested the algorithm using a multi-
factorial design. The factors used were as follows:

MDS Algorithms: CMDS and DMMDS were tested. Three different functions
were implemented for DMMDS. These were STRESS, SSTRESS, and SAMMON.

Maxopt: Maxopt of values M = N / 4, M = N / 8, and M = N / 16, where N is the
size of the data set.

Splitting: If items are split using demographic variables then it is unlikely that
item subgroups will have equal numbers of variables. Therefore a random splitting
technique was used; n – 1 split points in the data were randomly generated from the
uniform distribution, in order to create n = ⎡N / M⎤ subgroups. If subgroups had more
than M items then the subgroups were split, as per step 3 in the DEMScale algorithm.
Very small groups of items may lead to singularity in the affine mapping matrix. We
thus set the minimum group size as Maxopt / 4.

Sample points: Three different values for the number of sample points taken from
each subgroup were used. These were S = M / 4, S = M / 8, and S = M / 16.

Data sets: 2000 items were selected from each of the datasets given in Table 2,
giving a maximum proximity matrix size of (500 × 499) / 2 for M = N / 4. For each
dataset a proximity matrix was calculated from the data using an appropriate metric.
N.B. Larger datasets of up to 20,000 items were tested and visualized, but these
datasets required a larger number of splits and smaller number of sample points than
used in the experiment.

For each value of S, five runs were made, with S sample points selected randomly
for each run. The average values of the congruence (c) were calculated across the five
runs as measures of solution quality. The average values of c were calculated across
the (5 × 4) / 2 = 10 distinct pairs of lower dimensional solutions as a measure of
solution stability and consistency. In total there were 4 × 4 × 3 × 3 = 144 different
experimental conditions. Five runs were made per experimental condition, totaling 720
runs. All lower dimensional solutions were embedded in two dimensions due to this
dimensionality being the most commonly used for visualization applications.

The solution quality data were analyzed using the MANOVA technique. The value
of the average congruence between the input configuration and the lower dimensional
solution (i.e., solution quality) was taken as the first dependent variable. The R2 value
((SST - SSE) / SSE) of the affine mapping for overall solution construction was taken
as the second dependent variable. Using Wilks’s Lamba, all factors and interactions
between factors were significant, with p < 0.001 for all values. Tests of between
subject effects were significant for all combinations of dependent variables and factors,
again with p < 0.001 for all values. The between subject effects were all significant
except for MDSType × RRParam for congruence and for MaxOpt × RRParm for R2.

Post hoc tests were carried out on the marginal means of MDSType, MDSOpt, and
Divide. The Scheffé test [28] was used, as it is a fairly conservative and robust post-
hoc test. At the 95% confidence level, there are differences between the means of each
pairwise combination of MDS techniques. The order (strongest performance first) is
STRESS>SAMMON>SSTRESS>CMDS. The order of the performance in terms of

 DEMScale: Large Scale MDS Accounting for a Ridge Operator 55

the R2 values of the affine mapping is STRESS> SSTRESS>SAMMON>CMDS. The
STRESS function uses a least squares criterion, so the results may have something to
do with the fact that the OLS affine mapping works well in combination with the
solutions produced with the STRESS metric.

The results of the post-hoc tests for the MDSOpt and Divide independent variables
are straightforward and easily explained. As MDSOpt increases, so does the quality
of the mapping. Due to a reduction in computation complexity, smaller group sizes
lead quicker run times and lower memory requirements. As Divide becomes smaller
the quality of the mapping improves. Smaller values of Divide result in more points
in the between groups MDS solution and thus more accurate affine mappings. There
is a strong interaction affect, resulting in a large drop off in performance for small
values of MaxOpt and large values of Divide.

Congruence vs. Ridge Regression parameter

0.7

0.75

0.8

0.85

0.9

0.95

1

0.
1

0.
4

0.
7 1

1.
3

1.
6

1.
9

2.
2

2.
5

2.
8

3.
1

3.
4

3.
7 4

4.
3

4.
6

4.
9

Ridge Regression parameter

C
o
n
g
ru

en
ce CRM

fbis

isolet

Madelon

Fig. 1. Congruence vs. Ridge Regression parameter for all files

Fig. 1 shows the performance of the algorithm relative to the value of the ridge
regression parameter. The results described by this graph are somewhat inconclusive,
but show that for some data sets, the use of ridge regression can positively affect the
overall quality of solution mapping. For three of the four files there is a large jump in
performance when a ridge regression parameter is used. In fact, some of the runs with
no ridge parameter produced no results due to the singularity of the matrices. This
may be due to correlated dimensions in the Li. For DMMDS, irrespective of the data
set, it would be useful to use a ridge parameter in order to avoid possible matrix
singularity and the failure of the affine mapping. As the dimensions in the CMDS
solutions are uncorrelated, the matrix singularity is unlikely to occur.

The stability of the solutions was calculated by finding the average congruence
between the four runs for each experimental condition. The solution stability is
plotted against the ridge parameter in Fig. 2. One can see an increase in stability for a
small ridge parameter. The optimal value of the ridge parameter is independent of the
data set tested on.

56 S.L. France and J.D. Carroll

Stability of Solutions

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0
0.
4

0.
8

1.
2

1.
6 2

2.
4

2.
8

3.
2

3.
6 4

4.
4

4.
8

Value of Ridge Regression parameter

A
ve

ra
g
e
C
o
n
g
ru

en
ce

CRM

fbis

isolet

Madelon

Fig. 2. Stability of ridge regression solutions

For future work, a theoretical analysis of the matrix properties of the affine
mapping relative to the type of MDS used and the value of the ridge regression
parameter would be useful. An excellent such analysis on regularization applied to
multi set canonical correlation is described in [31].

References

1. Basilaj, W.: Incremental Multidimensional Scaling Method for Database Visualization. In:
Erbacher, R.F., Pang, A. (eds.) Visual Data Exploration and Analysis, vol. VI, pp. 149–158
(1999)

2. Benzecri, J.P.: Correspondence Analysis Handbook. Marcel Dekker, Inc., New York
(1992)

3. Borg, I., Leutner, D.: Measuring the Similarity between MDS Configurations. Multivariate
Behavioral Research 20, 325–334 (1985)

4. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of
large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53.
Springer, Heidelberg (2007)

5. Brodbeck, D.L., Girardin, D.L.: Combining Topological Clustering and Multidimensional
Scaling for Visualising Large Data Sets. Unpublished Paper (Accepted for, but Not
Published in, Proc. IEEE Information Visualization 1998) (1998)

6. Chalmers, M.: A Linear Iteration Time Layout Algorithm for Visualizing High-
Dimensional Data. In: Yagel, R., Nielson, G.M. (eds.) Proceedings of the 7th Conference
on Visualization, pp. 127–132. IEEE Computer Society Press, Los Alamitos (1996)

7. de Silva, V., Tenenbaum, J.B.: Sparse Multidimensional Scaling using Landmark Points.
Technical Report, Stanford University (2004)

8. Faloutos, C., Lin, K.: FastMap: A Fast Algorithm for Indexing, Data-Mining and
Visualization of Traditional and Multimedia Datasets. In: Cary, M., Schneider, D. (eds.)
1995 ACM SIGMOD International Conference on Management of Data, pp. 163–174.
ACM, New York (1995)

 DEMScale: Large Scale MDS Accounting for a Ridge Operator 57

9. Fanty, M., Cole, R.: Spoken Letter recognition. In: Lippman, R.P., Moody, J., Touretzky,
D.S. (eds.) Advances in Neural Information Processing Systems 3, pp. 220–226. Morgan
Kaufmann, San Mateo (1990)

10. Groenen, P.J.K., Heiser, W.J.: The Tunneling Method for Global Optimization in
Multidimensional Scaling. Psychometrika 61, 529–550 (1996)

11. Groenen, P.J.K., Heiser, W.J., Meulman, J.J.: Global Optimization in Least-Squares
Multidimensional Scaling. Journal of Classification 16, 225–254 (1999)

12. Groenen, P.J.K., Mathar, R., Heiser, W.J.: The Majorization Approach to
Multidimensional Scaling for Minkowski Distances. Journal of Classification 12, 3–19
(1995)

13. Guyon, I., Li, J., Mader, T., Pletscher, P.A., Schneider, G., Uhr, M.: Competitive Baseline
Methods Set New Standards for the NIPS 2003 Feature Selection Benchmark. Pattern
Recognition Letters 28, 1438–1444 (2007)

14. Heiser, W.J., de Leew, J.: SMACOF-I. Technical Report UG-86-02, Department of Data
Theory, University of Leiden (1986)

15. Hoerl, A.E., Kennard, R.W.: Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Techometrics 42, 80–86 (2000)

16. Jourdan, F., Melancon, G.: Multiscale Hybrid MDS. In: Proceedings of the Information
Visualisation Eighth International Conference, pp. 388–393. IEEE Computer Society,
Washington (2004)

17. Kruskal, J.B.: Multidimensional Scaling for Optimizing a Goodness of Fit Metric to a
Nonmetric Hypothesis. Psychometrika 29, 1–27 (1964)

18. Kruskal, J.B.: Nonmetric Multidimensional Scaling: A Numerical Method.
Psychometrika 29, 115–129 (1964)

19. Marquardt, D.W., Snee, R.D.: Ridge Regression in Practice. The American Statistician 29,
3–20 (1975)

20. Morrison, A., Ross, G., Chalmers, M.: Fast Multidimensional Scaling through Sampling,
Springs, and Interpolation. Information Visualization 2, 68–77 (2003)

21. Morrison, A., Chalmers, M.: A Hybrid Layout Algorithm for Sub-Quadratic
Multidimensional Scaling. In: Wong, P., Andrews, K. (eds.) Proceedings of the IEEE
Symposium on Information Visualization, pp. 152–158. IEEE, Los Alamitos (2002)

22. Naud, A.: An Accurate MDS-Based Algorithm for the Visualization of Large Multidimensional
Datasets. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006.
LNCS (LNAI), vol. 4029, pp. 643–652. Springer, Heidelberg (2006)

23. Naud, A.: Visualization of High-Dimensional Data Using an Association of
Multidimensional Scaling to Clustering. In: 2004 IEEE Conference on Cybernetics and
Intelligent Systems, pp. 252–255 (2004)

24. Neslin Scott, A., Sunil, G., Kamakura, W.A., Lu, J., Mason, C.H.: Defection Detection:
Measuring and Understanding the Predictive Accuracy of Customer Churn Models.
Journal of Marketing Research 43, 204–211 (2006)

25. Platt, J.C.: FastMap, MetricMap, and Landmark MDS are all Nyström Algorithms.
Microsoft Research Working Paper (2006)

26. Quist, M., Yona, G.: Distributional Scaling. An Algorithm for Structure Preserving
Embedding of Metric and Nonmetric Spaces. Journal of Machine Learning Research 5,
399–430 (2004)

27. Sammon, J.W.: A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on
Computers 18, 401–409 (1969)

28. Scheffé, H.: The Analysis of Variance. John Wiley & Sons, New York (1959)

58 S.L. France and J.D. Carroll

29. Swayne, D.F., Lang, D.T., Buja, A., Cook, D.: GGobi: Evolving from XGobi into an
Extensible Framework for Interactive Data Visualization. Computational Statistics & Data
Analysis 43, 423–444 (2003)

30. Takane, Y., Yanai, H., Hwang, H.: Regularized Multiple-Set Canonical Correlation
Analysis. Psychometrika 73, 753–775 (2008)

31. Takane, Y., Young, F.W., de Leew, J.: Nonmetric Individual Differences
Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling
Features. Psychometrika 42, 7–67 (1977)

32. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

33. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)
34. Torgerson, W.S.: Multidimensional Scaling, I: Theory and Method. Psychometrika 17,

401–419 (1952)
35. Trosset, M.W., Groenen, P.J.F.: Multidimensional Scaling Algorithms for Large Data Sets.

Computing Science and Statistics 37 (2005)
36. Wang, J.T.L., Wang, X., Shasta, D., Zhang, K.: MetricMap: An Embedding Technique for

Processing Distance-Based Queries in Metric Spaces. IEEE Transactions on Systems,
Man, and Cybernetrics 35, 973–987 (2005)

37. Williams, M., Munzner, T.: Steerable, Progressive Multidimensional Scaling. In: Ward,
M., Munzer, T. (eds.) IEEE Symposium on Information Visualisation 2004, pp. 57–64.
IEEE Computer Society, Washington (2004)

38. Yang, T., Liu, J., McMillan, L., Wang, W.: A Fast Approximation to Multidimensional
Scaling. In: Proceedings of IEEE Workshop on Computation Intensive Methods for
Computer Vision, pp. 1–8 (2006)

How to Control Clustering Results?
Flexible Clustering Aggregation

Martin Hahmann, Peter B. Volk, Frank Rosenthal, Dirk Habich,
and Wolfgang Lehner

Dresden University of Technology, Database Technology Group
dbinfo@mail.inf.tu-dresden.de

Abstract. One of the most important and challenging questions in the
area of clustering is how to choose the best-fitting algorithm and pa-
rameterization to obtain an optimal clustering for the considered data.
The clustering aggregation concept tries to bypass this problem by gen-
erating a set of separate, heterogeneous partitionings of the same data
set, from which an aggregate clustering is derived. As of now, almost
every existing aggregation approach combines given crisp clusterings on
the basis of pair-wise similarities. In this paper, we regard an input set
of soft clusterings and show that it contains additional information that
is efficiently useable for the aggregation. Our approach introduces an
expansion of mentioned pair-wise similarities, allowing control and ad-
justment of the aggregation process and its result. Our experiments show
that our flexible approach offers adaptive results, improved identification
of structures and high useability.

1 Introduction

Data clustering is an important data-mining technique, commonly used in var-
ious domains [1,2,3]. This technique can be utilized for an initial exploration
of scientific data and often builds the basis for subsequent analysis techniques.
Generally, clustering is defined as the problem of partitioning a set of objects
into groups, so-called clusters, so that objects in the same group are similar,
while objects in different groups are dissimilar [3]. Following this definition, a
well-defined measure for similarity between objects is required [1,3].

In this area, the selection of the best-fitting clustering algorithm, including
parameterization, from the multitude of options is a non-trivial task, especially
for users who have little experience in this area. However, this selection issue
is vital for the clustering result quality [3] and therefore, users usually conduct
the following steps in an iterative way until a satisfying result is achieved: al-
gorithm selection, parameter selection, clustering and evaluation. This iterative
approach is tedious work and requires profound clustering knowledge. Therefore,
an alternative approach to make clustering more applicable for a wide range of
non-clustering experts in several domains is desirable.

On a conceptual level this issue can be tackled by applying the clustering
aggregation technique. Fundamentally, clustering aggregation combines an en-
semble of several partitionings of a data set, generated using different algorithms

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 59–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

60 M. Hahmann et al.

and/or parameters, into a final clustering result and hence avoids the fixation
on only one clustering method. As demonstrated in various papers, the qual-
ity and robustness of the aggregated clustering result increase in comparison
with the input clusterings [4,5,6,7]. The proposed aggregation techniques can
be classified into three basic classes: (i) pair-wise assignment class [7,8,9], (ii)
hypergraph-based class [7], and (iii) cluster correspondence class [6,10,11].

Most aggregation techniques are members of the first class, relying on pair-
wise assignments and on an associated majority decision. Typically, they use a
set of crisp clustering results as basic input. A crisp result, e.g., one determined
by k-means [2,3] or DBSCAN[1], assigns each object exclusively to the cluster
having the highest similarity with the object. Therefore, a pair of objects can
be located: (i) in the same or (ii) in different clusters. For the final assignment
case of a pair in the aggregate, the assignment occurring most in the input set
of clusterings is selected. For details about the second class refer to Strehl et al.
[7] and to Boulis et al. [6] and Topchy et al. [12] for examples of class three. In
comparison, class one utilizes the most information about the data and is thus
presumed to be the optimal approach for aggregation at the moment.

The aggregation concept increases the clustering quality as well as the ro-
bustness [4,5,6,7] and frees the user from selecting the optimal algorithm and
parameterization. But the aggregation process itself is not controllable in an effi-
cient way. If an user obtains an unsatisfying aggregate, the only adjustment op-
tion consists of the modification of input clusterings. To allow control and result
flexibility, we present an enhanced aggregation concept. The first enhancement
concerns the aggregation input. Instead of using crisp results, we utilize soft clus-
tering results—assigning each object its similarity to all determined clusters—
obtained via algorithms like FCM [13] or refinement techniques like a-posteriori
[4]. This fine-grained information is efficiently useable to expand pair-wise assign-
ments making them more accurate. With this second enhancement, we are able
to (i) revise the aggregation itself and (ii) introduce user-friendly control options.

To summarize, we propose our novel flexible aggregation concept in this paper.
The contributions—also reflecting the structure of the paper—are as follows:
We start with a detailed description of already available clustering aggregation
concepts in Section 2 and highlight several drawbacks. In Section 3, we expand
the pair-wise assignments for soft clusterings and introduce a novel significance
score. Based on these expansions, we propose our flexible aggregation method in
Section 4. In Section 5, we conduct an exhaustive evaluation and present future
research aspects, before we conclude the paper in Section 6.

2 Preliminaries

For the explanations made in this paper, we assume the following setting: let
D be a dataset {x1, · · · , xn} consisting of n points—also called objects—and
C be a cluster ensemble {C1, · · · , Ce}, created with different algorithms and
parameterizations. Each Cl ∈ C(1 ≤ l ≤ e) has kl clusters c1, · · · , ckl

, satisfying⋃kl

i=1 ci = D. Based on this, the common goal is the construction of an aggregate
clustering Ĉ by combining all members of C.

How to Control Clustering Results? Flexible Clustering Aggregation 61

Utilizing a given set of crisp clusterings, each point xi ∈ D has a unique label
denoting its cluster assignment. Regarding the pair-wise similarities of two points
in Cl, two pair-wise assignment cases (pa-cases) are definable: (i) a+ for objects
with equal cluster labels that are located in the same cluster of Cl and (ii) a- for
object pairs featuring different labels, indicating membership in separate clusters
of Cl. To construct Ĉ, the pa-case of every pair of points from D is determined
for each clustering of C. After that, the pa-case that is dominant throughout C
is selected to hold for the respective pair in Ĉ [5,7,8,9]. Example: two objects
x1; x2 that belong to the same cluster in 7 out of 10 clusterings of C also belong
to the same cluster in Ĉ.

To use soft clusterings as input for the clustering aggregation, we need to
update our setting. Each point xi ∈ D is now assigned to all clusters of Cl to
a certain degree. Thus, the assignment information of xi in Cl is denoted as a
vector ��vi with the components vip(1 ≤ p ≤ kl) describing the relation between
xi and the p-th cluster of Cl. Clustering aggregation based on soft assignments
is challenging because it requires the determination of pa-cases using vectors.
We are able to simply adopt the previous approach by stating that xi and xj are
members of the same cluster if their assignment vectors ��vi and ��vj are equal by
components. This condition is very strict and would most likely lead to nearly
no a+ assignments. Therefore, this constraint is softened and the a+ case now
holds for objects with similar assignment vectors.

This principle is employed by available aggregation concepts for soft input sets
[4,14]. Both approaches use well-known distance measures—e.g. the euclidean
distance in [14]—to calculate the similarity between vectors and to derive the
pa-cases. If the calculated vector similarity exceeds a certain threshold, the resp.
points are considered as a+ or else as a-. Per definition, the approaches of [4,14]
do not deal with aggregation control. Their major problem, described subse-
quently, concerns the handling of soft assignments, using only common distance
measures. For evaluation in this context, we assume the following experimental
setup: a clustering Cl with kl = 2, a set of 121 vector pairs ��vi; ��vj , satisfying∑2

p/q=1 vip/jq = 1, i �= j, 0 ≤ vip/jq ≤ 1, where vip/jq are multiples of 0.1.
We start by applying the L2 norm resp. euclidean distance to our setup. In Fig.

1(a), the obtained results are shown; (i) via x- and y-coordinates a vector pairing
is specified, while (ii) the corresponding z-value represents the L2 distance for
this pair. Example: the pair ��vi

� = (1, 0) and ��vj
�(0, 1) (western corner of Fig.

1(a)) has a distance of
√

2. Basically, L2 is a non-directional distance function
only considering the norm, which is a major drawback when measuring similarity
of vectors in this case. Thus, pairs ��vi; ��vj can have equal L2 distances regardless
of xi and xj actually being in the same cluster or not. Example: the pair ��vi

� =
(0.1, 0.9) and ��vj

�(0.3, 0.7) is located in cluster 2, i.e. a+ holds; pair ��vk
� =

(0.6, 0.4); ��vl
�(0.4, 0.6) is separated in clusters 1 and 2, i.e. a-. Although pa-cases

are actually different, both pairs have the same L2 distance of
√

0.08. It is obvious
that this can lead to incorrect decisions in the construction of Ĉ, especially if
thresholds or clustering algorithms are employed. Consequently, vector direction
is vital for an accurate interpretation of pa-cases.

62 M. Hahmann et al.

(a) L2-norm (b) correlation coefficient (c) covariance

Fig. 1. Different distance measures applied to 2-dimensional vectors

Next, we examine distance metrics considering the direction resp. composition
of vectors. First, we look at the Pearson correlation coefficient (�) assuming
a+ for positive and a- for negative linear dependency between ��vi and ��vj . In
Fig.1(b), we can see two pairs of separated planes as results of our experiment.
When examining vector pairs and their corresponding �, we can confirm our
assumption about the relation between the value of �(��vi,

��vj) and pa-cases. The
correlation coefficient has two advantages: (i) direction awareness and (ii) a direct
link between the pa-case and the algebraic sign of the �-value.

Regarding Fig.1(b), we notice gaps between the planes. These originate from
vector pairs where at least one member has zero variance (σ2 = 0). The Pearson
correlation coefficient is defined as the ratio of the covariance of two vectors and
the product of their standard deviations. Therefore, σ2 = 0 leads to a division by
zero, making � undefined. To get rid of this problem, we exclude the mentioned
division from �, reducing it to the covariance.The results for this last experiment
are shown in Fig. 1(c). We observe a behavior similar to �, but in contrast there
are no undefined areas and continuous values. The last two experiments have
shown a special behavior of � and covariance for vectors with σ2 = 0. While �
is not defined for these cases, the covariance yields zero.

Vectors ��vi with σ2=0 are an interesting phenomenon in our soft clustering
scenario. They satisfy ∀vip|vip = 1

kl
, stating that the respective object xi has

equal relations with all clusters of Cl. Thus, it is impossible to determine an
explicit cluster affiliation for this object. We refer to such cases as fully balanced
assignments. Since we cannot decide in which cluster an object xi with a fully
balanced assignment is situated in, it is also impossible to determine a pa-case
for a pair xi; xj if at least one member has a fully balanced assignment. Until
now, all clustering aggregation approaches assume only two possible pa-cases,
a+ and a-. With the emergence of fully balanced assignments, a novel additional
pa-case can be defined covering object pairs with undecidable assignments.

3 Expanding Pair-Wise Assignments

The previous section has shown that the determination of pair-wise assignments
is a non-trivial task in a scenario utilizing soft cluster mappings. Existing ap-
proaches use common distance functions to solve this problem. But our experi-
ments brought up two major flaws of this concept: (i) not all distance functions

How to Control Clustering Results? Flexible Clustering Aggregation 63

can be effectively applied and (ii) fully balanced assignments are ignored. In this
section we expand the concept of pair-wise assignments to fix the aforementioned
problems and introduce a novel significance score for pa-cases.

3.1 A Novel Pair-Wise Assignment

In our preliminaries, we described fully balanced assignments as a special kind
of assignments that make the identification of an explicit cluster relation im-
possible. Until now, the concept of pair-wise assignments has been restricted to
two possible cases that both need definite cluster affiliations. Therefore, proper
handling of fully balanced cases requires a novel third assignment case. This case
covers undecidable pair-wise assignments and will be denoted as a?. To correctly
determine a pa-case for any pair xi; xj in a clustering Cl, we need to know if
a ��vi is fully balanced. This is the case if each component of ��vi equals 1

kl
. An

additional form of undecidable assignments, which we denote as balanced, oc-
curs with vectors having more than one maximum component vip. Assume e.g.
an object xi with ��vi

� = (0.4, 0.4, 0.2) for a clustering Cl with kl = 3 clusters.
Although we can state that xi is not a member of cluster 3, it is impossible to
specify whether the object effectively belongs to cluster 1 or 2. In contrast, a
vector ��vi

� = (0.6, 0.2, 0.2) containing multiple equal but not maximal compo-
nents vip is not critical. As long as the maximum vip is singular, we can derive a
clear cluster affiliation. Based on this observation, we define a balance-detection
function b(��vi) testing if an object xi has a fully balanced or a balanced assign-
ment. If ��vi contains multiple maxima, hence showing no clear cluster affiliation,
the function b(��vi) results in true; otherwise b(��vi) yields false.

Next, we need to decide whether xi and xj belong to the same partition of
Cl or not. Therefore, we regard the strongest cluster affiliation of xi i.e. the
maximum vip. If the maximum components vip and vjq of two vectors ��vi; ��vj , are
located in the same dimension of their respective vectors, xi and xj belong to
the same cluster. In contrast, objects with maximum components in different
dimensions of ��vi are located in different clusters. Based on this, we define a co-
occurrence function c(��vi,

��vj), stating whether xi; xj are part of the same cluster:

c(��vi,
��vj)

{
1 if {p|vip = max(��vi)} ∩ {q|vjq = max(��vj)} �= ∅
−1 otherwise

(1)

case(xi, xj) =

⎧⎪⎨
⎪⎩

1, if c(��vi,
��vj) = 1 and ¬(b(��vi) ∨ b(��vj))

−1, if c(��vi,
��vj) = −1

0, otherwise
(2)

where i �= j, 1 ≤ (p, q) ≤ kl and max(��vi) returns the maximum component
of ��vi. Now, we can create a function case() (eq.2) that determines the pa-case
of any object pair in a given clustering Cl. Our function case(xi, xj) returns
1 if a+ holds for xi and xj . This is the case if no object has a balanced or
fully balanced ��vi and if both objects are clearly related with the same cluster of
Cl. The result −1 denotes the pa-case a-. There, it is not relevant if balanced

64 M. Hahmann et al.

objects are part of the pair in question. Assume for Cl with kl = 3 a balanced
��vi = (0.4, 0.4, 0.2) and ��vj = (0.1, 0.1, 0.8). Since the maximum components are
in different dimensions, a- holds. Although we cannot decide to which cluster xi

belongs, it is definitely not the cluster xj belongs to. For undecidable cases like
pairs containing fully balanced objects or pairs with balanced assignments that
co-occur (c(��vi,

��vj) = 1), case() yields 0, indicating a?. Our function case() solves
the problems described at the beginning of this section and allows the correct
determination of one of our three pa-cases for any arbitrary object pair.

3.2 Introducing Significance

Fig. 2.
→
vi with different

significance

By definiton, our novel a? case is limited to specific
vector compositions, whereas the remaining two pa-
cases apply for nearly all possible object pairs resp.
a wide range of ��vi‘s. Therefore, it is obvious to bring
up the question of significance. In other words, is
a decision for a certain pair of objects made with
more or less confidence than for other pairs?

Consider the example shown in Fig. 2, of a clus-
tering Cl with kl = 3 clusters and their respective
centroids c1, c2 and c3. The grey lines show the bor-
ders of the area of influence each cluster has. An ob-
ject located on those lines or at intersection points
has an equal degree of similarity with adjacent clusters and has thus a balanced
resp. fully balanced assignment. The two depicted objects x1 and x2 have a very
strong relation with c1 and only negligible links with the remaining clusters of
Cl. For this example, our function case(x1, x2) results in 1, hence a+ would be
stated for x1 and x2. Now regard object x3: it still has the strongest degree
of similarity with c1 but it also has a nearly equal similarity with c2 and c3,
bringing x3 very close to a fully balanced assignment. Nevertheless, case(x1, x3)
determines that x1 and x3 both belong to cluster c1, which is correct in this
example. Regarding both resulting pa-cases, we would intuitively say that the
one made for x1, x2 has more confidence.

When the significance of a pa-case is evaluated in a subjective way, two prop-
erties have to be respected: (i) ��vi and ��vj should show an explicit cluster relation-
ship i.e. show high dissimilarity to the fully balanced assignment, like x1; x2 in
Fig. 2; (ii) ��vi and ��vj should have a high component-wise similarity, which is also
the case for x1; x2 in Fig. 2. Examples of pairs maximizing both factors are the
corners of the planes, shown in Fig. 1. It is plausible to assume that, starting from
these locations, the significance should decrease when approaching the middle
of the plane or one of its bisectors (one of the grey lines in Fig. 2 resp.), where
balanced or fully balanced assignments are located. As we can see in Fig. 1(c),
the covariance partly shows this desired behavior of high values at the corners
and low resp. zero values in the middle of the plane. Using this observation, we
define a significance measure s(��vi,

��vj)—similar to the covariance—that returns
a significance score for a pa-case determined for a pair xi; xj in a clustering Cl.

How to Control Clustering Results? Flexible Clustering Aggregation 65

s(��vi,
��vj) =

kl∑
p,q=1

(
|vip −

1
kl
| · |vjq −

1
kl
|
)

(i �= j, p = q, 1 ≤ (p, q) ≤ kl)) (3)

A high value from s(��vi,
��vj) indicates a high significance of the determined pa-

case. Now, we are able to determine a pa-case and an additional significance value
for any pair of objects. To simplify matters we combine s(��vi,

��vj) and case() into
one single function: case+(xi, xj) = case(xi, xj) · s(��vi,

��vj). With this, the result
interpretation changes slightly. Now, the determined pa-case is denoted by the
algebraic sign of the result, while its absolute value represents the confidence of
the decision. For undecidable pa-cases the function simply yields 0.

Regarding significance, at this point, we can only evaluate it in relation to
other significance values, stating e.g that a+ for x1; x2 has a higher significance
than for x1; x3. To make assumptions about the significance on an absolute scale,
we need to normalize our results, so that case+(xi, xj) yields 1 if a+ holds and
−1 if a- holds with maximum significance. Therefore, we require the results of
case+ for the mentioned cases. We will illustrate this normalization with some
examples, beginning with the most significant a+ case. An example for this case,
in a Cl with kl = 3, would be given for xi; xj with ��vi

� = ��vj
� = (1, 0, 0). As

simplification we assume for these examples that vip = 1 and vip = 0 can occur.
Actually the strict definition for soft cluster assignments demands ∀vip|0 < vip <
1. In this example, the most significant a+ leads to case+ = 2

3 . Using this
setting, the most significant a- occurs e.g. for ��vi

� = (1, 0, 0) and ��vi
� = (0, 0, 1)

and results in case+ = − 5
9 . We can see that the absolute values differ for both

maximum significance cases. The reason for this behavior is s(��vi,
��vj). It measures

the distance from the fully balanced assignment in each dimension. We already
know that 0 < vip < 1, by 1

kl
this range is divided into two intervals. These

have equal sizes for kl = 2 but become disproportionate as kl increases resp. 1
kl

decreases. This means that vip > 1
kl

can have a higher maximum distance to 1
kl

than vip < 1
kl

. Based on this we define a norm considering kl and integrate it
into our case+ method, thus creating our final function case‖+‖:

case‖+‖(xi, xj) =
case+(xi, xj)
‖kl‖

; ‖kl‖ =

⎧⎪⎨
⎪⎩

1− 1
kl

if case(xi, xj) = 1
− 4

k2
l

+ 3
kl

if case(xi, xj) = −1

1 if case(xi, xj) = 0
(4)

4 Flexible Clustering Aggregation

In this section, we describe how the expansions introduced in the previous section
are integrated into the clustering aggregation to make it flexible and enable result
adjustments. For the basic aggregation procedure, we adopt the idea described
by Gionis et al. in [5]. Using our function case‖+‖, we determine the pa-case for
every object pair in all clusterings of C. When deciding on the assignment case
for xi; xj in the aggregated result Ĉ, we enact a majority decision and choose the

66 M. Hahmann et al.

pa-case occuring the most for xi; xj . If no majority can be identified, e.g. if all
three pa-cases have equal occurences, we decide for a? for the corresponding
pair in the aggregate, since the final/global assignment is effectively undecid-
able. With this method, we can construct an aggregate but we are still lacking
flexibility resp. control.

To achieve this control, we utilize the significance information provided by
case‖+‖ and filter all pa-cases according to their significance. This can be done
with a filtering function that returns 0 if case‖+‖(xi, xj)| ≤ t and case‖+‖(xi, xj)
otherwise. The threshold t specifies the minimum amount of significance a pair-
wise assignment needs to have to be considered as decidable. Therefore, all as-
signments not exceeding t are classified as a? with zero significance. With this we
are able to create an area of undecidability that allows us to mark not only bal-
anced/fully balanced assignments as a?, but also those assignments in their close
proximity. Lets regard our example in Fig. 2 again: undecidable assignments are
located on the grey lines and for pair x1; x3, a+ holds with low significance. If
we apply filtering, the grey lines of Fig. 2 expand and form an area of undecid-
ability that can be described as a union of circles centered at intersection points
and broadened lines/stripes. With increasing t the circles radii and width of
stripes also increase. If the t-defined area is big enough to enclose x3, its assign-
ment becomes undecidable. Under these conditions, the pair x1; x3 is classified
as a?. Basically, via filtering we guarantee a minimal confidence for all decidable
pa-cases.

In Fig. 3(a), the results of our function case‖+‖ for the experimental setting
from Section 2 are shown. We can observe our desired behavior of absolute and
maximal significance scores at the plane corners. Take for example the western
corner at ��vi

� = (1, 0) and ��vj
� = (1, 0), the pa-case for this pair is a+ with

maximum significance, so case‖+‖ yields 1 at this point. The significance drops
linearly towards and equals zero at the planes middle and its bisectors. The mid-
dle of the plane is specified by ��vi

� = (0.5, 0.5) and ��vj
� = (0.5, 0.5). This pair is

composed of two objects with fully balanced assignments, making it undecidable
i.e. case‖+‖ yields zero. When we apply filter with threshold t = 0.3, the results
change to Fig. 3(b). A flat area has formed around the center of the plane and

(a) t = 0 (b) t = 0.3

Fig. 3. Results of case‖+‖ with and without filtering

How to Control Clustering Results? Flexible Clustering Aggregation 67

its bisectors. None of the object pairs in this area satisfies the filtering criterion,
and hence, is classified as a?.

With the methods proposed so far, we are able to determine one of our three
pa-cases on the aggregate level and can control the amount of a? via t. With
this, we define stable cores in our aggregate–a+,a- robust against t–and around
them, areas of undecidable a?’s. These areas are the key to result flexibility and
we introduce some examples of a?-handling in the next section.

5 Evaluation

Fig. 4. Ĉ using scalar aggregation

For the experiments in this section,
we used a synthetic dataset consisting
of 1500 objects. These objects form 7
clusters, where 2 clusters are very close
but not linked and two cluster pairs
are connected via bridges of different
length and width. The dataset struc-
ture is depicted in Fig. 4. We used k-
means [2] to generate our input clus-
terings. Due to the characteristics of
our dataset and k-means, it is very un-
likely that we obtain a good clustering
using iterations with only single algo-
rithm runs.

By applying existing aggregation
approaches, we can already improve re-
sults, even for disadvantageous algorithm-dataset combinations. Therefore, we
generate a C with 10 input clusterings using k = {2, 3, · · · , 10, 15} and differ-
ent initializations that is aggregated using the technique described in [5]. Fig. 4
shows the obtained result, consisting of five clusters, where three clusters might
be divided further while the remaining two clusters could be merged. We see
that with clustering aggregation, a useful partitioning can be obtained even if
singular algorithm execution yields suboptimal results. But this aggregation re-
sult is still not optimal and if the user wants to adjust it, he/she has to repeat
the cycle: (i) modify parameters/algorithms of C; (ii) recreate C; (iii) execute
aggregation; (iv) evaluate Ĉ until the desired adjustments occur.

For our flexible clustering aggregation, we use the same setup as before but
change the algorithm to FCM [13], a soft version of k-means. Concerning the
handling of a?, we have to regard two alternatives, since we cannot determine
if undecidable pairs are in the same cluster or not. Therefore, we define two
strategies: one mapping a? to a+ and another one that maps it to a-. We let t
run from zero to one in steps of 0.1, obtaining 11 aggregation results, one for
each t. Fig. 5(a), shows the distribution of the determined pa-cases for all Cl and
Ĉ, monitored over all runs. Each block of the matrix displays the ratio of the
pa-cases with reference to all object pairs of a Cl (specified by row) subjected to

68 M. Hahmann et al.

(a) local pa-cases for C

(b) global pa-cases for Ĉ

Fig. 5. Evaluation results

filtering using t (specified by column). We observe that the number of a? rises
with increasing t, whereas different Cl show different levels of robustness towards
t. The distributions of the global pa-cases leading to Ĉ are shown in Fig. 5(b).
We notice again that with increasing t the number of a? rises. In this diagram,
a? local indicates a? as dominant, while a? global implies multiple dominant pa-
cases and thus undecidability on the aggregate level. A major part of our future
work will be the utilization of this significance information for the construction
of C resp. evaluation of its clusterings.

We now adjust the aggregate by modifying t and a?-handling, while C remains
untouched. We choose a? → a+ and increase t. With t = 0.1, we obtain the result
shown in Fig. 6(a), where the two clusters in the lower right have been fused
due to the points along the border between both former clusters. Having nearly
equal affiliations to both clusters, they lead to pa-cases with low significance.
Therefore, a? starts to occur near the border when t = 0.1 is applied. Since we
map a? to a+, both clusters are connected. If t increases further, more clusters
connect leading to a unification of all datapoints at t = 0.4. This merge strategy

How to Control Clustering Results? Flexible Clustering Aggregation 69

(a) Result for t = 0.1 and merge (b) Result for t = 0.8 and split

Fig. 6. Aggregation results

is very delicate since one single pair classified as a+ is enough to merge whole
clusters, that would otherwise be very dissimilar.

Next, we use a? → a-, which yields the result shown in Fig. 4 at t = 0 and
observe no changes in Ĉ until t = 0.4. At this point, an additional cluster forms
and contains all objects the algorithm was unable to assign to a cluster because
they are labeled a? and hence a- in all of C. Those objects are put into a noise
cluster for convenience and presentation. Actually, each object is a singleton
cluster for itself, since no affiliations to other objects or existing clusters can
be determined, which is a novel trait that cannot occur in existing aggregation
approaches. When we increase t, this noise grows, especially in areas equally
influenced by multiple clusters. Fig. 6(b) shows the aggregation result for t = 0.8
with noise marked as *. We notice that the clusters in the upper quadrants were
split by the noise. As t → 1, all objects of the dataset become members of the
noise cluster. During our experiments, we discovered that in contrast to our
merge approach, this split strategy leads to slighter changes of the clustering
aggregate. Part of our future work will deal with the construction of additional
a?-handling strategies as well as finding a method allowing independent selection
of the handling strategy for each individual undecidable pa-case.

We showed that reasonable adjustments of Ĉ are possible using filtering and
our proposed strategies merge and split. These adjustments can be easily made,
since the required parameters can be abstracted to simple options. The han-
dling strategies for a? effectively compare to ”more clusters” for split and ”fewer
clusters” for merge, while t describes ”how strong” each strategy is enforced. In
summary, this section illustrated that clustering aggregation is beneficial even for
algorithms not fitting the data. Futhermore, it described limitations of existing
approaches and how to overcome them, using our flexible aggregation. Unfor-
tunately, control and clustering flexibility come at the cost of runtime. Like all
aggregation approaches utilizing pair-wise assignments, e.g. [5], our approach has

70 M. Hahmann et al.

a complexity of O(n2), with n being the number of data objects. Additionally,
our approach use vector calculations that add to the runtime. Runtime opti-
mization is a general field of research in the clustering area and a major part of
our future research in particular but not focus of this paper.

6 Conclusion

In this paper, we proposed our flexible clustering aggregation approach that
allows the construction of a clustering aggregate from a set of separate soft
clustering results. We described the challenges of pair-wise assignments and de-
cidability in this scenario and introduced (i) novel tools like the a? pair-wise
assignments to master these challenges, (ii) a significance measure for pa-cases
as well as (iii) a controllable aggregation process. All this enables our approach
to produce adjustable results. We also simplified and abstracted our proposed
parameters, thus allowing user-friendly and -guided identification of structures
hidden from existing aggregation methods.

References

1. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. of KDD (1996)

2. Forgy, E.W.: Cluster analysis of multivariate data: Efficiency versus interpretability
of classification. Biometrics 21 (1965)

3. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31 (1999)

4. Zeng, Y., Tang, J., Garcia-Frias, J., Gao, G.R.: An adaptive meta-clustering ap-
proach: Combining the information from different clustering results. In: Proc. of
CSB (2002)

5. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. In: Proc. of ICDE
(2005)

6. Boulis, C., Ostendorf, M.: Combining multiple clustering systems. In: Boulicaut,
J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI),
vol. 3202, pp. 63–74. Springer, Heidelberg (2004)

7. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research 3 (2002)

8. Filkov, V., Skiena, S.S.: Heterogeneous data integration with the consensus clus-
tering formalism. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp.
110–123. Springer, Heidelberg (2004)

9. Fred, A.L.N., Jain, A.K.: Robust data clustering. In: Proc. of CVPR (2003)
10. Dimitriadou, E., Weingessel, A., Hornik, K.: Voting-merging: An ensemble method

for clustering. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS,
vol. 2130, p. 217. Springer, Heidelberg (2001)

11. Long, B., Zhang, Z.M., Yu, P.S.: Combining multiple clusterings by soft correspon-
dence. In: Proc. of ICDM (2005)

12. Topchy, A.P., Jain, A.K., Punch, W.F.: Combining multiple weak clusterings. In:
Proc. of ICDM (2003)

13. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York (1981)

14. Habich, D., Wächter, T., Lehner, W., Pilarsky, C.: Two-phase clustering strategy
for gene expression data sets. In: Proc. of SAC (2006)

Compensation of Translational Displacement in
Time Series Clustering Using Cross Correlation

Frank Höppner1 and Frank Klawonn2,3

1 Department of Economics
University of Applied Sciences Braunschweig/Wolfenbüttel
Robert Koch Platz 10-14, D-38440 Wolfsburg, Germany

2 Department of Computer Science
University of Applied Sciences Braunschweig/Wolfenbuettel
Salzdahlumer Str. 46/48, D-38302 Wolfenbuettel, Germany

3 Helmholtz Centre for Infection Research
Department for Cell Biology

Inhoffenstr. 7, D-38124 Braunschweig, Germany

Abstract. Although k-means clustering is often applied to time series
clustering, the underlying Euclidean distance measure is very restrictive
in comparison to the human perception of time series. A time series
and its translated copy appear dissimilar under the Euclidean distance
(because the comparison is made pointwise), whereas a human would
perceive both series as similar. As the human perception is tolerant to
translational effects, using the cross correlation distance would be a bet-
ter choice than Euclidean distance. We show how to modify a k-means
variant such that it operates correctly with the cross correlation distance.
The resulting algorithm may also be used for meaningful clustering of
time series subsequences, which delivers meaningless results in case of
Euclidean or Pearson distance.

1 Introduction

Finding typical patterns within a set of short time series by cluster analysis is a
common approach in data analysis. Short time series might arise explicitly, for
instance, as growth curves of bacteria or populations under varying conditions,
but short time series can also be extracted from one long time series in the form
of a sliding window. However, clustering such short time series derived from
sliding windows can easily lead to meaningless results [13], a problem that will
be addressed in more detail later on in this paper.

Among the applied clustering methods, k-means with Euclidean distance is
most frequently used [12]. Typically, normalization of the time series is carried
out, so that scaling of the measurements and the basic level of the time series
do not have any influence. The common choice is z-score normalization. In this
case, the Euclidean distance corresponds to the Pearson correlation coefficient
up to a constant factor – thus, cluster analysis of time series with the Euclidean
distance with z-score normalized data as the distance measure is (almost) the
same as clustering with the Pearson correlation as the distance measure [2].

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 71–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 F. Höppner and F. Klawonn

Although z-score normalization and the Pearson correlation coefficient rule
out differences based on scaling of the measured variable, they do not ensure a
suitable time series alignment in case the observed “patterns” do not start at
the same time (e.g., depending on the start of recording the data). In order to
group time series with a similar patterns that are shifted in time, cross correla-
tion appears to be a better choice. This paper discusses how to incorporate the
cross correlation distance into k-means clustering. We want to emphasize, that
our main purpose is not to advocate the cross correlation distance as the best
measure to compare time series1, but to show, once the decision to use cross
correlation has been made, how to modify k-means appropriately to guarantee
correct objective function-optimization.

For reasons of robustness [15], rather than simple k-means clustering we
will use fuzzy clustering which is nothing else than a reformulation of k-means
clustering with continuous membership degrees. Nevertheless, the proposed
approach does not depend on fuzzy clustering and works in the same way with
crisp clustering.

2 Brief Review of Fuzzy c-Means and Noise Clustering

Given a dataset {x1, . . . , xn} ⊂ Rp, k-means as well as fuzzy c-means (FCM)
clustering [3] aims at minimizing the following objective function

f =
c∑

i=1

n∑
j=1

um
ijdij (1)

under the constraints
c∑

i=1

uij = 1 for all j = 1, . . . , n (2)

where ui,j is the membership degree of data object xj to cluster i and dij =
‖xj − vi‖2 denotes the squared Euclidean distance between data vector xj and
prototype vi ∈ Rp representing cluster i. While k-means assumes a crisp assign-
ment ui,j ∈ {0, 1}, its continuous counterpart allows uij ∈ [0, 1]. c is the chosen
number of clusters and m is the so-called fuzzifier, controlling (in case of fuzzy
c-means) how much clusters may overlap.

Clustering is thus considered as a nonlinear optimization problem which is
usually solved by an alternating scheme. The prototypes are chosen randomly
in the beginning or by some suitable initialization strategy. Fixing the cluster
prototypes, the optimal choice for the membership degrees is given by2

uij =
1∑c

k=1

(
dij

dkj

) 1
m−1

(3)

1 If the series are dilated, measures such as dynamic time warping may be an option.
2 If dij = 0 for one or more clusters, we deviate from (3) and assign xj with membership

degree 1 to the or one of the clusters with dij = 0 and choose uij = 0 for the other
clusters i.

Compensation of Translational Displacement in Time Series Clustering 73

which is used as an update equation for the membership degree. Fixing the
membership degrees, the best choice for the prototypes is

vi =

∑n
j=1 um

ij xj∑n
j=1 um

ij

. (4)

The alternating scheme is repeated until the algorithm converges, i.e., no more
(or almost no) changes happen.

A very simple extension of k-means and fuzzy c-means clustering to cope
with outliers is noise clustering [7]. In the set of prototypes, an additional noise
cluster is included. All data have a fixed (usually large) distance dnoise to the
noise cluster. As soon as the distance of some data x to the nearest cluster p
comes close to dnoise, the noise cluster gains a considerable fraction of the total
membership degree, thereby reducing the influence of x with respect to p. Noise
clustering simply requires to exchange (3) by

uij =
1(

dij

dnoise

) 1
m−1

+
∑c

k=1

(
dij

dkj

) 1
m−1

(5)

and represents and effective mean to reduce the influence of noise and extract
cluster prototypes more clearly.

In the objective function (1), the number of clusters c must be known or
specified in advance. This is, of course, an unrealistic assumption. There are
various approaches to determine the number of clusters automatically (for an
overview, we refer to [4,10]). It is also possible to find clusters step by step,
extending the idea of noise clustering [8]. A detailed discussion of methods for
determining the number of clusters is out of the scope of this paper.

3 Measuring Time Series Similarity

Suppose we have two time series r and s, consisting of T samples each r =
(r1, r2, . . . , rT) ∈ RT . The squared Euclidean distance between two time series r
and s is given by:

dE(r, s) =
T∑

t=1

(rt − st)2 (6)

For time series analysis, it is often recommended to normalize the time series
either globally or locally to tolerate vastly differing ranges [12]. Another promi-
nent measure for time series comparison is the Pearson correlation coefficient,
which measures the correlation � between two random variables X and Y :

�X,Y =
E[(X − μX)(Y − μY)]

σXσY
(7)

where μX denotes the mean and σX the standard deviation of X . We obtain
a value of ±1 if X and Y are perfectly (anti-) correlated and a value of ≈ 0

74 F. Höppner and F. Klawonn

if they are uncorrelated. In order to use the Pearson correlation coefficient as a
distance measure for time series it is desirable to generate low distance values for
positively correlated (and thus similar) series. The Pearson distance is therefore
defined as

dP (r, s) = 1− �r,s = 1−
1
T

∑T
t=1(rt − μr)(st − μs)

σrσs
(8)

such that 0 ≤ dP (r, s) ≤ 2. One can show that k-means clustering (via Euclidean
distance) on z-score normalized time series is (almost) equivalent to k-means
clustering using the Pearson correlation distance3 [2].

Sometimes time series do not perfectly align in time and the best correspon-
dence is obtained when shifting both series against each other. Two identical
time series, one of them shifted by δ in time, may appear uncorrelated under
the Pearson coefficient. The normalized cross correlation takes this shift δ into
account and measures the Pearson correlation between r and a series s shifted
by δ:

�r,s(δ) =
1
T

∑T
t=−T (rt − μr)(st+δ − μs)

σrσs
(9)

with st = rt = 0 for t < 1 and t > T . Cross correlation can help to overcome
the missing alignment of the series by choosing δ such that the Pearson correla-
tion becomes maximal. We define the cross correlation distance dX as the best
Pearson coefficient we may achieve for an optimal lag of δ where −T ≤ δ ≤ T :

dX(r, s) = 1−max{�r,s(δ) | −Δ ≤ δ ≤ Δ} (10)

4 Compensating Translational Displacement

There are many more distance measures for comparing time series (cf. [12]),
but often the proposed distance measures are simply plugged into an existing
clustering algorithm without taking influence on the internal steps of the re-
spective algorithm. But at least for objective function-based clustering (such as
k-means or fuzzy c-means) replacing the distance measure alone is not sufficient:
to operate correctly, the prototype update step has to be adapted to the chosen
distance measure. The objective of this paper is therefore not to propose a new
distance measure (as Pearson correlation and cross correlation are already well-
established), but to modify the prototype update step in fuzzy c-means clustering
such that prototypes are optimized w.r.t. cross correlation rather than Euclidean
distance.

Let us denote the data series by xj , 1 ≤ j ≤ n, and the prototype series by pi,
1 ≤ i ≤ c. The cross correlation clustering (CCC) algorithm aims at minimizing
the objective function

f =
c∑

i=1

n∑
j=1

um
i,jdX(pi, xj)

3 It is almost equivalent because a normalization of the obtained prototypes is missing,
but the absence of this re-scaling is usually neglectable in terms of results.

Compensation of Translational Displacement in Time Series Clustering 75

subject to (2). We introduce for any pair of time series (pi, xj) the lag parameter
δi,j and reformulate f as

f =
c∑

i=1

n∑
j=1

um
i,j(1− �pi,xj(δi,j))

The optimization will be carried out by alternating optimization in three steps:
(a) optimize w.r.t. δi,j assuming prototypes and memberships being constant
(Sect. 4.1), (b) optimize w.r.t. prototypes assuming lags and memberships being
constant (Sect. 4.2), and (c) optimize w.r.t. memberships assuming lags and
prototypes to be constant. The last step (c) is independent of the distance and
therefore identical to update equations (3) or (5).

4.1 Efficient Calculation of the Optimal Lag

Calculating the cross correlation for a given value of δ is O(T) in case of discrete
time series of length T . Exploring the full range of possible δ-values is linear in T ,
too, so the overall complexity of distance estimation becomes O(T 2). This time
can be reduced to O(T log T) using the Fast Fourier Transform. (Unnormalized)
cross correlation can be interpreted as a convolution r s of two time series

(r s)(δ) =
T∑

t=1

rtsδ−t

Note that with convolution we have a factor of sδ−t whereas cross correlation
uses sδ+t. By reversing series s in time (s̄t = sT−t) we overcome this difference.

However, we need to convolve two normalized series r and s: Suppose the first
half of s correlates perfectly with the second half of r, but the remainder of the
series are random noise. If we would normalize the respective halves of r and s
individually, and calculate the correlation we would obtain a coefficient of 1.0.
But if we would simply normalize r and s once beforehand, a lag of δ = T/2
would deliver a different coefficient because the mean and variance considers
also those parts of the time series that are otherwise masked out by the shift.
Therefore, the normalization has to be carried out individually for each possible
lag δ.

For notational convenience, we consider all series having indices ranging from
−T + 1 to 2T (filled up with zeroes) and denote an offset of δ by s+δ as shown
in this example for T = 4:

r = (3 1 3 5) ∈ R4

s = (1 3 5 2)
s+0 = (0 0 0 0 1 3 5 2 0 0 0 0)
s+1 = (0 0 0 0 0 1 3 5 2 0 0 0)
s−2 = (0 0 1 3 5 2 0 0 0 0 0 0)

We define χ ∈ RT as χt = 1 for any 1 ≤ t ≤ T and χt = 0 otherwise. For
instance

χ = (0 0 0 0 1 1 1 1 0 0 0 0)
χ−2 = (0 0 1 1 1 1 0 0 0 0 0 0)

76 F. Höppner and F. Klawonn

The calculation of mean and standard deviation and subsequent normalization of
two series, say r and sδ, has to be carried out for the all indices t with χt ·χδ

t = 1.
Fortunately, this normalization can also be carried out efficiently: By means

of a series of partial sums r̂0 = r0, r̂t+1 = r̂t + rt+1 and ˆ̂r0 = r2
0 , ˆ̂rt+1 = ˆ̂rt + r2

t+1
we obtain the mean for the respective subseries ri..j from (r̂j − r̂i−1)/(j − i + 1)
and the variance from (ˆ̂rj − ˆ̂ri−1)/(j − i + 1)− (r̂j − r̂i−1)2/(j − i + 1)2 due to
Var[X] = E[X2] − (E[X])2. Therefore the determination of the optimal lag δ
remains O(T log T) even in the case of normalized correlation coefficients.

Revisiting the last example, we note that series r and s correlate perfectly
for different values of δ, for instance, δ = +1 and δ = −2. In general we can
expect high values of normalized correlation for δ ≈ ±T because then only a few
values have to correlate incidentally. Therefore we introduce a bias in dX towards
preferable long matches. The distance dX is multiplied by an additional overlap

factor of T−|δi,j |
T where T − |δi,j | is the number of valid index positions shared

by both series. For small lags we thus obtain an almost unaltered correlation
coefficient whereas for large values of δ a possibly high coefficient is penalized
due to its limited relevance. In our example, the unique best lag for s and r is
now δ = 1.

4.2 Determination of the Prototypes

As already mentioned, k-means clustering of z-score normalized series is (al-
most) identical to clustering via Pearson correlation, that is, the prototypes are
obtained by the weighted mean of the series that are associated to the prototype
(followed by a normalization step in case of Pearson correlation) [2]. Once the
optimal lags for cross correlation have been determined, we consider them in the
second step of alternating optimization as being constant and the cross correla-
tion distance reduces to Pearson distance for prototypes pi and the shifted data
series x

+δi,j

j .

As we have seen in the previous section, any two series pi and x
+δi,j

j share
different ranges of indizes and the prototype calculation has to be carried out
pointwise (that is, index by index). Then minimization w.r.t. the prototypes leads
to the following update equations (which are a generalization of the weighted
mean to shifted series):

vi,t =
n∑

j=1

um
i,j · x

+δi,j

j,t

wi,t =
n∑

j=1

um
i,j · χ

+δi,j

j,t

p′i,t =
vi,t

wi,t

This calculation is not restricted to the indices t = 0 . . .T , but carried out for
the full range of t = −T +1 . . .2T . If there are many data series xj whose second

Compensation of Translational Displacement in Time Series Clustering 77

Fig. 1. Example for wi,t (top) and p′
i,t (bottom) for t = −T + 1 . . . 2T . To locate

the best offset t0 we identify the area of width T with the highest sum of weights
(argmaxt0=−T+1..T

∑T
t=1 wi,t0+t).

half matches the first half of a prototype p, a higher overlap factor may possibly
be achieved next time if the prototype would be shifted appropriately. The opti-
mization w.r.t. the overlap factor is accomplished by analyzing the intermediate
result wi,t: These individual weights per index position indicate how often an
optimal match to a data series has involved this index position. Figure 1 shows
an example: the graph at the bottom shows the resulting pointwise mean (full
width of 3T) and the graph at the bottom the accumulated weight per index
position. The optimal (T -dimensional) prototype subvector of p′i is then found at

t0 = argmaxt0=−T+1..T

T∑
t=1

wi,t0+t

Using a series of partial sums, this optimal position can be found in O(T).

4.3 Interpretation of the Noise Distance

The third step of alternating optimization involves the membership update. For
the case of correlation coefficients, the noise clustering approach is particularly
appealing. As fuzzy c-means is a partitional clustering algorithm, all data series
have to be assigned to the clusters, including those that do not correlate to any
of the prototypes (or correlate negatively). By selecting a threshold correlation
coefficient of, say, dnoise = 0.5 the noise cluster attracts the membership of poorly
correlating series, thereby avoiding a contamination of the clusters with poor
matches and preventing a blurring of the cluster prototypes. Since the correlation
coefficient has a fixed range of [0, 2], the noise distance is easily interpretable.

5 Experimental Evaluation

We demonstrate the proposed method for clustering time series as well as clus-
tering of time series subsequences (STS).

5.1 Clustering (Whole) Time Series

As a first test case, we consider the hill & valley dataset from the UCI reposi-
tory [1]: Each record represents 100 points on a two-dimensional graph. When

78 F. Höppner and F. Klawonn

plotted in order the points will create either a hill (a bump in the terrain) or a
valley (a dip in the terrain). We have z-score normalized the data and applied k-
means clustering and cross correlation clustering, the results are shown in Fig. 2.
As the peaks occur at different places, calculating the mean will eliminate all
the individiual peaks and ends up with a noisy prototype. Both k-means pro-
totypes converge roughly to the mean of the full data set, the two classes are
not recovered by the prototypes. In contrast, the translational displacement is
identified by the CCC algorithm. The hills and valleys are perfectly gathered in
the respective clusters.

k-means/FCM prototypes:

CCC prototypes:

#0 #1
valley 156 151

hill 150 149

#0 #1
valley 307 0

hill 0 299

Fig. 2. Results on the hill & valley dataset. On the left, four example series are shown.
The final prototypes and confusion matrix is given for k-means/FCM (top) and CCC
(bottom).

The synthetic control chart dataset (taken from [14]) is also frequently used
for the evaluation of time series clustering methods: The dataset contains 600
examples of synthetically generated control charts from six different classes: nor-
mal, cyclic, increasing trend, decreasing trend, upward shift, and downward shift
(cf. left column of Fig. 3). Although started with 6 clusters, k-means/FCM ends
up with three different prototypes only (always two prototypes are almost iden-
tical). The increasing and decreasing trend is well recovered, but these clusters
also cover many examples from the up-shift and down-shift class. As the abrupt
step in these series occurs at different points in time, k-means/FCM cannot de-
tect them as individual clusters. The same argument applies to the cyclic series
which have different phases. Again, CCC performs much better, all classes but
one are recovered by the respective clusters. The first class (normal) consists of
noise only, therefore it does not correlate to any existing cluster nor with other
noisy series. Thus, the examples from this case are distributed among the other
clusters by chance. The now superfluous sixth cluster is used to split the cyclic
cluster into two prototypes. (The “optimal” number of clusters is thus 5 for
CCC).

The results for the cylinder-bell-funnel (CBF) dataset, taken from [14], are
shown in Fig. 4. It consists of 20 instances of three translated and dilated basic

Compensation of Translational Displacement in Time Series Clustering 79

k-means/FCM prototypes:

CCC prototypes:

5 3 1 0 4 2
norm 12 38
cycl 10 40
incr 50
decr 50
upsh 29 21
dnsh 43 7

4 5 1 3 2 0
norm 3 5 6 6 6 16
cycl 24 26
incr 46 4
decr 50
upsh 10 40
dnsh 2 48

Fig. 3. Results on the synthetic control chart dataset. On the left, one example
from each class is shown. The final prototypes and confusion matrix is given for k-
means/FCM (top) and CCC (bottom).

k-means/FCM prototypes:

CCC prototypes:

Fig. 4. Results on the cylinder-bell-funnel dataset. On the left, two examples from the
cylinder class, one from the bell and two from the funnel class are shown. The final
prototypes are presented for k-means/FCM (top) and CCC (bottom).

shapes (five example series in left column of Fig. 4). In the shown example run of
k-means/FCM two of the three clusters occassionally collapsed into one proto-
type, but in general k-means/FCM performs quite well on this dataset. Although
the effects of dilation cannot be compensated by the CCC algorithm, the overall
quality of the clusters is superior. A comparison between k-means/FCM and
CCC with respect to the steepness of the flanks in the bell and funnel patterns
reveals that the CCC patterns are much closer to the original patterns while the
k-means/FCM clusters are somewhat blurred.

80 F. Höppner and F. Klawonn

5.2 Clustering Subsequences of Time Series

Clustering subsequences of time series has been proposed in [6] and thereafter
been used by many authors as a tool to extract patterns from time series. The
resulting clusters, however, were of poor quality in practice [9], being very similar
to translated and dilated trigonometric functions. A deeper analysis led to the
conclusion that subsequence time series clustering is completely meaningless [13],
because the resulting trigonometric patterns appeared to be independent of the
input data.

While there are different attempts to explain this undesired effect [13,11,5], an
intuitive explanation why subsequence clustering fails is easily given: the input
series are obtained by shifting a sliding window of fixed length over the origi-
nal series. Suppose we have a noisy series with a single bump (cf. hill and valley
dataset in Fig. 2) then due to the subsequence generation this bump will re-occur
at any location in the input series. The detection of a single cluster or pattern
would be the desired result, but k-means clustering with k = 1 would average all
the series and as the bump never repeats itself at the same spot, the bump gets
completely blurred. So the problem is caused by the translation of the original
pattern – and the CCC algorithm seems well prepared to compensate this dis-
placement. Therefore, it can be considered as a promising candidate to overcome
the problem of meaningless clusters in time series subsequence clustering.

For the hill and valley, CBF and ECG datasets we have concatenated all the
series to a single, long time series and created a new dataset by moving a sliding
window along the resulting series. Figure 5 shows the result of k-means/FCM
and CCC in case of the hill and valley and CBF dataset, and Fig. 6 for the
ECG200 dataset. In all cases, the k-means/FCM clustering algorithm delivers
trigonometric shapes, whereas the CCC clusters correspond well to the under-
lying patterns.

The CCC algorithm has also been applied to real data, namely wind strength
data measured hourly on a small island in the northern sea (shown in Fig. 6).

k-means/FCM prototypes:

CCC prototypes:

k-means/FCM prototypes:

CCC prototypes:

Fig. 5. Clustering of time series subsequences. Left: CBF dataset, right: hill & valley
dataset.

Compensation of Translational Displacement in Time Series Clustering 81

k-means/FCM prototypes:

CCC prototypes:

3 CCC prototypes:

6 CCC prototypes:

Fig. 6. Clustering of time series subsequences. Left: ECG dataset, right: windstrength
dataset.

The sliding window was 5 days long. With real data we do not expect such dis-
tinct shapes as in the artificial datasets CBF or hill & valley, because the noise
ratio is much higher and different patterns are not separated from each other
by a period of time where the series remains constant (which makes it easy to
distinguish the pattern from the non-pattern parts). Furthermore weather phe-
nomena are cyclic in nature (consider the alternation of land and see breeze) and
we expect the discovered patterns to exhibit such a cyclic nature. Nevertheless,
the resulting prototypes clearly deviate from the sinusoidal prototypes obtained
from standard k-means/FCM clustering. For instance, the rise and fall of wind
strength have very different slopes in the various prototypes, some patterns con-
tain long periods of still air, etc. The resulting prototypes clearly differ from
those obtained from the other datasets.

6 Conclusions

The distance function used by a clustering algorithm should always be adapted
carefully with respect to the problem at hand. If time series data has to be
clustered and no dilational effects are expected, cross correlation appears to be
a promising candidate. For such a situation, we have shown how the objective
function-based clustering algorithms k-means/fuzzy c-means have to be modified
in order to operate with this distance. The prototype update step of k-means
is revised to handle the alignment of time series appropriately. The negative
influence of outliers or data series that poorly correlate to any of the clusters is
reduced by means of a noise cluster.

The resulting cross-correlation clustering (CCC) algorithm solves the problem
of clustering unaligned time series. It can be applied to short time series (whole
series clustering), but also to time series subsequence (STS) clustering. This is
particularly interesting because most standard clustering algorithms fail with
STS clustering.

82 F. Höppner and F. Klawonn

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

2. Berthold, M.R., Höppner, F.: On clustering time series using euclidean distance
and pearson correlation. Technical report, University of Konstanz (2008)

3. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

4. Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms
for Pattern Recognition and Image Processing. Kluwer, Boston (1999)

5. Chen, J.R.: Useful clustering outcomes from meaningful time series clustering. In:
AusDM 2007: Proceedings of the sixth Australasian conference on Data mining
and analytics, Darlinghurst, Australia, pp. 101–109. Australian Computer Society,
Inc. (2007)

6. Das, G., Lin, K.-I., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from
time series. In: Proc. of the 4th ACM SIGKDD Int. Conf. on Knowl. Discovery
and Data Mining, pp. 16–22. AAAI Press, Menlo Park (1998)

7. Davé, R.: Characterization and detection of noise in clustering. Pattern Recognition
Letters 12, 657–664 (1991)

8. Georgieva, O., Klawonn, F.: Dynamic data assigning assessment clustering of
streaming data. Applied Soft Computing 8, 1305–1313 (2008)

9. Höppner, F.: Time series abstraction methods – a survey. In: Proceedings GI
Jahrestagung Informatik, Workshop on Knowl. Discovery in Databases, Dortmund,
Germany, September 2002. Lecture Notes in Informatics, pp. 777–786 (2002)

10. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy cluster analysis. Wiley,
Chichester (1999)

11. Idé, T.: Why does subsequence time-series clustering produce sine waves? In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 211–222. Springer, Heidelberg (2006)

12. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: A
survey and empirical demonstration. Data Mining and Knowledge Discovery 7(4),
349–371 (2003)

13. Keogh, E., Lin, J., Truppel, W.: Clustering of time series subsequences is mean-
ingless: implications for previous and future research. In: Proc. IEEE Int. Conf. on
Data Mining (ICDM), pp. 115–122 (2003)

14. Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR time series classifica-
tion/clustering homepage (2006), www.cs.ucr.edu/~eamonn/time_series_data/

15. Klawonn, F.: Fuzzy clustering: Insights and a new approach. Mathware and Soft
Computing 11, 125–142 (2004)

http://www.ics.uci.edu/~mlearn/MLRepository.html
www.cs.ucr.edu/~eamonn/time_series_data/

Context-Based Distance Learning for
Categorical Data Clustering

Dino Ienco, Ruggero G. Pensa, and Rosa Meo

Dept. of Computer Science, University of Torino, Italy
{ienco,pensa,meo}@di.unito.it

Abstract. Clustering data described by categorical attributes is a chal-
lenging task in data mining applications. Unlike numerical attributes, it
is difficult to define a distance between pairs of values of the same cate-
gorical attribute, since they are not ordered. In this paper, we propose a
method to learn a context-based distance for categorical attributes. The
key intuition of this work is that the distance between two values of a cat-
egorical attribute Ai can be determined by the way in which the values
of the other attributes Aj are distributed in the dataset objects: if they
are similarly distributed in the groups of objects in correspondence of
the distinct values of Ai a low value of distance is obtained. We propose
also a solution to the critical point of the choice of the attributes Aj .
We validate our approach on various real world and synthetic datasets,
by embedding our distance learning method in both a partitional and
a hierarchical clustering algorithm. Experimental results show that our
method is competitive w.r.t. categorical data clustering approaches in
the state of the art.

1 Introduction

Clustering is a popular data mining technique that enables to partition data
into groups (clusters) in such a way that objects inside a group are similar, and
objects belonging to different groups are dissimilar [1]. Clearly, the notion of
similarity is central in such a process. When objects are described by numerical
(real, integer) features, there is a wide range of possible choices. Objects can
be considered as vectors in a n-dimensional space, where n is the number of
features. Then, many distance metrics can be used in n-dimensional spaces.
Among them, probably the most popular metric is the Euclidean distance (or
2-norm distance), which is a special case of Minkowski distance (also called p-
norm distance). Given two objects, these measures only depend on the difference
between the values of the feature vectors.

In data mining applications, however, data are often described by categorical
attributes that take values in a (usually finite) set of unordered nominal values.
This makes impossible even to rank or compute differences between two values
of the feature vectors. For categorical data the simplest comparison measure
is overlap [2]. The proximity between two multivariate categorical entities is
proportional to the number of attributes in which they match. Other metrics,

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 83–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 D. Ienco, R.G. Pensa, and R. Meo

such as the Jaccard coefficient, are derived from overlap and have been adopted
in several (partitional and hierarchical) clustering algorithms [3,4,5].

Clearly, these distance metrics do not distinguish between the different values
taken by the attribute, since they only measure the equality between pair of val-
ues. This is a strong limitation for a clustering algorithm, since it prevents to cap-
ture similarities that are clearly identified by human experts. For instance, given
an attribute like city, which takes values in the set {Paris, Rome, F lorence} it is
obvious that Florence is more similar to Rome than to Paris, from a geographic
point of view. However, in some other contexts, Paris might be more similar to
Rome, since both of them are capitals, and they may share similar behaviors.

In literature some measures that take into consideration the context of the
features, have also been employed but refer to continuous data, e.g., Mahalanobis
distance.

In this paper we present a new methodology to compute a context-based
distance between values of a categorical variable and apply this technique to
clustering categorical data with both partitional and hierarchical techniques.
For the introduction of our technique, consider the dataset described in figure
1(a), with only two categorical attributes: City(Milan, Turin, Florence) and
Sex(M,F). The contingency table in Figure 1(b) shows how these values are
distributed. We observe that City=Florence occurs only with Sex=Female, and
the City=Turin occurs only with Sex=Male. The value City=Milan occurs both
with Sex=Male and Sex=Female. From this distribution of data, we infer that, in
this particular context, Florence is more similar to Milan than to Turin because
the probability to observe a person of a given sex is closer.

Sex City

Male Turin
Female Milan
Male Turin
Male Milan

Female Florence
(a)

Turin Milan Florence
Female 0 1 1
Male 2 1 0

(b)

Fig. 1. A toy dataset (a) and its related contingency table (b)

From this example we can deduce that the distribution of the co-occurrence
table may help to define a distance between values of a categorical attribute. To
this purpose, we propose a two-step method:

1. for each categorical attribute X , first identify a suitable context constituted
by a set of attributes Y �= X , such that each attribute belonging to the
context is correlated to the attribute X .

2. compute a distance matrix between any pair of values (xi, xj) of X : we take
into account the distribution of xi and xj in objects having the same values
for the context attributes.

Context-Based Distance Learning for Categorical Data Clustering 85

The key contribution of our work are the following:

– we introduce a new method to compute the distance between any pair of
values of a specific categorical attribute;

– we define a distance-learning approach which is independent of the employed
distance-based clustering;

– we show the impact of our approach within two different distance-based
clustering algorithms.

We will also show that our approach is scalable w.r.t. to the numbers of instances
in the dataset, and can manage thousands of categorical attributes.

2 Related Work

Clustering is an important task in data mining, in information retrieval and in
a wide range of analytical and scientific applications [1]. The goal of clustering
is to find a partition of the instances according to a predefined distance measure
or an objective function to optimize. The problem is particularly difficult when
categorical attributes are involved in the clustering process. In literature, many
approaches to categorical data clustering have been proposed. Most of them try
to optimize a global objective function without using any notion of distance
between the values of the same attribute. Furthermore they suffer in terms of
efficiency and time complexity with large data sets.

One of the first work in the field of categorical clustering is K-MODES [3]. It
tries to extend K-Means algorithm for categorical data. A cluster is represented
as a data point which is composed by the most frequent value in each attribute
domain. Therefore, in K-MODES the similarity of an unlabeled data point and
a cluster representative can be simply calculated by the overlap distance [2].

Another approach to categorical clustering is ROCK [4]. It employs links to
measure similarity/proximity between pairs of data points. An instance belongs
to the neighborhood of another instance if the Jaccard similarity between them
exceeds a user-defined threshold. It heuristically optimizes a cluster quality func-
tion with respect to the number of links in an agglomerative hierarchical way.
The base algorithm has cubic complexity in the size of the data set, which makes
it unsuitable for large datasets.

LIMBO [5], is a scalable hierarchical categorical clustering algorithm built on
the Information Bottleneck framework. As a hierarchical algorithm, LIMBO is
not as fast as partitional methods. The algorithm builds Distributional Cluster
Features (DCF) trees to summarize the data in k clusters, where each node
contains statistics on a subset of instances. Starting from DCF and the number
of clusters k a scan over the whole data set is performed to assign each instance
to the cluster with the closest DCF.

CLICKS [6] is a clustering algorithm based on graph/hypergraph partitioning.
In general the cost of clustering with graph structures is acceptable, provided
that the underlying data is low dimensional. CLICKS finds clusters in categorical
datasets based on a search method for k-partite maximal cliques. The vertices of

86 D. Ienco, R.G. Pensa, and R. Meo

the graph are the value of the different attributes and there is an edge between
two vertexes if the two attribute-values occur in the same instance. All maximal
k-partite cliques in the graph are enumerated and the support of the candidate
cliques within the original dataset is verified to form the final clusters.

Alternative approaches include combinatorial algorithms [7] and entropy-
based methods [8,9]

A first attempt of computing a distance for categorical attributes is [10] where
the authors propose a probabilistic framework which considers the distribution
of all the attributes in the dataset. However they only compare their approach
with K-MODES and on small and low dimensional datasets.

3 The DILCA Method

In this section we present DILCA (DIstance Learning in Categorical Attributes)
for computing distances between any pair of values of a categorical attribute.

Let us consider a set F = {X1, X2, . . . , Xm} of m categorical attributes.
We refer to the cardinality of an attribute (or feature) X as |X |. Let D =
{d1, d2, . . . , dn} be a dataset of instances defined over F . We denote by xi a
specific value of an attribute X .

From the example in Section 1 it turns out that the distribution of values
of an attribute can be informative about the way in which another attribute
is distributed in the dataset objects. Thanks to this method we can infer a
context-based distance between any pair of values of the same attribute. In real
applications there are several attributes: for this reason our approach is based
on two steps:

1. selection of a relevant subset of the whole attributes set that we use as the
context for a given attribute;

2. computation of the distance measure between pair of values of the same
attribute using the context defined in the previous step.

Context selection. We investigate the problem of selecting a good (informa-
tive) set of features w.r.t. a given one. This is a classic problem in data min-
ing named feature selection. Feature selection is a preprocessing step of data
mining. Its goal is to select a subset of relevant and not redundant features
and discard all the other ones w.r.t. a given class attribute (supervised feature
selection [11]). In this branch of research many approaches for measuring the
correlation/association between two variables have been proposed. An interest-
ing metrics is the Symmetric Uncertainty, introduced in [12]. This measure is
a correlation-based measure inspired by information theory. Symmetric Uncer-
tainty is derived from entropy: it is a measure of the uncertainty of a random
variable. The entropy of a random variable X is defined as:

H(X) = −
∑

i

P (xi) log2(P (xi))

Context-Based Distance Learning for Categorical Data Clustering 87

where P (xi) is the probability of the value xi of X . The entropy of X after
having observed the values of another variable Y is defined as:

H(X |Y) = −
∑

j

P (yj)
∑

i

P (xi|yi) log2(P (xi|yi))

where P (xi|yi) is the probability that X = xi after we have observed that Y = yi.
The information about X provided by Y is given by the information gain [13]
which is defined as follows:

IG(X |Y) = H(X)−H(X |Y)

When IG(X |Y) > IG(Z|Y) then the feature X is more correlated to Y than Z.
Moreover, the Information gain is symmetrical for two random variables X and
Y [12].

The Symmetrical Uncertainty is then defined as follows:

SU(X, Y) = 2 · IG(X |Y)
H(X) + H(Y)

This measure varies between 0 and 1 (1 indicates that knowledge of the value
of either X or Y completely predicts the value of the other variable; 0 indicates
that X and Y are independent). The advantage of Symmetrical Uncertainty
(SU) w.r.t. Information Gain is that this measure is not biased by the number
of values of an attribute.

During the first step, we select a set of context attributes for a given target
attribute X . This context, named context(X), is such that the attributes Y
belonging to this set have a high value of SU(X, Y). Determining an adequate
number of attributes for context(X) is not trivial. We propose to use an heuristic
to set this number. The heuristic is based on the mean value of SU for a specific
target attribute X . Given a target attribute X we want to compute SU(X, Y),
for each attribute Y �= X . We denote this Symmetric Uncertainty SUX(Y) =
SU(X, Y). The mean of this quantity is:

E[SUX] =

∑
Y ∈F\X SUX(Y)

|F | − 1

To determine the context of an attribute X we use the features that satisfy the
following inequality:

context(X) = {Y �= X s.t. SUX(Y) ≥ σE[SUX]}

where σ ∈ [0, 1] is a trade-off parameter that controls the influence of the
mean value. According to this heuristic, at least one attribute is assigned to
context(X). This is simple to demonstrate: if SUX(Y) is the same for all Y then
SUX(Y) = E[SUX] for all Y ; in this case all Y would be selected in context(X).
If there exists at least one attribute Y such that SUX(Y) ≥ E[SUX], then those
attributes Y would be selected.

88 D. Ienco, R.G. Pensa, and R. Meo

Distance computation. The second step of our approach consists in com-
puting the distance between each pair of values of the considered feature. To
compute this distance between xi and xj where xi ∈ X , xj ∈ X we use the
following formula:

d(xi, xj) =
√ ∑

Y ∈context(X)

∑
yk∈Y

(P (xi|yk)− P (xj |yk))2 (1)

For each context attribute Y we compute the conditional probability for both
values xi and xj given the values yk ∈ Y and then we apply the Euclidean
distance. Our intra-attribute distance measure is an application of the Euclidean
distance. As such, our definition of distance is a metric.

We introduce now our algorithm which, for each attribute X , computes the
similarity matrices between any pair of values of X .

Algorithm 1 shows the procedure adopted to compute the correlation ma-
trix between each pair of features based on Symmetric Uncertainty. This al-
gorithm takes as parameter the entire data set D. Function feature(D) re-
turns the set of all the features contained in D. Then the algorithm computes
the co-occurrence table (COXY) between each pair of attributes using func-
tion ComputeCoOccurrenceTable(D, X, Y). It computes the joint probability
of (X, Y). These tables are used to compute the Symmetric Uncertainty between
attributes to be stored in matrixSU .

Algorithm 2 computes the distance matrix between the values of the target
attribute X . At the first line it selects the vector storing the correlation between
X and all other features Y . During the second step it computes the mean of the
vector and then it selects the features that will be included in the context of X .
When the features are chosen, the distance matrix for the values of attribute X
is built, using (1).

Algorithm 1. computeCorrelationMatrix(D)
1: for all X, Y ∈ feature(D)|X �= Y do
2: COXY = ComputeCoOccurrenceTable(D,X,Y)
3: matrixSU [X][Y] = SU(COXY)
4: end for
5: return matrixSU

Complexity. Before computing the distance matrix, we must compute l =
m ∗ (m − 1)/2 matrices COX,Y . These l matrices store the co-occurrence of
the values between any pair of attributes. To build these matrices we need to
perform a complete scan of the entire data set. We use the co-occurrence matrices
to compute matrixSU . matrixSU is m×m, where m is the number of attributes
in the dataset. Using matrixSU we can compute E[SUX] and then select the
right context making use of σ. To compute the distance matrix for each attribute
we can use l co-occurrence matrices without the necessity of further scans of the

Context-Based Distance Learning for Categorical Data Clustering 89

Algorithm 2. DILCA(matrixSU ,X,σ)
1: V ectorSUX = MatrixSU [X]
2: E = computeMean(V ectorSUX)
3: context(X) = ∅
4: for all y ∈ V ectorSUX do
5: if V ectorSUX [y] ≥ σE then
6: insert(Y ,context(X))
7: end if
8: end for
9: for all xi, xj ∈ X|xi �= xj do

10: DistanceMatrix[xi][xj] =
√∑

Y ∈context(X)

∑
yk∈Y (P (xi|yk) − P (xj |yk))2

11: end for
12: return DistanceMatrixX

dataset. From this, we derive that our algorithm only needs to scan the entire
dataset once. In conclusion, our approach is O(nm2), with n the number of
instances and m the number of involved attributes.

4 Experiments and Results

In this section we present a comprehensive evaluation of our approach. Since
our method enables to use distance based approaches for clustering, we cou-
pled it with two standard methods: a partitional one, and a hierarchical one.
We compared both of them with state-of-the-art techniques for categorical data
clustering.

Evaluation Measures for Clustering. Determine the clustering quality pro-
vided by an algorithm is often a hard and subjective task. Therefore, we use
two objective criteria to evaluate the results: Accuracy and Normalized Mutual
Information.

The first considers the original class label as a mean to evaluate clustering
results. Assume that the instances in D have been already classified in p classes
{p1, p2, ..., pP }. Consider a clustering algorithm that partitions D into c clusters
{cl1, cl2, ..., clC}. We refer to a one-to-one mapping, f , from classes to clusters,
such that each class pi is mapped to the cluster clj = f(pi). The classification
error of the mapping is defined as:

E =
P∑

i=1

|pi ∩ f(pi)|

where |pi ∩ f(pi)| measures the number of objects in class pi that received the
wrong label. The optimal mapping between clusters and classes is the one that
minimizes the classification error. We use Emin to denote the classification error
of the optimal mapping. Then to obtain the Accuracy we compute the following
formula:

90 D. Ienco, R.G. Pensa, and R. Meo

Acc = 1− Emin

|D|
The second metrics provides an information that is independent of the number

of clusters [14]. This measure takes its maximum value when the clustering
partition matches completely the original partition. We can consider NMI as an
indicator of the purity of the clustering results. NMI is computed as the average
mutual information between any pair of clusters and classes:

NMI =

∑C
i=1

∑P
j=1 xij log n∗nij

ninj√∑C
i=1 ni log ni

n

∑P
j=1 nj log nj

n

where nij is the cardinality of the set of objects that occur both in cluster i and
in class j; ni is the number of objects in cluster i; nj is the number of objects in
class j; n is the total number of objects. C and P are respectively the number
of clusters and the number of classes.

Datasets for Categorical Clustering Evaluation. For the evaluation of
our distance learning approach on categorical data, we used two collections of
datasets. The first collection consists in real world data sets downloaded from the
UCI Machine Learning Repository [15]. The second collection contains synthetic
datasets produced by a data generator [16] using Gaussian distributed random
attributes. The main characteristics of these datasets are summarized in Table 1.
Notice that Breast-w and Sonar contain numerical variables. Indeed, they have
been discretized using the supervised method proposed in [17].

Table 1. Datasets characteristics

Dataset Type Instances Features Values Classes

Votes Real 435 16 32 2
Mushroom Real 8124 22 117 2
Breast-w Real 699 9 29 2
Sonar Real 208 60 81 2
SynA Synth 1000 50 1000 5
SynB Synth 3000 20 600 4

4.1 Experimental Settings and Results

Here, we report on the performance results of K-MODESDILCA (DILCA cou-
pled with a simple K-MODES algorithm) and HCLDILCA (DILCA coupled with
Ward hierarchical clustering (HCL). We compared them with ROCK [4] and
LIMBO [5]. For all the algorithms we set the number of clusters equal to the
number of classes. We implemented K-MODESDILCA within the WEKA plat-
form [17], a Java open source library that provides machine learning and data
mining algorithms. HCLDILCA was implemented over the Java Murtagh’s im-
plementation of HCL1.
1 http://astro.u-strasbg.fr/~{}fmurtagh/mda-sw/

http://astro.u-strasbg.fr/~{}fmurtagh/mda-sw/

Context-Based Distance Learning for Categorical Data Clustering 91

We run the experiments on a PC with a 1.86GHz Intel Pentium M processor,
1024MB of RAM running Linux. For each particular algorithm we used the
following setting:

– For K-MODESDILCA we varied parameter σ between 0 to 1 (with steps of
0.1) and we report the value which gave the best results. Since the initial
partition is random, we run many times the algorithm and then we report
the average result in terms of accuracy and Normalized Mutual Information.

– For HCLDILCA we varied parameter σ between 0 to 1 with step of 0.1 and we
report the value which gave the best results. Since the hierarchical algorithm
returns a dendrogram which, at each level, contains a different number of
clusters, we considered the level corresponding to the number of clusters
equal to the number of classes.

– For ROCK we set the threshold parameter between 0.2 to 1 with steps of
0.05. Also for this algorithm we retained the best obtained result.

– For LIMBO we set φ parameter between 0 to 1 with steps of 0.25 and we
report the best obtained result. This parameter influences the information
loss during the merging phase.

In Table 2 we report the result of the comparative evaluation with other clus-
tering algorithms. For each dataset we report the average Accuracy in percentage
and the average Normalized Mutual Information achieved by each algorithm. In
almost all the experiments, our approach achieves the best results in at least one
category of clustering, and in some cases (Sonar and Votes), the performance
parameters are sensibly better than in ROCK and LIMBO. The only exception
is SynA, where NMI computed for ROCK is slightly higher than NMI achieved
by HCLDILCA. However, the Accuracy measured for ROCK is lower than the
one achieved by HCLDILCA. Moreover, we observed that ROCK is very sensi-
tive to the parameter value, and in many cases this algorithm produces one giant
cluster that includes instances from more classes.

Table 2. Experiments on real and synthetic data

K-MODESDILCA HCLDILCA ROCK LIMBO
Dataset Acc. NMI Acc. NMI Acc. NMI Acc. NMI
Sonar 71.63% 0.9912 55.29 % 0.0191 56.25 % 0.0093 66.35% 0.0843
Votes 87.59% 0.4892 89.89% 0.5195 83.90% 0.3446 87.12% 0.4358
Breast-w 95.99% 0.7435 94.13% 0.6650 76.68% 0.2570 55.94% 0.0009
Mushroom 89.02% 0.5518 89.02% 0.5938 50.57% 0.05681 88.95% 0.5522
SynA 89.50% 0.7864 94.30% 0.8641 80.3% 0.8965 87.6% 0.7540
SynB 100% 1.0000 100% 1.0000 100% 1.0000 26.77% 0.0017

Impact of σ. To evaluate the impact of σ parameter we use Mushroom and
Votes datasets. For each dataset we plot the behavior of K-MODESDILCA. We
let vary the parameter σ from 0 to 1 with steps of 0.1. When the parameter

92 D. Ienco, R.G. Pensa, and R. Meo

is equal to 0 all the features are included in the context. We observed that the
influence of different settings of σ w.r.t. accuracy is small (curves are omitted
here). In both datasets, the variation in accuracy is very low (less than 0.50%).
Although there is no general law about how to choose this parameter, we estimate
that its impact is less important than standard clustering parameters (such as,
the number of clusters, or other algorithm-specific parameters).

4.2 Scalability of DILCA

We introduce now a study on the scalability of our distance learning approach, by
analyzing the overall computational time of K-MODESDILCA and HCLDILCA,
and the portion of time needed to perform distance computation (DILCA). We
evaluate the scalability varying the two dimensions of the dataset that may have
an impact on time performances.

The first dimension is the number of instances. For this purpose, we generated
30,000 synthetic instances described by 100 attributes, then we built 30 datasets
containing from 1000 to 30,000 instances. We report the results in Figure 2(a).
The second dimension is the number of attributes: we generated a synthetic
dataset consisting in 5,000 attributes and 1,000 instances. Then we built 10
datasets containing from 100 to 5000 features. The results are depicted in Figure
2(b). We perform also some experiments to evaluate the impact of parameter σ
on running time using the complete dataset (see Figure 2(c)).

As the value of σ enables to select a different number of attributes in the
context of the target attribute, this parameter could have an impact on the
time performances of our approach. In Figure 2(c) we observe how changes of σ
influence the execution time of our algorithms. For the part that computes the
distance we can see that the higher the value of σ the lower the time used to
build the intra-attribute distance matrix.

We also compared HCLDILCA with LIMBO (which is also hierarchical) on the
scalability w.r.t. the number of features. We used another synthetic dataset with
1,000 instances and 1,000 attributes from which we built 10 datasets containing
a variable number of features: from 100 to 1,000 features. We report the results
in figure 2(e). In Figure 2(f), we show a comparison between the two algorithms
on the dataset composed by an increasing number of instances. We observe
that HCLDILCA is faster than LIMBO w.r.t. the size and dimensionality of the
dataset.

Finally, we also investigated on the time spent by the HCLDILCA to perform
clustering. In Figure 2(d) we report the time spent by the three parts of HCL
coupled with DILCA. The three curves represent respectively the time spent
by DILCA to compute distances, the time spent to compute the point-to-point
distance matrix given as input to the hierarchical algorithm, and the effective
time spent by Ward algorithm to build the dendrogram. In any case the most
consistent portion of the overall computation time is employed to calculate the
point-to-point distance measure between each pair of instances.

Context-Based Distance Learning for Categorical Data Clustering 93

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

tim
e(

se
c)

n. of instances

K-MODES+DILCA
DILCA

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 500 1000 1500 2000 2500 3000 3500 4000

tim
e(

se
c)

n. of attributes

K-MODES+DILCA
DILCA

(b)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 0.2 0.4 0.6 0.8 1

tim
e(

se
c)

value of sigma

K-MODES+DILCA
DILCA

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700 800 900 1000

tim
e(

se
c)

n. of instances

DILCA
DistMatrixComp

BuildDendro

(d)

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900 1000

tim
e(

se
c)

 lo
ga

rit
hm

ic

n. of attributes

HCLDilca
Limbo

(e)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 200 300 400 500 600 700 800 900 1000

tim
e(

se
c)

n. of instances

HCLDilca
Limbo

(f)

Fig. 2. Time performances of DILCA

5 Conclusion

We introduced a scalable approach to learn a context-based distance between val-
ues of categorical attributes. We showed the effective impact of this approach on
two distance-based clustering approaches. We believe that the proposed method
is general enough and it can be applied to any data mining task that involves cate-
gorical data and requires distance computations. As a future work we will investi-
gate the application of our distance learning approach to different distance-based
tasks such as: outlier detection and nearest neighbors classification. Moreover, us-
ing this distance it will be possible to compute distances between objects described
by both numerical and categorical attributes.

94 D. Ienco, R.G. Pensa, and R. Meo

Acknowledgments. The authors wish to thank Dr. Eui-Hong Han who pro-
vided the source code ROCK, Dr. Periklis Andritsos who provided the imple-
mentation of LIMBO, and Elena Roglia for stimulating discussions. Ruggero G.
Pensa is co-funded by Regione Piemonte.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kauf-
mann Series in Data Management Systems. Morgan Kaufmann, San Francisco
(2000)

2. Kasif, S., Salzberg, S., Waltz, D., Rachlin, J., Aha, D.: Towards a framework for
memory-based reasoning (manuscript, 1995) (in review)

3. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)

4. Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categorical
attributes. In: Proc. of IEEE ICDE 1999 (1999)

5. Andritsos, P., Tsaparas, P., Miller, R.J., Sevcik, K.C.: Scalable clustering of cate-
gorical data. In: Proc. of EDBT 2004, pp. 123–146 (2004)

6. Zaki, M.J., Peters, M.: Clicks: Mining subspace clusters in categorical data via
k-partite maximal cliques. In: Proc. of IEEE ICDE 2005, pp. 355–356 (2005)

7. Ganti, V., Gehrke, J., Ramakrishnan, R.: Cactus-clustering categorical data using
summaries. In: Proc. of ACM SIGKDD 1999, pp. 73–83 (1999)

8. Barbara, D., Couto, J., Li, Y.: Coolcat: an entropy-based algorithm for categorical
clustering. In: Proc. of CIKM 2002, pp. 582–589. ACM Press, New York (2002)

9. Li, T., Ma, S., Ogihara, M.: Entropy-based criterion in categorical clustering. In:
Proc. of ICML 2004, pp. 536–543 (2004)

10. Ahmad, A., Dey, L.: A method to compute distance between two categorical values
of same attribute in unsupervised learning for categorical data set. Pattern Recogn.
Lett. 28(1), 110–118 (2007)

11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

12. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-
based filter solution. In: Proc. of ICML 2003, Washington, DC (2003)

13. Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in
Machine Learning. Morgan Kaufmann, San Francisco (1993)

14. Strehl, A., Ghosh, J., Cardie, C.: Cluster ensembles - a knowledge reuse framework
for combining multiple partitions. Journal of Machine Learning Research 3, 583–
617 (2002)

15. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998),
http://www.ics.uci.edu/~mlearn/MLRepository.html

16. Melli, G.: Dataset generator, perfect data for an imperfect world (2008),
http://www.datasetgenerator.com

17. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Data Management Systems. Morgan Kaufmann, San Francisco
(2005)

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.datasetgenerator.com

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 95–106, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Semi-supervised Text Classification Using RBF Networks

Eric P. Jiang

University of San Diego, Serra Hall 150, 5998 Alcala Park, San Diego, CA 92110, USA
jiang@sandiego.edu

Abstract. Semi-supervised text classification has numerous applications and is
particularly applicable to the problems where large quantities of unlabeled data
are readily available while only a small number of labeled training samples are
accessible. The paper proposes a semi-supervised classifier that integrates a
clustering based Expectation Maximization (EM) algorithm into radial basis
function (RBF) neural networks and can learn for classification from a very
small number of labeled training samples and a large pool of unlabeled data
effectively. A generalized centroid clustering algorithm is also investigated in
this work to balance predictive values between labeled and unlabeled training
data and to improve classification accuracy. Experimental results with three
popular text classification corpora show that the proper use of additional
unlabeled data in this semi-supervised approach can reduce classification errors
by up to 26%.

1 Introduction

Text classification is a process assigning textual documents into one or more
predefined categories or classes, based on their contents. The process is typically
carried out by applying machine learning algorithms to build models from some pre-
labeled training samples and then by deploying the models to classify previously
unseen documents. In general, given a sufficient set of labeled training data, this
classification approach produces reasonably good results. However, it can perform
poorly when there is only a limited quantity of labeled data on hand. In many
applications, hand-labeling a large training dataset can be very time-consuming or
even impractical. For instance, developing a software agent, which will automatically
route the relevant news articles to online newsgroup readers based on their reading
interests, likely requires at least a few hundred labeled articles to achieve acceptable
accuracy [8]; a task can be very tedious and labor intensive. Web page classification
is another example in this context. Given the rapid proliferation of online textual
material, this classification task is very valuable. But, any attempt to classify Web
pages (even it is limited to a small number of specific topics) would need a set of
labeled training pages with the size that is simply way too large to be reasonably
accomplishable.

This is one of the primary reasons why semi-supervised learning has been a very
popular research topic in the last few years. Semi-supervised learning aims to develop
techniques that improve model efficacy by augmenting labeled samples with

96 E.P. Jiang

additional unlabeled data in model training. It is particularly pertinent to the text
classification domain because large quantities of online unlabeled textual data are
readily available. Recently, a number of semi-supervised algorithms have been
developed to learn for classification (for instance, see [2][7][8]). A comprehensive
survey on learning algorithms with labeled and unlabeled data can be found in [9].

Successful applications of such semi-supervised techniques in text classification
have been reported in recent years. With the careful use of unlabeled data, these
algorithms are able to improve classification accuracy considerably over traditional
supervised classifiers. However, some of the algorithms can still encounter difficulties
when labeled training data are extremely small [11]. This could well be due to the fact
that most of the algorithms start with an initial model based on a set of labeled data
and then, iteratively, they build subsequent and presumably improved models by
incorporating the labeled data with additional unlabeled documents. And when the
labeled data are very scarce and carry a distribution that is not close to that of the
entire data to be modeled, the process can lead to an inaccurate initial model and the
inaccuracy from the initial model can be further propagated to the subsequent models
through the iterations. This error propagation phenomenon is particularly relevant for
text classification tasks because textual documents generally have very high feature
dimensionality. Therefore, incorporating additional unlabeled data in model learning
can actually increase or decrease classification accuracy, and the impact of the
unlabeled data on learning needs to be carefully modulated to make them useful [8].

This paper proposes a semi-supervised text classifier that integrates a clustering
based Expectation Maximization (EM) algorithm into radial basis function (RBF)
networks and it can learn from a very small number of labeled samples and a large
quantity of unlabeled data. The classifier starts with a feature selection procedure on
training data to reduce their feature dimensionality, and then applies a clustering
algorithm to both labeled and unlabeled data iteratively for computing RBF middle
layer parameters. Finally, it uses a regression model to determine RBF output layer
weights. Note that the approach utilizes class labels in the labeled training data to
guide the clustering process and also applies a weighting scheme to incorporate the
unlabeled data in estimating network parameters. This guided and weighted clustering
process helps balance predictive values between the labeled and unlabeled data and
improve classification accuracy.

2 RBF Networks for Text Classification

The Radial basis function (RBF) networks have many applications in science and
engineering and they can also be applied to text classification. For a given document
training set T = {d1, d2, …, d|T|} with classes C = {c1, c2, …, cm}, where |T| is the size
of T, the networks can be used to build models that characterize principal correlations
of terms (or features) and documents in T and then to classify previously unseen
documents into the classes. Recently, a RBF based email filter has been proposed [6]
that it is capable of filtering spam email effectively.

A typical RBF network has a feed-forward connected structure of three layers: an
input layer, a hidden layer of nonlinear processing neurons and an output layer [1].
For text classification, the input layer of the network has n neurons and the size n

 Semi-supervised Text Classification Using RBF Networks 97

corresponds to the number of features in the input vectors di. The hidden layer
contains k computational neurons; each of them can be mathematically described by a

radial basis function pφ that maps a distance in the Euclidean norm to a real value:

),||(||)(2pp axx −= φφ p =1, 2, … , k (1)

where ap, p = 1, 2, …, k are the RBF centers in input document space and in general, k
is less than |T|. The output layer of the network has m neurons and it determines the
document classes according to:

,)(
1
∑

=
=

k

p
ppjj xwc φ j =1, 2, … , m (2)

where pjw is the weight that connects the pth neuron in the hidden layer to the jth

neuron in the output layer. A popular choice of RBF is the Gaussian function

2

2

2)(οφ
x

ex
−

=
(3)

where σ is a width parameter that controls the smoothness properties of the function.

3 Semi-supervised Learning Process

In this section we describe major components of the semi-supervised RBF process,
which include data preprocessing and representation, a two-stage network training
procedure, a weighted centroid clustering method, and an integrated learning
algorithm that uses both labeled and unlabeled data.

3.1 Feature Selection and Document Representation

In text classification, appropriate feature selection can be useful to aid in the
classification task [10]. Features or terms occurring in documents are selected
according to their contributions to profiling the documents and document classes.
Feature selection can trim down feature dimensionality and is beneficial to model
training for reduced computational cost. It can also help filter out irrelevant features.
This is particularly valuable for RBF networks since their training algorithms generally
treat every data feature equally in computing the neuron activations (Eq. (1)).

In this work, document features are first extracted by removing stop or common
words and by applying a word stemming procedure. Then, the features with very low
document frequencies or corpus frequencies are eliminated from model training and
deploying. Our feature selection process also removes the features with very high
corpus frequencies since these features can behave like common words in a specific
textual domain, which can be undetected by a general common-word removal process
based on a predefined word collection. Since the semi-supervised classifier proposed
in this paper can potentially be applied to extremely small sets of labeled samples, we
use the unsupervised document frequency (DF) as the criterion to carry out additional

98 E.P. Jiang

feature reduction. Document frequency has been reported as a simple and inexpensive
alternative to other more sophisticated supervised feature selection measures [10].

Once the process of feature selection is completed, each training document is
encoded as a numerical vector whose elements are the values of retained features. In
this work, the traditional log(tf)-idf feature weighting is used.

3.2 Network Training

The training of a RBF network can be conducted by some optimization algorithms that
determine network parameters using all connected neuron activations and weights
between the layers. Alternatively, it can be done by a two-stage training procedure,
which is more computationally efficient. More specifically, the first stage of training is
to form a representation of density distribution of the input data in terms of the RBF
parameters. It determines the centers ap (Eq. (1)) and widths σ (Eq. (3)) by relatively
fast clustering algorithms, clustering each document class independently to obtain k
basis functions for the class. In this paper, we use a centroid clustering algorithm [6].
With the centers and widths for the hidden layer being estimated, the second stage of
training is to select weights of the output layer by a logistic regression model. Once all
network parameters are determined, the network can be deployed to new documents
for classification and the classification outcomes from the network are computed
numerically by a weighted sum of the hidden layer activations, as shown in Eq. (2).

3.3 Incorporating Unlabeled Data

For many text classification problems, especially those involving online textual
databases, collecting unlabeled documents is quite easy while hand labeling a large
number of document training samples can be labor intensive and also prone to human
errors. Therefore, incorporating additional unlabeled data in RBF network learning is
very valuable. It can be used to compensate for insufficient labeled training data in
terms of achieving good classification performance of the system.

The two-stage training process on RBF networks is well structured for augmenting
additional unlabeled data. In principle, the data used in the first training stage for
determining the basis functions in the network hidden layer are not required to be
labeled, since it is carried out by a clustering algorithm. The modeling in the second
training stage, however, does depend on some labeled samples for finding the weights
in the network output layer. Several experiments on clustering for the first training
stage indicate that, while the training can be done solely by unlabeled data, the RBF
classifier in general delivers substantially higher classification accuracy if the process
is performed by using both labeled and unlabeled data. This is somewhat explainable
because, in the context of text classification, the class information embedded in
labeled samples is typically useful to produce accurate clusters for estimating network
parameters.

In the first stage, the value of the labeled samples can be further utilized by
incorporating the samples with unlabeled data in an iterative cluster refining process.
This can be accomplished by the well-known Expectation Maximization (EM)
algorithm. EM is typically used to iteratively estimate the maximum likelihood of
hidden parameters for problems with incomplete data [5]. If we consider the labels of

 Semi-supervised Text Classification Using RBF Networks 99

unlabeled data as unknown entries, EM can be applied to estimate these class labels.
A similar approach that combines EM with the naïve Bayes classifier has been
proposed in [8].

In the first stage of network training, we start with a number of initial clusters,
which are constructed by the labeled samples. Then, the unlabeled data are classified
by the initial clusters and these newly classified data, together with the labeled
samples, are used to form the new clusters with the updated cluster centroids. The
process is repeated until the clusters are stabilized.

3.4 Adjusting the Weights for Unlabeled Data

As we described earlier, the network training uses only a very small number of
labeled samples and in comparison to the labeled, many order of magnitude more
unlabeled data are used in the EM iterations to update the estimates of network
parameters. This imbalance in count between the labeled and unlabeled data can make
the process almost like performing unsupervised clustering [8] and the unlabeled data
could potentially play a dominant role in parameter estimation. In general, when the
natural clusters of the combined training data are in correspondence with the class
labels, the unsupervised clustering with a large number of unlabeled data will produce
the parameter estimates that are helpful for classification. However, when the natural
clustering of the data generates parameter estimates that are not in correspondence
with the class labels, then these estimates are likely destructive to classification
accuracy.

In order to modulate the influence of the unlabeled data in parameter estimation,
we introduce a weighted centroid algorithm for the EM iterations. Let β1 be a
parameter, 0 ≤ β1 ≤ 1, and Lp and Up the labeled and unlabeled document set in the pth
cluster, respectively, the cluster centroid ap from the weighted centroid algorithm is
computed as:

)(
||||

1
1

1
∑∑
∈∈

+
+

=
pipi Ud

i
Ld

i
pp

p dd
UL

a β
β

 (4)

This equation is used in the iterations to update cluster centroids.
Once the iteration process is converged, we compute the mean and standard

deviation values for each cluster and use another separate weighting parameter β2, 0 ≤
β2 ≤ 1, to control the influence of the unlabeled data on the final estimation of network
basis functions. The cluster mean value is computed by a similar formula as Eq. 4 and
the cluster standard deviation is computed by

))()((
||||

1 2
2

2

2

2 ∑∑
∈∈

−+−
+

=
pipi Ud

pi
Ld

pi
pp

p adad
UL

β
β

σ (5)

Note that when both parameters β1 and β2 take small values that are close to zero,
the unlabeled data will have little influence on parameter estimation of the basis
functions. In particular, when both parameters are set to zero, the entire network
training is performed only on the labeled data and effectively, it reduces to a (purely)
supervised algorithm. On the other hand, when both parameters are set to one, each

100 E.P. Jiang

unlabeled document will carry the same weight as a labeled one, and it becomes the
process that applies the traditional centroid clustering algorithm.

In this work, we have set the weighting parameters β1 and β2 to some fixed values
and also the values that maximize classification accuracy through a limited number of
trials. Experimental results presented in Section 4.3 indicate that, by setting both
weighting parameters to some values between 0 and 1, additional unlabeled data can
almost always be useful to aid in classification even their natural clustering, without
weight adjusting, would produce less accurate classification.

As a summary of the major components that have been discussed in this section,
we present a semi-supervised RBF training algorithm in Table 1.

Table 1. A semi-supervised RBF training algorithm

4 Experiments

In this section, we provide empirical results and analysis of the proposed semi-
supervised RBF classifier with three different text corpora: UseNet news articles (20
Newsgroups), Web pages (WebKB) and newswire articles (Reuters 21578). We show
that incorporating unlabeled data into RBF training can improve classification
accuracy when the number of labeled training samples is very small. With additional
adjusted weighting on the unlabeled data, the semi-supervised RBF classifier can
outperform the traditional supervised RBF model trained only by the labeled samples.
We also discuss the impact of document feature size on classification accuracy.

