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Abstract. The goal of Process Mining is to extract process models from
logs of a system. Among the possible models to represent a process,
Petri nets is an ideal candidate due to its graphical representation, clear
semantics and expressive power. The theory of regions can be used to
transform a log into a Petri net, but unfortunately the transformation
requires algorithms with high complexity. This paper provides techniques
to overcome this limitation. Either by using decomposition techniques, or
by clustering events in the log and working on projections, the proposed
approach can be used to widen the applicability of classical region-based
techniques.

1 Introduction

The goal of Process Mining [20] is to extract knowledge from event logs recorded
in information systems. Several researchers have provided algorithms to mine
formal models from logs, most of them included in the ProM framework [19].

The synthesis problem [10] is related to process mining: it consists in building
a Petri net that has a behavior equivalent to a given transition system. The
problem was first addressed by Ehrenfeucht and Rozenberg [11] introducing re-
gions to model the sets of states that characterize marked places. In the area
of synthesis, some techniques have been proposed to take the theory of regions
into practice. In [2] polynomial algorithms for the synthesis of bounded nets
were presented. These algorithms have been recently adapted for the problem of
process mining in [3]. In [7], the theory of regions was applied for the synthesis
of safe Petri nets with bisimilar behavior. Recently, the theory from [7] has been
extended to bounded Petri nets [6].

Process mining differs from synthesis in the knowledge assumption: while in
synthesis one assumes a complete description of the system, only a partial de-
scription of the system is assumed in process mining. However, synthesis can be
adapted for process mining in two ways: either the log is encoded as a transi-
tion system (introducing state information, as described in [18]) and state-based
methods for mining [5] are applied, or language-based methods are used directly
on the log [3, 21]. In this paper we follow the first approach.

Due to its complexity, it is clear that the theory of regions might become
impractical when dealing with large logs. In this paper, we present methods to
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alleviate significantly the complexity of the region-based approach. Two tech-
niques are presented to this end:

– A decomposition method to find a set of components (conservative Petri
nets), each one describing a partial view of the log. This approach avoids the
exhaustive computation of regions and instead applies local search of regions
(inspired on the notion of allocation from Hack [13]) until a component is
detected. The set of components can either be composed to form a unique
Petri net or presented separately. It is described in Section 3.

– A divide-and-conquer method to split the log into pieces, by means of pro-
jection. The method selects groups of events tightly related in the log for
which the decomposition technique will be applied, projecting the log on
these events. When neither the classical region-based mining nor the decom-
position approach are able to handle a large log, this aggressive technique
has proven to be very successful. It is presented in Section 4.

In both approaches, the goal is to offer a set of partial views of the behavior
observed in the log, by means of a set of Petri nets whose parallel composition
can reproduce any trace observed in the log.

Log L
Events E

...PN PN PN PN PN
(cc) (cc) (cc) (cc)(cc)

L |En
L |E1

E = E1 ∪ . . . ∪ En

Let us illustrate the idea of the divide-
and-conquer approach (see figure on the
right): given a log L with set of events
E, using some ordering relations of the
events appearing in the log, derive a
causal dependency graph of the set of the
events. This graph is then cut into sev-
eral pieces, each piece representing a set
of events tightly related by causal depen-
dencies (in the figure, the sets E1 . . . En

are found). Finding a good partitioning
is a problem on its own, but several approaches can be used to this end, in-
cluding graph cut algorithms [14,12] or spectral graph theory [8]. Then the log is
projected for each one of the sets of events. The decomposition method of this
paper is then applied for each projection, obtaining a set of Petri nets (PN) that
covers the traces in the log.

2 Basic Theory

2.1 Finite Transition Systems and Petri Nets

Definition 1 (Transition system). A transition system (TS) is a tuple
(S, E, A, sin), where S is a set of states, E is an alphabet of actions, A ⊆
S × E × S is a set of (labelled) transitions, and sin ∈ S is the initial state.

We will use s
e→ s′ as a shortcut for (s, e, s′) ∈ A, and the transitive closure

of this relation will be denoted by ∗→. Let TS = (S, E, A, sin) be a transition
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system. We consider connected TSs that satisfy the following axioms: i) S and E
are finite sets, ii) every event has an occurrence and iii) every state is reachable
from the initial state.

