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Abstract. To cope with the increasing complexity of regulatory net-
works, we define a reduction method for multi-valued logical models.

Starting with a detailed model, this method enables the computation
of a reduced model by iteratively “hiding” regulatory components. To
keep a consistent behaviour, the logical rules associated with the targets
of each hidden node are actualised to account for the (indirect) effects
of its regulators.

The construction of reduced models ensures the preservation of a num-
ber of dynamical properties of the original model. In particular, stable
states and more complex attractors are conserved. More generally, we fo-
cus on the relationship between the attractor configuration of the original
model and that of the reduced model, along with the issue of attractor
reachability.

The power of the reduction method is illustrated by its application to
a multi-valued model of the segment-polarity network Controlling seg-
mentation in the fly Drosophila melanogaster.

Keywords: Regulatory networks, logical modelling, model reduction,
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1 Introduction

Biological data generation and integration efforts result in the delineation of ever
more comprehensive and complex regulatory networks involved in the control of
numerous processes. Consequently, current modelling and analysis approaches
are reaching their limits in terms of the number and variety of components
and interactions that can be efficiently considered. This is true for quantitative
frameworks (e.g., differential or stochastic models), as well as for qualitative
approaches. Indeed, although logical modelling enables to handle networks com-
prising relatively large numbers of components (see e.g. [1,2]), the size of the
state space grows exponentially with the number of regulatory nodes.
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One way to handle this problem consists in developing compositional ap-
proaches to compute the dynamical properties of comprehensive networks, re-
lying on the knowledge of the properties of simpler sub-systems or modules. A
complementary approach consists in reducing large systems, by focusing on the
most relevant components and redefining their interactions in order to preserve
relevant dynamical properties (e.g. stable states).

Most often, modellers intuitively and manually reduce regulatory networks to
address specific questions. Such empirical reductions have several drawbacks: (i)
the process is error prone and limited to relatively simple cases; (ii) the main-
tenance of different versions of a model (complete and reduced) is cumbersome;
(iii) storing the sole reduced model leads to the loss of relevant biological infor-
mation.

These considerations led us to develop a reliable, automated reduction method
in the context of a logical modelling framework. In this respect, we lean on
the software GINsim, which facilitates the definition of comprehensive logical
regulatory graphs, as well as the analysis of their dynamical properties [3,4].
Established on firm mathematical bases, our reduction method allows the user
to select nodes to be made implicit and to perform dynamical analyses on reduced
model versions, which preserve relevant topological and dynamical properties.

The paper is organised as follows. Section 2 recalls the definitions of logical
regulatory graphs and of the associated state transition graphs. Next, the re-
duction method is defined in Section 3. Relationships between the dynamical
behaviour of the original model and that of the reduced model are delineated in
Section 4. A multi-valued logical model of the segment-polarity network is then
used to demonstrate the power of the proposed reduction method in Section 5.
The paper ends with conclusions and further prospects.

All models presented in this paper can be opened, edited, simulated, and anal-
ysed with GINsim, which implements the logical formalism and the reduction
method presented here.

2 Logical Modelling of Regulatory Networks

Our modelling approach leans on the generalised logical formalism initially de-
veloped by R. Thomas et al. [5,6,3]. In this context, a regulatory network and
its dynamics are both represented in terms of oriented graphs.

2.1 Regulatory Graphs

Definition 1. A logical regulatory graph (LRG) is a directed labelled multigraph
R = (G,Max, Γ, Θ,K) where,

– G = {g1, . . . , gN} is the set of nodes, representing regulatory components.
– Max : G → N

∗ associates a maximum level Max(gi) = Maxi to node gi.
The current level of gi, denoted xi, takes its values in Di = {0, . . . ,Maxi}.

– Γ is the set of arcs, defined as a finite multiset of ordered pairs of elements of
G representing regulatory interactions. If Maxi > 1, gi may have different
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effects onto a component gj, depending on level xi. Hence, the arc connecting
gi to gj may be a multi-arc encompassing different interactions. The multi-
plicity of the arc (gi, gj) (i.e. the number of its constitutive interactions), is
denoted mi,j (1 ≤ mi,j ≤ Maxi). Loops (even multi-loops) are allowed: an
arc (gi, gi) denotes an autoregulation of gi.
For each gj ∈ G, Reg(j) denotes the set of its regulators: gi ∈ Reg(j) if and
only if (gi, gj) ∈ Γ .