Inputs: A set of labeled document vectors L and a set of unlabeled document vectors U
(both sets have gone through feature selection and feature weighting)

Output: A RBF text classifier

• Set values for weighting parameter β1 and β2, 0 ≤ β1, β2 ≤ 1
• Assign all labeled documents of class cj in L to set Lj, j = 1, 2, …, m
• Compute the initial cluster centroids ajp of Lj , j = 1, 2, …, m, p = 1, 2, …, k
• Loop

• Set the unlabeled document set Uj of class cj to empty, j = 1, 2, …, m
• For each unlabeled document di in U

• Compute its normalized distances from all centroids ajp, j = 1, 2, …, m, p =
1, 2, …, k

• Include di in Uj if the distance between di and ajp is minimal, p = 1, 2, …, k
• Update the cluster centroids ajp of Lj ∪ Uj using Eq. (4), j = 1, 2, …, m, p = 1, 2,

…, k
• If there is no change on the cluster centroids, then forward to the next step;

otherwise repeat the loop
• Estimate the parameters of network basis functions of Lj ∪ Uj using Eq. (4) (but

substitute β1 with β2) and Eq. (5), j = 1, 2, …, m
• Determine the weights of the network output layer by logistic regression on set L

 Semi-supervised Text Classification Using RBF Networks 101

4.1 Datasets and Experiment Settings

The 20 Newsgroups dataset is a collection of 20,017 news postings divided almost
evenly among 20 different UseNet newsgroups and several of these newsgroups share
closely related topics. The standard byDate split is used to order articles by date and
then to take the first two-thirds for training and the remaining one-third for testing. In
our experiments, we have further selected at random 5,842 documents for training,
and 3,560 documents for testing.

The second dataset, WebKB is a collection of 8,145 web pages gathered from
university computer science departments. It has 7 different classes: student, faculty,
project, course, department, staff and other. The data from the first four classes are
used in our experiments and they consist of 4,199 pages. With a random partition, it
has 2,803 pages for training (two-thirds) and 1,296 pages for testing (one-third) [3].

The third data corpus, Reuters 21578, contains 21,578 articles and 135 topic
categories from the Reuters newswire in 1978, and the standard ModApte training-
testing split is used [4]. Note that in this corpus the distribution of the documents
across the categories is highly skewed and some of the documents are assigned to
multiple categories or no category at all. For our experiments, we use the subset R8 [3]
from the corpus that contains the articles from the top eight most frequent categories
and with a single label (i.e., belong to one category). R8 has been further partitioned
with 5,485 documents for training and 2,189 documents for testing, and they belong to
the categories: acq, crude, earn, grain, interest, money-fx, ship and trade.

Text classification performance can be evaluated by precision and recall or other
related measures such as F1. Since some datasets included in our experiments have
very unevenly distributed classes, we use the micro-averaged F1 measure, or a
weighed average over all classes [11]. Note that for single-label classification, the
total number false positive decisions is the same as the total number of false negative
decisions and hence, the micro-averaged F1 is identical to several other commonly
used measures: accuracy, micro-averaged precision and micro-averaged recall.

In this paper we are primarily concerned with semi-supervised learning using very
small numbers of labeled samples. In our experiments, we varied the size of labeled
training samples per class from 1 to 5 for all three datasets and then from 10 to 70 for
WebKB and 20 Newsgroups, and from 10 to 40 for R8, with an increment of 10. The
reason for having a smaller range with R8 is that the category grain in the dataset
contains only 41 labeled samples.

For a given training data set, we first randomly selected the labeled samples with a
specified size from the set. Then, from the remaining training data, we selected a
number of unlabeled documents at random. The labels of these designated unlabeled
data are ignored in model learning. In the experiments, we used a fixed size for the
unlabeled data set, namely, 5,000 unlabeled documents with 20 Newsgroups and R8,
and 2,500 with WebKB. It should be noted that all results presented in this section
are the average classification accuracy values over five repeated experiments; each
experiment independently selects its own labeled and unlabeled data sets.

4.2 Comparing Performance with and without Using Labeled Data

In this subsection we evaluate the use of the semi-supervised RBF classifier to
incorporate additional unlabeled data and assume each unlabeled document carries an

102 E.P. Jiang

1 2 3 4 5 10 20 30 40
30

40

50

60

70

80

90

number of labeled samples (R8 with 500 features)

m
ic

ro
-a

ve
ra

ge
d

F
1

m
ea

su
re

labeled data only
combined data (equal weights)

1 2 3 4 5 10 20 30 40 50 60
40

45

50

55

60

65

70

75

80

number of labeled samples (WebKB with 200 features)

m
ic

ro
-a

ve
ra

ge
d

F
1

m
ea

su
re

labeled data only
combined data (equal weights)

1 2 3 4 5 10 20 30 40 50 60 70
10

20

30

40

50

60

number of labeled samples (20 Newsgroups with1000 features)

m
ic

ro
-a

ve
ra

ge
d

F
1

m
ea

su
re

labeled data only
combined data (equal weights)

Fig. 1. Classification accuracy results of RBF on R8, WebKB and 20 Newsgroups with and
without using unlabeled data. When using the combined data set, an equal weight scheme is
applied to the unlabeled documents.

equal weight (i.e., β1 = β2 = 1) as a labeled sample in estimating network parameters.
Fig.1 shows that the classification accuracy (or micro-averaged F1) results of the
classifier with (as combined data (equal weights)) and without (as labeled data only)
using unlabeled training documents on R8, WebKB and 20 Newsgroups. The
horizontal axis in the graphs is the number of labeled samples per class used in the
training, and the vertical axis is the micro-averaged F1 measure on the test set.

Fig. 1 indicates that additional unlabeled documents are useful to boost classification
accuracy at small labeled data sizes that are less than five. However, as the data size
becomes larger, the usefulness of the unlabeled data seems to be vanishing and
comparing to the training with the combined data, the traditional supervised RBF
networks (using only the labeled data) actually achieve significantly better accuracy
results. This reflects some similar observations made in previous studies [8] that
unlabeled data may not always help improve classification performance. It can be
hypothesized that when the labeled sample set for a class is extremely small, the set may
not accurately represent the data distribution of the class and it can carry a large
variance towards parameter estimates of the network model. Using a large pool of
unlabeled data to augment the very limited labeled could improve the estimates. On the
other hand, when the labeled sample set becomes larger, a stronger data representation
of the document classes generated from the labeled samples is anticipated and in this
case, the clustering of the unlabeled data might not be in good correspondence with the
labeled samples. Therefore this inconsistency between the labeled and unlabeled data
can cause problems in parameter estimation and consequently decrease classification
accuracy.

 Semi-supervised Text Classification Using RBF Networks 103

4.3 Varying the Weights for Unlabeled Data

As we discussed in the previous subsection, unlabeled data can have some significant
influence on performance of the semi-supervised RBF classifier. In comparison to
unlabeled data, the numbers of labeled training samples are very small, and in the first
stage of network training, they are primarily used in computing the initial parameter
estimates. In order to coordinate both types of data (labeled and unlabeled) and to
modulate the impact of the unlabeled data on the training, we introduced two
weighting parameters β1, β2 that are used in updating cluster centroids in the EM
iterations and in computing the final cluster means and standard deviations,
respectively.

In the experiments we set the values for β1 and β2 by two weighting schemes: fixed
weights and selected weights. The fixed weights scheme simply sets the value of one
to both parameters when the number of labeled samples per class is less than five and
then, as the size of labeled data increases, it assigns a systematically deceased value to
β1 while keeping a fixed value for β2 (0.001). The decreased parameter value for β1
intends to reduce the influence of unlabeled data on network training. The detailed
parameter setting of this weighting scheme is described in the following table:

Number of labeled 1-4 5 10 20 30 40 50-70 (if applicable)
Β1 / β2 values 1/1 .1/.001 .05/.001 .01/.001 .005/.001 .001/.001 .0005/.001

The second selected weights scheme selects the values for β1 and β2 over a limited

number of trials and uses the values that correspond to the best accuracy results
obtained from the trials. More specifically, each of the weighting parameters can take
one of the seven possible values: 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 1, and it
creates a total of 14 different combinations or trials. Note that this scheme is only
used to demonstrate if there exist some values for the weighting parameters that can
further increase performance of the semi-supervised RBF classifier. In practice, the
values of the weighting parameters can be set by the fixed weights scheme, or as an
alternative, by cross-validation or other improved weighting methods.

Fig. 2 compares classification accuracy of the semi-supervised RBF classifier, which
is equipped with the adjusted weighting schemes (fixed and selected) on unlabeled data,
with that of the supervised counterpart on all three datasets. We observe that the semi-
supervised classifier can achieves better classification performance, in most cases if the
fixed scheme is used and in all cases if the selected scheme is used. For instance, using
just four labeled samples per class with R8, the supervised RBF reaches 59% accuracy
while the semi-supervised RBF achieves 69.7%. This represents a 26% reduction in
classification error.

In comparison to the results from Fig. 1, the adjusted weighting on unlabeled data
can help the semi-supervised RBF avoid its degradation in accuracy at large labeled
data sizes, while still preserving the benefits of the algorithm with small labeled sets.
In addition, the consistently superior accuracy values with the selected scheme
suggest that improved methods of setting weighting parameters have the potential to
further increase the practical performance of the classifier.

104 E.P. Jiang

1 2 3 4 5 10 20 30 40
30

40

50

60

70

80

90

number of labeled samples (R8 with 500 features)

m
ic

ro
-a

ve
ra

ge
d

F
1

m
ea

su
re

labeled data only
combined data (fixed weights)
combined data (selected weights)

1 2 3 4 5 10 20 30 40 50 60 70
40

45

50

55

60

65

70

75

80

number of labeled samples (WebKB with 200 features)

m
ic

ro
-a

ve
ra

ge
d

F
1

m
ea

su
re

labeled data only
combined data (fixed weights)
combined data (selected weights)

1 2 3 4 5 10 20 30 40 50 60 70
10

20

30

40

50

60

number of labeled samples (20 Newsgroups with 1000 features)

m
ic

ro
-a

ve
ra

ge
d

F
1

m
ea

su
re

labeled data only
combined data (fixed weights)
combined data (selected weights)

Fig. 2. Classification accuracy results of RBF on R8, WebKB and 20 Newsgroups with and
without using the unlabeled data. When using the combined data set, the fixed and selected
weighting schemes are applied to the unlabeled documents, respectively.

4.4 Impact of Feature Size on Performance

In the empirical results reported in previous sections (Fig. 1 and 2), we used a fixed
document feature size, one for each dataset, which is somewhat proportional to the
retained feature dimensionality of the dataset after its data preprocessing procedures.
As we discussed earlier, in the cases of very small labeled sample sets, the use of
unlabeled data in the RBF network training can noticeably improve the network
parameter estimates. Since the variance of a training set depends on the number of
samples in the set and it can also be influenced by the dimensionality of document
feature space, we presume that in such cases some additional feature reduction may
further help improve network parameter estimation and classification accuracy. Of
course, this additional reduction needs to be performed reasonably and any excessive
feature reduction could produce a feature space that is simply incapable of profiling
documents and document classes.

Experiments in this regard were conducted with the WebKB dataset. Instead of
using 200 features as seen in Fig. 2, we used only the top 100 features and applied the
semi-supervised RBF with the weighting parameters being set by the fixed scheme.
The comparison results are shown in Fig. 3 and they seem to support our hypothesis
that appropriate document feature size can have a significant impact on classification
accuracy and, with a very small number of labeled samples, some further yet
reasonable feature reduction could assist the semi-supervised RBF classifier in its
classification task. For instance, when only one labeled training sample for each class
is used, Fig. 3 indicates that the semi-supervised RBF network attains the classification
accuracy of 57.4% by using 100 selected features and 45.1% by using 200 selected

 Semi-supervised Text Classification Using RBF Networks 105

1 2 3 4 5 10 20 30 40 50 60 70
40

45

50

55

60

65

70

75

80

number of labeled samples (WebKB with varying feature sizes)

m
ic

ro
-a

ve
ra

ge
d

F
1

m
ea

su
re

combined data with 100 features
combined data with 200 features

Fig. 3. Classification accuracy results of the semi-supervised RBF classifier with two different
feature sizes on WebKB. The combined data are used and the fixed weighting scheme is
applied to the unlabeled data.

features. This suggests that in this case, a 27.3% accuracy improvement can be
achieved if a relatively smaller feature size is used.

The results from Fig. 3 also indicate that a relatively larger feature size will be
beneficial to the classifier in accuracy at large labeled set sizes. In practice, we can
adaptively adjust the network’s document feature dimensionality with the size of
available labeled samples to be trained. An optimal algorithm that coordinates these
two quantities is an area of future work.

5 Conclusions and Future Work

This paper has presented a semi-supervised text classifier that integrates a clustering
based EM algorithm into radial basis function (RBF) networks and can learn for
classification from a very small set of labeled samples and a large volume of
unlabeled data effectively. Since the number of the unlabeled data is so large in
comparison to the labeled, their influence on the network parameter estimation needs
to be appropriately modulated in order to make them useful. Towards this direction, a
generalized centroid clustering algorithm has been investigated in this work to
balance predictive values between the labeled and unlabeled training data and to
improve classification accuracy. In this paper, we have also studied the effect of
document feature size on classification performance.

Experiments of the proposed semi-supervised RBF classifier with three popular
text classification corpora have shown that, with proper use of additional unlabeled
data, the classifier can achieve classification error reduction by up to 26%. In
addition, appropriate settings on the selected document feature size can further
improve classification accuracy.

As future work we plan to improve the semi-supervised RBF classifier in several
directions. Currently in our system, we are using simple and fixed weighting
parameters to modulate the impact of unlabeled data in network learning. We plan to
develop methods for dynamically adjusting the parameter values in EM iterations and
improving the estimates of network basis functions. We will also investigate the
coordination between the dimensionality of document feature space and the size of
labeled training data set.

106 E.P. Jiang

Acknowledgments. The author gratefully acknowledges the valuable comments
provided by the anonymous reviewers of this paper. This work was in part supported
by a faculty research grant from the University of San Diego.

References

1. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford
(1995)

2. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with Co-Training. In: 11th
COLT conference, pp. 92–100 (1998)

3. Cardoso-Cachopo, A., Oliveira, A.: Semi-supervised Single-label Text Categorization
Using Centroid-based Classifiers. In: ACM Symposium on Applied Computing, pp. 844–
851 (2007)

4. Cohen, F., Sebastiani, F.: An analysis of the relative hardness of reuters-21578 subsets. J.
American Society for information Science and Technology 56(6), 584–596 (2004)

5. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. J. Royal Statistical Society, Series B 39, 1–38 (1977)

6. Jiang, E.: Detecting spam email by radial basis function networks. International J.
Knowledge based and Intelligent Engineering Systems 11, 409–418 (2007)

7. Joachims, T.: Transductive inference for text classification using support vector machines.
In: 16th ICML conference, pp. 200–209 (1999)

8. Nigam, K., McCallum, A., Thurn, S., Mitchell, T.: Text classification from labeled and
unlabeled documents using EM. Machine Learning 39(2/3), 103–134 (2000)

9. Seeger, M.: Learning with labeled and unlabeled data. Technical report, Edinburgh
University (2001)

10. Yang, Y., Pederson, J.O.: A Comparative Study on Feature Selection in Text
Classification. In: 14th International Conference on Machine Learning, pp. 412–420 (1997)

11. Zeng, H., Wang, X., Chen, Z., Lu, H., Ma, W.: CBC-clustering based text classification
requiring minimal labeled data. In: 3rd International Conference on Data Mining, pp. 443–
450 (2003)

Improving k-NN for Human Cancer
Classification Using the Gene Expression Profiles

Manuel Mart́ın-Merino1 and Javier De Las Rivas2

1 Universidad Pontificia de Salamanca
C/Compañ́ıa 5, 37002, Salamanca, Spain

mmartinmac@upsa.es
2 Cancer Research Center (CIC-IBMCC, CSIC/USAL)

Salamanca, Spain
jrivas@usal.es

Abstract. The k Nearest Neighbor classifier has been applied to the
identification of cancer samples using the gene expression profiles with
encouraging results. However, k-NN relies usually on the use of Euclidean
distances that fail often to reflect accurately the sample proximities.
Non Euclidean dissimilarities focus on different features of the data and
should be integrated in order to reduce the misclassification errors.

In this paper, we learn a linear combination of dissimilarities using a
regularized kernel alignment algorithm. The weights of the combination
are learnt in a HRKHS (Hyper Reproducing Kernel Hilbert Space) using
a Semidefinite Programming algorithm. This approach allow us to incor-
porate a smoothing term that penalizes the complexity of the family of
distances and avoids overfitting.

The experimental results suggest that the method proposed outper-
forms other metric learning strategies and improves the classical k-NN
algorithm based on a single dissimilarity.

1 Introduction

DNA microarrays allow us to monitor the expression levels of thousands of genes
simultaneously across a collection of related samples. This technology has been
applied to the identification of cancer samples with encouraging results [3].

The k Nearest Neighbor (k-NN) classifier has been applied to the identification
of cancer samples using the gene expression profiles. However, k-NN is based
usually on Euclidean distances that fail often to model accurately the sample
proximities [1]. Non Euclidean dissimilarities reflect complementary features of
the data and misclassify frequently different subsets of patterns. Therefore, they
should be integrated in order to reduce the misclassification errors.

Several authors have proposed techniques to learn the metric from the data
[22,23]. Some of them, are based on a linear transformation of the Euclidean
metric [20,22] that fails often to reflect the proximities among the sample profiles
[1]. Other approaches such as [23] are more general, but are prone to overfitting
when the sample size is small because they learn the metric without taking into

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 107–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 M. Mart́ın-Merino and J. De Las Rivas

account the generalization ability of the classifier. Besides, they rely on complex
non-linear optimization algorithms.

Our approach considers that the integration of dissimilarities that reflect di-
fferent features of the data should help to reduce the classification errors. To
this aim, a linear combination of dissimilarities is learnt considering the rela-
tion between kernels and distances. Each dissimilarity is embedded in a feature
space using the Empirical Kernel Map [18]. Next, learning the dissimilarity is
equivalent to optimize the weights of the linear combination of kernels. The
combination of kernels is learnt in the literature [2,8] maximizing the alignment
between the input kernel and an idealized kernel. However, this error function
does not take into account the generalization ability of the classifier and is prone
to overfitting.

In this paper, we consider a regularized version of the kernel alignment pro-
posed by [2]. The linear combination of kernels is learnt in a HRKHS (Hyper
Reproducing Kernel Hilbert Space) following the approach of hyperkernels pro-
posed in [15]. This formalism exhibits a strong theoretical foundation, is less
sensitive to overfitting and allow us to work with infinite families of distances.

The algorithm has been applied to the identification of human cancer samples
using the gene expression profiles with remarkable results.

This paper is organized as follows: Section 2 introduces briefly the idea of
Kernel Alignment, section 3 presents the algorithms considered to learn a li-
near combination of dissimilarities. Section 4 illustrates the performance of the
algorithm in the challenging problem of gene expression data analysis. Finally,
Section 5 gets conclusions and outlines future research trends.

2 Kernel Target Alignment

Given two kernels k1 and k2 and a sample S, the empirical alignment evaluates
the similarity between the corresponding kernel matrices. Mathematically it is
defined as:

A(S, k1, k2) =
〈K1, K2〉F√

〈K1, K1〉F 〈K2, K2〉F
, (1)

where K1 denotes the kernel matrix for the kernel k1, and 〈K1, K2〉F =∑
ij K1

ijK
2
ij = Tr(K1K2) is the Frobenius product between matrices. If the ker-

nel matrices K1 and K2 are considered as bidimensional vectors, the alignment
evaluates the cosine of the angle and is a similarity measure.

For classification purposes we can define an ideal target matrix kernel as
K2 = yyT , where y is the vector of labels for the sample S. K2(xi, xj) = 1 if
y(xi) = y(xj) and −1 otherwise. Substituting K2 in equation (1) the empirical
alignment between the matrix kernel K1 and the target labels for the sample S
can be written as:

A(S, k1, k2) =
yT K1y

m‖K1‖F
, (2)

where m is the size of the training set S.

Improving k-NN for Human Cancer Classification 109

It has been shown in [2] that the empirical alignment is stable with respect
of different splits of the data and that larger values for the alignment increase
the separability among the classes.

2.1 Empirical Kernel Map

Now we introduce shortly the Empirical Kernel Map that allow us to incorporate
non-Euclidean dissimilarities into any kernel classifier [18,11].

Let d: X × X → R be a dissimilarity and R = {p1, . . . , pn} a subset of
representatives drawn from the training set. Define the mapping φ : F → Rn as:

φ(z) = D(z, R) = [d(z, p1), d(z, p2), . . . , d(z, pn)] (3)

This mapping defines a dissimilarity space where feature i is given by d(., pi).
The set of representatives R determines the dimensionality of the feature

space. The choice of R is equivalent to select a subset of features in the di-
ssimilarity space. Due to the small number of samples in our application, we
have considered the whole training set as representatives. Notice that it has
been suggested in the literature [11] that for small samples reducing the set of
representatives does not help to improve the classifier performance.

3 Learning the Metric in a HRKHS Using Kernel
Alignment

In order to incorporate a linear combination of dissimilarities into k-NN, we
follow the approach of Hyperkernels developed by [15]. To this aim, each distance
is embedded in a RKHS via the Empirical Kernel Map introduced in section 2.1.
Next, a regularized version of the alignment is presented that incorporates a L2-
penalty over the complexity of the family of distances considered. The solution
to this regularized quality functional is searched in a Hyper Reproducing Kernel
Hilbert Space. This allows to minimize the quality functional using a semidefinite
programming approach (SDP).

Let Xtrain = {x1, x2, . . . , xm} and Ytrain = {y1, y2, . . . , ym} be a finite sample
of training patterns where yi ∈ {−1, +1}. Let K be a family of semidefinite
positive kernels. Our goal is to learn a kernel of dissimilarities [11] k ∈ K that
represents the combination of dissimilarities and that minimizes the empirical
quality functional defined by:

Qalign
emp = 1−A(S, k1, k2) = 1− yT K1y

m‖K1‖F
(4)

However, if the family of kernels K is complex enough it is possible to find a
kernel (k∗ = yT y) that achieves training error equal to zero overfitting the data.
To avoid this problem, we introduce a term that penalizes the kernel complexity
in a Hyper Reproducing Kernel Hilbert Space (HRKHS):

Qreg(k, X, Y) = Qalign
emp (k, X, Y) +

λQ

2
‖k‖2H (5)

110 M. Mart́ın-Merino and J. De Las Rivas

where ‖ ‖H is the L2 norm defined in the Hyper Reproducing Kernel Hilbert
space generated by the hyperkernel k. λQ is a regularization parameter that
controls the complexity of the resulting kernel. The definition of Hyper Repro-
ducing Kernel Hilbert Spaces (HRKHS) is provided in appendix A.

The following theorem allows us to write the solution to the minimization of
this regularized quality functional as a linear combination of hyperkernels in a
HRKHS.

Theorem 1 (Representer Theorem for Hyper-RKHS [15]). Let X, Y be
the combined training and test set, then each minimizer k ∈ H of the regularized
quality functional Qreg(k, X, Y) admits a representation of the form:

k(x, x′) =
m∑

i,j=1

βijk((xi, xj), (x, x′)) (6)

for all x, x’ ∈ X, where βij ∈ R, for each 1 ≤ i, j ≤ m.

However, we are only interested in solutions that give rise to positive semidefinite
kernels. The following condition over the hyperkernels [15] allow us to guarantee
that the solution is a positive semidefinite kernel.

Property 1. Given a hyperkernel k with elements such that for any fixed x ∈ X ,
the function k(xp, xq) = k(x, (xp, xq)), with xp,xq ∈ X , is a positive semidefinite
kernel, and βij ≥ 0 for all i, j = 1, . . . , m, then the kernel

k(xp, xq) =
m∑

i,j=1

βijk(xi, xj , xp, xq) (7)

is positive semidefinite.

Now, we address the problem of combining a finite set of dissimilarities. As we
mentioned earlier, each dissimilarity can be represented by a kernel using the
Empirical Kernel Map. Next, the hyperkernel is defined as:

k(x, x′) =
n∑

i=1

ciki(x)ki(x′) (8)

where each ki is a positive semidefinite kernel of dissimilarities and ci is a cons-
tant ≥ 0.

Now, we show that k is a valid hyperkernel: First, k is a kernel because it can
be written as a dot product 〈Φ(x), Φ(x′)〉 where

Φ(x) = (
√

c1 k1(x),
√

c2 k2(x), . . . ,
√

cn kn(x)) (9)

Next, the resulting kernel (7) is positive semidefinite because for all
x, k(x, (xp, xq)) is a positive semidefinite kernel and βij can be constrained to be
≥ 0. Besides, the linear combination of kernels is a kernel and therefore is posi-
tive semidefinite. Notice that k(x, (xp, xq)) is positive semidefinite if ci ≥ 0 and

Improving k-NN for Human Cancer Classification 111

ki are pointwise positive for training data. Both Laplacian and multiquadratic
kernels verify this condition.

Finally, we show that the resulting kernel is a linear combination of the original
ki. Substituting the expression of the hyperkernel (8) in equation (7), the kernel
is written as:

k(xp, xq) =
m∑

i,j=1

βij

n∑
l=1

clkl(xi, xj)kl(xp, xq) (10)

Now the kernel can be expressed as a linear combination of base kernels.

k(xp, xq) =
n∑

l=1

⎡
⎣cl

m∑
i,j=1

βijkl(xi, xj)

⎤
⎦ kl(xp, xq) (11)

Therefore, the above kernel introduces into the k-NN a linear combination of base
dissimilarities represented by kl with coefficients γl = cl

∑m
i,j=1 βijkl(xi, xj).

The previous approach can be extended to an infinite family of distances. In
this case, the space that generates the kernel is infinite dimensional. Therefore,
in order to work in this space, it is necessary to define a hyperkernel and to
optimize it using a HRKHS. Let k be a kernel of dissimilarities. The hyperkernel
is defined as follows [15]:

k(x, x′) =
∞∑

i=0

ci(k(x)k(x′))i (12)

where ci ≥ 0 and i = 0, . . . ,∞. In this case, the non-linear transformation to
feature space is infinite dimensional. Particularly, we are considering all powers
of the original kernels which is equivalent to transform non-linearly the original
dissimilarities.

Φ(x) = (
√

c1 k(x),
√

c2 k2(x), . . . ,
√

cn kn(x)) (13)

where n is the dimensionality of the space which is infinite in this case.
As for the finite family, it can be easily shown that k is a valid hyperkernel

provided that the kernels considered are pointwise positive. The inverse multi-
quadratic and Laplacian kernels satisfy this condition. The following proposition
allow us to derive the hyperkernel expression for any base kernel.

Proposition 1 (Harmonic Hyperkernel). Suppose k is a kernel with range
[0, 1] and ci = (1− λh)λi

h, i ∈ N, 0 < λh < 1. Then, computing the infinite sum
in equation (12), we have the following expression for the harmonic hyperkernel:

k(x, x′) = (1− λh)
∞∑

i=0

(λhk(x)k(x′))i =
1− λh

1− λhk(x)k(x′)
, (14)

λh is a regularization term that controls the complexity of the resulting kernel.
Particularly, larger values for λh give more weight to strongly non-linear kernels
while smaller values give coverage for wider kernels.

112 M. Mart́ın-Merino and J. De Las Rivas

3.1 Kernel Alignment k-NN in a HRKHS

We start with some notation that is used in the kernel alignment algorithm. For
p,q,r ∈ Rn, n ∈ N let r = p ◦ q be defined as element by element multiplication,
ri = pi × qi. The pseudo-inverse of a matrix K is denoted by K†. Define the
hyperkernel Gram matrix K by Kijpq = k((xi, xj), (xp, xq)), the kernel matrix
K = reshape(Kβ)(reshaping an m2 by 1 vector, Kβ, to an m ×m matrix), Y
= diag(y) (a matrix with y on the diagonal and zero otherwise), G(β) = Y KY
(the dependence on β is made explicit) and 1 a vector of ones.

The optimization of the regularized quality functional (4) for the kernel align-
ment in a HRKHS can be written as:

max
k∈H

tr(KyyT) +
λQ

2
‖k‖2H (15)

subject to ‖K‖2F = C (16)

where λQ is a parameter that penalizes the complexity of the family of kernels
considered and ‖K‖2F = tr(KKT) =

∑
ij(Kij)2 is the Frobenius norm of the

kernel.
The minimization of the previous equation leads to the following SDP opti-

mization problem [10].

min
β

1
2
t1 +

λQ

2
t2 (17)

subject to β ≥ 0 (18)

‖K 1
2 β‖ ≤ t2, 1T β = 1 (19)[

K y
yT t1

]
� 0 (20)

Once the kernel is learnt, the first k nearest neighbors are identified considering
that the Euclidean distance in feature space can be written exclusively in terms
of kernel evaluations:

d2
e(xi, xj) = k(xi, xi) + k(xj , xj)− 2k(xi, xj) (21)

where k is the kernel of dissimilarities learnt by the regularized kernel alignment
algorithm introduced previously.

Now we comment shortly some issues about the implementation. The opti-
mization problem (17) were solved using SeDuMi 1.1R3 [17] and YALMIP [9]
SDP optimization packages running under MATLAB.

As in the SDP problem there are m2 coefficients βij , the computational
complexity is high. However, it can be significantly reduced if the Hyperker-
nel {k((xi, xj), .)|1 ≤ i, j ≤ m2} is approximated by a small fraction of terms,
p � m2 for a given error. In particular, we have chosen an m × p truncated
lower triangular matrix G which approximate the hyperkernel matrix to an er-
ror δ = 10−6 using the incomplete Cholesky factorization method [4].

Improving k-NN for Human Cancer Classification 113

4 Experimental Results

The algorithms proposed have been applied to the identification of several cancer
human samples using microarray gene expression data.

The gene expression datasets considered in this paper exhibit different features
as shown in table 1. We have chosen problems with a broad range of signal to
noise ratio (Var/Samp.), different number of samples and varying priors for
the larger category. All the datasets are available from the Broad Institute of
MIT and Harvard www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. Next
we detail the features and preprocessing applied to each dataset.

Table 1. Features of the different cancer datasets

Samples Genes Var/Samp. Priors %
Lymphoma MLBCL/DLBCL 210 44928 213 84
Breast Cancer LN 49 7129 145 51
Medulloblastoma 60 7129 119 65

The first dataset consists of frozen tumors specimens from newly diagnosed,
previously untreated MLBCL patients (34 samples) and DLBCL patients (176
samples). They were hybridized to Affymetrix hgu133b gene chip containing
probes for 44000 genes [13]. The raw intensities have been normalized using the
rma algorithm [5]. The second problem we address concerns the clinically impor-
tant issue of metastatic spread of the tumor. The determination of the extent of
lymph node involvement in primary breast cancer is the single most important
risk factor in disease outcome and here the analysis compares primary cancers
that have not spread beyond the breast to ones that have metastasized to axillary
lymph nodes at the time of diagnosis. We identified tumors as ’reported negative’
(24) when no positive lymph nodes were discovered and ’reported positive’ (25)
for tumors with at least three identifiably positive nodes [21]. All assays used
the human HuGeneFL Genechip microarray containing probes for 7129 genes.
The third dataset [12] addresses the clinical challenge concerning medulloblas-
toma due to the variable response of patients to therapy. Whereas some patients
are cured by chemotherapy and radiation, others have progressive disease. The
dataset consists of 60 samples containing 39 medulloblastoma survivors and 21
treatment failures. Samples were hybridized to Affymetrix HuGeneFL arrays
containing 5920 known genes and 897 expressed sequence tags.

All the datasets have been standardised subtracting the median and dividing
by the Inter-quantile range. The rescaling were performed based only on the
training set to avoid bias.

In order to assure a honest evaluation of all the classifiers we have performed
a double loop of crossvalidation [16]. The outer loop is based on stratified ten
fold cross-validation that iteratively splits the data in ten sets, one for testing
and the others for training. The inner loop performs stratified nine fold cross-
validation over the training set and is used to determine the optimal parameters

www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

114 M. Mart́ın-Merino and J. De Las Rivas

avoiding bias in the error estimation. The stratified variant of cross-validation
keeps the same proportion of patterns for each class in training and test sets. This
is necessary in our problem because the class proportions are not equal. Finally,
the error measure considered to evaluate the classifiers has been accuracy. This
metric computes the proportion of samples misclassified. The accuracy is easy
to interpret and allow us to compare with the results obtained by previously
published studies.

Regarding the value of the parameters, ci = 1/M for the finite family of
distances where M is the number of dissimilarities considered, and the regu-
larization parameter λQ = 1 which gives good experimental results for all the
problems considered in this paper. Finally, for the infinite family of dissimilari-
ties, the regularization parameter λh in the Harmonic hyperkernel (14) has been
set up to 0.6 which gives an adequate coverage of various kernel widths. Smaller
values emphasize only wide kernels. All the base kernel of dissimilarities have
been normalized so that all ones have the same scale. Three different kernels
have been considered, linear, inverse multiquadratic and Laplacian.

The optimal values for the kernel parameters, the number of genes and the
nearest neighbors considered have been set up by crossvalidation and using a
grid search strategy.

Gene selection can improve significantly the classifier performance [6]. There-
fore, we have evaluated the classifiers for subsets of 280, 146, 101, 56 and 34 top
ranked genes. k-NN is quite sensitive to the ‘curse of dimensionality’. Thus, con-
sidering a larger number of genes or even the whole set of genes does not help
to reduce the misclassification errors.

The genes are ranked according to the ratio of between-group to within-group
sums of squares defined in [3]

BW (j) =

∑
i

∑
k I(yi = k)(x̄(k)

·j − x̄·j)2∑
i

∑
k I(yi = k)(xij − x̄

(k)
·j)2

(22)

where x̄
(k)
·j and x̄·j denote respectively the average expression level of gene j for

class k and the overall average expression level of gene j across all samples, yi

denotes the class of sample i, and I(·) is the indicator function. Next, the top
ranked genes are chosen. This feature selection method is simple but compares
well with more sophisticated methods. For a discussion of other approaches con-
sidered in gene expression data analysis the reader is referred to [6]. Finally, the
ranking of genes has been carried out considering only the training set to avoid
bias. Therefore, feature selection is repeated in each iteration of cross-validation.

We have compared our method with the Lanckriet formalism [10] that allow us
to incorporate a linear combination of dissimilarities into the SVM considering
the connection between kernels and dissimilarities, the Large Margin Nearest
Neighbor algorithm [20] that learns a Mahalanobis metric maximizing the k-NN
margin in input space and the classical k-NN with the best dissimilarity for a
subset of six measures widely used in the Microarray literature.

Improving k-NN for Human Cancer Classification 115

Table 2. Empirical results for the k-NN classifier considering different dissimilarities.
The ν-SVM based on coordinates and the best dissimilarity have also been considered.

Technique DLBCL-MLBCL Breast LN Medulloblastoma
ν-SVM (Coordinates) 16% 8.16% 16.6%
ν-SVM (Best Distance) 11% 8.16% 13.3%
k-NN Euclidean 10% 10% 10%
k-NN Cosine 15.1% 6% 10%
k-NN Manhattan 10% 12% 16.6%
k-NN Correlation 23% 18% 15%
k-NN χ2 16% 6% 10%
k-NN Spearman 31% 28% 23.3%

Table 3. Empirical results for the kernel alignment k-NN based on a combination of di-
ssimilarities. For comparison we have included two learning metric strategies proposed
in the literature.

Technique DLBCL-MLBCL Breast LN Medulloblastoma
Kernel align. k-NN
(Finite family, linear kernel)

10% 6% 11.66%

Kernel align. k-NN
(Infinite family, linear kernel)

10% 4% 10%

Kernel align. k-NN
(Finite family, inverse kernel)

10% 8% 10%

Kernel align. k-NN
(Infinite family, inverse kernel)

9% 4% 10%

Kernel align. k-NN
(Finite family, laplacian kernel)

9% 6% 8.33%

Kernel align. k-NN
(Infinite family, laplacian kernel)

9% 4% 10%

Lanckriet SVM 11% 8.16% 11.66%
Large Margin NN 17% 8.50% 13.3%

From the analysis of tables 2 and 3, the following conclusions can be drawn:

– Kernel alignment k-NN outperforms two widely used strategies to learn the
metric such as Large Margin NN and Lanckriet SVM. The first one is prone
to overfitting and does not help to reduce the error of k-NN based on the
best dissimilarity. Similarly, our method improves the Lanckriet formalism
particularly for Breast LN problem in which the sample size is smaller.

Kernel alignment k-NN is quite insensitive to the kind of non-linear kernel
employed.

– Kernel alignment k-NN considering an infinite family of distances outper-
forms k-NN with the best distance and the ν-SVM, particularly for breast
cancer and Leukemia DLBCL-MLBCL. The infinite family of dissimilarities
helps to reduce the errors of the finite counterpart particularly for breast
cancer. This suggests that for certain complex non-linear problems, the
non-linear transformation of the original dissimilarities helps to improve the

116 M. Mart́ın-Merino and J. De Las Rivas

classifier accuracy. We report, that only for the Medulloblastoma and with
Laplacian base kernel the error is slightly larger for the infinite family. This
suggests that the regularization term controls appropriately the complexity
of the resulting dissimilarity.

– Table 2 shows that the best distance depends on the dataset considered and
that the performance of k-NN depends strongly on the particular measure
employed to evaluate the sample proximities. Finally, an interesting result is
that k-NN outperforms the ν-SVM algorithm for all the datasets.

5 Conclusions

In this paper, we propose two methods to incorporate in the k-NN algorithm
a linear combination of non-Euclidean dissimilarities. The family of distances is
learnt in a HRKHS (Hyper Reproducing Kernel Hilbert Space) using a Semi-
definite Programming approach. A penalty term has been added to avoid the
overfitting of the data. The algorithm has been applied to the classification of
complex cancer human samples.

The experimental results suggest that the combination of dissimilarities in
a Hyper Reproducing Kernel Hilbert Space improves the accuracy of classifiers
based on a single distance particularly for non-linear problems. Besides, this ap-
proach outperforms other learning metric strategies widely used in the literature
and is robust to overfitting.

Future research trends will apply this formalism to integrate heterogeneous
data sources.

References

1. Blanco, A., Mart́ın-Merino, M., De Las Rivas, J.: Combining dissimilarity based
classifiers for cancer prediction using gene expression profiles. BMC Bioinformatics,
1–2 (2007); ISMB/ECCB 2007

2. Cristianini, N., Kandola, J., Elisseeff, J., Shawe-Taylor, A.: On the kernel target
alignment. Journal of Machine Learning Research 1, 1–31 (2002)

3. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of Discrimination Methods for
the Classification of Tumors Using Gene Expression Data. Journal of the American
Statistical Association 97(457), 77–87 (2002)

4. Fine, S., Scheinberg, K.: Efficient svm training using low-rank kernel representa-
tions. Journal of Machine Learning Research 2, 243–264 (2001)

5. Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S.: Bioinformatics
and Computational Biology Solutions Using R and Bioconductor. Springer, Berlin
(2006)

6. Jeffery, I.B., Higgins, D.G., Culhane, A.C.: Comparison and Evaluation Methods
for Generating Differentially Expressed Gene List from Microarray Data. BMC
Bioinformatics 7(359), 1–16 (2006)

7. Jiang, D., Tang, C., Zhang, A.: Cluster Analysis for Gene Expression Data: A
Survey. IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–1386
(2004)

8. Kandola, J., Shawe-Taylor, J., Cristianini, N.: Optimizing kernel alignment over
combinations of kernels. NeuroCOLT, Tech. Rep. (2002)

Improving k-NN for Human Cancer Classification 117

9. Löfberg, J.: YALMIP, yet another LMI parser (2002),
www.control.isy.liu.se/~johanl/yalmip.html

10. Lanckriet, G., Cristianini, N., Barlett, P., El Ghaoui, L., Jordan, M.: Learning
the kernel matrix with semidefinite programming. Journal of Machine Learning
Research 3, 27–72 (2004)

11. Pekalska, E., Paclick, P., Duin, R.: A generalized kernel approach to dissimilarity-
based classification. Journal of Machine Learning Research 2, 175–211 (2001)

12. Pomeroy, S.E.A.: Prediction of central nervous system embryonal tumour outcome
based on gene expression. Nature 415 (2002)

13. Savage, K., et al.: The molecular signature of mediastinal large B-cell lymphoma
differs from that of other diffuse large B-cell lymphomas and shares features with
classical hodgkin lymphoma. Blood 102(12) (December 2003)

14. Scholkopf, B., Tsuda, K., Vert, J.: Kernel Methods in Computational Biology. MIT
Press, Cambridge (2004)

15. Soon Ong, C., Smola, A., Williamson, R.: Learning the kernel with hyperkernels.
Journal of Machine Learning Research 6, 1043–1071 (2005)

16. Statnikov, A.: A comprehensive evaluation of multicategory classification methods
for microarray gene expression cancer diagnosis. Bioinformatics 21(5), 631–643
(2004)

17. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software 11/12(1-4), 625–653 (1999)

18. Tsuda, K.: Support Vector Classifier with Assymetric Kernel Function. In: Pro-
ceedings of ESANN, Bruges, pp. 183–188 (1999)

19. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
20. Weinberger, K.Q., Saul, L.K.: Distance Metric Learning for Large Margin Nearest

Neighbor Classification. J. Machine Learning Research 10, 207–244 (2009)
21. West, M., et al.: Predicting the clinical status of human breast cancer by using

gene expression profiles. PNAS 98(20) (2001)
22. Wu, G., Chang, E.Y., Panda, N.: Formulating distance functions via the kernel

trick. In: ACM SIGKDD, Chicago, pp. 703–709 (2005)
23. Xiong, H., Chen, X.-W.: Kernel-Based Distance Metric Learning for Microarray

Data Classification. BMC Bioinformatics 7(299), 1–11 (2006)

Appendix A

In this section we define shortly the Hyper-Reproducing Kernel Hilbert Spaces.
First, we define a Reproducing Kernel Hilbert Space.

Definition 1 (Reproducing Kernel Hilbert Space). Let X be a nonempty
set and H be a Hilbert space of functions f : X → R. Let 〈·, ·〉 be a dot product
in H which induces a norm as ‖f‖ =

√
〈f, f〉. H is called a RKHS if there is a

function k : X × X with the following properties:

– k has the reproducing property 〈f, k(x, ·)〉 = f(x) for all f ∈ H, x ∈ X
– k spans H, i.e. H = span{k(x, ·)|x ∈ X}, where X is the completion of the

set X.
– k is symmetric, i.e, k(x, y) = k(y, x)

Next, we introduce the Hyper Reproducing Kernel Hilbert Space.

www.control.isy.liu.se/~johanl/yalmip.html

118 M. Mart́ın-Merino and J. De Las Rivas

Definition 2 (Hyper-Reproducing Kernel Hilbert Space). Let X be a
nonempty set and X = X×X be the Cartesian product. Let H be the Hilbert space
of functions k : X → R with a dot product 〈·, ·〉 and a norm ‖k‖ =

√
(〈k, k〉). H is

a Hyper Reproducing Kernel Hilbert Space if there is a hyperkernel k : X×X → R
with the following properties:

– k has the reproducing property 〈k, k(x, ·)〉 = k(x) for all k ∈ H
– k spans H = span{k(x, ·)|x ∈ X}
– k(x, y, s, t) = k(y, x, s, t) for all x, y, s, t ∈ X .

Subgroup Discovery for Test Selection:
A Novel Approach and Its Application to

Breast Cancer Diagnosis

Marianne Mueller1, Rómer Rosales2, Harald Steck2,
Sriram Krishnan2, Bharat Rao2, and Stefan Kramer1

1 Technische Universität München, Institut für Informatik, 85748 Garching, Germany
2 IKM CAD and Knowledge Solutions, Siemens Healthcare, Malvern PA 19335, USA

Abstract. We propose a new approach to test selection based on the
discovery of subgroups of patients sharing the same optimal test, and
present its application to breast cancer diagnosis. Subgroups are defined
in terms of background information about the patient. We automatically
determine the best t subgroups a patient belongs to, and decide for the
test proposed by their majority. We introduce the concept of prediction
quality to measure how accurate the test outcome is regarding the disease
status. The quality of a subgroup is then the best mean prediction quality
of its members (choosing the same test for all). Incorporating the quality
computation in the search heuristic enables a significant reduction of
the search space. In experiments on breast cancer diagnosis data we
showed that it is faster than the baseline algorithm APRIORI-SD while
preserving its accuracy.

1 Introduction

Diagnosis is the art or act of identifying a disease from its signs and symptoms.
This implies that the more information is available about a patient, the easier it is
to pose an accurate diagnosis. Information can be obtained by a variety of tests
including questioning the patient, physical examinations, imaging modalities,
or laboratory tests. However, due to costs, time, and risks for the patient, in
clinical routine it is often preferable for patients to undergo as few tests as
needed. Consequently, there is a trade-off between the costs (and number) of
tests and the accuracy of the diagnosis. Therefore, optimal test selection plays
a key role for diagnosis. The goal of this paper is to find the optimal set of tests
to choose for a patient in a given situation, where the definition of optimality is
also provided in this paper. Existing work on test selection [1,2] mostly addresses
the problem of finding global solutions for all patients. However, it is not likely
that for each patient the same test is the most informative one. Therefore, we
believe that it is a better approach to concentrate on the task of identifying
subgroups of patients for which the optimal test is the same. In this paper, we
present a novel solution to this problem based on subgroup discovery (SD) [3,4],
a family of data mining algorithms. Subgroup discovery methods compute all

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 119–130, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

120 M. Mueller et al.

subgroups of a population that are statistically most interesting with respect to
a specified property of interest. Consider, for instance, a population described
by general demographic attributes and a target variable (property/attribute of
interest) representing a disease status (disease, non-disease). Let us assume a
distribution of 43% disease and 57% non-disease in the entire population. Then,
an SD algorithm might come up with a subgroup identified by two conditions,
age > 75 and gender = female in which the distribution is 85% disease and
15% non-disease. Here, the subgroup description consists of two attribute-value
tests, and it selects a set of persons with a particularly high prevalence of the
disease (85% instead of 43% in the entire population). Standard SD approaches
are designed for a single target variable. However, in the setting of test selection,
a single variable seems not sufficient. In fact, we want to target the relation
between two variables: the outcome of a test and the actual state of disease.
Therefore, the quality of a subgroup should correspond to the value of the result
of a selected test with respect to the actual state of disease, e.g., a biopsy result.
To quantify the value of a test result, we define a so-called prediction quality
function in Section 2.1. The function gives high scores to a pair of a subgroup
and a test if the result is close to the actual state of disease, and therefore leads
to an accurate diagnosis. Since standard SD does not take into account complex
scenarios like this, including benefits or costs of subgroups, we developed a new,
cost-sensitive variant. Throughout the paper, we will use the term prediction
quality, which corresponds to the benefits of a prediction rather than to its costs.
However, as it is easy to transform one into the other, we can also speak of
cost-sensitive subgroup discovery. The algorithm outputs subgroup descriptions
consisting of background information about the patients. The overall goal is
to compute an optimal test selection for a new patient. More precisely, our
proposed solution is to identify subgroups of the data for which the same test is
the optimal selection, to arrive at a correct diagnosis. In a second step, analyzing
the subgroups will help to find out which features determine the performance of
the tests. Hence, it will be possible to decide for a new patient, given its features,
which test is the best to choose. We apply and validate this approach on a data
set from breast cancer diagnosis, where for each patient four different tests are
possible.

2 Background and Data

Our study was conducted in the area of breast cancer diagnosis. In breast
cancer diagnosis, different imaging modalities are used routinely, in particular,
Film Mammography (FMAM), Digital Mammography (DMAM), Ultrasound
(USND), and Magnetic Resonance Imaging (MRI). Each modality has its own
specific characteristics. When a patient is under scrutiny for breast cancer, it
is often not clear which of these modalities is best suited to answer the ba-
sic question to whether the patient has or does not have cancer. The choice of
a modality usually requires considerable experience of the health care workers.
In this paper we show how to support the optimal test selection for a new patient

Subgroup Discovery for Test Selection 121

Table 1. Prediction score for agreement between the overall assessment (OAm =
BIRADS) of a modality m and the biopsy finding BIO

pscr OAm

0 1 2 3 4 5

Malignant 75 0 0 25 100 100
BIO Atypia 75 75 90 90 90 75

Benign 75 100 100 100 75 50

by retrospectively analyzing the performance of the tests on subgroups of previ-
ously examined patients with similar features. The basis of our work is a dataset
collected in a breast cancer study of a large University Hospital, which comprises
patients that had a suspicious finding in a screening. The study gathers patient
specific information like medical history, demographic information, and a breast
cancer risk summary. Each patient in the study underwent all four above men-
tioned modality tests. Each of these tests was independently analyzed by the
appropriate specialist to judge for the occurrence of breast cancer. For each le-
sion detected, the specialist determines in which category it falls. The categories
are called BIRADS score and range from 0 to 5: The higher the BIRADS, the
higher the probability (assessed by the medical expert) for the lesion to be malig-
nant. (0 = incomplete, i.e., needs additional imaging evaluation, 1 = no finding,
2 = benign finding, 3 = probably benign, 4 = suspicious abnormality, 5 = highly
suggestive of malignancy) [5]. To obtain evidence of the initial assessments, a
biopsy has to be performed. A pathologic examination of a biopsy determines
whether the lesion is benign, atypia benign, or malignant. In this study at least
one lesion for each patient is subject to biopsy.

2.1 Definition of Prediction Quality

To quantify the accuracy of a diagnosis, we propose a measure of prediction
quality. Each test m results for each lesion l in an overall assessment OAm(l) of
the physician. This is defined by the BIRADS score (see above). Each lesion has
a biopsy BIO(l) proving the status of the lesion (malignant, benign or atypia
benign). The prediction quality expresses how close the assessment comes to
the biopsy finding. Therefore, we define a prediction score pscr that evaluates
the performance of a test for a single lesion. Table 1 gives the pscr for each
pair (Overall Assessment, Biopsy). The values in the table were proposed by a
domain expert in the field of breast cancer diagnosis.1 The higher the prediction
score, the more accurate is the prediction.

Having defined pscr for a single lesion l, we can easily obtain the prediction
quality pq(S, m) of a modality m for an example set S by averaging over the
prediction scores of m and all lesions in S:
1 However, they are certainly not the only possible values for the prediction score. For

instance, as not all types of malignant findings are equally harmful, it might be more
accurate to distinguish between invasive and non-invasive types of cancer.

122 M. Mueller et al.

pq(S, m) =
1
|S|

∑
l∈S

· pscr(OAm(l), BIO(l))

In our data set we have 138 lesions (of 72 patients) with biopsy and four
modalities (Digital Mammography (DMAM), Film Mammography (FMAM),
Magnet Resonance Imaging (MRI), and Ultrasound (USND)) to choose from.
The prediction quality for the entire dataset separated for each modality is 77.9
for DMAM, 78.0 for FMAM, 78.4 for MRI, and 80.2 for USND. It shows that the
prediction qualities of the different modalities over all lesions are quite similar
(Entropy = 1.999 bits of a maximum 2 bits), with USND performing slightly
better. By considering subgroups of patients we expect to increase the prediction
quality for at least one modality per subgroup. Then, we apply this modality to
all lesions in the subgroup to obtain the most accurate diagnosis.

3 Method

The general idea is to determine subgroups of lesions with an unusual modality
performance. Let X be a training set of observed examples and n the number of
tests {m1, . . . , mn} that can be performed. For each group2 of lesions S ⊆ X we
consider the prediction qualities pq(S, mi) of the possible modalities and decide
for the modality m∗(S) with the highest pq-value3: m∗(S) =argmaxm pq(S, m).
The optimal prediction quality of S is then defined as pq∗(S) = maxm pq(S, m).

We introduce an algorithm called SD4TS (Subgroup Discovery for Test Se-
lection). The task of the algorithm is defined in the following way:

Given: X , n, minsupport, the minimal number of examples that have to be
covered by a subgroup description, t, the number of best subgroups we want to
obtain from the algorithm, and a set of pq-values {pscr(s, mi)|s ∈ X, mi ∈ tests}
(in a more general setting a set of cost/benefit values).

Find: The t subgroups with the highest pq∗ values (best costs/benefit) and at
least minsupport examples.

We base our algorithm on APRIORI-SD [3], an adaptation of the associa-
tion rule learning algorithm APRIORI [6] to subgroup discovery. APRIORI-SD
starts with generating subgroups described by a single attribute-value-pair. Sub-
sequently, it generates subgroups with longer (and thus more specific) descrip-
tions. Subgroups are only kept if they contain more examples than minsupport.
All smaller subgroups are pruned, and no subgroups more specific than these are
generated. For our task, we are interested in the t subgroups that are cost-efficient
for at least one modality. Therefore, we can prune the search space even further,
namely in a way that only the promising subgroups are kept. That means, during
2 As in other SD algorithms we consider only groups that can be described by a

conjunction of attribute-value pairs.
3 In a more general setting, instead of pq we can assume any types of costs (where

max should be replaced by min) or benefits that rate the performance of the tests.

Subgroup Discovery for Test Selection 123

the generation of subgroups, candidates are immediately evaluated and checked
whether they have the potential to lead to improved costs.

3.1 Quality Pruning

Pruning is possible when a subgroup and all specializations of the subgroup will
not outperform the quality of the already discovered subgroups. Specialization
of a subgroup means adding an attribute-value pair to the subgroup description
of a subgroup sg. This can cause changes of both the frequency and the quality.
The frequency can only decrease. The defined quality, however, can change in
both directions.

The critical point is hence to recognize when the quality of subgroup sg can
not outperform at least one of the best t subgroups found so far. Thus, it is
not enough to consider the actual pq(sg) to determine if sg can be pruned.
Furthermore, it is necessary to consider what we call the coreGroup of sg. The
coreGroup is a group consisting of the minsupport examples covered by sg with
the highest quality. The cost of the coreGroup upperbounds the costs of all
possible specializations of sg, because the overall score is defined as an average
of the elements of the group.

The example in Figure 1 demonstrates the discussed characteristics. The seven
dots represent the generated subgroup sg, with pq(sg) = 0.5. Assume we have
generated already a subgroup sgbest with pq(sgbest) = 0.6. In this case, sg has a
worse pq value and seems to be not promising. However, pruning sg will inhibit
finding an optimal subgroup sgnew (the four black dots) contained in sg with
pq(sgnew) = 0.625.

Considering the pq-value of the coreGroup of sg will circumvent this mistake
by providing the upper bound of the pq-values of any specialization of sg: For
the given example, we assume a minsupport of 3. Then pq(coreGroup(sg)) = 1.
Since pq(coreGroup(sg)) > pq(sgbest), sg is not pruned and keeps the option of
generating the improved subgroup sgnew in a later iteration of the algorithm.

3.2 The SD4TS Algorithm

The pseudo-code of the algorithm is shown in Algorithm 1. SD4TS starts
with generating 1-itemset candidates (described by one attribute-value-pair).

pq

1

0.5

0

new

coreGroup(sg)

coreGroup(sg)

Fig. 1. Simple pruning fails. All dots are examples in sg. The black dots are also
covered by sgnew. The y-direction corresponds to the pq-value of each example.

124 M. Mueller et al.

Candidates are pruned if they are not frequent or if they can not outperform
(not even through specialization) one of the the best t subgroups generated so far.
All remaining candidates are stored in optimizableCandidates. The best t sub-
groups are stored in topCandidates. For efficiency, we store all created subgroups
(including the list of transactions that are covered, costs, bestPossibleCosts,
support and a list still2test of 1-itemsets that have not been tested yet to spe-
cialize the subgroup) in an array allSubgroups in the order they were created.
The sorted lists topCandidates and optimizableCandidates contain only point-
ers (the indices of the array) to the subgroups stored in allSubgroups. The list
topCandidates is sorted according to the actual costs of the subgroups. This
facilitates removing the worst subgroup, whenever a newly generated subgroup
has better costs. The list optimizableCandidates is sorted according to the best-
PossibleCosts a coreGroup can achieve. In that way, we explore always the
subgroup with the highest potential first. That means specializing this subgroup

Algorithm 1. SD4TS (subgroup discovery for test selection)
Input: Training set, set of costs, minsupport, number t of best subgroups to be
produced
Output: list of topCandidates, including the proposed test(s) for each candidate
1: optimizableCandidates ={c|c frequent subgroup defined by 1 attribute-value-pair};
2: topCandidates = {c|c belongs to the t best candidates in optimizableCandidates};
3: minpq = worst quality of topCandidates;
4: remove all c from optimizableCandidates with c.bestPossibleCosts < minpq
5: while optimizableCandidates not empty do
6: c1 = optimizableCandidates.removeFirst();//candidate with bestPossibleCosts
7: for all c2 ∈ c1.still2test do
8: remove c2 from c1.still2test
9: cnew = generate new candidates(c1, c2);

10: if cnew frequent and cnew .bestPossibleCosts > minpq then
11: add cnew to optimizableCandidates
12: if cnew better than worst ct of topCandidates then
13: add cnew to topCandidates
14: if size(topCandidates) > t then
15: remove worst c of topCandidates
16: end if
17: minpq = worst quality of topCandidates;
18: remove all c from optimizableCandidates with c.bestPossibleCosts <

minpq
19: end if
20: end if
21: end for
22: end while
23: return topCandidates

Subgroup Discovery for Test Selection 125

is likely to lead to a subgroup that falls into the top t candidates and therefore
raises minpq which reduces the search space.

Safe pruning: A new subgroup candidate sgnew is only accepted if sgnew is
frequent and at least one of the following holds:

1. there are less than t subgroups stored in topCandidates, or
2. sgnew has a better performance than the worst subgroup of topCandidates,

or
3. at least one frequent subset of examples in sgnew (i.e., coreGroup(sgnew))

leads to a better performance than the worst subgroup of topCandidates.
This can be tested in O(n ∗ |sgnew| log |sgnew|): For each test m determine
the set CGm of minsupport examples covered by sgnew that have the best
costs. sgnew.BestPossibleCosts = max

m
pq(CGm, m)

In all cases we add the candidate to optimizableCandidates. In case 1 and 2
we also add the candidate to topCandidates. In the second case we additionally
remove the worst stored subgroup from topCandidates.

3.3 Analysis of Runtime and Search Space

Figure 2 shows how the search space (i.e., the number of search nodes) depends
on the parameters minsupport and t. The higher minsupport, the smaller the
search space. This is caused by the frequency pruning. We also see that a low
t-value results in a small search space, which is the expected effect of quality
pruning. For small values of t fewer subgroups are kept in topCandidates, which
increases the threshold of costs below which subgroups are pruned. The right
diagram in Figure 2 displays the runtime of the two algorithms. For minsupport
values below 25, SD4TS is faster than APRIORI-SD, as frequency pruning is
only effective for larger minsupport values.

5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

16000

minsupport

se

ar
ch

 n
od

es

Aprioiri−SD

t = 1

t = 10

t = 20

t = 100

t = 250

t = 1000

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

minsupport

tim
e

in
 m

s

Aprioiri−SD

t = 1

t = 10

t = 20

t = 100

t = 250

t = 1000

Fig. 2. Complexity of SD4TS. The left (right) diagram shows how the search space
(runtime) depends on minsupport (x-axis) for different t-values. In comparison, the
black solid line shows the search space of APRIORI-SD.

126 M. Mueller et al.

4 Validation and Results

To evaluate the approach, we tested it in a predictive setting4, more specifically,
in a leave-one-out cross-validation. For each test lesion l, we generate only sub-
groups with attribute-value pairs contained in l. Table 2 shows the best t = 5
subgroups for 3 example lesions. From the resulting best t subgroups, we decide
for the test proposed by the majority of the identified subgroups (for test le-
sion 9 it is USND). A test is proposed if it has the best costs averaged over all
examples in the subgroup (for subgroup S1 it is USND). If more than one test
has optimal costs, all of them are proposed (for subgroup S9 it is DMAM and
USND). If more than one test is proposed most often by the subgroups, the cost
for the test lesion l is determined by the mean of their costs.

4.1 Analysis of Performance Compared to Random Selection

For each lesion l, a vector of prediction qualities is given by
−→pq(l) = (pq(l, FMAM), pq(l, DMAM), pq(l, MRI), pq(l, USND)).

This can be interpreted as a ranking of the modalities for each lesion. For
instance, −→pq(l) = (0.8, 0.7, 0.9, 0.8) leads to the ranking MRI > USND =
DMAM > FMAM . We encode this ranking as 1224. There is one modality
ranked first, followed by two modalities ranked second, and one modality ranked
fourth. In total, there are seven possible encodings: from 1111 (all modalities
have the same prediction quality) to 1234 (all modalities have different predic-
tion qualities).

Table 3 shows the distribution of codes of our dataset. It is remarkable that in
29% of the cases all modalities perform equally well. This implies that for those
cases a random choice is as effective as a more informed choice. To have fairer
conditions, we additionally validated the algorithm on two restricted subsets of
test lesions (results are shown in Table 6). Set 1 consists of all 138 lesions. Set 2
is a subset of Set 1 containing only the 98 lesions whose costs are not the same
over all modalities (all codes except 1111). Set 3 comprises 32 lesions, where one
modality outperforms the other modalities (code 1222, 1224, and 1234). Note
that the differences between the best and the worst, and between the best and
the random choice improve significantly from Set 1 to Set 3.

4.2 Results

The results in Table 4 (column Set 1) show that the algorithm achieves in general
better costs than picking a modality at random or picking always the same
modality (compare with Table 3). It also becomes clear that the best results
are achieved with low minsupport and high t values (considering even small
subgroups), or, vice versa, high minsupport (50) and low t values (few large
subgroups).
4 Note that prediction is not our main goal. Additionally, we are interested in the

discovery of new medical knowledge. Therefore, we prefer subgroup discovery over
standard classifiers.

Subgroup Discovery for Test Selection 127

Table 2. Example of best 5 subgroups for 3 selected input test lesions. The shaded
rows indicate the actual prediction scores of the modalities for the current input test
lesion. The bold prediction qualities indicate the image modality proposed by SD4TS.
For example, test lesion 9 will be assessed best by USND (pscr =100), the other three
modalities fail to assess the lesion correctly (pscr = 0).

subgr.
top 5 subgroups for selected test lesions size DMAM FMAM MRI USND

test lesion 9 0 0 0 100
S1 Highschool or less + has past Mammo 17 76.5 76.5 57.4 98.5
S2 Highschool or less + has past Mammo

+ no relatives with cancer 16 75.0 75.0 56.3 98.4
S3 Highschool or less + has past Mammo

+ has past breast USND 14 85.7 78.6 62.5 98.2
S4 Highschool or less + has past Mammo

+ Race = white 14 85.7 78.6 66.1 98.2
S5 age 40-59 + no relatives with cancer

+ pre menopausal + Race=white 28 76.8 72.3 76.8 93.8

test lesion 19 75 100 100 100
S6 Graduate School after college + age 40-59

+ no relatives with cancer + Race=white 14 76.8 75.0 98.2 82.1
S7 Graduate School after college + has no

breast USND + no relatives with cancer 21 94.1 82.1 92.9 96.4
S8 Graduate School after college + has no

breast USND + no relatives with cancer
+ Race = white 19 93.4 80.3 92.1 96.1

S9 Graduate School after college + age 40-59
+ no relatives with cancer + has no
breast USND 18 95.8 81.9 91.7 95.8

S10 Graduate School after college + has no
breast USND+ no relatives with cancer
+ Race = white + age 40-59 16 95.3 79.7 90.6 95.3

test lesion 23 100 100 75 100
S11 no relatives with cancer + age ≥60 14 94.6 87.5 87.5 76.8
S12 Graduated from College

+ post menopausal status 16 78.1 82.8 93.8 70.3
S13 post menopausal status + age ≥ 60 15 93.3 86.7 86.7 76.7
S14 age ≥60 15 93.3 86.7 86.7 76.7
S15 Graduated form College + no relatives

with cancer + post menopausal status 15 76.7 81.7 93.3 70.0

Table 3. Left: Distribution of lesions according to the ranking of modality perfor-
mances. Right side shows the costs that arise for always picking the same modality
(separated in always picking DMAM, always picking FMAM, etc), or for always picking
the modality with the best costs, the worst costs, or picking one modality at random.
The choice of parameters is good, if the costs are greater than the costs for random
selection.

best
modalities # cases code # cases

4 or 0 40 (29%) 1111 40
3 45 (33%) 1114 45 Set 1
2 21 (18%) 1133 16

1134 5 Set 2
1 32 (23%) 1222 27

1224 3 Set 3
1234 2

costs Set 1 Set 2 Set 3
Best 99.45 99.49 99.22
Random 78.6 70.22 40.63
Worst 58.03 41.33 16.41
DMAM 77.92 69.13 30.47
FMAM 78.1 69.39 41.41
MRI 78.28 69.9 44.53
USND 80.11 72.45 46.09

128 M. Mueller et al.

Table 4. Results of leave-one-out cross-validation of SD4TS with varying minsupport
and t parameters over three different test sets (best parameter settings in bold). The
displayed costs are averaged over all test lesions. A cost for a single lesion is derived
by taking the costs of the test proposed by the majority of the returned subgroups. If
two or more tests are proposed equally often, we take the average of their costs.

costs Set 1 Set 2 Set 3
min-s. 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50
1 80.7 82.6 77.8 79.2 81.5 73.1 75.8 69.1 70.9 74.2 45.6 48.4 37.9 42.6 47.3
5 79.5 81.3 76.6 78.2 82.7 71.4 73.9 67.4 70.2 75.9 42.8 42.1 35.6 43.0 51.6
10 82.7 80.7 76.1 79.0 80.1 75.9 73.1 66.6 70.7 72.2 47.3 41.8 37.1 46.9 42.5

t 20 82.6 79.6 77.8 80.4 80.5 75.8 71.5 69.0 72.7 72.8 44.5 42.6 42.6 49.6 47.1
30 82.5 79.3 80.1 79.2 80.5 75.6 71.1 72.2 70.9 72.8 49.6 46.1 49.2 41.4 47.1
100 82.8 80.3 79.7 79.1 80.5 76.0 72.6 71.7 70.8 72.8 51.0 47.7 46.1 41.4 47.1
250 82.2 80.7 79.7 79.1 80.5 75.2 73.1 71.7 70.8 72.8 51.0 47.7 46.1 41.4 47.1

80 82 84 86 88 90 92 94 96 98 100
20

30

40

50

60

70

80

90

100

Threshold of costs

A
ve

ra
ge

 c
os

ts

d)

minsupport = 5
minsupport = 10
minsupport = 14
minsupport = 20
minsupport = 30
minsupport = 50

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 c
os

ts

t

b)

minsupport = 5

minsupport = 10

minsupport = 14

minsupport = 20

minsupport = 30

minsupport = 50

80 82 84 86 88 90 92 94 96 98 100
0

20

40

60

80

100

Threshold of costs

P
er

ce
nt

ag
e

of
 le

si
on

s

c)

minsupport = 5
minsupport = 10
minsupport = 14
minsupport = 20
minsupport = 30
minsupport = 50

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 le

si
on

s

t

a)

minsupport = 5

minsupport = 10

minsupport = 14

minsupport = 20

minsupport = 30

minsupport = 50

Fig. 3. a) Percentage of lesions that are covered by at least one subgroup for different
values of t (x-axis) and minsupport. b) Average costs (prediction quality) of lesions
when choosing the modality proposed by the best subgroup ignoring lesions that are
not covered by any subgroup. c) Percentage of lesions covered by at least one subgroup
with pq above a certain threshold (x-axis). d) Average quality of lesions when choosing
modality proposed by the majority of the (maximal 10) best subgroups above the
threshold. Lesions covered by no subgroup above the threshold are ignored.

We further validate the overall coverage of the lesions by the generated t
subgroups. Figure 3a shows the percentage of lesions that are covered by at
least one subgroup. With an increasing number of generated subgroups t, the
coverage increases and the average quality (Figure 3b) decreases. It also shows
that a higher minsupport induces a higher coverage, even for low values of t.
Also for those cases the quality decreases. Figure 3c shows the behavior of the

Subgroup Discovery for Test Selection 129

proportion of lesions covered by a subgroup when introducing a threshold, which
has to be overcome by the prediction quality of the subgroups. Subgroups with
lower prediction qualities are ignored in this setting. Of course with raising the
threshold the number of uncovered lesions increases. Small minsupport allows
more lesions to be covered. The average quality increases with a higher threshold
for low minsupport and decreases for high minsupport and a higher threshold.
The larger subgroups seem to be not specific enough.

5 Related Work

Test selection has been investigated extensively in the medical and the statistical
literature. Andreassen [1] presents a valid framework for test selection based on
conditional probabilistic networks. However, it does not allow identifying all sub-
groups with optimal costs. Doubilet [2] offers a mathematical approach to test
selection, however, it assumes that prior probabilities can be computed or esti-
mated, which is problematic for small training sets. Furthermore it is not clear
how background knowledge can be incorporated. It proposes only models for
the entire population instead of individual models for smaller subgroups. Other
subgroup discovery algorithms [3,4,7,8,9] mostly focus on finding subgroups that
are interesting or unusual with respect to a single target variable (mostly class
membership; for numerical variables see [7]). In our problem setting we need a
more complex target variable that expresses the relation between the test out-
come and the biopsy. Exceptional Model Mining [10] provides an approach that
is able to discover subgroups with a more complex target concept: a model and
its fitting to a subgroup. It performs a level-wise beam search and explores the
best t subgroups of each level. In contrast, SD4TS does not require the defini-
tion of a model and is guaranteed to find the globally optimal subgroup. While
subgroup discovery usually aims for a descriptive exploration of the entire pop-
ulation, we discover for each patient only subgroups that are supported by the
patients features. Therefore, we do not need a covering heuristic. With the intro-
duction of prediction quality we have a measure that enables quality pruning of
the search space (comparable to optimistic estimate pruning [9]), whereas exist-
ing algorithms quite often only offer pruning according to frequency [3]. While
test selection and subgroup discovery are well-investigated areas of research,
their combination has not yet been considered in the literature.

6 Conclusion

Many questions in medical research are related to the discovery of statistically
interesting subgroups of patients. However, subgroup discovery with a single
target variable is rarely sufficient in practice. Rather, more complex variants,
e.g., handling costs, are required. In this study, we considered such variants of
subgroup discovery in the context of the clinical task of test selection and diag-
nosis: For our breast cancer diagnosis scenario, the task is to detect subgroups
for which single modalities should be given priority over others, as indicated by

130 M. Mueller et al.

a cost function. We designed an algorithm that handles costs and finds the most
cost-efficient subgroups of a population. By limiting the output size to the best
t subgroups, it is possible to prune the search space considerably, especially for
lower values of the minimum frequency (i.e., support) parameter. Consequently,
the proposed algorithm clearly outperforms the baseline algorithm used for com-
parison (APRIORI-SD) in our experiments. The main problems and limitations
in the context of our study were caused by the small sample size (138 examples,
i.e., lesions) and the non-unique solution for optimal test selection. In other
words, for many cases, two or more tests perform equally well in practice. In fu-
ture work we will investigate how to solve our task by applying slightly modified
methods from Section 5. However, we expect this to result in longer runtimes.
Moreover, we are planning to compare the method with a recently poposed
information-theoretic approach of test selection [11]. Overall, we showed that
subgroup discovery can be adapted for test selection. We believe that similar
techniques should be applicable successfully in other areas as well.

References

1. Andreassen, S.: Planning of therapy and tests in causal probabilistic networks.
Artifical Intelligence in Medicine 4, 227–241 (1992)

2. Doubilet, P.: A mathematical approach to interpretation and selection of diagnostic
tests. Medical Decision Making 3, 177–195 (1983)

3. Kavšek, B., Lavrač, N.: APRIORI-SD: Adapting association rule learning to sub-
group discovery. Applied Artificial Intelligence 20(7), 543–583 (2006)

4. Atzmüller, M., Puppe, F.: SD-map – A fast algorithm for exhaustive subgroup
discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)

5. BI-RADS Breast Imaging Reporting and Data System, Breast Imaging Atlas. 4th
edn. American College of Radiology (2003)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of the 20th VLDB Conference, pp. 487–499 (1994)

7. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant, 249–
271 (1996)

8. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-
SD. Journal of Machine Learning Research (2004)

9. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Ko-
morowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997)

10. Leman, D., Feelders, A., Knobbe, A.J.: Exceptional model mining. In: Daelemans,
W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 1–16. Springer, Heidelberg (2008)

11. Mueller, M., Rosales, R., Steck, H., Krishnan, S., Rao, B., Kramer, S.: Data-efficient
information-theoretic test selection. In: Proceedings of the 12th Conference on
Artificial Intelligence in Medicine (AIME 2009), pp. 410–415 (2009)

Trajectory Voting and Classification Based on
Spatiotemporal Similarity in Moving Object

Databases

Costas Panagiotakis1, Nikos Pelekis2, and Ioannis Kopanakis3

1 Dept. of Computer Science, University of Crete, P.O. Box 2208, Greece
cpanag@csd.uoc.gr

2 Dept. of Informatics, University of Piraeus, Greece
npelekis@unipi.gr

3 E-Business Intelligence Lab, Dept. of Marketing, Technological Educational
Institute of Crete, Greece

kopanakis@e-bi.gr

Abstract. We propose a method for trajectory classification based on
trajectory voting in Moving Object Databases (MOD). Trajectory voting
is performed based on local trajectory similarity. This is a relatively new
topic in the spatial and spatiotemporal database literature with a variety
of applications like trajectory summarization, classification, searching
and retrieval. In this work, we have used moving object databases in
space, acquiring spatiotemporal 3-D trajectories, consisting of the 2-D
geographic location and the 1-D time information. Each trajectory is
modelled by sequential 3-D line segments. The global voting method is
applied for each segment of the trajectory, forming a local trajectory
descriptor. By the analysis of this descriptor the representative paths of
the trajectory can be detected, that can be used to visualize a MOD. Our
experimental results verify that the proposed method efficiently classifies
trajectories and their sub-trajectories based on a robust voting method.

1 Introduction

Nowadays, there is a tremendous increase of moving objects databases due to
location-acquisition technologies like GPS and GSM networks [1], and to com-
puter vision based tracking techniques [2]. This explosion of information combines
an increasing interest in the area of trajectory data mining and more generally
the knowledge discovery from movement-aware data [3]. All these technological
achievements require new services, software methods and tools for understand-
ing, searching, retrieving and browsing spatiotemporal trajectories content.

A MOD consists of spatiotemporal trajectories of moving objects (e.g. hu-
mans, vehicles, animals, etc.). In general case, these trajectories encode the 2-D
(two dimensional) or 3-D geographic location and the 1-D time information.
Many of the existing approaches are interested in the trajectory shape analysis
considering that the trajectory consists of sequential 2-D or 3-D spatial sampling
positions ignoring the temporal dimension [4], [5]. In [6], a trajectory clustering

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 131–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

132 C. Panagiotakis, N. Pelekis, and I. Kopanakis

algorithm is proposed that partitions a 2-D trajectory into a set of line seg-
ments, and then, groups similar line segments together into a cluster, while the
notion of the representative trajectory of a cluster is defined. The algorithm is
based on geometrical distances between line segments taking into account posi-
tion and orientation. These methods can be applied on trajectory segmentation,
classifications, searching and retrieval problems using shape based descriptors.
Based on the idea of partial trajectories, Lee et al. [7] proposed an algorithm
for trajectory classification showing that it is necessary and important to mine
interesting knowledge on partial trajectories rather than on the whole. However,
both of these algorithms cannot be applied with complex time-aware trajectories
considering the whole route of the moving objects.

In addition, temporal dimension is ignored by almost all computer vision based
methods, that are interested in human action and activity recognition. Many of
them use 2-D trajectories from specific human points that are tracked in video
sequences with constant frame rate [8], [9]. Another class of methods use tempo-
rally annotated sequences [10], [1], performing mining tasks. In these methods,
as temporal dimension is used the transition time between sequentially points
of the trajectory. Therefore, a trajectory of n + 1 points S = (s0, s1, ..., sn), is
stored as T = (S, Δt1, Δt2, ..., Δtn), where Δti, denotes the transition time be-
tween the points si−1 and si. The use of transition time takes into account that
the sampling rate could be varied, providing information about speed. However,
the format in temporal dimension changes and important information for some
real world applications is missing. In real world, there are applications where the
temporal dimension should be used unchanged. These applications concern traf-
fic monitoring, security applications (e.g. identifying “illegal” trajectories under
shape and space-time requirements), searching using space-time constraints, and
so on.

In [11], distance-based criteria have been proposed for segmentation of ob-
ject trajectories using spatiotemporal information. First, Minimum Bounding
Rectangles (MBRs) is used in order to simplify the trajectories, taking advan-
tage their tight integration with existing multidimensional indexes in commer-
cial database management systems (such as R-trees). The use of R-trees reduces
the computation cost of trajectory searching to O(log(n)), where n denotes the
number of trajectories. The distance between two trajectories is defined used
MBRs representation. Finally, the segmentation problem is given as a solution
of a maximization problem, that attempts to create MBRs in such a way, that
the original pairwise distances between all trajectories are minimized. In [12],
a framework consisting of a set of distance operators based on primitive (space
and time) as well as derived parameters of trajectories (speed and direction)
has been introduced. They assume linear interpolation between sampled loca-
tions, so that a trajectory consists of a sequence of 3-D line segments, where
each line segment represents the continuous development of the moving object
during sampled locations. In [13], representative motion paths (frequently trav-
eled trails of numerous moving objects) are detected in a distributed system
under the assumption that the moving objects can communicate with a central

Trajectory Voting and Classification Based on Spatiotemporal Similarity 133

unit (coordinator) and all processing must be performed in a single pass over
the stream. The location measurements of each object is modeled with some
uncertainty tolerance ε and a one-pass greedy algorithm, termed RayTrace, is
running on each object independently. They have proposed a one-pass greedy
algorithm, termed RayTrace, running on each object independently. The coor-
dinator utilizes a lightweight index structure, termed MotionPath, which stores
the representative motion paths. The goal of this work is in the same context
with the aim of our research. However, they ignore segments’ orientation taking
into account only the points of the trajectories. Moreover, they propose to the
use of a step function to formulate the closeness of two points. On the other hand
the use of a continuous decision function derived robust and smooth results (in
our approach).

Most of the above mentioned approaches propose different similarity metrics
which they utilize either for introducing indexing structures for vast trajectory
retrieval, or for clustering purposes, focusing either on space criteria, ignoring
temporal variation, minimizing predefined metric criteria on feature domain,
simplifying the given trajectories or applying simple clustering-based techniques.
We argue that all of the above approaches, as well as those which are dealing
with vast volumes of trajectory datasets would benefit if they would be applied
in a representative subset (consisting of the representative trajectories) that best
describes the whole dataset. Consider for example the domain of visual analytics
on movement data [14] in which it is meaningless to visualize datasets over a
certain small size, as the human eye cannot distinguish any movement pattern
due to the immense size of the data. On the contrary, in this paper, we don’t
simplify the given trajectories, as we use the original data unchanged. Moreover,
the temporal information is taken into account.

We are proposing a global voting method that is applied for each segment of
trajectory without any simplification. Then, we analyze the voting descriptor in
order to detect the representative paths of the trajectory, that followed by many
objects at almost the same time and space. Moreover, we classify the trajectories
and the trajectory segments. The results of classification have been used to
visualize a MOD. The proposed methodology can be applied under different
distance metrics (e.g. non Euclidean) and higher trajectory dimensions.

The rest of the paper is organized as follows: Section 2 gives the problem
formulation describing the proposed modelling. Section 3 presents the proposed
method for trajectory voting and classification. The experimental results are
given in Section 4. Finally, conclusions and discussion are provided in Section 5.

2 Problem Formulation

In this section the problem formulation is given. Let us assume a MOD D =
{T1, T2, · · · , Tn}, of n trajectories, where Tk denotes the k-trajectory of the
dataset, k ∈ {1, 2, ..., n}. We assume that the objects are moving in the xy plane.
Let pk(i) = (xk(i), yk(i), tk(i)), be the i-point, i ∈ {1, 2, ..., Lk} of k-trajectory,
where Lk denotes the number of points of k-trajectory. xk(i), yk(i) and tk(i))
denote the 2-D location and the time coordinate of point pk(i), respectively.

134 C. Panagiotakis, N. Pelekis, and I. Kopanakis

Similar to the work of [12], [6], we consider linear interpolation between suc-
cessive sampled points pk(i), pk(i + 1), so that each trajectory consists of a
sequence of 3-D line segments ek(i) = pk(i)pk(i + 1), where each line segment
represents the continuous moving of the object during sampled points. The goal
of this work is to detect representative paths1 and trajectories, that followed
by many objects at almost the same time and space. A method to detect them
is to apply a voting process for each segment ek(i) of the given trajectory Tk.
This means that ek(i) will be voted by the trajectories of MOD, according to
the distance of ek(i) to each trajectory. The sum of these votes is related to the
number of trajectories that are close to ek(i). If this number is high, means that
the segments is representative, followed by many objects at almost the same
time and space. Thus, the voting results will be used to detect the representa-
tive paths and trajectories. First, we have to determine the distance d(ek(i), Tm)
between ek(i) and a trajectory Tm of the dataset that consists of line segments.
d(ek(i), Tm) is defined as the distance between ek(i) and the closest line segment
of Tm to ek(i):

d(ek(i), Tm) = minjd(ek(i), em(j)) (1)

So, we have to compute distances between 3-D line segments (d(ek(i), em(j))). In
this framework, the meaning of (d(ek(i), em(j))) is equal to the minimum energy
of transportation of line segment ek(i) to em(j), or line segment em(j) to ek(i).
Between these two choices, the transportation of minimum energy is selected.
This idea has been introduced on Earth Movers Distance (EMD) framework
[15] and it has been successfully applied on pattern recognition and computer
vision applications [16]. In our case, this energy can be defined by the sum of
two energies:

– translation energy d⊥(ek(i), em(j)) and
– rotation energy d∠(ek(i), em(j)),

that depend on the Euclidean distance and on angle between the line segments,
respectively. Therefore, taking into account the orientation of line segments, we
have added an expression d∠(ek(i), em(j)) to the distance formula related to the
angle θ between the line segments,

d(ek(i), em(j)) = d⊥(ek(i), em(j)) + d∠(ek(i), em(j)) (2)
d∠(ek(i), em(j)) = min(|ek(i)|, |em(j)|) · sin(θ) (3)

where d⊥(ek(i), em(j)) denotes the Euclidean distance between the 3-D line seg-
ments and |ek(i)| the Euclidean norm (length) of 3-D line segment ek(i). In
order to minimize the energy according to EMD definition, we select to rotate
the line segment of minimum length, see Equation 3. Moreover, d∠(ek(i), em(j))
has been expressed in “Euclidean distance” units, measuring the maximum dis-
tance that a point of line segment of minimum length will cover during rotation.
If d∠(ek(i), em(j)) was expressed in rads, we should introduce a weight to make
d⊥(ek(i), em(j)) and d∠(ek(i), em(j)) comparable (similar with Equation 4).
1 In this framework, “path” is used for a trajectory part.

Trajectory Voting and Classification Based on Spatiotemporal Similarity 135

y

t

O

p
k
(i)x

p*

s*

p
m
(j+1)

p
m
(j)

p
k
(i+1)

Fig. 1. The (closest) points p* and s* of 3-D line segments pk(i)pk(i + 1) and
pm(j)pm(j + 1) define their distance

Fig. 1 illustrates the Euclidean distance (red dotted line) between the 3-D line
segments pk(i)pk(i + 1) and pm(j)pm(j + 1).

The distance d(ek(i), em(j)) cannot be expressed by a single formula, but it
can be estimated in O(1) [17]. This computation cost is not affected by the
d∠(ek(i), em(j)), since it a constant value for (each pair of points of the) two
line segments. In order to estimate the Euclidean distance d⊥(p, s) between two
points p = (x, y, t) and p′ = (x′, y′, t′), weights (w1, w2) can be used (Equation
4), making comparable location and time differences.

d⊥(p, p′) =
√

w1 · (x− x′)2 + w1 · (y − y′)2 + w2 · (t− t′)2 (4)

The weights can be defined by the user. The ratio w2
w1

determines the spatial dif-
ference (e.g. how many meters) that “is equivalent” with one unit time difference
(e.g. one second). This ratio can be estimated my the mean speed.

3 Global Voting and Classification

3.1 Voting Method

This section describes the proposed algorithm, the Global Voting Algorithm
(GVA). The input of the algorithm is a MOD D = {T1, T2, · · · , Tn}, a trajectory
Tk ∈ D and an intrinsic parameter σ of the method. The output of the method
is the vector Vk of Lk − 1 components that can be considered as a trajectory
descriptor along the Tk line segments. Each component of the vector Vk(i) corre-
sponds to the number of votes (representativeness) of ek(i), i ∈ {1, 2, ..., Lk − 1}
of Tk.

According to the problem formulation, the algorithm for each line segment
ek(i) of Tk and Tm ∈ D, m �= k computes the distance d(ek(i), Tm). This dis-
tance will be used to define the voting function V (ek(i), Tm). In literature, a lot
of voting functions have been proposed, like the step functions or continuous

136 C. Panagiotakis, N. Pelekis, and I. Kopanakis

functions [18]. In this work, we have selected to use the continuous function of
gaussian kernel getting,

V (ek(i), Tm) = e−
d2(ek(i),Tm)

2·σ2 (5)

The gaussian kernel is widely used in a variety of applications of pattern recog-
nition [19]. The control parameter σ shows how fast the function (“voting in-
fluence”) decreases with distance. According to Equation 5, it holds that 0 ≤
V (ek(i), Tm) ≤ 1. If d(ek(i), Tm) is close to zero, the voting function gets its
maximum value, giving 1.0. This means, that there exists a line segment of Tm

that is being very close (in time and space) to ek(i). Otherwise, if d(ek(i), Tm)
is high, e.g. greater than 5 · σ, the voting function gets almost 0, meaning that
Tm is very far away (in time or space) from ek(i).

The use of a continuous voting function, like the gaussian kernel, gives smooth
results for small changes on parameters (σ), and the possibility to get deci-
mal values as results of voting process increasing the robustness of the method.
Finally, Vk(i) is estimated by getting the sum of votes for all of trajectories
Tm ∈ D, m �= k. Given the above discussion, a nice property that holds is that
the proposed local trajectory descriptor Vk changes continuously over the tra-
jectory segments. The pseudo-code of the above procedure is depicted at the
end of the section (see Algorithm 1). The next subsection discusses the using of
local trajectory descriptor Vk to classify trajectories and to detect representative
paths.

input : The moving objects database D = {T1, T2, · · · , Tn} and a
trajectory Tk ∈ D, parameter σ for voting.

output: The voting vector of Tk, Vk.

for i = 1 to Lk − 1 do
Vk(i) = 0
for m = 1 to n do

if m �= k then

Vk(i) = Vk(i) + e
−d2(ek(i),Tm)

2·σ2

end

end

end

Algorithm 1. Global Voting Algorithm (GVA)

3.2 Trajectory Classification

In this section, we describe the analysis of local trajectory descriptor Vk in order
to detect the representative paths of the trajectory and to classify the trajec-
tories. Representative paths or representative trajectories are followed by many
objects at almost the same time and space. In order to identify the representa-
tive trajectories, we will introduce Ek that is defined by the mean value of Vk

over the line segments of Tk.

Trajectory Voting and Classification Based on Spatiotemporal Similarity 137

Ek =
1

Lk − 1

Lk−1∑
i=1

Vk(i) (6)

This value is a measurement of trajectory representativeness. Therefore, a clas-
sification of the trajectories can be done using this value. Another trajectory
feature is the maximum value of Vk, Mk = maxiVk(i). By the analysis of Mk,
the representative line segments can be detected.

The trajectory classification results can be used for an efficient visualization
and sampling of large datasets. The visualization of a large MOD suffers from
the problem that the space-time density of the trajectories is extremely high
(see Fig. 2(b)). A solution on this problem is given by an efficient sampling of
the MOD, that can be provided by the classification results, using the detected
representative trajectories (see Fig. 2(c)). In Section 4, we present experimental
results concerning trajectory classification and visualization. The next subsection
discusses the computational complexity issues of the proposed algorithm.

3.3 Computational Complexity Issues

Concerning the Global Voting Algorithm (GVA) complexity, the computational
cost for each line segment ek(i), of Tk is O(n). The computation cost of GVA
(estimation of Vk) is O(Lk · n). If we perform GVA for each trajectory of the
database, then the total computation cost is O(L̄ · n2), where L̄ denotes the
mean number trajectory points (samples). Therefore the polynomial cost of the
algorithm makes the algorithm efficient for large databases (i.e. more than 1000
trajectories needed few seconds).

However, it is possible to reduce this computation cost, in order to be able to
execute the algorithm in even larger databases. MBRs can be used as initializa-
tion step, and the indexing of the line segments to MBRs should be stored. We
have proposed the using MBRs because of their tight integration with multidi-
mensional indexes (R-trees). Then, the cost of searching step of voting algorithm
will be reduced in an MBR (or some MBRs). Thus, the use of R-trees will reduce
the cost of GVA execution to O(log(L̄ ·n)), and the total cost to O(n · log(L̄ ·n)).

4 Experimental Results

The method has been implemented using Matlab without any code optimization
or using of R-trees structures. For our experiments, we used a Core 2 duo CPU
at 1.5 GHz. A typical processing time of GVA execution, when n = 1000 and
L̄ = 100, is about 3 seconds.

We have tested the proposed algorithm on the ’Athens trucks’ MOD contain-
ing 1100 trajectories. The dataset is available online on [20]. In most of the figures
we have depicted a subset (10% or 20%) of the trajectories of our dataset, due to
visualization issues. Fig. 2 illustrates the trajectories of our dataset projected in
2-D spatial space ignoring time dimension (Fig. 2(a)) and in spatiotemporal 3-D

138 C. Panagiotakis, N. Pelekis, and I. Kopanakis

(a) (b)

4.75 4.8 4.85 4.9 4.95 5

x 10
5

4.18

4.19

4.2

4.21

4.22

4.23
x 10

6

x (m)

y
(m

)

4.75
4.8

4.85
4.9

4.95
5

x 10
5

4.18

4.19

4.2

4.21

4.22

4.23

x 10
6

8.35

8.4

8.45

x 10
7

x (m)
y (m)

t (
se

c)

(c)

4.75 4.8 4.85 4.9 4.95 5

x 10
5

4.18

4.19

4.2

4.21

4.22

4.23
x 10

6

x (m)

y
(m

)

4.7

4.8

4.9

5

x 10
5

4.18

4.2

4.22

4.24

x 10
6

8.35

8.4

8.45

x 10
7

x (m)y (m)

t (
se

c)

(d)

Fig. 2. The trajectories of our dataset (1100 traj.) projected in (a) 2-D spatial space
ignoring time dimension and (b) spatiotemporal 3-D space. (c), (d) The 20 and 50
most representative trajectories of the dataset projected in 2-D spatial space (up) and
in 3-D spatiotemporal space (down), respectively.

space (Fig. 2(b)). The provided information of Figs. 2(a) and 2(b) can not be
visualized efficiently, due to the large number of projected trajectories in almost
the same time and space. In order to solve this problem, we have used the results
of classification to sample the dataset. Figs. 2(c) and 2(d) illustrate an efficient
sampling/visualazation of the dataset using the 20 and 50 most representative
trajectories according to Ek criterion, respectively. According to the proposed
method, the estimated representative trajectories have the property to be close
to many other trajectories of the dataset and can be used efficiently to visualize

Trajectory Voting and Classification Based on Spatiotemporal Similarity 139

4.7 4.75 4.8 4.85 4.9 4.95 5 5.05

x 10
5

4.185

4.19

4.195

4.2

4.205

4.21

4.215

4.22

4.225

4.23

4.235
x 10

6

B

x (m)

A

y
(m

)

(a)

0 50 100 150 200 250 300
0

1

2

3

4

5

6
Voting

i (line segments)

V
21

9(i)

(b)

4.82
4.84

4.86
4.88

4.9

x 10
5

4.2

4.21

4.22

4.23

x 10
6

8.4265

8.427

8.4275

8.428

8.4285

x 10
7

B

x (m)

A

y (m)

tim
e

(s
ec

)

0

1

2

3

4

5

6

(c)

Fig. 3. Results of GVA for 219th trajectory of the dataset. (a) The 219th trajectory
(bold black color) and some trajectories of our dataset projected in 2-D spatial space.
(b) The voting descriptor V219. (c) The 219th trajectory in 3-D space. The used colors
correspond to the values of V219, (red color for high values, blue color for low values).

4.7 4.75 4.8 4.85 4.9 4.95 5 5.05

x 10
5

4.185

4.19

4.195

4.2

4.205

4.21

4.215

4.22

4.225

4.23

4.235
x 10

6

AB

x (m)

y
(m

)

(a)

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8
Voting

i (line segments)

V
25

3(i)

(b)

4.84
4.86

4.88
4.9

4.92
4.94

x 10
5

4.2
4.202

4.204
4.206

4.208
4.21

x 10
6

8.4118

8.412

8.4122

8.4124

8.4126

8.4128

8.413

x 10
7

x (m)

A

B

y (m)

tim
e

(s
ec

)

0

1

2

3

4

5

6

7

(c)

Fig. 4. Results of GVA for 253th trajectory of the dataset. (a) The 253th trajectory
(bold black color) and some trajectories of our dataset projected in 2-D spatial space.
(b) The voting descriptor V253. (c) The 253th trajectory in 3-D space. The used colors
correspond to the values of V253, (red color for high values, blue color for low values).

them. In our framework we have used the weights w1 = 1/1000, w2 = 1/30 (see
Equation 4) and σ = 2.5 (see Equation 5).

Figs. 3 and 4 show the results of GVA for the trajectories 219 and 253 of
the dataset, respectively. Figs. 3(a) and 4(a) show with bold black color the
trajectories 219 and 253 and some of the trajectories of the dataset projected in 2-
D spatial space. The estimated voting descriptors V219 and V253 are illustrated in
Figs. 3(b) and 4(b). As it was mentioned before, the estimated voting descriptors
change continuously over the trajectory segments. Figs. 3(c) and 4(c) illustrate
the trajectories 219 and 253 in 3-D using a blue-to-red color map according to
the corresponding to segments voting values (red color for high values, blue color
for low values). By the analysis of these figures, it can be observed that the most
representative paths of the trajectory 219 are found at the middle and at the
end of the trajectory, while the most representative path of the trajectory 253 is
found at the start of the trajectory. Moreover, the maximum values of V219 and
V253 descriptors shows how many trajectories are close to the most representative
paths of 219 and 253 trajectories, respectively.

Fig. 5(a) illustrates the classification results for 220 trajectories of our dataset
projected in 2-D spatial space using Ek descriptor. The used colors correspond

140 C. Panagiotakis, N. Pelekis, and I. Kopanakis

4.7 4.75 4.8 4.85 4.9 4.95 5 5.05

x 10
5

4.185

4.19

4.195

4.2

4.205

4.21

4.215

4.22

4.225

4.23

4.235
x 10

6

x (m)

y
(m

)

0

1

2

3

4

5

6

7

(a)

4.7 4.75 4.8 4.85 4.9 4.95 5 5.05

x 10
5

4.185

4.19

4.195

4.2

4.205

4.21

4.215

4.22

4.225

4.23

4.235
x 10

6

x (m)

y
(m

)

0

5

10

15

20

25

30

(b)

4.7 4.75 4.8 4.85 4.9 4.95 5 5.05

x 10
5

4.185

4.19

4.195

4.2

4.205

4.21

4.215

4.22

4.225

4.23

4.235
x 10

6

x (m)

y
(m

)

0

1

2

3

4

5

6

7

8

9

10

(c)

Fig. 5. Classification results for 220 trajectories of our dataset projected in 2-D spatial
space using (a) Ek descriptor (b) using Mk descriptor, respectively. The used colors
correspond to the class of the trajectory (red color for representative trajectories). (c)
Classification results for trajectories line segments.

to the class of the trajectory (red color for representative trajectories). The most
representative trajectory of the dataset is illustrated with red bold line. Similar
results are obtained using Mk descriptor (see Fig. 5(b)). The most representative
trajectories of the dataset are detected close to the center of the dataset, where
most of the trajectories are crossed. Fig. 5(c) illustrates the classification results
for trajectories line segments of 110 trajectories of the dataset projected in 2-D
spatial space. The line segments with Vk(i) greater than 10 are illustrated with
red colors. The voting descriptor of the most representative line segment of the
dataset has the value of 67.4. These figures are very useful for traffic monitoring,
since they efficiently the trajectories and the segments, where the traffic is high.

5 Conclusions

In this paper, we have discussed the trajectory voting and classification prob-
lems in real spatiotemporal MOD. We have proposed an algorithm for trajectory
voting and classification based on local trajectory similarity. Finally, a local tra-
jectory descriptor per trajectory segment is estimated, that changes continuously
over the trajectory segments. By the analysis of this descriptor the representa-
tive paths of the trajectory can be detected, that followed by many objects at
almost the same time and at the same place. These results have been used to
visualize a MOD. We have tested the proposed method under real databases and

Trajectory Voting and Classification Based on Spatiotemporal Similarity 141

the experimental results shows that the method provides an efficient local (per
segment) and global (per trajectory) classification of the dataset.

As future work, we plan to apply the voting results for trajectory segmenta-
tion, sampling, searching and retrieval. Segmentation and clustering algorithms
can be applied on trajectory descriptor Vk providing a trajectory segmentation
and a clustering of the dataset. Moreover, we plan to associate the voting results
with an error function in order to measure the performance of the proposed
sampling and to make comparisons with other works.

References

1. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
KDD 2007: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 330–339 (2007)

2. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pat-
tern Recognition 36(3), 585–601 (2003)

3. Giannotti, F., Pedreschi, D.: Geography, mobility, and privacy: a knowledge dis-
covery vision. Springer, Heidelberg (2007)

4. Vlachos, M., Gunopulos, D., Das, G.: Rotation invariant distance measures for
trajectories. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 707–712 (2004)

5. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: SIGMOD 2005: Proc. of the 2005 ACM SIGMOD int. conf. on
Management of data, pp. 491–502 (2005)

6. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group
framework. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, pp. 593–604 (2007)

7. Lee, J.G., Han, J., Li, X., Gonzalez, H.: Traclass: trajectory classification using
hierarchical region-based and trajectory-based clustering. In: PVLDB

8. Panagiotakis, C., Ramasso, E., Tziritas, G., Rombaut, M., Pellerin, D.: Shape-
based individual/group detection for sport videos categorization. IJPRAI 22(6),
1187–1213 (2008)

9. Panagiotakis, C., Ramasso, E., Tziritas, G., Rombaut, M., Pellerin, D.: Shape-
motion based athlete tracking for multilevel action recognition. In: Perales, F.J.,
Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 385–394. Springer, Heidel-
berg (2006)

10. Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of sequences with tempo-
ral annotations. In: Proc. SIAM Conference on Data Mining, pp. 346–357 (2006)

11. Anagnostopoulos, A., Vlachos, M., Hadjieleftheriou, M., Keogh, E., Yu, P.S.:
Global distance-based segmentation of trajectories. In: KDD 2006: Proc. of the
12th ACM SIGKDD int. conf. on Knowledge discovery and data mining, pp. 34–43
(2006)

12. Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G., Theodoridis,
Y.: Similarity search in trajectory databases. In: TIME 2007: Proc. of the 14th Int.
Symposium on Temporal Representation and Reasoning, pp. 129–140 (2007)

13. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Moura-
tidis, K., Sellis, T.: On-line discovery of hot motion paths. In: EDBT 2008: Proc.
of the 11th int. conf. on Extending database technology, pp. 392–403 (2008)

142 C. Panagiotakis, N. Pelekis, and I. Kopanakis

14. Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of
movement data. SIGKDD Explor. Newsl. 9(2), 38–46 (2007)

15. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications
to image databases. In: ICCV 1998: Proceedings of the Sixth International Con-
ference on Computer Vision (1998)

16. Shishibori, M., Tsuge, S., Le, Z., Sasaki, M., Uemura, Y., Kita, K.: A fast retrieval
algorithm for the earth mover’s distance using emd lower bounds. In: IRI, pp.
445–450 (2008)

17. Lumelsky, V.J.: On fast computation of distance between line segments 21, 55–61
(1985)

18. Patterson, D.: Artificial Neural Networks. Prentice-Hall, Englewood Cliffs (1996)
19. Yuan, J., Bo, L., Wang, K., Yu, T.: Adaptive spherical gaussian kernel in sparse

bayesian learning framework for nonlinear regression. Expert Syst. Appl. 36(2),
3982–3989 (2009)

20. http://infolab.cs.unipi.gr/pubs/tkde2009/

http://infolab.cs.unipi.gr/pubs/tkde2009/

Leveraging Call Center Logs for Customer
Behavior Prediction

Anju G. Parvathy, Bintu G. Vasudevan, Abhishek Kumar,
and Rajesh Balakrishnan

Software Engineering Technology Labs
Infosys Technologies Limited

Bangalore 560100
{anjug parvathy,bintu vasudevan,abhishek kumar25,rajeshb}@infosys.com

Abstract. Most major businesses use business process outsourcing for
performing a process or a part of a process including financial services
like mortgage processing, loan origination, finance and accounting and
transaction processing. Call centers are used for the purpose of receiving
and transmitting a large volume of requests through outbound and in-
bound calls to customers on behalf of a business. In this paper we deal
specifically with the call centers notes from banks. Banks as financial
institutions provide loans to non-financial businesses and individuals.
Their call centers act as the nuclei of their client service operations and
log the transactions between the customer and the bank. This crucial
conversation or information can be exploited for predicting a customer’s
behavior which will in turn help these businesses to decide on the next
action to be taken. Thus the banks save considerable time and effort in
tracking delinquent customers to ensure minimum subsequent defaulters.
Majority of the time the call center notes are very concise and brief and
often the notes are misspelled and use many domain specific acronyms.
In this paper we introduce a novel domain specific spelling correction
algorithm which corrects the misspelled words in the call center logs to
meaningful ones. We also discuss a procedure that builds the behavioral
history sequences for the customers by categorizing the logs into one
of the predefined behavioral states. We then describe a pattern based
predictive algorithm that uses temporal behavioral patterns mined from
these sequences to predict the customer’s next behavioral state.

1 Introduction

Business Process Outsourcing (BPO) is a form of outsourcing which involves the
contracting of the operations and responsibilities of a specific business function to
a third-party service provider. Some businesses service internal functions through
their own call centers to optimize their business activity. Call centers are used
for the purpose of receiving and transmitting a large volume of requests through
outbound and inbound calls to customers on behalf of a business or for a client
to interact with their customers.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 143–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 A.G. Parvathy et al.

A bank’s call center acts as the nuclei of its client service operations and
maintains logs of all customer transactions. This is later used by the bank to
follow up the customers who have availed loans. This inturn enhances efficiency
and helps the bank maintain better customer relations. In this paper we deal
specifically with the call center notes from banks. We propose a technique to
build a customer’s behavioral history from these notes in order to predict the
next behavioral state he is likely to exhibit. This proves beneficial to the bank
as delinquent customers can easily be identified and appropriate action can be
initiated.

The call center logs for a particular customer are first aggregated on a monthly
basis. Then they are spell corrected using a domain specific spelling correction
algorithm. An n-gram keywords based categorizer then categorizes the comments
into one of the predefined behavioral states identified by a domain expert. The
chain of behavioral categories across months constitute the Behavioral History
Sequence (BHS) of a customer. Next we build the global and local behavioral
pattern histories by mining behavioral patterns from the BHSs of different cus-
tomers and the particular customer, respectively. We have developed a pattern
based predictive algorithm which predicts a customer’s behavioral state for the
next month from his most recent behavioral pattern window, using the patterns
mined.

The paper is organized as follows. In Sec.2 we examine related works. In
Sec.3 we explain the methodology we have adopted. In Sec.4, we present our
spelling correction algorithm. Sec.5 elaborates the procedure we use to build a
customer’s BHS and the categorization algorithm. Sec.6 describes the pattern
based predictive algorithm from BHS wherein the deductive and non deductive
modes are discussed in detail. In Sec.7 we discuss the results and in Sec.8 we
bring in our conclusions.

2 Related Works

In the past various statistical techniques have been proposed for spelling cor-
rection. The edit distance method [1] devised by Levenshtein is a widely used
metric for measuring syntactic string similarity. A variant of this is Damerau -
Levenshtein distance [2] which measures the similarity between two strings by
counting the minimum number of operations needed to transform one string into
the other, where an operation is defined as an insertion, deletion, or substitution
of a single character, or a transposition of two characters. The word in the dic-
tionary that has the minimum edit distance with respect to the misspelled word
is then chosen as the correction. Phonetic techniques like soundex [3] and double
metaphone [4] generate codes for a given word and the word(s) with which the er-
roneous word shares the code, can be chosen as an appropriate correction. Some
innovative methods for automatic spelling correction using trigrams [5] and for
spelling correction in scientific and scholarly domain [6] have also been explored.
A systematic approach to constructing a spelling corrector is detailed in [7].
Most of the approaches listed above are suitable for generic spelling correction

Leveraging Call Center Logs for Customer Behavior Prediction 145

involving human validation. Our domain specific spelling correction algorithm is
designed to make spelling corrections automatically prior to categorization.

Techniques for customer behavior prediction using the transaction history se-
quence built from events have been presented by a number of researchers. One
such method with application to detecting system failures in computer networks,
has been proposed for predicting rare events in event sequences in [8]. In [9], a
genetic algorithm based approach is used for predicting rare events. This is an-
other rule-based method that defines predictive patterns, as sequences of events
with temporal constraints between connected events. The rules for classification
are constructed from the diverse set of predictive patterns identified. Another
method, reported in [10], learns multiple sequence generation rules, like disjunc-
tive normal form model, periodic rule model, etc., to infer properties (in the form
of rules) about future events in the sequence. Frequent episode discovery [11][12]
is a popular framework for mining temporal patterns in event streams. Sequence
prediction based on categorical event streams and an algorithm for predicting
target events based on estimating a generative model for event sequences in the
form of a mixture of specialized hidden markov models has been presented in
[13]. The algorithm for predicting a customer’s behavioral state that we present
is predominantly rule-based.