The language of a TS, L(TS), is the set of traces feasible from the initial
state. When L(TS1) ⊆ L(TS2), we will denote TS2 as an over-approximation of
TS1. Given a trace σ ∈ L(TS) and a set A ⊆ E, σ |A is the trace resulting of
removing from σ all events in E − A. Analogously, TS |A is the TS that arises
after contracting all transitions of events in E − A.

Definition 2 (Petri net [15]). A Petri net (PN) is a tuple (P, T, F, M0) where
P and T represent finite and disjoint sets of places and transitions, respectively,
and F ⊆ (P × T ) ∪ (T × P ) is the flow relation. The initial marking M0 ⊆ P
defines the initial state of the system1.

The sets of input and output transitions of place p in PN N are denoted by •
Np

and p•N , respectively (we omit the subscript indicating the net if the context is
clear). The set of all markings reachable from the initial marking m0 is called its
Reachability Set. The Reachability Graph of PN (RG(PN)) is a transition system
in which the set of states is the Reachability Set, the events are the transitions
of the net and a transition (m1, t, m2) exists if and only if m1

t→ m2. We use
L(PN) as a shortcut for L(RG(PN)).

2.2 Regions and Region-Based Synthesis

We now review the classical theory of regions for the synthesis of Petri nets [11,
10,7]. Let S′ be a subset of the states of a TS, S′ ⊆ S. If s �∈ S′ and s′ ∈ S′, then
we say that transition s

a→ s′ enters S′. If s ∈ S′ and s′ �∈ S′, then transition
s

a→ s′ exits S′. Otherwise, transition s
a→ s′ does not cross S′.

The notion of a region is central for the synthesis of PNs. Intuitively, each
region is a set of states that corresponds to a place in the synthesized PN, so
that every state in the region models the marking of the place.

Definition 3 (Region). A set of states r ⊆ S in TS = (S, E, A, sin) is called a
region if for each event e ∈ E, exactly one of the three predicates (enters, exits
or does not cross) holds for all its transitions.

Hence, a region is a subset of states in which all transitions labelled with the
same event e have exactly the same “entry/exit” relation. This relation will
become the predecessor/successor relation in the Petri net. Examples of regions
are reported in Figure 1: from the TS of Figure 1(a), some regions are enumerated
in Figure 1(b). For instance, for region r2, event a is an exit event, event d is an
entry event while the rest of events do not cross the region.

1 For the sake of clarity, we restrict the region theory of this section to the class of
elementary net systems: 1-bounded Petri nets without loops. The theory for the
general case (k-bounded weighted Petri nets) is described in [6,5], and the theory of
the rest of the paper is applicable for the general case, as demonstrated in [4].
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Fig. 1. (a) Transition system, (b) regions, (c) NTS, (d) Causal dependency graph

Algorithm. PN synthesis on the set of regions R

– For each event e ∈ E generate a transition labelled with e in the PN;
– For each region ri ∈ R generate a place ri;
– Place ri contains a token in the initial marking iff the corresponding

region ri contains the initial state of the TS sin;
– The flow relation is as follows: e ∈ ri• iff ri is a pre-region of e

and e ∈ •ri iff ri is a post-region of e, i.e.,

FR
def
= {(r, e)|r ∈ RTS ∧ e ∈ E ∧ r ∈ ◦e}
∪{(e, r)|r ∈ RTS ∧ e ∈ E ∧ r ∈ e◦}

Fig. 2. Algorithm for Petri net synthesis from [11]

Each TS has two trivial regions: the set of all states, S, and the empty set.
The set of non-trivial regions of TS will be denoted by RTS. A region r is a pre-
region of event e if there is a transition labelled with e which exits r. A region
r is a post-region of event e if there is a transition labelled with e which enters
r. The sets of all pre-regions and post-regions of e are denoted with ◦e and e◦,
respectively. By definition it follows that if r ∈ ◦e, then all transitions labelled
with e exit r. Similarly, if r ∈ e◦, then all transitions labelled with e enter r.