– Θ is a labelling function, which associates a threshold to each element of Γ .
More precisely, θi,j,k is associated to the kth interaction between gi and gj

(denoted (gi, gj , θi,j,k), k ∈ {1, . . . , mi,j}), with 1 ≤ θi,j,1 < · · · < θi,j,mi,j ≤
Maxi. This interaction is active, when xi, the level of its source gi, lays
between the threshold of this interaction and that of the next interaction:
θi,j,k ≤ xi < θi,j,k+1 (by convention, θi,j,mi,j+1 = Maxi + 1).

– K = (K1, . . . ,KN ) defines the logical rules attached to the nodes specifying
their behaviours: each Ki is a multi-valued logical function that gives the
target value of gi, depending on the levels of the regulators acting on gi:

Ki :

⎛
⎝ ∏

gj∈G
Dj

⎞
⎠ �→ {0, . . . ,Maxi}.

The logical function Ki can be equivalently defined on the set
∏

gj∈Reg(i) Dj ,
giving the target value of gi depending on the current levels of its regulators.
Figure 1 illustrates this definition of a logical regulatory graph. In the following,
when no confusion is possible, we will use i to denote gi.

G = {g1, g2, g3, g4}
Max1 = Max2 = Max4 = 1
Max3 = 2
D1 = D2 = D4 = {0, 1},D3 = {0, 1, 2}
Reg(2) = {g1, g3}
θ3,2,1 = 2

Fig. 1. Example of logical regulatory graph. Left: graphical representation of a LRG.
Blunt arrows depict inhibitions while normal arrows depict activations (this is only
a graphical convention, since the logical functions encode the regulatory effects). The
rectangular node g3 is ternary, whereas the others nodes are Boolean. The thresholds of
all interactions are set to 1, except that of (g3, g2), which is set to 2. Right: illustration
of the notations of Definition 1. Examples of logical functions Ki are displayed in
Figure 2 for the same model.

2.2 State Transition Graphs

We represent the dynamical behaviour of a LRG in terms of a state transition
graph, defined as follows.
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Definition 2. Given a LRG R = (G,Max, Γ, Θ,K), its associated full state
transition graph (STG) E = (S, T ) is a directed graph, where:

– S = Πi∈GDi is the state space, a state of the system being a vector x =
(xi)i=1,...,N , with xi ∈ Di, ∀i ∈ G,

– T ⊂ S2 is the set of transitions defined as follows: (x, y) ∈ T if and only if
∃i ∈ G such that:

xi 	= Ki(x),
y = x+Δi(x).ei, where Δi(x) = Ki(x)−xi

|Ki(x)−xi| and ei is the canonical vector
in S (ei

i = 1 and ei
j = 0, ∀j ∈ G, j 	= i).

Here Δi(x) gives the sign of the update of i (increase or decrease). One can also
consider a state transition graph related to an initial (set of) condition(s). It is
then a subgraph of the full STG.

When analysing the behaviour of a LRG, we mainly focus on attractors, which
represent asymptotic dynamical properties. Given a STG, attractors are its ter-
minal strongly connected components, classified as:

– stable states: reduced to a unique terminal node,
– cyclic attractors: terminal elementary (oriented) cycles,
– complex attractors: other terminal strongly connected components (i.e. in-

volving intertwined cycles).

Cyclic and complex attractors will be called non-trivial attractors.
In what follows, LRGs are assumed consistent, i.e. all interactions are effective

and autoregulations functional, meaning that all interactions have a dynamical
role and could be recovered from the logical functions K (see further explanations
in the Appendix A).

3 Logical Regulatory Graph Reduction

This section presents the principles underlying the reduction of a regulatory
graph and then defines the new model, called reduced model. In what follows, we
consider a reduction consisting of the removal of a single regulatory component
(making it implicit). The generalisation to a reduction encompassing a set of
nodes is obtained by iterating the corresponding one-node reductions. However,
the ordering of a sequence of one-node reductions may have an impact on the
resulting reduced model (see Appendix B).

