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Preface

This volume contains the proceedings of the 7th Conference on Computational
Methods in Systems Biology (CMSB 2009), held in Bologna, from August 31 to
September 1, 2009.

The first CMSB was held in Trento in 2003, bringing together life scientists,
computer scientists, engineers and physicists. The goal was to promote the con-
vergence of different disciplines aiming at a new understanding and description
of biological systems, firmly ground in formal models, supported by computa-
tional languages and tools, and offering new methods of analysis. The conference
then moved to Paris in 2004, Edinburgh in 2005, Trento in 2006, Edinburgh in
2007 and Rostock/Warnemünde in 2008.

This year the conference attracted about 45 submissions form 18 countries,
mainly from Europe and North America, but also from Asia and Australia. We
wish to thank all authors for their interest in CMSB 2009. After careful discus-
sions, the Programme Committee eventually selected 18 papers for presentation
at the conference. Each of them was accurately refereed by at least three re-
viewers, who delivered detailed and insightful comments and suggestions. The
Conference Chairmen warmly thank all the members of the Programme Com-
mittee and all their sub-referees for the excellent support they gave, as well as
for the friendly and constructive discussions. We also would like to thank the
authors for having revised their papers to address the comments and suggestions
by the referees.

This year we also had a poster session, hosting ten short presentations, each
refereed by at least two members of the Programme Committee. We would like
to thank their authors for the bright presentations of their work-in-progress. The
abstracts of these posters are collected in a separate Technical Report, available
at http://compass2.di.unipi.it/TR/Files/TR-09-09.pdf.gz.

The conference programme was enriched by the outstanding invited talks
of Rita Casadio, John K. Heath and Corrado Priami, whom we warmly thank.
Their contributions are also included here.

The conference this year was jointly organized with CMSB 2009, emphasizing
the close connections and similarities between concurrent, artificial systems, and
biological, natural systems. The joint invited talk by Corrado Priami further
illustrated this correspondence.

We would like to thank all the people who contributed to the organization of
CMSB 2009, and the generous support from the Alma Mater Studiorum – Uni-
versità degli Studi di Bologna and from Microsoft Research Cambridge. We are
also grateful to Andrei Voronkov, who allowed us to use the wonderful free con-
ference software system EasyChair, which we used for the electronic submission
of papers, the refereeing process and the Programme Committee work.

Pierpaolo Degano
Roberto Gorrieri
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Pietro Liò Computing Lab Cambridge, UK
Satoru Miyano University of Tokyo, Japan
Mark van Rossum University of Edinburgh, UK
Grzegorz Rozenberg Leiden University, The Netherlands
Carolyn Talcott Stanford Research Institute, USA
Adelinde M. Uhrmacher University of Rostock, Germany

Organizing Committee

Cinzia Di Giusto Università di Bologna, Italy
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Cristian Versari Università di Bologna, Italy (Chair)
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Gianluigi Zavattaro Università di Bologna, Italy
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Prediction of Protein-Protein Interacting Sites: How to 
Bridge Molecular Events to Large Scale Protein 

Interaction Networks 

Lisa Bartoli1, Pier Luigi Martelli1, Ivan Rossi2, Piero Fariselli1, and Rita Casadio1 

1 Biocomputing Group, University of Bologna, CIRB/Department of Biology, 
Via San Giacomo 9/2, Bologna, Italy 

2 BioDec s.r.l., Casalecchio di Reno, Bologna, Italy 
{casadio,lisa,gigi,ivan,piero}@biocomp.unibo.it  
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Abstract. Most of the cellular functions are the result of the concerted action of 
protein complexes forming pathways and networks. For this reason, efforts 
were devoted to the study of protein-protein interactions. Large-scale experi-
ments on whole genomes allowed the identification of interacting protein pairs. 
However residues involved in the interaction are generally not known and the 
majority of the interactions still lack a structural characterization. A crucial step 
towards the deciphering of the interaction mechanism of proteins is the recogni-
tion of their interacting surfaces, particularly in those structures for which also 
the most recent interaction network resources do not contain information. To 
this purpose, we developed a neural network-based method that is able to char-
acterize protein complexes, by predicting amino acid residues that mediate the 
interactions. All the Protein Data Bank (PDB) chains, both in the unbound and 
in the complexed form, are predicted and the results are stored in a database of 
interaction surfaces (http://gpcr.biocomp.unibo.it/zenpatches). Finally, we per-
formed a survey on the different computational methods for protein-protein in-
teraction prediction and on their training/testing sets in order to highlight the 
most informative properties of protein interfaces.  

Keywords: protein-protein interaction site, neural network, patch smoothing, 
interacting surfaces. 

1   Introduction 

The analysis of protein-protein interaction surfaces has a long history, dating back to 
the seventies. Chotia and Janin [1] first analyzed a small number of structures to  
highlight some principles of protein-protein recognition. Much later Thornton and  
co-workers [2] focused on the features of patches of interacting residues within homo-
dimers, showing how features as solvation potential, residue interface propensity, 
hydrophobicity, planarity, protrusion and accessible surface area were good candi-
dates for the description of protein interfaces. With the increasing number of proteins 
known with atomic resolution in the Protein Data Bank (PDB, http://www.rcsb.org/ 
pdb/ home/home.do), an increasing number of efforts were devoted  to the issue of 
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extracting basic features of interacting protein complexes with the aim of predicting 
possible protein-protein interactions [for recent reviews see 3-5]. This became par-
ticularly urgent when it was recognized that protein-protein interactions were at the 
basis of a new paradigm of interpreting metabolic pathways. Indeed, interactions 
between proteins are the core of almost all the biochemical processes that mediate 
cellular function [6]. Large-scale experiments on whole genomes allowed the identifi-
cation of many interacting protein pairs but the residues involved in these interactions 
are generally not known and the vast majority of the interactions remain to be struc-
turally characterized. The structural characterization of protein-protein complexes 
remains an expensive and time consuming process and it is particularly problematic 
for transient complexes (see below). 

Molecular recognition in protein complexes can be predicted with docking tech-
niques, based on the notions of surface complementarity and electrostatics rules, and 
fitting together the surfaces of  two or more known structures. Significant advances 
have been achieved in this field: however, the molecular forces involved in the com-
plex association process are not completely understood and the methods are also in-
fluenced by the conformational changes that often take place upon protein-protein 
binding [7]. 

A possible alternative for characterizing protein complexes is a thorough study of 
protein complexes known with atomic resolution and the implementation of methods 
capable of inferring from known examples the general rules for predicting the propen-
sity of the amino acid residues to mediate protein-protein interactions.  It is a common 
believe that residues present at the protein interfaces should be easier to predict pro-
vided that its distinguishing features are known [8]. With this underlying assumption 
many studies have attempted to characterise the residues in protein-protein interfaces 
and from this to highlight all those rules that may help in the development of predic-
tive methods. In the following we will describe features of interacting protein com-
plexes as derived from structural data bases, the-state of the art methods that have 
been differently trained on these features and our approach. We will also describe the 
results of  some experiments trying to emphasize the role of data bases in getting the 
evaluation scores of the predictive methods. 

2   General Features of Interacting Protein Complexes 

Earlier works were restricted to a limited subset of oligomeric proteins in the PDB 
while more recent works have been able to extend the analysis to a larger dataset of 
protein structures that became available in the most recent PDB releases. When in 
vitro studies are also available, one possibility is to take into consideration the 
strength of the interaction, whether the interaction is transient or not and whether or 
not the complexes are formed by copies of the same chain. These later studies suggest 
that the composition of interacting residues in the interfaces is different in each 
subset: for example homo-dimers tend to have more hydrophobic residues in their 
interfaces than hetero-dimers. It has also been observed that small interfaces tend to 
have a higher content of charged and polar residues if compared to larger ones. A 
further distinction can be made between obligate, non-obligate, transient and 
permanent complexes. Obligate interactions are those where the monomers do not 
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exist as stable structures in vivo while in non-obligate interactions the monomers can 
exist independently of the complex. The distinction between transient and permanent 
interactions was originally based on the lifetime of the association. A permanent 
interaction is quite stable and for this reason, in general, it exists only in its 
complexed form, while a transient interaction associates and dissociates in vivo. 
Structural and functional obligate interactions usually are routinely permanent while 
non-obligate interactions can be transient or permanent. The interfaces of obligate 
complexes have clusters of hydrophobic residues while the transient interfaces have a 
significant number of polar residues that contribute to electrostatic interactions [9]. 
Together this findings suggest that transient interfaces are in general smaller with 
respect to obligate ones. Recently, it has been observed that in obligate complexes, 
monomers share more molecular functions (following the GO annotation) than in 
transient complexes. Moreover, residues in the obligate interfaces tend to evolve 
slower than residues in the transient ones. This indicates that obligate complexes 
residues tend to co-evolve with the interacting partner while in transient complexes a 
higher rate of substitution leaves no marked signature of correlated mutations [for 
more references see 3-6]. 

Different contact patterns between obligate and non-obligate interfaces have also 
been detailed.  It was found that contacts among obligate complexes are mainly non 
polar and that protein chains belonging to obligate complexes show a higher number 
of contacts per interface than non-obligate complex chains. Unfortunately most inter-
actions do not readily fall into a definite class and for this reason classifying com-
plexes by these definitions is not so simple [6]. Furthermore, secondary structure 
elements seem to give a major contribute to the formation of the interface in obligate 
complexes. The interaction between secondary structure motifs is driven by the inter-
action between main chain atoms, especially in the formation of obligate interfaces. 
Finally, β-sheet formation across the interacting units was observed only in obligate 
interactions.  

Peculiar  characteristics of interaction sites can be captured by position-specific  
sequence profiles such as those generated from PSI-BLAST multiple-sequence align-
ments [8-11]. Residue conservation at the interface is observed to be slightly higher than 
those of general surface residues, although it is not significantly different from those in 
the protein interior. The discriminatory power of the evolutionary conservation has been 
observed to be stronger for obligate and more permanent interactions [5].  

Summing up, several different chemico-physical and topological features can be 
associated to interacting protein surfaces. However, correlations between these fea-
tures and protein-protein binding sites are so subtle that they cannot be predicted with 
linear models alone.  

3   Prediction of Interacting Residues: The-State-of-the-Art 
Methods 

In spite of the differences detailed above, protein interfaces are not endowed with 
features that make them simple to be computed from specific sets of rules. For this 
reason computational methods that attempt to identify interface residues are very 
valuable. The most widely adopted machine learning methods, Neural Networks (NN) 
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and Support Vector Machines (SVM), exploit the information contained in the protein 
sequence and structure to predict interface residues. Two main approaches are 
commonly followed to address the interaction sites prediction: structure based 
(historically-older) and sequenced-based depending on which information is at the 
basis of the analysis at hand. The methods substantially differ because of the 
underlying training/testing dataset and also because they adopt different definitions of  
protein surface and contacts, namely residues belonging to the protein-protein 
interface. The characteristics of the results of each computational method is strongly 
dependent on the dataset and on the contact definition adopted [3-5]. Based on the 
notion that the data bases of sequences and structures recently underwent an 
exponential increase,  in the following we will detail those methods that more recently 
can be listed when dealing with the state of the art of prediction of protein-protein 
interaction sites. By this we aim at a thorough analysis of all the method recently 
developed hoping to highlight pitfalls and possible developments to improve the 
efficacy of the approach. A further sub-distinction is made between methods that 
adopt or do not adopt evolutionary information [3-5]. Evolutionary based methods are 
those methods that essentially make use of sequence profile derived from Multiple 
Sequence Alignments (MSA). All the-state-of-the-art methods are summed up with 
their main characteristics in Table 1. 

3.1   Sequence Based Methods 

ISIS (Interaction Sites Identified from Sequence [12]) is a combination of NNs that 
aims at predicting interacting residues from sequence. The NN input consisted of 
protein residue composition, sequence profile, predicted secondary structure and 
solvent accessibility. ISIS first builds the sequence profile required as input by PROF 
(a predictor of secondary structure from the same group [13]), and secondly the 
profile and the PROF outputs are given as input to a second NN that classifies each 
residue as interacting or non-interacting. A residue is defined as belonging to an 
interface if the distance between any of its atoms is within 6 Å from any atom of a 
residue in the partner chain. ISIS was trained on a set of 1134 protein chains selected 
from the PDB and it reached an overall accuracy of 68% (Table 2).  

3.2   Structure and Evolutionary Based Methods 

Recently, the Relative Solvent Accessibility (RSA) of protein residues in a chain has 
been integrated with high resolution structural data [14] for predicting interacting 
surface residues. The SPPIDER classifier (Solvent accessibility-based Protein-Protein 
Interaction sites IDEntification and Recognition) is a 10 NNs consensus method 
trained with a cross validated procedure on a 435 protein chains dataset (262 from 
hetero-complexes and 173 from homo-complexes both derived from PDB). 19 
physico-chemical features, such as the evolutionary conservation of amino acid 
properties (type, charge, hydrophobicity) derived from a MSA, were included in the 
predictor. Nevertheless the authors demonstrated that the most important feature was 
the difference between the predicted RSA and the real RSA (calculated in the 
unbound structure), averaged over a window length of 11 residues. The unbound 
structure was obtained from the complex considering only the chains of interest. The  
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Table 1. Recent machine learning methods for protein-protein interaction sites predictions 

Authors  
(Method) 

Surface/ 
Interface defi-

nition 
Dataset 

Machine 
learning 

Features 

 Porollo et al.,2007 
   (SPPIDER) 

Protein:  
All-Atom 

   Surface: 
  RSA > 5% 

Interface: surface 
residue whose 

change in RSA is > 
4% and whose 

change in exposed 
surface upon  

complex formation 
is > 5 Å 

435 protein 
chains from PDB 
(262 from hetero- 
complexes, 173 

from homo-
complexes).  

Control set of 149 
chains (92 from  

hetero-complexes,   
57 from homo-
complexes) 

Consensus 
method 

based on 10 
NNs 

19  physico-
chemical  
features:  
the most  

important is 
the WNA over 

11 spatial 
neighbours of 

dSA  

Dong Q. et al., 2007 

Protein:  
All-Atom 
Surface:  

ASA of at least 
one atom is > 2 Å 

Interface:  
residue whose ASA 

is decreased 
 > 1 Å upon 

complexation.  

1139 non-
redundant protein 
chains from the 

PDB 

SVM 

Sequence  
profile, ASA, 
binary profile 

propensities on 
a 12 residues 

window 

 
Chung J. et al., 2006 

 

Protein:  
All-Atom 
Surface:  

RSA > 15% 
Interface: 

residue whose ASA 
is decreased > 1 Å 
upon complexation 

274 non- 
redundant chains 

of hetero-
complexes taken 

from the PDB 

SVM 

Sequence  
profile, ASA, 
conservation 
score on a 12 

residues  
window 

Li J.J. et al., 
2007 

Protein:  
CA trace 
Surface:  

RSA > 16% 
Interface:  

  CA-CA distance 
   < 1.2 nm 

69 non-redundant 
chains from ref.10

 
LDF 

Conservation 
score of 11 

spatial 
neighbors  

Wang B. et al., 2006 

Protein:  
    CA trace 

Surface:  
RSA > 16% 
Interface:  

CA-CA distance 
< 1.2 nm 

69 non-redundant 
chains from ref.10
 

SVM 

Sequence  
profile,  

conservation 
score of 11 

spatial 
neighbors  
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Table 1. (Continued) 

Bordner&Abagyan, 
2005 

Protein: 
 All-Atom 
Interface: 

any pairs of 
atoms in each mole-
cule that are sepa-

rated  
by < 4  Å 

632 non-
redundant protein 

interfaces from 
the PDB  
(518 homo-

dimers, 114 het-
ero-dimers) 

Testing set: 
43  interfaces  

from ref .9 

SVM 

Local surface 
properties  

combined with 
evolutionary 
conservation 

score 

 
Li M. et al., 2007 

Protein:  
All-Atom 
Surface: 

RSA > 15% 
Interface: 
All-atom  

distance < 5  Å 

883 chains 
from hetero-

complexes from 
the PDB 

CRF 

Sequence  
profile, ASA, 

residue  
conservation 
and transition 
features of 15 

spatial 
neighbors 

Chen & Zhou, 2005 
  (Cons-PPISP) 

Protein:  
All-Atom 
Surface: 

RSA > 10% 
Interface: 
All-atom  

distance < 5 Å 

1156 non-
homologous 

protein chains 
(756 homo-

dimers, 400 hete-
ro-dimers) 

Consensus 
between  
6 NNs 

Sequence  
profile, solvent 

accessibility 

Ofran & Rost, 2007 
             (ISIS) Protein sequence 

1134 protein 
chains from the 

PDB 
NN 

Amino acid 
composition, 

sequence  
profile,  

predicted  
secondary, 

structure solvent 
accessibility of 9 

sequentially 
neighbors  

See text for explanations. NN: Neural Network; SVM: Support Vector Machine; CRF: 
Conditional Random fields; LDF: Linear Discriminant Function ASA: absolute solvent 
accessibility; WNA: weighted neighbour averages; dSA: difference in solvent accessibility.  

 
observed RSA was calculated with the DSSP program, while the predicted RSA was 
the result of a previously developed method called SABLE [14]. An interacting 
residue was defined as a surface exposed residue (RSA > 5%) whose change in RSA 
between the isolated chain and the complex structure was greater than 4% RSA and 
whose change in exposed surface area was >5 Å. A filtering procedure for removing 
negative examples difficult to predict was adopted. An initially “non-interacting” 
residue was excluded from training if at least 5 of its 10 nearest neighbours belong to 
the positive class. When tested with a 10-fold cross validation the classifier reached 
an overall classification accuracy of about 74% with a correlation coefficient of 42%. 
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The sensitivity and specificity were 60% and 64% respectively. This scoring indexes 
are so far the highest reported (Table 2). 

Residue interface propensities of different types of complexes (homo-permanent, 
homo-transient, hetero-permanent, hetero-transient) have been analyzed and com-
bined with sequence profiles and accessible surface area (ASA) to recognize binding 
sites [15] (Dong et al., in Table 1).  Sequence profile, ASA and binary profile propen-
sities have been given as input to a SVM system. The training was performed over a 
non-redundant set comprising 1139 protein chains, chosen from PDB. The binary 
profile is a 20 valued vector whose elements are 1 or 0, depending on whether the 
amino acid frequency in a given position of the sequence profile is greater  than a 
given threshold. A residue was defined as belonging to the surface when the ASA of at 
least one of its atoms was > 2 Å. An interface residue is a surface residue that de-
creased its ASA more than 1 Å upon complex formation. By this, the best results were 
obtained when the binary profile propensities were calculated for each class, as de-
tailed above, and assigned to the corresponding class (overall accuracy is 73%, corre-
lation coefficient is 37%); however when the propensities were assigned to a different 
class (for example hetero-transient propensities to hetero-permanent complexes) the 
performance dropped to an overall accuracy of 67% with a 22% correlation coeffi-
cient. The specificity and sensitivity were then respectively 40% and 56% (Table 2). 

Table 2. Scoring indexes of recent machine learning methods for protein-protein interaction 
sites predictions 

Authors/Method Accuracy Sensitivity Specificity 
Correlation 
coefficient 

SPPIDER 74% 60% 64% 42% 
Dong Q. et al., 2007 67% 56% 40% 22% 
Chung J. et al., 2006 - 67% 50% - 
Li J.J. et al., 2007 - 66% 49% 28% 
Wang B. et al., 2006 65% 66% 50% 30% 
Bordner&Abagyan, 

2005 
67% 67% 22% - 

Li M. et al., 2007 71% - - 30% 
   Cons-PPISP 61% 38% - - 
         ISIS 68% - - - 

See Table 1 and text for explanations. Scoring indexes are defined in section 4.2. 

 
Chung et al. [16] combined the sequence profile, the ASA and a conservation score 

for training an SVM-based classifier to identify protein-protein binding sites. The resi-
due conservation score was the result of a multiple structural alignment, built with the 
CE-MC algorithm, weighted on the crystallographic B factor. This procedure takes into 
account the structural flexibility than can affect the quality of the alignment. 274 non-
redundant chains of hetero-complexes collected from the PDB were included in the 
dataset. Only surface residues, defined as residues whose RSA was >15%, were consid-
ered with a complement of 12 structural surface neighbours. Two residues participate 
into an interfacial contact if the distance between any of their heavy atoms is less than 5 
Å. A predicted non-interface residue becomes an interface residue when the distance 
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between its CB atom and the CB atoms of at least three predicted interface residues was 
< 6 Å. The method achieves a 50% specificity with a 67% sensitivity.  

Li J.J. et al. [17] represented the evolutionary information through a conservation 
score based on a phylogenetic tree calculated from the MSA profile. The Rate4Site 
algorithm was used for the conservation score calculation. By introducing this score, 
the feature vector is 20 times reduced with respect to a sequence profile based vector. 
The method was tested on a 69 non-redundant chains obtained by filtering an already 
compiled dataset [10]. Surface residues were defined as those residues whose RSA 
calculated with the DSSP was greater than 16%. The protein was represented with its 
CA trace, choosing a 1.2 nm cut-off for the interaction distance. A Linear Discrimi-
nant Function (LDF) was tested on the dataset and reached about 49% specificity, 
66% sensitivity (for the positive class) with a correlation coefficient of 28%. In a 
second paper from the same group, the conservation score was combined with a se-
quence profile as input for an SVM system [18]. The method with the same input 
parameters as before reaches a sensitivity of 66.3%, a specificity of 49.7%, an overall 
accuracy of about 65% and a correlation coefficient of 30%.  

Bordner and Abagyan [19] described a SVM method trained on a combination of lo-
cal surface properties and an evolutionary conservation score. A newly developed 
Bayesian algorithm  that made use of phylogenetic trees was adopted to calculate the 
evolutionary score. Local surface patches of 15 residues (central residue and 14 surface 
neighbors obtained comparing CA distances) were generated for each surface residue. 
Z-scores of residue frequencies in multiple alignment and evolutionary rates for each 
residue of the patch were adopted as SVM input. The system was trained on a 1494 non-
redundant protein interfaces dataset (518 homo-dimers, 114 hetero-dimers and 862 
multimers from the PDB). A post processing procedure was then applied to remove 
possible false positives: residues were clustered in patches comprising those whose CA 
atoms were less than 6 Å apart; predicted interface patches were changed in non-
interface ones if their ASA was <150 Å. For sake of comparison with other methods in 
Table 2 with we report the scoring indexes obtained by the authors without clustering. 
The method scores with an overall accuracy of 76% and a sensitivity and a specificity 
equal to 64% and 34%, respectively. When tested on a different set of 43 transient het-
ero-dimer interfaces [9] the accuracy falls to 67% and the specificity to 22%. 

A different approach, based on conditional random fields (CRF), has been pro-
posed by Li M. et al. [20]. Surface residue segments were collected and each residue 
within the segment was labeled as interface or non-interface. These segments were 
included as training examples. A surface residue was defined as a residue whose rela-
tive DSSP calculated ASA is at least 15%. A residue was defined as an interface resi-
due if the distance between any of its heavy atoms and any heavy atom of a residue on 
the partner chain was < 5 Å. The CRF features included state features, such as profile 
of 15 spatially neighboring residues, ASA and residue conservation, and transition 
features. The database consisted of 883 chains from hetero-complexes extracted from 
the PDB. The method achieved an overall accuracy of 71% with a correlation coeffi-
cient of 30%. 

Chen and Zhou tried to improve their first predictor [21] with a larger training 
dataset compiled from the PDB and containing 1156 non-homologous protein chains 



 Prediction of Protein-Protein Interacting Sites 9 

(756 homo-dimers and 400 hetero-dimers). The new system [cons-PPISP, 22] was 
bases on a 6 NN consensus method taking as input the sequence profile of each resi-
due contained in a 15 residue long window, the average solvent accessibility of the 
target residue and of its 6 nearest neighbours. Surface residues were collected fixing 
the relative surface exposure to solvent to at least 10%. A surface residue was defined 
as an interfacial contact if the distance between any of its heavy atoms and any heavy 
atom of a surface residue on the partner chain was less than 5 Å. When tested on a set 
of 100 non-homologous protein structures (42 homo-dimers and 58 hetero-dimers) the 
new method reached a 80% accuracy and a 51% sensitivity. To reach these perform-
ances the training set was balanced randomly removing 1/3 of the non-interface  
residues and removing residues belonging to interfaces other than the biggest one  
(for chains forming at least trimers). Tested on a set of 68 protein chains of 40 com-
plexes collected as a docking benchmark, cons-PPISP scored with a 61% accuracy 
and a 38% sensitivity; when tested on 8 NMR-characterized proteins it predicted 
interfaces residues with an accuracy of 69% and a sensitivity of 47% (Table 2). 

4   Details on Data Bases 

From what detailed above it can be concluded that different methods are scoring dif-
ferently on different data sets, when contact definition is different. It is also evident  
that protein-protein interaction sites prediction is still far from being optimal, as pre-
viously discussed [5].  It also evident that different methods have been trained and 
tested on different data sets and this may hamper their direct comparison. In this  
section we focus on the rules and definitions adopting for grouping sequences and 
structures in order to highlight the demand of common selecting criteria.  To address 
the question of which data base is more suited to address the problem of protein-
protein interaction, we analyzed a number of representative datasets described in 
literature to highlight differences and similarities (Table 1). The large majority of the 
datasets adopted for training and testing purposes are extracted from the PDB follow-
ing different rules. Porollo and Meller [14] filtered the PDB data base and retained 
only complexes with at least one chain sharing less than 50% sequence identity with 
any other chain within the set. This threshold is 2fold higher than that routinely 
adopted by other authors. The procedure resulted in 584 protein chains. 

Multiple interfaces for a single chain are taken into account, while the majority of 
the other methods considered only independent dimer interfaces.  

Dong et al. [15] selected only multiple chains with a resolution greater than 4 Å 
and longer than 40 residues. Even if multi-chain complexes were extracted, if they 
contained more than two chains, each chain was selected once. Moreover, if a chain 
had multiple partners they chose the partner with the biggest interface. The PQS 
server helped to eliminate crystal packing complexes. The sequence identity threshold 
for avoiding redundancy was 25%. A final set of 1139 chains was obtained.  

Chung et al. [16] retained all non-NMR structures with multiple chains and a reso-
lution higher than 3.5 Å from the PDB (March 2004). For each complex the decrease 
in ASA has been calculated using the DSSP program and a pair of chains was retained 
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if it was ≥ 450Å2. The pairs belonging to SCOP classes ≥ 8 or shorter than 80 residues 
were discarded. All the sequences were compared with a BLAST search and clustered 
if the sequence identity was ≥30% over >90% of the sequences.  Choosing a represen-
tative for each cluster the final dataset comprised a non-redundant set of hetero-
complexes with <30% of sequence identity. If the sequence identity among chains of 
the same complex was >95% over 90% of the sequences length, the complex was 
identified as an homo-complex and discarded.  

For chains interacting with multiple partners, only the one with the most partners 
was chosen as representative. A further alignment with the CE_MC algorithm choos-
ing the homologous at the SCOP family level, retained only the chains that were 
aligned over 60% of their length and with a Z-score >4.0. The final dataset contained 
274 non-redundant chains of hetero-complexes. 

The Li J.J. et al. [17] dataset comprises only 69 chains with sequence identity less 
than 30%. 

Starting from the PDB Bordner and Abagyan  [19] selected all X-ray structures and 
used the biological unit information of the mmCIF file to build the structure of the 
complex. Two chains in a complex were defined as interacting if heavy atoms in each 
chain were closer than 4 Å with heavy atoms on the other chain. Pairs containing 
chains shorter than 20 residues were removed. The quality of the dataset was im-
proved checking the consistency between PDB file and the Swiss-Prot annotation. In 
order to remove homo-complexes sequences were clustered and only those with less 
than 30% sequence identity were retained (BLAST search against nr with E-value 
cut-off 0.1). A further filter was applied for removing interfaces showing, according 
to PDB file information, mutations and immune system proteins with polymorphisms 
and somatic mutations. Only interfaces larger than 10 residues were retained in the 
last 1494 protein-protein interfaces dataset, composed by 518 homo-dimers, 114 het-
ero-dimers and 862 multimers. Different interfaces for the same chain are considered 
in an independent way. 

Li M. et al. [20] considered the July 2005 PDB release. The resolution cut-off 
value chosen was 3.5 Å. Redundancy was avoided by retaining only those structures 
whose sequence identity was ≥ 30% over > 90% of the sequence, ending up with 
1276 chains from hetero-complexes. In general, complexes can have more than one 
chain that can form more than one interface. For addressing this problem each chain 
was considered once and only one partner with the most interfacial residues was con-
sidered but also other cases were taken into account. Indeed minor interfaces were 
labeled as interface, non-interface or even excluded from the dataset and for each case 
a different result was reported. 

Chen and Zhou [22] substantially implemented the same method of 2001 with a 
bigger database extracted from the January 2002 PDB release. All multiple chain 
structures, whose chains were longer than 40 residues and whose interface was larger 
than 20 residues were considered. Each chain was assigned only to the partner with 
the largest interface. Residues belonging to other interfaces were labeled as non inter-
face residues or eliminated from the training set. The similarity cut-off for the PSI-
BLAST all-against-all search was 30% over the aligned region that had to cover at 
least 90% of the two sequences. A homo-dimer was defined as a complex with highly 
homologous chains (95%) over a 90% aligned region. Their set comprises 798 homo-
dimers and 458 hetero-dimers.  
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5   Our Approach: ISPRED 

In the following we introduce the method that we implemented for the prediction of 
protein-protein interaction sites. The method although, described before [10], is now 
re-trained on new training set.  The method is essentially a feed forward neural net-
work trained with a standard back propagation algorithm. 

Each protein residue is represented with its carbon alpha (CA). By this, the protein 
surface is represented using its CA trace and the interface residues are defined as 
those surface residues (residues with relative solvent accessibility > 16%) whose 
Euclidean distance with at least one residue of the partner chain is below 1.2 nm. 
Solvent exposure is separately computed for each chain, using the DSSP program. 
This threshold value is selected after comparison with the patches obtained using an 
all-atom representation of the residues.  

The method exploits the evolutionary information contained in the multiple se-
quence alignment of protein families, encoded in the sequence profile. The profile is a 
L*20 matrix, where L is the protein sequence length, that for each position of the 
alignment contains the frequency of occurrence of each type of residue in the corre-
sponding position of the alignment. 

The system is trained using an 11 residue-long window centered on the surface 
residue to be predicted with 10 nearest neighbors in the surface patch. To give a rough 
approximation of the local surface, the residues included in the input window are 
close in space and not necessarily adjacent in the sequence and represent. Thus, each 
residue in the input window is encoded as a vector of 20 elements, whose values are 
the frequencies extracted fro the sequence profile. 

Each protein residue is thus encoded in a 232 nodes input vector that contains the 
sequence profile of the residue to predict, the sequence profile of its 10 nearest spatial 
neighbors, the relative accessible surface area of the residue to predict and the fre-
quency of interaction of the residues in the window (namely 11), calculated on the 
overall dataset.  

The output of the neural network is the probability of each surface residue to be in 
an interaction site given the current input. Neural network predictions are un-
correlated. In order to take into account the cooperation among close surface residues, 
we averaged the network output over the list of neighbors.  The probability for a 
given residue is calculated as follows: 

P(i) = Σj w(i,j) O(Ri(j))/ Σj w(i,j) 

where O(Ri(j)) is the output corresponding to the neighbor j of the residue i  and w(i,j) 
is a weight. We tested several weighting schemes. The uniform distribution (Uniform) 

wU(i,j)=1 

the exponential decreasing with the Euclidean distance between the residue and its 
neighbors (Exp),  

wE(i,j)=exp[-d(i, Ri(j))] 

the decreasing with the inverse of the Euclidean distance,between the residue and its 
neighbors (Inv), 
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wI(i,j)=I/[ d(i, Ri(j))(i-δ(0,j)+ δ(0,j))] 

With the inclusion of Kronecker delta (δ), w(i,j)=1 when we refer to the current resi-
due (j=0) otherwise it decreases with the inverse of the distance. 

We selected the uniform distribution as the best performing one.  
The introduction of this smoothing function reduces the number of spurious as-

signments and for this reason it improves the predictor performance [11]. 

5.1   ISPRED2.0: Dataset Description 

Our dataset is composed of  626 protein chains belonging to 318 different protein 
complexes (291 dimers and 27 multimers) obtained from the PDB. Among the 116 
homo-complexes, 40 structures are transient and 76 are obligate, while among the 202 
hetero-complexes, 106 are classified as transient and 106 as obligate. For the selection 
of the transient complexes we found that 215 of the selected chains have a correspon-
dent structure resolved both in complex and in a complex independent stable struc-
ture. Only the complexes with at least one monomer with a highly homologous 
(≥70%) unbound form have been selected as transient complexes. We also filtered out 
structures whose sequences are shorter than 40 residues. 

For purpose of comparison with SPPIDER, we randomly selected a benchmark 
subset of 50 protein chains from our initial dataset, with the constraint that they do not 
share more than 25% sequence similarity with any of the sequences in the Porollo 
dataset [14]. 18 chains belong to homo-complexes (2 transient complexes and 16 
obligate) and 32 are from hetero-complexes (among with 16 transient). We also se-
lected a subset of 417 proteins (S417) that are the complement of the intersection 
(S467) between the 626 proteins (S626) dataset and the complete Porollo’s dataset, 
filtered out from the 50 proteins selected as described above. The intersection be-
tween the two sets has been computed with a BLAST alignment. 

5.2   Scoring the Performance 

The results of the methods are evaluated using the following measures. The overall 
accuracy (Q2)  is defined as: 

Q2= Overall accuracy = TP+TN/(TP+TN+FP+FN) 
where: 
- TP = number of true positive predictions (observed interacting residues pre-

dicted as interacting) 
- TN = number of true negative predictions (observed non-interacting residues 

predicted as non-interacting) 
- FP = number of false positive predictions (observed non-interacting residues 

predicted as interacting) 
- FN = number of false negative predictions (observed interacting residues pre-

dicted as non-interacting) 

The sensitivity (coverage) for the positive class Q[+] and for the negative one Q[-] are 
computed as follows 

Q[+]= TP/(TP+FN) 

Q[-] = TN/(TN+FP) 
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To measure the probability of correct predictions, we computed the specificity 
(namely the accuracy for each class, + and -) expressed as follows: 

P[+] = TP/(TP+FP) 

P[-] = TN/(TN+FN) 
The correlation coefficient is: 

C = (TP*TN-FP*FN)((TP+FP)*(TP+FN)*(TN+FN)*(TN+FP))1/2 

6   Results  

The benchmark of the new release of ISPRED (2.0) is done considering the predictor with 
the highest score around: SPPIDER. The problem that we want to tackle is how good is 
SPIDDER performance when tested on different sets from the one used by the authors.  

In the first experiments ISPRED 2.0 is directly compared with the performance of 
SPPIDER, as described in literature. Results are shown in Table 3, where also a sec-
ond cascaded network is added to our predictor to filter out non correct assignments.  
Results are obtained by averaging over 10 different values for each scoring index 
computed by means of a cross validation procedure. SPIDDER was originally trained 
on 435 protein complexes (S435) and tested on 149 proteins (S149). In the last ex-
periment of Table 3 ISPRED was tested on the SPPIDER testing set, again adopting a 
cross validation procedure. It is evident that a second cascaded network slightly im-
proves our performance. Values however are still lower than that declared for 
SPPIDER. As discussed above (section 4)  we are now comparing results obtained 
with different training and testing methods.  

We then used  datasets comprising 50 randomly selected proteins from the 626 of 
our data set and we tested SPPIDER performance. The results are reported in Table 4. 

It evident that on small testing sets, different from the original one, SPPIDER per-
formances are well below the reported values. This is so even when consider inde-
pendent test sets of larger dimension  never seen before by the two methods (Table 5). 

All the PDB proteins were filtered with ISPRED to predict putative contact sites. 
The predictions are available at our web site with the scores obtained for each puta-
tive contact residue. As an example, Figure 1 shows a protein 3D structure with high-
lighted the predicted interacting sites localized on surfaces.  

Table 3. ISPRED 2.0 at work 

Method Q2 Q[+] P[+] Q[-] P[-] C 
SPPIDER* 0.74 0.60 0.64 - - 0.42 
ISPRED2.0 0.66 0.54 0.7 0.77 0.62 0.32 

ISPRED2.0^ 
+2nd Net 

0.68 0.58 0.72 0.77 0.65 0.36 

ISPRED2.0# 
+2nd Net 

0.67 0.58 0.76 0.71 0.65 0.35 

* * from [14]. ^with a second cascaded neural network. #trained on the 435 and tested on  S149. 
ISPRED 2.0 is trained on S626 and tested on S149. 
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Table 4. SPPIDER tested on randomly selected protein sets  

Dataset* Q2 Q[+] P[+] Q[-] P[-] C 
#1 0.69 0.50 0.43 0.76 0.81 0.25 
#2 0.67 0.50 0.44 0.74 0.79 0.24 
#3 0.69 0.51 0.43 0.76 0.81 0.26 
#4 0.70 0.53 0.46 0.77 0.82 0.29 
#5 0.66 0.53 0.48 0.72 0.76 0.24 

AVERAGE 0.68 0.51 0.45 0.75 0.80 0.26 
*see Data set description 

Table 5. Comparison of SPPIDER and ISPRED2.0 performance 

Method Q2 Q[+] P[+] Q[-] P[-] C 
SPPIDER* 0.68 0.54 0.47 0.74 0.79 0.28 

ISPRED2.0° 0.66 0.45 0.43 0.74 0.78 0.21 
ISPRED2.0+ 0.66 0.49 0.44 0.73 0.77 0.22 
ISPRED2.0# 

+2nd Net 
0.67 0.53 0.45 0.73 0.79 0.25 

*tested on S417. °trained on S626, tested on S417. +trained on S435, tested on S467. #trained 
on S435, tested on 467. 

 

Fig. 1. Example of prediction of the protein 1ibc (inhibited interleukin—1beta conerting en-
zyme), obtained with ISPRED 2.0 and stored in the ZenPatches database (http:// 
gpcr.biocomp.unibo.it/biodec/). In red are the true positives, in green false negatives and in 
yellow false negative predictions. 
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7   Conclusions 

As a final consideration we can observe the recent methods focusing on predictions of 
interacting sites in proteins have exploited a large collections of chemico-physical 
properties for generating the input code. By this different rules have been described 
and obtained from different data bases. This obviously hampers a direct comparison 
of the different methods including ours. Even though standard rules are generally 
accepted when implementing machine learning approaches, different inputs appar-
ently end up in different scoring indexes.  

In this paper we focused on the specific problem of the data bases. We addressed 
the question of how two highly performing predictors can be compared when they 
have been trained with different criteria and data bases. We observe that when data 
bases are randomly selected the performance is rather similar suggesting that possible 
improvements described in literatures [14] may be due to over-fitting on a specific 
data base. It is therefore necessary to standardize both training and testing sets for 
implementing predictors that later on may be benchmarked on more rigorous criteria.  

In any case the actual state of the art predictors seem to have reached an upper 
limit scoring performance that at least in our case on a more abundant data set of 
examples. A previous implementation of ISPRED [10], trained and tested on a less 
abundant data set scored with a 26% correlation index. This value, although obtained 
in 202, is similar to the most recent ones shown in Table 2. Our experiments indicate 
that an upper bound to the scoring indexes is possibly the one declared by SPPIDER, 
that we have shown is wuite sensible to different data sets, as opposite to ISPRED 
2.0. Also the method seems not be an issue as recently demonstrated with a SVM 
based method that scored as high as SPPIDER (with a coefficient correlation of 33%) 
on a similar data set [5].  

The problem of how to treat multiple interfaces then emerges. According to a 
molecular view of protein-protein interaction it should be considered that one pro-
tein may be even involved in different protein complexes, although in a transient 
way. Then the question poses as to whether we really are in the position of correctly 
describing an interacting surface, when it is possible that presently the PDB collects 
structural information only of those complexes whose life time is compatible with 
the crystallization procedures. When the same or a similar protein are interacting 
with different partners, are these patches to be included or excluded? According to a 
molecular view of protein-protein interaction it should be considered that one pro-
tein may be even involved in different protein complexes, although in a transient 
way. Then the question poses as to whether we really are in the position of correctly 
discriminating false positives.  It may be possible that considering protein com-
plexes solved with atomic resolution  we are missing other important features of 
protein surfaces that may help us in improving the gap among protein interacting 
networks and molecular recognition at the protein level.  For the time being we can 
rely on putative interaction sites as those collected in the ZenPatches database 
(http:// gpcr.biocomp.unibo.it/biodec/) that can help in supporting experimental 
large scale data and at the molecular level in designing further experiments for 
validation studies. 
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Abstract. A major challenge in computational systems biology is the
articulation of a biological process in a form which can be understood
by the biologist yet is amenable to computational execution. Process
calculi have proved to especially powerful computational tools for mod-
elling and reasoning about biological processes and we have previously
described, and implemented, a Narrative approach to describing biolog-
ical models which is a biologically intuitive high level language that can
be translated into executable process calculus programs. Here we discuss
an extension to the narrative approach which attempts to directly link
biological data with Narrative primitives by suggesting an equivalence
relationship between a string (the amino acid sequence) and a process.
We outline future challenges in applying this approach more generally.

1 Introduction and Motivations

There are multiple incentives for a convergence between computing and biology
[1]. Classically this has been the adoption by biologists of computational tools to
store, search, visualise and interrogate large sets of biological data. However the
relationship can be taken further by the aspiration to realise a biological process
in the form of a computer program. The predicted benefits of this challenge
are many. A pragmatic motivation for the biologist is that it could accelerate
the pace of biological discovery, help design better laboratory experiments and
reason more clearly about biological processes [2].

But there are greater wins to be had. A program that faithfully emulated biol-
ogy could be used to study processes which cannot practically be investigated in
the biologists laboratory. Examples would include biological processes that take
place over very long periods of time such as pathway evolution, aging and degen-
eration, or the accumulation of mutations in the lifetime of a tumour. Programs
could be used to study the outcomes of experiments that can be conceived but
cannot be executed in the laboratory. Programs could be used to even identify
experiments that biologist cannot conceive.

Computer programs that behaved like biological processes could revolutionise
the development of new therapies by allowing exhaustive exploration of treat-
ment scenarios without recourse to laboratory investigation and will be essential
to realise the goal of personalised medicine: the program can be employed to
predict the outcome of therapy.

P. Degano and R. Gorrieri (Eds.): CMSB 2009, LNBI 5688, pp. 18–25, 2009.
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Finally programs that behaved like biology could be employed to design new
biological processes with specified properties including, for example, biology that
behaved like a computer.

Realisation of this challenge has outcomes for computer science in that it
demands programs that do not simply emulate the system but in fact are the
system. This calls for the development of computational techniques which exactly
and formally behave like a biological process. This represents true convergence
of the two disciplines.

This paper reviews current progress towards this aim with a specific emphasis
on the equivalence between biological data types and events and computational
formalisms.

2 Algorthimic Systems Biology

The classical, and most widely employed, approach to modelling biological pro-
cesses has been via the use of mathematical tools that express the process in the
form of numerical values which are related to each other in the form of equations.
The behaviour of the process can then be simulated by calculating the solution
to the equations which plots the changing relationship between the numerical
variables over time. In this fomalism the computer is a calculating device [3,4].

In the past few years a different use of computers has been proposed. This
springs from the fundamental properties of computation in which the state of the
machine changes dynamically according to a set of rules (algorithims). Thus in
computation the system passes through state changes according to the instruc-
tions supplied. In its most general sense the algorthimic approach to biology
defines the states of a biological system and the instructions that relate the
states to each other. Thus the central questions in this light are how is a bio-
logical state defined and what are the relationships between these states in the
biological system. Thus in order to program the computing device to behave like
a biological process we require a method which maps biological properties onto
computational primitives. Such a mapping has to be rigorously specified and
therefore requires some form of operational semantics which exists in the realm
of biological data types.

2.1 Process Calculi

One of the most popular manifestations of the algorithmic approach to biology
has been the use of process calculi which are set of approaches developed to
study concurrent communicating systems [5]. The application of process calculi
to biological systems was first advocated by Regev et al [6] who drew attention
to the formal similarity between core concepts in process calculus languages and
biological processes. These are: the representation of biological components as
processes; the interaction between biological entities as a communication be-
tween processes and that the consequence of a communication event results in a
change of state (ie the spawning of a new process). Process calculi provide a rich
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and expressive operational semantics for describing concurrent communicating
systems with a small number of operational primitives and rigorous logical rules
for manipulating the primitives allowing the computer scientist to reason about
the processes embodied in the program. A number of different process calculus
approaches have now been applied to the study of biological systems [3]. Of
key importance it has been possible to demonstrate for a number of biological
processes that the process calculus approach yields programs that exhibit real-
istic biological behaviours which can be successfully employed to reason about
biological system and successfully predict the outcome of real (or hypotheti-
cal) biological interventions [2]. These outcomes are sufficiently encouraging to
consider the further convergence between process calculus concepts and their
biological counterparts.

2.2 Biological Narratives

In considering how to pursue the convergence of computer science and biology
we need to consider the current process by which a biological scheme is executed
in the form of a program. We shall here confine our analysis to the study of
signal transduction pathways which have so far been the major class of biological
problem investigated by process calculus tools.

Biologists traditionally express their hypotheses in the form of informal dia-
grams. These are informal in the following sense: they employ a variety of nota-
tional styles which can be ambiguous or confusing to the non biologist (although
various formal notations have been proposed there is no current universal stan-
dard [7]). The diagrams are abstractions in that they are generally designed to
emphasise some particular feature of the pathway and components that are not
relevant to the immediate problem are often, for the sake of clarity, eliminated. It
is therefore frequently confusing for the non- biologist to find seemingly the same
process articulated by quite distinct diagrams. Finally diagrams are inherently
static representations and dynamic features of pathway behaviour are difficult
to represent. For these reasons the computer scientist can find the translation of
a biological process into a computational formalism confusing and ambiguous.

The more productive approach to date has been true collaboration between
the computer scientist and biologist in which a dialogue results in the formulation
of the computer program in an appropriate language for execution. The dialogue
is required because few (if any) biologists have the training or motivation to
formulate their ideas in the form of specific computational-orientated semantics.
The risk here is that the process of translation results in loss of information for
successful articulation of the biological pathway.

We [8,9] have developed an approach which aims to address these issues by
developing a semantic system which is aimed to be intuitive to the biologist,
sufficiently expressive to faithfully articulate the biological process and yet read-
ily translatable into a process calculus language. The basic components of the
language are molecules (components) which are located in specified locations
(compartments). The components can interact (for example bind or unbind) un-
dergo modifications (eg phosphorylation/ dephosphorylation) and move between
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compartments. As a result of interactions components can change in number (ie
synthesis or degradation). These basic elements (which map directly onto the
underlying process calculus primitives) are then formulated as a Narrative of
events. The Narrative thus represents the instructions that specify the biolog-
ical process under investigation. In accord with the process calculus approach
steps in the Narrative can be concurrent and exhibit dependencies: for example a
binding event may be dependant on a prior phosphorylation event or relocation
between compartments may require specific complexes to be formed.

A number of pathways have been formulated in a Narrative form [2,9] and
been shown not only to produce outputs which resemble real world biological
data, but, by removal of components in the narrative or alteration in rate pa-
rameters, permit the biologist to examine the consequences of perturbations on
the behaviour of the model. The advantage of a high level, biologically intuitive
and formally rigorous language is that models can be specified by the biologist
without them needing to understand the details of the underlying computational
execution. The availability of translators from the Narrative language to differ-
ent process calculus languages should also allow the same model to be executed
by different process calculus languages.

3 Equivalence between Biology and Computation

The Narrative approach illustrates a method of articulating a biological pro-
cess in a way which is formally rigorous for computation but intuitive to the
biologist. However there is still a gap between the realm of biological data and
the computational model as the approach still requires the biologist to interpret
their laboratory data in the form of a Narrative description. We now suggest an
extension to the narrative approach in which the basic elements of the model
are direct representations of laboratory data leading to a formal equivalence
between biological data and computational execution. For this purpose we need
to understand the type of data generated in a typical biology experiment. Again
by way of illustration we shall confine our discussion to the analysis of signal
transduction pathways.

3.1 Components

In the computational model the component is simply a name with specified prop-
erties. However the name points to a real biological molecule with experimentally
defined attributes. The corresponding component in the biological domain is a
string: the amino acid sequence of the protein. Replacing the component with the
string therefore directly connects the biological entity with the computational
primitive. This opens up two avenues: the ability to specify the component in
the model with verified biological data and a direct connection between model
primitives and experimental biological data.

Thus for example in the model of Guerrerio et al [9] gp130 refers to a real bio-
logical molecule with known and verifiable biological attributes. These are stored
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in various biological databases such as Uniprot [10] (http://www.uniprot.org).
Thus replacing the name with a database pointer UniProtKB/Swiss-Prot P40189
automatically connects biological knowledge with the computational formalism.
The information collected in the biological database contains all the details re-
quired for specification of the component in the model such as subcellular loca-
tion (or compartment), sites of post translational modification (ie potential state
changes), domain architecture and primary sequence. In fact direct exploitation
of biological database information to define a component in a model in most
cases will provide much more information than the modeller would require.

The amino acid (or nucleotide) sequence present in the database also provides
the means for biological verification. Thus the existence of a component in the
biological domain can be verified by unique barcodes either in the form of the
component itself or by sequence tags added by genetic engineering techniques
[11]. The unique biological identifier can also be extended to components that
exist in certain states for example specific phosphorylated forms of the protein
can be identified by phospho specific antibodies [12]. In addition using for ex-
ample fusions with intrinsically fluorescent proteins or antibody localisation the
location of the component can also be experimentally verifiable. There is thus
a direct map between the component in the model and the experimental data
generated by the biological investigator. By this means it becomes possible to
directly connect an observable eg the amount or location of a component and
its system state to the model.

3.2 Complexing Rules

The formation and destruction of molecular complexes is central to most signal
transduction processes. From the computational perspective these are processes
spawned from the merger of two previous processes. In the biological data the
existence of complexes can be detected by a variety of experimental techniques.
These include co-immunoprecipitation, co-localisation by microscopy or via pro-
teomics techniques such as two-hybrid interactions or mass spectroscopy [13].
These data types have also been curated in biological protein/ protein inter-
action databases databases such as String [14] (http://string.embl.de/). Thus
a binding event in the model can be linked to the existence of an experimen-
tally verified binding event in the database as a concatenation of two (or more)
strings. In addition as the model is run computationally it will generate out-
puts which refer to a potential biological experiment of the form does a complex
between component A and component B exist at time T in compartment X?
Thus connecting the biological data and the computational primitive allows the
model to yield outputs which describe the outcomes of a hypothetical biological
experiment.

3.3 Compartments and Space

A notion of confined space was introduced in the narrative approach as an ex-
tension to the original specifications of Regev et al [15] in order to more correctly
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reflect biological reality in which the sequestration of biological processes, for ex-
ample inside membrane confined spaces such as the nucleus or the golgi, plays
a key role in the process under investigation [review]. Some biologically orien-
tated process calculus languages such as Bio-ambients [15] have been specifi-
cally devised with compartments in mind and used to model signalling processes
based upon directed trafficking of components between membrane-bound com-
partments. Indeed we have been able to show in modelling the gp130/Jak/STAT
pathway using the Narrative-based process calculus approach that the rate of
movement between cellular compartments (in this case nucleus and cytoplasm)
is a key determinant of pathway behaviour [9]. We have also been able, using
ambients, to model the trafficking of cell surface receptors into different cytosolic
compartments which compares well with biological data [16]. Extensions to this
approach in which trafficking of receptors is reactive to changes in the states
of components in the model (eg dependent upon a phosphorylation event) are
under development (M.G. Vigliotti, S.van Bakel, J. K. Heath unpublished).

These results are encouraging but need to be further developed if a full equiva-
lence between biological datasets and computational models is to be achieved. In
particular to fully articulate the richness of biological data some explicit notation
for spatial localisation is required.

Experimental biological investigations of signalling pathways increasingly ex-
ploit the power of live cell imaging [17]. In this technique proteins are visualised
by fusion to an endogenously fluorescent reporter protein such as Green Fluo-
rescent Protein (GFP) and tracked dynamically in individual cells by confocal
light microscopy. The biological data in this case is in the form of a video and is
analysed a single cell level which is especially appropriate for modelling as each
cell is in essence an individual execution of the model rather than averaged over
many cells as would be the case for methods such as western blotting. The de-
velopment of computational techniques for extracting and classifying data from
live cell imaging is a rapidly developing area of computer science.

The application of this general approach is dramatically transforming our
biological understanding of the spatial architecture of cell signalling pathways.
Thus the commonly modelled ras/raf/mapk pathway is usually modelled as a
connected set of binding and phosphorylation events occurring within a single
compartment [18]. The imaging data reveals however that this module is highly
dynamic with components of the pathway shuttling between different compart-
ments as the signal is propagated [19]. There are also important problems in
biology such as the molecular machines controlling cell motility or mitosis - in
which molecular movement in time and space is the essence of the problem.

4 Conclusions

Process calculi concepts and approaches are now established as very well suited
to modelling biological pathways by the algorithimic approach. An obstacle to
more widespread adoption has been the language gap between computational
and biological formalisations. High level, biologically intuitive languages as illus-
trated by the Narrative approach undoubtedly help to bridge this gap. However
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biological investigation is ultimately driven by data and formalisms for directly
mapping biological data types into executable programs is the next step in the
convergence of biology and computing.
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Abstract. We introduce BlenX4Bio, a high-level interface for the pro-
gramming language BlenX. BlenX4Bio allows biologists to write BlenX
programs without having any programming skills. The main elements of
a biological model are specified by filling in a number of tables. Such
tables include descriptions of both static and dynamic aspects of the
biological system at hand and can then be automatically mapped to
BlenX programs for simulation and analysis by means of the CoSBi Lab
software platform. In this paper we illustrate the main characteristics of
BlenX4Bio through examples taken from biology textbooks.

1 Introduction

It is well accepted that modern biology, and mainly systems biology, has to have
modeling techniques in its toolset. The ever increasing complexity of the mod-
elled systems pose a challenge to biological modelling and the classical equation-
based (both mathematical and chemical) modeling approaches, in particular,
proved to suffer from the combinatorial explosion of the size of the model.

The recent field of algorithmic systemsbiology [12]proposes computer science as
a foundation for systems biology and as a means which, relying on basic principles
of programming language theory, allows for the specification of complex systems
in a concise and precise manner. Algorithms force modelers and biologists to think
about the mechanisms that govern the behavior of the system they are studying.
Algorithms are high-level expressions of a system’s behaviour which describe the
states in which a system can be and the conditions under which a system evolves
from one state to another. Computer science relies on programming languages to
unambiguously describe and execute algorithms. Furthermore, concurrency must
be a core design principle of any foundational formalism for modern biology, given
the importance of simultaneous interactions in biological phenomena. Concurrent
programming languages can easily and efficiently express the mechanistic rules
that propel algorithmic systems biology as they already proved to be effective in
modeling, analyzing and programming large computer networks.

Algorithmic systems biology must equip concurrent programming with an
high-level interface simplified to the extent that biologists can use it without
knowing the basics of programming. As a consequence we designed BlenX4Bio
so to hide all programming based details from its users. BlenX4Bio is strongly
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inspired by molecular cell biology and by the narrative language which was intro-
duced in [6,4] as a biologists-friendly modeling formalism. BlenX4Bio is targeted
and optimized for the BlenX language [3] from which it inherits the modeling
philosophy.

The use of programming languages to model biological systems is an emerging
field that enhances current modeling capabilities (richness of aspects that can be
described as well as easiness, composability and reusability of models) [13]. The
metaphor which inspires this idea is one where biological entities are represented
as programs being executed simultaneously and the interaction of two entities
is represented by the exchange of a message between the programs representing
those entities in the model [15]. The biological entities involved in the biological
process and the corresponding programs in the abstract model are in a one-to-one
correspondence, thus coping by construction with the combinatorial explosion of
variables needed in the equational approach to describe the whole set of states
through which a single component can pass.

Programming language-based modeling is sometimes erroneously confused
with rule-based modeling or with markup languages like SBML. The confu-
sion with rule-based modeling arises due to the word programming because the
advocators of rule-based modeling usually state that they program the behav-
ior of biological systems through rules resembling both chemical equations and
term-rewriting systems. The association of programming language-based model-
ing and SBML-like formalisms arises instead due to the common word language
in the two families of formalisms. SMBL is an XML-based markup language
whose overall goal is to develop an open standard that will enable simulation
software to communicate and exchange models, ultimately leading to the ability
for researchers to run simulations and analyses across multiple software packages
(http://xml.coverpages.org/sbml.html).

BlenX4Bio is not related to model exchange; it is a tabular interface suitable
to biologists to program in BlenX. SBML has been originally defined by merging
the basic features of the formalisms supported by BioSpice [1], DBSolve [10], E-
Cell [17], Gepasi [9], Jarnac [7], StochSim [11], and Virtual Cell [18]. Although
more and more features have been added to SBML in successive versions and
releases, it retains the main philosophy of chemical and mathematical model-
ing of the first design thus making it philosophically different from BlenX4Bio
that instead is strongly affected by the key points of Beta-binders [14] and its
evolution into BlenX [3] and of process algebras in general [5].

The paper is organized as follows. The next section recalls the basics of BlenX
and introduces the main features of BlenX4Bio. Section 3 defines the details of
the tables to be filled in for building a BlenX4Bio model by relying on examples
taken from textbooks.

2 BlenX and BlenX4Bio

This section first briefly recalls the main characteristics and the inspiring prin-
ciples of the programming language BlenX. Then we abstract the main parts

http://xml.coverpages.org/sbml.html
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of a BlenX program corresponding to the relevant information to be organized
to define high-level models of biological phenomena. The proposed interface to
BlenX is based on a tabular format that resembles database tables or spreadsheet
pages, both being natural tools for biologists. The organization and relationships
among tables are then discussed in the BlenX4Bio paragragh.

2.1 BlenX

BlenX is a programming language based on Beta-binders [14]. A program is a
collection of boxes (representing biological components) with typed and dynam-
ically varying interfaces running in parallel. The status of an interface (binder)
can be available/active, hidden (for instance when a three-dimensional structure
changes and it hides a domain of a protein from further interactions) or com-
plexed (when the binder is bound to the binder of another entity). Furthermore
any interface is equipped with a type that describes its properties. Primitives
are available to dynamically hide or unhide binders, to create new binders and
to change the type of a binder to vary its properties. This feature is not available
in other process calculi.

The main step of computation for BlenX is the interaction between boxes or
their binding/unbinding. Interaction is sensitivity-based: quantities associated
to binders stochastically determine the possibility of interaction between two
entities. We release the key-lock interaction mechanism based on the notion,
implemented in all process calculi, of exact complementarity of channel names (in
fact this is an inheritance from computer science modelling where two programs
can interact only if they know the exact address of the interacting partners).
This allows us to avoid any global policy on the usage of names for interaction
between components, i.e. we do not need centralized authorities that decide how
to name entities or interfaces.

BlenX supports a one-to-one correspondencebetweenbiological components and
boxes specified in themodel: a biological component that canbe inndifferent states
is just a box in our approach, and it is different from mathematical/chemical mod-
elling where n variables are needed to represent n different states.