The algorithm given by [11] to synthesize a PN, NTS = (R, E, FR, Rsin), from
an elementary transition system2 TS = (S, E, A, sin) and a set of regions R, is
illustrated in Figure 2. An example of the application of the algorithm is shown
in Figure 1. The initial TS and a set of regions is reported in Figures 1(a) and
(b), respectively. The synthesized PN is show in Figure 1(c). When the TS is

2 Elementary transition systems are a proper subclass of the TS considered in this
paper, where additional conditions to the ones presented in Section 2.1 are required.
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1  r,s,sb,p,ac,ap,c
2  r,sb,em,p,ac,ap,c
3  r,sb,p,em,ac,rj,rs,c
4  r,em,sb,p,ac,ap,c
5  r,sb,s,p,ac,rj,rs,c
6  r,sb,p,s,ac,ap,c
7  r,sb,p,em,ac,ap,c
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Fig. 3. (a) event log, (b) corresponding transition system

elementary, running algorithm of Figure 2 on the set of non-trivial regions RTS

derives a PN such that L(PN) = L(TS) [11].
Given an event e, ER(e) denote the set of states where event e is enabled

(Excitation Region), and SR(e) the set of states reached when firing e in a state
from ER(e) (Switching Region)3. These sets will be used to compute the ordering
relations between events (see below).

2.3 Deriving Transitions Systems from Logs

For a complete understanding of the approach presented in this paper, it is
necessary to show how to transform a log into a TS, which is the starting point
of our algorithms. The theory described in [18] presents many variants for solving
this problem. The basic idea to incorporate state information is to look at the
pre/post history of a subtrace in the log. Figure 3 shows an example, where
states are decided by looking at the set of common prefixes.

2.4 Trigger Relations and Its Graph

In this section we present a relation on events, similar to the log-based ordering
relation [20], but which is defined in the TS. It is based on the ER/SR sets.

Definition 4 (Causal Dependency Graph). Given a TS = (S, E, A, sin),
and two events a, b ∈ E:

1. a triggers b (a →TS b) if SR(a) ∩ ER(b) �= ∅ and ER(a) ∩ SR(b) = ∅, and
2. a is concurrent to (a ‖TS b) b if SR(a) ∩ ER(b) �= ∅ and ER(a) ∩ SR(b) �= ∅.

The causal dependency graph over TS, denoted CDG(TS), is the directed graph
(E,M), with M ⊆ E × E such that (a, b) ∈ M iff a →TS b or b →TS a.

For instance, the causal dependency graph of the transition system of Figure 1(a)
is depicted in Figure 1(d).

3 Excitation and switching regions are not regions in the terms of Definition 3. The
terms are used due to historical reasons.
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3 Computation of Conservative Components

The goal of this section is, given a TS, derive a set of conservative components
whose parallel composition contains all the traces possible in the TS. For the
sake of simplicity, we will restrict the definitions for the case of conservative
1-bounded nets, known as state machines [15]. Formal proofs of the main results
of this section can be found in [4].
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Fig. 4. Example of conservative components decomposition for the example of Figure 1:
(a) Partition of the transition system on regions r1, r4 and r5, and (b) for regions r2,
r3 and r5. The corresponding state machines are drawn in (c) and (d), respectively.

Let us illustrate the theory of this section revisiting the example of Figure 1.
From the set of regions reported (r1 . . . r5), there are two subsets that correspond
to partitions of the set of states in the transition system of Figure 1(a) (depicted
in Figures 4(a) and (b)). For instance, the subset r1, r4 and r5 forms a partition.
The main idea is: when a subset R of regions is a partition, then the synthesis
algorithm from Figure 2 applied on R will derive a conservative Petri net, i.e. a
Petri net where the number of tokens is preserved. Figure 4(c) and (d) show the
two Petri nets corresponding to each partition, respectively.