3 Methodology

Figure 1 shows the process flow for customer behavior prediction. The call logs
that are sequential in nature by virtue of their timestamps are aggregated on
a monthly basis for every customer.Then they are spell corrected using a do-
main specific algorithm that corrects the misspelled words in the logs to the
most matching word in the domain dictionary (which consists of keywords that
drive the categorizer). A customer’s monthly interaction call comment is subse-
quently categorized into one of the eight predefined categories (Paid, Coopera-
tive Compliance, Not Paid, Defaulter, Negotiation Failed, Fraud, Other and Not
Available) using an n-gram keyword based categorizer. We then construct the
BHS for a customer by episodically arranging the behavioral categories identi-
fied for the different months. Then we build a global behavioral pattern history
by mining behavioral patterns from the BHSs of different customers. Each such

Fig. 1. Methodology

146 A.G. Parvathy et al.

pattern is further described by its length, frequency, temporal information and
the list of customers whose BHS contained them.

The local behavioral pattern history for a given customer is build by mining
only his BHS for behavioral patterns. Our pattern based predictive algorithm
then predicts a customer’s behavioral state for the forthcoming month using his
most recent behavioral pattern window.

4 Spelling Correction

In this section we introduce our domain specific spelling correction algorithm
used to correct the call center logs. We also present a comparative analysis of
our approach against other approaches like soundex and double metaphone (both
of which are phonetic spelling correction algorithms) and the algorithm based on
levenshtein distance (LD). The Domain Specific Acronym list (DSA), Domain
Dictionary (DD), the English Dictionary (ED) and threshold parameters can
be configured. The DD is built by a domain expert and consists of all keywords
used for categorization. Correcting the misspelled words in the logs is a critical
prerequisite for categorization as the categorizer is essentially keyword based. For
example, if ‘payments received’ is a phrase in the category ‘Cooperative’ and the
comment contained the phrase ‘pymts rcvd’; it is obvious that the customer was
cooperative during the audit. However without spelling correction, the comment
would not be correctly classified.

4.1 Spelling Correction - Our Approach

Every word or token is searched for in the ED using a tree based algorithm.
If the token is found in the dictionary, it is retained in the comment; else the
algorithm flags it as a misspelled word. Next, the word is checked against the
seed DSA that contains acronyms like ‘PFP ’ (‘Promise for payment’). If no
correction exists, the algorithm proceeds to the next step which is construction
of positional patterns with priority. For example, the positional patterns for the
misspelled word ‘cust’ in decreasing order of priority are ‘cust’, ‘cust.∗’, ‘cus.∗ t’
‘cu.∗s.∗ t’ and so on. Every word in the relevant subtree(the one representing all
words that begin with the same alphabet as that of the token)in DD is matched
against the patterns in order of priority. If a word that conforms to a pattern at a
particular priority level is found, the remaining patterns are ignored. If multiple
words in the subtree match a pattern at the same priority level; the word that
has the least levenshtein distance (lesser than an upper bound ‘β’) from the
token is chosen as the correction. If a valid correction is found at the end of
this step, a series of checks are done to affirm its correctness. If the token is a
prefix of the correction, we believe that it is a valid correction. Else, we perform
a check based on Consonant Density Ratio (CDR), which is defined as:

CDR(word1 , word2) =
Number of consonants in word1

Number of consonants in word2

Leveraging Call Center Logs for Customer Behavior Prediction 147

If CDR(token, corrn) > threshold ‘θ’, we validate the correction and perform
no further checks. Else, CDR(tokenstem, corrnstem) is computed. If this is less
than θ, the correction is invalidated. However, we check if there exists a word
in the subtree that is relevant anagram of the token and if it exists, we return
the anagram for a correction, else we check if the consonant character sets are
the same for the token and the correction. If they are different, the correction
is invalidated following which a check for relevant anagram is done. The token
is retained as such or replaced by the relevant anagram as the case maybe and
the higher process flow continued. If no correction could be found at the end of
the above mentioned steps, the word in the subtree that has the same character
set as that of the token and for which the levenshtein distance is minimum,
is chosen as a correction. If the algorithm could successfully find a correction
that passed the different validation checks, all occurrences of the token in the
comment are replaced by the correction. The token is added as an acronym,
with the correction as its expansion to the DSA. The process flow is detailed in
algorithm 1.

Algorithm 1. Spelling Correction Algorithm
Input: token, DSA, DD, ED
Output: correction (corrn)
1: Construct positional patterns with priority for the token
2: if token is in ED then do nothing
3: else if token is an acronym in DSA then
4: corrn ← expansion of token in DSA
5: else
6: Assign corrn as a word from the DD matching the positional pattern at the highest

priority with min LD < β
7: if corrn exists then
8: if token is a prefix of corrn then
9: do nothing

10: else if CDR(token, corrn) > θ then
11: do nothing
12: else if CDR(tokenstem, corrnstem)≤ θ then
13: Invalidate current corrn
14: Assign corrn to a Relevant anagram of the token (if it exists)
15: else if Char Set(token) = Char Set(corrn) then
16: do nothing
17: else
18: Assign corrn to a Relevant anagram of the token (if it exists)
19: end if
20: else
21: Assign corrn to a word in the concerned subtree in DD which shares the char Set

with the token and at min LD
22: end if
23: Update DSA with token to corrn entry
24: end if

148 A.G. Parvathy et al.

4.2 Comparative Analysis

Here we compare our algorithm with other popular techniques for spelling cor-
rection like soundex and double metaphone (phonetic techniques) and the con-
ventional levenshtein distance based approach. Table 1 shows the corrections
provided by the algorithms for a few commonly encountered misspelled words.

A set of 534 misspelt words compiled from the log comments were corrected
with respect to a DD that contained 141 words. The precision and recall for all
the algorithms were calculated without considering the corrections made using
DSA list. The upper section in Table 1 shows a set of misspelled words cor-
rected using different algorithms and the lower section contains their respective
precisions and recalls.

Table 1. Spelling correction comparison along with precision and recall

Misspelled
word

Soundex
Double
Metaphone

Levenshtein
Distance

Customized
Spell Checker

repymt - - result repayment
bowr - - owner borrower
appvl - - april approval
progess process - process progress
cmpltd completed completed called completed

Precision(%) 33.81 32.66 46.82 98.75
Recall(%) 38.44 35.84 99.71 99.42

5 Behavioral History Sequence (BHS)

In this section, we describe how we build a customer’s BHS. The spell corrected
call logs that are sequential in nature are aggregated on a monthly basis for
every customer and categorized into one of the predefined categories. The BHS
is then constructed by episodically arranging the behavioral categories identified
for the different months.

5.1 Categorization

A set of predefined categories along with their characteristic keywords (unigrams,
bigrams or trigrams) are identified by a domain expert. The expert also assigns
global weights (between 0 and 1) for the words or phrases based on their relative
importance(usually the highest for trigrams, the next for bigrams and the lowest
for unigrams). However these weights can be overridden by specific weights at
the discretion of the domain expert, say in some case, if a unigram is highly
characteristic of a given category, then it can be assigned a weight greater than
the default weight for unigrams. The probability for a log comment to belong
to a category is calculated using a naive Bayes classification algorithm. The
comment is classified into that category to which it has the maximum probability

Leveraging Call Center Logs for Customer Behavior Prediction 149

to belong to. The classifier also supports multi category classification. It assigns
separate probabilities to the comment to belong to each of the different categories
based on keyword hits, their frequencies and weights. For our domain, the eight
different behavioral categories as identified by an expert are Paid, Cooperative
Compliance, Not Paid, Defaulter, Negotiation Failed, Fraud, Other and Not
Available.

5.2 Constructing the BHS

All comments that are logged for a customer in the same month are grouped
together and categorized thus building BHS as a sequence of behavioral cate-
gories/states. A unique identification number is assigned to every delinquent cus-
tomer and the comments for this customer are logged against this number. Let
U = {u1, u2, ...un} be the set of such unique IDs for n delinquent customers. A
BHS is a time-ordered sequence of behavioral states and for a given customer’s
logs it is generated as seq(u) = {Ct1, Ct2, ..., Ctm}; where C = {c1, c2, ...ck}
is the set of predefined categories and t1 to tm (t1 ≤ t ≤ tm), the different
months. The sequence length is uniform across all customers and it is based on
the minimum and maximum dates in the timestamps of comments pulled from
the database for analysis. If no comment has been logged for some month for
a customer, the corresponding behavioral category is assigned ‘Not Available’.
The temporally ordered BHSs thus built are then used for customer behavior
prediction.

6 Customer Behavior Prediction

This section deals with building a model for customer behavior prediction. We
describe a pattern based predictive algorithm that uses behavioral patterns
mined to predict the next customer behavioral state. The algorithm first pre-
processes the BHSs based on certain domain specific heuristics, then discovers
the frequent and rare patterns from the BHSs in order to define the prediction
space and then makes a prediction either deductively or non deductively using
the most recent behavioral pattern window.

6.1 Domain Heuristics

The BHS for the customers are preprocessed based on a set of domain heuris-
tics. If for a given customer there are no comments logged for a particular au-
dit month, we interpret the corresponding missing behavioral state as ‘Paid’,
‘Not Paid’ or ‘Not Available’. The missing states at the two extreme ends of
the BHS are understood as ‘Not Available’. If the comments are missing for
exactly one month in between, this is also treated as a ‘Not Available’ state
as no conclusion can be drawn according to heuristics. According to domain
experts, a customer is said to have turned delinquent if comments have been
logged for more than two consecutive months. Hence, if in the BHS there is a

150 A.G. Parvathy et al.

contiguous sequence of missing states surrounded by other categories, the two
most recent states in this sequence are considered as ‘Not Paid’ and the rest of
the states as ‘Paid’. The assumption is that since the comments were not logged,
the customer might have paid.

6.2 Behavioral Pattern Selection

The behavioral patterns are learned from the BHS. A behavioral pattern (BP) is
a sequence of behavioral states which inturn is a sub-sequence of the BHS. Each
BP is characterized by ranks of its temporal positions (recency), frequency of
occurrence and the list of unique customers whose BHSs contained it. Thus two
BP s which are constitutionally the same but have different temporal positions
are considered different. The global BP history is built by mining patterns from
the BHSs of all available customers, keeping track of its frequency across the
sequences. The local BP history for a given customer is build by mining only
his BHS for BP s. The Behavioral Pattern Window (BPW), is the most recent
BP in a BHS. Typically a prediction can be made if a BPW of length ‘w’
(the search window) is the trailing pattern of a BP of length ‘w + 1’where ‘w’
can vary from 2 to user defined value value ‘k’. In our experiment BP lengths
range from 2 to 5. Many a times the BHSs are sparse (contain few non NA
categories), and hence a BPW of length ‘w’ is built from the BHS by gathering
together the ‘w’ most recent non NA states in the BHS in order. Figure 2 shows
an example of how a BPW of length 3 is matched against a BP of length 4, to
enable prediction.

Fig. 2. An illustration for BP and BPW

6.3 Deductive Approach

In the deductive approach we use the most recent BPW (s) of the BHS of a
given customer and make the prediction by deductively assessing the length, re-
cency and frequency of the BPs. The different factors jointly attribute a weight
to the prediction which is indicative of its believability. We denote the pre-
dicted state of a customer’s behavior by PS. The BPWs of length ‘w’, where
w = 1, 2,k (k - upper bound for window length) are mined from the BHS.
They are used in decreasing order of lengths, for prediction. For a given BPW of
length ‘w’, we refer to the local BP history first and then the global BP history.

Leveraging Call Center Logs for Customer Behavior Prediction 151

Within the active history we first identify the BPs of length ‘w + 1’ and order
them according to their recency of occurrence. For every BP in this ordered
set, it is checked if BPW is its trailing pattern. If yes, BP [w + 1] becomes a
candidate PS and BP its parent pattern. In order to choose the PS from the
set of candidate PSs, we compute the similarity between the customer’s BHS
and each of the BHSs which contains its parent BP . The candidate PS linked
to the highest similarity index is chosen as the PS. We believe this helps us bias
our prediction towards the behavior of a customer with whom he/she has the
most behavioral resemblance. The weight of prediction is computed as the ratio
of frequency of parent BP of the chosen PS to the sum of frequencies of all
parent BPs of the candidate PSs. The detailed algorithm is given below.

Algorithm 2. The deductive approach for customer behavior prediction
Input: BHS, Local and Global BP Histories, BPW
Output: PS for t + 1th month
1: Order Local and Global BP Histories according to length and recency of occurrence
2: Mine BPWs of lengths w = k, k − 1,1 ‘k’ - upper bound for window length
3: PS ← NA
4: weight of prediction ← 0
5: candidatePSs ← {}
6: Active BP History ← Ordered Local BP History
7: for all BPWs do
8: for all BPs in Active BP History do
9: if BPW of length ‘w’ is a trailing pattern of BP of length ‘w + 1’ then

10: Add BP [w + 1] to candidatePSs with BP as its parent pattern
11: end if
12: end for
13: end for
14: If candidatePSs is empty, repeat step 7 through 10 with Active BP History as

the global one
15: Select PS as the candidatePS with whose BHS, the current BHS is most similar

to
16: weight of prediction← F requency of parent pattern of PS

Sum of frequencies of parent patterns of candidate PSs

6.4 Non Deductive Approach

In the non deductive approach, we do not restrict ourselves to one scheme of ac-
tion for prediction. We predict the customer’s next behavioral state from BPWs
of lengths w = 1, 2..., k using both local and global histories considering fre-
quency of patterns in the history and their recency. Hence for a given customer,
we have multiple predictions (along with weights) for the next state. The highest
weighed prediction is chosen as the customer’s next behavioral state.

7 Discussions

In this section, we discuss the results of our experiments on the call center log
feed obtained from the bank. The dataset consisted of comments logged from

152 A.G. Parvathy et al.

Jul 05 t0 Jun 08 for 750 different delinquent customers. Hence the BHS of every
customer was a sequence of length 36 of which each state was one of the eight
predefined states identified by the domain expert. The behavioral patterns mined
from these BHSs were used for predicting the customer’s behavioral state in the
next month, using the deductive and non deductive approaches to prediction.

Fig 3. shows the partial BHS of a particular customer illustrated as a date
vs category graph. The x axis timelines the 36 months and the y axis represents
the different categorical states1. For validation the known state of the customer’s
behavior for the tth month was predicted using the states during the timeperiod
(t − 1 , t − 2 , ..., t − k), where k is the window size. This was validated against
the known tth state. Next, prediction for customer’s behavioral state for the
(t + 1)th month (Jul 08) was made using the most recent behavioral pattern
window (t , t− 1 , ..., t− k).

Fig. 3. Prediction for tth state shown in diamond and the actual prediction (t + 1)th

state months shown in circle

According to this particular customer’s BHS, he started showing a delinquent
behavior from Jun 07. However he became cooperative in the month of Aug 07
only to become a defaulter from Sep 07 toNov 07. The log comments for the sub-
sequent months of Dec 07 to Feb 08 did not provide any conclusive pointer to the
customer’s behavior. He/she then stayed a defaulter till Apr 08 before becoming
cooperative again in the month of May 08. This was only to turn delinquent in
the next month(Jun 08). In order to test the accuracy of our prediction we pre-
dict the customer behavior for Jun 08 by using the BPs of the previous months.
Our prediction for this case (using the deductive approach)is the same as the
actual behavior the customer exhibited in Jun 08. This is because even in the
past the customer has become a defaulter after being cooperative. We now pre-
dict that he will be a defaulter in the month of Jul 08 too. Our prediction is
supported by the fact that from Aug 07 to Oct 07 the BHS of the customer’s
behavior showed a similar trend.

1 PD=Paid, CC=Cooperative-Compliance, NP=Not-Paid, DF=Defaulter
NF=Negotiation-Failed, FD=Fraud, OT=Other and NA=Not-Available

Leveraging Call Center Logs for Customer Behavior Prediction 153

The precision and recall measures for gauging our prediction were calculated
post the validation phase. The recall measure is equal to the fraction of customers
for whom our mechanism yielded a prediction. The precision of the approaches
was calculated by comparing the predictions for the most recent months against
the actual customer behavioral states in the respective months. Predictions were
made for the (t)th, (t−1)th, and (t−2)th months using the “corresponding” most
recent BPWs ((t)th predicted using the states at (t−1 , t−2 , ..., t−k), (t−1)th

using the states at (t−2 , t−3 , ..., t−k) and (t−2)th state using those at (t−3 , t−
4 , ..., t−k)) respectively. Table 2 contains the precisions and recalls for both the
deductive and non deductive approaches when tested on the validation set.

Table 2. Precision and recall, deductive and non deductive approaches

Deductive approach Non deductive approach
Prediction for months Precision(%) Recall(%) Precision(%) Recall(%)

(t)th 53.33 72.63 62.66 72.63
(t − 1)th 50.95 79.57 59.38 79.57
(t − 2)th 52.10 85.61 64.28 85.61

The deductive approach works based on predefined heuristics wherein the
different factors influencing prediction are prioritized and ordered. In the non-
deductive approach, different combinations (ordering) of these factors give dif-
ferent predictions, of which the best is chosen. Though this approach is time
consuming, the precision values are marginally better than those for the deduc-
tive approach. During a separate training phase, each of the schemes can be
judged based on the precision and recall for the past predictions to zero in on
the best plan.

8 Conclusion

In this paper, we have proposed a new technique for predicting a customer’s be-
havior based on a bank’s call center logs. A domain specific spelling correction
algorithm, an n-gram keyword based categorization algorithm and a behavior
pattern based predictive algorithm have been used in a phased manner. Our
algorithm for spelling correction can be employed to process unstructured doc-
uments in the telecom, healthcare and other domains which have well defined
domain dictionaries. The precision for this algorithm shows that it performs well
in a given domain. The categorization algorithm also works well with the set of
keywords identified by a domain expert and can be fine tuned through super-
vised training. Though the accuracy of the predictive algorithm can be bettered
it seems to be very promising for predicting a customer’s behavioral state in the
current scenario. Careful evaluation by domain experts can be used to refine the
algorithm. Important areas of future work include the evaluation of the proposed
temporal pattern discovery framework for efficient search using machine learning
techniques and employing genetic algorithm to arrive at the optimal prediction
heuristic.

154 A.G. Parvathy et al.

References

1. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

2. Damerau, F.J.: A technique for computer detection and correction of spelling er-
rors. Communications of the ACM 7(3), 171–176 (1964)

3. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley Publishing Company, Reading (1998)

4. Philips, L.: The double metaphone search algorithm. C/C++ Users J. (June 2000)
5. Angell, R., Freund, G., Willet, P.: Automatic spelling correction using a trigram

similarity measure. Information Processing and Management 19(4), 305–316 (1983)
6. Pollock, J.J., Zamora, A.: Automatic spelling correction in scientific and scholarly

text. Communications of the ACM 27(4), 358–368 (1984)
7. Peterson, J.L.: Computer programs for detecting and correcting spelling errors.

Communications of the ACM 23(12), 676–687 (1980)
8. Vilalta, R., Ma, S.: Predicting rare events in temporal domains. In: Proc. of the

2002 IEEE International Conference on Data Mining, ICDM 2002, pp. 474–481
(2002)

9. Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In:
Proc. of KDD 1998, pp. 359–363 (1998)

10. Dietterich, T.G., Michalski, R.S.: Discovering patterns in sequences of events. Ar-
tificial Intelligence 25(2), 187–232 (1985)

11. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)

12. Laxman, S., Unnikrishnan, K.P., Sastry, P.S.: Discovering frequent episodes and
learning hidden markov models: A formal connection. IEEE Trans. on Knowl. and
Data Eng. 17(11), 1505–1517 (2005)

13. Laxman, S., Tankasali, V., White, R.W.: Stream prediction using a generative
model based on frequent episodes in event sequences. In: Proc. of the 14th ACM
SIGKDD Int’l. Conf. on Knowledge discovery and data mining, pp. 453–461 (2008)

Condensed Representation of Sequential
Patterns According to Frequency-Based

Measures

Marc Plantevit and Bruno Crémilleux

GREYC-CNRS-UMR 6072
Université de Caen Basse-Normandie

Campus Côte de Nacre,
14032 Caen Cedex, France

Abstract. Condensed representations of patterns are at the core of
many data mining works and there are a lot of contributions handling
data described by items. In this paper, we tackle sequential data and
we define an exact condensed representation for sequential patterns ac-
cording to the frequency-based measures. These measures are often used,
typically in order to evaluate classification rules. Furthermore, we show
how to infer the best patterns according to these measures, i.e., the pat-
terns which maximize them. These patterns are immediately obtained
from the condensed representation so that this approach is easily usable
in practice. Experiments conducted on various datasets demonstrate the
feasibility and the interest of our approach.

1 Introduction

It is well-known that the “pattern flooding which follows data flooding” is un-
fortunate consequence in exploratory Knowledge Discovery in Databases (KDD)
processes. There is a large range of methods to discover the patterns of a potential
user’s interest but the most significant patterns are lost among too much trivial,
noisy and redundant information. Many works propose methods to reduce the
collection of patterns, such as the constraint-based paradigm [15], the pattern
set discovery approach [4,11], the so-called condensed representations [3,27] as
well as the compression of the dataset by exploiting the Minimum Description
Length Principle [19]. In practice, these methods often tackle data described by
items (i.e., itemsets) and/or specific contexts, such as the largely studied fre-
quent patterns extraction issue (a pattern X is said frequent if the number of
examples in the database supporting X exceeds a given threshold). Many appli-
cations (e.g., security network, bioinformatics) require sequence mining. Oddly
enough, even more than in the item domain, sequence mining suffers from the
massive output of the KDD processes. However, little works focused on this as-
pect mainly because the difficult formalization required for sequential patterns.
For instance, although there are many condensed representations of frequent
itemsets, only closed sequential patterns have been proposed as a exact con-
densed representation for all the frequent sequential patterns [27]. Moreover,

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 155–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

156 M. Plantevit and B. Crémilleux

some concise representations of itemset patterns cannot be used in order to con-
dense frequent sequential patterns [17]. This illustrates the intrinsic difficulty to
extend such works from itemsets to sequential patterns.

This paper addresses the issue of condensed representations of sequential pat-
terns. The idea is to compute a representationR of the extracted patterns which
is lossless: the whole collection of patterns can be efficiently derived fromR. This
approach has been mainly developed in the context of frequency [3,27] and there
are very few works addressing other measures [8,21,22]. In this paper, we in-
vestigate exact condensed representations of sequential patterns based on many
interestingness measures, the so-called frequency-based measures (see Section 3).
These measures (e.g., frequency, confidence, lift, growth rate, information gain)
are precious in real-world applications to evaluate the interestingness of patterns
and the quality of classification rules [20]. For instance, the emerging measure is
very useful to characterize classes and classify them. Initially introduced in [5],
emerging patterns (EPs) are patterns whose frequency strongly varies between
two datasets (i.e., two classes). An EP can be seen as a classification rule and
EPs are at the origin of various works such as powerful classifiers [13]. From
an applicative point of view, we can quote many works on the characterization
of biochemical properties or medical data [14]. A condensed representation of
itemsets according to frequency-based measures has already been proposed [22],
but it is only limited to the item domain.

The contribution of this paper is twofold. First, we define an exact condensed
representation of sequential patterns according to the frequency-based measures.
Exact means that we are able to infer not only the patterns, but also the mea-
sure values associated to the patterns without accessing the data. This is useful
because the user is mainly interested in these values. For that purpose, the key
idea is to show that the value of a frequency-based measure of any sequential
pattern can be deduced from one of its closed sequential patterns. This idea has
already been used in the item domain [22], but not in sequential data. Contrary
to itemsets, a sequential pattern may have several closed sequential patterns, our
method overcomes this difficulty. As this condensed representation is based on
the closed sequential patterns and there are efficient algorithms to extract these
patterns, these algorithms are also efficient to mine such a condensed representa-
tion. Second, we define the notion of strong sequential patterns (SPs) according
to frequency-based measures. Given a frequency-based measure, these patterns
maximize it. This is interesting because it highlights the best patterns with re-
spect to the measure and moreover it reduces the output. On the other hand,
the SPs are immediately obtained from the condensed representation. Finally,
experiments conducted on various datatsets demonstrate the feasibility of our
approach and quantify the interests of SPs.

This paper is organized as follows. Section 2 provides the preliminaries which
are needed for the rest of the paper. In Section 3, we propose a condensed
representation of sequential patterns according to the frequency-based measures.
Section 4 defines the strong frequency-based measures and the SPs. Section 5
provides in depth experimental results and we review related work in Section 6.

Condensed Representation of Sequential Patterns 157

2 Preliminary Concepts and Definitions

Let I = {i1, i2, . . . , in} be a finite set of items. An itemset I is a subset of I.
A sequence s = 〈I1, I2, . . . , In〉 is an ordered list of itemsets. A sequence sα =
〈A1, A2, . . . , An〉 is said to be contained in another sequence sβ=〈B1, B2, . . . , Bm〉
if there exist integer 1 ≤ i1 < i2 < . . . < in ≤ m such that A1 ⊆ Bi1 , A2 ⊆
Bi2 , . . . , An ⊆ Bin (denoted by sα � sβ). If the sequence sα is contained in the
sequence sβ , sα is called a subsequence of sβ and sβ a supersequence of sα.

Input data in sequential pattern mining consists in a collection of sequences.
As previously highlighted in the introduction section, frequency based-measures
are mainly used to assess the quality of classification rules and a class identifier
is associated to each data sequence. Therefore, the input database D consists in
a collection of tuples (sid, s, c) where sid is a sequence identifier, s is sequence
and c is a class identifier (see the example given in Tab. 1). D corresponds to a
partition of i subsets Di where each Di contains all tuples (sid, s, ci) in D. Each
sequence belongs to a single subset Di. A tuple (sid, s, c) is said to contain a
sequence sα if sα � s. The intersection of a set of sequences S = {s1, s2, . . . , sn},
denoted

⋂
si ∈ S, is the set of all maximal subsequences contained into all the

si. For example, the intersection of s = 〈c, b, c, a〉 and s′ = 〈c, b, a, c, c, c〉 is
{〈c, b, a, 〉, 〈c, b, c〉}.

Table 1. Toy database D with class values

Seq id Sequence Class
s1 〈c, b, c, a〉 c1

s2 〈c, b, a, c, c, c〉 c1

s3 〈a, a, a, c, c, a, a〉 c2

s4 〈a, a, b, a, c, c〉 c2

Frequency-based measures are linked to the notions of support. The absolute
support of a sequence sα in D is the number of tuples in D that contain sα,
denoted by support(sα,D). The relative support of sα is the percentage of tuples
in D that contain sα. For instance, support(〈c, a〉,D) = 3. Unless otherwise
stated, we use the absolute support all along this paper.

Let minsup be a minimum support threshold. A sequence sα is a frequent se-
quence on D if support(sα,D) ≥ minsup. A frequent sequence sα is a closed fre-
quent sequence if there does not exist a sequence sβ such that support(sα,D) =
support(sβ ,D) and sα � sβ . Then, given D and minsup, the problem of mining
frequent closed sequential patterns is to find the complete set of frequent closed
sequences. Function Closed(x,D) from Definition 1 return the set of closed se-
quential patterns in sequence database D which contains a sequence s.

Definition 1 (Closed(x,D)). Let x be a sequential pattern and D be a sequence
database.

Closed(x,D) =
⋂
{s ∈ D|x � s}

158 M. Plantevit and B. Crémilleux

Following our example in Table 1, we get: Closed(〈c, b〉,D) = {〈c, b, a〉, 〈c, b, c〉}.
These two sequences are closed in D. Finally, we recall the notion of classification
sequential rule.

Definition 2 (Classification sequential rules). Let C = {c1, c2, . . . , cm} be
a set of class values, a classification sequential rule is a rule R = s → ci where
s is a sequential pattern and ci ∈ C.

3 Exact Condensed Representation of Sequential Pattern
According to Frequency Based Measures

Various measures [7] are used to evaluate the quality of classification rules. Many
measures are based on the frequency of the sequential patterns s and the con-
catenation of s and ci, i.e. 〈s, {c}〉. These measures are called frequency-based
measures and are defined as follows:

Definition 3 (Frequency-Based Measure). Let D be a sequence database
partitioned into k subsets denoted D1,D2, . . . ,Dk, a frequency-based measure
Mi to characterize Di is a function F of supports: support(s,D1),
support(s,D2), . . . , support(s,Dk), i.e. Mi(s) = F (support(s,D1), support(s,
D2), . . . , support(s,Dk)).

With the notation Mi, the subscript i denotes the dataset Di which is charac-
terized according to the measure M . A frequency-based measure consists of a
finite combination of supports of a pattern s on several sequence data sets Di.
More precisely, a frequency-based measure cannot contain other parameters. Ta-
ble 2 lists some well-known frequency-based measures that are commonly used
in the literature. These measures are given here by using the absolute support
whereas the literature often writes them in term of conditional probabilities [7]
(P (X |ci)) corresponds to support(X,Di)

|Di| where X is a (sequential) pattern. Note
that some frequency-based measures (e.g., J-Measure, confidence, lift, growth
rate) are expressed with supports that are not restricted to sets D1,D2, . . . ,Dk.
However, these measures respect Definition 3 because these supports can be
computed from support(s,D1), support(s,D2), . . . support(s, ,Dk). For instance,
support(s,D) =

∑k
j=1 support(s,Dj).

To compute the value of a frequency-based measure for a rule s → ci, com-
puting the support of s in datasets D and Di (support(s,D) and support(s,Di))
is enough. An important result is that these frequencies can be obtained thanks
to the set of closed sequential patterns in D and Di. Indeed, we have:

– ∀e ∈ Closed(s,D) support(s,D) = support(e,D)
– ∀e ∈ Closed(s,Di) support(s,Di) = support(e,Di)

Consequently, the computation of Closed(s,D) and Closed(s,Di) are enough
to compute support(s,D) and support(s,Di). Furthermore, the following prop-
erty indicates that the computation of the function Closed can be made only
once:

Condensed Representation of Sequential Patterns 159

Table 2. Examples of frequency-based measures characterizing Di

Frequency-based measure Formula Strong

J-Measure support(s,Di)
|D| × log support(s,Di)×|D|

|Di|×support(s,D)
no

Relative support support(s,Di)
|D| yes

Confidence support(s,Di)
support(s,D)

yes

Sensitivity support(s,Di)
|Di| yes

Success rate support(s,Di)
|D| + |D\Di|−support(s,D\Di)

|D| yes

Specificity |D\Di|−support(s,D\Di)
|D| yes

Piatetsky-Shapiro’s (PS) support(s,Di)
|D| − support(s,D)

|D| × |Di|
|D| yes

Lift support(s,Di)×|D|
support(s,D)×|Di| yes

Odd ratio (α) support(s,Di)×(|D\Di|−support(s,D\Di))
(support(s,D)−support(s,Di))×(|Di|−support(s,Di)

yes

Growth rate (GR) |D|−|Di|
|D| × support(s,Di)

support(s,D)−support(s,Di)
yes

Information Gain log support(s,Di)×|D|
support(s,D)×|Di| yes

Property 1. Let s be a sequential pattern and Di a subset of D, ∀e ∈
Closed(s,D), support(s,Di) = support(e,Di)

Proof. According to Definition 1, sequence e from Closed(s,D) is a super-
sequence of s having the same support in D. Since s is a subsequence of e,
all sequences from D that contain e also contain s. Moreover, sequences s and
e have the same support in D. Thus, they are contained by the same sequences
of D. Since Di is a subset of D, sequences e and s are contained in the same
sequences of Di. Thus, support(s,Di) = support(e,Di).

As said in Section 2, a sequential pattern s may have several closed patterns.
Theorem 1 shows that all closed patterns of s have the same value for a measure.
Consequently, the value of a frequency-based measure for s can be deduced from
any of its closed sequential patterns:

Theorem 1. Let s be a sequential pattern, we have:

∀e ∈ Closed(s,D), Mi(s) = Mi(e)

Proof. Let s be a sequential pattern. Since ∀e ∈ Closed(s,D), support(s,Di) =
support(e,Di) (property 1), we can express Mi(s) =
F (support(s,D1), support(s,D2), . . . , support(s,Dk)) by Mi(s) =
F (support(e,D1), support(e,D2), . . . , support(e,Dk)) = Mi(e) where
e ∈ Closed(s,D). Thus Mi(s) = Mi(e).

For example, Closed(〈c, b〉,D) = {〈c, b, a〉, 〈c, b, c〉}, and Confidencec1
(〈c, b〉) =

Confidencec1
(〈c, b, a〉) = 1. The closed sequential patterns with their values of

the measure Mi are enough to synthesize the set of sequential patterns according
to Mi. As a consequence, the closed sequential patterns with their values of the
measure Mi are an exact condensed representation of the whole set of sequential

160 M. Plantevit and B. Crémilleux

patterns according to Mi. In practice, the number of closed patterns is lower (and
often much lower) than the complete set of sequential patterns. More generally,
this condensed representation benefits from all the advantages of the condensed
representation based on the closed sequential patterns [27,25].

4 Strong Sequential Patterns According to
Frequency-Based Measures

In practice, the number of patterns satisfying a given threshold for a measure Mi

can be very large and hampers their individual analysis. In this section, we show
that our approach easily enables us to highlight the best patterns according to
measures, that is to say the patterns which maximize such measures. To achieve
this result, we have to consider a slightly different set of measures, the strong
frequency-based measures:

Definition 4 (Strong Frequency-Based Measure). A frequency-based mea-
sure Mi which decreases with support(s,D) when support(s,Di) remains un-
changed, is a strong frequency-based measure.

Most frequency-based measures are also strong frequency-based measures (in
Table 2, only the J-measure is not a strong frequency-based measure). More gen-
erally, Definition 4 is less restrictive than the property P3 of Piatetsky-Shapiro’s
framework [16] which defines three properties which have to be satisfied by an
interestingness measure to be qualified as a “good” one.

Theorem 2 indicates that the closed sequential patterns satisfy an interesting
property w.r.t. the strong frequency-based measures.

Theorem 2. Let Mi be a strong frequency-based measure and s be a sequen-
tial pattern, we have ∀e ∈ Closed(s,Di), Mi(s) ≤ Mi(e). The elements from
Closed(s,Di) are called strong sequential patterns (SPs) in class i or dominant
sequential patterns for Mi.

Proof. Let Mi be a strong frequency-based measure and s be a sequential pat-
tern. ∀e ∈ Closed(s,Di), we have support(s,Di) = support(e,Di) (see Definition
1). As s � e, we obtain that support(s,D) ≥ support(e,D) thanks to the anti-
monotonicity of the support. By definition 4, we conclude that Mi(s) ≤Mi(e).

The result given by Theorem 2 is important: it means that the closed sequential
patterns in Di maximize any strong frequency-based measure Mi. In other words,
a sequential pattern that is not closed in Di has a lower (or equal) value than
one of its closed sequential patterns in Di for any measure Mi.

However, Theorem 2 means that mining all closed sequential patterns in
each Di is needed, which indeed require a lot of computation. Lemma 1 links
closed sequential patterns in Di with closed sequential patterns in D. For that,
we first have to define the sequence concatenation. Given a sequence sα =
〈A1, A2, . . . , An〉 and a class c, the concatenation of sequence sα with 〈c〉, de-
noted sα • c is 〈A1, A2, . . . , An, {c}〉. We then consider the sequence database D′

Condensed Representation of Sequential Patterns 161

from D where each data sequence contains a new item that represents their class
value. For each tuple (sid, s, c) we add the tuple (sid, s•c, c) in D′. Then, like D,
D′ corresponds to a partition of i subsets D′

i where each D′
i contains all tuples

(sid, s•ci, ci). Note that we have the relation support(s,Di) = support(s•ci,D′
i).

Lemma 1. If the sequence s • ci is a closed sequential pattern in D′
i then s • ci

is a closed sequential pattern in D′.

Proof. By construction of the subsets of D′, a class value ci is only contained in
D′

i and not in the other datasets. So we have support(s,D′
i) = support(s•ci,D′).

Thanks to Lemma 1, we can give Property 2 which indicates that mining only the
closed sequential patterns in D′ is enough. In other words, only one extraction
of closed patterns is needed.

Property 2 (SPs: computation of their frequency-based measure). If s is a strong
sequential pattern in Di, then Mi(s) can directly be computed with the supports
of the condensed representation based on the closed sequential patterns of D′.

Proof. Let s be a SP in Di. Thus, s • ci is a closed sequential pattern in D′
i.

To compute Mi(s), it is necessary to know support(s,D′
i) and support(s,D′).

By definition of D′
i, support(s,D′

i) = support(s • ci,D′) and lemma 1 ensures
that s • ci is closed in D′. As a consequence, its support is provided by the
condensed representation of the closed sequential patterns of D′. To compute
support(s,D′), two cases are possible: (i) if s is a closed sequential pattern in
D′, its support is directly available; (ii) if, s is not a closed sequential pattern in
D′, then s • ci belongs to Closed(s,D′) and support(s,D′) = support(s • ci,D′).

We have defined a theoretical framework for SPs in database D and its subset
Di. In practice, these patterns can be discovered in D′ and their frequencies
can also be computed in D′ thanks to any closed sequential pattern mining
algorithm. Indeed, if s is a strong sequential pattern in Di, then s • ci is a closed
sequential pattern in D′, support(s,Di) = support(s•ci,D′) and support(s,D) =
support(s,D′).

Example 1. Following our example in Table 1, with minsup = 2, we have 11
closed frequent sequential patterns. In particular, 〈c, b, a〉 and 〈c, b, c〉 are SPs
for class c1, 〈a, a, a, c, c〉 is a SP for class c2. Thus these sequences maximize any
frequency-based measure Mi.

Let M2 be the confidence measure, 〈a, a, a, c, c〉 • c2 is a closed sequential pat-
tern in D′. To compute its confidence, we need to know support(〈a, a, a, c, c〉,D′).
Since sequence 〈a, a, a, c, c〉 is not a closed sequential pattern in D′, then
support(〈a, a, a, c, c〉,D′) = support(〈a, a, a, c, c〉 • c2,D′) = 2. Thus the confi-
dence of SP 〈a, a, a, c, c〉 for class c2 is 1.

5 Experiments

Experiments have been carried out on real datasets by considering the emerging
measure (Growth Rate) [5]. The emerging measure is very useful to characterize

162 M. Plantevit and B. Crémilleux

classes and classify them. Emerging patterns (EPs) are patterns whose frequency
strongly varies between two datasets (i.e., two classes). Note that any frequency-
based measure can be used. However, due to the space limitation, we only report
experiments on strong emerging frequent sequential patterns (SESPs). To mine
closed sequential patterns, we have implemented Bide algorithm [25] in Java
language (JVM 1.5). Furthermore, we do not report results about the runtime
of the discovery of SEPSs. However, it is important to note that the computation
of SP growth rates is negligible compared to the step of frequent closed sequential
pattern mining. We can conclude that the scalability issue of SPs’ discovery is
Bide-dependent and Bide is known as being a scalable and robust algorithm.
Consequently, the discovery of SESPs is then scalable.

In these experiments, we consider the following real datasets:

– E.Coli Promoters dataset: The E. Coli Promoters data set [23] is available
on the UCI machine learning repository [1]. The data set is divided into two
classes: 53 E. Coli promoter instances and 53 non-promoter instances. We
consider pairs of monomers (e.g., aa, ac, etc.) as items.

– PSORTdb v.2.0 cytoplasmic dataset: The cytoplasmic data set was obtained
from PSORTdb v.2.0 [6]. The data set contains 278 cytoplasmic Gram-
negative sequences and 194 Gram-positive sequences. We consider items in
the same way as in the previous dataset.

– Greenberg’s Unix dataset: We transform the original Unix dataset [9] into
a new data set that contains 18681 data sequences where a data sequence
contains a session of a Unix command shell user. These sequences are divided
into 4 classes: 7751 sequences about navigation of computer scientists, 3859
sequences for experienced-programmers, 1906 sequences for non-programmers
and 5165 sequences about novice-programmers.

– Entree Chicago Recommendation Dataset: We use the data set underlying the
Entree system [2]. This data set is also available on the UCI machine learning
repository [1]. For each restaurant, a sequence of features is associated. We
consider 8 classes (Atlanta, Boston, Chicago, Los Angeles, New Orleans,
New York, San Francisco and Washington DC) that respectively contain
267, 438, 676, 447, 327, 1200, 414 and 391 sequences.

These experiments aim at studying several quantitative results of the discov-
ery of strong sequential patterns satisfying both a growth rate threshold and a
support threshold.

Figures from Fig. 1 report the number of frequent closed, strong and emerging
sequential patterns according to the minimum support threshold. Obviously, the
number of patterns decreases when the support threshold increases. We note
that the number of SESPs is much lower than the number of SPs which is
itself significantly lower than the number of sequential patterns (the figure uses
a logarithmic scale). It indicates a high condensation of patterns reducing the
output and highlighting the most valuable patterns according to the measures.
Note that there is no SESP (and no SP in E.coli and Entree datasets) when
minsup is high because no pattern can satisfy the growth rate measure.

Condensed Representation of Sequential Patterns 163

0.2 0.4 0.6 0.8 1

Minimum Support Threshold

1

10

100

1000

10000

100000
Number of closed sequential patterns
Number of strong sequential patterns
Number of strong emerging sequential patterns

(a) E.coli dataset (mingr = 3)

0.1 0.2 0.3 0.4 0.5 0.6

Minimum Support Threshold

1

10

100

1000

10000

100000
Number of closed sequential patterns
Number of strong sequential patterns
Number of strong emerging seq. patterns

(b) PSORTdb v.2.0 cytoplasmic
dataset (mingr = 1.5)

0.1 0.2 0.3 0.4

Mininum Support Threshold

1

10

100

1000

Number of closed sequential patterns
Number of strong sequential patterns
Number of strong emerging seq. patterns

(c) Unix log dataset (mingr = 3)

0 0.1 0.2 0.3 0.4 0.5

Minimum Support Threshold

1

10

100

1000

10000

Number of closed sequential patterns
Number of strong sequential patterns
Number of strong emerging sequential patterns

(d) Entree dataset (mingr = 3)

Fig. 1. Numbers of closed, strong and emerging sequential patterns according to the
minimum support threshold

10 100 1000 10000

Minimum Growth Rate Threshold

0

1000

2000

3000

4000

Nb of SESPs
Nb of SESPs for Promoter instances
Nb of SESPs for Non-promoter instances

(a) E.coli dataset (minsup = 0.1)

1 1.5 2 2.5 3

Minimum Growth Rate Threshold

0

500

1000

1500

Number of SESPs
Cytoplasmic Gram-positive sequences
Cytoplasmic Gram-negative sequences

(b) PSORTdb v.2.0 cytoplasmic
dataset (minsup = 0.15)

1 10 100 1000 10000

Minimum Growth Rate Threshold

0

20

40

60

80

100

Numbers of SESPs
computer-scientists
experienced-programmers
non-programmers
novice-programmers

(c) Unix log dataset (minsup=0.05)

1 10 100 1000 10000

Growth Rate Threshold

500

1000

1500

2000

2500
Number of SESPs
Atlanta
Boston
Chicago
Los Angeles
New Orleans
New York
San Francisco
Washington DC

(d) Entree dataset (minsup=0.01)

Fig. 2. Number of strong emerging sequential patterns and their repartition according
to the growth rate threshold

Figures from Fig. 2 report the number of SESPs and their distribution among
the different class values according to the growth rate threshold. The number
of SESPs decreases when the growth rate threshold increases. However, this

164 M. Plantevit and B. Crémilleux

number does not always tend to zero. Indeed, some SESPs with an infinite
growth rate can appear (see Fig. 2(a) and Fig. 2(d)). These particular SESPs
are called jumping SESPs (JSESPs). They are sequential patterns that appear
for only one class value, and never appear for other class values. It should be
noticed that the repartition of SESPs among the class values is not necessary
uniform. For instance, class value novice-programmers for Fig. 2(c) and class
value Washington DC for Fig. 2(d) contain a significantly greater number of
SESPs than the others.

Discovered SESPs: Sequential pattern 〈(aa)(at)(ta)(gc)〉 is a JSESP for
promoter sequences in E. coli dataset while 〈(tg)(cg)(ac)(tg)〉 is a JS-
ESP for non-promoter sequences. According to Entree dataset, the sequence
〈(Week-end Dining)(Parking-Valet)〉 is a SESP for class Washington DC with a
growth rate gr = 10.02. Sequential pattern 〈pix, umacs, pix, umacs〉 is a SESP
for class novice-programmers with a growth rate gr = 450. Let us recall that to
the best of our knowledge, our method is the unique method to discover such
patterns.

6 Related Work

Main works on condensed representations have been outlined in the introduc-
tion. A condensed representation of frequency-based measures has already been
proposed in [22], but it is limited to the item domain and our work can be seen
as an extension of [22] to the sequence framework. To the best of our knowledge,
there is no work in the literature that addresses condensed representations of
sequential patterns w.r.t. any frequency-based measure.

In the literature, classification on sequence data has been extensively studied.
In [26], the authors introduce the problem of mining sequence classifiers for early
prediction. Criteria for feature selection are proposed in [12]. The authors use
the confidence to quantify the features. Our work can lead to a generalization of
this work by allowing the use of any frequency-based measure. In [18] frequent
subsequences are used for classification but the interestingness of a pattern is
valued according to the only confidence measure.

An approach to detect sequential pattern changes between two periods is pro-
posed in [24]. First, two sequential pattern sets are discovered in the two-period
databases. Then, the dissimilarities between all pairs of sequential patterns are
considered. Finally, a sequential pattern is classified as one of the following three
change-types: an emerging sequential pattern, an unexpected sequence change,
and an added/perish sequence. These latter correspond to jumping emerging
sequences. Note that the notion of EPs differs from [5]. This work does not con-
sider condensed representations. Moreover, two databases have to be mined and
then similarities between each pair of sequences have to be computed whereas
our framework needs only one database mining and no computation of sequence
similarities.

Condensed Representation of Sequential Patterns 165

7 Conclusion

In this paper, we have investigated condensed representations of sequential pat-
terns according to many interestingness measures and we have proposed an exact
condensed representation of sequential patterns according to the frequency-based
measures. Then, we have defined the strong sequential patterns which are the
best patterns according to the measures. These patterns are straightforwardly
obtained from the condensed representation so that this approach can be eas-
ily used in practice. Experiments show the feasibility and the interest of the
approach.

We think that condensed representations of patterns have a lot of applications
and their use is not limited to obtain more efficiently patterns associated to
their interestingness measures. As they can be used as cache mechanisms, they
make interactive KDD processes more easily and are a key concept of inductive
databases. Moreover, their properties are useful for high-level KDD tasks such as
classification or clustering. Finally, the behavior of interestingness measures has
been studied in [10] and the next step is to determine lower bounds for weighted
combinations of frequency-based measures in order to ensure a global quality
according to a set of measures.

Acknowledgments. The authors would like to thank Arnaud Soulet (Univer-
sité François Rabelais de Tours, Fr) for very fruitful comments and invaluable
discussions. This work is partly supported by the ANR (French National Re-
search Agency) funded project Bingo2 ANR-07-MDCO-014.

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

2. Burke, R.D.: The wasabi personal shopper: A case-based recommender system. In:
AAAI/IAAI, pp. 844–849 (1999)

3. Calders, T., Rigotti, C., Boulicaut, J.-F.: A survey on condensed representations
for frequent sets. In: Constraint-Based Mining and Inductive Databases, pp. 64–80
(2004)

4. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: SDM
(2007)

5. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and
differences. In: ACM SIGKDD 1999, San Diego, CA, pp. 43–52. ACM Press, New
York (1999)

6. Gardy, J.L., Spencer, C., Wang, K., Ester, M., Tusnady, G.E., Simon, I., Hua, S.:
PSORT-B: improving protein subcellular localization prediction for Gram-negative
bacteria. Nucl. Acids Res. 31(13), 3613–3617 (2003)

7. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM
Comput. Surv. 38(3) (2006)

8. Giacometti, A., Laurent, D., Diop, C.T.: Condensed representations for sets of
mining queries. In: Knowledge Discovery in Inductive Databases, 1st International
Workshop, KDID 2002 (2002)

http://www.ics.uci.edu/~mlearn/MLRepository.html

166 M. Plantevit and B. Crémilleux

9. Greenberg, S.: Using Unix: Collected traces of 168 users. Research Report,
88/333/45, Department of Computer Science, University of Calgary, Calgary,
Canada (1988), http://grouplab.cpsc.ucalgary.ca/papers/

10. Hébert, C., Crémilleux, B.: A unified view of objective interestingness measures.
In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 533–547. Springer,
Heidelberg (2007)

11. Knobbe, A.J., Ho, E.K.Y.: Pattern teams. In: Fürnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 577–584.
Springer, Heidelberg (2006)

12. Lesh, N., Zaki, M.J., Ogihara, M.: Mining features for sequence classification. In:
KDD, pp. 342–346 (1999)

13. Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping
emerging patterns for classification. Knowledge and Information Systems 3(2), 131–
145 (2001)

14. Li, J., Wong, L.: Emerging patterns and gene expression data. Genome Informat-
ics 12, 3–13 (2001)

15. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning
optimizations of constrained associations rules. In: ACM SIGMOD 1998, pp. 13–24.
ACM Press, New York (1998)

16. Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In:
Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991)

17. Räıssi, C., Calders, T., Poncelet, P.: Mining conjunctive sequential patterns. Data
Min. Knowl. Discov. 17(1), 77–93 (2008)

18. She, R., Chen, F., Wang, K., Ester, M., Gardy, J.L., Brinkman, F.S.L.: Frequent-
subsequence-based prediction of outer membrane proteins. In: Getoor, L., Senator,
T.E., Domingos, P., Faloutsos, C. (eds.) KDD, pp. 436–445. ACM, New York (2003)

19. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: Proceedings
of the Sixth SIAM International Conference on Data Mining, Bethesda, MD, USA.
SIAM, Philadelphia (2006)

20. Smyth, P., Goodman, R.M.: Rule induction using information theory. In: Knowl-
edge Discovery in Databases, pp. 159–176. AAAI Press, Menlo Park (1991)

21. Soulet, A., Crémilleux, B.: Adequate condensed representations of patterns. Data
Min. Knowl. Discov. 17(1), 94–110 (2008)

22. Soulet, A., Crémilleux, B., Rioult, F.: Condensed representation of eps and patterns
quantified by frequency-based measures. In: KDID 2004, Revised Selected and
Invited Paperss, pp. 173–190 (2004)

23. Towell, G.G., Shavlik, J.W., Noordewier, M.O.: Refinement ofapproximate domain
theories by knowledge-based neural networks. In: AAAI, pp. 861–866 (1990)

24. Tsai, C.-Y., Shieh, Y.-C.: A change detection method for sequential patterns. Decis.
Support Syst. 46(2), 501–511 (2009)

25. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate
maintenance. IEEE Trans. Knowl. Data Eng. 19(8), 1042–1056 (2007)

26. Xing, Z., Pei, J., Dong, G., Yu, P.S.: Mining sequence classifiers for early prediction.
In: SDM, pp. 644–655 (2008)

27. Yan, X., Han, J., Afshar, R.: Clospan: Mining closed sequential patterns in large
databases. In: SDM (2003)

http://grouplab.cpsc.ucalgary.ca/papers/

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 167–177, 2009.
© Springer-Verlag Berlin Heidelberg 2009

ART-Based Neural Networks for Multi-label
Classification

Elena P. Sapozhnikova

Department of Computer and Information Science, Box M712,
University of Konstanz, 78457 Konstanz, Germany
elena.sapozhnikova@uni-konstanz.de

Abstract. Multi-label classification is an active and rapidly developing research
area of data analysis. It becomes increasingly important in such fields as gene
function prediction, text classification or web mining. This task corresponds to
classification of instances labeled by multiple classes rather than just one.
Traditionally, it was solved by learning independent binary classifiers for each
class and combining their outputs to obtain multi-label predictions.
Alternatively, a classifier can be directly trained to predict a label set of an
unknown size for each unseen instance. Recently, several direct multi-label
machine learning algorithms have been proposed. This paper presents a novel
approach based on ART (Adaptive Resonance Theory) neural networks. The
Fuzzy ARTMAP and ARAM algorithms were modified in order to improve
their multi-label classification performance and were evaluated on benchmark
datasets. Comparison of experimental results with the results of other multi-
label classifiers shows the effectiveness of the proposed approach.

1 Introduction

In the past decades, machine learning and neural network classifiers have been
extensively studied in the one-class-per-instance setting. However, many real world
problems produce more complex data sets, for example, with classes that are not
necessarily mutually exclusive. So, a gene can have multiple biological functions or a
text document can be assigned to multiple topics. For this reason, Multi-label
Classification (MC) when an instance could belong to more than one class becomes
increasingly important particularly in the fields of web or text mining and
bioinformatics.

Generally, a MC task is more difficult to solve than a single-label classification
task. The main problem is a large number of possible class label combinations and the
corresponding sparseness of available data. In addition, standard classifiers cannot be
directly applied to a MC problem for two reasons. First, most standard algorithms
assume mutually exclusive class labels, and second, standard performance measures
are not suitable for evaluation of classifiers in a MC setting.

A traditional approach to MC is to learn multiple independent binary classifiers to
separate one class from the others and then to combine their outputs. However, in
such a case the labels are treated as independent that can significantly reduce

168 E.P. Sapozhnikova

classification performance [1], [2]. Recently, several approaches [1-8] which can
handle multi-label data directly have been specially developed for solving a MC task.
Some of them are based on “black-box” machine learning techniques like Support
Vector Machine (SVM) [2-4], k-Nearest Neighbor (kNN) classifier [5-7] or neural
networks [8]. Alternatively, interpretable decision tree algorithms have been applied
to MC in bioinformatics [9-11] where knowledge extraction from a trained classifier
is preferable for testing the results by biologists in order to determine their
plausibility. Two other generalizations of decision trees to MC are reported in [12]
and [13].

In this paper, another type of interpretable multi-label classifiers is studied. These
are multi-label extensions of two neuro-fuzzy models based on the Adaptive
Resonance Theory (ART): Fuzzy ARTMAP (FAM) [14] and fuzzy ARAM [15]
which allow for fuzzy rule extraction. Besides their interpretability, these networks
possess also the advantage of fast learning i.e. learning only for one epoch, a valuable
property of the ART family. The Multi-Label FAM (ML-FAM) and Multi-Label
ARAM (ML-ARAM) algorithms are proposed and compared with their standard
counterparts as well as with some other multi-label classifiers. To date, the has been
no attempt to apply an ART network to MC, except for [16], where the authors,
however, were interested in obtaining hierarchical relationships between output
classes, not in solving a MC task.

The paper is organized as follows. Section 2 presents a brief description of the
FAM and ARAM base algorithms pointing to the differences between them. In
Section 3, their multi-label extensions are introduced. Section 4 describes experiments
and compares obtained results with the results of other multi-label classifiers taking
into account a large set of different performance measures. And finally, Section 5
concludes the paper.

2 FAM and ARAM Neural Networks

The reader is supposed to be familiar with the FAM and ARAM algorithms. Due to
space constraints only the basic concepts are discussed below. A FAM system
generally consists of two self-organizing two-layer Fuzzy ART modules, ARTa and
ARTb, which process inputs A and targets B, respectively, by building prototype
categories in their second layers F2 (Fig. 1a). In classification tasks, the target vectors
usually represent class labels, for example, in the binary form.

Each neuron of F2 stores in its weight connections a prototype, i.e. a set of relevant
features, describing a cluster of inputs in the feature space (inputs belonging to the
same cluster share common characteristics). The F2 fields are linked by the Map Field
– an associative memory, which contains associations between ARTa and ARTb
prototype categories. This enables FAM to learn mapping between input and target
pairs during training.

Initially, all weight vectors are set to unity and prototype nodes are said to be
uncommitted. Vectors A and B represent in the complement coded form [14] an input
pattern X and its class label vector Y. After presentation of an input vector A to F1

 ART-Based Neural Networks for Multi-label Classification 169

F1
a

F2
a F2

b

F1
b

Fab

ARTa ARTb

Map Field

F1
a F1

b

ARTa ARTb

F2

a b

F1
a

F2
a F2

b

F1
b

Fab

ARTa ARTb

Map Field

F1
a F1

b

ARTa ARTb

F2

a b

Fig. 1. FAM (a) and ARAM (b) neural networks

field of ARTa, the activation function Tj (1) is calculated for each node in F2 and the
winner is then chosen by the Winner-Take-All (WTA) rule (2):

||

||
)(

j

j
jT

W

WA
A

+
∧

=
α

 (1)

where “∧” denotes the fuzzy AND, element-wise min operator, and α > 0 is called the
choice parameter.

 { },...,NjT T jJ 1:max == (2)

The network category choice J must be confirmed by checking the match criterion:

a||

|| ρ≥∧
A
WA J (3)

where ρa ∈[0,1] is the user-defined vigilance parameter which defines the minimum
required similarity between an input vector and the prototype of the node it can be
associated with. If (3) fails, the system inhibits the winning node J and enables
another category to be selected. When no existing prototype provides the satisfactory
similarity, then the network will chose a new (uncommitted) neuron. Thus, the
network has a dynamically self-organizing structure within which the number of
prototypes grows to adapt to the environment.

The operations at ARTb are identical to those at ARTa, except for checking the
Map Field vigilance criterion (4) that tests the correctness of the association between
the ARTa node J coding an input vector A and the corresponding ARTb node K coding
a target vector B:

170 E.P. Sapozhnikova

abb

ab
J

b

ρ≥
∧

||

||

U

WU (4)

where Ub denotes the ARTb output vector and WJ
ab denotes the weights connecting

the Jth ARTa node and the Map Field. If the inequality fails, then the Match Tracking
process initiates the choice of a new category by increasing the ARTa vigilance
parameter ρa to the value slightly greater than the left-side term of (3). This search
process continues until the input is either assigned to an existing (committed) node
that satisfies both the ARTa match criterion (3) and the Map Field vigilance criterion
(4) or to activation of an uncommitted neuron.

A successful end of search starts the learning process at ARTa and ARTb:

)()()()1()(old
J

old
J

new
J WWAW ββ −+∧=

)()()()1()(old
J

old
J

new
J WWBW ββ −+∧= (5)

where β ∈[0,1] is the learning rate. The fast learning mode corresponds to setting β = 1.
With fast learning, the Map Field weights are set to Ub ∧ WJ

ab once the node J becomes
committed and this association is permanent.

Although fuzzy ARAM may be tuned to be functionally equivalent to FAM, it
significantly differs in the architecture (Fig. 1b). ARAM contains no Map Field
because its F2 nodes are linked directly to F1 fields of both ARTa and ARTb modules.
In its simplified version, ARAM first computes the activation function (1) and selects
the winning node according to (2). Then the winner choice should be confirmed by
the pair of match criteria simultaneously:

a||

|| ρ≥
∧

A

WA a
J

b||

|| ρ≥
∧
B

WB b
J . (6)

If any of the inequalities is violated, reset occurs and the match tracking process
can be started if needed. When each match criterion is satisfied in the respective
module, resonance occurs and the learning process follows. During learning the
selected node J learns to encode the input and target vectors by adjusting its weight
vectors WJ

a and WJ
b similarly to (5).

3 ML-FAM and ML-ARAM

By encoding associations between input and target vectors FAM and ARAM are
generally able to learn multi-label predictions in the case when the class label vector
Y contains not a single label but a set of labels (usually represented as a binary
vector). However, the direct use of FAM and ARAM for solving a MC task can be
ineffective due to the WTA choice rule (2). It allows only the most highly activated
category to be selected. Though justified for mutually exclusive classes, in the multi-
label setting, this can lead to poor performance because only one set of labels can be
predicted for an instance no matter how close to each other may be different label
combinations. Thus, it would be advantageous to utilize distributed prototype

 ART-Based Neural Networks for Multi-label Classification 171

activation during the classification stage in order to extract more information about
dependencies and correlations between different label sets.

Distributed activation has been already shown to be effective in classification by
ART networks [16], [17] and considered in default ARTMAP [18]. A better
prediction can be made by joining the class information of those prototype categories
at F2 which are about equally activated. In MC, this can be achieved by combining the
multi-label predictions of several most activated nodes. The proposed method is
implemented in both ML-FAM and ML-ARAM as follows.

First, a set of N best categories with the largest activation values Tj is chosen
according to the following rule: a category j is included in the set, if the relative
difference (Tmax-Tj)/Tmax lies below a predefined threshold t. Then the activations are
normalized as

∑
=

=
N

n
nj

a
j TTu

1

. (7)

The idea is to take into account only those categories which have a small relative
decrease of activation in respect to the maximum value and to use the labels
associated with them for obtaining the resulting multi-label prediction. This method
differs from the CAM power rule [18] and is computationally less expensive.

The resulting distributed output pattern P is then a weighted sum of N individual
predictions pj

j

N

n

a
ju pP ∑

=

=
1

 (8)

where pj = Wk
b with k such that Wjk

ab = 1 for FAM and pj = Wj
b for ARAM. Thus, P

contains a score for each label which is proportional to the frequency of predicting
this label among N best categories.

Since fast learning of ART-networks leads to varying performance with the input
presentation order, voting across several networks trained with different orderings of
a training set is usually utilized. It typically improves classification performance and
reduces its variability. Voting also presents a useful option for averaging multi-label
predictions. So, multiplying the number of output categories N in (8) by the number
of voters V enables building the sum over all voters and producing a collective
distributed output pattern P, which may be then used to determine the predicted
classes.

Finally, a post processing filter method [16] outputs only those labels from P for
which the following holds: if Pq signals corresponding to q output classes are
arranged from largest to smallest, their Pq values lie up to the point of maximum
decrease in the signal size from one class to the next. An advantage of this instance-
based filtering is that a distributed prediction is thresholded by means of no a priori
fixed parameter.

An addition modification is made in the ARTb weights which now count label
frequencies for each ARTb category during learning. After commitment they are
increased by 1 each time the corresponding label occurs. The weight matrix Wb then
contains information about the frequency with which each label was coded by a node k.

172 E.P. Sapozhnikova

It should be noted that this modification causes some changes in the ARTb activation
function of FAM which is now computed as Tj = |B ∧ Wj

b|.
Another difference of ML-FAM and ML-ARAM as compared to the standard

algorithms is that they do not use match tracking with raising vigilance because it
leads to category proliferation [19]. The winner node is simply inhibited and a new
search is started when the chosen ARTa category does not code the proper label set of
a training instance.

It should be noted that despite a relatively large number of potentially adjustable
parameters in the ART networks the most of them have only little impact on the
classification performance and are usually set to their default values (α close to 0,
β =1 for fast learning, V = 5) [18]. Typically, only tuning of the vigilance parameter is
essential for classification because the network size as well as its generalization
ability depends on the value of ρ: with high values, the network tends to create a large
number of small clusters to represent the underlying class distributions while with low
ρ the clusters are large. Therefore one possible default setting accepted in the
literature is ρ = 0 for the minimum network size. However this leads oft to relatively
poor classification performance. An alternative default value of ρ is 0.8 which is
usually set for achieving a compromise between the code compression and the
classification performance. In the multi-label extensions, the threshold t plays also an
important role. The lower it is, the fewer categories are taken into account during
building a multi-label prediction. From extensive experiments on different datasets
the value of 5% has emerged to be a good choice for this parameter.

4 Experimental Results

4.1 Datasets and Performance Measures

The effectiveness of the standard FAM and ARAM with the WTA choice rule was
compared to that of the modified algorithms in the multi-label setting. The
performance was evaluated on two datasets from different application areas. The first
one was the well-known Yeast dataset [2] describing the 2417 genes of
Saccharomyces cerevisiae. Each gene is characterized by 103 features derived from
the micro-array expression data and phylogenetic profiles. 14 possible classes in the
top level of the functional hierarchy are considered with the average value of 4.24
labels per gene. The large average number of labels associated with each instance
makes this dataset difficult to classify. The second dataset Emotions [20] concerns
classification of music into 6 mood classes (e.g. happy-pleased, quiet-still, sad-lonely
etc.). It consists of 593 songs described by 72 rhythmic and timbre features. The
average number of labels per song is 1.87.

Due to a more complex nature of MC applications, there exist a large set of
possible evaluation criteria for multi-label classifiers as opposite to single-label ones.
The most common example-based performance measures for MC which are also used
in this paper include Hamming Loss (HL), Accuracy (A) and F-measure (F) [21].
Given a set S = {(X1, Y1), …, (Xn,Yn)} of n test examples where Yi is the proper label
set for an instance Xi, let Zi be the set of predicted labels for Xi and L the finite set of

 ART-Based Neural Networks for Multi-label Classification 173

possible labels. Then HL counts prediction errors when a false label is predicted as
well as missing errors when a true label is not predicted:

∑
=

Δ
=

n

i

ii

n
HL

1

1

L

ZY (9)

where ∆ denotes the symmetric difference of two sets and corresponds to the XOR
operation in Boolean logic. The smaller is the HL value, the better is the MC
performance.

Accuracy and F-measure are defined as follows:

∑
= ∪

∩
=

n

i ii

ii

n
A

1

1

ZY

ZY (10)

∑
= +

∩
=

n

i ii

ii

n
F

1

21

YZ

ZY . (11)

The performance becomes perfect as they approach unity.
A limitation of these performance measures is that they are based on the predicted

labels and therefore are influenced by the chosen threshold value. Alternatively,
ranking-based evaluation criteria as, for example, One-Error (OE) can be used. Given
a real-valued function f which assigns larger values to labels in Yi than those not in
Yi, the OE metric can be defined as:

[]()∑
=

∉=
n

i
ii yf

n
OE

1

),(maxarg
1

Yxδ (12)

where δ is a function that outputs 1 if its argument is true and 0 otherwise. The
performance is perfect when OE equals to 0.

Ranking-based performance measures stem from the information retrieval field and
are better suited for document classification. Additionally to OE, Coverage (C),
Ranking Loss (RL), and Average Precision (AP) are often used [6]. Ranking Loss is
defined as the average fraction of pairs of labels that are ordered incorrectly.
Coverage evaluates how far we need, on average, to go down the list of labels in
order to cover all the proper labels of the instance. The smaller is its value, the better
is the performance. Average Precision evaluates the average fraction of labels ranked
above a particular label y in Y which actually are in Y. If it is equal to 1, the
performance is perfect.

Besides the above discussed example-based performance measures, label-based
ones are also often utilized [21]. They are calculated using binary evaluation measures
for each label: the counts for true positives (tp), true negatives (tn), false positives
(fp), and false negatives (fn). The most popular of them are recall, precision and their
harmonic mean F1-measure.

fpfntp

tp
F

++
=

2

2
1 (13)

In this paper, micro-averaged precision and recall are used for computing the F1-
measure. Micro-averaged precision corresponds to the proportion of predicted labels

174 E.P. Sapozhnikova

in the whole test set that are correct and recall to the proportion of labels that are
correctly predicted. The closer the F1 value is to 1, the better is the performance.

4.2 Performance Comparison

4.2.1 Experiment Settings
In this paper, four ART-based algorithms FAM, ML-FAM, ARAM and ML-ARAM
were tested in the following setting. The fast learning mode with β = 1 was used. The
choice parameter α was set to 0.0001. The number of voters V was five. The
parameter t of ML-FAM and ML-ARAM was chosen to be 0.05. In FAM and
ARAM, predicted multi-labels were simply averaged over the voters as described in
Section 3. The vigilance parameter of ARTa was set to 0.8, the vigilance parameter of
ARTb was set to its default value of 1.

The experiments on both datasets were made by 10-fold cross-validation. For
comparison, a multi-label k-nearest neighbor classifier (ML-kNN) was selected as a
state-of-the-art high-performance classification algorithm. The implementations for
all ART-networks and ML-kNN were written in MatLab. ML-kNN classifier was
tested with the number of neighbors equal to 10.

4.2.2 Yeast Dataset
Table 1 reports the average classification performance of FAM, ML-FAM, ARAM,
ML-ARAM, and ML-kNN evaluated by all measures discussed in Section 4.1. The
best result on each metric is shown with bold typeface. The last line contains the
number of times an algorithm achieves the best result.

As expected, FAM and ARAM were outperformed by their multi-label extensions
as well as by ML-kNN on all nine performance measures. Due to match tracking, the
network sizes of FAM and ARAM with the same vigilance parameters were twice as
large as those of the modified algorithms (about 1635 categories against 778 on
average). This is a clear sign of category proliferation. ML-ARAM performed slightly
better than ML-FAM and both networks were superior to ML-kNN. Taking into
account that the latter algorithm memorizes all 2175 training examples and therefore
requires a longer training phase, it is clear that ML-FAM and ML-ARAM with much
fewer prototype categories showed a significant advantage in the classification
performance.

It is interesting to note that the relative performance differences reflected by
various evaluation metrics vary from small to large, i.e. they have different
discriminative power. In this experiment, the largest performance differences between
FAM (ARAM) and multi-label classifiers were indicated by RL.

For comparison, Table 2 presents results obtained on the same dataset by other
multi-label classifiers: BoosTexter, Alternating Decision Tree (ADT), Rank-SVM,
and multi-label neural network BP-MLL as reported in [8]. For these experiments,
only a reduced set of five performance measures including HL, OE, C, RL, and AP
was used (RL values were not reported for ADT). The results show that the multi-
label extensions of FAM and ARAM are superior to all other multi-label
classifiers.

 ART-Based Neural Networks for Multi-label Classification 175

Table 1. Classification results (mean, std) of FAM, ARAM, ML-FAM, ML-ARAM, and
ML-kNN on the Yeast data

FAM ARAM ML-FAM ML-ARAM ML-kNN
mean std mean std mean std mean std mean std

HL 0.198 0.009 0.197 0.011 0.194 0.006 0.193 0.007 0.193 0.007
A 0.515 0.015 0.519 0.022 0.539 0.016 0.536 0.019 0.519 0.019
F 0.610 0.015 0.614 0.022 0.635 0.018 0.633 0.019 0.622 0.018
OE 0.272 0.028 0.276 0.033 0.225 0.029 0.218 0.027 0.230 0.028
C 6.039 0.220 6.037 0.242 5.967 0.260 6.005 0.237 6.220 0.280
RL 0.267 0.017 0.270 0.021 0.168 0.015 0.165 0.014 0.165 0.015
AP 0.762 0.017 0.761 0.018 0.773 0.019 0.779 0.017 0.767 0.019
F1-
mic

0.641 0.014 0.645 0.019 0.654 0.015 0.662 0.017 0.648 0.016

wins 0 0 3 6 2

Table 2. Classification results (mean, std) of multi-label classifiers on the Yeast data from [8]

ADT BoosTexter BP-MLL Rank-SVM
mean std mean std mean std mean std

HL 0.207 0.010 0.220 0.011 0.206 0.011 0.207 0.013
OE 0.244 0.035 0.278 0.034 0.233 0.034 0.243 0.039
C 6.390 0.203 6.550 0.243 6.421 0.237 7.090 0.503
RL - - 0.186 0.015 0.171 0.015 0.195 0.021
AP 0.744 0.025 0.737 0.022 0.756 0.021 0.749 0.026

4.2.3 Emotions Dataset
Table 3 summarizes the classification performance of FAM, ML-FAM, ARAM, ML-
ARAM, and ML-kNN obtained on the Emotions dataset. While the average number of
created categories in this experiment was about 355 for FAM and ARAM, it was
about 218 for their multi-label extensions. On this dataset, the latter algorithms again
outperformed their single-label counterparts on all performance measures. This time,

Table 3. Classification results (mean, std) of FAM, ARAM, ML-FAM, ML-ARAM, and
ML-kNN on the Emotions data

FAM ARAM ML-FAM ML-ARAM ML-kNN
mean std mean std mean std mean std mean std

HL 0.204 0.015 0.204 0.017 0.196 0.016 0.200 0.015 0.206 0.023
A 0.563 0.036 0.559 0.046 0.596 0.031 0.577 0.034 0.527 0.035
F 0.652 0.035 0.643 0.042 0.683 0.030 0.666 0.036 0.614 0.041
OE 0.286 0.048 0.309 0.047 0.273 0.056 0.271 0.066 0.302 0.047
C 1.895 0.224 1.919 0.243 1.703 0.221 1.734 0.188 1.868 0.235
RL 0.263 0.032 0.268 0.033 0.158 0.022 0.160 0.020 0.175 0.023
AP 0.786 0.023 0.782 0.023 0.809 0.030 0.805 0.027 0.783 0.028
F1-
mic

0.671 0.030 0.665 0.035 0.697 0.039 0.687 0.037 0.653 0.039

wins 0 0 7 2 0

176 E.P. Sapozhnikova

however, ML-FAM dominated ML-ARAM in almost all metrics. Surprisingly, results
achieved on this dataset by the single-label ART-networks in terms of five measures
(HL, A, F, OE, and F1) were better than those of ML-kNN.

5 Conclusions

In this paper, two multi-label extensions ML-FAM and ML-ARAM of ART-based
fuzzy networks are presented. They can be successfully used for solving a MC task.
The experimental results evaluated by a large set of performance measures show that
the performance of both proposed extensions is superior to that of the single-label
algorithms. They also outperform several state-of-the-art multi-label classifiers. This
work should be continued by evaluating ML-FAM and ML-ARAM on other multi-
label datasets in order to ensure a more reliable performance comparison.

References

1. Schapire, R.E., Singer, Y.: BoosTexter: a Boosting-based System for Text Categorization.
Machine Learning 39, 135–168 (2000)

2. Elisseeff, A., Weston, J.: A Kernel Method for Multi-labelled Classification. In: Advances
in Neural Information Processing Systems, pp. 681–687 (2001)

3. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai,
H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30.
Springer, Heidelberg (2004)

4. Boutell, M.R., Shen, X., Luo, J., Brown, C.: Learning Multi-label Semantic Scene
Classification. Pattern Recognition 37, 1757–1771 (2004)

5. Zhang, M.-L., Zhou, Z.-H.: A k-Nearest Neighbor Based Algorithm for Multi-label
Classification. In: International Conference on Granular Computing, pp. 718–721 (2005)

6. Zhang, M.-L., Zhou, Z.-H.: ML-kNN: A Lazy Learning Approach to Multi-label Learning.
Pattern Recognition 40, 2038–3048 (2007)

7. Younes, Z., Abdallah, F., Denoeux, T.: Multi-label Classification Algorithm Derived from
k-Nearest Neighbor Rule with Label Dependencies. In: 16th European Signal Processing
Conference (2008)

8. Zhang, M.-L., Zhou, Z.-H.: Multi-label Neural Networks with Applications to Functional
Genomics and Text Categorization. IEEE transactions on Knowledge and Data
Engineering 18, 1338–1351 (2006)

9. Clare, A., King, R.D.: Knowledge Discovery in Multi-label Phenotype Data. In: 5th
European Conference on Principles of Data Mining and Knowledge Discovery, pp. 42–53
(2001)

10. Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., Struyf, J.: Hierarchical Multi-
classification. In: First International Workshop on Multi-Relational Data Mining, pp. 21–
35 (2002)

11. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision Trees for
Hierarchical Multi-label Classification. Machine Learning 73, 185–214 (2008)

12. Suzuki, E., Gotoh, M., Choki, Y.: Bloomy Decision Tree for Multi-objective Classification.
In: 5th European Conference on Principles of Data Mining and Knowledge Discovery,
pp. 436–447 (2001)

 ART-Based Neural Networks for Multi-label Classification 177

13. Comité, F.D., Gilleron, R., Tommasi, M.: Learning Multi-label Alternating Decision Trees
from Texts and Data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734,
pp. 251–274. Springer, Heidelberg (2003)

14. Carpenter, G., et al.: Fuzzy ARTMAP: A Neural Network Architecture for Incremental
Supervised Learning of Analog Multidimensional Maps. IEEE transactions on Neural
Networks 3, 698–713 (1992)

15. Tan, A.-H.: Adaptive Resonance Associative Map. Neural Networks 8, 437–446 (1995)
16. Carpenter, G., Martens, S., Ogas, O.: Self-organizing Information Fusion and Hierarchical

Knowledge Discovery: a New Framework Using ARTMAP Neural Networks. Neural
Networks 18, 287–295 (2005)

17. Carpenter, G., Ross, W.D.: ART-EMAP: A Neural Network Architecture for Object
Recognition by Evidence Accumulation. IEEE Transactions on Neural Networks 6, 805–
818 (1995)

18. Carpenter, G.A.: Default ARTMAP. In: International Joint Conference on Neural
Networks (IJCNN), pp. 1396–1401 (2003)

19. Sapojnikova, E.: ART-based Fuzzy Classifiers: ART Fuzzy Networks for Automatic
Classification. Cuvillier Verlag, Goettingen (2004)

20. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel Classification of Music
into Emotions. In: 9th International Conference on Music Information Retrieval, ISMIR
(2008)

21. Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: An ensemble method for multilabel
classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič,
D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer,
Heidelberg (2007)

Two-Way Grouping by One-Way Topic Models

Eerika Savia, Kai Puolamäki, and Samuel Kaski

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science

Helsinki University of Technology
P.O. Box 5400, FI-02015 TKK, Finland

{forename.surname}@tkk.fi

Abstract. We tackle the problem of new users or documents in collab-
orative filtering. Generalization over users by grouping them into user
groups is beneficial when a rating is to be predicted for a relatively new
document having only few observed ratings. The same applies for doc-
uments in the case of new users. We have shown earlier that if there
are both new users and new documents, two-way generalization becomes
necessary, and introduced a probabilistic Two-Way Model for the task.
The task of finding a two-way grouping is a non-trivial combinatorial
problem, which makes it computationally difficult. We suggest approxi-
mating the Two-Way Model with two URP models; one that groups users
and one that groups documents. Their two predictions are combined us-
ing a product of experts model. This combination of two one-way models
achieves even better prediction performance than the original Two-Way
Model.

1 Introduction

This paper considers models for the task of predicting relevance values for user–
item pairs based on a set of observed ratings of users for the items. In particular,
we concentrate on the task of predicting relevance when very few ratings are
known for each user or item.1

In so-called collaborative filtering methods the predictions are based on the
opinions of similar-minded users. Collaborative filtering is needed when the task
is to make personalized predictions but there is not enough data available for each
user individually. The early collaborative filtering methods were memory-based
(see, e.g., [1,2]). Model-based approaches are justified by the poor scaling of the
memory-based techniques. Recent work includes probabilistic and information-
theoretic models, see for instance [3,4,5,6].

A family of models most related to our work are the latent topic models,
which have been successfully used in document modeling but also in collabora-
tive filtering [7,8,9,10,11,12,13,14,15,16,17]. The closest related models include
probabilistic Latent Semantic Analysis (pLSA; [3]), Latent Dirichlet Allocation

1 The models we discuss are generally applicable, but since our prototype application
area has been information retrieval we will refer to the items as documents.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 178–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Two-Way Grouping by One-Way Topic Models 179

(LDA; [18,19]), and User Rating Profile model (URP; [20]), which all assume a
one-way grouping. In addition, there is a two-way grouping model, called Flexi-
ble Mixture Model (FMM; [21]). We have discussed the main differences between
our Two-Way Model and these related models in [22].

1.1 Cold-Start Problem

Since a collaborative filtering system has to rely on the past experiences of the
users, it will have problems when assessing new documents that have not yet
been seen by most of the users. Making the collaborative filtering scheme item-
based, that is, grouping items or documents instead of users, would in turn
imply the problem where new users that have only few ratings will get poor
predictions. This problem of unseen or almost unseen users and documents is
generally referred to as the cold-start problem in recommender system literature,
see for instance [23]. The Two-Way Model was proposed to tackle this problem
of either new users or new documents [22,24].

1.2 Approximating Two-Way Model with Two One-Way Models

It has been shown for hard biclustering of binary data matrices, that cluster-
ing the marginals independently to produce a check-board-like biclustering is
guaranteed to achieve fairly good results compared to the NP-hard optimal so-
lution. An approximation ratio for the crossing of two one-way clusterings has
been proven [25,26]. Inspired by this theoretical guarantee, we suggest approxi-
mating the Two-Way Model with two User Rating Profile models (URP, [20]);
one that groups users and one that groups documents. The combination of the
two Gibbs-sampled probabilistic predictions is made using a product of experts
model [27].

We have followed the experimental setups of our earlier study [22] in order
to be able to compare the results in a straightforward manner. We briefly de-
scribe the experimental scenarios, the performance measures and the baseline
models in Sect. 3. In Sect. 4.1 we demonstrate with clearly clustered toy data
how the product of two URP models improves the relevance predictions of the
corresponding one-way models. Finally, in Sect. 4.2 we show in a real-world case
study from our earlier paper that the proposed method works as expected also
in practice.

We expected the proposed method to have the advantage of giving better
predictions than the individual one-way models with the computational com-
plexity of the one-way model. The one-way grouping models are faster and more
reliable in their convergence than the Two-Way Model, basically because of the
difference in the intrinsic complexity of the tasks they are solving.

2 Method

Originally, User Rating Profile model was suggested to be estimated by varia-
tional approximation (variational URP, [20]), but we have introduced also Gibbs-
sampled variants of the model in [22,24] (Gibbs URP and Gibbs URP-GEN).

180 E. Savia, K. Puolamäki, and S. Kaski

The difference between a one-way model and the Two-Way Model is whether to
cluster only users (documents) or to cluster both users and documents. Another
difference between URP and the Two-Way Model is whether the users and doc-
uments are assumed to be generated by the model or treated as covariates of
the model. In our earlier study [22] it was found that unless the data marginals
are especially misleading about the full data, it is always useful to design the
model to be fully generative, in contrast to seeing users and documents as given
covariates of the model. Therefore, we have only included the generative variants
of Gibbs URP models is this study (Gibbs URP-GEN).

2.1 One-Way Grouping Models

In Fig. 1 we show graphical representations of the generative Gibbs URP model
introduced in [22] (User Gibbs URP-GEN), and the corresponding document-
grouping variant (Doc Gibbs URP-GEN). They are the one-way grouping models
used as the basis of our suggested method. Our main notations are summarized
in Table 1.

2.2 Two-Way Grouping Model

In Fig. 2 we show a graphical representation of the Two-Way Model that our
suggested method approximates. The Two-Way Model generalizes the generative
user-grouping URP by grouping both users and documents. It has been shown
to predict relevance more accurately than one-way models when the target con-
sists of both new documents and new users. The reason is that generalization
over documents becomes beneficial for new documents and at the same time
generalization over users is needed for new users. Finally, Table 2 summarizes
the differences between the models.

2.3 Approximation of Two-Way Model by Product of Experts

We propose a model where we estimate predictive Bernoulli distributions sepa-
rately with user-based URP and document-based URP and combine their results
with a product of experts model [27]. To be exact, we took the product of the
Bernoulli relevance probabilities given by the user-based URP (PU (r = 1|u, d))
and the document-based URP (PD(r = 1|u, d)) and normalized the product
distributions, as follows:

PPoE(r = 1|u, d) =
PU (r = 1|u, d) PD(r = 1|u, d)∑

r=0,1 PU (r|u, d) PD(r|u, d)
. (1)

2.4 Baseline Models

We compared our results to two simple baseline models. These models mainly
serve as an estimate of the lower bound of performance by making an assumption
that the data comes from one cluster only. The Document Frequency Model does
not take into account differences between users or user groups at all. It simply

Two-Way Grouping by One-Way Topic Models 181

Table 1. Notation

SYMBOL DESCRIPTION

u user index
d document index
r binary relevance (relevant = 1, irrelevant = 0)

u∗ user group index (attitude in URP)
d∗ document cluster index

NU number of users
ND number of documents
N number of triplets (u, d, r)

KU number of user groups
KD number of document clusters

θU

αU u

Rα r

u*αu*

d

βU

θR
ND

KU

αD θD

N

(a) User Gibbs URP-GEN groups
only users and assumes that the rel-
evance depends solely on the user
group and the document.

u

r

d*θD

KD

d

NU

θRRα

α D

αd*

βD

θUα U

N

(b) Doc Gibbs URP-GEN groups
only documents and assumes that
the relevance depends solely on the
document cluster and the user.

Fig. 1. Graphical model representations of the generative Gibbs URP models with
user grouping (User Gibbs URP-GEN) and with document grouping (Doc Gibbs URP-
GEN). The grey circles indicate observed values. The boxes are “plates” representing
replicates; the value in a corner of each plate is the number of replicates. The rightmost
plate represents the repeated choice of N (user, document, rating) triplets. The plate
labeled with KU (or KD) represents the different user groups (or document clusters),
and βU (or βD) denotes the vector of multinomial parameters for each user group
(or document cluster). The plate labeled with ND (or NU) represents the documents
(or users). In the intersection of these plates there is a Bernoulli-model for each of the
KU ×ND (or KD×NU) combinations of user group and document (or document cluster
and user). Since αD and θD (or αU and θU) are conditionally independent of all other
parameters given document d (or user u), they have no effect on the predictions of
relevance P (r | u, d) in these models. They only describe how documents d (or users u)
are assumed to be generated. A table listing distributions of all the random variables
can be found in the Appendix.

182 E. Savia, K. Puolamäki, and S. Kaski

θU

θD

αD βD d

αU βU u

Rα θR r

u*

d*

α u*

α
d*

K

KU

D

N

Fig. 2. Graphical model representation of the Two-Way Model, which groups both
users and documents and assumes that the relevance depends only on the user group
and the document cluster instead of individual users/documents. The rightmost plate
represents the repeated choice of N (user, document, rating) triplets. The plate labeled
with KU represents the different user groups, and βU denotes the vector of multinomial
parameters for each user group. The plate labeled with KD represents the different
document clusters, and βD denotes the vector of multinomial parameters for each
document cluster. In the intersection of these plates there is a Bernoulli-model for each
of the KU × KD combinations of user group and document cluster. A table listing
distributions of all the random variables can be found in the Appendix.

Table 2. Summary of the models (u=user, d=document). The column “Gibbs” indi-
cates which of the models are estimates by Gibbs sampling, in contrast to variational
approximation. Prefix “2-way” stands for combination of two one-way models.

Model Abbreviation Generates u,d Gibbs Groups u Groups d

Two-Way Model • • • •
2-way Gibbs URP-GEN • • • •
2-way Gibbs URP – • • •
2-way Variational URP – – • •
1-way User Gibbs URP-GEN • • • –
1-way User Gibbs URP – • • –
1-way User Var URP – – • –

1-way Doc Gibbs URP-GEN • • – •
1-way Doc Gibbs URP – • – •
1-way Doc Var URP – – – •

Two-Way Grouping by One-Way Topic Models 183

models the probability of a document being relevant as the frequency of r = 1
in the training data for the document:

P (r = 1 | d) =
∑

u #(u, d, r = 1)∑
u,r #(u, d, r)

. (2)

The User Frequency Model, on the other hand, does not take into account dif-
ferences between documents or document groups. It is the analogue of Document
Frequency Model, where the roles of users and documents have been interchanged.

3 Experiments

3.1 Experimental Scenarios

In this section we describe the different types of experimental scenarios that
were studied with both data sets. The training and test sets were taken from the
earlier study [22]. The scenarios have various levels of difficulty for models that
group only users, only documents, or that group both.

– Only “New” Documents. This scenario had been constructed to corre-
spond to prediction of relevances for new documents in information retrieval.
It had been taken care that each of the randomly selected test documents
had only 3 ratings in the training data. The rest of the ratings for these
documents had been left to the test set. For the rest of the documents, all
the ratings were included in the training set. Hence, the models were able
to use “older” documents (for which users’ opinions are already known) for
training the user groups and document clusters. This scenario favors models
that cluster documents.

– Only “New” Users. The experimental setting for new users had been
constructed in exactly the same way as the setting for new documents but
with the roles of users and documents reversed. This scenario favors models
that cluster users.

– Either User or Document is “New”. In an even more general scenario
either the users or the documents can be “new.” In this setting the test
set consisted of user-document pairs where either the user is “new” and
the document is “old” or vice versa. This scenario brings out the need for
two-way generalization.

– Both User and Document are “New”. In this setting all the users and
documents appearing in the test set were “new,” having only 3 ratings in the
training set. This case is similar to the previous setting but much harder,
even for the two-way grouping models.

3.2 Measures of Performance

For all the models, we used log-likelihood of the test data set as a measure of
performance, written in the form of perplexity,

perplexity = e−
L
N , where L =

N∑
i=1

log P (ri | ui, di,D) . (3)

184 E. Savia, K. Puolamäki, and S. Kaski

Here D denotes the training set data, and N is the size of the test set. Gibbs
sampling gives an estimate for the table of relevance probabilities over all (u, d)
pairs, P (r | u, d,D), from which the likelihood of each test pair (ui, di) can be
estimated as P (ri | ui, di,D).2

We further computed the accuracy, that is, the fraction of the triplets in
the test data set for which the prediction was correct. We took the predicted
relevance to be argmaxr∈{0,1} P (r | u, d,D), where P (r | u, d,D) is the probabil-
ity of relevance given by the model. Statistical significance was tested with the
Wilcoxon signed rank test.

3.3 Demonstration with Artificial Data

The artificial data sets were taken from the earlier study [22]. The experimental
setting is described in detail in the technical report [28]. In brief, the data was de-
signed such that it contained bicluster structure with KU = KD = 3. There were
10 artificial data sets of size 18,000, that all followed the same bicluster structure.

All the models were trained with the known true numbers of clusters. For each
of the 10 data sets the models were trained with a training set and tested with a
separate test set, and the final result was the mean of the 10 test set perplexities.

The generative Gibbs URP models were combined as a product of experts
model. According to our earlier studies, the variational URP generally seems to
produce extreme predictions, near either 0 or 1. Therefore, the variational URP
models (User Var URP and Doc Var URP) were combined as a hard biclustering
model, as follows. The MAP estimates for cluster belongings from the distribu-
tions of the one-way variational URP models were used to divide all the users
and documents into bins to produce a hard check-board-like biclustering. In each
bicluster the P (r = 1|u, d) was set to the mean of the training data points that
lay in the bicluster.

3.4 Experiments with Parliament Data

We selected the cluster numbers using a validation set described in [28]. The
validated cluster numbers (Two-Way Model KU = 4 and KD = 2, User Gibbs
URP-GEN KU = 2, Doc Gibbs URP-GEN KD = 2) were used in all experimen-
tal scenarios. The choices from which the cluster numbers were selected were
KU ∈ {1, 2, 3, 4, 5, 10, 20, 50} for the user groups and KD ∈ {1, 2, 3, 4, 5, 10, 20}
for the document clusters.

4 Results

4.1 Results of Experiments with Artificial Data

The results of the experiment with artificial data are shown in Table 3. The
proposed product of two generative Gibbs URP models outperformed even the
2 Theoretically, perplexity can grow without a limit if the model predicts zero proba-

bility for some element in the test data set, so in practice, we clipped the probabilities
to the range [e−10, 1].

Two-Way Grouping by One-Way Topic Models 185

Two-Way Model in all the scenarios, being the best in all but the “both new”
case, where the hard clustering of MAP estimates of variational URP models
was the best. The hard biclustering model worked very well for the variational
URP (See Table 3), in contrast to the product of experts -combination, which
did not perform well for variational URP3. The prediction accuracy of the best
model varied between 83–84%, while the prediction accuracy of the best baseline
model varied between 50–52%. The full results with all the accuracy values can
be found in the technical report [28].

Table 3. Perplexity of the various models in experiments with artificial data. In each
column, the best model (underlined) differs statistically significantly from the second-
best one (P-value ≤ 0.01). Small perplexity is better; 2.0 corresponds to binary random
guessing and 1.0 to perfect prediction.

New New Either Both
Method Doc User New New

Two-Way Model 1.52 1.54 1.53 1.70
2-way Gibbs URP-GEN 1.46 1.47 1.45 1.70

2-way Var URP 1.55 1.57 1.54 1.52

User Gibbs URP-GEN 1.68 1.57 1.62 1.83
User Var URP 7.03 2.07 3.45 9.27

Doc Gibbs URP-GEN 1.56 1.69 1.62 1.81
Doc Var URP 1.86 5.99 3.08 6.90

User Freq. 2.02 5.65 3.25 4.99
Document Freq. 5.29 2.01 3.21 5.92

4.2 Results of Experiments with Parliament Data

The product of two generative Gibbs URP models outperformed even the Two-
Way Model in all the scenarios, being the best in all cases (see Table 4). The
prediction accuracy of the best model varied between 93–97%, while the predic-
tion accuracy of the best baseline model varied between 64–71%. The full results
with all the accuracy values can be found in the technical report [28].

5 Discussion

We have tackled the problem of new users or documents in collaborative fil-
tering. We have shown in our previous work that if there are both new users
and new documents, two-way generalization becomes necessary, and introduced
a probabilistic Two-Way Model for the task in [22].

In this paper we suggest an approximation for the Two-Way Model with
two User Rating Profile models — one that groups users and one that groups
3 We only show the performance of Variational URP for the artificial data since our

implementation is too inefficient for larger data sets.

186 E. Savia, K. Puolamäki, and S. Kaski

Table 4. Parliament Data. Comparison between the models by perplexity over the
test set. In each column, the best model (underlined) differs statistically significantly
from the second-best one (P-value ≤ 0.01). Small perplexity is better; 2.0 corresponds
to binary random guessing and 1.0 to perfect prediction.

New New Either Both
Method Doc User New New

Two-Way Model 1.37 1.40 1.38 1.62
2-way Gibbs URP-GEN 1.19 1.22 1.20 1.45

User Gibbs URP-GEN 1.47 1.34 1.41 1.64
Doc Gibbs URP-GEN 1.34 1.54 1.43 1.68

User Freq. 2.00 5.68 3.32 4.78
Document Freq. 5.36 1.76 3.12 5.85

documents — which are combined as a product of experts (PoE). We show with
two data sets from the earlier study [22], that the PoE model achieves the per-
formance level of the more principled Two-Way Model and even outperforms it.

The task of finding such a two-way grouping that best predicts the relevance
is a difficult combinatorial problem, which makes convergence of the sampling
hard to achieve. This work was motivated by the finding that hard biclustering
of binary data can be approximated using two one-way clusterings with a proven
approximation ratio.

The main advantage of the proposed method, compared to earlier works, is
the ability to make at least as good predictions as the Two-Way Model but with
the computational complexity of the one-way model. We assume that the reason
why the product of experts combination outperformed the Two-Way Model lies
in the less reliable and slower convergence of the Two-Way Model compared
to the one-way grouping models. This is basically due to the difference in the
intrinsic complexity of the tasks they are solving.

Acknowledgments

This work was supported in part Network of Excellence of the EC. This pub-
lication only reflects the authors’ views. Access rights to the data sets and are
restricted due to other commitments. This work was done in the Adaptive In-
formatics Research Centre, a Centre of Excellence of the Academy of Finland.

References

1. Konstan, J., Miller, B., Maltz, D., Herlocker, J.: GroupLens: Applying collaborative
filtering to usenet news. Communications of the ACM 40(3), 77–87 (1997)

2. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automat-
ing ‘word of mouth’. In: Proceedings of the ACM CHI 1995 Human Factors in
Computing Systems Conference, pp. 210–217 (1995)

Two-Way Grouping by One-Way Topic Models 187

3. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst. 22(1), 89–115 (2004)

4. Jin, R., Si, L.: A Bayesian approach towards active learning for collaborative fil-
tering. In: Proceedings of the Twentieth Conference on Uncertainty in Artificial
Intelligence, UAI 2004, pp. 278–285. AUAI Press (2004)

5. Wettig, H., Lahtinen, J., Lepola, T., Myllymäki, P., Tirri, H.: Bayesian analysis of
online newspaper log data. In: Proc. of the 2003 Symposium on Applications and
the Internet Workshops (SAINT 2003), pp. 282–287. IEEE Computer Society, Los
Alamitos (2003)

6. Zitnick, C., Kanade, T.: Maximum entropy for collaborative filtering. In: Proceed-
ings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, pp.
636–643. AUAI Press (2004)

7. Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 127–134. ACM Press, New York (2003)

8. Buntine, W., Jakulin, A.: Discrete component analysis. In: Saunders, C., Grobelnik,
M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940, pp. 1–33.
Springer, Heidelberg (2006)

9. Erosheva, E., Fienberg, S., Lafferty, J.: Mixed membership models of scientific
publications. Proc. of the National Academy of Sciences 101, 5220–5227 (2004)

10. Keller, M., Bengio, S.: Theme topic mixture model: A graphical model for docu-
ment representation. In: PASCAL Workshop on Text Mining and Understanding
(2004)

11. Marlin, B., Zemel, R.S.: The multiple multiplicative factor model for collabora-
tive filtering. In: ICML 2004: Proceedings of the 21th International Conference on
Machine Learning, p. 73. ACM Press, New York (2004)

12. McCallum, A., Corrada-Emmanuel, A., Wang, X.: The author-recipient-topic
model for topic and role discovery in social networks: Experiments with Enron
and Academic Email. Technical report, University of Massachusetts (2004)

13. Popescul, A., Ungar, L., Pennock, D., Lawrence, S.: Probabilistic models for unified
collaborative and content-based recommendation in sparse-data environments. In:
Proceedings of UAI 2001, pp. 437–444. Morgan Kaufmann, San Francisco (2001)

14. Pritchard, J.K., Stephens, M., Donnelly, P.: Inference of population structure using
multilocus genotype data. Genetics 155, 945–959 (2000)

15. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for
authors and documents. In: Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, UAI 2004, pp. 487–494. AUAI Press (2004)

16. Yu, K., Yu, S., Tresp, V.: Dirichlet enhanced latent semantic analysis. In: Cowell,
R.G., Ghahramani, Z. (eds.) Proceedings of the Tenth International Workshop
on Artificial Intelligence and Statistics, AISTATS 2005, pp. 437–444. Society for
Artificial Intelligence and Statistics (2005)

17. Yu, S., Yu, K., Tresp, V., Kriegel, H.-P.: A probabilistic clustering-projection model
for discrete data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama,
J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 417–428. Springer, Heidelberg
(2005)

18. Blei, D., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

19. Buntine, W.: Variational extensions to EM and multinomial PCA. In: Elomaa, T.,
Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 23–34.
Springer, Heidelberg (2002)

188 E. Savia, K. Puolamäki, and S. Kaski

20. Marlin, B.: Modeling user rating profiles for collaborative filtering. In: Advances
in Neural Information Processing Systems 16, pp. 627–634. MIT Press, Cambridge
(2004)

21. Si, L., Jin, R.: Flexible mixture model for collaborative filtering. In: Fawcett, T.,
Mishra, N. (eds.) Proceedings of the Twentieth International Conference on Ma-
chine Learning, ICML 2003, pp. 704–711. AAAI Press, Menlo Park (2003)

22. Savia, E., Puolamäki, K., Kaski, S.: Latent grouping models for user preference
prediction. Machine Learning 74(1), 75–109 (2009)

23. Lam, X.N., Vu, T., Le, T.D., Duong, A.D.: Addressing cold-start problem in rec-
ommendation systems. In: ICUIMC 2008: Proceedings of the 2nd international
conference on Ubiquitous information management and communication, pp. 208–
211. ACM, New York (2008)

24. Savia, E., Puolamäki, K., Sinkkonen, J., Kaski, S.: Two-way latent grouping model
for user preference prediction. In: Bacchus, F., Jaakkola, T. (eds.) Uncertainty in
Artificial Intelligence 21, pp. 518–525. AUAI Press, Corvallis (2005)

25. Puolamäki, K., Hanhijärvi, S., Garriga, G.C.: An approximation ratio for biclus-
tering. Information Processing Letters 108, 45–49 (2008)

26. Anagnostopoulos, A., Dasgupta, A., Kumar, R.: Approximation algorithms for
co-clustering. In: Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 201–210. ACM, New
York (2008)

27. Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence.
Neural Computation 14(8), 1771–1800 (2002)

28. Savia, E., Puolamäki, K., Kaski, S.: On two-way grouping by one-way topic models.
Technical Report TKK-ICS-R15, Helsinki University of Technology, Department
of Information and Computer Science, Espoo, Finland (May 2009)

A Distributions in the Models

Table 5. Summary of the distributions in User Gibbs URP-GEN

SYMBOL DESCRIPTION

βU (u∗) Vector of multinomial parameters defining the probabilities of certain
user group u∗ to contain each user

θU Multinomial probabilities of user groups u∗ to occur
θD Multinomial probabilities of documents d to occur (needed only for the

generative process)

θR(u∗, d) Vector of Bernoulli parameters defining the probabilities of certain
user group u∗ to consider document d relevant or irrelevant

αU Dirichlet prior parameters for all βU

αu∗ Dirichlet prior parameters for θU

αD Dirichlet prior parameters for θD (needed only for the generative process)
αR Dirichlet prior parameters for all θR

Two-Way Grouping by One-Way Topic Models 189

Table 6. Summary of the distributions in the Two-Way Model

SYMBOL DESCRIPTION

θU Multinomial probabilities of user groups u∗ to occur
βU (u∗) Vector of multinomial parameters defining the probabilities of certain

user group u∗ to contain each user

θD Multinomial probabilities of document clusters d∗ to occur
βD(d∗) Vector of multinomial parameters defining the probabilities of certain

document cluster d∗ to contain each document

θR(u∗, d∗) Vector of Bernoulli parameters defining the probabilities of certain
user group u∗ to consider document cluster d∗ relevant or irrelevant

αU Dirichlet prior parameters for all βU

αu∗ Dirichlet prior parameters for θU

αD Dirichlet prior parameters for all βD

αd∗ Dirichlet prior parameters for θD

αR Dirichlet prior parameters for all θR

Selecting and Weighting Data for Building
Consensus Gene Regulatory Networks

Emma Steele and Allan Tucker

School of Information Systems Computing and Maths,
Brunel University, Uxbridge UB8 3PH, UK
{emma.steele,allan.tucker}@brunel.ac.uk

Abstract. Microarrays are the major source of data for gene expression
activity, allowing the expression of thousands of genes to be measured
simultaneously. Gene regulatory networks (GRNs) describe how the ex-
pression level of genes affect the expression of the other genes. Mod-
elling GRNs from expression data is a topic of great interest in current
bioinformatics research. Previously, we took advantage of publicly avail-
able gene expression datasets generated by similar biological studies by
drawing together a richer and/or broader collection of data in order to
produce GRN models that are more robust, have greater confidence and
place less reliance on a single dataset. In this paper a new approach,
Weighted Consensus Bayesian Networks, introduces the use of weights
in order to place more influence on certain input networks or remove the
least reliable networks from the input with encouraging results on both
synthetic data and real world yeast microarray datasets.

Keywords: Consensus, Microarray, Networks, Weighting.

1 Introduction

Microarrays are the major source of data for gene expression activity, allowing
the expression of thousands of genes to be measured simultaneously. Gene reg-
ulatory networks (GRNs) describe how the expression level of genes affect the
expression of the other genes. Modelling GRNs from expression data is a topic of
great interest in current bioinformatics research [12,5]. An ongoing issue concerns
the problem of data quality and the variation of GRNs generated from microar-
ray studies in different laboratories. One potential solution to this problem lies
in the integration of multiple datasets into a single unifying GRN. Previously,
we took advantage of publicly available gene expression datasets generated by
similar biological studies by drawing together a richer and/or broader collection
of data in order to produce GRN models that are more robust, have greater
confidence and place less reliance on a single dataset [14]. This was achieved by
using a method we called Consensus Bayesian Networks (CBNs) where consis-
tencies across a set of network-edges learnt from all, or a certain proportion of
the input datasets are then identified.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 190–201, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Selecting and Weighting Data for Building Consensus GRNs 191

In this paper we extend the CBN approach in order to address the fact that
the reliability of networks varies across the datasets from which they are gen-
erated.A generalised consensus approach is presented, which we call Weighted
Consensus Bayesian Networks, that can act on input networks with statistical
confidences attached to each edge (generated using bootstrapping as in [14]),
The new approach introduces the use of weights in order to place more influence
on certain input networks or remove the least reliable networks from the input.

Whilst comparing and combining microarray expression datasets is a popular
topic of research in bioinformatics [9,2], Wang et al.[10] are the first (to our
knowledge) to address the issue with regards to modelling GRNs that combines
the models for each dataset into an overall, consistent solution. In [14], we intro-
duced CBNs for building consensus networks. However, these did not make use
of weights to bias the input data as we do in this paper. Using weights to vary the
influence of each dataset when learning or modelling from multiple data sources
is obviously not new, most previous research has focused on combining classifiers,
whereas we are concerned with learning and combining network structures. In
particular, the idea of combining models has some similarities to ensemble learn-
ing, such as boosting [13], which aims to combine several weak classifiers into one
strong classifier. In general the weak classifiers are combined according to some
weighting that is related to their accuracy. Similarly, Bayesian Model Averaging
(BMA) [6] is a technique that calculates a (weighted) average over the posterior
distributions of a set of potential models. There has been research in using BMA
with Bayesian networks for classification and prediction. However, BMA is not
model combination. Instead it is designed to address uncertainty in model selec-
tion given a particular dataset. Both types of technique are designed to improve
classification or prediction for a model across a single dataset. By contrast, we
are concerned with combining models generated from multiple datasets, which
have their own biases and levels of noise. This means that we may have a high
quality dataset requiring a high weight, and a low quality dataset that requires
a low weight. Ensemble learning and BMA have not been designed to deal with
this type of input.

In the next section we describe the improvements to the original CBN algo-
rithm before describing the experiments and the datasets used to test them in
Section 3. In Section 4 we discuss the implications of the results and potential
future work.

2 Methods

This section presents the Consensus Bayesian Network (CBN) approach before
introducing the Weighted Consensus Bootstrapped Networks (WCBNs) that can
act on input networks with statistical confidences attached to each edge. These
confidences are generated using a bootstrapping approach on each input dataset.
We explain how weighting can be incorporated into the method to allow each
input network to have a different influence on the final consensus network.