BlenX allows users to describe complexes and their dynamic generation: BlenX
users can define complexes (set of components bound together through specific
interfaces) or can generate complexes during the simulation relying on the speci-
fication of the components and on the complexation affinities of their interfaces.
This feature highly reduces the number of components to be specified in the
initial state because the products of interactions are generated by the execu-
tion and they need not to be described initially. The high parallelism of the
execution then shows all the possible scenarios. BlenX modeling improves over
other process-calculi based approaches and also releases the assumption of math-
ematical/chemical modelling that imposes the specifications of all the species,
complexes and their states reached throughout all the simulation (variables)
already in the initial state (set of equations).

BlenX can also specify the dynamics of systems through events: global condi-
tions can be expressed by the amount of components or complexes in the system
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at a given time, by the simulation time or simulation steps. Conditions trigger
the enabling of actions called events that are then stochastically selected includ-
ing them in the set of standard interaction-enabled actions. Events are used to
remove or inject entities from/into the system, to join two entities into a single
one, or to split an entity in two entities. BlenX events are essential for program-
ming perturbations of the systems triggered by conditions emerging during the
simulation phase, and for observing how the overall behaviour is affected by
them. An example could be the knock-out of a gene at a given time. Another
possible use of events is to program sensitivity analysis of the system into the
model driven by dynamic conditions emerging during simulation. Events are es-
sential to develop an in-silico lab. No other process calculi-based tool supports
events in the manner described above.

2.2 BlenX4Bio

BlenX4Bio is a high-level, tabular interface for the BlenX programming language.
A BlenX4Bio model consists of a number of tables that describe all the relevant
aspects that characterise biological phenomena.

The BlenX4Bio tables are Compartments, Components, Complexes, Binding
Affinities, Dynamics, Translocation Affinities and Parameters (see the tabs in
Fig. 1). The first three tables store the static information of a biological model.
The tables Binding Affinities and Translocation Affinities represent the capa-
bilities of the entities populating the system to interact with each other and,
respectively, to change location. This information is given in terms of binding
sites so that the user does not need to specify through rules or equations all
the possible interactions between components. The Dynamics table provides in-
formation for driving the evolution of the model during simulation. Dynamics
of systems is either expressed through simple constrained sentences like in the
narrative language [6], or directly through BlenX code. Finally, the Parameters
table is used to store all the quantitative information, functions and predicates
introduced in the other tables.

The seven BlenX4Bio tables, although structurally different, share a number
of commonalities which we describe here. Every element of each table can be
addressed uniquely through its name that is made up of an alphanumeric string
defined by the user and a numerical identifier (reported in parentheses after the
name) assigned by the system to disambiguate elements with the same name.
To exemplify the naming, see the definition of the two mitochondria in Fig. 3:
they can be distinguished only by their numerical identifiers. We stress that
replication of entries is, in fact, very common in biological modelling at least
to model the existence of several compartments of the same kind (e.g. several
lysosomes, mitochondria, and vescicles may be part of a cellular model) or to
model the ubiquity of species (e.g., some species may exist simultaneously in
different compartments).

Every BlenX4Bio table contains also three textual fields to describe the element
under definition, to add references to the entry and to keep modeler’s note.
Furthermore, all the numerical parameters are collected into the Parameters
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Fig. 1. BlenX4Bio registers all the quantitative information into the Parameters table
for future updating and manipulation

table and each of them has an associated reliability value, i.e. a measure of
how much the numerical datum is trusted. All the parameters can be changed
and can be referred through naming conventions. This is an important feature
that allows the user to dynamically change the values of the parameters, thus
implementing in-silico experiments. Finally all the quantities must be equipped
with a suitable unit of measure. BlenX4Bio implements integrity checks of the
model under development to avoid ambiguities or inconsistencies in the set of
relationships defined through the entries of the tables. Furthermore, BlenX4Bio
supports the generation of BlenX code that can then be simulated through the
BWB tool [2].

Although the main purpose of BlenX4Bio is completely different from the
one of SBML-like formalisms [16], we conclude this section by commenting on
the main differences between the current BlenX4Bio version and the most recent
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official version of SBML, namely: SBML level 2 version 4 release 1 (which is docu-
mented at http://sbml.org/Documents/Specifications). Since BlenX4Bio is
an interface of the programming language BlenX, it naturally allows for mod-
elling of sites-sensitive reactions (i.e. binding sites, phosphorylation sites, etc.
are explicitly modelled in BlenX4Bio as attributes of BlenX4Bio components
and sites sensitive reactions are straightforwardly expressed referring to com-
ponents’ sites). Furthermore, because of the binders-based semantics of BlenX,
with BlenX4Bio reactions can be expressed either in terms of pairs of reactants
(and their sites) or in terms of pair of sites (with no reference to components).
The latter modality is a unique feature of BlenX4Bio (i.e. BlenX) which, prevents
the specification of a biological model from suffering of the infamous combina-
torial explosion issue.

SBML Level 2, on the other hand, does not support modelling of components’
sites: SBML biochemical species are elementary objects (i.e. sites cannot be rep-
resented) which makes SBML 2 not suitable to model sites-sensitive reactions.
Even though an improved third level of SBML is under development, which com-
prises the so called ”Multi-state multi-component species” package designed to
allow, modeling of sites-sensitive reactions, at present a stable version is not yet
available hence it is difficult to understand how the two approaches compare. An-
other difference between BlenX4Bio and SBML 2 regards the ability to represent
translocation of species between compartments. BlenX4Bio is designed to support
fine-grained modelling of actual translocation mechanisms (as they are described
in biology textbooks), which is: mechanisms based on transmembrane channels
and translocation enablers. With SBML 2, on the other hand, translocation can
be modelled only in a very abstract manner (i.e. by reactions occurring between
species located in adjacent compartments): channels based mechanisms cannot be
described with SBML. We also mention the ability of BlenX4Bio to describe arbi-
trarily large complexes like polymers without the need of introducing an arbitrary
number of species as it would be the case in SBML. Finally, the possibility of us-
ing boolean-valued predicates to define state-based dynamics of models which is
available with BlenX4Bio, is also not easy to render in SBML.

3 BlenX4Bio Modeling

This section illustrates the elements of the BlenX4Bio language in detail by adopt-
ing the following schema: first we describe the biological phenomenon of interest
(e.g., the spatial architecture of biological compartments of a cell, or the transporta-
tionmechanisms driving inter-membrane translocations of biochemical species)by
means of specific examples, then we find a corresponding unifying abstraction, and
eventually we show how such abstractions/examples are represented in BlenX4Bio.
In doing so, we provide details of the structure of every BlenX4Bio table.

3.1 Spatial Architecture of Cell Compartments

From a topological perspective a cell can be seen as an architecture of physical
membrane-bounded locations (i.e. compartments whose boundary are determined

http://sbml.org/Documents/Specifications
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by a membrane). Each compartment is a container of substances and the role it
plays in regulating cell life depends on the substances that it contains. The content
of compartments changes over time as a result of cell regulation, hence substances
continuously migrate from one location of the cell to another in response to inter-
nal and/or external stimuli. The spatial architecture of compartments, therefore,
is an essential aspect of cellular biology which calls for adequate modelling sup-
port. BlenX4Bio supports modelling of the spatial architecture of compartments
via the Compartments table. We illustrate modelling of compartments architec-
ture with BlenX4Bio by means of a concrete example: the compartments architec-
ture of Eukaryote cells, which is described next.

The architecture of eukaryotes is made of a plasma membrane of about 700
µm2 that surrounds the cell interior which is partitioned into smaller sub-
compartments called organelles. The interior, or lumen, of each organelle is en-
closed by one or more biomembranes (globally amounting at 7000 µm2) and
contains a unique set of proteins that characterizes the functions of the or-
ganelle together with the membrane-bound proteins. The largest organelle is the
nucleus that contains the DNA, the RNA synthetic apparatus, and a fibrous
matrix. The part outside the nucleus is called cytoplasm and it contains all the
other organelles. The aqueous part of the cytoplasm is called cytosol and it con-
tains its distinctive proteins as well. The major organelles, besides the nucleus,
that populate the cytoplasm are detailed below.

- Endoplasmatic reticulum (ER) has the largest membrane in the cell and
is important for the synthesis of lipids, membrane proteins, and secretory
proteins.

- The Golgi complex sorts secreted and membrane proteins.
- Secretory vesicles target proteins leaving the Golgi complex.
- Lysosomes are acidic organelles that contain degradative enzymes.
- Mitochondria are the main sites of ATP production.
- Phagosomes engulf in the cytoplasm large particles from the exterior of the

cell like bacteria that are then delivered to lysosomes for degradation.
- Endosomes take up soluble macromolecules from the exterior of the cell and

are then delivered to lysosomes.
- Peroxisomes degrade fatty acids and toxic compounds.
- Chloroplasts are the apparatus where photosynthesis takes place in plant

cells.

Different types of eukaryotes are distinguished by the shape of the cell and the
location of their organelles. The shape of a cell is determined by its cytoskele-
ton, a network of three kinds of filaments that mechanically support membranes.
Filaments are classified according to their size into actin filaments (or microfil-
aments), intermediate filaments, and microtubules. Actin filaments provide the
cell with structural support and motility; intermediate filaments provide the cell
with support for the nuclear membrane and help cell adhesion into tissues for-
mation; microtubules provide the cell with structural support, motility and cell
polarity. The overall surface of the cytoskeleton (about 94000 µm2) offers an-
chors to many membranes and proteins that bind to it, and works as a scaffold
where many reactions take place.
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Fig. 2. The architecture of an eukaryotic cell that highlights its main compartments
and sub-compartments

An abstract representation of the architecture of eukaryotes is depicted in
Fig. 2. For more information on the architecture of cells see [8], chapter 5. The
representation in BlenX4Bio of a part of the architecture in Fig. 2 is reported in
Fig. 3.

The Compartments table always contains (even when not displayed) a global
compartment termed System, which encloses all the other compartments. As a
consequence, a BlenX4Bio model with no user-defined compartment is perfectly
legal. Besides the columns for the textual description of references to the entry, and
for the user’s notes, the Compartments table contains the fields described below.

The column Membrane is a tag used to distinguish between two-dimensional
(like, e.g., both the plasma membrane and the nuclear membrane in Fig. 2)
and three-dimensional compartments (all the other compartments in the same
figure).
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Fig. 3. BlenX4Bio partial architecture of an eukaryotic cell
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To represent the hierarchical structure of compartments, for each newly in-
troduced compartment, the user has to specify in which other compartment it is
contained. This is the purpose of the Enclosed In column that offers a selection
among the already defined compartments.

The Size of compartments is useful to compute the kinetic rates of reactions
and hence to correctly manage simulations. As for all the other quantities, for
the values inserted in the Size column it is necessary to specify an accompaining
reliability measure.

The Quantity column denotes the number of available replicas of the same
compartment. For instance, the system described in Fig. 3, contains two
mitochondria.

The components populating compartments can move from one compartment
to another. This process is called translocation and it is driven by facilitator com-
plexes and proteins that control transmembrane movement of entities as well as
protein sorting. Such macromolecules are classified in BlenX4Bio as Transloca-
tion Enablers. An example is Importin that translocates cargo proteins from the
cytoplasm to the nucleus through the nuclear pore complex. The modeling of
translocation scenarios is fully described below in Section 3.5.

3.2 Components

The components that are of interest for modeling a biological system constitute
the list of elementary parts from which we start simulating and analyzing the sys-
tem behavior. Cells are mainly a soup of molecules varying in size and functions
floating in a water-based solution. Basic ingredients of the cell range from small
molecules like ATP that stores chemical energy, hormones or neurotransmitters
that transport signals, and monomers that are the basic bricks used to assemble
larger molecules called polymers. The major class of polymers produced by a
cell ([8], chapter 1) are: polysaccharides (whose forming monomers are sugars),
proteins (whose forming monomers are aminoacids), and nucleic acids (whose
forming monomers are called nucleotides).

In this presentation we take elementary molecules as the smallest entities
of our model, namely we work at a level of abstraction where all the possible
constituents of molecules are irrelevant and hence intentionally neglected. In
the same way, if we had to consider protein interactions, we would not model
the aminoacids forming those proteins. Also, if protein binding and unbind-
ing were relevant events for the considered model, we would describe either
the single proteins forming the macro-molecule or the complex as elementary
components.

We exemplify here how to completely describe the relevant information of
components in BlenX4Bio by describing the constituents of a signal recognition
particle (SRP) represented in Fig. 4. Each component has a unique name as
all the elements of the model, and every component is characterized by a list
of sites that are used to interact, bind/unbind with the other components and
complexes in the model. For instance, the Importin component has a site called
CargoReceptor that is used to bind other proteins. The state of such site is
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Fig. 4. Representation of elementary components in BlenX4Bio

free, meaning that it is available for binding. More generally, the current state
of a site ranges over a set containing, e.g., bound, phosphorylated, sumoylated,
acetylated. Another relevant information is the location where the component can
be found, which can be used for managing the spatial structure of the system
as well as the movement of objects. For example, Importin is located in the
Cytoplasm.

Sites deserve some more discussion. Proteins can freely move within com-
partments or can be bound to membranes spanning over both surfaces (integral
proteins) or just residing on one side of the membrane (peripheral proteins) ([8],
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Fig. 5. BlenXcode corresponding to the BlenX4Bio description in Fig. 4

chapter 5). The single critical case to determine the location of a site (whether it
is exposed either towards the outside of the membrane or towards the inside of
the membrane) is relative to integral proteins. Indeed the exposition of the sites
of integral proteins determines the set of components that can come in touch
with the site due to the physical boundaries originated by the spatial hierarchical
structure of cells. An example is the integral trans-membrane protein P in Fig. 6
that has three sites: one directed towards the outside of the membrane (S3) and
two directed towards the inside of the membrane (S1 and S2). To correctly model
these situations, we distinguished compartments into membranes (2D compart-
ments) and normal ones (3D compartments). When a component is located in
a compartment that turns out to be a membrane, the site description must be
extended by a further field that says whether the site exposition is Out (towards
the exterior of the membrane), In (towards the inner compartments delimited
by the membrane) or Within (inside the membrane). For example Fig. 7 reports
the description of the integral protein P drawn in Fig. 6.

We end this subsection by noting that the information stored in the Compo-
nents table is almost in a one-to-one correspondence with the definition of the
boxes in the BlenX program. Each component is mapped into a box and each
site of a component is mapped into a corresponding interaction interface on the
corresponding box. For example, the following portion of text
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Fig. 6. Binding sites of trans-membrane proteins

Fig. 7. Managing locations of sites in BlenX4Bio

let P19: bproc =
#(id_3, P19-P54),#(id_20, P19a-SRP),#(id_21, P19b-SRP)[ nil ]

in Fig. 5 corresponds to the description of P19 in Fig. 4. Indeed, the text is
the BlenX declaration of a box named P19 with three interaction sites delim-
ited within each #(...) and typed by P19-P54, P19a-SRP, and by P19b-SRP,
respectively.
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3.3 Complexes

Complexes are macromolecules formed by sets of entities bound together. Pro-
teins can form complexes to accomplish specific functions. For instance the SRP
that identifies the signal sequence exiting ribosomes to translocate the synthe-
sizing protein to the ER is made up of a piece of RNA and the six proteins P9,
P14, P19, P54, P68 and P72. Protein P54 binds to the signal sequence of the
synthesizing protein; P9 and P14 interact with the ribosome; P68 and P72 are
required for the translocation of the protein (see [8], chapter 16 and Fig. 12).
All the proteins bind directly to the piece of RNA except for P54 that binds to
P19. Furthermore, P68 and P72 are a dimer as well as P9 and P14.

Complexes are usually formed by bonds between domains of proteins with a
high level of affinity/sensitivity. A suitable abstract representation for complexes
is a graph whose nodes are the boxes we used as abstract representation of com-
ponents and whose arcs represent the bonds connecting the affine domains of the
elementary components. An abstract representation of SRP is reported in Fig. 8.

Fig. 8. Abstract representation of complexes through graphs of elementary compo-
nents. The nodes represents te components and the arcs the bonds between compo-
nents. Arcs have a type describing the affinity between the domains or binding sites
that are connected.

To uniquely refer to a bond, it is enough to assign unique names to the
involved components and to the binding sites (domains) of those components.
In this way we can uniquely identify a bond as, e.g., the string “component1,
site1; component2, site2”. For instance if we name the RNA binding sites in
Fig. 8, from left to right, SRP-P19a, SRP-P19b, SRP-P68, SRP-P72, SRP-P9
and SRP-P14; their complementary binding sites on the protein domains, from
left to right, P19a-SRP, P19b-SRP, P68-SRP, P72-SRP, P9-SRP and P14-SRP;
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the binding sites that form the bond between P19 and P54, from bottom to
top, P19-P54 and P54-P19; the binding sites that form the bond between P68
and P72, from left to right, P68-P72 and P72-P68; the binding sites that form
the bond between P9 and P14, from left to right, P9-P14 and P14-P9; then
the column Constituents in Fig. 9 completely describes the SRP complex. For
instance, the first line of the table describes the binding of P14 and SRP RNA
through the sites P14-SRP and SRP-P14.

The further information stored in the Complexestable defines the quantity of
the complex available at the beginning of the simulation (in this case 25 SRP)
associated with a reliability measure as for all the quantitative data.

As a final observation on the Complexestable, we note that the information
stored in its fields is needed to define the initial environment defining the com-
plexes that populates BlenX programs in the starting state.

3.4 Binding Affinities

The chemical interactions occurring in a cell are the essence of life: they imple-
ment genetic information handling, regulation, sensing of the environment and
signaling, energy production and conversion, synthesis of the material used to
continuously build cells and cells’ components. Chemical interactions happen by
physically binding and unbinding molecules of different size and structure as
long as they have subparts that are suitable for covalent or non-covalent bonds.
A main activity of the cell involves proteins with complementary shapes and
chemical properties that glue together to form complexes. Covalent bonds usu-
ally hold atoms or aminoacids together, while non-covalent bonds help defining
the structure of the complex. It is not only proteins to participate in bind-
ing/unbinding actions; some small molecules can serve as facilitators or building
blocks for composing larger structures ([8], chapter 2).

The compatibility of molecules that enable their binding is quite different in
biology with respect to the key-lock complementarity that is typically used in
process algebras where, for instance, to enable a communication between pro-
cesses both parties must share exactly the same communication channel with
no possibility of approximation. Biological shapes and chemical properties allow
instead interactions between molecules that are not perfectly complementary
to each other, changing the strength of the bond or the probability of the in-
teraction. We call this notion affinity, and model it in the BlenX4Bio Binding
Affinities table (see Fig. 10 for an overview of its fields).

The sites (interfaces) through which an entity is potentially able to inter-
act have been already identified in the definition of the corresponding entry in
the Componentstable. Here, we only define affinities between sites. Each site is
uniquely identified by the name of the component it belongs to, and by its proper
the name. We list here pairs of sites and we associate to each pair a binding rate
quantifying the affinity and an unbinding rate quantifying the reversibility of
the binding. These quantities are then used to drive simulations.

We can further detail the binding/unbinding actions by specifying conditions
that must be satisfied in order for the action to occur. For instance, P14 and
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Fig. 9. Representation of the SRP complex in BlenX4Bio through the complete listing
of the bonds identified by the names of the components, and of the sites that bind
together. The four columns under Constituents refer, respectively, to the first compo-
nent, the binding site of the first component, the second component, and the binding
site of the second component.
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Fig. 10. Representation of the binding affinities in BlenX4Bio needed to build the SRP
complex
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Fig. 11. Representation of the binding/unbinding conditions and of the modifiers
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Fig. 12. The three boxes show the role of traslocation enablers in protein sorting. (A)
The enablers are SRP and its receptor; (B) the enablers are the translocon and the
signal region of the protein; (C) the enablers are the Import receptor and the signal
region of the protein. In all the three cases, the activation of the translocation enablers
by their mutual interaction open a channel in a membrane that allows one protein at
time to move.
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SRP RNA can bind only if the P14-SRP site of P14 is free. Similarly, we can
associate modifiers to binding/unbinding actions to manipulate the state of the
sites as a consequence of binding/unbinding. Modifiers can also create or delete
new sites (see Fig. 11). As an example, the binding of P14 and SRP RNA creates
a new free site New Site that is deleted when P14 and SRP RNA unbind.

We end this subsection by noting that the information stored in the Bind-
ing Affinitiestable is almost in a one-to-one correspondence with the affinities
of the interaction interfaces of the boxes populating BlenX programs. Further-
more, binding modifiers and unbinding modifiers describe the actions that the
binding/unbinding components have to take as a consequence of the forma-
tion/deletion of bonds.

3.5 Translocation Affinities

Half of the kinds of proteins of a mammalian cell have to be delivered to specific
locations in order for the cell to function properly. The process of moving proteins
around is usually called protein targeting or protein sorting. Protein sorting can
mainly happen through secretory pathways or through nonsecretory pathways
([8], chapter 16).

Protein sorting is graphically illustrated in Fig. 12, where the uppermost
two cartoons (A and B) show the use of secretory pathways. The secretory
pathway initially targets secretory proteins to the endoplasmatic reticulum (ER)

Fig. 13. Membrane cargo-receptors recruits the proteins to be transported by a vesicle.
Once the recruitment is complete, the membrane forms a vesicle with a Rab+GTP
receptor for docking the vesicle towards the right target membrane. Once the rab
effector on the target membrane is identified and bound, the two SNARE counterparts
tightly bind together allowing the fuse of the vesicle with the target membrane. As a
consequence, the whole content of the vesicle is delivered in the compartment bound by
the target membrane. The translocation enablers here are the v-SNARE and t-SNARE
proteins.
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membrane and translocated in the ER lumen (see Fig. 12 A and B). When
translation is completed these proteins are further delivered to the lumen of
Golgi and lysosomes or to plasma membranes via vesicles. A uniform principle
drives this type of protein sorting: proteins are moved from one membrane-
bounded compartment to another membrane-bounded compartment mediated
by transport vesicles ([8], chapter 17). Vesicles collects cargo proteins in buds
formed from the membrane of the source compartment and then fuse with the
membrane of the target compartment by releasing in one shot all their content
(see Fig. 13).

The nonsecretory pathway sorts proteins to the ER, mitochondria (see Fig. 12
C), chloroplasts, peorxisomas, and the nucleus. The main difference with re-
spect to the situation described above is that these proteins are not secretory
proteins and most of them are completely translated into the cytoplasm before
their translocation. The mechanism of translocation is similar for all the cases
mentioned so far apart from nuclear import/export ([8], chapter 12.3). Nuclear
transport happens through the nuclear pore complexes (NPC) that form holes
on the nuclear membrane. Macromolecules equipped with nuclear localization
signals (NLS) bind to importin/exportin proteins that drive the macromolecules
through the nuclear pores (see Fig. 14).

We classify all the above kinds of translocation phenomena into a single ab-
stract translocation process suitable for modeling and mapping into the BlenX
language. The abstract translocation phenomenon can be seen as a door that

Fig. 14. A free importin binds to a cargo protein in the cytoplasm and the complex
translocates into the nucleoplasm through the nuclear pore. The importin part of the
complex interacts with Ran-GTP that causes a decrement of the affinity between the
importin and the cargo protein. As a consequence the cargo protein is released in the
nucleoplasm and the free importin migrates back to the cytoplasm. Similarly, cargo
proteins can migrate from the nucleoplasm to the cytoplasm by forming a complex
with an exportin and a Ran-GTP. The translocation enablers are here the importin
and exportin proteins.
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Fig. 15. BlenX4Bio model of translocations
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can be opened by unlocking it simultaneously with two different keys. In the case
of the nucleus the second enabler can coincide with the cargo protein that must
complex with importin to enter the nucleus or with exportin to exit the nucleus.
Once the door is open (e.g., nuclear pore, translocon Sec61, general import pores
Tom40, Tim23/17, fuse of membranes in vesicular cases), its size determines how
many entities can simultaneously step through the door (the throughput of the
translocation channel). We distinguish the vesicular case in which all the content
is translocated simultaneously from all the other cases discussed where a single
entity at time can pass.

The BlenX4Bio table Translocation Affinities is the place where the above ab-
stract representation of translocation phenomena is stored. For instance, Fig. 15
shows how the enablers of the protein sorting to ER (Fig. 12A) are modeled.
The Translocation Affinities table specifies the components acting as enablers
and some quantitative information on translocation. The enablers reported in
Fig. 15 are the SRP in the cytoplasm and AlfaBeta, an integral protein of the ER
membrane for protein sorting to ER; v-SNARE and t-SNARE for vesicular fu-
sion with other compartments; Importin and the nuclear pore complex (NPC) to
import cargo proteins into the nucleus; and finally Exportin and NPC to export
cargo proteins from the nucleus. We further specify the rate of the translocation
and its throughput, i.e. the speed and the bandwidth of the channel that allows
translocation of components expressed in numbers of components per unit of
time that traverse the channel. Finally we specify a condition that enables the
opening of the channel and hence favours translocation.

3.6 Dynamics

So far we described how to represent the structural components of the system
under investigation by defining the hierarchical space architecture and by listing
the basic entities and complexes available in the initial state which is the starting
point of the simulation. Furthermore, information on affinities for binding has
been provided. Below, we discuss how the system behaves when time passes and
how the simulation process deals with the static information defined in the tables
already described.

The dynamics of systems is specified in the BlenX4Bio Dynamics table. All
the entries have a unique name for referral purposes and are characterized by an
algorithmic description of the action to be taken in order to make the system
evolve. These descriptions are characterized by a conditional part and an action
part that is enabled only when the side condition is satisfied. The expressions
stating the dynamics of an event are specified in a constrained natural language
similar to the narrative language [6]. Examples are reported in Fig. 16. Note
that the dot notation is used to identify sub-parts of components. For instance,
AlfaBeta.Alfa refers to the site Alfa of the component AlfaBeta (we do not
describe here the full language because it is outside the scope of the present
paper and we refer to the operative documentation of BlenX4Bio). Since the
dynamics is quantitative and stochastic in nature, we must associate every entry
of the Dynamics table with a rate.
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Fig. 16. BlenX4Bio model of system dynamics

We observe that the information stored in the Dynamics table defines the
algorithm to be executed to simulate the temporal evolution of the described
biological systems. This is the kernel of the BlenX program corresponding to the
model specified through BlenX4Bio, and indeed the user can choose to specify
the dynamics by directly writing BlenX code.

4 Conclusions and Future Work

Thepaper presenteda tabular interface to theBlenX language thathides all thepro-
gramming details from the users of BlenX4Bio. The CoSBi Lab platform supports
the translation of BlenX4Bio models into BlenX programs ready to be simulated.
In order to demonstrate the soundness of BlenX4Bio representation of biology we
have considered basic aspects of cellular biology taken from biology textbooks and
we provided evidence that BlenX4Bio is indeed a very useful means through which
biologists can straightforwardly represent biological phenomena in a simple and
intuitive manner. The key characteristics that distinguish BlenX4Bio from SBML
or equational/chemical modeling have also been discussed.

We are currently working on extensions of the BlenX4Bio modelling approach.
In fact, if on one hand BlenX4Bio allows the modeler to specify the biologi-
cal system to be studied, on the other hand the actual analysis of the mod-
eled systems requires some additional information to be provided. We envisage
such additional information consisting of two parts: the aspects of the system’s
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behaviour which is relevant to look at and the ways in which the specified model
could be perturbed.

In our extension of BlenX4Bio, experiments describe in a formal manner which
are the parts of the model that the modeler wishes to perturb in order to analyse
the behaviour of the modelled system. Essentially, a BlenX4Bio experiment con-
sists of two elements: a description of the (possibly conditional) perturbations
the model is subject to during the experiment, and a description of the relevant
behavioural characteristics (expressed in terms of queries) the modeller wishes
to concentrate on in order to analyse the modelled system. We are currently
extending the CoSBi Lab software to support the experiments specification ex-
tension of BlenX4Bio and hence move towards a fully integrated modeling and
in-silico experimental platform for biologists.
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Abstract. Circadian clocks are biochemical networks, present in nearly all living
organisms, whose function is to regulate the expression of specific mRNAs and
proteins to synchronise rhythms of metabolism, physiology and behaviour to the
24 hour day/night cycle. Because of their experimental tractability and biological
significance, circadian clocks have been the subject of a number of computational
modelling studies.

In this study we focus on the simple circadian clock of the fungus Neurospora
crassa. We use the Bio-PEPA process algebra to develop both a stochastic and
a deterministic model of the system. The light on/off mechanism responsible for
entrainment to the day/night cycle is expressed using discrete time-dependent
events in Bio-PEPA.

In order to validate our model, we compare it against the results of previous
work which demonstrated that the deterministic model is in agreement with ex-
perimental data. Here we investigate the effect of stochasticity on the robustness
of the clock’s function in biological timing. In particular, we focus on the varia-
tions in the phase and amplitude of oscillations in circadian proteins with respect
to different factors such as the presence/absence of a positive feedback loop, and
the presence/absence of light. The time-dependent sensitivity of the model with
respect to some key kinetic parameters is also investigated.

1 Introduction

Circadian clocks are oscillatory gene networks developed by living organisms in order
to adapt to the 24-hour day/night cycle. In general, the biochemical mechanisms reg-
ulating circadian rhythms are robust enough for approximately 24 hour oscillations to
persist over a range of constant lighting and temperature conditions. Exposure to peri-
odic external stimuli (e.g. light/dark or temperature cycles) has the effect of resetting
these free-running oscillations so as to establish stable phase relationships with the forc-
ing stimulus (circadian entrainment). This enables cyclic changes in the environment to
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be anticipated, such as seasonal variations in the length of day (photoperiod) [1]. Circa-
dian rhythms are present in nearly all eukaryotes, from mammals and plants, to insects
and fungi. There is now detailed experimental data showing that these rhythms can be
produced by networks of multiple, interlocked positive and negative feedback loops in
which the protein product of a gene modulates expression of either its own transcript or
that of another target gene in the network [2].

Several mathematical models have been proposed in recent years to describe the
specific oscillation-generating mechanisms in a range of different organisms. These in-
clude the fruit fly Drosophila melanogaster [3,4], the plant Arabidopsis thaliana [5,6]
and the mouse Mus musculus [7,8]. Here we focus on the fungus Neurospora crassa,
which possesses one of the most comprehensively studied circadian networks [9]. In
recent years, a number of mathematical models of the Neurospora clock have been
developed, including continuous-deterministic models that are described in terms of
ordinary differential equations (ODEs) [10,11,12,13,14], as well as discrete-stochastic
models [15,16]. Such models have been used successfully to explore the relationship
between the architecture of the Neurospora circadian network and the robustness of its
function in biological timing.

Within this theme, our aim in this work is to investigate the effect of stochastic fluc-
tuations on the performance of the Neurospora clock. While deterministic models are
good approximations of real biochemical systems when the number of molecules is
sufficiently high, at low copy numbers the effect of random fluctuations becomes sig-
nificant and so stochasticity needs to be taken into account to obtain a faithful represen-
tation of the real biochemical system [17]. To explore the effect of these fluctuations on
circadian timing in Neurospora, we implement a discrete-stochastic version of a con-
tinuous ODE model previously developed to investigate the entrainment of the clock
by light and temperature [13,18]. We use the ODE representation of this clock to val-
idate our stochastic model and to highlight the differences between deterministic and
stochastic representations of the network. In particular, where previous stochastic stud-
ies have concentrated mainly on the unforced (free-running) Neurospora clock, mod-
elling entrainment as a weak modulation of transcription [15,16], here we investigate
how stochasticity affects the robustness of circadian oscillations for a more realistic
model which explicitly incorporates elements of the light-signalling pathway [13,18].
We exploit discrete time-dependent events to represent light/dark cycles and analyse
the behaviour of the system under different light conditions and in the absence of a core
feedback loop. As part of this analysis, we use a novel sensitivity analysis method to
determine the time within the circadian cycle at which a given phase marker is most
responsive to parameter variations.

We use Bio-PEPA [19,20] as our modelling language. Bio-PEPA is a process alge-
bra recently developed for modelling biochemical systems. Among its key strengths
as a language for systems biology is the fact that it is equipped with different seman-
tics, enabling both continuous-deterministic and discrete-stochastic representations of
the same model description to be automatically generated. Another important feature
of Bio-PEPA is that it permits the definition of generic rate laws. This allows the spec-
ification of complex kinetic formulae, such as those used in the ODE representation of
the original Neurospora model (see Sect. 4 below). In addition, time-dependent events
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can be easily incorporated, enabling periodic external stimuli such as light/dark cycles
to be represented in a straightforward manner.

The rest of the paper is structured as follows. The circadian clock of Neurospora
crassa and the Bio-PEPA model of the clock are described in Sect. 2 and Sect. 4, re-
spectively. Bio-PEPA is introduced in Sect. 3. In Sect. 5 the simulation and analysis
results are presented. Finally, in Sect. 6 we report some concluding remarks.

2 The Circadian Clock of Neurospora Crassa

Neurospora exhibits a 22 hour rhythm in asexual spore formation (conidiation) when
grown in constant darkness (DD). The conidiation rhythm is a key clock output which
can be entrained by both light and temperature [21]. In natural 24 hour cycles of alter-
nating light and dark (LD), the phase of entrainment (judged by the time of conidiation
onset) coincides with the middle of the night in both long and short days, providing a
simple, biologically relevant measure of circadian function [22,13,18].

The core, multi-loop genetic oscillator believed to underlie the conidiation rhythm
is formed by the rhythmic gene frequency (frq) and the constitutively expressed gene
white collar-1 (wc-1) [9]. The protein product of the white collar-1 gene, WC-1, com-
prises the positive element of a central negative feedback loop, activating transcription
of frq. The protein product of the frq gene, FRQ, is the negative element of the loop, in-
teracting with frq-bound WC-1 to inhibit frq expression [23,24]. In addition to its role as
a transcriptional inhibitor, FRQ positively regulates expression of WC-1, giving a posi-
tive feedback loop that interlocks with the central loop [25]. Light entrains the clock by
promoting the binding of a flavin chromophore to WC-1, resulting in a light-activated
form which enhances frq transcription [24].

A network diagram for the model of the core oscillator that we consider here is shown
in Fig. 1. For the ODE representation of the model presented in [13,18], the repressive

Fig. 1. A schematic representation of the gene network underlying the model of the Neurospora
clock. WC-1* represents light-activated WC-1. The dashed lines indicate light-dependent gene-
protein interactions.
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action of FRQ transcription factor (hereafter called PF) on frq-bound WC-1 transcrip-
tion factor (PW) and frq-bound light-activated WC-1 transcription factor (PWL) was
assumed to occur through a noncompetitive inhibition process modelled using Hill ki-
netics. Hill kinetics were also used to describe the upregulation of WC-1 translation by
PF as well as the light-dependent increase in the transcription of wc-1 mRNA (MW),
necessary to simulate loss-of-function wc-1 mutants [13]. Michaelis-Menten kinetics
were used to describe enzyme-mediated degradation of mRNA and protein, while the
conversion of PW to PWL was modelled as a reversible first order mass-action reac-
tion PW� PWL with a light-dependent forward rate. The light input to the ODEs took
the form of a smoothly differentiable function that switches rapidly between 0 and 1
at dawn (t = tdawn), and from 1 back to 0 at dusk (t = tdusk), modelling the lighting
protocol commonly used in circadian experiments.

In order to obtain oscillatory behaviour, a delay was introduced into the central neg-
ative feedback loop by assuming that just-translated FRQ protein (E1F) is modified
into a second intermediate protein (E2F) before being converted into transcription fac-
tor [13]. The conversion processes MF → E1F → E2F → PF, which include trans-
lation of FRQ from frq mRNA (MF), were each modelled as first order mass-action
reactions. Similarly, a delay was introduced into the positive feedback loop by intro-
ducing two intermediate WC-1 protein species (E1W and E2W), and describing the
conversions MW → E1W → E2W → PW with first order kinetics.

The ODE representation of the model comprises 9 equations with 34 kinetic pa-
rameters. The parameters were fitted to gene and protein expression time series in DD
and LD using a bipartite optimisation method developed for high-dimensional compu-
tational biology models [5]. This technique combines a random parameter search with
simulated annealing to minimise a qualitative cost function that assesses the goodness-
of-fit of the model to key experimental data sets [5,13]. For the ODE model, the best
parameter set was taken to be that yielding the smallest cost function score following
the application of the optimisation scheme to 50 million randomly distributed points in
the 34-dimensional parameter space [18]. This optimal parameter set yielded a good fit
to each of the target time series, and also reproduced the variation in entrainment phase
with photoperiod observed experimentally [18]. We use the same parameter set here for
the Bio-PEPA representation of the model detailed in Sect. 4.

3 Bio-PEPA

In this section we give a short description of Bio-PEPA [19,20], a language that has
recently been developed for the modelling and analysis of biological systems. The
main components of a Bio-PEPA system are the species components, describing the
behaviour of each species, and the model component, describing the interactions be-
tween the species and initial amounts.

The syntax of the Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ | � | � P ::= P ��L P | S (x)

where S is the species component and P is the model component. In the prefix term
(α, κ) op S , κ is the stoichiometry coefficient of species S in reaction α, and the prefix
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combinator “op” represents the role of S in the reaction. Specifically, ↓ indicates a
reactant, ↑ a product,⊕ an activator,� an inhibitor and� a generic modifier. We can use
the shorthand notations (α, κ) op and α op for (α, κ) op S and (α, 1) op S , respectively.

The operator “+” expresses the choice between possible actions, and the constant C
is defined by an equation C

def
= S . The process P ��L Q denotes synchronisation between

components P and Q; the set L determines those activities on which the operands are
forced to synchronise, with ��∗ denoting a synchronisation on all common action types.
In the model component S (x), the parameter x ∈ R represents the initial concentration
(or the number of molecules in a discrete-stochastic setting). The reader is referred
to [19] for further details on the language and its semantics.

Recently Bio-PEPA has been extended to incorporate events [26], constructs that
represent changes in the system due to some triggering conditions. This allows bio-
chemical perturbations to the system to be represented, such as the timed introduction
of reagents or the modulation of system components by external stimuli. A Bio-PEPA
event has the form (id, trigger, event assignment, delay), where id is the event name,
trigger is a mathematical expression involving the components of the Bio-PEPA model
and/or time, event assignment is a list of assignments causing some changes to elements
in the system, and delay is either 0 (immediate events) or a positive real value (delayed
events).

A Bio-PEPA system representing a biochemical network consists of a set of sequen-
tial components, a model component, and context (defining information such as kinetics
rates, parameters, locations, and events). Its formal definition is the following:

Definition 1. A Bio-PEPA system P is a 8-tuple 〈t, L,N ,K ,FR,Comp, P, Events〉,
where: t is time, L is the set of locations, N is the set of (auxiliary) information for
the species,K is the set of parameters, FR is the set of functional rates, Comp is the set
of species components, P is the model component and Events is the set of events.

Bio-PEPA offers a formal representation of biochemical systems, on which different
kinds of analysis can be carried out, through the defined mappings into continuous-
deterministic and discrete-stochastic modelling languages. The Bio-PEPA language is
supported by software tools which automatically process Bio-PEPA models and gen-
erate other representations in forms suitable for different kinds of analysis [19,27]. In
particular, the generated simulation model can be executed using the Dizzy simula-
tion tool [28], in which both stochastic simulation algorithms and differential equation
solvers are implemented.

4 The Bio-PEPA Model of the Circadian Clock

In the following we provide an overview of the Bio-PEPA model for the circadian clock
described in Sect. 2. The full model is reported in the Supplementary Material.

The clock is characterised by robust entrainment to light/dark cycles. Light entrains
the clock by modulating general kinetic laws different from mass-action that abstract
complex sequences of more elementary steps [13,18]. These features can be easily
represented in Bio-PEPA using events and functional rates. From the Bio-PEPA de-
scription of the clock we can derive both the model for stochastic simulation and the
related system of differential equations.
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In order to derive a stochastic model, the continuous concentration values of ODE
models must be translated into discrete numbers of molecules. In general, assuming
concentrations are expressed in molars (M), the initial amounts must be multiplied
by the factor NA · V (where NA is the Avogadro number and V is the volume of the
compartment in which the reactions take place), and the kinetic parameters must be
rescaled accordingly (see [29] for details). For the Neurospora model, as the compart-
ment size and absolute concentration values are not known to any great accuracy, we
follow the approach used in [15] and introduce a generic scaling factorΩ that modulates
the number of molecules. Specifically, concentrations are turned into discrete numbers
of molecules by multiplying them by Ω, and the kinetic parameters are also rescaled by
Ω (see the Supplementary Material for details).

Reactions and kinetic laws. Each reaction is associated with an action type and a
functional rate, expressing the kinetic law. For instance, the transcription of MF
under upregulation by PWL and inhibition by PF is represented by the action type
transcription MF by PWL and the kinetic law:

transcription MF by PWL =
a1 · PWLn

(1 + (PF/b1)g) · (PWLn + b2
n)

Species. Each biological species is abstracted by a Bio-PEPA species component. Be-
low we report the definition of PF; the other species are described similarly.

PF
def
= (transcription MF by PW, 1) � + (transcription MF by PWL, 1) � +

(transformation E2F to PF, 1) ↑ + (degradation PF, 1) ↓ +
(translation E1W by PF, 1)⊕

PF is involved in five reactions: it is an inhibitor of the transcription of MF with
and without the influence of light (first line), a product of the transformation from
E2F to PF, a reactant in the degradation of PF (second line) and an activator of the
translation of E1W (last line). Note the use of shorthand notation in the definition
of PF.
The full system is described in terms of the model component

MF(m f 0) ��∗ E1F(e1 f 0) ��∗ E2F(e2 f 0) ��∗ PF(p f 0) ��∗ MW(mw0) ��∗
PW(pw0) ��∗ PWL(pwl0) ��∗ E1W(e1w0) ��∗ E2W(e2w0)

where the values in parenthesis are the initial values for the species.
Events. Entrainment by light/dark cycles is represented by events in Bio-PEPA. In

the initial state the system is in dark conditions and, therefore, the transformation
from the protein PW to the form activated by light (PWL) is not possible. This
is represented by setting the kinetic parameter r1 for the transformation reaction
PW → PWL equal to 0. At dawn, the reaction is suddenly activated and therefore
r1 is reset to its maximum value 5.1759. At dusk the reaction is deactivated again
by resetting r1 to 0. This periodic sequence of parameter changes is represented by
the following set of immediate events

Events = [(dawni; t = tdawn · i; r1 = 5.1759; 0),

(duski; t = tdusk · i; r1 = 0; 0), i = 1, 2, . . . ,D ]
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where D is the number of simulated days, and tdawn and tdusk are the times of the
day at which dawn and dusk occur, respectively. By changing the values of tdawn

and tdusk we can simulate the effect of changing the photoperiod (tdusk − tdawn), a
key entrainment parameter for the Neurospora clock [22,18]. Here we focus on two
conditions: constant darkness (DD) and alternating 12-hour cycles of light and dark
(12:12 LD).

5 Model Analysis

In this section we present the validation of our model against the original ODE repre-
sentation and we illustrate some analysis results. We use a version of the Dizzy simu-
lator [28] developed at the University of Edinburgh [30], which extends the tool with
sensitivity analysis techniques and additional simulation methods. The time-dependent
events in the Bio-PEPA model are translated into time-dependent reaction rates in the
Dizzy model (defined in terms of the step function theta, which is predefined in Dizzy),
and we use the Gibson-Bruck stochastic simulation algorithm [31]. The choice of this
algorithm is due to its efficiency (in simulation time) with respect to other stochastic
simulators and to the fact it supports time-dependent rates.

5.1 Validation of the Model

As a preliminary step, we validate the Bio-PEPA model by comparing it against the
original deterministic representation [18,13]. In Fig. 2(a) and Fig. 2(b) we show the
comparison for the DD system and for 12:12 LD cycles respectively. In each graph we
plot three time-series: the behaviour of the original model (dashed lines), the solution
of the system of ODEs generated by the Bio-PEPA model (solid lines), and the average
behaviour over 10 stochastic simulation runs with scaling factor Ω = 10000 (points).
The variables plotted are the clock outputs frq mRNA (MF), wc-1 mRNA (MW), total
FRQ protein (FP = E1F + E2F + PF), and total WC-1 protein (WP = E1W + E2W +
PW + PWL).

156 168 180 192 204 216 228 240
0

2

4

6

8

Time (hrs.)

M
F

, M
W

, F
P

 c
on

ce
nt

ra
tio

n 
(n

M
)

MF MW FP WP

156 168 180 192 204 216 228 240
32

33

34

35

36

156 168 180 192 204 216 228 240
32

33

34

35

36

W
P

 c
on

ce
nt

ra
tio

n 
(n

M
)

(a) Simulations in DD.

144 156 168 180 192 204 216 228 240
0

2

4

6

8

Time (hrs.)

M
F

, M
W

, F
P

 c
on

ce
nt

ra
tio

n 
(n

M
)

MF MW FP WP

144 156 168 180 192 204 216 228 240
24

28

32

36

40

144 156 168 180 192 204 216 228 240
24

28

32

36

40

W
P

 c
on

ce
nc

en
tr

at
io

n 
(n

M
)

(b) Simulations in LD.

Fig. 2. Comparisons of the original ODE model of the Neurospora clock with the deterministic
and stochastic Bio-PEPA representations. Black bars represent lights-off and white bars lights-on.
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Fig. 3. The effect of increasing Ω on the LD system. Plotted are time-series showing oscillations
in total FRQ protein FP averaged over 1000 stochastic simulations for Ω=10, 100 and 1000
(coloured lines). Each time series has been normalised by Ω to enable comparison with the FP
oscillations obtained from the deterministic model (black line).

The scaling factor Ω = 10000 was chosen with the purpose of having a reason-
ably high number of molecules to minimise the effect of stochastic fluctuations [29].
Consequently, in both DD and LD systems, the time-series resulting from the determin-
istic and the stochastic analysis of the Bio-PEPA models are in very close agreement,
with the stochasticity almost unnoticeable, despite the small number of simulation runs.
Comparing the deterministic time-series generated by our model against that of the
original model, we observe that in the DD system they are in perfect agreement, while
a small difference can be observed in the LD system (especially for WP): the reason
for this difference resides in the different ways in which the light switch is modelled:
a smooth function in the original ODE model versus discrete events in the Bio-PEPA
model. A similar agreement was obtained for different photoperiods (results not shown).

5.2 Effect of the Scaling Factor Ω on Stochasticity

Higher values of the scaling factor Ω correspond to larger molecular populations in
the stochastic model, yielding smaller stochastic fluctuations [29]. We have seen in
the previous section that for Ω = 10000 the stochasticity is reduced to such a point
that even with a small number of simulations runs, the average simulation behaviour is
near-identical to the deterministic behaviour. As a consequence, the higher the scaling
factor, the more regular the circadian oscillations will be, whereas we expect the effects
of noise to be more evident with a smaller scaling factor. Figure 3 shows the average
oscillations in total FRQ protein FP for different values of Ω (10, 100 and 1000). We
observe that for Ω = 10 the average behaviour of the stochastic system differs signif-
icantly from the FP oscillation in the deterministic system, yielding unstable oscilla-
tions that are inconsistent with the stable cycling of FRQ observed experimentally [9].
By contrast, for Ω = 100 and Ω = 1000, regular oscillating dynamics are obtained.
We also note that the average oscillations for Ω = 100 and Ω = 1000 are very close
to the deterministic solution, indicating that increasing Ω in this range only affects the
variability about the average. We consider a scaling factor Ω = 1000 in the remainder
of the work. Similar results (with slightly higher variability) were obtained in all cases
with Ω = 100.
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5.3 Investigating the Role of Positive Feedback

In this section, we study how the positive feedback loop of the Neurospora network
affects its stochastic behaviour. A previous analysis of the deterministic model identi-
fied the upregulation of WC-1 production by FRQ transcription factor, controlled by
the parameter a7, as a key regulatory process in the light entrainment of the clock [18].
With a7 at its nominal value aWT

7 = 2.4695, the ODE model yields the correct exper-
imental responses to changes in photoperiod, with the phase of total FRQ protein FP
tracking the middle of the night in both long and short days [18]. Knocking out positive
feedback by reducing a7 to 0 destroys self-sustained oscillations in DD by pushing the
deterministic model through a supercritical Hopf bifurcation [18]. This is in agreement
with the loss of free-running conidiation rhythms reported in experiments [32]. The
destruction of the DD limit cycle has a significant effect on the light responses of the
model, yielding a system that is unable to respond to changes in photoperiod during
long days. This suggests a role for the positive loop in promoting robustness against
seasonal photoperiod changes [18]. Here, we compare the behaviour of the stochastic
and deterministic models for DD and 12:12 LD cycles in the presence and absence of
the positive loop, focusing on the resulting changes to the FRQ oscillation in each case.

The Effect of Removing Positive Feedback on the DD System. Figure 4(a) shows
the difference between the deterministic and stochastic behaviour for the unperturbed
network in DD. While the ODE model exhibits self-sustained FRQ oscillations, the
average oscillation generated by the stochastic system damps to a constant value. This
is a consequence of the individual realisations of the stochastic model going out of phase
with each other, as can be seen in Fig. 4(c) and Fig. 4(d). This phase diffusion in the
free-running system, characterised by a phase distribution spanning the full circadian
cycle, agrees with previous stochastic analysis of circadian models [15].

Setting the positive feedback strength a7 to 0 yields damped FRQ oscillations in the
ODE model, as a7 is below the Hopf bifurcation value (Fig. 4(b)). Individual realisations
of the stochastic model, however, are still oscillatory, albeit with smaller amplitudes
compared to the unperturbed network (Fig. 4(c)). Again, the average FRQ oscillation
damps to a constant value as a consequence of phase diffusion.

The persistence of self-sustained oscillations when positive feedback is removed
demonstrates that stochasticity can introduce greater robustness against modifications
to the network architecture. This finding is consistent with models of the mammalian
clock for which simulated knockouts that are arrhythmic in ODE implementations can
become rhythmic when stochasticity is incorporated [8].

The Effect of Removing Positive Feedback on the LD System. Finally, we con-
sider the 12:12 LD system and examine the effect of setting a7 to 0 on the oscilla-
tory behaviour of the model. Comparing Fig. 4 and Fig. 5, it is clear that for both the
unperturbed system and the positive loop knockout, entrainment regularises the dy-
namics, markedly reducing the variability of oscillations compared to the free-running
system (similar findings were reported for a model of the Drosophila clock in [15]). In
both cases, there is relatively little phase diffusion, as evidenced by phase distributions
that are concentrated about their corresponding deterministic values (Fig. 5(c)). Inter-
estingly, although removal of positive feedback shifts the mean value of FRQ phase,
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(b) FRQ oscillations for a7 = 0.
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(c) Individual stochastic runs.

0 4 8 12 16 20 24
0

5

10

15

20

FRQ protein phase (hrs.)

F
re

qu
en

cy
 (

%
)

a
7
=a

7
WT

0 4 8 12 16 20 24
0

5

10

15

20
a

7
=0

(d) Stochastic variations in FRQ phase.

Fig. 4. Changes to the FRQ protein oscillation FP resulting from the removal of positive feedback
in DD. Black lines in (a) and (b) denote the solution of the deterministic system, red points the
average of 1000 stochastic simulations and red lines the corresponding standard deviations. In
(d), the phase of FRQ protein was taken as the time at which FP has decreased to its half-
maximum value over the interval 576 ≤ t ≤ 600. The histograms show the distribution of this
phase marker over all 1000 runs of the stochastic model. Dotted lines denote the phase of FRQ
in the corresponding deterministic systems.

consistent with the analysis of the deterministic system ([18]), the variation about the
mean is unaffected (the standard deviation is 0.3720 for the unperturbed system and
0.3238 for the loop knockout). This demonstrates that the positive loop is able to buffer
the clock against environmental variations (seasonal changes in photoperiod) without
degrading its robustness to stochastic fluctuations in the chemical reactions comprising
the oscillatory mechanism.

5.4 Sensitivity Analysis for the 12:12 LD System

Sensitivity Analysis (SA) aims to identify the relationships between the inputs and out-
puts of mathematical models of biochemical networks [33]. A key goal is the production
of Sensitivity Indices (SI) that quantify these relationships, revealing which factors are
the most influential with respect to model outcome. The most widespread SA method is
“one-at-a-time” (OAT). Given a mathematical model with parameters set to those con-
sidered the most likely (also called nominal parameters), each parameter is perturbed
individually by a fixed value or by a percentage of its nominal value, and the change
in the output(s) of interest measured. OAT has seen widespread use in ODE models
of biochemical interactions; this has included circadian networks for which a standard
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(c) Stochastic variations in FRQ phase.

Fig. 5. Changes to the FRQ protein oscillation FP resulting from the removal of positive feedback
in 12:12 LD cycles. Black lines in (a) and (b) denote the solution of the deterministic system, red
points the average of 1000 stochastic simulations and red lines the corresponding standard devia-
tions. The phase of the FRQ oscillation in (c) was taken as the time at which FP decreases to its
half-maximum value, identified recently as a molecular correlate of conidiation onset [22,13,18].
As in Fig. 4, the phase marker was computed over the interval 576 ≤ t ≤ 600 for all stochastic
realisations of the model. The dotted lines denote FRQ phase for the ODE model.

approach has been to compute the sensitivities of period and amplitude over one cycle
of the oscillation [16,11,12].

In [34] this method has been extended to stochastic models. In this case, the output
at a given time is not just a value representing the amount of a species as in ODEs; it is,
instead, a set of possible values, obtained from independent stochastic simulations. The
SA extension has been obtained by substituting the difference between perturbed and
nominal output values employed in the traditional approach with a difference measure
based on the density distribution surface of the output, estimated with a suitable number
of simulations. An estimate of this density distance based on stochastic simulations can
be obtained using histogram distance, as originally presented in [35]. This stochastic
version of OAT therefore applies when one is interested in observing the change in the
distribution of the amount of a particular species at a given time.

Here we apply the traditional approach to the means of the stochastic simulations
and also consider the extended approach, based on histogram distance. These are indeed
complementary, as the former does not incorporate any notion of stochastic variability,
while the latter quantifies the likelihood of having the same distribution in both the
perturbed and unperturbed systems. Moreover, a feature of the histogram distance is that
its value will always be 2 when there is no overlapping of the distributions, making the
traditional approach still necessary to determine sensitivities for large displacements.
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Figure 6 summarises the result of the local sensitivity analysis obtained by changing
a subset of parameters predicted to have a significant effect on entrained phase. Each
parameter was incremented by 10%, and the results shown are averages over 1000 sim-
ulation runs for Ω = 100 and Ω = 1000. It can clearly be seen that both the density-
and average-based sensitivity measures vary significantly over the circadian cycle for
the parameters considered. For both measures, the most sensitive parameters are a4,
d1 and d3 representing the maximum rates of light-independent wc-1 transcription, frq
degradation and wc-1 degradation respectively. All 3 parameters yield maximum sen-
sitivities with respect to the average-based measure around dusk, when FP is close to
its peak value. By contrast, maximum sensitivities with respect to the density-based
measure occur at the time when FP decreases to its half-maximum value, a molecular
correlate of conidiation onset [22,13,18]. This demonstrates that in terms of the average
FRQ oscillation, the marker of entrained phase most responsive to evolutionary param-
eter variations is peak FRQ phase. However, when stochastic variations in the FRQ
waveform are considered, the most responsive marker is the phase of the FRQ half-
maximum. As it is the latter which correlates with physiological entrained phase for the
Neurospora clock, this analysis suggests that stochastic fluctuations in FRQ expression
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(d) Density-based sensitivity: Ω = 1000.

Fig. 6. Local sensitivity to parameter variation. Sensitivities were computed every 3 hours over
one circadian cycle (72 ≤ t ≤ 96). The color gradient represents the difference in the amount of
FP between the nominal and modified parameter sets in each case (with increasing sensitivity
going from black to white). In all panels, the light blue lines denote the cycle phase at which
maximum sensitivity is attained for a given parameter. Because of the periodic behaviour of the
system, qualitatively similar sensitivities are obtained over other 24h intervals (see Fig. S1 in the
Supplementary Material).
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may have been an important contributing factor to the selection of the half-maximum
as a phase marker in nature.

As previously mentioned, average-based SA computes differences in terms of the av-
erage FP value, while density-based SA also considers the stochastic variability. There-
fore, the differences in the sensitivities when using different scaling factors can only be
captured consistently by using density-based SA. For instance, similar average-based
sensitivities are obtained for Ω = 100 and Ω = 1000 (cf. Figs. 6(a) and 6(c)), while the
density-based sensitivities are in general smaller for Ω = 100 as a consequence of the
higher variance causing greater overlapping in the probability distributions of FP (cf.
Figs. 6(b) and 6(d)).

6 Conclusions

In this work we presented and studied a stochastic model of the circadian clock in
Neurospora crassa under two different light conditions: constant darkness and 12:12
light/dark cycles. We used Bio-PEPA as our modelling language. This language al-
lowed us to represent in a straightforward manner two features of the system: complex
kinetic laws and time-dependent events representing cyclic light/dark conditions. The
model was validated against an existing ODE representation describing key behaviours
observed in laboratory experiments, including the variation of entrained phase with
photoperiod. We presented some analysis results illustrating the differences between
deterministic and stochastic representations of the clock. In particular, we investigated
the effect of removing the positive feedback loop, previously identified as a significant
factor in the determination of entrained phase. We found that while removal of pos-
itive feedback destroys self-sustained free-running (DD) rhythms in the deterministic
system, oscillations with significant amplitude persist when stochastic fluctuations are
considered, demonstrating the greater robustness of the oscillatory mechanism in the
stochastic model. In addition, we showed that knocking out the loop has little effect
on the stochastic variability of entrained phase for a given photoperiod, suggesting that
positive feedback can be used to tune the phase-photoperiod relationship without intro-
ducing greater variation due to noise amplification.

Finally, we considered sensitivity analysis techniques in order to identify the most
influential parameters on the circadian function of the 12:12 LD system. We focused on
the variations in FRQ expression resulting from perturbations to 5 putatively sensitive
parameters, applying a local sensitivity method at different time points within the 24-
hour cycle. By using a novel stochastic sensitivity measure based on histogram distance,
we found that the FRQ waveform is maximally sensitive at the time it reaches is half-
maximum level, a molecular correlate for conidiation onset. We commented that this
implicates stochasticity as a potential factor in the selection of this seemingly complex
phase marker by evolution, rather than the phase of peak FRQ expression that is pre-
dicted to be maximally sensitive when variations in average FRQ level are considered.
We conclude that while the local method we used only focuses around a specific point
in the parameter space, it can still be informative, giving an idea about the impact of
parameter changes on the behaviour of the system. In the future, we plan to apply some
global methods in order to explore the full parameter space (or a meaningful subset of
it) and to quantify the relationships between different parameters.
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The use of stochastic simulation with our model merits some discussion, as it is char-
acterised by some non-elementary reactions with complex kinetic laws, abstracting sets
of interactions whose details are unknown. The use of Gillespie’s stochastic simulation
algorithm (or its variants, such as Gibson-Bruck [31]) in the case of general kinetic laws
has been discussed by several authors [36,37,38]. Rao and Arkin [36] showed that this
approach is valid for some specific kinetic laws, such as Michaelis-Menten and compet-
itive inhibition. On the other hand, in [37] the authors demonstrated that this extension
of Gillespie’s algorithm is not always appropriate. Here, we applied stochastic simu-
lation paying particular attention to the interpretation of the simulation results and to
their validation: in Sect. 5 we showed that the behaviour we obtain using our stochas-
tic model is in agreement with the known behaviour of the system, and therefore we
conclude that in this case the use of stochastic simulation is appropriate.
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Abstract. This paper presents an extension of Pathway Logic, called
Quantitative Pathway Logic (QPL), which allows one to reason about
quantitative aspects of biological processes, such as element concentra-
tions and reactions kinetics. Besides, it supports the modeling of in-
hibitors, that is, chemicals which may block a given reaction whenever
their concentration exceeds a certain threshold. QPL models can be spec-
ified and directly simulated using rewriting logic or can be translated
into Discrete Functional Petri Nets (DFPN) which are a subclass of Hy-
brid Functional Petri Nets in which only discrete transitions are allowed.
Under some constraints over the anonymous variables appearing in the
QPL models, the transformation between the two computational models
is shown to preserve computations. By using the DFPN representation
our models can be graphically visualized and simulated by means of well
known tools (e.g. Cell Illustrator); moreover standard Petri net analy-
ses (e.g. topological analysis, forward/backward reachability, etc.) may
be performed on the net model. An executable framework for QPL and
for the translation of QPL models into DFPNs has been implemented
using the rewriting-based language Maude. We have tested this system
on several examples.