3.1 State Machines and Its State-Based Representation

First we define formally the concepts of subnet and state machine component:

Definition 5 (Subnet). A triple N ′ = (P ′, T ′, F ′) is a subnet of a net N =
(P, T, F ) if P ′ ⊆ P , T ′ ⊆ T and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

Definition 6 (State Machine Component). A state machine component
(SMC) N ′ = (P ′, T ′, F ′) of a net N is a subnet of N such that

1. for every t ∈ T ′ : |•N ′t| = |t•N ′ | = 1, and
2. for every p ∈ P ′, (•Np ∪ p•N ) ⊆ T ′

An SMC of a PN (N ,M0) is a pair (N ′,M ′
0) such that N ′ is a SMC of N , for

every p ∈ P ′ : M ′
0(p) = M0(p) and

∑
p∈P ′ M ′

0(p) = 1.
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Algorithm 1. SMCComputation
Input: Transition system TS = (S, E, A, sin), event ev ∈ E
Output: Set of regions R forming a partition of S
begin1

R←− ∅2

Evs←− {ev}3

ri ←− PickOneRegion({r|r ∈ ◦ev})4

rj ←−PickOneRegion({r|r ∈ ev◦ ∧ r ∩ ri = ∅}5

PendingRegs←− {ri, rj}6

Part←− {ri, rj}7

repeat8

r ←− RemoveOneRegion(PendingRegs)9

forall e ∈ E − Evs : e ∈ ◦r ∪ r◦ do10

ri ←− PickOneRegion({r|r ∈ ◦e ∧ r ∩ Part = ∅})11

rj ←− PickOneRegion({r|r ∈ e◦ ∧ r ∩ Part = ∅})12

if ri �= ∅ ∨ rj �= ∅ then13

Evs←− Evs ∪ {e}14

R←− R ∪ {ri, rj}15

PendingRegs←− PendingRegs∪ {ri, rj}16

Part←− Part ∪ {ri, rj}17

end18

end19

until PendingRegs = ∅ ∨ Part = S20

if Part ⊂ S then R←− {S}21

end22

The following theorem states the main result of this section:

Theorem 1. Let TS = (S, E, A, sin), and consider the net
NTS = (RTS, E, FRTS

, RTSsin
) obtained by the algorithm of Figure 2 on RTS.

Given a set of regions R ⊆ RTS, if R forms a partition of S, then algorithm of
Figure 2 on R defines an SMC of NTS.

3.2 Allocation-Based SMC Computation

In Hack’s thesis [13], the idea of allocation was introduced to decompose a Free-
choice Petri net into a set of safe and conservative components (S-components).
The idea is to select a-priori, among the places in the pre-set of a transition, the
one that will be in the pre-set of the transition in the constructed S-component.

Following the idea of allocation from Hack’s thesis, we present a method to
derive an SMC from a given TS. Algorithm 1 describes the iterative process
of finding regions until a partition of the states in TS is computed. Due to
Theorem 1, the set of regions R forms an SMC. The idea of the algorithm is:
starting from an initial event ev and two arbitrary regions in ◦ev and ev◦ (lines
4-5 of the algorithm), keep growing a partition by iteratively including pre-post
regions of new events until the partition equals the set of states in TS or no more
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Algorithm 2. SMCDecomposition
Input: Transition system TS = (S, E, A, sin)
Output: SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
begin1

X ←− E2

i←− 13

repeat4

ev ←− RemoveOneEvent(X)5

Ri ←− SMCComputation(TS,ev)6

Ei ←− {e|e ∈ ( ◦r ∪ r◦) ∧ r ∈ SMCi ∧ r ⊂ S} ∪ {ev}7

Fi ←− {(r, e)|e ∈ r◦ ∧ r ∈ Ri ∧ e ∈ Ei} ∪ {(e, r)|e ∈ ◦r∧ r ∈ Ri ∧ e ∈ Ei}8

M0,i ←− ∀r ∈ Ri : M0,i(r) = r(sin)9

X ←− X − Ei10

i←− i + 111

until X = ∅12

end13

regions can be found (lines 8-20). If the set of regions found are not enough as
to form a partition of S, the trivial region S is returned and therefore the SMC
will simply be the initial event with a self-loop place (line 21).

The general method to find a set of SMCs that cover every event of the TS is
described in Algorithm 2. At each iteration i, it tries to find a new SMC SMCi

that covers one of the events still not covered by any SMCj , for j < i. When
an event ev can only be covered by the trivial region S, then Ei = {ev}, and
therefore the SMCi derived will be a self-loop place on event ev.