192 E. Steele and A. Tucker

Consensus Bayesian Networks: The CBN approach involves learning a
network from each dataset using bootstrapping so that each edge contains a
confidence measure. For this paper, we use a score and-search based method
incorporating simulated annealing and Bayes Information Criterion. Uniform
priors are assumed and the bootstrap involved repeatedly learning networks
from each resampled dataset 100 times in order to calculate confidences in links
between nodes (based upon the number of times they appeared in the different
bootstraps). Each network with its confidences are then used as inputs to the
consensus algorithm which selects links based upon a threshold. The threshold
determines at what level of confidence the links appear in the final consensus net-
work and the whole process is summarised in Figure 1 for a number of different
thresholds showing how the process relates to graph union when the threshold
is low and intersection when it is high. Undirected edges represent edges that
have appeared in either direction in the input networks.

Fig. 1. The basic Consensus Bayesian Network approach for different consensus thresh-
olds

Weighted Consensus Bootstrapped Networks: The WCBNs approach also
takes as input a set of bootstrapped networks, from each input dataset, with a
confidence attached to each edge and a consensus threshold t. As output it
returns a consensus network (also with a confidence attached to each edge).
In the input bootstrapped networks, the statistical confidence attached to each
edge is referred to as the input confidence. In the consensus network we refer to
the confidence attached to each edge as the consensus confidence. The WCBN
approach updates the CBNs approach in that input networks with higher weights
have more influence over each edge’s consensus confidence than input networks
with lower weights. In order to achieve this it exploits predictive accuracy for
calculating weights in order to bias the effect of each input dataset: A dataset
that is used to build a network model that can predict node values with high
accuracy on other independent datasets can be said to be better at generalising

Selecting and Weighting Data for Building Consensus GRNs 193

to other data. This is a fairly intuitive measure as it shows that the network
does not overfit the dataset from which it was generated, as it can perform well
on other datasets.

To calculate prediction-based weights for a set of input datasets, the following
method is used: for each dataset a network is learnt and the prediction accu-
racy is calculated for every node, over a random sample of observations equally
distributed across the other datasets. Then a median prediction accuracy is cal-
culated for each network, derived across all nodes (the use of the median is
to account for outliers, nodes that perform unusually badly or well). We now
explore two methods for using this weighting information: Prediction-based net-
work weighting and Prediction-based network selection, before describing the
WCBN algorithm in detail.

Prediction-based network weighting: The prediction-based reliability mea-
sures for a set of networks can be translated to network weights, compatible for
use with the WCBN approach, described in detail shortly. Simply, each network
weight is calculated by its median prediction accuracy as a percentage of the
total sum of median prediction accuracies across the set of all networks:

wi =
ai∑N

k=1 ak

where N is the number of networks, wi is the weight for network i and ai is the
median predictive accuracy for network i. This method of calculation ensures
that all weights sum to 1, as required by the WCBN algorithm. Then each
weight represents the proportional influence for that network in the consensus
algorithm.

Prediction-based network selection: Previous results in [14] indicate that
in some cases, using only a subset of available datasets/networks can produce a
better consensus model than when using all available datasets. Therefore, as an
alternative, the prediction-based reliability measures for a set of networks can
also be used to select a subset of input networks, where each network has an equal
influence on the consensus process. In this case, instead of weighting the influence
of individual networks, the least reliable networks are simply discarded from the
input. Using the prediction-based reliability measure, the input networks can be
ranked from most reliable to least reliable and either the n networks with the
highest median prediction accuracy are selected as input, or a threshold, x, is
used to determine the cutoff for accuracy.

The Weighted Consensus Bootstrapped Network Algorithm: The
WCBN algorithm proceeds as follows (also see Algorithm 1 for step-by-step
details). Each edge is considered in turn. For each edge, a set C is created of
input confidence-weight pairs, where the kth pair contains the input confidence
for that edge in the kth input network, and the weight wk of the kth input
network. The pairs in C are ordered descendingly by input confidence. Then a
subset Cmax ⊆ C of this ordered set is created, which contains the pairs with the

194 E. Steele and A. Tucker

highest input confidences. The size of the subset Cmax depends on the network
weights and the consensus threshold t: the sum of network weights of the pairs
in subset Cmax must equal or exceed the consensus threshold t. Then, the edge
consensus confidence is the minimum input confidence in the subset Cmax.

Input: Set of n bootstrapped networks, each with an attached weight wi

indicating its influence such that
∑

i wi = 1 and a consensus threshold
(between 0 and 1)

Output: Consensus network

for each pair of nodes i,j do
1. Create set C = {(cij1 , w1), ..., (cijn

, wn)} where cijk
is the edge

confidence for the edge between nodes i → j and wk is the
weight for the kth input network

2. Reorder and re-index the confidence-weight pairs in C from highest
to lowest confidence where cij1 is the highest edge confidence
and cijn

is the lowest
3. Create subset Cmax ⊆ C such that Cmax = {(cij1 , w1), ..., (cijA

, wA)}
where

∑
k=1:A wk ≥ t

4. Define the edge consensus confidence as Conij = minconf (Cmax)

end

Algorithm 1. Weighted Consensus Bootstrapped Networks

3 Experiments and Results

Since the inputs and outputs of the original CBN in [14] and the WCBN algo-
rithm are different, it is not straightforward (or appropriate) to make a direct
performance comparison between them. Instead we compare three different vari-
ations of the WCBN: firstly a method that only involved using the bootstrap
weights without any input data weightings. We refer to this method from now
on as Equal Weightings and can be achieved by using Algorithm 1 but with each
input weight set to 1/N . Secondly we use the full WCBN with prediction-based
network weighting and prediction-based network selection as described earlier.
Additionally, we compare the different WCBNs approaches against the individ-
ual input networks and against a network generated from an aggregate dataset
formed by combining the input datasets followed by scale normalisation.

The performance of the different consensus networks are evaluated by compar-
ing them against the true network in terms of TP and FP interactions. (Also com-
pared is the network generated from the aggregated normalised input datasets
as a straw man base-line). These comparisons can be represented by single val-
ues by using ROC curve analysis to calculated the Area Under Curve (AUC). A
higher AUC value (assuming values are above 0.5) indicates a better performing
network. Note that a different network is generated for each consensus threshold
from 1-100%. This means that the AUC value may vary across consensus thresh-
olds for each different approach. Therefore in the comparison, for each approach

Selecting and Weighting Data for Building Consensus GRNs 195

we consider the maximum AUC value achieved and the corresponding consensus
threshold.

All algorithms are tested on 18 different combinations of synthetic data (with
varying levels of noise) as well as real-world yeast datasets, both of which we
describe now.

3.1 Datasets and Experiment Design

In order to examine the relationship between the input network quality and
the performance of the resulting consensus network, experiments were first car-
ried out on synthetic microarray datasets to provide a controlled setting, before
moving on to evaluation on a real data application. In this section, the different
types of datasets that are used are described, and the experiments performed
and evaluation is explained.

Synthetic datasets: The synthetic datasets are based on a synthetic network,
which is generated based on a regulatory network structure of 13 genes. Four
different time-series gene expression datasets were generated for the network us-
ing differential equations to mimic a transcriptional gene network. See Figure 2
for the network structure. The change of the expression value of each gene is
determined by a function composed of three parts: activation by a single other
gene, repression by a single other gene and decay. Each dataset has a varying
number of samples ranging from 40-120. In order to investigate how network
quality affects the consensus approach a number of further datasets were gen-
erated by adding Gaussian noise, with various variances, to each dataset. Each

1

2

4

5

10 11

3

6

7

8

12

9

13

REB1

RPN4

SKN7

SIP4

YAP1

TYE7

ROX1

HSF1

SFL1

Fig. 2. Structures of the Synthetic and Yeast networks

196 E. Steele and A. Tucker

Table 1. Summary of yeast datasets

Dataset [reference] Description No. Samples
Beissbarth [1] Heat-shock response 12
Eisen [3] Cold-shock and 14

heat-shock response
Gasch [4] Environmental changes 173

inc heat-shock response
Grigull [11] Heat-shock response 27
Spellman [8] Cell-cycle 73

dataset was discretised using an equal frequency methods with three bins. Input
networks with edge confidences were then generated from each dataset using
bootstrapping. Each consensus approach was run on 18 different combinations
of input networks. Each set of input networks contains 4 networks, where each
network is generated from a version of one of the original four datasets (no set
contains more than one version of each dataset). The sets of networks are ordered
by their collective level of reliability, which is measured as the median of median
predictive accuracies for the input networks generated from each dataset in the
set. Therefore synthetic dataset 1 is considered the most reliable combination of
input data, followed by set 2 down to set 18 (which contains the noisiest datasets
as expected).

Yeast datasets: We also use microarray data from well-documented yeast
studies. We focus on a sub-network of 9 regulatory genes that are related to
heat-shock response. The microarray datasets are publicly available on the Yeast-
BASE expression database - see Table 1 for more details. The learnt networks
are evaluated by comparing them to documented gene interactions, obtained
from the online YEASTRACT database [7]. See Figure 2 for the network
structure.

3.2 Results: Synthetic Networks

This section first looks at a comparison of the different consensus approaches.
This is followed by an exploration of the consensus threshold parameter for the
weighted networks and then an exploration of the selected networks.

Comparison of Consensus Approaches: The AUC performance comparison
plot (top) in Figure 3 shows the maximum AUC performance for each approach
by network set (referred to as sets 1-18). In addition, the AUC of the best per-
forming input network is recorded on the plot. Recall that a consensus network
of each type is generated for each consensus threshold from 1-100%. This means
that the maximum AUC performance (as shown in the plot) relates to a specific
consensus threshold or interval of consensus thresholds.

Based on these results, we can see that both versions of the new WCBN ap-
proach, prediction-based weighting and selection, always improve on or at least
equal the performance of the Equal Weightings approach. In particular, both

Selecting and Weighting Data for Building Consensus GRNs 197

0 2 4 6 8 10 12 14 16 18
0.5

0.6

0.7

0.8

0.9
AUC performance comparison

Set

M
ax

im
um

 A
U

C
 p

er
fo

rm
an

ce

Equal weighting
Prediction−based weighting
Prediction−based selection
Best performing input network
Normalisation Only

Fig. 3. Synthetic results: across all network sets, a comparison of the maximum AUC
and the length of consensus threshold interval for which this is achieved

WCBN approaches are able to outperform the best performing input network
and the Normalisation only network in more cases than the Equal Weightings ap-
proach. In order to obtain a p-value indicating the statistical significance of these
findings, a paired t-test was used.All consensus-based approaches outperform
the Normalisation only network with p ≤ 0.003. The weighting and selection ap-
proaches also both outperform the best input network with statistical significance
(p=0.016 and 0.006 respectively), whilst the Equal Weightings approach only ob-
tains a p-value of 0.27 for outperforming the best input network. The weighting
and selection approaches also outperform the Equal Weightings approach with
statistical significance (p=0.008 and 0.009 respectively), but there is no signifi-
cant difference between the weighting and selection approaches (p=0.63).

Recall that the network sets are ordered in terms of their collective reliability
(networks in set 1 have a higher prediction accuracy than those in set 18). It can
be seen in this plot that in general the maximum AUC decreases as the collective
level of reliability decreases as expected. It also seems that the largest increases
in performance for the new methods are found with the most reliable collections
of datasets (e.g. sets 1-6). This implies that combining better quality data can
produce even greater increases in performance.

Exploration of Consensus Threshold: The AUC in the previous discussion
corresponds to a specific interval of consensus thresholds. An issue that is raised
for both WCBN approaches is, how do we predict the exact consensus threshold
where the maximum AUC value is to be found? In order to consider this in
more detail, Fig 4 compares the AUC performance for the different approaches,
across all consensus thresholds from 1-100%, for a selection of the network sets.
First, we can see that the performance of the prediction-based weighting ap-
proach varies considerably by consensus threshold. The thresholds where the
AUC changes correspond to ‘weighting boundaries’ - thresholds at which an
additional network is able to influence the final consensus network. In general,

198 E. Steele and A. Tucker

0 50 100
0.7

0.75

0.8

0.85

0.9

Consensus threshold

A
U

C

0 50 100
0.65

0.7

0.75

0.8

0.85

0.9

Consensus threshold

A
U

C

0 50 100
0.7

0.75

0.8

0.85

0.9

0.95

Consensus threshold

A
U

C

0 50 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Set 4

Consensus threshold

A
U

C

0 50 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Set 5

Consensus threshold

A
U

C

0 50 100
0.5

0.6

0.7

0.8

0.9
Set 6

Consensus threshold

A
U

C

Equal weighting Prediction−based weighting Prediction−based selection Best input network

Fig. 4. Synthetic networks: approaches performance comparison for a selection of in-
dividual network sets

these weighting boundaries correspond to the areas around the standard equal
weighted boundaries - (25%,50% and 75% thresholds for 4 datasets). This is
because in these cases network weights are close to being equal. However, even
in these cases, the use of weights can cause a significant improvement in AUC
as in data set 5 at the 25% threshold, where the AUC value rises from around
0.77 (Equal Weightings) to 0.85 (prediction-based weighting). However, there are
also intervals of consensus threshold where the weighting can cause a significant
decrease in AUC such as in set 4 at the 25% threshold. It seems that selection of
the optimum consensus threshold for prediction-based weighting is not trivial.

Prediction-based selection: Method Comparison: We now discuss the
results of investigating the optimum number of selected input networks (n) and
the highest median prediction accuracy of the networks that have not been
selected (this is the threshold x). Firstly, we found that it is not possible to
choose a prediction accuracy threshold x for network selection that is appropriate
to all cases, since the highest median predictive accuracies of the unselected
networks vary from 0.15 to 0.44. However, further analysis reveals that there is
a relationship between n and x. Where fewer networks are selected, the selected
networks have a higher threshold for x, the highest median predictive accuracy
of the networks not selected. Together, these patterns imply that network sets
with higher predictive accuracies (i.e. higher reliability) require a lower number

Selecting and Weighting Data for Building Consensus GRNs 199

of input networks, whilst network sets with lower predictive accuracies (i.e. lower
reliability) require more input networks. This is intuitive - the higher the quality
of data the less we need in order to build better performing models.

3.3 Results: Yeast Heat-Stress Network

In this section, the new consensus approaches are applied to a set of real yeast
microarray datasets, that have been generated by different heat-stress microar-
ray studies. Figure 5 shows the AUC for each consensus approach, across all
consensus thresholds from 0 to 100%, as well the best performing individual in-
put network AUC (generated from the Spellman dataset). The prediction-based
weighting network achieves the highest AUC, making an improvement of almost
0.05 in AUC over the Equal Weightings approach. However, this is only at a single
consensus threshold of 78%. Fig 5 shows that it is around the thresholds relating
to equal weights (20%,40%,60%,80%) where the prediction-based weighting net-
work attains the largest increases in AUC. This is because the prediction-based
weights largely reflect an equal distribution (see Table 2). The prediction-based
selection network also achieves a significant improvement in the maximum AUC
when compared to the Equal Weightings or input networks. The best result is
achieved when the top three input networks are selected ranked by the highest
median prediction accuracy, giving the Gasch, Grigull and Spellman inputs (see
Table 2). This network attains a maximum AUC of 0.613 between the consensus
thresholds of 34% and 67%, showing that removing the two noisiest datasets
significantly improves the performance of the consensus network. Although the
prediction-based weighting network attains a slightly higher maximum AUC of

0 20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

0.65
Yeast heat stress network

Consensus threshold (%)

A
U

C

Equal weighting
Prediction−based
weighting
Prediction−based
selection
Best performing input
network (Spellman)
Normalisation only

Fig. 5. Yeast heat stress network: comparison of approaches by AUC

200 E. Steele and A. Tucker

Table 2. Yeast heat stress datasets: prediction-based reliability measures

Dataset Median predictive Prediction-based Individual
accuracy weight network AUC

Beissbarth 0.25 0.17 0.43
Eisen 0.26 0.18 0.43
Gasch 0.31 0.22 0.50
Grigull 0.30 0.21 0.49

Spellman 0.31 0.22 0.57

0.623 at a 78% threshold, this is at a single threshold point whilst prediction-
based selection improves network performance more consistently across thresh-
olds (as in the synthetic network results).

4 Conclusions

This paper has furthered the consensus approach to learning gene regulatory
networks by exploring ways to weight or select the input datasets. A measure of
reliability for sets of data, based on the prediction of node values has been intro-
duced. A comparison of these different consensus approaches has been applied
using synthetic and real microarray datasets with promising results. In all cases
presented in the comparison, prediction-based weighting and selection was able
to equal or improve the performance of both the standard consensus Bayesian
network approach with equal weighting and a normalisation approach where
data was aggregated prior to network learning. The performance of the consen-
sus network, whichever approach is used, can vary considerably by consensus
threshold. However, for prediction-based selection in particular, the experimen-
tal results indicated that there could be a relationship between the reliability
of the individual input networks and the optimum consensus threshold. More
reliable sets of input networks attained their maximum AUC values with higher
consensus thresholds than noisier, less reliable sets of input networks. The ex-
periments presented in this paper have been carried out on a limited set of data
with small-scale networks. There is no reason why the algorithm should not scale
and in order to draw firmer conclusions, a larger set of datasets, based on larger
networks will be investigated.

Acknowledgements

This work was part funded by a Royal Society International Joint Project Grant
(2006/R3).

References

1. Beissbarth, T., et al.: Processing and quality control of DNA array hybridization
data. Bioinformatics 16(11) (2000)

2. Conlon, E.M., Song, J.J., Liu, J.S.: Bayesian models for pooling microarray studies
with multiple sources of replications. BMC Bioinformatics 7(247) (2006)

Selecting and Weighting Data for Building Consensus GRNs 201

3. Eisen, M.B., et al.: Cluster analysis and display of genome-wide expression pat-
terns. PNAS 95(25), 14863–14868 (1998)

4. Gasch, A., et al.: Genomic expression program in the response of yeast cells to
environmental changes. Mol. Cell 11, 4241–4257 (2000)

5. Pe’er, D., et al.: Inferring subnetworks from perturbed expression profiles. In: Pro-
ceedings of the Int. Conference on Intelligent Systems for Molecular Biology (2001)

6. Hoeting, J.A., et al.: Bayesian model averaging: a tutorial. Statistical Science 14(4),
382–417 (1999)

7. Teixeira, M., et al.: The YEASTRACT database: a tool for the analysis of tran-
scription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Re-
search 34, D446–D451 (2006)

8. Spellman, P., et al.: Comprehensive identification of cell cycle-regulated genes of
the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Cell 9, 3273–
3297 (1998)

9. Ng, S.K., et al.: On combining multiple microarray studies for improved functional
classification by whole-dataset feature selection. Genome Informatics (14), 44–53
(2003)

10. Wang, Y., et al.: Inferring gene regulatory networks from multiple microarray
datasets. Bioinformatics 22(19), 2413–2420 (2006)

11. Grigull, J., et al.: Genome-wide analysis of mrna stability using transcription in-
hibitors and microarrays reveals post-transcriptional control of ribosome biogenesis
factors. Mol. Cell 24(12), 5534–5547 (2004)

12. de Morais, S.R., Aussem, A.: A novel scalable and data efficient feature subset
selection algorithm. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML
PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 298–312. Springer, Heidelberg
(2008)

13. Schapire, R.E.: The boosting approach to machine learning: An overview. In: Deni-
son, D.D., et al. (eds.) Nonlinear Estimation and Classification. Springer, Heidel-
berg (2003)

14. Steele, E., Tucker, A.: Consensus and meta-analysis regulatory networks for com-
bining multiple microarray gene expression datasets. Jounral of Biomedical Infor-
matics 41(6), 914–926 (2008)

Incremental Bayesian Network Learning
for Scalable Feature Selection

Grégory Thibault1, Alex Aussem1, and Stéphane Bonnevay2

1 University of Lyon, LIESP, F-69622 Villeurbanne Cedex, France
2 University of Lyon, ERIC, F-69622 Villeurbanne Cedex, France

Abstract. Our aim is to solve the feature subset selection problem
with thousands of variables using an incremental procedure. The pro-
cedure combines incrementally the outputs of non-scalable search-and-
score Bayesian network structure learning methods that are run on much
smaller sets of variables. We assess the scalability, the performance and
the stability of the procedure through several experiments on synthetic
and real databases scaling up to 139 351 variables. Our method is shown
to be efficient in terms of both running time and accuracy.

1 Introduction

Feature subset selection (FSS for short) is an essential component of quantitative
modeling, data-driven construction of decision support models or even computer-
assisted discovery. No a priori information or selection of variables is required.
Therefore, no previous knowledge premise will bias the final models. The FSS
enables the classification model to achieve good or even better solutions with a
restricted subset of features, and it helps the human expert to focus on a relevant
subset of features. However, databases have increased many fold in recent years
and most FSS algorithms do not scale to thousands of variables. Also, large-
scale databases presents enormous opportunities and challenges for knowledge
discovery and machine learning.

There have been a number of comparative studies for feature selection but few
scale up to (say) 100 000 variables. Moreover, findings reported at low dimensions
do not necessarily apply in high dimensions. While SVM are efficient and well
suited for scalable feature selection [1] (e.g., SVM-RFE stand for SVM Recursive
Feature Elimination), there is still much room for improvement. In microarray
data analysis for instance, it is common to use statistical testing to control
precision (often referred to as the false discovery rate) while maximizing recall,
in order to obtain high quality gene (feature) sets. [1] show that none of the above
SVM-based method provide such control. Moreover, not only model performance
but also robustness of the feature selection process should be taken into account
[2]. [3] show experimentally that SVM-RFE is highly sensitive to the "filter-out"
factor and that the SVM-RFE is an unstable algorithm. [4,5] showed recently
through extensive comparisons with high-dimensional genomic data that none
of the considered feature-selection methods performs best across all scenarios.
Thus, there is still room for work to be conducted in this area.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 202–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Incremental Bayesian Network Learning for Scalable Feature Selection 203

In this paper, we report the use of a probabilistic FSS technique to iden-
tify "strongly" relevant features, among thousands of potentially irrelevant and
redundant features. A principled solution to the FSS problem is to determine
the Markov boundary (MB for short) of the class variable. A MB of a variable
T is any minimal subset of U (the full set of variables) that renders the rest
of U independent of T . If the probability distribution underlying the data can
be faithfully represented by a Bayesian network, the MB of T is unique. In re-
cent years, there have been a growing interest in inducing the MB automatically
from data. Very powerful correct, scalable and data-efficient constraint-based
(CB) algorithms have been proposed recently [6,7,8,9]. CB discovery methods
search a database for conditional independence relations. In contrast to search-
and-score methods, CB methods are able to construct the local MB structure
without having to construct the whole BN first. Hence their ability to scale up
to thousands of variables. This was, so far, a key advantage of CB methods over
search-and-score methods.

Our specific aim is to solve the feature subset selection (FSS) problem with
thousands of variables using an incremental procedure that combines the result of
search-and-score methods run on small sets of variables. We assess the accuracy,
the scalability and the robustness of the procedure through several experiments
on synthetic and real-world databases scaling up to 139 351 variables.

2 Feature Selection

Feature selection techniques can be divided into three categories, depending on
how they interact with the classifier. Filter methods directly operate on the
dataset, and provide a feature weighting, ranking or subset as output. These
methods have the advantage of being fast and independent of the classification
model, but at the cost of inferior results. Wrapper methods perform a search in
the space of feature subsets, guided by the outcome of the model (e.g. classifi-
cation performance on a cross-validation of the training set). They often report
better results than filter methods, but at the price of an increased computational
cost. Finally, embedded methods use internal information of the classification
model to perform feature selection (e.g. use of the weight vector in support vec-
tor machines). They often provide a good trade-off between performance and
computational cost.

Finding the minimal set of features require an exhaustive search among all
subsets of relevant variables, which is an NP-complete problem, and may not
be unique. In this study, the FSS is achieved in the context of determining the
Markov boundary of the class variable that we want to predict. Markov boundary
(MB for short) learning techniques can be regarded as in between filter and
embedded methods. They solve the feature subset selection (FSS) problem and,
in the meantime, they build a local Bayesian network around the target variable
that can be used afterwards as a probabilistic classifier.

204 G. Thibault, A. Aussem, and S. Bonnevay

3 Bayesian Networks

For the paper to be accessible to those outside the domain, we recall first the
principle of Bayesian network. We denote a variable with an upper-case, X , and
value of that variable by the same lower-case, x. We denote a set of variables
by upper-case bold-face, Z, and we use the corresponding lower-case bold-face,
z, to denote an assignment of value to each variable in the set. We denote the
conditional independence of the variable X and Y given Z, in some distribution
P with X ⊥P Y |Z. In this paper, we only deal with discrete random variables.

Formally, a BN is a tuple < G, P >, where G =< V , E > is a directed acyclic
graph (DAG) with nodes representing the random variables V and P a joint
probability distribution on V . In addition, G and P must satisfy the Markov con-
dition: every variable, X ∈ V , is independent of any subset of its non-descendant
variables conditioned on the set of its parents, denoted by PaG

i .
A Markov blanket MT of the T is any set of variables such that T is condition-

ally independent of all the remaining variables given MT . A Markov boundary,
MBT , of T is any Markov blanket such that none of its proper subsets is a
Markov blanket of T . We say that < G, P > satisfies the faithfulness condition
when G entails all and only conditional independencies in P .

Theorem 1. Suppose < G, P > satisfies the faithfulness condition. Then X and
Y are not adjacent in G iff ∃Z ∈ V \ {X ∪ Y } such that X ⊥P Y |Z. Moreover,
for all X, the set of parents, children of X, and parents of children of X is the
unique Markov boundary of X.

A proof can be found for instance in [10]. We denote by PCT , the set of parents
and children of T in G, and by SPT , the set of spouses of T in G. The spouses
of T are the parents of the children of T . These sets are unique for all G, such
that < G, P > is faithful and so we will drop the superscript G.

Two graphs are said equivalent iff they encode the same set of conditional
independencies via the d-separation criterion. The equivalence class of a DAG
G is a set of DAGs that are equivalent to G. The next result showed by [11],
establishes that equivalent graphs have the same undirected graph but might
disagree on the direction of some of the arcs.

Theorem 2. Two DAGs are equivalent iff they have the same underlying undi-
rected graph and the same set of v-structures (i.e. converging edges into the same
node, such as X → Y ← Z.

Moreover, an equivalence class of network structures can be uniquely represented
by a completed partially directed DAG (CPDAG), also called a DAG pattern.
The DAG pattern is defined as the graph that has the same links as the DAGs
in the equivalence class and has oriented all and only the edges common to all
the DAGs in the equivalence class.

4 Incremental MB Structure Learning for Scalable FSS

The key idea in this paper is that an incremental procedure could help in al-
leviating the complexity obstacle by aggregating the outputs of several feature

Incremental Bayesian Network Learning for Scalable Feature Selection 205

Algorithm 1. Generic Incremental FSS by MB Search
1: function IFSS(D, target, selsize, V ars)
2: MB ← ∅
3: repeat
4: Testvars ← {target} ∪ MB
5: Testvars ← Testvars ∪ selection(selsize)
6: G ← BNLearning(D, T estvars)
7: MB ← extract_MB(G) � MB extraction
8: until stop_criterion
9: return MB � features = variables in MB

10: end function

selectors working on much fewer variables. More specifically, a collection of single
FSS models is run on small subsets of variables in incremental fashion. The out-
put of one feature selector serves as input to the next. The feature selector used
in our method is based on a BN structure identification algorithm. Algorithm 1
displays our incremental feature selection process based on Markov Boundary
search. Input parameters are:

- D: data used for supervised learning,
- target: the target variable,
- selsize: number of new variables at each iteration,
- V ars: set of variables except the target variable.

Standard search-and-score BNLearning methods do not scale to high-dim-
ensional data sets of variables. The aim of the meta-procedure is to learn many
small MBs (in regard to the whole set of variables) from many small subsets of
variables. BNLearning can be implemented by any BN structure algorithm. In
this study, it is implemented with the GES scoring-based greedy search algorithm
discussed by Chickering in [12].

At the beginning, the set of variables, Testvars, used to learn a Bayesian
network, G, is chosen at random. A first Markov Boundary, MB, is extracted
from G. At each iteration, variables in MB are kept into the set Testvars
and some other variables are added by a uniform random selection without
replacement. The size of this selection, selsize, is adapted according to the size
of the Markov Boundary, MB. Our variables selection process assumes that,
in the first part of the algorithm, each variable of V ars is selected once; then,
when all variables have been selected once, the process restart with the whole set
of variables, V ars. The algorithm stops when all variables have been selected
twice. At the end, the selected features are returned. Under the faithfulness
assumptions and assuming that the induction algorithm is correct, IFSS returns
the correct Markov Boundary. This a sample limit property. In practice, our hope
is to output the features that GES would have found on the complete database.

Indeed, after the first part of algorithm (when all variables have been selected
once), MB contains all the parents and the children of the target, because by
definition, the variable adjacent to the target cannot be d-separated from the

206 G. Thibault, A. Aussem, and S. Bonnevay

target, given any other variable. During the second part of the algorithm (when
all variables have been selected at least twice), the spouses of the target enter
the candidate MB set.

5 Experiments

In this section, we assess the accuracy, the scalability and the robustness of
IFSS through several empirical experiments on benchmark data sets. We use a
state-of-the-art search-and-score BN structure learning algorithm called GES as
our BN learner (BNLearning). First, we compare IFSS against GES in terms
of accuracy on several synthetic data sets. Second, we assess the scalability of
IFSS on a high-dimensional data sets that was provided at the KDD-Cup 2001.
Third, we assess the IFSS’s robustness.

5.1 Accuracy

We report here the results of our experiments on six common benchmarks: ASIA,
ASIA8 (ASIA tilled 8 times), ALARM, INSULIN, INSURANCE and HAIL-
FINDER, (see [8] and references therein). For ASIA8, the tiling is performed in
a way that maintains the structural and probabilistic properties of the original
network, ASIA, in the tiled network. Description of the benchmarks is showed
in Table 1. For each benchmark, 10 databases with independent and identically
distributed samples were generated by logic sampling. The amount of data was
chosen large enough to avoid the bias due to a lack of data. The task is to learn
the MB of the variable that appears in the third column in Table 1. The size
of the MB varies from 5 to 18 variables as may be observed. We compare IFSS
against GES in terms of true positive rate (TPR, i.e., the number of true posi-
tives variables in the output divided by the number of variables in the output),
false positive rate (FPR, i.e., the number of false positives divided by the the
number of variables in the output), the Kappa index (κ), the weighted accuracy
(WAcc), computed as the average of the accuracy on true positives and the ac-
curacy on true negatives and finally, the time in seconds. Kappa is a measure
that assesses improvement over chance is appropriate. The following ranges of

Table 1. Description of the Bayesian networks used in these experiments to assess
the comparative accuracy of IFSS and GES Markov boundary discovery on the target
variable

Benchmark # var # edges target MB size # samples
ASIA 8 8 OR 5 10 000
ASIA8 64 64 OR 5 10 000
ALARM 37 46 HR 8 30 000
INSULIN 35 52 IPA 18 50 000
INSURANCE 27 52 Accident 10 30 000
HAILFINDER 56 66 Scenario 17 50 000

Incremental Bayesian Network Learning for Scalable Feature Selection 207

agreement for the Kappa statistic suggested in the literature are: poor K < 0.4,
good 0.4 < K < 0.75 and excellent K > 0.75. In all our experiments, GES is
trained to maximize the Bayesian Dirichlet scoring criterion defined as:

BD(B | D) = p(B) ·
n∏

i=1

qi∏
j=1

Γ (αij)
Γ (Nij + αij)

ri∏
k=1

Γ (Nijk + αijk)
Γ (αijk)

Note that no a priori information structure is used for tests on synthetic data
(i.e., p(B) is uniform). Moreover, the prior on parameters is set so as to be non-
informative, that is, an equivalent uniform Dirichlet prior with an equivalent
sample size (ESS) equal to the greatest variable modality (see [10] for details).
Table 2 summarizes the average performance indexes over 10 runs for each bench-
mark. As may be observed, IFSS performs as well as GES on all benchmarks,
except on INSURANCE where IFSS outperform GES by a noticeable margin.
This is quite a surprise as IFSS was not designed to outperform the underlying
BN structure learning algorithm (here GES) but only to be scalable.

Table 2. Average performance of IFSS (with GES as underlying BN structure learning
algorithm) and GES

GES IFSS
κ TPR FPR WAcc Time κ TPR FPR WAcc Time

ASIA 0.959 1.000 0.050 0.975 0.10 0.959 1.000 0.050 0.975 0.06
ASIA8 0.867 1.000 0.024 0.988 27.87 0.834 1.000 0.031 0.984 1.29
ALARM 0.916 0.875 0.000 0.938 6.79 0.916 0.875 0.000 0.938 2.56
INSULIN 0.840 0.933 0.094 0.920 15.16 0.870 0.933 0.063 0.935 7.83
INSURANCE 0.663 0.700 0.063 0.819 5.81 0.858 0.860 0.019 0.921 2.60
HAILFINDER 0.589 0.571 0.037 0.767 48.71 0.517 0.471 0.016 0.727 6.19

In Table 3, the same indexes of accuracy are reported; the aim is to recover
the MB given by GES (and not the true MB anymore). For instance, a True
Positive is a variable given by GES and found by IFSS, etc.. IFSS is very close
to GES in most cases. Some significant differences are observed on Hailfinder
between IFSS and GES, output of IFSS is closer to the true MB than output of
GES (see in Table Table 2). Moreover, the last column indicates the time saving
when IFSS is used instead of GES.

5.2 Scalability

In this section, experiments demonstrate the ability of IFSS to solve a real
world FSS problem involving thousands of features. We consider the THROM-
BIN database which was provided by DuPont Pharmaceuticals for KDD Cup
2001. It is exemplary of a real drug design [13]. The training set contains 1909
instances characterized by 139, 351 binary features. The features describe the
three-dimensional properties of the compounds. Each compound is labelled with

208 G. Thibault, A. Aussem, and S. Bonnevay

Table 3. Average performance of IFSS where the task is to recover the variables output
by GES

IFSS against GES
κ TPR FPR WAcc Time saving

ASIA 1.000± 0.000 1.000± 0.000 0.000± 0.000 1.000± 0.000 0.04± 0.04
ASIA8 0.900± 0.107 0.940± 0.102 0.014± 0.014 0.963± 0.055 26.58± 1.72
ALARM 1.000± 0.000 1.000± 0.000 0.000± 0.000 1.000± 0.000 4.23± 2.21
INSULIN 0.959± 0.049 0.968± 0.037 0.007± 0.021 0.980± 0.023 7.34± 1.31
INSURANCE 0.730± 0.058 0.863± 0.031 0.111± 0.037 0.876± 0.025 3.21± 2.47
HAILFINDER 0.490± 0.093 0.530± 0.200 0.062± 0.058 0.734± 0.077 42.52± 33.73

one out of two classes, either it binds to the target site or not. The task of KDD
Cup 2001 was to learn a classifier from 1, 909 given compounds (learning data) in
order to predict binding affinity and, thus, the potential of a compound as anti-
clotting agent. The classifiers submitted to KDD Cup 2001 were evaluated on
the remaining 634 compounds (testing data) as the weighted average (WAcc) of
the accuracy on true binding compounds and the accuracy on true non-binding
compounds. The THROMBIN database is challenging for three reasons. First,
it has a huge number of features. Second, the learning data are extremely imbal-
anced: Only 42 out of the 1909 compounds bind. Third, the testing data are not
sampled from the same probability distribution as the learning data, because
the compounds in the testing data were synthesized based on the assay results
recorded in the learning data. Scoring higher than 60% accuracy is impressive
as noted in [6].

IFSS, with GES as the MB learner, was run 61 times in the time we have
disposed for our experiments, with a prior over structures arbitrary fixed to
10−16×f , where f is the number of free parameters in the DAG. The outputs
were used as input of Naive Bayesian Classifier, and a classification on the test
data was perfomed. As shown in Figure 3, IFSS scores between 36% (really bad)
to 71% with an average 55% and only 46 runs of IFSS score more than 50%
weighted accuracy, i.e. the random classifier. These results are comparable to
MBOR [7] and IAMB [14] that achieve respectively 53% (over 10 runs) and 54%
(both over 114 runs). This is however worse than PCMB [6] that achieves 63%
(over 114 runs). Of course, we have no idea what GES scores on such data since
GES do not scale to such high-dimensional database. Note that each launch of
IFSS lasted approximately 3 hours, which is the same order of magnitude as the
other algorithms mentioned above.

Nonetheless, the best MB over 61 runs consists of five variables 3392, 10695,
23406, 79651 and 85738. This MB is depicted in Figure 2. It scores 71,1% which
is impressive according to [13,6]. It worth mentioning that J. Cheng, the winner
of the KDD cup 2001, only scores 71.1% accuracy and 68.4% weighted accu-
racy with four variables: 10695, 16794, 79651 and 91839. He used a Bayesian
classifier to assess the accuracy of his feature set. It is shown in Figure 1. As
may be seen, two variables are common with the winner’s selection. IFFS out-
puts the THROMBIN MB in about 220 minutes on our laptop (2.6GHz Intel R©

Incremental Bayesian Network Learning for Scalable Feature Selection 209

CoreTM 2 Duo with 1 GB of RAM). Of course, this time is highly dependent
our MATLAB R© implementation, and may significantly be reduced if written in
C/C++ for instance.

The Figure 5 represents the ROC curves of the classifier given by IFSS with
the best MB as input. The area under ROC curve is a well-known performance
measurement. The ROC curve is the 2-D plot of sensitivity and 1-specificity
acquired by applying a sequence of arbitrary cut-off threshold to the probabilities
generated by the predictive model. A clear difference is observed between the
ROC curve on the test set (in plain line) and the ROC curve on the training
set (in dotted lineline, obtained by 10-fold cross validation). The reason is that
the testing data was not sampled from the same probability distribution as the
learning data, hence the difficulty of the task. The area under curve (AUC) is
0.6978 on the test set. This classifier scores 69% (and 71% when constructing
a naive BN with the same variables) which seems highly competitive compared
to PCMB [15] and IAMB [14] that achieves respectively 63% and 54% as shown
in [6]. Table 4 reports the scores obtained with the best MB classifiers constructed
from the sets of variables given by the respective algorithms.

Table 4. Results of classifiers with the output-model of the algorithm, the naive
bayesian network model, the support vector machine classifier and the random for-
est classifier

IFSS Cheng
κ TPR FPR Acc WAcc κ TPR FPR Acc WAcc

Output model 0.420 0.467 0.085 0.809 0.691 0.316 0.633 0.264 0.711 0.684
NaiveBN 0.437 0.547 0.120 0.801 0.713 0.297 0.600 0.258 0.708 0.671
SVM 0.464 0.500 0.076 0.823 0.712 0.312 0.313 0.056 0.795 0.629
RForest 0.439 0.513 0.099 0.809 0.707 0.312 0.313 0.056 0.795 0.629

5.3 Robustness

When using FSS on data sets with large number of features, but a relatively
small number of samples, not only model performance but also robustness of
the FSS process is important. For instance, in microarray analysis, domain ex-
perts clearly prefer a stable gene selection as in most cases these genes are
subsequently analyzed further, requiring much time and effort [16]. With such
high-dimensional databases, all FSS algorithms are subject to some variability.
Surprisingly, the robustness of FSS techniques has received relatively little at-
tention so far in the literature. As noted in [2], robustness can be regarded from
different points of view: perturbation at the instance level (e.g. by removing or
adding samples), at the feature level (e.g. by adding noise to features), or varia-
tion of the parameter of the FSS algorithm, or a combination of them. Here, we
focus on the robustness of FSS selector as the variation of the output with re-
spect to a random permutation of the variables. We consider again the 61 times
runs of IFSS on THROMBIN data. A simple ensemble technique proposed in
[2,16] works by aggregating the feature rankings provided by the FSS selector

210 G. Thibault, A. Aussem, and S. Bonnevay

Activity

10695

16794

79651 91839

Fig. 1. BN of the KDD Cup winner

Activity

3392

10695

23406

79651

85738

Fig. 2. Best MB output by IFSS

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

1

2

3

4

5

6

7

8

9

10

Weighted Accuracy

N
um

be
r

of
 r

un
s

Fig. 3. Weighted accuracies of 61 runs
of IFSS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 59 60 61

16737
27356
27360
27673
31820

100061
88236
91646

113055
3392

89578
120485

32415
35379

135813
23406
92918
91839
10695
79651

Frequency on 61 runs

T
he

 2
0

m
os

t f
re

qu
en

t v
ar

ia
bl

es

Fig. 4. Frequencies of twenty most fre-
quent variables over 61 runs of IFSS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random classifier
Cross Validation
Validation

Fig. 5. ROC curves of the best MB
output by IFSS on test set and training
set using 10-fold cross-validation

Incremental Bayesian Network Learning for Scalable Feature Selection 211

into a final consensus ranking weighted by frequency. The variables returned
by IFSS mostly differ by one or two variables. The top 20 ranked variables are
shown in Figure 4 in decreasing order of frequency in the output of IFSS. As we
can see, the variables 79651 and 10695 were always selected. These variables are
also present among the four features of the winner of the KDD cup in 2001, and
variable 79651 is always present in the top 10 MB output by KIAMB (see [6]).
The third most frequent feature, namely 91839, is also one of the four features
of the winner of the KDD cup.

Following [17], we take a similarity based approach where feature stability is
measured by comparing the 61 outputs of IFSS. We use the Jaccard index as
the similarity measure between two subsets S1 and S2. The more similar the
outputs, the higher the stability measure. The overall stability can be defined as
the average over all pairwise similarity comparisons between the n = 61 MBs:

Itot =

∑n
i=1

∑n
j=i+1 I(Si, Sj)

n(n− 1)
with I(Si, Sj) =

|Si

⋂
Sj |

|Si

⋃
Sj |

An average of 0.336 (with a standard deviation of 0.116) was obtained.

6 Conclusion

We discussed a new scalable feature subset selection procedure. This procedure
combines incrementally the outputs of non-scalable search-and-score Bayesian
network structure learning methods that are run on much smaller sets of vari-
ables. The method was shown to be highly efficient in terms of both running
time and accuracy. Future substantiation through more experiments with other
BN learning algorithms are currently being undertaken and comparisons with
other FSS techniques will be reported in due course.

References

1. Nilsson, R., Peña, J., Björkegren, J., Tegnér, J.: Evaluating feature selection for
svms in high dimensions. In: European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases, ECML PKDD (2006)

2. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble
feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.)
ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 313–325. Springer,
Heidelberg (2008)

3. Tang, Y., Zhang, Y., Huang, Z.: Development of two-stage svm-rfe gene selec-
tion strategy for microarray expression data analysis. IEEE-ACM Transactions on
Computational Biology and Bioinformatics 4, 365–381 (2007)

4. Ma, S., Huang, J.: Penalized feature selection and classification in bioinformatics.
Briefings in Bioinformatics 5, 392–403 (2008)

5. Hua, J., Tembe, W., Dougherty, E.: Performance of feature-selection methods in
the classification of high-dimension data. Pattern Recognition 42, 409–424 (2009)

212 G. Thibault, A. Aussem, and S. Bonnevay

6. Peña, J., Nilsson, R., Björkegren, J., Tegnér, J.: Towards scalable and data effi-
cient learning of markov boundaries. International Journal of Approximate Rea-
soning 45(2), 211–232 (2007)

7. Rodrigues de Morais, S., Aussem, A.: A novel scalable and data efficient feature
subset selection algorithm. In: Daelemans, W., Goethals, B., Morik, K. (eds.)
ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 298–312. Springer,
Heidelberg (2008)

8. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian
network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

9. Yaramakala, S., Margaritis, D.: Speculative markov blanket discovery for optimal
feature selection. In: IEEE International Conference on Data Mining, pp. 809–812
(2005)

10. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs
(2004)

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

12. Chickering, D.M.: Optimal structure identification with greedy search. Journal of
Machine Learning Research 3, 507–554 (2002)

13. Cheng, J., Hatzis, C., Hayashi, H., Krogel, M., Morishita, S., Page, D., Sese, J.:
KDD Cup 2001 Report. In: ACM SIGKDD Explorations, pp. 1–18 (2001)

14. Tsamardinos, I., Aliferis, C.F., Statnikov, A.R.: Algorithms for large scale markov
blanket discovery. In: FLAIRS Conference, pp. 376–381 (2003)

15. Peña, J.M., Björkegren, J., Tegnér, J.: Scalable, efficient and correct learning of
markov boundaries under the faithfulness assumption. In: Godo, L. (ed.) EC-
SQARU 2005. LNCS (LNAI), vol. 3571, pp. 136–147. Springer, Heidelberg (2005)

16. Aussem, A., Rodrigues de Morais, S., Perraud, F., Rome, S.: Robust gene selection
from microarray data with a novel Markov boundary learning method: Applica-
tion to diabetes analysis. In: European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty ECSQARU 2009 (to appear, 2009)

17. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a
study on high-dimensional spaces. Knowl. Inf. Syst. 12 (2007)

Feature Extraction and Selection from Vibration
Measurements for Structural Health Monitoring

Janne Toivola and Jaakko Hollmén

Helsinki University of Technology, Department of Information and
Computer Science, P.O. Box 5400, FI-02015 TKK, Espoo, Finland

{jannetoivola,Jaakko.Hollmen}@tkk.fi

Abstract. Structural Health Monitoring (SHM) aims at monitoring
buildings or other structures and assessing their condition, alerting about
new defects in the structure when necessary. For instance, vibration mea-
surements can be used for monitoring the condition of a bridge. We in-
vestigate the problem of extracting features from lightweight wireless
acceleration sensors. On-line algorithms for frequency domain monitor-
ing are considered, and the resulting features are combined to form a
large bank of candidate features. We explore the feature space by select-
ing random sets of features and estimating probabilistic classifiers for
damage detection purposes. We assess the relevance of the features in
a large population of classifiers. The methods are assessed with real-life
data from a wooden bridge model, where structural problems are simu-
lated with small added weights.

Keywords: structural health monitoring, damage detection, feature ex-
traction, feature selection, wireless sensor network.

1 Introduction

Recent development of wireless sensor technology has opened new possibilities
for damage identification in large civil structures. For example, the condition of
buildings, bridges, or cranes can be monitored continuously and automatically,
reducing the need for periodic manual inspections. The monitoring process is
called Structural Health Monitoring (SHM) [4]. Practical limitations of costly
and error-prone wiring of sensors has been overcome by radio technology and
portable power supplies [4,8].

In this work, we consider an experimental setting where the vibration of a
wooden model bridge is monitored with wired accelerometers and damages are
simulated by imposing minute changes by attaching small additional weights on
the bridge. The model structure and measurement setting are described in [7],
where the acceleration measurements were first used. Since the current work is
done in an off-line setting, i.e. first gathering all the raw acceleration values to a
centralized database, we are able to test computationally demanding approaches
to solve the problem. However, we wish to come up with a solution that is feasible
in a practical setting in a resource-constrained wireless sensor network.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 213–224, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

214 J. Toivola and J. Hollmén

To reduce the amount of irrelevant variability and the amount of data trans-
mitted through the supposed wireless network, we propose feature extraction
methods for monitoring the vibrations in the frequency domain. Since we don’t
have an analytical model of the structure or the variability caused by damages,
we consider machine learning methods to estimate probabilistic models and use
them for damage classification. The models are based on the feature extraction
results computed locally on each sensor node and some simplistic assumptions
allowing computational efficiency.

From machine learning point of view, this work considers supervised learning
in a group classification setting [4]. This provides experimentally tested feature
extraction and a preliminary step in reaching our long-term goal: applying un-
supervised methods in a novelty detection setting for detecting the existence
of damages. After detecting a damage, the sensor network can presumably be
assigned to perform more thorough (and energy consuming) measurements, pos-
sibly leading to more accurate analytical results of the extent or position of the
damage. Anyway, before a damage occurs, the sensor network should strive to
minimize its power consumption and the amount of transmitted data.

The presented methods rely on the traditional way of removing redundancy
in the data: considering the signals in a transformation domain and ignoring the
parts that seem irrelevant from the task point of view. For example, monitoring
vibration amplitudes only on certain selected frequencies allows us to ignore most
of the spectrum and concentrate the computational resources and our analysis
on the relevant part of the data. This is similar to the approach used in condition
monitoring (CM) of rotating machinery [4], but the structures considered here
have more complex properties and the relevance of the proposed features is
unknown. Thus, methods for exploring relevant features are also presented.

The rest of this paper is organized as follows. Section 2 introduces the problem
of monitoring structural health based on vibration measurements and Section 3
presents the frequency domain feature extraction methods considered in this
work. Section 4 proposes an approach for exploring the feature space and assess-
ing the attainable damage classification performance with a probabilistic model.
Supposedly, features providing good classification performance will also be rele-
vant for novelty detection purposes in the future. Experiments and their results
are reported in Section 5 and the paper is summarized in Section 6.

2 Structural Health Monitoring Using Vibration
Measurements

Structural health monitoring deals with assessing the condition of a given struc-
ture. There are no direct and practical ways of measuring the condition of large
structures, but a structural change may well be reflected in the physical measure-
ments. Civil structures like buildings, bridges, and cranes, experience vibrations
due to their interaction with the environment (wind, cars, earthquakes, etc.). For
instance, a damage in a bridge may well change the properties of the vibrations
in the structure.

Feature Extraction and Selection from Vibration Measurements for SHM 215

Such vibration properties may be captured with acceleration measurements.
In the current paper, we concentrate on vibration monitoring of a bridge struc-
ture using acceleration sensors. The main contribution of this work is to find
ways to extract vibration profiles for monitoring and a method for assessing
their relevance in detecting changes in a structure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

S
en

so
r

1

Acceleration signals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

S
en

so
r

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

S
en

so
r

13

Time (s)

Fig. 1. Acceleration measurements in time domain: some of the several concurrent
acceleration measurements at different locations of the structure

A short excerpt of vibration measurements from three acceleration sensors
is illustrated in Figure 1. We denote the original time series i of acceleration
measuments x from sensor s by xi

s = {xs[1], xs[2], . . . , xs[Ni − 1], xs[Ni]}.
Modeling each incoming sample of an acceleration measurement directly in

the time domain is practically impossible in the supposed lightweight sensor net-
work nodes considered in this work. Firstly, the amplitude of vibration changes
randomly due to the environmental effects and the sources of vibration are not
measured themselves. The quantities of interest (structural integrity) is expected
to be manifested in the dependencies between the measurements of different sen-
sors. Secondly, the feature extraction algorithm needs to run on-line, considering
each sample of acceleration at a time, computing intermediate results, and fi-
nally discarding the original data. This is because the wireless nodes, considered
for our use in the near future, don’t facilitate large ring buffers familiar from
digital signal processors: the available random access memory (RAM) remains
very scarce in the current microcontrollers.

216 J. Toivola and J. Hollmén

3 Online Monitoring of a Single Frequency

Widely known algorithms like Fast Fourier Transform (FFT) [9] can be used
for the frequency domain analysis of signals. They require a relatively large
buffer for storing the intermediate results, since the whole spectrum is considered
simultaneously. To achieve a frequency resolution below 1 Hz, one would need to
use more than 256-point FFT1 when monitoring with sampling rate of 256 Hz.

We assume that there is no memory space for perfoming, say, 512-point FFT
on a sensor node, and that the phenomenon of interest is concentrated on a
relatively small portion of the vibration spectrum. In addition, we have observed
that the changes in vibration frequencies are very small, thus requiring relatively
accurate monitoring. Next, we consider a couple of possible solutions.

3.1 Quadrature Amplitude Modulation

Radio receivers using Quadrature Amplitude Modulation (QAM) [2,10] are based
on monitoring a narrow frequency band and detecting changes in the amplitude
and phase of the signal. Obviously, the application domain of digital radio com-
munications is different in that the changes in the received signal are discrete
and controlled by the transmitter. In the present application, the monitored
quantities are continuous and are expected to drift slowly.

The idea of monitoring on a single frequency f begins with correlating the
acceleration measurements xs[n] with pure sine waves of orthogonal phases:

cs(f) =
1
N

N∑
n=1

xs[n] · cos(2π(f/fS)n + φs), (1)

and

ss(f) =
1
N

N∑
n=1

xs[n] · sin(2π(f/fS)n + φs), (2)

where fS is the sampling frequency and the additional phase difference φs de-
notes the fact that wireless sensors have independent clocks. The amplitude of
vibration Xs can then be computed as

Xs(f) =
√

cs(f)2 + ss(f)2. (3)

To make it more suitable for online computing, the following exponentially
decaying window can be used (this can also be considered as the lowpass filter
required in QAM):

c̃s(f, 0) = 0 (4)
c̃s(f, n) = (1− ε) · c̃s(f, n− 1) + ε · xs[n] · cos(2π(f/fS)n), (5)

1 Accuracy of FFT depends on the length of the considered time window, which also
determines the memory requirements.

Feature Extraction and Selection from Vibration Measurements for SHM 217

where ε governs the effective window length of the method. There is a trade-
off between accuracy (selectivity between adjacent frequencies) and the rate of
convergence: small ε results in long windowing and slow response to changes,
but also higher frequency resolution.

One of the benefits is that Xs(f) is insensitive to phase differences (φs) and
also small time differences between sensor nodes (caused by sub-ideal synchro-
nization). As in QAM, also the phase information can be computed from the
intermediate values cs and ss.

This method also resembles Discrete Cosine Transformation (DCT) and Dis-
crete Sine Transformation (DST) [12], where

cs[k] =

√
2
N

N∑
n=1

xs[n] · cos
(

πk(2n + 1)
2N

)
, (6)

and

ss[k] =

√
2

N + 1

N∑
n=1

xs[n] · sin
(

π(k + 1)(n + 1)
N + 1

)
, (7)

and the frequency bin k can be selected according to the monitoring frequency
f as k ≈ 2N f

fS
> 0.

3.2 The Goertzel Algorithm

The above algorithm suffers from the burden of synthesizing cosine and sine
signals. A method called the Goertzel algorithm [5,9,13] is able to monitor a
single narrow frequency band with even fewer requirements.

The iteration steps of the algorithm can be written as

vk[0] = vk[−1] = 0, (8)
vk[n] = xs[n] + 2 cos(2πk/N) · vk[n− 1]− vk[n− 2], ∀n ∈ [1, N] (9)
|X [k]|2 = v2

k[N] + v2
k[N − 1]− 2 cos(2πk/N) · vk[N] · vk[N − 1], (10)

where vk[n], vk[n − 1], and vk[n − 2] are the only intermediate results needed
for computing the signal power |X [k]|2 at frequency bin k. This can be chosen
according to the desired monitoring frequency f as k ≈ N f

fS
.

The algorithm has several advantages. The cosine is computed only once, and
the following computation is in terms of simple multiplications and additions.
It is more efficient than FFT when only few frequency bins are needed: for K
bins, Goertzel requires O(KN) operations while FFT takes O(N log(N)). For
example, if N = 512, Goertzel is more (time) efficient if K ≈ 9.

On the other hand, this algorithm does not provide phase information, which
might turn out to be relevant from SHM point of view and the wireless sensor
nodes might be synchronized well enough to utilize it. There exist also transfor-
mations (e.g. Hadamard and Haar [12]) which can be computed without multi-
plications, thus being more efficient to implement on wireless sensor nodes.

218 J. Toivola and J. Hollmén

4 Feature Selection and Classification

Feature selection refers to the process of selecting a subset of features out of the
original feature set. An introductory review article [6] divides feature selection
methods into three classes: filter-based, wrapper-based, and embedded feature
selection methods. In filter-based feature selection, a simplified method is used
to select the features for a more complex model. In wrapper-based approach to
feature selection, the model itself is used to evaluate the relevance of chosen
features. The embedded methods of feature selection select the features as a
part of the model estimation. In the current paper, we consider wrapper-based
feature selection, since the feature selection is based on the same model as the
detection itself.

On the other hand, our long term goal of implementing unsupervised novelty
or drift detection algorithms for damage detection purposes prevents us from
selecting a final set of relevant features in advance. In a general case, we cannot
know what is relevant before the changes appear. Still, the current study provides
more insights to the problem.

4.1 Candidate Features

As the final space of candidate features, we consider all pairs of sensors and the
ratio of their acceleration amplitudes on a given frequency. While the accelera-
tion amplitudes are computed by the above algorithms, supposedly on-line in a
wireless sensor network, the information from several sensors can be combined
in a centralized fashion.

In particular, we propose (frequency specific) transmissibility which is defined
as the ratio of acceleration amplitudes measured by two sensors, s1 and s2:

T (s1, s2, f) =
Xs1(f)
Xs2(f)

, (11)

where f is the monitoring frequency.
This is related to the structure as a medium for vibrations traveling through

it: transmissibility describes how well an impulse travels from s2 to s1. This
point-of-view applies while considering a single impulse from a single source
– one might imagine traffic or other multiple sources of vibration making the
situation more complex.

The features can also be considered as properties of mode shapes. Structures
tend to have certain resonance frequencies corresponding to standing waves or
modes. A simplified situation of this is shown in Figure 2, which shows the
vibration amplitudes of a single mode at each point on a homogeneous bar. The
ratio of amplitudes measured by two stationary sensors stays constant despite
the changes in the overall amplitude of the vibration.

The situation becomes more complex, when the stiffness of the structure is
not uniform (not a homogeneous bar) and more vibration modes are involved.
This is why we need several sensors for monitoring smaller parts of the structure,
several monitoring frequencies to cover each of the modes, and a feature selection
approach to explore the large amount of combinations.

Feature Extraction and Selection from Vibration Measurements for SHM 219

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

sensor 1 sensor 2

Position

A
m

pl
itu

de
 o

f v
ib

ra
tio

n

Fig. 2. A mode shape of one standing wave on a simple bar. Amplitude ratio between
two sensors stay constant despite the change in amplitude.

4.2 Probabilistic Model for Damage Detection

To assess and demonstrate the relevance of the features, a probabilistic model
was used for damage classification. The assumption is that the features found to
be relevant in a supervised machine learning setting (classification) would also
be relevant in an unsupervised setting (novelty detection). Another reason for
benchmarking with a probabilistic model is the ability to cope with missing data
in the future applications.

A naive Bayes classifier assumes conditional independence of the features2 Td

given the class label C [3,1]. Thus, the joint probability distribution decomposes
according to

P (T1, . . . , TD, C) = P (C)
D∏

d=1

P (Td | C). (12)

Also, we assume that the probability density function of P (Td | C = c) is
distributed according to a normal distribution with parameters μc,d and σ2

c,d

P (Td | C = c) ∝ 1
σc,d

exp

(
− (Td − μc,d)2

2σ2
c,d

)
(13)

Estimation of the parameters is done in the framework of maximum likelihood
by estimating the mean and standard deviation for each feature and each class
separately. The posterior probability of a class can be used as a decision variable,
and can be readily calculated with the Bayes’ theorem

P (C | T1 . . . TD) =
P (C)P (T1 . . .TD | C)

P (T1 . . .TD)
. (14)

In Maximum A Posteriori (MAP) classification setting, the denominator is
the same for all classes. We can can discard the constant, and base the decision
on the following log posterior:
2 Td refers to transmissibility T (s1, s2, f) with some selected parameters d ∼ s1, s2, f .

220 J. Toivola and J. Hollmén

log P (C = c | T1 . . . TD) ∝ log P (C = c) +
D∑

d=1

(
− log σc,d −

(Td − μc,d)2

2σ2
c,d

)
.

(15)
Finally, the classifier can detect a damage if the log posterior of class C =”no
damage” is below a certain threshold.

5 Experiments and Results

We used data measured from a wooden bridge structure in laboratory conditions.
The setting was previously used in [7]. The bridge is vibrated with an electrody-
namic shaker to simulate random stimulation from the environment. In order to
simulate damages, small weights were attached to the structure during a selected
set of the measurements.

7 2

3

1

6
8

9

10

12

shaker

5

4

11

15

13

14

Fig. 3. The structure and the placement of the sensors and the shaker

The bridge was equipped with 15 acceleration sensors, which measured the
vibration of the structure as shown in Figure 3. The sampling frequency was
256 Hz and sampling time for each measurement xi was 32 seconds. The data
set consists of 2509 of these measurements.

First, we extracted the amplitude features with the QAM and Goertzel al-
gorithms mentioned above. A uniformly spaced set of frequencies was selected:
{2, 4, 6, . . . , 120} Hz, in total, 60 monitoring frequencies below the half of the
sampling frequency.

Then, we trained the classifiers using labeled training data set (xi, ci), which
consisted of every other measurement (i ∈ {1, 3, 5, . . . , 2509}). Finally, we used the
rest of the data as a validation set in studying the damage detection performance
by using Receiver Operating Characteristic (ROC) curves [11], which visualize the
trade-off between sensitivity and specificity for all decision thresholds.

There are 105 possible pairs of sensors (s1, s2), and multiplied with the 60
monitoring frequencies the final feature space consists of 6300 features. We con-
tinued with selecting D of these by random to see how much information is
contained in the random combination of D transmissibility features. The ran-
dom selection and classifier training was repeated to examine the statistics of
the performance.

Feature Extraction and Selection from Vibration Measurements for SHM 221

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

max AUC
upper quartile
median AUC
lower quartile
min AUC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate
tr

ue
 p

os
iti

ve
 r

at
e

max AUC
upper quartile
median AUC
lower quartile
min AUC

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

max AUC
upper quartile
median AUC
lower quartile
min AUC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

max AUC
upper quartile
median AUC
lower quartile
min AUC

(c) (d)

Fig. 4. ROC curves of damage detection performance while using (a) 512 randomly
selected features by QAM, (b) 512 random features by the Goertzel algorithm, (c) 32
random features by QAM, and (d) 32 random features by the Goertzel algorithm

Figure 4 shows ROC curves from four populations of 1000 feature sets (and
classifiers): QAM feature extraction vs. the Goertzel method, and a small set
of features vs. a large set of features. The Goertzel algorithm seemed to pro-
vide marginally better results throughout the whole experiment. The damage
detection performance, and overall “usefulness” of the feature set and classifier
method, can be measured in terms of the area under the ROC curve (AUROC)
and the seemingly best classifiers relied on D = 16 to D = 32 features, as shown
in Figure 5.

As an example, we can choose one of the thousands of classifiers (and its
feature set): the one which provided the best AUROC in Figure 5 and the best

222 J. Toivola and J. Hollmén

8 16 32 64 128 256 512 1024
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of features

A
re

a
un

de
r

R
O

C
 c

ur
ve

max AUC
upper quartile
median AUC
lower quartile
min AUC

Fig. 5. Area under ROC curves with various numbers of randomly selected features.
The maximum is at 32 features and area of 0.87.

m
ea

su
re

m
en

t n
um

be
r

actual class
5 10 15 20

200

400

600

800

1000

1200

training cases
OK damage

200

400

600

800

1000

1200

test cases
OK damage

200

400

600

800

1000

1200

Fig. 6. The correct classification of measurements versus training set and test set
damage detection. A good set of 32 features by the Goertzel algorithm and the naive
Bayes classifier was used. Class 1 is ’OK’ – others are damages.

Feature Extraction and Selection from Vibration Measurements for SHM 223

ROC curve in Figure 4(d). It reaches 71% true positive ratio with mere 5.3%
false positive ratio with a certain detection threshold. The detection performance
is demonstrated in Figure 6. False negatives seem to happen mostly with the
smaller weights (damages) and certain damage locations. For some reason, also
false positives are concentrated on consecutive sets of measurements.

Although the features used in the classifiers were selected randomly, some
of the classifiers seem to produce reasonable detection performance. We can
investigate the selected features in the best performing classifers among the
population of random classifiers. Focusing on the most prevalent features in the
feature sets, some features occur persistently in many of the best classifers. For
instance, features 4286 and 4287 occur 24 and 13 times, respectively. Both of
the features measure transmissibility between sensors 7 and 10 on neigboring
frequency bins.

More quantitative and detailed examination of the feature sets may lead to a
parsimonious list of features that can be used for efficient damage detection in
the structural health monitoring setting. Also different kinds of classifiers should
be considered in addition to the naive Bayes classifier.

6 Summary and Conclusions

We have investigated a feature extraction problem in the context of structural
health monitoring application. Acceleration sensors measure the vibration of
a structure, for instance, a bridge. A large number of frequency features can
be extracted with frequency monitoring algorithms by combining pairs of mea-
surements to form energy-invariant feature representations. We tried features
randomly and estimated probabilistic detection models from labeled data. We
summarized the attainable detection performance in terms of ROC curves and
the area under the ROC curves.

The proposed methods were able to detect damages even when most of the
original data was discarded by the feature extraction and selection process. This
provided a baseline result for developing more advanced methods.

Acknowledgments

The current work has been done in the project “Intelligent Structural Health Mon-
itoring System” (ISMO), funded by Helsinki University of Technology (TKK) in
Finland and its Multi-disciplinary Institute in Digitalisation and Energy (MIDE).
Many of the ideas in this work have arised as the result of discussions within the
ISMO project group, lead by Jyrki Kullaa.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)

2. Couch, I., Leon, W.: Digital and analog communication systems. Prentice-Hall,
Upper Saddle River (2001)

224 J. Toivola and J. Hollmén

3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley
& Sons, Chichester (2001)

4. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philo-
sophical Transactions of the Royal Society A 365, 303–315 (2007); Published online
December 12, 2006

5. Goertzel, G.: An algorithm for evaluation of finite trigonometric series. American
Mathematical Monthly 65, 34–35 (1958)

6. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3(1), 1157–1182 (2003)

7. Kullaa, J.: Elimination of environmental influences from damage-sensitive features
in a structural health monitoring system. In: Balageas, D.L. (ed.) Proceedings of
the First European Workshop on Structural Health Monitoring 2002, pp. 742–749.
DEStech Publications Inc., Onera (2002)

8. Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S., Carryer, E.: Embed-
ding damage detection algorithms in a wireless sensing unit for operational power
efficiency. Smart Materials and Structures 13(4), 800–810 (2004)

9. Mitra, S.K.: Digital Signal Processing: A Computer-Based Approach, 2nd edn.
McGraw-Hill, New York (2002)

10. Proakis, J.G., Salehi, M.: Digital communications. McGraw-Hill, New York (2008)
11. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240(4857),

1285–1293 (1988)
12. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier, San Diego (2003)
13. Wang, W., Gao, Z., Huang, L., Yao, Y.: Spectrum sensing based on Goertzel algo-

rithm. In: 4th International Conference on Wireless Communications, Networking
and Mobile Computing, 2008. WiCOM 2008, October 2008, pp. 1–4 (2008)

Zero-Inflated Boosted Ensembles for Rare Event
Counts�

Alexander Borisov1, George Runger2, Eugene Tuv1,
and Nuttha Lurponglukana-Strand2

1 Intel, Chandler, AZ
2 Industrial and Systems Engineering, Arizona State University, Tempe, AZ

Abstract. Two linked ensembles are used for a supervised learning
problem with rare-event counts. With many target instances of zero,
more traditional loss functions (such as squared error and class error)
are often not relevant and a statistical model leads to a likelihood with
two related parameters from a zero-inflated Poisson (ZIP) distribution.
In a new approach, a linked pair of gradient boosted tree ensembles are
developed to handle the multiple parameters in a manner that can be
generalized to other problems. The result is a unique learner that ex-
tends machine learning methods to data with nontraditional structures.
We empirically compare to two real data sets and two artificial data
sets versus a single-tree approach (ZIP-tree) and a statistical generalized
linear model.

Introduction

The analysis of count data is of primary interest in many applications such as
health, traffic, engineering, and so forth. When the target attribute for a model is
a rare event count the appropriate loss function distinguishes the problem from
traditional supervised categorical or numerical targets. For example, data that
models accident counts from the design attributes of intersections and traffic
signals is expected to contain zeros for many intersections. Similarly, data that
models the number of products viewed on a Web site from the design attributes
of the site are also expected to contain many zeros.

In such cases squared error and class error loss are not usually relevant metrics
for model quality. However, a statistical likelihood function can be a useful start-
ing point for an effective machine learning solution. A Poisson regression model
is commonly used to explain the relationship between counts (non-negative inte-
gers) and input attributes [1]. However, it is often the case that the target data
contains more zeros than can be accounted for in Poisson regression.

Lambert [2] proposed a mixture of a Poisson distribution and the distribution
with a point mass at zero, called zero-inflated Poisson (ZIP) regression, to handle
zero-inflated count data for defects in a manufacturing process. Since then many
� This material is based upon work supported by the National Science Foundation

under Grant No. 0743160.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 225–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

226 A. Borisov et al.

extensions or modified ZIP models were elaborated. For example, [3] proposed a
Markov zero-inflated Poisson regression (MZIP), [4] introduced multivariate ZIP
models, [5] proposed a tree-based approach for Poisson regression, [6] used semi-
parametric ZIP in animal abundance studies, [7] proposed a weighted ZIP, and
[8] used a zero-inflated generalized Poisson (ZIGP) regression model for over-
dispersed count data (increased variance). ZIP regression is not only applied in
manufacturing, but it is also widely used in many other areas such as public
health, epidemiology, sociology, psychology, engineering, agriculture, etc. ([4],
[9], [10]).

The statistical literature has focused on linear models and numerical input
attributes, but more flexible machine learning models would be valuable. A ZIP-
tree model was introduced by [5]. They modified the splitting criteria of the
classification and regression tree (CART) algorithm [11] to use the zero-inflated
Poisson (ZIP) likelihood error function instead of a residual sum of squares. Each
terminal node of a ZIP tree is assigned its own ZIP distribution parameters (zero
inflation probability p and Poisson distribution parameter λ). To improve upon a
single tree model, ensemble methods are used, especially boosted tree ensembles
(AdaBoost [12]) or gradient boosted trees [13]).

A unique approach here uses two linked tree ensembles to model the ZIP
distribution parameters p, λ. Although ZIP regression represents our application,
the linked ensembles are a new contribution to the machine learning literature.
The algorithm minimizes ZIP log-likelihood loss function by a gradient descent
method similar to the one proposed for multi-class logistic regression (MCLRT)
[13]. Our algorithm uses the log-link function for λ and the logit-link function
for p as proposed for standard ZIP regression [2]. The first ensemble predicts
log(p/1 − p), the second one − log(λ) (where log stands for natural logarithm
here and in the following). Each subsequent tree in both ensembles is fitted to
the corresponding gradient of the loss function by means of the standard CART
algorithm with the variance reduction split criteria.

The linked ensembles for ZIP regression is compared to a single ZIP tree
and generalized linear models (GLM’s) from statistics on actual data. The ZIP
ensemble, ZIP tree and ZIP regression (GLM) are also compared on several ar-
tificial data sets with ZIP distribution parameters generated as known functions
of the inputs. We studied the effect of different underlying target models, noise
levels, and parameter settings on the performance of single tree and ensemble
model. It is shown that the linked ensembles result in lower log-likelihood (error)
value on an independent test set and better approximation for ZIP distribution
parameters.

Rare event counts are an important form of data structure and machine learn-
ing tools for such models are lacking. The method here illustrates the flexibil-
ity and the performance increase that can be obtained from linked ensembles
matched to relevant training objectives. Section 1 provides background on Pois-
son regression. Section 2 summarizes gradient boosting and Section 3 presents
our linked ensembles. Section 4 provides simulated and actual experiments and
Section 5 provides conclusions.

Zero-Inflated Boosted Ensembles for Rare Event Counts 227

1 Previous Work: ZIP Regression and ZIP Tree

The Poisson distribution parameters depend on the values of input variables as:

yi ∼
{

0, with probability pi,
Poisson(λi), with probability 1− pi, i = 1 . . . n,

where n is the number of instances and yi is the target for i-th instance. This
model implies that

P (yi = k) = P (pi, λi, k) =
{

pi + (1 − pi)e−λi , k = 0,
(1− pi)e−λiλk

i /k!, k = 1, 2,

For a ZIP regression model the parameters λ, p are obtained from the linear
combinations of inputs via log- and logit-link functions:

log(λi) = βxi, and log it(pi) = log
(

pi

1− pi

)
= γxi.

Here xi is the input feature vector for observed row i (and for simplicity of
notation we always assume that a constant variable x = 1 is added as the
first input variable to take the intercept term into account), β, γ are vectors of
coefficients to be fit. The ZIP model is usually fit using maximum likelihood
estimation. The log-likelihood function for this model is:

L(β, γ, y) =
n∑

i=1

L(β, γ, yi) =
n∑

i=1

log P (β, γ, yi)

=
∑
yi=0

log
(
exp(γxi) + exp(−eβxi)

)
+

∑
yi>0

(yiβxi − exp(βxi))

−
n∑

i=1

log (1 + exp(γxi))−
∑
yi>0

log (yi!) ,

Log-likelihood can be maximized using the Newton-Raphson method, but
usually the expectation-maximization (EM) algorithm [14] is used because of
the complexity of calculating the Hessian in the Newton-Raphson method (the
log of the double exponent makes it complex), and the better robustness of EM.
As mentioned by [2], the EM always converges (local minimum) but Newton-
Raphson failed in some experiments. Different models for the p parameter of ZIP
distribution were compared by [2]. In addition to the independent linear model
for p and λ, p was modeled as a function of λ. That can be a reasonable assump-
tion in many cases and simplifies fitting the model. The same ZIP regression
model was applied by [15] to decayed, missing and filled teeth (DMFT) data.
They used a piecewise constant model for the p parameter. Both [2] and [15]
considered using mixture models (with the most popular a mixture of Poisson
and negative binomial distributions), but claimed that such models are more
difficult to fit and usually provide worse predictions than ZIP models.

228 A. Borisov et al.

The ZIP likelihood was used as a splitting criterion for a decision tree by [5].
They modified the CART algorithm to use the negative ZIP likelihood as an
impurity measure in a node. The negative ZIP likelihood of the data in node T
can be expressed as

LZIP (T) = LZIP (p, λ, y) = −n0 · log
(
p + (1 − p)e−λ

)
−(n− n0) · (log(1− p)− λ)−

∑
xi∈T

yi · log λ +
∑

xi∈T,yi>0

log(yi!),

where p, λ are estimates of Poisson distribution parameters in node T .
The new splitting criterion is based on the difference of the ZIP likelihood in

the left and the right child nodes from the ZIP likelihood in the parent node.
The expression for split weight can be written as

φ(s, T) = LZIP (T)− LZIP (TL)− LZIP (TR)

where T is the parent node, TL, TR are the left and right children of T , and s is
the split in node T . The same best split search strategy can be applied as in the
CART algorithm with this revised splitting criterion.

To compute the ZIP likelihood function, the parameters p and λ in a tree node
are determined as maximum likelihood estimates. For ZIP likelihood, there is no
closed form solution for these MLEs (one needs to solve a complex optimiza-
tion problem). Therefore, [15] fit the λ parameter using zero-truncated Poisson
distribution (thus taking only samples with yi > 0 in node into account):

λ

1− e−λ
= ȳ = mean(yi|yi > 0, xi ∈ T).

After an estimate for the λ parameter is obtained, p can be estimated from the
known proportion of zero-class samples in the node:

p =
n0

T /nT − e−λ

1− e−λ
,

where n0
T is the number of zero count instances and nT is total number of

instances in node T .

2 Boosting Framework

The gradient boosting framework is now described more formally. Given training
data {yi, xi}i=1...n, xi = {xi1, . . . , xiK} ∈ X, yi ∈ Y , where n is the number of
data instances, K is the number of input attributes. Our goal is to find a function
F ∗(x) : X → Y that minimizes the expected value of the specified loss function
L(y, F (x)) over the joint distribution of x, y values:

F ∗(x) = arg min Ex,y
F (x)

L(y, F (x)).

Zero-Inflated Boosted Ensembles for Rare Event Counts 229

Here the expectation term cannot usually be computed directly as the joint
distribution of x, y is not known. So in practice it is replaced with expected risk,
i.e.:

F ∗(x) = arg min
F (x)

n∑
i=1

L(yi, F (xi)).

Boosting uses an additive model to approximate F ∗(x): F ∗(x) =
∑M

m=0 h(x, am),
where the function h(x, am) is some simple function (“base learner”) of param-
eter vector a. Base learner parameters am, m = 1 . . .M are fit in a forward
stepwise manner. It starts from some initial approximation F0(x), then proceeds
as follows:

am = argmin
a

n∑
i=1

L (yi, Fm−1(xi) + h(xi, a)) , (1)

Fm(x) = Fm−1(x) + h(x, am).

Gradient boosting [13] solves the optimization problem (1) using the stepwise
steepest descent method. The function h(x, a) is fit by least squares:

am = argmin
a

n∑
i=1

(ỹim − h(xi, a))2

to the current “pseudo-residuals” or “pseudo-responses” :

ỹim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

. (2)

A gradient boosted tree (GBT) is the specialization of this approach to the case
where the base learner is a regression tree:

h(x, {Rlm}l=1...L) =
L∑

l=1

γlm · I(x ∈ Rlm),

where L is the number of terminal regions (nodes) Rlm, and γlm is the response
(mean) in node Rlm. The tree is fit using the CART algorithm [11] for the
regression case with variance reduction criteria. This gives rise to the following
algorithm:

Algorithm 1: Gradient boosted tree

1. F0(x) = arg minγ

∑n
i=1 L(yi, γ)

2. For m = 1 to M do:
3. ỹim = −

[
∂L(yi,F (xi)

∂F (xi)

]
F (x)=Fm−1(x)

, i = 1 . . .n

4. {Rlm}l=1...L = L− terminal node tree
5. γlm = arg minγ

∑
xi∈Rlm

L(yi, Fm−1(xi) + γ)
6. Fm(x) = Fm−1(x) + ν · γlmI(x ∈ Rlm)
7. End for

230 A. Borisov et al.

Here ν is a “shrinkage rate” or “regularization parameter” that controls the
learning rate of the algorithm. Smaller values for shrinkage (0.01-0.1) reduce
over-fitting, thus building models with better generalization ability. Usually only
a randomly selected percentage of samples (about 60%) are used to learn a tree
on step 4 (bootstrapping). This speeds up the model building and also reduces
over-fitting.

A particularly interesting case of Algorithm 1 is two-class logistic regression
(that also has a multi-class generalization that we omit). It is derived from
the GBT framework with a CART tree as a base learner, and the negative
binomial log-likelihood as the loss function. Assume that the response is binary,
y ∈ {−1, 1}, and the loss function is negative binomial log-likelihood : L(y, F) =
log(1 + exp(−2yF)), where F is a two-class logistic transform:

F (x) =
1
2

log
[

Pr(y = 1|x)
Pr(y = −1|x)

]
. (3)

Each tree approximates the log-odd of class 1 probability, and the pseudo-
response derived from equation (2) or step 3 of Algorithm 1 is ỹim = 2yi/(1 +
exp(2yiFm−1(xi)).

The optimization problem in step 5 cannot be solved in closed form, so a
single Newton-Raphson step approximation is used, which leads to the following
expression

γlm =
−

∑
xi∈Rlm

∂L(yi,Fm−1(xi)+γ)
∂γ∑

xi∈Rlm

∂2L(yi,Fm−1(xi)+γ)

∂γ2

=
−

∑
xi∈Rlm

∂L(yi,f)
∂f

∣∣∣
f=Fm−1(xi)∑

xi∈Rlm

∂2L(yi,f)
∂f2

∣∣∣
f=Fm−1(xi)

=
∑

xi∈Rjm
ỹim/

∑
xi∈Rjm

|ỹim| · (2− |ỹim|).
(4)

After the ensemble model FM (x) for log-odds is built, probabilities of classes
can be derived from (3):

p+(x) = Pr(y = 1|x) = 1/(1 + exp(−2FM (x))),
p−(x) = Pr(y = −1|x) = 1/(1 + exp(2FM (x))).

These can also be used for classification. The predicted response is the one having
higher probability.

Both the prediction accuracy and the execution speed of gradient boosting
can be substantially improved with dynamic feature selection which promotes
more relevant features [16]. This also reduces the over-fitting effect. Furthermore,
feature selection can be applied initially to reduce the dimensionality of the
problem. The artificial contrast ensemble (ACE) method [17] integrates GBT in
a comprehensive feature selection algorithm.

To increase the robustness of GBT algorithm, influence trimming [13] can
be applied when selecting samples for building a subsequent tree. Samples with
low influence for estimated base learner parameters can be omitted in tree con-
struction. Influence can be estimated as follows. We estimate the response in a
terminal node on step 5 of Algorithm 1 via the equation∑

xi∈Rlm

∂L(yi, Fm−1(xi) + γ)/∂γ = 0.

Zero-Inflated Boosted Ensembles for Rare Event Counts 231

The influence of the i-th instance on the solution can be gauged by the second
derivative of the loss function, i.e.,

wi = w(xi) = ∂2L(yi,Fm−1(xi)+γ)
∂γ2

∣∣∣
γ=0

= ∂2L(yi,f)
∂f2

∣∣∣
Fm−1(xi)

= |ỹim| · (2− |ỹim|).

Influence trimming not only speeds up the tree construction, but also improves
robustness of the Newton-Raphson method step in equation (4) by preventing
small denominator values for a tree node. The denominator is proportional to the
sum of sample influences in the node. Influence trimming deletes all observations
with wi < wl(α), where l(α) is the solution to

∑l(α)
i=1 w(i) = α ·

∑N
i=1 wi. Here

the weights wi’s sorted in ascending order, and α is usually chosen in the range
[0.05, 0.2].

3 ZIP-Boosted Ensemble

A unique characteristic of ZIP regression is the inter-related parameters (p, λ).
Two ensembles are simultaneously used to approximate the transformed Poisson
regression parameters. A negative ZIP-likelihood is used as the loss function, and
the CART model as a base learner. From the transformations log-link for p and
logit-link for λ used by [2] we obtain:

μ = log (p/(1− p)) , p = eμ/(1 + eμ), ν = log(λ), λ = eν .

The first ensemble fits a model for μ(x), and the second one for ν(x). The initial
value for ν is estimated from a zero truncated Poisson distribution of the target:

λ0

1− e−λ0
= ȳ = mean(yi|yi > 0), ν0 = log(λ0),

and μ0 as

p0 =
n0/n− e−λ0

1− e−λ0
, μ0 = logit(p0),

where n0 is the number of zero-class instances (yi = 0).
The loss function to be minimized takes the form

L(y, p, λ) =
∑n

i=1 L(yi, pi, λi)= −
∑

yi=0 log
(
pi + (1− pi)e−λi

)
−

∑
yi>0 (log(1− pi)− λi)−

∑
yi>0 yi log λi +

∑
yi>0 log(yi!),

where we denote pi = p(xi), λi = λ(xi) to simplify notation. The last term is
not dependent on the model and can be dropped. In the other terms,

L(y, p, λ) = L(y, μ, ν) =
∑n

i=1 L(yi, μi, νi)
= −

∑
yi=0 (log(eμi + exp(−eνi)− log(1 + eμi))+

∑
yi>0 (log(1 + eμi) + eμi)

−
∑

yi>0 yiνi,

where μi = μ(xi), νi = ν(xi).

232 A. Borisov et al.

Pseudo-responses are calculated as follows. The pseudo-responses for the p-
ensemble are

μ̃im = −
[
∂L(yi, μi, νi)

∂μi

]
μi=μm−1(x),νi=νm−1(x)

=
[
∂L(yi, pi, λm−1(xi))

∂pi

]
pi=pm−1(x)

·
[
∂p(μi)
∂μi

]
μi=μm−1(x)

=

{
(e−λi−1)

pi+(1−pi)e−λi
· pi(1− pi), yi = 0,

1/(1− pi) · pi(1− pi) = pi yi > 0,

where pi = pm−1(xi), λi = λm−1(xi). Here the pseudo-response is expressed in
terms of pi, λi to simplify notation.

The pseudo-responses for the λ-ensemble are derived in the same way. Note
that ∂p(μ)/∂μ = eμ/(1 + eμ)2 = p(1− p), ∂λ(ν)/∂ν = eν = λ and

ν̃im =

{
λie

−λi

pi/(1−pi)+e−λi
, yi = 0,

λi − yi, yi > 0.

The predicted target for a node is an optimization problem (in step 5 of algorithm
1) that is solved via a single step of Newton-Raphson. Unfortunately in our case
the Hessian (second derivative) can sometimes be negative. Such occasions are
rare and possibly indicate over-fitting or “self-contradictory” data (i.e., cases
when data instances with similar x values have very different (p, λ) values). A
negative Hessian means that the target function is not concave and thus cannot
be approximated by a second-order polynomial. In such a case we use one step
of steepest descent instead of the Newton-Raphson step. The second derivatives
for the p-tree (which are summands in the denominator in (4)) are:

∂2L(yi,μm−1(xi)+γ,νm−1(xi))
∂γ2

∣∣∣
γ=0

= ∂2L(yi,μi,νm−1(xi))
∂μ2

i

∣∣∣
μi=μm−1(xi)

= ˜̃μim

=

{
− (1−pi)2e−λi−p2

i

(pi+(1−pi)e−λi)2 · pi(1− pi) · (1− e−λi), yi = 0,

pi(1− pi), yi > 0.

Similarly, for the λ-tree:

∂2L(yi,μm−1(xi),νm−1(xi)+γ)
∂γ2

∣∣∣
γ=0

= ∂2L(yi,μm−1(xi),νi)
∂ν2

i

∣∣∣
νi=νm−1(xi)

= ˜̃νim

=

{
λi(1 − pi) · 1−pi+pie

λi ·(1−λi)
(pi+(1−pi)eλi)2 , yi = 0,

λi, yi > 0.

The formula (4) for the “optimal” response in a p-tree terminal node is

γ1
lm =

⎧⎨
⎩

∑
xi∈Rjm

μ̃im∑
xi∈Rjm

˜̃μim

, if
∑

xi∈Rjm

˜̃μim > ε = 10−6,∑
xi∈Rjm

μ̃im

n(Rjm) , otherwise,

Zero-Inflated Boosted Ensembles for Rare Event Counts 233

where n(Rjm) is the count of training instances in node Rjm. Similarly, for the
λ-tree

γ2
lm =

⎧⎨
⎩

∑
xi∈Rjm

ν̃im∑
xi∈Rjm

˜̃νim
, if

∑
xi∈Rjm

˜̃νim > ε,∑
xi∈Rjm

ν̃im

n(Rjm) , otherwise.

The algorithm is of substantial interest for rare-event count data and has
been used successfully in the semiconductor industry. Several tricks were used
to improve the numerical stability of the algorithm. To prevent μi, νi from caus-
ing numerical overflows (or underflows) we simply threshold by a reasonable
constant. That is, if x denotes either μ or ν require exp(x) < fmax/2 (or
x < log(fmax/2)) and for underflow x > − log(fmax/2) where fmax is the
maximum floating point value.

We also adopted the influence trimming strategy to prevent a small absolute
Hessian in a tree node. We found that one cannot remove instances where the
second derivative of the loss function is negative because it can severely harm
the performance of the algorithm. However, one can trim samples with a small
absolute second derivative in a p-tree. Consequently, we do not use influence
trimming for the λ-tree (as small absolute second derivatives of the loss func-
tion are not likely to happen there), but apply influence trimming with weights
wi = pi(1 − pi) for the p-tree in the way described earlier for two-class logistic
regression.

4 Evaluation

First we validate our ZIP boosting algorithm and compare its performance with
our implementation of the ZIP tree on two artificial data sets. Both data sets are
generated from known models for the ZIP distribution parameters (p, λ) with a
small amount of random noise added as

p = p(x1, x2) · (1 + ε · u1), u1 ∈ U(−1, 1),
λ = λ(x1, x2) · (1 + ε · u2), u2 ∈ U(−1, 1).

Then target value yi is generated from a ZIP distribution with parameters (pi =
p(x1i, x2i), λi = λ(x1i, x2i)). In all three experiments three values for the noise
level ε = 0, 0.2, 0.5 are used. The size of all data sets is 10000 samples.

The first data set uses a linear model for (p, λ) as

p = 0.2 + 0.6 · (0.3x1 + 0.7x2), λ = 1.5 + 7 · (0.6x1 + 0.4x2).

The second data set uses a more complex, highly nonlinear model

logit(p) = 2 sin(20x1) + 3x2 · (x2 − 0.5), log(λ) = sin(30x1) + 3x2.

In all experiments the model complexity (which is the pruning step for the tree
and the number of iterations for GBT) is selected based on the best CV error.

234 A. Borisov et al.

Table 1. Comparisons of ZIP tree, ZIP GBT, and GLM on two artificial data sets

Data Noise
(ε)

Base
error

Model Train er-
ror

CV error δp δλ δλrel

LINEAR 0 1.801 TREE 1.663 1.690 0.043 0.355 0.074
GBT 1.653 1.675 0.027 0.182 0.038
GLM 1.673 1.673 0.01 0.196 0.043

0.2 1.859 TREE 1.707 1.736 0.043 0.416 0.092
GBT 1.702 1.721 0.032 0.179 0.040
GLM 1.705 1.705 0.01 0.225 0.048

0.5 1.873 TREE 1.744 1.775 0.040 0.441 0.093
GBT 1.733 1.754 0.032 0.234 0.049
GLM 1.75 1.75 0.018 0.183 0.041

NON- 0 2.920 TREE 1.535 1.675 0.146 3.105 0.403
LINEAR GBT 1.360 1.413 0.058 1.844 0.255

GLM 2.08 2.08 0.249 4.783 1.012
0.2 3.037 TREE 1.594 1.735 0.156 3.027 0.423

GBT 1.425 1.492 0.064 1.810 0.247
GLM 2.148 2.149 0.25 4.757 1.022

0.5 3.310 TREE 1.774 1.925 0.154 3.112 0.394
GBT 1.577 1.663 0.073 1.812 0.253
GLM 2.34 2.332 0.253 4.754 1.014

For artificial data sets, the following parameters are used. The ZIP TREE
used tree depth = 6, min split = 50, min bucket = 20 and ZIP GBT used nit
= 1000, tree depth = 3, min split = 400, min bucket = 200, shrinkage = 0.01,
infl trimming = 0.1. Here tree depth is a maximum tree depth (so that a node is
not split if it is at the specified depth), min split is a minimum size of the node
that will be split (so that if it has less observations it is NOT split), min bucket is
a minimum size of the terminal node (so that the split is not accepted if it creates
a terminal node with smaller size), nit is a maximum number of iterations for an
ensemble, shrinkage is the ν parameter (regularization) on step 6 of Algorithm
1, infl trimming is the α threshold for influence trimming.

The base error column in Table 1 shows the negative ZIP log-likelihood for the
best constant model. The training and CV-error (5-fold) are also calculated for
the negative ZIP log-likelihood. Furthermore, δp is the average absolute differ-
ence in the estimated p parameter (δp =

∑n
i=1 |p(x1i, x2i)− p̂(x1i, x2i)|/n where

p̂(x1, x2) is the prediction from the model), δλ is the average absolute differ-
ence in the estimated λ parameter (δλ =

∑n
i=1 |λ(x1i, x2i)− λ̂(x1i, x2i)|/n), and

δλrel is the average relative difference in the estimated λ parameter (δλrel =∑n
i=1 |1 − λ̂(x1i, x2i)/λ(x1i, x2i)|/n). These three latter values show how well

ZIP distribution parameters are approximated by the model.
For the examples in Table 1 GBT is always superior to a single tree in terms

of training error, CV error and parameter estimation error. The data subsets
in the CV results for the GBT and single tree are identical and the standard
deviations are small. All differences are statistically significant at a 5% level.

Zero-Inflated Boosted Ensembles for Rare Event Counts 235

Also, one can see that over-fitting (the difference between CV and train errors)
is much smaller for GBT, especially for larger noise levels and more complex
models. For the linear model GLM is expected to perform well. The data subsets
in the CV results for the GBT and GLM are not identical but because of the
large sample sizes all differences are again statistically significant at a 5% level.
But even for the linear model GBT provides nearly equivalent performance from
a practical perspective, and it substantially excels for the nonlinear model.

We also compared the performance of ZIP GBT, ZIP tree, and GLM on actual
data sets well known in the statistical literature in Table 2. Lambert [2] studied
the behavior of the linear algorithm on soldering data from AT&T Bell Labs.
We were not able to find this data, but there is another similar soldering data
(SOLDER) that is shipped with the free R software package Rpart that we
used. The second is DMFT (decayed, missing and filled teeth) data set used by
[15]. Parameters of both algorithms were adjusted manually to minimize cross-
validation error. ZIP TREE used tree depth = 6, min split = 15, min bucket =
10 and ZIP GBT used nit = 1000, tree depth = 3, min split = 30, min bucket =
20, shrinkage = 0.02(0.005 for DMFT), infl trimming = 0.1. On the SOLDER
data set, ZIP GBT is much better than a single tree in terms of cross-validated
log-likelihood, and better than GLM. The data subsets in the CV results for
the GBT and a single tree are identical, but randomized for GLM. From the CV
standard deviations (in the last column) all differences are statistically significant
at a level much smaller than 5%. For DMFT the data is not very informative
and consequently the algorithms all perform similarly. The data subsets in the
CV folds were selected as before and the CV error for ZIP GBT is statistically
different at 5%.

Table 2. Comparisons of ZIP tree, ZIP GBT, and GLM on actual data sets

Data Base error Model Train error CV error CV stdev
SOLDER 4.464 TREE 2.493 2.714 0.043
SOLDER GBT 1.510 1.818 0.012
SOLDER GLM 1.819 1.934 0.019
DMFT 1.789 TREE 1.548 1.563 0.010
DMFT GBT 1.519 1.550 0.003
DMFT GLM 1.556 1.568 0.005

5 Conclusion

This work introduces a new modeling technique based on two linked ensembles
for a supervised learning problem with rare-event counts. The methodology ex-
tends machine learning to supervised problems where the usual loss functions
are not relevant. The approach provides an outline so that, as needed for the sta-
tistical objective, multiple linked ensembles can be integrated. The tree based
ensembles provide the learner with substantial benefits over the more tradi-
tional, statistical GLM models. The ensemble easily handle mixed data, high

236 A. Borisov et al.

dimensions, and interactions. For simulated examples with nonlinear models the
algorithm’s performance (both in terms of the log-likelihood value and the pre-
diction of the ZIP distribution parameters as a function of inputs) is superior to
the performance of a ZIP tree and GLM models.

References

1. Cameron, A., Trivedi, P.: Regression analysis of count data. Cambridge University
Press, Cambridge (1998)

2. Lambert, D.: Zero-inflated poisson regression with an application to defects in
manufacturing. Technometrics 34(1), 1–14 (1992)

3. Wang, P.: Markov zero-inflated poisson regression models for a time series of counts
with excess zeros. Journal of Applied Statistics 28(5), 623–632 (2001)

4. Li, C., Lu, J., Park, J., Kim, K., Brinkley, P., Peterson, J.: Multivariate zero-
inflated poisson models and their applications. Technometrics 41(1), 29–38 (1999)

5. Lee, S., Jin, S.: Decision tree approaches for zero-inflated count data. Journal of
applied statistics 33(8), 853–865 (2006)

6. Chiogna, M., Gaetan, C.: Semiparametric zero-inflated poisson models with appli-
cation to animal abundance studies. Environmetrics 18, 303–314 (2007)

7. Hsu, C.: A weighted zero-inflated poisson model for estimation of recurrence of
adenomas. Statistical Methods in Medical Research 16, 155–166 (2007)

8. Famoye, F., Singh, K.: Zero-inflated generalized poisson regression model with an
application to domestic violence data. Journal of Data Science 4, 117–130 (2006)

9. Cheung, Y.: Zero-inflated models for regression analysis of count data: a study of
growth and development. Statistics in Medicine 21, 1461–1469 (2002)

10. Yau, K., Lee, A.: Zero-inflated poisson regression with random effects to evaluate
an occupational injury prevention programme. Statistics in Medicine 20, 2907–2920
(2001)

11. Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J.: Classification and Regression
Trees. Chapman and Hall/CRC, New York (1984)

12. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences 55, 119–139
(1997)

13. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The
Annals of Statistics 29(5), 1189–1232 (2001)

14. Hastie, T., Tibshirani, R., Friedman, J.: Elements of statistical learning. Springer,
New York (2001)

15. Bohning, D., Dietz, E., Schlattman, P., Mendonca, L., Kirchner, U.: The zero-
inflated poisson model and the decayed, missing and filled teeth index in dental
epidemiology. Journal of the Royal Statistcal Society: Series A 162(2), 195–209
(1999)

16. Borisov, A., Eruhimov, V., Tuv, E.: Tree-based ensembles with dynamic soft fea-
ture selection. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature
Extraction Foundations and Applications. Studies in Fuzziness and Soft Comput-
ing. Springer, Heidelberg (2006)

17. Tuv, E., Borisov, A., Runger, G., Torkkola, K.: Best subset feature selection with
ensembles, artificial variables, and redundancy elimination. Journal of Machine
Learning Research (2008) (to appear)

Mining the Temporal Dimension
of the Information Propagation

Michele Berlingerio1, Michele Coscia2, and Fosca Giannotti3

1 IMT-Lucca, Lucca, Italy
2 Dipartimento di Informatica, Pisa, Italy

{name.surname}@isti.cnr.it
3 ISTI-CNR, Pisa, Italy

Abstract. In the last decade, Social Network Analysis has been a field
in which the effort devoted from several researchers in the Data Min-
ing area has increased very fast. Among the possible related topics, the
study of the information propagation in a network attracted the interest
of many researchers, also from the industrial world. However, only a few
answers to the questions “How does the information propagates over a
network, why and how fast?” have been discovered so far. On the other
hand, these answers are of large interest, since they help in the tasks of
finding experts in a network, assessing viral marketing strategies, identi-
fying fast or slow paths of the information inside a collaborative network.
In this paper we study the problem of finding frequent patterns in a net-
work with the help of two different techniques: TAS (Temporally Anno-
tated Sequences) mining, aimed at extracting sequential patterns where
each transition between two events is annotated with a typical transition
time that emerges from input data, and Graph Mining, which is help-
ful for locally analyzing the nodes of the networks with their properties.
Finally we show preliminary results done in the direction of mining the
information propagation over a network, performed on two well known
email datasets, that show the power of the combination of these two
approaches.

1 Introduction

In the last decade, the interest in Social Network Analysis topics from researchers
in the Data Mining area has increased very fast. Much effort has been devoted, for
example, in the Community Discovery, Leader Detection and Network Evolution
problems [7,18,4,17]. Another topic that has attracted much interest recently is
how the information propagates over a network [10,1,14,13]. This problem has
been studied from several points of view: statistics, modeling, mining are few of
the approaches that have been applied so far in this direction. However, only
a few answers to the questions “How does the information propagates over a
network, why and how fast?” have been discovered so far. On the other hand,
these answers are of large interest, since they help in the tasks of finding experts
in a network, assessing viral marketing strategies, identifying fast or slow paths

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 237–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

238 M. Berlingerio, M. Coscia, and F. Giannotti

of the information inside a collaborative network, and so on. In this paper we
study the problem of finding frequent patterns in a network focusing in two
aspects:

– The temporal dimension intrinsically contained in the flow of information:
why certain topics are spread faster than others? What is the distribution
of the temporal intervals among the “hops” that the information passes
through?

– The causes of the information propagation: why certain discussions are
passed over while others stop in two hops? What are the characteristics
of the nodes that pass the information?

As one can notice, the two dimensions of our focus are orthogonal to each other:
certain nodes with certain characteristics may let a particular kind of informa-
tion spread faster or slower than other nodes, or compared to information with
other characteristics. The combination of the two aspects finds several possible
application in real life. Among all of them, we believe that Viral Marketing can
be powerfully enhanced by such kind of analysis. Companies willing to advertise
a new product in their network of users may discover that giving a certain kind
of information or special offers to a particular set of selected nodes may result
in a cheaper or more effective advertisement campaign.

In this paper, we study the above problem on the well known Enron email
dataset [12], and the 20 Newsgroups dataset [11,16], and with the help of two
different techniques: TAS (Temporally Annotated Sequences) mining, which is a
paradigm aimed at extracting sequential patterns where each transition between
two events is annotated with a typical transition time that emerges from input
data, and Graph Mining, which is helpful for locally analyzing the nodes of the
networks with their properties.

The contribution of this paper can be summarized as follows: we show how
to extract useful information from a network in order to mine the information
propagation, in the format of a graph where nodes are users and edges are words
used as email subjects, and a set of timestamped sequences of emails grouped by
threads; we show how to apply the two techniques above to a real-life dataset;
we present the preliminary results obtained by applying the two algorithms on
graphs extracted from the datasets, and on the sequences of exchanged email,
showing a general methodology that can be applied in any sort of network where
an exchange of information is present.

The rest of the paper is organized as follows: section 2 presents some work
related to our problem; section 3 defines what is the problem under investigation
and which kind of data we want to analyze; section 4 shows the preliminary
results obtained during our analysis of the datasets; section 5 briefly summarizes
the results of our work and some possible future work.

2 Related Work

During the last years, several approaches have been proposed addressing the
problem of analyzing how the information propagates in a network.

Mining the Temporal Dimension of the Information Propagation 239

In [10], the authors summarize three papers focusing on finding communities
and analyzing the small world phenomenon by means of statistical approaches. In
[1], the authors describe general categories of information epidemics and create a
tool to infer and visualize the paths specific infections take through the network
by means of statistical tools and Support Vector Machines. In [6], the model of
timestamped graph and digraph are introduced in order to study the influence
in a network. In [14] the problem of Viral Marketing is analyzed with several
different statistical approaches.

Among several other possible works, we believe that [13,15] are the closest
to our work: they focus on the temporal behavior in the network, and in the
characteristic of the users in the network.

However, to the best of our knowledge, this is the first time that TAS mining
and Graph Mining are used in conjunction in order to tackle the problem of
finding frequent patterns of information propagation together with their causes
in a network.

3 Problem Definition

We are given a dataset D of activities in a network, from which we can extract
both a network of users U as a graph G and a flow of any kind of information
(emails, documents, comments, instant messages, etc.) as a set of timestamped
sequences S. Examples of such datasets can be a set of emails exchanged among
people, the logs of an instant messaging service, the logs of a social networking
system, the content of a social bookmarking site, and so on. In this dataset we
are interested in finding frequent patterns of information propagation, and we
want to let the causes of such patterns emerge from the data. This can be done by
applying a framework for extracting temporally annotated sequences, as shown
in section 4, which allow to find such causes modeled as itemsets. We then want
to compare these rich patterns with the local patterns found in the graph G,
to see how the characteristics of the nodes interact both with the information
spread and with the interactions of the nodes with their local communities in
the network.

We assume D to contain at least the information about:

– a set of users with their characteristics (such as: gender, country, age, typical
discussed topics, degree, betweenness and closeness centrality computed over
the network, and so on)

– a timestamped set of sequences of actions performed by the above users that
involve the propagation of a certain kind of information (such as: exchange
of emails, posts in a forum, instant messages, comments in a blog, and so
on)

From the first, we can build several kinds of graphs that can be analyzed with
classical graph mining techniques. In order to mine and analyze the local com-
munities of the nodes with the focus on the spread of information, we want to
build such graphs on the basis of the information exchanged among the nodes.

240 M. Berlingerio, M. Coscia, and F. Giannotti

As an example, the nodes of the graph can be the users of a mailserver, while
there is an edge between two nodes if the nodes exchanged an email. The edge
can be then labeled with the typical words used in the communications, that
may be also grouped semantically or by statistical properties. Depending on the
characteristics of the users and the way we consider them connected among each
other, we are able to perform Social Network Analysis of the original network
from several different points of view. For example, we may want to use as vertex
labels the gender, the country and the age if we are analyzing a so called web
social network, while we may want to use structural properties such as the de-
gree, the closeness centrality, the betweenness or the clustering coefficient, if we
are analyzing a network of a company. Each different combination of properties
would result in a different kind of analysis.

From the second, we can derive a set of timestamped sequences to use as an
input of the TAS mining paradigm (see Section 4), in order to be able to extract
sequences of itemsets (i.e. characteristics of the users) that are found frequent
in the data, together with frequent temporal annotations for them.

The entire analysis will be an interactive and iterative loop of the following
steps:

1. Building a graph G of users in U , connected by edges representing typical
words or topics discussed by or among them

2. Assigning labels to the users in U according to their semantical (such as age,
gender, newsgroup of major activity, preferred topic, etc.) and statistical
(computed in G, such as betweenness, closeness centrality, etc.) characteris-
tics, collecting them in a set L

3. Assigning labels to the edges in G according to their semantical (such as
semantical cluster, etc.) or statistical (such as frequency of the stemmed
word or topic in the subjects, etc.) characteristics, collecting them in a setW

4. Extracting the flows of information in D, grouped by any property to use
as transaction identifier (thread, email subject, conversation ID, ..), and
building a set of temporally annotated sequences S, containing both the
information on the users involved in each flow (represented as itemsets of
labels in L), and the temporal information about the flow (usually found as
timestamps in seconds since the Epoch)

5. Extracting frequent Temporally Annotated Sequences T from S, represent-
ing the frequent flows of information, and containing both the temporal
dimension of the patterns, and the characteristics of the users involved

6. Extracting frequent subgraphs from G with the help of classical Graph Min-
ing, that represent the local communities of nodes together with their char-
acteristics and typical words or topics used

7. Analyzing the results produced in 4 in order to find frequent items (users’
caracteristics) associated with typical fast or slow transition times, then
analyze the patterns produced in 6 in order to find patterns containing nodes
with the same characteristics as labels: these patterns will tell if the users
with these characteristics are the best ones in spreading fast the type of
information described by the graph patterns

Mining the Temporal Dimension of the Information Propagation 241

Steps 1, 2, and 3, are clearly crucial and may vary the analysis that will be
performed. By setting different labelings for the edges in G and including or
excluding different characteristics as vertex labels in 6, the analyst may drive
the search for frequent patterns in different directions. Please note that, due
to the techniques available nowadays to the best of our knowledge, while the
TAS mining framework allows for the use of itemsets, which represent a set of
characteristics, there appears not to exist a graph miner able to handle more
than one label per edge. Hence, step 3 basically implies that we have to produce
different input graphs for every kind of analysis we want to perform.