1 Introduction

Pathway Logic (PL) [20] is a symbolic approach to the modeling and analysis
of biological systems which is based on rewriting logic [14]. Rewriting logic is
a logical framework which allows one to easily formalize systems. Within this
framework, the states of a system are represented as elements of an algebraic data
type, specified by an equational theory, while its behavior is modeled via rewrite
rules describing local transitions between states. The process of application of
rewrite rules generates computations, which —in the case of biological systems—
correspond to pathways.
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A PL model is an executable rewriting logic specification representing a biolog-
ical process which consists of an equational part where biological molecules, their
states and locations are declared. Such entities may be decorated by metadata
such as entity synonyms and categories, protein families, etc. Such information
can be retrieved by standard databases (e.g. HUGO [7], UniProt/Swiss-Prot
[22]). A collection of rewrite rules specifying individual reaction steps establish-
ing how the system may evolve. In the case of signal transduction, rewrite rules
represent processes such as activation, phosphorylation, complex formation, or
translocation. As an example, consider the following PL rewrite rule labeled
C.reloc of a given PL model.

rl[C.reloc] {CLm | clm A} {CLi | cli B} {CLc | clc C} =>

{CLm | clm A} {CLi | cli B [C - reloc]} {CLc | clc}
The left hand-side of the rule represents a generic cell with three locations: the
membrane (location tag CLm) containing element A, the inside of the membrane
(location tag CLi) containing element B and the cytoplasm (location tag CLc)
containing element C. The rule specifies that when such a configuration is de-
tected, then C is relocated in CLi. Note that Pathway Logic provides a very
simple way to add spatial information over the biological element describing
a cell as a set of locations containing elements. Unfortunately, such a descrip-
tion is only qualitative, since the specification is not equipped with quantitative
information regarding the elements into play.

PL models are specified using Maude [5], a rewriting-logic-based language.
Maude specifications representing the PL models are executable, therefore they
give a direct support to model simulation. Moreover, using Maude built-in search
capabilities, PL models can be naturally queried in order to find pathways of
interest that may (may not) be activated. Finally, Maude specifications can
be translated into equivalent Petri net (PN) representations by means of the
Pathway Logic Assistant (PLA) [21]. The benefit of such PN representations
generated by PLA is twofold. On the one hand, it allows one to verify PL models
reusing efficient model-checking techniques which have been already developed
for PNs; on the other hand it provides a visual and interactive denotation of the
model.

Our contribution. Although Pathway Logic may be very useful to model bi-
ological processes and provides a simple way to express the systems dynamics,
it has some important limits: (a) PL only supports qualitative modeling of the
biological events of interests. As a matter of fact, it provides no explicit way
to add quantitative information to the models such as element concentrations
in cell locations, levels of production as well as consumption of elements occur-
ring in a reaction, reaction thresholds, etc. (b) PL does not provide adequate
capabilities to express inhibitory actions occurring in biological reactions, which
are very common e.g. in regulatory networks. Basically, an element acts as an
inhibitor in a reaction if its concentration over a given threshold prevents the
reaction to take place. Instead, the inhibitor let the reaction take place whenever
its concentration is under the considered threshold.
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In this paper we provide an extension of Pathway Logic called Quantitative
Pathway Logic (QPL for short) with the aim of overcoming the mentioned PL
limits and obtaining a more precise approach to modeling while keeping the
possibility to compute with and analyze these complex systems. More specifically,
QPL efficiently integrates quantitative data (such as element concentrations,
reaction thresholds, production and consumption rates) into PL models. Besides,
it allows one to model reaction inhibitors.

To manage the different aspects of biological systems, we equip QPL speci-
fications with two equivalent computational models following and adapting the
PL approach of [21]. This allows one to adopt different representations with dif-
ferent expressive capabilities for handling the complexity of the systems under
examination. On the one hand, QPL specifications can be directly formalized
and executed by using the Maude rewriting logic formalism. In this way, both
model simulation and model search can take advantage of quantitative infor-
mation to yield more accurate results. On the other hand, QPL models can be
translated into an extension of the classical Petri nets called Discrete Functional
Petri Nets (DFPN), which are basically Hybrid Functional Petri Nets (HFPN)
[12] in which only discrete transitions are authorized. By using such a repre-
sentation our models can be graphically visualized, simulated, and analyzed by
means of well known tools (e.g. Cell Illustrator [13]).

Plan of the paper. The rest of the paper is organized as follows. In Section 2
we briefly recall some necessary notions about rewriting logic and the Maude lan-
guage. Section 3presents theQPL rewriting logic formalism formodeling biological
processes. Besides, we show how to specify, simulate, search and model-check QPL
models using the Maude language. In Section 4, we provide an alternative represen-
tation of QPL models which is based on DFPNs. We also provide a transformation
between the two representations that, under certain constraints, is shown to pre-
serve the computations. Section 5describes the prototypical implementation of our
methodology. In Section 6 we discuss related work and we draw some conclusions.

2 Preliminaries

Rewriting logic [14] is a simple computational logic very well suited as a se-
mantic framework within which many different models of computation, systems
and languages can be naturally modeled. A rewrite theory, that is, a theory in
rewriting logic is a triple R = (Σ, E, R), where (Σ, E) is the equational theory
modulo which we rewrite, and R is a set of (possibly conditional) labeled rules.
Σ, called the signature, specifies the operators and the type structure of R as
usual, while E is a set of (possibly conditional) equations. Rules in R are of the
form (label : t0 ⇒ t1 if c) where t0, t1 are terms, the rule left-hand side (lhs)
and the rule right-hand side (rhs) respectively, and c is an optional boolean term
representing the rule condition. Variables may appear in rules and equations and
are denoted by lower letters, while operators are denoted by identifiers whose
first character is a capital letter. A context C, is a term with a single hole, de-
noted by [ ], used to indicate the location of a rewrite application. C[t] is the
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result of placing t in the hole of C. A substitution σ is a finite mapping from
variables to terms, σ(t) is the result of applying σ to term t.

Rewrite proceeds modulo the equational theory E and it is accomplished by
performing pattern matching modulo the equational theory. More precisely, given
an equational theory E, a term u and a term v, we say that u matches v modulo
E (or that u E-matches v) via substitution σ if there exists a context C such that
C[σ(u)] =E v, that is, C[σ(u)] and v are equal modulo the equational theory E.
Given a term t and rule r = (label : t0 ⇒ t1 if c), we say that t rewrites to
t′ via r (in symbols t

r→ t′), if there exists a substitution σ s.t. t0 E-matches
t via σ, t′ = C[σ(t1)] and σ(c) holds (i.e. it is equal to true modulo E). A
computation over R is a sequence of rewrites of the form R � s0

r1→ s1 . . .
rk→ sk,

with r1, . . . , rk ∈ R.
Rewrite theories can be encoded in Maude [5], a high-performance reflective

language supporting both equational and rewriting logic programming, which
is particularly suitable for developing domain-specific applications. Maude spec-
ifications can be executed and verified using some powerful language built-in
operators such as rew (which generates a computation starting from an initial
term), search (which generates all the possible computations starting from a
given initial term), and modelCheck (which supports model checking w.r.t. the
Linear Temporal Logic (LTL) [6]).

3 Quantitative Pathway Logic

A QPL model is a rewrite theoryQ = (Σ, E, R) which models biological systems.
A QPL model is naturally divided in two parts: the equational part and the rules
part. The former allows one to represent the cellular states, while the latter
specifies the system dynamics.

The Equational Part. This part corresponds to equational theory (Σ, E) of
the QPL model Q. It provides sorts and operators useful to model molecular
components and more in general all the entities involved in a biological system.

As in the standard PL framework, the main sorts for entities include Chemical,
Protein, Complex, which are all subsorts of sort Thing specifying a generic entity.
Cellular compartments are identified by sort Location which provides location
names to each compartment, while Modification is a sort used to classify Post-
transactional protein modifications, which are defined by the operator [ - ] (e.g.
the term [EgfR - act] represents the epidermal growth factor Egf receptor in an
activated state).

Besides that, we provide a special sort QThing which is represented by the pair
(Thing, R+), where R+ specifies the sort for the non-negative real numbers. The
sort QThing is employed to manage entity concentrations (e.g. (Erk, 3.3) might
model the fact that the concentration of the the Mitogen-Activated Protein
Kinase Erk is 3.3 units). We call occurrence any term of sort QThing. A soup is
a set of occurrences and cellular compartments which is identified by type Soup.

Now, a cell state is represented by a term of the form [cellType | locs],
where cellType specifies the type of cell and locs represents the contents of a
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cell organized by cellular compartments (or locations). Each location is modeled
by a term of the form { locName | comp }, where locName is a name identifying
the location (e.g. CLm may represent the cell membrane location), and comp is a
soup in that location.

The Rules part. Given a QPL model Q = (Σ, E, R), rules part is specified via
the set of rewrite rules R, which contains rewrite rules formalizing individual
reaction steps. In the case of signal transduction, rewrite rules represent pro-
cesses such as activation, phosphorylation, complex formation, or translocation.
Basically, as in PL, QPL rewrite rules transform a cell state into another via
pattern matching modulo an equational theory. Moreover, such a transforma-
tion in QPL can take advantage of the quantitative information associated with
the entities into play. In this context, it is very easy to define promoters (en-
tities enabling a reaction when their concentration is over a certain threshold),
inhibitors (entities blocking a reaction when their concentration is over a cer-
tain threshold), tests (entities not consumed by a reaction), and reaction rates
modeled via consumption and production functions. Let us see some examples.

Example 1 (Promoters and tests). Consider a reaction modeled by the following
rewrite rule.

ex1 : {CLi | cli (A, a)}{CLm | clm ([B-GDP], b)(D, d)}⇒{CLi | cli (A, a/2.0)(C, a/2.0 + b)}
{CLm | clm (D, d)} if a >= 3.5.

The rule states that, if we detect a cell state in which (1) an entity A with
concentration a is inside the cell membrane (location CLi); (2) entities [B-GDP]
(i.e. entity B bounded to a molecule of Guanosine diphosphate) and D with
concentrations b and d are on the border of the cell membrane (location CLm);
then, A promotes the reaction whenever its concentration is greater or equal than
3.5 units and a new cell state is generated in which Reactants A and [B-GDP]
are consumed: the former is consumed according to the consumption function
(a/2.0) and the latter is completely consumed. Entity C is produced inside the
membrane according to the production function a/2.0+b, while D is a test whose
concentration is left unchanged (its presence is necessary for the reaction to take
place but there is no need to consume it).

Note that production functions may depend on concentrations of several re-
actants. Instead, we assume that the consumption function of a reactant A
must depend only on the concentration of A. Inhibitory behaviors are eas-
ily modeled by means of conditional rules. For this purpose, we first define
the auxiliary function checkInhibitors(s, (i1, t1) . . . (in, tn)) which takes in
input a soup s, and a list of occurrences (ij, tj) and returns true if there
does not exist any occurrence (ij, cj) in s such that cj ≥ tj. Now, an in-
hibitor ij is an entity located in some compartment s which prevents a re-
action to take place whenever its concentration cj is over a certain threshold tj.
This amount to saying that a set of inhibitors (i1, . . . , in) can block a reaction
iff checkInhibitors(s, (i1, t1) . . . (in, tn)) = false. Therefore, we can model a
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reaction containing inhibitors i1 and i2 by a rewrite rule of the form t⇒ t′if
checkInhibitors(s,(i1, t1)(i2, t2)).

Example 2 (Inhibitors). Consider a reactionmodeledby the following rewrite rule.

ex2 : {CLi | cli (A, a)} ⇒ {CLi | cli (C, a)} if checkInhibitors(cli, (B, 4.0))

The rule states that, when there exists a cell state in which an entity A with
concentration a appears inside the cell membrane (location CLi), then the cell
state is transformed by consuming completely the reactant A and producing a
units of entity C provided that there is no inhibitor B with concentration greater
than 4.0 inside the cell membrane (i.e. in the location CLi). Note that B is not
consumed by the reaction.

3.1 Simulation and Analysis of QPL Models

Quantitative Pathway Logic models are rewrite theories, hence executable speci-
fications, since they describe system states and provide rules specifying the way
in which states may change. In other words, we can directly exploit the Maude
rewrite engine to run our models. In particular Maude supports the forward
simulation which is the first kind of analysis that can be carried out given such
an executable specification. It consists in running the model from a given initial
state for a fixed number of steps or until a steady state has been reached. It
is very useful for initial exploration of the transition graph but not suitable for
understanding the dynamics of systems having infinite behaviors. Maude is also
equipped with forward search facilities, which allow one to perform a breath-first
search of all rewrite paths generated for a given initial state. If the specification
is finite, such a search will find all possible outcomes from a given initial state.
Moreover, the search can be constrained to find only states satisfying a given
property or until a fixed number of rewrite steps.

To execute both forward simulation and forward search we need to provide an
initial state. Initial states (called dishes) are encoded in our rewriting framework
by terms of the form PD(out cellstate), where cellstate represents a cell
state and out specifies a soup of ligands and other molecular components in the
cells surroundings which may interact with the cell.

Example 3. Consider the following dish

PD({(Egf, 2.0)}[HMEC|{CLo|empty}{CLm|(EgfR, 1.0)(PIP2, 3.0)}
{CLi|([Hras − GDP], 4.0)(Src, 5.0)}
{CLc|(Gab1, 5.0)(Grb2, 6.0)(Pi3k, 2.0)(Plcg, 7.0)(Sos1, 1.0)}]).

The dish above contains the cell state of a cell of type HMEC which is made up of
three locations CLo, CLi and CLc. Each location contains a soup of occurrences.
Besides, the ligand Egf occurs in the cell surroundings with concentration 2.0.

Now, given an initial state and a QPL model, we can analyze the behavior of
the system by means of Maude forward simulation and search capabilities. Let
us see some examples.
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Example 4. Assuming that a QPL model for the signal transduction network
of the epidermal growth factor receptor (EgfR) is given, we may run the model
starting from an initial cell state by means of the Maude rewrite command
(abbreviated rew), that is, we may explore the behavior of the specified system
for different initial cell states. For instance, the Maude query

rew [100] PD((Egf,2.0) [HMEC | {CLm | (EgfR,1.0) (PIP2,3.0)}
{CLi | ([Hras-GDP],4.0) (Src,5.0)}])

asks Maude to perform at most 100 rule applications (i.e. rewrite steps) to
rewrite the given initial state and returns the final cell state we reached. It is
also possible to rewrite without specifying an upper bound on the number of
rule applications. Since the model may be non-deterministic (i.e. there might
be several computations starting from the same initial state), Maude selects
only one of such computations by means of a predetermined rewrite strategy.
Therefore, the returned cell state may represent only one of the possible system
behaviors.

Maude also provides the frew which allows one to implement user-defined rewrite
strategies. As explained in Example 4, the forward simulation explores only one
possible model behavior. To analyze all possible model dynamics we may employ
the Maude search feature as shown in the following example.

Example 5. Assuming the same QPL model of the previous example, we want
to know whether —starting from a dish containing a given concentration of the
ligand Egf— it is possible to produce the Mitogen-Activated Protein Kinase Erk
(as described in [20]) with a concentration greater than 3.6 units. Such analysis
can be modeled by means of the following Maude forward search query:

search [1]

PD((Egf,2.0) [HMEC | {CLo | empty} {CLm | (EgfR,1.0)(PIP2,3.0)}

{CLi | ([Hras-GDP],4.0)(Src,5.0)}

{CLc | (Gab1,5.0)(Grb2,6.0)(Pi3k,2.0)(Plcg,7.0)(Sos1,1.0)}])

=>+ PD(out:Soup [HMEC|cyto:Soup {CLi|(Erk,k)}]) such that k > 3.6 .

The term before the right arrow denotes the initial state, while the one after
the arrow specifies the pattern of the state we are looking for along with the
condition that Erk has to appear with a concentration higher than 3.6.

Finally, also Maude Model checking [6] can be employed to analyze QPL models.
Model checking enlarges the set of properties which can be investigated. While
search only concerns with properties of individual states, model checking deals
with properties of computations (i.e. pathways). In this context, the model-
checker is typically asked to check the assertion that there is no computation
starting from the given initial state satisfying the property of interest; thus a
path can be extracted from a counterexample, if one is found.

Example 6. By using Maude modelCheck function we can easily verify whether,
starting from a given initial state istate containing Egf, it is possible to activate
the entity Src with a concentration greater than 4.5 units without having pre-
viously produced the entity Rala-GDP. To this purpose, we define a parametric
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property entAct(e,n), which is satisfied when the CLi location contains an occur-
rence of entity e with a concentration higher than n. The property might be speci-
fied as follows eq PD(out:Soup [HMEC|cyto:Soup {CLi|cli:Soup(e,k)}]) |=
entAct(e,n) = k > n . Now, we can model the desired analysis by means of
the following Maude model-checking query:
red modelCheck(istate,

[]∼(<> entAct([Src-act],4.5) /\

(entAct([Src-act],4.5) |-> entAct(RalaGDP,0.0))))

The query is expressed in linear temporal logic and consists of a conjunction
of two sub-queries, the former asks for the activation of Src with a concentration
of 4.5 units and the latter asks for a sequence of events (expressed by the |->
operator) where the production of Rala strictly follows the activation of Src.

4 Representing QPL Models via DFPNs

QPL models can be represented by means of Discrete Functional Petri Nets
(DFPN) which are restricted HFPNs[12] able to model quantitative aspects of a
given system by means of functional discrete transitions. The advantage of such
an alternative formalism is twofold: on the one hand, graphical representations
are naturally derived from DFPNs, which allow one to visualize the model of
interest and to graphically interact with it using common tools available on the
market (e.g. Cell Illustrator); on the other hand, analysis of DFPNs can profit
from well-known techniques which have been already developed for the Petri net
settings. In what follows, we formalize DFPNs by borrowing terminology and
notation from [12].

4.1 Discrete Functional Petri Nets

Definition 1 (Marking). Given a finite set of places P , a marking of P is a
mapping M : P → R+. Given p ∈ P , M(p) is called the mark of p. We denote
the set of all possible markings of P by M. Given two markings M and M ′ of
P , we say that M ≥ M ′ iff for each p ∈ P , M(p) ≥ M ′(p). Moreover, we say
that M and M ′ are incomparable if M � M ′ and M ′ � M .

Let M be the set of all markings of the set of places P , we denote the set
of all functions mapping a marking of P into a non-negative real number as
FP = {f | f :M→ R+}. Functions in FP are called update functions.

Definition 2 (Discrete Functional Petri Nets). A Discrete Functional Petri
Net (DFPN) is a triple P = (P, T, C) where P = {p1, . . . , pn} is a non-empty
finite set of places, T = {t1, . . . , tm} is a non-empty finite set of transitions
such that P ∩ T = ∅, and C is a tuple (PT, TP, a, w, u) defined as follows:

– PT ⊆ P ×T and TP ⊆ T ×P . Elements in PT (resp. TP ) are called input
connectors (resp. output connectors). Each connector has a connector type
which is given by a function a : PT ∪ TP → {process, test, inhibitor,
output}. Input connectors whose type is process (resp. inhibitor, test)
are also called process (resp. inhibitor, test) connectors.
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– w : PT → R+ is a mapping called threshold labeling assigning non-negative
real numbers to input connectors.

– u : PT ∪ TP → FP is a partial mapping called update labeling such that
u(c) is defined iff a(c) ∈ {process, output} (i.e. mapping u assigns update
functions to process and output connectors only).

Connectors in a DFPN are labeled by threshold and update labeling. More specif-
ically, threshold labeling puts non-negative real numbers (i.e. thresholds) on in-
put connectors (p, t) and are used to fix the minimum threshold on the mark of
place p which is required to enable/disable transition t. Update labeling deco-
rates both process and output connectors with update functions and is employed
to change the marks of places involved with transitions firing.

The enablement relation of a transition t in a DPFN depends on the type of
the input connectors (p, t). Basically, an inhibitor connector enables transition
t when the mark of p is under a certain threshold; process and test connectors
enable transition t whenever the mark of p is over the threshold. More formally,

Definition 3. Let P = (P, T, C), where C = (PT, TP, a, w, u), be a DFPN.
Given a transition t ∈ T and a marking M ∈M of P , we say that t is enabled in
M iff for each input connector c = (p, t) ∈ PT the following conditions hold:
(1) M(p) < w(c) if a(c) = inhibitor (2) M(p) ≥ w(c) if a(c) 
= inhibitor.
Otherwise transition t is said to be disabled in M . We denote the set of all the
transitions which are enabled in M by E(M).

Now, given a DFPN P , we can define computations over P as follows.

Definition 4. Let P = (P, T, C), where C = (PT, TP, a, w, u), be a DFPN.
Let M, M ′ ∈ M be two markings of P and t be a transition in T such that
t ∈ E(M). Then, M evolves into M ′ using t in P (in symbols, P �M

t�→M ′) iff
M ′ = DFPN One Step(P , M, t), where DFPN One Step(P , M, t) is a function
defined as follows:

DFPN One Step(P , M, t)
for each (p, t) ∈ PT with a(p, t) = process: M ′(p)←M(p)− u(p, t)(M)
for each (t, p) ∈ TP : M ′(p)←M(p) + u(p, t)(M)
return M ′

A computation in P is a (possibly infinite) sequence P �M0
t0�→M1

t1�→M2
t2�→ . . .

Marking M0 is called initial marking.

Roughly speaking, a marking M can evolve into a marking M ′ by firing an
enabled transition t producing M ′ from M in the following way: for each process
connector (p, t) the mark M(p) is consumed by applying the update function
labeling (p, t); for each output connector (t, p), the mark M(p) is increased by
applying the update function labeling (t, p); for each inhibitor/test connector
(p, t), the mark M(p) is left unchanged

Transitive (�→+) and transitive and reflexive (�→∗) closures of relation �→ are
defined in the usual way. Note that several transitions can be enabled at the
same time in a DFPN producing non-deterministic computations.
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4.2 Translating QPL Models into DFPNs

Given a QPL model expressed by a rewrite theory Q = (Σ, E, R), we can eas-
ily derive a DFPN having the same model behavior which will be denoted by
PQ. Basically, the translation procedure produces a DFPN transition for each
rule r belonging to R. Let us see how the translation of a single rule into a
transition proceeds. Let r = (l : t ⇒ t′ if c), we define OL(r) = {(e, q, loc) |
occurrence (e, q) appears in t in location loc}, OC(r) = {(e, q, loc) | entity e
appears in predicate checkInhibitors in c associated to location loc}, and
OR(r) = {(e, q, loc) | occurrence (e, q) appears in t′ in the location loc}1. First
of all, for each (e, q, loc) ∈ OL(r) ∪ OR(r) ∪ OC(r), we define a place 〈e, loc〉
whose marking M(〈e, loc〉) is represented by q. Intuitively, each place in the re-
sulting DFPN will model a given entity e appearing in a compartment loc, while
the concentration q provides information regarding the mark of the place.

Then, we generate the transition l, where l is the label of the rule r under
examination. Transition l is connected to the generated places via input/output
connectors in the following way. For each (e, q, loc) ∈ OL(r) we generate an input
connector con = (〈e, loc〉, l) whose type a(con) depends on the role of the entity
e in the original rule r (i.e. is e a process or a test?). For each (e, loc) ∈ OC(r) we
generate an input connector con = (〈e, loc〉, l) whose type a(con) = inhibitor.
For each (e, q, loc) ∈ OR(r) if a(〈e, loc〉, l) 
= test we generate an output con-
nector con = (l, 〈e, loc〉) whose type a(con) = output. Finally, thresholds and
update functions are defined according to the expressions appearing in the rule
condition.

Note that rule’s variables not representing concentrations are not encoded
into the net PQ. Such variables have only an auxiliary purpose in the QPL
model. Indeed, they are used to enable pattern matching, which is an evaluation
mechanism not employed in DFPNs, and hence they do not have a counterpart
in the resulting net model2. For further details, the complete description of the
translation method can be found in [3]. Figure 1 shows DFPN obtained by the
the translation of rules ex1 and ex2 of Examples 1 and 2.

A PL dish, that is an initial state for a QPL model, is naturally encoded into
an initial marking for the resulting DFPN in which we assign a given mark to
(some of) the places 〈e, loc〉 of the net.

4.3 Model Equivalence

Given a QPL model Q, the resulting DFPN PQ is equivalent to Q in the sense
that computations are preserved. In other words, any computation over Q is
mapped to a computation over PQ and vice versa. The equivalence holds under
certain conditions we need to enforce on the translation. In the remainder of
1 As usual locations are identified by their location name.
2 Due to lack of space and for the sake of readability, we have not treated the case of

entity variables which can range over a finite set of values (e.g. a variable representing
a class of ligands which may interact with a given receptor). A full explanation of
such a case can be found in the technical report [3].
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H = (P, T, C)
P = {<A,CLo>, <C,CLo>, <[B-GDP],CLm>, <D,CLm>, <A,CLi>, <B,CLi>, <C,CLi>}
T = {ex1, ex2}
C = {In, Out, a, w, u}
In = {(<A,CLo>,ex1), (<[B-GDP],CLm>,ex1), (<D,CLm>,ex1), (<A,CLi>,ex2),

(<B,CLi>,ex2)}
Out ={(ex1,<C,CLo>), (ex2,<C,CLi>)}

a(c) =

⎧⎪⎪⎨⎪⎪⎩
process if c ∈ {(<A,CLo>,ex1), (<[B-GDP],CLm>,ex1), (<A,CLi>,ex2)}
test if c =(<D,CLm>,ex1)

inhibitor if c =(<B,CLi>,ex2)

output if c ∈ {(ex1,<C,CLo>), (<ex2,C,CLi>)}
w(c) =

{
3.5 if c =(<A,CLo>,ex1)

4.0 if c =(<B,CLi>,ex2)

u(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A CLo q/2.0 if c =(<A,CLo>,ex1)

[B-GDP] CLm q if c =(<[B-GDP],CLm>,ex1)

A CLo q/2.0 + B CLm q if c =(ex1,<C,CLo>)

A CLi q if c =(<A,CLi>,ex2)

A CLi q if c =(ex2,<C,CLi>)

Fig. 1. DFPN encoding of rules ex1 and ex2

this section, we provide a brief explanation of this result. We refer the reader
to the technical report [3] for more details and the complete proofs. Our ap-
proach follows and adapts the approach presented in [21] by Talcott and Dill for
establishing the equivalence between Pathway Logic and standard Petri nets.

Let Q be a QPL model and PQ the DFPN obtained from Q. Let SQ be the
set of all possible (ground) cell states of Q and MQ be the set of all possible
markings of PQ. We define a mapping s2m : SQ → MQ which maps a cell
state s ∈ SQ into a marking Ms ∈ MQ such that, for each entity e appearing
in a location loc with concentration q, Ms(〈e, loc〉) = q. We define the inverse
mapping of s2m by m2s : MQ → SQ, and thus we have m2s(s2m(s)) = s
for any cell state s ∈ SQ. Since cell states are terms which can be built upon
contexts and holes, we extend s2m to contexts and holes in such a way that
s2m(C[t]) = s2m(t) ∪ s2m(C). Therefore, given a place 〈e, loc〉 of PQ, which is
obtained from a cell state s = C[t] ∈ SQ, where C is a context with a hole at
location locC , the mark of 〈e, loc〉 w.r.t. the mapping s2m(C[t]) is defined as

s2m(C[t])(〈e, loc〉) =

{
s2m(t)(〈e, loc〉) if loc = locC

s2m(C)(〈e, loc〉) otherwise

In order to guarantee the computational equivalence between QPL models and
their DFPN counterparts, we need to enforce a constraint over the rules of QPL
models. Let us see an example illustrating some issues related to the model
translation which may arise.
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Example 7. Consider the two following QPL rules:

r1 : {CLm | (A, a) {CLc | cyto (B, b)}} ⇒ {CLm | (A, a) ([B− act], b) {CLc | cyto}}
r2 : {CLm | clm (A, a) {CLc | cyto (B, b)}} ⇒ {CLm | clm (A, a) ([B− act], b) {CLc | cyto}}

where cyto and clm are “anonymous” variables matching any other component
located in the cytoplasm or cell membrane respectively.

Consider now the state s = {CLm|(A, 3.3)(C, 4.7){CLc|(B, 0.1)(D, 0.9)}}. The
rule r2 applies to s but r1 does not because it lacks variable clm which enables
the pattern matching between s and the lhs of r1 on the location Clm. On
the other hand, r1 and r2 are translated into transitions t1 and t2 which are
equal modulo renaming of the transition labels. In particular, t1 and t2 connect
the same places via the same input/output connectors. Therefore, t1 is enabled
whenever t2 is, and vice versa. Clearly, this fact generates a discrepancy between
the computational behaviors of the QPL model and the corresponding DFPN.

To avoid the situation presented in Example 7, we basically forbid rules like r1
from being specified in QPL models.

Definition 5. Let Q = (Σ, E, R) be a QPL model. Then Q is well-specified iff
for each rewrite rule r ∈ R, each location Loc appearing in the lhs or rhs of r
contains a variable loc.

Notice that the QPL model of Example 7 is not well-specified.
The equivalence result between the two computational models is stated by

the following theorem.

Theorem 1. Let Q = (Σ, E, R) be a well-specified QPL model and PQ be the
DFPN obtained from Q. Let r2t be a function mapping each rule r ∈ R into the
corresponding transition r2t(r) of PQ. Then, the following result hold:

Q � s0
r1→ s1 . . .

rk→ sk ⇔ PQ � s2m(s0)
r2t(r1)�−→ s2m(s1) . . .

r2t(rk)�−→ s2m(sk)

where si ∈ SQ, rj ∈ R

5 Implementation

We implemented the framework presented so far in a prototypical system written
in Maude, which is publicly available along with some examples at
http://users.dimi.uniud.it/~michele.baggi/qpl. Basically, our system ex-
tends the Pathway Logic data structures and mechanisms to cope with quanti-
tative information. Our system allows one to specify and analyze Quantitative
Pathway Logic models by means of Maude language features. In particular, it
is possible to exploit Maude built-in operators to easily express queries to sim-
ulate, search and model-check the models under examination. We tested the
prototype on several small/medium size biological systems (e.g. the circadian
rhythm in Drosophila) achieving rather promising results. In the future, we plan
to provide a thorough experimental evaluation on real-size case studies assisted
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Fig. 2. Cell Illustrator screenshot of the EgfR pathway model

by the biologists of our group. The prototype is also equipped with a model
translator which allows one to automatically derive the corresponding DFPN
from the given QPL model. On the net representation, we can apply well-known
Petri net analysis methodologies such as topological analysis for relevant sub-
net detection, backward/forward reachability analysis, etc. For more information
about DFPN analyses, please refer to our technical report [3]. Moreover, we pro-
vide the possibility to export DFPN descriptions in the Cell System Markup
Language (CSML) [17], an XML format for modeling biopathways which covers
widely used data formats, e.g. CellML[11], SBML[8]. Then, CSML representa-
tions of DFPNs can be imported in Cell Illustrator [13], which is a software tool
by means of which we can visualize and graphically interact with the DFPN
models. In Figure 2 a screenshot of the Cell Illustrator application with a small
fragment of the EgfR pathway model is shown. Here, discrete transitions are
identified by solid rectangles, while continuous places are represented by double
circles. Dashed arrows and solid arrows stand for process connectors and test
connectors, respectively; finally, labels identify thresholds and update functions.

6 Related Work and Conclusions

There are many different computational models of biological processes, depend-
ing on the aspects we want to focus on. Our approach to biopathway modeling
basically exploits rewrite theories [14] and Petri nets [16] with the aim of taking
advantage of the benefits conveyed by both these formalisms. The Petri net for-
malism allows one to model networks of reactions describing processes as well as
process execution with a graphical representation that naturally corresponds to
conventional representation of biochemical networks. Standard Petri nets have
a limited expressiveness (e.g. they cannot describe quantitative aspects of the
model or capture reaction inhibition effects). To this respect, many powerful
variants of the Petri net formalism have been developed along with a plethora
of techniques and tools for system specification and analysis (e.g. see [4,9,10]).
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Nonetheless the specification of large biological systems involving a huge number
of states and transitions might result in a rather complex task, since Petri nets
make system state and state changes explicit through marking of places and
transitions which are required to be individually specified.

On the other hand, rule-based formalisms directly model states of molecular
components and state changes by means of rules in which rule patterns may
subsume several distinct states. This implies that rule-based specifications are
in general more concise and easy to write than Petri nets. As already explained,
Pathway Logic (PL) [20] represents biological processes by means of rewriting
logic theories. PL allows one to only model the qualitative aspects of the pro-
cesses. A recent extension of the Pathway Logic [1] has been proposed to rep-
resent and reason about semiquantitative and probabilistic aspects of biological
processes. Basically, this approach annotates reaction rules with affinity infor-
mation that can be used to implement distinct simulation strategies which can
also include timing information. Although this approach improves expressiveness
of standard PL, it only handles a semi-quantitative modeling of biological pro-
cesses which does not allow us to define complex reaction kinetics. In contrast,
QPL fully supports quantitative information such as element concentrations, re-
action enabling thresholds, production and consumption rates in a concise and
quite intuitive way. Besides, from the QPL model, we can automatically gen-
erate a graphical DFPN representation which can be displayed and intuitively
manipulated via Cell Illustrator.

The extension we propose is the first step towards the development of a general
PL formalism for the full specification of hybrid models (specifying both discrete
and continuous components) and their stochastic counterparts. As future work,
we intend to (i) add probabilistic behaviors to our models in the style of [1],
and (ii) endow our specification language with timing information following the
approach of [18], where hybrid systems are formalized by means of suitable
rewrite theories.
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Abstract. Into the cell, information from the environment is mainly
propagated via signaling pathways which form a transduction network.
Here we propose a new algorithm to infer transduction networks from
heterogeneous data, using both the protein interaction network and ex-
pression datasets. We formulate the inference problem as an optimization
task, and develop a message-passing, probabilistic and distributed for-
malism to solve it. We apply our algorithm to the pheromone response
in the baker’s yeast S. cerevisiae. We are able to find the backbone of the
known structure of the MAPK cascade of pheromone response, validating
our algorithm. More importantly, we make biological predictions about
some proteins whose role could be at the interface between pheromone
response and other cellular functions.

1 Introduction

Living cells need to react to a wide spectrum of changes –physical, chemical
or biological– in their environment [1]. Conversely the cell reactions span from
the activation of small-scale processes, e.g. synthesis of precise molecular com-
ponents or excretion of others, to complex changes in the global cellular state,
such as the diauxic shift or pheromone response and mating [2] in yeast. In or-
der for the cell to survive, these changes must be tightly regulated. One type
of regulation occurs through signaling cascades, which represents how the infor-
mation propagates inside a cell, from receptor proteins to transcription factors
and other effector proteins. At the molecular level, this information transits by
activation or inactivation of specific signaling proteins. Activation mechanisms
include a variety of protein-protein interactions such as conformation changes,
or dimerization [3]; one of the most studied is the well-known phosphorylation-
dephosphorylation system provided by kinases [4]. Known signaling cascades
show desirable properties, from a system point of view: they act as low-pass fil-
ters, ensuring an adequate cell response only when external stimuli are above the
molecular noise level [5], but they also provide signal amplification [6]. Recently,
it was also shown that information could travel in both directions on signaling
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cascades, due to chemical equilibrium shifts in the cascades[7]. These properties
can be used by the cell to tune the signal propagation and therefore the response
to the environment.

The intersection of the signaling pathways forms the transduction network,
whose nodes are proteins and whose edges represent protein interactions trans-
mitting information. Due to the many interconnections between different signal-
ing cascades in the transduction network, a precise regulation of the cross-talk
between different pathways is necessary. One way to ensure pathway specificity
in answer to a given signal is the usage of scaffold proteins which will specifi-
cally bind to other members of a given signaling cascade, increasing specificity
of the response [8,9]. On the other hand, one way to diffuse signal to many path-
ways is to root them all to the same activator protein. The complexity of these
cross-interactions has allowed evolution to shape these pathways so as to be very
efficient in sensing and adjusting to the environment, but makes them very diffi-
cult to study independently and even to identify precisely. In this work we tackle
the issue of transduction network inference from proteomics and transcriptomics
data. Phosphoproteomics works have been led to reconstruct these cascades, but
are still very expensive and time consuming. At the algorithmic level, this prob-
lem has been widely studied, mainly by inference of linear cascades. In this
context Scott et al. [10] developed an algorithm based on color-coding to in-
fer linear subparts of the transduction network, and found with good accuracy
the known MAPK kinases cascades. White et al. [11] made a step forward by
looking for transduction networks as a superposition of shortest paths on the
protein interaction network (PIN). The focus of their method is to unbias the
solution tree from the high connectivity bias, as often hubs of the PIN tend to
be over-represented in the inferred networks, as a consequence of their high in-
betweenness. Other works about the inference of transduction network include
[12], who introduced a Steiner tree formalism to recover this network based on
expression data and an existing PIN. This formalism states that the transduction
network is a subtree of the global protein interaction network which contains all
proteins of a given subset, named terminals, defined by the user. This subset is
composed of proteins known to be part of the signaling network, or selected via
another criterion such as expression level. The problem is then to reconstruct
such a tree, respecting also other combinatorial constraints such as e.g small tree
size or fixed tree depth. This last approach was recently developed by [13], who
used an integer linear programming relaxation to find subnetworks involved in
signal transduction, improving the algorithmic performance.

The previously cited approaches have been effective at finding already known
signaling cascades, but made few predictions, mainly because of the time con-
straints of the available techniques in the field of combinatorial inference problems.
Indeed the Steiner tree problem [14] is NP-hard and classical algorithms allowing
to solve it at the probabilistic level are slow. Here we provide a new method from
the class of message-passing algorithms to infer a Steiner tree from a weighted
graph, which directly applies to infer transduction networks from a PIN and ex-
pression data. From a numerical point of view, message-passing algorithms are
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probabilistic and distributed, allowing for a very fast resolution of inference prob-
lems [15], even for large networks. Moreover, our algorithm does not need a priori
selected terminals (i.e proteins of interest), and compute the transduction network
as a whole, instead of a sum of linear subparts, as was done in previous works. This
results in a high exploratory power of combinatorial effects that could uncover bi-
ologically meaningful cross-talk. We apply it to the pheromone response in S. cere-
visiae; results show that we are able to reconstruct accurately known pathways,
to infer how the signal propagates in other signaling cascades of the cell, and to
make functional predictions about a new group of genes implied in the pheromone
response.

2 Material and Methods

The rationale of our model is that the transduction network is a subtree of the
PIN, which should be composed with links of the PIN corresponding to real
protein interactions, and proteins being of biological relevance for the biological
process under study. Indeed, protein-protein interactions detected in proteomic
assays contain a high fraction of false positives [16], creating the need to take
into account in our model the statistical confidence we have for each link of
the PIN. As proteomics data are still scarce, whether expression data are nowa-
days available in huge quantities, we hypothesized, as was previously done by
[13,17,18,10,12], that genes being differentially expressed during the activation
of the signaling pathway encode proteins being necessary for the signaling re-
sponse itself, and employed expression data to measure the relative importance
of each protein in a given environmental context. Therefore we could model the
transduction network inference as an optimization problem, given weights for
every edge of the PIN, to represent the propensity of the edge to be a false posi-
tive, and prizes for the nodes, proportional to the level of differential expression
of the corresponding genes in the expression data relative to the phenomenon
under study.

2.1 Inference of the Transduction Network

In general terms, we are interested in finding a “minimal” sub-network that is
connected to a given protein node, known as the root. We will model this problem
as a Prize-Collecting Steiner Tree on Graphs problem (see e.g. [19,20]). Given
a network G = (V, E) with positive (real) weights {wl : l ∈ E} on edges and
{wn : n ∈ V } on vertices, we are interested in finding the connected sub-network
that minimizes the following quantity:

C =
∑
links

wl − λ
∑

nodes

wn (1)

It is easy to see that such network must be a tree (links closing cycles can be
removed, lowering C). λ is a parameter regulating the balance between opti-
mization of the two terms of the sum.
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This problem is known to be NP-Hard, implying that is unlikely that an
algorithm that can efficiently solve any instance of the problem exists. To solve
it we will use a small variation of an extremely efficient heuristics based on
belief propagation developed on [14] that is known to be exact on many classes
of random networks [14,21]. The algorithm iterates the following set of equations
for the quantities {ψij}(ij)∈E (called ”messages”) to a fixed point:

ψt+1
ji (dj , pj) = −cjpj +

∑
(kj)∈E\(ij)

max
f(dk,pk,dj,pj) �=0

ψt
kj(dk, pk) (2)

where di ∈ D = {0, ..., D−1}, pi ∈ V (i)∪{∅}, ψji : D×V (i)∪{∅} → R and fij is
a characteristic function that ensures the condition pi = j ⇒ pj 
= ∅, dj = di − 1
defined as follows:

fij = gijgji

gij = (1− δpj ,i(1− δdi,dj−1))(1− δpj ,iδpi,∅)

On a fixed point, the following quantities (”field”) are computed:

ψj(dj , pj) =
∑

(kj)∈E

max
f(dk,pk,dj,pj) �=0

ψt
kj(dk, pk)

Then a tree T ∗ is built from the parenthood relations defined as follows: define
d∗j , p

∗
j = argmaxdj,pj ψj(dj , pj). Then if p∗j 
= ∅, define the parent of j as pj . Oth-

erwise, j does not belong to T ∗. With a minimal non-degeneracy assumption on
the initial fields, it is relatively straightforward to verify that with variables d∗j , p

∗
j ,

fij = 1 ∀(ij) ∈ E and this implies that T ∗ is indeed a tree. It can be proved in
some limit cases that the algorithm is optimal, and verified experimentally that it
generallygives an excellent approximation to the optimal. Formore details see [21].

2.2 Data Source and Definition of the Weights

The yeast protein interaction network (PIN) was built by combining data from
two databases : DIP [22] and MIPS [23]. The combined network has 5217 nodes
and 22637 edges. To define their weights, edges were divided in two categories: a
high confidence one, containing links extracted from small-scale experiments or
found many times; and a low confidence one, containing links found only once
in a large-scale experiment. We defined the two corresponding weights so as to
maximize the correlation of our weight set and the one of [24], giving a weight
wl = 1 for high confidence edges (24.9% of the PIN) and a weight wl = 1.74
for low confidence edges. The choice of this weight set as a reference is based on
the observation that it is one of the most reliable [25], and does not derive the
weights from expression data.

We analyzed 56 expressiondatasets from [26]. We computed node prizes for each
dataset in a classical way by taking wn = − log(pn), where pn is the p-value of
differential expression of node n in the corresponding microarray. Though, a high
prize was attributed to genes having a significant p-value in the expression data.
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The 56 datasets were analyzed independently with values of λ ranging from
0.05 to 0.9. The chosen root was the receptor protein STE2 in datasets compar-
ing cells submitted or not to pheromone α action. In datasets with an artificially
overexpressed gene under GAL4 promoter control, this gene was chosen as the
root. If the strain used contained deletions, the corresponding genes were re-
moved from the PIN prior to inference. In datasets comparing deleted strains to
wild type strains without exposition to pheromone, deleted genes were selected
as roots.

2.3 Statistical Analyses

Functional homogeneity of the trees inferred for each expression microarray and
each value of λ was assessed by comparing the number of GO Slim annotations
[27] shared by interacting proteins in the inferred Steiner trees, and random trees
with same root and size, with edges probabilistically weighted as in the real data
or not. Random trees were generated 50 times and results were averaged.

Steiner proteins were defined as proteins present in the Steiner tree with
wn < 1

λ : such proteins have a local cost to be added in the tree, which has
to be compensated. Enrichment of the inferred trees in proteins of interest was
estimated by comparison with random trees generated with permuted expression
data, for λ = 0.2 (30 iterations).

3 Results

Our algorithm infers an organism transduction network, using as a support the
PIN and expression data to find a Steiner tree maximizing the level of differen-
tial expression of its nodes (genes) and built preferentially with edges of high
confidence. The free parameter λ (see Mat. Meth.) regulates the balance between
optimization on the edges and on the nodes, and therefore regulates the tree size.
For each microarray given as input, the Steiner tree found is a representation of
the transduction network activated in the corresponding condition. The Steiner
trees representing transduction networks were inferred in 56 expression datasets
from a study about pheromone response [26], with 7 different values of λ. A
statistical description of the trees found is provided in Table 1. As expected,
both the frequency of high-cost links selected and the average tree size increase
with λ.

As an integrity check we analyzed the correlation between the tree size and
the average prize wn of the nodes in the datasets, which is a direct measure of the
numbers of genes differentially expressed on the microarray (Fig 1). As expected,
the average tree size increases both with λ and average node prize; indeed, this
second dependence even seems linear, a property that could be interesting to
detect anomalies in the inferred trees.

An averaged representation of the trees found for λ = 0.2 is given in Fig 2. Pro-
teins usually found as members of the pheromone response pathway are present,
such as FUS3, GPA1 or SST2; some missing intermediates appear for higher
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Table 1. Statistical properties of the trees inferred. One can see the evolution of the
average tree properties with increasing values of the parameter λ, notably the increase
in average tree size and decrease in the fraction of Steiner proteins found. The global
fraction of high-cost links in the PIN is 75.1%, notably higher than the fraction present
in the inferred trees.

λ Tree size Fraction of Fraction of
(# prot) high-cost edges Steiner proteins

0.05 1.5±1.1 0.034 0.471
0.1 9.7±15.8 0.058 0.295
0.2 85.0±123.1 0.273 0.248
0.3 173.2±222.8 0.345 0.233
0.5 337.3±363.7 0.389 0.213
0.7 478.5±450.6 0.404 0.198
0.9 612.7±516.2 0.407 0.188
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Fig. 1. This figure shows the strong correlation between the average node prize in each
dataset (x-axis) and the number of proteins found in the inferred tree (y-axis). Different
types of points correspond to different values of λ: vertical crosses λ = 0.05, diagonal
crosses λ = 0.1, stars λ = 0.2, empty boxes λ = 0.3, filled boxes λ = 0.5, empty circles
λ = 0.7, filled circles λ = 0.9. Note the linearity of the relation for each given value of λ.

values of λ. To assess the quality of the trees found, we computed the average
number of shared GO Slim annotations between neighbors, and compared it to
random trees, either weighted or not (Fig 3). the average number of common
annotations is higher for low values of λ (Fig 3), showing a clear functional en-
richment of the Steiner trees. Topology and PIN weights only account for a part
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Fig. 2. This tree is formed by the superposition of all 56 Steiner trees found for λ = 0.2.
Link intensity is proportional to the number of times the link was found, either in
one sense or another; in case of links inferred in different directions, the orientation
represented is the one mostly found. Links found in less than 30% of the trees are not
shown for clarity. Grey nodes represent the proteins involved in the known pheromone
pathway.

of this enrichment, shown by the simulations with random weighted trees, the
rest being a combined consequence of both the proteins and the paths selected
in the tree, which can thus be considered to represent biologically meaningful
transduction networks. For high values of λ, this enrichment is not visible, and
we will therefore focus on results at low λ.

Previous to analyses, a technical bias has to be accounted for. Due to differ-
ences in in-betweenness – or connectivity, see [11] –, certain proteins occur more
or less often in the Steiner trees. Indeed, proteins with a high in-betweenness in
the PIN tend to be frequently present in the Steiner trees, even if they are at-
tributed a low prize. From a probabilistic point of view, including these proteins
in the Steiner tree allows to gain access to proteins with a positive contribution to
the global tree cost, enough to compensate for their own relative costs. One can
see this trend in Fig 4: proteins selected more often have a high in-betweenness.
Still, this correlation is only partial (R2 = 0.37), and let ample space for other
factors to explain presence of certain proteins in the final trees.
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Fig. 3. Histogram of the average number of shared GO Slim annotations per link, on
average on all 56 inferred trees at a given value of λ. First histogram represents the
real values, second random weighted trees, and third random unweighted trees (See
Mat. Meth.). Note the high differences for low values of λ.

Table 2. Properties of the 11 putative Steiner proteins found the most frequently in
λ = 0.2 datasets. k stands for connectivity and ”In-bet.” for in-betweenness.

Gene name Protein name Frac. found Frac. found Ratio k In-bet. (x105)
(real data) (random data)

YBR160W CDC28 0.66 0.57 1.2 227 15
YDR388W RVS167 0.52 0.31 1.7 121 4.9
YHL048W COS8 0.45 0.09 5.0 46 0.63
YFL039C ACT1 0.45 0.17 2.7 47 1.1
YER118C SHO1 0.43 0.06 7.0 42 1.5
YJR091C JSN1 0.43 0.44 1.0 293 25
YCL040W GLK1 0.43 0.003 144 6 0.25
YBR159W IFA38 0.41 0.09 4.8 101 1.9
YGL181W GTS1 0.41 0.09 4.5 43 1.5
YPL181W CTI6 0.41 0.02 20.3 26 0.26
YMR059W SEN15 0.34 0.007 47.5 57 1.4
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Fig. 4. Number of times a protein appears as Steiner (in all trees inferred) vs in-
betweenness of the protein in the PIN. Note the correlation between them.

An interesting feature of our formalism is the definition of Steiner proteins, i.e
proteins present in the Steiner trees without being highly differentially
expressed. These proteins form bridges between groups of proteins with a posi-
tive contribution to the optimization criterion, and they could not be discovered
by analyzing only the expression levels in the microarray, as they do not differ
significantly from the background. Is is the combination of information from the
PIN structure and expression data that unveil them. In the following analyses
we focus on the Steiner proteins that appear at low values of λ, i.e those less
distinguishable from the background expression.

In order to quantitatively measure the significance of Steiner proteins, we did
a bootstrap experiment by generating Steiner trees for random expression data,
obtained by permutations of the real datasets. Then, we compared the frequency
of occurrence of proteins found very often as Steiner proteins in the real data to
their frequency of occurrence in this randomized data; the ratio of these quantities
was then used to assess the biological significance of the putative Steiner proteins
(see Table 2), a high ratio meaning biologically meaningful inference and a low
one typical of an artifact due to PIN topology and high in-betweenness bias.

Proteins with such a high ratio have an average in-betweenness (see Table 2).
Using this table, one can easily see that the proteins CDC28, JSN1 and RVS167
should not be accounted as Steiner proteins, based on the ratio value and their
very high in-betweenness. To get better insights about these proteins and their
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Fig. 5. Main first-order interactions of the proteins identified as Steiner proteins, λ =
0.2. Steiner proteins are shown in grey. Link intensity is proportional to the number of
times the link is found when protein is considered as Steiner. Only links found in more
than 50% runs are shown.

implication in the pheromone response as Steiner proteins, we looked which
partners they interact with. The partners found in more than half of the trees
are represented in Fig 5. Many interactants are membrane proteins, in particular
PRM proteins [28]. One interesting feature is that the Steiner proteins COS8 and
SHO1 seem to be strongly interacting, as ACT1 and GLK1 do either. We detail
these two cases in the following paragraphs.

GLK1 give access to the FIG1 protein, a membrane protein which has already
been implicated in the pheromone response and in particular in cell fusion [29].
Another protein implicated in the glucose metabolism, GTS1, is inferred as a
Steiner protein. As both these proteins are interacting with the actin protein
ACT1, one could hypothesize a cross-talk between pheromone response, glucose
metabolism and cytoskeleton structure. If role of the cytoskeleton in mating is
quite well-known, implication of the glucose metabolism is not, but could be a
sign of a global regulation of the cellular state previous to mating, as GTS1 is
also a known regulator of transcription.

COS8 is found at the end of the SST2-SHO1 cascade. SST2 is the regula-
tor of desensitization of the pheromone pathway, while SHO1 is the main cell
osmosensor and initiates various signaling pathways. The subtree found behind
COS8 is composed of membrane proteins and the fatty-acid elongase ELO1.
Moreover, COS8 interacts often with proteins involved in sphingolipid synthesis,
such as LAC1 and AUR1 (not shown in Fig 5 because they occur less than 50%
of the time). Finally, the main cascade leading to IFA38, a beta-keto reductase
implicated in fatty acid metabolism and also found as Steiner protein, is indeed
passing by COS8. The multiple interactions of COS8 with these proteins, ei-
ther membrane-spanning or located in the ER, allows to hypothesize that COS8
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plays a role in the secretory pathway – probably in relation with sphingolipid
synthesis– during pheromone response. Interestingly, COS8 is one but a member
of a very conserved gene family [30], and finding the function of COS8 could
help to understand the role of the entire family.

4 Discussion

In this work we presented an efficient strategy to infer structure relations from
sparse gene expression information and protein-protein interaction probabilities.
This approach is based on statistical physics principles, is scalable (completely
parallelizable) and is expected to be well-suited for large networks. The scheme
is highly efficient (the computation time scales as D|E| where |E| is the number
of edges of the protein network, and it normally suffices to take D = O(logN)
to achieve optimal values). This property allowed us to explore values of the
parameter λ and a large number of pathways very quickly, much faster than it
would have taken with complete algorithms and other available heuristics.

The main drawback of the approach resides in its input limitations, that is,
it cannot infer new interactions between proteins and must follow the structure
of the PIN given as input. This makes it difficult to apply our method to or-
ganisms where the PIN is unknown or poorly described, which is the case for
many organisms, such as human. However, this issue is becoming obsolete with
the rise of new experimental techniques in the proteomic fields. Moreover, there
are bioinformatic solutions that could be used in order not to be limited by this
problem. First, one could add in the PIN very high cost edges on a set of puta-
tive interactions. Analysis of the Steiner trees with increasing values of λ, may
allow to see, among the added edges, which are selected more frequently by the
algorithm, and thereby discriminate between them. Second, as the methods to
infer protein-protein interactions based solely on sequence become more efficient
(see e.g. [31]), it should be possible to develop an integrated framework where
protein interactions are inferred numerically before applying our methodology.

Our methodology, while using state-of-the-art computational techniques, is
able to infer quantitatively which Steiner proteins could play a role in a given
context, as represented by expression data. The network representation allows
a clear interpretation: specific interactions are predicted in defined conditions.
This type of predictions is easy to confirm experimentally by double-hybrid and
genetic experiments, making our methodology an invaluable input for wet labs.
Collaborations have indeed been started to experimentally test our predictions.
Moreover, our algorithm could be made still more efficient, by including genetic
or regulatory interactions in the base network or searching for protein com-
plexes instead of protein interactions. Developments in this sense, coupled with
experimental validations of our predictions, will finally allow the development
an integrated message-passing framework for systems biology, in direct contact
with experimental data and labs.
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Abstract. The formal analysis of the toggle switch, which is among
the most common motifs of genetic networks, shows that along with the
powerful development of mathematical modelling, formal methods can
be of great help in investigating the properties of genetic networks. In
particular, a general approach to modelling genetic networks through the
language of higher-order logic is advanced and mechanised in the theo-
rem prover Isabelle. An inductive definition provides a formal model for
the genetic toggle as the set of all possible evolutions of such network.
Gene polymerase and protein concentration are formalised as primitive
recursive functions. The main properties of the genetic toggle are con-
firmed upon the model: it is possible that one protein exceeds a stated
concentration threshold and the other protein does not; it is impossible
that both proteins exceed their respective concentration thresholds at
the same time. To the best of the authors’ knowledge, this is the first
contribution of theorem proving in the area of genetic network analysis,
and as such may set the foundations for a new niche of research.

1 Introduction

Genes function in highly interconnected, hierarchical, and nonlinear chemical
networks. Representing interactions between biological molecules as a network
provides us with a conceptual framework that allows us to identify general prin-
ciples that govern these complex systems. A network is best represented as a
graph that is made up of nodes, which denote the components, and links, which
denote the interaction between the components. In a genetic or transcriptional
regulatory network, nodes represent DNA binding proteins or target genes and
directed edges represent regulatory interaction where the protein regulates the
expression of the target gene. A meaningful approach to investigate biological
networks is the identification of network motifs. Motifs can be defined as a set
of network nodes with specific molecular functions which are arranged together
and perform some ’useful’ processes. The behaviours of motifs are generally not
separable from the rest of the system and they constitute only part of a recogniz-
able systems level function. There are several known motifs in genetic networks
for example toggle switches, amplitude filters, oscillators, frequency filters, noise
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filters and amplifiers, combinatorial logic, homeostats, rheostats, logic (e.g. see
[1,2,3,4]). The first step of the analysis of a network motif is to model the process
of gene expression, i.e. the process through which the RNA polymerase produces
mRNA molecules from a DNA template, and the process of protein synthesis,
which is the formation of proteins from an mRNA template. The mathematical
description of the variation of biomolecular concentrations may be based on a
set of differential equations (ODE) or on stochastic simulations by means of the
Gillespie algorithm [5]. The differential equations approach is effective in de-
scribing the average behaviour of the reaction set and allows to incorporate non
linearities; instead, the stochastic approach provides a more realistic approach
because, in many cases, in the cellular environment, the number of molecules
tend to be small and concentrations may fluctuate. For example, using the ODE
approach, the rate of change of mRNA (R) and of protein (P) concentrations
depend on the formation λ and the degradation δ rates and can be written as:

dR

dt
= λR − δRR ;

dP

dt
= λP R− δP P

The steady-state solutions of the equations are:

R̃ =
λR

δR
; P̃ =

λP

δP R
=

λRλP

δRδP

The most important and ubiquitous motif network is the toggle switch, which
consists of two genes, each of which produces a protein that represses the tran-
scription of the other gene. The toggle can be described by a system of cou-
pled nonlinear differential equations, which are usually very difficult to solve
exactly, leaving us to two choices: either solve the system numerically or find
some kind of approximate solution. A stochastic implementation always results
in intensive simulations. If we consider a network with a large number of genes,
the mathematical analytical treatment becomes impossible and the stochastic
simulation computationally very intensive. Therefore, methods that provide a
different, complementary understanding of the behaviour of biological networks
are greatly needed, and formal methods are good candidates. Some of them come
with compelling computer support, which turns out particularly useful also when
reasoning about biological problems. For example, this is the case with the use
of model checking techniques in this area, a synergy that has produced signifi-
cant findings in the last years. A non-exhaustive account on such findings would
have to mention the seminal paper where a genetic network is simplified into a
finite-state machine amenable to model checking [6]. Then, the account should
cover the first complete application to a paradigmatic case study, the genetic
toggle, where the language of linear-temporal logic is used to express the main
properties of the network [7]. There are also more recent developments (omitted
here due to space limitations).