Property 1. Algorithm 1 derives an SMC, and L(TS) ⊆ L(SMC).

Property 2. Given the set of regions R1 . . . Rn found by Algorithm 2,⋃
i=1...n Ri ⊆ RTS.

Property 2 ensures that the set of regions needed to cover the events is at most
the set of non-trivial regions. A complexity alleviation (with respect to classi-
cal synthesis methods) can be obtained when the set of regions computed by
Algorithm 2 is a proper subset. Section 5 shows examples of this.

Informally, the parallel composition of n PNs is a PN where every transition
with the same label in two or more components represents a synchronization
point for the components [22]. The following theorem can be proven:

Theorem 2. Let SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
be the set of components found by Algorithm 2 on TS = (S, E, A, sin). Then
L(TS) ⊆ L(SMC1 ‖ . . . ‖ SMCn).

Algorithm 2 is nondeterministic: depending on the order of events selected, a
different set of state machines can arise. This has an impact both in the quality of
the overapproximation obtained and in the complexity of the method, measured



Divide-and-Conquer Strategies for Process Mining 335

in the number of regions needed. In the future, more elaborated strategies can
be build on top of the approach presented to address these concerns4.

3.3 Covering the Causal Dependency Graph

The causal dependency graph can be used to improve the quality of the generated
parallel composition: if some causal dependency between a pair of events is not
transferred to an SMC with a shared place of the corresponding transitions, one
can try to derive a new SMC that contains this relation.

Let a −→TS b be an ordering relation found in the TS. If the set
{r | SR(a) ∪ ER(b) ⊆ r ∧ r ∈ RTS} is not empty, then any region of this set may
be used to try to find an SMC covering the ordering relation a −→TS b. Al-
gorithm 1 can be adapted to search for some region in this set that derives
a non-trivial SMC (i.e. different from the self-loop place SMC) containing the
causality relation between a and b. This is done by adapting the PickOneRegion
predicates to search for regions r in the set above.

The theory presented in this section has been generalized to arbitrary k-
bounded PNs, as it is shown in [4] (Section 3.4). Due to the lack of space, we
only show the experiments on this extension in Section 5.

4 A Divide-and-Conquer Approach for Petri Net Mining

To face the complexity required for dealing with large TSs, an approach is pre-
sented to project the TS into tightly related events, obtaining smaller TSs. These
smaller TSs can then be handled by computationally expensive Petri net mining
methods. In this section we show how the decomposition approach of Section 3
can be applied on the TSs obtained by the projection technique to derive a set
of Petri nets. These nets can be combined to form a unique Petri net that covers
the traces of the initial log. Formal proofs of the main results can be found in [4].

4.1 Introductory Example

Let us illustrate the idea with the example from Figure 5, representing the behav-
ior (A; ((B; E) ‖ (C; F ) ‖ (D; G)); H), in a TS having 28 states. In Figure 6(a),
we depict the causal dependency graph. Our goal is to find balanced partitions
of the causal dependency graph by means of cuts. Figure 6(b,top) reports a min-
imal cut from the graph of Figure 6(a), namely {C, F}. Notice that, provided
that we are interested in conservative components that are synchronized with
common events, when projecting the behavior of the initial TS into the set of
events found in the cut we include the events outside of the cut which are adja-
cent to vertices in the cut, e.g. events A and H in the figure (these events are
called border events). From each one of the sets of events found, the TS from Fig-
ure 5 is projected onto them and a conservative component covering the events
in the projection is found (this is shown in the bottom part of each cut).
4 Notice that the parallel composition might derive a general PN , i.e. no restriction

on the class of PNs after composition is assumed in this paper.
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Fig. 5. Transition system
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Fig. 6. (a) Causal dependency graph, (b)-(d) (Top) Consecutive cuts of the causal
dependency graph, (Bottom) State machines covering each cut

4.2 Causal Dependency Graph Partitioning

There exist several techniques for the partitioning of a graph into a set of clus-
ters [14,12]. In this section we show one of these techniques, that does not have
to be the most efficient nor the optimal, but it was easy to implement. It consists
on iteratively finding bi-partitions until some halting criterion is reached.