Here, we aim at defining a reduction method, which preserves, as much as
possible, the dynamical properties of the original model. The underlying principle
is already intuitively applied by modellers when they make regulatory nodes
implicit in their networks.

The removal of a node r basically consists in connecting directly its regulators
to its targets, which logical functions are thus revised. In the revised logical
functions, the effect of r at a given value xr is conveyed by the values of the
regulators leading r to xr. In other words, we consider the update of the removed
component as a fast process, which is performed before anything else.
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Following this principle, it is impossible to remove an autoregulated compo-
nent since fixed values of its other regulators may not lead to a unique target
value. Thus, the removal of an autoregulated component implies additional de-
cisions, impeding the definition of a systematic procedure. In the following, we
will require that autoregulated components should not be removed.

To properly implement an algorithm producing the reduced model, we need
further notations to manipulate the logical functions. Given a regulatory graph
R = (G,Max, Γ, Θ,K) and a node i ∈ G, we denote:

– x
{l}
i (l ∈ Di) the Boolean variable with value 1 when xi = l, 0 otherwise.

– xS
i the Boolean variable that is true if xi ∈ S, false otherwise. Hence xS

i is
defined by,

xS
i �

∨
l∈S

x
{l}
i , S ⊆ Di.

Note that x∅
i is always false and xDi

i always true.
– For all v ∈ Di, the logical function Kv

i that gives the conditions under which
the target value of node i is v. This function is defined as follows:

Kv
i =

∨
n=1,...p

Cn
i , (1)

where Cn
i are conjunctive clauses Cn

i =
∧

j∈Reg(i) x
Sj,i,n

j , where Sj,i,n ⊆ Dj .
Each clause Cn

i defines a situation (i.e. sets of combinations of incoming
interactions acting upon i) for which the target value of i is v.

In Equation (1), each clause Cn
i defines a subset of S, D = Πj∈GSj,i,n (with

Sj,i,n = Dj , ∀j /∈ Reg(i)), such that for all x ∈ D, Ki(x) = v. Hence, Equation
(1) defines a set of cubes in the state space S, where the target value of i is v.

Definition 3. Given a LRG R = (G,Max, Γ, Θ,K), the reduced LRG Rr =
(Gr,Maxr, Γ r, Θr,Kr) obtained by removing a non-autoregulated component r ∈
G is defined as follows:

– Gr = G \ {r}.
– Maxr : Gr → N

∗, s.t. ∀i ∈ Gr Maxr(i) = Maxi.
– For all i ∈ Gr, and for all v ∈ Di, the logical function Krv

i is defined as
follows. Consider Kv

i =
∨

n=1,...p Cn
i , the disjunctive form of Kv

i , as defined
previously. For all n = 1, . . . p (i.e. for each clause Cn

i ), let define Frn
i as:

Frn
i =

⎛
⎝ ∨

w∈Sr,i,n

Kw
r

⎞
⎠ ∧

⎛
⎝ ∧

j∈Reg(i)\{r}
x

Sj,i,n

j

⎞
⎠

Then Krv
i =

∨
n=1,...p Frn

i .
– Γ r and Θr are deduced from Kr; for all i ∈ Gr, j ∈ Gr,

mr
i,j =

∑
v∈[1,Maxi]

11i,j,v,
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Fig. 2. Reduction in terms of MDDs. Left: the same LRG as in Figure 1, where g4

(greyed-out) is selected for removal. Logical functions for g1 and g4 are shown on the
right, along with their MDD representations. Right: the reduced LRG after removal of
g4, along with the resulting logical function for g1. In the MDDs, internal nodes are
labelled with the associated variable (xi), whereas leaves represent the value of the
logical functions. Children of internal nodes are ordered from left to right: the leftmost
(resp. rightmost) child is the root of the sub-diagram corresponding to the case xi = 0
(resp. xi = Maxi).

where 11i,j,v = 1 if it exists x ∈ S such that xi = v−1 and Kr
j (x) 	= Kr

j (x+ei).
Then (i, j) ∈ Γ r if mr

i,j > 0 (and the multiplicity of (i, j) in Γ r is given by
mr

i,j). Finally, the ordered set of values v such that 11i,j,v = 1 defines the
thresholds θr

i,j,k (k = 1, . . . , mr
i,j).