Theorem proving is another popular computer-assisted technology to exceed
the limitations of pen-and-paper reasoning. Its comparison to model checking,
which lies beyond our focus, has notoriously been the subject of vast research.
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In brief, model checking excels for the limited amount of human intervention,
which makes it particularly appreciated in the industrial world, but can only
handle systems of limited size [8]. By contrast, theorem proving typically reaches
outstanding levels of detail in the expression of a system of unbounded size and
of its properties, but requires more human intervention [9].

The main contribution of this paper is to lay the ground for the use of theo-
rem proving in the field of biological problems such as genetic network analysis.
To our knowledge, the potentialities of theorem proving in improving our under-
standing of genetic networks have never been explored before. Our findings are
promising. A genetic network is formalised by mathematical induction as the set
of all its possible evolutions, which in the real world are determined by stochastic
factors. Such factors may safely be abstracted away because, whatever network
evolution they may cause, that evolution is certain to belong to the inductive
model of the genetic network. Invariant properties of the model therefore apply
to the real network. Our inductive model of a genetic network is qualitative as it
provides an operational semantics of the network. In particular, gene polymerase
and protein concentration are defined by primitive recursion. All definitions are
fed to the interactive theorem prover Isabelle [9], which supports the verification
of properties of the model. This paper studies the genetic toggle to demonstrate
the accuracy and expressiveness of the approach we propose.

The organisation of this manuscript is simple. A very brief outline of Isabelle
(§2) precedes the description of our approach to formally analysing genetic net-
works (§3). Then, the genetic toggle is modelled and verified as a case study
(§4). Some concluding remarks terminate the presentation (§5).

2 Isabelle

Isabelle is a generic, interactive theorem prover. Generic means that it can reason
in a variety of formal systems. This paper refers to Isabelle/HOL [9], which
supports the formal language higher-order logic, a typed formalism that allows
quantification over functions, predicates and sets, but has no temporal operators.
Interactive means that it is not entirely automatic and, rather, requires a good
amount of human intervention. But Isabelle also provides much automation. Its
simplifier, which can be invoked by the proof method simp, combines rewriting
with arithmetic decision procedures. Its automatic provers can solve most simple
proof scenarios. For example, the proof method blast implements a fast classical
reasoner, and auto combines that with the simplifier.

Proofs are conducted interactively. In a typical proof, the user directs Isabelle
to perform a certain induction and then to simplify the resulting subgoals. Any
surviving subgoals may be given to an automatic prover or be reduced to other
subgoals by means of some lemma. Failure to find a proof for a conjecture may
simply mean that the user is not skilled enough; otherwise, it may exhibit what
in the modelled system contradicts the conjecture and hence help in locating a
system bug or an erroneous human intuition. The command list used to prove a
theorem can be seen as a proof sketch. Confidence that the proof is sound comes
from inspecting the line of reasoning adopted and the lemmas it requires.
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3 Formal Analysis of Genetic Networks

Our approach to modelling genetic networks is inspired to an existing model of
security protocols [10], and is mechanised in the theorem prover Isabelle. An
inductive definition provides an operational semantics for the computer network
underlying the distributed execution of a security protocol. The computer net-
work is qualitatively seen as the interaction of agents who exchange the protocol
messages, and hence our idea to view a genetic network as the interaction of
genes and proteins who exchange some signals.

Our presentation proceeds by defining the basics of a general model of genetic
networks, which can then be used to tackle any case study. Due to space limita-
tions, the subsidiary lemmas about the general model, which, as is typical with
theorem proving, assess its correctness, must be skipped. Likewise, a didactic
example of how to model a simple network cannot be presented, but an example
of realistic size is given in the next Section.

Following the observation that the main agents of a genetic network are genes
and proteins, they are introduced as free types, that is as type declarations:

typedecl gene

typedecl protein

We model four main events that may take place in a genetic network. As a
start, what a gene may do is to code a protein. A protein may in turn either
trigger or inhibit a gene expression. Proteins may also diffuse in the cell volume
and be degradated (misfolding and ubiquination) before they succeed in regu-
lating a gene. These four events are respectively formalised by the four keywords
Produces, Triggers, Inhibits and Degrades, which are introduced as type con-
structors of the datatype event. It can be seen how each type constructor takes
two freetypes as parameters, except for the protein degradation event, which, as
expected, only takes one:

datatype
event = Produces gene protein |

Triggers protein gene | Inhibits protein gene |

Degrades protein

For example, the event Triggers A b is defined in our language, indicating the
act of a protein A that induces a gene b to express its protein. The details or
intermediate steps underlying each event, such as transcription to RNA, are
hidden behind each event. An operational semantics only expresses what event
takes place rather than specifying how each event is carried out. The datatype
may of course be extended in the future to capture additional network events.

We continue by modelling the main condition for a gene to express a protein,
that is the gene level of polymerase. It is assumed that all genes have some
positive polymerase level since the very beginning of the observation, so that
they can begin expressing their proteins. Such initial polymerase is introduced
as constant for all genes for simplicity:

consts initialpolymerase :: int



100 G. Bella and P. Liò

Specifying different initial polymerases for the genes would be trivial as the
constant just introduced would gain an extra parameter of type gene.

The requirement that the initial polymerase is strictly positive can be easily
introduced as an axiom of our model:

axioms initialpolymerase_value [iff]: initialpolymerase > 0

The [iff] declaration tells both the simplifier and the classical reasoner of
Isabelle that axiom named initialpolymerase value can automatically be ap-
pealed to in solving the subgoals that may arise from subsequent proof attempts.
For example, it may lead a set of facts to a desired absurd when the proof strat-
egy proceeds from the falsification of the thesis.

The polymerase clearly is a dynamic value. It is influenced by the events that
proteins carry out, which are triggers or inhibitions, as defined above. Therefore,
such induced polymerase can be easily declared as:

consts inducedpolymerase :: gene ⇒ event list ⇒ int

The second parameter introduces the list of events that have taken place, which
modify the induced polymerase. It may be currently obscure where such a list
comes from, but the rest of the treatment will show how it can be effectively
defined by mathematical induction. The function modelling the induced poly-
merase can be defined by primitive recursion on the structure of the list of events
that is considered. It is useful to remind that Isabelle’s lists are built from right
to left, that [] denotes the empty list, and that # is the list cons operator:

primrec
inducedpolymerase x [] = 0

inducedpolymerase x (head#rest) = (case head of

Produces y Y ⇒ inducedpolymerase x rest

| Triggers Y y ⇒ if x=y then inducedpolymerase x rest + 1

else inducedpolymerase x rest

| Inhibits Y y ⇒ if x=y then inducedpolymerase x rest - 1

else inducedpolymerase x rest

| Degrades Y ⇒ inducedpolymerase x rest

)

The primitive recursive definition consists of two equations. The first, which is
for the base case, is very simple as it states that the polymerase that an empty
list of events induces upon a gene x is zero. Intuitively, because no events are
available in this case, they induce no variation upon the polymerase. The second
equation is the inductive step, as it considers a list of events of which the head
event head is emphasized. The equation contains a case analysis deriving from
each of the four possible events that may get instantiated as head. The first and
last line of the case analysis respectively make sure that a gene expression of a
protein and a protein degradation do not change the polymerase that the rest of
the list rest induces upon the generic gene x. To describe it with the terminology
of term rewriting, the expression inducedpolymerase x (head#rest) is evaluated
as inducedpolymerase x rest, confirming that the head event just cancels itself
out during the symbolic evaluation.
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The two internal lines, respectively Triggers Y y and Inhibits Y y, are per-
haps more interesting. Let us begin by studying the former. It resolves into an
if-then-else expression whose condition is that the generic gene y that the event
considers be exactly the gene x whose induced polymerase is being evaluated.
Only if this check is true does the evaluation resolve into inducedpolymerase x

rest + 1, which in our qualitative approach is to be interpreted as a generic
increase of the polymerase that the rest of the list rest induces upon gene x (of
course, a symbolic parameter might be used instead of the unit). Otherwise, the
symbolic evaluation just skips head, returning inducedpolymerase x rest. The
other line can be interpreted similarly, but an Inhibits Y y event should induce
a decrease over the polymerase of the gene, and this is expressed by the - 1 (or
minus some parameter instead).

Having defined the initial and the induced polymerase, the current polymerase
can be introduced as a sum of the two. The declaration must account for two
parameters due to the induced polymerase. The definition is simple, and can be
introduced compactly by Isabelle’s constdefs command as follows:

constdefs
currentpolymerase :: gene ⇒ event list ⇒ int

currentpolymerase x nt == initialpolymerase + inducedpolymerase x nt

It can be seen that the current polymerase has a static part, which was available
initially, and a dynamic part induced by the events in the considered list.

The codomain of our functions for the polymerase is int rather than nat,
which might have been more intuitive. Our choice is determined by the primitive
recursive definition of the induced polymerase seen above, which decreases the
current value when an appropriate inhibition event is evaluated. For example,
the polymerase induced over a gene by a list of inhibition events on that gene
is a negative value. It may be interpreted in the model as extra incapacity to
express the protein. In consequence, also the other two polymerase functions
must return an integer to avoid type clashes. Alternatively, the definition of
the induced polymerase should have accommodated the extra case analysis that
protein inhibition decreases the induced polymerase if and only if it is not already
zero. We made the simpler modelling choice.

Turning our focus to proteins, the concentration appears to be the main pre-
requisite to a protein activity. A protein typically begins to inhibit or trigger
genes depending on whether its concentration exceeds some threshold. The same
mechanisms used above can be adopted here to define the concentration:

consts
concentration :: protein ⇒ event list ⇒ int

primrec
concentration X [] = 0

concentration X (head#rest) = (case head of

Produces y Y ⇒ if X=Y then concentration X rest + 1

else concentration X rest

| Triggers Y y ⇒ concentration X rest

| Inhibits Y y ⇒ concentration X rest
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| Degrades Y ⇒ if X=Y then concentration X rest - 1

else concentration X rest

)

The definition insists that the concentration be initially zero. The inductive step
provides the symbolic evaluation of the concentration of a generic protein X over
a list of events whose head event is head. The first line of the case analysis states
that when head exactly is a production event of protein X, then the concentration
increases by being evaluated as concentration X rest + 1. The last line follows
the same pattern to make sure that when the protein degrades its concentra-
tion decreases. The two central lines leave the symbolic evaluation unaltered by
skipping the head event.

A first version of this definition decreased the concentration also in the cases
of trigger or inhibition events to signify that a protein that binds to a promoter
of a gene is no longer available. However, it was later preferred to simplify it as
it now stands with a negligible overhead: making sure that a trigger or inhibition
event is always followed by a degradation event. This proviso must be accounted
for when defining the network, as we shall see below.

The remark made about the int codomain also applies here: it is a technical
requirement of our formalisation. Although no negative concentration exists in
the real world, it may be interpreted in the model as extra distance from a
required threshold. Alternatively, it may be removed by adding a case study to
the symbolic evaluation of the concentration in case of a degradation event.

Note that only one function suffices to define the concentration because we are
assuming that the concentrations of all proteins be initially zero. Removing this
assumption would be costless, resembling the pattern of the definitions intro-
duced for the polymerase, that is to introduce an initial value, then an induced
value and finally the current value.

4 A Case Study: The Genetic Toggle

The toggle switch is a cyclic digenic system (say genes g1 and g2) with negative
feedbacks between the genes through the negative regulation of their proteins.
A simple way to model the regulatory control of a protein on a gene is to modify
R by considering the binding properties of the protein on a gene, σ1 or σ2. In a
toggle switch network we would expect the system to exhibit two mutually ex-
clusive behaviours - either g1 is high, keeping expression of g2 low, or conversely,
g2 is high, keeping expression of g1 low. The toggle can switch from one stable
state to the other by means of an external signal. Noteworthy, the toggle is at
the core of the synthetic biology [11]. For simplicity, we assume that the switch
is composed of symmetric elements so that the rate constants are identical for
each half of the network and the mathematical model takes the form:

dR1

dt
= λRσ1 − δRR ;

dR2

dt
= λRσ2 − δRR

dP1

dt
= λP R1 − δP P1 ;

dP2

dt
= λP R2 − δP P2
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Here, the λs and δs respectively are formation and degradation parameters. The
numerical solution of this set of equations provides the determination of the two
steady-state thresholds of proteins P1 and P2, which depend upon one another
(see also [1]). The set of equations identifies curves that are called nullclines and
their intersection is called equilibrium point. Although recent methodological
developments have made it possible to estimate rate constants from experimental
observations such as microarray data [12], from a qualitative perspective the
identification and characterization of the presence of a toggle switch may come
from the formal analysis of the behaviour of the system, as we shall see below.

4.1 Modelling the Genetic Toggle

The general model of genetic networks introduced above can be demonstrated
upon the genetic toggle. Few additional definitions are necessary for this specific
example. As our approach is qualitative, we abstract away the formation and
degradation parameters seen above.

The pair of threshold concentrations of a protein can be introduced as a
function parameterised over the integers and the proteins:

consts
threshold :: nat ⇒ protein ⇒ int

axioms
threshold_1A_less_2A [iff]: threshold 1 A < threshold 2 A

threshold_1B_less_2B [iff]: threshold 1 B < threshold 2 B

threshold_1A_pos [iff]: threshold 1 A > 0

threshold_1B_pos [iff]: threshold 1 B > 0

By having the integers (rather than the booleans) as a parameter, our declara-
tion also supports more than two thresholds. The axioms formalise the typical
requirements for this case study.

We define the total concentration of proteins that can be produced as the sum
of the two higher thresholds. Because we omit naming the function definition,
Isabelle assigns the default name totalproteins_def.

constdefs
totalproteins :: int

[iff]: totalproteins == threshold 2 A + threshold 2 B

The model for the genetic toggle can be now defined inductively as follows:

inductive set network :: event list set where

base: [] ∈ network

| aprA: [[ nt1 ∈ network; currentpolymerase a nt1 > 0;

concentration A nt1 + concentration B nt1 < totalproteins ]]
=⇒ Produces a A # nt1 ∈ network

| bprB: [[ nt2 ∈ network; currentpolymerase b nt2 > 0;

concentration A nt2 + concentration B nt2 < totalproteins ]]
=⇒ Produces b B # nt2 ∈ network
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| Ainb: [[ nt3 ∈ network; concentration A nt3 ≥ threshold 1 A ]]
=⇒ Degrades A # Inhibits A b # nt3 ∈ network

| Aina: [[ nt4 ∈ network; concentration A nt4 ≥ threshold 2 A ]]
=⇒ Degrades A # Inhibits A a # nt4 ∈ network

| Bina: [[ nt5 ∈ network; concentration B nt5 ≥ threshold 1 B ]]
=⇒ Degrades B # Inhibits B a # nt5 ∈ network

| Binb: [[ nt6 ∈ network; concentration B nt6 ≥ threshold 2 B ]]
=⇒ Degrades B # Inhibits B b # nt6 ∈ network

| dgrA: [[ nt7 ∈ network; Produces a A ∈ set nt7 ]]
=⇒ Degrades A # nt7 ∈ network

| dgrB: [[ nt8 ∈ network; Produces b B ∈ set nt8 ]]
=⇒ Degrades B # nt8 ∈ network

The base case sets the base of the induction. The last two inductive rules model
a stochastic degradation of a protein, as they may fire any time provided that
the protein was produced. The remaining rules model the distinctive features of
the genetic toggle. Rules aprA and bprB produce proteins A and B respectively
upon condition that the polymerase of the involved gene is positive and that
the total concentration of proteins has not been reached. Then, four inhibition
rules follow, all with the same structure enforcing the proviso that a protein
degrades after it links to a gene. Precisely, rules Ainb and Bina state that a
protein inhibits the other gene when the protein concentration exceeds its first
threshold. Rules Aina and Binb state that a protein inhibits its own gene when
the protein concentration exceeds its second threshold.

4.2 Verifying the Genetic Toggle

As a start, following the axioms defining the thresholds, we can prove that also
the second thresholds are positive:

lemma threshold_2A_pos: threshold 2 A > 0

apply (blast intro: less_trans)

done

lemma threshold_2B_pos: threshold 2 B > 0

apply (blast intro: less_trans)

done

These lemmas are sometimes useful below. Each can be proved by a single in-
vocation to the classical reasoner, the blast method, with an appeal to lemma
less_trans, which confirms the transitivity of the less relation.

Having observed the model of the genetic toggle, our first conjecture was that
whenever a gene produces a protein, the polymerase of the gene must be positive.
This can be formalised as follows:

lemma aprA_cp: [[ Produces a A ∈ set nt; nt ∈ network ]] =⇒
currentpolymerase a nt > 0
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Precisely, the statement insists upon two preconditions: one is that nt is a net-
work list of the model toggle network ; the other one is that the event Produces

a A appears in nt. The conclusion is that the current polymerase of gene a in
the network list nt is positive. Note Isabelle’s meta implication “=⇒”, not to be
confused with object-level implication “−→”.

We begin proving this conjecture, which is the goal of our proof attempt,
by bringing the main premise into the inductive formula. This can be done by
Isabelle’s method erule, which applies resolution of the goal with the stated
theorem, reverse modus-ponens rev_mp in this case, and then eliminates the
preconditions that were necessary to the application:

apply (erule rev_mp)

As a result, Produces a A −→ currentpolymerase a nt > 0 becomes the conclu-
sion of the proof goal. Structural induction can be applied now, which precisely is
the resolution of the current proof goal with the network.induct theorem that Is-
abelle builds automatically to reflect the inductive structure of constant network
(it is very long but can be viewed by interacting with Isabelle):

apply (erule network.induct)

Our goal is now split up into 9 subgoals, one per each rule defining network.
We can apply the simplifier to all goals by the method simp_all but three sub-
sidiary lemmas proved earlier (omitted here) must be invoked as rewrite rules
for symbolic evaluation of the current polymerase function over network events.
Note that currentpolymerase_Triggers is unnecessary because the genetic toggle
features no trigger events.

apply (simp_all add: currentpolymerase_Produces

currentpolymerase_Inhibits

currentpolymerase_Degrades)

oops

By inspecting the resulting proof state, we realise that the proof cannot be
terminated and hence the oops command tells the prover to leave it and proceed.
The proof state, consisting of two subgoals, can be analysed from Figure 1.

In general, the inability to prove a conjecture may be due to insufficient skill
of the human analyser, or to falseness of the conjecture. The proof state confirms
that the latter applies here. It can be seen that the conclusion of each subgoal
cannot be proved upon the available preconditions — the second one in each
subgoal being the inductive hypothesis. The subgoals take our attention upon
the rules that cause them, Aina and Bina, which are the only rules that inhibit the
very gene a mentioned in the conjecture and therefore decrease its polymerase.
Hence, the subgoals highlight two counterexamples to the conjecture: one is a
network list where the polymerase is positive and then a is inhibited by firing of
the rule Aina ; the other one is analogous but involves firing of the rule Bina.

So, we decided to weaken the conjecture by involving only network lists whose
last event (i.e. the head event) is a gene production. Using the predefined function
hd to extract the head of a list, this can be formalised and proved as follows:
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Fig. 1. The final proof state of a conjecture

lemma aprA_cp: [[ Produces a A = hd(nt); nt ∈ network ]] =⇒
currentpolymerase a nt > 0

apply (erule rev_mp)

apply (erule network.induct)

apply (simp_all add: currentpolymerase_Produces)

apply (simp add: currentpolymerase_def)

done

The proof terminates, so that the conjecture holds. The script needs an extra
application of the simplifier to solve the subgoal deriving from rule base, which
is Produces a A = hd [] −→ 0 < currentpolymerase a [], because the prover
needs to evaluate the head of an empty list, unlike in the previous proof attempt.
However, this subgoal can be solved straightforwardly by unfolding the definition
of the current polymerase, which obtains the required postcondition by positive-
ness of the initial polymerase (axiom initialpolymerase_value, §3). Moreover,
only the rewrite rule currentpolymerase_Produces is necessary in the main sim-
plification step because the theorem precondition Produces a A = hd(nt) only
requires symbolic evaluation of the current polymerase over production events,
as it rules out all other events.

Our primary aim is to prove the main property of the genetic toggle, which is
bistability. We address as bistabilityA the situation in which protein A exceeds its
second threshold but protein B does not; as bistabilityB the opposite situation
where protein B exceeds its second threshold but protein A does not; and as
instability the situation in which both proteins exceed their respective second
thresholds. Therefore, proving bistability evaluates to proving that:
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the network may evolve to bistabilityA; the network may evolve to bista-
bilityB; the network may not evolve to instability.

Isabelle is best tailored to proving safety properties, that is invariants of all
network lists. Hence, we set about the first two properties by attempting to
prove that they fail to hold, that is that the network may not evolve to either
bistabilityA or bistabilityB. The prover will exhibit the counterexamples we are
looking for, if these exist.

Here is the conjecture that bistabilityA may not be reached and its (failed)
proof attempt:

theorem no_bistabilityA: nt ∈ network =⇒
¬ (concentration A nt ≥ threshold 2 A ∧

concentration B nt < threshold 2 B)

apply (erule network.induct)

apply (insert threshold_2A_pos)

apply auto

oops

After applying induction, lemma threshold_2A_pos is inserted in the first sub-
goal, which arises from rule base — simplifying that subgoal without inserting
that lemma would leave threshold 2 A ≤ 0 −→ ¬ 0 < threshold 2 B. Then,

Fig. 2. Proving that bistabilityA may be reached
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Fig. 3. Proving that bistabilityB may be reached

the auto method leads to a proof state, shown in Figure 2, that cannot be ter-
minated. It features subgoals arising respectively from rules where protein A is
produced (aprA) or B degraded (Bina, Binb and dgrB). Each subgoal describes
one of the counterexamples we were seeking to establish that bistabilityA may
be reached. For example, the second subgoal describes a network list where A ’s
concentration exceeds its second threshold, while B ’s concentration equals its
second threshold, and hence the firing of rule Bina, where B degrades, clearly
falsifies the main conjecture.

The reasoning about bistabilityB is analogous. Here is the conjecture that
bistabilityB may not be reached and its (failed) proof attempt:

theorem no_bistabilityB: nt ∈ network =⇒
¬ (concentration A nt < threshold 2 A ∧

concentration B nt ≥ threshold 2 B)

apply (erule network.induct)

apply (insert threshold_2B_pos)

apply auto

oops

The final proof state, shown in Figure 3, cannot be terminated. It has subgoals
arising respectively from rules where protein B is produced (bprB) or A degraded
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(Ainb, Aina and dgrA). Each subgoal describes one of the counterexamples we
were seeking to establish that bistabilityB may be reached. For example, the first
subgoal describes a network list where A ’s concentration is less than its second
threshold, while B ’s concentration equals its second threshold minus 1, and hence
the firing of rule bprB, where B is produced, clearly falsifies the main conjecture.

The final step is to prove that instability is impossible as:

theorem no_instability: nt ∈ network =⇒
¬ (concentration A nt > threshold 2 A ∧

concentration B nt > threshold 2 B)

apply (erule network.induct)

apply (insert threshold_2A_pos)

apply auto

done

5 Conclusions

We have formally analysed the genetic toogle by theorem proving and estab-
lished its main correctness property, bistability: proteins may prevail against
each other, but never at the same time. The toggle had already been studied by
model checking [7]. This method simplifies the toggle as a finite state machine
so that the model checker can exhaustively search the state space, whose size
is inversely proportional to the speed of the search. A temporal logic is used to
express the property that a protein may prevail on some path in the state space.
Our approach requires more intervention to the human analyser but scales up
to systems of unbounded size. Not only is this claim supported by experience
from other application areas [10], but also by the very nature of an inductive
proof. The theorem prover only helps the human check a conjecture against
each inductive rule defining the model. Also, the language of higher-order logic
implemented in Isabelle/HOL is most expressive for the properties of the toggle.

Our contribution therefore is the first investigation about the use of theorem
proving to formally analysing genetic networks. The motivation for taking this
approach lies in the mathematical complexity of even small genetic networks.
Noteworthy, besides genetic (i.e. transcriptional regulatory) networks, many dif-
ferent types of biological networks exist, such as the protein interaction networks
where nodes represent proteins and links represent physical interaction between
the proteins, and metabolic networks where nodes represent small molecules and
links represent direct enzymatic conversion between the small molecules. The
mathematical modeling of such interaction heterogeneity may scale up quickly
with the number of components and of interaction types, but formal methods
offer a complementary, complexity-reducing approach.

Moreover, formal methods have a dialectic relationship with mathematical
methods. Highly automatic methods based on model checking may take the
analysis of genetic networks well beyond the world of mathematicians, for ex-
ample by reaching industrial worlds where such methods are widely adopted.
Typically, the human launches the checker on a property and waits for its out-
put, which is only either positive or negative. This paper makes the case for
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highly expressive theorem proving, which is expected to open the field of genetic
network analysis to the world of pure logicians. Typically, the human develops
the proof of a property with the help of the prover, and then anyone can inspect
and self-evaluate that proof. The formal analysis of biological problems has only
just begun.
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Abstract. Elevated temperatures cause proteins in living cells to mis-
fold. They start forming larger and larger aggregates that can eventually
lead to the cell’s death. The heat shock response is an evolutionary well
conserved cellular response to massive protein misfolding and it is driven
by the need to keep the level of misfolded proteins under control. We con-
sider in this paper a recently proposed new molecular model for the heat
shock response in eukaryotes, consisting of a temperature-induced acti-
vation mechanism, chaperoning of misfolded proteins and self-regulation
of the chaperon synthesis. We take in this paper a control driven ap-
proach to studying this regulatory network. We modularize the network
by identifying its main functional modules. We distinguish three main
feedback loops. The main question we are addressing is why is this level
of complexity needed for implementing what could in principle also be
achieved with an open-loop design. We answer the question by compar-
ing the numerical behavior of various knockdown mutants where one or
more feedback loops are missing. We also discuss a new approach for a
biologically-unbiased model comparison.

1 Introduction
Decomposing large biological networks. Much experimental and theoret-
ical effort is invested nowadays in compiling large, system-level models for bio-
chemical processes, including regulatory networks, signaling pathways, metabolic
pathways, etc. Models can encompass many thousands of reactants and reac-
tions, see [2]. On this scale, understanding the details of the network, especially
the interactions among its various parts, or even noticing a high-level functional
separation in the network become considerable challenges. Recognizing that sim-
ilar problems are also encountered in engineering (and elsewhere), see [3], one
strategy towards a system-level understanding of a biological network is to adapt
to systems biology specific methods coming from engineering sciences, in par-
ticular from control theory, see [6], [7], [10], [14], [15], [16], [17]. Distinguishing
among the main functional modules of a biological network and identifying their
individual contribution to the overall behavior can provide great insight into
the basis of its reactivity and efficiency. Using a control-driven approach, one
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often aims to identify the main regulatory components, including feedback and
feed-forward mechanisms. To disentangle their individual contribution to the
network, knockdown mutants are often considered, see [13]. Such mutants, lack-
ing one or more of the regulatory components, are then numerically compared
in an effort to identify and quantify the exact contribution of each component.

A new approach for model comparison. Comparing alternative compu-
tational models for a biological process is in general a difficult problem, where
one has to consider the differences in the underlying reaction network, biological
assumptions, kinetics, and initial conditions. When comparing alternatives that
are submodels of a larger model, e.g., as in the case of a functional analysis of
the various modules in a large network, the problem is somewhat simpler: the
underlying reaction networks are very similar (albeit not identical), the biolog-
ical constraints are the same (given by those of the reference model), and the
kinetics of the reactions are the same (given by the reference model). The main
question is that of how to choose the initial numerical setup of each model (the
initial values of all variables in the models) in such a way that the comparison
is unbiased and identifies intrinsic differences in the structure of the models.
One approach, related to a technique of mathematically controlled comparison,
see [1], is to start from the initial values of the corresponding variables in the ref-
erence model, see [13] for a case study using this approach. While this approach
is mathematically well-founded, it may in fact lead to biased comparisons in the
case of biological processes. Especially in the case of regulatory networks, models
are assumed to be at steady state in the absence of the trigger of the response.
Initial values are often chosen in such a way that the reference model is in steady
state in the absence of the stimulus. However, imposing the steady state condi-
tion to the initial values of the reference model does not imply in general that
a submodel will also be at steady state using the same initial values. As such,
the behavior of the submodel will in fact exhibit the combined behavior of two
different efforts: that of migrating from a possibly unstable state and, perhaps
simultaneously, that of responding to a specific stimulus. Questions related to
the speed of the response or its effectiveness may thus get misleading answers. If
the response to the stimulus of various different submodels is to be compared, we
argue in this paper that a different approach yields biologically unbiased results.
We propose an approach where the kinetics and the mass constants of the sub-
models are taken from the reference model. The initial distribution of reactants
among their various forms is however different from model to model and it is
chosen in such a way that the initial setup of each model forms a steady state of
that model in the absence of the stimulus. In particular, this approach allows to
consider each of the submodels as a viable alternative model to the biochemical
process of interest.

Our case study: the heat shock response. We choose a recently proposed
model for the eukaryotic heat shock response, see [11] and [12], as a case study
for the model comparison method that we propose. The model is attractive for
the purpose of this paper because on one hand, it is relatively small, with only
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ten reactants and twelve reactions, while on the other hand it contains a rather
intricate control mechanism, with three different feedback mechanisms. We an-
alyze all eight knockdown mutants obtained by combining the three feedbacks
and identify their individual contribution to four performance indicators of the
reference model.

2 The Heat Shock Response in Eukaryotes

Molecular model. The main role in the response is played by the heat shock
proteins (hsp). They act as chaperons for the misfolded proteins (mfp), by forming
hsp: mfp complexes and assisting them to refold. In the model recently introduced
in [12], the heat shock response is controlled by regulating the transactivation of
the hsp-encoding genes. The transcription process for these genes can start only af-
ter some transcription factors, called heat shock factors (hsf), trimerize (hsf3) and
then bind to some particular DNA sequences, called heat shock elements (hse),
which are the promoters of the hsp-encoding genes. The binding of a trimer hsf3
to a heat shock element is denoted by hsf3: hse. As an intermediary step before
trimerization, the heat shock factors go first through a dimerization stage, when
they form hsf2 complexes. Once the trimers hsf3 are bound to the promoter sites,
the transcription and translation of the hsp-encoding genes can start, leading even-
tually to the formation of new hsp molecules.

When the level of hsp is high enough, the transcription process is turned off
through a cunning self-regulating mechanism. The hsp proteins sequestrate the
heat shock factors hsf in three ways: by binding to free hsf, by breaking dimers
and trimers, as well as by unbinding hsf3 from the DNA promoter sites and,
at the same time, breaking the trimer hsf3. As a consequence, the heat shock
factors are bound in hsp: hsf complexes and thus they are unable to form trimers
anymore, turning off in this way the transcription of the hsp-encoding genes. As
soon as the temperature is increased, proteins start misfolding, driving hsp away
from hsf. Thus, hsf proteins are free and available to trimerize and bind to hse,
promoting the synthesis of new hsp proteins. If the level of hsp becomes high
enough, hsp unbinds hsf3 from hse and again sequesters the majority of hsf into
hsp: hsf, thus turning its own synthesis off. The molecular model for the heat
shock response proposed in [12] is shown in Table 1.

Model assumptions. For the sake of simplicity, the molecular model of [12]
includes several reductions. For instance, even though in a cell there exist several
types of slightly different heat shock proteins, see [8], in this model they are
all treated uniformly, with hsp 70 as base denominator. Similar conventiones are
taken also for hse and hsf. The model does not differentiate either among different
other types of proteins present in a cell. From the point of view of the heat shock
response, the only relevant feature is whether they are correctly folded, in which
case they are gathered under the name prot, or misfolded, in which case they
are called mfp. Some of the cellular mechanisms, such as protein synthesis and
protein degradation, are also greatly simplified in the model. We refer to [12] for
a detailed discussion on this issue.
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Table 1. The molecular model for the eukaryotic heat shock response proposed in [12]

Reaction Reaction name

2 hsf � hsf2 (hsf dimerization) (1)

hsf + hsf2 � hsf3 (hsf trimerization) (2)

hsf3 + hse � hsf3: hse (DNA binding) (3)

hsf3: hse → hsf3: hse + hsp (hsp synthesis) (4)

hsp + hsf � hsp: hsf (hsf sequestration) (5)

hsp + hsf2 → hsp:hsf + hsf (hsf2 breaking) (6)

hsp + hsf3 → hsp:hsf +2 hsf (hsf3 breaking) (7)

hsp + hsf3: hse → hsp:hsf +2 hsf + hse (hsp-forced hsf3 unbinding) (8)

hsp → ∅ (hsp degradation) (9)

prot → mfp (protein misfolding) (10)

hsp + mfp � hsp:mfp (protein chaperoning) (11)

hsp:mfp → hsp + prot (protein refolding) (12)

The model assumes three conservation relations: for the total amount of heat
shock factors, for the total amount of proteins (except heat shock proteins and
heat shock factors), and for the total amount of the heat shock elements:

– [hsf] + 2× [hsf2] + 3× [hsf3] + 3× [hsf3: hse] + [hsp: hsf] = C1,
– [prot] + [mfp] + [hsp: mfp] = C2,
– [hse] + [hsf3: hse] = C3,

for some constants C1, C2, C3 called mass constants. The only variable not cov-
ered by conservation relations is hsp, the main regulatory target of the network.

Mathematical model. We associate to the molecular model in Table 1 a math-
ematical model in terms of differential equations as follows. A time-dependant
continuous variable is associated to each reactant and gives its concentration
level. For a variable x, we denote by [x](t) its concentration at time t. The dy-
namics of the system is then described through a system of differential equations.
Its formulation is based on the principle of mass action, see [4], [5]. For each vari-
able, its differential equation gives the cumulated consumption and production
rates of the corresponding reactant as an effect of the reactions in Table 1. The
rate of each reaction is, based on the principle of mass action, proportional with
the concentration of the reactants. Due to lack of space we skip listing the re-
sulting system of differential equations, referring instead to [11] and [12]. The
kinetic rate constants and the initial values of all reactants were estimated in [12]
so as to satisfy three conditions:

(i) For a temperature of 37◦C, the system is at steady state, i.e., the differentials
of all variables are zero. This is a natural requirement since the model should
exhibit no response in the absence of heat shock, i.e., at 37◦C.
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(ii) For a temperature of 42◦C, the numerical prediction of the model for
[hsf3: hse](t) should be in agreement with experimental data of [9] on DNA
binding of hsf3.

(iii) For a temperature of 42◦C, the numerical prediction of the model for
[hsp](t) should be correlated with experimental data of [12] on a de-novo
fluorescent reporter-based experiment.

The numerical setup of the model is in Table 2. We refer to [12] for details on
parameter estimation and on model validation.

The final model exhibits the following major (numerical) achievements, in-line
with experimental evidence, see [12]:

– (A) Makes economical use of the cellular resources: the hsp-encoding gene is
only transactivated for a short while when exposed to heat shock. The gene
transcription is virtually non-existent in the absence of heat shock.

– (B) It is fast to respond to a heat shock: the hsp-encoding gene is quickly
transactivated in response to heat shock.

– (C) The response is effective: the mfp concentration is kept low for mild heat
shocks.

Table 2. The numerical values of the parameters and the initial values of the variables
of the heat shock response model. A. The numerical values of the parameters. ki denotes
the kinetic rate constant of the irreversible reaction (i). k+

i denotes the ‘left-to-right’
direction of reaction (i), while k−

i denotes its ‘right-to-left’ direction. For the expression
of the temperature-dependant parameter φT we refer to [11] and [12]. B. The initial
values of all variables.

A B
Param. Value Units Variable Initial conc.

k+
1 3.49 ml

#·s [hsf ] 0.67
k−
1 0.19 s−1 [hsf2] 8.7 · 10−4

k+
2 1.07 ml

#·s [hsf3] 1.2 · 10−4

k−
2 10−9 s−1 [hse] 29.73

k+
3 0.17 ml

#·s [hsf3: hse] 2.96
k−
3 1.21 · 10−6 s−1 [hsp] 766.88

k4 8.3 · 10−3 s−1 [hsp: hsf] 1403.13
k+
5 9.74 ml

#·s [mfp] 517.352
k−
5 3.56 s−1 [hsp: mfp] 71.65

k6 2.33 ml
#·s [prot] 1.15 × 108

k7 4.31 · 10−5 ml
#·s

k8 2.73 · 10−7 ml
#·s

k9 3.2 · 10−5 s−1

k+
11 3.32 · 10−3 ml

#·s
k−
11 4.44 s−1

k12 13.94 s−1
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– (D) Scalable: higher response for higher temperature. The transactivation of
the hsp-encoding gene reaches a higher peak and/or remains longer on the
100% level under higher temperature.

We disentangle in this paper the contribution of the various modules in the net-
work to achieving these properties. We discuss the methodology in Section 3 and
apply the method to the analysis of the heat shock response model in Section 4.

3 A Functional Decomposition of the Heat Shock
Response Model

A control-driven approach. When designing the modular decomposition of
a process, the first step is to identify and separate the process to be regulated,
called the plant. The current state of that process is captured by specific sensors
which send the information to a decision-making module, called the controller.
The decision taken by the controller is implemented through a device, called the
actuator, that modifies the state of the process, thus influencing the activity of
the plant. A key concept of control systems is the existence of some feedback
mechanisms, which are used to cope with the uncertainties of the system. A
feedback sensor sends the current state of the process back to the controller,
thus facilitating a dynamical compensation for disturbances of the system. In
complex applications, the plant (and by effect, the controller, the sensors, and
the actuators) can be chosen in several different ways depending on what is
deemed to be the main target of the system, thus leading to several possibly
different decompositions of the system.

An easy example illustrating these concepts and their interactions is given
by the functioning principles of a motion activated spotlight. In this case, an
electronic control unit, i.e., the controller of the system, reads the signal from the
motion sensor in order to determine if there is any change in the environment.
If the sensor’s input falls outside of the parameters of the system’s settings,
then the control unit triggers a relay switch, i.e., the actuator, that operates the
lighting system. As long as the sensor detects movement, it feeds this information
to the control unit, keeping the switch on.

Modularization of the heat shock response model. In the case of the
eukaryotic heat shock response we set the plant to focus on the main target,
i.e., the misfolding and refolding of proteins. As protein refolding can be done
only with the help of the chaperons hsp, we assign the actuator to model their
synthesis and degradation. The controller’s task is set to modulate the level
of hsf3: hse, since the DNA binding level determines the chaperon production.
The controller’s activity is influenced also by the information received from a
sensor which measures the level of chaperons in the system. When this is high
enough, the chaperons will sequestrate the heat shock factors by forming com-
plexes hsp: hsf, leading in this way to a decrease in the level of hsf3: hse. In
particular, depending on the type of reactions which lead to the formation of
the complex hsp: hsf, we identify three feedback mechanisms:
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Table 3. The functional decomposition of the model in Table 1. We denote the ‘left-
to-right’ direction of reaction (5) by (5)+ and by (5)− its ‘right-to-left’ direction.

Main Task Reactions
Plant Protein misfolding and refolding (10), (11), (12)
Actuator Regulate the level of hsp (4), (9)
Sensor Measure [hsp]
Controller Modulate the level of DNA binding (1), (2), (3), (5)−

Feedback FB1 Sequestration of hsf (5)+

Feedback FB2 Dimer and trimer breaking (6), (7)
Feedback FB3 hsp-forced DNA unbinding (8)

Fig. 1. The control structure of the heat shock response network

– FB1: sequestration of hsf, i.e., reaction (5)+ (i.e., the ‘left-to-right’ direction
of reaction (5));

– FB2: breaking hsf dimers and trimers, i.e., reactions (6) and (7);
– FB3: unbinding hsf3 from hse, i.e., reaction (8).

The functional decomposition of our model is summarized in Table 3, where the
reaction numbers refer to the reactions in Table 1. A graphical illustration of
the decomposition is in Fig. 1.

4 Disentangling the Functional Roles of the Control
Feedbacks

Approach. We consider the eight knockdown mutants obtained through all
combinations of feedbacks FB1, FB2, and FB3. We analyze the dynamical be-
havior of the mutants at 42◦C. We choose this particular temperature since at
42◦C the experimental data shows both a pronounced heat shock response in
terms of increased levels of misfolded proteins, as well as an explicit response in
terms of increased, transient DNA binding of hsf3, see [12].

Unbiased model comparison. In order for our analysis to be biologically
unbiased, we aim to eliminate all accidental differences between our models. In
particular, they should satisfy some initial biological constraints. This way, we
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make sure that (i) the remaining dissimilarities in their dynamical behaviors
reflect intrinsic differences in their architecture and (ii) they are all fairly con-
sidered as viable alternative models for the heat shock response. We impose the
following two constraints.

(i) The reactions of all knockdown mutants assume kinetic rate constants iden-
tical to those of the corresponding reactions in the reference model. Also,
the values of the mass constants C1, C2, C3 of each of the mutants are iden-
tical to those of the reference model. Both these conditions are natural since
each knockdown mutant is a submodel of the reference model. As such, they
should all assume identical chemistry and mass constants.

(ii) The initial values of the variables of each knockdown mutant form a steady
state of that model for a temperature of 37◦C. Note that the same condition
has been applied in [12] when choosing the initial values of all variables for
the reference model.

Note that our constraint (ii) is fundamentally different than that of [13]. Rather
than taking an approach based on mathematically controlled comparison, see [1],
where the submodels start from the same initial setup, we take a different view
based on biologically meaningful constraints. We consider each submodel as a
viable alternative model for the heat shock response and as such, we assume
that before the heat shock is applied, they are in a steady state (at 37◦C).
Consequently, we impose the condition that the initial values of each submodel
form a steady state of that model at 37◦C. In particular, each model assumes
a different initial numerical setup, determined by the kinetics of its underlying
reaction network and by the mass constants.

Note also that we do not perform parameter estimation for each of the mu-
tants. Indeed, this approach would yield different kinetics for each model and
thus, the contribution of each feedback to the network would be wildly different
from mutant to mutant.

Clearly, the results of our analysis remain heavily dependent on the numerical
values of the mass constants and of the kinetic rate constants chosen in [12] for
the reference model. We discuss this dependency in Section 5.

The knockdown mutants. Each of the knockdown mutant models will be
denoted as MX where X ⊂ {1, 2, 3} represents the indexes of the feedback
mechanisms contained in MX , as follows:

i) M0 consists of reactions (1)-(4), (9)-(12). Using control-theory terminology,
this model is referred as the open-loop design.

ii) M1 consists of reactions (1)-(5), (9)-(12).
iii) M2 consists of reactions (1)-(4), (6)-(7), (9)-(12).
iv) M3 consists of reactions (1)-(4), (8)-(12).
v) M1,2 consists of reactions (1)-(7), (9)-(12).
vi) M1,3 consists of reactions (1)-(5), (8)-(12).
vii) M2,3 consists of reactions (1)-(4), (6)-(12).
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Fig. 2. The total amount of mfp in the seven knockdown mutants and in the reference
model for a constant temperature of 42◦C

Numerical comparison of the mutants. The main task of the heat shock
response is to keep the level of misfolded proteins under control. Focusing on
this aspect alone, all knockdown mutants (even the open-loop design M0), excel
in achieving the goal. Perhaps surprisingly, they actually perform much better
from this point of view than the reference model M1,2,3, see Fig. 2: the total
amount of mfp at a temperature of 42◦C is considerably smaller in all mutants
than in the reference model.

On the other hand, it is essential for the cell to be efficient in the use of
materials and energy. In the case of the heat shock response, this translates in
the amount of chaperons needed in each of the models to achieve the response.
From this point of view, the tradeoff in the mutants is very high. Indeed, all
mutants maintain much higher amounts of chaperons throughout the response
than the reference model. For a comparison in relative terms we associate a
time-dependant cost function describing the effort in each model with respect to
its result in terms of chaperons per unit of misfolded protein:

cost(t) = [total HSP] / [total MFP]
= ([hsp](t) + [hsp: hsf](t) + [hsp: mfp](t))/([mfp](t) + [hsp: mfp](t)).

The evolution of the cost function for all models is illustrated in Fig. 3 and shows
that all mutants are over-reacting, by over-producing hsp in an effort to maintain
a very low level of mfp. (A similar plot can be obtained also by comparing the
level of chaperons in the models in absolute terms.) The over-reaction to heat
shock is also clearly seen in terms of DNA binding and gene transcription, see
Fig. 4: DNA binding remains high throughout the heat shock response in all
mutants, while it is only transient in the reference model.
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Fig. 3. The amount of chaperons per unit of misfolded protein in the seven knockdown
mutants and in the reference model for a constant temperature of 42◦C

The contribution of the three feedbacks. We analyze in this section the
functionality of each of the three feedbacks from the point of view of their
contributions to the properties (A)-(D) of the heat shock response model, see
Section 2. For this, we compare the eight knockdown mutants to capture the
effects of adding or removing each of the feedbacks.

In line with biologically unbiased comparison discussed in this paper, we set
the initial values for each of the knockdown mutants to obtain a steady state of
the system for a temperature of 37◦C. As such, a large part of the differences
among the various mutants can already be observed from their initial values,
i.e., from their behavior in the absence of the heat shock. The initial numerical
setup of all models is given in Table 4.

The mutants M0, M1, M2, M3, and M2,3 exhibit DNA binding at the 100%
level as their initial setup (equivalently, the initial value of [hse] is negligible in

Table 4. The initial numerical setup of all knockdown mutants. The initial values are
chosen so that each mutant is at steady state for a temperature of 37◦C. The initial
value of [prot] in all models is identical to its value in the reference model, see Table 2B.

hsf hsf2 hsf3 hsf3: hse hse hsp hsp: hsf hsp:mfp mfp

M0 0.0028 0.0001 438.2 32.6895 0 8479.29 0 71.6476 46.79
M1 0.0028 0.0001 416.803 32.6895 0 8479.29 64.1905 71.6476 46.79
M3 0.2018 0.3516 437.893 32.6884 0.001 8479.03 0.0212 71.6476 46.7914
M2 35.168 0.2178 22.3266 32.6895 0 8479.29 1212.02 71.6476 46.79
M2,3 35.1759 0.218 22.1625 32.6693 0.0202 8474.06 1212.56 71.6476 46.8189
M1,2 0.1316 0 0 14.6625 18.027 3803.28 1368.55 71.6476 104.317
M1,3 0.1172 0.1525 0.0069 16.405 16.2845 4255.28 1363.01 71.6476 93.2361
M1,2,3 0.6692 0.0009 0.0001 2.9565 29.733 766.875 1403.13 71.6473 517.352
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Fig. 4. The level of DNA binding in the seven knockdown mutants and in the reference
model. The graph plots [hsf3: hse](t) relative to the total number of heat shock elements
(identical in all models) for a constant temperature of 42◦C.

all of these mutants). Thus, in these cases, the hsp-encoding gene is transacti-
vated at the 100% level even in the absence of heat shock. This is not only a
contradiction of experimental data of [8], but also a non-economical use of the
cellular resources, see also Fig. 3 for a measure of the cost of the response. These
models fail by over-reaching their target: the total amount of mfp in the system is
kept at an unnecessarily low level, see Fig. 2. Indeed, the reference model allows
for a higher [mfp] (that is still negligible relative to [prot]), for a dramatically
lower price in terms of [hsp]. As such, we conclude already from their predicted
relentless DNA transcription activity under physiological conditions that these
mutants are non-viable models for the heat shock response.

In terms of the amount of chaperons in the system under a constant heat
shock at 42◦C, FB1 appears to be the main driver to minimize [hsp]. Indeed,
removing FB1 from the reference model yields model M2,3, which is the only
mutant containing two feedbacks that exhibits a behavior even worse than that
of the open-loop model M0 (that has no feedbacks at all), see Figs. 2-4.

Regarding the role of FB1, we conclude that no viable heat shock response
can be obtained in the absence of feedback FB1. At the same time, FB1 alone
(see model M1) cannot lead to a viable response either.

Regarding FB2, we note that in models M2 and M2,3, the level of hsf3 at
37◦C is one degree of magnitude smaller than in the models M0, M1, and M3.
Even though the kinetic details of the reactions do not propagate this change
towards a lower level of hsf3: hse, this observation points to a critical role of FB2

in lowering the level of hsf3: hse. The same effect cannot be obtained by means
of either FB1 alone, or FB3 alone.

Regarding the role of FB3, consider now adding FB1 to either of the other
two feedbacks. We obtain models M1,2 and M1,3 that have drastically different
behaviors under physiological conditions than the other knockdown mutants:
the DNA binding level, [hsf3: hse], is lowered from the 100% level in the absence
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of FB1 to around the 50% level, see Fig. 4. As a direct consequence, [hsp] is
lowered by about 50% and, as a tradeoff, [mfp] increases by about 50%. There is
no big numerical difference between the two models at 37◦C. When a heat shock
of 42◦C is applied however, the behavior of the two models differs, especially in
the speed of the response. While the response of M1,2 in terms of DNA binding is
static ([hsf3: hse] remains roughly constant throughout the response, see Fig. 4),
that of M1,3 is adaptive. It is in fact the only knockdown mutant exhibiting
an adaptive behavior in terms of DNA binding. Similarly as in the case of the
reference model, [hsf3: hse] is transiently increased in M1,3 during the heat shock
and eventually returns to the basal levels. Moreover, both the time to reach the
peak of the response, as well as the time to return to the physiological level of
[hsf3: hse] in M1,3, are very similar to those in the reference model. We conclude
then that FB3 (in addition to FB1) has a main role in achieving a fast response
to heat shock. Indeed, this conclusion is also supported by the plots in Fig. 2,
showing that [mfp] is lowered very slowly in the absence of FB3. Moreover, as
seen in Fig. 4, in the absence of FB3 the DNA binding levels are insensitive to
a temperature upshift to 42◦C.

For a heat shock at 43◦C, the only mutant exhibiting a different response than
at 42◦C is M1,3. Similarly to the reference model, [hsf3: hse] reaches a higher peak
in M1,3, while it remains essentially unchanged for the other mutants.

Based on the numerical observations above, we can now summarize the con-
tribution of the three feedbacks to the performance indicators (A)-(D) of the
network as follows:

– (A) Makes economical use of the cellular resources (the hsp-encoding gene
is only transactivated for a short while when exposed to heat shock): FB1

plays the major role here, FB2, FB3 are also important. In the absence of
FB1, gene transcription is at the 100% level even without heat shock.

– (B) It is fast to respond to a heat shock (the hsp-encoding gene is quickly
transactivated in response to heat shock): FB3, FB1 play the major role
here. Model M1,3 is as fast to react to heat shock as the reference model,
albeit the scope of its response is lower than that of the reference model.

– (C) The response is effective (the mfp concentration is kept low for mild
heat shocks): the underlying open-loop structure is enough to achieve this.
No feedback mechanism is needed for maintaining a low [mfp] for a heat
shock at 42◦C. Rather, the role of the feedbacks is to minimize the cost of
the response.

– (D) Scalable (higher response for higher temperature): FB3, FB1 play the
major role here. M1,3 is the only mutant that scales its response to higher
temperatures, similarly as the reference model. For higher temperatures,
gene transactivation is faster to raise and it raises to a higher level.

In the list above, the role of FB2 as a sole or a main contributor to one of the
properties (A)-(D) is not clearly distinguished. FB2 appears more as a modulator
for FB1 and FB3. There is a clear numerical argument for this milder effect: FB2

consists of a regulation mechanism acting on tow reactants, hsf2 and hsf3, having
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negligible concentrations in the reference model both at 37◦C and throughout
the response at 42◦C. In this context, it is most surprising however to see the
dramatic effect that the removal of F2 has on the reference model, see, e.g.,
Fig. 4.

5 Discussion

Numerical model comparison is a difficult problem even in the case of submodels
of a larger network. We argued in this paper that the common practice of as-
suming for all submodels the same initial setup as that of the reference model is
biologically biased. Indeed, a numerical setup chosen so that the reference model
satisfies some biological constraints will not necessarily ensure the same for its
submodels. As such, the submodels will already from the start be deemed as
unviable alternative models for the biological process under study. We consid-
ered a different approach where the kinetics and the mass constants are taken
from the reference model (so that the chemistry and the total amount of reac-
tants are the same in all submodels), but the initial setup of each submodel is
chosen in such a way that: (i) it satisfies all mass conservation relations and (ii)
it satisfies all biological assumptions. We argued that in this way we obtain a
biologically unbiased model comparison, where each submodel is evaluated as a
real alternative model for the biological process.

Extending the idea of biologically unbiased model comparison to models that
assume different underlying reaction networks is appealing. One possible way
to do it is by combining numerical approaches such as those demonstrated in
this paper with qualitative approaches of model refinement such as those devel-
oped in software engineering. Two different models to be compared could first
be embedded into a larger model in such a way that they both become its sub-
models. Questions related to a systematic methodology for model embedding,
dealing with conflicting model assumptions, and other issues appear to be very
interesting.

Similarly to many other numerical techniques such as sensitivity analysis, the
numerical comparisons demonstrated in this paper depend heavily on the numer-
ical setup of the models, i.e., on the numerical values of the kinetic rate constants,
mass constants, and on the initial values of the variables. We say then that our
analysis is local. When repeating the analysis in a different numerical setup, the
conclusions regarding the role of each of the feedbacks could be very different.
This is most clear if we consider changes in the kinetic rate constants: the control
in the regulatory network can easily be shifted elsewhere by drastically slowing
down some reactions and speeding up others. The same is true however also
when changing the mass constants. For example, we considered an experiment
where we increased the total amount of hsf from around 1412 as in this paper
to about 10000. We then changed all initial values of all variables in each of the
models so that they form a steady state of the model for a temperature of 37◦C.
When repeating the knockdown analysis in this setup, the conclusions were very
different. It turned out that as far as the cost function is concerned, the open-
loop design performs almost as well as the reference model, while the mutants
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consisting of two feedbacks perform much worse. As far as gene transcription
activity is concerned under a constant heat shock at 42◦C, the reference model
exhibits a similar shape as in Fig. 4, while the mutants show a constant activity
at the 100% level. Taking a similar approach in the case when the total amount
of hsf is lowered instead to around 500, we obtained that the reference model has
by far the lowest cost, with M1,2 and M1,3 performing well, and the open-loop
model much worse. The gene transcription activity is similar to those in Fig. 4,
except for M1,2 which shows a lower transactivation level. Two conclusions can
thus be formulated. On one hand, this is a local numerical analysis, in the same
category with approaches such as parameter fit and sensitivity analysis. They all
have to be taken in close relationship with the experimental data and available
biological knowledge and validated as such. On the other hand, repeating the
analysis in different, albeit less validated, numerical contexts can be very useful.
For example, modules whose functional role is hidden by other, more dominat-
ing modules, can be easier to analyze in numerical contexts where they assume
the dominant role. Clearly, projecting conclusions from one numerical context
to another is a challenge in itself that has to be addressed.
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Abstract. In this paper we describe reachability computation for con-
tinuous and hybrid systems and its potential contribution to the process
of building and debugging biological models. We then develop a novel al-
gorithm for computing reachable states for nonlinear systems and report
experimental results obtained using a prototype implementation. We be-
lieve these results constitute a promising contribution to the analysis of
complex models of biological systems.

1 Introduction

The development of modeling formalisms and analysis techniques for the study
of biological systems is a central topic in systems biology. The formalisms pro-
posed for representing biological processes are very diverse, differing at the levels
of abstraction, time scales and types of dynamics. The formalism chosen depends
naturally on the level of detail needed to answer the specific biological question
and on the granularity of available experiments. The contribution of this work
is at the level of abstraction of ordinary differential equations (ODEs), a widely
used modeling formalism. Biological systems, for instance metabolic networks
consisting of sets of reactions, can be viewed as continuous dynamical systems
with state variables denoting concentrations. The resulting differential equations
are derived, for example, from mass action rules and are, typically, polynomial.
Such equations can be numerically simulated from a given initial condition pro-
vided that the exact values of the parameters and the external environmental
conditions are known. In certain restricted cases it is possible to determine global
properties analytically.

Though widely used, ODEs suffer from several limitations. First, the passage
from a finite number of molecules to real-valued concentration is not always
justified, especially when the number of molecules is small [22]. Secondly, many
biological phenomena, for example gene activation, are more naturally modeled
as transitions between discrete states. Pure ODEs cannot easily accommodate
this mixture of continuous evolutions and discrete events. Alternatively, purely
discrete formalisms, based on transition systems expressed in various syntac-
tic forms, suffer from a similar reciprocal limitation in the sense of not being
amenable to quantitative reasoning.
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Second, the lack of quantitative information concerning molecular concen-
trations, reaction rates and other parameters is the rule, not the exception, in
Biology. Consequently the value of predictions obtained using numerical ODEs
models, where the values of the parameters are “guessed” or “tuned”, is severely
limited. Moreover, the validation of models based on ODEs with poorly-known
parameters is difficult if not impossible because we are never sure to have cov-
ered all the qualitative behaviors compatible with a model by performing only
a finite number of simulations, each with a different choice of parameters. This
fact limits the applicability of such models for testing biological hypotheses.

To deal with this problem, qualitative approaches, notably based on qual-
itative versions of differential equations, have been proposed for representing
genetic regulatory networks, molecular interaction networks or metabolic path-
ways [30, 40]. In these models only the direction of influence between variables
is encoded (e.g. activation vs. inhibition) and much of the quantitative informa-
tion is absent. As a consequence of such under-constrained descriptions, purely-
qualitative approaches often lead to overly-conservative results in the sense of
admitting many spurious behaviors. We propose a technique that can be used
to analyze in a systematic manner quantitative models admitting this kind of
uncertainty whose nature is set-theoretic rather than stochastic.

The analysis techniques that we use and extend originate from the study of
hybrid dynamical systems, a domain situated in the intersection of control theory
and computer science and are based on reachability analysis of hybrid automata.
As their name suggests, hybrid automata are the result of marrying automata
with differential equations. Each discrete state (mode) of the automaton is as-
sociated with one set of differential equations according to which the continuous
variables evolve while being in that mode. When the variables satisfy certain con-
ditions (transition guards) the automaton may switch to another mode where
another set of equations will govern the evolution of the continuous variables.
While hybrid automata allow us to express piecewise-continuous processes and
can underlie numerical simulation, much of the analytic reasoning available for
purely-continuous systems (especially for linear ones) is lost due to switching. In
the last couple of years new techniques have been developed for the algorithmic
analysis of hybrid systems, which open as well new opportunities for the analysis
of purely-continuous systems subject to uncertainties. These techniques combine
ideas from control theory, numerical analysis, graph algorithms and computa-
tional geometry in order to export algorithmic verification, also known as model
checking, to the continuous and hybrid domains.

The principles of algorithmic verification can be summarized as follows. The
system in question is modeled as an automaton whose transitions are labeled by
input events. These inputs represent interactions of the automaton with its ex-
ternal environment (users, other systems). Each sequence of input events induces
one behavior of the automaton, a trajectory over its state space. Simulation is the
process of stimulating the automaton progressively with one input sequence and
observing the behavior that this sequence induces starting from a given initial
state. The problem is that the number of such sequences is prohibitively large.
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Verification is based, instead, on computing with sets of states: starting from an
initial set of states P0, one computes all the one-step successors of P0 (under
all possible inputs) to obtain the set P1, to which the same procedure is applied
until all the states reachable from P0 under any admissible input are computed.1

Showing, for example, that some “bad” set of states is never reached (a “safety”
property) amounts to checking whether the reachable set thus computed inter-
sects the bad set. This computation replaces an infinite (or just huge) number
of simulations. More complex properties that specify some temporal patterns of
events can be specified and verified as well using similar methods.