In order to find a balanced partition of CDG(TS) = (E, M) into two sets, let
us use the well known RatioCut metric. Given a partition E1 . . . En of the set
E, the metric is defined as:

RatioCut(E1 . . . En) =
n∑

i=1

cut(Ei, Ei)
|Ei|

where Ei denotes the complement of set Ei, and
cut(A, B) = |{(i, j)|(i, j) ∈ M ∧ i ∈ A, j ∈ B}|. If only two sets (i.e. a bi-
partition) are used in the previous formula, the following optimization problem
can be considered:

min
A⊂E

RatioCut(A, A)
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Algorithm 3. DivideAndConquerMining
Input: TS = (S, E, A, sin), MaxSize
Output: Set of SMCs

SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
begin1

Compute −→TS, ‖TS event relations2

(E1 . . . En)←− GraphPartition(CDG(TS),MaxSize)3

forall Ei do4

Ei ←− AddBorderEvents(TS,Ei,E)5

SMCDecomposition(TS |Ei)6

end7

end8

i.e. finding the best bi-partition for the given graph. A way to approximate the
optimal solution to this optimization problem is by using the Fielder vector,
which is the eigenvector corresponding to the second smallest eigenvalue of the
(unnormalized) Laplacian matrix L = D − A, where D is the degree matrix of
the nodes in the causal dependency graph, and A its adjacency matrix [8].

More concretely, if f ∈ R
|E| is the Fiedler vector, then a bipartition (E1, E2)

can be obtained as follows: e ∈ E1 if fe ≥ 0, and e ∈ E2 otherwise.
By iteratively finding bi-partitions, one can derive n partitions of the set of

events of the causal dependency graph, as it has been done for the causal depen-
dency graph from the example of Section 4.1. This iteration can be terminated
using a halting criterion: number of events in the projection, size of the log, CPU
time-limit for the region computation, among others. In our approach, provided
that we are interested in the mining of conservative components, the degree of
concurrency between the events and the maximal size allowed has been used to
decide if further partitioning is required.

4.3 Divide-and-Conquer Approach

Algorithm 3 presents the approach. First it computes the causal and concurrent
relations (see Definition 4) present in the TS (line 2). Then the causal depen-
dency graph is partitioned into n sets (n is an output of the method, and is
dependant on the MaxSize parameter). Finally, the computation of SMCs cov-
ering each projection is applied (lines 4-7). Notice that in order to avoid the
derivation of independent SMCs, i.e. SMCs without common events, each set Ei

is augmented with border events, i.e. events in E − Ei that are adjacent in the
causal dependency graph to some event in Ei (line 5). The following theorem
provides the main result of this section (see [4] for the formal proof):

Theorem 3. Let SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
be the set of components found by Algorithm 3 on TS = (S, E, A, sin). Then
L(TS) ⊆ L(SMC1 ‖ . . . ‖ SMCn).
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5 Experiments

The theory described in Sections 3 and 4 has been incorporated into the tool
Genet [6,5]. The first experiments were conducted to test the ability to rediscover
conservative components from well-structured descriptions, i.e. to apply Algo-
rithms 1 and 2, and its corresponding generalizations (as described in [4]). To this
end, the TS of some k-bounded Petri nets was used (see Figures 7(a)-(c)). Table 1
reports the first experiment: comparing mining (-pm) versus conservative com-
ponents derivation (-cc). For each benchmark, the size of the transition system
considered (states and arcs), together with the number of places and transitions
derived by the k-bounded mining method described in [5] is given. Finally, the
number of conservative components found by Algorithm 2 and the sum of all
the places found in the components is reported (the number of transitions in the
conservative components derivation is equal to the number of transitions in the
mining approach and is not reported). The CPU time is provided for each one
of the approaches. For each example, Figure 7 provides gray boxes with the
conservative components found (some of the boxes share transitions, i.e. they
will synchronize on the firing of the transition in the parallel composition of the
components). In conclusion, the derivation of conservative components might
overcome the complexity problems of the region-based method, sometimes with-
out the inclusion of extra behavior in the mined Petri net.