The logical function Krv
i is deduced from the logical function Kv

i by replacing,
in each clause, literals xS

r by the formulae giving the conditions under which
the target value of r is in S (remark that this definition may not give Krv

i in a
proper disjunctive form). Note that if Cn

i does not depend on r (i.e. r /∈ Reg(i))
then Sr,i,n = Dr and Frn

i = Cn
i for all n, therefore Krv

i = Kv
i .

The set of arcs verifies:

Γ r ⊆ {(i, j) ∈ Gr × Gr, s.t. (i, r), (r, j) ∈ Γ or (i, j) ∈ Γ}.

In practice, the construction of the new logical function is performed using Re-
duced Ordered Multivalued Decision Diagrams (ROMDDs or MDDs for short).
Decision diagrams are rooted directed acyclic graphs, widely used to represent
logical functions (see e.g. [7,8]). In these diagrams, internal nodes are labelled
with decision variables and have one child per value, while leaves represent the
values of the function. Decision variables are ordered: each internal node has a
rank and the sub-diagrams rooted by the children of a node of rank i do not
contain internal nodes of rank j ≤ i. In [9] we used MDDs to represent the logical
functions Ki. In this context, decision variables are the levels of the components
of the model. For the sake of simplicity, we consider that the ordering of the
MDD variables is the same as that of the LRG components. Given the MDD
representation of Ki and a state x, a unique path from the root of the MDD
to one of its leaves is defined. Along this path, the child chosen for each non-
terminal node is labelled with the value of the corresponding variable in state
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x. The terminal node reached through this path gives the value of Ki(x). Each
clause of Kv

i corresponds to a path leading to a leaf valued v.
To compute the MDD representing Kr

i , we define the recursive algorithm given
in Appendix C and illustrated in Figure 2.

4 Dynamics of the Reduced Model

In this section, the dynamical behaviour of a reduced LRG (as specified in Def-
inition 3) is compared to that of the original LRG. In particular, we show that
the reduction preserves existing attractors and does not add any spurious path.

Let E = (S, T ) be the full state transition graph of R = (G,Max, Γ, Θ,K)
and r ∈ G a node not autoregulated. Let Er = (Sr , T r) be the full STG of
Rr = (Gr,Maxr, Γ r, Θr,Kr), the LRG obtained after the removal of r from G.

Consider the projection πr : S → Sr such that, ∀i ∈ Gr, ∀x ∈ S, (πr(x))i = xi,
and the equivalence relation on S: ∀x, y ∈ S, x ∼r y iff πr(x) = πr(y).

We denote [x]∼r the equivalence class: [x]∼r = {y ∈ S s.t. y ∼r x}. The class
[x]∼r contains all states of S that differ only by their rth component, i.e. the
(Maxr + 1) states {xi ∈ S, i = 0, . . . ,Maxr}, such that xi ∼r x and xi

r = i.
Because r is not autoregulated, ∀xi ∈ [x]∼r, Kr(xi) = Kr(x). This implies that:

– (xi, xi+1) ∈ T , for all i < Kr(x),
– (xi, xi−1) ∈ T , for all i > Kr(x),
– (xKr(x), xi) /∈ T , for all i.

Hence, for all x ∈ S, there exists a path in S from x to xKr(x), which is the
representative state of [x]∼r .

Definition 4. x ∈ S is the representative state of an equivalence class for ∼r

iff xr = Kr(x) .

We can then define the retrieval function sr : Sr → S such that, ∀z ∈ Sr ,

(sr(z))i = zi, for all i ∈ G \ {r},

(sr(z))r = Kr(x), with x such that πr(x) = z.

In other words, sr(z) is the representative state of the equivalence class projected
on z (see Figure 3). Relying on this, we can introduce an alternative definition
of the logical functions in the reduced LRG: ∀i ∈ Gr, Kr

i : Sr �→ Di is defined
as Kr

i (z) = Ki(sr(z)). Note that if (r, i) 	∈ Γ (i.e. r is not a regulator of i),
Kr

i (πr(x)) = Ki(x).