4 Case Study

4.1 Dataset

We used for our experiments two e-mail datasets. The first one is the Enron email
dataset[12]. This dataset contains 619,446 email messages complete with senders,
recipients, cc, bcc, and text sent and received from 158 Enron’s employees. This
dataset is characterized by an exceptional wealth of information, and it allows
to track flows of communication, together with their associated subjects and the
complete data regarding the exchange of information. We took from the entire
dataset the “from”, “to”, “cc”, “bcc”, “subject” and “date” fields in each email
in the “sent” folder of every employee. We took only the emails that were sent to
other Enron employees, removing the outgoing emails. We also performed basic
cleaning by removing emails with empty subjects, noise, and so on. After the
cleaning stage, the number of remaining emails was about 12,000. We refer to it
as the “Enron” dataset.

The second dataset consists of Usenet articles collected from 20 different news-
groups about general discussions on politics and religion, technical discussions
on computers and hardware, general discussions on hobbies and sports, general
discussion on sciences, and a newsgroup for items on sale, and was first used in
[11,16]. Over a period of time, 1000 articles were taken from each of the news-
groups, which makes an overall number of 20,000 documents in this collection.
Except for a small fraction of the articles, each document belongs to exactly one
newsgroup. We took from each sent email the “from”, “to” and “date” field.
After a cleaning stage, the number of remaining emails was about 18,000. We
refer to it as the “Newsgroup” dataset.

4.2 Tools

For our analysis, we used the MiSTA software [9,8], which extracts frequent
Temporally Annotated Sequences from a dataset of timestamped sequences, and
that has been successfully applied in several contexts [3,2]; we also used a single
graph miner in order to find frequent subgraphs of a large graph, implementing
a Minimum Image Support function as described in [5].

All the experiments were conducted on a machine equipped with 4 processors
at 3.4GHz, 8GB of RAM, running the Ubuntu 8.04 Server Edition, and took

242 M. Berlingerio, M. Coscia, and F. Giannotti

from seconds to minutes for the TAS mining, and from minutes to hours for the
graph mining.

4.3 Steps of Analysis

We then followed the steps described in section 3 in order to perform our analysis.
In the following steps, the subscripts E and N indicate whether the sets refer to
the Enron or Newsgroup datasets, respectively.

As step 1, we built the graph GE for the Enron dataset by taking the users as
nodes and connecting two nodes with edges representing the subjects of emails
exchanged between them. For the Newsgroup dataset, we built GN by taking the
users as nodes and connecting two nodes with edges representing the subjects
for which both users posted a message to the newsgroups.

As step 2, we labeled the users UE and UN following five different possible la-
beling, according to their structural characteristics in the graphs GE and GN : the
degree (the number of ties to other nodes in the network, referred as “DEG”),
the closeness centrality (i.e., the inverse of the distance in number of edges of
the node from all other nodes in the network, referred as “CL”), the between-
ness centrality (i.e., the number of geodesic paths that pass through the node,
referred as “BET”) and two different clustering annotations (the first, referred
as “CC1”, is the triadic closure ratio, while the second, referred as “CC2”, is a
modified version that privileges the 2-neighborhood clustering). Table 1 shows
the labeling according to the real values of these variables. For users in UN we
also performed a labeling according to the newsgroup in which the user was most
active, assigning thus 20 possible labels for each node.

As step 3, the edges in GE and GN have been assigned a label according to var-
ious criteria. Both for the Enron and the Newsgroup datasets, the most frequent
words in the subjects were manually clustered by their semantic in 5 different
clusters per dataset. Each edge was then labeled with the most frequent cluster

Table 1. The labels assigned to the users in the datasets

Enron
Label Degree Closeness Betweenness CC1 CC2

1 [0 − 5] [0 − 0.21[[0 − 0.0015[0 0
2 [6 − 15] [0.21 − 0.2329[[0.0015 − 0.0046[]0 − 0.2[

]
0 − 35e−6

[
3 [16 − 33] [0.2329 − 0.2513[[0.0046 − 0.013[[0.2 − 0.34[

[
35e−6 − 14e−5

[
4 [34 − 75] [0.2513 − 0.267[[0.013 − 0.034[[0.34 − 0.67[

[
14e−5 − 61e−5

[
5 [76 − +∞[[0.267 − 1] [0.034 − 1] [0.67 − 1]

[
61e−5 − 1

[
Newsgroup

Label Degree Closeness Betweenness CC1 CC2
1 [0 − 15] 0 0 0 0
2 [16 − 39]]0 − 0.12[]0 − 0.0002[]0 − 0.42[]0 − 0.00015[
3 [40 − 84] [0.12 − 0.145[[0.0002 − 0.001[[0.42 − 0.61[[0.00015 − 0.00085[
4 [85 − 154] [0.0002 − 0.001[[0.001 − 0.002[[0.61 − 1[[0.00085 − 0.005[
5 [155 − +∞[[0.1632 − 1] [0.002 − 1] 1 [0.005 − 1[

Mining the Temporal Dimension of the Information Propagation 243

Table 2. The dataset statistics

Graph n e k̄ #Components GiantComponent C̄ � Diameter
Enron S 3731 9543 5.11 30 98.01% 0.17 4.52199 15

Newsgroup S 1457 12560 17.24 151 64.51% 0.78 4.02730 11
Newsgroup F 3923 31632 16.12 249 82.41% 0.73 4.42142 17

 john.fiscus

 steve.gilbert

1000362295 999091311 998915761

 tracy.geaccone

1000362295

 dana.jones

998915761 998041532

 dave.neubauer

998041532

 lee.ferrell

 kimberly.watson

998489420

Fig. 1. Example of mail flow for the subject “2002 capital plan”

among its words (ignoring the words not belonging to any cluster). The edges
corresponding to subjects for which none of the contained words was frequent
or was not belonging to any of the clusters were removed from the graphs. We
refer to the graphs created in this way as “Enron S” and “Newsgroup S”. For
the Newsgroup dataset we performed also a different labeling: all the words were
divided in three frequency classes and the edges were then labeled accordingly.
We refer to this graph as “Newsgroup F”. Finally, in each graph, multiple edges
between two nodes have been collapsed into a single edge labeled with its more
frequent label. Table 2 shows some statistical properties of the graphs gener-
ated, in which: n is the number of nodes, e the number of edges, k̄ the average
degree, #Components the number of components, GiantComponent the size of
the largest component of the graph (percentage of the total number of nodes), C̄
the average clustering coefficient of the graph (between 0 and 1), � the average
length of the shortest paths in the graph and Diameter the length of the longest
shortest path in the graph.

For the step 4, in order to build our SE and SN for the TAS mining paradigm,
we grouped all the emails by subject, keeping the timestamp given by the mail-
server to every email. Figure 1 is a graphical representation of the flow of emails
in Enron with initial subject “2002 capital plan”. In order to give this in input
to the software, we processed each of these flow by splitting it in all the possible
sequences of emails passed from an user to the others, following the natural
temporal ordering. This last step was not necessary for Newsgroup, as the emails
were sent only to one recipient, namely the newsgroup. The complete set of these
timestamped sequences constituted then our SE and SN .

Steps 5 and 6 produced the results in the following paragraph.

244 M. Berlingerio, M. Coscia, and F. Giannotti

4.4 Results

Although the focus in this paper is only to show the power of the combination
of the two techniques we used in our analysis, we can make some interpretation
of some of the resulting patterns, that clearly show the differences between the
two datasets.

Graph Mining
The Enron graph represents interactions in the working environment of a com-
pany, from which we can infer particular considerations regarding possible stages
of the workflow followed by the employees. Contacts between employees are di-
rect (not thus as in the newsgroup case), and are very often one-to-many (i.e.
there are many recipients in cc in an email).

The first pattern extracted, Figure 2a, represents an exchange of emails. The
labels on the nodes represent the level of Clustering Coefficient 2, i.e. the ten-
dency of an employee to create a working group around him or her. It can be
noticed that employees with high CC2 have a frequent exchange of emails among
each other with several subjects. At a certain moment, one of these high CC2
employees has a contact with a lower CC2 employee (a node outside the central
part of the graph being maybe a specific member of a work group) with a differ-
ent subject (label 4 vs other labels in the pattern). This pattern may represent
the mechanism by which members acting as “bridges” between groups detect,
with a mutual exchange of knowledge, who can solve a problem.

Figure 2b, where the label “<5” means any label lower than 5, is a general-
ization of Figure 2a. We found several patterns that follows this generalization,
thus we consider the phenomenon described above quite interesting in this case
study.

Another interesting pattern in the Enron graph is represented in Figure 2c,
where labels are assigned to nodes according to the first definition of clustering
coefficient (CC1). One can see that nodes with a low clustering coefficient (dis-
covered to be synonymous of high degree, in our case study) tend to behave in
contrast to the value of such a coefficient, as the nodes are found in a frequent
clique. This happens because these nodes have a very high degree (i.e. they
represent managers and directors), and they are all connected by edges labeled
with 1, which represents subjects regarding high-level decisions in the company.
In other words, cliques among managers are frequent only if they are speaking
about high-level topics.

We conclude the discussion on frequent graph pattern noting that, among the
results obtained in the Newsgroup dataset by using as labels for the edges the

5

4
4

5
3

51

1
5

<5
a

5
y

5z

x

2

2
1

21

1

(a) (b) (c)

Fig. 2. Subgraphs found in Enron dataset

Mining the Temporal Dimension of the Information Propagation 245

frequencies of the words composing the subjects, and the value of the CC2 as
labels for the nodes, users with a specific CC2 tend to speak about a specific
class of subjects with other users having the same CC2, while they speak about
other subjects when talking to people with a different CC2. Examples of this
behavior are patterns in Figure 3a and 3b.

5

4
2

5
1

5

1
5 5

2
31

3

1

(a) (b)

Fig. 3. Subgraphs found in Newsgroup dataset

DEG:4 CC2:5 CC2:5
[10, 14]

CL:5
[278, 284]

Fig. 4. An example of TAS found

TAS
We now present some considerations derived from the analysis of the most fre-
quent temporal sequences extracted from the two datasets. Figure 4 is a graphical
representation of a possible extracted pattern, saying that a user with DEG=4
and CC2=5 replied to an email 10 to 14 time units (5 minutes each) afterwards,
to a recipient with CC2=5, which replied to the same email 278 to 284 time
units afterwards, to a user with CL=5.

Consider graphs in Figure 5. The 5a and 5b graphs were generated by analyz-
ing the average response time of the most frequent sequences (i.e. the most repre-
sentative) according to different characteristics (Degree, Closeness, Betweenness
and CC2) of the sender. First, we can notice the difference of reaction times,
found to be higher in average in the Enron dataset. This can be explained by
considering the different nature of the exchange of knowledge in a working en-
vironment: there are not (frequent) immediate answers, since, after an email,
usually there are several steps of gathering of information, meetings and brain-
storming, thus enlarging the time needed for providing a response. On the op-
posite side, users within a social community usually only need to read all the
messages before answering, leading to usual short response time.

Regarding the Enron dataset, Figure 5a reveals an important piece of infor-
mation regarding the response time of the employees with an high degree of
betweenness centrality: having such an high centrality for an employee means
that many shortest paths in internal communications pass through that em-
ployee. TAS mining revealed that this tends to result in much higher response
times, due to the additional working burden that employees of this type have
to face. The knowledge that can be extracted from this analysis is to avoid, if

246 M. Berlingerio, M. Coscia, and F. Giannotti

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5

R
ea

ct
io

n
tim

e
in

 5
 m

in
ut

e
un

its

Value of the Characteristic

Deg
Bet

CC2
CL

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5

R
ea

ct
io

n
tim

e
in

 5
 m

in
ut

e
un

its

Value of the Characteristic

Deg
Bet

CC2
CL

(a) Reaction times - Enron (b) Reaction Times - Newsgroup

 1

 10

 100

 1000

Politics
Religion

Computers
Hardware

Hobby
Sports

Science Sales

R
ea

ct
io

n
tim

e
in

 5
 m

in
ut

e
un

its

Newsgroup of major activity

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4

A
vg

. #
D

is
tic

nt
 L

ab
el

s

Pattern Size (#Edges)

Enron
Newsgroups

(c) Reaction times - Newsgroup (d) Graph Patterns Heterogeneity

Fig. 5. Quantitative Analysis of the Results

possible, the structural hubs when there is the need to speed up a communi-
cation. This correlation between reaction times and betweenness was not found
frequent in the Newsgroup dataset.

Regarding the Newsgroup dataset, Figure 5b shows another difference of be-
havior from the Enron dataset: the higher regularity of growth of the reaction
time for users with higher degree. The degree grows as the user follows many
different discussions and, especially, when these discussions involve an increasing
number of users. The results showed that the typical response times go up be-
cause these discussions are probably the most controversial and interesting ones,
and in order to follow them, much time and attention have to be spent. These
considerations are not necessarily true in a business context: an employee with
a high degree (many different contacts) often answers very quickly.

Another consideration can be done w.r.t the “newsgroup” labeling. Consider
Figure 5(c). In the x axis we have the newsgroup of major activity of the users
(i.e., a possible value of the “newsgroup” label for the nodes), clustered by main
topics (x labels), while in the y the reaction times as found in the frequent
TAS. Each of the 20 bars represents one particular newsgroup. As we can no-
tice, there are differences in the reaction times according to the main topic of
the newsgroups. While politics and religion seem to be general “relaxed” discus-
sion topics, technical discussions in computers and hardware find more reactive

Mining the Temporal Dimension of the Information Propagation 247

answers. The most reactive is the newsgroup where people put items for sale:
the first offer is generally set after 5-10 minutes, as we can see from the figure.

Based on the above consideration, we can give a “draft” of what could be
done in order to perform step 7 of the general approach described in section 3:
once found that the “Sale” label could be a characteristic related to the speed of
the users, it is possible to go back on the results of the graph mining and see if
that label was found frequent, possibly in the center of a large subgraph pattern
where other nodes have different labels. If the frequency of this pattern is found
high, one can argue that passing the information to “Sale” nodes would result
in a faster and effective spread of information. In this case study, the meaning
of the “Sale” label does not really suggest anything special, but the focus here
is to give an idea of the potentialities of the general approach followed.

Finally, consider Figure 5d that shows a direct comparison between the two
datasets. It shows the degree of heterogeneity of the communication (i.e. the
number of different semantic labels associated with the edges of the frequent
patterns) compared with the volume of communication (number of edges in
the pattern). From the graph it can be inferred that the business environment
shows a greater heterogeneity in the communications: while in the Enron dataset
employee tend to speak about different topics with their neighbors, in the News-
group dataset close users speak about the same topics. This seems quite easy
to explain: employees usually manage more than one different situation, while
users in newsgroups tend to be clustered by newsgroup, and hence by topics.

5 Conclusions and Future Work

We have shown a general methodology to mine the information propagation in
a network where users exchange information. We have described how to extract
useful information from such a network in order to be able to use a combination
of two powerful techniques, namely TAS mining and graph mining, in order
to find frequent patterns of propagation of information that involve also the
possible causes of this propagation. We have shown how this combination can
help in finding frequent temporal behaviors in the network together with the
characteristics of the users, and what are the roles of these users in the network.
We have presented preliminary results of a case study on real-life datasets and
we have provided a possible interpretation of some of them.

These first results are encouraging and open the way for a powerful method-
ology that can help applications such as Viral Marketing.

In the future we plan to extend this analysis to other datasets, where we will
be able to use more characteristics of the words and different characteristics of
the users, such as the country, the gender, the age and so on.

References
1. Li Zhang, L.A., Adamic, R.M., Lukose, E.A.: Implicit structure and the dynamics

of blogspace. Communications of the ACM: CACMa publ. of the Association for
Computing Machinery 47(12), 35–39

248 M. Berlingerio, M. Coscia, and F. Giannotti

2. Berlingerio, M., Bonchi, F., Giannotti, F., Turini, F.: Mining clinical data with a
temporal dimension: a case study. In: Proc. of The 1st Intern.Conf. on Bioinf. and
Biomed. (2007)

3. Berlingerio, M., Bonchi, F., Giannotti, F., Turini, F.: Time-annotated sequences for
medical data mining. In: Proc. of The Intern. Workshop of Data Min. in Medicine
(2007)

4. Borgwardt, K.M., Kriegel, H.-P., Wackersreuther, P.: Pattern mining in frequent
dynamic subgraphs. In: IEEE International Conference on Data Mining, pp. 818–
822 (2006)

5. Bringmann, B., Nijssen, S.: What is frequent in a single graph? In: Washio, T.,
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012,
pp. 858–863. Springer, Heidelberg (2008)

6. Cheng, E., Grossman, J.W., Lipman, M.J.: Time-stamped graphs and their asso-
ciated influence digraphs. Discrete Appl. Math. 128(2-3), 317–335 (2003)

7. Desikan, P., Srivastava, J.: Mining temporally changing web usage graphs. In:
Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD 2004. LNCS
(LNAI), vol. 3932, pp. 1–17. Springer, Heidelberg (2006)

8. Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of temporally annotated
sequences. In: Proc. of the 6th SIAM Intern. Conf. on Data Min. (2006)

9. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining sequences with temporal
annotations. In: Proc. of the 2006 ACM Symp. on Applied Comp. (SAC), pp. 593–
597 (2006)

10. Huberman, B.A., Adamic, L.A.: Information dynamics in the networked world
(October 2003)

11. Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization. In: Fisher, D.H. (ed.) Proceedings of ICML 1997, 14th International
Conference on Machine Learning, Nashville, US, pp. 143–151. Morgan Kaufmann
Publishers, San Francisco (1997)

12. Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification re-
search. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML
2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

13. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in
a social communication network (June 2008)

14. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing
(September 2005)

15. Liben-Nowell, D., Kleinberg, J.: Tracing information flow on a global scale using In-
ternet chain-letter data. Proceedings of the National Academy of Sciences 105(12),
4633–4638 (2008)

16. Mitchell, T.: Machine Learning. McGraw-Hill Education (ISE Editions) (October
1997)

17. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free
mining of large time-evolving graphs. In: KDD 2007: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp.
687–696. ACM, New York (2007)

18. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community
identification in dynamic social networks. In: KDD 2007: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 717–726. ACM Press, New York (2007)

Adaptive Learning from Evolving Data Streams

Albert Bifet and Ricard Gavaldà

Universitat Politècnica de Catalunya, Barcelona, Spain
{abifet,gavalda}@lsi.upc.edu

Abstract. We propose and illustrate a method for developing algorithms that can
adaptively learn from data streams that drift over time. As an example, we take
Hoeffding Tree, an incremental decision tree inducer for data streams, and use as
a basis it to build two new methods that can deal with distribution and concept
drift: a sliding window-based algorithm, Hoeffding Window Tree, and an adap-
tive method, Hoeffding Adaptive Tree. Our methods are based on using change
detectors and estimator modules at the right places; we choose implementations
with theoretical guarantees in order to extend such guarantees to the resulting
adaptive learning algorithm. A main advantage of our methods is that they re-
quire no guess about how fast or how often the stream will drift; other methods
typically have several user-defined parameters to this effect.

In our experiments, the new methods never do worse, and in some cases
do much better, than CVFDT, a well-known method for tree induction on data
streams with drift.

1 Introduction

Data streams pose several challenges on data mining algorithm design. Limited use of
resources (time and memory) is one. The necessity of dealing with data whose nature or
distribution changes over time is another fundamental one. Dealing with time-changing
data requires in turn strategies for detecting and quantifying change, forgetting stale
examples, and for model revision. Fairly generic strategies exist for detecting change
and deciding when examples are no longer relevant. Model revision strategies, on the
other hand, are in most cases method-specific.

Most strategies for dealing with time change contain hardwired constants, or else
require input parameters, concerning the expected speed or frequency of the change;
some examples are a priori definitions of sliding window lengths, values of decay or
forgetting parameters, explicit bounds on maximum drift, etc. These choices represent
preconceptions on how fast or how often the data are going to evolve and, of course, they
may be completely wrong. Even more, no fixed choice may be right, since the stream
may experience any combination of abrupt changes, gradual ones, and long stationary
periods. More in general, an approach based on fixed parameters will be caught in the
following tradeoff: the user would like to use large parameters to have more accurate
statistics (hence, more precision) during periods of stability, but at the same time use
small parameters to be able to quickly react to changes, when they occur.

Many ad-hoc methods have been used to deal with drift, often tied to particular algo-
rithms. In this paper, we propose a more general approach based on using two primitive

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 249–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

250 A. Bifet and R. Gavaldà

design elements: change detectors and estimators. The idea is to encapsulate all the sta-
tistical calculations having to do with detecting change and keeping updated statistics
from a stream an abstract data type that can then be used to replace, in a black-box
way, the counters and accumulators that typically all machine learning and data mining
algorithms use to make their decisions, including when change has occurred.

We believe that, compared to any previous approaches, our approach better isolates
different concerns when designing new data mining algorithms, therefore reducing de-
sign time, increasing modularity, and facilitating analysis. Furthermore, since we crisply
identify the nuclear problem in dealing with drift, and use a well-optimized algorithmic
solution to tackle it, the resulting algorithms more accurate, adaptive, and time- and
memory-efficient than other ad-hoc approaches. We have given evidence for this supe-
riority in [3, 2, 4] and we demonstrate this idea again here.

We apply this idea to give two decision tree learning algorithms that can cope with
concept and distribution drift on data streams: Hoeffding Window Trees in Section 4
and Hoeffding Adaptive Trees in Section 5. Decision trees are among the most com-
mon and well-studied classifier models. Classical methods such as C4.5 are not apt
for data streams, as they assume all training data are available simultaneously in main
memory, allowing for an unbounded number of passes, and certainly do not deal with
data that changes over time. In the data stream context, a reference work on learning
decision trees is the Hoeffding Tree or Very Fast Decision Tree method (VFDT) for
fast, incremental learning [7]. The methods we propose are based on VFDT, enriched
with the change detection and estimation building blocks mentioned above.

We try several such building blocks, although the best suited for our purposes is
the ADWIN algorithm [3], described in Section 4.1. This algorithm is parameter-free
in that it automatically and continuously detects the rate of change in the data streams
rather than using apriori guesses, thus allowing the client algorithm to react adaptively
to the data stream it is processing. Additionally, ADWIN has rigorous guarantees of
performance (a theorem). We show that these guarantees can be transferred to decision
tree learners as follows: if a change is followed by a long enough stable period, the
classification error of the learner will tend, and the same rate, to the error rate of VFDT.

We test on Section 6 our methods with synthetic datasets, using the SEA concepts, in-
troduced in [11], and two sets from the UCI repository, Adult and Poker-Hand. We com-
pare our methods among themselves but also with CVFDT, another concept-adapting
variant of VFDT proposed by Domingos, Spencer, and Hulten [10]. A one-line con-
clusion of our experiments would be that, because of its self-adapting property, we
can present datasets where our algorithm performs much better than CVFDT and we
never do much worse. Some comparison of time and memory usage of our methods and
CVFDT is included.

A longer version of this paper [5] with additional theoretical results and experiments,
is available from the first author webpage.

2 A Methodology for Adaptive Stream Mining

The starting point of our work is the following observation: In the data stream mining
literature, most algorithms incorporate one or more of the following ingredients: win-
dows to remember recent examples; methods for detecting distribution change in the

Adaptive Learning from Evolving Data Streams 251

input; and methods for keeping updated estimations for some statistics of the input. Our
claim is that by basing mining algorithms on well-designed, well-encapsulated mod-
ules for these tasks, one can often get more generic and more efficient solutions than
by using ad-hoc techniques as required. Similarly, we will argue that our methods for
inducing decision trees are simpler to describe, adapt better to the data, perform better
or much better, and use less memory than the ad-hoc designed CVFDT algorithm, even
though they are all derived from the same VFDT mining algorithm.

A similar approach was taken in [2] and in [4]. In [2] a general framework for change
detection and prediction was presented. It is shown that change detection may be moni-
tored using appropriate statistics like statistical charts, CUSUM, and EWMA. CUSUM
charts may be very competitive, but they need that users choose the correct values for
the parameters. In [4] using our approach, simple adaptive closed-tree mining adaptive
algorithms are given. Using a general methodology to identify closed patterns based
in Galois Lattice Theory, three closed tree mining algorithms were developed: an in-
cremental one INCTREENAT, a sliding-window based one, WINTREENAT, and finally
one that mines closed trees adaptively from data streams, ADATREENAT.

3 Incremental Decision Trees: Hoeffding Trees

Classical decision tree learners such as ID3, C4.5, and CART assume that all training
examples can be stored simultaneously in main memory, and are thus severely limited
in the number of examples they can learn from. In particular, they are not applicable
to data streams, where potentially there is no bound on number of examples and these
arrive sequentially.

Domingos and Hulten [7] developed Hoeffding trees, an incremental, anytime de-
cision tree induction algorithm that is capable of learning from massive data streams,
assuming that the distribution generating examples does not change over time.

Hoeffding trees exploit the fact that a small sample can often be enough to choose
an optimal splitting attribute. This idea is supported mathematically by the Hoeffding
bound, which quantifies the number of observations (in our case, examples) needed to
estimate some statistics within a prescribed precision (in our case, the goodness of an
attribute). VFDT (Very Fast Decision Trees) is the implementation of Hoeffding trees,
with a few heuristics added, described in [7]; we basically identify both in this paper.

4 Decision Trees on Sliding Windows

We propose a general method for building incrementally a decision tree based on a
keeping sliding window of the last instances on the stream. To specify one such method,
we specify how to:

– place one or more change detectors at every node that will raise a hand whenever
something worth attention happens at the node

– create, manage, switch and delete alternate trees
– maintain estimators of only relevant statistics at the nodes of the current sliding

window

252 A. Bifet and R. Gavaldà

We call Hoeffding Window Tree any decision tree that uses Hoeffding bounds, main-
tains a sliding window of instances, and that can be included in this general framework.
Figure 1 shows the pseudo-code of HOEFFDING WINDOW TREE.

HOEFFDING WINDOW TREE(Stream, δ)

1 � Let HT be a tree with a single leaf(root)
2 � Init sufficient node statistics at root
3 for each example (x, y) in Stream
4 do HWTREEGROW((x, y), HT, δ)

HWTREEGROW((x, y), HT, δ)

1 � Sort (x, y) to leaf l using HT
2 � Update sufficient node statistics
3 at leaf l and nodes traversed in the sort
4 if this node has an alternate tree Talt

5 HWTREEGROW((x, y), Talt, δ)
6 � Compute information gain G for each attribute
7 if G(Best Attr.)−G(2nd best)> ε =

√
R2 ln(1/δ)/(2n)a

8 then
9 � Split leaf on best attribute

10 for each branch
11 do � Start new leaf
12 and initialize sufficient node statistics
13 if one accuracy change detector has detected change
14 then
15 � Create an alternate tree with the new best attribute at its root, if there is none
16 if existing alternate tree is more accurate
17 then
18 � replace current node with alternate tree

a Here δ′ should be the Bonferroni correction of δ to account for the fact that many tests are
performed and we want all of them to be simultaneously correct with probability 1 − δ.
It is enough e.g. to divide δ by the number of tests performed so far. The need for this
correction is also acknowledged in [7], although in experiments the more convenient option
of using a lower δ was taken. We have followed the same option in our experiments for fair
comparison.

Fig. 1. Hoeffding Window Tree algorithm

4.1 HWT-ADWIN: Hoeffding Window Tree Using ADWIN

Recently, we proposed an algorithm termed ADWIN [3] (for Adaptive Windowing) that
is an estimator with memory and change detector. We use it to design HWT-ADWIN, a
new Hoeffding Window Tree that uses ADWIN as a change detector. The main advan-
tage of using a change detector as ADWIN is that as it has theoretical guarantees we can
extend this guarantees to the learning algorithms. ADWIN keeps a variable-length win-
dow of recently seen items, with the property that the window has the maximal length
statistically consistent with the hypothesis “there has been no change in the average
value inside the window”.

Adaptive Learning from Evolving Data Streams 253

ADWIN is parameter- and assumption-free in the sense that it automatically detects
and adapts to the current rate of change. Its only parameter is a confidence bound δ,
indicating how confident we want to be in the algorithm’s output, inherent to all algo-
rithms dealing with random processes.

Also important for our purposes,ADWIN does not maintain the window explicitly, but
compresses it using a variant of the exponential histogram technique in [6]. This means
that it keeps a window of length W using only O(log W) memory and O(log W) pro-
cessing time per item, rather than the O(W) one expects from a naı̈ve implementation.

4.2 CVFDT

As an extension of VFDT to deal with concept change Hulten, Spencer, and Domin-
gos presented Concept-adapting Very Fast Decision Trees CVFDT [10] algorithm. We
review it here briefly and compare it to our method.

CVFDT works by keeping its model consistent with respect to a sliding window of
data from the data stream, and creating and replacing alternate decision subtrees when
it detects that the distribution of data is changing at a node. When new data arrives,
CVFDT updates the sufficient statistics needed to compute most heuristic measures,
including information gain at its nodes by incrementing the counts nijk corresponding
to the new examples and decrementing the counts nijk corresponding to the oldest
example in the window, which is effectively forgotten. CVFDT is a Hoeffding Window
Tree as it is included in the general method previously presented.

Two external differences among CVFDT and our method is that CVFDT has no
theoretical guarantees (as far as we know), and that it uses a number of parameters,
with default values that can be changed by the user - but which are fixed for a given
execution. Besides the example window length, it needs:

1. T0: after each T0 examples, CVFDT traverses all the decision tree, and checks
at each node if the splitting attribute is still the best. If there is a better splitting
attribute, it starts growing an alternate tree rooted at this node, and it splits on the
currently best attribute according to the statistics in the node.

2. T1: after an alternate tree is created, the following T1 examples are used to build
the alternate tree.

3. T2: after the arrival of T1 examples, the following T2 examples are used to test the
accuracy of the alternate tree. If the alternate tree is more accurate than the current
one, CVDFT replaces it with this alternate tree (we say that the alternate tree is
promoted).

The default values are T0 = 10, 000, T1 = 9, 000, and T2 = 1, 000. One can interpret
these figures as the preconception that often about the last 50, 000 examples are likely
to be relevant, and that change is not likely to occur faster than every 10, 000 examples.
These preconceptions may or may not be right for a given data source.

The main internal differences of HWT-ADWIN respect CVFDT are:

– The alternates trees are created as soon as change is detected, without having to
wait that a fixed number of examples arrives after the change. Furthermore, the
more abrupt the change is, the faster a new alternate tree will be created.

254 A. Bifet and R. Gavaldà

– HWT-ADWIN replaces the old trees by the new alternates trees as soon as there is
evidence that they are more accurate, rather than having to wait for another fixed
number of examples.

These two effects can be summarized saying that HWT-ADWIN adapts to the scale of
time change in the data, rather than having to rely on the a priori guesses by the user.

5 Hoeffding Adaptive Trees

In this section we present Hoeffding Adaptive Tree as a new method that evolving
from Hoeffding Window Tree, adaptively learn from data streams that change over time
without needing a fixed size of sliding window. The optimal size of the sliding window
is a very difficult parameter to guess for users, since it depends on the rate of change of
the distribution of the dataset.

In order to avoid to choose a size parameter, we propose a new method for managing
statistics at the nodes. The general idea is simple: we place instances of estimators of
frequency statistics at every node, that is, replacing each nijk counters in the Hoeffding
Window Tree with an instance Aijk of an estimator.

More precisely, we present three variants of a Hoeffding Adaptive Tree or HAT, de-
pending on the estimator used:

– HAT-INC: it uses a linear incremental estimator x̂k = (1− 1/N)x̂k−1 + 1/N ·xk.
– HAT-EWMA: it uses an Exponential Weight Moving Average (EWMA) (α = .01)

x̂k = (1− α)x̂k−1 + α · xk.
– HAT-ADWIN : it uses an ADWIN estimator. As the ADWIN instances are also

change detectors, they will give an alarm when a change in the attribute-class statis-
tics at that node is detected, which indicates also a possible concept change.

The main advantages of this new method over a Hoeffding Window Tree are:

– All relevant statistics from the examples are kept in the nodes. There is no need of
an optimal size of sliding window for all nodes. Each node can decide which of the
last instances are currently relevant for it. There is no need for an additional win-
dow to store current examples. For medium window sizes, this factor substantially
reduces our memory consumption with respect to a Hoeffding Window Tree.

– A Hoeffding Window Tree, as CVFDT for example, stores only a bounded part of
the window in main memory. The rest (most of it, for large window sizes) is stored
in disk. For example, CVFDT has one parameter that indicates the amount of main
memory used to store the window (default is 10,000). Hoeffding Adaptive Trees
keeps all its data in main memory.

5.1 Example of Performance Guarantee

In this subsection we show a performance guarantee on the error rate of HAT-ADWIN
on a simple situation using discrete attributes. Roughly speaking, it states that after a
distribution and concept change in the data stream, followed by a stable period, HAT-
ADWIN will start, in reasonable time, growing a tree identical to the one that VFDT

Adaptive Learning from Evolving Data Streams 255

would grow if starting afresh from the new stable distribution. Statements for more
complex scenarios are possible, including some with slow, gradual, changes, but require
more space than available here.

Theorem 1. Let D0 and D1 be two distributions on labelled examples. Let S be a data
stream that contains examples following D0 for a time T , then suddenly changes to us-
ing D1. Let t be the time that until VFDT running on a (stable) stream with distribution
D1 takes to perform a split at the node. Assume also that VFDT on D0 and D1 builds
trees that differ on the attribute tested at the root. Then with probability at least 1− δ:

– By time t′ = T +c ·V 2 ·t log(tV), HAT-ADWIN will create at the root an alternate
tree labelled with the same attribute as VFDT(D1). Here c ≤ 20 is an absolute
constant, and V the number of values of the attributes.1

– this alternate tree will evolve from then on identically as does that of VFDT(D1),
and will eventually be promoted to be the current tree if and only if its error on D1
is smaller than that of the tree built by time T .

If the two trees do not differ at the roots, the corresponding statement can be made for
a pair of deeper nodes.

Lemma 1. In the situation above, at every time t + T > T , with probability 1 − δ we
have at every node and for every counter (instance of ADWIN) Ai,j,k

|Ai,j,k − Pi,j,k| ≤

√
ln(1/δ′)T

t(t + T)

where Pi,j,k is the probability that an example arriving at the node has value j in its
ith attribute and class k.

Observe that for fixed δ′ and T this bound tends to 0 as t grows.
To prove the theorem, use this lemma to prove high-confidence bounds on the esti-

mation of G(a) for all attributes at the root, and show that the attribute best chosen by
VFDT on D1 will also have maximal G(best) at some point, so it will be placed at the
root of an alternate tree. Since this new alternate tree will be grown exclusively with
fresh examples from D1, it will evolve as a tree grown by VFDT on D1.

6 Experimental Evaluation

We tested Hoeffding Adaptive Trees using synthetic and real datasets. In the experi-
ments with synthetic datasets, we use the SEA Concepts [11]. In the longer version of
this paper [5], a changing concept dataset based on a rotating hyperplane is also used. In
the experiments with real datasets we use two UCI datasets [1] Adult and Poker-Hand
from the UCI repository of machine learning databases. In all experiments, we use the

1 This value of t′ is a very large overestimate, as indicated by our experiments. We are working
on an improved analysis, and hope to be able to reduce t′ to T + c · t, for c < 4.

256 A. Bifet and R. Gavaldà

Table 1. SEA on-line errors using discrete attributes with 10% noise

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 16.99% 16.08% 14.82%
HAT-EWMA 16.98% 15.83% 14.64 %
HAT-ADWIN 16.86% 15.39% 14.73 %

HAT-INC NB 16.88% 15.93% 14.86%
HAT-EWMA NB 16.85% 15.91% 14.73 %
HAT-ADWIN NB 16.90% 15.76% 14.75 %

CVFDT |W | = 1, 000 19.47% 15.71% 15.81%
CVFDT |W | = 10, 000 17.03% 17.12% 14.80%

CVFDT |W | = 100, 000 16.97% 17.15% 17.09%

values δ = 10−4, T0 = 20, 000, T1 = 9, 000, and T2 = 1, 000, following the original
CVFDT experiments [10].

In all tables, the result for the best classifier for a given experiment is marked in
boldface, and the best choice for CVFDT window length is shown in italics.

We included an improvement over CVFDT (which could be made on the original
CVFDT as well). If the two best attributes at a node happen to have exactly the same
gain, the tie may be never resolved and split does not occur. In our experiments this
was often the case, so we added an additional split rule: when G(best) exceeds by three
times the current value of ε(δ, . . .), a split is forced anyway.

We have tested the three versions of Hoeffding Adaptive Tree, HAT-INC, HAT-
EWMA(α = .01), HAT-ADWIN, each with and without the addition of Naı̈ve Bayes
(NB) classifiers at the leaves. As a general comment on the results, the use of NB clas-
sifiers does not always improve the results, although it does make a good difference in
some cases; this was observed in [8], where a more detailed analysis can be found.

First, we experiment using the SEA concepts, a dataset with abrupt concept drift, first
introduced in [11]. This artificial dataset is generated using three attributes, where only
the two first attributes are relevant. All three attributes have values between 0 and 10.
We generate 400,000 random samples. We divide all the points in blocks with different
concepts. In each block, we classify using f1 + f2 ≤ θ, where f1 and f2 represent the
first two attributes and θ is a threshold value.We use threshold values 9, 8, 7 and 9.5 for
the data blocks. We inserted about 10% class noise into each block of data.

We test our methods using discrete and continuous attributes. The on-line errors re-
sults for discrete attributes are shown in Table 1. On-line errors are the errors measured
each time an example arrives with the current decision tree, before updating the statis-
tics. Each column reflects a different speed of concept change. We observe that CVFDT
best performance is not always with the same example window size, and that there is
no optimal window size. The different versions of Hoeffding Adaptive Trees have a
very similar performance, essentially identical to that of CVFDT with optimal window
size for that speed of change. More graphically, Figure 2 shows its learning curve using
continuous attributes for a speed of change of 100, 000. Note that at the points where
the concept drift appears HWT-ADWIN, decreases its error faster than CVFDT, due to
the fact that it detects change faster.

Adaptive Learning from Evolving Data Streams 257

10

12

14

16

18

20

22

24

26

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

31
6

33
7

35
8

37
9

40
0

Examples x 1000

E
rr

o
r

R
at

e
(%

)

HWT-ADWIN
CVFDT

Fig. 2. Learning curve of SEA Concepts using continuous attributes

10%

12%

14%

16%

18%

20%

22%

1.000 5.000 10.000 15.000 20.000 25.000 30.000

O
n

-l
in

e
E

rr
o

r

CVFDT
HWT-ADWIN

0

0,5

1

1,5

2

2,5

3

3,5

CVFDT
w=1,000

CVFDT
w=10,000

CVFDT
w=100,000

HAT-INC HAT-EWMA HAT-
ADWIN

M
em

o
ry

 (
M

b
)

1000
10000
100000

a) b)

Fig. 3. a) On-line error on UCI Adult dataset, ordered by the education attribute and b) Memory
used on SEA Concepts experiments

We test Hoeffding Adaptive Trees on two real datasets in two different ways: with
and without concept drift. We tried some of the largest UCI datasets [1], and report
results on Adult and Poker-Hand. For the Covertype and Census-Income datasets, the
results we obtained with our method were essentially the same as for CVFDT (ours did
better by fractions of 1% only) – we do not claim that our method is always better than
CVFDT, but this confirms our belief that it is never much worse.

An important problem with most of the real-world benchmark data sets is that there
is little concept drift in them [12] or the amount of drift is unknown, so in many research
works, concept drift is introduced artificially. We simulate concept drift by ordering the
datasets by one of its attributes, the education attribute for Adult, and the first (un-
named) attribute for Poker-Hand. Note again that while using CVFDT one faces the
question of which parameter values to use, our method just needs to be told “go” and
will find the right values online.

The Adult dataset aims to predict whether a person makes over 50k a year, and
it was created based on census data. Adult consists of 48,842 instances, 14 attributes
(6 continuous and 8 nominal) and missing attribute values. The Poker-Hand dataset
consists of 1,025,010 instances and 11 attributes. Each record of the Poker-Hand dataset
is an example of a hand consisting of five playing cards drawn from a standard deck of
52. Each card is described using two attributes (suit and rank), for a total of 10 predictive

258 A. Bifet and R. Gavaldà

Table 2. On-line classification errors for CVFDT and Hoeffding Adaptive Trees on Poker-Hand
data set

NO ARTIFICIAL

DRIFT DRIFT

HAT-INC 38.32% 39.21%
HAT-EWMA 39.48% 40.26%
HAT-ADWIN 38.71% 41.85%
HAT-INC NB 41.77% 42.83%
HAT-EWMA NB 24.49% 27.28%
HAT-ADWIN NB 16.91% 33.53%
CVFDT |W | = 1, 000 49.90% 49.94%
CVFDT |W | = 10, 000 49.88% 49.88 %
CVFDT |W | = 100, 000 49.89% 52.13 %

attributes. There is one Class attribute that describes the ”Poker Hand”. The order of
cards is important, which is why there are 480 possible Royal Flush hands instead of 4.

Table 2 shows the results on Poker-Hand dataset. It can be seen that CVFDT remains
at 50% error, while the different variants of Hoeffding Adaptive Trees are mostly below
40% and one reaches 17% error only. In Figure 3 we compare HWT-ADWIN error
rate to CVFDT using different window sizes. We observe that CVFDT on-line error
decreases when the example window size increases, and that HWT-ADWIN on-line
error is lower for all window sizes.

7 Time and Memory

In this section, we discuss briefly the time and memory performance of Hoeffding
Adaptive Trees. All programs were implemented in C modifying and expanding the
version of CVFDT available from the VFML [9] software web page. We have slightly
modified the CVFDT implementation to follow strictly the CVFDT algorithm explained
in the original paper by Hulten, Spencer and Domingos [10]. The experiments were
performed on a 2.0 GHz Intel Core Duo PC machine with 2 Gigabyte main memory,
running Ubuntu 8.04.

Consider the experiments on SEA Concepts, with different speed of changes: 1, 000,
10, 000 and 100, 000. Figure 3 shows the memory used on these experiments. HAT-INC
and HAT-EWMA, are the methods that use less memory. The reason for this fact is that
they don’t keep examples in memory as CVFDT, and that they don’t store ADWIN data
for all attributes, attribute values and classes, as HAT-ADWIN. We have used the default
10, 000 for the amount of window examples kept in memory, so the memory used by
CVFDT is essentially the same for W = 10, 000 and W = 100, 000, and about 10
times larger than the memory used by HAT-INC memory.

Figure 4 shows the number of nodes used in the experiments of SEA Concepts. We
see that the number of nodes is similar for all methods, confirming that the good results
on memory of HAT-INC is not due to smaller size of trees.

Finally, with respect to time we see that CVFDT is still the fastest method, but HAT-
INC and HAT-EWMA have a very similar performance to CVFDT, a remarkable fact

Adaptive Learning from Evolving Data Streams 259

0

50

100

150

200

250

300

CVFDT
w=1,000

CVFDT
w=10,000

CVFDT
w=100,000

HAT-INC HAT-EWMA HAT-
ADWIN

N
u

m
b

er
 o

f
N

o
d

es

1000
10000
100000

0

2

4

6

8

10

12

CVFDT
w=1,000

CVFDT
w=10,000

CVFDT
w=100,000

HAT-INC HAT-EWMA HAT-
ADWIN

T
im

e
(s

ec
)

1000
10000
100000

a) b)

Fig. 4. a) Number of Nodes used on SEA Concepts experiments and b) Time on SEA Concepts
experiments

given that they are monitoring all the change that may occur in any node of the main
tree and all the alternate trees. HAT-ADWIN increases time by a factor of 4, so it is still
usable if time or data speed is not the main concern.

8 Conclusions and Future Work

We have presented a general adaptive methodology for mining data streams with con-
cept drift, and and two decision tree algorithms. We have proposed three variants of
Hoeffding Adaptive Tree algorithm, a decision tree miner for data streams that adapts
to concept drift without using a fixed sized window. Contrary to CVFDT, they have
theoretical guarantees of performance, relative to those of VFDT.

In our experiments, Hoeffding Adaptive Trees are always as accurate as CVFDT
and, in some cases, they have substantially lower error. Their running time is similar in
HAT-EWMA and HAT-INC and only slightly higher in HAT-ADWIN, and their memory
consumption is remarkably smaller, often by an order of magnitude.

We can conclude that HAT-ADWIN is the most powerful method, but HAT-EWMA
is a faster method that gives approximate results similar to HAT-ADWIN. An obvious fu-
ture work is experimenting with the exponential smoothing factor α of EWMA methods
used in HAT-EWMA.

We would like to extend our methodology to ensemble methods such as boosting,
bagging, and Hoeffding Option Trees.

Acknowledgments

Partially supported by the EU PASCAL2 Network of Excellence (FP7-ICT-216886), and
by projects SESAAME-BAR (TIN2008-06582-C03-01), MOISES-BAR (TIN2005-
08832-C03-03). Albert Bifet was supported by a FI grant through the SGR program
of Generalitat de Catalunya.

260 A. Bifet and R. Gavaldà

References

[1] Asuncion, D.N.A.: UCI machine learning repository (2007)
[2] Bifet, A., Gavaldá, R.: Kalman filters and adaptive windows for learning in data streams.

In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp.
29–40. Springer, Heidelberg (2006)

[3] Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In:
SIAM International Conference on Data Mining (2007)

[4] Bifet, A., Gavaldà, R.: Mining adaptively frequent closed unlabeled rooted trees in data
streams. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2008)

[5] Bifet, A., Gavaldà, R.: Adaptive parameter-free learning from evolving data streams. Tech-
nical report, LSI-09-9-R, Universitat Politècnica de Catalunya, Barcelona, Spain (2009)

[6] Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding
windows. SIAM Journal on Computing 14(1), 27–45 (2002)

[7] Domingos, P., Hulten, G.: Mining high-speed data streams. In: Knowledge Discovery and
Data Mining, pp. 71–80 (2000)

[8] Holmes, G., Kirkby, R., Pfahringer, B.: Stress-testing hoeffding trees. In: Jorge, A.M.,
Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI),
vol. 3721, pp. 495–502. Springer, Heidelberg (2005)

[9] Hulten, G., Domingos, P.: VFML – a toolkit for mining high-speed time-changing data
streams (2003), http://www.cs.washington.edu/dm/vfml/

[10] Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: KDD 2001,
San Francisco, CA, pp. 97–106. ACM Press, New York (2001)

[11] Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification.
In: KDD 2001, pp. 377–382. ACM Press, New York (2001)

[12] Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical Report
TCD-CS-2004-15, Department of Computer Science, University of Dublin, Trinity College
(2004)

http://www.cs.washington.edu/dm/vfml/

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 261 – 272, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Application of Intelligent Data Analysis Techniques
to a Large Software Engineering Dataset

James Cain1, Steve Counsell2, Stephen Swift2, and Allan Tucker2

1 Quantel Limited, Turnpike Road, Newbury, Berkshire, RG14 2NX, UK
James.Cain@Quantel.com

2 School of Information Systems, Computing and Mathematics, Brunel University,
Uxbridge, UB8 3PH, UK

{Steve.Counsell,Stephen.Swift,Allan.Tucker}@Brunel.ac.uk

Abstract. Within the development of large software systems, there is significant
value in being able to predict changes. If we can predict the likely changes that a
system will undergo, then we can estimate likely developer effort and allocate
resources appropriately. Within object oriented software development, these
changes are often identified as refactorings. Very few studies have explored the
prediction of refactorings on a wide-scale. Within this paper we aim to do just
this, through applying intelligent data analysis techniques to a uniquely large and
comprehensive software engineering time series dataset. Our analysis show
extremely promising results, allowing us to predict the occurrence of future large
changes.

Keywords: Software Engineering, Time Series Analysis, Hidden Markov
Models.

1 Introduction

An emerging discipline in the software engineering (SE) community and the subject
of many studies in the recent past is that of refactoring. A refactoring is defined as a
change made to code which changes the internal behaviour of that code while
preserving its external behaviour. In other words, refactoring is the process of
changing how something is done but not what that something does. In this sense it
differs from re-engineering of code, where both the ‘how’ and the ‘what’ may change.

The benefits of being able to predict refactorings are many. First, if we view
refactoring as addressing poorly written code, then predicting the poorly written parts
of code allows us to allocate time and effort to those areas. This has significant
implications for the likely fault-profiles in different versions, since poorly written
code is often the most fault-prone. Second, predicting refactorings would allow us
interleave or combine refactoring effort with regular maintenance activity. An open
research issue at present is the relationship between refactorings and ‘other’ changes
made as part of a developer’s activity. Third, predicting types of refactorings will also
provide a means of prioritising which refactorings should be accomplished in that
time. For example should we primarily focus on renaming or restructuring
refactorings? Finally, one issue that arises during a refactoring is the need to re-test

262 J. Cain et al.

after each refactoring. If we can predict refactorings then that will also inform an
understanding of the test requirements associated with those refactorings and
decisions to be made as a result by project managers on developer resource allocation.

This paper aims to make use of a large dataset from a software company that
contains information about different versions of a software system over time, in order
to predict potential future refactorings using Hidden Markov Models.

Refactoring is usually associated with Java and other mainstream object-oriented
(OO) programming languages. The initial research into refactoring is credited to
Opdyke in his PhD Thesis [12]. Opdyke used C++ as a basis of his suggestions for
improving the design of code. The seminal text which has also been instrumental in
motivating refactoring-based studies is that of Fowler [7] which uses Java as the
refactoring vehicle. On the basis that all Java classes have methods and fields that
operate on those methods, one of the most common refactorings that we might want
to undertake (and is listed in Fowler’s text) is to ‘Rename [a] Field’. The purpose of
undertaking such a refactoring would be to communicate the intention and purpose of
that field to a developer more clearly. There is clear value in changing the name of a
field from let’s say just ‘x’ to ‘x-coordinate’ as a concrete example. The list of 72
specific refactorings in Fowler’s text describes both simple and complex refactorings.
Often, the motivation for completing a refactoring is to reduce coupling dependencies
between classes; coupling is widely considered in the software engineering
community to be a contributor to faults and so refactoring has a strong tie with the
potential for eliminating faults. Coupling [16] can be defined as the inter-relatedness
of (and dependencies between) classes in a system. Cohesion on the other hand is
defined as the intra-relatedness of the elements internal to a class and takes no
account of the external dependencies. Developers should always strive for low
coupling and high cohesion as sound software engineering practice. Coupling and
Cohesion can be extended to collections of related classes (e.g. those that form part of
the same subsystem or modules), where we have Coupling measured between
different modules and Cohesion measured between the classes within a module [16].

There are number of motivating factors for why we would want to use refactoring.
First, by simplifying code and making it more understandable, we are potentially
postponing the decay of code that is a feature of most systems as they age. The
problem of decaying code is that it takes increasing amounts of time and effort to
repair the faults associated with poorly written code. Refactoring offers a mechanism
for addressing and even reversing that decay. Fowler suggests that refactoring should
be undertaken ‘mercilessly’ over the life of a system. Second, no system remains the
same in terms of the user requirements made of it. The dynamics of a system in a
changing environment mean that new functionality has to be added and old
functionality offered by the system needs to be changed. If consistent refactoring is
done to a system, then accommodating change is relatively straightforward since the
developer (acting in their role as maintainer of a system) will find making changes to
the system easier. Maintenance of a software system typically accounts for at least
75% of a developer’s time – there are therefore compelling reasons why refactoring
should be attempted.

Of course, if refactoring was easy or there was unlimited time for refactoring, then
developers would refactor. However, in many systems, short term loss for long-term
gain (which refactoring offers) is simply not practiced. A final motivation for

 An Application of Intelligent Data Analysis Techniques 263

refactoring is that developers become more familiar with the design and code they
work with if they are consistently scrutinising that code for refactoring opportunities.
Again, time is the limiting factor.

Whilst there have been many studies into the nature and behaviour of refactorings
[9, 10] which have made significant progress in the area, a wide range of issues and
problems still exist and are left for researchers to explore. To our knowledge,
although some work on the prediction of refactorings using standard statistical
techniques and metrics has been undertaken [5, 17], no study has previously looked at
the prediction of refactorings using Intelligent Data Analysis, let alone prediction of
refactorings based on a version-by-version analysis of a large proprietary system.
Many of the aforementioned studies used open-source software as a basis. The
research described in this paper therefore contributes on at least two levels.

This paper is organised as follows, section 2 looks at the methods we used in this
paper along with the data collection and pre-processing, section 3 describes the
experiments we carried out, section 4 discusses the results of the experiments and
finally section 5 draws some conclusions and maps out the future direction of this
research project.

2 Methods

This section describes the methods employed in this paper, along with data collection
and data pre-processing.

2.1 Data Creation

The program code that is the focus of this paper was provided by the international
company Quantel Limited. Quantel is a world-leading developer of innovative, high
performance content creation and delivery systems across television and film post
production along with broadcast content creation. It is over 30 years old and has
offices worldwide. It has been the recipient of many awards including Oscars, Emmys
and the prestigious MacRobert Award, presented by The Royal Academy of
Engineering, the UK's premier award for innovation in engineering. It supplies
products to many of the world’s leading media companies, such as ESPN, BBC, Sky,
and Fox and its products have been used to make some of the world’s greatest films
such as Slumdog Millionaire.

The data source that is the focus for this paper is the processed source code of a
library that is part of an award winning1 product line architecture that has received
over a decade of development, and multiple person centuries of effort. The product
line architecture has delivered over 15 distinct products in that time, the library under
analysis is the persistence engine used by all these products. The entire code base
currently runs to over 12 million lines of C++; the subset that we analyse in this paper
is over 0.5 million lines of C++. Microsoft Visual C++ produces two types of data
files that contain type information: The Debug Symbol Information Program
Database (PDB files) and the Browser Database (BSC files). The Bowser Database
from Visual C++ [2] is offered by every version of Microsoft Visual C++. It is able to

1 A list of recent awards won by Quantel can be found at: http://www.quantel.com/list.php?a=News

264 J. Cain et al.

generate a Browser Database that can be used to navigate all the source code in a
project. Every version of Visual C++ (including Visual C++ .NET) has had a
corresponding API for programmatic access to the Bowser Database. However it only
contains symbol information, not full type information.

The Debug Symbol Information files contain all the type information in a system
so that debuggers can interpret global, stack and heap locations and map them back to
the types that they represent. This file format is undocumented by Microsoft [13],
however in March 2002 an API was released by Microsoft that allowed access to
(some of) the debug type information without undue reverse engineering [15]. More
details on extracting type information using the DIA SDK can be found in [3]. The
PDB files for each version of the code have been archived, and was analysed using
bespoke software that interfaced with the PDB files using the DIA SDK.

Each PDB was checked into a revision control system. The data was collected over
the period 17/10/2000 to 03/02/2005, given a total of 503 PDBs in total. To ensure
anonymity, all of the class names (types) in all the PDBs were sorted into an
alphabetically ordered master class table, this was used as a global index, converting
each class name to a globally unique ID. The system contained a total of 6120 classes.
Not all of the 6120 classes exist at each time point, in fact at any one time there are
between 29 and 1626 active classes. Classes generally appear at a time point, and then
“disappear” at a later time point. We note that if a class is renamed then it will appear in
the dataset as a new class with a new identifier, and hence some of the “appearances”
and “disappearances” could be explained by this. Currently we have no way to detect
this phenomenon, but we are looking into resolving this as part of future research.

The dataset consists of five time series of directed graphs with integer edge
weights; the absence of an edge weight implies a weight of zero. Each of the five
graphs represents a relationship between classes as described in Table 1. Each node in
the graph represents a class as described above; the edges represent the strength of the
relationship. For example, if class 1 and class 2 have an edge weight of 3 in the
Attributes graph then class 1 uses class 2 as an attribute 3 times; an edge weight of
zero (no edge) would mean that there is no relationship.

Table 1. Class Relationships used to define the Graphs

Class Relationship Description
Attributes (At) The types used as data members in a class
Bases (Bt) The types used as immediate base classes
Inners (It) Any type declared inside the scope of a class
Parameters (Pt) Types used as parameters to member functions of a class
Returns (Rt) Types used as return values from member functions of a class

2.2 Pre-processing the Graphs

The graphs themselves each consist of a 6120 by 6120 relationship matrix, each being
highly sparse (for the reasons discussed above). Initial analysis showed that none of
the graphs over the 5 types of relationships were fully connected, i.e. each graph
consisted of a number of disconnected sub graphs. This may seem unusual, since each
class should be indirectly related to all other classes, otherwise they would not be part

 An Application of Intelligent Data Analysis Techniques 265

of the same application. This is true if each type of graph is combined for each time
slice, but not when each type of relationship is considered on its own. The fact that
the graphs can be decomposed into sub graphs allows us to easily conduct a
rudimentary modularisation [8] of each relationship graph, thus giving us an
approximate module structure. We note that this is a fairly “trivial” clustering or
modularisation, but use these terms to avoid confusion. We do not conduct a more
computational decomposition of the larger sub-graphs, since the sizes of the sub-
graphs range from 1 to 1446, fairly continuously (except for the very smallest of
sizes) as can be seen in Fig. 1. There would be no point decomposing the smaller sub-
graphs, whilst there may be value decomposing larger sub-graphs, however where this
line is drawn would be arbitrary, hence we have decided to work with the sub-graphs
as they are. This also allows us to avoid running a very larger number of clustering or
modularisation experiments and also allows us to avoid all of the issues involved with
choosing an appropriate technique.

In order to forecast the size of a change, we need to pre-process the graphs into a
metric that can be used to indicate the size of a change; this would ideally give us a
series of univariate time series, which would be much easier to model than a time
series of graphs. The aim is to forecast when major refactorings occur. One way to do
this would be to measure how much change has been made between time slices, i.e.
the size of the difference between two consecutive graphs; how we do this is
discussed in the next sections.

1

10

100

1000

10000

100000

1 21 46 77 10
0

17
2

24
3

28
8

33
3

36
8

40
1

45
3

47
8

51
4

56
0

59
2

63
0

69
1

72
9

78
4

83
1

90
3

11
65

14
04

Size of Cluster

L
og

(F
re

qu
en

cy
)

Fig. 1. Plot of cluster size against Log frequency for the decomposition of each graph into sub-
graphs across all graphs

2.2.1 Notation
Each graph is represented as an adjacency matrix, and ordered according to time, as
indicated in the abbreviations in table 1. For example, A1 is the first graph for
Attributes, and B503 is the last graph for Bases. We shall refer to the modularisation or
clustering of a graph (using the simple procedure above) as C(G), where G is a graph,
for example C(A5) is the modularisation of the fifth Attributes graph. Gt will be used
to denote a graph at time t where we have not specified the type of the graph (the
notation covers all possibilities). We will define G(a,b) or At(a,b) (for a specific type
of graph for example) as the edge weight between class a and class b within the graph
specified (G or At in this example). A modularisation (or clustering) will be
represented as a list of lists, where Cm(G) is the mth cluster of C(G) and Cm,k(G) is the
kth variable (class) of the mth cluster of G. The notation |C(G)| will denote the

266 J. Cain et al.

number of clusters within C(G) and similarly |Cm(G)| will denote the size of
cluster/module Cm(G).

2.2.2 Homogeneity
Homogeneity [4] is a cluster validation index that is widely used in the data analysis
community. The index reflects the compactness of a cluster, by giving an average
measure of how far each cluster member is from the cluster centre. For the purposes
of this paper, the centre cannot be easily measured, due to the nature of the graphs;
hence we will use a more suitable measure. We will measure Homogeneity in two
ways, the first will be on a cluster by cluster basis (equation (2)), and will be the
average of all of the edge weights between the members in a cluster, we will then
define the Homogeneity of a clustering arrangement as the average Homogeneity of
all of the clusters (equation (1)). It can easily be seen that this measure is strongly
related to software engineering measure of cohesion. Homogeneity (H(C(G))) is more
formally defined in equations (1) and (2). We use Homogeneity to define the stability
or “worth” of each graph within the dataset, high values of Homogeneity reflects that
all of the members of each sub-graph of each graph are highly related to each other.
Low values of Homogeneity will show that the members have little relationship to
each other. As previously mentioned, it is assumed that software engineers refactor to
increase cohesion and decrease coupling. We will model the Homogeneity of each
graph rather than the graph itself, the aim being to measure the internal stability of
each of the graphs. If the Homogeneity steadily deteriorates, then the cohesion of
software is deteriorating, we hypothesise that such a pattern may precede a major
change or refactoring in the program code, i.e. the internal code structure gets steadily
worse until a major change “has” to be made.

∑
=

=
|))(|

1

))((
|))(|

1
))((

GC

j
j GCH

GC
GCH . (1)

∑ ∑
=

≠
=−

=
|)(|

1

|)(|

1
,,))(),((

|1)(||)(|

1
))((

GC

a

GC

ba
b

bjaj
jj

j

j j

GCGCG
GCGC

GCH . (2)

2.2.3 Jaccard Similarity Coefficient
The Jaccard Similarity Coefficient (JSC) is a simple metric that is used to define the
overlap between two sets of objects, and ranges between 0, no overlap or members in
common and 1, meaning identical sets. We intend to use JSC to measure how
different two sets of graphs are (in terms of refactoring), given the number of classes
active at one time point (for a graph), and the number of classes active at the next
time point, the smaller the JSC, the more classes that have been added or deleted,
which is an indirect measure of refactoring, i.e. the larger the difference in classes
between two consecutive graphs, the larger the number of changes that have been
made. JSC is formally defined in equation (3), where the function V(G) simply returns
a set of all the classes (IDs) that are in the modularisation (clustering) of a graph.

 An Application of Intelligent Data Analysis Techniques 267

|)()(|

|)()(|
),(

)()(

1

1
1

|)(|

1

+

+
+

=

=

=

tt

tt
tt

GC

j
tjt

GVGV

GVGV
GGJ

GCGV
t

∪
∩

∪

.

(3)

2.3 Hidden Markov Models

The Hidden Markov Model (HMM) [14] will be used to model the time-series (the
Homogeneity and JSC indices). The HMM is a temporal probabilistic model in
which a discrete random class variable captures the state of a process. The HMM
model parameters consist of two matrices, the first representing the transition
probabilities of the (potentially hidden) class variable over time which we can
interpret for the scope of this paper as the class representing a major refactoring
event. Formally, the transition probability is Pr(Πt|Πt+1) where Πt represents the state
at time point t. In other words, it represents the probability of the current state given
the state at the previous time point. The other matrix contains the probability
distribution of the observed variables (here Attributes, Parameters, Return type,
etc...) conditioned upon the class node, or formally Pr(Xt|Πt) where Xt represents the
observed variables at time point t. HMMs can be used to perform a variety of
operations including smoothing, monitoring and forecasting and for this study we
focus on the one step-ahead forecasting of the class variable given the values of the
observed variables at the previous time point: essentially we calculate Pr(Πt+1|Xt) by
using the junction tree inference algorithm [11]. Fig. 2 illustrates the dependencies of
the model graphically.

Fig. 2. The graphical model for the HMM used to model the time series data, A, B, I, P and R
represent the Attributes, Bases, Inners, Parameters and Returns type variables, whilst RF
represents the refactoring node.

268 J. Cain et al.

3 Experiments

Within this paper, we assume that the variables extracted from the SE data are a
temporal sequence that carries information which should be able to predict when a
major refactoring event occurs. We test this by applying a machine learning approach
to the data. More specifically, we use Hidden Markov Models [14] which are
typically used to model temporal or sequential data with some hidden underlying
process (here representing the major refactoring events). We adopt a bootstrapping
approach [6] and ensure a balanced model by randomly sampling (with replacement)
two consecutive cases from the data so that there are an equal number where a major
refactoring event has taken place and where one has not. We then split these into a
training set and test set of equal sizes for testing the accuracy of the HMM at
predicting the hidden state at the following time point, given only the variables at the
previous time. This entire process is repeated 100 times in order to calculate
confidences in the prediction. The HMM requires the hidden state variable to be
discrete, so we map the JSC variable to a discrete variable by taking the minimum of
the individual JSC for each class relationship characteristic and applying a threshold
at a value of 0.9. This represented a change of about 10% of the number classes
between consecutive graphs.

4 Results and Discussion

One measure of the predictive accuracy of a classifier is through evaluating the area
under the ROC curve (AUC). Note that a classifier that makes uniformly random
predictions will generate an ROC along the diagonal. For all experiments the AUC was
evaluated as 0.845, the curve can be seen in Fig. 3. This curve plots the sensitivity
against the specificity of the predicted state (here major refactoring) for varying
thresholds. It clearly indicates that we have obtained a very good degree of forecast
accuracy with a fairly equal balance of false positives and negatives. Something we
aim to follow up is how to decide an appropriate threshold for the refactoring forecast
problem: in other words by asking the question “is predicting a major refactoring
incorrectly more serious than incorrectly predicting no major refactoring?”.

Fig. 3. The ROC curve of forecast accuracy for all HMM experiments

 An Application of Intelligent Data Analysis Techniques 269

Another measure of accuracy is simply looking at the number of correct forecasts
divided by the number of total forecasts. This is accuracy shown in the Box Whisker
plot in Fig. 4. Here the forecast accuracy is averaged for each experiment (mean
overall accuracy = 0.761). Fig. 4 shows clearly that the forecast accuracy is to a high
degree of reliability with the quartile range spanning accuracies from 0.730 to 0.850.
However it is worth noting that there were a small number of low accuracy
predictions, as indicated in the figure.

Fig. 4. Mean HMM forecast accuracy

The next analysis of the results involved querying the HMM network in order to
see where the main influences occurred. Within Fig. 5, we have shown the Box
Whiskers plot of some inference queries over the HMM models learnt from the data.
Specifically it shows a comparison of the distributions for the mean of each class
relationship characteristic generated during the bootstrap experiments where 1
represents a major refactoring event and 2 represents the absence of a major
refactoring event. The y-axis is the expected posterior Homogeneity measure
(cohesion) after applying inference.

The box plots for the different OO features show varying results. Those for
Attributes show that only small changes in these values precede a refactoring. We
would view changes to attributes as a common change that is regularly done as part of
the maintenance process and not necessarily the precursor to major refactoring; this
might explain the result in this case. Moreover, changes in attributes are, in most
cases, hidden from every other outside class through feature encapsulation. The
values for Bases show a similar profile. Previous research [1] has shown that changes
to the inheritance hierarchy are rarely undertaken by developers because of the
inherent complexity of large structures and high dependencies found within an
inheritance hierarchy. Consequently, developers tend to avoid such changes. Three
revealing results are those for Returns, Parameters and Inners. Addition of parameters
and return types to the method signatures of a class is a common maintenance task,
but unlike attributes affect the external coupling of the methods of a class to a greater
extent. Often, addition of return types and parameters cause ripple effect elsewhere in
the system. In other words, such changes are more likely to precede a major
refactoring effort and this might explain the result for these two features.

270 J. Cain et al.

Fig. 5. HMM network query results by class relationship

The result for inner classes (Inners) is arguably the most interesting. A main aim of
inner classes is to facilitate manipulation of “Action Listeners” to graphical interfaces
and provide a mechanism for event handling. In theory, they should be an aid to
maintenance, since the inner class is hidden outside its enclosing class and there is a
close coupling relationship between inner classes and their enclosing classes.

However, many software engineers have cast doubt on the value of inner classes
because of the deviance from standard class structure definition and the problem of
understanding them as a result. (This is a particularly acute problem for less
experienced developers unused to manipulating them.) The results from the study
presented suggest that large changes in inner classes precede refactoring effort. In
other words, inner classes may cause a problem that can only be resolved by

 An Application of Intelligent Data Analysis Techniques 271

significant refactoring effort - the nature of inner classes means that they will impact
considerably on system behaviour. This result therefore casts more doubt on the value
of using inner classes; if they do cause relatively high disruption to the structure of a
system, then serious thought and consideration should be given prior to their use. The
study thus shows a feature of the system studied that would be difficult to show
empirically or using standard statistical techniques and has implications for the
burden that software maintenance presents.

5 Conclusions

Within this paper we have shown how a time series of graphs can be modelled and
forecast successfully using Hidden Markov Models. Additionally we have shown that
the forecasts are of a high degree of accuracy. This paper has also shed light on some
of the reasons behind the causes of refactorings within large software systems, and
has opened up many avenues of potential research and collaboration. There is much
scope for further research opportunities, at the moment we have only forecast in the
short term, we will need to adapt our approach to increase the forecast horizon, if the
approach is to be truly useful within an industrial context. Additionally we have had
to discretise a number of the variables within our time series, we aim to investigate
the use of continuous HMM models to see if we can further increase the accuracy.

One threat posed by the study is that we have considered refactoring in the context
of all changes made to a system. Purists would argue that such changes are simply re-
engineering (i.e. part of all maintenance activities) and not refactoring in its true
semantic preserving sense. However, in defence of this threat, many of the changes
we have captured in the system are either standard refactorings or part the mechanics
of those refactorings and we thus see the study of such system maintenance activities
as valid in that context as in any.

Acknowledgements

We would like to thank our collaborators at Quantel Limited for allowing us access to
this uniquely large and interesting dataset, and providing us with their valuable expertise.

References

1. Advani, D., Hassoun, Y., Counsell, S.: Extracting Refactoring Trends from Open-source
Software and a Possible Solution to the ‘Related Refactoring’ Conundrum. In: Proceedings
of ACM Symposium on Applied Computing, Dijon, France (April 2006)

2. BSCKIT Browser Toolkits for Microsoft Visual C++, Microsoft support knowledge base
article number Q153393, http://support.microsoft.com/

3. Cain, J.: Debugging with the DIA SDK, Visual System Journal (April 2004),
 http://www.vsj.co.uk/dotnet/display.asp?id=320

4. Chen, G., Banerjee, N., Jaradat, S.A., Tanaka, T.S., Ko, M.S.H., Zhang, M.Q.: Evaluation
and Comparison of Clustering Algorithms in Analyzing ES Cell Gene Expression Data.
Statistica Sinica 12, 241–262 (2002)

272 J. Cain et al.

5. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics. In:
ACM Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA), Minneapolis, USA, pp. 166–177 (2000)

6. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, London
(1993)

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading (1999)

8. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using automatic
clustering to produce high-level system organizations of source code. In: Proceedings of
the 6th International Workshop on Program Comprehension (IWPC 1998), Ischia, Italy,
pp. 45–52. IEEE Computer Society Press, Los Alamitos (1998)

9. Mens, T., Tourwe, T.: A Survey of Software Refactoring. IEEE Transactions on Software
Engineering 30(2), 126–139 (2004)

10. Mens, T., van Deursen, A.: Refactoring: Emerging Trends and Open Problems (2003),
 http://www.swen.uwaterloo.ca/~reface03/Papers/TomMens.pdf

11. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
Thesis, UC Berkeley, Computer Science Division (July 2002)

12. Opdyke, W.: Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois
at Urbana-Champaign (1992)

13. Pietrek, M.: Under the Hood. MSDN Magazine 17(3) (2002)
14. Rabiner, L.R.: A tutorial on HMM and selected applications in speech recognition.

Proceedings of the IEEE 77(2), 257–286 (1989)
15. Schreiber, S.: Undocumented Windows 2000 Secrets, A Programmer’s Cookbook.

Addison-Wesley, Reading (2001)
16. Stevens, W., Myers, G., Constantine, L.: Structured design. IBM Systems Journal 13(2),

115–139 (1974)
17. Zhao, L., Hayes, J.: Predicting Classes in Need of Refactoring: An Application of Static

Metrics. In: Proceedings of 2nd International PROMISE Workshop, Philadelphia, US
(2006)

Which Distance for the Identification and the
Differentiation of Cell-Cycle Expressed Genes?

Alpha Diallo, Ahlame Douzal-Chouakria, and Francoise Giroud

Université Joseph Fourier Grenoble 1
Laboratory TIMC-IMAG, CNRS UMR 5525,

Faculté de Médecine, 38706 LA TRONCHE Cedex, France
{Alpha.Diallo,Ahlame.Douzal,Francoise.Giroud}@imag.fr

Abstract. This paper addresses the clustering and classification of ac-
tive genes during the process of cell division. Cell division ensures the
proliferation of cells, but becomes drastically aberrant in cancer cells.
The studied genes are described by their expression profiles (i.e. time
series) during the cell division cycle. This work focuses on evaluating
the efficiency of four major metrics for clustering and classifying gene
expression profiles. The study is based on a random-periods model for
the expression of cell-cycle genes. The model accounts for the observed
attenuation in cycle amplitude or duration, variations in the initial am-
plitude, and drift in the expression profiles.

Keywords: Time series, distance, clustering, classification, gene expres-
sion profiles.

1 Introduction

Though most cells in our bodies contain the same genes, not all genes are ac-
tive in every cell: genes are turned on (i.e. expressed) when needed. Expressed
genes define the molecular pattern of a specific cell’s function, and are organized
into molecular-level regulation networks. To understand how cells achieve such
specialization, it is necessary to identify which genes are involved in different
types of cells. Moreover, it is helpful to know which genes are turned on or off
in diseased versus healthy human tissues, and which genes are expressed dif-
ferently in the two tissues, thus possibly causing the disease. DNA microarray
technology allows us to monitor the expression levels of thousands of genes si-
multaneously during important biological processes to determine which ones are
expressed in a specific cell type [7]. Clustering and classification techniques have
proven helpful in understanding gene function, gene regulation, and cellular pro-
cesses (e.g., [10], [17], [20], [21]). We distinguish at least two main approaches to
clustering and classifying profiles or time series. First, the parametric approach
consists of projecting time series into a given functional basis space, which cor-
responds to a polynomial arima or a discrete Fourier transform approximation
of the time series. Time series clustering and classification is then performed
on the fitted coefficients (e.g., [2], [3], [8], [11], [18], [22]). The second approach

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 273–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

274 A. Diallo, A. Douzal-Chouakria, and F. Giroud

is non-parametric, and consists of clustering or classifying time series based on
their initial temporal descriptions. Thus, the challenge in this approach is how
to include information on dependency between measurements (e.g., [1], [6], [9],
[13], [19], [23]). Within the context of the non-parametric approach, we propose
to evaluate the efficiency of four major metrics for the clustering and classifi-
cation of gene expression. This study is based on a random-periods model for
the expression of cell-cycle genes. The model accounts for observed biological
variations, such as attenuation in cycle amplitude, drift in the expression pro-
files, and variations in the initial amplitude or the cycle duration. The remainder
of the paper is organized as follows. The next section clarifies what constitutes
gene expression data and introduces the biological problem of interest. Section 3
defines the four major metrics to be evaluated, and discusses their specifications.
Section 4 indicates how the metrics will be compared through the clustering and
the classification of genes. Section 5 presents the overall methods of evaluation
based on a random-periods model, and discusses the results obtained.

2 Identification of Genes Expressed in the Cell Cycle

The biological problem of interest is the analysis of the progression of gene ex-
pression during the cell division process. Cell division is the main process in cell
proliferation, and it consists of four main phases (G1, S, G2, and M) and three
inter-phases (the G1/S, G2/M , and M/G1 transition phases). The division pro-
cess begins at the G1 phase, during which the cell prepares for duplication (DNA
pre-synthesis). Then comes the S phase, during which DNA is replicated (i.e., each
chromosome is duplicated); this is followed by the G2 phase, during which the cell
prepares for cell division (DNA post-synthesis). Finally comes the mitosis phase,
which is also called the M phase, during which the cell is divided into two daugh-
ter cells. During these four phases, genes are turned on and off at specific times,
so one important aim in understanding cell proliferation is to identify those genes
that are highly expressed in, and characteristic of, each phase of the cell cycle.
This can help, for instance, to understand how hormonal treatment can induce cell
proliferation by activating specific genes. To better our understanding of gene ex-
pression during the cell division process, DNA molecules representing many genes
are placed in discrete spots organized in a line or column matrix, which is called
a DNA microarray. Microarray technology allows us to determine which gene is
represented by each spot, and to measure its expression level at specific points in
the cell division cycle. Finally, each gene of interest is analyzed for its expression
profile observed during one or more cell division cycles.

3 Proximity between Gene Expression Profiles

Let g1 = (u1, ..., up) and g2 = (v1, ..., vp) be the expressions of two genes observed
at time (t1, ..., tp). The clustering and classification of gene expression data com-
monly involve Euclidean distance or the Pearson correlation coefficient. The fol-
lowing section defines four major metrics for gene expression analysis and their
specifications in accounting for proximity in values or behavior.

Identification and Differentiation of Cell-Cycle Expressed Genes 275

3.1 Euclidean Distance

The Euclidean distance δE between g1 and g2 is defined as:

δE(g1, g2) =

(
p∑

i=1

(ui − vi)2
) 1

2

.

Based on the above definition, the closeness between two genes depends on the
closeness of their values, regardless of their expression behavior. In other words,
the Euclidean distance ignores the temporal dependence of the data.

3.2 Pearson Correlation Coefficient

Many works use the Pearson correlation coefficient as a behavior proximity mea-
sure. Without loss of generality, consider that g1 and g2 have values in [0, N]. The
genes g1 and g2 exhibit similar behavior if over any observed period [ti, ti+1], they
increase or decrease simultaneously at the same rate. In contrast, g1 and g2 have
opposite behavior if over any observed period [ti, ti+1] where g1 increases, g2 de-
creases, and vice-versa, at the same rates (in absolute value). To illustrate the
correlation coefficient specification, let us consider the following formula, based
on the differences between the expression values:

Cor(g1, g2) =

∑
i,i′(ui − ui′)(vi − vi′)√∑

i,i′(ui − ui′)2
√∑

i,i′(vi − vi′)2
.

We see that the correlation coefficient is based on the differences between all pairs
of values (i.e. observed at all the pairs of time (i, i′)), which implicitly assumes the
independence of the observed data. Consequently, the correlation coefficient can
overestimate behavior proximity. For instance, in the case of a high tendency ef-
fect, as shown in Section 4, two genes with opposite behavior may have a relatively
high, positive correlation coefficient.

3.3 Temporal Correlation Coefficient: A Behavior Proximity
Measure

To overcome the limitations of the Pearson correlation coefficient, the temporal
correlation coefficient introduced in [4] is considered, as it reduces the Pearson
correlation coefficient to the first order differences:

cort(g1, g2) =
∑

i(u(i+1) − ui)(v(i+1) − vi)√∑
i(u(i+1) − ui)2

√∑
i(v(i+1) − vi)2

,

with cort(g1, g2) ∈ [−1, 1]. The value cort(g1, g2) = 1 indicates that g1 and g2
exhibit similar behavior. The value cort(g1, g2) = −1 indicates that g1 and g2
exhibit opposite behavior. Finally, cort(g1, g2) = 0 expresses that the growth
rates g1 and g2 are stochastically linearly independent, thereby identifying genes
with different behavior that are neither similar nor opposite.

276 A. Diallo, A. Douzal-Chouakria, and F. Giroud

3.4 Behavior and Values Proximity Measure

For a proximity measure to cover both behavior and value proximities, the dis-
similarity index Dk proposed in [5] is considered. It includes both the Euclidean
distance, for proximity with respect to values, and the temporal correlation, for
proximity with respect to behavior:

Dk(g1, g2) = f(cort(g1, g2)) δE(g1, g2), with f(x) =
2

1 + exp(k x)
, k ≥ 0.

This index is based on a tuning function f(x) that modulates the proximity with
respect to values according to the proximity with respect to behavior. An
exponential function f(x) is preferred to a linear form to ensure a nearly equal
modulating effect for extreme values (i.e., cort=-1, +1 and 0) and their near-
est neighbors. In the case of genes with different behavior (i.e., with cort near
0), f(x) is near 1 whenever the value of k, and Dk is approximately equal to δE .
However, if cort �= 0 (that is, non-different behavior), the parameter k modulates
the contributions of both types of proximity, with respect to values and with re-
spect to behavior, to the dissimilarity index Dk. As k increases, the contribution of
proximity with respect to behavior, 1−2/(1+ exp(k |cort|)), increases, whereas
the contribution of proximity with respect to values, 2/(1 + exp(k |cort|)), de-
creases. For instance, for k = 0 and |cort| = 1 (similar or opposite behavior),
the behavior proximity contributes 0% to Dk whereas the value proximity con-
tributes 100% to Dk (the value of Dk is totally determined by δE). For k = 2 and
|cort| = 1, the behavior proximity contributes 76.2% to Dk whereas the value
proximity contributes 23.8% to Dk (23.8% of the value of Dk is determined by
δE , and the remaining 76.2% by cort). Note that the widely-used dynamic time
warping (see for instance [14], [15]) is not addressed in this work, as it is not appro-
priate for generating cell-cycle gene expression profiles. Indeed, the identification
of genes expressed during the cell-cycle is mainly based on the time at which the
genes are highly expressed. To best cluster or classify gene expression profiles, time
should not be warped when evaluating proximities.

4 Metrics Comparison

A simulation study is performed to evaluate the efficiency of the metrics defined
in Section 3. For the clustering process, the PAM (Partitioning Around Medoids)
approach is used to partition the simulated genes into n clusters, n being the num-
ber of cell-cycle phases or inter-phases of interest. The PAM algorithm is preferred
to the classical K-means for many reasons. It is more robust with respect to out-
liers, which are numerous in gene expression data. It also allows a more detailed
analysis of the partition by providing clustering characteristics; in particular, it
indicates whether each gene is well classified (i.e. highly expressed in a cell-cycle
phase) or whether it lies on the boundary of the cluster (i.e. it is involved in a
transition phase). For more details about the PAM algorithm, see Kaufman and
Rousseeuw [12]. The efficiency of each metric in clustering gene expression pro-
files is evaluated through the goodness of the obtained partitions. Three criteria

Identification and Differentiation of Cell-Cycle Expressed Genes 277

are measured: the average silhouette width (asw), the within-between ratio (wbr),
and the corrected Rand index (RI). For the classification process, the 10-NN ap-
proach is used to classify gene expression profiles. The efficiency of each metric is
evaluated through the estimated misclassification error rate.

5 Simulation Study
5.1 Random-Periods Model for Periodically Expressed Genes

We use gene expression profiles generated using the random-periods model pro-
posed by Liu et al. [16] to study periodically expressed genes. This model allows us
to simulate attenuation in the amplitude of periodic gene expression with regard
to stochastic variations during the various phases of the cell-cycle, while also per-
mitting us to estimate the phase of the cycle in which the gene is most frequently
transcribed. The sinusoid function for characterizing the expected periodic ex-
pression of a cell-cycle gene g is

f(t, θg) = ag + bgt +
Kg√
2π

∫ +∞

−∞
cos(

2πt

Texp(σz)
+ Φg)exp(−

z2

2
)dz,

where θg is explicitly (Kg, T, σ, Φg, ag, bg), specific to each gene g. Integration in
the model computes the expected cosine across the lognormal distribution of pe-
riods, and thereby accounts for the aggregation of expression levels across a large
number of cells. The parameterΦg corresponds to the cell-cycle phase during which
the gene undergoes its peak level of transcription, with Φg = 0 corresponding to
the point when cells are first released to resume cycling. The parameter Kg is the
initial amplitude of the periodic expression pattern. The parameters ag and bg

account for any drift (intercepts and slopes, respectively) in a gene’s background
expression level, and T and σ are the parameters of the lognormal distribution
of cell-cycle duration. The parameter σ governs the rate of attenuation in ampli-
tude. If σ is zero, the duration of the cell-cycle does not vary, as cells remain syn-
chronous through time, and the expression profile shows no attenuation in ampli-
tude. Larger values of σ correspond to faster attenuation of the peak amplitude.
Figure 1 illustrates the progression of gene expression during five cell-cycle phases.

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

lo
g(

ba
se

2)
 e

xp
re

ss
io

n
ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

G1S

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

lo
g(

ba
se

2)
 e

xp
re

ss
io

n
ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

S

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

lo
g(

ba
se

2)
 e

xp
re

ss
io

n
ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

G2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

lo
g(

ba
se

2)
 e

xp
re

ss
io

n
ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

G2M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

lo
g(

ba
se

2)
 e

xp
re

ss
io

n
ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

MG1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

Fig. 1. Genes expression progression during five cell-cycle phases

278 A. Diallo, A. Douzal-Chouakria, and F. Giroud

5.2 Simulation Protocol

Based on the above random model and on the parameters specification given in
[16], four experiments are simulated to study how each metric accounts for gene
variations. The first experiment generates genes with varying initial amplitudes
Kg varying in [0.34, 1.33]. The second experiment simulates genes with amplitude
attenuation, with governed by σ, varying in [0.054, 0.115]. The third experiment
varies the drift, with slopes bg ∈ [−0.05, 0.05] and intercepts ag ∈ [0, 0.8]. The last
experiment simulates genes with simultaneous variations of initial amplitude, am-
plitude attenuation during the cell-cycle, and drift. Figure 2 shows the variations
generated across the four experiments for genes expressed in the G1/S phases. The
model parameter specifications of the four experiments are summarized in Table
1. For all simulations, T is fixed to 15, and Φg takes the values 0, 5.190, 3.823,
3.278, or 2.459 to simulate the expression profiles of the five classes G1/S, S, G2,
G2/M , or M/G1, respectively. For each experiment j ∈ {1, ..., 4}, 10 samples Sij

i ∈ {1, ..., 10} are simulated. Each sample Sij is composed of 500 gene expression
profiles (of length 47) with 100 genes for each of the five phases or inter-phases
G1/S, S, G2, G2/M , and M/G1. The comparison of metrics is performed within
each experiment through the clustering and the classification of 5000 simulated
genes (i.e. 10 samples of 500 genes each).

5.3 Metrics Efficiency for Clustering Gene Expression Profiles

For each experiment and for each metric δE , Cor, and Cort, a PAM algorithm
is performed to partition each sample Sij into 5 clusters (i.e. 5 cell-cycle phases
and inter-phases). For instance, for the experiment j and for the metric δE , the

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

log
(b

as
e2

) e
xp

re
ss

ion
 ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Experiment 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

log
(b

as
e2

) e
xp

re
ss

ion
 ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Experiment 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

log
(b

as
e2

) e
xp

re
ss

ion
 ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Experiment 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

0 10 20 30 40

−2
−1

0
1

2
3

time(hrs)

log
(b

as
e2

) e
xp

re
ss

ion
 ra

tio

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Experiment 4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
<−>

M
<−>

M
<−><−−−−−−−>

S
<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−−−−−−>
S

<−>
G2

<−−−−−−−−−>
G1

<−−>
S

Fig. 2. G1/S expression profiles through the four experiments

Table 1. Parameters specification

Experiment Kg σ bg ag
number

1 [0.34, 1.33] 0 0 0
2 [0.34, 1.33] [0, 0.115] 0 0
3 [0.34, 1.33] 0 [-0.05, 0.05] [0, 0.8]
4 [0.34, 1.33] [0, 0.115] [-0.05, 0.05] [0, 0.8]

Identification and Differentiation of Cell-Cycle Expressed Genes 279

Table 2. k* mean and variance

Adaptive Exp1 Exp2 Exp3 Exp4

Clustering (6,0) (6,0) (6,0) (5.85,0.06)
Classification (3,3.53) (3,3.53) (4.55,1.18) (4.84,0.98)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Av
er

ag
e

sil
ho

ue
tte

 w
idt

h
(a

sw
)

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 1

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Av
er

ag
e

sil
ho

ue
tte

 w
idt

h
(a

sw
)

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Av
er

ag
e

sil
ho

ue
tte

 w
idt

h
(a

sw
)

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 3

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Av
er

ag
e

sil
ho

ue
tte

 w
idt

h
(a

sw
)

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 4

Fig. 3. Asw progression across the clustered samples

PAM algorithm is applied to the 10 samples S1j , ..., S10j to extract the 10 parti-
tions P 1j

δE
,..., P 10j

δE
. For each partition, P ij

δE
, three goodness criteria are measured:

the average silhouette width (asw), the within/between ratio (wbr), and the cor-
rected Rand index (RI). The corrected Rand index allows us to measure the prox-
imity between P ij

δE
and the true partition (i.e. that defined by Sij). Finally, the

efficiency of the metric δE within the experiment j is summarized by the aver-
age values of the criteria asw, wbr, and RI of the 10 partitions P 1j

δE
,..., P 10j

δE
. For

the dissimilarity index Dk, the adaptive clustering proposed in [5] is applied. The
adaptive clustering of Sij consists of performing the PAM algorithm for several
values of k from 0 to 6 (per a lag of 0.01) to find the value k* that yields the opti-
mal partition P ij

Dk∗ , using as goodness criteria the average silhouette width and the
within/between ratio. Note that k∗ provides the best contribution of the proxim-
ity with respect to values and with respect to behavior to the dissimilarity index,
thus the learned Dk∗ is identified as best clustering Sij . Table 2 gives, for each
experiment, the mean and the variance (k∗, var(k∗)) of k*. As in the case of the
metrics δE , Cor, and Cort, the efficiency of the metric Dk within the experiment
j is summarized by the average values of the criteria asw, RI and wbr of the 10
partitions P 1j

Dk∗ ,..., P 10j
Dk∗ . Figures 3, 4, and 5 depict, for each experiment and for

each metric, the progression of the criteria asw, wbr, and RI across the 10 clus-
tered samples S1j , ..., S10j . Figure 6 shows for each metric the progression, across
the four experiments, of the average values of the criteria asw (top), wbr (middle)
and RI (bottom)

280 A. Diallo, A. Douzal-Chouakria, and F. Giroud

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

W
ith

in/
Be

tw
ee

n

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 1

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

W
ith

in/
Be

tw
ee

n

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

W
ith

in/
Be

tw
ee

n

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 3

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

W
ith

in/
Be

tw
ee

n

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 4

Fig. 4. Wbr progression across the clustered samples

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Co
rre

cte
d

Ra
nd

In
de

x

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 1

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Co
rre

cte
d

Ra
nd

In
de

x

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Co
rre

cte
d

Ra
nd

In
de

x

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 3

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample number

Co
rre

cte
d

Ra
nd

In
de

x

1 2 3 4 5 6 7 8 9 10

dE
Cor
Cort
Dk*

Experiment 4

Fig. 5. RI progression across the clustered samples

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Experiment

M
ea

n
av

er
ag

e
si

lh
ou

et
te

 w
id

th

1 2 3 4

dE
Cor
Cort
Dk*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Experiment

M
ea

n
w

ith
in

/b
et

w
ee

n

1 2 3 4

dE
Cor
Cort
Dk*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Experiment

M
ea

n
co

rr
ec

te
d

ra
nd

in
de

x

1 2 3 4

dE
Cor
Cort
Dk*

Fig. 6. Metric efficiency to cluster gene expression profiles

5.4 Metrics Efficiency for Classifying Gene Expression Profiles

For each experiment and for each metric δE , Cor, and Cort, a 10-NN algorithm
is performed to classify each sample Sij . For instance, for the experiment j and
for the metric δE , the 10-NN algorithm is applied to the 10 samples S1j , ..., S10j to
generate the 10 classifications C1j

δE
,..., C10j

δE
. For each classification Cij

δE
the mis-

classification error rate is measured. The efficiency of the metric δE in classify-
ing gene expression profiles within the experiment j, is summarized by the av-
erage misclassification error rates of the 10 classifications C1j

δE
,..., C10j

δE
. For the

Identification and Differentiation of Cell-Cycle Expressed Genes 281

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Sample number

Er
ro

r r
at

es

1 2 3 4 5 6 7 8 9 10

Eucli
Cor
CorT
Dk*

Experiment 1

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Sample number

Er
ro

r r
at

es

1 2 3 4 5 6 7 8 9 10

Eucli
Cor
CorT
Dk*

Experiment 2

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Sample number

Er
ro

r r
at

es

1 2 3 4 5 6 7 8 9 10

Eucli
Cor
CorT
Dk*

Experiment 3

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Sample number

Er
ro

r r
at

es

1 2 3 4 5 6 7 8 9 10

Eucli
Cor
CorT
Dk*

Experiment 4

Fig. 7. Misclassification error rates progression through the classified samples

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Experiment

Err
or r

ate
s

1 2 3 4

dE
Cor
Cort
Dk*

Fig. 8. Metric efficiency to classify gene expression profiles

dissimilarity index Dk, an adaptive classification is performed. It consists of per-
forming the 10-NN algorithm on Sij for several values of k from 0 to 6 (in incre-
ments of 0.01) to find the k∗ that minimizes the misclassification error rate of Cij

Dk
.

The efficiency of the metric Dkin classifying gene expression profiles within the
experiment j, is summarized by the average misclassification error rates of the 10
classifications C1j

Dk∗ ,..., C10j
Dk∗ . Figure 7 depicts, for each of the four experiments,

the progression of the misclassification error rates across the 10 classified samples.
Figure 8 shows, for each metric, the progression across the four experiments of the
average misclassification error rates.

5.5 Discussion

We first discuss the clustering results. Let us give some additional information
about the criteria in question. The asw indicates the strength (asw close to 1) or
the weakness (asw < 0.5) of the obtained partitions, while wbr measures the com-
pactness (i.e. within-cluster variability) and the separability (between-clusters
variability) of the obtained clusters. A good partition is characterized by a lower
within/between ratio. Finally, RI allows us to measure the similarity between the
obtained partitions and the true ones (RI = 1 for a high level of similarity, and
RI = 0 for non-similarity).

Figures 3, 4, and 5 show that the clustering based on δE gives, for experiments
1 to 4, weaker partitions than the ones based on cor, cort, or Dk. Indeed, par-
titions based on δE have the lowest values for asw and RI and the highest val-
ues for wbr. Figure 6 shows that the average values of asw, wbr and RI of the

282 A. Diallo, A. Douzal-Chouakria, and F. Giroud

clustering based δE decrease from the experiment 1 to 4, showing the inappro-
priateness of the Euclidean distance for cases with complex variations. Clustering
based on cor gives strong partitions with the best values of asw, wbr, and RI,
for the first two experiments. However, this quality decreases drastically in exper-
iments 3 and 4 (Figures 3, 4, 5, and 6) showing the limitations of the Pearson corre-
lation coefficient when faced with tendency variations, as explained in Subsection
3.2. Finally, the best clustering and the strongest partitions across the four exper-
iments are given by cort and Dk, with asw values varying in [0.8, 1], wbr around
0, and RI varying in [0.83, 1]. Note that the quality of the clustering based on Dk

is very slightly lower than that based on cort, revealing that gene expression pro-
files are more naturally differentiated by their behaviors than by their values. This
hypothesis is assessed by the higher values of k∗ (near 6, with a variability of 0)
obtained in the adaptive clustering across the four experiments (Table 2).

Let us now discuss the classification results. Figures 7 and 8 show that for exper-
iments 1 and 2, the four metrics are equally efficient, with misclassification error
rates around 0. However, for experiments 3 and 4, we note a drastic increase in
the error rate for the partitions based on δE , a slight increase in the error rate for
the partitions based on cor, and a negligible increase for Dk. Table 2 and Figure
9 indicate the distribution of k* in the adaptive classifications. For experiments
1 and 2, a uniform distribution of k* in [0, 6] is noted. This case arises when a
good classification can be obtained both with a metric based on values (k* near
0) and with a metric based on behavior (k* near 6). Indeed, Figures 7 and 8 show
that the four metrics are equally efficient at classifying genes across the first two
experiments. In experiments 3 and 4, k* takes higher values, indicating that the
behavior-based metrics (i.e. cort, Dk) are the most efficient for classifying gene
expression profiles, as can easily be seen in Figures 7 and 8. Finally, according to
the results of the four experiments, the metrics cort and Dk can be said to be
the most efficient at classifying gene expression profiles.

0
1

2
3

4
5

6

Experiment

k*

1 2 3 4

Fig. 9. k* distribution in the adaptive classification

6 Conclusion

The above performances based on simulated data, assessed by the nearly similar
results based on a real genes expression profiles developed in [5] allow to conclude
that, to cluster or classify cell-cycle gene expression profiles, it is advisable to con-
sider the temporal correlation coefficient as a proximity measure. However, the ef-
fectiveness of the learneddissimilarityDk, which alsoprovides very goodpartitions
and classifications, is worth noting. In general, when faced with data where time
should not be warped for proximity evaluation (which is the case of cell-cycle gene
expression profiles), the dissimilarity Dk proposed in this paper is recommended.

Identification and Differentiation of Cell-Cycle Expressed Genes 283

The adaptive clustering or classification is used to learn the appropriate dissimi-
larity Dk to use in the next analysis task. The learned dissimilarity Dk can lead to
the temporal correlation (for k* near 6), to the Euclidean distance (for k* near 0),
or more generally to a metric covering both values and behavior proximities.

References

1. Anagnostopoulos, A., Vlachos, M., Hadjieleftheriou, M., Keogh, E.J., Yu, P.S.:
Global Distance-Based Segmentation of Trajectories. In: Proc. of ACM SIGKDD,
pp. 34–43 (2006)

2. Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T., Simon, I.: Continuous
Representations of Time-Series Gene Expression Data. Journal of Computational
Biology 10(3), 341–356 (2003)

3. Caiado, J., Crato, N., Pena, D.: A periodogram-based metric for time series classi-
fication. Computational Statistics and Data Analysis 50, 2668–2684 (2006)

4. Douzal-Chouakria, A., Nagabhushan, P.N.: Adaptive dissimilarity index for mea-
suring time series proximity. Advances in Data Analysis and Classification Jour-
nal 1(5-21) (2007)

5. Douzal-Chouakria, A., Diallo, A., Giroud, F.: Adaptive clustering for time series:
application for identifying cell-cycle expressed genes. Computational Statistics and
Data Analysis 53(4), 1414–1426 (2009)

6. Džeroski, S., Gjorgjioski, V., Slavkov, I., Struyf, J.: Analysis of time series data with
predictive clustering trees. In: Džeroski, S., Struyf, J. (eds.) Knowledge Discovery in
Inductive Databases, 5th International Workshop, KDID, Berlin, Germany (2006)

7. Eisen, M.B., Brown, P.O.: DNA arrays for analysis of gene expression. Methods
Enzymol. 303, 179–205 (1999)

8. Garcia-Escudero, L.A., Gordaliza, A.: A proposal for robust curve clustering. Jour-
nal of Classification 22, 185–201 (2005)

9. Heckman, N.E., Zamar, R.H.: Comparing the shapes of regression functions.
Biometrika 22, 135–144 (2000)

10. He, Y., Pan, W., Lin, J.: Cluster analysis using multivariate normal mixture models
to detect differential gene expression with microarray data. Computational Statis-
tics and Data Analysis 51(2), 641–658 (2006)

11. Kakizawa, Y., Shumway, R.H., Taniguchi, N.: Discrimination and clustering for mul-
tivariate time series. Journal of the American Statistical Association 93, 328–340
(1998)

12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster
Analysis. John Wiley & Sons, New York (1990)

13. Keller, K., Wittfeld, K.: Distances of time series components by means of symbolic
dynamics. International Journal of Bifurcation Chaos 14, 693–704 (2004)

14. Keogh, E.J., Pazzani, M.J.: Scaling Up Dynamic Time Warping for Data Mining
Applications. In: Proc. of ACM SIGKDD, pp. 285–289 (2000)

15. Kruskall, J.B., Liberman, M.: The symmetric time warping algorithm: From con-
tinuous to discrete. In: Time Warps, String Edits and Macromolecules. Addison-
Wesley, Reading (1983)

16. Liu, D., Umbach, D.M., Peddada, S.D., Li, L., Crockett, P.W., Weinberg, C.R.: A
Random-Periods Model for Expression of Cell-Cycle Genes. Proc. Natl. Acad. Sci.
USA 101, 7240–7245 (2004)

284 A. Diallo, A. Douzal-Chouakria, and F. Giroud

17. Liu, X., Lee, S., Casella, G., Peter, G.F.: Assessing agreement of clustering methods
with gene expression microarray data. Computational Statistics and Data Analy-
sis 52(12), 5356–5366 (2008)

18. Maharaj, E.A.: Cluster of time series. Journal of Classification 17, 297–314 (2000)
19. Oates, T., Firoiou, L., Cohen, P.R.: Clustering time series with Hidden Markov

Models and Dynamic Time Warping. In: Proc. 6th IJCAI 1999, Workshop on Neu-
ral, Symbolic and Reinforcement Learning Methods for Sequence Learning, Stock-
holm, pp. 17–21 (1999)

20. Park, C., Koo, J., Kim, S., Sohn, I., Lee, J.W.: Classification of gene functions us-
ing support vector machine for time-course gene expression data. Computational
Statistics and Data Analysis 52(5), 2578–2587 (2008)

21. Scrucca, L.: Class prediction and gene selection for DNA microarrays using regu-
larized sliced inverse regression. Computational Statistics and Data Analysis 52(1),
438–451 (2007)

22. Serban, N., Wasserman, L.: CATS: Cluster After Transformation and Smoothing.
Journal of the American Statistical Association 100, 990–999 (2004)

23. Shieh, J., Keogh, E.J.: iSAX: Indexing and Mining Terabyte Sized Time Series. In:
Proc. of ACM SIGKDD, pp. 623–631 (2008)

Ontology-Driven KDD Process Composition

Claudia Diamantini, Domenico Potena, and Emanuele Storti

Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione “M. Panti”,
Università Politecnica delle Marche - via Brecce Bianche, 60131 Ancona, Italy

{diamantini,potena,storti}@diiga.univpm.it

Abstract. One of the most interesting challenges in Knowledge Discov-
ery in Databases (KDD) field is giving support to users in the composi-
tion of tools for forming a valid and useful KDD process. Such an activity
implies that users have both to choose tools suitable to their knowledge
discovery problem, and to compose them for designing the KDD process.
To this end, they need expertise and knowledge about functionalities and
properties of all KDD algorithms implemented in available tools. In or-
der to support users in this heavy activity, in this paper we introduce
a goal-driven procedure for automatically compose algorithms. The pro-
posed procedure is based on the exploitation of KDDONTO, an ontology
formalizing the domain of KDD algorithms, allowing us to generate valid
and non-trivial processes.

1 Introduction

Knowledge discovery in databases (KDD) has been defined as the non-trivial
extraction of implicit, previously unknown, and potentially useful information
from databases [1]. A KDD process is a highly complex, iterative and interac-
tive process, with a goal-driven and domain-dependent nature. Given the huge
amount of tools for data manipulation, their various characteristics and different
performances, users should have various skills and expertise in order to manage
all of them. As a matter of fact, in designing a KDD process they have to choose,
to set-up, to compose and to execute the tools most suitable to their problems.

For these reasons, one of the most interesting challenges in KDD field involves
the possibility to give support to users both in tool discovery and in process
composition. We refer to the former as the activity of searching tools on the
basis of the KDD goal to achieve, the characteristics of the dataset at hand,
and functional and non-functional properties of the implemented algorithm. The
process composition is the activity of linking suitable tools in order to build valid
and useful knowledge discovery processes.

We are working on these issues in the ambit of Knowledge Discovery in
Databases Virtual Mart (KDDVM) project [2], that is aimed at realizing an open
and extensible environment where users can look for implementations, sugges-
tions, evaluations, examples of use of tools implemented as services. In KDDVM
each KDD service is represented by three logical layers, with growing abstraction
degrees. Algorithm level is the most abstract one, whereas different implemen-
tations of the same algorithm are described at the tool level. Finally, different

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 285–296, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

286 C. Diamantini, D. Potena, and E. Storti

instances of the same tool can be made available on the net as services through
several providers. At present, among the available services, we have at disposal
a broker service for supporting the discovery of suitable KDD services. Such a
service is based on KDDONTO, a domain ontology describing KDD algorithms
and their interfaces [3].

In this work we introduce a goal-driven procedure aimed at automatically com-
posing KDD processes; in order to guide the whole composition procedure, algo-
rithm matching functions are defined on the basis of the ontological information
contained in KDDONTO. The outcome of the procedure is a subset of all pos-
sible workflows of algorithms, which allows to achieve the goal requested by the
user and satisfies a set of constraints. The generated processes are then ranked
according to both user-defined and built-in criteria, allowing users to choose the
most suitable processes w.r.t. their requests, and to let them try more than a sin-
gle solution. Our composition procedure, working at the algorithm level, allows to
produce abstract KDD processes, which are general and reusable, since each in-
stance of algorithm can be replaced with one among the services implementing it.
Furthermore, such a generated process can be itself considered as useful, valid and
unknown knowledge. In the rest of this section, relevant literature references are
discussed. Then, Section 2 presents the KDDONTO and its main concepts and
relations. Section 3 introduces algorithm matching functions, which are used as
basic step for the process composition procedure, that is then described in detail
in Section 4. Finally, Section 5 ends the paper.

1.1 Related Works

In last years researchers in Data Mining and KDD fields have shown more and
more interest in techniques for giving support in the design of knowledge dis-
covery processes. To this end several ontologies have been defined, even if they
focus only on tools and algorithms for Data Mining, which is one of the phases
of the wider and more complex KDD field [4,1]. The first ontology of this kind is
DAMON (DAta Mining ONtology) [5], that is built for simplifying the develop-
ment of distributed KDD applications on the Grid, offering to domain experts
a taxonomy for discovering tasks, methods and software suitable for a given
goal. In [6], the ontology is exploited for selecting algorithms on the basis of the
specific application domain they are used for. Finally, OntoDM [7] is a general
purpose top-level ontology aimed to describe the whole Data Mining domain.

Some research works were also proposed for supporting process composition
[8,9,10,11,12]. An early work of this kind is [9], where authors suggests a frame-
work for guiding users in breaking up a complex KDD task into a sequence
of manageable subtasks, which are then mapped to appropriate Data Mining
techniques. Such an approach was exploited in [11], where the user is supported
in iteratively refining a KDD skeleton process, until executable techniques are
available to solve low-level tasks. To this end, algorithms and data are modeled
into an object oriented schema. In [10] a system is described focusing on setting-
up and reusing chains of preprocessing algorithms, which are represented in a
relational meta-model.