The second experiment was to have some confidence on the quality of the ap-
proach presented in Section 3. For that end, we used the fitness factor, described
in [17]. Fitness evaluates whether the mined net complies with the log, and
it is one of the main measures provided by the Conformance checker within
ProM. Numerically, fitness ranges from 1 (good) to 0 (bad). The table on
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Fig. 7. Parameterized benchmarks: (a) n processes competing for m shared resources,
(b) m producers and n consumers, (c) a 2-bounded pipeline of n processes. Each box
represents a conservative component found.
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Log α α++ DWS Heuristic Genet-cc

L1 0.83 0.80 0.84 0.84 0.85

L2 0.84 0.81 0.84 0.85 0.86

L3 0.63 0.55 0.62 0.62 0.58

the right reports the fitness of some miners
within ProM, and the fitness of the net cor-
responding the parallel composition of the
SMCs computed by Algorithm 2. The three
logs used are the illustrative logs described
in [17]. In summary, numbers in the table
are promising for our approach, and we believe they can improve if techniques
like the ones presented in Section 3.3 are additionally applied.

Table 1. Synthesis versus derivation of conservative components

Genet-pm Genet-cc

benchmark |S| |E| |P | |T | CPU |CC| |P | CPU

SHAREDRESOURCE(5,2) 918 4320 21 20 0s 5 20 0s

SHAREDRESOURCE(4,3) 255 1016 17 16 0s 4 16 0s

SHAREDRESOURCE(6,4) 4077 24372 25 24 18s 5 24 5s

SHAREDRESOURCE(7,5) 16362 114408 29 28 25m 7 28 47s

PRODUCERCONSUMER(3,3) 32 92 8 7 0s 4 8 0s

PRODUCERCONSUMER(4,3) 64 240 10 9 0s 5 10 0s

PRODUCERCONSUMER(6,3) 256 1408 14 13 0s 7 14 0s

PRODUCERCONSUMER(8,3) 1024 7424 18 17 2s 9 18 0s

PRODUCERCONSUMER(8,5) 1536 11520 18 17 1h10m 9 18 25m

BOUNDEDPIPELINE(6) 729 1539 12 7 6s 6 12 4s

BOUNDEDPIPELINE(7) 2187 5103 14 8 48s 7 14 40s

BOUNDEDPIPELINE(8) 6561 16767 16 9 12m 8 16 11m

BOUNDEDPIPELINE(9) 19683 54765 18 10 1h50m 9 18 1h30m

The third experiment was to test the divide-and-conquer mining approach de-
scribed in Section 4 (-rec). We have used two types of examples: logs from [1], and
a real-life system modelling a complex module that controls the operation of opti-
cal lithography process for mass chip production [16]. Both types of benchmarks
are difficult to mine using the region-based mining approach described in [5]. Ta-
ble 2 compares the classical region-based mining and divide-and-conquer mining
for these benchmarks. We report the size of the transition system, and columns
|P |, |[S]| report the number of places and size of the corresponding reachability
graph of the mined Petri net. For the divide-and-conquer mining, columns |Bis|,
k, |CC|, |P | and |TU | report the number of bisections performed on the causal
dependency graph (see Section 4.3), the bound used in the conservative compo-
nent generation, the total number of conservative components found, the total
number of places found and the number of events not covered by any place (the
less events uncovered, the better), respectively. We use mem to report that the
approach aborted due to memory problems. The conclusion from Table 2 is the
superiority to handle large systems for the divide-and-conquer approach when
compared to the classical region-based mining.
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Table 2. Mining versus divide-and-conquer mining