Remark 1. It follows from their definitions that functions πr and sr verify:

1. πr ◦ sr is the identity function.
2. For any x ∈ S, (sr ◦ πr(x)) ∼r x.
3. If x ∈ S is a representative state, then, sr ◦ πr(x) = x.
4. For any z ∈ Sr, Kr(z) = πr(K(sr(z))) ; indeed, ∀x ∈ S, ∀i ∈ Gr,Kr

i (πr(x)) =
Ki(sr ◦ πr(x)).



A Reduction of Logical Regulatory Graphs 273

Fig. 3. Dynamical behaviour of the reduced model given in Figure 2, before and after
removal of the ternary node g3. Left: State transition graph (STG), partitioned into four
equivalence classes for g3. Each equivalence class contains 3 states; its representative
state is greyed out and internal transitions are dashed. Right: STG of the reduced
model, each state corresponding to an equivalence class of the original STG. After
the reduction, the stable state 102 is projected on 10 and all transitions are preserved
except the one from the second equivalence class to the third one. This results in the
isolation of the non-terminal strongly connected component involving the first two
equivalence classes of the original STG, hence generating the attractor (01, 00).

The following lemma establishes the relationships between transitions in E and Er.

Lemma 1. 1. Let z, z′ ∈ Sr.

(z, z′) ∈ T r =⇒ ∃x ∈ S s.t. πr(x) = z′ and (sr(z), x) ∈ T .

2. Let x, y ∈ S. If x is a representative state, then

(x, y) ∈ T =⇒ (πr(x), πr(y)) ∈ T r .

Proof. Recall that Δi(x)
�
= Ki(x)−xi

|Ki(x)−xi| . For z ∈ Sr s.t. zi 	= Kr
i (z), we similarly

denote:

Δr
i (z)

�
=

Kr
i (z) − zi

|Kr
i (z) − zi|

=
Ki(sr(z)) − (sr(z))i

|Ki(sr(z)) − (sr(z))i|
= Δi(sr(z)) .

1. Consider z, z′ ∈ Sr such that (z, z′) ∈ T r. Then ∃i 	= r s.t. Kr
i (z) 	= zi, and

z′ = z + Δr
i (z) ei. By definition, Kr

i (z) = Ki(sr(z)) 	= (sr(z))i = zi. This
implies that (sr(z), x) ∈ T with x ∈ S and x = sr(z) + Δi(sr(z)) ei, and
then πr(x) = z′.

2. Consider x, y ∈ S such that Kr(x) = xr. The hypothesis (x, y) ∈ T implies
that ∃i ∈ G, i 	= r s.t. Ki(x) 	= xi, and y = x + Δi(x) ei.
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We have Kr
i (πr(x)) = Ki(x) (since x is a representative state), and xi =

(πr(x))i, since i 	= r. So, Kr
i (πr(x)) 	= (πr(x))i, and then ∃z ∈ Sr s.t.

(πr(x), z) ∈ T r, with

z = πr(x) + Δr
i (πr(x)) ei = πr(x) + Δi(sr ◦ πr(x)) ei = πr(y) . ��

The first item of Lemma 1 states that any transition in T r corresponds to at
least one transition in T . Clearly, the reverse is not true. The second item of the
lemma gives a condition under which transitions are preserved from T to T r. Of
course, it is important to know which transitions are lost through the reduction.

Definition 5. The reduction preserves a transition (x, y) ∈ T if (πr(x), πr(y)) ∈
T r, or πr(x) = πr(y). The reduction preserves a path (s1, . . . , sn) ∈ E if all its
transitions are preserved.

In other words, a path (s1, . . . , sn) in E is preserved if the reduction preserves
the transitions between equivalence classes, in the required order.

The following property characterises the transitions that are not preserved by
the reduction.

Property 1. A transition (x, y) ∈ T is not preserved by the reduction if and only
if the three following conditions are satisfied:

1. x is not a representative state,
2. y 	∈ [x]∼r (⇒ ∃i 	= r s.t. yi 	= xi),
3. Δi(x) 	= Δi(sr ◦ πr(x)) .