Ontology-Driven KDD Process Composition 287

Although these works help users in choosing the most suitable tools for each
KDD phase, no automatic composition procedure is defined. Recent works have
dealt with this issue [8,12] for defining effective support on process composition.
In detail, in [8] authors define a simple ontology (actually not much more than
a taxonomy) of KDD algorithms, that is exploited for designing a KDD process
facing with cost-sensitive classification problems. A forward composition, from
dataset characteristics towards the goal, is achieved through a systematic enu-
meration of valid processes, that are ranked on the basis on accuracy achieved
on the processed dataset, and on process speed. [12] introduces a KDD ontology
representing concrete implementations of algorithms and any piece of knowledge
involved in a KDD process (dataset and model), that is exploited for guiding
a forward state-space search planning algorithm in the design of a KDD work-
flow. Such an ontology describes algorithms in very few classes and a poor set
of relationships, resulting in a flat knowledge base.

Both in [12] and in [8], ontologies are not rich enough to be extensively used
both for deducing hidden relations among algorithms and for supporting relaxed
matches among algorithms or complex pruning strategies during planning proce-
dure. In order to overcome the limits of the cited works, in our proposal we define
and exploit a formal KDD ontology expressly conceived for supporting composi-
tion. Such an ontology is exploited by a backward composition procedure, which
composes algorithms not only by exact matches, but also by evaluating similarity
between their interfaces, in order to extract unknown and non-trivial processes.
Our approach, moreover, is aimed to achieve a higher level of generality, by
producing abstract and reusable KDD process. In this work, we use the term
composition instead of planning in order to emphasize the difference from tra-
ditional AI planning, in which execution stops when a single proper solution is
found, and also because we ultimately refer to service composition.

2 The KDD ONTOlogy

KDDONTO is an ontology describing the domain of KDD algorithms, conceived
for supporting the discovery of KDD algorithms and their composition.

In order to build a KDD ontology, among many methodologies proposed in
literature for ontology building, we choose a formal approach based on the goal-
oriented step-wise strategy described in [13]; moreover, the quality requirements
and formal criteria defined in [14] are taken into account, with the aim to make
meaning explicit and not ambiguous.

The key concept of KDDONTO is algorithm, because it is the basic component
of each process. Other fundamental domain concepts, from which any other
concept can be derived, are the following:

– method : a methodology, a technique used by an algorithm to extract know-
ledge from input data;

– phase: a phase of a KDD process;
– task : the goal at which aims who executes a KDD process;
– model : a set of constructs and rules for representing knowledge;

288 C. Diamantini, D. Potena, and E. Storti

– dataset : a set of data in a proper format;
– parameter : any information required in input or produced in output by an

algorithm;
– precondition/postcondition: specific features that an input (or output) must

have in order to be used by a method or an algorithm. Such conditions con-
cern format (normalized dataset), type (numeric or literal values), or quality
(missing values, balanced dataset) properties of an input/output datum;

– performance: an index and a value about the way an algorithm works;
– optimization function: the function that an algorithm or a method optimizes

with the aim to obtain the best predictive/descriptive model.

Starting from these concepts, top level classes are identified, namely Algo-
rithm, Method, Phase, Task, Data (which contains Model, Dataset and
Parameter as subclasses), DataFeature (corresponding to precondition/postcon-
dition), PerformanceIndex and PerformanceClass (for describing performance
indexes and performance values), ScoreFunction (corresponding to optimiza-
tion function).

Main relations among the classes are:

– specifies_phase, between Task and Phase;
– specifies_task, between Method and Task;
– uses, between Algorithm and Method;
– has_input/has_output, a n-ary relation with domain Algorithm, Method

or Task and codomain Data, and optionally DataFeature.
For each instance of DataFeature involved in has_input, a value express-
ing the precondition strenght is also provided. Hence, a value equal to 1.0
corresponds to a mandatory precondition, whereas lower values to optional
ones; also inverse properties input_for/output_for are introduced;

– has_performance, a n-ary relation with domain Algorithm, Method, or Task
and codomain PerformanceIndex and PerformanceClass.

Subclasses are defined by means of existential restrictions on main classes,
that can be considered as fundamental bricks for building the ontology. At
first some Phase instances are introduced, namely PREPROCESSING, MODELING,
POSTPROCESSING. They represent the main phases in a KDD process and are
used to start the subclassing as follows:

– Task specializes in subclasses, according to the argument of specifies_pha-
se, e.g.: ModelingTask � Task � ∃specifies_phase{MODELING}

– Method is detailed in subclasses according to the tasks that each method
specifies by means of specifies_task relation, e.g.:
ClassificationMethod � Method � ∃specifies_task{CLASSIFICATION}

– Algorithm specializes in subclasses according to uses and has_output re-
lations. For example:

ClassificationAlgorithm � Algorithm
� ∃uses.ClassificationMethod
� ∃has_output.ClassificationModel

Ontology-Driven KDD Process Composition 289

– Model is further detailed in subclasses, on the basis of the task which the
models are used for, e.g.:
ClassificationModel� Model � ∃output_for{CLASSIFICATION}

A top-level view of described classes and relations is shown in Figure 1.

Fig. 1. KDDONTO: main classes and relations

Many other relations are introduced in order to represent information useful
to support KDD process composition. Among the most interesting:

– not_with links two instances of Method that cannot be used in the same
process;

– not_before links two instances of Method such that the first cannot be used
in a process before the second;

– in_module/out_moduleallow to connect an instance of Algorithm to others,
which can be executed respectively before or after it. These relations provide
suggestions about process composition, representing in an explicit fashion
KDD experts’ experience about process building;

– part_of (and its inverse1 has_part), between an instance of Model and an
its component (a generic Data instance), allows to describe a model in terms
of the subcomponents it is made of. These relations are useful for identify-
ing algorithms working on similar models, that is models having common
substructures, as discussed in next section.

At present, KDDONTO is represented in OWL-DL, whose logical model is
based on Description Logics and is decidable; it is a sublanguage of OWL [15],
the de-facto standard language for building ontologies. An implementation of
KDDONTO has been obtained after some refinements, whose details are not
reported here, and is available at the KDDVM project site2.
1 We use “inverse” rather than “reciprocal” because both part_of and has_part are

instance-level relations.
2 http://boole.diiga.univpm.it/kddontology.owl

290 C. Diamantini, D. Potena, and E. Storti

3 Algorithm Matching

For the purposes of this work, we define a KDD process as a workflow of algo-
rithms that allows to achieve the goal requested by the user. The basic issue in
composition is to define the algorithm matching, that is to specify under which
conditions two or more algorithms3 can be executed in sequence. Each algo-
rithm takes data with certain features in input, performs some operations and
returns data in output, which are then used as input for the next algorithm in
the process. Therefore, two algorithms can be matched if the output of the first
is compatible with the input of the second.

An exact match between a set of algorithms {A1,...,An} and an algorithm B
is defined as:

matchE({A1, ..., An}, B) ↔ ∀ ini
B ∃Ak ∃outjAk

: outjAk
≡o ini

B

where ini
B is the ith input of the algorithm B, outjAk

is the jth output of the
algorithm Ak. ≡o represents the conceptual equivalence and is defined as follows:
let a and b be two parameters, a ≡o b if Ca � Cb, i.e. if a and b refer to the
concepts Ca and Cb such that Ca is subsumed by Cb (they are the same concept
or the former is a subconcept of the latter). In such cases the whole set of
algorithms {A1,...,An} provide the required data for B, realizing the piece of
workflow shown in Figure 2a.

Furthermore, an exact match is complete if all the required inputs for an
algorithm are provided by a single algorithm, as represented in Figure 2b.

More formally, an exact complete match between two algorithms A and B is
defined as:

matchEc(A, B) ↔ ∀ ini
B ∃outjA : outjA ≡o ini

B

(a) (b)

Fig. 2. (a) Exact and (b) exact complete matches (dashed lines represent ≡O relation)

By exploiting properties of algorithms, described in the previous section, it is
possible to define a match based not only on exact criteria, but also on similarity
among data. We can consider compatible two algorithms even if their interfaces
3 Hereafter we use “class” and “concept” as synonyms, and refer to “algorithm” as the
Algorithm class.

Ontology-Driven KDD Process Composition 291

Fig. 3. Approximate match (dashed line represents ≡O relation)

are not perfectly equivalent: the relaxation of constraints results in a wider set
of possible matches. Hence, an approximate match between a set of algorithms
{A1,...,An} and an algorithm B is defined as:

matchA({A1, ..., An}, B) ↔ ∀ ini
B ∃Ak ∃outjAk

: outjAk
≡o ini

B ∨
similar(outjAk

, ini
B)

where the similarity predicate similar(x, y) is satisfied if x and y are similar
concepts, i.e. if there is a path in the ontology graph that links them together. An
approximate match is useful not only when an exact match cannot be performed,
but also for extracting unknown and non-trivial processes.

The similarity between concepts can be evaluated on the basis of various KD-
DONTO relations. The simplest similarity relation is at hierarchic level: a specific
datum is similar to its siblings, because they share, through an is-a relation, the
membership to the same class. Moreover, similarity is also at compositional level:
a datum can be made of simpler data, according to part_of/has_part relation-
ships, described in Section 2. As shown in Figure 3, a compound datum (e.g. “d”)
can be used in place of one of its components (e.g. “ in1

B”), because the former is a
superset of the latter, containing all the needed information, and other that can
be discarded. To give a practical example, a Labeled Vector Quantization model
(LVQ) has_part a VQ model and a Labeling function: if an algorithm requires
VQ model in input, LVQ model can be provided in place of it.

Given two similar concepts, we define ontological distance as the number of
is-a or part_of relations that are needed to link them in the ontological graph;
as only exception, ontological distance from a concept to its subconcepts is con-
sidered null. In approximate match, the higher is ontological distance between two
concepts, the less they are similar. This allows to assign a score to each match and
to define a rank among the generated processes, as described in Subsection 4.3.

In process composition, whatever match is used, it is needed to check the
satisfaction of preconditions and postconditions: this means that postconditions
of the first algorithm must not be in contrast with preconditions of the second
one, as regards the same data.

4 Process Composition Procedure

Based on algorithm matching, in this section a goal-driven procedure for com-
posing KDD processes is described. Our approach is aimed at the generation of
all potentially useful, valid and unknown processes satisfying the user requests;

292 C. Diamantini, D. Potena, and E. Storti

this allows the user to choose among processes with different characteristics and
to experiment more than a single solution. We use Jena4 as a framework for
querying the ontology through SPARQL language [16], which is a W3C Recom-
mendation, whereas Pellet5 is used as reasoner for inferring non-explicit facts.
The proposed process composition procedure is formed of the following phases:
(I) dataset and goal definition, (II) process building, (III) process ranking.

4.1 Dataset and Goal Definition

Any KDD process is built for achieving a specific KDD goal processing a given
dataset. Hence, the first step of our procedure is the description of both the
dataset and the goal.

In our framework, the former is described by a set of characteristics (e.g.
representation model, size, feature type), which are instances of the DataFeatu-
re class. The latter is expressed as an instance of the Task class, leaving the
user to move from complex domain-dependent business goals to one or more
well-defined and domain-independent KDD tasks.

The description of both dataset and goal allows us to guide the composition
procedure, bounding the number and type of algorithms that can be used at the
beginning and at the end of each process.

Moreover, some process constraints are provided in this phase for contributing
to define a balance between procedure execution speed and composition accuracy.
Some of these constraints can be defined by the user; among others: kind of
match (only exact or also approximate), maximum ontological distance for each
match in a process, maximum number of algorithms in a process, and maximum
computational complexity of a process.

Other constraints are predefined and built-in into the procedure for ensuring
to produce valid KDD processes. Some examples are the following:

– two algorithms whose methods are linked through not_with property cannot
coexist in the same process;

– two algorithms whose methods are linked through not_before property can
coexist in the same process only if the first follows the second;

– more thanoneFeatureExtractionalgorithmcannot coexist in the sameprocess.

4.2 Process Building

Process building is an iterative phase, which starts from the given task and goes
backwards adding one or more algorithms to each process and for each iteration.
Such algorithms are chosen on the basis of the algorithm matching functionalities
defined in the previous section.

The procedure goes on until the first algorithm of each process is compatible
with the given dataset, and stops if one of the following conditions come true: no

4 http://jena.sourceforge.net/
5 http://clarkparsia.com/pellet

Ontology-Driven KDD Process Composition 293

Table 1. The composition algorithm

Let P be the set of processes at each iteration, Pi be the ith process in P , described by
the pair <Vi, Ei> where Vi is the set of algorithms in Pi and Ei is the set of directed
edges (Ap,Aq) which connect algorithm Ap to algorithm Aq.
Let F be the final list of valid generated processes, T be the task, D be the set of
dataset characteristics, matchD(D,Pi) be a predicate, which is true if the precondi-
tion of the algorithms at the head of Pi are compatible with D.

P ← ∅, F ← ∅;
Find the set Γ={Ai: has_output(Ai,x) � output_for(x,T)};
foreach Ai ∈ Γ do

initialize Pi=<Ai,∅>;
if (process_constraints(Ai,Pi)) then P ← Pi;

foreach Pi ∈ P do
if (matchD(D,Pi)) then F ← Pi;
Define the set Δ={Ak ∈ Vi: � (x, Ak) ∈ Ei};
foreach Ak ∈ Δ do

Find the set Φ={Φ1,...,Φm}, where Φj is the set of algorithms {B1,...,Bmj }
such that matchE(Φj ,Ak)� matchA(Φj ,Ak);

foreach Φj ∈ Φ do
if (process_constraints(Φj ,Pi)) then

define P ′=<Vi ← Φj , Ei ←{(B1,Ak),...,(Bmj ,Ak)}>;
P ← P ′;

P=P-{Pi}.

given process can be further expanded because no compatible algorithms exist,
or one of the process constraints is violated.

The main steps in process building phase are described in Table 1. A process
Pi=<Vi,Ei> is represented as a directed acyclic graph, where Vi is the set of
nodes, namely algorithms, and Ei is the set of directed edges linking algorithms
together. At first, algorithms Ai, which return as output a model x used for
performing the given task T , are found; then, for each of them a process Pi is
created. Such a Pi is added to the set P which contains all the processes that
are going to be evaluated in the next step.

Until there is a process Pi in P , algorithms compatible with the one(s) at the
head of Pi are extracted. If the process constraints are satisfied, these extracted
algorithms are used for forming a new valid process, which is added to the set P .
At last, the process Pi is deleted from the set P because its expansion has ended,
and the procedure is iterated. At the beginning of each iteration, Pi is checked
against the characteristics of the dataset at hand: if they are compatible, Pi is
moved to the set F of final processes. Note that the process constraints are used
as pruning criteria, that ensure to produce useful and valid processes, keeping
the complexity of the whole procedure under control.

294 C. Diamantini, D. Potena, and E. Storti

During the procedure, it may happen that a single algorithm or a set of
algorithms can be executed more than one time inside a process. To avoid any
possible endless loop, we fix the maximum number of algorithms in a process.

4.3 Process Ranking

In order to support the user in choosing among the generated processes, we
define some criteria for ranking them:

– similarity measurement : an exact match is more accurate than an approx-
imate one, thus a process can be ranked on the basis of the sum of the
ontological distances of each match. The higher the value of the sum, the
less the rank of the process;

– precondition relaxation: in algorithm matching, preconditions on some data
can be relaxed if they have a condition_strenght value lower than 1, i.e.
a non-mandatory precondition. Relaxing preconditions reduces the process
rank, because algorithm execution can lead to lower quality outcomes;

– use of link modules: the score of a process in which there are algorithms linked
through the properties in_module and out_module is increased, because
these relations state that a specific connection among algorithms was proved
to be effective;

– performance evaluation: algorithm performances are used to assign a global
score to a process. For example, in the case of a computational complexity
index, it is possible to determine the whole process complexity as the highest
complexity among the algorithms in a process.

4.4 Applicative Example

At present the KDDONTO implementation is formed of 88 classes, 31 rela-
tions and more than 150 instances; we describe 15 algorithms of preprocessing,
modeling and postprocessing phases, in particular for Feature Extraction, Clas-
sification, Clustering, Evaluation and Interpretation tasks.

On this basis, the effectiveness of the composition procedure has been eval-
uated through a prototype implementation. The following scenario has been
assumed: an user wants to perform a classification task on a normalized dataset
with 2 balanced classes, missing values and both literal and numeric values.
The constraints she puts are the following: both exact and approximate matches
allowed, maximum number of algorithms for a process equal to 5.

The evaluation has been performed comparing our proposal with other two
solutions. As first solution we have defined a procedure using a database for
representing information about algorithms, in which no inference is possible. In
the other solution, we have exploited a combinatorial approach for composing
algorithms, where a Postprocessing algorithm cannot precede Preprocessing or
Modeling ones, and a Modeling algorithm cannot precede a Preprocessing algo-
rithm. Resulting processes have been then evaluated by a KDD expert, in order
to identify the valid ones, i.e. processes in which the algorithm sequence is both

Ontology-Driven KDD Process Composition 295

semantically correct w.r.t. all input/output matches and consistent w.r.t. the
user goal and requests.

Using a non-ontological approach, we are able to extract 37 processes, that
the expert assesses to be all valid. The number of processes considerably in-
creases when the combinatorial approach is exploited, but most of them are
invalid and often meaningless, and need to be manually filtered. Finally, our
procedure generates a set of 70 processes, which consists of the valid processes
extracted through the non-ontological approach and other 33 valid and not ex-
plicit processes, composed by using inference and approximate match. Hence, our
procedure is able to produce a high number of alternatives, without introducing
spurious and semantically incorrect processes.

5 Conclusion

The main contribution of this work is the introduction of a goal-oriented proce-
dure aimed at the automatic composition of algorithms forming valid KDD pro-
cesses. The proposed procedure is based on the exploitation of KDDONTO, that
formalize knowledge about KDD algorithms. The use of such an ontology leads
to manifold advantages. Firstly, the resulting processes are valid and semanti-
cally correct. Secondly, unlike works in Literature, we are able to generate not
only explicit processes formed by directly linkable algorithms, but also implicit,
interesting and non-trivial processes where algorithms share similar interfaces.
Thirdly, KDDONTO is able to support complex pruning strategies during com-
position procedure, making also use of inferential mechanism. Finally, processes
can be ranked according to both ontological and non-ontological criteria.

Comparing with planning algorithms [12], such an approach allows users to
choose more processes suitable w.r.t. their requirements. Moreover, generated
processes can be themselves considered as useful, valid and unknown knowledge,
valuable both for novice and expert users.

At present we are working on the development of a support service implement-
ing the described process composition procedure, in order to actually integrate
it into the KDDVM project. Since abstract KDD processes cannot be directly
executed, each of them needs to be substituted with a workflow of services, in
which every algorithm is replaced with a service implementing it. As future exten-
sions, we are also working on increasing the number of instances described in KD-
DONTO and performing more comprehensive tests. Furthermore, we are studying
several heuristics to provide an actual ranking of the generated processes.

References

1. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery: an overview. In: American Association for Artificial Intelligence, Menlo
Park, CA, USA, pp. 1–34 (1996)

2. KDDVM project site, http://boole.diiga.univpm.it

http://boole.diiga.univpm.it

296 C. Diamantini, D. Potena, and E. Storti

3. Diamantini, C., Potena, D.: Semantic Annotation and Services For KDD Tools
Sharing and Reuse. In: Proc. of the 8th IEEE International Conference on Data
Mining Workshops. 1st Int. Workshop on Semantic Aspects in Data Mining, Pisa,
Italy, December 19, pp. 761–770 (2008)

4. CRISP-DM site, http://www.crisp-dm.org
5. Cannataro, M., Comito, C.: A data mining ontology for grid programming. In:

Proc. 1st Int. Workshop on Semantics in Peer-to-Peer and Grid Computing, in
conjunction with WWW 2003, Budapest, Hungary, pp. 113–134 (2003)

6. Yu-hua, L., Zheng-ding, L., Xiao-lin, S., Kun-mei, W., Rui-xuan, L.: Data mining
ontology development for high user usability. Wuhan University Journal of Natural
Sciences 11(1), 51–56 (2006)

7. Panov, P., Džeroski, S., Soldatova, L.: OntoDM: An Ontology of Data Mining. In:
International Conference on Data Mining Workshops, pp. 752–760. IEEE Com-
puter Society, Los Alamitos (2008)

8. Bernstein, A., Provost, F., Hill, S.: Towards Intelligent Assistance for a Data Min-
ing Process: An Ontology Based Approach for Cost-Sensitive Classification. IEEE
Transactions on Knowledge and Data Engineering 17(4), 503–518 (2005)

9. Engels, E.: Planning tasks for knowledge discovery in databases; performing task-
oriented user-guidance. In: Proceedings of the 2nd International Conference on
Knowledge Discovery in Databases (KDD 1996), Portland, Oregon (August 1996)

10. Morik, K., Scholz, M.: The MiningMart Approach to Knowledge Discovery in
Databases. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information
Analysis, pp. 47–65. Springer, Heidelberg (2004)

11. Wirth, R., Shearer, C., Grimmer, U., Reinartz, T., Schlösser, J.J., Breitner, C.,
Engels, R., Lindner, G.: Towards Process-Oriented Tool Support for Knowledge
Discovery in Databases. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997.
LNCS, vol. 1263, pp. 243–253. Springer, Heidelberg (1997)

12. Žáková, M., Křemen, P., Železný, F., Lavrač, N.: Using Ontological Reasoning and
Planning for Data Mining Workflow Composition. In: SoKD: ECML/PKDD 2008
workshop on Third Generation Data Mining: Towards Service-oriented Knowledge
Discovery, Antwerp, Belgium (2008)

13. Noy, N., McGuinnes, D.L.: Ontology Development 101: A Guide to Creating Your
First Ontology. Stanford University (2002)

14. Gruber, T.: Toward principles for the design of ontologies used for knowledge shar-
ing. Int. J. Hum.-Comput. Stud. 43(5-6), 907–928 (1995)

15. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide,
W3C Recommendation (2004), http://www.w3.org/TR/owl-guide/

16. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Rec-
ommendation (2008), http://www.w3.org/TR/rdf-sparql-query/

http://www.crisp-dm.org
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-sparql-query/

Mining Frequent Gradual Itemsets from Large
Databases

Lisa Di-Jorio1, Anne Laurent1, and Maguelonne Teisseire2

1 LIRMM – Université de Montpellier 2 – CNRS
161 rue Ada, 34392 Montpellier, France

{dijorio,laurent}@lirmm.fr
2 Cemagref - UMR Tetis

teisseire@teledetection.fr

Abstract. Mining gradual rules plays a crucial role in many real world
applications where huge volumes of complex numerical data must be han-
dled, e.g., biological databases, survey databases, data streams or sensor
readings. Gradual rules highlight complex order correlations of the form
“The more/less X, then the more/less Y ”. Such rules have been studied
since the early 70’s, mostly in the fuzzy logic domain, where the main
efforts have been focused on how to model and use such rules. How-
ever, mining gradual rules remains challenging because of the exponen-
tial combination space to explore. In this paper, we tackle the particular
problem of handling huge volumes by proposing scalable methods. First,
we formally define gradual association rules and we propose an original
lattice-based approach. The GRITE algorithm is proposed for extracting
gradual itemsets in an efficient manner. An experimental study on large-
scale synthetic and real datasets is performed, showing the efficiency and
interest of our approach.

1 Introduction

Nowadays, many electronic devices are used to deal with real world applica-
tions. Sensors are everywhere and report on phenomena studied by experts for
monitoring or science investigation, thus leading to an increasing volume of data
containing numerical data attributes. However, even if the problem of mining
quantitative attributes has been tackled for many years [1], it remains diffi-
cult to extract useful knowledge such as gradual rules. The main reason is that
databases are very large, both in the number of tuples and in the number of
attributes. Mining such databases is an important and essential task, as experts
use such knowledge to take decisions or to understand different behaviours. Many
domains are concerned, as for example the biological domain, where most ad-
vances are done by analysing genome data. Another major domain is the sensor
reading and data stream one, where common behaviours allow for monitoring,
intrusion/system failure detection, or behaviour analysis.

In this paper, we address the problem of mining gradual association rules from
such databases. A gradual rule allows for the modelling of frequent co-variations

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 297–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

298 L. Di-Jorio, A. Laurent, and M. Teisseire

over a set of objects. Such a rule is built on the following pattern: “the more/less
A1 and ... the more/less An, then the more/less B1 and ... the more/less Bp”.
This kind of rules has already been addressed in the literature [2,3,4], but there
does not exist yet any scalable approach, and mining from more than two ordered
attributes remains challenging. Indeed, finding the most representative ordering
of all the database objects leads to compute all the possible orders. This problem
is linked to order mining, and is more complex than dealing with first ordering
objects on a dimension, and then on the following and so on. In this case, order
in which items are considered impacts on the sorting operation. Thus, a method
independant of the set of items considered is needed. Moreover, this method has
to be efficient and scalable.

In this paper, we introduce a formalism integrating two kinds of variations:
increasing variations (the more), and decreasing variations (the less). This is de-
scribed in Section 3. Moreover, in Section 4, we show that the problem of mining
gradual itemsets can be tackled by using a binary matrices-based approach. We
also provide algorithms that are directly designed from this framework. In Sec-
tion 5, our experimental study shows that our method is efficient both in time
and memory consumption on large scale synthetic and real databases.

2 Related Work

Gradual rules were designed in the 70’s to model system behaviours. They were
given by experts, and mainly used as inductive tools into fuzzy controllers [5]
(e.g., “the closer the wall, the more the train must apply the brake”). A complete
theoretical framework of gradual rules into the fuzzy context is given in [6], with
a comparison of fuzzy implication for gradual dependencies. Among them the
most used is Rescher-Gaines (RG) implication given by equation 1, where A(X)
is the membership degree of X for the fuzzy set A, and B(Y) the membership
degree of Y for the fuzzy set B:

X →RG Y =
{

1 if A(X) ≤ B(Y)
0 else (1)

Rescher-Gaines implication ensures that the membership degree of X is con-
strained by Y ’s membership degree. Thus, when the value of Y increases, it
relaxes the constraint and allows for the increase of X , ensuring that “the more
Y is B, the more X is A”. However, the use of restrictive fuzzy implication such
as RG makes the conjunction hard to implement (see [7] for more details).

In [8], gradual rules are “computed” from a linguistic database. No focus is
put on how to mine the rules from huge databases. Authors are interested in the
knowledge revealed by such rules, as for example pointing out an empty zone in
the database.

According to [2], association rules from data in the presence / absence form
can be derived from a contingency table. However, as fuzzy sets deal with nu-
merical items, such tables are not suitable anymore. Thus, [2] proposes to model
them by the means of a contingency diagram. Then, linear regression is applied,

Mining Frequent Gradual Itemsets from Large Databases 299

revealing correlations between fuzzy items. According to [2], coefficient slope
and quality of the linear regression allow to decide of the validity of the gradual
rule. The interested reader is referred to [9] for a detailed analysis. However,
computing linear regressions is too time consuming to handle huge databases
(large number of objects and items).

To the best of our knowledge, [3] is the first using datamining methods through
an adaptation of the Apriori algorithm. Gradualness is realised by the use of
{<, >} operators, leading to a database redefinition. Gradual rules are mined by
considering all the pairs of objects. The support is consequently expressed as the
number of pairs respecting an order divided by the total number of pairs of the
database. The originality of [3] is to take into account rules having compound
conditions and conclusions. Moreover, [3] is the first to avoid the use of RG
implications. However, the computational complexity of the proposed method
remains high, as shown by experiments performed on a small real dataset con-
taining only 6 items.

[10] uses sequential patterns in order to highlight trends over the time. A
sequential pattern is a list of ordered itemsets. Traditionally, the order is asso-
ciated to a time measure. Thus for example, knowledge of the form “When an
engine speed strongly increases, after a very short period of time the truck speed
slightly increases for a short period’ ’ is extracted. The aim is different from ours,
as [10] considers variations from one timestamp to another one.

Until now, no method allowing for the automatic extraction of gradual itemset
has been proposed, although experts are more and more expecting this kind of
tool. This paper thus introduces a new efficient algorithm that particularly copes
with a large number of attributes.

3 Problem Definition

Gradual association rules can be viewed as an extension of classical association
rules, where gradual items are considered. A gradual rule exhibits relations be-
tween items such as “the more/less A, the more/less B”. This paper is dealing
with extracting gradual rules from tables. We consider the classical framework
of databases. Let I = {i1, ..., in} be a set of items. A table (or relation) T can be
defined over the schema I. The tuples of T are denoted by X , and X [i] denotes
the value of the attribute i for X .

For example, the relation from Table 1 shows various items about hostels.
Town and Pop(ulation) where an hostel is located are reported, together with
its price and the distance from the town centre. This table contains four tu-
ples: {Xh1 , Xh2 , Xh3 , Xh4}. A classical analysis of this table as proposed by [1]
provides interval based rules, such “a room located less than one kilometer from
the centre will cost between 60 and 200 dollars”. However, we notice that when
the distance from the centre decreases, the price increases. In the same way,
the bigger the town, the higher the price. Thus, instead of classifying an item
value into an interval or a fuzzy set, it could rather be interesting to study the
co-variations from one item to another one, as for example the variation of the
town population size and the room price.

300 L. Di-Jorio, A. Laurent, and M. Teisseire

Table 1. Touristic sample table

Hostel Town Pop. (103) Dist. from Centre Price
Xh1 h1 Paris 2.1 0.3 82
Xh2 h2 New York 8.0 5 25
Xh3 h3 New York 8.0 0.2 135
Xh4 h4 Ocala 0.04 0.1 60

Three kinds of variations have to be considered: increasing variation, decreas-
ing variation, and no variation. Each item will hereafter be considered twice: once
to evaluate its increasing strength, and once to evaluate its decreasing strength,
using the ≥ and ≤ operators. This leads to consider new kinds of items, reported
here as gradual items.

Definition 1. (Gradual Item) Let I be a set of items, i ∈ I be an item and
∗ ∈ {≥,≤} be a comparison operator. A gradual item i∗ is defined as an item i
associated to an operator ∗.

Consequently, a gradual itemset is defined as follows:

Definition 2. (Gradual Itemset) A gradual itemset s = (i∗1
1 , ..., i∗k

k) is a non
empty set of gradual items. A k-itemset is an itemset containing k gradual items.

For example, let us consider the rule “the bigger the town and the nearer from
the town centre, then the higher the price”, formalised by the 3-itemset s1 =
(Pop≥ Dist≤ Price≥). Such a rule cannot be conveyed by a simple association
rule, as it expresses a comparison between the values of items: a hostel does
not only have to support an item to increase the frequency, it also needs to
satisfy a value variation condition. In this paper, we consider that this variation
is measured by comparing the values of different tuples on the same item, using
the following definitions:

Definition 3. (Ordering of two Tuples) Let X and X ′ be two tuples from T , and
s = (i∗1

1 , ..., i∗k

k) be a gradual itemset. X preceeds X ′ if ∀l ∈ [1, k] X [il] ∗l X ′[il]
holds, denoted X �s X ′.

Definition 4. X and X ′ are comparables according to a given itemset s if X �s

X ′ or X ′ �s X. Otherwise, they are incomparables.

Definition 5. (List of Ordered Tuples) Let s = (i∗1
1 , ..., i∗k

k) be a gradual itemset.
A list of tuples L =<L X1, ..., Xn >L respects s if ∀p ∈ [1, n − 1], ∀l ∈ [1, k]
Xp[il] ∗l Xp+1[il] holds.

Property 1. There is more than one list of tuples respecting s.

Referring back to our previous example from Table 1, we have Xh1 [Pop] ≤
Xh3 [Pop], Xh1 [Dist] ≥ Xh3 [Dist] and Xh1 [Price] ≤ Xh3 [Price]. Thus, Xh1

Mining Frequent Gradual Itemsets from Large Databases 301

and Xh3 are comparable according to s1. Moreover, from Table 1, s1 holds for
three different sets of hostels: L1 =<L Xh4 >L, L2 =<L Xh1 , Xh3 >L and
L3 =<L Xh2 , Xh3 >L. Notice that L1 has only one element, because of the
reflexivity property of the used operator. However, as a list of only one element
does not bring information in the gradual context, it will be discarded. This point
is discussed in Section 4.3. In order to calculate the frequency of an itemset, we
consider the more representative set, i.e., the set having the largest size:

Definition 6. (Frequency) Let Gs = {L1, ..., Lm} be the set of all the lists re-
specting a gradual itemset s. Then Freq(s) = max1≤i≤m(|Li|)

|T | .

Here, we have Gs1 = {L1, L2, L3} and two lists from G having a maximal size,
which is 2. Then, Freq(s1) = 2

4 = 0.5, meaning that 50% of all of the hostels
follow s1. Notice that we choose to use the most representative set for computing
the frequency. One may argue that we could have used the minimal set. However,
we adopt an optimistic computation.

Proposition 1. (Antimonotonicity of gradual itemsets) i) Let s and s′ be two
gradual itemsets, we have: s ⊆ s′ ⇒ Freq(s) ≥ Freq(s′). ii) Let s and s′ be two
gradual itemsets such that s ⊆ s′, then we have: if s′ is not frequent then s is
not frequent.

Proof. Let us consider two gradual itemsets sk and sk+1 such that sk ⊆ sk+1,
with k and k + 1 being the length of these itemsets. Let ml be a maximal list
from Gsk

. This means that ∀X, X ′ ∈ ml:

– if ¬(X �sk+1 X ′) then Freq(sk) > Freq(sk+1)
– if (X �sk+1 X ′), then Freq(sk) = Freq(sk+1)

Thus, we have Freq(sk) ≥ Freq(sk+1).

A gradual itemset is said to be frequent if its frequency is greater than or equal
to a user-defined threshold. The problem of mining frequent gradual item-
sets is to find the complete set of frequent gradual itemsets in a given table T
containing numerical items, with respect to a minimum threshold minFreq. In
this paper, we propose an efficient Apriori-based algorithm called GRITE, which
extracts gradual itemsets.

4 GRITE: Efficient Extraction of Gradual Itemsets

In this section,wepresentour algorithm,GRITE, forGRadual ITemsetExtraction.
This algorithm is based on the Apriori algorithm. We explain the principal algo-
rithm features: how to explore the search space, how to join two (k−1)-itemsets in
order to obtain a k-itemset, and how to compute the frequency of a
gradual itemset.

302 L. Di-Jorio, A. Laurent, and M. Teisseire

4.1 Gradual Itemset Search Space

Frequent itemset mining has been widely studied since its introduction by [11].
The original algorithm, called Apriori, uses the antimonotonicity property in
order to efficiently find all the frequent itemsets. In order to traverse the search
space, Apriori uses a prefix tree. We propose the use of an Apriori based method
in order to extract gradual itemsets. In order to handle gradual items, we gener-
ate two gradual items i≥ and i≤ instead of generating one item i. Moreover, we
consider the notion of complementary gradual itemset and the associated prop-
erties in order to avoid the consideration of all the combination, as originally
proposed in [3].

Definition 7. (complementary gradual itemset) Let s = (i∗1
1 , ..., i∗n

n) be a grad-
ual itemset, the complementary gradual itemset of s, denoted c(s) = (i∗

c
1

1 , ..., i
∗c

n
n),

is defined as ∀j ∈ [1, n] ∗cj = c(∗j), where c(≥) =≤ and c(≤) =≥.

Proposition 2. Freq(s) = Freq(c(s))

Proposition 2 avoids unnecessary computations, as generating only half of the
gradual itemsets is sufficient to automatically deduce the other ones. We are
using an Apriori-based approach, so we need to define how to join two gradual
itemsets of length k in order to obtain a gradual itemset of length k + 1. As we
associate a binary matrix to each itemset, we need to address the problem of
joining using these structure.

4.2 Matrices for Representing Orders

As stated in Proposition 1, we have to keep a track of every list of tuples respect-
ing a gradual itemset. However, the rule extraction process is known as being
exponential, which means that we have to be carefull concerning the structures
that we use. This is why we propose the use of a bitmap representation, which
has already been proved as being efficient in an exponential algorithm [12]. Then,
orders are stored in a binary matrix, which is defined as follows:

Definition 8. (Binary Matrix of Orders) Let s be a gradual itemset, Gs be the
list of object respecting it and TGs be the set of the tuples of Gs. Gs can be
represented by a binary matrix MGs = (ma,b)a∈TGs ,b∈TGs

, where ma,b ∈ {0, 1}.

If there exists an order relation between a and b, then the bit corresponding
to the line of a and the column position of b is set to 1, and to 0 otherwise.
For example, let us consider the gradual 1-itemset s2 = {Pop≥}. From Table
1, we have Gs = {<L Xh4 , Xh1 , Xh2 , Xh3 >L, <L Xh4 , Xh1 , Xh3 , Xh2 >L}, and
TGs2

= {Xh1 , Xh2 , Xh3 , Xh4}. This set of orders is modeled by means of a binary
matrix of size 4 × 4, represented by Figure 1a. Figure 1b is the binary matrix
for the gradual 1-itemset s3 = {Dist≤}.

Mining Frequent Gradual Itemsets from Large Databases 303

� h1 h2 h3 h4

h1 0 1 1 0
h2 0 0 1 0
h3 0 1 0 0
h4 1 1 1 0

(a)

� h1 h2 h3 h4

h1 0 0 1 1
h2 1 0 1 1
h3 0 0 0 1
h4 0 0 0 0

(b)

Fig. 1. Binary Matrixes Ms2 and Ms3 for (a) s2 = {Pop≥}, (b) s3 = {Dist≤}

4.3 Candidate Generation

Apriori is a levelwise algorithm: (k− 1)-itemsets are used to generate k-itemsets.
This operation, called join, is done an exponential number of times. This operation
keeps objects respecting the gradual itemset i in order to compute the frequency
of i. In our context, matrices are used for an ordered representation of these ob-
jects. Each node of the prefix tree is associated with a matrix. Thus, the joining
operation consists in computing all the common orders from two input matrices.

From a binary matrix, common orders are those which bit is set to 1 to each
of the input matrices. This is achieved by the AND bitwise operation:

Theorem 1. Let s′′ be the gradual itemset generated using the two gradual item-
sets s and s′. The following relation holds: MGs′′ = MGs AND MGs′

Theorem 1 allows to efficiently perform the join operation using the levelwise
method. Indeed, bitwise operations are among the better performing from a
computational point of view, providing thus a scalable algorithm. Figure 2a
shows the result of the join operation between Ms2 and Ms3 .

� h1 h2 h3 h4

h1 0 0 1 0
h2 0 0 1 0
h3 0 0 0 0
h4 0 0 0 0

(a)

� h1 h2 h3

h1 0 0 1
h2 0 0 1
h3 0 0 0

(b)

Fig. 2. (a) Binary Matrix Ms4 for s4 = {Pop≥, Dist≤}, (b) Reduced Matrix for s4

In the end, matrices associated to k-itemsets are obtained. However, some in-
formation is not used, for example, isolated lines / columns represent tuples that
do not have any relation. These last ones are meaningless in a gradual context,
they are deleted. This method allows to gain memory, and time, as deleted tuples
are not considered during future joins. On Figure 2a, Xh4 is deleted: all bits from
the Xh4 column and Xh4 line are set to 0. Figure 2b represents the final matrix.

Algorithm 1 describes the joining step. Before computing the bitwise AND op-
eration, we initialise a matrix which size corresponds to the number of

304 L. Di-Jorio, A. Laurent, and M. Teisseire

Algorithm 1. Join
Data: Two matrices MGs and MGs′
Result: The matrix MGss′

Mss′ = Initialise(TGs ∩ TG′
s
)1

Mss′ = Ms AND Ms′2

Mss′ ← DeleteAloneTuples(Mss′)3

return Mss′4

Algorithm 2. RecursiveCovering
Data: A tuple t

The memory from previous steps Memory
Result: Fill Memory

Sons ← GetSons(t) /* all t′ set to 1 at line t */1

if Sons = ∅ then2

Memory[node] = 1;3

else4

foreach i ∈ Sons do5

if Memory[i] = −1 then6

RecursiveCovering(i,Memory)7

end8

end9

foreach i ∈ Sons do10

Memory[node] = max(Memory[node],Memory[i] + 1)11

end12

end13

common tuples from MGs and MGs′ (by Proposition 1, an object not respecting
gradualness for s or s′ does not participate to the support of ss′). This remains
to compute the operation TGs ∩TG′

s
. Then, the AND operation is computed (line

2), and in the end, the meaningless tuples are erased by the mean of the function
DeleteAloneTuples (line 3).

4.4 Frequency Computation

Given a gradual itemset s and its associated matrix MGs , the frequency of s is
the longest list from MGs . Finding this one could quickly become a bottleneck
if we use a naive algorithm (which consist in following all the possible orders).
To be efficient, frequency computation must consider each tuple from MGs only
once. In this section, in order to illustrate our method, we use for the sake of
simplicity the Hasse Diagram: if a ≥ b, a is placed upward of b, and an arrow is
drawn from a to b. Usually, redundant relations are not drawn.

In MGs , a tuple can appear in various levels. For example, tuple i from Figure
3a could be associated to the level 5 or to the level 7. Our aim is to keep level 7

Mining Frequent Gradual Itemsets from Large Databases 305

a

b c

d

e f j

g

h

i

(a)

chain length
{abdei} 5
{abdfghi} 7
{abcei} 5
{abdfghi} 7
{kghi} 4

(b)

Fig. 3. (a) Hasse Diagram for Ms and (b) its chains

(longest list). A tuple having more than one father may potentially be assigned
with more than one level. When this node is treated for the first time, levels from
other fathers are unpredictable. So, we use a “memory” conserving knowledge
about maximality from other fathers. When many solutions are encountered, we
keep the maximal one.

The core of the method is done by the Algorithm 2. Its input is a tuple t, and
it updates the memory according to all of its sons (the tuples sets to one on the
line t). The following strategy is adopted: a tuple having no relation is considered
as a leaf with a level assigned to one. When a “leaf” is encountered, its level is
assigned to the value one, and the recursion is broken (line 3). Otherwise, the
recursion ensures that when a tuple t is encountered, all the vertices t′ in relation
with t have been treated. As we are looking for the list having the maximal size,
the t′ having the hightest level (line 11) is selected. So, the level of t corresponds
to the level of t′ plus one.

Let us illustrate this method on the Hasse Diagram of Figure 3a. On this
diagram, {a} is the only tuple having no father. Thus, we will start from it.
Notice that it is easy to keep track or efficiently find tuples having no father.
Supposing that we treat sons using a lexicographic order, Algorithm 2 is called
on a and then on b, d, e, and i. As it does not have any relation, i is considered
as a leaf, and has a memory of 1. Each crossed vertex is updated, and we obtain
the memory displayed on Table 2a. Then recursion is called on f , leading to
change the final level of a. The final results are displayed on Table 2b.

Table 2. Memory obtained after traversing (a) the first chain (b) the entire lattice

(a)

a b c d e f g h i j
−1 −1 −1 −1 2 −1 −1 −1 1 −1

(b)

a b c d e f g h i j
7 6 6 5 2 4 3 2 1 4

306 L. Di-Jorio, A. Laurent, and M. Teisseire

5 Experiments

We ran our algorithm on synthetic datasets, in order to measure memory and
time performance. It should be recalled here that the issue of scalability is a
great challenge as the databases mined by gradual rule methods are very dense
and are thus hard to handle. For instance, previous work [2,3] does not provide a
scalability study of their method. In this context, we manage to extract gradual
rules from databases containing thousands of tuples and hundreds of items (and
vice-versa). We used an adapted version of IBM Synthetic Data Generation Code
for Associations and Sequential Patterns1 in order to generate synthetic datasets.
Synthetic tests have been done in order to show the efficient behaviour of our
algorithm on datasets having a bigger set of objects first (3000 objects and 100
items), and then having a bigger set of items (30 objects, 1500 items).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.05 0.1 0.15 0.2

T
im

e
(s

)

Minimum Threshold

(a)

 0

 50

 100

 150

 200

 250

 0.05 0.1 0.15 0.2

M
em

or
y

(M
o)

Minimum Threshold

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.05 0.1 0.15 0.2

#F
re

qu
en

t P
at

te
rn

s

Minimum Threshold

(c)

Fig. 4. Performances for 3000 objects and 100 items in (a) time, (b) memory, (c)
number of extracted patterns

Figure 4a shows time performance for a database containing a bigger set of
objects. Support has been set as low as possible, here up to 0.5%, which means
that to each tree node is associated a lattice containing a chain of at least 150
elements. Figure 4b shows that about 200 Mb have been used to extract 2761
patterns (Figure 4c). These experiments show that the first level computation
takes time, even if the number of frequent patterns is low. This is due to the
ordering operation: for each items, corresponding values have to be ordered. At
this stage, all items are frequent, as they all have a numerical value. This is why
we output frequent itemsets starting from the second level. Notice that for the
30 objects-sized dataset, this takes less time, as there are fewer objects to order.
On Figure 5a, we can see that for a database containing a large set of items, the
time-efficiency decreases. This is due to the number of necessary combinations
to extract frequent itemsets. On the contrary, this experiment has been more
efficient in term of memory (Figure 5b). In fact, less than 30 objects have to be
stored per node. With a minimal support set to 0.3, GRITE extracted about
700,000 frequent patterns (Figure 5c).

We also ran GRITE on a real dataset dealing with Alzheimer disease. Re-
searchers in psychology focused on memory and feeling points. Classical tests

1 www.almaden.ibm.com/software/projects/hdb/resources.shtml

Mining Frequent Gradual Itemsets from Large Databases 307

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0.3 0.35 0.4 0.45 0.5

T
im

e
(s

)

Minimum Threshold

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.3 0.35 0.4 0.45 0.5

M
em

or
y

(M
o)

Minimum Threshold

(b)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0.3 0.35 0.4 0.45 0.5

#F
re

qu
en

t P
at

te
rn

s

Minimum Threshold

(c)

Fig. 5. Performances for 30 objects and 1500 items in (a) time, (b) memory, (c) number
of extracted patterns

from the “Diagnostic manual of mental disorders” have been done too. Psy-
chologists ask patients to recall a good moment of their life, as well as a neutral
moment and a bad one. Then, they asked them to describe sounds, spatial dispo-
sitions and their feelings during these moments. This dataset contains 33 patients
and 122 items. Here are some extracted gradual association rules (having 100%
confidence):

– The better the souvenir of persons spatial disposition and the better the sou-
venir of the day time, then the better the place recall (87.88%)

– The more identification during the RI 48 test and the better the spacial po-
sition and time of the day souvenir, then the better the MMS test (81.82%)

– The older the patient and the worse the souvenir of sound of a good moment,
then the worse the MMS results (81.82%)

The first rule shows that the more a patient has a good memory of persons and
day time, then the better they remember the place. The second rule is more useful
to experts, as it uses test results and memory information. This links the mental
patient state to how they recall neutral moments. Finally, the last rule shows that
a decreasing memory of a souvenir is linked with the increasing of the age.

6 Conclusion

Gradual rules have been extensively studied especially in the fuzzy logic domain.
However, no efficient method for frequent gradual itemset extraction has been
proposed. In this paper, we presented GRITE, an algorithm which takes advan-
tage of a binary representation of lattice structure. As shown in our performance
study, GRITE allows to extract gradual itemsets like “the more / the less” from
datasets containing more items than objects. Our works is thus directly appli-
cable to numerical databases such as gene databases, or medical databases.

This work raised some interesting perspectives. Firstly, in order to refine the
quality of obtained results, we will study how to measure variation strength.
From our point of view, a numerical value having a single unit variation has
to be treated differently than a large number of unit variations. Secondly, we
noticed that the lower the minimal support, the more redundant the rules. Some
of them, especially on gene databases, contain noise. The extraction process does
need to integrate semantics in order to select the most suitable results.

308 L. Di-Jorio, A. Laurent, and M. Teisseire

References

1. Srikant, R., Agrawal, R.: Mining Quantitative Association Rules in Large Rela-
tional Tables. In: Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, pp. 1–12 (1996)

2. Hüllermeier, E.: Association rules for expressing gradual dependencies. In: Elomaa,
T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp.
200–211. Springer, Heidelberg (2002)

3. Berzal, F., Cubero, J.C., Sanchez, D., Vila, M.A., Serrano, J.M.: An alternative
approach to discover gradual dependencies. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems (IJUFKS) 15(5), 559–570 (2007)

4. Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Comput. 12(2), 165–
175 (2008)

5. Galichet, S., Dubois, D., Prade, H.: Imprecise specification of ill-known functions
using gradual rules. International Journal of Approximate Reasoning 35, 205–222
(2004)

6. Dubois, D., Prade, H.: Gradual inference rules in approximate reasoning. Informa-
tion Sciences 61(1-2), 103–122 (1992)

7. Jones, H., Dubois, D., Guillaume, S., Charnomordic, B.: A practical inference
method with several implicative gradual rules and a fuzzy input: one and two
dimensions. In: Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007, IEEE Inter-
national, pp. 1–6 (2007)

8. Bosc, P., Pivert, O., Ughetto, L.: On data summaries based on gradual rules. In:
Proceedings of the 6th International Conference on Computational Intelligence,
Theory and Applications, pp. 512–521. Springer, Heidelberg (1999)

9. Hüllermeier, E.: Implication-based fuzzy association rules. In: Siebes, A., De Raedt,
L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 241–252. Springer, Heidelberg
(2001)

10. Fiot, C., Masseglia, F., Laurent, A., Teisseire, M.: Gradual trends in fuzzy sequen-
tial patterns. In: 12th International Conference on Information Processing and
Management of Uncertainty in Knowledge-based Systems (2008)

11. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: 20th
International Conference on Very Large Data Bases (VLDB 1994), pp. 487–499
(1994)

12. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: KDD 2002: Proceedings of the eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 429–435.
ACM, New York (2002)

Selecting Computer Architectures by Means of
Control-Flow-Graph Mining

Frank Eichinger and Klemens Böhm

Institute for Program Structures and Data Organisation (IPD)
Universität Karlsruhe (TH), Germany

{eichinger,boehm}@ipd.uka.de

Abstract. Deciding which computer architecture provides the best per-
formance for a certain program is an important problem in hardware
design and benchmarking. While previous approaches require expensive
simulations or program executions, we propose an approach which solely
relies on program analysis. We correlate substructures of the control-flow
graphs representing the individual functions with the runtime on certain
systems. This leads to a prediction framework based on graph mining,
classification and classifier fusion. In our evaluation with the SPEC CPU
2000 and 2006 benchmarks, we predict the faster system out of two with
high accuracy and achieve significant speedups in execution time.

1 Introduction

The question which computer architecture is best suited for a certain application
is of major importance in hardware design and benchmarking. Think of a new
scientific tool for which hardware is needed. It is not clear which hardware is most
appropriate. Other developments give way to similar questions: With heteroge-
neous multicore processors, one has to decide at runtime on which processors to
execute a certain program. Reconfigurable hardware allows to change the hard-
ware at runtime. These upcoming technologies motivate studying dependencies
between program characteristics and computer architectures as well.

To deal with the problem which architecture provides the best performance
for a certain application, several approaches have been used, ranging from execu-
tions and simulations to analytical models and program analysis. At first sight, it
seems feasible to assess the performance of a program by executions on the sys-
tems in question. But this requires to have access to the machines, and porting
the program to them can be expensive. Simulations of processor architectures
require detailed information on the architectures to choose from and might be
very time-consuming. As modern computer architectures have an extreme com-
plexity, analytical models describing them are hard to establish and may be
unreliable. Some recent approaches make use of program analysis. The intuition
is that similar programs display a similar runtime behaviour when executed on
the same machine. Execution times for a number of programs are known for
many systems, e.g., from benchmarks suites. [1, 2] compare similarities of pro-
grams based on execution properties such as the CPU instruction mix. These

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 309–320, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

310 F. Eichinger and K. Böhm

properties are architecture-dependent, but independent of the implementation
used. To obtain them, program executions or simulations are necessary.

In this article we investigate another method to find the best computer archi-
tecture which does not require any execution or simulation of the application in
question. Likewise, we assume that similar applications have a similar execution
behaviour – but have consciously decided not to measure any runtime-related
characteristics. Instead, we entirely rely on published execution times of bench-
mark programs. In our approach, we define similarity using structural charac-
teristics of the control-flow graphs (CFGs) [3] of the underlying functions. Our
research question is to investigate how well they describe the performance-related
characteristics of a program, and if they can be used for performance predictions.
In contrast to software metrics like lines of code and statements used, CFGs do
not have any potentially distracting characteristics which depend on language
specifics, such as the language used or the programming style of the developers.
In more detail, we derive structural features from CFGs by means of frequent
subgraph mining. The resulting subgraph features characterise a function and
can train a classifier which predicts the best architecture for a given application.

The solution just outlined requires a number of contributions at different
stages of the analysis process:

Representation of Control-Flow Graphs. To derive subgraph features from CFGs,
the nodes of the graphs have to be labelled with information relevant for per-
formance analysis. So far, nodes represent blocks of source code. We have to
turn them into concise categorical labels which graph mining algorithms can
use. However, such a labelling is not obvious. We propose a labelling scheme
with information that is relevant for performance.

Mining Large Graphs. Once we have derived suitable CFGs, mining them is
another challenge, due to the size of some of them. We develop an efficient
technique consisting of two steps: We first mine a subset of the graphs that are
‘easy to mine’ and then inspect the remaining graphs. Our technique provides
guarantees for the support values achieved.

Classification Framework. We propose a classification setting for our specific
context. This is necessary: CFG based information is available at the function
level, as we will explain, while we want to choose the best architecture for a
program as a whole. We propose a framework that first learns at the function
level, before we turn our classification model into a predictor for the architecture
where a given program performs best.

Our experimental evaluation is based on the SPEC CPU 2000 and 2006 bench-
mark suites. The main result is that, for ‘relatively similar’ computer architec-
tures to choose from, our approach achieves an average prediction accuracy of
69% when choosing between two systems. This also shows the existence of re-
markably strong relationships between CFGs and runtime behaviour.

Paper outline: Section 2 presents related work, Section 3 describes CFG rep-
resentations, and Section 4 says how we mine them. Section 5 describes the
prediction framework, Section 6 our results. Section 7 concludes.

Selecting Computer Architectures by Means of Control-Flow-Graph Mining 311

2 Related Work

In the areas of computer architecture, high-performance computing and bench-
marking, different approaches have been investigated to predict the runtime of
applications. Many of them make use of intelligent data-analysis techniques.

As mentioned, analytic models can assess the performance of software on
certain machines. For distributed MPI (message passing interface) programs,
Kühnemann et al. developed a compiler tool which helps deriving such a mo-
del [4]. It builds on source-code analysis and properties of the underlying ma-
chines. These properties include the execution times of basic arithmetic and
logical operations, which have to be derived for the machines in question. This
requires access to the machines or at least a detailed knowledge. The approach
then creates a runtime-function model. Another analytical model approach, in
the area of superscalar processors, is [5]. Karkhanis et al. use architecture-
dependent information such as statistics of branch mispredictions and cache
misses to build a performance-prediction model. While predictions are good, the
approach requires time-consuming executions to obtain the characteristics used.

The approach which probably is most similar to ours is [1, 2]. Joshi et al. use
program characteristics to make statements on the similarities of programs [1].
In contrast to [4, 5], they do not use microarchitecture-dependent measures to
characterise programs, but microarchitecture-independent ones, such as the in-
struction mix and branch probabilities. This limits the approach to a certain
instruction-set architecture and a specific compiler. Furthermore, generating the
measures requires simulation or execution. Based on [1], Hoste et al. use program-
similarity measures and predict performance with programs from the SPEC
CPU 2000 benchmark suite [2]. They then normalise the microarchitecture-
independent characteristics with techniques such as principal-component anal-
ysis. These normalised measures represent a point in the so-called benchmark
space for every program. The performance of an unknown application is then
predicted as the weighted average of execution times of programs in the neigh-
bourhood. To obtain enough reference points with known performance measures,
the authors rely on programs from a benchmark suite. Like our approach, [2] can
determine the best platform for an application. Its advantage is that predictions
tend to be more accurate than ours. This is achieved by the limitation to a cer-
tain instruction-set architecture and by executing or simulating the application
in question on an existing platform. Our approach in turn has no such limitation.
It uses only measures generated from the source code and does not require any
simulation or execution of the program in question.

İpek et al. do not only predict performance for different systems [6] but also
contribute to hardware design. The number of design alternatives in computer
architecture is huge, and it is hard to develop a good architecture for certain
applications. The combination of design parameters is often described as a point
in a design space, as is done in [6]. The authors simulate sampled points in de-
sign spaces corresponding to the memory hierarchy and to chip multiprocessors,
which then serve as input for neural networks. They then use these networks for
performance predictions of new computer-architecture designs.

312 F. Eichinger and K. Böhm

Our approach is also related to work in the field of graph classification. One
of the first studies, with an application in chemistry, is [7]. The authors propose
a graph-classification framework which consists of three steps: (1) search for
frequent subgraphs which are then used as binary features indicating if a certain
subgraph is included in a graph, (2) a feature-selection strategy to reduce the
dimensionality and (3) a model-learning step. Our approach is similar in that
frequent subgraphs are generated which serve as features to learn a classification
model. However, our application does not require feature selection, but a more
complex approach to integrate classifications to a prediction for a program.

3 Control-Flow-Graph Representation

Control-Flow-Graph Generation. Control-flow graphs (CFGs) [3] are a common
program representation in compiler technology. They are static in nature and can
be derived from source code. They represent all control flows which can possibly
occur. The nodes of a CFG stand for basic blocks of code, i.e., sequences of
statements without any branches. The edges represent the possible control flows,
i.e., edges back to previous nodes for loops and different branches for condition
statements. This paper studies the usual setting where one CFG describes a
single function.

For our work, it is important to define an architecture-independent represen-
tation of CFGs. In particular, some compiler optimisations affect the structure
of the CFGs, e.g., loop unrolling. This might vary when making optimisations
for different architectures. Therefore, we use the GNU compiler collection (gcc)
to obtain CFGs using the -O0-flag, which prevents the compiler from making any
optimisations. However, the gcc normalises the source code by using canonical
constructs for artefacts which can be expressed in several ways in the program-
ming language. This normalisation is an advantage, as the same algorithms tend
to be expressed in the same way, even if the source-code representations vary.

BLOCK 0
InitAinfo (ainfo); // Call
nseq.0 = (unsigned int) nseq;
D.4949 = nseq.0 * 4;
D.4950 = sre_malloc (&"alignio.c"[0], 50, D.4949); // Call
aseq = (char * *) D.4950;
idx = 0;
goto BLOCK 1;

BLOCK 1
if (idx < nseq) goto BLOCK 2; else goto BLOCK 3;

BLOCK 2
idx.1 = (unsigned int) idx;
// ...
D.4957 = sre_malloc (&"alignio.c"[0], 52, D.4956); // Call
D.4958 = (char *) D.4957;
*D.4954 = D.4958;
idx = idx + 1;
goto BLOCK 1;

(a) (b)

Fig. 1. Example control-flow graph (CFG)

Selecting Computer Architectures by Means of Control-Flow-Graph Mining 313

Figure 1 is an example of a CFG: (a) is a part of the function AllocAlignment
from the SPEC program 456.hmmer in a (simplified) intermediate representa-
tion derived with the gcc. (b) is the CFG derived from the function. In the
intermediate representation, if and goto-statements represent loops.

In addition to the nodes displayed in Figure 1(b), some CFG representations
introduce additional entry and exit nodes which do not represent any code. They
do not represent any performance-related information. To obtain a more concise
graph representation, we do not make use of such nodes.

Node Labelling. To mine CFGs, it seems that one could analyse the pure graph
structure ignoring the content of the nodes. However, such an approach would
lose a lot of (performance-related) information. To avoid this, we propose the
following mapping of source code to node labels:

– FP for blocks containing floating-point operations.
– Call for blocks without FP operations but calls of other functions.
– Set for blocks without FP or Call operations but load/store operations.
– Int for blocks containing none of the above (simple integer ALU operations).

Table 1. SPEC benchmark programs used

CPU 2000 CPU 2006
164.gzip 183.equake 255.vortex 400.perlbench 436.cactus-ADM 464.h264ref
175.vpr 186.crafty 256.bzip2 401.bzip2 445.gobmk 470.lbm
176.gcc 188.ammp 300.twolf 403.gcc 454.calculix 481.wrf
177.mesa 197.parser 429.mcf 456.hmmer 482.sphinx3
179.art 253.perlbmk 433.milc 458.sjeng
181.mcf 254.gap 435.gromacs 462.lib-quantum

So far, the labelling scheme leaves aside the actual number of statements in
a node, which might be important as well. Furthermore, the different labels are
quite imbalanced: FP is assigned to only 3% of the nodes from CFGs in the SPEC
CPU 2000 and 2006 programs used (see Table 1), Call is assigned to 19%, Set
to 61% and Int to 17%. Large sets of nodes with the same label, as well as only
few different ones, have a negative effect on the performance of graph-mining
algorithms (cf. [8]). We therefore propose a more fine-grained labelling scheme:
We divide the blocks labelled with Call into blocks containing one function call,
Call1, and blocks with two or more calls, Call2+. As there is a larger variety in
the number of load/store operations, and the Set class of labels is the largest,
we divide it in four labels. Each of them has approximately the same number
of corresponding nodes. Blocks with one load/store operation are labelled Set1,
blocks with two with Set2, those with three to five with Set3-5 and those with
more than five Set6+. In preliminary experiments, graph mining was one order of
magnitude faster with the fine-grained labels, while the accuracy of predictions
did not decrease. Figure 2 provides examples of the labelling schemes.

314 F. Eichinger and K. Böhm

(a) orig. CFG from Fig. 1 (b) coarse-grained (c) fine-grained

Fig. 2. Examples of CFG node labelling schemes

4 Control-Flow-Graph Mining

For our experiments (see Section 6) we use the C/C++ programs from the SPEC
CPU 2000 and 2006 benchmarks suites listed in Table 1. This results in a set
GCFG of approximately 27,000 CFGs belonging to the 31 programs. The graphs
have an average size of 22 nodes, with high variance. Approximately 30% of the
graphs consist of one node only, while roughly 12% have more than 32 nodes,
including a few with more than 1,000 nodes. As graphs with a single node do not
contain any information which is useful for our scheme, we omit these graphs.
This reduces the size of GCFG to approximately 19,000 graphs.

Though the average graphs in GCFG are not challenging from a state-of-the-
art graph-mining perspective, the large CFGs do lead to scalability problems.
We can mine the entire graph set with, say, the gSpan algorithm [9] in a reason-
able time, but only with relatively high minimum support values (minSup). In
preliminary experiments, this leads to the discovery of very small substructures,
i.e., with a maximum of two nodes only. Further, the CloseGraph algorithm [10]
is not helpful in our case. This is because there rarely are closed graphs (with ex-
actly the same support) which offer pruning opportunities. In preliminary exper-
iments, CloseGraph even increased the runtime because of the search for closed
structures. – To obtain larger subgraph patterns from our CFG dataset GCFG
by means of frequent subgraph mining, we inspect the larger graphs further.
We observe that they frequently contain nodes with a high degree. This causes
the scalability problems. Node Int in Figure 3(a) serves as an illustration. In
many cases, bulky switch-case statements which lead to many outgoing edges
in one node and many incoming edges in another one cause these high degrees.

(a) (b)

Fig. 3. Illustration of CFGs with problematic node degrees

Selecting Computer Architectures by Means of Control-Flow-Graph Mining 315

Typically, programs treat many different case branches similarly. Therefore, the
corresponding nodes frequently have the same labels (Set1 in Figure 3(a)). The
problem with these situations is the number of potential embeddings. As an
example, we want to find out the embeddings of the graph in Figure 3(b) in
the graph in Figure 3(a). Algorithms like gSpan search for all such embeddings
(subgraph isomorphisms), which is NP-complete [11]. In the example, there are
20 distinct embeddings. GCFG contains nodes with a degree of 720, which leads
to extreme numbers of possible embeddings. To conclude, the graphs in GCFG
with high node degrees prohibit mining of GCFG with reasonably low minSup
values. Early experiments with roughly the same data set, but with the largest
graphs excluded, have led to encouraging results in turn. We therefore propose
the following mining steps:

1. Mining of all graphs Gsmall smaller than a certain threshold tsize, resulting
in a set of frequent subgraphs SG. (Gsmall := {g ∈ GCFG |size(g) ≤ tsize})

2. Search for subgraph isomorphisms of the subgraphs SG within the large
graphs Glarge which have been omitted in Step 1. (Glarge := GCFG \Gsmall)

3. Unified representation of all graphs in GCFG with feature vectors.

Before we can derive frequent subgraphs (SG) in Step 1, we first systematically
identify combinations of the support in Gsmall (minSupsmall) and the size thresh-
old (tsize), which let us mine the data in reasonable time. We do this by means
of preliminary mining runs. In general, one wants to have a low minSupsmall,
to facilitate finding large and significant subgraphs, and a high tsize. This is to
ensure that only few patterns, namely those only included in Glarge, are missed.
With our dataset, we found a tsize of 32 (corresponding to Glarge with a size of
12% of |GCFG|) and a minSupsmall of 1.7% to be good values. We assume that
similar tsize values can be found when mining other CFG datasets, since our
numbers are based on a sample of 27,000 CFGs. We then mine Gsmall with the
ParSeMiS implementation1 of the gSpan algorithm [9], which is a state-of-the-
art algorithm in frequent subgraph mining. This results in a set of subgraphs
SG which are frequent within Gsmall.

In Step 2 we determine which graphs in Glarge contain the subgraphs in
SG by means of a subgraph-isomorphism test. Although this problem is NP-
complete [11], we benefit from properties of our specific dataset. E.g., there are
no cliques larger than three nodes, and the average node degree of 3.4 is relatively
low. Therefore, this step is less expensive in terms of runtime than Step 1.

In Step 3, we represent every CFG in GCFG with a feature vector. Such a
vector contains one bit for every subgraph in SG. A bit states if the respective
subgraph is included in the CFG.2 As the subgraphs in SG have a minimum size
of one edge, single nodes are not included. We believe that these nodes provide
important information as well. We therefore extend the vector with single nodes
1 http://www2.informatik.uni-erlangen.de/Forschung/Projekte/ParSeMiS/
2 In preliminary experiments we have used the numbers of embeddings. This has not

yielded better results. However, generating boolean features makes the subgraph-
isomorphism test in Step 2 much easier.

http://www2.informatik.uni-erlangen.de/Forschung/Projekte/ParSeMiS/

316 F. Eichinger and K. Böhm

labelled with the label classes described in Section 3. For these features, we use
integers representing their number of occurrences. This allows for a more precise
description of the operations contained in a CFG, i.e., in a function. Summing
up, we represent every CFG g ∈ GCFG with the following vector:

g := (sg1 , sg2 , ..., sgn ,FP ,Call1,Call2+,Set1,Set2,Set3-5,Set6+, Int)

where sg1 , sg2 , ..., sgn ∈ SG are boolean features, |SG| = n, and FP , Call1,
Call2+, Set1, Set2, Set3-5, Set6+ and Int are integers.

Our technique based on mining Gsmall bears the risk that certain subgraphs
may not be found, namely those contained in Glarge. In the worst case, a subgraph
sg is contained in every graph in Glarge, corresponding to 12% of |GCFG| in our
case, but hardly misses the minimum support when only looking at Gsmall. In
other words, sg becomes a part of the result set SG if it has a support of 13.5% in
GCFG. More formally, we can guarantee to find all subgraphs with the following
minimum support in GCFG:

minSupguarantee =
|Glarge|
|GCFG|

+
|Gsmall|
|GCFG|

·minSupsmall

In our dataset, minSupguarantee is 13.5%. However, we find many more subgraphs
as we are mining with a much lower minSupsmall in Gsmall. A direct mining of
GCFG with a minSup of 13.5% was not possible due to scalability problems – the
lowest minSup value possible in preliminary experiments was 20%. Our approach
succeeds due to the relatively small fraction of large graphs. It is applicable to
other datasets as well, but only if the share of large graphs is similar.

5 Classification Framework

We now describe the subsequent classification process, to predict the best com-
puter architecture for a given program. We formulate this prediction as the
selection between a number of architectures. The architectures are the classes
in this setting. In the following, we focus on the prediction of the faster one of
two architectures. This is due to the limited number of architectures with data
available, as we will explain. However, with more training data, we do not see
any problems when choosing from an arbitrary number of systems.

For the classification, we are faced with the challenge that our substructure
based feature vectors are descriptions at the function level, while we are inter-
ested in predictions for a program as a whole. At the same time, SPEC publishes
runtimes of several systems – this information is at the level of programs as well.
Potentially helpful information on the execution of functions, such as the num-
ber of calls and the execution time, is not available. This situation is completely
natural, and this is why we propose an approach that is supposed to work with-
out that information. In the following, we develop an approach which does not
need any more runtime-related information than the one typically available.

One way to do program-level predictions is to aggregate the information con-
tained in the feature vectors to the program level. Then a classification model

Selecting Computer Architectures by Means of Control-Flow-Graph Mining 317

could be learned with this data. As one program consists of many functions
(typically hundreds to thousands in the benchmarks), such an aggregation would
lose potentially important fine-grained information. Further, it would force us to
learn a model based on only few tuples (programs). The problem is the limited
availability of systems which are evaluated with more than one benchmark suite.
E.g., a system evaluated with SPEC CPU 2006 is rarely evaluated with the now
outdated CPU 2000 benchmark suite as well. The number of benchmark pro-
grams whose execution time for the same machines is known is therefore limited
in practice – and deriving this information would be tedious.

Hence, we propose a classification framework containing a simplification which
might seem unusual or ‘simplistic’ at first sight: To learn a classifier at the
function level, we assign the fastest architecture for the program as a whole to
all feature vectors describing its CFGs (functions). This simplification, caused by
a lack of any respective information, clearly does not take the characteristics of
the different functions of a program into account. It also ignores the potentially
imbalanced distribution of execution times of the individual functions. However,
our hope is that the large amount of function-level training data compensates
these issues, and we will show this. Once the classification model is learned, we
use it to classify functions from programs with unknown runtime behaviour. We
aggregate these predictions to the program level with majority vote.

To learn a prediction model, any classification technique can be used in princi-
ple. We have carried out preliminary experiments with support vector machines,
neural networks and decision trees, and the results were best with the latter.
We therefore deploy the C5.0 algorithm, a successor of C4.5 [12]. Our imple-
mentation in the SPSS Clementine data-mining suite lets us specify weights for
every tuple during the learning process, to emphasise certain tuples. With our
approach, we weight every feature vector with two factors:

1. One class might consist of many more tuples than the other one in the learn-
ing data set. As this typically leads to an increased number of predictions
of the larger class, we increase the weight of the under-represented one. We
use the fraction of the number of functions in the larger class divided by the
one of the under-represented class as the weight.

2. The difference in runtime of some programs on the two machines considered
might be large, while it is marginal with other programs. To give a higher
influence to a program with very different execution times, we use the ratio
of the execution time of the slower machine to the one of the faster machine
as another weight for the feature vectors of a program.

To fuse the classifications on the function level, we use the majority-vote
technique [13]. This is standard to combine multiple classifications. In extensive
experiments, we have evaluated alternative weights for learning, as well as dif-
ferent combination schemes. In particular, we have examined the two weights
mentioned – as well as other ones – as weights for the majority-vote scheme.

Note that, while the graph-mining step of our approach may be time-con-
suming, it only takes place once, in order to build the classification model. The
prediction for a new program is much faster, once the model is built.

318 F. Eichinger and K. Böhm

Table 2. Systems used for runtime experiments

System 1 System 2 System 3
Bull SAS NovaScale B280 Dell Precision 380 HP Proliant BL465c
Intel Xeon E5335, Intel Pentium 4 670 AMD Opteron 2220
QuadCore, 2.0 GHz SingleCore, 3.8 GHz DualCore, 2.8 GHz
2x4 MB L2, 8 GB RAM 2 MB L2, 2 GB RAM 2x1 MB L2, 16 GB RAM

System 4 System 5 System 6
Intel D975XBX Motherboard FSC Celsius V830 IBM BladeCenter LS41
Intel Pentium EE 965 AMD Opteron 256 AMD Opteron 8220
DualCore, 3.7 GHz SingleCore, 3.0 GHz DualCore, 2.8 GHz
2x2 MB L2, 4 GB RAM 1 MB L2, 2 GB RAM 2x1 MB L2, 32 GB RAM

6 Experiments

In this section we present our experiments and results. For the programs listed
in Table 1, the runtimes on a number of systems are published on the SPEC
homepage3. We make use of this data and use a subset of the systems available,
listed in Table 2. Not every system is evaluated with the older CPU 2000 and the
more recent CPU 2006 benchmark. Therefore, our selection is motivated by the
availability of runtimes for both benchmarks. Although there would have been a
few more systems available, we have only used the ones mentioned. They allow
us to set up experiments where the balance of systems being fastest with some
programs and systems being fastest with other programs is almost equal. This
eases the data-mining process. In reality, equality is not necessary when enough
data is available. Our experiments cover single-, dual- and quadcore architectures
as well as different memory hierarchies and processors, see Table 3.

Table 3. Experiments and results

Exp. Platforms Processors accuracy speedup reached
1 System 5 vs. System 2 Opteron vs. Pentium 4 71.0% 83.2%
2 System 3 vs. System 4 Opteron vs. Pentium EE 64.5% 58.6%
3 System 6 vs. System 1 Opteron vs. Xeon 71.0% 72.6%

We use the classification framework as described in Section 5, along with
2-fold cross-validation. We use partitions which are stratified with respect to
the class and consist of roughly equal numbers of functions. For evaluation we
derive the accuracy, i.e., the percentage of programs with correct prediction, and
the speedup in terms of execution time. To obtain the latter, we first calculate
the total runtime of all programs, each one on the machine predicted. This
allows us to derive a percentage, ‘speedup reached’. 0% is achieved when the
slowest architecture is always selected, 100% if the predictor assigns the fastest
architecture to every program. Table 3 contains both measures as well.

3 http://www.spec.org/benchmarks.html

http://www.spec.org/benchmarks.html

Selecting Computer Architectures by Means of Control-Flow-Graph Mining 319

We achieve an accuracy of 69% on average. This indeed corresponds to a
speedup. On average, we reach 71% of the speedup that would have been pos-
sible in theory. Further, our results show that there is a strong relationship
between CFGs and runtime behaviour. Although it would be interesting, we do
not compare our results to approaches making use of execution properties, such
as [2]. Such a comparison is not possible, since [2] uses other benchmarks and
target machines, as well as other evaluation metrics.

To savour our experimental results, one should take several points into ac-
count. The programs in the SPEC CPU benchmarks are relatively similar in the
sense that they are all compute-intensive (not I/O or memory-intensive). The
systems considered are relatively similar as well. All of them are off-the-shelf
systems, differing mainly in their configuration. However, it does not affect run-
time by much if, say, the number of processors or the size of RAM changes. The
programs considered do not use multiple threads and always fit in memory. The
only architectural difference of some significance is the instruction set used, i.e.,
x86 in the Xeon and Pentium systems and x86-64 in the Opteron systems.

7 Conclusion and Future Work

In the computer industry, it is important to know which platform provides the
best performance for a given program. Most approaches proposed so far require
in-depth knowledge of the systems or of runtime-related characteristics. One
must obtain them using expensive simulations or executions.

This paper has proposed an approach solely based on the static analysis of
programs and on runtime data from benchmark executions, which is available
online. It analyses the control flow graphs (CFGs) of the functions. Based on
graph-mining results, it correlates programs with similar CFG substructures and
assumes that their runtime is similar as well. This leads to our prediction frame-
work for learning at function level and a classifier-fusion technique to derive
program-level predictions. Our framework can predict the runtime behaviour of
programs on the target platforms. Though our approach to assign the best archi-
tecture for a program as a whole to its classes might be unusual and somewhat
risky, it is beneficial according to our evaluation. In experiments with the SPEC
CPU 2000 and 2006 benchmarks we obtain an accuracy of 69% on average.

From a graph-mining perspective, we propose a technique which can deal with
situations when the usual approach does not scale, e.g., because of high node
degrees. Our technique leaves aside few graphs in the graph-mining step which
are ‘problematic’. Then, it maps the results to the graphs we left out before. We
provide guarantees on the overall support.

One aspect of our future work is to improve the prediction quality further.
We currently investigate the usage of software metrics which provide additional
information on a function. We also investigate program-dependence graphs [14].
They feature data dependencies in addition to control-flow information. Such
information might help regarding certain aspects of computer architectures, e.g.,
pipelining and register usage. However, the graphs are much larger than CFGs.

320 F. Eichinger and K. Böhm

Another aspect is a further investigation from the computer architecture point of
view. Rather than correlating properties from source-code representations, e.g.,
CFG substructures, with architectures as a whole, we are interested in ties with
micro-architectural details, such as the cache architecture. Such insights would
be of enormous help when designing hardware for specific applications.

Acknowledgments

We thank Dietmar Hauf for much help with all aspects of this study and Wolf-
gang Karl and David Kramer for their guidance regarding computer architecture.

References

[1] Joshi, A., Phansalkar, A., Eeckhout, L., John, L.: Measuring Benchmark Similar-
ity Using Inherent Program Characteristics. IEEE Trans. Comput. 55(6), 769–782
(2006)

[2] Hoste, K., Phansalkar, A., Eeckhout, L., Georges, A., John, L.K., Bosschere, K.D.:
Performance Prediction Based on Inherent Program Similarity. In: Proc. Int. Conf.
on Parallel Architectures and Compilation Techniques, PACT (2006)

[3] Allen, F.E.: Control Flow Analysis. In: Proc. Symposium on Compiler Optimiza-
tion. SIGPLAN Notices, pp. 1–19 (1970)

[4] Kühnemann, M., Rauber, T., Runger, G.: A Source Code Analyzer for Perfor-
mance Prediction. In: Proc. Int. Symposium on Parallel and Distributed Process-
ing (2004)

[5] Karkhanis, T.S., Smith, J.E.: A First-Order Superscalar Processor Model.
SIGARCH Comput. Archit. News 32(2), 338 (2004)

[6] İpek, E., McKee, S.A., Singh, K., Caruana, R., de Supinski, B.R., Schulz, M.:
Efficient Architectural Design Space Exploration via Predictive Modeling. ACM
Trans. Archit. Code Optim. 4(4), 1–34 (2008)

[7] Deshpande, M., Kuramochi, M., Wale, N.: Frequent Substructure-Based Ap-
proaches for Classifying Chemical Compounds. IEEE Trans. Knowl. Data
Eng. 17(8), 1036–1050 (2005)

[8] Chakrabarti, D., Faloutsos, C.: Graph Mining: Laws, Generators, and Algorithms.
ACM Comput. Surv. 38(1), 2 (2006)

[9] Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proc.
Int. Conf. on Data Mining, ICDM (2002)

[10] Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proc.
Int. Conf. on Knowledge Discovery and Data Mining, KDD (2003)

[11] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

[12] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

[13] Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John
Wiley & Sons, Chichester (2004)

[14] Ottenstein, K.J., Ottenstein, L.M.: The Program Dependence Graph in a Software
Development Environment. SIGSOFT Softw. Eng. Notes 9(3), 177–184 (1984)

Visualization-Driven Structural and Statistical
Analysis of Turbulent Flows

Kenny Gruchalla1, Mark Rast2, Elizabeth Bradley1, John Clyne3,
and Pablo Mininni4

1 Department of Computer Science, University of Colorado, Boulder, Colorado
2 Laboratory for Atmospheric and Space Physics, Department of Astrophysical and

Planetary Sciences, University of Colorado, Boulder, Colorado
3 Computational and Information Systems Laboratory,

National Center for Atmospheric Research, Boulder, Colorado
4 Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires, Argentina and Geophysical Turbulence Program,
National Center for Atmospheric Research, Boulder, Colorado

Abstract. Knowledge extraction from data volumes of ever increasing
size requires ever more flexible tools to facilitate interactive query. In-
teractivity enables real-time hypothesis testing and scientific discovery,
but can generally not be achieved without some level of data reduction.
The approach described in this paper combines multi-resolution access,
region-of-interest extraction, and structure identification in order to pro-
vide interactive spatial and statistical analysis of a terascale data volume.
Unique aspects of our approach include the incorporation of both local
and global statistics of the flow structures, and iterative refinement fa-
cilities, which combine geometry, topology, and statistics to allow the
user to effectively tailor the analysis and visualization to the science.
Working together, these facilities allow a user to focus the spatial scale
and domain of the analysis and perform an appropriately tailored mul-
tivariate visualization of the corresponding data. All of these ideas and
algorithms are instantiated in a deployed visualization and analysis tool
called VAPOR, which is in routine use by scientists internationally. In
data from a 10243 simulation of a forced turbulent flow, VAPOR allowed
us to perform a visual data exploration of the flow properties at interac-
tive speeds, leading to the discovery of novel scientific properties of the
flow, in the form of two distinct vortical structure populations. These
structures would have been very difficult (if not impossible) to find with
statistical overviews or other existing visualization-driven analysis ap-
proaches. This kind of intelligent, focused analysis/refinement approach
will become even more important as computational science moves to-
wards petascale applications.

1 Challenges to Data Analysis

A critical disparity is growing in the field of computational science: our abil-
ity to generate numerical data from scientific computations has in many cases

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 321–332, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 K. Gruchalla et al.

exceeded our ability to analyze those data effectively. Supercomputing systems
have now reached petaflop performance [1], supporting numerical models of ex-
traordinary complexity, fidelity, and scale. In supercomputing centers, terabyte
data sets are now commonplace and petabyte data sets are anticipated within a
few years. However, analysis tools and the computational machinery that sup-
ports them have not been able to scale to meet the demands of these data.
For many computational scientists, this lack of analysis capability is the largest
barrier to scientific discovery.

The imbalance of scale between numerical simulation and data analysis is
largely due to their contrasting demands on computational resources. Large-
scale numerical simulation is typically a batch processing operation that proceeds
without human interaction on parallel supercomputers. Data analysis, in con-
trast, is fundamentally an interactive process with a human investigator in the
loop, posing questions about the data and using the responses to progressively
refine those questions[2]. While some data analyses certainly can be performed
in batch mode, this is only practical for completely predetermined investiga-
tions. Exploratory analysis depends on hypothesis generation and testing, which
requires an interactive environment that can provide timely and meaningful feed-
back to the investigator. Unfortunately, this kind of interactive workflow is not
well-suited to batch access on a parallel supercomputer. Another key bottleneck
in the analysis process is data storage. If the data exceeds the size of the available
random access media, one must manage its storage and exchange across differ-
ent media. Disk transfer rates are generally inadequate to support interactive
processing of large-scale computational data sets.

These dilemma can be addressed by data reduction, and a variety of schemes
have been developed to reduce data volumes while maintaining essential proper-
ties. Their methods and results depend on the scientific goals of the simulation
and analysis. For example, in the investigation of turbulent flows, analysis of
strictly statistical or spectral properties can enable significant reduction in data
dimensionality, while analysis of local flow dynamics, thermodynamics, or stabil-
ity does not. In the later cases, the only solution is to reduce the physical volume
under analysis. There are two general classes of methods for this. First, one can
isolate and extract local sub-regions from the global domain. The success of this
strategy depends on locating those regions in the solution that are of particu-
lar scientific importance or interest, which is a real challenge to intelligent data
analysis. There has been some very interesting work in the IDA community on
dimensional reduction for this purpose[3,4]. The visualization-driven approach
described in this paper extracts regions of interest using an iterative interactive
filtering technique that employs a combination of global and local flow statistics.
The second class of data-volume reduction techniques uses a coarsened global
approximation of the discrete solution to subsample the data over the entire do-
main. The obvious challenge here is selecting an appropriate coarsening (method
and scale) to maintain accuracy — and confidence in the results.

Both of these data-reduction techniques have been implemented in VAPOR,
an open-source desktop visualization-driven analysis application (available at

Visualization-Driven Structural and Statistical Analysis 323

http://www.vapor.ucar.edu). It closely couples advanced visualization with
quantitative analysis capabilities, and it handles the complexities of large datasets
using a hierarchical data model. It is designed to support a multi-phase analysis
process, allowing the investigator to control a speed-and-memory versus a locus-
and-quality trade off. This is an ideal context within which to explore intelligent
data reduction. Using the ideas described in the previous paragraph, we have
extended VAPOR’s capabilities to include definition, manipulation, and refine-
ment of feature sub-spaces based on multi-scale statistics of turbulent structures
contained within the data. The user can explore the data volume at a coarsened
resolution to gain a qualitative understanding and identify regions/structures of
interest. Those regions/stuctures can then be investigated at progressively higher
resolutions with computationally intensive visualization and analysis performed
on progressively smaller sub-domains or structure populations. The base func-
tionality of VAPOR provides data coarsening in the form of multi-resolution
access via wavelet decomposition and reconstruction [5]. VAPOR’s data coars-
ening approach coupled with a simple a simple sub-domain selection capabil-
ity and has a successful track record in the analysis of large-scale simulation
data using only modest computing resources [6]. With the addition of intelligent
region-of-interest extraction, VAPOR can now provide interactive, scientifically
meaningful explorations of tera-scale data volumes.

The following Section describes VAPOR’s visualization-driven analysis ca-
pabilities; Section 3 demonstrates their power using data from a 10243 forced
incompressible hydrodynamic simulation.

2 VAPOR: A Desktop Analysis and Visualization
Application

Many applications have been developed specifically for the visualization and
analysis of large-scale, time-varying numerical data, but all of them have signifi-
cant limitations in terms of visualization, analysis, and/or scalability. In many of
these tools, the emphasis is on the algorithms and the generation of aesthetic im-
ages, rather than on scientific discovery [7]. Visualization-oriented applications,
like Paraview [8], Visit [9], and Ensight, lack quantitative analysis capabilities,
and many of them demand specialized parallel computing resources. High-level,
fourth-generation data languages such as ITT’s IDL and Mathworks’s Matlab
are on the opposite end of the analysis-visualization spectrum. They provide a
rich set of mathematical utilities for the quantitative analysis of scientific data
but only limited visualization capabilities, and they do not scale well to very
large data sets.

The goal of the VAPOR project was to address these shortcomings. It pro-
vides an integrated suite of advanced visualization capabilities that are specif-
ically tailored to volumetric time-varying, multivariate numerical data. These
capabilities, coupled with the intelligent data reduction strategies introduced in
the previous sections, allow investigators to rapidly identify scientifically mean-
ingful spatial-temporal regions in large-scale multivariate data. VAPOR’s design

324 K. Gruchalla et al.

— both its functionality and its user interface — is guided by a steering com-
mittee of computational physicists to ensure that it truly meets the needs of
the end-user community. Scalability is addressed through a multi-phase analysis
process that is based on a combination of region-of-interest isolation, feature
extraction (with our extensions), and a hierarchical data model. Finally, VA-
POR interfaces seamlessly with high-level analysis languages like IDL, allowing
its user to perform rigorous quantitative analyses of regions of interest.

2.1 Visualization

VAPOR incorporates a variety of state-of-the-art volume rendering and flow-
visualization techniques, including both direct and indirect volume rendering [10].
Direct volume rendering describes a class of techniques, which generate images
directly from volumetric data without any intermediate geometric constructions,
while indirect volume rendering constructs geometric isosurfaces. To support the
visualization of vector fields, VAPOR provides both sparse and dense particle-
tracing methods [11]. The former render the geometry of individual trajectories
of particles seeded in a flow field, and can support both steady (time-invariant)
and unsteady (time-varying) trajectory integration. Dense particle-tracing meth-
ods synthesize textures that represent how the flow convolves input noise.

VAPOR’s integrated design allows these volume rendering and flow-
visualization techniques to be used in different combinations over a single anal-
ysis run, in concert with the intelligent data reduction strategies described in
Section 2.3, as the investigator progressively isolates and refines scientifically
meaningful regions of the data. The hierarchical data model that supports this is
described in the next Section. By utilizing the optimized data-parallel streaming
processors of modern graphics processing units (GPUs), VAPOR can effectively
work with volumes of the order of 15363 [6].

2.2 Hierarchical Data Model

The VAPOR data storage model is based on wavelet decomposition [5,12]. Data
are stored as a hierarchy of successively coarser wavelet coefficients; each level
in this hierarchy represents a halving of the data resolution along each spatial
axis, corresponding to an eight-fold reduction in data volume. In this manner,
VAPOR maintains a series of useful coarsened approximations of the data, any
of which can be accessed on demand during an analysis run, without an undue
increase in storage requirements. Wavelet data are organized into a collection
of multiple files: one binary file containing the wavelet coefficients for each time
step, each variable, and each wavelet transformation level, and a single metadata
file that describes the attributes of the field data (e.g., the grid type, the time
steps, the spatial resolution, the field names, etc.).

This storage model naturally supports intelligent, interactive data decom-
position. It allows VAPOR to operate on any subset of time steps, variables,
and wavelet transformation levels, which has a variety of important advantages,
including iterative focus and refinement of the analysis effort. An investigator

Visualization-Driven Structural and Statistical Analysis 325

can control the level of interactivity by regulating the fidelity of the data, first
browsing a coarsened representation across the global spatial-temporal domain
to identify regions or features of interest and then examining those reduced do-
mains in greater detail. The hierarchical data/metadata combination also allows
VAPOR to work with very large data collections, as data components can be
stored off-line until required, handling incomplete data sets smoothly.

2.3 Multivariate Feature Extraction

The VAPOR volume rendering capability forms the basis for the multivariate
feature extraction technique we have implemented to isolate structures of inter-
est in large data sets. A multidimensional transfer function is used to define a
mapping from data values to the color and opacity values in the volume render-
ing. The opacity component of this function visually separates the volume into
opaque features. VAPOR users can construct and refine these functions itera-
tively, and use them in different thresholding schemes to visually separate the
volume into opaque regions.

Once these regions have been visually identified using the transfer function,
the individual structures are extracted and tagged using a connected-component
labeling algorithm [13], an image-processing technique that assigns groups of ε-
connected data points1 a unique feature label. Once the features have been iden-
tified in this manner, they can be visualized and analyzed as individual features
oppose to a set of opaque voxels. The individual features can be visualized in
isolation or as members of sub-groups, and the data points and geometry of each
can exported to external analysis packages for further analysis, as described in
Section 2.4. This allows any user-defined physical property to be computed on
the associated data points contained in each feature, over any field or combina-
tion of fields in the data. VAPOR presents the resulting values and distributions
to the user as a table of feature-local histograms and property values, as shown
in Figure 1. Using this table, the set of features can be culled based on the central
moments of their distributions to further focus the study. The entire reduction
process—including the transfer function design and feature definition—can be it-
erated to progressively refine the analysis, providing insight into the multivariate
properties of structures across multiple scales.

2.4 Coupled Visual, Quantitative, and Statistical Analysis

Understanding large-scale simulation data is an exploratory process that can be
greatly facilitated by combining highly interactive, qualitative visual examina-
tion with quantitative numerical analysis. Visualization can be used to motivate
analysis through the identification of structures in the data, giving rise to hy-
potheses that can be validated or rejected through numerical study. Likewise,
the analysis can be used to drive the visualization, identifying salient quanti-
tative characteristics of the data through numerical study, and then visualiz-
ing their associated geometric shapes and physical properties. VAPOR’s design
1 i.e., those that are connected by an ε chain.

326 K. Gruchalla et al.

Fig. 1. The VAPOR structure analysis dialog, which displays feature-local histograms
of user-selected field distributions

seamlessly combines qualitative visual and quantitative numerical investigation,
enabling its users to interactively transition between the two. Its multi-resolution
visualization and region-of-interest isolation capabilities, in conjunction with its
hierarchical data representation, allow its users to cull data intelligently and pass
appropriate subsets to an external quantitative analysis package.

Smooth integration of all of these capabilities required some interesting design
decisions. VAPOR performs GPU-accelerated visualization natively, as described
in Section 2.1, and hands numerical analysis off to IDL. VAPOR and IDL sessions
are run simultaneously; after regions of interest are identified in the former, the
associated data volumes are exported via metadata descriptors to the latter for
further study. The tight coupling between IDL and VAPOR is accomplished by
a library of data-access routines, which allow IDL access to the wavelet-encoded
data representation. (This approach is readily generalizable to other analysis
packages, complementing and enhancing existing user capabilities.) The qualita-
tive/quantitative tandem is very effective: IDL, as mentioned at the beginning
of Section 2, does not scale well to large data sets [12], but VAPOR’s ability to
focus the study neatly bypasses that problem, and the results of IDL analysis
on focused regions can be seamlessly imported back into the VAPOR session
for visual investigation. By repeating this process, very large data sets can be
interactively explored, visualized, and analyzed without the overhead of reading,
writing, and operating on the full data volume.

3 Application to Vortical Structures in Taylor-Green
Flow

As an illustration of the power of the ideas described in the previous sections, we
use VAPOR to explore data from an incompressible Taylor-Green forced turbu-
lence simulation with a microscale Reynolds number of Rλ ∼ 1300 [14]. The par-
ticular structures in this data that are of scientific interest involve vorticity, but

Visualization-Driven Structural and Statistical Analysis 327

the volume contains so many of these structures, of different sizes and strengths,
as to pose a truly daunting analysis problem. The small-scale structures are par-
ticularly hard to isolate, so that is what we set out to analyze with VAPOR.

3.1 Global Vorticity and Structure Identification

Vortices play important roles in the dynamics and transport properties of fluid
flows, but they are surprisingly hard to define, which complicates the task of de-
signing a vortex extraction method. Jiang et al. [15] provide an extensive survey
of current techniques. As a working definition, we treat a vortex filament, tube,
or sheet as a connected region with a higher relative amplitude of vorticity than
its surrounding [16]. Many vortex detection and visualization methods use the
same definition, and most of them operationalize it by thresholding the magni-
tude of the vorticity. This is the starting point for our analysis, but VAPOR’s
capabilities allowed us to add other scientifically meaningful analysis steps and
iteratively focus the process. In this particular case, it allowed us to investigate
the correlation between vorticity and helicity across multiple scales and discover
important structural properties that were previously unknown.

The first step in the process is to threshold the vorticity of the Taylor-Green
data using the opacity contribution of the multidimensional tranfer function.
The fields in the data include the simulated velocity vector field and two derived
fields: a vorticity vector field and a normalized helicity field. Vorticity is defined
as the curl of a velocity field, ω = ∇× v, characterizing the pointwise rotation
of fluid elements. Helicity is a scalar value, Hn = v·ω

|v||ω| , the cosine of the angle

Fig. 2. A volume rendering of areas of strong vorticity in Taylor-Green turbulence
isolates tens of thousands of vortical structures

328 K. Gruchalla et al.

between velocity and vorticity. An initial vorticity threshold was chosen to begin
separating the tube-like vortical structures in the data volume. This step isolates
tens of thousands of vortical structures, as shown in Figure 2. Using VAPOR’s
iterative refinement capabilities, we focus the study by further considering the
helicity within these structures. A global analysis across the entire data volume,
Figure 3, shows that both helicity and its pointwise correlation with vorticity
are distributed in a nearly uniform fashion—i.e., that all angles between velocity
and vorticity vectors occur with similar frequencies across all values of vorticity.
While this is a useful result, it lumps the whole data volume together, possibly
obscuring important local differences. Using VAPOR to generate feature-local
histograms, we find that different high-vorticity regions do indeed have distinct
helicity distributions, Figure 3(c). Three populations of structures are conspic-
uously evident: those whose helicity distributions span the full range with no
distinct peak, those with a peak at high absolute values of helicity (i.e., domi-
nated by nearly aligned or anti-aligned velocity and vorticity vectors), and those
whose helicity distributions peak near zero (i.e., dominated by nearly orthogonal
velocity and vorticity).

Fig. 3. The relationship between vorticity and helicity in Taylor-Green Turbulence a)
the histogram of global normalized helicity, indicating helicity, measured point wise in
the domain, has a nearly uniform distribution; b) the scatter plot of vorticity magni-
tude versus normalized helicity, showing that helicity has a nearly uniform distribution
across all values of vorticity; c) a selected subset of the feature-local helicity histograms
from features defined by high vorticity that show individual regions of strong vorticity
have distinct helicity distributions.

Using VAPOR’s intrinsic capabilities, we have thus effectively differentiated
the regions of strong vorticity into three structure populations, based on their
helicity distributions. In order to investigate the statistics and local dynamics
of these structures, we next extend the analysis through a combination of vi-
sualization in VAPOR and focused study in the coupled quantitative analysis
package. By visualizing individual features in isolation, we find that the wide
noisy distributions belong to composite structures that were not well separated
into individual components by the original vorticity thresholding, while the other
two populations are those of individual tube-like structures. This result allows
us to further cull the dataset and focus on the tube-like structures with either
high or low helicity magnitude. Both populations have similar geometries, but

Visualization-Driven Structural and Statistical Analysis 329

streamlines seeded in these regions, as shown in Figure 5, reveal that their flow
properties are quite different. In the low-helicity tubes, the streamlines twist
around the core; in the high-helicity tubes the streamlines more closely follow
the writhe of the tube.

Further interactive analysis of these distinct vortex structures can proceed
either by examining the statistical properties of the population or the detailed
dynamics of any one of them. Looking first at statistics of the population of
vortical structures as a whole, we note that, while structures with all values of
helicity exist, there seems to be a small deficit of those with high absolute mean
value compared to the point-wise helicity distribution (Figure 4a). Moreover,
the helicty of any given structure is well defined and symetrically distributed
about its mean value (Figure 4b and 4c). The helicity distribution within a
great majority of the structures has both small variance and skewness.

Fig. 4. Distributions of the first three central moments of the feature-local helicity
distributions

The detailed dynamics underlying any single vortex structure is also acces-
sible. By exporting planar cross sections through tubes using VAPOR’s cross-
section capability, average radial profiles of the helicity and vorticity can be
constructed (Figure 5c & 5d). Distinct differences between the maximally and
minimally helical structures are apparent. The maximally helical structure has
one sign helicity throughout, while the minimally helical twisted structure shows
a change in the sign of helicity near its border (Figure 5c). This appears to be
associated with inward (toward the pinched section midway along the tube)
axial flow surrounding the outside of the vortex tube and outward (diverging
from a pinched section midway along the tube) axial flow in its core, (Figure 6).
A temporal history of these flows would be critical in confirming what looks
to be a significant vorticity amplification mechanism in this minimally helical
vortex filament. Also critical in future analysis would be the ability to combine
the statistical and dynamical analyses presented here to determine how common
this mechanism is and whether particular dynamical processes are statistically
linked to specific structure populations.

The primary advantage of coupling visual data investigation with a data anal-
ysis language is the ability to defer expensive calculations of derived quanti-
ties until they are needed and then perform them only over sub-domains of
interest. The computational requirements for computing such variables in ad-
vance, across the entire domain, is often impratical, overwhelming the available

330 K. Gruchalla et al.

Fig. 5. Local dynamics of two strucutures with different helicity distributions showing:
a) streamlines seeded within segmented region; b) the feature-local helicity histogram;
c) an average radial helicity profile; d) an average radial vorticity profile. The shaded
region of the radial profiles represents the inside of the visualized structure.

Fig. 6. Top: Streamlines colored by y-component velocity, which approximates the
axial velocity. Bottom: vorticity magnitude and Y-component velocity cross-sections
taken at positions a, b, & c (extents of the structure are bounded by the dotted line).

Visualization-Driven Structural and Statistical Analysis 331

analysis resources. Furthermore, some quantities, as was shown by our analysis
of the Taylor-Green flow, can only be computed with reference to the location
of a flow structure and are therefore not in principle a priori computable. The
coupling between VAPOR and IDL facilitates the calculation of derived quanti-
ties as needed over sub-regions of the domain, realizing considerable savings in
storage space and processing time.

4 Conclusions

VAPOR’s tight integration of visualization with traditional techniques like statis-
tics, fourth-generation data languages, and effective information-management
strategies meets the challenges that are inherent in visual exploration of com-
plex turbulence data. This will only become more important as data volumes
increase. The Taylor-Green flow simulation described in the previous section,
which has 10243 degrees of freedom, can be readily computed on today’s ter-
aflop supercomputing platforms. The emergence of petaflop-capable machines
will enable simulations at vastly greater scales, resulting in substantially larger
data volumes. 40963 simulations have already been conducted on existing su-
percomputers [17] and the recent NSF Track 1 Petascale computing solicitation
calls for a system capable of executing a homogeneous turbulence simulation
with 12, 2883 degrees of freedom [18]. The interactive analysis model in this pa-
per, with its reliance on progressive data refinement, visual data browsing, and
region/structure-of-interest isolation, is intrinsically highly scalable. We have
described our experiences with this analysis model in the context of investigat-
ing numerically simulated turbulence. However, we believe that these techniques
have applicability across a broad spectrum of data-intensive sciences.

Acknowledgements

We wish to thank the National Science Foundation and the National Center for
Atmospheric Research for their computational support.

References

1. Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho,
J.C.: Entering the petaflop era: the architecture and performance of roadrunner. In:
2008 ACM/IEEE conference on Supercomputing, Austin, Texas, pp. 1–11. IEEE
Press, Los Alamitos (2008)

2. Keim, D., Ward, M.: Visualization. In: Berthold, M., Hand, D. (eds.) Intelligent
Data Analysis: An Introduction, 2nd edn. Springer, Heidelberg (2000)

3. Yang, L.: 3D grand tour for multidimensional data and clusters. In: Hand, D.J.,
Kok, J.N., R. Berthold, M. (eds.) IDA 1999. LNCS, vol. 1642, pp. 173–184.
Springer, Heidelberg (1999)

4. Rehm, F., Klawonn, F., Kruse, R.: Mds-polar: A new approach for dimension
reduction to visualize high-dimensional data. In: Famili, A.F., Kok, J.N., Peña,
J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 316–327.
Springer, Heidelberg (2005)

332 K. Gruchalla et al.

5. Clyne, J.: The multiresolution toolkit: Progressive access for regular gridded data,
152–157 (2003)

6. Clyne, J., Mininni, P.D., Norton, A., Rast, M.: Interactive desktop analysis of high
resolution simulations: application to turbulent plume dynamics and current sheet
formation. New Journal of Physics 9 (2007)

7. Lorensen, B.: On the death of visualization. In: NIH/NSF Fall 2004 Workshop
Visualization Research Challenges (2004)

8. Ahrens, J., Brislawn, K., Martin, K., Geveci, B., Law, C.C., Papka, M.: Large-
scale data visualization using parallel data streaming. IEEE Computer Graphics
and Applications 21, 34–41 (2001)

9. Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M., Whitlock, B., Max,
N.: A contract based system for large data visualization. In: Proceedings of IEEE
Visualization, pp. 191–198 (2005)

10. Engel, K., Hadwiger, M., Kniss, J.M., Lefohn, A.E., Salama, C.R., Weiskopf, D.:
Real-time volume graphics. A K Peters, Ltd., Los Angeles (2006)

11. Weiskopf, D., Erlebacher, G.: Overview of flow visualization. In: Hansen, C., John-
son, C. (eds.) Visualization Handbook. Academic Press, London (2005)

12. Clyne, J., Rast, M.: A prototype discovery environment for analyzing and visual-
izing terascale turbulent fluid flow simulations. In: Erbacher, R.F., Roberts, J.C.,
Grohn, M.T., Borner, K. (eds.) Visualization and Data Analysis 2005. SPIE, San
Jose, CA, USA, March 2005, vol. 5669, pp. 284–294 (2005)

13. Suzuki, K., Horibia, I., Sugie, N.: Linear-time connected-component labeling based
on sequential local operations. Computer Vision and Image Understanding 89, 1–23
(2003)

14. Mininni, P.D., Alexakis, A., Pouquet, A.: Nonlocal interactions in hydrodynamic
turbulence at high reynolds numbers: the slow emergence of scaling laws. Physical
review. E, Statistical, nonlinear, and soft matter physics 77 (2008)

15. Jiang, M., Machiraju, R., Thompson, D.: Detection and visualization of vortices. In:
Hansen, C., Johnson, C. (eds.) Visualization Handbook. Academic Press, London
(2005)

16. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics, 1st edn. Springer,
Heidelberg (2006)

17. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipa-
tion rate and energy spectrum in high resolution direct numerical simulations of
turbulence in a periodic box. Physics of Fluids 15, L21–L24 (2003)

18. Leadership-class system acquisition - creating a petascale computing environment
for science and engineering NSF solicitation 06-573

Distributed Algorithm for Computing Formal
Concepts Using Map-Reduce Framework�

Petr Krajca1,2 and Vilem Vychodil1,2

1 T. J. Watson School, State University of New York at Binghamton
2 Dept. Computer Science, Palacky University, Olomouc

{petr.krajca, vychodil}@binghamton.edu

Abstract. Searching for interesting patterns in binary matrices plays
an important role in data mining and, in particular, in formal concept
analysis and related disciplines. Several algorithms for computing partic-
ular patterns represented by maximal rectangles in binary matrices were
proposed but their major drawback is their computational complexity
limiting their application on relatively small datasets. In this paper we
introduce a scalable distributed algorithm for computing maximal rect-
angles that uses the map-reduce approach to data processing.

1 Introduction

We introduce a novel distributed algorithm for extracting rectangular patterns
in binary object-attribute relational data. Our approach is unique among other
approaches in that we employ the map-reduce framework which is traditionally
used for searching and querying in large data collections. This paper contains a
preliminary study and a proof of concept of how the map-reduce framework can
be used for particular data-mining tasks.

In this paper, we focus on extracting rectangular patterns, so called formal
concepts, in binary object-attribute relational data. The input data, we are in-
terested in, takes form of a two-dimensional data table with rows corresponding
to objects, columns corresponding to attributes (features), and table entries be-
ing crosses (or 1’s) and blanks (or 0’s) indicating presence/absence of attributes
(features): a table has × on the intersection of row corresponding to object x
and column corresponding to attribute y iff “object x has attributes y” (“fea-
ture y is present in object x”). Given a data table, we wish to find all maximal
submatrices full of ×’s that are present in the table. These submatrices have a
direct interpretation: they represent natural concepts hidden in the data which
are the subjects of study of formal concept analysis [3,7] invented by Rudolf
Wille [19]. Recently, it has been shown by Belohlavek and Vychodil [1] that
maximal rectangles can be used to find optimal factorization of Boolean matri-
ces. In fact, maximal rectangles correspond with optimal solutions to the discrete
basis problem discussed by Miettinen et al. [11]. Finding maximal rectangles in
data tables is therefore an important task.
� Supported by institutional support, research plan MSM 6198959214.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 333–344, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

334 P. Krajca and V. Vychodil

The algorithm we propose in this paper may help overcome problems with
generating all formal concepts from large data sets. In general, the problem of
listing all formal concepts is #P -complete [14]. Fortunately, if the input data is
sparse, one can get sets of all formal concepts in a reasonable time. Still, listing
all formal concepts can be time and space demanding and, therefore, there is
a need to provide scalable distributed algorithms that may help distribute the
burden over a large amount of low-cost computation nodes. In this paper we
offer a possible solution using the map-reduce framework.