The adaptation of this idea to continuous systems works as follows. Consider
a differential equation of the form ẋ = f(x, v) where x is a vector of state vari-
ables and v represents external disturbances and parameter uncertainties which
are not known exactly but are always taken from a bounded convex set V . Given
a subset P0 of the state space (in a form of, say, a polytope) and a time step r,
one can compute another polytope P1, which contains all the points reachable
from P0 within the time interval [0, r] under any admissible value of v during
that interval. Repeating this process we can obtain an over approximation of
all the reachable states in any desired time horizon. To give a concrete exam-
ple, one can compute all the possible evolutions of a reaction under all possible
concentrations of a signalling molecule which are typically not precisely known,
but which remain in a known interval. The principal contribution of this pa-
per is in developing a new technique for conducting this type of analysis for
nonlinear systems and in demonstrating its applicability on several biological
models.

The rest of the paper is organized as follows. In Section 2 we give a brief in-
troduction to the state-of-the-art in reachability computation for linear systems
and explain why it cannot be applied in a straightforward manner to nonlinear
systems. We then describe the hybridization approach [6] for handling nonlinear
systems. Hybridization is based on over approximating a nonlinear system by a
piecewise-affine system, a restricted type of a hybrid automaton without discon-
tinuous jumps. Although, in principle, hybridization provides for the application
of linear techniques to nonlinear systems, it suffers from inherent limitations
that restrict its applicability to very low-dimensional systems. Section 3 de-
scribes our major contribution, a new dynamic hybridization scheme in which
linearization is not based on a fixed partition of the state space and thus avoids
much of the associated state explosion. For this algorithm we provide in Sec-
tion 4 compelling experimental results, analyzing highly-nonlinear systems of 6
and 9 variables taken from systems biology. We conclude with a discussion of
future work. Although we have tried to maintain the paper as self contained as
possible, some readers might want to consult books like [42, 39,28, 38] for some
notions of geometry, linear algebra and dynamical systems or expository arti-
cles such as [34, 35] which discuss similarities and differences between transition
systems and continuous dynamical systems.

1 More precisely, the computation is guaranteed to converge for finite-state systems.
In continuous domains we are currently satisfied with a bounded time horizon [34].
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2 Reachability: Linear and Nonlinear Systems

Computing the states reachable by all trajectories of a dynamical system subject
to disturbances and parameter variations emerged as a new research topic from
the interaction between computer science and control. Reachability computation
can be seen as a peculiar way to conduct exhaustive simulation which can be
useful for the analysis of control systems, the verification of analog circuits,
the debugging of biological models and, in fact, any other activity based on
dynamical systems models. After a decade of intensive research, [2,25,11,15,26,4,
33,37,10,5,12,32,24] it is fair to say that a satisfactory solution has been provided
for time-invariant linear systems. Existing algorithms manage to produce, within
seconds, high-quality approximations of the reachable states of linear systems
with hundreds of state variables, for time horizons of thousands of integration
steps. Notwithstanding these achievements, the real challenge in almost any
application domain, Biology included, is the treatment of nonlinear systems, a
challenge that we address in the present paper.

Let us recall the rules of the game. Given a dynamical system S defined by a
differential equation ẋ = f(x, v) with v ranging over some bounded set V , a set
P of initial states and some time horizon h, we would like to compute the set
of states reachable from points in P by trajectories of S within some t ∈ [0, h].
Fixing some time discretization step r, the reachable set is approximated by the
union of the sets in a sequence P0, P1, . . . where P0 contains all states reachable
from P within t ∈ [0, r] and each Pi+1 includes states reachable from Pi within
r time. Actual computations often work first in discrete time where Pi+1 is
reachable from Pi in one time step and then some error terms are added to bloat
Pi+1 and compensate with respect to continuous time.

Reachability computation of linear systems is relatively easy. Consider first a
discrete-time autonomous linear system defined by x′ = Ax and a set P which
admits a finite representation, for example, a polytope represented by its ver-
tices or supporting halfspaces, an ellipsoid represented by its center and defor-
mation matrix or a zonotope represented by its center and generators. Then
the linear transformation “commutes” with the representation. For example, if
P = conv(P̃ ), meaning a polytope P being the convex hull of its finite set of
vertices P̃ , then

A · P = A · conv(P̃ ) = conv(A · P̃ ), (1)

that is, the vertices of the polytope obtained by applying A to the whole set P
are the result of applying A to the vertices of P .

The extension of this idea to systems with under-specified input, that is,
x′ = Ax+ v where v ranges over a bounded convex set V , is more involved. The
set of one-step successors of a set P under such a dynamics is captured by the
Minkowski sum P ′ = AP ⊕ V , which yields a polytope P ′ with more vertices
than P . This repeated growth in the size of the representation of Pi makes it
impractical to iterate for a long time horizon because the number of points on
which A has to be evaluated becomes huge. Two approaches are commonly used
to alleviate this problem:
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1. For ellipsoids or for polytopes represented by their supporting halfspaces one
can use techniques based on the maximum principle [41,13] to obtain an over
approximation of AP ⊕V whose representation size is not much larger than
that of P ;

2. The modified recurrence scheme of [27, 24] keeps the number of points to
which the linear transformation is applied fixed. Its implementation using
zonotopes [23,24], a subclass of polytopes which are closed under Minkowski
sum, provides a very efficient solution which is, practically, exact for discrete
time.

The technique that we present in this paper is invariant under the choice between
these two approaches so we express it in terms of an abstract successor operator
σ which, given a set P , an affine differential inclusion (see below) of the form
ẋ ∈ Ax ⊕ V and a time step r, it produces the set σ(P, A, V, r) containing all
points reachable from points in P by trajectories of duration r of the affine
dynamics. The generic linear reachability algorithm can then be written as:

Algorithm 1 (Linear Reachability)
P0 := R̃[0,r](P )
repeat i = 1, 2, . . .

Pi := σ(Pi−1, A, V, r)
until i = k

The set R̃[0,r](P ), the over approximation of the states reachable from P within
the time interval [0, r], can be computed, for example, by bloating the convex
hull of P ∪ σ(P, A, V, r) as in [4] or [6].

Moving to nonlinear systems of the form x′ = f(x) for arbitrary f one ob-
serves that “convexity” properties such as (1) do not hold and new ideas are
needed. In principle, it is possible to evaluate f on some representative finite
sample P̃ ⊂ P and then use the resulting points to construct a set which over
approximates f(P ). However, the approximation can be very coarse and will
require a costly optimization procedure to be refined, something that cannot be
afforded as part of the inner loop of the reachability algorithm. The “hybridiza-
tion” technique of [6] suggests a good tunable compromise between the quality of
the approximation, the difficulty of the computation and the frequency in which
it is invoked. Before explaining the idea, let us give some necessary definitions.

We consider a state space X , a bounded subset of Rn equipped with a metric
ρ. Given two bounded closed subsets Y and Y ′ of X , the Hausdorff distance
between them (the lifting of ρ to sets) is

ρ(Y, Y ′) = max{max
y∈Y

min
y′∈Y ′

ρ(y, y′), max
y′∈Y ′

min
y∈Y

ρ(y, y′)}.

The trajectories of a dynamical system are viewed as signals over X .

Definition 1 (Signals). A signal over X is a partial continuous function ξ
from T = [0,∞) to X whose domain of definition is T or a prefix [0, r] of it. In
the latter case we say that ξ is finite with duration r. The concatenation of a
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finite signal ξ defined over [0, r] and a signal ξ′ satisfying ξ′(0) = ξ(r) is defined
in the obvious way and is denoted by ξ · ξ′.
The continuous equivalent of a non-deterministic automaton is the relational
vector field, also known as differential inclusion [7].

Definition 2 (Relational Vector Fields). A relational vector field over X is
a function f : X → 2X − {∅} which is assumed to be K-Lipschitz, satisfying

ρ({x}, {x′}) < a⇒ ρ(f(x), f(x′)) < Ka.

When f is a (deterministic) function we write f(x) = y rather than f(x) = {y}.

Definition 3 (Dynamical Systems, Trajectories and Reachable Sets). A
(continuous) dynamical system is a pair S = (X, f) where X is a state space
and f is a vector field. A trajectory of S starting from x is a signal ξ over X
with ξ(0) = x and for every t in the domain of definition of ξ, ξ(t) ∈ X and
dξ(t)/dt ∈ f(ξ(t)). The set of all trajectories of S starting from any x ∈ P is
denoted by L(S, P ). The sets of states reachable from P within a time interval
[h, h′] is

R[h,h′](P ) = {ξ(t) : ξ ∈ L(S, P ) ∧ t ∈ [h, h′]}.
Hybridization takes a nonlinear system S = (X, f) and produces another dy-
namical system (S′, f ′) which over approximates it, that is, L(S, P ) ⊆ L(S′, P )
for every P , and then computes the reachable states of S′. A formal definition
of S′ as a hybrid automaton can be found in [6]. Since our algorithm does not
use hybrid automata explicitly we only give an informal explanation.

Consider a partition of X into hyper rectangles (we use the term box here-
after). For each box Xq one can compute a linear function Aq and an error
polytope Vq such that for every x ∈ Xq, f(x) ∈ Aqx ⊕ Vq. In other words, Aq

is a local linearization of f with error bounded in Vq. Thus the vector field f ′

is defined as f ′(x) = Aqx ⊕ Vq iff x ∈ Xq. To perform reachability computation
on S′ one applies linear reachability using Aq and Vq as long as the reachable
states remain within box Xq. Whenever some Pi reaches the boundary between
Xq and Xq′ it is intersected with the switching surface (the transition guard,
in the terminology of hybrid automata) and the obtained result is used as an
initial set for reachability computation in q′ using Aq′ and Vq′ , as illustrated in
Figure 1-(a,b). The main advantage of hybridization is that the costly procedure
of finding a good linear approximation is not invoked in every step, only in the
passage between boxes. Although this scheme is clean and general, it suffers from
some serious difficulties on the way to realization:

– Although the intersection of the actual set of reachable states inside a box
with a facet of the box is typically a convex set, its computation can be inef-
ficient and inaccurate. To see why, consider a subsequence of sets Pj , . . . , Pk

computed using some linear technique, all of which intersect the boundary
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(a) (b)

A1 A2

Fig. 1. Computing reachable states of the hybridization: (a) applying linear reacha-
bility using A1 until intersection with the boundary; (b) taking the intersection as an
initial set for linear reachability using A2

(c)(b)(a)

Fig. 2. (a) the intersection with the boundary spans over several iterations; (b) con-
tinuing with each intersection separately; (c) continuing with an approximation of the
union of intersections

G as illustrated in Figure 2-(a). In this case we have either to spawn sev-
eral computations with the dynamics of the subsequent box, each starting
with some Pi ∩ G (Figure 2-(b)) or to over approximate

⋃
i Pi ∩ G by a

convex set, an operation that may lead to a large over-approximation error
(Figure 2-(c)).

– The size of the partition of the state space is, of course, exponential in the
dimension, hence care should be taken in order to avoid state explosion. As
suggested in [6], the partition can be generated on-the-fly as the reachability
computation evolves, rather than being precomputed for the whole state
space in advance. However, even on-the-fly generation cannot cope with the
fact that in high dimension, a tube of reachable states will typically leave a
box via exponentially many facets. This situation is illustrated in Figure 3-
(a). Since each of these parts of the reachable set goes to a different box,
they have to be handled separately (Figure 3-(b)) even though they continue
to evolve close to each other.2 Merging these sets when they converge to the
same box is a tedious process and a source of further approximation errors.
This problem is particularly severe because making the boxes smaller is the
recommended recipe for improving accuracy.

2 A similar phenomenon has been encountered in the analysis of timed automata [9].
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3 Dynamic Hybridization

In this section we describe our novel nonlinear reachability algorithm which,
unlike the scheme of [6], is not based on a fixed partitioning of the state space but
rather generates overlapping linearization domains around the reachable states.
An important ingredient of any hybridization methodology is the linearization
procedure that we first define formally.

Definition 4 (Linearization in a Domain). A linearization operator is a
function L which, for a given nonlinear function f and a convex set B (lin-
earization domain), produces a matrix A and a convex polytope V such that for
every x ∈ B, f(x) ∈ Ax⊕ V .

We use the notation L(f, B) = (A, V ). In our current implementation the lin-
earization domains are boxes, but other forms are possible. In addition to the
linearization operator L and the linear successor operator σ we assume a pro-
cedure β which takes as input a set P and produces a linearization domain
B = β(P ) which contains P . The form of B, the relation between its size and
the size of P as well as the position of P inside B are implementation details
that may vary according to the system in question. We first present in general
terms the algorithm for approximates the reachable states, prove its correctness
and then discuss our implementation of L and β.

Algorithm 2 (Dynamic Hybridization) Input: A nonlinear dynamical
system S = (X, f) and an initial set P
Output: A sequence of sets P0, P1, . . . Pk whose union includes R[0,h](P )

B := β(P )
(A, V ) := L(f, B)
P0 := R̃[0,r](P )
i := 0
repeat

Pi+1 := σ(Pi, A, V, r)
if Pi+1 ⊆ B

i := i + 1
else

B := β(Pi)
(A, V ) := L(f, B)

until i = k

The algorithm performs linear reachability in a linearization domain B as long
as the computed sets remain inside B. Once a newly-computed set Pi+1 is not
fully contained in B we backtrack to Pi and construct a new domain B′ around
Pi along with its corresponding linearization which is used for subsequent com-
putations starting from Pi, as illustrated in Figure 4. The advantage of this
approach is obvious: the linearization mesh is constructed along the reachable
set and thus we avoid artificial splitting of sets due to the structure of the mesh.
Needless to say, the intersection operation is altogether avoided.
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(a) (b)

Fig. 3. (a) the reachable set leaves a box through several boundaries; (b) the compu-
tation is continued separately for each intersection although the computed sets remain
close to each other and even go later to the same box

Pi
Pi

P0P0

B

(a)

B

(b)

B′

Fig. 4. Dynamic hybridization: (a) Computing in some box until intersection with the
boundary; (b) Backtracking one step and computing in a new box

Theorem 1 (Correctness of Algorithm 2). Let P0, P1, . . . be a sequence of
sets produced by Algorithm 2. Then for every k ≤ k′, we have

R[kr,k′r](P ) ⊆
k′⋃

i=k

Pi.

Proof. The proof is by induction on the number of switchings between lin-
earization domains that the algorithm makes. The base case where no switching
occurs follows from the correctness of the linear reachability algorithm and the
fact that the linearized system over approximates f . For the inductive case,
assume the claim holds for s switchings and consider a run of the algorithm
with s + 1 switchings, the last of which occurring after Pj , k ≤ j < k′. By
the inductive hypothesis R[jr,jr](P ) ⊆ Pj and since Pj serves as the initial set
for subsequent iterations inside a single linearization domain, the base case ap-
plies and Pj+1, . . . , Pk′ includes R[(j+1)r,k′r](P ) which, together with Pk, . . . Pj ,
include the states reachable within [kr, k′r].

Algorithm 2 is implemented in C and uses the polytope-based algorithms of
d/dt [13]. Below we explain the novel technical aspects, namely the dynamic
construction of the linearization domain and its respective linearization.

The difference between the function f and its linear approximation A relative
to a domain B is ∆B(f, A) = {f(x) − Ax : x ∈ B}. To guarantee conservative
approximation it is sufficient to find some V such that ∆B(f, A) ⊆ V and this
can be done easily for any choice of a domain B and a linearization A. However to
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obtain high-quality approximations, we need to choose B and A that minimize,
roughly speaking, the diameter of ∆B(f, A) which represents the error incurred
by the linear over approximation. Clearly the smaller is B, the smaller is the
error but then the linearization procedure has to be invoked more frequently.
The problem of finding good B and A can be formulated, in principle, as some
sort of a constrained optimization problem but this computation can be very
costly and we use instead the following easy-to-compute heuristic which turns
out to work in practice despite being non optimal. The first simplification that
we do with respect to an optimized solution is to decouple the choice of the new
domain B = β(P ) from the computation of the linearization (A, V ) = L(B, f).

The operator β(P ) which produces a box containing P is realized as follows.
Based on f and X we fix a standard rectangular frame B of size d1×, · · · ,×dn.
Given a polytope P we define its centroid c(P ) to be the average of its vertices
and let β(P ) be a copy of B whose center coincides with c(P ). The only prob-
lematic situation occurs when during reachability computation P gets too large
and cannot fit (either immediately or after few steps) within the frame B. To
prevent Algorithm 2 from getting stuck in the else branch, we split P into two or
more sets which are then treated separately. In principle, this splitting may lead
to state explosion but, in this case, the explosion is due to intrinsic properties of
the set of reachable states and not due to an arbitrary choice of the coordinate
system underlying the mesh. This phenomenon will not occur too often while
analyzing stable systems having a contracting dynamics.

To handle the splitting we first compute a tight bounding box B(P ) around P .
This computation is performed by projecting the vertices on each of the dimen-
sions and taking the minimum and maximum. Let us denote by e1×, · · · ,×en

the size of the obtained bounding box. If for every i, m · ei < di, where m > 1 is
a fixed constant, then P is sufficiently small and no splitting takes place. Oth-
erwise we take the direction i which maximizes the ratio ei/di and split P into
two parts along this direction by intersecting it with complementary halfspaces
orthogonal to direction i (see Figure 5). We repeat the process until the obtained
sets are sufficiently small. We thus end up with one or more polytopes around
each of which we put a properly-centered copy of B.

Once the linearization domain B is fixed we compute A and V as follows.
Let f = (f1, . . . , fn), and let y = c(B) be the center of B. The matrix A is
obtained by the evaluating (numerically) the Jacobian matrix of f at y, that is,

B(P )

P

P1

P2

B2

B1

Fig. 5. A set P and its bounding box B(P ). The set is too large and is split in the
vertical dimension into P1 and P2, around which the respective linearization domains
B1 and B2 are constructed.
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A = ∂f
∂x(y) where Aij = ∂fi

∂xj
. Then a box V = V1 × V2 × . . . × Vn, guaranteed

to contain ∆B(f, A), is computed as follows. For each dimension i we let Vi be
the interval [li, ui] where li = min{πi(∆B(f, A))} and ui = max{πi(∆B(f, A))}
with πi denoting projection on i. These intervals are over approximated based
on the Taylor expansion of f(x)−Ax.

4 Experimental Results

To test the feasibility of our algorithm we applied it to two nonlinear systems
whose parameters and qualitative behaviors are documented in the literature.

The Lac Operon is a biochemical feedback mechanism through which the
bacterium E. Coli adapts to the lack of Glucose in its environment by switching
to a Lactose diet. We use the model appearing in [31] where the behavior of the
system is described by the following system of differential equations:

Ṙa = τ − µ ∗ Ra − k2RaOf + k−2(χ − Of ) − k3RaI2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ − Of )

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE

The differential variables denote the concentrations of different reactants, such
as Ra (active repressor) Of (free operator), E (enzyme), M (mRNA), Ii (internal
inducer), and G (glucose). We studied the behavior of this 6-dimensional system
around a quasi-steady state for the first 4 variables and the obtained results
are consistent with the simulation results obtained on a simplified 2-dimensional
model shown in [31], page 285. As a set of initial states we take a small box where

(a) (b)

Fig. 6. Lac operon: (a) a stable focus, k−1 = 2.0; (b) a limit cycle, k−1 = 0.008
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Fig. 7. Results obtained for the aging model

Ii ∈ [1.9, 2.0] and G ∈ [25.9, 26]. When k−1 = 2.0 the system exhibits a stable
focus and when k−1 = 0.008 the system exhibits a limit cycle (see Figure 6).
Computation times are 3 and 5 minutes, respectively.

We conclude with a model of an aging process, based on the mitochondrial
theory of aging. The highly-nonlinear differential equations, which include ratios
between variables, can be found in [31], page 252. The model admits 9 variables
and we show in Figure 7 the reachable set after 300 iterations projected on 3
variables, namely, the concentration of antioxidants (AOx), of radicals (RAdM)
which suffer damages, and of ATP (adenosine triphosphate). After 1000 itera-
tions, we observe the convergence towards a steady state. The computation time
for 1000 iterations is 23.3 minutes.

5 Discussion

We made progress toward a very ambitious goal: automatic reachability analysis
of nonlinear systems as a methodology for investigating under-specified biological
models. Let us mention other attempts to solve this problem starting with meth-
ods that share with hybridization the idea of approximating the original systems
by partitioning the continuous state space and producing a hybrid automaton
with a simpler dynamics in each state. In the extreme case where no continuous
dynamics is left the finite automaton is the sole responsible for approximat-
ing the dynamics. This approach is common in AI and qualitative physics and
has been used extensively in Biology [21,30, 19]. The technique of predicate ab-
straction applied to hybrid systems [3] is another elaboration of this idea where
partition boundaries are based on predicates appearing in specifications. A more
refined approach, incorporated into the tools HyTech [20] and PHAVer [17] over
approximates the nonlinear system by hybrid automata where in each state the
dynamics is defined by a constant differential inclusion of the form Aẋ ≤ c.
Since in each state the derivative does not depend on the real variables, it
is easy to compute the reachable states exactly using linear algebra, however
the over approximation with respect to the original system is large (zero-order
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compared to first-order approximation in the hybridization of [6]). The transla-
tion of continuous systems into timed automata [36] is another example.

Other, more direct, approaches perform reachability on the original nonlinear
systems without relying on convexity properties. For example, the face lifting
technique [25, 15, 26], which is based on computing the maximal projections of
f on all the normals of the facets of a polyhedron, may lead to large over-
approximation errors. Other approaches use more complex classes of sets which
are not necessarily convex. In [37] the evolution of the reachable states is trans-
formed into a partial differential equation (PDE) where the boundary of the
set is represented as the set of zeros of a function defined over the state space.
The work of [14] uses Bezier simplices to represent reachable states for systems
defined by polynomial differential equations. Finally in [18,1] dynamic lineariza-
tion and computation of error bounds is performed at every reachability step.
None of these methods, to the best of our knowledge, can cope with systems of
the size and complexity of the examples presented in this paper.

Let us also mention the whole domain of interval analysis [40], a branch of
numerical analysis motivated by producing rigorous numerical answers to diverse
mathematical questions despite round-off errors. As its name suggests, for the
computation of a scalar function, the result is typically an interval guaranteed
to contain the correct answer. The generalization to many dimensions leads
naturally to bounding boxes. Although the motivation is different from ours as
the uncertainty is due to the computation itself rather than the imperfection of
the model, there are similarities between some of the techniques and we foresee
more future cross fertilization between the domains.

Parameter uncertainty in biological models is a well-known problem that has
been subject to extensive work using various techniques. We mention two recent
attacks on the problem of parameter synthesis, namely, finding or approximating
the range of model parameters for which some qualitative behavior is exhibited.
The work of [8] takes a hybrid model (piecewise multi-affine dynamics) with
parameter uncertainty and abstracts it into a finite automaton. When the prop-
erty in question is violated by the automaton, the domain of parameter values is
refined, a new abstraction is created and so on. A more direct and efficient way
to explore the space of parameter values is described in [16] based on adaptive
sampling of the parameter space and using ordinary numerical simulation. This
technique uses numerical sensitivity information to guide the refinement of the
parameter space.

To go further we need to combine dynamic hybridization with the algorithm
of [24,27] which can treat linear systems an order of magnitude larger than those
treated in the present paper. To this end we need to develop a good splitting
procedure for the sets computed by that algorithm. As the reader might have
noticed, we have focused here on systems where the uncertainty is restricted
to the initial set and we need to extend our linearization operator to nonlinear
functions with input, something that can be done using similar principles.

To conclude, we have demonstrated the feasibility of our approach by com-
puting reachable states for nonlinear systems of unpreceded size and complexity.
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We intend to pursue this direction further and make reachability computation a
useful tool for analyzing complex biological systems. A parallel effort should be
invested in making modelers of biological systems aware of the potential of this
analysis technology.
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incertitudes, Master’s thesis, Université Paris 7 (2005)
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Abstract. In systems biology, the number of models of cellular pro-
cesses increases rapidly, but re-using models in different contexts or for
different questions remains a challenging issue. In this paper, we show
how the validation of a coupled model and the optimization of its pa-
rameters with respect to biological properties formalized in temporal
logics, can be done automatically by model-checking. More specifically,
we illustrate this approach with the coupling of existing models of the
mammalian cell cycle, the p53-based DNA-damage repair network, and
irinotecan metabolism, with respect to the biological properties of this
anticancer drug.

1 Introduction

In systems biology, the number of models of cellular processes increases rapidly.
To date, most of the effort has been devoted to building models and making them
freely available, through the design of standard exchange formats, such as for
instance the Systems Markup Language SBML [26], the making of model repos-
itories, such as for instance http://biomodels.net/, the making of biological
ontologies to establish the links between molecular synonyms, species, units, etc.,
and the development of modeling tools, such as Cell Designer, BIOCHAM [7],
BioNetGen [4], Pathway Logic [15], Bio-ambients [35], etc. Despite these efforts
however, re-using models in different contexts or for different questions remains
a challenging issue. In practice, most of the models are developed, refined, sim-
plified or coupled with respect to other models by hand with no direct support
from the tools to re-use models in a systematic way using a specification of the
expected behavior.

In this paper, we show how the validation of a coupled model and the op-
timization of its parameters with respect to biological properties formalized in
temporal logics, can be done automatically by model-checking. More specifically,
we illustrate this approach with the coupling of existing models of the mam-
malian cell cycle, the p53-based DNA-damage repair network, and irinotecan
metabolism, with respect to the biological properties of the latter one.

Irinotecan is an anti-carcinogenic inhibitor of topoisomerase-1 which started
to be used in clinical treatments approximately twenty years ago. It shows sig-
nificant efficacy against a variety of solid tumors, including lung, colorectal,
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and cervical cancers. Scientists are currently trying to optimize the irinotecan
therapy in order to understand how to limit its toxicity and to increase its
efficacy. In this context, it is crucial to comprehend how the presence of this
medicament influences cellular proliferation. In this work we present a model-
checking approach to the problem. There are in the literature many models of
the mammalian cell-cycle, a few ones of the cell’s DNA-damage repair path-
ways, and recently some preliminary models of irinotecan intracellular pharma-
codynamics. However these modules need to be assembled in a coherent way to
provide meaningful answers. After reformulating the existing models in the rule-
based language of the biochemical abstract machine Biocham [19,7], we assemble
them into a coupled model under the constraint of satisfying some relevant bi-
ological properties, formalized in temporal logic and automatically checked by
model-checking.

Model-checking is the process of algorithmically verifying whether a given
structure is a model for a given temporal logic formula [13]. In literature, there
are various applications of model-checking techniques to biology. In [8,15], tem-
poral logic was introduced as a query language for biochemical networks and for
validating boolean models of biological processes by model-checking techniques.
Some experimental results were obtained on Kohn’s map of the mammalian cell
cycle control (800 reaction rules, 500 variables) using the symbolic model-checker
NuSMV, and on a small ordinary differential equation (ODE) model using the
constraint-based model checker DMC. This approach to verifying biological pro-
cesses has pushed the development of model-checking techniques for quantitative
properties, and continuous, stochastic or hybrid models.

For (non-linear) ODE models, numerical integration techniques provide nu-
merical traces on which linear time temporal logic with numerical constraints
can be evaluated by model-checking. Simpathica [2] and the biochemical abstract
machine Biocham [6] are two examples of computational tools integrating such
model-checkers for quantitative models. This approach has been generalized to
temporal logic constraint solving in [18], allowing for efficient kinetic parameter
optimization [37] and robustness analyses [36] w.r.t. quantitative temporal logic
properties.

In [25], Heath et al. apply the probabilistic model-checker PRISM to the study
of a complex biological system, namely, the Fibroblast Growth Factor (FGF)
signalling pathway. In [12], Clarke et al. apply statistical model-checking on a
stochastic model of a T-cell receptor.

In [3] Batt et al. develop a modeling framework based on differential equations
to analyze genetic regulatory networks with parameter uncertainty. The values
of uncertain parameters are given in terms of intervals and dynamical properties
of the networks are expressed in temporal logic. Model-checking techniques are
then exploited to prove that, for every possible parameter value, the modeled
systems satisfy the expected properties and to find valid subsets of a given set of
parameter values (such an approach is exploited in RoVerGeNe, a tool for robust
verification of gene networks). In [33], Piazza et al. propose semi-algebraic hy-
brid systems as a natural framework for modeling biochemical networks, taking
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advantage of the decidability of the model-checking problem for TCTL (Timed
Computation Tree Logic) over this large class of systems.

In this paper, we focus on the use of model-checking for integrating biological
models. To compose the selected models, we assume a finite set of hypotheses
concerning the structure of the “linking reaction rules”, and we search for ki-
netic parameter values that will make the composite model interacts in a proper
way. For this, the biological properties of the coupled model are formalized in
temporal logic with numerical constraints, and model-checking with parameter
optimization techniques are used to find parameter values for the new kinetic
rules so that the expected properties are satisfied by the resulting model.

The paper is organized as follows. Section 2 provides the needed biological back-
ground on the mammalian cell cycle, on the tumor-suppressor protein p53, and on
irinotecan. Section 3 describes Biocham models and explains how such models can
be queried in temporal logic. Section 4 presents our coupled model on the effects
of irinotecan and Section 5 describes the biological properties of the model that
were automatically checked. Finally, in Section 6 we outline some ongoing devel-
opments of this work. All the models used are available in BIOCHAM format at
http://contraintes.inria.fr/supplementary material/CMSB09/.

2 Mammalian Cell Cycle, DNA-Damage Repair and
Irinotecan

2.1 Mammalian Cell Division Cycle

Cells reproduce by duplicating their contents and then dividing in two. To pro-
duce a pair of genetically identical daughter cells, the DNA must be faithfully
replicated, and the replicated chromosomes must be segregated into two separate
cells. The duration of the cell cycle varies greatly from one cell type to another;
in a mammalian cell it lasts about 24 hours. The cycle is traditionally divided
into the following four distinct phases [1]: the G1-phase, that is the temporal
gap between the completion of mitosis and the beginning of DNA synthesis, the
S-phase (synthesis), that is the period of DNA replication, the G2-phase,
that is the temporal gap between the end of DNA synthesis and the beginning
of mitosis, and the M-phase (mitosis), when replicated DNA molecules are
finally separated in two daughter cells.

The cell cycle is regulated by different checkpoints, that are moments when the
cell progression is stopped to verify the state of the cell and, if needed, to repair
it before damaged DNA is transmitted to progeny cells. DNA damaging agents
trigger checkpoints that produce arrest in G1 and G2 stages of the cell cycle.
Cells can also arrest in S, which amounts to a prolonged S phase with slowed
DNA synthesis. Arrest in G1 allows repair before DNA replication, whereas
arrest in G2 allows repair before chromosome separation in mitosis.

The proper alternation between synthesis and mitosis is coordinated by a
complicated network that regulates the activity of a family of key proteins. These
proteins are composed of two subunits: a catalytic subunit, the cyclin-dependent
kinase, cdk for short, and a regulatory subunit, a cyclin. A cdk has to associate
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with a cyclin partner to form a dimer and has to be appropriately phosphorylated
in order to be active. The progression through cell cycle is orchestrated by the
rise and fall of the Cdk/cyclin dimers.

In this work we refer to the model of mammalian cell division proposed by
Novák and Tyson in [30] where the authors present both a set of Ordinary Dif-
ferential Equations (ODE) and a process diagram to represent the molecular
network regulating the mammalian cell cycle. The model comprises 18 differen-
tial equations and 4 steady-state relations.

2.2 Protein p53

This subsection is devoted to the description of protein p53, a tumor suppressor
protein which is activated in reply to DNA damage. In normal conditions, the
concentration of p53 in the nucleus of a cell is feeble: its level is controlled by
another protein, Mdm2. These two proteins present a loop of negative regulation.
In fact, p53 activates the transcription of Mdm2 while the latter accelerates the
degradation of the former. DNA damage increases the degradation rate of Mdm2
so that the control of this protein on p53 becomes weaker and p53 can exercise its
functions. This protein is responsible for the activation of many mechanisms: in
an indirect way, it stops the DNA synthesis process, it activates the production
of proteins charged with DNA reparation, and it can lead to apoptosis, that is,
cell death.

When DNA is damaged, Mdm2 loosens its influence on p53 and it is possible
to observe some oscillations of p53 and Mdm2 concentrations. The answer to
a stronger damage is a bigger number of oscillations. Oscillations have a very
regular period. In literature, several models have been proposed to model the
oscillatory behaviour of proteins p53 and Mdm2. The most interesting models
are undoubtedly the ones proposed by Chickermane et al. [9], by Ciliberto et
al. [10], and by Geva-Zatorsky et al. [20]. In this work we build upon the one
described in [10], that consists of 6 differential eqiations.

2.3 Irinotecan

Camptothecins are substances that can be extracted from the Chinese tree
“Camptotheca acuminata Decne” and are mainly used for the treatment of di-
gestive cancers. Their anticancerogenic properties have been discovered at the
end of the Fifties but the first clinical tests have been interrupted owing to
heavy effects due to the toxicity of the substances. In the Eighties researchers
discovered that camptothecins are inhibitors of topoisomerase-1(Top1 for short),
essential enzyme for DNA synthesis. Afterwards, they started to focus on some
semi-synthetic derivative of water-soluble camptothecins, such as irinotecan and
topotecan. Irinotecan is pro-medicine and must be transformed in its active
metabolite, SN38, to be effectively cytotoxic. In fact the anticancerogenic activ-
ity of irinotecan (CPT11) is approximately 100 times less effective than the one
of SN38. The activation is due to carboxylesterase, an enzyme mainly located
in the liver, in the intestine, and in the tumoral tissues. SN38 is then detoxified
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through glucorono-conjugation: this realizes uridine diphosphate glucoronosyl
transferase 1A1.

Mechanisms through which irinotecan damages the cell are very complex and
have not completely been explained yet. It is sure that DNA lesions appear after
the inhibition of Top1 by SN38. Top1 is a protein which is present in all living
organisms and which checks DNA replication and transcription. It intervenes
to modify the DNA winding degree, acting on one strand. More precisely, Top1
links itself to extremity 3’ of DNA forming a transitory cleavage complex and
cuts a DNA strand, that in such a way is able to unroll. Then such a complex
dissociates and a new ligature comes up. In normal conditions, the connection
process is favored with respect to the cleavage one. The target of irinotecan,
and above all of its active metabolite SN38, is the complex Top1-DNA. SN38
links to the complex through a covalent bond, preventing in such a way from
the ligature of the DNA strand. As clearly written in the title of [34], SN38
acts like a “foot in the door”: it keeps opened the DNA strand to which Top1
is linked as to prevent a door from closing. These complexes are still reversible
and do not cause DNA lesions. However, they favor them: some lesions can
rise as a consequence of the possible collisions with the transcription complexes
or with the replication fork. This induces the arrest of the cell cycle. In this
case we speak of irreversible complexes. Lesions due to the inhibition of Top1
are therefore consecutive to the stages of the cell metabolism. It means that
irinotecan injections must be repeated and abundant in order to be effective.
Besides irinotecan is more effective during the DNA replication phase [31,38].
Furthermore, the inhibition of the DNA synthesis takes rapidly place (in a few
minutes) and lasts several hours.

Defence answers of cells subjected to irinotecan injections are multiple and
vary according to the drug dose. The administration of a very light dose suffices
to slow down the S phase of the cell cycle and to delay the G2-M transition. If
the dose is more substantial, the lag time in the S phase is much more significant
and the cell cycle arrest in the G2-M transition can last more than sixty hours or
even be permanent. In this latter case, some genes responsible for the cell cycle
arrest (as an example, p21) and involved in the aptototic pathway are over-
expressed. These genes are activated by p53, and this suggests the intervention
of the protein in reply to a DNA damage due to the dissociation of Top1 from
DNA [38].

In this work we refer to a pharmacokinetics/pharmacodinamics (PK/PD)
model of irinotecan developed by Dimitrio [14], that takes aim at representing
the action of the drug on the body (pharmacodinamic) and the action of the
body on the drug (pharmacokinetic), and thus the drug metabolism and its
transformations. Such a model is made up of 8 differential equations.

3 The BIOCHAM Abstract Machine

In the last years, one of the main challenges of computational system biology
became the creation of powerful simulation, analysis, and reasoning tools for
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biologists to decipher existing data, devise new experiments, and thus under-
stand functional properties of genomes, proteomes, cells, organs, and organisms.
Many of the goals of this emerging discipline have been investigated in the logi-
cal setting of temporal logics and have been partly achieved in this apprroacch
in the Biochemical Abstract Machine (BIOCHAM ) [19,7], a formal modeling
environment for network biology developed at INRIA-Rocquencourt since 2002.

In this section we briefly recall BIOCHAM syntax, its continuous differential
semantics and show how a temporal logic with numerical constraints is used to
formalize the biological properties of the models and automatically check their
satisfaction.

3.1 Syntax and Differential Semantics of BIOCHAM Reaction
Models

Following SBML and BIOCHAM conventions, a model of a biochemical system
is formally a set of reaction rules of the form e for S => S′, where S is a
solution, that is, a set of molecules given with their stoichiometric coefficient,
S′ is the transformed solution, and e is a kinetic expression involving the con-
centrations of molecules. The reaction rules represent biomolecular interactions
between chemical or biochemical compounds, ranging from small molecules to
proteins and genes.

Reaction rules transform one formal solution into another one. The following
abbreviations are used: A =[C]=> B for the catalyzed reaction A+C => C+B, and
A <=> B for the reversible reaction equivalent to the two symmetrical reactions
A => B and B => A. The constant represents the empty solution. It is used for
instance in protein degradation rules, such us A => , and in synthesis rules, such
us =[G]=> A for the synthesis of A by (activated gene) catalyst G. The other
main rule schemas are (de)complexation rules, such us A + B => A-B for the
complexation of A and B, (de)phosphorylation rules, such us A =[B]=> A~{p}
for the phosphorylation of A catalyzed by kinase B, and transport rules, such us
A::nucleus => A::cytoplasm for the transport of A from the nucleus to the
cytoplasm.

Reactions can be given kinetic expressions. For instance, k*[A]*[B] for
A=[B]=>A~{p} specifies a mass action law kinetics with parameter k for the reac-
tion. Classical kinetics expressions are the following ones:

– the mass action law kinetics k ∗∏n
i=1 xli

i , which refers to a reaction with
n reactants xi, where li is the stoichiometric coefficient of xi as a reactant;

– the Michaelis-Menten kinetics Vm ∗ xs/(Km + xs), which states for an
enzymatic reaction of the form xs = [xe] => xp, where1 Vm = k ∗ (xe + xe ∗
xs/Km);

– the Hill’s kinetics Vm ∗ xn
s /(Kn

m + xn
s ), of which the Michaelis-Menten

kinetics is a special case for n = 1.
1 xe∗xs/Km is the concentration of the enzyme-substrate complex, supposed constant

in the Michaelian approximation, and xe + xe ∗ xs/Km is thus the total amount of
enzyme.
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Kinetic expressions can be written either explicitly, allowing any kinetics, or
using shortcuts such us MA(k) for a Mass Action law with parameter k, or
MM(Vm,Km) for a Michaelian kinetics.

A set of reaction rules {ei for Si => S′
i}i=1,...,n over molecular concentration

variables {x1, . . . , xm} can be interpreted under different semantics. In this paper
we refer to the traditional differential semantics, that interprets the rules by the
following system of Ordinary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej ,

where ri(xk) (resp., li) is the stoichiometric coefficient of xk in the right (resp.,
left) member of rule i. Given a set of reaction rules, BIOCHAM allows to obtain a
simulation of the model by solving the set of corresponding differential equations.

3.2 Querying BIOCHAM Models in Temporal Logic

Temporal logics and model-checking algorithms have been proved to be useful
to respectively express biological properties of complex biochemical systems and
automatically verify their satisfaction [17]. Having a formal language not only
for describing models, (i.e., transition systems based on process calculi [35,32],
rules [15], Petri nets [22], ODEs [39], etc.), but also for formalizing the biolog-
ical properties of the system known from biological experiments under various
conditions, opens a whole avenue of research for designing automated reasoning
tools inspired from circuit and program verification to help the modeler.

In this paper, we use a version of linear time logic LTL with numerical con-
straints, named Constraint-LTL [6]. Constraint-LTL formulae are formed over
first-order atomic formulae with equality, inequality and arithmetic operators
ranging over real values of concentrations and of their derivatives, using the
logical connectives and the usual temporal operators of LTL: in particular the
“always in the future” operator G, and the “sometimes in the future” operator
F), the next time operator X, and the binary operator until U.

For instance, F ([A] > 10) expresses that the concentration of A eventually
gets above the threshold value 10 and G([A]+ [B] < [C]) states that the concen-
tration of C is always greater than the sum of the concentrations of A and B.
Oscillation properties, abbreviated as oscil(M, K), are defined as a change of sign
of the derivative of M at least K times: F ((d[M ]/dt > 0) & F ((d[M ]/dt < 0) &
F ((d[M ]/dt > 0) . . . ))). The abbreviated formula oscil(M, K, V ) adds the con-
straint that the maximum concentration of M must be above the threshold V
in at least K oscillations.

LTL formulae are interpreted in linear Kripke structures which represent ei-
ther an experimental data time series or a simulation trace, both completed
with loops on terminal states. Given the system of ordinary differential equa-
tions (ODE) corresponding to a reaction model, under the hypothesis that the
initial state is completely defined, a discrete simulation trace is easily obtained
by means of numerical integration methods (such as Runge-Kutta or Rosenbrock
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method for stiff systems). Since constraints refer not only to concentrations, but
also to their derivatives, traces of the form

(< t0, x0, dx0/dt, d2x0/dt2 >, < t1, x1, dx1/dt, d2x1/dt2 >, . . . )

are considered, where at each time point ti, the trace associates the concentration
values xi to the variables, and the values of their first and second derivatives
dxi/dt and d2xi/dt2. It is worth noting that in adaptive step size integration
methods of ODE systems, the step size ti+1 - ti is not constant and is determined
through an estimation of the error made by the discretization.

Observe that the notion of next state refers to the state of the following time
point in a discretized trace, and thus does not necessarily imply a real time
neighborhood. The rationale is that the numerical trace contains enough rele-
vant points, and in particular those where the derivatives change abruptly, to
correctly evaluate temporal logic formulae. An innovative feature of BIOCHAM
is that it places at the user’s disposal a procedure learn parameters for finding
parameter values such that a given LTL formula is satisfied [37]. This search pro-
cedure actually replicates and automates part of what the modeler currently does
by hand: trying different parameter values, between bounds that are thought rea-
sonable, or computed by other methods such as bifurcation diagrams, in order
to obtain behaviors in accordance with the experimental knowledge.

4 Coupling the Models of the Mammalian Cell Cycle,
p53-Based DNA-Damage Repair System, and
Irinotecan Pharmacodynamics

4.1 Three Different Modules

The first step of our approach to the investigation of the influence of irinotecan
on the mammalian cell cycle consists in the encoding of the selected models of
irinotecan [14], p53/Mdm2 [10], and mammalian cell cycle [30] in the BIOCHAM
rule-based language.

SBML versions of the irinotecan and p53/Mdm2 modules being available,
they were imported in BIOCHAM. The renaming of the variable representing
DNA-damage was the only modification necessary in this precise case. More
generally it would be necessary to rely on existing databases and ontologies to
match corresponding entities in different models.

For the other model, we looked in parallel at the corresponding set of ordinary
differential equations and at the available diagrammatic notation to obtain a set
of BIOCHAM reaction rules. Since ODEs can be automatically extracted back
from the reactions, and displayed with the BIOCHAM command show kinetics,
it was possible to check that the obtained model was indeed coherent with the
original one.

4.2 A Diagrammatic Coupled Model

In order to assemble the sub-models to get the coupled model, we reviewed the
literature about known links between the different building blocks.
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The expected behaviour of the cell is graphically depicted in Figure 1 and can
be described as follows. Injections of irinotecan (CPT11) induce DNA damage.
In reply to this, the cell reacts by activating protein p53, which blocks the
cell cycle at a checkpoint. This arrest aims at repairing critical damage before
DNA replications occurs, thereby avoiding the propagation of genetic lesions to
progeny cells. Thus, while the cell cycle is arrested, the protein p53 will activate
the DNA-damage repair mechanisms. If it is possible for the cell to recover, the
cell cycle will be restarted; otherwise, if the damage is too extensive, the cell will
undergo apoptosis.

The strategy we chose to draw the three models together is illustrated in
Figure 2. As remarked in Section 2, in literature we found evidence of the fact
that, if irinotecan is injected in a cell during the S phase of the cell cycle, then
more DNA damage will be caused with respect to the other phases of the cell
cycle [31,38]. Keeping this fact in mind, and considering that the dimer charac-
terizing S phase is CycA/Cdk2 (CycA for short), we inserted in cell cycle model
a rule stating that a high concentration of CycA determines a high concentra-
tion of Top1, an enzyme that, as previously explained, contributes to cause DNA
single-strand breaks in presence of irinotecan. In this way we linked the cell cycle
model to the irinotecan one.

The link between the irinotecan model and the p53/Mdm2 one is given by
DNA damage. In fact, irinotecan injections cause DNA damage, which in turn
triggers the activity of protein p53. In order to link the p53/Mdm2 and cell

CPT11 DNA damage p53
Block cell
cycle at

checkpoints
Apoptosis

recover

Fig. 1. Expected behaviour of the coupled model

Cell cycle

p53/Mdm2

Irinotecan
CycA Top1

DNA damage

p53

p21

CycA CycE

Fig. 2. Our coupled model
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cycle models, we inserted in the p53/Mdm2 model a rule which fixes that p53
activates p21, and two further rules imposing that p21 inhibits CycA and CycE,
respectively.

It is worth noting that we also investigated the possibility to abstract the
previous expanded rules by letting p53 directly inhibit CycA and CycE. In the
following, we will refer to this last version of the link as to the contracted one.

Finally, in order to define precisely the kinetics underlying the links and to val-
idate the coupled model, some biological knowledge was formalized as temporal
logic specifications allowing us to use model-checking and parameter optimiza-
tion techniques.

5 Specifying and Validating the Links through
Model-Checking

In this section, we will show how the integration of model-checking and parame-
ter learning techniques allowed us to both specify and validate our linking rules.
In both cases, we took advantage of constraint-LTL formulae to query numer-
ical simulations in a much more flexible way than by doing curve fitting. Our
Kripke structures are constituted of simulation traces over a time window of 100
hours, obtained by numerical integration (using Rosenbrock’s implicit method
for stiff systems), extended with the first and second derivatives of the system’s
variables.

As a matter of fact, both at specification and validation time, first we con-
sidered two models at a time, and finally we dealt with the complete model
made up by the three ones. In the following, we provide examples of biological
properties that helped us in defining the kinetics underlying the links: for each
property, first of all we express it through the natural language, then we formal-
ize it in constraint-LTL, and finally we present the results of the corresponding
model-checking query.

We encoded the link between the cell cycle and irinotecan models (see
Figure 2) by means of the following kinetics rule:
MA(top1bis) for =[CycA]=>TOP1.

Then, we used the procedure learn parameters to find out the minimum value
for top1bis such that property F1, that correlates the concentration values of
CycA and Top1, holds.
F1: Whenever CycA gets over 1, there exists a future state where Top1 is greater
than 1.
LTL: G(([CycA] > 1)→ F ([TOP1] > 1)).
Results: The minimum value for top1bis such that F1 is satisfied turned out
to be 0.45.

The following Biocham rules encode the link between the p53/Mdm2 and cell
cycle models (see Figure 2):
MA(k5321) for =[p53]=>p21.
MA(kA21) for CycA=[p21]=> .
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MA(kA21) for CycE=[p21]=> .

As for the contracted version, the encoding is the following one:
MA(kA53) for CycA=[p53]=> .
MA(kA53) for CycE=[p53]=> .

Again, we took advantage of the procedure learn parameters to find suitable
parameter values for k5321 and kA21 (kA53 in the second case) so that property
F2, that expresses the CycA oscillating behaviour exhibited in the cell cycle
model, is conserved in the coupled model in case there are no irinotecan injection.
F2: Within a time interval of 100 time units, CycA is greater than 2 in at least
8 oscillations.
LTL: oscil([CycA], 8, 2).
Results: We found out that suitable parameter values are k5321 = 0.18, kA21 =
0.08, and kA53 = 0.25. Property F2 also turned out to be true when there
are injections but the p53/Mdm2 model is not taken into account. In fact, as
expected, even if DNA damage occurs, when protein p53 does not act, the cell
cycle is not affected, and thus CycA exhibits a regular oscillating behaviour.

On the other hand, when the p53/Mdm2 model is added, in case of repeated
injections (and thus of sustained DNA-damage) the oscillations of CycA should
be affected.
F3: When there is sustained DNA damage (after an initial period), the amplitude
of CycA decreases before 70 time units and then stays low.
LTL: F ((T ime < 13) ∧G([DNAdam] > 0.5))→ F ((T ime < 70) ∧G([CycA] <
1.2)).
Results: With the expanded version of the links the amplitude of oscillations
gradually decreases, satisfying the property. With the contracted one oscillations
are very irregular, as graphically depicted in Figure 3.

The next property regards the DNA repairing power of the cell.
F4: After an irinotecan injection is performed, DNA damage is able to go under
the threshold of 0.1 before the next injection is done.
LTL: G(([CPT 11] > 9.45) ∨ (([CPT 11] ≤ 9.45)U([DNAdam] < 0.1))).
Results: Before testing the property, we decided to parameterize the lapse of
time between consecutive irinotecan injections. Then we took advantage of the
procedure learn parameters to find the minimum k such that, if one injection
is performed every k hours, then property F4 is true. We found out that the
minimum k multiple of 12 which makes F4 true is 36. Thus, one injection every
36 hours should be performed in order to allow DNA damage to be recovered
before the next injection. Then we tried to see what it happens if, at each
injection, we double the irinotecan dose. In this case, one injection every 48
hours should be done.

The next property requires the oscillating trend of proteins p53 and Mdm2
to stop before a new injection is performed.
F5: When an injection is performed, p53 and Mdm2 are in a steady state, that
is, their derivatives approach 0.
LTL: G(([CPT 11] > 9.45)→ ((d[p53] ≤ 0.05) ∧ (d[p53] ≥ −0.05)
∧ (d[Mdm2 :: n] ≤ 0.05) ∧ (d[Mdm2 :: n] ≥ −0.05))).
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Fig. 3. Zoomed simulation plot of the resulting model with injections every 36 hours

Results: As for the previous specification, we parameterized the lapse of time be-
tween consecutive irinotecan injections and we used the procedure learn param-
eters. The the minimum k multiple of 12 which makes F5 true is 48.

The next property deals with DNA damage.
F6: If p53 is not functional, DNA damage is an increasing function.
LTL: G([p53] ≤ 0.1)→ G(d([DNAdam])/dt ≥ 0).
Results: As matter of fact, the premise of this property only holds when the
p53/Mdm2 model is not taken into account, thus DNA damage is not recovered
and continuously increases until apoptosis is reached.

Finally, the last two properties concern the oscillating trend of proteins p53
and Mdm2 caused by irinotecan injections.
F7: An irinotecan injection causes at least one oscillation of proteins p53 and
Mdm2.
LTL:G(([CPT 11] > 9.45)→ F (oscil([p53], 1)∧ F (oscil([Mdm2], 1)))).
F8: p53 oscillations are alternated by Mdm2 ones.
LTL: G(oscil([p53], 1)→ X((¬oscil([p53], 1))U(oscil([Mdm2 :: n], 1)))).
Results: Both F7 and F8 are satisfied in the coupled model.

Such a model-checking approach turned out to be very efficient: the execution
times were lower than one second in almost all cases2. Furthermore, it proved
to be effective, allowing us to express relevant biological properties of the model
(and concentration values that make specifications true) that could not be easily
encoded as curve fitting problems for instance. There is a common recognition of

2 All the experiments have been run on a Centrino Duo 2.00 GHz Windows machine.
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the potentialities of model-checking in bio-informatics and our contribution goes
in this direction, showing its utility to compose and validate biological models.

In Figure 3 there is a 100 hours-simulation of the complete model, where
the contracted version of the link between the p53/Mdm2 and cell cycle models
is considered and one injection every 36 hours is performed. The plot puts in
evidence how DNA damage increases after every injection. The oscillating trend
of proteins p53 and Mdm2 is well highlighted. Furthermore, it is possible to
notice the irregular behaviour assumed by CycA after irinotecan injections and
the dependence of Top1 from CycA.

6 Conclusion and Perspectives

In this paper we presented a model-checking approach to the investigation of
the influence of irinotecan on the mammalian cell cycle. We coupled in the rule-
based language of BIOCHAM three models of respectively the mammalian cell
cycle, p53-based DNA-damage repair, and irinotecan intracellular PK/PD, us-
ing BIOCHAM’s procedure for optimizing parameters with respect to biological
properties formalized in temporal logic. Model-checking techniques proved to be
particularly suitable for studying the irinotecan metabolic pathways. It let us
get a better understanding of the drug influence on the mammalian cell cycle
and infer some properties to be exploited in the drug therapy, such us optimal
injection times and doses.

In order to study how irinotecan interferes with tumor cell proliferation, a
further component should be taken into account, that is, the circadian clock,
which regulates the synchronous progression of cells through each stage of the
cell cycle, determining the daily time windows during which cells can traverse
certain phases of the cell cycle [28]. The circadian synchronization of cell cycle
progression, which characterizes healthy normal tissues, is often altered in cellu-
lar tissues affected by malignant tumors [29]. Roughly speaking, it means that,
unlike safe cells, different tumor cells at the same time can be in different phases
of the cell cycle.

As a matter of fact, the behaviour of a single cell is not sensibly affected by
malignant tumors, but the presence of a disease is generally detected by observing
groups of at least one hundred cells. At the level of single cells, a slowing down
of biochemical reactions is the only observed phenomenon in presence of tumor.
An interesting extension of the work so far presented would consist in adding
to our coupled model a new “circadian clock module” to synchronize cells and
simulating the resulting model on a group of about one hundred cells. The three
already present modules would remain almost unchanged, apart from a speed
reduction of the reactions inserted in Figure 2 to link them.
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Università di Genova, Italia

2 Dipartimento di Scienze dell’Informazione,
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Abstract. The κ-calculus is a formalism for modelling molecular biol-
ogy where molecules are terms with internal state and sites, bonds are
represented by shared names labelling sites, and reactions are represented
by rewriting rules. Depending on the shape of the rewriting rules, a lat-
tice of dialects of κ can be obtained. We analyze the expressive power of
some of these dialects by focusing on the thin boundary between decid-
ability and undecidability for problems like reachability and coverability.

1 Introduction

For this reason, as in other applications of concurrency, an important founda-
tional issue is the study of dialects for which qualitative analysis is computable in
an effective way and the isolation of minimal fragments in which it is proved to be
impossible. κ is a formalism for modelling molecular biology where molecules
are terms with internal state and with sites, bonds are represented by names
that label sites, and reactions are represented by rewriting rules. For example,
EGFR[tk0](1z) represents a molecule of species EGFR that is not phosphori-
lated – the internal state tk is 0 – and that is bond to another molecule – its site
1 is labelled with a name z. The reaction in Fig. 1 defines the first step of the
Receptor Tyrosine Kinase (RTK) growth factor EGF (a dimeric form of EGF
binds two receptors EGFR, thus phosphorylating the tyrosine kinase site – tk
switches from 0 to 1). This reaction is rendered by the following κ rule:

EGF (1x + 2y),EGF (1x + 2z),EGFR(1y),EGFR[tk0](1z)
� EGF (1x + 2y),EGF (1x + 2z),EGFR(1y),EGFR[tk1](1z)

(1)

Qualitative problems, such as reachability of a given solution, turn out to be
undecidable in κ. Therefore one is either compelled to design approximated
analyses or to study these properties in dialects of κ. We choose the second
direction, thus yielding a number of precise analyses that do not abstract away
either from the multiplicity of molecules or from the exact structure of complexes.

P. Degano and R. Gorrieri (Eds.): CMSB 2009, LNBI 5688, pp. 158–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Decidability Boundaries for Qualitative Analysis in Biological Languages 159

Fig. 1. Representation of the κ-rule (1)

To this aim, we consider a number of κ dialects that, as we discuss in the
following, take inspiration from biological phenomena such as the molecular self-
assembly [1] or the DNA branch migration [2]. These dialects are ordered into a
lattice by the sublanguage relation – see Figure 2 disregarding the ovals. Let us
unravel the lattice with the restrictions imposed on κ to obtain the sublanguages
κ−n, κ−d, and κ−d −u . The calculus κ−n follows by removing any form of destruc-
tion of molecules (the number of molecules never decrease). This fragment nat-
urally models those systems where molecules always keep their “identity” even
when they are part of a complex because, for example, they can subsequently
dissociate from the complex. This is the case of polymers, that is chemical struc-
tures obtained by joining monomers that react on complementary surfaces. A
simple polymerisation – the linear bidirectional one, where the complementary
surfaces of monomers are two (that we respectively call l and r in the following)
– is modelled by the following κ−n rules:

A(r),A(l) � A(rx),A(lx) (2)
A(rx),A(lx) � A(r),A(l) (3)

The reaction (2) defines polymerization (the creation of a bond between two
monomers with free complementary surfaces); (3) defines depolymerization (the
destruction of the bond, but not of the monomers).

The additional restriction yielding κ−d is the one that disallows the removal of
bonds (depolymerizations are forbidden). This restriction is inspired by molec-
ular self-assembly, which is a process where molecules, initially unbound, adopt a
defined arrangement. The DNA-origami method is a popular example of
self-assembly that allows to create arbitrary two-dimensional shapes, such as
Borromean rings [3], using DNA. In κ−d self-assembly is directly enforced be-
cause bonds cannot be broken. The last dialect along this axis, called κ−d −u ,
is obtained by considering molecules without internal states. In several cases
such states are not useful. An example is the DNA self-assembly governed by
the Watson-Crick complementary base pairing [4]. We also consider two other
subcalculi that forbid destructions of molecules and bonds: κ−d−i and κ−d−u−i.
These dialects are obtained from κ−d and κ−d −u , respectively, by restricting re-
ductions to those that never verify the connectedness of reactants. For example,
the polymerization (2) is a reaction of this type. It turns out that the Watson-
Crick complementary base pairing may be defined in κ−d−u−i.
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Our analysis also takes into account a different axis. In [5] a new reaction rule
has been introduced, called exchange. According to this reaction, the interaction
between two molecules may flip a bond from one to the other. For example, the
reader may consider the case where a thief molecule T may connect to a third
site of the monomer A and steals the polymer connected to the site l of A:

T (t + s),A(h)�T (tx + s),A(hx) (4)
T (tx + s),A(hx + ly)�T (tx + sy),A(hx + l) (5)

(reaction 5 is an example of bond flipping). Bond flipping allows us to model
other interesting DNA systems, such as those based on branch migration used
to create, for instance, a nanoscale biped walking along a DNA strand [6]. The
calculi including bond flipping are made evident with the superscript +bf . Fi-
nally, we consider also a more liberal form of flipping, called free flipping (see
Figure 3), in which flipping can occur also between two unbound molecules. With
free flipping, the thief molecule T can steal the polymer to a monomer without
previously connecting to it:

T (s),A(ly) � T (sy),A(l) (6)

For all of the 14 dialects of κ we investigate three problems: the Reachabil-
ity Problem (RP), the Simple Coverability Problem (SCP) and the Coverability
Problem (CP). The RP is the decision problem associated to the existence of a
derivation (simulation) from an initial solution to a target. As shown in [7,8,9],
this problem is of high relevance for validation of formal models of biological sys-
tems. The SCP is the decision problem associated to the existence of a derivation
from an initial solution to a target with given components, regardless of their
multiplicity. In other words the shape of complexes in the target solution is
taken from a set fixed a priori. SCP is a generalization of the decision problem
associated to the static analysis considered in [10]. Finally, CP is the decision
problem associated to the existence of a derivation from an initial solution to a
target that contains given components.