The last condition means that there is no call for updating i in the same direction
in state sr ◦ πr(x).

Proof. Consider a transition (x, y) ∈ T , which satisfies the three conditions.
Suppose that (x, y) is preserved by the reduction, then (πr(x), πr(y)) ∈ T r (the
case πr(x) = πr(y) is not possible because of the second condition). This means
that there exists j 	= r s.t. (πr(x))j 	= (πr(y))j , and (πr(x))k = (πr(y))k for any
k 	= j. With Condition 2 and by definition of πr, we deduce that j = i. Moreover,
we know that:

πr(y) = πr(x) + Δr
i (πr(x)) ei = πr(x) + Δi(sr ◦ πr(x)) ei .

Finally, y = x + Δi(x) ei, and, as yi = (πr(y))i, we have Δi(x) = Δi(sr ◦ πr(x)).
This contradicts Condition 3. Hence, (x, y) is not preserved by the reduction.

Conversely, let (x, y) ∈ T be a transition not preserved by the reduction.

– Condition 1 is satisfied by the second item of Lemma 1.
– Condition 2 is satisfied because y ∈ [x]∼r ⇒ πr(x) = πr(y) ⇒ (x, y)

preserved, hence a contradiction.
– We know that y = x+Δi(x) ei. As Kr(πr(x)) = πr(K(sr◦πr(x))) (cf. Remark

1),

Kr
i (πr(x)) = (πr(K(sr ◦ πr(x))))i = Ki(sr ◦ πr(x))

	= xi = (πr(x))i .
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Hence, there exists z ∈ Sr s.t. (πr(x), z) ∈ T r with

zi = πr(x) + Δr
i (πr(x)) ei

= πr(x) + Δi(sr ◦ πr(x)) ei = πr(x) + Δi(x) ei .

Consequently, πr(y) = z and (x, y) is preserved, hence a contradiction. ��

Given C, a set of states in S, we denote πr(C)
�
= {πr(x), x ∈ C}. Given C′,

a set of states in Sr, we denote sr(C′)
�
= {sr(z), z ∈ C′}. Note that πr(C)

may contain less elements than C, and that sr(C′) contains only representative
states. The following results relate attractors in E and Er. Proofs are provided
in Appendix D and E.

Theorem 1. Consider a LRG R = (G,Max, Γ, Θ,K) and Rr the reduced LRG.
Let E (resp. Er) be the full STG of R (resp. of Rr), then:

1. Stable states in E and Er verify:
– x stable state in E =⇒ πr(x) stable state in Er. Furthermore no other

stable state is projected on πr(x),
– z stable state in Er =⇒ sr(z) stable state in E.

Hence, the number of stable states is conserved by the reduction.
2. If (s1, . . . sn) is a cyclic attractor in E, then (πr(s1), . . . πr(sn)) is a cyclic

attractor in Er.
3. If C is a complex attractor in E, z ∈ πr(C) and (z, z′) ∈ T r, then z′ ∈ πr(C).

As a consequence, πr(C) contains at least one non-trivial attractor in Er.

Theorem 1 characterises the dynamical properties conserved by the reduction.
Going further, it is possible to identify the situations leading to the generation
of additional non-trivial attractors. A non-trivial attractor in the reduced STG
corresponds to a (part of a) strongly connected component of the original STG.
This SCC is itself a non-trivial attractor or involves outgoing transitions all in
conflict with transitions concerning the removed component. In other words, we
can fully characterise the set of states in the original STG giving rise to a non-
trivial attractor in the reduced dynamics. Interestingly, this set corresponds to
transient oscillatory behaviour from which the system cannot escape provided
that updates of the removed component are always faster than other concurrent
changes. This is formalised by Theorem 2 in Appendix E.