In the sequel we present a survey of notions from the formal concept anal-
ysis and principles of the map-reduce framework. Section 2 describes the algo-
rithm. Furthermore, in Section 3, we describe the implementation and provide
experimental evaluation of scalability of the proposed algorithm. The paper is
concluded by related works and future research directions.

1.1 Formal Concept Analysis

In this section we recall basic notions of the formal concept analysis (FCA).
More details can be found in monographs [7] and [3].

Formal concept analysis deals with binary data tables describing relationship
between objects and attributes, respectively. The input for FCA is a data table
with rows corresponding to objects, columns corresponding to attributes (or
features), and table entries being ×’s and blanks, indicating whether an object
given by row has or does not have an attribute given by column. An example
of such a data table is depicted in Fig. 1 (left). A data table like that in Fig. 1
can be seen as a binary relation I ⊆ X × Y such that 〈x, y〉 ∈ I iff object x has
attribute y. In FCA, I is usually called a formal context [7]. In this paper, we
are going to use a set X = {0, 1, . . . , m} of objects and a set Y = {0, 1, . . . , n} of
attributes, respectively. There is no danger of confusing objects with attributes
because we do not mix elements from the sets X and Y in any way.

0 1 2 3 4 5 6
0 × × × × ×
1 × × × ×
2 × ×
3 × × × ×
4 × × × ×

C4

C3

C7C8

C6

C9

C10

C5

C2

C12

C11

C14
C15

C16

C13

C1

Fig. 1. Formal context (left) and the corresponding concept lattice (right)

Each formal context I ⊆ X×Y induces a couple of operators ↑ and ↓ defined,
for each A ⊆ X and B ⊆ Y , as follows:

Distributed Algorithm for Computing Formal Concepts 335

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Operators ↑ : 2X → 2Y and ↓ : 2Y → 2X defined by (1) and (2) form so-called
Galois connection [7]. By definition (1), A↑ is a set of all attributes shared by
all objects from A and, by (2), B↓ is a set of all objects sharing all attributes
from B.

A pair 〈A, B〉 where A ⊆ X , B ⊆ Y , A↑ = B, and B↓ = A, is called a formal
concept (in I ⊆ X × Y). Formal concepts can be seen as particular clusters
hidden in the data. Namely, if 〈A, B〉 is a formal concept, A (called an extent
of 〈A, B〉) is the set all objects sharing all attributes from B and, conversely,
B (called an intent of 〈A, B〉) is the set of all attributes shared by all objects
from A. Note that this approach to “concepts” as entities given by their extent
and intent goes back to classical Port Royal logic. From the technical point of
view, formal concepts are fixed points of the Galois connection 〈↑, ↓〉 induced
by the formal context. Formal concepts in I ⊆ X × Y correspond to so-called
maximal rectangles in I. In a more detail, any 〈A, B〉 ∈ 2X × 2Y such that
A × B ⊆ I shall be called a rectangle in I. Rectangle 〈A, B〉 in I is a maximal
one if, for each rectangle 〈A′, B′〉 in I such that A × B ⊆ A′ × B′, we have
A = A′ and B = B′. We have that 〈A, B〉 ∈ 2X × 2Y is a maximal rectangle in
I iff A↑ = B and B↓ = A, i.e. maximal rectangles = formal concepts. Hence,
maximal rectangles give us an alternative interpretation of formal concepts.

Let B(X, Y, I) denote the set of all formal concepts in I ⊆ X × Y . The set
B(X, Y, I) can be equipped with a partial order ≤ modeling the subconcept-
superconcept hierarchy:

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, equivalently, iff B2 ⊆ B1). (3)

If 〈A1, B1〉 ≤ 〈A2, B2〉 then 〈A1, B1〉 is called a subconcept of 〈A2, B2〉. The set
B(X, Y, I) together with ≤ form a complete lattice whose structure is described
by the Main Theorem of Formal Concept Analysis [7]. The above-described
notions are illustrated in the following example.

Example 1. Consider a formal context I ⊆ X×Y corresponding to the incidence
data table from Fig. 1 (left). The concept-forming operators induced by this
context have exactly 15 fixpoints C1, . . . , C16:

C1 = 〈{0, 1, 2, 3, 4}, {}〉, C9 = 〈{4}, {0, 2, 4, 6}〉,
C2 = 〈{1, 2, 3, 4}, {0}〉, C10 = 〈{1, 4}, {0, 2, 6}〉,
C3 = 〈{2}, {0, 1}〉, C11 = 〈{0, 2}, {1}〉,
C4 = 〈{}, {0, 1, 2, 3, 4, 5, 6}〉, C12 = 〈{0}, {1, 2, 4, 5, 6}〉,
C5 = 〈{1, 3, 4}, {0, 2}〉, C13 = 〈{0, 1, 3, 4}, {2}〉,
C6 = 〈{1, 3}, {0, 2, 3}〉, C14 = 〈{0, 4}, {2, 4, 6}〉,
C7 = 〈{3}, {0, 2, 3, 5}〉, C15 = 〈{0, 3}, {2, 5}〉,
C8 = 〈{1}, {0, 2, 3, 6}〉, C16 = 〈{0, 1, 4}, {2, 6}〉.

336 P. Krajca and V. Vychodil

Hence, B(X, Y, I) = {C1, . . . , C16}. If we equip B(X, Y, I) with the partial or-
der (3), we obtain a concept lattice shown in Fig. 1 (right).

The most common algorithms for computing formal concepts include Ganter’s
algorithm [6], Lindig’s algorithm [18], and Berry’s [2] algorithm. The algorithm
we are going to introduce in Section 2 can be seen as a distributed version of the
algorithm proposed in [12,13]. A survey and comparison of algorithms for FCA
can be found in [17].

1.2 Processing Data Using Map-Reduce Approach

Distributed computing represents a common approach to processing large data
but the complexity of distributed computing usually limits its application only
on problems unsolvable in other ways. Common distributed algorithm imple-
mentations usually consist of modifications of more or less known algorithms
that distribute particular parts of the data to be processed on other computers.
This approach is quite comprehensible for programmers but brings several is-
sues. Especially, issues connected with granularity of the task, reliability of the
used hardware platform, etc.

A general framework for processing large data in distributed networks consist-
ing of commodity hardware is proposed in [4]. In essence, this framework is based
on two basic operations map and reduce that are applied on the data. These two
operations have given the name of the framework—a map-reduce framework or
(in short, an M/R framework). This approach to data processing has originally
been developed by Google for their data centers but has shown to be very practi-
cal and later has been adopted by other software companies interested in storing
and querying large amounts of data. In the rest of this section we provide a brief
overview of the map-reduce framework.

Data in the M/R framework are generally represented in the form of key-
value pairs 〈key, value〉. In the first step of the computation, the framework
reads input data and optionally converts it into the desired key-value pairs.

In the second step—the map phase, a function f is applied on each pair 〈k, v〉
and returns a multiset of new key-value pairs, i.e.,

f(〈k, v〉) = {〈k1, v1〉, . . . , 〈kn, vn〉}
Notice that there is certain similarity with function map present in many pro-
gramming languages (e.g., LISP, Python, and Scheme). In contrast with the
usual map, function f may return arbitrary number of results and they are all
collected during the map phase.

Subsequently, in the reduce phase, all pairs generated in the previous step are
grouped by their keys and their values are aggregated (reduced) by a function g:

g({〈k, v1〉, 〈k, v2〉, . . . , 〈k, vn〉}) = 〈k, v〉.
The following example illustrate how the M/R framework can be used to perform
a computation which might appear in information retrieval.

Example 2. Let us consider that we want to compute frequencies of letters in a
text consisting of three words—alice, barbara, and carol. Now, consider function

Distributed Algorithm for Computing Formal Concepts 337

f accepting a word and returning a multiset where each letter in the word is
represented as a pair 〈letter, 1〉. The map phase will produce the following results:

f(alice) = {〈a, 1〉, 〈l, 1〉, 〈i, 1〉, 〈c, 1〉, 〈e, 1〉},
f(barbara) = {〈b, 1〉, 〈a, 1〉, 〈r, 1〉, 〈b, 1〉, 〈a, 1〉, 〈r, 1〉, 〈a, 1〉},
f(carol) = {〈c, 1〉, 〈a, 1〉, 〈r, 1〉, 〈o, 1〉, 〈l, 1〉}.

In the reduce phase, we group all pairs by the key and function g sums all 1’s
in the key-value pairs as follows:

g({〈a, 1〉, 〈a, 1〉, 〈a, 1〉, 〈a, 1〉, 〈a, 1〉}) = 〈a, 5〉,
g({〈b, 1〉, 〈b, 1〉}) = 〈b, 2〉,
g({〈c, 1〉, 〈c, 1〉}) = 〈c, 2〉,
g({〈e, 1〉}) = 〈e, 1〉,
g({〈l, 1〉, 〈l, 1〉}) = 〈l, 2〉,
g({〈i, 1〉}) = 〈i, 1〉,
g({〈o, 1〉}) = 〈o, 1〉,
g({〈r, 1〉, 〈r, 1〉, 〈r, 1〉}) = 〈r, 3〉.

One can see from the previous illustrative example and the sketch of the algo-
rithm that since the functions f and g are applied only on particular pairs, it
is possible to easily distribute the computation through several computers. For
the sake of completeness, we should stress that functions f and g used to map
and aggregate values must always be implemented by procedures (i.e., computer
functions) that do not have any side effects. That means, the results of f and
g depend only on given arguments, i.e., the procedures computing results of f
and g behave as maps.

The actual implementation details of M/R processing are far more complex
but their detailed description is out of the scope of this paper. The basic outline
we have provided should be sufficient for understanding of our algorithm for
computing formal concepts.

2 The Algorithm

In this section we present an overview of a parallel algorithm PCbO we have
proposed in [12]. Then, we introduce a distributed variant of PCbO based on
the M/R framework.

2.1 Overview

The distributed algorithm is an adaptation of Kuznetsov’s Close-by-One (CbO,
see [15,16]) and its parallel variant PCbO [12]. The CbO can be formalized by a
recursive procedure GenerateFrom(〈A, B〉, y), which lists all formal concepts
using a depth-first search through the space of all formal concepts. The proce-
dure accepts a formal concept 〈A, B〉 (an initial formal concept) and an attribute
y ∈ Y (first attribute to be processed) as its arguments. The procedure recur-
sively descends through the space of formal concepts, beginning with the formal
concept 〈A, B〉.

338 P. Krajca and V. Vychodil

When invoked with 〈A, B〉 and y ∈ Y , GenerateFrom first processes 〈A, B〉
(e.g., prints it on the screen or stores it in a data structure) and then it checks
its halting condition. Computation stops either when 〈A, B〉 equals 〈Y ↓, Y 〉 (the
least formal concept has been reached) or y > n (there are no more remaining
attributes to be processed). Otherwise, the procedure goes through all attributes
j ∈ Y such that j ≥ y which are not present in the intent B. For each j ∈ Y
having these properties, a new couple 〈C, D〉 ∈ 2X× 2Y such that

〈C, D〉 = 〈A ∩ {j}↓, (A ∩ {j}↓)↑〉 (4)

is computed. The pair 〈C, D〉 is always a formal concept [12] such that B ⊂ D.
After obtaining 〈C, D〉, the algorithm checks whether it should continue with
〈C, D〉 by recursively calling GenerateFrom or whether 〈C, D〉 should be
“skipped”. The test (so-called canonicity test) is based on comparing B ∩ Yj =
D ∩ Yj where Yj ⊆ Y is defined as follows:

Yj = {y ∈ Y | y < j}. (5)

The role of the canonicity test is to prevent computing the same formal concept
multiple times. GenerateFrom computes formal concepts in a unique order
which ensures that each formal concept is processed exactly once. The proof is
elaborated in [13].

Remark 1. Recursive invocations of GenerateFrom form a tree. The tree cor-
responding to data from Fig. 1 is depicted in Fig. 2. The root corresponds to the
first invocation GenerateFrom(〈∅↓, ∅↓↑〉, 0). Each node labeled 〈Ci, k〉 corre-
sponds to an invocation of GenerateFrom, where Ci is a formal concept, see
Example 1. The nodes denoted by black squares represent concepts which are

65 43

6

6

5

5

43

2

65 43

3

2

1

6 54 3

65

5

4

6

6

54

3

2

65 43 2

1

0

�
C16

�
C15

�
C14

�
C6

〈C16, 7〉

�
C12

〈C15, 6〉

�
C12

〈C14, 5〉�
C6

〈C13, 3〉

�
C12

�
C12

�
C12

�
C4

�
C4

〈C12, 3〉

〈C11, 2〉

�
C10

�
C7

�
C9

�
C6

〈C10, 7〉�
C7

�
C4

〈C9, 5〉

〈C8, 7〉

�
C4

〈C7, 6〉�
C4

〈C6, 4〉

〈C5, 3〉

�
C4

�
C4

�
C4

�
C4

〈C4, 3〉

〈C3, 2〉

〈C2, 1〉

〈C1, 0〉

Fig. 2. Example of a call tree for GenerateFrom(〈∅↓, ∅↓↑〉, 0) with data from Fig. 1

Distributed Algorithm for Computing Formal Concepts 339

computed but not processed because the canonicity test fails. The edges in the
tree are labeled by the number of attributes that are used to compute new con-
cepts, cf. (4). More details can be found in [13].

2.2 Adaptation for M/R Framework

The procedure GenerateFrom outlined in Section 2.1 uses a depth-first search
strategy to generate new formal concepts. Since GenerateFrom depends only
on its arguments, the strategy in which formal concepts are generated does not
play any significant role and can be replaced by another strategy. In our dis-
tributed algorithm, we are going to use the breadth-first search strategy. Con-
version of the algorithm from the depth-first to the breadth-first search is neces-
sary for the adaptation of CbO algorithm to the M/R framework. Moreover, the
original GenerateFrom will be split into two functions: a map function called
MapConcepts and a reduction function ReduceConcepts. The map function
will take care of generating new formal concepts and the reduce function will
take care of performing the canonicity tests. The breadth-first search strategy
is beneficial since it allows us to compute formal concepts by levels, where each
level is computed from the previous one by consecutive applications of Map-
Concepts and ReduceConcepts on formal concepts that were computed in
the previous level.

Remark 2. The adaptation for the map-reduce framework has several aspects.
First, instead of using a single recursive procedure GenerateFrom, we employ
two functions which are not recursive (i.e., they do not invoke themselves) but
serve as a mapping and a reduction functions used by the framework. Second, the
arguments to MapConcepts and ReduceConcepts, which somehow encode
the arguments of the original GenerateFrom, must be presented as key/value
pairs to ensure compatibility with the map-reduce framework. These issues will
be addressed in the sequel.

Recall that the M/R framework assumes that all values processed by MapCon-
cepts and ReduceConcepts are in the form of 〈key, value〉. In order to ensure
the input/output compatibility with the M/R framework, we are going to en-
code the arguments for MapConcepts and ReduceConcepts as follows: We
consider pairs 〈key, value〉 such that

– key is a tuple 〈B, y〉 where B is an intent of a concept 〈A, B〉 ∈ B(X, Y, I)
and y ∈ Y is an attribute;

– value is a new concept 〈C, D〉 ∈ B(X, Y, I).

The exact meaning of the key/value pair during the computation will become
apparent later. The way in which MapConcepts and ReduceConcepts com-
pute all formal concepts can be summarized by the following steps:

(1) Initially, the first formal concept 〈∅↓, ∅↓↑〉 is computed and MapConcepts
is called with the initial key/value pair 〈〈∅↓↑, 0〉, 〈∅↓, ∅↓↑〉〉 which produces

340 P. Krajca and V. Vychodil

a multiset of new key/value pairs representing new concepts. The multiset
is further reduced by ReduceConcepts by removing key/value pairs with
concepts that do not pass the canonicity test. These two steps represents the
first iteration.

(2) The MapConcepts function is applied on each key/value pair from the
previous nth iteration and the result is reduced by ReduceConcepts; the
returned key/value pairs containing formal concepts are stored as result of
the (n + 1)th iteration.

(3) If the (n + 1)th iteration produces any new concepts, the computation con-
tinues with the step (2) for the next iteration; otherwise the computation is
stopped.

In the sequel, we provide a detailed description of MapConcepts and Re-
duceConcepts.

2.3 Details on MapConcepts and ReduceConcepts

The mapping function is described in Algorithm 1. It accepts an encoded formal
concept 〈A, B〉 and iterates over all attributes that are equal or greater than y
(lines 2–7). If the attribute is not present in the intent B (line 3), it computes
a new formal concept 〈C, D〉 by extending intent B with an attribute j (lines
4 and 5). This corresponds to getting a formal concept of the form (4).

Algorithm 1: MapConcepts

Input: Pair 〈key, value〉 where key is 〈B0, y〉 and value is 〈A, B〉.
set result to ∅1

for j = y to |Y | do2

if j ∈ B then continue;3

set C to A ∩ {j}↓4

set D to C↑5

set result to result ∪ {〈〈B, j〉, 〈C, D〉〉}6

end7

return result8

Algorithm 1 computes new formal concepts that are derived from 〈A, B〉.
Notice that some of the new concepts obtained this way may be the same. In
general, a single concept may result by computing (4) multiple times during
the entire computation. To identify redundantly computed formal concepts and
to remove them, we use the same canonicity test as the ordinary CbO and
its parallel variant PCbO. In our case, the canonicity test will appear in the
reduction function. Also note that the value of B0 is not used by MapConcepts.

The ReduceConcepts function accepts an encoded tuple 〈〈B, j〉, 〈C, D〉〉
and returns a value as follows:

ReduceConcepts(〈〈B, j〉,〈C, D〉〉) =
{〈〈B, j + 1〉,〈C, D〉〉, if B ∩ Yj = D ∩ Yj ,

void-value , otherwise.

Distributed Algorithm for Computing Formal Concepts 341

Therefore, if the canonicity test is satisfied then the input pair 〈〈B, j〉, 〈C, D〉〉
is reduced to 〈〈B, j + 1〉, 〈C, D〉〉 which will be used in the next iteration.

Remark 3. (a) During the computation, each value 〈B, j〉 of key appears at most
once. Thus, we can assume that ReduceConcepts accepts only one argu-
ment instead of a set of arguments with the same key.

(b) Practical implementations of M/R frameworks have support for dealing with
void-values. In practice, the void-values are not included into the results.

(c) The process of computing formal concepts may be seen as building a tree
(e.g., as depicted in Fig. 2) by its levels as it is shown in Fig. 3.

Fig. 3. Particular iterations of the computation

Example 3. This example shows how the algorithm processes input data. As the
input dataset we use formal context described in the Fig. 1. We start with the first
iteration and create the initial value 〈〈∅, 0〉, C1〉 and continue with the first iter-
ation. In the first iteration, map function is applied only on the initial value and
generates tuples: 〈〈∅, 0〉, C2〉, 〈〈∅, 1〉, C11〉, 〈〈∅, 2〉, C13〉, 〈〈∅, 3〉, C6〉, 〈〈∅, 4〉, C14〉,
〈〈∅, 5〉, C15〉, 〈〈∅, 6〉, C16〉. In the sequel, i.e., the reduction phase, only tuples
passing the canonicity test are retained. That is, tuples 〈〈∅, 1〉, C2〉, 〈〈∅, 2〉, C11〉,
〈〈∅, 3〉, C13〉 are stored as results of the first iteration and used as input values for
the second iteration. The second iteration takes values from the first one and ap-
plies map function on them. The map function applied on 〈〈∅, 1〉, C2〉 generates
tuples: 〈〈{0}, 1〉, C3〉, 〈〈{0}, 2〉, C5〉, 〈〈{0}, 3〉, C6〉, 〈〈{0}, 4〉, C9〉, 〈〈{0}, 5〉, C7〉,
〈〈{0}, 6〉, C10〉. Similarly, the map function applied on 〈〈∅, 2〉, C11〉 returns: 〈〈{1},
2〉, C12〉, 〈〈{1}, 3〉, C4〉, 〈〈{1}, 4〉, C12〉, 〈〈{1}, 5〉, C12〉, 〈〈{1}, 6〉, C12〉, and appli-
cation of map function on 〈〈∅, 3〉, C13〉 produces: 〈〈{2}, 3〉, C6〉, 〈〈{2}, 4〉, C14〉,
〈〈{2}, 5〉, C15〉, 〈〈{2}, 6〉, C16〉. From these values only 〈〈{0}, 2〉, C3〉, 〈〈{0}, 3〉, C5〉,
〈〈{1}, 3〉, C12〉, 〈〈{2}, 5〉, C14〉, 〈〈{2}, 6〉, C15〉, 〈〈{2}, 7〉, C16〉 pass the canonicity
test and thus are stored as results of the second iteration and used in the fol-
lowing iteration. The computation continues in much the same way with the

342 P. Krajca and V. Vychodil

next iteration and stops if the reduction phase does not return any value. One
can see that the computation directly corresponds to the tree depicted in Fig. 2.
Each iteration represents one level of the tree whereas map function computes
descendant nodes and the reduce function determines which nodes should be
used in further computation.

3 Implementation and Experiments

We have implemented our algorithm as a Java application using Hadoop Core
framework [8] providing infrastructure for map-reduce computations along with
distributed file system for storing input data and results. For our experiments, we
have used cluster consisting of 15 idle desktop computers equipped with Intel Core
2 Duo (3.0 GHz) processors, 2 GB RAM, 36GB of disk space, and GNU/Linux.

We present here two sets of preliminary experiments. The first one focuses
on the total time needed to compute all formal concepts present in real-world
datasets. We selected three datasets from [9] and our repository with various
properties and measured time it took to compute all formal using cluster con-
sisting of one, five, and ten nodes. The results are depicted in the Fig. 4. For
the comparison, we have also included the running time it takes to compute all
formal concepts by the usual Ganter’s NextClosure algorithm [7].

dataset mushroom debian tags anon. web
size 8124 × 119 14315 × 475 32710 × 295

density 19 % < 1% 1%
our (1 node) 1259 1379 2935

our (5 nodes) 436 426 830
our (10 nodes) 397 366 577

NextClosure 743 1793 10115

Fig. 4. Time needed to compute all formal concepts for various datasets (in seconds)

While evaluating the distributed algorithm, besides the overall performance,
we have to take into account an important feature called scalability. In other
words, the ability to decrease the time of the computation by utilizing more
computers. In the second set of experiments we focus on this feature. To repre-
sent scalability we are using relative speedup, a ratio S = T1

Tn
, where T1 is the

time of the computation running only one computer and Tn is the time of the
computation running on n computers. The theoretical maximal speedup is equal
to the number of computers. The real speedup is always smaller than the the-
oretical one due to many factors including especially communication overhead
between particular nodes, network throughput, etc.

Fig. 5 (left) shows scalability of our algorithm for selected datasets. One can
see that for small numbers of nodes the speedup is almost linear but with the
increasing number the speedup is not so significant. In case of the mushrooms
dataset, there is even a decline of the speedup, i.e., with increasing number

Distributed Algorithm for Computing Formal Concepts 343

1

2

3

4

5

6

7

2 4 6 8 10 12 14

R
el

at
iv

e
sp

ee
du

p

Nodes (count)

annonymous web
debian tags
mushrooms

1
2
3
4
5
6
7
8
9

10
11

2 4 6 8 10 12 14

R
el

at
iv

e
sp

ee
du

p

Nodes (count)

100 attributes
150 attributes
200 attributes

Fig. 5. Relative speedup for real world datasets (left) and for contexts with various
counts of attributes (right)

of nodes, the speedup is no longer increasing. This is caused by the overhead
of distributed computation that cannot be counterweighted by utilizing more
computers. This means, the size of the cluster has to be adequate to the size of
the input data. This fact also supports Fig. 5 (right), depicting scalability of the
algorithm on randomly generated contexts consisting of 10000 objects, 100, 150,
and 200 attributes, where density of 1’s is 10%. From the figure Fig. 5 (right)
follows that with the increasing size of data the scalability grows and for the
data table of size 10000× 200 the computation on cluster consisting of 15 may
be done even 10× faster than on a single computer.

3.1 Related Works, Conclusions, and Future Research

Several parallel algorithms for computing formal concepts have been proposed.
For instance, [5], [10], or [12]. In general, parallel algorithms have a disadvantage
of requiring a hardware equipped with several processors or processor cores.
Despite the shift in hardware development toward to multicore microprocessors,
hardware configuration with large amounts (more than ten) of processor cores
are still relatively expensive and rare. Contrary to that, distributed algorithms
may run on a coupled commodity hardware. Typically, parallel programs have a
smaller overhead of the computation management than the distributed ones but
the distributed algorithms are more cost-effective (they can be run on ordinary
personal computers connected by a network). Although all mentioned algorithms
may be modified to their ad hoc distributed versions, as far as we know, there are
no distributed implementations of these algorithms. The approach introduced in
this paper should be seen as a proof of concept of computing formal concepts by
isolated nodes. We have shown that the algorithm is scalable. Therefore, there
is a potential to apply techniques of formal concept analysis for much larger
data sets than previously indicated. Our future research will focus on improving
the algorithm by employing more efficient canonicity tests and providing a more
efficient implementation. Furthermore, we intend to test the behavior of the
algorithm on larger data sets and with larger amount of nodes.

344 P. Krajca and V. Vychodil

References

1. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. Journal of Computer and System Sciences
(to appear)

2. Berry, A., Bordat, J.-P., Sigayret, A.: A local approach to concept generation.
Annals of Mathematics and Artificial Intelligence 49, 117–136 (2007)

3. Carpineto, C., Romano, G.: Concept data analysis. Theory and applications. J.
Wiley, Chichester (2004)

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Fu, H., Nguifo, E.M.: A parallel algorithm to generate formal concepts for large
data. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 394–401.
Springer, Heidelberg (2004)

6. Ganter, B.: Two basic algorithms in concept analysis (Technical Report FB4-
Preprint No. 831). TH Darmstadt (1984)

7. Ganter, B., Wille, R.: Formal concept analysis. Mathematical foundations.
Springer, Berlin (1999)

8. Hadoop Core Framework, http://hadoop.apache.org/
9. Hettich, S., Bay, S.D.: The UCI KDD Archive University of California, Irvine,

School of Information and Computer Sciences (1999)
10. Kengue, J.F.D., Valtchev, P., Djamegni, C.T.: A parallel algorithm for lattice con-

struction. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403,
pp. 249–264. Springer, Heidelberg (2005)

11. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 335–346. Springer, Heidelberg (2006)

12. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In:
Belohlavek, R., Kuznetsov, S.O. (eds.) Proc. CLA 2008, vol. 433, pp. 71–82. CEUR
WS (2008) ISBN 978–80–244–2111–7

13. Krajca, P., Outrata, J., Vychodil, V.: Parallel Algorithm for Computing Fixpoints
of Galois Connections. Annals of Mathematics and Artificial Intelligence (submit-
ted)

14. Kuznetsov, S.: Interpretation on graphs and complexity characteristics of a
search for specific patterns. Automatic Documentation and Mathematical Linguis-
tics 24(1), 37–45 (1989)

15. Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a fi-
nite semi-lattice (Bystry�i algoritm postroeni� vseh pereseqeni�i ob�ektov
iz koneqno�i polurexetki, in Russian). Automatic Documentation and Mathe-
matical Linguistics 27(5), 11–21 (1993)

16. Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative
examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704,
pp. 384–391. Springer, Heidelberg (1999)

17. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating
concept lattices. J. Exp. Theor. Artif. Int. 14, 189–216 (2002)

18. Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures —-
Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, Aachen (2000)

19. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Ordered Sets, Dordrecht, Boston, pp. 445–470 (1982)

http://hadoop.apache.org/

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 345–356, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Multi-Optimisation Consensus Clustering

Jian Li, Stephen Swift, and Xiaohui Liu

School of Information Systems, Computing and Mathematics,
Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

{Jian.Li,Stephen.Swift,Xiaohui.Liu}@brunel.ac.uk

Abstract. Ensemble Clustering has been developed to provide an alternative way
of obtaining more stable and accurate clustering results. It aims to avoid the biases
of individual clustering algorithms. However, it is still a challenge to develop an
efficient and robust method for Ensemble Clustering. Based on an existing
ensemble clustering method, Consensus Clustering (CC), this paper introduces an
advanced Consensus Clustering algorithm called Multi-Optimisation Consensus
Clustering (MOCC), which utilises an optimised Agreement Separation criterion
and a Multi-Optimisation framework to improve the performance of CC. Fifteen
different data sets are used for evaluating the performance of MOCC. The results
reveal that MOCC can generate more accurate clustering results than the original
CC algorithm.

Keywords: Consensus Clustering, Simulated Annealing, Multi-optimisation.

1 Introduction

Ensemble Clustering has been suggested to tackle the biases of individual clustering
methods [6], [8]. Its aim is to combine the results of a number of clustering algorithms
to improve its clustering accurate [4], [5], [6], [7], [8]. The Consensus Clustering (CC)
algorithm, developed by Swift et al. [1], is one of the existing ensemble clustering
approaches. Hirsch et al. [2] compared CC with six different ensemble clustering
methods developed by Hornik [3]. The results showed that CC achieved comparable or
even better performance than those six ensemble methods.

However, to develop an effective method for ensemble clustering is still a
challenge. We take Consensus Clustering as an example. CC seeks for the optimised
results by only maximising the agreement fitness, which is calculated by a function
that combines the input base clustering arrangements. This function depends fully on
the input base clustering, so that the final results would be bad if many of the input
base clustering had low accuracies. This leads to the following question: would it be
beneficial if the candidate clustering solutions were evaluated not only by the
agreement fitness during the evaluation process of CC but also by the internal
clustering characteristics of data sets?

Over the past several years, extensive studies have been conducted in the area of
multi-objective optimisation and clustering methods. Based on the experience of
developing multi-objective optimisation methods, we present an advanced consensus

346 J. Li, S. Swift, and X. Liu

clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which
evaluates not only the agreement fitness but also the internal clustering characteristics of
data sets to enhance the clustering accuracy of CC. First of all, MOCC exploits an
optimised agreement separation criterion to produce a Weighted Agreement Matrix
(WAM). And then a Probability Based Solution Generator (PBSG) is developed to
create candidate solutions. Based on the WAM and PBSG, finally, a Multi-Optimisation
structure is adopted to produce final results. We demonstrated MOCC on fifteen
different data sets and compared it with the original CC algorithm. The results reveal
that MOCC performs clearly better than CC.

This paper is organised as follows: Section 2 describes the related work. Section 3
details the framework of the MOCC algorithm. The data sets are presented in Section 4,
followed by the experimental results and discussion in Section 5. Finally in Section 6,
we draw conclusions and discuss future work.

2 Related Works

2.1 Consensus Clustering

Consensus Clustering (CC) is an optimisation based ensemble clustering method [1].
The Agreement Matrix, the Simulated Annealing Optimisation Section (SAOS) and the
Agreement Fitness Function (AFF) are key components of CC. The Agreement Matrix,
A, is built based on a clustering arrangement matrix constructed by the results of a set of
individual clustering algorithms. Each element, Aij, indicates how many individual
algorithms agree instances i and j to be assigned into the same cluster. The Simulated
Annealing (SA) algorithm is applied to generate the final clustering results. The AFF is
utilised by SA as the only evaluation criterion for the optimisation search, which causes
the final results of CC depending heavily on the accuracy of input results.

Within the AFF, the agreement threshold β is the key parameter, which directly
affects the behaviour of the optimisation search. CC recommends β to be the mean of
the maximum and minimum values in A. However, in some cases, this agreement
threshold does not perform well. In order to solve these limitations in CC, we use
multi-optimisation framework for the optimisation search, and exploit a comparative
optimal agreement separation value to optimise β. The more detailed description of the
CC algorithm can be found in [1].

2.2 Separation Score Evaluation Criterion

The Homogeneity and Separation criterion, which proposed by Shamir and Sharan, is
one of the widely-applied cluster validation indices [10]. Homogeneity and Separation
are relative to each other. Homogeneity is defined as the average distance between each
pattern and the centre of the cluster the pattern belongs to. It reflects the inside
compactness of clusters. Separation is defined as the weighted average distance
between cluster centres. It reflects the outside distance between clusters. Increasing the
Separation score or decreasing the Homogeneity score suggests an improvement in the
clustering results [10]. According to above characteristics of Homogeneity and

 Multi-Optimisation Consensus Clustering 347

Separation and the cost of computation, we adopt Separation Score to evaluate the
intrinsic clustering characteristics for the optimisation search in MOCC. Equation (1)
displays the way of calculating the Separation Score S. ∑ ,∑ (1)

 indicates the number of instances in the ith cluster. The D(Centi,Centj) is the
distance function that calculates the distance between two cluster centres Centi and
Centj. Euclidean Distance is adopted in the MOCC algorithm.

2.3 Weighted Kappa Index

The Weighted-Kappa (WK) [12] index was employed by Swift et al. [1] and Hirsch
et al. [2] to validate the accuracy of clustering results. The WK score denotes the
similarity (or agreement) between a candidate clustering solution and the true
clustering arrangement. In this paper, we also use this evaluation index to indicate the
clustering accuracy.

WK constructs a (2x2) contingency table to measure the similarity between two
arrangements [12]. All unique pairs of instances will be counted in this table. The total
number of unique pairs for n instances is n(n-1)/2.

The value of WK is between 1.0 (which means these two clustering arrangements
are the same) and -1.0 (which means the two clustering arrangements are totally
different). Two totally random clustering arrangements should have a score of zero.
Further details of WK can be found in [12].

2.4 Correlation Index

Maximising the value of the objective function to seek for more accurate clustering
results (i.e. the results have higher WK scores) is the basic idea of CC and MOCC.
Therefore the correlation of the function value and the WK score is meaningful for CC
and MOCC (the correlation definitions of CC and MOCC are described in Section 5.2,
and they are different from each other). In this paper, we employ the Pearson
Product-Moment Correlation Coefficient (PMCC) [11] to evaluate the correlation.
PMCC denotes the degree of the linear correlation between two variables. The range of
its values is from -1 to +1; where -1 means these two variables have totally opposite
linear correlation, +1 indicates the two variables have the best positive linear
correlation [11]. For CC and MOCC, we expect the PMCC value to be as close to +1 as
possible.

3 Multi-Optimisation Consensus Clustering (MOCC)

The MOCC algorithm consists of four key components, which are the weighted
agreement matrix, the fitness function, the probability based solution generator, and the
multi-optimisation section. The details of each component are described as follows.

348 J. Li, S. Swift, and X. Liu

3.1 The Weighted Agreement Matrix and the Agreement Fitness Function

The weighted agreement matrix is generated by the agreement threshold β and the
agreement matrix A. The β is used to evaluate the agreement of clustering each pair of
instances. It rewards (or penalizes) a clustering that has an agreement value above (or
below) the threshold. MOCC redefines the agreement threshold by equation (2), where
the optimised agreement separation is 0.6 (the original value is 0.5). The details of the
experiments and analysis of how 0.6 was derived are described in Section 5.1. Max(A)
and Min(A) indicate the maximal agreement value and the minimal agreement value
respectively in the agreement matrix A. 0.6 (2)

 (3)

Equation (3) shows the definition of the weighted agreement matrix A'. It means that
the A' is given by subtracting β from each element of A. The leading diagonal elements
of A' will never be used, and we set them to be zeros.

The agreement fitness function is shown as equation (5), where f'(Ci) is defined by
equation (4).

, 10, (4)

 (5)

The function f'(Ci) calculates the agreement fitness of the ith cluster of the clustering
arrangement C. The variable m is the number of clusters in C. Each indicates

the corresponding weighted agreement value, which related to the instances k and q in
the ith cluster Ci, in the weighted agreement matrix A'. The variable denotes the size
of the ith cluster (i.e. the number of instances in the ith cluster).

3.2 The Probability Based Solution Generator

In the original CC algorithm, the solution generator has three different operators, which
are Move (moving an instance form one cluster to another cluster), Merge (merging
two random clusters to be one cluster), and Split (splitting one cluster to be two
clusters) [1]. Each of these three operators is randomly chosen to generate a clustering
solution (i.e. each operator can be chosen with an equal probability).

The proposed MOCC algorithm also adopts these three operators for the solution
generator but with different probabilities. The purpose of the Move operator is to find
better solutions by estimating the neighbours of current solutions. The Merge and Split
operators are used for avoiding results to be stuck at local maximums. The total
probability of these three operators is 1. We set the operation probability of Move to be
80%, Merge to be 10% and Split to be 10%.

 Multi-Optimisation Consensus Clustering 349

The Simulated Annealing algorithm in CC starts from a random clustering solution
to seek for the optimal solution. For analysing high-dimensional data sets, it might cost
much time to get convergence if the random solutions were very bad. Therefore we
adopt a well-known clustering algorithm, K-means, to generate initial solutions for SA
in MOCC. The number of clusters for K-means can be roughly inferred from the input
clustering matrix. In general, the adoption of K-means aims to keep the quality of initial
solutions at a relative good level.

3.3 The Multi-Optimisation Section

MOCC implements SA to generate more accurate clustering results by a
multi-optimisation framework. This framework integrates the Agreement Fitness
Evaluation (AFE) with the Clustering Quality Evaluation (CQE) to evaluate solutions
during the optimisation search of SA. The purpose of the AFE is to seek for the
solutions that have the maximal agreement fitness. The CQE uses Separation Score
(SS) as a criterion to evaluate the clustering quality. With the same number of clusters,
the value of SS is expected to be as high as possible. During the optimisation search of
SA, candidate solutions will be accepted if they are eligible for both criteria otherwise
will be discarded by a probability based on the annealing temperature.

Table 1. The MOCC algorithm

Input: The maximal number of clusters, K; A matrix of results of a set of input methods,
Matr; Original Data set Matrix, X; Initial Temperature, T0; Number of Iterations, Iter;
Cooling Rate, cool.

(1) Construct the Agreement Matrix, A
(2) Setup the agreement threshold β according to Equation (2)
(3) Generate the weighted agreement matrix A'
(4) Use the K-means algorithm to generate the initial clustering arrangement C for SA
(5) Calculate the Separation score, S, according to Equation (1)
(6) Calculate the Agreement Fitness function (according to Equation (5)) to get f.
(7) Ti= T0
(8) For i = 1 to Iter
(9) Use Solution Generator to produce a new arrangement Cnew
(10) Re-calculate Equation (5) to get a value fnew; and re-calculate Equation (1) to get a

value Snew
(11) If fnew < f or Snew < S
(12) Calculate probability p: {If fnew < f , p= exp[(fnew -f)/Ti];
(13) Else, p= exp[(Snew - S)/Ti].
(14) End If }
(15) If p > random(0,1)
(16) Accept the new clustering arrangement.
(17) End If
(18) Else
(19) Accept the new clustering arrangement.
(20) End If
(21) Ti= cool × Ti
(22) End For

Output: An optimised clustering arrangement.

350 J. Li, S. Swift, and X. Liu

The structure of the multi-optimisation framework is described in Table 1 from Step
9 to Step 20. Firstly, a new candidate solution Cnew is generated by the solution
generator. Secondly, the new agreement fitness fnew and the new separation score Snew
are calculated for Cnew. After that, we compare fnew and Snew with the previous
agreement fitness f and separation score S respectively. If fnew<f and Snew>S, the
acceptance probability p of Cnew is calculated according to Step 12; if fnew>f and Snew<S,
p is calculated according to Step 13; if fnew<f and Snew<S, p can be calculated either
according to Step 12 or Step 13. Finally, the new candidate solution Cnew will be
accepted based on the p. However, if fnew>f and Snew>S, Cnew will be accepted
unconditionally.

The profile of the MOCC algorithm is described in Table 1. First of all, a weighted
agreement matrix A' is generated based on the Agreement Matrix A and the agreement
threshold β (Step 1-3). And then an initial clustering arrangement C is produced for SA
(Step 4). After that, the agreement fitness f and the separation score S are calculated for
C according to equations (5) and (1) respectively (Step 5-6). Finally, SA uses
Probability Based Solution Generator to obtain new candidate arrangements, and
implements the multi-optimisation framework to seek for an optimal clustering
arrangement (Step 7-22).

4 Experimental Data Sets

We evaluate our method, MOCC, against 15 different data sets. Since we not only
compare the performance between MOCC and CC but also observe the performance of
MOCC and CC between different data sets, the sizes of these data sets have been made
to be approximately the same. We chose about 100 instances from each of the original
data sets. The value of 100 was chosen as it is not too trivially small, but small enough
to allow the large number of experiments run in this paper to complete in a feasible
amount of time. For some of the data sets, the instances were randomly chosen from the
corresponding original data sets. Some of the data sets were simply formed by the first
100 instances in the original data sets. Because of the stochastic nature of the MOCC
and CC methods, we run these methods 10 times, and look at the average performance.

Ten of these data sets, which are Ecoli, Glass, Iris, Lung Cancer, Poker Hand,
Soybean, WDBC, Wine, Yeast_2 and Zoo, were downloaded from the UCI Machine
Learning Repository database. The information of these experimental data sets is
presented in Table 2. The details of the original data sets can be found from the UCI
website: (http://archive.ics.uci.edu/ml/datasets.html).

The other five data sets are ASC, Malaria, Normal, VAR and Yeast. The ASC
(Amersham Score Card) was introduced and used in [1]. It is a set of multiply repeated
control element spots, which using the Amersham Score Card to probe on the Human
Gene clone set arrays of Human Genome Mapping Project [1]. This data set has 108
genes/probe elements, which are clustered into 15 clusters. The Malaria microarray
data set [9] has fourteen clusters where the genes have the same function within each
cluster and different functions between clusters. We choose the first one hundred
instances for our experiments. VAR (Vector Auto-Regressive) [14] is a synthetic data
set which was obtained from a vector autoregressive process [15]. The total number of

 Multi-Optimisation Consensus Clustering 351

Table 2. Fifteen different data sets

Data Sets Instances Chosen from the
Original Data Sets

Number of
Instances

Number of
Attributes

Number of
Clusters

ASC 1 - 108 108 23 15
Ecoli CP(1-12); IM(1-12);

PP(1-12); and all instances
of the rest clusters

100 7 8

Glass 1-16; 71-86; 147-214 100 9 6
Iris 26 - 125 100 4 3

Lung Cancer 1-32; deleted the attributes
with “?”

32 54 3

Malaria 1 - 100 100 48 12
Normal 1 - 100 100 20 14

Poker Hand 1 - 100 100 10 8
Soybean 1-30; 71-140 100 35 7

VAR 1 - 100 100 30 14
WDBC 51 - 150 100 30 2
Wine 51 - 150 100 13 3
Yeast 1-20; 68-97; 203-222;

278-297; 330-349
100 17 5

Yeast_2 1 - 100 100 8 8
Zoo 1 - 101 101 16 7

clusters is 60. In each cluster, the number of instances varies from 1 to 60. In this paper,
we choose the first one hundred instances of the VAR data set for our experiments. The
Normal data set has the same cluster structure as the VAR data set. The difference is
that Normal is generated from multivariate normal distribution. The Yeast data set was
used in [13]. We choose the first twenty instances from each cluster in the original data
set to form the experimental data set. The information of these five data sets is also
presented in Table 2.

5 Results and Discussion

5.1 Optimising Agreement Separation for the Agreement Threshold β

According to the definition of the agreement threshold β in equation (2), it is clear that
the Max(A) and Min(A) are constants for a specific agreement matrix. The β is
therefore only affected by the agreement separation. In order to seek for a comparative
optimal agreement separation, we use fifteen data sets to test CC on a number of
different agreement separations. The numerical range of the agreement separation is
between 0 and 1 (the values 0 and 1 are not included because they have no meaning for
β), consequently we analyse a series of agreement separations that varies from 0.1 to
0.9 in steps of 0.1.

The nine agreement separations were tested on fifteen data sets (described in Section 4).
We use WK to indicate the clustering accuracy, and the results are illustrated in Fig. 1(a).
The solid line with two arrows indicates the range between maximal and minimal WK
scores for each agreement separation. The broken line links the mean WK scores for the

352 J. Li, S. Swift, and X. Liu

nine agreement separations. We can see that the agreement separation 0.6 has the highest
mean WK score. In addition, PMCC is used to indicate the Fitness-WK correlation for
these separations. The mean Fitness-WK correlation values (linked by a broken line) are
displayed in Fig. 1(b). It is clear that the agreement separation 0.4 has the highest mean
Fitness-WK correlation. By comparing Fig. 1 (a) and (b), we note that the separation 0.4
has a much lower mean WK score than 0.6, 0.7 and 0.8, but the mean Fitness-WK
correlation of the separation 0.6 is only slightly lower than the one of 0.4. Therefore, 0.6
seems to be a good agreement separation.

Fig. 1. (a) The WK comparison of nine different agreement separations tested on fifteen data
sets; (b) The Fitness-WK correlation comparison of nine different agreement separations tested
on fifteen data sets.

In order to validate the inference further, we analyse the distribution of WK scores
for each agreement separation. According to the definition of WK, the agreement of
two clustering arrangements is almost perfect when the WK score is greater than 0.8
and very poor when the WK score is less than 0.2 [12]. Therefore we count and
compare the numbers of WK scores, which are between 0.2 and 0.8, for each
separation. Based on Fig. 1(a), the numbers of WK scores between 0.2 and 0.8 for
different separations are listed in Table 3. The corresponding mean WK scores (which
are different from those in Fig. 1(a)) are illustrated in Fig. 2. It is apparent that the
agreement separation 0.6 still has the highest mean WK score, which shows that 0.6 is
an ideal separation.

Table 3. Number of WK scores between 0.2 and 0.8 for each of the nine separations

Agreement Separation 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of WK Scores

Between 0.2 and 0.8
0 4 7 9 8 9 7 10 9

5.2 Results and Comparison between CC and MOCC

CC was compared with a number of ensemble clustering methods implemented within
the Clue [3] R package in [2]. Therefore, within this paper, we will compare our novel
method, MOCC, against CC only, to simplify the number of experiments being

-0.2
0

0.2
0.4
0.6
0.8

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

W
K

Agreement Separation
(a)

-1
-0.5

0
0.5

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

C
or

re
la

tio
n

Agreement Separation
(b)

 Multi-Optimisation Consensus Clustering 353

Fig. 2. The comparison of mean WK scores that corresponding to Table 3

evaluated. The experiments were achieved by testing both CC and MOCC on each of the
fifteen data sets respectively. Eight individual clustering algorithms were chosen to
generate input clustering matrixes for CC and MOCC. The eight clustering algorithms
are listed as follows: PAM (Correlation); PAM (Euclidean); Affinity Propagation
(Correlation); Affinity Propagation (Euclidean); Hierarchical (Average, Correlation);
Hierarchical (Average, Euclidean); Hierarchical (Complete, Correlation); Hierarchical
(Complete, Euclidean). The Number of Clusters, which is one of the parameters of these
algorithms, is set according to Table 2. For the CC and MOCC algorithms, we do not
need to set the number of clusters as an input parameter. We analyse the experimental
results and compare the performance between MOCC and CC in two aspects.

Firstly, we look at the accuracy of the clustering results. We still use WK to evaluate
the clustering accuracy. Fig. 3 displays the WK score comparison between CC and
MOCC. In general, we can say MOCC generated better results than CC (especially for
the WDBC and Zoo). We take WDBC as an example, the WK score of CC is zero (it
means the result has no agreement related to the true clustering arrangement), but
MOCC has a score that is over 0.6 (it means the result has a good agreement with the
true clustering arrangement). The reason may be the WDBC has a very small number of
clusters (2 clusters) but with a very high number of attributes (30 attributes). For the
Poker Hand data set, it is interesting to observe that both MOCC and CC have very low
WK scores, which means this data set is not suitable for clustering analysis. In order to
highlight the overall difference of WK scores between CC and MOCC, we calculated
the mean values of WK, which displayed in Fig. 5 (a). It is clear that MOCC has a better
mean WK score than CC.

Fig. 3. The WK scores comparison of the results between CC and MOCC tested on fifteen
different data sets

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n
W

K

B
et

w
ee

n
0.

2
an

d
0.

8
Agreement Separation

0
0.2
0.4
0.6
0.8

1

W
K

The Fifteen Different Data Sets

CC

MOCC

354 J. Li, S. Swift, and X. Liu

Fig. 4. The correlation comparison of the results between CC and MOCC tested on fifteen
different data sets

Fig. 5. (a) The comparison between CC and MOCC by the mean WK of the fifteen different data
sets; (b) The comparison between CC and MOCC by the mean correlation of the fifteen different
data sets.

Secondly, we use PMCC to evaluate the correlation between the WK score and the
value of the objective function. The correlation is expected to be as high as possible so
that the algorithm can generate more accurate (higher WK scores) results when
maximising the value of the objective function. For CC, the objective function value is
the agreement fitness value. For MOCC, we define the objective function value to be
the sum of the agreement fitness and the separation score. Fig. 4 illustrates the
correlation comparison between CC and MOCC. It is clear that MOCC and CC have
similar correlation scores for most of the data sets. However, when we compare Fig. 4
with Fig. 3, it is interesting to see that MOCC has better WK scores than CC if it has
higher correlation scores, and MOCC still has better WK scores even its correlation
scores are lower than CC for some data sets such as Iris, and Lung Cancer. It means
MOCC performed better than CC. For the WDBC data set, Fig. 4 explains why MOCC
has a much higher WK score than CC. We also calculated the mean correlation values
of CC and MOCC. In Fig. 5 (b), it is apparent that the mean correlation value of MOCC
is higher than CC’s.

Following the above results and discussion, it is clear that MOCC is more robust
than CC in general. In addition, the most important difference between the two
algorithms is that MOCC is not only seeking for the solutions with high Agreement
Fitness, but also impelling the results as close to the true clustering arrangement as
possible by the multi-optimisation framework.

-0.5
0

0.5
1

C
or

re
la

tio
n

The Fifteen Different Data Sets

CC

MOCC

M
ea

n
W

K

(a)

M
ea

n
C

or
re

la
tio

n

(b)

 Multi-Optimisation Consensus Clustering 355

6 Conclusions

We have presented a novel Consensus Clustering framework called MOCC, which uses
an optimised Agreement Separation and a Multi-Optimisation structure to enhance the
ensemble clustering accuracy. Within the Multi-Optimisation structure, a Probability
Based Solution Generator is developed to ameliorate the performance of global
optimising. The results show that MOCC has better stability of clustering and performs
clearly better than original CC.

MOCC combines the Separation Score (SS) index with the Agreement Fitness
Evaluation (AFE) for the Multi-Optimisation structure, but the combination is not
limited to the SS index. This paper displays the promising preliminary results, and
opens up many further research opportunities. For example, to combine other
appropriate clustering validity evaluation indexes with the AFE would be a good way
forward for further research.

In addition, the purpose of multi-optimisation framework in MOCC is similar to the
function of the Multi-Objective Simulated Annealing (MOSA) [16] algorithm, which
aims to generate global optimal results by optimising multiple objectives. We will,
therefore, further explore these two multi-optimisation structures to see whether we can
benefit from MOSA.

References

1. Swift, S., Tucker, A., Vincotti, V., Martin, N., Orengo, C., Liu, X., Kellam, P.: Consensus
Clustering and Functional Interpretation of Gene-Expression Data. Genome Biology 5(11),
R94.1–R94.16 (2004)

2. Hirsch, M., Swift, S., Liu, X.: Optimal Search Space for Clustering Gene Expression Data
Via Consensus. Journal of Computational Biology 14(10), 1327–1341 (2007)

3. Hornik, K.: A Clue for Cluster Ensembles. Journal of Statistical Software 14(12) (2005),
http://www.jstatsoft.org/v14/i12/

4. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing
Surveys 31(3), 264–323 (1999)

5. Lv, T., Huang, S., Zhang, X., Wang, Z.: Combining Multiple Clustering Methods Based on
Core Group. In: Second International Conference on Semantics, Knowledge, and Grid
(SKG 2006), p. 29 (2006)

6. Strehl, A., Ghosh, J.: Cluster Ensembles — a Knowledge Reuse Framework for Combining
Multiple Partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

7. Berkhin, P.: Survey of clustering data mining techniques. Technical Report, Accrue
Software (2002)

8. Topchy, A., Jain, A.K., Punch, W.: Clustering Ensembles: Models of Consensus and Weak
Partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12),
1866–1881 (2005)

9. Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E.D., Zhu, J., DeRisi, J.L.: The
Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium Falciparum.
PLoS Biology 1, 85–100 (2003)

10. Chen, G., Banerjee, N., Jaradat, S.A., Tanaka, T.S., Ko, M.S.H., Zhang, M.Q.: Evaluation
and Comparison of Clustering Algorithms in Analyzing ES Cell Gene Expression Data.
Statistica Sinica 12, 241–262 (2002)

356 J. Li, S. Swift, and X. Liu

11. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 7th edn., pp. 175–178. Iowa State
Press, Ames (1980)

12. Viera, A.J., Garrett, J.M.: Understanding Interobserver Agreement: the Kappa Statistic.
Fam. Med. 37, 360–363 (2005)

13. Yeung, K.Y., Ruzzo, W.L.: Principal Component Analysis for Clustering Gene Expression
Data. Bioinformatics 17(9), 763–774 (2001)

14. Lütkepohl, H.: New Introduction to Multiple Time Series Analysis, 1st edn., p. 49 (2007)
ISBN:978-3-540-26239-8

15. Sims, C.A.: Macroeconomics and Reality. Econometrica, 1–48 (1980)
16. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A Simulated Annealing based

Multi-objective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary
Computation 12(3), 269–283 (2008)

Improving Time Series Forecasting by
Discovering Frequent Episodes in Sequences

Francisco Mart́ınez-Álvarez1, Alicia Troncoso1, and José C. Riquelme2

1 Area of Computer Science, Pablo de Olavide University of Seville, Spain
{fmaralv,ali}@upo.es

2 Department of Computer Science, University of Seville, Spain
riquelme@lsi.us.es

Abstract. This work aims to improve an existing time series forecast-
ing algorithm –LBF– by the application of frequent episodes techniques
as a complementary step to the model. When real-world time series are
forecasted, there exist many samples whose values may be specially unex-
pected. By the combination of frequent episodes and the LBF algorithm,
the new procedure does not make better predictions over these outliers
but, on the contrary, it is able to predict the apparition of such atypical
samples with a great accuracy. In short, this work shows how to detect
the occurrence of anomalous samples in time series improving, thus, the
general forecasting scheme. Moreover, this hybrid approach has been suc-
cessfully tested on electricity-related time series.

Keywords: Time series, forecasting, outliers.

1 Introduction

This work provides a new methodology to forecast time series and, in addition,
to predict the apparition of outliers. The analysis of temporal data and the
forecast of future values of time series are among the most important problems
that data analysts face in many fields, ranging from finance and economics,
to production operations management or telecommunications. A forecast is a
prediction of some future events.

The proposed approach is specifically framed in electricity prices time series
forecasting, which is a difficult task due to the nonconstant mean and variance
and significant outliers typically present in these series.

Thus, the combination of two different techniques are proposed to fulfill this
goal. The first one is a general-purpose forecasting algorithm introduced in [9],
called LBF. The authors obtained a previous labeling of the elements forming
the time series by means of clustering techniques. The forecasting process was
performed by using just the information provided by the clustering. Thus, the
values of the elements in datasets were discretized and, as a result, the sequence
of real values was transformed in a sequence of discrete values or labels. These
labels were used to predict the future behavior of the time series, avoiding the

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 357–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

358 F. Mart́ınez-Álvarez, A. Troncoso, and J.C. Riquelme

use of the real values until the last step of the process. The results returned by
the algorithm, however, were not labels but the real values.

The algorithm introduced in [10] is inserted in the general scheme of fore-
casting with the aim of dealing with the presence of outliers. Concretely, they
proposed an algorithm called Q-epiMiner that was, in fact, an improvement of
the well-known serial episodes [8]. The main achievement of the Q-epiMiner al-
gorithm was to characterize sequences of similar behavior over all occurrences,
as well as providing a tree structure to organize these sequences.

Therefore, the discovery of frequent episodes is used in order to determine
possible candidates to be outliers when using the LBF algorithm to forecast time
series. The general outline of the new proposed approach is shown in Fig. 1.

Discretization

(discrete values)

Time series

(real values)

Frequent episodes

(special sequences)

Forecasting

process

Technique in [9] Technique in [9]Technique in [10]

Fig. 1. General outline of the proposed methodology

The rest of the paper is organized as follows. The latest works related to time
series forecasting and discovery of outliers are gathered in Section 2. Section 3
presents a brief explanation of the two existing and used algorithms in which
the new approach is based on. Section 4 introduces the proposed methodology,
showing how the two existing techniques are combined in order to improve the
forecasting process. Section 5 shows the results obtained for the electric energy
market of Spain for the year 2006, including measures of the quality of them.
Finally, Section 6 summarizes the main conclusions achieved and provides clues
for future work.

2 Related Work

Regarding to time series forecasting, two mixed models were proposed to obtain
the forecasting of the prices for two different prediction horizons in [3]. The first
one forecasted electricity prices for each of the 24 hours of the next day using
ARIMA models, while the second model computed the predictions by using
Bayesian information criteria.

A modification of the nearest neighbors methodology was proposed in [13].
To be precise, the approach presented a simple technique to forecast next-day
electricity market prices based on the weighted nearest neighbors methodology.

Li et al. proposed a forecasting system immersed in a grid environment in
[6]. In this paper, a fuzzy inference system –adopted due to its transparency and
interpretability– and time series methods were proposed for day-ahead electricity
price forecasting.

The authors in [12] proposed an artificial neural network-based approach to
forecast the energy price in the Spanish market. Thus, a novel training method

Improving Time Series Forecasting by Discovering Frequent Episodes 359

was presented and applied to the multilayer perceptron in order to improve the
forecasting process.

The apparition of outliers in time series has also been widely discussed in
the literature. Thus, the authors in [1] proposed a technique to detect outliers in
data whose generation was difficult to model. They assumed that the correlation
among data close in time is higher than those farther apart.

Another method for detecting outliers was proposed in [7], in which the au-
thors considered two different sources of outliers –additive and innovation– in
autorregressive moving-average time series. Concretely, they proposed the ap-
plication of two different procedures associated to each source simultaneous and
coherently.

The occurrence of spike prices (prices significantly higher than the expected
value, i. e., outliers) is an usual feature associated with electricity prices-related
time series. With the aim of dealing with this peculiarity, the authors in [14]
proposed a data mining framework based on both support vector machines and
probability classifiers.

The work described in [5] searched for patterns in electricity prices data in
order to verify how the outliers may modify the behavior of such prices. To fulfill
this goal, they used Box and Jenkins models, Discrete Fourier Transform series
smoothing and GARCH approaches.

Also, the work in [4] discussed the use of the fractal theory to forecast the
electricity price time series. For this purpose, a forecasting model based on im-
proved fractal was built and solved to forecast short–term electricity price time
series.

3 Fundamentals

The proposed approach is a combination of two existing techniques. Thus, this
section provides the mathematical fundamentals underlying to both LBF (Sub-
section 3.1) and Q-epiMiner algorithms (Subsection 3.2). A more detailed expla-
nation can be found in [9] and [10], respectively.

3.1 Time Series Forecasting: The LBF Algorithm

The LBF algorithm was initially presented in [9]. Given the hourly prices
recorded in the past, up to day d, the forecasting problem aims to predict the
24 hourly prices corresponding to day d+1.

Let Pi ∈ R24 be a vector composed of the 24 hourly energy prices correspond-
ing to a certain day i

Pi = [p1, p2, . . . , p24] . (1)

Let Li be the label of the prices of the day i obtained as a previous step to the
forecasting by using a clustering technique. Let Si

W the subsequence of labels of
the prices of the W consecutive days, from day i backward, as follows:

Si
W = [Li−W+1, Li−W+2, . . . , Li−1, Li] (2)

where the length of the window, W , is a parameter to be determined.

360 F. Mart́ınez-Álvarez, A. Troncoso, and J.C. Riquelme

The LBF algorithm first searches for the subsequences of labels which are
exactly equals to Sd

W in the data base, providing the equal subsequences set,
ES, defined by the equation,

ES =
{

set of indexes j such that Sj
W = Sd

W

}
(3)

In case of not finding any subsequence in data base equal to Sd
W , the procedure

searches for the subsequences of labels which are exactly equals to Sd
W−1. That

is, the length of the window composed of the subsequence of labels is decreased.
According to the LBF approach, the 24 hourly prices of day d+1 are predicted

by averaged the prices of the days succeeding those in ES. That is,

Pd+1 =
1

size(ES)
·

∑
j∈ES

Pj+1 (4)

where size(ES) is the number of elements belonging to the set ES. Afterwards,
LBF algorithm outputs need to be de-normalized to generate the desired fore-
casted values.

When the horizon of prediction is greater than one day, the following tasks
have to be carried out. First of all, the real values of the predicted sample are
linked to the whole dataset. Second, the clustering process is repeated with the
enlarged dataset and, finally, the window size is re-calculated and the prediction
step is performed.

3.2 Frequent Episodes in Sequences: The Q-epiMiner

The algorithm introduced in [10] analyzes data events or sequences in order to
find episodes. Formally, a sequence is an ordered list of events, where an event
is identified by the pair ev =< date, eventType >. The ordered occurrence of
events is called serial episode and represented by:

E = [ev1, ev2, ..., evn] = [< d1, t1 >, < d2, t2 >, ..., < dn, tn >] (5)

where n is the number of events forming an episode.
Thus, the algorithm is able to handle with three time constraints, provided as

input data: the minimum time span between two events or gapmin, the maximum
time span between two events or gapmax and the maximum time span between
the beginning and the end of an episode or windowSize. In this way, an episode
has to simultaneously satisfy three constraints: the gapmin has to be greater
or equal to a given threshold, the gapmax has to be lesser or equal to a given
threshold and the windowSize has to be lesser or equal to a given threshold.
The thresholds are set depending on the requirements of the application.

The rules used in the algorithm are computed where the antecedent is a se-
rial episode and the consequent contains only one event type. Then, a list of the

Improving Time Series Forecasting by Discovering Frequent Episodes 361

positions in the data sequence LE of a particular episode is built. Concretely,
the list contains the time stamps associated with the events comprised in the
episode and they are sorted by increasing values.

The next step consists in evaluating the whole sequence of events and the LE .
From this evaluation, the algorithm provides a set of tuples < ev, Lev >, where
Lev is the list of locations of the event occurrences and ev is an event of the
episode E.

Finally, the standard prefix-based strategy [2] is used for the overall enumer-
ation since it fits well with both episodes extraction and the use of the sorted
lists. In other words, an episode is used as a prefix and expanded in order to
obtain new episodes.

4 Methodology

This section explains the methodology proposed to improve the forecasting pro-
cess provided by the LBF algorithm. The discovery of frequent episodes is in-
cluded in the aforementioned algorithm as a crucial step for outliers detection.

Thus, the proposed methodology is divided into two phases clearly differen-
tiated. First of all, the LBF algorithm is trained with the datasets under study.
Second, the predictions with the highest error rates made during the training
are analyzed by means of frequent episodes techniques. From this analysis, the
days likely to be outliers will be determined and not considered in the prediction
process.

4.1 Combining the LBF Algorithm with Frequent Episodes

The value of two parameters have to be determined in the LBF process, K
and W . With regard to the number of clusters (K), the proposed approach
acts exactly equal to what was proposed in [9] (see Section II.C). However, it
is important to remark that the length of the window (W) is slightly different
calculated from how it was proposed in the original paper. In practice, W is
calculated by means of cross-validation.

Concretely, the n−fold cross-validation is used in this work to obtain the
optimal value of W . In n−fold cross–validation, the original sample is partitioned
into n subsets. Of the n subsets, a single subset is retained as the validation data
for testing the model, and the remaining n−1 subsets are used as training data.
The cross-validation process is then repeated n times (the folds), with each of
the n subsets used exactly once as the validation data. The n results from the
folds are then averaged (even if some authors prefer a combination of them) to
produce a single estimation. The advantage of this method over repeated random
sub-sampling is that all observations are used for both training and validation,
and each observation is used for validation exactly once.

Twelve folds have been created in this work (n = 12) for all datasets, where
each fold represents a month. Consequently, the training set consists of one year.

362 F. Mart́ınez-Álvarez, A. Troncoso, and J.C. Riquelme

The 12−fold cross–validation is then evaluated. The forecasting errors are
calculated in every fold by varying the length of W . These monthly errors are
denoted by emonth{W = j} for j = 1 . . .Wmax, where Wmax = 10 –no longer
sequences were found in datasets. Then, the average errors are calculated for
each window size as follows,

ei =
∑n

i=1 emonth{W = i}
n

(6)

where n = 12 and month = {Jan, . . . , Dec}.
The W selected is the one that minimizes the average error corresponding to

the 24 folds (months) evaluated.

W = argmin{ei} with i = 1, ..., Wmax (7)

This modification has a simple justification. With the former methodology
(see Section II.D in [9]), only one test set was evaluated and, consequently, the
number of episodes found may be limited and not conclusive. However, with the
application of n−fold cross-validation, the number of sequences is increased n
times providing thus n training sets instead of one.

It is now –just after the training step and before the prediction process– that
the discovery of frequent episodes plays an important role. Hence, the apparition
of anomalous days is intended to be predicted. Once the n− fold cross–validation
is applied, the number of sequences generated can be calculated as:

#S(W, FL) = nFL − W + 1 (8)

where n is the number of folds, FL the average fold length and W the length of
the sequence (or window) considered.

Note that the maximum number of dissimilar sequences that can be generated
is bounded by:

Nmax(K, W) = KW (9)

which will be a number typically much higher than the sequences found in the
training sets (Nmax >> #S(W, FL)).

The episodes aimed to be found are those which generate a prediction error
greater than the average error in the cross–validation process. For this reason, a
set of events that satisfies ej > min{ei}, for i = 1, ..., Wmax and j = 1, ..., nFL,
is constructed. This set, CS, gathers all the candidates events to be preceded by
an episode precursor of outliers.

Nevertheless, not all these candidates have the same probability to be out-
liers since the associated errors range from values near to the mean error (these
candidates should be finally discarded by the approach) to values significantly
high. For this reason, each candidate is co-labeled by using clustering techniques,
concretely, the K-means algorithm. The decision on how many clusters have to
be created is always an open question and many indices might be used. However,

Improving Time Series Forecasting by Discovering Frequent Episodes 363

Data

acquisition
Normalization Clustering PREDICTION

Select K

(Silhouette)

Denormalization

More days?

End

Yes

No

Labeleddata

Select W

(12-fold CV)

DISCOVERY

OF EPISODES
Episodes

Predicted day

insertion

Fig. 2. Illustration of the proposed methodology

Construct

CS

Clustering

CS

Find

episodes

Candidates

Prediction

DISCOVERY OF EPISODES

{Cl, Cm, Cu}

Clustering

Set W
Search for W

In historical data

Calculate

sample-ahead
Denormalization

PREDICTION

Discovery

of episodes
W matches

episodes ?

OUTLIER

YES

NO

Fig. 3. Detail of both discovery of episodes and prediction steps

it is worthless to have a large number of clusters and for this reason only three
conceptual classes will be created: lower (Cl), central (Cc) and upper (Cu) errors.
An a priori reasoning reveals that those candidates belonging to Cu must be more
probable to be preceded by sequences generators of outliers than the candidates
in Cl or Cc. Results corresponding to each cluster of data will be separately
analyzed in Section 5.

The next step consists in computing the episodes (concrete sequences of labels)
occurred before the candidates in order to determine the apparition of an outlier.
Hence, the approach has to decide which sequences preceding the candidates
are the episodes causing errors greater than the expected average error. Then,
the sequences that only appear before the candidates are considered frequent
episodes and therefore preceding outliers. Fig. 2 illustrates the whole process
of prediction when the frequent episodes are included in the LBF algorithm.
In addition, the steps corresponding to discovery of episodes and prediction are
further detailed in Fig. 3.

364 F. Mart́ınez-Álvarez, A. Troncoso, and J.C. Riquelme

4.2 Parameters of Quality

The parameters used in order to measure the accuracy of the approach are
now introduced. Note that in subsequent equations, true positives or TP is the
number of candidates that indeed were preceded by episodes that caused errors
greater than the average; true negatives or TN is the number of sequences found
before a candidate that was properly discarded; false positives or FP is the
number of candidates whose preceding episodes were erroneously considered to
be causing of errors greater than the average and, finally, false negatives or FN is
the number days not considered candidates and eventually preceded by episodes
causing errors greater than the average.

According to these definitions, the sensitivity is the probability to detect a
frequent episode as precursor of outliers. Its formula is defined as follows:

Sensitivity =
TP

TP + FN
(10)

Other parameter is the specificity which is the ratio of outliers candidates
properly discarded by the approach. The mathematical expression is:

Specificity =
TN

TN + FP
(11)

The positive predictive value (PPV) is the probability that a detected outlier
is indeed a real one. Its formula is:

PPV =
TP

TP + FP
(12)

Finally, the negative predictive value (NPV) is the probability that a discarded
candidate to be outlier was not indeed a real one. Its formula is:

NPV =
TN

TN + FN
(13)

5 Results

In order to prove that the LBF works properly over different datasets, the authors
in [9] considered several public electricity prices time series. The new approach
is applied on the Spanish electricity price time series (OMEL) [11].

This section is structured as follows. First, the training of the LBF is pre-
sented, obtaining thus the adequate values for the parameters K and W . The
results provided in this step are, then, analyzed by means of frequent episodes
techniques intending to find those patterns in the historical data that per-
form the worst predictions. From this analysis, some days will become can-
didates to have an anomalous behavior and, consequently, have a higher error

Improving Time Series Forecasting by Discovering Frequent Episodes 365

prediction. Finally, the validity of considering these days candidates to be outliers
is discussed.

5.1 Discovering Frequent Episodes in Time Series

The forecasting process is applied for the year 2006, with a historical data of a
length of one year and with a horizon of prediction of one month. Given this
situation, every time a month is forecasted the training set changes. When Jan-
uary 2006 is forecasted, the training set comprises the whole year 2005. However,
when February 2006 is forecasted the historical data ranges from February 2005
and January 2006, and so on.

The results of January 2006 are now described since the explanation of the
remaining eleven months is analogous. As for the LBF, the number of clusters
to be generated as well as the length of the window to be searched for are
calculated according to the methodology presented in Section 4.1. Thus, this
pair of parameters are equal to: (K, W) ← (4, 5).

Consequently, the number of sequences generated during the training step
is #S(W, FL) = 361. However, many sequences appeared repeatedly and the
final number of different sequences were 43. As the maximum number of possi-
ble sequences is Nmax(K, W) = 1024, the aforementioned number of sequences
represent the 4.19% of the potential.

With regard to the Q-epiMiner, the parameters are set to gapmax = 1,
gapmin = 1 and windowSize = W in order to adapt its application to the
particular problem tackled in this work. Also note, that the events are the labels
generated during the LBF process, the date is the day associated with such label
and the type of event is the curve of prices associated to this day.

The CS can be now constructed. For this purpose, the ei from (5) have to
be considered since the candidates are those days belonging to the training set
that obtained an error greater than ei. The value of the mean error, calculated
according to the methodology in Section 4.1 is e = 2.23%. From the 365 days
comprising the training set, 131 had an error greater than 2.23% so the con-
structed CS contains 131 candidates.

The candidates have to be classified by means of K-means, with K = 3 as
discussed in Section 4.1. The obtained cutoff values were 3.78% and 5.69% for
dividing classes Cl–Cm and Cm–Cu, respectively. From these cutoffs, the candi-
dates were classified as follows: 98 ∈ Cl, 25 ∈ Cm and 8 ∈ Cu.

Once the candidates are selected and classified, the sequences that generated
them are evaluated. From the candidates in Cl, 7 different sequences were found
(#Sl = 7); from the candidates in Cm, 4 (#Sm = 4) and from the candidates
in Cu, 2 (#Su = 2). This fact involves that from the 43 sequences found in the
training set, only 13 caused errors greater than the average.

Finally, the number of episodes causing outliers are determined. From the
sequences Cl, just one appeared exclusively as a precursor of an outliers. With
reference to sequences in Cm, three out of four. And both two sequences in Cu

were exclusive.
Table 1 summarizes the results for the twelve months of the year 2006.

366 F. Mart́ınez-Álvarez, A. Troncoso, and J.C. Riquelme

Table 1. Training parameters, candidates distribution and episodes found for the year
2006

Training Cutoff Candidates Sequences
Month K W e Cl–Cm Cm–Cu Cl(#Sl) Cm(#Sm) Cu(#Su) #S(W, FL) Nmax

January 4 5 2.23% 3.78% 5.69% 98(7) 25(4) 8(2) 362 1024
February 4 5 4.07% 5.21% 6.87% 87(6) 31(7) 5(2) 362 1024
March 4 5 6.30% 7.03% 7.66% 73(5) 16(3) 8(1) 362 1024
April 4 5 2.79% 3.83% 5.01% 103(9) 30(6) 6(3) 362 1024
May 4 5 7.51% 7.97% 9.43% 65(4) 51(6) 10(4) 362 1024
June 6 4 4.02% 5.42% 6.38% 97(6) 38(5) 4(0) 360 1296
July 5 5 4.98% 5.67% 6.13% 180(8) 27(3) 12(5) 361 3125

August 6 4 5.35% 6.20% 6.94% 101(8) 26(5) 9(4) 360 1296
September 6 4 6.24% 7.30% 8.29% 110(8) 25(5) 5(0) 360 1296
October 6 4 6.38% 7.31% 7.88% 108(7) 23(4) 6(1) 360 1296

November 6 4 8.97% 11.68% 13.57% 120(9) 40(6) 6(3) 360 1296
December 5 5 6.51% 7.93% 8.97% 169(10) 38(9) 10(3) 361 3125

5.2 Quantifying the Improvements Achieved

How the prediction is improved by not considering the days pointed by the
episodes precursors to outliers found is shown in this subsection. To evaluate the
accuracy of the methodology, different criteria may be taken into consideration.
However, two parameters –the mean relative error (MRE) and its standard
deviation (σMRE)– are used in order to make a comparison with the results
in [9].

Table 2 shows the results of the forecasting process performed by the LBF
and the results when the episodes causing outliers were discovered and removed
from datasets. Note that the approach improves the forecasting in all the datasets
considered but for in April. This fact is due to the absence of episodes found
when this month was forecasted.

The greater is the average error, the better works this hybrid methodology
since outliers are usually involved in high error rates. Equally remarkable is the
reduction in the σMRE from 0.27 to 0.23. Last but not least, a statistical measure
of the accuracy of the proposed methodology is provided. The parameters used
are the ones described in Section 4.2 and collected in Table 3. Note that all
parameters are referred to the whole year 2006, that is, the numbers gather the
twelve sets –months– forecasted.

Note that the number of sequences initially considered was 178 (
∑12

i=1{#Sli +
#Smi + #Sui} = 178). From these 178 sequences, 150 were sequences that ap-
peared solely in the subset of candidates in which they were found. Consequently,
the system considered 150 episodes to be causing of outliers. From all of them,
145 were indeed episodes that preceded a day with a forecasting error greater
than the average during the training. The other five did not cause large errors.
That is: TP = 145 and FP = 5. None of the 178−150 = 28 sequences discarded
generated predictions with a high error, so: TN = 28. Finally, during the fore-
casting process there appeared 8 sequences which were not initially considered
by the model and that eventually were trigger of outliers.

Improving Time Series Forecasting by Discovering Frequent Episodes 367

Table 2. Forecasting for the year 2006 in OMEL time series

LBF LBF + episodes
Month MRE σMRE MRE σMRE

January 7.26% 0.25 6.98% 0.21
February 4.93% 0.19 4.28% 0.16
March 5.88% 0.22 5.07% 0.19
April 3.62% 0.18 3.62% 0.18
May 8.11% 0.21 6.95% 0.19
June 3.76% 0.24 3.67% 0.24
July 4.30% 0.23 4.25% 0.23

August 5.37% 0.34 4.66% 0.27
September 6.41% 0.31 6.40% 0.30
October 7.89% 0.29 7.00% 0.22

November 8.30% 0.40 7.12% 0.29
December 8.02% 0.36 7.61% 0.31
Average 6.15% 0.27 5.63% 0.23

Table 3. Statistical analysis of the method

Parameters Values
TP 145
TN 28
FP 5
FN 8

Sensitivity 94.77%
Specificity 84.85%

PPV 96.67%
NPV 77.77%

6 Conclusions

The combination of two techniques has been used in order to forecast time series.
The initial approach –the LBF– was based on finding similar patterns in time
series. However, its application to any kind of time series revealed that there were
some samples that cannot be properly forecasted since they showed a stochastic
behavior.

The use of frequent episodes techniques is thus applied, not for providing an
accurate prediction for these samples, but for indicating that it is reasonably
probable that an outlier occurs. The method has been successfully tested on
twelve sets of the Spanish electricity price time series.

Future work is directed towards finding not only the days that are going to
present an anomalous behavior, but the days whose prediction is going to be
specially accurate. In addition, a relaxation for the rule that decides if a given
sequence is an episode or not is intended to be created.

368 F. Mart́ınez-Álvarez, A. Troncoso, and J.C. Riquelme

Acknowledgments

The financial support from the Spanish Ministry of Science and Technology,
project TIN2007-68084-C-02, and from the Junta de Andalućıa, project P07-
TIC-02611, is acknowledged. The authors also want to acknowledge to Ph. D.
Rigotti the source code provided for the statistical analysis of frequent episodes
used in this work.

References

1. Basu, S., Meckesheimer, M.: Automatic outlier detection for time series: an appli-
cation to sensor data. Knowledge and Information Systems 11(2), 137–154 (2007)

2. Esparza, J., Heljanko, K.: Unfoldings: A Partial-Order Approach to Model Check-
ing. Springer, Heidelberg (2008)

3. Garćıa-Martos, C., Rodŕıguez, J., Sánchez, M.J.: Mixed models for short-run fore-
casting of electricity prices: application for the Spanish market. IEEE Transactions
on Power Systems 22(2), 544–552 (2007)

4. Herui, C., Li, Y.: Short-term electricity price forecast based on improved fractal
theory. In: Prooceedings of the eighth IEEE International Conference on Computer
Engineering and Technology, pp. 347–351 (2009)

5. Jab�lońska, M.: Analysis of outliers in electricity spot prices with example of New
England and New Zealand markets. PhD thesis, Lappeenranta University, Finland
(2008)

6. Li, G., Liu, C.C., Mattson, C., Lawarrée, J.: Day-ahead electricity price forecasting
in a grid environment. IEEE Transactions on Power Systems 22(1), 266–274 (2007)

7. Louni, H.: Outlier detection in ARMA models. Journal of Time Series Analy-
sis 29(6), 1057–1065 (2008)

8. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1, 259–289 (1997)

9. Mart́ınez-Álvarez, F., Troncoso, A., Riquelme, J.C., Ruiz, J.S.A.: LBF: A labeled-
based forecasting algorithm and its application to electricity price time series. In:
Prooceedings of the eighth IEEE International Conference on Data Mining, pp.
453–461 (2008)

10. Nanni, M., Rigotti, C.: Extracting trees of quantitative serial episodes. In: Džeroski,
S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 170–188. Springer, Heidelberg
(2007)

11. Spanish Electricity Price Market Operator, http://www.omel.es
12. Pino, R., Parreno, J., Gómez, A., Priore, P.: Forecasting next-day price of elec-

tricity in the Spanish energy market using artificial neural networks. Engineering
Applications of Artificial Intelligence 21(1), 53–62 (2008)

13. Troncoso, A., Riquelme, J.C., Riquelme, J.M., Mart́ınez, J.L., Gómez, A.: Elec-
tricity market price forecasting based on weighted nearest neighbours techniques.
IEEE Transactions on Power Systems 22(3), 1294–1301 (2007)

14. Zhao, J.H., Dong, Z.Y., Li, X., Wong, K.P.: A framework for electricity price spike
analysis with advanced data mining methods. IEEE Transactions on Power Sys-
tems 22(1), 376–385 (2007)

http://www.omel.es

Measure of Similarity and Compactness in
Competitive Space

Nikolay Zagoruiko

Institute of Mathematics of the Siberian Devision
of the Russian Academy of Sciences,

Pr. Koptyg 4, 630090 Novosibirsk, Russia
zag@math.nsc.ru

Abstract. The given work is devoted to measures of similarity which
are used at discovering of empirical regularities (knowledge). The func-
tion of competitive (rival) similarity (FRiS) is proposed as a similar-
ity measure for classification and pattern recognition applications. This
function allows one to design effective algorithms for solving all basic
data mining tasks, obtain quantitative estimates of the compactness of
patterns and the informativeness of feature spaces, and construct easily
interpretable decision rules. The method is suitable for any number of
patterns regardless of the nature of their distributions and conditionality
of training samples (the ratio of the numbers of objects and features).
The usefulness of the FRiS is shown by solving a problems of molecular
biology.

Keywords: similarity measure, pattern recognition, compactness, in-
formativeness.

1 Introduction

The measure of similarity plays a key role in the classification of sets of objects
(clustering) and in the recognition of the membership of objects in a particular
class. The specificity of these tasks is that the measure of similarity used in them
is a relative quantity that depends not only on the similarity of an object to a
particular class but also on its similarity to other (competitive) classes. Such
measures do not satisfy all properties of metric spaces. As a result, the pattern
recognition task is solved in a space which we call a competitive space, and the
similarity measure in this space is referred to as the Function of Rival Similarity
(FRiS).

Using the FRiS, it is possible to obtain quantitative estimates of the com-
pactness of patterns, and the value of the compactness can be used as a criterion
of informativeness of feature spaces. The FRiS allows one to choose reference
objects (stolps), construct effective decision rules, and censor training samples.

The usefulness of the FRiS is shown by solving a problem of molecular biology.

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 369–380, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

370 N. Zagoruiko

2 Similarity Measures in Metric and Competitive Spaces

In metric space the similarity S(a, b) between two objects a and b is usually
estimated by a quantity that depends on the distance R(a, b) between these
objects. If the maximum pair wise distance between the objects of a set (the
diameter of the set) is taken to be 1, then S(a, b) = 1 − R(a, b). A great variety
of this kind of similarity measure is described in the literature [1,2]. Both the
distance R(a, b) between the objects and the similarity S(a, b) has the symmetry
property: the similarity of object a to object b is equal to the similarity of
object b to object a. In addition, the similarity between objects a and b does
not depend on how much these objects are similar to other objects. This implies
that similarity is treated as an absolute category.

However, in determining the membership of object z in one of two patterns A
or B, it is important to know not only its similarity to standard a of pattern A,
but also its similarity to standard b of competing pattern B. Hence, in pattern
recognition, similarity is a relative rather than absolute category. To answer the
question “How much z is similar to a?”, it is necessary to know the answer
to the question “In comparison to what?” An adequate measure of similarity
should define the relative value of similarity depending on the features of the
competitive environment.

All statistical algorithms use a competition between patterns. If in point z the
aprioristic probability of the first pattern is equal P1, and of the second pattern
– P2 for decision-making these sizes are compared and the decision in favor of
the first pattern is accepted not on because P1 exceeds some threshold, but on
because P1 > P2. For cases when laws of distribution of patterns are not known
or when the quantity of attributes on orders exceeds quantity of training objects
to operate with probabilities it is not possible. Usually the distances R(z, ai)
between control object z and standards (precedents) of patterns Ai, i = 1, 2...K
(K – quantity of patterns) are used and the decision is accepted in favor of an
pattern, distance to which is smaller. So the algorithm “k the nearest neighbors”
(kNN) [3] works for example. Here the relative measure of similarity estimated
in a scale of the order is used.

A more complex similarity measure is employed in the RELIEF algorithm [4].
Here the size of relative similarity is measured in stronger absolute scale. The
similarity of object z to pattern A in competition with pattern B is determined
using the quantity

WA/B =
RB − RA

Rmax − Rmin
, (1)

where Rmax and Rmin are the maximum and minimum distances between all
pairs of objects. Normalization on size (Rmax−Rmin) is represented to us unsuc-
cessful. The measure of similarity does not consider local features of distribution
of objects near object z. Limits of values of similarity are not limited. If the
dispersion of pair distances is small, the size of similarity can be very big, down
to infinity.

We formulate the following requirements for the relative measure F of com-
petitive similarity of object z to object a:

Measure of Similarity and Compactness in Competitive Space 371

1. The similarity measure should depend not on the nature of the distribution
of the entire set of objects but on the features of the distribution of objects in
immediate proximity to object z.

2. If the measure of similarity of object z to object a is estimated in competi-
tion with object b, b �= a, and if a and z are indistinguishable from each other,
the measure Fza/b should have the maximum value equal to +1; if objects z
and b are indistinguishable from each other, the measure Fza/b should have the
maximum negative value (maximum dissimilarity) equal to -1.

3. In the remaining cases, the measure of competitive similarity should have
the form of a continuous function and take values between +1 and -1.

4. For identical distances Ra and Rb, object z will be equally similar or dis-
similar to objects a and b and the similarity functions Fza/b and Fzb/a should
be equal to 0.

The proposed function of competitive similarity FRiS meets all these require-
ments [5]. As a measure of competitive similarity it is possible to use versions of
the function F of the form

Fza/b =
Rb − Ra

Rb + Ra
(2)

We see that such similarity measures do not keep the positivity property. The
presence of both positive and negative values is convenient for the interpretation
of similarity. If the object z moves from object a to object b, one can speak of
the greater similarity of object z to object a, their moderate similarity, identical
similarity to objects a and b, and moderate and then greater negative similarity
to a, i.e. one can speak of the dissimilarity of z to a.

We note one more important feature that distinguishes competitive similarity
from absolute similarity in metric spaces: the competitive similarity function is
asymmetric. The similarity of object a to object b for competition of objects b
and c it is not equal to the similarity of object b to object a for competition of
objects a and c. This is easy to show by an example. Let objects a, b and c are
in tops of a triangle with the sides (a,b) = 7, (a,c) = 3 and (b,c) = 9. Similarity
between two tops depends on position of the third competing top. In the table 1
the values of similarity of all tops with all are shown at detour of tops on and
counter-clockwise.

One can see that object c is more similar to object a, than object a on object
c. On the same example it is easy to see, that similarity between pairs tops does

Table 1. The similarity between tops of triangle

−→ −→ −→ ←− ←− ←−
ca/b ab/c bc/a cb/a ba/c ac/b

R1 3 7 9 9 7 3
R2 9 3 7 3 9 7
FRiS 0.5 -0.4 -0.125 -0.5 0.125 0.4

372 N. Zagoruiko

not satisfy to property of a triangle. Really: Fab/c + Fbc/a < Fca/b. Hence the
space formed by a competitive measure differs greatly from metric spaces. We
shall call this space a competitive space.

The absolute similarity measure (S = 1 − R) gives a difficult-to-interpret an-
swer to the question: “How much is object z similar to the standard of pattern
A?” In the kNN method, the similarity in the order scale answers the question:
“Object z is most similar to which pattern’s standard?” The competitive simi-
larity in the absolute scale measured by means of the FRiS answers the question:
“How much is the similarity of object z to the A greater than the similarity of
z to the standard of pattern B?”

3 Compactness in Competitive Space

Almost all recognition algorithms are based on the compactness hypothesis. In
the literature on pattern recognition [6], compactness is defined through the
notion of a boundary index. Let be an arbitrary set of m objects of pattern A
in a discrete space. There exist m1 objects such that, at distance 1 from them,
there is an object that does not belong to pattern A. These m1 objects are called
boundary objects, and the ratio m1/m is called a boundary index. The smaller
the index the higher the compactness of the pattern A. It is assumed that a
set that possesses a sufficiently small boundary index can be called a simple
pattern. Sometimes, patterns separated from each other by not too complicated
boundaries are called simple or compact patterns.

The above definitions of compactness involve fuzzy notions such as small, not
too complicated boundary, etc. It would be desirable to obtain a quantitative
measure of compactness whose value is directly related to the expected reliability
of recognition.

One of such measures is proposed in [7] and consists of calculating the com-
pactness profile. Let for object a training sample all the others (m − 1) objects
are ordered on their distance up to a. At movement from the most close neigh-
bor a up to its farthest neighbor for each serial position 1, 2, ..., i, ..., (m − 1) it
is defined: the object which stands on this position, to the same image belongs,
as the object a (the “its own” object) or does not belong (“another’s” object).

The orders constructed for all m of objects are analyzed. For everyone i-th
position on all m orders defines quantity of objects mi which do not belong to
that pattern to which possesses object a. Sizes Vi = mi/m are forms a profile
of compactness as a function Y = f(Vi). The patterns with greater quantity of
first serial numbers Vi = 0 are more compact. If the patterns strongly overlap
each other, the compactness profile is a broken curve oscillating around Y = 0.5.
If the patterns move away from each other, the initial portion of the curve Y
more and more approaches 0, and the final portion approaches the quantity
Y = 1. The compactness profile provides a qualitative understanding of the
situation. Conversion from the function Y = f(Vi) to a quantitative estimate of
the compactness can be performed by different methods, but this question is not
considered in [7].

Measure of Similarity and Compactness in Competitive Space 373

We suggest that, to obtain a quantitative estimate of the compactness of
patterns, it is possible to use the FRiS-function described above. For this, each
object ai of the training sample of pattern A, i = l, 2, ...MA is alternatively
assigned as the standard of this pattern. For the remaining (MA − 1) objects
aj , j �= i of pattern A, it is checked how much object ai protects object aj from
inclusion in the competing pattern B. For this, an object b of competing pattern
that is the nearest to object aj is determined. The distances from aj to objects
ai and b are calculated and used to find the value of the competitive similarity
Fajai/b. This value is added to the counter Ci, i = 1, 2, ...MA. The value of Ci

estimates the “protective” properties of object ai. If the distance from aj to b
is smaller than that to ai, then Ci decreases by the value of Fajai/b. After all
objects of pattern A have played the role of standards, it is possible to obtain
the average value GA of the quantities stored in the counters:

GA =
1

MA

MA∑
i=1

Ci (3)

This quantity can be used as a quantitative estimate of the compactness of
pattern A.

Estimates of the compactness Gt of all other K patterns, t = l, 2, ..., K are
obtained similarly. The general estimate of the compactness of K patterns in a
given feature space can be obtained by arithmetic or geometric averaging of the
estimates Gt. If we need to find the most informative attributes for all patterns
on the average, then the general criterion of informativeness G′ should be as
follows:

G′ =
1
K

K∑
t=1

Gt (4)

If we want the compactness of the most noncompact pattern Gt to be the max-
imum possible, it is necessary to choose a subsystem of attributes for which the
following quantity reaches a maximum:

G = K

√√√√ K∏
t=1

Gt (5)

Our experiments with these two criteria of compactness have shown a significant
advantage of the second of them.

The described measure of competitive compactness is more, than more den-
sity of objects inside of patterns and than further patterns will from each other.
This property of compactness precisely corresponds to idea of criterion informa-
tiveness of attributes for two normally distributed patterns, offered by Fisher [8]:

Q =
|μ1 − μ2|
δ2
1 + δ2

2
(6)

Here μ1 and μ2 – population means, and δ2
1 and δ2

2 – root-mean-square devia-
tions of two patterns. Hence, the measure of competitive compactness can serve

374 N. Zagoruiko

as criterion of informativeness of attributes. Difference of these criteria consists
that the measure of compactness is estimated for any quantity of patterns and
with an any kind of their distribution.

Useful recommendations follow from properties of a measure of competitive
compactness for the decision of tasks of the data analysis. During training at
pattern recognition it is necessary to choose such attributes in which space com-
pactness reaches the maximal size. At a stage of recognition inclusion of each
new object in structure of an pattern changes a compactness of all competing
patterns. It is necessary to choose such decision which as much as possible in-
creases compactness G. It is necessary to aspire to maximization of compactness
both at group recognition and at formation of classes.

4 Censoring of Samples and Construction of Standards

The standard object plays the role of a protector for objects of the pattern. The
protective capability Ci of each object ai, i = 1, 2, ..., MA of the pattern A was
obtained in the estimation of the compactness of this pattern. For an object ai in
the center of a pattern, the value of Ci is larger than that for peripheral objects.
For a certain number of objects of pattern A near another object, the value
of Ci can be negative. Objects whose nearest neighbors are another object will
have the largest negative value. Such objects protects only themselves and will
be called individual objects. Usually, it is result from random factors, such as
noise in measurements etc. Individual objects significantly worsen the training
processes and results, and, hence, it is reasonable to eliminate them from the
training sample (to censor). After such censoring a new value of the protective
capability Ci is calculated for the remaining objects.

Decision rules based on the FRiS are constructed in the space having the
greatest informativeness. For this, in the set of M objects of the training sample,
it is necessary to choose a minimum and sufficient subset of m objects that will
play the role of standards (“stolps”) reliably protecting objects of the patterns.
This means that the similarity of each object of a pattern to the nearest own
stolp in competition with the nearest another stolp should be higher than the
given threshold F ∗. The FRiS-Stolp algorithm [5] for choosing stolps includes
the following procedures:

1. Object ai with the maximum protective capability Ci is assigned as the
first stolp of pattern A.

2. For the remaining objects ajij �= i of pattern A, the measure Fajai/b of
their similarity to stolp ai in competition with object b of any another pattern
that is the nearest to object aj is calculated.

3. If Fajai/b > F ∗, the object aj is considered to be protected by stolp ai. It
is included in the first cluster of pattern A and is eliminated from the further
consideration.

4. If not all objects of pattern A are included in the first cluster, for remaining
objects a new value of protective capability Ci is calculated, an object with the

Measure of Similarity and Compactness in Competitive Space 375

maximum value of Ci is chosen as the second stolp, and a second cluster of
pattern A is formed.

5. Procedure 3 is repeated until all objects of pattern A become included in
clusters.

6. Procedures 1–4 are repeated for all other patterns.

As a result, we have a list of clusters (subclasses of the pattern) with indication
of the objects chosen as stolps and the objects protected by these stolps. If the
patterns have high compactness, the number of stolps is not large. Ideally, one
stolp for a pattern is required. The stolps are located at the centres of gravity
of the objects of their clusters. For the same compactness, the number of stolps
depends on the value of the threshold F ∗: the higher this threshold, the larger
the number of stolps required to provide the necessary protection of the objects.

In recognizing control object z it is necessary to calculate the distances R from
z to all stolps, choose the two nearest stolps belonging to different patterns, and
determine the values of the function of similarity of object z to these stolps. A
decision is made in favor of the pattern whose stolp has the greatest similarity
to the object.

The algorithm FRiS-Stolp is a part of a complex of programs FRiS-GRAD
which is intended for a choice of an informative subset of attributes and con-
struction of decision rules. Below examples of application of this complex for the
decision of two tasks of molecular biology are described.

5 Recognition of Two Kinds of Leukemia - ALL and
AML

Below, we consider the use of the FRiS approach to recognize two types of
leukemia. In the literature, one can find the results of solutions of this problem
by various groups of researchers. In particular, the results presented in [9] were
the best in the world at the time of their publication. They were obtained with
the use of the Support Vector Machine (SVM) methods, whose high efficiency
is well-known. This allows a comparison of our results with the best previous
results.

The data set being analyzed consists of a matrix of gene expression vectors
obtained from DNA micro-arrays [10] for a number of patients with two different
types of leukemia (ALL and AML). The training set consists of 38 samples (27
ALL and 11 AML) of bone marrow specimens. The test set includes 34 samples
(20 ALL and 14 AML) prepared under different experimental conditions (24
samples of bone marrow specimens and 10 of blood specimens). The number of
features is 7129. It corresponds to the normalized gene expression value extracted
from the micro-array images.

The results of solution of this problem described in [9] are as follows. The
informative subset of attributes was chosen using the RFE method (a version
of the Deletion algorithm [11] involving successive elimination of the least infor-
mative attributes). The decision rules were based on the SVM method. In the

376 N. Zagoruiko

initial space of 7129 attributes, 29 out of 34 control objects were correctly rec-
ognized (the results called the “success rate” in [9]). Next, the best subsystems
were found whose dimension was a multiple of the power of 2: 4096, 2048,. . . ,
4, and 2. Thirty objects were correctly recognized by the two best attributes
chosen according to criteria calculated by the training sample, 31 objects were
correctly recognized by the four best attributes, and 33 objects by 128 attributes.
In the paper where are subsystems of 2, 8, and 16 attributes which recognize all
34 control objects, but the way how to choose these most efficient subsystems
according to results, received during training, wasn’t presented in the paper. A
Pentium class machine operated for three hours to obtain these results.

Using the same data, we obtained the following results. In the initial fea-
ture space without a choice of informative attributes and reference objects (all
38 training objects were considered as stopls), P=28 of 34 control objects were
correctly recognized. The informative subset of attributes was produced using
the FRiS-GRAD algorithm [12]. This algorithm first estimates each attribute
separately, selects a subset of the n � N most informative attributes (in this
case, n = 100), and uses them to construct secondary attributes (granules) in
the form of the best pairs and triples of attributes. The choice of the best combi-
nations of granules was performed by an iterative Addition-Deletion procedure
[13]. The informativeness of separate attributes and their combinations was es-
timated by the FRiS compactness criterion. As a result, of the initial number
of 7129 attributes 11 attributes were selected and used to construct 10 versions
of decision rules with the FRiS-Stolp program (see Table 2). Each rule included
3 or 4 attributes with their weights given after a slash. A correct recognition
of 34 out of 34 objects was provided by eight rules, and 33 out of 34 objects
were correctly recognized by two rules. Collective decision provided recognition
quality P = 33 of 34. Average similarity of training objects with their stolps was
Ftrain ∼ 0.6385, average similarity of test objects was Ftest ∼ 0.6796. This fact
testifies well correspondence between training and test data sets.

Names and numbers of 11 genes, on expression which it is possible to distin-
guish two types of a leukemia are following:

“U05259 rna1 at” (2641), “X03934 at” (4049), “X76648 at” (4581), “U20362 at”
(2895), “U77665 at” (3716), “U84487 at” (3862), “X68994 at” (4476),
“M92439 at” (2358), “U62136 at” (3506), “U79287 at” (3779), “X63469 at”
(4388). From Table 2, it is evident that attributes 2641 and 4049 are the most
frequent in the rules.

The computing time of the algorithm is equal to C(N + n3/6)M3, where N
is the initial number of attributes, n � N is the number of attributes of which
granules are composed, and M is the number of objects of the training sample.
The computing time depends only slightly on the initial number of attributes
N and increases rapidly with increasing number of training objects M . In the
task considered, M was insignificant and the above decision was obtained on a
Pentium based computer for 50 seconds.

Measure of Similarity and Compactness in Competitive Space 377

6 Diagnostics of the Cancer of Prostate on Mass-Spectra
of Proteins

The goal of this study was to evaluate the ability of proteomic pattern diag-
nostics to detect and discriminate cancer of prostate from benign conditions in
patients with normal or elevated serum PSA (prostate-specific antigen) levels.
Information about mass-spectra of the proteins forms [14] received by spectrom-
eter SELDI-MS-TOF is analyzed in this task. Number of attributes (spectral
bands) is 15153. Four classes of patients with different levels of PSA are consid-
ered. Level PSA defines cancer of prostate stage. 63 healthy patients of a class B
have serum PSA level < 1 ng/mL, 26 patients of a class C have PSA levels 4÷10
ng/mL, 43 patients of class D have PSA level > 10 ng/mL and 190 patients of
a class A have PSA level > 4 ng/mL.

In the first experiment two groups of classes were formed: the first group
consisted of class of healthy patients B, and the second group included two
classes of sick patients – classes C and D. On this task algorithm FRiS-GRAD
in mode One-Leave-Out (OLO) (132 runs, 131 objects were used for training, 1
object – for testing) was run. As a result 65 attributes (from 15153) were selected
as informative ones and were used in decision rules. By them 123 objects from
132 (93.2%) were correctly recognized. Accuracy of recognition of sick patients
was 64 of 69 (92,8%) and healthy – 59 of 63 (93.7%).

The same task, but on the other proteomic experimental data, was solved by
other authors [15]. In training data set 25 healthy (PSA level < 1 ng/mL) and 31
patients with prostate cancer (PSA level > 4 ng/mL) were presented. Number
of attributes was more than 18000. As a test 38 patients and 228 healthy people
were classified. In this experiment 213 objects from 266 (80.1%) were correctly
recognized. Accuracy of recognition of sick patients was equal 94.7% and healthy
– 77.6%.

From these results we draw a conclusion that mass-spectra of proteins contain
the information which provides decision rules with good enough level accuracy.

Table 2. Collective of 10 best decision rules

Decision rules Ftrain P Ftest

2641/2+3862/1+4049/2+4581/1 0.6392 34 0.6744
2641/2+4049/2+4581/1 0.6389 34 0.6739
2641/2+ 2895/1+ 4049/2+4581/1 0.6385 34 0.6811
2641/2+3716/1+4049/2+4581/1 0.6385 34 0.6849
2641/2+4049/2+4388/1+4476/1 0.6385 33 0.6835
2358/1+2641/2+4049/2+4581/1 0.6384 34 0.6805
2641/2+4049/2+4388/1+4581/1 0.6384 34 0.6836
2641/1+4049/1+4388/1 0.6384 33 0.6807
2641/2+3506/1+4049/2+4581/1 0.6384 34 0.6729
2641/2+3779/1+4049/2+4581/1 0.6382 34 0.6809
Collective rule 0.6385 33 0.6796

378 N. Zagoruiko

Then we run similar experiments with other training data sets (see the Ta-
ble 3). In the second experiment we analyzed data set consisted of two classes –
B and C in mode One-Leave-Out. On each step we selected subset of informative
attributes on which ten most efficient decision rules were formed. It appeared
that it rules, which used 62 attributes, allowed to recognize correctly 62 from 63
healthy people and 25 from 26 sick ones.

Table 3. Results of One-Leave-Out tests

Number of experiment Classes B C D Results, %
1 [B–(C+D)] 59/63 64/69 93.2
2 [B–C] 62/63 25/26 97.8
3 [B–D] 59/63 41/43 94.3
4 [C–D] 10/26 33/43 62.3

In analogous experiment 3 for classes B and D in mode OLO 53 informative
attributes were selected. Each attribute was a part of some decision rule which
consists of from 3 to 5 attributes. Ten decision rules, which used these 53 at-
tributes, allowed to recognize correctly 59 from 63 healthy people and 41 from
43 sick ones.

Attempt to find a rule for division poorly sick (class C) from strongly sick
(class D) has not crowned success (experiment 4).

Because of small number of patients we couldn’t divide data set on training
and test ones. For this reason in next experiments we trained on two classes and
for control used objects of the third class. Quality of training and recognition
we estimate using the following hypothesis. If we ordered classes of patients
according to PSA level class B (level < 1 ng/mL) would be in the beginning of
the list, the class C (level 4÷10 ng/mL) would follow its, and class D (level >
10 ng/mL) would be in the end. Patients of a class A (PSA level > 4 ng/mL)
would appear among patients of classes C and D. If we constructed efficient rule
for discriminate class of healthy patients B from some class of sick patients, for
example, class D, according this rule patients of other classes of sick patients (A
and C) would be more similar to class D than to class B.

We run many experiments on data sets with different number of objects of
different classes in training and test subsets. In the Table 4 results of these
experiments are presented, which are confirmed the hypothesis described above.
More concretely, on training data set consisted of classes B and D (see experiment
number 5) 8 attributes which were a part of 10 best decision rules (3-4 attributes
in a rule) were selected. During recognition of objects of class C 25 of 26 (96.2%)
were recognized as objects of class D. One object of class C with name C4-
10.21.csv was recognized as object of class B.

After training on classes B and D (experiment 6) recognition of class A (190
objects) yielded such results: 137 objects (72.1%) were recognized as sick, and 53
– as healthy. Remind, that in class D only mostly sick (PSA level > 10 ng/mL)
patients were, but in a class A as strongly as poorly sick (PSA level > 4 ng/mL)

Measure of Similarity and Compactness in Competitive Space 379

Table 4. Results of recognition a classes which weren’t use for training

Number of experiment Training Test B C D A Results, %
5 [B D] C 26 1 25 96.2
6 [B D] A 190 53 137 72.1
7 [B A] (C+D) 69 1 68 98.6
8 [B C] D 43 21 22 51.2
9 [C D] B 63 16 47 74.6

patients were presented. It is not surprising, that some patients with PSA level
< 10 ng/mL were more similar to class B, than to class D.

The training on classes B and A allowed recognizing sick patients (classes C
and D) good enough: 68 peoples from 69 have been correctly recognized. When
we used intermediate class C in training, obtained results appeared to be less
confident. So it is possible to draw a conclusion, that on the data our method
well distinguishes sick patients from healthy ones, but not finds attributes on
which it would be possible to distinguish groups of patients with different PSA
levels.

While we recognized different combination of classes in different modes we
selected about 300 attributes from 15153 which were informative in some tasks
and formed some decision rules. Most part of these attributes was from the
following parts of mass-spectra: [2326, 2330], [3038, 3204], [3233, 3237], [3279,
3281], [6288, 6299], [6324, 6336], [6385, 6396], [8297, 8300].

In addition to these tasks, the methods described above have been successfully
used to solve other recognition tasks from the areas of medicine and physics.
Common features of these tasks were that there was no information on the
distributions of patterns and the dependences of attributes and the number of
attributes N was a few orders larger than the number of training objects M .