Our results about the (un)decidability of RP, SCP, and CP in the κ lattice
are illustrated in Figure 2.

The undecidability results are proved by modelling Turing complete
formalisms in the calculi, while the decidability results are proved by reduc-
tion to decidable properties in finite state systems or Petri-nets. As far as the
undecidability results are concerned, the most surprising one is the undecidabil-
ity of CP in κ−d −u . We prove that this very poor fragment of κ – in which
molecules have no state and bonds can be neither destroyed nor flipped – is
powerful enough to encode Two Counter Machines [11], a Turing complete for-
malism. It is also interesting to observe that this result about κ−d −u relies on
the possibility to test at least the presence of bonds. In fact, κ−d−u−i is no longer
Turing complete because CP is decidable for this fragment (CP allows one to
test whether a certain complex, for instance representing the termination of a
computation, can be produced). While the dialects that include κ−d −u are Tur-
ing complete, many of them retain decidable SCP and/or RP properties. These
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Fig. 2. The κ lattice and the (un)decidability of RP, SCP, CP

facts, apparently contrasting with Turing universality of the calculi, are conse-
quences of the following monotonic properties: reactions cannot decrease either
(i) the total number of molecules in the solution or (ii) the size of the complexes
in the solution. In the calculi satisfying the form of monotonicity (i) we show
that it is possible to compute an upper-bound to the number of molecules in the
solutions of interest for the analysis of RP. In this way, we reduce our analysis to
a finite state system. For the calculi satisfying the form of monotonicity (ii) we
show that it is possible to compute an upper-bound to the size of the complexes
in the solutions of interest for the analysis of SCP. In this case, even if it is not
possible to reduce to a finite state system (because there is no upper-bound to
the number of instances of the complexes in the solutions of interest), we can
reduce to Petri-nets in which reachability and coverability are decidable.

The paper is organised as follows: Section 2 recalls κ, its fragments and the
needed terminology. Section 3 discusses the separation results between the frag-
ments of κ. Section 4 discusses related contributions in literature. Section 5
concludes with few final remarks.
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2 Preliminaries

This section introduces κ and its dialects, together with the terminology that is
necessary in the sequel.

κ-calculi. Two countable sets of species A, B, C, . . ., and of bonds x, y, z, . . .
are assumed. Species are sorted according to the number of sites, , and fields
h, i, j, . . . they possess.

Sites may be either bound to other sites or unbound, i.e. not connected to
other sites. The configuration of sites are defined by partial maps, called inter-
faces and ranged over by σ, ρ, . . . . The interfaces associate to sites either a bond
or a special empty value ε, which models the fact that the site is unbound.

For instance, if A is a species with three sites, (2 �→ x; 3 �→ ε) is one of its
interfaces. This map is written 2x + 3 (the ε is always omitted). We notice that
this σ does not define the state of the site 1, which may be bound or not. Such
(proper) partial maps are used in reaction rules in order to abstract from sites
that do not play any role in the reactions (similar for evaluations, see below).
In the following, when we write σ + σ′ we assume that the domains of σ and σ′

are disjoint. The functions dom(·) and ran(·) return the domain and the range
of a function.

Fields represent the internal state of a species. The values of fields are also
defined by partial maps, called evaluations, ranged over by u, v, . . . . For instance,
if A is a species with three fields, {1 �→ 5; 2 �→ 0; 3 �→ 4}, shortened into 15+20+
34, is a possible evaluation. We assume there are finitely many internal states,
that is every field is mapped into a finite set of values. As for interfaces, u + v,
we implicitly assume that the domains of u and v are disjoint.

Definition 1. A molecule A[u](σ) is a term where u and σ are a total evaluation
and a total interface of A.
Solutions, ranged over by S, T , . . . , are defined by: S ::= A[u](σ) | S, S. Bonds
in solutions occur at most twice; in case bonds occur exactly twice the solution is
proper. A pre-solution is a sequence of terms A[u](σ) where u and σ are partial
functions and bonds occur at most twice. A pre-solution is proper if (similarly
as before) bonds occur exactly twice. The set of bonds in S is denoted bonds(S).

In the rest of the paper the composition operator “,” is assumed to be associa-
tive, so (S, S′), S′′ is equal to S, (S′, S′′) (therefore parentheses will be always
omitted).

Let σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if σ(i) 
= ε then σ(i) = σ′(i)
(the two interfaces may differ on sites mapped to the empty value ε by σ as σ′

may map such sites to bonds).
Reactions have the shape L � R, where L and R are pre-solutions called

reactants and products, respectively. The general shape of reactions is defined in
the next definition. Following [5], we extend the definition of [12] with exchange
reactions, thus the calculus is an extension of the κ-calculus.1

1 Another difference with [12] is that we allow newly produced molecules unbound
from existing ones.
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Fig. 3. Bond flipping and free flipping

Definition 2. Reactions of the κ+ff calculus – the κ calculus with free flipping
rules – are either creations C, or destructions D, or exchanges E.
The format of creations is

A1[u1](σ1), . . . , An[un](σn)
� A1[u′

1](σ
′
1), . . . , An[u′

n](σ′
n), B1[v1](φ1), . . . , Bk[vk](φk)

where, for every i, dom(ui) = dom(u′
i), σi ≤ σ′

i, and vi and φi are total. Reac-
tants and products are proper.
The format of destructions is

A1[u1](σ1), . . . , An[un](σn) � Ai1 [u
′
i1 ](σ

′
i1 ), . . . , Aim [u′

im
](σ′

im
)

where i1, . . . , im is an ordered sequence in [1 . . . n], for every ij, dom(uij) =
dom(u′

ij
), σij ≥ σ′

ij
, and if ij /∈ {i1, . . . , im} then σij is total. Reactants and

products are proper.
The format of exchanges is

A[u](ax + σ),B [v](b + ρ) � A[u′](a + σ),B [v′](bx + ρ)

where ran(σ) = ran(ρ).

Creations may change state, produce new bonds between two unbound sites, or
synthesise new molecules. Destructions behave the other way around. Exchanges
are reminiscent of the π calculus because they define a migration of a bond
from one reactant to the other. We distinguish two types of exchanges: the one
occurring between connected molecules, called (connected) bond flipping, and the
one occurring between disconnected molecules, called free (bond) flipping. These
are illustrated below:

The operational semantics of κ+ff calculus uses the following two definitions:

– the structural equivalence between solutions, denoted ≡, is the least one
satisfying (we remind that solutions are already quotiented by associativity
of “,”):
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• S, T ≡ T, S;
• S ≡ T if there exists a renaming ı on bonds such that S = ı(T ).

– A1[u1 + u′
1](σ1 ◦ ı + σ′

1), . . . , An[un + u′
n](σn ◦ ı + σ′

n) is an (ı, u′
1, · · · , u′

n,
σ′

1, · · · , σ′
n) instance of A1[u1](σ1), . . . , An[un](σn) if ı is a renaming on

bonds and the maps uj + u′
j and σj ◦ ı + σ′

j are total with respect to the
species Aj .

Definition 3. The reduction relation of the κ+ff calculus, written →, is the
least one satisfying the rules:

– let L � R be a reaction of κ+ff , S be an (ı, ũ, σ̃)-instance of L, and T be an
(ı, ũ′, σ̃′)-instance of R. Then S → T ;

– let S→T and (bonds(T ) \ bonds(S)) ∩ bonds(R) = ∅, then S, R→ T, R;
– let S ≡ S′, S′ → T ′, and T ′ ≡ T , then S → T .

The κ+ff calculus groups several sub-calculi that have in turn simpler formats
of rules. We have already depicted in Figure 2 the fragments we study. We move
from κ+ff along two different axes:

1. along one axis we restrict the shape of destructions rules:
– the superscript −n: we restrict destructions by letting im = n (i.e. for-

bidding cancellations of molecules),
– the superscript −d: we remove destructions,
– the superscript −d−u: we remove destructions and consider species with

no fields,
– the superscript −d−u− i: we remove destructions, fields and we restrict

creations and exchanges such that no bond occurs in the left-hand side
except the flipping one,

2. along the other axis we restrict the capabilities of the exchange rule:
– the superscript +bf : we restrict exchanges by allowing bond-flipping

only,
– no superscript: we remove exchanges.

Some of the combinations are empty. For example, a calculus without checks of
bonds and with cancellation of bonds is meaningless as, in order to remove one
bond, it is necessary to test its presence first.

The reader may refer to the introduction for formalisations of relevant biolog-
ical systems written in these calculi.

Decision problems for qualitative analysis. A first basic qualitative prop-
erty is whether a solution eventually produces “something relevant” or not.
Clearly this “something relevant” can be defined in a variety of ways. In this
paper we consider its formalisation in terms of reachability and coverability, two
standard properties which have been extensively investigated in many concurrent
formalisms. Few preliminary notions are required.

Definition 4 (Complex). Given a proper solution, a complex is a sub-solution
that is connected (there is a path of bonds connecting every pair of molecules
therein) and proper. Two complexes in a solution are equal if they are struc-
turally equivalent.
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Let S(S) be the set of different complexes in S; let also→∗ be the transitive and
reflexive closure of →.

Definition 5. RP: the reachability problem of T from a proper solution S
checks the existence of R such that S →∗ R and R ≡ T ;

SCP: the simple coverability problem of T from a proper solution S checks the
existence of R such that S →∗ R and S(R) = S(T ) and R ≡ T, T ′, for some
T ′;

CP: the coverability problem of T from a proper solution S checks the existence
of R such that S →∗ R and R ≡ T, T ′, for some T ′.

3 (Un)Decidability Results for κ Dialects

In this section we study the (un)decidability of RP, SCP, and CP in the κ lattice
of Figure 2. The overall results represented in that figure are the consequences
of theorems that we detail in the remainder of this section. For each decidability
region – one for RP, one for SCP, and one for CP – we prove that the corre-
sponding property is decidable in the top language of the region and undecidable
in the bottom language(s) among those not included in the region.

We separate the presentation of our results in two subsections, the first one
is devoted to decidability, the latter to undecidability.

3.1 Decidability Results

The proofs of decidability follow by reduction to decidable problems in either
finite state systems or Place/Transition Petri nets (P/T nets). These nets are
an interesting infinite state model for the representation and analysis of parallel
processes because they retain several decidability problems, such as reachability
or coverability [13]. We recall here the basic notation, for a full description of
this computational model see [14].

Definition 6. A P/T net is a tuple N = (S, T, F, m0), where S and T are finite
sets, called places and transitions, respectively, such that S ∩ T = ∅. A finite
multiset over the set S of places is called a marking, and m0 is the initial mark-
ing. F is the transition function associating to each transition t two markings
called the pre-set and the post-set of t.

The marking m of a P/T net can be modified by means of transitions firing:
a transition with pre-set m′ and post-set m′′ can fire if m′ ⊆ m; upon transition
firing the new marking of the net becomes (m \m′) ∪m′′ where \ and ∪ are the
difference and union operators for multisets, respectively.

Our first positive result is for the κ+ff −n fragment.

Theorem 1. RP is decidable in κ+ff −n .

Proof. We reduce RP to the reachability problem in a finite state system. Let
R be a set of κ+ff −n reactions and let S and T be two proper solutions. We
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notice that, in order for S →∗ T , all intermediary solutions traversed by the
computation must have a number of molecules which is less or equal to the
number nT of molecules in T . This is because in κ+ff −n it is not possible to
delete molecules.

Let A be the set of species occurring either in S or in a rule of R. Let
also setT (A) be the set of (proper) solutions with a number of molecules less
than nT . This set is finite up-to structural equivalence because the number of
sites and fields of species is finite, the values of fields is finite, and the possible
combinations of bonds is finite, as well. By mapping every solution R to its
canonical representative in the structural equivalence class, called [R], we can
build a finite state system FSST such that, by Definition 3, given two solutions in
setT (A), R → R′ if and only if [R] → [R′]. We conclude the proof by observing
that S →∗ T if and only if [S] →∗ [T ], and this latter property is decidable in
FSST . ��
The proof technique adopted above cannot be used to prove the decidability of
the SCP problem for a given target T in κ+bf −d . As a matter of fact, SCP
allows one to specify only lower bounds, and no upper bounds, to the number
of instances of complexes (thus also of the molecules) in the target solution.
For this reason finite state systems are not sufficiently expressive to model the
computations of interest. Nevertheless, we can move to P/T nets because it is
possible to compute a finite set SETT (A) containing the kinds of complexes to
be considered in the reachability analysis. This set turns out to be finite since
in κ+bf −d the size of one complex can never decrease and the size of the biggest
complex in T fixes an upper bound to the size of the complexes in SETT (A).
The idea is then to map each complex in SETT (A) into one place, and define
transitions according to the considered reactions. Hence we have the following
theorem:

Theorem 2. SCP is decidable for κ+bf −d .

The P/T net described above cannot be used to prove the decidability of the
CP problem for a given target T in κ+bf −d . In fact, according to CP , the target
T indicates only part of the complexes to be reached. Thus, the reached solution
that contains the target complexes, could also contain other complexes of size
greater than the size mT of the biggest complex in T . Nevertheless, since in κ−d−i

bond names cannot be tested in the reactants of a reaction, we can remove from
the P/T net representation of those complexes the structure of their bonds, and
thus consider only the states and the free sites of their molecules. More precisely,
the P/T net described above is now extended with places Â[u](σ) (for every
species A, every evaluation u, and with partial functions σ mapping every site
to ε) used to represent the molecules in complexes of size greater than mT . Due
to the finiteness of species, evaluations, and sites we have that this additional set
of places is finite. Moreover the set of transitions is straightforwardly extended
to cope with the new places. Hence it is possible to prove the following:

Theorem 3. CP is decidable in κ−d−i.
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3.2 Undecidability Results

Our undecidability results follow by reduction to undecidable problems such
as the halting problem for Two Counter Machines (2CMs), which is a Turing
equivalent formalism. A 2CM [11] is a machine with two registers R1 and R2

holding arbitrary large natural numbers and a program P consisting of a finite
sequence of numbered instructions of the following type:

– j : Succ(Ri): increments Ri and goes to the instruction j + 1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1

and goes to the instruction j + 1, otherwise jumps to the instruction l;
– j : Halt: stops the computation and returns the value in the register R1.

A state of the machine is given by a tuple (j, v1, v2) where i indicates the next
instruction to execute (the program counter) and v1 and v2 are the contents of
the two registers. The user has to provide the initial state of the machine. In the
rest of the paper, we consider 2CMs in which registers are initially set to zero
and where the instruction 0 is Halt. Our first negative result is for reachability
of a solution in κ.

Theorem 4. RP is undecidable in κ.

Proof. We reduce the termination problem for 2CMs to RP. Let M be a 2CM
with n instructions. To encode it in κ we use five species:

1. P is the program counter; it retains one field with values in [0, . . . , n] and
no site;

2. Z1 and Z2, both with one site, represent the value 0;
3. R1 and R2, both with two sites, represent the unity to be added to or removed

from registries.

Let j, l ∈ [0..n] and let i ∈ {1, 2}. The encoding [[·]]κ is defined as follows:

[[j : Succ(Ri)]]κ =
{

P [1j], Zi(1) � P [1j+1], Zi(1x), Ri(1x + 2)
P [1j], Ri(2) � P [1j+1], Ri(2x), Ri(1x + 2)

[[j : DecJump(Ri, l)]]κ =

⎧⎨⎩
P [1j ], Zi(1) � P [1l], Zi(1)
P [1j ], Zi(1x), Ri(1x + 2) � P [1j+1], Zi(1)
P [1j ], Ri(2x), Ri(1x + 2) � P [1j+1], Ri(2)

[[j : Halt]]κ =

⎧⎨⎩
P [1j ], Z1(1), Z2(1) � P [10], Z1(1), Z2(1)
P [1j ], Zi(1x), Ri(1x + 2) � P [1j ], Zi(1)
P [1j ], Ri(2x), Ri(1x + 2) � P [1j], Ri(2)

It turns out that the 2CM halts if and only if the solution P [10], Z1(1), Z2(1)
��

The encoding of 2CMs described above does not apply to κ−n because in this
dialect molecules cannot be removed. Nevertheless, we can rephrase the decre-
ment operation of the encoding above by breaking the link between the two last
molecules Ri (or the molecules Zi and Ri in case the register holds 1). Hence we
have the following theorem:
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Theorem 5. SCP is undecidable in κ−n.

We observe that, without using fields and destructions, as in κ−d −u , it is not pos-
sible to reuse the encoding scheme above. Nevertheless, using only creations we
can model registers with grids containing two classes of molecules: the molecules
of the first class represent units in the register, while those of the second class
are used to replace units during decrement instructions. Given the register Ri

holding n, the corresponding grid contains in the topmost row n molecules of the
first class. More precisely, the encoding of the increment increases the topmost
row of the grid with a molecule of the first class. The encoding of the DecJump
instruction is more complex: The idea is to copy the topmost row of the grid
replacing, if possible, one molecule of the first class with one of the second class.
If this replacement occurs the subsequent instruction is activated, otherwise a
jump is performed. Finally, the encoding of the Halt instruction simply produces
the Halt molecule. Given this construction it follows that:

Theorem 6. CP is undecidable in κ−d −u .

The previous encoding of 2CMs does not allow us to prove the undecidability of
SCP in κ+ff −d −u because the exact structure of the grids representing the two
registers at the end of the computation is unknown as it depends on the num-
ber of increment and decrement instructions that are executed. Nevertheless, in
κ+ff −d −u we can use free flipping to “destruct”, at the end of the computation,
the grids obtaining an unknown amount of complexes with a known structure.
More precisely, we extend the previous construction in such a way that the
molecule Halt triggers the following computation: one molecule is produced for
each end of each bond in the grids, and all those ends are then passed to such
new molecule. Thus we can state the following theorem:

Theorem 7. SCP is undecidable in κ+ff −d −u .

4 Related Work

In this section we discuss some related works by first focusing on formal models
specifically proposed for describing biological systems and then considering more
generally the fields of term/graph rewriting and process calculi.

As we said in the Introduction, the closest work to this contribution is [10]
where a syntactic restriction entailing a form of SCP is proposed. This restriction
– κ with local rule sets – is orthogonal to the ones proposed in this paper.
It does not cover the reachability analysis of finite structures with recurrent
patterns, such as finite polymers. In these cases, the analysis in [10] yields an
over-approximation of the reachable complexes.

Apart from κ, the literature reports several proposals for describing (and
reasoning on) biological systems, which use a variety of formal tools, including
process calculi, term/graph rewriting, (temporal) logic, and rule based languages.
However, the expressive power of most of these formalisms is the one of Petri
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nets. Therefore, the decidability of reachability and coverability problems is an
immediate consequence of the corresponding results on Petri nets. Formalisms
whose expressive power is similar to κ, miss results analogous to those contained
in this paper. For example, the biochemical abstract machine Biocham [15,16]
is a rule-based model similar to κ. However reactions are constrained to spec-
ify completely the reagent solution, unlike κ where reactions partially specify
reactants and products. It is worth noticing that the Biocham constraint do
not allow finite descriptions of rules creating polymers of arbitrary length. As a
consequence, when considering purely qualitative aspects, i.e. removing kinetic
quantities, the Biocham can be reduced to a classical Petri net [15].

Another rule-based model for describing and analysing biological processes
is Pathway Logic [17,18]. This model is based on rewrite logic, which allows
to describe biological entities and their relations at different levels of abstrac-
tions and granularity by using elements of an algebraic data type (to describe
states) and rewrite rules (to describe transitions between states and therefore
behaviours). Even though Pathway Logic models of biological processes are de-
veloped in Maude system, which is Turing complete, yet the analysis of biological
systems uses the, so called, Pathway Logic Assistant for representing models in
terms of Petri Nets [18]. Therefore, also in this case, the relevant decidability
results derive from the analogous results on Petri nets. This is the case also for
the model used in [19]. A different model, based on graph transformation has
been proposed by Blinov et al. [20]. However, in this case, the relevant proper-
ties (e.g. membership of a given species in a reaction network) are semi-decidable
and we are not aware of suitable restrictions on the general model that ensure
decidability for some of them.

We have not find results regarding the fields of term/graph rewriting and
process calculi, from which we can immediately derive the ones obtained here.
In particular, for term rewriting systems, the reductions to Petri net reacha-
bility can be applied to decide reachability for associative-commutative ground
term rewriting (AC) [21] and for Process Rewrite Systems (PRS) [22]. However,
AC and PRS are more expressive than Petri nets, but strictly less expressive
than Turing machines [22]. On the other hand our positive results are given for
fragments of κ that are Turing-complete. As such, the set of derivatives of a κ
solution may not be a regular set of terms. Thus, decision procedures based on
tree automata like those proposed in fragments of non-ground term rewriting
[23,24,25,26] cannot be applied to the κ-lattice.

Decidability results for reachability in process calculi like Mobile Ambients,
Boxed Ambients, and Bio-ambients are given in [27,28,29,30,31]. These results
are obtained for fragments (or for weak semantics) that ensure the monotonicity
of the generated ambient structures. In addition they consider process calculi
(Mobile/Boxed/Bio Ambients) which operate on tree-like structures and without
fresh name generation. This contrasts with the dialect of κ of Figure 2, that
operate on (possibly cyclic) graph-structures and admit dynamic creation of
new names (bonds).



170 G. Delzanno et al.

Concerning Graph Rewriting Systems (GRS) there exist folk theorems about
reachability that state its undecidability in full-fledged GRS and its decidability
for GRS in which rules do not add new nodes. We are not aware of (un)decida-
bility results for decision problems like reachability and coverability in graph
rewriting systems with features similar to those considered in our κ-lattice. The
only specific results we are aware of are those given for reachability in context-
free graph grammars [32] and for coverability in GRS that are well-structured
with respect to the graph minor relation [33]. However, we consider here more
general rules than those of context-free graph grammars. Furthermore, we do
not see how to apply the decision procedure proposed in [33] to languages in the
κ-lattice that, in general, do not enjoy strict compatibility with respect to the
graph minor ordering.

5 Conclusions

We have investigated three decidability problems for several κ dialects. These
problems allow one to check whether, starting from a given initial solution, a
sequence of reactions described in the κ formalism produces a solution having
some specific features. Hence our results, summarized in Figure 2, can be seen
as a first step in the direction of qualitative analysis of κ calculus.

Besides presenting techniques for qualitative analysis, we also characterise the
computational power of κ-like biologically inspired models. In this respect, the
main result is that we can remove bond and molecule destruction and the internal
state of molecules from κ without losing Turing completeness On the contrary,
if we remove the possibility to test the presence of one bond in a reaction, the
calculus is no longer Turing universal.

Our work can be extended along at least two lines. First, several other frag-
ments of κ can be considered for a similar investigation. Notably nanoκ that
admits at most two reactants. In particular, our encoding of a 2CM into κ−d−i

uses ternary (at the left hand side) rules and we conjecture that a 2CM cannot
be encoded faithfully into κ−d−i with binary rules only.

Second, there are several other interesting properties to investigate, for exam-
ple a form of coverability where one admits complexes strictly larger than the
original ones. In this perspective, we plan to exploit the theory of well struc-
tured transition systems [34] as done in [33] to prove decidability of coverability
w.r.t. the graph minor relation in classes of graph rewriting systems.
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Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS
(LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)

21. Mayr, R., Rusinowitch, M.: Reachability is decidable for ground ac rewrite systems.
In: Infinity 1998, pp. 53–64 (1998)

22. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1-2), 264–286 (2000)
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Abstract. Molecular noise, which arises from the randomness of the discrete
events in the cell, significantly influences fundamental biological processes. Dis-
crete-state continuous-time stochastic models (CTMC) can be used to describe
such effects, but the calculation of the probabilities of certain events is computa-
tionally expensive.

We present a comparison of two analysis approaches for CTMC. On one hand,
we estimate the probabilities of interest using repeated Gillespie simulation and
determine the statistical accuracy that we obtain. On the other hand, we apply
a numerical reachability analysis that approximates the probability distributions
of the system at several time instances. We use examples of cellular processes
to demonstrate the superiority of the reachability analysis if accurate results are
required.

1 Introduction

The traditional approach for a dynamical model of cellular reaction networks is based
on the assumption that the concentrations of the chemical species change continu-
ously and deterministically in time. During the last decade, however, stochastic mod-
els with discrete state spaces have seen growing interest [25,30,36,7,29,38,40,43]. The
reason is that they take into account the effects of molecular noise in the cell. Molec-
ular noise has a significant influence on important processes such as gene expres-
sion [19,3,27,24,6,39], decisions of the cell fate [1,23,22], and circadian oscillations
[11,2,12].

An appropriate modeling approach for systems that are subject to molecular noise is
a discrete-state continuous-time Markov process, also called continuous-time Markov
chain (CTMC). This is particularly evident in the presence of intrinsic noise arising
from random microscopic events in the cell, such as the location of molecules or the
order of the reactions. As opposed to continuous models, the discrete-state stochastic
model is able to capture the discreteness of the random events in the cell.

The evolution of such a CTMC is given by a master equation that is derived according
to Gillespie’s theory of stochastic chemical kinetics [10]. Since the state space grows
exponentially in the number of involved chemical species, the state space of the CTMC
is large, which renders its analysis difficult. Moreover, the discrete structure becomes
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even larger when the number of molecules in the system grows. If the populations of
certain chemical species are large, their effect on the system’s variance is small and
they can be approximated assuming a continuous deterministic change. For species
with small populations, however, a continuous approximation is not appropriate and
other approximation techniques are necessary to reduce the computational effort of the
analysis.

Besides the computation of cumulative measures such as expectations and variances
of the populations of certain chemical species, the computation of event probabilities
is important for several reasons. First, cellular process may decide probabilistically be-
tween several possibilities, e.g., in the case of developmental switches [14,1,30]. In
order to verify, falsify, or refine the mathematical model based on experimental data,
the likelihood for each of these possibilities has to be calculated. But also full distribu-
tions are of interest, such as the distribution of switching delays [24], the distribution of
the time of DNA replication initiation at different origins [28], and the distribution of
gene expression products [42]. Finally, many parameter estimation methods require the
computation of the posterior distribution because means and variances do not provide
enough information to calibrate parameters [16].

Two different families of computational approaches have been proposed and used
to estimate event probabilities and approximate probability distributions. The first kind
of approach is based on numerical simulation, i.e., the generation of many sample tra-
jectories (or simulation runs) of the system. The second kind of approach is based on
numerical reachability analysis, i.e., the propagation of the probability mass through
the state space. The former approach is known as Gillespie simulation [9], in which
pseudo-random numbers are used to simulate molecular noise. Measures of interest are
obtained via statistical output analysis. The main advantage of simulation is that it is
easy to implement and the generation of trajectories is not limited by the size of the state
space. Moreover, the precision level of the method can be easily adjusted by perform-
ing more or fewer simulation runs. For the computation of the probability of certain
events, however, simulative approaches become computationally expensive, because a
large number of runs have to be carried out to bound the statistical error appropriately.
For estimating event probabilities, a higher precision level is necessary than for esti-
mating cumulative measures such as expectations, and simulation becomes expensive
because doubling the precision requires four times more simulation runs.

In contrast, approaches based on a numerical reachability analysis approximate prob-
ability distributions of the CTMC. As opposed to a statistical estimation of probabilities,
which yields an indirect solution, the master equation is numerically solved by integrat-
ing the system’s behavior over time. Standard numerical techniques are impractical for
many systems because of the enormous size of the state space. Recently, however, more
sophisticated numerical approximation methods have been proposed, which solve the
system in an iterative fashion and consider only subsets of the state space during any
given time interval [17,26,5]. They are significantly more efficient than global analysis
because they use localization optimizations (such as “sliding windows”) and dynamic
adaptation (“on-the-fly” generation of windows). These methods efficiently compute
the probability distribution of large CTMC at several time instances up to a small ap-
proximation error. They can also be used for infinite-state systems.
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In this paper, we evaluate and compare the performance of the two different ap-
proaches for the computation of probabilities of certain events, i.e., the statistical esti-
mation using simulation and the approximation using a numerical reachability analysis.
For the latter we use a particular algorithm as a representative of the whole family of
numerical analysis algorithms, because we have found it to perform best. Similar to the
sliding-window method [17], our algorithm performs a sequence of local analysis steps
on dynamically constructed abstractions of the system. The main improvement over the
sliding-window method is that our algorithm is based on adaptive uniformization [41],
which allows us to consider arbitrary sets of significant states, i.e., they may be located
at different parts of the state space and are not restricted to a specific window shape.
Moreover, adaptive uniformization is more robust if the system under study is stiff, i.e.,
if the chemical reactions occur at time scales that differ by several orders of magni-
tude. In contrast to [17], here, for the first time, we perform a systematic experimental
performance comparison of a numerical reachability analysis with simulation.

The first example that we consider is the transcription regulation of a repressor pro-
tein in bacteriophage λ [13], where we approximate the probability distribution at sev-
eral time instances. In the second example, which is a gene expression network [39],
we compute the distribution of the time until the number of produced proteins exceeds
a certain threshold. In both examples the number of states reachable from the initial
state is infinite. The number of chemical species is 6 and 2, and the number of chemi-
cal reactions is 10 and 4, respectively. We compare the running time of our numerical
reachability analysis to that of the simulative approach for both examples, for different
precision levels. Our results show that numerical approximation based on reachability
analysis is superior to statistical estimation based on repeated simulation, especially if
we increase the desired precision level. For instance, the numerical approximation of
the first example needs 39 minutes for a total approximation error of 2 × 10−5, which
distributes among all states. Simulation requires more than six hours if the statistical
error of a single event is to be bounded by 10−5 and more than sixty hours for 10−6.

2 Stochastic Model

According to the theory of stochastic chemical reaction kinetics, a continuous-time
Markov chain (CTMC) can be derived from a set of biochemical reactions [18,10].
This discrete-state model has a regular structure, which gives rise to a functional de-
scription in terms of transition class models (TCMs) [33]. TCMs naturally represent
coupled chemical reactions as each chemical reaction corresponds to a transition class.
They provide, however, a more general description than a set of chemical reactions.

2.1 Transition Class Models

Consider a dynamical system with a finite number of discrete state variables such as
the number of instances of some chemical species in a reaction volume. Assume that
these variables change at discrete points in time. A transition class provides a rule for
these changes and a function for the calculation of the state-dependent transition rate
at which a state change occurs. Let S be a countable set of states.
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Definition 1. A transition class C is a triple (G, u, α) such that (i) the guard G ⊂ S
is a subset of S, (ii) u : G → S is an injective update function with u(x) �= x for
all x ∈ G, (iii) α : G → R>0 is a rate function. A transition class model (TCM)
M = (y, {C1, . . . , Ck}) consists of an initial state y ∈ S and a finite set of transition
classes C1, . . . , Ck.

The set G contains all states x in which a transition of type C is possible and u(x)
is the target state of the transition. The probability of the C-transition depends on the
transition rate α(x) in the way explained below.

In practice, we can usually express G by a finite number of constraints on the state
variables, and u and α by elementary arithmetic functions. Thus, a TCM provides a
finite description of a (possibly infinite-state) system. Before we show how a CTMC is
derived from a TCM, we present some examples of TCMs that describe biochemical
reaction networks.

Biochemical Reaction Networks. We consider a fixed reaction volume with n differ-
ent chemical species that is spatially homogeneous and in thermal equilibrium. Then,
the state space of the system is given by S = Nn

0 . We assume that molecules collide
randomly and that collisions may lead to chemical reactions. For a given set of chemical
reactions, we construct a TCM such that each transition class corresponds to a reaction
and the associated propensity function is given by the rate function α.

Example 1. We consider a simple transition class model for transcription of a gene into
messenger RNA (mRNA), and subsequent translation of the latter into proteins [39].
This reaction network involves three chemical species, namely, gene, mRNA, and pro-
tein. As only a single copy of the gene exists, a state of the system is uniquely deter-
mined by the number of mRNA and protein molecules. Therefore, S = N2

0 and a state
is a pair (xR, xP ) ∈ S. We assume that initially there are no mRNA molecules and no
proteins in the system, i.e., y = (0, 0). The following four types of reactions occur in
the system, namely ∅ → mRNA, mRNA → mRNA + P , mRNA → ∅, and P → ∅.
Let i ∈ {1, . . . , 4} and let ci > 0 be a constant. Transition class Ci = (Gi, ui, αi)
describes the i-th reaction type.

– We describe gene transcription by transition class C1, which increases the number
of mRNA molecules by 1. Thus, u1(xR, xP ) = (xR + 1, xP ). This transition class
is possible in all states, i.e., G1 = S. Transcription happens at the constant rate
α1(xR, xP ) = c1, as only one reactant molecule (the gene) is available.

– We represent the translation of mRNA into protein by C2. A C2-transition is only
possible if there is at least one mRNA molecule in the system. We set G2 =
{(xR, xP ) ∈ S | xR > 0} and u2(xR, xP ) = (xR, xP + 1). Note that in this
case mRNA is a reactant that is not consumed. The translation rate depends lin-
early on the number of mRNA molecules. Therefore, α2(xR, xP ) = c2 · xR.

– Degradation is modeled by C3 and C4. Hence, G3 = G2, G4 = {(xR, xP ) ∈ S |
xP > 0}, u3(xR, xP ) = (xR − 1, xP ), and u4(xR, xP ) = (xR, xP − 1). We set
α3(xR, xP ) = c3 · xR and α4(xR, xP ) = c4 · xP .
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2.2 Chemical Master Equation

A transition class model M = (y, {C1, . . . , Ck}) represents a time-homogeneous,
discrete-state Markov process {X(t)}t≥0, that is, a CTMC with state space S. The
j-th entry of the random vector X(t) = (X1(t), . . . , Xn(t)) represents the value of the
j-th state variable. Let Cm = (Gm, um, αm), 1 ≤ m ≤ k, and assume that at time
t ≥ 0 the process is in state x ∈ Gm.

The probability of a transition of type Cm occurring in the next infinitesimal time
interval [t, t + τ), τ > 0 is given by

Pr(X(t + τ) = um(x) | X(t) = x) = αm(x) · τ.
Since y is the initial state of M we have Pr(X(0) = y) = 1, and for x ∈ S we define
the probability that X is in state x at time t by p(t)(x) = Pr (X(t) = x | X(0) = y) .
Recall that um is injective. To simplify our presentation, we define the set Hm as the set
of all states x for which u−1

m (x) is defined, that is, that can be reached by a transition of
type Cm. The chemical master equation describes the behavior of X by the differential
equation [18]

∂p(t)(x)
∂t =

∑
m:x∈Hm

αm(u−1
m (x)) · p(t)(u−1

m (x)) − ∑
m:x∈Gm

αm(x) · p(t)(x) . (1)

Unbounded Range. For realistic systems, the state space of the Markov chain is ex-
tremely large, because its size grows exponentially in the number of involved chemical
species. Moreover, if upper bounds on the state variables cannot derived from certain
conservation laws, their range is assumed to be infinite although in practice the number
of molecules is bounded. Then from the infinite structure, we can compute bounds that
are kept with a very high probability. Even though every state in the infinite state space
has a non-zero probability, certain attracting regions force most of the probability mass
to remain within a finite range.

Example 2. In Ex. 1, the degradation rates α3(x) and α4(x) grow linearly in the state
variables. Thus, the higher the number of mRNA or protein molecules the more likely
is their degradation. Depending on the rate constants c1, . . . , c4, the system becomes
“stable” in different regions. As time approaches infinity, the main part of the proba-
bility mass will be close to a region where production and degradation of molecules
cancel each other out. Below, we discuss in general under which conditions the system
approaches such a stable distribution.

Holding Times and Jump Probabilities. A Markov chain {X(t)}t≥0 defined in the
way above is a stable and conservative jump process [4]. Thus, there exists a sequence
of jump times {τ(n)}n≥0 and a sequence {X̂(n)}n≥0 of visited states such that

τ(0) = 0 < τ(1) < τ(2) < . . . and X(t) = X̂(n) if τ(n) ≤ t < τ(n + 1).

The distribution of the n-th holding time τ(n + 1)−τ(n) under the condition X̂(n) = x
is negative exponentially distributed with parameter λ(x) =

∑
m:x∈Gm

αm(x), also
called exit rate of state x.
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If the sum of all holding times is finite with positive probability, the Markov chain
is said to explode and the limiting distribution does not exist. Explosive Markov chains
are not of interest for the application area of this work since in this case the system
“gets lost at infinity”. It is possible to check if the Markov chain does not explode by
using Reuter’s Criterion [4]. For the remainder of our presentation we assume that the
rate functions αm are such that the Markov chain does not explode.

Assume that the n-th state of the Markov chain is x, that is, X̂(n) = x. If at least one
transition class is enabled in x, the successor state is um(x) for some m with x ∈ Gm.
The probability of successor um(x) is given by

Pr(X̂(n + 1) = um(x) | X̂(n) = x) = αm(x)
λ(x) .

The holding times and the jump probabilities play an important role for the simulation
of the Markov chain, which is used to estimate the probability of a certain events.

3 Statistical Estimation of Probabilities

In this section we shortly review the basic steps that have to be carried out to estimate
the probability of a certain measurable event using stochastic simulation. Throughout
this section, we will denote this event by A and its probability by γ. For the analysis
of biological systems, the events of interest may be the marginal distributions or even
the joint distributions of certain chemical species. For instance, A may have the form
Xj(t) = k, that is, the number of type j molecules is k.

Estimates are obtained in two steps. In the first step, a certain number of simulation
runs of the Markov chain have to be generated, and in the second step, the results of the
simulation runs are analyzed.

3.1 Trajectory Generation

A realization of the Markov chain, also called trajectory or run, is the random sequence
of states visited by the process. If trajectories are produced by a computer, pseudo-
random numbers are used to artificially generate randomness [20]. The basic steps of
producing a single trajectory that starts in the initial state y at time 0 are as follows:

1. Initialize time t = 0 and state x = y.
2. Generate the holding time h, i.e., a sample of a random variable being exponentially

distributed with parameter −λ(x).
3. Generate the successor state, i.e., a sample m of a discrete random variable Z that

has probability distribution P (Z = m) = αm(x)/λ(x).
4. Set t = t + h, x = um(x) and go to Step 2 if t < T .

In Step 2, we generate the holding time of the current state x. Pseudo-random number
generators usually draw from a uniform distribution. Thus, for a given random sam-
ple r1 that is uniformly distributed on (0, 1), we calculate an exponentially distributed
sample by using the inverse transform method. More precisely, we compute the inverse
− ln r1

λ(x) of the cumulative distribution function of the exponential distribution. In Step 3,



Approximation of Event Probabilities in Noisy Cellular Processes 179

the same idea is used to decide, which reaction occurs next. The inverse of the cumu-
lative distribution function of Z is given by m = min{i :

∑i
j=1 αj(x) > r2 · λ(x)},

where r2 is again a random sample that is uniformly distributed on (0, 1). In the final
step, the current time and the current state are updated. The simulation is terminated if
the time horizon T of interest is reached and continued otherwise.

3.2 Output Analysis

The problem of estimating the probability γ of the event A can be reformulated as
estimating the expectation of the random variable χA with

χA(ω) =
{

1 if ω ∈ A,
0 if ω �∈ A,

where ω is a trajectory. The expectation E[χA] equals γ, since E[χA] = 1 · Pr(χA =
1)+0 ·Pr(χA = 0) = γ. Therefore, we can resort to the standard estimation procedure
for expectations. Assume that N is the number of runs that have been carried out and
Y1, . . . , YN are independent and identically distributed as χA. Thus, from the i-th run
we get a realization of Yi by checking if A has occurred or not. It is important to point
out that we have to guarantee the independence of the Yi’s. This implies that we generate
N independent trajectories of the Markov chain, each time with a different initial seed1

for the pseudo-random number generator. The sample mean Ȳ = 1
N

∑N
i=1 Yi is then

an unbiased and consistent estimator [20] for E[χA]. The former means that E[Ȳ ] =
E[χA] and the latter refers to the fact that as N increases the estimator Ȳ becomes closer
to γ. Note that Ȳ is equal to the relative frequency of the event A. Let σ2 = V AR[χA]
be the variance of χA. We evaluate the quality of the estimator Ȳ by applying the central
limit theorem, which states that Ȳ will approximately have a Normal distribution with
mean E[χA] = γ and variance σ2/N . Hence, for large N the random variable

Z =
Ȳ − γ√
σ2/N

has a standard Normal distribution, that is, the mean is zero and the variance is one.
Knowing the distribution of Z enables us reason about the difference |Ȳ − γ|. Let
β ∈ [0, 1] be the confidence level and z ∈ R+ such that β = Pr(|Z| ≤ z). Then

β = Pr(|Z| ≤ z) = Pr

(
|Ȳ −γ|√

σ2/N
≤ z

)
= Pr

(
|Ȳ − γ| ≤ z

√
σ2/N

)
.

We estimate σ2 with the sample covariance S2 = 1
N−1

∑N
i=1(Yi − Ȳ )2, which is an

unbiased estimator for σ2. Then, for large N and a large number of realizations of the
confidence interval [

Ȳ − z
√

S2/N, Ȳ + z
√

S2/N
]
, (2)

β is the fraction of intervals that cover γ. It therefore measures the quality of the esti-
mator Ȳ .

1 The seed of a pseudo-random number generator is an initial value, on which the sequence of
generated numbers depend [20].
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For a practical application, two further remarks are important. Firstly, we usually
choose β ∈ {0.95, 0.99} and the corresponding value of z can be found in the table of
the standard Normal distribution. Let Φ be the cumulative distribution function of the
standard Normal distribution. Then, using that the Normal distribution is symmetric,

Φ(z) = Pr(Z ≤ z) = 1 − 1−β
2 = 1+β

2 ⇐⇒ z = Φ−1
(

1+β
2

)
.

Secondly, both, Ȳ and S2 can be computed efficiently if during the trajectory generation
the realizations of the two sums

∑N
i=1 Yi and

∑N
i=1 Y 2

i are calculated, since it can be
easily shown that

S2 =
∑N

i=1 Y 2
i

N−1 − (∑N
i=1 Yi)2

(N−1)N .

Thus, if r ∈ {0, . . . , N} is the number of times event A occurred during the N simula-
tion runs, Ȳ = r/N and S2 = r(N−r)

N(N−1) .

If the interval in Eq. 2 is large relative to Ȳ the quality of the estimator is poor and
more simulation runs have to be carried out. For our experimental results in Section 5,
we fixed the relative width of the interval to be 0.2 (which means that we have a relative
error of at most 0.1) and chose confidence level β = 0.95. Thus, z ≈ 1.96 and we can
determine the number of necessary runs by bounding the relative width

2 · z·
√

S2/N

γ ≤ 0.2 =⇒ z2

0.01
S2

γ2 ≤ N =⇒ 384 · S2

γ2 ≤ N

Assume now that we want to estimate the probability of events that occur at least with
probability γ. Using the fact that σ2 = VAR[χA] = γ(1 − γ) and replacing S2 by σ2

yields N ≥ 384 · 1−γ
γ [32]. For instance, the sufficient number of runs to guarantee

that probabilities, having at least the order of magnitude of 10−5, are estimated with a
relative error of at most 0.1 and a confidence of 95% is N = 38, 000, 000.

4 Numerical Reachability Analysis

Instead of indirectly approximating probabilities with statistical estimation procedures,
we can use a numerical reachability analysis to solve Eq. 1. An efficient solution by
applying standard numerical methods is not possible, since for realistic systems the
state space of the system is extremely large. An efficient approximation is, however,
possible as long as the total number of involved molecules is a manageable number.
We describe a method that is based on a discretization of the process and numerically
approximates the probabilities p(t)(x) at certain time instances.

Adaptive Uniformization. We discretize the system using adaptive uniformization,
which has been introduced by van Moorsel [41] as a variant of standard uniformiza-
tion [31,34,44,15,35]. Numerical methods based on uniformization have the advantage
that they are numerically stable and often more efficient than other methods [37].

We inductively define a sequence S0, S1, . . . of subsets of the state space S of the
CTMC {X(t)}t≥0, as well as a sequence p0, p1, . . . of functions such that pk : S →
[0, 1] for k = 0, 1, . . .. Recall that y is the initial state. We define S0 = {y}, p0(y) = 1
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0 1 2 3 . . .

λ0 λ1 λ2 λ3

Fig. 1. The birth process of the adaptive uniformization procedure

and p0(x) = 0 if x �= y. For k = 1, 2, . . ., we inductively define Sk as follows. We
choose a positive uniformization rate λk ≥ maxx∈Sk

λx and set

Sk+1 = {x′ ∈ S | ∃x ∈ Sk : pk(x) · qk(x, x′) > 0}, (3)

where, for x ∈ S,

qk(x, x′) =

⎧⎪⎪⎨⎪⎪⎩
∑

m:um(x)=x′ αm(x)/λk if x �= x′, ∃m : um(x) = x′,

0 if x �= x′, � ∃m : um(x) = x′,

1 −∑
x′∈S:x′ �=x qk(x, x′) if x = x′.

(4)

For x′ ∈ Sk+1 we set pk+1(x′) =
∑

x′∈Sk
pk(x)·qk(x, x′) and pk+1(x) = 0 if x �∈ Sk.

The value pk(x) is the probability of reaching state x after k steps in a discrete-time
Markov chain {Y (k)}k∈N with transition probabilities Pr(Y (k + 1) = x′ | Y (k) =
x) = qk(x, x′) and initial distribution Pr(Y (0) = y) = 1. We can reconstruct p(t)(x)
by considering an additional process that relates steps with time. Let {B(t)}t≥0 be a
birth process with birth rates λ0, λ1, . . ., that is, B has a chain structure as illustrated
in Fig. 1 and starts initially in state 0 with probability one. In [41], van Moorsel has
proved that the original CTMC {X(t)}t≥0 can be constructed from B and Y by setting
Y (B(t)) = X(t) if B does not explode. Since Y and B are independent, the state
probability p(t)(x) of the original CTMC can be expressed as

p(t)(x) =
∞∑

k=0

Pr(Y (k) = x) · Pr(B(t) = k) =
∞∑

k=0

pk(x) · Pr(B(t) = k). (5)

Note that in Eq. 5, there are no negative summands involved. Moreover, pk can be
computed inductively. Lower and upper summation bounds L and U can be obtained
such that for each state x the truncation error

p(t)(x) −
U∑

k=L

pk(x) · Pr(B(t) = k) =
∑

0≤k<L,
U<k<∞

pk(x) · Pr(B(t) = k) ≤
∑

0≤k<L,
U<k<∞

Pr(B(t) = k) = 1 −∑U
k=L Pr(B(t) = k) < ε

(6)

can be bounded by ε > 0. Finally, we note that from Eq. 4 it is clear that choosing the
smallest possible λk is advantageous since this avoids high self-loop probabilities in qk.

Standard Uniformization. Standard uniformization is a special case of adaptive uni-
formization where a global uniformization rate λ = λ0 = λ1 = . . . has to be chosen. If
each transition in the birth process occurs at a constant rate λ, the values Pr(B(t) = k)
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follow a Poisson distribution with parameter λt. They can be calculated efficiently us-
ing the iterative procedure introduced by Fox and Glynn [8]. Standard uniformization
becomes inefficient whenever λ is much larger than the exit rates λ(x) of many states
x that are involved in the computation. Note that in chemically reacting systems, the
dynamics of the system may change considerably. In this case the discretization using
adaptive uniformization is more efficient.

Approximate Discretization. In its standard form, adaptive uniformization is not ap-
propriate for Markov chains that describe biochemical reaction networks for two rea-
sons. Firstly, the size of the sets S0, S1, . . . grows after each step and the computational
complexity for pk becomes huge. Secondly, the birth process may explode even if the
original CTMC does not. The reason is that Sk approaches S as k → ∞. The latter
problem can be circumvented by neglecting states that are very unlikely, that is, we
replace Eq. 3 by

Sk+1 = {x′ ∈ S |
∑

x∈Sk

pk(x) · qk(x, x′) > ∆}, (7)

where ∆ is a small constant. This ensures that even in the limit Sk is finite, since only
a finite number of states can have a probability greater than δ. Moreover, the number of
states in Sk is now manageable as long as the total number of molecules is manageable
since only a comparatively small number of different values for each state variables
have to be considered.

The error after k steps introduced by the threshold ∆ can be calculated as 1 −∑
x∈Sk

pk(x). Note that the error increases monotonically in k since more and more
probability “gets lost”. Therefore we choose ∆ several orders of magnitude smaller
than the desired precision. For our experimental results in Section 5 we chose different
values for ∆ ranging from 10−15 till 10−8 in order to obtain different precision levels.

Approximate Solution of the Birth Process. Finally, we discuss the computation of
the values Pr(B(t) = k) and how truncation bounds L and R are obtained. We use
standard uniformization to discretize B, since we can afford a high global uniformiza-
tion rate (and thus, high self-loop probabilities) in this case. The reason is that the
simple chain structure eases the discretization and the computational effort to solve the
birth process is small compared to the calculation of the pk. Similar as for Y we ap-
proximately solve B by neglecting states that are “left behind”. Informally, we use a
window (a set that contains all states within a certain range) that slides from left to right
to approximate Pr(B(t) = k) and determines the truncation points L and R.

Approximation Error. Both, the solution of Y and B gives an underapproximation
of the values pk(x) and Pr(B(t) = k). Thus, summing up their product according
to Eq. 5 results in an underapproximation for p(t)(x). The final approximation error is
obtained as δ = 1 −∑

x∈SR
p(t)(x) where R is the right truncation bound of the birth

process. The probability of states that are not in SR is approximated with zero. Note
that this includes all approximation errors, i.e., the probability that is lost during the
solution of the birth process, and during all steps of the discretization because of the
threshold ∆. The computational savings achieved by solving Y as well as B in the way
described above are substantial. The reason is that the number of states in B and Y that
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are significant after k steps is several orders of magnitudes smaller than the number
of all states reachable after k steps. Moreover, our experimental results show that the
method yields accurate results, as the approximation error δ is small.

Iteration Over Time. First note that we can use the method described above for sys-
tems starting with arbitrary initial distributions as long as the number of states in the
initial set S0 is manageable. After computing an approximation of p(t)(x) for all x ∈ S
we can use it as an initial distribution for the next step to obtain an approximation for
p(t′)(x) where t′ > t and the step size is t′ − t. In this way, we obtain approximations
for several time instances.

Related Work. Other approaches for an approximate numerical solution of the under-
lying Markov chains can be found in [26,5]. They differ from our approach in that they
compute a finite projection of the state space that is based solely on the structure of
the underlying graph. In our method, we add and neglect states in an on-the-fly fash-
ion based on the stochastic properties of the Markov chain. Therefore, we consider a
significantly smaller set of states during a certain time interval, without being less accu-
rate. The projection algorithms include all states that are reachable within a fixed path
depth. In our algorithm, for each single state, we dynamically decide if it significantly
contributes to the overall solution or not. We have found this dynamic adaptation of the
analysis to be essential for efficiency.

5 Experimental Results

For our experimental results, we consider two examples from biology. One is a model
for the transcription regulation of a repressor protein in bacteriophage λ [13]. This
protein is responsible for maintaining lysogeny of the λ virus in E. coli [1]. We compute
the full probability distribution for different precision levels. Our second example uses
the gene expression model of Ex. 1. We calculate the distribution of the time until the
number of produced proteins exceeds 500.

There is no one-to-one correspondence between the statistical accuracy of the esti-
mates that we derive via simulation and the precision of the numerical method. How-
ever, by assuming that the smallest event probability that has to be estimated is γ all
results of the simulation have a “precision” of at least γ. Intuitively, we simulate often
enough to reason about events that occur with a probability of at least γ. We therefore
refer to γ as the single event error (cf. Table 1 and 2). Note that the simulation results
are still subject to the statistical errors since the true values may not be covered by the
confidence interval (compare Section 3.2).

The approximation error δ of the numerical method is the sum of the approximation
error of all states in the Markov chain. Note that the probabilities of states not in Sk are
underapproximated with zero and their true probabilities increase depending on how
close they are to an attracting region. The error of a single state probability p(t)(x)
is much smaller than δ but precise values for the single error are hard to obtain. A
rough estimation of the single errors can be obtained by dividing the total error by the
average size |Sk| of the significant sets (cf. Table 1 and 2), even though δ may not
be uniformly distributed on the significant set. On the other hand, δ also includes the
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Table 1. Comparison of the running times for the phage λ model

numerical approximation Gillespie simulation

running time total approx. error |Sk| ∆ running time single event error # runs

55 min 5 sec 3 × 10−6 239792 10−15 > 6000 h 10−8 > 3 × 1010

39 min 16 sec 2 × 10−5 187204 10−14 > 500 h 10−7 > 3 × 109

25 min 2 sec 2 × 10−4 140969 10−13 67 h 22 min 10−6 > 3 × 108

15 min 41 sec 1 × 10−3 101078 10−12 6 h 44 min 10−5 > 3 × 107

6 min 33 sec 7 × 10−3 67540 10−11 40 min 10−4 > 3 × 106

3 min 12 sec 4 × 10−2 40373 10−10 4 min 10−3 > 3 × 105

Table 2. Comparison of the running times for the gene expression example

numerical approximation Gillespie simulation

running time total approx. error |Sk| ∆ running time single event error # runs

4.2 sec 5 × 10−6 9816 10−12 > 500 h 10−7 > 3 × 109

3.6 sec 5 × 10−5 8719 10−11 > 50 h 10−6 > 3 × 108

3.0 sec 5 × 10−4 7516 10−10 5 h 3 min 10−5 > 3 × 107

2.4 sec 4 × 10−3 6265 10−9 30 min 18 sec 10−4 > 3 × 106

1.9 sec 4 × 10−2 4939 10−8 3 min sec 10−3 > 3 × 105

error of insignificant states and, thus, distributes among much more states than only
those in Sk.

Phage λ Model. The Phage λ model involves 6 different species and 10 reactions.
Thus, a state is a vector x = (x1, x2, x3, x4, x5, x6) ∈ N6

0. The transition classes Ci =
(Gi, ui, αi), 1 ≤ i ≤ 10 are given as follows [13].

– Production of proteins: G1 = {x ∈ N6
0 | x3 > 0}, u1(x) = (x1 + 1, x2, x3, x4,

x5, x6), α1(x) = c1x3.
– Degradation of proteins: G2 = {x ∈ N6

0 | x1 > 0}, u2(x) = (x1 − 1, x2, x3, x4,
x5, x6), α2(x) = c2x1.

– Production of mRNA: G3 = {x ∈ N6
0 | x5 > 0}, u3(x) = (x1, x2, x3 + 1, x4,

x5, x6), α3(x) = c3x5.
– Degradation of mRNA: G4 = {x ∈ N6

0 | x3 > 0}, u4(x) = (x1, x2, x3 − 1, x4,
x5, x6), α4(x) = c4x3.

– First dimer binding at operator site: G5 = {x ∈ N6
0 | x2, x4 > 0}, u5(x) =

(x1, x2 − 1, x3, x4 − 1, x5 + 1, x6), α5(x) = c5x2x4.the simulation results are
still subject to the statistical errors since the true values may not be covered by the
confidence interval (compare Section 3.2).
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bution of the time until the number of
proteins reaches 500 for the first time
in the gene expression example

– First dimer unbinding: G6 = {x ∈ N6
0 | x5 > 0}, u6(x) = (x1, x2 + 1, x3, x4 + 1,

x5 − 1, x6), α6(x) = c6x5.
– Second dimer binding at operator site: G7 = {x ∈ N6

0 | x2, x5 > 0}, u7(x) =
(x1, x2 − 1, x3, x4, x5 − 1, x6 + 1), α7(x) = c7x2x5.

– Second dimer unbinding: G8 = {x ∈ N6
0 | x6 > 0}, u8(x) = (x1, x2 + 1, x3, x4,

x5 + 1, x6 − 1), α8(x) = c8x6.
– Dimerization: G9 = {x ∈ N6

0 | x1 > 1}, u9(x) = (x1 − 2, x2 + 1, x3, x4, x5, x6),
α9(x) = c9x1(x1 − 1)/2.

– Dissociation into monomers: G10 = {x ∈ N6
0 | x2 > 0}, u10(x) = (x1 + 2, x2 −

1, x3, x4, x5, x6), α10(x) = c10x2.

For c1, . . . , c10, we choose c1 = 0.043, c2 = 0.0007, c3 = 0.0715, c4 = 0.0039,
c5 = 1.992647 × 10−2, c6 = 0.4791, c7 = 1.992647 × 10−4, c8 = 8.765 × 10−12,
c9 = 8.30269×10−2, and c10 = 0.5 (see [13,5]). The initial state of the system is given
by y = (2, 6, 0, 2, 0, 0) and the time horizon is t = 300. We approximate the probability
distributions of the underlying CTMC at 100 equidistant time instances. Fig. 2 shows
a plot of the distribution of dimers and monomers at time instant t = 300. In Table 1,
we list the running times of our numerical method as well as the running time of the
simulation. The column with header |Sk| lists the average number of states in the sets
S0, S1, . . . and ∆ is the threshold in Eq. 7.

Gene Expression. For the transition classes of the gene expression example we refer
to Ex. 1. For the rate constants, we choose c1 = 0.05, c2 = 0.0058, c3 = 0.0029, and
c4 = 10−4, where c3 and c4 correspond to a half-life of 4 minutes for mRNA and 2
hours for the protein [39]. We compute the probability that at least 500 proteins are in
the system at 100 equidistant time instances. Fig 3 shows the cumulative probability
distribution of the time until the number of proteins reaches 500 for the first time (note
that eventually the threshold of 500 is reached with probability one). In Table 2, we list
the results for the gene expression example, where, as above, |Sk| denotes the average
number of states in the sets S0, S1, . . . and ∆ is the threshold in Eq. 7.
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Discussion. Even if we consider the total approximation error δ as a rough bound for
the single error of each state probability, thus favoring simulation, the speed-up factor of
the numerical approximation is large, especially if the precision increases. The neces-
sary precision level up to which probability distributions are approximated may depend
on the system under study. It is, however, important to note that the occurrence of rare
biochemical events can have important effects. For instance, the spontaneous, epige-
netic switching rate from the lysogenic state to the lytic state in phage λ-infected E.
coli is experimentally estimated to be in the order of 10−7 per cell per generation [21].

6 Conclusion

We have demonstrated that, for the computation of event probabilities, a numerical
reachability analysis provides an efficient alternative to simulation-based methods.

Even though simulation is widely used, the advantages of numerical methods in-
crease as more sophisticated techniques become available. They reduce the computa-
tional effort, especially if accurate results are desired. Moreover, for the calibration of
parameters many instances of the model have to be solved and in this case short running
times for a single solution are necessary.

Until now we have analyzed examples of intrinsically stochastic systems that have
been published in the literature. As future work, we are planning to apply our numerical
reachability algorithm in collaboration with experimentalists working on new stochastic
models. Moreover, we are planning to combine our numerical method with parameter
estimation techniques.