5 Application: Segment Polarity

We demonstrate the power and flexibility of our reduction method through its
application to the segment-polarity network, which plays a key role in the seg-
mentation of the fly embryo. This system has been thoroughly analysed by devel-
opmental geneticists and has been already modelled using continuous [10,11,12]
and logical approaches [13,14,15]. However, all these studies involved impor-
tant simplifications of the network, particularly so as a proper modelling of



276 A. Naldi et al.

Fig. 4. Logical model of the segment polarity network for two cells, based on [15].
Ellipsoid and rectangular nodes denote Boolean and ternary components, respectively.
The two cellular networks have been properly connected to take into account Wg and
Hh diffusion, as well as Hh sequestration by Ptc, as in [16]. The anterior cell contains
the extended version of the model, where greyed-out components will be removed,
leading to the model on the right. Dashed arrows denote indirect interactions resulting
from this reduction. Greyed-out components in the posterior cell are candidates for
further reduction.

its behaviour requires the chaining of several identical networks to account for
inter-cellular interactions through Wingless (Wg) and Hedgehog (Hh) signalling.
Describing the most complete model to date, [15] had to discard various compo-
nents known to play important roles in Wg and Hh signalling to keep dynamical
simulations and analyses computationally tractable for up to six cells. Here, we
propose a logical model based on their full description of the segment polar-
ity network. The resulting regulatory graph encompasses 18 components and 31
regulatory interactions (left part of Figure 4).

In order to model the intercellular interactions involved in the formation of
segment boundaries, we have to connect neighbouring cells (along the anterior-
posterior axis) through Wg and Hh signalling. Wg is known to bind its receptor,
Frizzled (Fz), only at very short range, amounting here to neighbouring cells.
This can be represented by positive arcs linking each Wg node to Fz nodes of
neighbouring cells. In contrast, Hh is able to reach more distant cells, but can
be sequestered by its receptor Patched (Ptc). Similar interactions have been
modelled in [16] in terms of positive arcs between Hh nodes in neighbouring
cells (diffusion) and negative arcs from Ptc onto the Hh node of neighbouring
cells (sequestering). Figure 4 illustrates the intercellular network obtained after
coupling two cells and reducing one of the cellular sub-networks down to nine
components.

The reduction method described above can be advantageously applied to ease
the identification of all attractors of such intercellular models (Sánchez et al.
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Table 1. Dynamical characteristics of different reduced models derived from that of
Figure 4 (involving 2 x 9 nodes after applying the same reduction to both cells). The
number of reachable states decreases drastically with the number of considered nodes.
Note that the three stable states remain reachable for all reductions listed, but the last
one (removal of Slp).

LRG size Removed components Number of reached states Reached stable states

2x9 – > 106 TT, WE, EW

2x7 Fz,Ptc 12476 TT, WE, EW

2x6 Fz,Ptc,Nkd 1625 TT, WE, EW

2x8 Slp 11350 TT, WE

considered six cells). The modeller can select the sets of nodes to discard from
the network, depending on biological considerations (e.g. different time scales,
specific mutations, etc.). In a first step, it is reasonable to conserve transcription
factors and components involved in intercellular communications: Wg, Hh and
their receptors (Fz and Ptc). However, since the transcription factor Cubitus
interruptus is represented by three nodes here (full length immature Ci protein,
activator Ci-act and repressor Ci-rep forms), we choose to retain only the two
nodes corresponding to active regulatory forms. These choices correspond to the
removal of the greyed-out components in the left part of Figure 4.

The reduced model involves half of the nodes of the original one, which
amounts to a much higher reduction of the number of possible states, as this
grows exponentially with the number of regulatory nodes. The resulting regula-
tory graph (Figure 4, right) remains easy to grasp as it reasonably unfolds most
intra-cellular and inter-cellular regulatory pathways. As we shall see, this logical
model can be further reduced to facilitate analyses encompassing more cells.

For proper logical rules (cf. [15] and supplementarymaterial), one can check that
the detailed and the reduced two-cells models have exactly three stables states (as
predicted by Theorem 1). These multi-cellular stable states combine three types of
cellular states: a Wg expressing state (denoted W), an En expressing state (E), and
a trivial state (T) expressing neither Wg, nor En. The three stable states for the
two connected cells correspond to TT, WE and EW cell combinations reported
by Sánchez et al. All three stable states are reachable from biologically relevant
initial conditions (significant amounts of Wg and Slp in the anterior cell, significant
amount of En in the posterior cell), provided as an outcome of the activity of the
pair-rule system, cf. [17,15]. However, the size of the corresponding state transition
graph still impedes detailed dynamical analyses (see Table 1).