7 Conclusions

A consideration of relative similarity measures taking into account competitive
conditions makes it possible to develop effective decision algorithms for all pri-
mary data mining tasks. The function of rival similarity (FRiS) provides quan-
titative estimates of the compactness of patterns and informativeness of feature
spaces and easily interpretable decision rules. The method applies to tasks with
any number of patterns regardless of the nature of their distributions and condi-
tionality of training samples (the ratio of M and N). The efficiency of the method
allows it to be used for complex real tasks. Quality of solutions of applied prob-
lems using this method are does not concede in quality to those obtained by
other methods.

Acknowledgements

The author sincerely thanks colleagues V. V. Dyubanov, I. A. Borisova and O. A.
Kutnenko for discussions of the problems and participation in the experiments.

380 N. Zagoruiko

This work was supported by the Russian Foundation for Basic Research grant
No. 08-01-00040 and International Human Potential Foundation.

References

1. Voronin, Ju.A.: The beginnings of the theory of similarity. Edition by Computer
Centre of the Siberian Branch of the Russian Academy of Science, Novosibirsk
(1989) (in Russian)

2. Shrejder, J.A.: Equality, similarity and order. “Science”, M (1971) (in Russian)
3. Fix, E., Hodges, J.: Discriminatory Analysis: Nonparametric Discrimination: Con-

sistency Properties. Technical report, USAF School of Aviation Med. Randolph
Field, TX, Rep. 21-49-004 (1951)

4. Kira, K., Rendell, L.: The Feature Selection Problem: Traditional Methods and a
New Algorithm. In: Proc. 10th Nat’l Conf. Artificial Intelligence (AAAI 1992), pp.
129–134 (1992)

5. Zagoruiko, N.G., Borisova, I.A., Dyubanov, V.V., Kutnenko, O.A.: Methods of
Recognition Based on the Function of Rival Similarity. Pattern Recognition and
Image Analysis 18(1), 1–6 (2008)

6. Braverman, E.M.: Experiences on training the machine to recognition of visual
patterns. Automatics and Telemechanics 23(3), 349–365 (1962) (in Russian)

7. Vorontsov, K.V., Koloskov, A.O.: Profiles of compactness and allocation of basic
objects in metric algorithms of classification. The Artificial intellect (2006) (in
Russian)

8. Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Eu-
gen. (7), 79–188 (1936)

9. Guy, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classifica-
tion using Support Vector Machines. Machine Learning 46(1-3), 389–422 (2002)

10. http://www.genome.wi.mit.edu/MPR/data_set_ALL_AML.html

11. Merill, T., Green, O.M.: On the effectiveness of receptions in recognition systems.
IEEE Trans. Inform. Theory IT-9, 11–17 (1963)

12. Zagoruiko, N.G., Kutnenko, O.A., Ptitsin, A.A.: Algorithm GRAD for Selection
of Informative Genetic Feature. In: Proc. Int. Conf. on Computational Molecular
Biology, Moscow, pp. 8–9 (2005)

13. Zagoruiko, N.G., Kutnenko, O.A.: Recognition Methods Based on the AdDel Al-
gorithm. Int. Journal “Pattern Recognition and Image Analysis” 14(2), 198–204
(2004)

14. http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

15. Adam, B.L., Qu, Y., Davis, J.W., et al.: Serum protein fingerprinting coupled with
a pattern- matching algorithm distinguishes prostate cancer from benign prostate
hyperplasia and healthy men. Cancer Res. 62, 3609–3614 (2002)

http://www.genome.wi.mit.edu/MPR/data_set_ALL_AML.html
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

Bayesian Solutions to the Label Switching
Problem

Kai Puolamäki and Samuel Kaski

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science

Helsinki University of Technology
P.O. Box 5400, FI-02015 TKK, Finland

Abstract. The label switching problem, the unidentifiability of the per-
mutation of clusters or more generally latent variables, makes interpre-
tation of results computed with MCMC sampling difficult. We introduce
a fully Bayesian treatment of the permutations which performs better
than alternatives. The method can even be used to compute summaries
of the posterior samples for nonparametric Bayesian methods, for which
no good solutions exist so far. Although being approximative in that
case, the results are very promising. The summaries are intuitively ap-
pealing: A summarized cluster is defined as a set of points for which the
likelihood of being in the same cluster is maximized.

1 Introduction

In the recent years there has been a dramatic increase in the use of sampling
methods in computing with probabilistic models. The main reason naturally
is that Markov Chain Monte Carlo (MCMC) methods make it possible to use
complex-structured models, for which variational and other techniques are not
feasible. MCMC methods are not without their problems, however.

One of these problems is label switching of discrete latent or hidden variables
of the probabilistic model, which makes interpretation of the results hard. The
problem arises if the prior and the likelihood function, and hence the poste-
rior probability distribution, are invariant under a permutation of the values,
“labels,” of the discrete latent variable. This leads to non-identifiability of the
labels of the latent discrete variable.

As a simple example, consider a Gaussian mixture model with two mixture
components, and a data set with two well separated groups A and B. In one
MCMC sample the groups A and B may be represented by mixture components
1 and 2, and in another sample by 2 and 1, respectively. It follows that if we
try to compute some mixture component-specific quantities as averages over
the posterior samples, as we normally would in Bayesian data analysis, we get
meaningless results. For instance, the mean position of data points in a given
mixture component becomes the mean of the whole data set.

The label switching is inherent to sampling—there is no problem if we are
content with a point solution, such as a maximum likelihood or maximum a

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 381–392, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

382 K. Puolamäki and S. Kaski

posteriori solution, or a variational approximation where we can choose an arbi-
trary labeling.

The non-identifiability poses no problems if the quantities of interest are in-
variant under permutations of the labels. Problems occur when the individual
parameter values need to be compared across samples, as in common measures
of convergence of the MCMC simulation, for instance. Another problematic area
are label-specific summaries and interpretations. The label switching problem
has been discussed extensively in the framework of mixture models. When in-
terpreting a cluster in terms of its typical parameter values, or with the list of
data samples mapped to it, switching changes the cluster radically.

There have been many suggestions as to how to deal with the label switching
problem. The most straightforward solution is to use a sampler that is inefficient
in the sense that the labels are very unlikely to switch. Therefore, a reasonable
assumption is that the mixture labels are not permuted across the samples. Many
of the samplers, such as the Gibbs sampler for mixture models [1], fall into this
category. It turns out that the sampler may perform otherwise adequately even
if it is unable to switch labels [2]. This solves the label switching problem in
practice, but in an arguably inelegant manner that cannot be proven to always
work.

Another solution is to use artificial identifiability constraints to break the
symmetry in the likelihood [3]. For example, if the component parameters are
denoted by μj , a possible constraint is μj < μj+1, where j < k and k is the
number of components. Unfortunately, in the Bayesian context these constraints
do not however always perform adequately [4].

[5, 6, 7] re-labeled the mixture components in each sample by using a k-means-
type approach. [8, 9] relabeled the points in each sample using label-invariant
loss functions, such as functions that compare whether the cluster assignments
of the data points are equal in pairs of samples; see also [10]. [11] introduced
a probabilistic relabeling method, but not in the context of Bernoulli mixture
models as in our work. See [4, 11] for a recent review of attempts to solve the
label switching problem in mixture models.

A drawback of the earlier relabeling approaches is that they associate a certain
more or less heuristic labeling, or permutation of labels, to each sample to make
the samples comparable. As can be seen from the variety of approaches, however,
the labeling is not unique. Furthermore, assigning a fixed labeling is slightly
inelegant considering that the actual modeling follows the Bayesian approach.

2 Summary of Our Contribution

We propose a probabilistic relabeling that can be implemented in a straightfor-
ward way for the MCMC samples from any probability distribution that includes
a discrete latent variable. We show that our approach gives a consistent prob-
abilistic labeling. In our examples the probabilistic models are mixture models,
but we want to emphasize that the results generalize to all probabilistic models
which suffer from the label switching problem.

Bayesian Solutions to the Label Switching Problem 383

In a nutshell the idea is to include an additional Bernoulli mixture model
that can model the distribution of the discrete latent variable in the original
probabilistic model. We will explain below why this is a good solution.

Our contributions in this paper are:

– Fully Bayesian treatment of the label switching problem.
– A straightforward way to obtain mixing matrices that are not affected by

label switching (Algorithm 1).
– A principled and probabilistic relabeling of samples in order to compute

expectations (Section 4.2).
– An approximation scheme having a polynomial time complexity (instead

of the naive O(k!)), where k is the number of discrete states in the latent
variable, to compute the expectations.

– Experimental proofs of concept, including application to Dirichlet Process
Mixture model with varying number of mixture components.

3 Definitions

We introduce the problem first in the general notation and then discuss the case
of mixture models in more detail.

3.1 General Derivation

We denote the data by x = (x1, . . . , xn). We have a probabilistic model that has
n instances of a discrete-valued latent variable z = (z1, . . . , zn) having labels zi ∈
[k], where [k] = {1, . . . , k}. We can alternatively use binary indicator variables
zij such that zij = 1 if zi = j, zij = 0 otherwise.

We denote by φ = (z, θ) all parameters of the model. Here θ are all other pa-
rameters besides the latent variable z. Denote by σ ∈ Sk a permutation function
of the labels [k]. We use σ(z) as a shorthand of the application of σ to all the zi,
and by σ(φ) the permutation by σ of labels of the parameters of the model of σ.
Invariance under the permutation means that for all permutations σ ∈ Sk, the
prior and the likelihood satisfy p(φ) = p(σ(φ)) and p(x | φ) = p(x | σ(φ)), re-
spectively; hence the posterior probability distribution p(φ | x) is also invariant
under the permutation of the labels as p(φ | x) ∝ p(x | φ)p(φ). In the remainder
we assume that the model is invariant under the permutation of labels of zi.

Given the above definitions, we can make th trivial observation that

Observation 1. For a probabilistic model containing a latent variable zi and
for which the prior probability density and likelihood are invariant under the
permutations of the labels of zi, hence the symmetry needs to be broken before
meaningful summaries of the latent variables can be computed.

p(zij = 1 | x) =
1
k

.

384 K. Puolamäki and S. Kaski

Algorithm 1. Bernoulli Labeling
BernoulliLabeling({zt

ij}) {Input: {zt
ij}, the indicator variables zt

ij for all t ∈ [T],
i ∈ [n] and j ∈ [k]. Output: β̃, a k × n parameter matrix of the Bernoulli mixture
model.}
Let Z(r, i) ← zt

ij , where r = k(t − 1) + j and Z ∈ {0, 1}Tk×n for all i ∈ [n], j ∈ [k],
and t ∈ [T].
Let β̃ ← BernoulliMixture(Z, k). {Algorithm 3}
return β̃.

Algorithm 2. Generalized Bernoulli Labeling
Generalized BernoulliLabeling({zt

i }, k) {Input: {zt
i}, the cluster indices zt

i for all
t ∈ [T] and i ∈ [n]; k, cluster of components in Bernoulli Labeling. Output: β̃, a
k × n parameter matrix of the Bernoulli mixture model.}
Let Z be an empty matrix with n columns.
for t = 1 to T do

Let kt be the number of non-empty cluster in sample t, and let Yji be 1 if zt
i = j,

0 otherwise.
Append the rows of matrix Y to the rows of matrix Z.

end for
Let β̃ ← BernoulliMixture(Z, k).
return β̃.

The central contribution of this work is to apply a Bernoulli mixture model to
the indicator variables zt

ij as given by Algorithm 1. We discuss the motivation
of the algorithm in more detail in Section 4. Briefly put, the idea is to apply a
Bernoulli mixture model to the rows of a matrix of indicator variables Z where
the rows correspond to mixture components in different samples.

Algorithm 1 uses the Bernoulli mixture model having the likelihood

p(Z | β̃) =
R∏

r=1

k∑
j=1

1
k

n∏
i=1

β̃(j, i)Z(r,i)
(
1 − β̃(j, i)

)1−Z(r,i)
, (1)

where the parameters are given as a mixture matrix β̃ ∈ [0, 1]k×n. The data
matrix is Z ∈ {0, 1}R×n, where R = Tk. We use Algorithm 3 to maximize the
likelihood of Equation (1); the algorithm is a standard EM algorithm. Because
EM is guaranteed to find a local but not necessary a global optimum, in our
experiments we run Algorithm 3 ten times with different random initializations
and pick the solution with the largest likelihood.

Another approach is to take explicitly into account the fact that there is a
unique permutation of labels for each sample. The mixing matrix β̃ can then be
found by optimizing the cost function given by

T∏
t=1

∑
σ∈Sk

1
k!

n∏
i=1

β̃(σ(zt
i), i), (2)

Bayesian Solutions to the Label Switching Problem 385

Algorithm 3. Bernoulli Mixture
BernoulliMixture(Z, k) {Input: Z, a R × n binary matrix; k, the number of mix-
ture components. Output: β̃, a k × n maximum likelihood parameter matrix of the
Bernoulli Mixture model.}
Initialize β̃ ∈ [0, 1]k×n at random.
repeat

{E step:}
Let γ(r, j) ←

∏n
i=1 β̃(j, i)Z(r,i)

(
1 − β̃(j, i)

)1−Z(r,i)

for all r ∈ [R] and j ∈ [k].

Let Z(r) ←
∑k

j=1 γ(r, j) for all r ∈ [R].
Let γ(r, j) ← γ(r, j)/Z(r) for all r ∈ [R] and j ∈ [k].
{M step:}
Let β̃(j, i) ←

∑R
r=1 γ(r, j)Z(r, i)/

∑R
r=1 γ(r, j) for all j ∈ [k] and i ∈ [n].

until convergence
return β̃.

Algorithm 4. Bernoulli Mixture Permutation
BernoulliMixturePerm({zt

i}) {Input: {zt
i}, the cluster indices zt

i for all t ∈ [T] and
i ∈ [n]. Output: β̃, k × n maximum likelihood parameter matrix of the Bernoulli
Mixture model.}
Initialize β̃ ∈ [0, 1]k×n in random.
repeat

{E step:}
Let γ(t, σ) ←

∏n
i=1 β̃(σ−1(zt

i), i) for all t ∈ [T] and σ ∈ Sk.
Let Z(t) ←

∑
σ∈Sk

γ(t, σ) for all t ∈ [T].
Let γ(t, σ) ← γ(t, σ)/Z(t) for all t ∈ [T] and σ ∈ Sk.
{M step:}
Let β̃(j, i) ←

∑T
t=1

∑
σ∈Sk

γ(t, σ)zt
σ(i)/T for all j ∈ [k] and i ∈ [n].

until convergence
return β̃.

by using EM algorithm, presented by Algorithm 4. We call this model Bernoulli
Mixture Permutation model.

3.2 Mixture Models

Mixture models are a common class of probabilistic models where the label
switching is a problem. We use the mixture model as a prototype probabilistic
model which suffers from the label switching problem.

In a mixture model with k mixture components, there is a discrete-valued
latent variable z = (z1, . . . , zn). Here zi ∈ [k] tells which mixture component the
data point xi comes from. The other parameters θ consist of the mixture prob-
abilities π = (π(1), . . . , π(k)) that satisfy

∑k
j=1 π(j) = 1, and the component-

specific parameters β = (β(1), . . . , β(k)) that define the likelihood of a data point
xi given a mixture component zi, according to any parametric likelihood function
p(xi | β(zi)) such as the multivariate Gaussian. In summary, here θ = (π, β).

386 K. Puolamäki and S. Kaski

−

n
x

z

π

β

n

π

x

βz

σ

Fig. 1. Graphical representation of mixture model presented in Section 3.2 without
(left) and with (right) a permutation sampled from Sk; see the likelihoods of Equations
(3) and (4), respectively. The likelihoods and therefore the generative processes of the
two models are equivalent.

The likelihood of the mixture model, shown graphically in Figure 1 (left), is
given by

p(x | π, β) =
n∏

i=1

k∑
zi=1

π(zi)p(xi | β(zi)). (3)

The likelihood does not change if the labels are permuted by any permutation
σ. A special case is where the permutation σ is sampled from Sk uniformly at
random, see Figure 1 (right); the likelihood is then

p(x | π, β) =
1
k!

∑
σ∈Sk

n∏
i=1

k∑
zi=1

π(σ(zi))p(xi | β(σ(zi))). (4)

See [4] for further discussion.

4 Theoretical Properties

Our idea is, intuitively, to find an assignment of the data items into k mixture
components such that if a set of data items co-occurs in the same mixture com-
ponents in several samples then they should be assigned into the same mixture
component.

In this section, we show that the Bernoulli mixture cost function optimized
by Algorithm 1 is invariant under the permutation of the labels of the original
probabilistic model. We further show that Algorithm 1 exactly reproduces the
mixture components of the mixture model described in Section 3.2.

We also provide a principled probabilistic relabeling algorithm of the samples
in Section 4.2.

4.1 Properties of the Bernoulli Labeling

Observation 2. The cost function optimized by Algorithm 1 is invariant under
the permutation of labels of the probabilistic model.

Proof. The Algorithm 1 finds the mixture matrix by maximizing the likelihood
given by Equation (1). Any permutation of the labels in the original probabilis-
tic model (in which the discrete variables z are parameters) corresponds to a

Bayesian Solutions to the Label Switching Problem 387

permutation of rows of the matrix Z. The likelihood, Equation (1), remains un-
changed in any such permutation. �	

The following theorem shows that Algorithm 1 gives consistent results for a
mixture model with given fixed parameters π and β.

Theorem 3. Given a mixture model, parametrized by φ = (z, θ), and data as
defined in Section 3.1, Algorithm 1 finds the probability distribution p(zi = j |
x; θ) in the limit of infinitely many samples, T → ∞.

Proof. A randomly picked row of matrix Z represents a given component j ∈ [k]
with probability 1/k. The probability of ones in the ith dimension of component
j is given by the distribution p(zi = j | x; θ); this distribution can be com-
puted from the mixture model. If we set β̃(j, i) = p(zi = j | x; θ), then the Z
can be thought of as having been sampled from the Bernoulli mixture model
(Equation 1), the probability of each component being 1/k. Hence, at the limit
of infinitely many samples (T → ∞), the maximum of Equation (1) is given by
β̃(j, i) = p(zi = j | x; θ). Furthermore, as the number of rows of Z approaches
infinity, the posterior probability density of the Bernoulli mixture model is es-
sentially a multimodal point estimate with k! modes corresponding to different
permutations of the labels, one of the modes being at β̃. �	

Theorem 3 is illustrated graphically for a mixture model of Section 3.2 in Fig-
ure 2.

n

~
x

βzz~

β

π

n

σ

x

βzz~

β~

π

Fig. 2. Left: Graphical representation of the mixture model presented in Section 3.2,
with Bernoulli labeling of Section 4.1. The distribution of the latent variables z can be
equivalently derived either from the mixture model (solid lines), ignoring the dashed
lines, or from the Bernoulli mixture model (dashed lines), ignoring the solid lines. Right:
Graphical representation of mixture model presented in Section 3.2 using Probabilistic
Bernoulli Relabeling of Section 4.2: the distribution of the latent variables z can be
equivalently derived either from the mixture model (solid lines), ignoring the dashed
lines; or the Bernoulli Mixture model with permutation σ (dashed lines), ignoring
parameters π and β.

Observation 2 and Theorem 3 together imply that our approach is completely
insensitive to label switching. That is, we can do an arbitrary permutation of
labels within each MCMC sample without affecting the results.

It follows that β̃ obtained by Algorithm 1 can be used as a principled “point
estimate” to summarize the mixture components.

The previous work on relabeling of MCMC samples has focused on finding
a single permutation for each sample such that the resulting samples, having

388 K. Puolamäki and S. Kaski

permuted labels, can be aggregated that has suffered from the fact that although
there usually exists one “most likely” permutation of labels for each sample, the
probabilities of all possible permutations should be non-vanishing due to the
probabilistic nature of the model.

4.2 Probabilistic Bernoulli Relabeling

In this section we consider the problem of computing an expectation of some
function f(z, θ) of the parameters of the probabilistic model, using the T inde-
pendently drawn samples at the limit of infinite (or very large) T .

One of the motivations for the model is that it is consistent in the sense that if
we had a probabilistic model with a fixed set of parameters θ, but such that the
labels in the parameters z and θ have been relabeled by a permutation function
σ ∈ Sk, drawn uniformly at random, then the algorithm would asymptotically
find correct values.

Now, our task is to compute the posterior distribution for the probability of
the permutation for each sample. We can use Algorithm 1 to find the Bernoulli
mixing matrix β̃ because by Observation 2 the algorithm is unaffected by any
permutation σ. Because the number of samples T is very large the posterior
distribution is a multimodal point distribution with one of the k! peaks at β̃.
Figure 2 shows the structure of the model in the case of the mixture model
defined in Section 3.2.

Given a fixed β̃ we can derive the probability of a permutation for each sample
p(σ | zt, β̃), and then propose to compute an expectation using Probabilistic
Bernoulli Relabeling as follows:

EB [f(z, θ)] =
1
T

T∑
t=1

∑
σ∈Sk

p(σ | zt, β̃)f(σ(zt), σ(θt)), (5)

where the posterior probability of a permutation σ for a sample t is given by

p(σ | zt, β̃) ∝
k∑

j=1

1
k

n∏
i=1

β̃(j, i)zt
iσ(j)

(
1 − β̃(j, i)

)1−zt
iσ(j)

, (6)

with a normalization defined by
∑

σ∈Sk
p(σ | zt, β̃) = 1.

We first note that the expectation defined in Equation (5) reduces to normal
expectation in the absence of any label switching.

Observation 4. If the expectation defined by f(z, θ) is invariant under permu-
tation of labels, that is, f(z, θ) = f(σ(z), σ(θ)) for all σ ∈ Sk, then the expecta-
tion of Equation (5) reduces to normal expectation of E[f] = 1

T

∑T
t=1 f(zt, θt).

The Probabilistic Bernoulli Relabeling of Equation (5) requires the summation
over all k! permutations in Sk. The sum is computable for small enough values
of k. For larger values of k, however, the summation can be approximated in
polynomial time in k by first finding the most likely permutation by using the

Bayesian Solutions to the Label Switching Problem 389

Hungarian algorithm [12]; the time complexity of the Hungarian algorithm is
O(k3). One can then apply Equation (6) to all permutation functions σ that can
be reached by at most l swaps from the most likely permutation found by the
Hungarian algorithm; the number of these permutation functions is O(k2l). All
permutations σ which are reachable with more than l permutations can to a good
accuracy be approximated with p(σ | zt, β̃) ≈ 0. As a result, the sum of Equation
(5) has only O(k2l) non-vanishing terms and the approximate expectation can
be therefore be computed in O(k3 + k2l) time.

Finally, we note that although the Figures of Sections 4.1 and 4.2 were given
for label switching in the context of the mixture model defined in Section 3.2,
the derivations are otherwise general. The method can be applied for any prob-
abilistic model having a non-identifiable discrete latent variable.

5 Experiments

5.1 Mixture Model

We generate an artificial data set by drawing samples from three Gaussian distri-
butions, n samples from each. Each Gaussian has unit variance, and their means
are −x, 0 and x. We then run a Gibbs sampler for a normal mixture model hav-
ing k = 3 components and conjugate priors (with variance of each component
fixed to unity) with parallel tempering as described by [13]. As a consequence of
parallel tempering, the sampler switches labels. After 1000 burn-in samples we
use the next 1000 samples in our analysis.

Our data analysis task is to use the samples to (i) estimate the means of the
mixture components (means), and (ii) to estimate the cluster assignments of
the data points (assign). The error measure in the first task is the difference
between the estimated cluster centroids and the “true” cluster centroids at −x,
0 and x. The objective measure in the second task is the classification accuracy
(sum of probabilities of correct classes) when the true classes (the index of the
generating distribution) are known.

The problem is easy for large values x or n; then all methods give equivalent
results. For small or moderate values of x and n the methods differ.

Our methods are the Bernoulli mixture model (bm) and Bernoulli mixture
model with permutations (bmp). The baseline methods are the identity con-
straint model (ic), where the samples are permuted such that the means of
the mixture components are ordered in an increasing order. The second baseline
method [7], denoted by ste, finds permutations using an EM-type approach. We
include as a baseline a dummy model dumb, in which all cluster probabilities
are 1

3 .
We chose n = 5 and x = 2 (tasks means and assign-2 or x = 2

3 (task
assign-2/3), and created 100 data sets.

The performance of ic is generally worse than that of the others (Table 1).
In task means all algorithms performed comparably. In task assign-2, bmp
was the best, although the differences are very small. In task assign-2/3 the
Bernoulli mixture model (bm) was superior; the reason is that all clusters are

390 K. Puolamäki and S. Kaski

Table 1. Squared prediction errors for the task means (smaller is better); classification
accuracy for tasks assign-2 having x = 2 and assign-2/3 having x = 2

3
(larger is bet-

ter), for a data set with n = 5. In task assign-2, bmp outperforms all the other models
(p < 0.05). The differences are small, however. In task assign-2/3, bm outperforms all
other models (p < 10−9). All tests were one-tailed Wilcoxon Signed Rank Tests.

bm bmp dumb ic ste

means 0.676 0.680 1.632 1.109 0.676
assign-2 0.598 0.5995 0.333 0.575 0.5990

assign-2/3 0.442 0.382 0.333 0.386 0.380

very similar and in many samples one of the clusters remained empty. The bm
model will then assign one mixture component to such an empty cluster. The
other models suffer from the strong assumption that there must be three clusters
(although effectively the number of clusters is smaller).

5.2 Dirichlet Process Mixture

We studied the capability of the Bernoulli mixture to handle varying number of
clusters in nonparametric Bayesian settings, by implementing a Dirichlet Pro-
cess Mixture Model according to [14], with parallel tempering and the hyper-
parameter α fixed to one. The Gaussian mixture components had a conjugate
prior with unit variance. We applied the model to the galaxy data set [15]
consisting of zero-mean relative velocities in 1000 km/sec of 82 galaxies from 6
well-separated conic sections of an unfilled survey of the Corona Borealis region.
Multimodality in such surveys is evidence for voids and superclusters in the far
universe. The means of the non-empty mixture components are shown in Fig-
ure 3. Due to the parallel tempering, the sampling mixes well and there is label
switching.

Because the number of clusters varies, out of the introduced algorithms only
the generalized Bernoulli labeling (Algorithm 2) is applicable. We ran the algo-
rithm with three numbers of Mixture components, k = 5, k = 6 and k = 7; the

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

−
10

−
5

0
5

10
15

step

μμ

Fig. 3. The cluster means of the Dirichlet Process Mixture on the galaxy data. Mix-
ture component 2 is highlighted with a darker shade; label switching is evident from the
plot. The rug plot on the vertical axis show the data, that is, the relative velocities of
the 82 galaxies. There are on average 7.21 non-empty clusters in a sample, the average
occupancy of each cluster being 11.57.

Bayesian Solutions to the Label Switching Problem 391

k=5 k=6 k=7

Fig. 4. The mixing matrices β̃ for the galaxy data simulated using the Dirichlet
Process Mixture. The y axis corresponds to the 82 galaxies, ordered according to their
velocity (lowest velocity at the bottom). The x axis shows the cluster index of the
Bernoulli mixture model. Dark shades correspond to a matrix entry of 1, while light
shades correspond to zero. Here k is the number of clusters in the Bernoulli mixture
model. The mixture components have been ordered for visual clarity.

results are shown in Figure 4. For k = 7 mixture components, one of the com-
ponents turned out to be essentially empty, indicating that the data effectively
exhibits six clusters. For k = 6 mixture components the mixing matrix looks
otherwise similar, except that there is no empty component. For k = 5 mixture
components, two of the smallest components have been merged to one.

In summary, the Bernoulli Labeling algorithm was capable of extracting the
structure of six clusters from the complicated set of samples of the Dirichlet
Process Mixture model.

6 Conclusions

We introduced a Bernoulli mixture model for relabeling cluster assignments in
mixture models. The model is better motivated than existing solutions to the
label switching problem, and outperformed them. The fully Bayesian version
requires computation of posteriors for the permutation function which is man-
ageable for models with a fixed number of clusters. For nonparametric Bayesian
methods where the number of clusters varies in the MCMC samples, a fully
Bayesian method should take into account splits and merges as well, which would
be computationally prohibitive.

It turned out that using a Bernoulli mixture without averaging over the pos-
terior of permutations worked very well in solving the label switching problem
for nonparametric Bayesian methods, and was rather insensitive to the chosen
number of clusters.

In this paper we focused on mixture models, where there is one latent variable
per data point, telling which mixture component the point comes from. Further-
more, the simulations were done on one-dimensional data. Both restrictions can
naturally be easily removed.

Acknowledgments. SK belongs to Finnish Centre of Excellence in Adaptive
Informatics Research and KP to Finnish Centre of Excellence in Algorithmic
Data Analysis Research. The work was also supported in part by the PASCAL
EU Network of Excellence.

392 K. Puolamäki and S. Kaski

References

[1] Diebolt, J., Robert, C.P.: Estimation of finite mixture distributions through
Bayesian sampling. Journal of the Royal Statistical Society. Series B (Method-
ological) 56(2), 275–363 (1994)

[2] Geweke, J.: Interpretation and inference in mixture models: Simple MCMC works.
Computational Statistics & Data Analysis 51, 3529–3550 (2007)

[3] McLachlan, G., Peel, D.: Finite Mixture Models. Wiley Interscience, Hoboken
(2000)

[4] Jasra, A., Holmes, C.C., Stephens, D.A.: Markov chain Monte Carlo methods
and the label switching problem in Bayesian mixture modeling. Statistical Sci-
ence 20(1), 50–67 (2005)

[5] Stephens, M.: Bayesian methods for mixtures of normal distributions. PhD thesis,
University of Oxford (1997)

[6] Celeux, G.: Bayesian inference for mixtures: The labels-switching problem. In:
Payne, R., Green, P. (eds.) Proceedings of XIII Symposium on Computational
Statistics (COMPSTAT 1998), Bristol, August 1998, pp. 227–232. Physica-Verlag
(1998)

[7] Stephens, M.: Dealing with label switching in mixture models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 26(4), 795–809 (2000)

[8] Celeux, G., Hurn, M., Robert, C.P.: Computational and inferential difficulties
with mixture posterior distributions. Journal of the American Statistical Associ-
ation 95, 957–970 (2000)

[9] Hurn, M., Justel, A., Robert, C.P.: Estimating mixtures of regressions. Journal of
Computational & Graphical Statistics 12(1), 55–79 (2003)

[10] Gerber, G.K., Dowell, R.D., Jaakkola, T.S., Gifford, D.K.: Automated discovery
of functional generality of human gene expression programs. PLoS Computational
Biology 3(8), 148 (2007)

[11] Jasra, A.: Bayesian Inference for Mixture Models via Monte Carlo Computation.
PhD thesis, Imperial College London (2005)

[12] Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

[13] Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Heidelberg
(2001)

[14] Neal, R.M.: Markov Chain sampling methods for Dirichlet process mixture mod-
els. Journal of Computational and Graphical Statistics 9(2), 249–265 (2000)

[15] Postman, M., Huchra, J.P., Geller, M.J.: Probes of large-scale structures in the
Corona Borealis region. Astrophysical Journal 92, 1238–1247 (1986)

Efficient Vertical Mining of
Frequent Closures and Generators

Laszlo Szathmary1, Petko Valtchev1, Amedeo Napoli2, and Robert Godin1

1 Dépt. d’Informatique UQAM, C.P. 8888,
Succ. Centre-Ville, Montréal H3C 3P8, Canada

Szathmary.L@gmail.com, {valtchev.petko,godin.robert}@uqam.ca
2 LORIA UMR 7503, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

napoli@loria.fr

Abstract. The effective construction of many association rule bases re-
quires the computation of both frequent closed and frequent generator
itemsets (FCIs/FGs). However, only few miners address both concerns,
typically by applying levelwise breadth-first traversal. As depth-first
traversal is known to be superior, we examine here the depth-first
FCI/FG-mining. The proposed algorithm, Touch, deals with both tasks
separately, i.e., uses a well-known vertical method, Charm, to extract
FCIs and a novel one, Talky-G, to extract FGs. The respective outputs
are matched in a post-processing step. Experimental results indicate that
Touch is highly efficient and outperforms its levelwise competitors.

1 Introduction

The discovery of meaningful associations is a key data mining discipline [1]. An
association miner typically proceeds in two steps: (i) extract all frequent patterns
X of a database, and (ii) break each X into a premise Y , and a conclusion X \Y
parts to form a rule Y → X \ Y . Interestingness measures, such as support and
confidence, are applied to prune the set of extracted association rules. However,
the number of the remaining rules is usually way too high to be practical. As a
remedy, various concise representations of the family of interesting association
rules have been proposed [2,3,4], whereas others have been imported from related
fields such as concept analysis [5,6]. A good survey can be found in [7].

In this paper we focus on the computation of frequent closed itemsets (FCIs)
and frequent generators (FGs), on which are based the minimal non-redundant
association rules (MNR) for instance. Following [2], these are rules with the
form P → Q\P , where P ⊂ Q, P is a (minimal) generator (a.k.a. key-set or free-
set) and Q is a closed itemset. In other terms, in such rules the premise is minimal
and the conclusion is maximal. As shown in [7], MNR is a lossless, sound, and
informative representation of all valid rules. Moreover, further restrictions can
be imposed on the rules in MNR, leading to more compact representations such
as the generic basis or the proper basis (see [7] for a complete list).

From a computational point of view, constructing MNR or its sub-structures
requires the family of frequent closed itemsets (FCIs) and their generators (FGs),

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 393–404, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

394 L. Szathmary et al.

and possibly the precedence order between FCIs. A few methods for extracting
both FCIs and FGs have been published in the mining literature, e.g. A-Close [8]
or Titanic [9]. Generators have been targeted within the concept analysis field as
well [10], e.g. by the Zart algorithm [11]. Well-known FCI/FG-miners exclusively
apply levelwise strategies, although the levelwise itemset miners are known to
be outperformed by depth-first methods (e.g. Charm [12] and Closet [13]) on a
broad range of dataset profiles, especially on dense ones. Hence the idea of design-
ing a depth-first FCI/FG-miner. Our method, called Touch, tackles the compo-
nent tasks separately: while the state-of-the-art algorithm Charm extracts FCIs,
FG-mining is performed by Talky-G, an original method following a set inclusion-
compliant order in the traversal of the itemset lattice. At a post-processing step
of Touch, FGs are associated to their respective FCIs, thus providing the neces-
sary starting point for the production of MNR. Experimental results show that
Touch outperforms two other efficient competitors, A-Close [8] and Zart [11],
especially on dense and highly correlated datasets. Thus, the contributions of our
study lay mainly in the design of an efficient method, Touch, for constructing
the aforementioned rule bases. Additionally, Talky-G is a stand-alone algorithm
for extracting FGs.

The paper is organized as follows. Section 2 lists the basic concepts of frequent
itemset mining and presents the vertical depth-first mining strategy of Charm. In
Section 3, we introduce a new FG-miner algorithm called Talky-G. The Touch
algorithm that combines the results of Charm and Talky-G is introduced in
Section 4. Finally, conclusions and future work are discussed in Section 5.

2 Background

Consider the following 5 × 5 sample dataset: D = {(1, ACDE), (2, ABCDE),
(3, AB), (4, D), (5, B)}. Throughout the paper, we will refer to this example
as “dataset D” .

2.1 Basic Concepts from Pattern Mining

We consider a set of objects or transactions O = {o1, o2, . . . , om}, a set of at-
tributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O×A. A set of items
is called an itemset. Each transaction has a unique identifier (tid), and a set
of transactions is called a tidset. The tidset of all transactions sharing a given
itemset X is its image, denoted t(X). For instance, the image of {A, B} in D
is {2, 3}, i.e., t(AB) = 23 in our separator-free set notation. The length of an
itemset X is |X |, whereas an itemset of length i is called an i-itemset. The (ab-
solute) support of an itemset X , denoted by supp(X), is the size of its image, i.e.
supp(X) = |t(X)|. Moreover, X is frequent, if its support is not less than a given
minimum support threshold, min_supp, i.e. supp(X) ≥ min_supp. An equiva-
lence relation is induced by t on the power-set of items ℘(A): equivalent itemsets
share the same image (X ∼= Z iff t(X) = t(Z)) [14]. In [12], a subsumption rela-
tion is defined as well: X subsumes Z, iff X ⊃ Z and supp(X) = supp(Z).

Efficient Vertical Mining of Frequent Closures and Generators 395

Consider the equivalence class of X , denoted [X], and its extremal elements
w.r.t. set inclusion. [X] has a unique maximum (a closed itemset), and a set
of minima (generator itemsets). The following definition thereof exploits the
monotony of support upon set inclusion in ℘(A).

Definition 1. An itemset X is closed (generator) if it has no proper superset
(subset) with the same support.

A closure operator underlies the set of closed itemsets; it assigns to X the max-
imum of [X] (denoted by γ(X)). Naturally, X = γ(X) for closed X . Generators,
a.k.a. key-sets in database theory, represent a special case of free-sets [15].

By Def. 1, if Z subsumes X , then Z cannot be a generator. The following
property, which is widely known in the domain, generalizes this observation. It
basically states the generator family is a downset within the Boolean lattice
〈℘(A),⊆〉.

Property 1. Given X ⊆ A, if X is a generator, then ∀Y ⊆ X , Y is a generator,
whereas if X is not a generator, ∀Z ⊇ X , Z is not a generator.

2.2 Vertical Itemset Mining

Miners from the literature, whether for plain FIs or FCIs, can be roughly split
into breadth-first and depth-first ones. Breadth-first algorithms, more specifi-
cally the Apriori-like [1] ones, apply levelwise traversal of the pattern space
exploiting the anti-monotony of the frequent status. Depth-first algorithms, e.g.,
Closet [13], in contrast, organize the search space into a prefix-tree (see Fig-
ure 1) thus factoring out the effort to process common prefixes of itemsets.
Among them, the vertical miners use an encoding of the dataset as a set of pairs
(item, tidset), i.e., {(i, t(i))|i ∈ A}, which reportedly allows the costly database
re-scans to be avoided.

Eclat [16] was the first FI-miner to combine the vertical encoding with a depth-
first traversal of a tree structure, called IT-tree, whose nodes are X× t(X) pairs.
Eclat traverses the IT-tree in a depth-first manner in a pre-order way, from
left-to-right [16,17] (see Figure 1).

Charm adapts the computing schema of Eclat to the exclusive construction
of the FCIs [12]. The key challenges it faces are parsimony in generating the
closedness candidates and efficiency of closedness tests on those candidates. To
avoid examining the entire IT-tree of the FIs, Charm relies on a technique that,
given a node X × t(X), looks for a Z subsuming X by combining X to Y ,
where Y × t(Y) is any right sibling node in the tree. Due to the specific traversal
discipline, all Z are such that X is a prefix thereof (hence not all X expand to
the closure of X).

To certify a candidate Z as closed, it should be checked that no set can sub-
sume Z. Again, the traversal ensures that potential subsumers can only precede
Z in the traversal-induced order on A, hence at the moment Z is tested all of
them are already processed and the actual closure is known. Thus, the closed-
ness test amounts to a lookup in the working memory for a set Y such that
t(Z) = t(Y), absence meaning that Z is the closure of [Z]. To avoid extensive

396 L. Szathmary et al.

Fig. 1. Left: pre-order traversal with Eclat ; Right: reverse pre-order traversal with
Talky-G. The direction of traversal is indicated in circles

search through the known part of the FCI family, Charm employs a hashing
on t(Z) (hashing is discussed in Section 3). For a more detailed presentation of
vertical itemset miners, please refer to the report [18].

Charm is known to be one of the fastest FCI-miners, hence we adopt it in
our own FCI/FG-miner. A natural question is whether a similar strategy could
be defined for FGs. Several generators within a class mean that the pure image-
based tests will not work as the existence of a generator with the same image
does not disqualify a candidate X . Indeed, beside image equality, the existing
generator must be a subset of X in order to invalidate X . Thus, X can only
be certified “generator” if no stored generator is a subset thereof with the same
image.

Moreover, hidden in the testing principles is a different traversal order: in fact,
for the test to be effective, all subsets of a candidate X must be processed before
X itself. Only then all generator subsets of X will be known and hence could be
used in correctly (in)validating its own generator status. Although such a concern
is typically addressed through a breadth-first traversal, the corresponding order
could also be achieved with a depth-first one, yet with a different listing order
on the items, as discussed in the next section.

3 Talky-G

Talky-G is a vertical FG-miner following a depth-first traversal of the IT-tree
and a right-to-left order on sibling nodes.

3.1 Reverse Pre-order Traversal

Talky-G applies an inclusion-compatible traversal: it goes down the IT-tree while
listing sibling nodes from right-to-left and not the other way round as in Eclat
and Charm. The resulting order on itemsets is exactly the order on their nu-
merical representations (e.g., E is 1 and ABD is 26 in our dataset D) that is
frequently used in combinatorial generation algorithms. This strategy is used in
Next-Closure [19] under the name of lectic order.

The authors of [20] explored that order for mining calling it reverse pre-order.
They observed that for any itemset X its subsets appear in the IT-tree in nodes
that lay either higher on the same branch as (X, t(X)) or on branches to the

Efficient Vertical Mining of Frequent Closures and Generators 397

Algorithm 1. (main block of Talky-G):

1) root.itemset ← ∅; // root is an IT-node whose itemset is empty
2) root.tidset ← {all transaction IDs}; // the empty set is included in every tr.
3) loop over the vertical representation of the dataset (attr) {
4) if ((attr.supp ≥ min_supp) and (attr.supp < |O|)) {
5) // |O| stands for the total number of objects in the database
6) root.addChild(attr); // attr is frequent and generator
7) }
8) }
9) loop over the children of root from right-to-left (child) {

10) save(child); // process the itemset
11) extend(child); // discover the subtree below child

12) }

Algorithm 2. (“extend(curr)” procedure of Talky-G):

Method: extend an IT-node recursively (discover FGs in its subtree)
Input: curr – an IT-node whose subtree is to be discovered

1) loop over the right siblings of curr from left-to-right (other) {
2) generator ← getNextGenerator(curr, other);
3) if (generator �= null) then curr.addChild(generator);
4) }
5) loop over the children of curr from right-to-left (child) {
6) save(child); // process the itemset
7) extend(child); // discover the subtree below child

8) }

right of it. Hence, depth-first processing of the branches from right-to-left would
perfectly match set inclusion, i.e., all subsets of X will be met before X itself.

While the algorithm in [20] extracts the so-called non-derivable itemsets, our
Talky-G algorithm uses this traversal to find the set of frequent generators. See
Figure 1 for a comparison of Eclat and its “reversed” version.

3.2 The Algorithm

Pseudo code. Algorithm 1 provides the main block of Talky-G. First, the IT-
tree is initialized, which involves the creation of the root node, representing
the empty set (of 100% support, by construction). Talky-G then transforms the
layout of the dataset in vertical format, and inserts below the root node all 1-long
frequent itemsets. Such a set is an FG whenever its support is less than 100%. At
this point, the dataset is no more needed since larger itemsets can be obtained
as unions of smaller ones while for the images intersection must be used.

398 L. Szathmary et al.

Algorithm 3. (“getNextGenerator(curr, other)” function of Talky-G):

Method: create a new frequent generator
Input: two IT-nodes (curr and other)
Output: a frequent generator or null

1) cand.tidset ← curr.tidset ∩ other.tidset;
2) if (cardinality(cand.tidset) < min_supp) { // test 1
3) return null; // not frequent
4) }
5) // else, if it is frequent
6) if ((cand.tidset = curr.tidset) or (cand.tidset = other.tidset)) { // test 2
7) return null; // not generator
8) }
9) // else, if it is a potential generator

10) cand.itemset ← curr.itemset ∪ other.itemset;
11) if (cand has a proper subset with the same support in the hash) { // test 3
12) return null; // not generator
13) }
14) // if cand passed all the tests then cand is a frequent generator
15) return cand;

In the core processing, the extend procedure is called recursively for each
child of the root in a right-to-left order. At the end, the IT-tree contains all FGs.
The addChild procedure inserts an IT-node under a node. The save procedure
stores an FG in a dedicated “list” data structure. The extend procedure (see
Algorithm 2) discovers all FGs in the subtree of a node. First, new FGs are
tentatively generated from the right siblings of the current node. Then, certified
FGs are added below the current node and later on extended recursively in a
right-to-left order.

The getNextGenerator function (see Algorithm 3) takes two nodes and re-
turns a new FG, or “null” if no FG can be produced from the input nodes. First,
a candidate node is created by taking the union of both itemsets and the in-
tersection of their respective images. The input nodes are thus the candidate’s
parents. Then, the candidate undergoes a frequency test. If successful, the can-
didate is compared to its parents: if its tidset is equivalent to a parent tidset,
then the candidate cannot be a generator. Even with both outcomes positive, an
itemset may still not be a generator as a subsumed subset may lay elsewhere in
the IT-tree. Due to the traversal strategy in Talky-G, all generator subsets of the
current candidate are already detected and the algorithm has stored them in a
“list” structure (see the save procedure). Thus, the ultimate test checks whether
the candidate has a proper subset with the same support in this “list”. A posi-
tive outcome disqualifies the candidate. The test exploits a hash structure that
enhances the one used in Charm to perform the search for FG subsets efficiently.

Efficient Vertical Mining of Frequent Closures and Generators 399

Fig. 2. Execution of Talky-G on dataset D with min_supp = 1 (20%)

Candidates surviving the final test are declared FG and added to the IT-tree.
An unsuccessful candidate X is discarded which ultimately prevents any itemset
Y having X as a prefix to be generated as candidate and hence substantially
reduces the overall search space. When the algorithm stops, all frequent genera-
tors (and only frequent generators) are inserted in the IT-tree and in the “list”
of generators.

Running example. The execution of Talky-G on dataset D with min_supp =
1 (20%) is illustrated in Figure 2. Circles beside tree nodes show traversal ranks.

The IT-tree root node is first created and, as there is no full column in the
dataset, all items become FGs, thus they are inserted below the root. These
nodes are recursively extended in a right-to-left order. The rightmost node E
has no right sibling, thus it cannot be extended. In contrast, D is extended with
E. The result, DE, is discarded since of equal support to its parent E. C is
extended with both D and E, but both CD and CE are discarded for this same
reason. The processing of the B-branch, in short, yields FGs BC, BD, and BE.
As to the 2-long supersets of A, AC and AE fail the second test because of C
and E, respectively, while AB and AD succeed. The combination of the latter,
ABD, although of strictly smaller support than its parents, fails because of a
subsumed FG in the list (BD).

3.3 Fast Subsumption Checking

Recall that in the getNextGenerator function, when a new candidate itemset C
is created, Talky-G checks whether C subsumes a previously found generator. If
the test is positive, then clearly C is not a generator. Subsumption might seem
expensive here, yet an efficient way to filter non-generators exists.

To that end the hash structure of Charm was adapted to the storage of fre-
quent generators. Actually, Talky-G hashes the itemsets upon the tidset while
storing generators with their support values. Consequently, equivalent itemsets
get the same hash value and end up in the same list in the hash structure. In
the testing of a candidate Z, the entire list corresponding to its hash value h(Z)
is retrieved. Whenever there is a set G in the list such that supp(Z) = supp(G)
and Z ⊃ G, Z is discarded, otherwise Z is declared an FG.

400 L. Szathmary et al.

FCI (supp) FGs
AB (2) AB
ABCDE (1) BE; BD; BC
A (3) A

FCI (supp) FGs
B (3) B
ACDE (2) E; C; AD
D (3) D

Fig. 3. Top: hash tables for dataset D with min_supp = 1. Top left: hash table
of Charm containing all FCIs. Top right: hash table of Talky-G containing all FGs.
Bottom: output of Touch on dataset D with min_supp = 1.

Example. Figure 3 (top right) depicts the hash structure of the IT-tree in
Figure 2, which contains all FGs of D. Each entry of the table is a list of (itemset,
support) pairs. Here, the size of the hash table is set to four.

Assume we need to test ABD whose absolute support is 1. First, the sum
of the tids in its tidset is 2 which, modulo the size of the hash table, is again
2. When traversing the list at position 2 of the table, B is more frequent than
ABD while BE, although of the same support, is not a subset of ABD. Yet the
next set, BD, is both of identical support and a proper subset of the candidate,
hence ABD is discarded.

4 Touch

The algorithm has three steps: (1) extracting FCIs, (2) extracting FGs, and
(3) associating FGs to their FCIs.

4.1 The Algorithm

While the above tasks (1) and (2) are solved by Charm and Talky-G, respec-
tively, the appropriate associations between the respective outputs of both algo-
rithms, task (3), require some additional effort. Yet as both algorithms provide
an additional hash structure (see Figure 3), the problem admits an efficient
solution.

The exact method is based on a generalization of the storage strategy for FGs
in Talky-G to FCIs. Indeed, observe that just as all FGs of the same equivalence
class are forced to belong to the same list within the hash structure, their respec-
tive closure, whenever hashed to the FGs table would fall into the same list too.
Conversely, if hashed against the FCI structure, each FG would fall precisely in
the list where its closure lays. In both cases, the same hash value is guaranteed
by the shared image.

Yet an effective re-hashing of FCIs or FGs is not necessary: with tables prop-
erly sized, i.e. of the same dimension, and with identical hash functions, the lists

Efficient Vertical Mining of Frequent Closures and Generators 401

from both tables can be directly matched. To that end, FCIs from the list at
position n in the closure table should be compared only to FGs from the list at
the same n position in the generator table.

Pseudo code. The algorithm Touch starts by calling Charm and Talky-G and
taking over their hash structures. Then, Touch matches the two hash tables: for
each FCI X , it looks up in the hash table of Talky-G at the same index position
all subsets of X that have the same support.

Example. Consider the hash structures of Charm and Talky-G in Figure 3.
Assume the generators of the closed itemset ACDE are sought. As ACDE is
stored at position 3 in the hash structure of Charm, its generators will also be at
position 3 in the hash structure of Talky-G. Three members of the corresponding
list are subsumed by ACDE: E, C, and AD, hence they are the target generators.
For the FCI A, the only subsumed FG of the list at index 2 is A, meaning that A
is the unique member of its equivalence class [A]. The output of Touch is shown
in Figure 3 (bottom).

4.2 Experimental Results

We evaluated Touch against Zart [11] and A-Close [8]. All the algorithms were
implemented in Java in the Coron data mining platform [21].1 The experiments
were carried out on a bi-processor Intel Quad Core Xeon 2.33 GHz machine run-
ning under Ubuntu GNU/Linux with 4 GB of RAM. For the experiments we
have used the following datasets: T20I6D100K2, C20D10K, and Mushrooms3.
The T20 is a sparse dataset, constructed according to the properties of market
basket data that are typical weakly correlated data. The C20 is a census dataset
from the PUMS4 sample file, while the Mushrooms describes mushrooms char-
acteristics. The last two are highly correlated datasets.

Table 1 contains detailed information about the execution of Touch. The first
three columns correspond to the three main steps of Touch namely (1) getting
FCIs using Charm, (2) getting FGs using Talky-G, and (3) associating FGs
to their closures. Column 4 indicates the total execution time of the algorithm
including input and output. In the sparse dataset T20, almost all frequent item-
sets are closed and generators at the same time. It means that most equivalence
classes are singletons. It is known that Charm is less efficient on sparse datasets.
This is due to the fact that Charm performs four tests on candidates for re-
ducing the IT-tree. However, in sparse datasets the number of FCIs is almost
equivalent to the number of FIs, thus the search space cannot be reduced signifi-
cantly. Talky-G is also less efficient on sparse datasets. However, in dense, highly
correlated datasets (C20 and Mushrooms), both Charm and Talky-G are very
efficient, even at low minimum support values. Since the number of FCIs and
1 http://coron.loria.fr
2 http://www.almaden.ibm.com/software/quest/Resources/
3 http://kdd.ics.uci.edu/
4 Public Use Microdata Sample

http://coron.loria.fr
http://www.almaden.ibm.com/software/quest/Resources/
http://kdd.ics.uci.edu/

402 L. Szathmary et al.

Table 1. Detailed execution times of Touch and data-related statistics: number of
FCIs, of of FGs, and of FIs (for comparison only, Touch does not work with all FIs),
ratio of FCIs to FIs, ratio of FGs to FIs.

execution time (sec.)
min_supp get FCIs get FGs associate total time # FCIs # FGs (# FIs) #FCIs

#FIs
#FGs
#FIs

(Charm) (Talky-G) FCIs and FGs (with I/O)
T20I6D100K

1% 19.07 2.16 0.03 22.76 1,534 1,534 1,534 100.00% 100.00%
0.75% 24.06 2.65 0.05 28.32 4,710 4,710 4,710 100.00% 100.00%
0.5% 35.21 5.01 0.14 42.45 26,208 26,305 26,836 97.66% 98.02%
0.25% 94.59 20.71 0.50 121.60 149,217 149,447 155,163 96.17% 96.32%

C20D10K
30% 0.20 0.29 0.02 1.06 951 967 5,319 17.88% 18.18%
20% 0.34 0.41 0.03 1.42 2,519 2,671 20,239 12.45% 13.20%
10% 0.71 0.70 0.07 2.27 8,777 9,331 89,883 9.76% 10.38%
5% 1.13 1.06 0.11 3.37 21,213 23,051 352,611 6.02% 6.54%

Mushrooms
30% 0.12 0.21 0.02 0.82 425 544 2,587 16.43% 21.03%
20% 0.19 0.27 0.02 0.98 1,169 1,704 53,337 2.19% 3.19%
10% 0.43 0.46 0.04 1.57 4,850 7,585 600,817 0.81% 1.26%
5% 0.80 0.81 0.08 2.53 12,789 21,391 4,137,547 0.31% 0.52%

Table 2. Response times of Touch, compared to Zart and A-Close

T20I6D100K
min. execution time (sec.)
supp. Touch Zart A-Close
1% 22.76 7.33 31.25

0.75% 28.32 14.96 39.49
0.5% 42.45 45.52 100.60
0.25% 121.60 159.78 285.41

C20D10K
min. execution time (sec.)
supp. Touch Zart A-Close
30% 1.06 8.17 15.78
20% 1.42 15.84 29.88
10% 2.27 36.66 59.41
5% 3.37 75.28 94.18

Mushrooms
min. execution time (sec.)
supp. Touch Zart A-Close
30% 0.82 3.65 7.17
20% 0.98 10.69 15.28
10% 1.57 75.36 36.83
5% 2.53 641.54 63.37

FGs is much less than the number of FIs, the two algorithms can take advantage
of exploring a much smaller search space. The association of FCIs and FGs is
done very efficiently in all cases. That is, the association step gives absolutely
no overhead to Touch.

Table 2 contains the experimental evaluation of Touch against Zart and
A-Close. All times reported are real, wall clock times as obtained from the Unix
time command between input and output. We have chosen Zart and A-Close
because they represent two efficient algorithms that produce exactly the same
output as Touch. Zart and A-Close are both levelwise algorithms. Zart is an ex-
tension of Pascal [14], i.e. first it finds all FIs using pattern-counting inference,
then it filters FCIs, and finally the algorithm associates FGs to their closures.
A-Close reduces the search space to FGs only, then it calculates the closure for
each generator. The way A-Close computes the closures of generators is quite ex-
pensive because of the huge number of intersection operations. Touch, just like
A-Close, reduces the search space to the strict minimum, i.e. it only extracts
what it really needs namely the set of FCIs and the set of FGs. Then, Touch
associates the two sets in a very efficient way. Since Touch is based on Charm
and Talky-G, the algorithm is very efficient on dense, highly correlated datasets.

Efficient Vertical Mining of Frequent Closures and Generators 403

We must admit however that levelwise algorithms are sometimes more suitable
for sparse datasets.

5 Conclusions and Future Work

Mining FGs has so far been done largely in a levelwise manner as the breadth-first
traversal fits the down-set structure of the FG family. Yet depth-first algorithms
have shown superior efficiency in many situations, whence the motivation of our
study of depth-first FCI/FG-mining.

As a contribution to this problem, we presented Touch, an algorithm that
splits the general problem into three tasks: (1) FCI-mining, (2) FG-mining, and
(3) association of FGs to their closures (FCIs). While (1) is solved by reusing an
existing algorithm, Charm, the two others generate innovative solutions. Hence
the Talky-G vertical FG-miner used in (2) is an original contribution on its
own. As all three solutions are highly optimized, the algorithm performs well
against comparable levelwise miners. Numerous concise representations of valid
association rules can be readily derived from the method’s output.

The study led to a range of exciting questions that are currently investigated.
Thus, from an algorithmic point of view, it would be interesting to merge steps
(1) and (2), e.g. by using the output of Talky-G (i.e., the IT-tree of all FGs) as a
starting point for the FCI-mining, hence avoiding step (3). A further challenge
lays in the computation of the FCI precedence order that underlies some of
the association rule bases from the literature. We plan to join Touch with our
previous algorithm Snow [22]. Snow allows us to easily compute precedence
order using hypergraph theory. Once we have a concept lattice whose nodes
are labeled with generators, it is possible to produce all kinds of MNR rules,
including approximate association rules too.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proc. of the 20th Intl. Conf. on Very Large Data Bases (VLDB
1994), pp. 487–499. Morgan Kaufmann, San Francisco (1994)

2. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining Minimal Non-
redundant Association Rules Using Frequent Closed Itemsets. In: Palamidessi, C.,
Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986.
Springer, Heidelberg (2000)

3. Kryszkiewicz, M.: Representative Association Rules. In: Wu, X., Kotagiri, R., Korb,
K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 198–209. Springer, Heidelberg
(1998)

4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed Set Based Discovery of
Small Covers for Association Rules. In: Proc. 15emes Journees Bases de Donnees
Avancees (BDA), pp. 361–381 (1999)

5. Duquenne, V.: Contextual Implications Between Attributes and Some Represen-
tational Properties for Finite Lattices. In: Beitraege zur Begriffsanalyse, B.I. Wis-
senschaftsverlag, Mannheim, pp. 213–239 (1987)

404 L. Szathmary et al.

6. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines 113, 35–55 (1991)

7. Kryszkiewicz, M.: Concise Representations of Association Rules. In: Proc. of the
ESF Exploratory Workshop on Pattern Detection and Discovery, pp. 92–109 (2002)

8. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Item-
sets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

9. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with TITANIC. Data and Knowledge Engineering 42(2), 189–222
(2002)

10. Valtchev, P., Missaoui, R., Godin, R.: Formal Concept Analysis for Knowledge
Discovery and Data Mining: The New Challenges. In: Proc. of the 2nd Intl. Conf.
on Formal Concept Analysis, pp. 352–371. Springer, Heidelberg (2004)

11. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART: A Multifunctional Itemset
Mining Algorithm. In: Proc. of the 5th Intl. Conf. on Concept Lattices and Their
Applications (CLA 2007), pp. 26–37 (2007)

12. Zaki, M.J., Hsiao, C.J.: ChARM: An Efficient Algorithm for Closed Itemset Mining.
In: SIAM Intl. Conf. on Data Mining (SDM 2002), pp. 33–43 (2002)

13. Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, pp. 21–30 (2000)

14. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining Frequent
Patterns with Counting Inference. SIGKDD Explor. Newsl. 2(2), 66–75 (2000)

15. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-Sets: A Condensed Representation
of Boolean Data for the Approximation of Frequency Queries. Data Mining and
Knowledge Discovery 7(1), 5–22 (2003)

16. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Dis-
covery of Association Rules. In: Proc. of the 3rd Intl. Conf. on Knowledge Discovery
in Databases, pp. 283–286 (1997)

17. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering 12(3), 372–390 (2000)

18. Szathmary, L., Valtchev, P., Napoli, A.: Efficient Mining of Frequent Closures with
Precedence Links and Associated Generators. Research Report RR-6657, INRIA
(2008), http://hal.inria.fr/inria-00322798/en

19. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

20. Calders, T., Goethals, B.: Depth-First Non-Derivable Itemset Mining. In: Proc. of
the SIAM Intl. Conf. on Data Mining (SDM 2005), Newport Beach, USA (2005)

21. Szathmary, L.: Symbolic Data Mining Methods with the Coron Platform. PhD
Thesis in Computer Science, Univ. Henri Poincaré – Nancy 1, France (2006)

22. Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Constructing Iceberg Lattices
from Frequent Closures Using Generators. In: Boulicaut, J.-F., Berthold, M.R.,
Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 136–147. Springer, Hei-
delberg (2008)

http://hal.inria.fr/inria-00322798/en

Isotonic Classification Trees

Rémon van de Kamp, Ad Feelders, and Nicola Barile

Utrecht University, Department of Information and Computing Sciences,
P.O. Box 80089, 3508TB Utrecht, The Netherlands

{rpkamp,ad,barile}@cs.uu.nl

Abstract. We propose a new algorithm for learning isotonic classifica-
tion trees. It relabels non-monotone leaf nodes by performing the isotonic
regression on the collection of leaf nodes. In case two leaf nodes with a
common parent have the same class after relabeling, the tree is pruned
in the parent node. Since we consider problems with ordered class labels,
all results are evaluated on the basis of L1 prediction error. We experi-
mentally compare the performance of the new algorithm with standard
classification trees.

1 Introduction

In many applications of data analysis it is reasonable to assume that the re-
sponse variable is increasing (or decreasing) in one or more of the attributes or
features. For example, the sale price of a house - all else equal - increases with lot
size, and according to economists people tend to buy less of a product if its price
increases. Such relations between response and attribute are called monotone.
Monotonicity constraints can, for example, also be found in medicine [20,6] and
law [12]. Besides being plausible, monotonicity may also be a desirable prop-
erty of a decision model for reasons of explanation, justification and fairness.
Pazzani et al.[17], show that rules learned with monotonicity constraints were
significantly more acceptable to medical experts than rules learned without the
monotonicity restrictions.

Because the monotonicity constraint is quite common in practice, many data
analysis techniques have been adapted to be able to handle such constraints.
In this paper we present a new algorithm, called ICT, for learning monotone
classification trees for problems with ordered class labels. Our approach differs
from earlier monotone tree algorithms such as [5,18,11] in that we adjust the
probability estimates in the leaf nodes in case of a violation. This is done in
such a way that, subject to the monotonicity constraint, the sum of absolute
prediction errors on the training sample is minimized. Another new element of
our algorithm is that we can also handle problems where some, but not all,
attributes have a monotone relation with the response. The performance of the
new algorithm is evaluated through experimental studies on real life data sets.

This paper is organized as follows. In the next section we introduce the basic
concepts and notation that will be used throughout the paper. Since the isotonic
regression is an important technique for our algorithm, we discuss it shortly in

N. Adams et al. (Eds.): IDA 2009, LNCS 5772, pp. 405–416, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

406 R. van de Kamp, A. Feelders, and N. Barile

section 3. In section 4 we discuss the main contribution of this paper, the Isotonic
Classification Tree (ICT) algorithm. ICT is evaluated in section 5 where we
present the results of experiments on real data. Section 6 concludes.

2 Preliminaries

Let X be a feature space X = X1 × X2 × . . . × Xp consisting of vectors x =
(x1, x2, . . . , xp) of values on p features or attributes. We assume that each fea-
ture takes values xi in a linearly ordered set Xi. The partial ordering � on
X will be the ordering induced by the order relations of its coordinates Xi:
x = (x1, x2, . . . , xp) � x′ = (x′

1, x
′
2, . . . , x

′
p) if and only if xi ≤ x′

i for all i.
Furthermore, let Y be a finite linearly ordered set of classes. Without loss of
generality, we assume that Y = {1, 2, . . . , k} where k is the number of classes.

A monotone classification rule is a function c : X → Y for which

x � x′ ⇒ c(x) ≤ c(x′) (1)

for all instances x,x′ ∈ X . A data set {xi, yi}n
i=1 is monotone if for all i, j we

have xi � xj ⇒ yi ≤ yj.
The classification rules we consider are univariate binary classification trees.

For such trees, at each node a split is made using a test of the form Xi < d for
some d ∈ Xi, 1 ≤ i ≤ p. Thus, for a binary tree, in each node the associated set
t ⊂ X is split into the two subsets t� = {x ∈ t : xi < d} and tr = {x ∈ t : xi ≥ d}.
The classification rule that is induced by a decision tree T will be denoted by cT .

For any node or leaf t of T , the subset of the instance space corresponding to
that node can be written

t = {x ∈ X : a � x ≺ b} = [a,b) (2)

for some a,b ∈ X with a � b. Here X denotes the extension of X with infinity-
elements −∞ and ∞. In some cases we need the infinity elements so we can
specify a node as in equation (2).

Below we will call min(t) = a the minimal element and max(t) = b the
maximal element of t. Together, we call these the corner elements of node t. If
min(t) ≺ max(t′) then node t contains points that are smaller than some points
in node t′, hence the monotonicity constraint requires that the label assigned to
node t should not be bigger than the label assigned to node t′. Therefore, we
call a pair of leaves t, t′ non-monotone if min(t) ≺ max(t′) and cT (t) > cT (t′)
[19]. A tree is non-monotone if it contains at least one non-monotone leaf pair.

It is customary to evaluate a classifier on the basis of its error-rate or 0/1 loss.
For classification problems with ordered class labels this choice is less obvious.
It makes sense to incur a higher cost for those misclassifications that are “far”
from the true label, than to those that are “close”. One loss function that has
this property is L1 loss:

L1(i, j) = |i − j| i, j = 1, . . . , k (3)

Isotonic Classification Trees 407

where i is the true label, and j the predicted label. We note that this is not the
only possible choice. One could also choose L2 loss for example, or another loss
function that has the desired property that misclassifications that are far from
the true label incur a higher loss. Nevertheless, L1 loss is a reasonable candidate,
and in this paper we confine our attention to this loss function.

To illustrate the concepts introduced, we discuss a small example. Let Y =
{1, 2, 3} and suppose we have a tree with two input attributes with X1, X2 ∈
[0, 1]2. The tree is given in Figure 1 on the left. The corresponding partitioning
of the input space is depicted in Figure 1 on the right.

50,50,50

40,20,20 10,30,30

35,15,5 5,5,15 10,20,5 0,10,25

X1 < 0.6

X2 < 0.3 X2 < 0.7

t1

t2 t3

t4 t5 t6 t7

X1

X2

0.6

0.3

0.7

1

3

2

3

t4

t5

t6

t7

Fig. 1. Left: Classification tree for three-class problem. Numbers in nodes are the
counts for class 1, 2 and 3 respectively. In the leaf nodes, the counts of the median class
are shown in boldface. The circled labels in the leaf nodes correspond to the labeled
regions in the picture on the right. Right: Partitioning of input space corresponding to
the tree on the left. The class labels assigned to the different rectangles are shown in
boldface. Rectangle t5 and t6 form a nonmonotone leaf pair.

To minimize L1 loss we allocate to the median in leaf nodes, which leads to
the class labels as shown in boldface in Figure 1 on the right. Leaf node t5 and
t6 form a nonmonotone pair, since t5 has a higher class label but contains points
that are smaller than some points in t6: the lower left corner of t5 is smaller than
the upper right corner of t6.

3 The Isotonic Regression

In this section we give a general description of the isotonic regression. In section 4
we discuss its application to making trees monotone.

Let Z = {z1, z2, . . . , zm} be a nonempty finite set of constants and let � be
a partial order on Z. Any real-valued function f on Z is isotonic with respect
to � if, for any z, z′ ∈ Z, z � z′ implies f(z) ≤ f(z′). We assume that each
element zi of Z is associated with a real number g(zi); these real numbers typ-
ically are estimates of the function values of an unknown isotonic function on
Z. Furthermore, each element of Z has associated a positive weight w(zi) that

408 R. van de Kamp, A. Feelders, and N. Barile

typically indicates the precision of this estimate. An isotonic function g∗ on Z
now is an isotonic regression of g with respect to the weight function w and the
partial order � if and only if it minimizes the sum

m∑
i=1

w(zi) [f(zi) − g(zi)]2 (4)

in the class of isotonic functions f on Z. Brunk [8] proved the existence of a
unique g∗.

Any real-valued function f on Z is antitonic with respect to � if, for any
z, z′ ∈ Z, z � z′ implies f(z) ≥ f(z′). The antitonic regression of g is defined
completely analogous to the isotonic regression as the function that minimizes
(4) within the class of antitonic functions. The isotonic regression with respect
to a partial order is equivalent to the antitonic regression with respect to the
inverse of that order.

The best time complexity known for an exact solution to the isotonic regres-
sion problem for arbitrary partial order is O(m4) [16]. It is based on a divide-
and-conquer strategy that involves solving at most m maximal flow problems.

4 Isotonic Classification Trees

The ICT algorithm can in principle be combined with any standard classifica-
tion tree algorithm. Here we modify a cart-like algorithm [7] to incorporate the
monotonicity constraints. The main principle of ICT is that it makes trees mono-
tone by relabeling its leaf nodes. This is done in such a way that of all monotone
trees that can be obtained by relabeling the leaf nodes, the one produced by ICT
has lowest absolute error on the training data. The relabeling is not computed
directly, but is obtained by first adjusting the probability estimates in the leaf
nodes (using the isotonic regression), and then allocating each leaf node to the
(smallest) median of its estimated class distribution.

We first discuss the growing of trees in ICT. Then we discuss the adjustment
of probability estimates in the leaf nodes, and the corresponding relabeling,
which may lead to pruning the tree. We also discuss the incorporation of partial
monotonicity constraints in ICT.

4.1 Growing Trees

Let T̃ denote the collection of leaf nodes of tree T , n(t, j) denote the number of
observations in t with class label j, and let

P̂j(t) =
n(t, j)
n(t)

, t ∈ T̃

denote the relative frequency of class label j in node t. Furthermore, let

F̂i(t) =
∑
j≤i

P̂j(t), t ∈ T̃

Isotonic Classification Trees 409

denote the unconstrained maximum likelihood estimate of

Fi(t) = P (y ≤ i | x ∈ t), t ∈ T̃ .

Because the median is known to minimize L1 loss, we allocate to the (smallest)
median of the estimated class distribution:

c(t) = min
i

: F̂i(t) ≥ 0.5, (5)

The standard tree growing algorithm is modified in such a way that it records
the corner elements of each node. Since the aim is to minimize L1 loss, the risk
for each node is set to be the mean absolute error for that node:

r(t) =
∑

i:xi∈t

|yi − c(t)|
n(t)

,

where c(t) denotes the class allocated to node t and n(t) denotes the number of
observations in node t.

To compute the impurity of a node, we use the gini index combined with
absolute error:

i(t) =
∑
j �=k

|j − k|P̂j(t)P̂k(t), j, k ∈ Y

As usual, ICT chooses the split that maximizes impurity reduction.

4.2 Making the Tree Monotone

Let (T̃ ,�) be the partial order � over T̃ with

t � t′ ⇔ min(t) ≺ max(t′), t, t′ ∈ T̃ ,

that is, t precedes t′ if t contains points that are smaller than some points in t′.
Define

F ∗
i (t), i = 1, 2, . . . , k − 1; t ∈ T̃

as the antitonic regression of g(t) = F̂i(t) with weights w(t) = n(t) and partial
order (T̃ ,�), for each value i = 1, 2, . . . , k−1. Of course, F ∗

k (t) = 1 for all t ∈ T̃ .
Note that F ∗ satisfies the stochastic order constraint

t � t′ ⇒ F ∗
i (t) ≥ F ∗

i (t′), i = 1, . . . , k. (6)

Subsequently, we allocate t to the smallest median of F ∗(t):

c∗(t) = min
i

: F ∗
i (t) ≥ 0.5 (7)

Because F ∗ satisfies (6), we have that c∗ satisfies the monotonicity constraint
[14]

t � t′ ⇒ c∗(t) ≤ c∗(t′)

410 R. van de Kamp, A. Feelders, and N. Barile

Furthermore, it can be shown [10,3] that c∗(t) minimizes L1 loss

n∑
i=1

|yi − c(t(xi))|

within the class of monotone integer-valued functions c(·) on T̃ , where t(xi) =
t ∈ T̃ : xi ∈ t. In other words, of all monotone classifiers on T̃ , c∗ is among
the ones (there may be more than one) that minimize L1 loss on the training
sample.

To illustrate, we continue the example introduced in section 2. The monotonic-
ity violation between t5 and t6 is resolved by performing the antitonic regression
on F̂1(t), and on F̂2(t), t ∈ {t4, t5, t6, t7}. Note that we have the total order
t4 � t5 � t6 � t7 on the leaf nodes in this particular case. The solution is
to average F̂1(t5) with F̂1(t6) and F̂2(t5) with F̂2(t6) with n(t5) and n(t6) as
weights:

F ∗
1 (t5) = F ∗

1 (t6) =
5 + 10
25 + 35

=
1
4

F ∗
2 (t5) = F ∗

2 (t6) =
10 + 30
25 + 35

=
2
3

Using these revised estimates we assign to the median, meaning we assign to class
2 in both t5 and t6. Note that the L1 error of the original nonmonotone tree is:
25+15+15+10=65. By relabeling leaf node t5 to class 2, the error increases to
70. This is the best possible monontone relabeling of the leaf nodes; for example,
relabeling t6 to class 3 would increase the error to 90.

4.3 ICT Pruning

After relabeling the leaf nodes, there may be pairs t� and tr with common parent
t that have been assigned the same class label. In that case, the tree is pruned
in t, and we apply the normal allocation rule (5) to t. This may result in a non-
monotone tree, in which case the leaf nodes are relabeled again. Also note that
pruning may create a new pair t′�, t′r with the same class label and a common
parent t′ in which case the algorithm will prune in t′.

4.4 Algorithm Outline

The ICT algorithm is summarized in Algorithm 1. The algorithm takes as input
a tree T , and returns a monotone tree T ′ which is a possibly relabeled and
pruned version of T .

If the tree is monotone, it is returned unchanged. However, if the tree is non-
monotone, the antitonic regression computes the new probability estimates in
line 4-6. In line 7-10 the leaf nodes are subsequently relabeled. Line 11-14 prune
away leaf nodes with the same class label and common parent. The resulting
tree may be nonmonotone, hence the recursive call to ICT in line 15.

It should be noted that we combine the ICT algorithm with cost-complexity
pruning in the following way. Let T1 > T2 > . . . > {t1} denote the tree sequence
produced by standard cost-complexity pruning, where t1 denotes the root node

Isotonic Classification Trees 411

Algorithm 1. ICT(T)
1: if T is monotone then
2: return T
3: else
4: for i ∈ {1, . . . , k − 1} do
5: F ∗

i ← AntitonicRegression(T̃ ,
,n(t) : t ∈ T̃ ,F̂i(t) : t ∈ T̃)
6: end for
7: for all t ∈ T̃ do
8: F ∗

k (t) ← 1
9: cT (t) ← mini F ∗

i (t) ≥ 0.5
10: end for
11: while there are t�, tr ∈ T̃ with common parent t and cT (t�) = cT (tr) do
12: T ← prune T in t
13: cT (t) ← mini F̂i(t) ≥ 0.5
14: end while
15: T ′ ← ICT(T)
16: return T ′

17: end if

of the tree, and Tj > Tk means Tk is obtained by pruning Tj in one or more
nodes. We apply ICT pruning to every tree in this sequence (except the root
of course) to obtain a sequence of monotone trees T ′

1 > T ′
2 > . . . > {t1}. This

sequence may be shorter than the original sequence, since sometimes two trees
from the original cost-complexity sequence are pruned back to the same tree by
ICT.

4.5 Partial Monotonicity

In many applications there will be attributes for which there is no reason to
assume that they have a monotone relation with the class label. Therefore we
extended the ICT algorithm to be able to handle such cases.

The ICT algorithm for partial monotonicity is largely the same as it is for
complete monotonicity. We just need to change the partial order used in the
antitonic regression and the check that determines if two leafs are non-monotone.

First we define a partially monotone classification rule. Let X be defined as
before, and let Z = ×Zi, i = 1, . . . , q. The values Zi may be either ordered or
unordered. A classification rule c : X × Z → Y is monotone in X iff

∀x,x′ ∈ X , ∀z ∈ Z : x � x′ ⇒ c(x, z) ≤ c(x′, z)

Our orginal ordering on T̃ was defined in such a way that t � t′ if node t
contained elements that were smaller than some elements of t′. This was the
case when min(t) ≺ max(t′). Now we have to add the constraint that t and t′

should have overlapping values on Z. Hence, we define a new partial order (T̃ ,�)
with t ⊂ X ×Z as follows:

t � t′ ⇔ min(tX) ≺ max(t′X) ∧ tZ ∩ t′Z �= ∅, t, t′ ∈ T̃ .

Here tX denotes the projection of t on the monotone attributes X.

412 R. van de Kamp, A. Feelders, and N. Barile

5 Experiments

In order to evaluate the proposed algorithm, we performed a number of experi-
ments. This section contains information on the datasets, how we pre-processed
the data, the experiments and their results. The programs were implemented
in R1.

5.1 Datasets

We selected a number of datasets where monotonicity constraints are likely to
apply. We used the KC4, PC3, PC4 and PC5 datasets from the NASA Metrics
Data Program [15], the Acceptance/Rejection, Employee Selection, Lecturers
Evaluation and Social Workers Decisions from A. Ben-David [4], the Windsor
Housing dataset [1], the Den Bosch Housing dataset [9], as well as several datasets
from the UCI Machine Learning Repository [2]. All datasets except Den Bosch
Housing are publicly available. Table 1 lists all the datasets used.

5.2 Pre-processing of the Data

ICT makes the harmless assumption that all monotone attributes have an in-
creasing relation with the response. This means that if the actual relation is
decreasing, the attribute values have to be inverted. We tested this by looking
at the correlation between the attribute and the response. In case of a nega-
tive correlation between some attribute x and the response, we transformed the
values of x as follows:

xi = xmax − xi + xmin, i = 1, . . . , n (8)

with xmax = max(x), and xmin = min(x).
For datasets with a numeric response that is not a count (Auto MPG, Boston

Housing, CPU Performance, Windsor Housing and Den Bosch Housing) we dis-
cretized the response values into four separate intervals, each interval containing
roughly the same number of observations.

For all datasets from the NASA Metrics Data Program the attribute
ERROR COUNT was used as the response. All attributes that contained missing
values were removed. Furthermore, the attribute MODULE was removed because
it is a unique identifier of the module and the ERROR DENSITY was removed be-
cause it is a function of the response variable. On the remaining attributes we
used the function stepAIC with backward elimination in R to fit a linear model;
attributes that did not occur in the final model were removed from the dataset.
Since the distribution of ERROR COUNT was highly skewed (most modules have
zero errors) we sampled the modules with zero errors to create a more balanced
distribution. High error counts are less frequent than low error counts. In order
to increase frequencies, the higher counts were merged into a single class. For
example, for KC4, all class labels greater than five were set to five.
1 http://www.r-project.org/

Isotonic Classification Trees 413

For the CPU Performance dataset the machine cycle time in nanoseconds was
converted to clock speed in Khz, in order to make it positively correlated with
the class label. From this dataset the attributes Vendor Name, Model Name and
ERP were removed.

From the Den Bosch Housing dataset the independent attributes year,
x-coordinate and y-coordinate were removed.

5.3 Relabeling toward Monotonicity

Besides enforcing a monotone model, one can also use prior knowledge about
monotonicity by relabeling the dataset to make it monotone. As shown in [22,13],
models learned on relabeled datasets on average perform better than models
learned with the original class labels.

Therefore, we also tested ICT on relabeled versions of the original datasets.
We computed y∗ as the relabeling of the observations that minimizes

ntrain∑
i=1

|yi − y′
i|

within the class of monotone relabelings y′. Here ntrain denotes the number
of observations in the training sample. The test data was not relabeled in the
experiments.

Table 1 summarizes for all datasets the cardinality, the number of attributes
after pre-processing, the number of distinct class labels and the L1 distance
between y and y∗. For example, to make the Australian Credit data monotone
we have to relabel for a total absolute error of 14. Since Australian Credit has a
binary class label, this means that 14 observations have to be relabeled.

Table 1. Dataset charasterics and relabeling information

Dataset cardinality #attributes #labels
∑

|yi − y∗
i |

Australian Credit 690 14 2 14
Auto MPG 392 7 4 23
Boston Housing 506 13 4 28
Car Evaluation 1728 6 4 21
Den Bosch Housing 119 8 4 10
Empoyee Rej/Acc 1000 4 9 1161
Employee selection 488 4 9 104
Haberman survival 306 3 2 55
Lecturers evaluation 1000 4 5 364
CPU Performance 209 6 4 26
Pima Indians 768 8 2 53
Social Workers Decisions 1000 10 4 375
Windsor Housing 546 11 4 134
KC4 122 4 6 80
PC3 320 15 5 1
PC4 356 16 6 6
PC5 1032 21 6 141

414 R. van de Kamp, A. Feelders, and N. Barile

5.4 Experimental Results

Each of the datasets was randomly divided one hundred times into a training
set consisting of four fifth of the data and a test set consisting of the remaining
one fifth of the data. On every training set a tree was grown, after which cost
complexity pruning was applied to obtain a sequence of trees. The ICT algorithm
was applied to each tree in this sequence to obtain a sequence of monotone trees.
Subsequently, the test set was used to select the best tree from the original
sequence and to select the best tree from the monotone sequence. The test errors
of the best standard trees and the best monotone trees were averaged over the
one hundred repititions of the experiment.

Table 2 shows the results of the experiments on all datasets. The errors are
indicated as the mean absolute error on the test sample. For each column the
mean error and the standard deviation of this mean error are indicated, separated
by a ± sign. The lowest error and the lowest number of leafs for each dataset
are printed in boldface.

First we consider the results with the original class labels. In that case ICT al-
most always has a slightly lower error than the standard tree. The two exceptions

Table 2. Results of monotone trees (ICT) and standard trees

Dataset Label Error ICT Error Standard #Leafs ICT #Leafs Standard
Australian y 0.1426±0.0070 0.1431±0.0068 3.4300±1.9553 3.3500±2.2490
Credit y∗ 0.1418±0.0078 0.1426±0.0071 3.3600±1.9515 3.5700±2.9241
Auto MPG y 0.2982±0.0292 0.3045±0.0282 9.2800±2.7746 10.6300±5.3497

y∗ 0.2985±0.0295 0.2982±0.0293 10.1100±2.7484 12.3800±4.5964
Boston y 0.3966±0.0370 0.4050±0.0376 8.3100±3.1065 7.7100±4.9222
Housing y∗ 0.3861±0.0334 0.3935±0.0339 8.3200±2.7957 8.5700±5.2073
Car y 0.0871±0.0181 0.0836±0.0164 27.6200±5.4417 32.4400±8.4271
Evaluation y∗ 0.0897±0.0190 0.0849±0.0184 28.2300±5.3802 32.3100±7.8787
Den Bosch y 0.4922±0.0832 0.5165±0.0852 5.5200±1.5274 5.6600±1.9396
Housing y∗ 0.4755±0.0829 0.4856±0.0841 5.5100±1.4106 5.5500±1.6840
Employee Rej/Acc y 1.2764±0.0407 1.2926±0.0415 10.3400±3.9778 8.2200±3.4629

y∗ 1.1773±0.0242 1.1627±0.0208 17.0600±2.2103 19.3900±1.1538
Employee y 0.4348±0.0369 0.4590±0.0395 23.6900±4.3128 26.9500±8.4452
Selection y∗ 0.3829±0.0265 0.3822±0.0304 23.9100±2.9063 27.6300±3.9457
Haberman y 0.2585±0.0146 0.2605±0.0139 2.6000±2.1742 1.9900±1.6112
Survival y∗ 0.2482±0.0164 0.2484±0.0164 3.8300±2.0003 4.3200±2.4980
Lecturers y 0.4764±0.0267 0.4903±0.0267 19.9000±5.1981 19.9200±8.9563
Evaluation y∗ 0.4151±0.0233 0.3832±0.0157 21.5300±3.5773 28.7900±3.1311
CPU Performance y 0.4556±0.0540 0.4773±0.0554 8.3300±2.3401 9.2900±4.4818

y∗ 0.4323±0.0486 0.4324±0.0453 8.5900±1.9700 9.8800±2.7016
Pima y 0.2586±0.0145 0.2619±0.0144 5.6300±3.1866 4.6700±3.1464
Indians y∗ 0.2580±0.0130 0.2576±0.0117 4.3900±2.7299 4.5200±3.9936
Social Workers y 0.4707±0.0209 0.4772±0.0181 9.3300±4.3579 7.6100±4.5436
Decisions y∗ 0.4309±0.0163 0.4045±0.0137 12.6700±3.6350 27.4500±4.7298
Windsor y 0.6244±0.0328 0.6619±0.0364 17.0100±5.1198 15.5400±12.8860
Housing y∗ 0.5992±0.0333 0.6103±0.0377 18.7900±4.2433 24.9500±12.0566
KC4 y 1.1871±0.1349 1.2358±0.1474 4.4300±2.2031 4.6300±3.2649

y∗ 1.0153±0.1298 1.0174±0.1349 4.8400±1.5681 5.0900±1.7529
PC3 y 0.5357±0.0440 0.5363±0.0394 2.6000±1.3780 2.4900±1.5986

y∗ 0.5351±0.0443 0.5359±0.0399 2.6100±1.4695 2.4900±1.5986
PC4 y 0.5735±0.0492 0.5835±0.0543 4.9500±2.9418 4.5100±3.0600

y∗ 0.5886±0.0617 0.5928±0.0632 5.4200±3.2167 5.1900±4.0394
PC5 y 0.4960±0.0188 0.4948±0.0242 6.1600±4.1310 5.8400±4.5543

y∗ 0.4939±0.0189 0.4904±0.0229 6.1111±4.4006 6.8800±5.1410

Isotonic Classification Trees 415

are the Car evaluation data and dataset PC5. There is no clear winner on the
tree size criterion.

On the relabeled data the conclusions are quite different. Now there is no
clear winner in terms of the error but ICT clearly has the smaller trees.

Comparing the error on the relabeled and original data, we can conclude that
it is beneficial to relabel the training data, since it tends to reduce the error.

It should be noted that the differences found were small, and nowhere signifi-
cant. Nevertheless it is safe to conclude that in the datasets studied, enforcing a
monotone model does not lead to a degradation of the predicitive performance.
Hence, when a monotone model is required, or just preferred, such a model can
be obtained without loss of predicitive accuracy.

Finally, we discuss our experiments with partially monotone trees. One of
the important problems is how to determine which attributes are to be con-
strained, and which are not. In practice such information may be obtained from
domain experts. Here we used a data-based test proposed by [21]. This some-
times resulted in the removal of the constraint for a particular attribute, but the
results did not improve compared to complete monotonicity, and are therefore
not reported.

6 Conclusions

We have presented a new algorithm, called ICT, for learning monotone classi-
fication trees from data. ICT differs from existing monotone tree algorithms in
that it relabels the leaf nodes of the tree in case of monotonicity violations: ICT
produces the monotone relabeling that minimizes absolute error on the training
sample. Furthermore, in contrast to existing monotone tree algorithms, ICT can
also be applied to partially monotone problems.

Our experiments have shown that ICT usually performed slightly better than
standard trees on the original data. After relabeling, the performance of ICT and
the standard tree algorithm was virtually identical. It should be noted however
that a standard tree algorithm applied to monotone data does not necessarily
produce a monotone tree. Therefore, if a monotone model is required, application
of a standard algorithm to relabeled data may not be sufficient. Furthermore,
on the relabeled data ICT on average produced smaller trees than the standard
algorithm. This warrants the conclusion that ICT trees are easier to understand
than their somewhat larger and possibly non-monotone counterparts.

References

1. Anglin, P.M., Gençay, R.: Semiparametric estimation of a hedonic price function.
Journal of Applied Econometrics 11(6), 633–648 (1996)

2. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
3. Barile, N., Feelders, A.: Nonparametric monotone classification with MOCA. In:

Giannotti, F. (ed.) Proceedings of the Eighth IEEE International Conference on
Data Mining (ICDM 2008), pp. 731–736. IEEE Computer Society, Los Alamitos
(2008)

416 R. van de Kamp, A. Feelders, and N. Barile

4. Ben-David, A., Sterling, L., Pao, Y.: Learning and classification of monotonic or-
dinal concepts. Computational Intelligence 5, 45–49 (1989)

5. Ben-David, A.: Monotonicity maintenance in information-theoretic machine learn-
ing algorithms. Machine Learning 19, 29–43 (1995)

6. Bloch, D.A., Silverman, B.W.: Monotone discriminant functions and their appli-
cations in rheumatology. Journal of the American Statistical Association 92(437),
144–153 (1997)

7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification And Regres-
sion Trees. Chapman and Hall, Boca Raton (1984)

8. Brunk, H.D.: Conditional expectation given a σ-lattice and applications. Annals
of Mathematical Statistics 36, 1339–1350 (1965)

9. Daniels, H.A.M., Kamp, B.: Application of MLP networks to bond rating and
house pricing. Neural Computing & Applications 8(3), 226–234 (1999)

10. Dykstra, R., Hewett, J., Robertson, T.: Nonparametric, isotonic discriminant pro-
cedures. Biometrika 86(2), 429–438 (1999)

11. Feelders, A., Pardoel, M.: Pruning for monotone classification trees. In: Berthold,
M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS,
vol. 2810, pp. 1–12. Springer, Heidelberg (2003)

12. Karpf, J.: Inductive modelling in law: example based expert systems in admin-
istrative law. In: Proceedings of the third international conference on artificial
intelligence in law, pp. 297–306. ACM Press, New York (1991)

13. Kotlowski, W., Slowinski, R.: Statistical approach to ordinal classification with
monotonicity constraints. In: ECML PKDD 2008 Workshop on Preference Learning
(2008)

14. Lievens, S., De Baets, B., Cao-Van, K.: A probabilistic framework for the design
of instance-based supervised ranking algorithms in an ordinal setting. Annals of
Operations Research 163, 115–142 (2008)

15. Long, J.: NASA metrics data program (2008),
http://mdp.ivv.nasa.gov/repository.html

16. Maxwell, W.L., Muckstadt, J.A.: Establishing consistent and realistic reorder in-
tervals in production-distribution systems. Operations Research 33(6), 1316–1341
(1985)

17. Pazzani, M.J., Mani, S., Shankle, W.R.: Acceptance of rules generated by machine
learning among medical experts. Methods of Information in Medicine 40, 380–385
(2001)

18. Potharst, R., Bioch, J.C.: Decision trees for ordinal classification. Intelligent Data
Analysis 4(2), 97–112 (2000)

19. Potharst, R.: Classification using Decision Trees and Neural Nets. PhD thesis,
Erasmus University Rotterdam (1999)

20. Royston, P.: A useful monotonic non-linear model with applications in medicine
and epidemiology. Statistics in Medicine 19(15), 2053–2066 (2000)

21. Velikova, M.: Monotone Models for Prediction in Data Mining. PhD thesis, Tilburg
University (2006)

22. Velikova, M., Daniels, H.: Decision trees for monotone price models. Computational
Management Science 1(3-4), 231–244 (2004)

http://mdp.ivv.nasa.gov/repository.html

Author Index

Adams, Niall 1
Aussem, Alex 35, 202

Balakrishnan, Rajesh 143
Barile, Nicola 405
Berlingerio, Michele 237
Bifet, Albert 249
Böhm, Klemens 309
Bonnevay, Stéphane 202
Borisov, Alexander 225
Bradley, Elizabeth 321

Cain, James 261
Carroll, J. Douglas 47
Clyne, John 321
Cohen, Paul 1
Coscia, Michele 237
Counsell, Steve 261
Crémilleux, Bruno 155

Dasu, Tamraparni 21
De Las Rivas, Javier 107
Di-Jorio, Lisa 297
Diallo, Alpha 273
Diamantini, Claudia 285
Douzal-Chouakria, Ahlame 273

Eichinger, Frank 309

Feelders, Ad 405
France, Stephen L. 47

Gavaldà, Ricard 249
Giannotti, Fosca 237
Giroud, Francoise 273
Godin, Robert 393
Gruchalla, Kenny 321

Habich, Dirk 59
Hahmann, Martin 59
Hollmén, Jaakko 213
Höppner, Frank 71

Ienco, Dino 83

Jensen, Pablo 10
Jiang, Eric P. 95

Kamp, Rémon van de 405
Kaski, Samuel 178, 381
Klawonn, Frank 71
Kopanakis, Ioannis 131
Krajca, Petr 333
Kramer, Stefan 119
Krishnan, Shankar 21
Krishnan, Sriram 119
Kumar, Abhishek 143

Laurent, Anne 297
Lehner, Wolfgang 59
Li, Jian 345
Lin, Dongyu 21
Liu, Xiaohui 345
Lurponglukana-Strand, Nuttha 225

Mart́ın-Merino, Manuel 107
Mart́ınez-Álvarez, Francisco 357
Meo, Rosa 83
Mininni, Pablo 321
Mueller, Marianne 119

Napoli, Amedeo 393

Panagiotakis, Costas 131
Parvathy, Anju G. 143
Pelekis, Nikos 131
Pensa, Ruggero G. 83
Plantevit, Marc 155
Potena, Domenico 285
Puolamäki, Kai 178, 381

Rao, Bharat 119
Rast, Mark 321
Riquelme, José C. 357
Rodrigues de Morais, Sérgio 35
Rosales, Rómer 119
Rosenthal, Frank 59
Runger, George 225

Sapozhnikova, Elena P. 167
Savia, Eerika 178
Steck, Harald 119

418 Author Index

Steele, Emma 190
Storti, Emanuele 285
Swift, Stephen 261, 345
Szathmary, Laszlo 393

Teisseire, Maguelonne 297
Thibault, Grégory 202
Toivola, Janne 213
Troncoso, Alicia 357
Tucker, Allan 190, 261
Tuv, Eugene 225

Valtchev, Petko 393
Vasudevan, Bintu G. 143
Venkatasubramanian, Suresh 21
Volk, Peter B. 59
Vychodil, Vilem 333

Yi, Kevin 21

Zagoruiko, Nikolay 369

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Invited Papers
	Intelligent Data Analysis in the 21st Century
	Autonomous Expert Data Analysis
	Challenge Problems
	New Challenges for Intelligent Data Analysis
	References

	Analyzing the Localization of Retail Stores with Complex Systems Tools
	Introduction
	Quantifying Interactions between Activities
	Definitions of the Spatial Indicators
	Intra Coefficient
	Inter Coefficient

	Analyzing Retail Stores Interactions
	Finding Retail Stores Communities
	From Interactions to Location Niches
	Conclusions, Perspectives
	References

	Selected Contributions 1 (Long Talks)
	Change (Detection) You Can Believe in: Finding Distributional Shifts in Data Streams
	Introduction
	A Statistical Approach

	Related Work
	Our Contributions

	Basic Overview of Our Approach
	Details of the Algorithm
	Constructing a Distribution from a Stream
	Bootstrap Methods and Hypothesis Testing
	Data Structures
	Maintaining the KL-Distance
	High Dimensions: Referential Distance

	Experiments
	Real Life Applications

	Conclusion and Discussion
	References

	Exploiting Data Missingness in Bayesian Network Modeling
	Introduction
	Background
	Deletion Process
	Related Work
	Bayesian Networks
	Markov Boundary Learning Algorithms

	The Imputation Model
	Experiments
	Synthetic Data
	Detecting the Missing Mechanism

	Conclusion
	References

	DEMScale: Large Scale MDS Accounting for a Ridge Operator and Demographic Variables
	Introduction
	Methodology
	DEMScale Algorithm
	Computational Complexity
	Experimentation and Results
	References

	How to Control Clustering Results? Flexible Clustering Aggregation
	Introduction
	Preliminaries
	Expanding Pair-Wise Assignments
	A Novel Pair-Wise Assignment
	Introducing Significance

	Flexible Clustering Aggregation
	Evaluation
	Conclusion
	References

	Compensation of Translational Displacement in Time Series Clustering Using Cross Correlation
	Introduction
	Brief Review of Fuzzy c-Means and Noise Clustering
	Measuring Time Series Similarity
	Compensating Translational Displacement
	Efficient Calculation of the Optimal Lag
	Determination of the Prototypes
	Interpretation of the Noise Distance

	Experimental Evaluation
	Clustering (Whole) Time Series
	Clustering Subsequences of Time Series

	Conclusions
	References

	Context-Based Distance Learning for Categorical Data Clustering
	Introduction
	Related Work
	The DILCA Method
	Experiments and Results
	Experimental Settings and Results
	Scalability of DILCA

	Conclusion
	References

	Semi-supervised Text Classification Using RBF Networks
	Introduction
	RBF Networks for Text Classification
	Semi-supervised Learning Process
	Feature Selection and Document Representation
	Network Training
	Incorporating Unlabeled Data
	Adjusting the Weights for Unlabeled Data

	Experiments
	Datasets and Experiment Settings
	Comparing Performance with and without Using Labeled Data
	Varying the Weights for Unlabeled Data
	Impact of Feature Size on Performance

	Conclusions and Future Work
	References

	Improving k-NN for Human Cancer Classification Using the Gene Expression Profiles
	Introduction
	Kernel Target Alignment
	Empirical Kernel Map

	Learning the Metric in a HRKHS Using Kernel Alignment
	Kernel Alignment k-NN in a HRKHS

	Experimental Results
	Conclusions
	References

	Subgroup Discovery for Test Selection: A Novel Approach and Its Application to Breast Cancer Diagnosis
	Introduction
	Background and Data
	Definition of Prediction Quality

	Method
	Quality Pruning
	The SD4TS Algorithm
	Analysis of Runtime and Search Space

	Validation and Results
	Analysis of Performance Compared to Random Selection
	Results

	Related Work
	Conclusion
	References

	Trajectory Voting and Classification Based on Spatiotemporal Similarity in Moving Object Databases
	Introduction
	Problem Formulation
	Global Voting and Classification
	Voting Method
	Trajectory Classification
	Computational Complexity Issues

	Experimental Results
	Conclusions
	References

	Leveraging Call Center Logs for Customer Behavior Prediction
	Introduction
	Related Works
	Methodology
	Spelling Correction
	Spelling Correction - Our Approach
	Comparative Analysis

	Behavioral History Sequence (BHS)
	Categorization
	Constructing the BHS

	Customer Behavior Prediction
	Domain Heuristics
	Behavioral Pattern Selection
	Deductive Approach
	Non Deductive Approach

	Discussions
	Conclusion
	References

	Condensed Representation of Sequential Patterns According to Frequency-Based Measures
	Introduction
	Preliminary Concepts and Definitions
	Exact Condensed Representation of Sequential Pattern According to Frequency Based Measures
	Strong Sequential Patterns According to Frequency-Based Measures
	Experiments
	Related Work
	Conclusion
	References

	ART-Based Neural Networks for Multi-label Classification
	Introduction
	FAM and ARAM Neural Networks
	ML-FAM and ML-ARAM
	Experimental Results
	Datasets and Performance Measures
	Performance Comparison

	Conclusions
	References

	Two-Way Grouping by One-Way Topic Models
	Introduction
	Cold-Start Problem
	Approximating Two-Way Model with Two One-Way Models

	Method
	One-Way Grouping Models
	Two-Way Grouping Model
	Approximation of Two-Way Model by Product of Experts
	Baseline Models

	Experiments
	Experimental Scenarios
	Measures of Performance
	Demonstration with Artificial Data
	Experiments with Parliament Data

	Results
	Results of Experiments with Artificial Data
	Results of Experiments with Parliament Data

	Discussion
	References

	Selecting and Weighting Data for Building Consensus Gene Regulatory Networks
	Introduction
	Methods
	Experiments and Results
	Datasets and Experiment Design
	Results: Synthetic Networks
	Results: Yeast Heat-Stress Network

	Conclusions
	References

	Incremental Bayesian Network Learning for Scalable Feature Selection
	Introduction
	Feature Selection
	Bayesian Networks
	Incremental MB Structure Learning for Scalable FSS
	Experiments
	Accuracy
	Scalability
	Robustness

	Conclusion
	References

	Feature Extraction and Selection from Vibration Measurements for Structural Health Monitoring
	Introduction
	Structural Health Monitoring Using Vibration Measurements
	Online Monitoring of a Single Frequency
	Quadrature Amplitude Modulation
	The Goertzel Algorithm

	Feature Selection and Classification
	Candidate Features
	Probabilistic Model for Damage Detection

	Experiments and Results
	Summary and Conclusions
	References

	Zero-Inflated Boosted Ensembles for Rare Event Counts
	Previous Work: ZIP Regression and ZIP Tree
	Boosting Framework
	ZIP-Boosted Ensemble
	Evaluation
	Conclusion
	References

	Selected Contributions 2 (Short Talks)
	Mining the Temporal Dimension of the Information Propagation
	Introduction
	Related Work
	Problem Definition
	Case Study
	Dataset
	Tools
	Steps of Analysis
	Results

	Conclusions and Future Work
	References

	Adaptive Learning from Evolving Data Streams
	Introduction
	A Methodology for Adaptive Stream Mining
	Incremental Decision Trees: Hoeffding Trees
	Decision Trees on Sliding Windows
	HWT-ADWIN: HoeffdingWindow Tree Using ADWIN
	CVFDT

	Hoeffding Adaptive Trees
	Example of Performance Guarantee

	Experimental Evaluation
	TimeandMemory
	Conclusions and Future Work
	References

	An Application of Intelligent Data Analysis Techniques to a Large Software Engineering Dataset
	Introduction
	Methods
	Data Creation
	Pre-processing the Graphs
	Hidden Markov Models

	Experiments
	Results and Discussion
	Conclusions
	References

	Which Distance for the Identification and the Differentiation of Cell-Cycle Expressed Genes?
	Introduction
	Identification of Genes Expressed in the Cell Cycle
	Proximity between Gene Expression Profiles
	Euclidean Distance
	Pearson Correlation Coefficient
	Temporal Correlation Coefficient: A Behavior Proximity Measure
	Behavior and Values ProximityMeasure

	MetricsComparison
	Simulation Study
	Random-PeriodsModel for Periodically Expressed Genes
	Simulation Protocol
	Metrics Efficiency for Clustering Gene Expression Profiles
	Metrics Efficiency for Classifying Gene Expression Profiles
	Discussion

	Conclusion
	References

	Ontology-Driven KDD Process Composition
	Introduction
	Related Works

	The KDD ONTOlogy
	Algorithm Matching
	Process Composition Procedure
	Dataset and Goal Definition
	Process Building
	Process Ranking
	Applicative Example

	Conclusion
	References

	Mining Frequent Gradual Itemsets from Large Databases
	Introduction
	Related Work
	Problem Definition
	GRITE: Efficient Extraction of Gradual Itemsets
	Gradual Itemset Search Space
	Matrices for Representing Orders
	Candidate Generation
	Frequency Computation

	Experiments
	Conclusion
	References

	Selecting Computer Architectures by Means of Control-Flow-Graph Mining
	Introduction
	Related Work
	Control-Flow-Graph Representation
	Control-Flow-Graph Mining
	Classification Framework
	Experiments
	Conclusion and Future Work
	References

	Visualization-Driven Structural and Statistical Analysis of Turbulent Flows
	Challenges to Data Analysis
	VAPOR: A Desktop Analysis and Visualization Application
	Visualization
	Hierarchical Data Model
	Multivariate Feature Extraction
	Coupled Visual, Quantitative, and Statistical Analysis

	Application to Vortical Structures in Taylor-Green Flow
	Global Vorticity and Structure Identification

	Conclusions
	References

	Distributed Algorithm for Computing Formal Concepts Using Map-Reduce Framework
	Introduction
	Formal Concept Analysis
	Processing Data Using Map-Reduce Approach

	The Algorithm
	Overview
	Adaptation for M/R Framework
	Details on MapConcepts and ReduceConcepts

	Implementation and Experiments
	Related Works, Conclusions, and Future Research

	References

	Multi-Optimisation Consensus Clustering
	Introduction
	Related Works
	Consensus Clustering
	Separation Score Evaluation Criterion
	Weighted Kappa Index
	Correlation Index

	Multi-Optimisation Consensus Clustering (MOCC)
	The Weighted Agreement Matrix and the Agreement Fitness Function
	The Probability Based Solution Generator
	The Multi-Optimisation Section

	Experimental Data Sets
	Results and Discussion
	Optimising Agreement Separation for the Agreement Threshold β
	Results and Comparison between CC and MOCC

	Conclusions
	References

	Improving Time Series Forecasting by Discovering Frequent Episodes in Sequences
	Introduction
	Related Work
	Fundamentals
	Time Series Forecasting: The LBF Algorithm
	Frequent Episodes in Sequences: The Q-epiMiner

	Methodology
	Combining the LBF Algorithm with Frequent Episodes
	Parameters of Quality

	Results
	Discovering Frequent Episodes in Time Series
	Quantifying the Improvements Achieved

	Conclusions
	References

	Measure of Similarity and Compactness in Competitive Space
	Introduction
	Similarity Measures in Metric and Competitive Spaces
	Compactness in Competitive Space
	Censoring of Samples and Construction of Standards
	Recognition of Two Kinds of Leukemia - ALL and AML
	Diagnostics of the Cancer of Prostate on Mass-Spectra of Proteins
	Conclusions
	References

	Bayesian Solutions to the Label Switching Problem
	Introduction
	Summary of Our Contribution
	Definitions
	General Derivation
	Mixture Models

	Theoretical Properties
	Properties of the Bernoulli Labeling
	Probabilistic Bernoulli Relabeling

	Experiments
	Mixture Model
	Dirichlet Process Mixture

	Conclusions
	References

	Efficient Vertical Mining of Frequent Closures and Generators
	Introduction
	Background
	Basic Concepts from Pattern Mining
	Vertical Itemset Mining

	Talky-G
	Reverse Pre-order Traversal
	The Algorithm
	Fast Subsumption Checking

	Touch
	The Algorithm
	Experimental Results

	Conclusions and Future Work
	References

	Isotonic Classification Trees
	Introduction
	Preliminaries
	The Isotonic Regression
	Isotonic Classification Trees
	Growing Trees
	Making the Tree Monotone
	ICT Pruning
	Algorithm Outline
	Partial Monotonicity

	Experiments
	Datasets
	Pre-processing of the Data
	Relabeling toward Monotonicity
	Experimental Results

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