Genet-pm Genet-pm Genet-rec

safe 2-bounded k-bounded

benchmark |S| |A| |E| |P | |[S]| CPU |P | |[S]| CPU |Bis| k |CC| |P | |TU | CPU

pn ex 10 233 479 11 13 281 0s 16 145 4s 3 2 3 9 0 0s

a12f0n50 1 78 77 11 17 80 0s 39 63 52s 3 2 4 23 0 0s

a12f0n50 2 151 150 11 21 92 0.5s 119 96 15m 3 2 8 19 0 5s

a12f0n50 3 188 187 11 21 92 0.5s 178 102 21m 1 2 4 13 0 5s

a22f0n00 1 1209 1208 20 16 78 9m – – mem 0 1 4 30 0 5s

a22f0n00 2 3380 3379 20 16 78 15m – – mem 3 1 6 24 1 4s

a22f0n00 3 5334 5333 20 16 78 32m – – mem 3 1 7 32 1 7s

WaferStepper 55043 289443 27 – – mem – – mem 3 6 9 28 5 5m

Table 3. Comparison for large logs from [21]

Parikh DWS Genet-rec

benchmark # cases # events |T | |S| |A| a′
B CPU a′

B CPU a′
B CPU

a22f0n00 5 900 16952 22 676 1469 0.949 37s 0.935 4s 0.979 1s

t32f0n00 1 200 16358 32 1590 2339 0.992 7m 47s 0.863 10s 0.858 6s

a32f0n00 5 900 23195 32 2517 5907 0.933 3m 0.935 6s 1.000 9s

a42f0n00 5 900 26169 42 11170 21528 0.715 59m 29s 0.889 10s 0.962 1m 33s

Finally, we compared the divide-and-conquer technique presented in this pa-
per with the DWS miner, also a clustering method presented in [9] (see Section 6
for a qualitative comparison). To this end, we used some of the largest logs that
were used in [21] for a numerical analysis of the Parikh miner. We also report
some other conformance measure, the advanced behavioral appropriateness, that
gives an estimation of the degree of accuracy in which the model describes the
log [17]. This measure ranges accuracy from 0 (low) to 1 (high). The results
are provided in Table 3, were columns report the benchmark, number of cases,
number of events, number of different tasks in the log, size of the corresponding
TS5, and for each approach we report the conformance estimation (a′

B) and the
cpu time . For the benchmarks considered, one can see that the approach of this
paper has similar complexity and appropriateness than the DWS miner.

6 Related Work

Together with the approach presented in [9], to the best of our knowledge there
is no other approach for Petri net mining like the one presented in this paper.
The differences are:
5 Although benchmarks in Table 3 and 2 are produced from the same family of logs

(being the benchmarks in Table 3 considerably larger), the settings of the FSM
miner [18] used to create in each table the TS were different.
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1. In this approach we give a special emphasis into the mining of conservative
components, i.e. Petri nets that describe sequential and conflict dependencies
between events. This sequential views can be good for visualization.

2. In [9] the partition is on the set of instances (traces) of the log, i.e. the log
is horizontally partitioned, whereas in our approach the separation is done
on the set of events hence the log is vertically partitioned.

3. The partition approach presented in this paper is related to the Petri net
derivation applied afterwards, in the sense that events tightly related by
causal dependencies are likely to become in the same conservative compo-
nent. In contrast, the partition approach presented in [9] uses a different
principle: each trace is projected into the most relevant features (computed
previously) and associated with a vector of values. Then the k-means algo-
rithm is used to partition the vectorial space defined by the traces.

The divide-and-conquer technique presented in this paper can be used in combi-
nation with the region-based approaches for Petri net mining [5,21,3] to improve
their applicability in two dimensions: firstly, to allow their application for large
logs, and second, to avoid the problem of overfitting: in our experiments the
resulting model (after the parallel composition) is often more general than the
one obtained from a single application of the mining approach. The technique
presented in this paper is suitable when the log contains a significant amount of
different tasks, thus allowing the partition phase to be applied extensively.

7 Conclusions

High-level and decomposition approaches are usually required to solve large
problems. This paper shows that the region-based technique for process min-
ing can also be solved using these type of approaches. First, the decomposition
approach enables the search for sequential views of the process that might be
more useful than the complete process itself. Second, when the size of the log for-
bids the application of classical or decomposition mining, the divide-and-conquer
method presented in this paper alleviates the complexity of computing regions
by projecting the TS into the events that are likely to be related, thus decreasing
considerably its size. Both approaches have been presented in combination with
theoretical results that guarantee a covering of the initial log with respect to the
parallel composition of the obtained nets.
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