As shown in Table 1, the removal of Fz, Ptc and Nkd drastically reduces the
number of reached states without changing the reachability of the three stable
states from the considered initial state. However, the sole removal of Slp impedes
the reachability of the stable state with inverted Wg and En expressing cells. It
also suppresses the functionality contexts of all negative circuits [9,15], implying
that the state transition graph does not contain any cyclic attractor. Indeed,
after further reduction to three nodes per cell (Wg, En and Hh), we were able
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to check the absence of non-trivial attractors in the full STG. As the reduction
cannot delete existing non-trivial attractors (see Theorem 1), this implies that
all attractors of the original model are stable states.

6 Conclusions and Prospects

We have defined a reduction method that can be applied to multi-valued log-
ical models while preserving important dynamical properties. In particular, all
attractors of the original dynamics have a counterpart in the dynamics of the
reduced model. Furthermore, trajectories in the reduced model can be formally
related to trajectories in the original one. This enables to infer the existence
of paths in the dynamics of a detailed model whenever it is possible to show
(by simulation and graph analysis) that paths exist between the correspond-
ing states in a reduced version of the model. However, the reverse is not true.
Indeed, a reduction can lead to the loss of reachability properties. Whenever
several asynchronous component updates are possible at a given state, the elimi-
nation of one of the updated components amounts to consider it as ”faster” than
the concurrent ones, leading to the possible exclusion of some transitions in the
reduced STG. Such reductions relate to the delineation of specific priority class
configurations [18].

One particular feature of the reduction method defined here is that the re-
moval of (functional) autoregulated components is forbidden. This rule is related
to previous work on the dynamical roles of the regulatory circuits. Indeed, it has
been recently proven in the discrete framework that positive regulatory circuits
are necessary to generated multiple attractors, whereas negative circuits are nec-
essary to generate cyclic attractors (cf. [19] and references therein). At least in
the discrete framework, these properties depend only on the sign of the regula-
tory circuit, i.e. on the product of the sign of the involved interactions and not
on their number. From a qualitative dynamical point of view, it is thus possible
to reduce the number of components of a circuit down to a single autoregulated
component, while keeping the corresponding property, as long as we conserve
the sign of the circuit (along with some functionality constraints).

Our formal presentation of the reduction method mainly focuses on the re-
moval of a single component. However, iterating this process enables the removal
of several components. This raises the question of the impact of the order in
which reductions are performed. As shown in Appendix B, the removal of a
component may be possible only after the prior removal of others. If we aim at
removing as many components as possible, the ordering of removals may thus
be crucial. Further work is needed to properly define optimal or maximal reduc-
tions for the general case. When the removal of a set of components is possible
in several orders, we suspect that the dynamics of the resulting model does not
depend on the order (work in progress).

The worst case complexity of the algorithm for the reduction of a node r that
regulates k targets is in O(md), where m is the highest number of levels of the
involved components and d is the depth of the MDDs representing the revised
logical functions associated to the target nodes. In most cases, m ≤ 3 and d ≤ 5.
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Applying our reduction method to a detailed model of the segment-polarity
network, we were able to show the absence of non-trivial attractors in a state
transition graph too large to be stored. As indicated for this application, the
reduction method offers a great flexibility to the modeller. Biological arguments
(e.g. information on relative reaction speeds) can be used to select sets of nodes
for consistent model reduction. In the course of the dynamical analysis of com-
plex networks (e.g. multicellular networks), further reduction can be performed
to identify all attractors and check their reachability from specific initial states.

To ease the maintenance of a detailed model along with its reduced versions,
the GINsim implementation enables the user to define and record various re-
ductions for the same reference model. In order to handle still larger and more
complex networks, such reduction could be combined with algorithmic meth-
ods enabling the analysis of large state transition graphs ([20] and references
therein), or yet with model checking techniques ([21] and references therein).

Supplementary Materials. GINsim can be downloaded from http://
gin.univ-mrs.fr/GINsim. The Appendix, and the models, are available
at the following URL: http://gin.univ-mrs.fr/GINsim/publications/
naldi2009.html.
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