Standard numerical reachability analysis methods are inefficient for large state spaces
(in the case of high dimension and/or many molecules) and inapplicable for unbounded
state spaces, and thus one resorts to simulation. We have demonstrated that certain op-
timization techniques from computer science - localization, on the fly abstraction - put
many examples within the reach of numerical reachability analysis. Indeed, when high
accuracy is required these methods outperform simulation-based techniques.
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Abstract. Bio-PEPA is a process algebra for modelling biological systems. An
important aspect of Bio-PEPA is the ability it provides to discretise concentra-
tions resulting in a smaller, more manageable state space. The discretisation is
based on a step size which determines the size of each discrete level and also the
maximum number of levels. This paper considers the relationship between two
discretisations of the same Bio-PEPA model that differ only in the step size and
hence the maximum number of levels, by using the idea of equivalence from con-
currency and process algebra. We present a novel behavioural semantic equiv-
alence, compression bisimulation, that equates two discretisations of the same
model and we show that this equivalence is a congruence with respect to the syn-
chronisation operator.

1 Introduction

The use of process algebras for modelling biological systems has become a popular
technique [1,2,3,4,5]. Some approaches use the process algebra as originally defined for
description of computer systems and in others a process algebra is tailored to be specific
to systems biology. One of the latter class is Bio-PEPA [6] which was developed from
the stochastic process algebra PEPA [7] and has been successfully used to model Gold-
beter’s model of cyclin oscillation [8,9], the Repressilator [10], genetic networks [6],
the MAPK model [11], the Neurospora circadian clock [12] and the gp130/JAK/STAT
pathway [13]. This paper investigates a semantic equivalence for Bio-PEPA.

An important aspect of Bio-PEPA is the ability it provides for the discretisation of
concentrations. Instead of working with a “process-as-molecule” approach, it uses a
“process-as-species” approach whereby a process can either be parameterised by con-
centration or by a discrete level which is obtained from dividing the concentration into
a discrete number of chunks. Typically, there is a fixed step size and each species has a
maximum number of levels dependent on its maximum concentration. For a given step
size, we call a system with levels a discretisation.

Bio-PEPA distinguishes itself from many other process algebras for modelling bi-
ological systems by providing multiple analyses including continuous-time Markov
chains (CTMCs), ordinary differential equations (ODEs), stochastic simulation and
model checking. By developing a semantic equivalence for Bio-PEPA, we have a new
type of analysis based on behaviour that can be used to compare models.

Semantic equivalences are an important technique in process algebra for specifying
notions of equivalent behaviour. They equate processes that have the same behaviour,

P. Degano and R. Gorrieri (Eds.): CMSB 2009, LNBI 5688, pp. 189–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and can be divided into qualitative equivalences which only consider the behaviour in
terms of which actions can be performed and quantitative equivalences which consider
the rates at which actions can happen as part of the behaviour. In this paper we consider
a qualitative equivalence. Adding quantitative aspects is ongoing research.

Semantic equivalences typically have two important properties – they are equiva-
lence relations (hence the name) and congruence relations. A congruence relation is a
relation that is preserved by the operators of the process algebra. For example, if � is a
binary operator, then an equivalence ≡ is preserved by this operator if P ≡ Q implies
that P � R ≡ Q � R and R � P ≡ R � Q for every process R.

These properties are important when modelling and evaluating the concurrent be-
haviour of computer systems as they let us substitute like for like thereby exploiting
the compositionality provided by a process algebra. This allows for the substitution of
a system with a smaller state space or other desirable properties, and make the analysis
of the system easier. In applying the idea of a semantic equivalence in systems biology,
similar advantages will be gained hence the importance and timeliness of this research.
Moreover, since the semantic equivalence we define is based upon what reactions can
be observed, it is well suited for biological modelling.

In searching for a suitable equivalence, there are at least two approaches that can be
taken. One is to consider existing equivalences from the literature. The other is to con-
sider what behaviours we want to consider as identical and to develop an equivalence
from this starting point. This is the approach taken here.

We have a immediate candidate for what we want to consider the same. For a Bio-
PEPA system, we can consider two different discretisations of that system. Since they
both represent the same system, we want their behaviours to be identified (assuming
neither have few enough levels to give pathological behaviour). This approach is suit-
able since semantic equivalences are used to identify the same behaviour in different
abstractions of a system, and clearly two discretisations are two abstractions.

Starting from this point, we define an equivalence relation over the states of the
model that relates states that have the same possible reactions. This equivalence relation
defines equivalence classes of states with the same behaviour and from this we can use
a classical notion of equivalence, bisimulation, to define our semantic equivalence.

This new semantic equivalence, compression bisimulation, has not been chosen ran-
domly but through understanding the differences between discretisations and ensuring
that the semantic equivalence has the desirable properties mentioned above. Ensuring
a semantic equivalence is an equivalence relation is not hard. Establishing congruence
is much harder because stoichiometry coefficients greater than one lead to a complex
transition system. Being able to prove congruence played a major role in the selection of
compression equivalence. Moreover, since two discretisations of a single species should
have the same behaviour under the equivalence, it was necessary to prove this as well.

The first result of this paper shows that in the sequential case, a single species, two
discretisations are related by compression bisimulation. The second shows that com-
pression bisimulation is a congruence with respect to the cooperation operator. A corol-
lary of this is that in the general case of a Bio-PEPA system, namely with multiple
species, two discretisations are related by compression bisimulation.
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The structure of the document is as follows. First, we introduce Bio-PEPA, then we
present some basic ideas relating to semantic equivalences and then we present com-
pression bisimulation and show it has the desired properties. We then give an example.

2 Bio-PEPA

This section presents an overview of Bio-PEPA [6]. The main components of a Bio-
PEPA system are the sequential components describing the behaviour of each of the
species and the model component describing the interactions between the species and
initial amounts. Additionally, a context is defined, including functional rates, compart-
ments, parameters. The syntax of the sequential (species) components is defined as

S ::= (α, κ) op S | S + S | C op ::= ↓ | ↑ | ⊕ | � | �.

In the prefix term (α, κ) op S, α is an action name and can be viewed as the name
or label of a reaction, κ is the stoichiometry coefficient of the species and the prefix
combinator op represents the role of the element in the reaction. Specifically, ↓ is a
reactant, ↑ a product, ⊕ an activator, � an inhibitor and � a generic modifier. The
operator + expresses the choice between possible actions and the constant C is defined
by an equation C

def= S. The syntax of model components is defined as

P ::= P ��
L

P | S(x)

The process P ��
L

Q denotes the synchronisation between components P and Q and
the set L specifies those activities on which the components must synchronise. In the
model component S(x), the parameter x ∈ R represents the concentration or level.
We work with a constrained set of Bio-PEPA model components as given by the fol-
lowing definition which specifies a well-formed set of components. We ensure that a
species consists of a choice between reactions, and no reaction name is repeated within
a species. At the model level, there can only be one species component for each species.

Definition 1. A Bio-PEPA sequential component C is well-defined if it has the form

C
def= (α1, κ1) op1 C + . . . + (αn, κn) opn C written as C

def=
n∑

i=1

(αi, κi) opi C

where αi �= αj for i �= j.
A Bio-PEPA model component P is well-defined if it has the form

P
def= C1(x1) ��

L1
. . . ��

Lp−1
Cp(xp),

each Ci is a well-defined sequential component, the elements of each Lj appear in P
and if i �= j then Ci �= Cj .

We define a Bio-PEPA system, consisting of a set of well-defined sequential compo-
nents, a well-defined model component and context, as follows.
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prefixReac

(α, κ)↓S(l)
(α,[S:↓(l,κ)])−−−−−−−−→c S(l − κ)

κ ≤ l ≤ NS

prefixProd

(α, κ)↑S(l)
(α,[S:↑(l,κ)])−−−−−−−−→c S(l + κ)

0 ≤ l ≤ NS − κ

prefixMod
(α, κ) op S(l)

(α,[S:op(l,κ)])−−−−−−−−−→c S(l)

0 < l ≤ NS if op = ⊕
0 ≤ l ≤ NS if op ∈ {
,�}

choice1
S1(l)

(α,w)−−−→c S′
1(l)

(S1 + S2)(l)
(α,w)−−−→c S′

1(l)

choice2
S2(l)

(α,w)−−−→c S′
2(l)

S1 + S2(l)
(α,w)−−−→c S′

2(l)

constant
S(l)

(α,[S: op (l,κ)])−−−−−−−−−−→c S′(l)

C(l)
(α,[C: op (l,κ)])−−−−−−−−−−→c S′(l)

C
def= S

coop1
P1

(α,w)−−−→c P ′
1

P1 ��
M

P2
(α,w)−−−→c P ′

1
��
M

P2

α �∈ M

coop2
P2

(α,w)−−−→c P ′
2

P1 ��
M

P2
(α,w)−−−→c P1 ��

M
P ′

2

α �∈ M

coop3
P1

(α,w1)−−−−→c P ′
1 P2

(α,w2)−−−−→ P ′
2

P1 ��
M

P2
(α,w1::w2)−−−−−−−→c P ′

1
��
M

P ′
2

α ∈ M

Fig. 1. Operational semantics of Bio-PEPA

Final
P

(α,w)−−−→c P ′

〈V,N ,K,F , Comp,P 〉 (α,rα[w,N ,K])−−−−−−−−−→s 〈V,N ,K,F , Comp, P ′〉

Enrich
P

(α,w)−−−→c P ′

〈V,N ,K,F , Comp,P 〉 (α,w)−−−→sc 〈V,N ,K,F , Comp,P ′〉
Fig. 2. Operational semantics of Bio-PEPA (continued)

Definition 2. A Bio-PEPA system P is a 6-tuple 〈V ,N ,K,F , Comp, P 〉, where V is
the set of compartments, N is the set of quantities describing each species, K is the
set of parameters, F is the set of functional rates, Comp is the set of well-defined
sequential components and P is a well-defined model component.

Elements of N have the form C : H = h, N = n, M = m, V = v, unit = u
where C is a species name that is defined in Comp, H = h defines the step size,
N = n defines the maximum number of levels for C, M = m defines the maximum
concentration for C, V = v names the compartment in which C appears and unit = u
defines the measurement unit of the concentration.
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The notation 〈T , P 〉 will be used for 〈V ,N ,K,F , Comp, P 〉 since the details of the
tuple are not relevant here. The model component is defined in terms of concentrations,
but can be expressed terms of levels where these are a discretisation of the concentra-
tion. In N , for each species, there are three elements H , N and M which represent the
step size, the maximum number of levels and the maximum concentration respectively.
Their relationship is defined as N = �M/H�. A species with a concentration then has
an associated level in the range 0, 1, . . . , N − 1, N , giving a total of N + 1 possible
levels. We call the system obtained in this way a Bio-PEPA system with levels. We will
assume that the step size H is the same for all species to ensure conservation of mass.

The operational semantics for Bio-PEPA systems with levels is given in Tables 1 and
2. In the first table, NS refers to the maximum number of levels for the species S. In the
rule coop3, w1::w2 represents list concatenation. For the rule Final, rα[w,N ,K] =
fα[w,N ,K]/H ∈ (0,∞) where fα is the functional rate for the reaction α from F and
H is the step size. We do not discuss this or the string w further as the equivalences in
this paper only consider the action α and ignore the rest of the transition label.

The operational semantics creates three different transition systems. The rules for
−→c define the capability relation. The rule Final defines the system/stochastic relation
−→s which includes the context, and the rate at which the transition takes place appears
together with the action. The rule Enrich defines the system-capability relation −→sc.
This relation is necessary since it contains the context information as well as the detailed
information that is captured in the list of strings w.

The following definition describes the derivative set for the relation −→sc. In this
paper, we work almost exclusively with this relation since it provides the necessary
information about the context.

Definition 3. The system-capability derivative set ds(P) is the smallest set such that
P ∈ ds(P) and if P ′ ∈ ds(P) and P ′ (α,r)−−−→sc P ′′ then P ′′ ∈ ds(P).

The next definition captures the reactions that are immediately possible with respect
to the operational semantics. This means it takes into account the stoichiometry of a
reaction as well as the current level of a species.

Definition 4. The set of current actions enabled in 〈T , P 〉 is defined as A(〈T , P 〉) =
A(P ) where NS is the maximum number of levels for species component S.

A(((α, κ) ↓ S)(l)) = {α} if κ ≤ l ≤ NS otherwise ∅
A(((α, κ) ↑ S)(l)) = {α} if 0 ≤ l ≤ NS − κ otherwise ∅
A(((α, κ) ⊕ S)(l)) = {α} if 0 < l ≤ NS otherwise ∅
A(((α, κ) � S)(l)) = {α} if 0 ≤ l ≤ NS otherwise ∅
A(((α, κ) � S)(l)) = {α} if 0 ≤ l ≤ NS otherwise ∅
A((S1 + S2)(l)) = A(S1(l)) ∪ A(S2(l))

A(C(l)) = A(S(l)) where C
def= S

A(P1 ��
L

P2) = A(P1) \ L ∪A(P2) \ L ∪ (A(P1) ∩ A(P2) ∩ L)

The stoichiometry plays a role in defining the set of current actions. A species definition
specifies a set of actions (reactions), but the current action set may be a subset if the
current level is insufficient to satisfy the constraints imposed by the stoichiometry.
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Since we are working with Bio-PEPA systems that vary only in step size and maxi-
mum numbers of levels, we require notation to capture this. Given a Bio-PEPA system
P we can define a system where the lowest maximum number of levels for any species
is n. As mentioned previously, we assume that H is identical for all components.

Definition 5. Let P=〈V ,N ,K,F , Comp, P 〉 be a Bio-PEPA system with well-defined
P parameterised by concentration. For n ∈ N, the Bio-PEPA system with levels Pn is
defined as Pn = 〈V ,N ′,K,F , Comp, P ′〉 where

1. γ = (1/n) · min{m | C : H = h, N = n′, M = m, V = v, unit = u ∈ N}
2. C : H = h, N = n′, M = m, V = v, unit = u ∈ N ⇒

C : H = γ, N = �m/γ�, M = m, V = v, unit = u ∈ N ′

3. P
def= C1(x1) ��

L1
. . . ��

Lp−1
Cp(xp) ⇒ P ′ def= C1(�x1/γ�) ��

L1
. . . ��

Lp−1
Cp(�xp/γ�)

N contains information about each species. The definition above identifies the species
with the smallest concentration, determines the new step size that will ensure n levels
for that species and then adjusts the other species to use the same step size (to conserve
mass) hence modifying N . Since P is a Bio-PEPA system with species components
parameterised by concentration and we wish to work with a system with levels, the
initial concentrations in the third point are transformed to initial levels. We will use the
notation Pn = 〈T n, P 〉 to indicate that the lowest number of maximum levels for any
species is n and refer to Pn as a discretisation of P .

3 Semantic Equivalences

In process algebras, a semantic equivalence defines what it means for two models to
have the same behaviour. A classical notion of equivalence is that of bisimulation [14].

Definition 6. A binary relation R is a bisimulation if for any (P, Q) ∈ R and for any
θ whenever

1. P
θ−→ P ′, there exists Q′ such that Q

θ−→ Q′ and (P ′, Q′) ∈ R, and
2. Q

θ−→ Q′, there exists P ′ such that P
θ−→ P ′ and (P ′, Q′) ∈ R

P and Q are bisimilar, P ∼ Q if (P, Q) ∈ R for some bisimulation R.

This leads to the definition ∼ =
⋃{R | R a bisimulation} and one can show that

∼ is the largest bisimulation. Moreover, it can also be shown that bisimulation is an
equivalence relation therefore it is reflexive, symmetric and transitive. Bisimulation is
a fine-grained notion of behaviour and equates far fewer models than language/trace
equivalence, for example. It requires that related models can match each other’s transi-
tions and that the resultant models also have this property. Consider the labelled transi-
tion systems in Figure 3. They generate the same strings/traces but they are not bisimilar
because we cannot find anything to match with Q1. Q2 is not suitable since it only has
a b transition and Q′

2 is not suitable since it only has a c transition.
As mentioned in the introduction, we also wish that our new semantic equivalence

be a congruence with respect to the language we use.
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P1

Q1

R1 R′
1

a

b c

P2

Q2 Q′
2

R2 R′
2

a a

b c

Fig. 3. Example of transition systems that are not bisimilar

〈T 2, A(2)〉 〈T 2, A(1)〉 〈T 2, A(0)〉

〈T 3, A(3)〉 〈T 3, A(2)〉 〈T 3, A(1)〉 〈T 3, A(0)〉

(α, v1) (α, v0)

(α, u2) (α, u1) (α, u0)

Fig. 4. Example of discretisations that are not bisimilar

3.1 Compression Bisimulation

We now define the new equivalence. As noted in the introduction, our approach here
is to consider the systems we want to be equivalent and to work from there. We want
our equivalence to be a congruence and we also want to equate discretisations with
sufficiently large numbers of levels because this is our starting point. However, having
said that, we are still interested in an equivalence that is similar to classical equivalences
such as bisimulation. Note that we cannot use bisimulation directly here. This can be
shown by the species component A

def= (α, 1)↑A. Figure 4 gives the transition system
for two different discretisation, one where the maximum level is 2 and the other where
it is 3. We can relate 〈T 2, A(i)〉 and 〈T 3, A(i)〉 for 0 ≤ i ≤ 2 but we cannot relate
〈T 3, A(3)〉 to any of 〈T 2, A(i)〉.

However, although we cannot use bisimulation directly, we are able to use it in-
directly over equivalence classes and achieve the goals of congruence and equating
discretisations. We now present definitions that allow us to achieve that.

We first need to define the equivalence relation that will define the relevant equiva-
lence classes. The current level together with the stoichiometry associated with a reaction
determine which reactions can occur, therefore we are interested in grouping together
those states of the Bio-PEPA system for which the same reactions can take place. The
collection of enabled reactions becomes our underlying notion of behaviour. This cap-
tures the similarities that we see between different discretisations. From a biological
point of view, this is sensible because it is an observational notion of equivalence.

In light of this, we can define an equivalence relation over Bio-PEPA systems that
depends on A which defines the actions that are currently enabled. Two processes are
related if their current action sets are the same.

Definition 7. The current action relation H over well-defined Bio-PEPA systems is de-
fined as H = {(P1,P2) | A(P1) = A(P2)}.

Proposition 1. H is an equivalence relation.
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Because H is an equivalence relation, it defines equivalence classes of Bio-PEPA sys-
tems which have the same current actions. For a set of Bio-PEPA systems X , the equiv-
alence classes of X with respect to H is denoted X/H. A can be extended to the
equivalence classes in the obvious manner. Hence, for P ∈ H an equivalence class,
A(H) = A(P).

We are interested in considering the equivalence classes over the derivative set of
a given Bio-PEPA system P because we want to consider the overall behaviour of
individual Bio-PEPA systems and we define PH = ds(P)/H. Since we want to de-
fine a bisimulation-style equivalence we need to define transitions between equivalence
classes. The basic idea is that if there is a transition between individual members of two
equivalence classes then there is a transition between those equivalence classes.

Definition 8. For H, H ′ ∈ PH, H α↪−→ H ′ if there exists P ∈ H and P ′ ∈ H ′ such
that P (α,w)−−−→sc P ′.

We can then finalise the definition for our new equivalence as follows. We use Defini-
tion 6 for the definition of ∼ but substitute α↪−→ for all instances of θ−→ and, moreover
the relation ∼ is defined between equivalence classes.

Definition 9. P and Q are compression bisimilar, P � Q, if PH ∼ QH.

3.2 Equivalence and Congruence Results

This section details results about the new equivalence. First we need show that it is an
equivalence relation.

Proposition 2. P � Q is an equivalence relation.

Proof. This is straightforward because ∼ is an equivalence relation. ��
Next, we consider the sequential case of two discretisations and show that they are
equated by the new equivalence. The sequential case consists of considering a single
species and two discretisations. The first theorem of the paper shows that given a single
species component and two discretisations, then the two discretisations are compres-
sion bisimilar because their induced equivalence classes are bisimilar (in fact, they are
isomorphic). First, some notation and various lemmas are required. The complexity of
these results is due to the fact that stoichiometry can be larger than one. For a sequential
Bio-PEPA component C

def=
∑m

i=1(αi, κi) opi C , let

T↑ = {κi | (αi, κi) ↑ C appears in the definition of C} t↑ = |T↑|
T↓ = {κi | (αi, κi) ↓ C appears in the definition of C} ∪

{1 | (αi, κi) ⊕ C appears in the definition of C} t↓ = |T↓|
AC = {αi | (αi, κi) opi C appears in the definition of C}
km = max{k↓, k↑, 1}, k↓ = max(T↓), k↑ = max(T↑), hence km ≥ k↓, km ≥ k↑.

The diagram in Figure 5 illustrates the equivalence classes for two discretisations of
C

def= (α, 2) ↑ C + (β, 3) ↑ C + (γ, 4) ↓ C + (δ, 1) ⊕ C with n = 11 and n′ = 13. It
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|{z} | {z } | {z } |{z} | {z }

[0, 0] [1, 3] [4, 8] = [ic, jc] [9, 9] [10, 11]

|{z} | {z } | {z } |{z} | {z }

[0, 0] [1, 3] [4, 10] = [i′c, j′c] [11, 11] [12, 13]

0

0

k↓

k↓

n

n′

n−k↑

n′−k↑

Fig. 5. The equivalence classes of two discretisations of a species component

also demonstrates how the various stoichiometry coefficients result in different equiva-
lent classes. The lemmas that follow prove the properties of the equivalence classes as
shown in this diagram.

The next lemma establishes that equivalence classes can be ordered which makes
them easier to manipulate in later lemmas. The following lemma builds on this and
shows that there are a fixed number of equivalence classes if there are sufficient levels
and it contributes to the definition of the isomorphism in the first theorem.

Lemma 1. For a sequential Bio-PEPA component C
def=
∑m

i=1(αi, κi) opi C and the
Bio-PEPA system Sn = 〈T n, C〉, the equivalence classes of Sn

H form a strict order.

Proof. The set ds(Sn) contains elements of the form 〈T n, C(l)〉, where l ranges over
0, . . . , n. Each equivalence class is a subsequence of 0, . . . , n because of the side con-
ditions of the prefix rules. Therefore a class can be described by its smallest and largest
elements [i, j] for i ≤ j. These intervals do not overlap because the equivalence classes
form a partition. Hence for any two equivalence classes [i, j] and [i′, j′], either j < i′

or j′ < i, and this property defines a strict order over the equivalence classes. ��
Lemma 2. For a sequential Bio-PEPA component C

def=
∑m

i=1(αi, κi) opi C and the
Bio-PEPA system Sn = 〈T n, C〉, if n ≥ k↑ + k↓ + 1, then Sn

H has t↑ + t↓ + 1
equivalence classes.

Proof. By Lemma 1, a sequence of equivalence classes [i1, j1], [i2, j2], . . . , [it, jt] par-
titioning Sn

H exist. We show that there is an equivalence class [ic, jc] with A([ic, jc]) =
AC , ic = k↓ and jc = n−k↑. This is well-defined since n ≥ k↓ +k↑ +1. Consider l ∈
[ic, jc]. Any production prefix (α, κ)↑C is enabled since 0 ≤ ic ≤ l ≤ n− k↑ ≤ n−κ.
Any reactant prefix (α, κ)↓C is enabled because κ ≤ k↓ ≤ l ≤ n − k↑ ≤ n. Prefixes
containing � or � can always generate transitions. Since l ≥ 1, any prefix of the form
(α, κ) ⊕ C is enabled. Hence A([ic, jc]) = AC and the class cannot be larger.

Next we consider the equivalence classes that come before [ic, jc]. Order the ele-
ments of T↓ from smallest to largest, τ1, τ2, . . . , τt↓−1, τt↓ where τt↓ = k↓ then we
have that [i1, j1], [i2, j2], . . . , [ic−1, jc−1] is [0, τ1 − 1], [τ1, τ2 − 1], . . . , [τt↓−1, τt↓ − 1]
which gives t↓ equivalence classes.

Similarly, we have t↑ equivalence classes corresponding to the elements of T↑. This
means that there are t↓ + t↑ + 1 equivalence classes in total. ��
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Corollary 1. Let C
def=
∑m

i=1(αi, κi) opi C be a sequential Bio-PEPA component
which has stoichiometry coefficient 1 for all reactant prefixes and product prefixes then
any discretisation with n ≥ 3 has three equivalence classes.

The next lemma establishes a lower bound on the size of the equivalence class that is
capable of performing all actions, namely the “central” class [ic, jc] with A([ic, jc]) =
Ac. This class is the only one that differs in cardinality for different discretisations, and
it grows in size as the number of levels are increased. The other classes do not differ
between different discretisations because they are defined by the same stoichiometry
coefficients. The value km is used since knowing that km is a bound on the size of
[ic, jc] is important for a later lemma.

Lemma 3. Let C
def=
∑m

i=1(αi, κi) opi C be a sequential Bio-PEPA component and let
Sn = 〈T n, C〉 for n ≥ k↑ +km +k↓. Then [ic, jc], the equivalence class of Sn/H with
A[ic, jc] = AC , has cardinality greater than km.

Proof. It is the case that ic = k↓ and jc = n−k↑. The cardinality of [ic, jc] is jc − ic +
1 = n − k↑ − k↓ + 1 ≥ k↑ + km + k↓ − k↑ − k↓ + 1 = km + 1 > km. ��

This implies that the cardinality/width of [ic, jc] is greater than both k↓ and k↑. The
next lemma relates the equivalence classes obtained for two different values of n by
expressing the classes for the larger value in terms of the intervals of the smaller value.

Lemma 4. Let C
def=
∑m

i=1(αi, κi) opi C be a sequential Bio-PEPA component and
let S = 〈T , C〉. Let n′ = n + d. Then the equivalence classes of Sn

H are described
by the ordered intervals [0, j1], . . . , [ic, jc], . . . , [it−1, jt−1], [it, n] and the equivalence
classes of Sn′

H are described by the ordered intervals [0, j1], . . . , [ic, jc +d], . . . , [it−1+
d, jt−1 + d], [it + d, n + d] where [ic, jc] and [ic, jc + d] are the equivalence classes in
which all actions of C are possible.

Proof. The elements of Sn
H are [0, j1], . . . , [ic, jc], . . . , [it−1, jt−1], [it, n] and those of

Sn′
H are [0, j′1], . . . , [i′c, j′c], . . . , [i′t−1, j

′
t−1], [i′t, n′]. The first t↓ equivalence classes are

the same in both cases because they are defined by the same stoichiometric coefficients
so Sn

H is [0, j1], . . . , [ic, j′c], . . . , [i
′
t−1, j

′
t−1], [i

′
t, n

′]. Since jc = n−k↑ and j′c = n′−k↑,
j′c = jc + d and this offset is the same throughout the remaining equivalence classes
which are defined by the same stoichiometric coefficients hence Sn

H can be written
[0, j1], . . . , [ic, jc + d], . . . , [it−1 + d, jt−1 + d], [it + d, n + d]. ��

Finally the most important lemma shows that the same transitions occur between equiv-
alence classes if the numbers of levels are large enough. This contributes to the isomor-
phism defined in the theorem about sequential Bio-PEPA systems.

Lemma 5. Let C
def=
∑m

i=1(αi, κi) opi C be a sequential Bio-PEPA component and let
S = 〈T , C〉. Let E1, . . . , Et be the ordered equivalence classes of Sn

H and E′
1, . . . , E

′
t

be the ordered equivalence classes of Sn′
H . If n ≥ k↓ + km + k↑ then Ep

α↪−→ Eq if and
only if E′

p
α↪−→ E′

q .
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Proof. Let n′ = n + d. Lemma 4 gives notation for the two sequences of equivalence
classes and let [ic, jc] and [i′c, j

′
c] be the classes whose current action set is AC . Con-

sider [ip, jp]
α↪−→ [iq, jq]. Since A([ip, jp]) = A([i′p, j′p]), [i′p, j′p]

α↪−→ [i′, j′]. We need
to show that [i′, j′] = [i′q, j

′
q]. There are two transitions 〈T n, C(l)〉 (α,w)−−−→ 〈T n, C(l1)〉

with l ∈ [ip, jp] and l1 ∈ [iq, jp] and 〈T n′
, C(l′)〉 (α,w′)−−−−→ 〈T n′

, C(l′1)〉 with l′ ∈
[i′p, j

′
p] and l′1 ∈ [i′, j′]. So we need to show that l′1 ∈ [i′q, j

′
q]. We also need to con-

sider the other direction. If [i′p, j
′
p]

α↪−→ [i′q, j
′
q] then [ip, jp] α↪−→ [i, j] and we need to

show that l ∈ [iq, jq].

Prefixes (α, κ) op C where op ∈ {⊕,�,�}: A transition does not result in a change
of level therefore p = q and [i′, j′] = [i′p, j

′
p]. Similarly for the other direction.

We now consider the relative positions of p, q and c. The cases (p < c and q > c)
and (q < c and p > c) cannot occur due to Lemma 3 as no transition can change the
value of l or l′ sufficiently.

Prefixes of the form (α, κ)↑C: Here the level l changes to l + κ and p ≤ q.
If q < c then l ∈ [ip, jp] and l + κ ∈ [iq, jq] hence choosing l′ = l leads to

l′ ∈ [ip, jp] and l′ + κ ∈ [iq, jq] as required. The other direction is similar.
For q = c and p < c, let l′ = l then l′+κ ∈ [ic, jc+d] since l′+κ ∈ [ic, jc]. For the

other direction, l′ ∈ [ip, jp] and l′+κ ∈ [ic, jc+d]. We need to show that l+κ ∈ [ic, jc].
The largest value l′ can take is ic − 1. The width of [ic, jc] is jc − ic + 1 > km by
Lemma 3. Therefore l+κ = l′+κ ≤ ic−1+κ ≤ ic−1+km < ic−1+jc−ic+1 ≤ jc.

If p > c, then l ∈ [ip, jp] and l+κ ∈ [iq, jq], Let l′ = l+d then l′ ∈ [ip+d, jp+d]
and l′ +κ ∈ [iq +d, jq +d] = [i′q, j

′
q] as required. For the other direction, let l = l′−d.

If p = c and q = c let l′ = l then l + κ ∈ [ic, jc] implies l′ + κ ∈ [ic, jc + d]. For
the other direction, we need to show that l, l + κ ∈ [ic, jc]. Choose l = ic and note that
l + κ = ic + κ ≤ ic + km < jc + 1 by Lemma 3 therefore l + κ ≤ jc.

If p = c and q > c then l ∈ [ic, jc] and l + κ ∈ [iq, jq]. To match this, choose
l′ = l + d. For the other direction, l′ ∈ [ic, jc + d] and l′ + κ ∈ [iq + d, jq + d]. Let
l = l′−d, then l ∈ [ic−d, jc] and l+κ ∈ [iq, jq]. We need to show l ≥ ic. The smallest
value that l′ + κ can take is jc + d + 1 which implies l + d + κ = l′ + κ ≥ jc + d + 1.
So l ≥ jc − κ + 1 ≥ jc − km + 1 > ic by Lemma 3.

Prefixes of the form (α, κ)↓C: The level changes from l to l− κ and p ≥ q. These are
similar to the previous case. ��
The following theorem shows that for large enough value of n, two discretisations of a
sequential Bio-PEPA system are compression bisimilar.

Theorem 1. Let S = 〈T , C〉 be a well-defined Bio-PEPA system with the single species
component C

def=
∑m

i=1(αi, κi) opi C then Sn � Sn′
for n, n′ ≥ k↓ + km + k↑.

Proof. Without loss of generality, assume that n is the maximum number of levels for
species C in Sn and n′ is the maximum number of levels for species C in Sn′

.
We will show thatSn

H is isomorphic to Sn′
H henceSn

H ∼ Sn′
H and thereforeSn � Sn′

.
Let f : Sn

H → Sn′
H be defined as f(B) = D if A(B) = A(D). This function is well-

defined by Lemma 2 since Sn
H and Sn′

H have the same number of equivalence classes
and hence for B, B′ ∈ Sn

H, f(B) = f(B′) implies B = B′ and for any D ∈ Sn′
H , there

exists B ∈ Sn
H such that f(B) = D.
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Additionally, define f(B α↪−→ B′) = f(B) α↪−→ f(B′). This is a homomorphism be-
cause it preserves transitions. By Lemma 5, for any D α↪−→ D′, there exist B, B′ ∈ Sn

H
such that f(B) α↪−→ f(B′). Hence f is a isomorphism. ��

Classically in congruence proofs, there would be a proof for each operator, hence there
would be one for each of the prefix operators and then one for the choice operator. We
do not need to show that the new semantic equivalence is a congruence with respect
to the prefix operators and the choice operator since we work specifically with well-
defined model components which give a constrained syntax that restricts how the prefix
operators and the choice operator can be used.

We next consider a congruence result for the synchronisation operator. In this theo-
rem, the notation [P ]H refers to the equivalence class generated by H, the current action
relation, that contains the Bio-PEPA system P . From this it is possible to obtain the re-
sult about compression bisimilarity between two different discretisations of a model
component. First, we need a lemma and then a property describing the actions that are
possible in a synchronisation. The property captures the idea that the actions in L are
those that are shared by both components in the synchronisation.

Lemma 6. Equality with respect to A is preserved by cooperation. In other words,

A(〈T , P1〉) = A(〈T , P2〉) ⇒
{
A(〈T , P1 ��

L
Q〉) = A(〈T , P2 ��

L
Q〉) and

A(〈T , Q ��
L

P1〉) = A(〈T , Q ��
L

P2〉)

Definition 10. Given a well-defined Bio-PEPA system of the form 〈T , P ��
L

Q〉, it has
the current action decomposition property if A(〈T , P1 ��

L
Q1〉) = A(〈T , P2 ��

L
Q2〉)

implies A(〈T , P1〉) = A(〈T , P2〉) and A(〈T , Q1〉) = A(〈T , Q2〉) for all systems
〈T , P1 ��

L
Q1〉, 〈T , P2 ��

L
Q2〉 ∈ ds(〈T , P ��

L
Q〉).

Theorem 2. Let 〈T1, P1〉, 〈T2, P2〉, 〈T1, Q1〉 and 〈T2, Q2〉 be well-defined Bio-PEPA
systems such that 〈T1, P1 ��

L
Q1〉 and 〈T2, P2 ��

L
Q2〉 both have the current action

decomposition property. If 〈T1, P1〉 � 〈T2, P2〉 and 〈T1, Q1〉 � 〈T2, Q2〉 then it is the
case that 〈T1, P1 ��

L
Q1〉 � 〈T2, P2 ��

L
Q2〉.

Proof. LetR=
{(

[〈T1, P
′
1 ��

L
Q′

1〉]H, [〈T2, P
′
2 ��

L
Q′

2〉]H
) | [〈T1, P

′
1〉]H ∼ [〈T2, P

′
2〉]H

and [〈T1, Q
′
1〉]H ∼ [〈T2, Q

′
2〉]H

}
. We want to show that R is a bisimulation. This proof

follows the standard technique for this case but requires a few additional steps. We only
consider the case of α ∈ L. The other two cases are simpler.

Consider a transition from [〈T1, P
′
1 ��

L
Q′

1〉]H. This may be generated by a transition
from another system in this class, say 〈T1, P

′
3 ��

L
Q′

3〉 (α,w)−−−→sc 〈T1, P
′′
3 ��

L
Q′′

3〉. By
shorter inferences and by the definition of transitions between equivalence classes we
can infer [〈T1, P

′
3〉]H α↪−→ [〈T1, P

′′
3 〉]H and [〈T1, Q

′
3〉]H α↪−→ [〈T1, Q

′′
3〉]H.

From the current action decomposition property, we know that these transitions are
[〈T1, P

′
1〉]H α↪−→ [〈T1, P

′′
3 〉]H and [〈T1, Q

′
1〉]H α↪−→ [〈T1, Q

′′
3〉]H.

By the definition of R, there exist P ′′
2 and Q′′

2 such that [〈T2, P
′
2〉]H α↪−→ [〈T2, P

′′
2 〉]H

and [〈T2, Q
′
2〉]H α↪−→ [〈T2, Q

′′
2〉]H such that [〈T1, P

′′
3 〉]H∼ [〈T2, P

′′
2 〉]H and [〈T1, Q

′′
3〉]H

∼ [〈T2, Q
′′
2〉]H.
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Fig. 6. Transition system for MC when n = 3 (left) and associated equivalence classes (right)

We can then infer 〈T2, P
′
4〉 (α,w2)−−−−→sc 〈T2, P

′′
4 〉 with A(〈T2, P

′
4〉) = A(〈T2, P

′
2〉)

and A(〈T2, P
′′
4 〉) = A(〈T2, P

′′
2 〉) and 〈T2, Q

′
2〉 (α,v2)−−−−→sc 〈T2, Q

′′
2〉 with A(〈T2, Q

′
4〉) =

A(〈T2, Q
′
2〉) and A(〈T2, Q

′′
4〉) = A(〈T2, Q

′′
2〉).

By Lemma 6 and the above equalities, A(〈T2, P
′
4 ��

L
Q′

4〉) = A(〈T2, P
′
2 ��

L
Q′

2〉)
and A(〈T2, P

′′
4 ��

L
Q′′

4〉) = A(〈T2, P
′′
2 ��

L
Q′′

2〉).
We can infer 〈T2, P

′
4 ��

L
Q′

4〉 (α,w)−−−→sc 〈T2, P
′′
4 ��

L
Q′′

4〉 which leads to the matching
transition [〈T2, P

′
2 ��

L
Q′

2〉]H α↪−→ [〈T2, P
′′
2 ��

L
Q′′

2〉]H and by definition we know that(
[〈T1, P

′′
3 ��

L
Q′′

3〉]H, [〈T2, P
′′
2 ��

L
Q′′

2〉]H
) ∈ R. ��

Corollary 2. Let P = 〈T , P 〉 be a well-defined Bio-PEPA system then Pn � Pn′
for

n, n′ ≥ k↓ + km + k↑ if the current action decomposition property applies to pairs of
subcomponents of Pn and Pn′

.

Proof. Since P is well-defined, P
def= C1(l1) ��

L1
. . . ��

Lm−1
Cm(lm) with each Ci a se-

quential component. By Theorem 1 and n, n′ > k↓ + km + k↑, 〈T n, Ci〉 � 〈T n′
, Ci〉

for all i. By repeated applications of Theorem 2, 〈T n, P 〉�〈T n′
, P ′〉. ��

4 Example

We give an example of discretisations and the associated equivalence classes. Consider
the substrate-enzyme-product reactions S+E � SE → P +E which can be expressed
in Bio-PEPA as

S
def= (α, 1) ↓ S + (β, 1) ↑ S E

def= (α, 1) ↓ E + (β, 1) ↑ E + (γ, 1) ↑ E

SE
def= (α, 1) ↑ SE + (β, 1) ↓ SE + (γ, 1) ↓ SE P

def= (γ, 1) ↑ P

MC
def= S(x) ��

{α,β}
E(x) ��

{α,β,γ}
SE(0) ��

{γ}
P (0)

Figure 6 gives the transition system for MC when the maximum number of levels for
all species is three as well as that for the equivalence classes. In the transition system for
MC each state is a Bio-PEPA system and is indicated by its vector representation which
describes the level of each species in that system using the vector (S, E, SE, P ) but we
omit the brackets and commas in the diagram. Additionally, we have omitted the strings
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Fig. 7. The transition system for MC when n = 7

w from the diagram for reasons of space. The shading shows the different equivalence
classes in both diagrams. Figure 7 gives the system when the maximum number of
levels is seven and the equivalence classes are also shown. This demonstrates how the
two discretisations are related by the equivalence classes given in Figure 6.

5 Related Work

The use of process algebras for modelling systems biology has multiplied rapidly since
the first paper advocated the use of the π-calculus [15]. Approaches include the κ-
calculus [2], stochastic π-calculus [3,1], Beta-binders [4] and Bio-Ambients [5]. Most
of these approaches use stochastic simulation as their analysis tool, and few approaches
have considered the use of semantic equivalences. Weak bisimulation is shown to be
a congruence for the bio-κ-calculus as is a context bisimulation which allows for the
modelling of cell interaction [16]. Observational equivalence has been used to show that
CCS specifications of elements of lactose operon regulation have the same behaviour as
more detailed models [17]. In an example of biological modelling using hybrid systems,
bisimulation is used to quotient the state space with respect to a subset of variables as
a technique for state space reduction [18]. Bisimulation has also been used in the com-
parison of ambient-style models and membrane-style models [19] and the comparison
of a term-rewriting calculus and a simple brane calculus [20].

6 Conclusions and Further Research

This paper has presented a new semantic equivalence for Bio-PEPA called compression
bisimulation and shown that it is a congruence and it identifies different discretisations
of the same system.

A first step for further work is to find a syntactic characterisation of the Bio-PEPA
systems that exhibit the current action decomposition property so that those systems
with this property can be easily identified. Since reactions have unique names in Bio-
PEPA, an extension that would be useful is to allow for a relation over names to relate
different reactions in different models. We would also like to extend the equivalence to
be quantitative and take into account reaction rates but it is not immediately obvious
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how to do this. Finally, we wish to apply the equivalence to various biological models
and to other formalisms using discretisation.
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Abstract. We consider parameter estimation in ordinary differential
equations (ODEs) from completely observed systems, and describe an
improved version of our previously reported heuristic algorithm (IET
Syst. Biol., 2007). Basically, in that method, estimation based on decom-
posing the problem to simulation of one ODE, is followed by estimation
based on simulation of all ODEs of the system.

The main algorithmic improvement compared to the original version,
is that we decompose not only to single ODEs, but also to arbitrary
subsets of ODEs, as a complementary intermediate step. The subsets
are selected based on an analysis of the interaction between the variables
and possible common parameters.

We evaluate our algorithm on a number of well-known hard test prob-
lems from the biological literature. The results show that our approach is
more accurate and considerably faster compared to other reported meth-
ods on these problems. Additionally, we find that the algorithm scales
favourably with problem size.

Keywords: ordinary differential equations, parameter estimation,
decomposition.

Supplementary material: All problems, solutions, on-line software and
supplementary information are available at www.odeidentification.org.

1 Introduction

This paper considers parameter estimation in ordinarydifferential equation (ODE)
models, applied to biological systems. Usually, such models are based on reaction
kinetics and are non-linear in both variables and parameters, see Fig. 1 for an
example.

A general way to estimate the parameters is to define an optimisation problem
in which the objective is to find parameter values minimising an error function
based on the discrepancy between the observed data and the simulated model.

P. Degano and R. Gorrieri (Eds.): CMSB 2009, LNBI 5688, pp. 205–217, 2009.
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Fig. 1. Model of a gene network considered in Moles et al. [1]. M0−3 are metabolites,
E1−3 are enzymes, and G1−3 are mRNAs. M0 are M3 are input variables, while all
others are dependent variables. To each of the dependent variables, there is a corre-
sponding ODE. The ODE for M1, containing the parameters kcat1, Km1, Km2, kcat2,
Km3, and Km4, is shown for illustration. The model contains 36 parameters in total.

The evaluation of the error function is usually slow, since it requires the entire
model to be simulated for each experiment. Since this has to be repeated many
times, the overall method is computationally intensive for realistic problems.

We consider the case where some time course information is available for every
state variable, and present an improved version of the algorithm of Gennemark
and Wedelin [2], together with empirical evaluation on a number of test problems.

Motivation for this work comes from several sources. While many parameter
estimation algorithms often allow data to be specified for only a subset of the
variables, further work on a base case is generally of interest if this leads to
significantly faster algorithms for this case.

Another specific motivation is that we are interested in the use of parameter
estimation as a subroutine in a more complex algorithm for identifying also the
structure of ODE systems, when the mathematical expressions of the ODEs are
unknown. Such algorithms have recently become of increased interest because
of the combination of large-scale experimental techniques, and increased com-
putational power (see [3] and references therein). To be feasible, this inference
problem typically relies on complete data sets in which all state variables are
observed. For example, one may identify a gene regulatory network from a set of
mRNA time profiles collected from a microarray experiment. In the majority of
methods proposed in this area, a structure search heuristic iteratively proposes
different ODE structures to try, and for each such model the parameters are
estimated. Usually, most of the computation time is spent on parameter estima-
tion, which hence constitutes a highly time critical subroutine. For this reason,
research on parameter estimation on completely observed systems has an direct
impact on the more general problem of finding both structure and parameters.
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1.1 Related Work

For the feasibility of the parameter estimation problem see e.g. Ljung [4], who dis-
cusses how problems may not be unambiguously solved without additional data
or some additional model constraints. Local optimisation methods like Gauss-
Newton can be used to optimise the error function, and, generally, such methods
are computationally fast but can fail because of local optima of the objective
function [5, 6]. Standard softwares for local methods are publicly available, and
benchmark problems to evaluate these are also available, e.g. in the data base
EASY-FIT [5]. Global methods, on the other hand, may identify the global opti-
mum but to the cost of an increased computational time [1, 7, 8, 9]. For example,
one of the simplest possible global methods is to restart local estimation from
several randomly chosen starting points.

For problems with complete data sets, and where the derivatives can be es-
timated with relatively high precision, the ODEs can be transformed to a set
of algebraic equations by replacing the left-hand sides by estimated slopes from
data. Then, the derivative method [10], or rigorous deterministic methods based
on interval analysis [11] can be applied. Compared to these two methods, our
own algorithm [2] is also dependent on complete data, but not so much on high
precision estimates of derivatives.

2 Parameter Estimation

Since the algorithm is based on Gennemark and Wedelin [2], we refer to that
reference for details. Here we briefly review the basic principle of the algorithm
and then describe our improvements.

2.1 The Original Algorithm

Input to the algorithm consists of the structure of the model (the ODEs), lower
and upper bounds for all parameters, and sets of time series experiments with
standard deviations, where every variable should be measured in at least one ex-
periment. The solution is a parameter vector k that minimises an error function,
which in principle can take any form.

In our case we work with the log likelihood of the observed data. By assum-
ing independent and normally distributed measurement errors and disregarding
constant terms we can express the log-likelihood for one time series as

L(X̂j|k) = −1
2

∑
i

(
Xj(ti) − X̂j(ti)

σj(ti)

)2

(1)

where i indexes the measurement points, and where Xj , X̂j and σj denotes simu-
lated data, experimental data and standard deviation for variable j, respectively.
The total log-likelihood L(X̂|k) is defined by summing over all variables and all
experiments. The error function to minimise is −L(X̂|k).
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One main idea in Gennemark and Wedelin [2] is to use the complete data set
to decompose the parameter estimation to single ODEs. In this way we obtain
one small optimisation problem for each ODE. The decomposition is achieved
by using interpolated experimental data for the other variables occurring on
the right-hand side of the ODE, resulting in a decomposed problem for a single
variable. Standard parameter estimation routines (local or global) can then be
applied on the decomposed problem, and it is solved by applying simulation of
the single ODE to evaluate the error function. As an example of the decompo-
sition, to estimate the six parameters of M ′

1(t) in Fig. 1, interpolated data are
used for M0, M2 E1 and E2 when simulating the ODE of M1.

The advantage of this approach is twofold. First, the small problems can be
solved much faster, and second, the overall stability of the estimation increases,
since the decomposed problems are constrained by the empirical data and not by
results from the algorithm itself. The disadvantage however, is that the precision
may be lower than for estimation of the entire model.

To successfully take advantage of this potential speed gain, and at the same
time achieve high precision, another idea is to use a mix of different estimation
methods with different properties with respect to speed and precision. Thus, the
originally proposed algorithm also occasionally applies estimation to the entire
problem. Initially, we also use the very rough but fast derivative method [10],
to create a starting point. Finally, we can choose between experimental and
simulated data given the best parameters hitherto as input for the sub-problems
as appropriate (see [2] for details). An iterative procedure is obtained as follows:

REPEAT
1. Select input for the other variables, to be used in step 2: experimental

data or simulated data.
2. FOR each equation DO

(a) Make a rough estimate of the parameters in the equation with the
derivative method.

(b) Improve by estimation for single equation sub-problems.
3. Improve by estimation for the entire problem.

UNTIL convergence

In step 1, it is natural to consider experimental data in the first iteration, and
simulated data in subsequent iterations. Note that simulated data is only used to
estimate variables and derivatives in the decomposition of step 2, not to replace
X̂j in the error function. In order to avoid local minima, both step 2a and 2b
can be repeated with several randomly chosen initial parameters. Typically, we
use 60 random starting points in step 2a, and then feed the best parameters into
step 2b which is run only once.

2.2 The Improved Algorithm

While the original algorithm is very fast and works well for many problems, we
have observed two problems that we address in the improved version:
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– For some systems, if estimation for single equation sub-problems have low
precision and estimation for the entire problem is too slow, it can be difficult
to find a good mix between the two.

– For systems based on traditional kinetic reactions, it is common that the
same reaction term occurs in two of the ODEs, one for production and one
for consumption. Using estimation for single equations, the parameters of
such reactions will hence be estimated twice, leading to non-optimal use of
data that may result in ambiguity and potentially divergent solutions.

To address these problems, we propose a generalisation of our algorithm. Instead
of restricting the estimation to one ODE (step 2) or to all ODEs (step 3), we allow
parameter estimation of the parameters in any sub-model, i.e. by considering any
subset of the equations.

It is intuitively reasonable that one should select sub-models with equations
that are strongly linked. This can be defined in different ways, for example by
a known direct interaction, and/or by common parameters. Such links can be
specified by the user, or be inferred automatically. Here we propose two different
automatic approaches.

The first approach is intended for metabolic systems. We have found it useful
to define one sub-model for every variable by starting from every single ODE,
and find those other equations that have reactions (and thus also parameters)
in common with this ODE. A shared parameter is usually involved in a reaction
term that is consumed in one ODE and produced in another.

Sub-models that are empty or contained in a sub-model of another equation are
ignored. For example, equation 1 may share a reaction with equation 2 and another
with equation 3. Hence, these 3 equations form the sub-model for variable 1. Now,
if equation 2 only shares parameters with equation 1, the sub-model of equation
2 is contained in the sub-model of equation 1 and can be ignored.

The second approach is intended for other types of systems that typically
lack shared parameters, e.g. genetic networks. Here we let the sub-model of each
ODE include the variables which occur on the right-hand side of the equation.

This new step of parameter estimation based on sub-models complements the
previous parameter estimation steps. In the original algorithm, it is inserted
between step 2 and 3, resulting in our modified algorithm:

REPEAT
1. Select input for the other variables, to be used in step 2 and 3: experi-

mental data or simulated data.
2. FOR each equation DO

(a) Make a rough estimate of the parameters in the equation with the
derivative method.

(b) Improve by estimation for single equation sub-problems.
3. Improve by estimation of sub-models defined around each single ODE.
4. Improve by estimation for the entire problem.

UNTIL convergence
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In addition to these changes to the structure of the algorithm, the implementa-
tion has been modified so that common parameters are also recognised in the
final step of estimation of the entire problem. The actual implementation has
also been improved in numerous ways, compared to the original one.

3 Numerical Evaluation on Benchmark Problems

We evaluate the algorithm by comparing it with previously presented results in
the literature. The problems we consider are collected from the literature based
on the following requirements: (1) all state variables of the system should be
observed, and (2) information on accuracy and/or efficiency for other methods
solving the problem should be reported. All found problems satisfying these
criteria have been included in our test set, see Table 1. For problems with noise,
many publications only specify the character of the noise, without explicitly
supplying data. In these cases we have reconstructed the problems according to
the specifications. All test problems and our solutions are fully specified on our
web site www.odeidentification.org. On the web site, it is also possible to run
these problems or own similar problems on-line on our server.

Table 1. Overview of the problems considered in our study . Problems in the upper
part of the table are collected from the literature, while the lower part includes prob-
lems that are designed for this study. #var and #param correspond to the number of
variables and parameters, respectively. For some of the problems with noisy data, the
number of model parameters is complemented with (after the plus sign) the number
of data parameters (one initial value for each time series). #exp and #tp correspond
to the number of experiments and the number of time-points for each variable in each
experiment, respectively. Measurement noise is added from a normal distribution with
mean zero and standard deviation proportional to respective data point.

Problem #var #param #exp #tp Noise Reference

pe 3genes1 8 36 16 21 0% [1]
pe 3genes2f 8 36 16 21 3% [12]
pe 3genes3f 8 36 16 21 5% [12]
pe pinene 5 5 1 9 ≈5% [13]
pe ss cascade1 3 14 8 41 0% [14]
pe ss branch4 4 18 4 20 0% [15]
pe ss 30genes2f 30 128 20 11 10% [15]

pe 3genes2 8 36+128 16 21 3% This work
pe 3genes3 8 36+128 16 21 5% This work
pe ss 30genes2 30 128+600 20 11 10% This work
pe 4genes1 11 48 16 21 0% This work
pe 5genes1 14 60 16 21 0% This work
pe 6genes1 17 72 16 21 0% This work
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For problems with names beginning with ’pe ss’ we have used the second
approach to select sub-models. For all other problems we have used the first
approach.

Since most methods in this field are dependent on random numbers, the re-
sults may differ between runs. Therefore, we run all our tests several times with
different random seeds. Computation times are reported as the average compu-
tation time for runs with different random seeds, scaled to a 1GHz processor for
easy comparison to other results (our actual runs were performed on a Pentium
IV, 2.13GHz).

3.1 Problems from the Literature

An overview of the results is given in Table 2. We first consider a known hard test
problem based on the model in Fig. 1, for which common estimation algorithms
often fail, see [1]. The main challenge of this problem is the wide search ranges
for the parameters and the non-linearities in the ODEs.

For this problem, referred to as pe 3genes1, our proposed algorithm returns
a perfect solution (L = 0.00), and the efficiency is improved compared to all
previously reported results on this problem, see Table 2. The parameter accuracy
is in the same order as the chosen precision of the numerical integration routine.
Notably, the methods we compare to are considered state of the art in the field
of global estimation for ODEs, as indicated by the extensive comparison in [1],
and by further comparisons in [12, 13].

Furthermore, we consider two variations of this problem with Gaussian noise
added to data, pe 3genes2f and pe 3genes3f. Also on these problems our algo-
rithm performs better than previously reported methods with respect to efficiency,
see Table 2. In this case, no comparison on the solution can be made, since we have
not used exactly the same data (same noise level but not the same actual data).

The next problem, pe pinene, was originally studied by Box et al. [16],
and represents a biochemical system with five variables. Like the method of
Rodriguez-Fernandez et al. [13], our method finds the optimal solution, but with
higher efficiency, as indicated in Table 2.

We also consider three problems with models defined as S-systems [17, 18],
which are based on approximating kinetic laws with multivariate power-law func-
tions. The first S-system problem pe ss cascade1 was introduced by Voit [18]
and applied in Tsai and Wang [14]. The model represents a cascaded pathway
with three dependent variables. The second S-system problem pe ss branch4
was introduced by Voit [18] and applied in Kutalik et al. [15]. It represents a
branched pathway with four dependent variables. Finally, the third S-system
problem pe ss 30genes2f was introduced by Maki et al. [19] and applied in
Kutalik et al. [15]. It represents a genetic network with 30 variables. The main
challenge of this problem is the large number of parameters.

The results presented in Table 2 indicate that our approach is faster and has
higher accuracy compared to the evolutionary optimisation approach used by Tsai
and Wang [14]. Moreover, the results indicates that our approach is faster com-
pared to the decomposition approach used in Kutalik et al. [15]. Again, since data
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Table 2. Running times and accuracies for our parameter estimation method. For
problems in the upper part of the table results for other methods are available and
also reported. Computation time is given as the average of several runs, and scaled to
a 1GHz processor. Stability measures the frequency of runs for which the best −L was
obtained.

Problem Reference Best solution Performance

−L Accuracy Time (s) Stability

pe 3genes1 External [1] <16% 120000
External [12] <0.02% 13000
Best external [13] <6x10−3% 540
This work 0.00 ≈10−9% 57 6/10

pe 3genes2f Best external [12] 13000
This work 1286 90 5/10

pe 3genes3f Best external [12] 13000
This work 3128 100 1/10

pe pinene Best external [13] 9.936 30
This work 9.936 0.1 10/10

pe ss cascade1 Best external [14] <112% 660
This work 0.00 ≈10−9% 13 10/10

pe ss branch4 Best external [15] 0.00 250
This work 0.00 ≈10−9% 0.5 10/10

pe ss 30genes2f Best external [15] 1700
This work 3240 210 10/10

pe 3genes2 This work 1214 140 5/10
pe 3genes3 This work 2309 170 1/10
pe ss 30genes2 This work 3004 1000 10/10
pe 4genes1 This work 0.00 ≈10−9% 610 7/10
pe 5genes1 This work 0.00 ≈10−9% 840 10/10
pe 6genes1 This work 0.00 ≈10−9% 1100 8/10

is noisy in pe ss 30genes2f, we have not used exactly the same data and no com-
parison on the solution can be made. As Tsai and Wang, and Kutalik et al. test
their methods on few problems with relatively rich data sets, it is difficult to make
a more thorough comparison with respect to these methods than done here.

For completeness, we also report our results for the noisy test problems, when
the initial value for the variable in each time series is considered a parameter that
is estimated along with the kinetic rate constants. We refer to those problems
as pe 3genes2, pe 3genes2 and pe ss 30genes2, respectively. As expected, the
additional degrees of freedom result in improved solutions.

The speed improvement compared to our original algorithm [2] varies between
problems, but is roughly a factor of four, split on a factor of two for the new sub-
problem estimation, and a factor of two for the improved implementation, see the
Appendix for further details.
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3.2 Problems of Increasing Size

The computational complexity is typically difficult to explicitly express for heuris-
tic algorithms like the one presented. From the outline of the algorithm in
Section 2 we see that step 1 and 2 are linear with respect to the number of vari-
ables/parameters, while step 3 and 4 involve local optimisation with polynomial
or in worst case exponential time complexity with respect to the number of vari-
ables/parameters.

As a general test to evaluate the computational complexity of this and other
algorithms, we have therefore defined a series of benchmark problems with the
same general properties but with varying size. We prepare the problems from a
generalised version of the gene regulatory network, see Fig. 2.

Fig. 2. The generalised gene network based on the n=3 case considered in [1]. Mi are
metabolites, Ei are enzymes, and Gi are mRNAs. M0 are Mn are input variables, while
all others are dependent variables.

The size of the system is determined by a constant n corresponding to the
number of different mRNA species and enzymes in the system. The ODEs are
given as

G′
i(t) = V G

i

1+(Mn/KIi)
zi+(KAi

/Mi−1)wi − kG
i Gi i = 1 . . . n (2)

E′
i(t) = V E

i Gi

KE
i +Gi

− kE
i Ei i = 1 . . . n (3)

v+
i =

kM1
i Ei (kM2

i )−1
(Mi−1−Mi)

1+Mi−1/kM2
i +Mi/kM3

i
i = 1 . . . n − 1 (4)

v−i =
kM1

i+1 Ei+1 (kM2
i+1)

−1
(Mi−Mi+1)

1+Mi/kM2
i+1+Mi+1/kM3

i+1
i = 1 . . . n − 1 (5)

M ′
i(t) = v+

i − v−i i = 1 . . . n − 1 (6)

where M0 and Mn corresponds to the input variables, and where V G
i , KIi , zi,

KAi , wi, kG
i , V E

i , KE
i and kE

i are parameters defined for i = 1 . . . n, and kM1
i ,

kM2
i , kM3

i are parameters defined for i = 1 . . . n − 1.
Using this system with n = 3, 4, 5 and 6, we have created parameter estimation

problems with 36, 48, 60 and 72 parameters, respectively. The original problem
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Fig. 3. Computational time (scaled to a 1GHz processor) for noise-free data on different
instances of the generalised benchmark problem originally suggested in [1]. For each
considered size of the system, 10 runs with varying random seeds were executed. The
means are connected by a dotted line.

presented in [1] corresponds to n = 3. For each model, we have generated data
with the same sampling schedules as the benchmark problem given for the n = 3
system, and we have also used the same parameter bounds. In this way, the four
problems have basically the same properties but for the size. We refer to the prob-
lems as pe 3genes1, pe 4genes1, pe 5genes1, and pe 6genes1, respectively.

For each problem, we ran our algorithm 10 times with varying random seeds,
see Table 2. The algorithm settings were chosen so that the largest system was
successfully identified in the majority of runs. Hence, for the smaller problems,
we used more random starting points than required for successful identification.
Data in Fig. 3 indicates that the time complexity is dominated by a linear trend
for these problems. The result is conservative in the sense that data is slightly
less informative for the larger systems, since variables are influenced by the
variations in input variable M0 to a smaller extent.

Experiments of this kind have not, to our knowledge, been done for other opti-
misation methods in this field, so no direct comparison can be made. As already
mentioned, however, many global methods fail already on the n = 3 case [1].

4 Discussion

We have presented an improved decomposition algorithm for parameter estima-
tion of ODEs. The improved decomposition is based on considering estimation of
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arbitrary subsets of ODEs, suitably mixed with considering estimation of single
ODEs and estimation of the entire model.

The presented results show that for the tested problems, our improved algo-
rithm is significantly faster than other reported methods, with excellent accu-
racy. The total effect of the decomposition and the mix of different stages is to
dramatically reduce the running time, compared to other approaches without
decomposition. We also show that the improved algorithm can scale favourably
with the size of the problem. While it is difficult to draw general quantitative
conclusions from a limited test set, we can qualitatively say that our approach
is clearly competitive.

As mentioned, parameter estimation is a critical subroutine when identifying
both the structure and the parameters of an ODE model. Preliminary evalu-
ation on a subset of the benchmark problems of Gennemark and Wedelin [3],
indicate that the running time is improved in the order of 40% compared to the
results presented in [3]. Some of these problems take a long time to run so any
improvement is useful in practice.

All problems and their solutions are available on-line in an easy to read format,
facilitating for others to test and compare using exactly the same problems. This
is important, since many problems and solutions discussed in other publications
are not well documented, which creates difficulties for further research.

Along the lines of the ideas presented here, several directions of future devel-
opment can be considered, for example:

– Sub-problems can be defined in different ways combining the interaction
structure, common parameters, and the strength of the interactions. By es-
timating subsets of tightly coupled variables together, one can potentially
further improve performance since the relative impact of interpolated data
is reduced in the simulation.

– For problems with incomplete data, in which some state variables are not
observed, most or all current identification methods rely on simulation of the
entire model, and not decomposition. However, by simultaneously analysing
the dependency graph of the system and the observation functions, param-
eter estimation based on simulation of subsets of variables may become fea-
sible, and hence reduce work.
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Appendix

Error function and running times for our parameter estimation method, with and
without the estimation of submodels. Each problem was run 10 times, and the
best, median and worst errors and computation times are reported. Computation
times are scaled to a 1GHz processor. Stability measures the frequency of runs
for which the best −L was obtained.

Problem Sub- Solution −L Time (s) Stab.

models Best Median Worst Best Median Worst

pe 3genes1 No 0.00 0.00 136.3 45 62 140 8/10
Yes 0.00 0.00 486.2 24 43 140 6/10

pe 3genes2f No 1335 > 104 > 104 120 170 220 1/10
Yes 1286 1827 > 104 56 76 160 5/10

pe 3genes3f No 3225 > 104 > 104 150 180 260 1/10
Yes 3128 3748 > 104 83 97 120 1/10

pe pinene No 9.936 9.936 9.936 0.2 0.2 0.2 9/10
Yes 9.936 9.936 9.936 0.1 0.1 0.1 9/10

pe ss cascade1 No 0.00 0.00 0.00 9 11 14 10/10
Yes 0.00 0.00 0.00 11 13 15 10/10

pe ss branch4 No 0.00 0.00 0.00 2.2 2.2 2.2 10/10
Yes 0.00 0.00 0.00 0.5 0.5 0.5 10/10

pe ss 30genes2f No 3240 3240 3240 310 330 360 10/10
Yes 3240 3240 3240 190 210 240 10/10

pe 3genes2 No 2719 > 104 > 104 240 380 520 1/10
Yes 1214 3815 > 104 88 110 220 5/10

pe 3genes3 No 3217 > 104 > 104 210 350 530 1/10
Yes 2309 3188 > 104 70 160 270 1/10

pe ss 30genes2 No 3004 3004 3004 1900 2000 2300 10/10
Yes 3004 3004 3004 860 910 1200 10/10

pe 4genes1 No 0.00 0.00 > 104 1300 1300 1600 8/10
Yes 0.00 0.00 > 104 610 630 720 7/10

pe 5genes1 No 0.00 0.00 0.00 1700 1700 1800 10/10
Yes 0.00 0.00 0.00 810 840 860 10/10

pe 6genes1 No 0.00 0.00 > 104 2100 2200 2800 8/10
Yes 0.00 0.00 > 104 1100 1100 1200 8/10
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Abstract. Recently, there has been considerable interest in the use of
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tics, by requiring fewer system simulations. Another advantage of our
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faster verification than state-of-the-art techniques, even when no prior
knowledge is available.
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Checking [15] as a powerful tool for formally reasoning about the dynamic prop-
erties of such models (e.g., [1,6,9,11,14,18,24,38]). This paper presents a new
Model Checking algorithm that is well-suited for verifying properties of very
large stochastic models, such as those created and used in Systems Biology.

The stochastic nature of most computational models from Systems Biology
gives rise to an instance of the Probabilistic Model Checking (PMC) problem
[13,15,31]. Suppose M is a stochastic model over a set of states S, s0 is a starting
state, φ is a dynamic property expressed as a formula in temporal logic, and
θ ∈ [0, 1] is a probability threshold. The PMC problem is: given the 4-tuple
(M, s0, φ, θ), to decide algorithmically whether M, s0 |= P≥θ(φ). In this paper,
property φ is expressed in BLTL - Bounded Linear Temporal Logic [36,35,19].
Given these, PMC algorithms decide whether the model satisfies the property
with at least probability θ.

Existing algorithms for solving the PMC problem fall into one of two cate-
gories. The first category comprises numerical methods (e.g. [2,3,12,16,31]) which
can compute the probability with which the property holds with high precision.
Numerical methods are generally only suitable for small systems (≈ 106 to 107

states). In a Biological System, the number of states can easily exceed this limit,
which motivates the need for algorithms for solving the PMC problem in an
approximate fashion. Approximate methods (e.g., [23,26,39,46]) work by sam-
pling a set of traces from the model. Each trace is then evaluated to determine
whether it satisfies the property. The number of satisfying traces is used to
(approximately) decide whether M, s0 |= P≥θ(φ).

Approximate PMC methods can be further divided into two sub-categories:
(i) those that seek to estimate the probability that the property holds and then
compare that estimate to θ (e.g., [26,39]), and (ii) those that reduce the PMC
problem to a hypothesis testing problem (e.g., [46,47]). That is, deciding between
two hypotheses — H0 : P≥θ(φ) versus H1 : P<θ(φ). Hypothesis-testing based
methods are more efficient than those based on estimation when θ (which is
specified by the user) is significantly different than the true probability that the
property holds (which is determined by M and s0) [45].

Existing PMC methods based on hypothesis testing rely on Classical (aka
Frequentist) statistical procedures, like Wald’s Sequential Probability Ratio Test
(SPRT) [42], to answer the decision problem. Our algorithm performs hypothesis
testing, but uses Bayesian statistical procedures. This distinction is not trivial,
as Bayesian and Classical statistics are two very different fields. We will show that
in practice, our Bayesian approach requires fewer samples than Wald’s SPRT.
Finally, we note that because we adopt a Bayesian approach, our algorithm can
incorporate prior knowledge, in the form of a probability distribution, P (θ),
when available. This is relevant because in a Biological setting, it is often the
case that prior knowledge is available.

The contributions of this paper are as follows:
• The first application of Bayesian Sequential Hypothesis Testing to statistical

Model Checking,



220 S.K. Jha et al.

• The first hypothesis-testing based statistical Model Checking algorithm de-
signed for composite hypotheses, which can in particular include prior knowl-
edge via a mixture of prior distributions,

• A theorem proving that our algorithm terminates with probability 1,
• Error bounds for our algorithm, and
• A series of case studies using Systems Biology models demonstrating that our

method is empirically more efficient than existing algorithms for statistical
Model Checking.

2 Background and Related Work

Our algorithm can be applied to any stochastic model M with a well-defined
probability space over traces. Several well-studied stochastic models like (discrete
and continuous) Markov Chains satisfy this property [47]. We assume that each
execution of the system can be represented by a sequence of states and the time
spent in these states. The sequence σ = (s0, t0), (s1, t1), . . . denotes an execution
of the system along states s0, s1, . . . with durations t0, t1, . . . ∈ R. The system
stays in state si for duration ti and makes a transition to si+1. We require that
the sum

∑∞
i ti must diverge, that is, the system can not make infinitely many

state switches in finite time.

2.1 Specifying Properties in Temporal Logic

Our algorithm verifies properties of M expressed as formulas in Probabilistic
Bounded Linear Temporal Logic (PBLTL). We first define the syntax and se-
mantics of Bounded Linear Temporal Logic (BLTL) [36,35,19] and then extend
that logic to PBLTL.

For a stochastic model M, let the set of state variables SV be a finite set of
real-valued variables. A Boolean predicate over SV is a constraint of the form
x∼v, where x ∈ SV , ∼ ∈ {≥,≤, =}, and v ∈ R. A BLTL property is built on a
finite set of Boolean predicates over SV using Boolean connectives and temporal
operators. The syntax of the logic is given by the following grammar:

φ ::= x∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1Utφ2),

where ∼ ∈ {≥,≤, =}, x ∈ SV , v ∈ Q, and t ∈ Q≥0. We can define additional
temporal operators such as Ftψ = TrueUt ψ, or Gtψ = ¬Ft¬ψ in terms of the
bounded until Ut.

We define the semantics of BLTL with respect to executions of M. The
fact that an execution σ satisfies property φ is denoted by σ |= φ. Let σ =
(s0, t0), (s1, t1), . . . be an execution of the model along states s0, s1, . . . with du-
rations t0, t1, . . . ∈ R. We denote the execution trace starting at state i by σi (in
particular, σ0 denotes the original execution σ). The value of the state variable
x in σ at the state i is denoted by V (σ, i, x). The semantics of BLTL for a trace
σk starting at the kth state (k ∈ N) is defined as follows:
• σk |= x ∼ v if and only if V (σ, k, x) ∼ v;
• σk |= φ1 ∨ φ2 if and only if σk |= φ1 or σk |= φ2;
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• σk |= φ1 ∧ φ2 if and only if σk |= φ1 and σk |= φ2;
• σk |= ¬φ1 if and only if σk |= φ1 does not hold (written σk �|= φ1);
• σk |= φ1Utφ2 if and only if there exists i ∈ N such that (a)

∑
0≤l<i tk+l ≤ t,

(b) σk+i |= φ2 and (c) for each 0 ≤ j < i, σk+j |= φ1.

Statistical Model Checking is based on evaluating whether σ |= φ holds on
sample simulations σ of the system. In practice, sample simulations only have
a finite duration. The question is how long these simulations have to be for the
formula φ to have a well-defined semantics such that σ |= φ can be checked.
If σ is too short, say of duration 2, the semantics of φ1U5φ2 may be unclear.
But at what duration of the simulation can we stop because we know that the
truth-value for σ |= φ will never change by continuing the simulation? In [29],
we prove that finite simulations of bounded duration are always sufficient for
Model Checking BLTL on traces.

We can now define Probabilistic Bounded Linear Temporal Logic.

Definition 1. A Probabilistic Bounded LTL (PBLTL) formula is a formula of
the form P≥θ(φ), where φ is a BLTL formula and θ ∈ (0, 1).

We say that M satisfies PBLTL property P≥θ(φ), denoted by M |= P≥θ(φ), if
and only if the probability that an execution of M satisfies BLTL property φ is
greater than or equal to θ. The problem is well-defined [47] since one can always
assign a unique probability measure to the set of executions of M that satisfy
a formula in BLTL. Note that counterexamples to the BLTL property φ are not
counterexamples to the PBLTL property P≥θ(φ), because the truth of P≥θ(φ)
depends on the likelihood of all counterexamples to φ. This makes PMC more
difficult than standard Model Checking, because one counterexample to φ is not
enough to answer P≥θ(φ).

2.2 Existing Statistical Probabilistic Model Checking Algorithms

As outlined in the introduction, Probabilistic Model Checking algorithms can
either be exact (e.g. [2,3,12,16,31]), or statistical in nature. In practice, statistical
methods (e.g., [23,26,32,39,46]), which iteratively draw sample traces from the
model, are generally better suited to Model Checking Biological systems because
they scale better. Our method is statistical, and so we will compare and contrast
our method to existing statistical methods in this section.

Existing PMC methods based on hypothesis testing rely on Classical (aka Fre-
quentist) statistical procedures, like Wald’s Sequential Probability Ratio Test
(SPRT) [42], to answer the decision problem. Younes and Simmons introduced the
first algorithm for statistical Model Checking [45,46,47] for verifying probabilis-
tic temporal properties of stochastic systems. Their work uses the SPRT, which is
designed for simple hypothesis testing1. Specifically, the SPRT decides between
1 A simple hypothesis completely specifies a distribution. For example, a Bernoulli dis-

tribution of parameter p is fully specified by the hypothesis p = 0.5 (or some other
fixed value). A composite hypothesis has instead free parameters, e.g. the hypothesis
p < 0.3, for a Bernoulli distribution.
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the simple null hypothesis H ′
0 : M, s0 |= P=θ0(φ) against the simple alternate hy-

pothesis H ′
1 : M, s0 |= P=θ1(φ), where θ0 < θ1. It can be shown that the SPRT is

optimal for simple hypothesis testing, in the sense that it minimizes the expected
number of samples among all the tests satisfying the same Type I and II errors [43],
when either H ′

0 or H ′
1 is true. The PMC problem is instead a choice between two

composite hypotheses H0 : M, s0 |= P≥θ[φ] versus H1 : M, s0 |= P<θ[φ]. The
SPRT is not defined unless θ0 �= θ1, so Younes and Simmons overcome this prob-
lem by separating the two hypotheses by an indifference region (θ−δ, θ+δ), where
0 < δ < 1 is a user-specified parameter. It can be shown that the SPRT with indif-
ference region can be used for testing composite hypotheses, while respecting the
sameType I and II errors of a standardSPRT [21, Section 3.4]. However, in this case
the test is no longer optimal, and the maximum expected sample size may be much
bigger than the optimal fixed sample size sampling test - see [7] and [21, Section
3.6]. We note that our algorithm solves the composite hypothesis testing problem,
but does so using Bayesian statistics, and thus requires no indifference region.

The method of [26] uses a fixed number of samples and estimates the probabil-
ity the property holds as the number of satisfying traces divided by the number
of sampled traces. Their algorithm guarantees the accuracy of the results using
Chernoff-Hoeffding bounds. In particular, their algorithm can guarantee that the
difference in the estimated and the true probability is less than ε, with probabil-
ity ρ, where ρ < 1 and ε > 0 are user-specified parameters. Grosu and Smolka use
a similar technique for verifying formulas in LTL [23]. Their algorithm randomly
samples lassos from a Büchi automaton in an on-the-fly fashion. The method of
[32] is also Bayesian, like the algorithm in this paper, but estimates the prob-
ability the property holds and does not invoke hypothesis testing. Unlike the
algorithm in this paper, [32] is fully Bayesian in the sense that it explicitly con-
siders the prior distributions over the initial state and parameters of the model,
in addition to the prior over the property.

Finally, Sen et al. [39,40] used the p-value for the null hypothesis as a statistic
for hypothesis testing. The p-value is defined as the probability of obtaining
observations at least as extreme as the one that was actually seen, given that
the null hypothesis is true. It is important to realize that a p-value is not the
probability that the null hypothesis is true. Sen et al.’s method does not have a
way to control the Type I and II errors.

3 Bayesian Statistical Model Checking

In this section, we first review some important concepts from statistical Model
Checking, and then introduce theory and terminology from Bayesian statistics.
We then present our algorithm in Sec. 3.2.

Recall that the PMC problem is to decide whether M |= P≥θ(φ), where
θ ∈ (0, 1) and φ is a BLTL formula. Let p be the (unknown but fixed) probability
of the model satisfying φ: thus, the PMC problem can now be stated as deciding
between two hypotheses:

H0 : p � θ H1 : p < θ.
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For any trace σi of the system, we can deterministically decide whether σi sat-
isfies φ. Therefore, we can define a Bernoulli random variable Xi denoting the
outcome of σi |= φ. The probability mass function associated with Xi is thus:

f(xi|u) = pxi(1 − p)1−xi

where xi = 1 iff σi |= φ, otherwise xi = 0. Note that the Xi are independent
and identically distributed, as each trace is given by an independent execution
of the model. Since p is unknown, we assume that it is given by a random
variable, whose density g(·) is called the prior density. The prior is usually based
on our previous experiences and beliefs about the system. A complete lack of
information about the probability of the system satisfying the formula is usually
summarized by a non-informative or objective prior probability.

3.1 Bayesian Statistics

Suppose we have a sequence of random variables X1, . . . , Xn defined as above,
and let d = (x1, . . . , xn) denote a sample of those variables. Then Bayes’ theorem
states that the posterior odds are

P (H0|d) =
P (d|H0)P (H0)

P (d)
P (H1|d) =

P (d|H1)P (H1)
P (d)

where P (d) = P (d|H0)P (H0) + P (d|H1)P (H1), which in our case is always non-
zero. The ratio of the posterior odds for hypotheses H0 and H1 given data d is

P (H0|d)
P (H1|d)

=
P (d|H0)
P (d|H1)

P (H0)
P (H1)

. (1)

Definition 2. The Bayes factor B of sample d and hypotheses H0 and H1 is

B =
P (d|H0)
P (d|H1)

.

For fixed priors in a given example, the Bayes factor is directly proportional to
the posterior odds ratio by Equation (1). Thus, it may be used as a measure
of relative confidence in H0 vs. H1, as proposed by Jeffreys [28]. In particular,
he suggested that a value of the Bayes factor greater than 100 provides decisive
evidence in favor of H0. To test H0 vs. H1 we compute the Bayes factor B of
the available data and then compare it against a fixed threshold T > 1: we
shall accept H0 iff B > T . Jeffreys interprets the value of the Bayes factor as a
measure of the evidence in favor of H0 (dually, 1

B is the evidence in favor of H1).
We now show how to compute the Bayes factor. According to Definition 2, we

have to calculate the probability of the observed sample d = (x1, . . . , xn) given
H0 and H1. They are given by integrating the joint density h(d|·) with respect to
the prior g(·), and since we assume that the sample is drawn from iid variables,
we have that h(d|·) = f(x1|·) · · · f(xn|·). Therefore, the Bayes factor is the ratio:
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B =
P (x1, . . . , xn|H0)
P (x1, . . . , xn|H1)

=

∫ 1

θ

f(x1|u) · · · f(xn|u) · g(u) du∫ θ

0

f(x1|u) · · · f(xn|u) · g(u) du

. (2)

We observe that the Bayes factor depends on the data d and on the prior g, so
it may be considered a measure of confidence in H0 vs. H1 provided by the data
x1, . . . , xn, and “weighted” by the prior g. Hence, the choice of the threshold
Bayes Factor (T ) in Sec. 3.2 also indicates an objective degree of confidence in
the accepted hypothesis when the Bayesian Statistical Model Checking algorithm
stops.

3.2 Algorithm

Our algorithm is essentially a sequential version of Jeffreys’ test. Remember we
want to establish whether M |= P�θ(φ), where θ ∈ (0, 1) and φ is a BLTL for-
mula. Like all statistical Model Checking algorithms, we assume that it is possible
to generate unbiased samples from the model. The algorithm iteratively draws in-
dependent and identically distributed sample traces σ1, σ2, ..., and checks whether
they satisfy φ. As explained above, we can model this procedure as independent
sampling from a Bernoulli distribution X of unknown parameter p - the actual
probability of the model satisfying φ. At stage n the algorithm has drawn samples
x1, . . . , xn iid like X . It then computes the Bayes factor Bn according to (2), and
it stops iff (Bn > T ∨ Bn < 1

T ). When this occurs, it will accept H0 iff Bn > T ,
and will accept H1 iff Bn < 1

T . The algorithm is shown below.
From (2) we see that the algorithm can incorporate prior knowledge through

g, when computing the Bayes factor. Our examples focus on Beta priors which
are defined over the (0, 1) interval by the following probability density (for real
parameters α, β > 0):

∀u ∈ (0, 1) g(u, α, β) =̂
1

B(α, β)
uα−1(1 − u)β−1 (3)

where the Beta function B(α, β) is defined as:

B(α, β) =̂
∫ 1

0

tα−1(1 − t)β−1dt . (4)

By varying the parameters α and β, one can approximate other smooth unimodal
densities on (0, 1) by a Beta density (e.g., the uniform density over (0, 1) is a
Beta with α = β = 1). We also define the Beta distribution function F(α,β)(u):

∀u ∈ (0, 1) F(α,β)(u) =̂
∫ u

0

g(t, α, β) dt =
1

B(α, β)

∫ u

0

tα−1(1 − t)β−1 dt (5)

which is just the usual distribution function for a Beta random variable of param-
eters α, β (i.e., the probability that it takes values less than or equal to u).
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Algorithm 1. Bayesian Statistical Model Checking
Require: PBLTL Property P�θ(φ), Threshold T > 1, Prior density g for un-

known parameter p

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying φ so far}
repeat

σ := draw a sample trace of the system (iid)
n := n + 1
if σ |= φ then

x := x + 1
end if
Bn := BayesFactor(n, x) {compute according to Equation (2)}

until (Bn > T ∨ Bn < 1
T )

if (Bn > T ) then
return H0 accepted

else
return H1 accepted

end if

The choice of the Beta density is not arbitrary. It is well-known that the
Beta distribution is the conjugate prior to the Bernoulli distribution2. This re-
lationship gives rise to closed-form solutions to the posterior density over θ (i.e.,
P (θ|d)), thus avoiding numerical integration when calculating the Bayes factor.
Our data (x1, . . . , xn) are assumed to be iid samples drawn from a Bernoulli
distribution of unknown parameter p. We write x =

∑n
i=1 xi for the number of

successes in (x1, . . . , xn). The prior density g(·) is assumed to be a Beta density
with fixed parameters α, β > 0. In [29], we show that the Bayes factor Bn at
stage n can be computed in terms of the Beta distribution function:

Bn =
1

F(x+α,n−x+β)(θ)
− 1 .

The Beta distribution function can be computed with high accuracy by standard
mathematical libraries (e.g. the GNU Scientific Library) or software (e.g. Mat-
lab). Hence, the Beta distribution is the appropriate choice for summarizing the
prior probability distribution in Statistical Model Checking.

We present the following two Theorems:

Theorem 1 (Termination). The Bayesian Statistical Model Checking algo-
rithm terminates with probability one, for Beta priors and Bernoulli samples.
(See [29] for a proof.)

2 A distribution P (θ) is said to be a conjugate prior for a likelihood function, P (d|θ),
if the posterior, P (θ|d) is in the same family of distributions.
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Theorem 2. If the Bayesian Model Checking algorithm terminates after observ-
ing n sample traces, an upper bound on the probability of the Type I error is

n∑
x=0

I{B(n, x) < 1/T }(x)
(

n

x

)
txmax(1 − tmax)n−x

where tmax is the value of t that maximizes the expression ti(1 − t)n−i defined
on [θ, 1], T is the Bayes Factor threshold used in the Bayesian Model Checking
algorithm, and I is the indicator function. (See [29] for a proof.)

3.3 Verification over General Priors

The use of conjugate priors does not pose restrictions, in practice. It is known
that any prior distribution (with or without a density) can be well approxi-
mated by a finite mixture of conjugate priors [17]. Thus, we can approximate an
arbitrary prior over (0, 1) by constructing a density G(·) of the form:

G(u) =̂
N∑

i=1

ri · gi(u, αi, βi)

where N is a positive integer which depends on the level of accuracy required,
the gi’s are Beta densities (of possibly different parameters αi, βi), and the ri’s
are positive reals summing up to 1 - this ensures that G is a proper density.

For such priors, the computation of the Bayes factor is slightly more compli-
cated. In [29], we show that the Bayes factor at stage n is given by:

Bn =
∑N

i=1 r′i · B(x + αi, n − x + βi)∑N
i=1 r′i · B(x + αi, n − x + βi) · F(x+αi,n−x+βi)(θ)

− 1

where r′i = ri

B(αi,βi)
. Again, we see that the Bayes factor can be computed

by means of standard, well-known numerical methods, thereby simplifying the
implementation of the algorithm. Theorem 1 can be extended to handle this
case, too [29].

4 Benchmarks

In this section, we analyze the performance of our algorithm on five benchmark
models from the Systems Biology literature. Three of the models are written
in the prism Model Checking tool’s specification language [27,31], and the re-
maining two are written in SBML and were obtained from the Matlab Systems
Biology Toolbox. The prism Model Checker tool is capable of both symbolic (i.e.,
exact) Probabilistic Model Checking, and statistical Probabilistic Model Check-
ing. prism’s statistical Probabilistic Model Checking Algorithm implements the
algorithm of [26] which uses a fixed sized sampling approach and estimates the
true probability as the number of satisfying traces over the number of sampled
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traces. We note that for each of the benchmark sets, we consider models that
are too large for symbolic model checking.

Our experiments demonstrate two important properties of our algorithm: (i)
we show that our algorithm requires fewer traces than either the algorithm of
[26] implemented in prism or Wald’s SPRT algorithm - while retaining the
same bounds on the frequentist Type-I and Type-II error probabilities. (ii) The
performance of both the Wald’s algorithm [42] and our Bayesian Model Checking
algorithm degrades as the threshold probability (i.e., θ) in the PBLTL temporal
logic formula gets close to the actual probability of the model satisfying the BLTL
formula. However, the Bayesian algorithm shows a more graceful degradation
compared to Wald’s SPRT approach.

4.1 PRISM Benchmarks

We studied three large PRISM benchmarks which are not well suited for nu-
merical approaches to Probabilistic Model Checking. In our experiments, the
Bayesian Model Checking algorithm used uniform priors, and accepted a hy-
pothesis when it was 10000 times more likely than the other hypothesis (Bayes
Factor threshold T = 10000). Our experiments with Wald’s SPRT used Type
I and II error bounds of 0.01. We chose an indifference region δ so as to make
the Type I and Type II errors for both the Wald’s Test and the Bayes Factor
test equal. The statistical estimation engine of the PRISM model checker always
needed 92042 samples to estimate the probability of the BLTL formulae being
true.

The results of experiments with the Fibroblast Growth Factor Signaling Model
(see [24], [25] for details) are presented. We checked the property whether the
probability that Grb2 binds to FRS2 within 20 time units exceeds θ (for several
values of θ):

H0 : M |= P≥θ[ F20 (FRS2 GRB > 0 )]

The power curves and the number of samples for this benchmark are plotted in
Fig. 2(a) and Fig. 2(b) respectively. A power curve indicates the probability of
accepting the null hypothesis for various values of the threshold probability θ in
the PBLTL formula. We chose the Wald’s Test so that its power curve matched
that of the Bayesian Test at the 0.01 and 0.99 acceptance probability. The goal
is to make sure that the two tests have equal statistical power. From Figure 2(b),
it is clear that both the power curves are almost on top of each other and hence,
both the tests have indeed been calibrated to be equally powerful. The Bayesian
algorithm needs fewer samples than Wald’s SPRT test for this benchmark. This
shows that the Bayesian Statistical Model Checking performs better than an
approach based on Wald’s SPRT.

We also studied the continuous time Markov Chain model [5,41] for circadian
rhythm. We checked the property that the probability of the number of activated
messenger RNAs exceeding 5 units within 0.25 time units is more than θ (for
various values of θ):

H0 : M |= P≥θ[ F0.25 (ma > 5) ]
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Fig. 1. Fibroblast Growth Factor Signaling Model: The system satisfies the
formula with probability 0.58. (Bayes Factor=10000)
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Fig. 2. Circadian Rhythm: The system satisfies the formula with probability 0.93.
(Bayes Factor=10000)

The power curves and the number of samples for this benchmark are plotted
in Fig. 2(b) and Fig. 2(a) respectively. We calibrated Wald’s test so that its
power curve closely matched that of the Bayesian Test so as to make a fair
comparison. From the figure, we observe that the Bayesian algorithm always
needs fewer samples than the Wald’s SPRT test for this benchmark.

We also analyzed the model on Cell cycle control [33] and studied the prob-
ability that Cyclin gets bound within the first 0.5 time units. We check the
property that the probability of the number of bound Cyclin molecules exceeds
3 units within 0.5 time units exceeds θ (for various values of θ):
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Fig. 3. Cell Cycle Control: The system satisfies the formula with probability 0.34.
(Bayes Factor=10000)

H0 : M |= P≥θ[ F0.5 (cyclin bound > 3) ]

The results of our experiment are presented in Fig. 3(a). The Bayesian Statisti-
cal Model Checking algorithm usually required fewer samples than the approach
based on Wald’s SPRT.

4.2 SBML Experiments

We also studied SBML models using the implementation of Gillespie’s Stochas-
tic Simulation Algorithm in Matlab’s Systems Biology Toolbox. We analyzed
two large models with over 108 and 1017 species. We used monitors written
in Matlab to verify the BLTL properties on traces. Our analysis of the ex-
periments in this section is purely Bayesian, i.e., we have studied the perfor-
mance of the algorithm over only one run (using uniform priors). In the previ-
ous sections, we had compared the performance of our algorithm with Wald’s
SPRT by running the algorithm several times on the same model - a frequentist
approach.

We analyzed the Yeast Heterotrimeric G Protein Cycle benchmark [44]. We
analyzed the property that the G protein stays above the threshold of 6000 units
for 2 time units and falls below 6000 before 20 time units.

H0 : M |= P≥θ[ G2(GProtein > 6000) and F20(GProtein < 6000)] .

We also ran experiments using the Lotka model [22] and verified the property
that the number of copies of the x species rises to a threshold level within 0.01
time units.

H0 : M |= P≥θ[ F0.01(x > 1.4 ∗ 107)]
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Table 1. Performance on the G Protein (left) and Lotka Benchmark (right)

Probability # Samples Needed
0.2 3
0.6 8
0.8 14
0.9 23

0.9999 99

Probability # Samples Needed
0.1 2
0.5 6
0.7 10
0.9 23
0.99 69
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(c) Power curve of the tests of the Algorithm

Fig. 4. Different Classes of Priors

The results of our experiments are shown in Table 1: both hypotheses are al-
ways accepted, although the number of samples increases with the probability
threshold of the temporal formula.



A Bayesian Approach to Model Checking Biological Systems 231

4.3 Experiment with Different Classes of Priors

We investigated the effect of priors on the performance of the Bayesian Model
Checking algorithm. We used three different priors - non-informative prior, an
informative prior and a misleading prior. The priors, the number of samples
needed by the Bayesian algorithm for these priors, and the power curve for
each of these priors is also plotted in Fig. 4(a), Fig. 4(b) and Fig. 4(c) respec-
tively. The priors used are Beta distributions with different shape parameters:
(i) α = 1/2, β = 1/2: non-informative prior, (ii) α = 1.4, β = 2 : informative
prior with a peak around 0.34 (iii) α = 2, β = 2: a misleading prior with peak
around 0.5.

Fig. 4(b) shows that the number of samples needed by the Bayesian algorithm
becomes smaller when the prior probability distribution is informative and sup-
ports the true hypothesis. Also, the power curve (see Fig. 4(c)) becomes sharper
when the Bayesian algorithm is given a correct and informative prior probability
distribution. A completely non-informative prior also performs well both in the
number of samples and the power of the test. Strongly misleading priors make
the power curve less steep. However, the algorithm still performs quite well when
the actual probability of the system is away from the threshold probability in
the formula.

5 Conclusions and Future Work

We have introduced the first algorithm for Probabilistic Model Checking based
on Bayesian Sequential Hypothesis Testing. Our algorithm terminates with prob-
ability 1, and provides bounds on the probability of returning an incorrect an-
swer. Empirically, we have shown that our algorithm requires fewer traces to
terminate than techniques based on Classical Statistics. This is not surprising as
the Bayesian method comparing composite hypotheses whereas techniques like
Wald’s SPRT are comparing simple hypotheses. This advantage in efficiency is
important in the context of Systems Biology as the cost of generating traces is
not necessarily negligible. Bayesian methods also afford a convenient means for
incorporating domain knowledge through the prior distributions.

Our algorithm is presently limited to incorporating prior information on the
probability that the property is true. A more fully Bayesian approach would
incorporate prior information on not just the property, but also the starting
state and parameters of the model. We are presently extending our method to
address this limitation.
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Abstract. Dynamic compartments with mutable configurations and
variable volumes are of basic interest for the stochastic modeling of
biochemistry in cells. We propose a new language to express dynamic
compartments that we call the imperative π-calculus. It is obtained from
the attributed π-calculus by adding imperative assignment operations to
a global store. Previous approaches to dynamic compartments are im-
proved in flexibility or efficiency. This is illustrated by an appropriate
model of osmosis and a correct encoding of BioAmbients.

1 Introduction

Concurrent control is crucial for the stochastic modeling of biochemical processes
in living cells [19,2,13]. The regulation of such systems depends on all kinds of
physical or chemical aspects, such as volume, surface, temperature, pressure, pH
value, spatial coordinates and structures. Most of these aspects are of global
nature, so they require modeling languages in which global concurrent control
can be expressed [20]. In this paper, we present a new modeling language, that
permits to express many aspects with global control in a uniform manner, and
illustrate its usefulness by modeling dynamic compartments with mutable vol-
umes and surfaces.

Dynamic compartments may change their nesting structure dynamically, by
applying operations for compartment creation, removal and merging. These op-
erations may influence the speed of diverse reactions within compartments, in
particular when compartment volumes change (global to local interactions).
Vice versa, local reactions within a single compartment may effect global nu-
meric attributes such as volume and surface (local to global interaction). Vari-
ous languages for modeling systems with dynamic compartments were proposed
for systems biology [18,14,21], but none of them can express physical, chem-
ical, and compartimental aspects in a uniform manner, while providing effi-
cient stochastic simulation. Spatial languages such as the Brane Calculi [2] or
BioAmbients [18] fix a particular set of operators on compartments, and provide
a special purpose solution for these operations. The π-calculus with polyadic
synchronization and global priorities π@ is more flexible, in that it permits to
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encode all kinds of compartment structures, including those of Brane Calculi
and BioAmbients [20]. Unfortunately, such priority-based encodings are com-
plex, low level, and inefficient. Consider e.g. the dissolving of a compartment
with n equal molecules. Informing all of them requires O(n) interactions rather
than O(1) by updating all at once. Furthermore, π@ lacks general support for
stochastic rates and numeric attributes such as volumes and pH-values. The
only solution to compartments with variable volumes so far [21] was expressed
in the special purpose dialect called Sπ@. Numerical attributes of compartments
are equally lacking in Bigraphs [14,12], a modeling language for spatial dynam-
ics based on a particular form of hypergraph rewriting. Thus, the question is
whether there exists a better general purpose language for expressing dynamic
compartments.

In this paper, we start from the attributed π-calculus [11], and enrich it by an
imperative store for global control. The attributed π-calculus is parametrized by
a sequential higher-order language L for describing all kinds of values (symbolic
and numeric) and constraints. It features “attributed” processes A(e1, . . . , en)
with values defined by expressions e1, . . . , en of L. For instance, cells with vari-
able volumes vol can be modeled by using a single attribute:

Cell(vol) � enter[λr. if r<0.1 then (val enter)]?(v).Cell(vol + v)

The input prefix contains a function in square brackets, that tests for ev-
ery matching output prefix, whether the reaction is permitted and returns its
stochastic rate in this case. Cells as above can be entered by elements Ele(r, v)
of radius r and volume v, if r is smaller than 0.1:

Ele(r, v) � enter[r]!(v).0

Under this condition, the stochastic rate of the enter reaction is obtained by
evaluating the expression (val enter), i.e., by accessing the value of channel enter
from the environment. As a result of the reaction, the cell volume is increased
by v. The entered elements disappear, since we chose to not represent elements
in cells explicitly here.

We obtain the imperative π-calculus πimp(L), by allowing imperative pro-
gramming languages L as attribute language. Thereby, we enrich the π-calculus
by a global imperative store. More precisely, we add assignment expressions to
L by which to change the values of channels dynamically, such as for instance
enter := val enter + 1.5, whose evaluation increases the value of channel enter
by 1.5. The expressions of L are evaluated as transactions, so that the evaluator
cannot be interrupted by any other process. We present a stochastic semantics
for πimp(L) that properly accounts for transactions with imperative assignments.
We show how to compile processes of πimp(L) to stochastic simulators, indepen-
dently of the choice of parameter L. We have implemented the compiler and can
report on first experimental results. To this purpose, we model a simple exam-
ple of osmosis in πimp(L) where variable volumes and surfaces matter. Practical
simulation experiments confirm higher accuracy compared to [21] due to variable
surfaces (not only volumes) and good efficiency.
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In order to provide a more systematic treatment of dynamic compartments,
we present a compositional encoding of BioAmbients in πimp(L) and prove its
correctness. The constraints of πimp(L) permit us to express the application
conditions of BioAmbients operators on compartment level. This way, we obtain
a stochastic simulator for BioAmbients, without special purpose implementation
as in [15]. We finally discuss how to extend our encoding to a stochastic version
of BioAmbients that accounts for variable volumes.

Omitted details and proofs can be found in the extended version.

Related work. Existing stochastic semantics of BioAmbients as in [1,15] consider
only local stochastic aspects ignoring variable volumes or surfaces. The rates of
compartment operations simply are assigned to the interaction channel, rather
than depending on the compartements volume as one might expect.

Bigraphs [14] are able to express compartment merging as in BioAmbients
[18] but no variable volumes. Kappa [6] is a graph rewrite language (without
hypergraphs), which seems to be too limited for expressing compartment merg-
ing. Modeling languages with model checking facilities, such as BIOCHAM [3]
and BioPEPA [4] are less expressive by design. BioPEPA allows for the repre-
sentation of variable compartment volumes but not dynamic structures, see [5].
BlenX (or Beta binders) [7] supports compartments with some global dynamics
but no variable volumes or surfaces. Stochastic simulators are available for all
these languages.

2 Imperative π-Calculus

We introduce the imperative π-calculus πimp(L) by extending the attributed
π-calculus with imperative assignments. As vocabulary, we fix an infinite set
Chans whose elements x, y, z are called channels. They will name communication
channels in the π-calculus (and thus chemical reactions) and serve as variables
in L.

Values and Expressions. An attribute language over Chans is a triple L =
(Consts, Succ,⇓). It defines a call-by-value lambda calculus, whose values v ∈
Vals and expressions e ∈ Exprs are given in Fig. 1. Besides the usual concept of
variables x ∈ Chans, abstractions λx.e, and applications, there are expressions
e1:=e2 for imperative assignments. Additionally, we assume function constants
val, ref� ∈ Consts in order to access values of variables in the environment.
Furthermore, we include pairs 〈e1, e2〉 with selectors fst, snd and conditionals
if e then e1 else e2 with Boolean constants true, false ∈ Consts. Equality tests
on constants are provided by a constant = of type Consts × Consts → B. There
may be many further constants in Consts such as for arithmetics. As usual, we
write fn(e) and bn(e) for the sets of free and bound variables in e. We use infix
syntax without extra notice, for instance, writing e1=e2 instead of = 〈e1, en〉. The
shortcuts in Fig. 2 provide let expressions, sequential composition, conditionals
without else, and simple pattern matching functions.
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Channels in Chans x ::= . . .

Constants in Consts c ::= val | ref� | fst | snd | true | false | = | unit | . . .

Values v ::= x | c | 〈v1, v2〉 | λx.e

Expressions e ::= x | c | 〈e1, e2〉 | λx.e | ee′ | e1:=e2 | if e then e1 else e2

Fig. 1. Values and expressions of the imperative call-by-value lambda calculus

let x = e1 in e2 =df (λx.e2)e1 if e then e1 =df if e then e1 else false

e1; e2 =df let = e1 in e2 if not e then e1 =df if e then false else e1

λ〈c, x〉.e =df λp. if (fst p)=c then (λx.e)(snd p)

Fig. 2. Shortcuts for expressions

(e1, ρ) ⇓ (v1, ρ1) (e2, ρ1) ⇓ (v2, ρ2) (v1v2, ρ2) ⇓ (v, ρ′)
(e1e2, ρ) ⇓ (v, ρ′)

c ∈ Consts

(c, ρ) ⇓ (c, ρ)
(e1, ρ) ⇓ (x, ρ1) (e2, ρ1) ⇓ (v, ρ′) x ∈ Chans

(e1:=e2, ρ) ⇓ (v, ρ′[x �→ v])

ρ(x) = v

(val x, ρ) ⇓ (v, ρ)
ρ(x) �∈ Chans

(ref� x, ρ) ⇓ (x, ρ)
(ref� ρ(x), ρ) ⇓ (y, ρ)
(ref� x, ρ) ⇓ (y, ρ)

(e1, ρ) ⇓ (v1, ρ1) (e2, ρ1) ⇓ (v2, ρ
′)

(〈e1, e2〉, ρ) ⇓ 〈v1, v2〉, ρ′)

true

(fst 〈v1, v2〉, ρ) ⇓ (v1, ρ)
(snd 〈v1, v2〉, ρ) ⇓ (v2, ρ)

(e, ρ) ⇓ (true, ρ1) (e1, ρ1) ⇓ (v1, ρ
′)

(if e then e1 else e2, ρ) ⇓ (v1, ρ
′)

(e, ρ) ⇓ (false, ρ2) (e2, ρ2) ⇓ (v2, ρ
′)

(if e then e1 else e2, ρ) ⇓ (v2, ρ
′)

(e1, ρ) ⇓ (v, ρ1) (e2, ρ1) ⇓ (v, ρ′) v ∈ Chans ∪ Consts

(e1=e2, ρ) ⇓ (true, ρ′)

Fig. 3. Big-step evaluator for call-by-value lambda calculus

An environment for an expression e ∈ Exprs is a total function ρ : fn(e) → Vals
that maps free variables of e to values. We write dom(ρ) = fn(e) for the domain
of ρ and let Env be the set of all environments for arbitrary expressions. We
write ρ[x1 "→ v1, . . . , xn → vn] for the environment that maps distinct variable
xi to vi for all 1 ≤ i ≤ n and all other variables y in the domain of ρ to
ρ(y). Environments such as [x "→ 〈x, y〉, y "→ 〈x, x〉] can store any type of data
structure, including graphs and hypergraphs. In a stochastic setting, they are
useful to assign rates to reactions.

The third component of L, the big-step evaluator ⇓, is a binary relation of
type (Exprs × Env) × (Vals × Env). It fixes the semantics of all expressions. A
relationship (e, ρ) ⇓ (v, ρ′) states that expression e in environment ρ evaluates to
value v with new environment ρ′. The big-step evaluator must satisfy the rules in
Fig. 3. Assignments x:=v change the value of x in the current environment to v.
Function val returns the value of a channel in the current environment. Function
ref� serves for dereferentiation, i.e. it returns the last channel of acyclic reference
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chains. In the environment [x1 "→ x2, . . . , xn−1 "→ xn, xn "→ v], (ref� xi) e.g.
evaluates to xn for all 1 ≤ i ≤ n if v �∈ Chans, while evaluation does not
terminate if v = xn.

The second component of L is a subset Succ ⊆ Vals. We call the elements of
Succ successful values. Their role in πimp(L) is to describe the rate constants
of communication actions. Considering a stochastic semantics, Succ equals R+.
Otherwise, it typically contains true but not false.

Processes. The syntax of πimp(L), as given in Fig. 4, is equal to that of the
attributed π-calculus [11], except that we now permit imperative assignments in
L. It extends on the usual syntax of the stochastic π-calculus [17,16,13], by per-
mitting expressions to describe channel values, adding conditions to receivers and
senders, and generalizing stochastic rate constants of channels to arbitrary values.

We assume a set of process names ranged over by A, each with a fixed arity
ar(A) ≥ 0. Furthermore, we freely use sequence notion, writing ẽ for a sequence
of expressions, x̃ and ỹ for a sequence of channels, and ṽ for a sequence of values.
Their lengths are denoted by |ẽ|, |ṽ|, and |x̃|, respectively.

A program consists of an initial process P0 and a set of process definitions
{D1, . . . , Dn}, exactly one per process name in P0. A definition D of A has the
form A(x̃) � P , where P is a process and |x̃| = ar(A). Process P is a parallel
composition of sums, channel creators, and defined processes. A channel creator
(νx:v) P asks for the creation of a new channel x with scope P that is mapped to
v by the global environment. A sender v[e]!ṽ, which conveys a sequence of values
ṽ on channel v, is constrained by expression e. A receiver v[e]?ỹ of a sequence
of values for parameters ỹ on channel v is conditioned by expression e. A call of
a defined process A(ẽ) consists of a process name A and a sequence ẽ ∈ Exprs
where |ẽ| = ar(A). A sum Σ offers a choice π1.P1 + . . . + πn.Pn between senders
or receivers πi.Pi, i.e., where πi it either a sender or receiver prefix.

Processes P, Q ::= A(ẽ) defined process
| P1 | P2 parallel composition
| (νx:v) P channel creation
| Σ sums
| 0 empty solution

Sums Σ ::= π.P prefixed process
| Σ + Σ′ summation

Prefixes π ::= v[e]?ỹ receiver
| v[e]!ṽ sender

Definitions D ::= A(x̃) � P parametric process definition

Fig. 4. Syntax of πimp(L): e, ẽ are expressions and v, ṽ values of L, and x, x̃ ∈ Chans

Nondeterministic Operational Semantics. We start with a nondetermin-
istic operational semantics for πimp(L) with an arbitrary attribute language L.
The sets of free and bound names of processes fn(P ) and bn(P ) are defined as
usual, except that free and bound names in expressions are to be considered too.
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The usual structural congruence on π-calculus processes P ≡ P ′ is the least con-
gruence containing alpha conversion P =α P ′, where summation + and parallel
composition | are associative and commutative, the latter with neutral element
0, and satisfy the usual scoping rules of ν-binders:

(νx:v) (P1 | P2) ≡ (νx:v) P1 | P2 if x �∈ fn(P2)
(νx:v) (νy:v′) P ≡ (νy:v′) (νx:v) P if x �∈ fn(v′) and y �∈ fn(v)

An environment for a process P is a function ρ : fn(P ) → Vals.
The nondeterministic operational semantics in Fig. 5 defines judgements

(P1, ρ1) → (P2, ρ2) meaning that a process P1 in environment ρ1 reduces in one
step to process P2 while changing the environment to ρ2. The structural congru-
ence may silently be applied at any point (Context). A step may either be a com-
munication or an application of a defined process. A communication step (Com)
applies to a sender and a receiver on the same channel x. Let e1 and e2 be the con-
ditions of sender and receiver, respectively, and ρ the current environment. The
communication step is enabled if (e1e2, ρ) reduces to (v, ρ′) for some successful
value v ∈ Succ. In this case, the resulting process continues in environment ρ′,
which may have been altered by assignment operations in e1e2. In practice, a big
step evaluator for e1e2 may first have to change the environment and then run
into an irreducible expression (a program error) or an unsuccessful value (where
the communication constraint fails). In these cases, all changes done to the en-
vironment are to be backtracked. Furthermore, it may happen that the big step
evaluator does not terminate (another kind of program error). An application step
(Rec) of a defined process A(ẽ) evaluates all expression in ẽ from the left to the
right while threading the environment changes, and if successful, applies the defi-
nition of A to the resulting values ṽ. Parallel compositions (Par) may be evaluated
in arbitrary order even though the changes of the environment may depend on it.
Rule (Res) for channel creation (νx:v) P in environment ρ first adds [x "→ v] to
the environment, then reduces (P, ρ[x "→ v]) to some (P ′, ρ′[x "→ v′]), and contin-
ues with ((νx:v′) P ′, ρ′) where the new value v′ of x is put back into a ν binder.

(e1e2, ρ) ⇓ (v, ρ′) v ∈ Succ
(Com)

(x[e1]?ỹ.P + Σ1 | x[e2]!ṽ.Q + Σ2, ρ) → (P [ṽ/ỹ] | Q, ρ′)

(ẽ, ρ) ⇓ (ṽ, ρ′) A(x̃) � P
(Rec)

(A(ẽ), ρ) → (P [ṽ/x̃], ρ′)

(P, ρ) → (P ′, ρ′)
(Par)

(P | Q, ρ) → (P ′ | Q, ρ′)

(P, ρ[x �→ v]) → (P ′, ρ′[x �→ v′]) x �∈ dom(ρ) ∪ dom(ρ′)
(Res)

((νx:v) P, ρ) → ((νx:v′) P ′, ρ′)

P ≡ P ′ (P ′, ρ) → (Q′, ρ′) Q′ ≡ Q
(Context)

(P, ρ) → (Q, ρ′)

Fig. 5. Nondeterministic operational semantics
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Stochastic Operational Semantics. In the stochastic operational semantics
all redexes must be computed before reducing one of them. The computation of
redexes requires to evaluate L expressions, which may fail with program errors
or nontermination. If the computation of a single redex fails, the whole process
is considered erroneous. In any case, all state changes during redex computation
need to be backtracked before verifying the next redex candidate. Only the finally
selected redex is permitted to definitely commit its changes to the environment.

The stochastic semantics in Fig. 6 applies to programs in biochemical form
and preserves these forms by reduction. A solution S is a process in biochemical
form NΠm

i=1Ai(ẽi), where N is a quantifier prefix (νx1:v1) . . . (νxn:vn) and
Πm

i=1Ai(ẽi) = A1(ẽ1) | . . . | An(ẽm) a parallel composition of so called molecules.
Molecules Ai(ẽi) must have definitions in biochemical form Ai(x̃i) � NiΣi where
Σi is a sum of prefixed processes in biochemical form. As usual, all process can
be brought into biochemical form by flattening out nested sums into intermediate
definitions.

The stochastic semantics of a program in biochemical normal form is a Markov
chain, whose states are pairs ([S]≡, ρ), where [S]≡ is a class of a solution S wrt.
structural congruence ≡, and ρ is an environment for S. In order to compute a

Redexes (1 ≤ j ≤ m, i1, j1, i2, j2 ∈ N)

(choose)
(ẽ, ρ) ⇓ (ṽ, ρ′) A(x̃) � N(π1.S1 + . . . + πm.Sm)

choosej(A(ẽ), ρ) = (N(πj .Sj)[ṽ/x̃], ρ′)

(redex)
choosej1(Ai1(ẽi1), ρ) =α (S′

1, ρ1) S′
1 = (νỹ1:v1) (x[e′1]?ỹ.S1)

choosej2(Ai2(ẽi2), ρ1) =α (S′
2, ρ

′) S′
2 = (νỹ2:v2) (x[e′2]!ṽ.S2) i1 �= i2

(S′
1, S

′
2, ρ

′) ∈ redex(i1,j1,i2,j2)(
∏n

i=1 Ai(ẽi), ρ)

where x ∈ Chans, x �∈ {ỹ1} ∪ {ỹ2} and {ỹ1} ∩ {ỹ2} = ∅.
Labeled reduction (r ∈ R+ and 
 = (i1, j1, i2, j2) ∈ N4)

(com)

(N1(x[e′1]?ỹ.S1), N2(x[e′2]!ṽ.S2), ρ1)∈redex�(
∏n

i=1 Ai(ẽi), ρ)
(e′1e′2, ρ1) ⇓ (r, ρ′) r ∈ Succ

(
∏n

i=1 Ai(ẽi), ρ) r−→
�

(
∏n

i=1,i�=i1,i2
Ai(ẽi) | N1N2(S1[ṽ/ỹ] | S2), ρ′)

(new)
(S, ρ[v/x]) r−→

�
(S′, ρ′[v′

/x]) x �∈ dom(ρ) ∪ dom(ρ′)

((νx:v) S, ρ) r−→
�

((νx:v′) S′, ρ′)

Markov chain (r, r′ ∈ R+)

(conv)
∀
∈N4∀(N1(x[e′1]?ỹ.S1), N2(x[e′2]!ṽ.S2)) ∈ redex�(S, ρ)

∃v∈Vals∃ρ′ : (e′1e′2, ρ) ⇓ (v, ρ′)
(S, ρ) ⇓

(sum)
(S, ρ) ⇓ S ≡ S1 r =

∑
{�|(S1,ρ)

r′−→
�

(S2,ρ′) and S2≡S′}
r′ r �= 0

(S, ρ) r−→ (S′, ρ′)

Fig. 6. Stochastic operational semantics
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transition for such pairs, we need to compute all potential reductions of (S, ρ)
and sum up their stochastic rates (sum). The computation of all redexes must
converge (conv) before applying any reduction step. A label � = (i1, j1, i2, j2) ∈
N4 fixes the j1’th alternative of molecules Ai1(ẽi1) of S and the j2’th alternative
of molecule Ai2(ẽi2). Label � distinguishes a redex candidate if these molecules
have distinct indexes i1 �= i2, and if the selected alternatives consist of a sender
and a receiver on the same channel (redex). Label � defines a redex, if the
sequences of expressions ẽ1 and ẽ2 can be evaluated successfully from left to right
(choose), while starting with environment ρ, threading changes, and ending in
some environment ρ′. In this case, we can apply the definitions of Ai1 and Ai2

to the resulting values, and instantiate the alternatives with index j1 and j2 to
S′

1 and S′
2 . Note that the triple (S′

1, S
′
2, ρ

′) ∈ redex
(S, ρ) is unique up to alpha
renaming. Rule (com) performs the actual communication step for a redex with
label � under the condition that the constraint of the redex is successful. Rule
(new) is as for the nondeterministic case.

Consider e.g. a solution A(x:=1) | B(x:=2). The evaluation order for the two
assignments may vary with the redex candidate. For candidates where A(x:=1)
provides the receiver and B(x:=2) the sender, we have to evaluate x:=1 before
x:=2, so that we have to test the communication constraint with store [x "→ 2].
In the symmetric case, we will have to evaluate in the opposite order and to test
the constraint with store [x "→ 1].

Stochastic Simulation. A stochastic simulator for πimp(L) can be derived
from the stochastic operational semantics independently of L. The main dif-
ference to the attributed π-calculus [11] is the treatment of imperative expres-
sions, which can either occur in constraints or in applications. Assignments in
constraints increase computational complexity, since they force us to not only
compare values but also environments for grouping senders and receivers. Fur-
thermore, senders and receivers can not be evaluated separately anymore, but
only in combination. However, computational complexity can be reduced by
storing differences between environments before and after evaluation, i.e. the set
of executed assignments, since then only the latter need to be compared. As-
signments in applications make the extraction of multisets from solutions less
effective and therefore negatively affect simulation efficiency.

3 A Model of Osmosis: Variable Volumes and Surfaces

Osmosis is a simple example for concurrent systems with compartments of vari-
able volumes. It was modeled already in [21] based on a special purpose dialect
Sπ@ of π@ with variable volumes. Here we show how to simulate osmosis in the
imperative π-calculus with an attribute language that provides arithmetics. Our
solution is more flexible and accurate, in that it accounts for dynamic changes
of compartment surfaces, which cannot be expressed in Sπ@.

We consider a very simple system which consists of a sphere filled with water
(H2O), sodium (Na+), and chlorine (Cl−). The system contains a membrane
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through which water may diffuse. This membrane separates an inner compart-
ment Inn of spherical shape, from an outer compartment Out, which has the form
of a sphere shell (a ring in 2D). The center point equals for both compartments.
The precise values of these parameters are listed in the extended version.

For simplicity, we adopt the assumption of [21], that the volume of a com-
partment is determined by summing up the volumes of the contained molecules.
However, in general, L allows for the definition of complex functions to obtain
compartment volumes that e.g. consider atomic forces between particles. The
volumes of Inn and Out change with water moving through the membrane. The
radius of Inn may thus vary with diffusion, while the outer radius r of Out
always remains fixed. Fig. 7 shows our model of the system in πimp(L(R, V, C)).
Its attribute language provides real number arithmetics with function constants
for division /, multiplication *, and subtraction -, and numeric constants such

Parameters
N: {H2 0 ,Na+ , C l−}×{ Inn , Out} → N // copy numbers o f mo l e cu l e s

Constants
V: {H2 0 ,Na+ , C l−} → R+ // mo l e cu l e vo lumes
C ∈ R // d i f f u s i o n c o e f f i c i e n t o f water

Express ions

rad =df λv . ( ( 3 ∗ v ) /(4∗π ) )
1
3 // volume to r a d i u s

surf =df λ r . 4∗π∗ r 2 // r a d i u s to s u r f a c e
dist =df λ r 1λ r 2 . r 1 + (( r 2−r 1 ) /2) // d i f f u s i o n d i s t a n c e
r =df rad(

∑
c∈{Inn,Out}

∑
m∈{H20,Na+,CL−}V(m) ∗N(m, c ) ) // ou t e r r a d i u s o f

// sphe r e s h e l l
Publ i c channels // i n i t i a l i z e vo lumes o f compartments
i nn :

∑
m∈{H20,Na+,CL−} V(m) ∗N(m, Inn ) // i n n e r sphe r e

out :
∑

m∈{H20,Na+,CL−} V(m) ∗N(m, Out ) // ou t e r s phe r e s h e l l

d i f f u s e : un i t // d i f f u s i o n channe l
Process d e f i n i t i o n s

H2O( o r i , des ) �
d i f f u s e [λ . let // d i f f u s i o n from o r i g i n to d e s t i n a t i o n

r = rad ( va l i nn ) // r a d i u s o f i n n e r s phe r e
a = (surf r ) /10 // d i f f u s i o n a r ea
s = dist r r // d i f f u s i o n d i s t a n c e
d i f f = a∗C/( s ∗( va l o r i ) ) // d i f f u s i o n r a t e

in

o r i := va l o r i − V(H2O) ; // update volume o f o r i g i n
des := va l des + V(H2O) ; // update volume o f d e s t i n a t i o n
d i f f // r e t u r n d i f f u s i o n r a t e

] ? ( ) . H2O( des , o r i )

Membrane ( ) � d i f f u s e [ un i t ] ! ( ) . Membrane ( )
So lut ion∏N(H2O,Inn)

i=1 H2O( inn , out ) | ∏N(H2O,Out)
i=1 H2O( out , i nn ) | Membrane ( )

Fig. 7. Modeling osmosis
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as 2, 10, or π. Furthermore, there are three problem specific constants, the dif-
fusion coefficient C of H2O, the constant V for the function that maps molecules
to their volumes, and the constant N for the function assigning copy numbers to
molecules in compartments. The big-step evaluator for L(R, V, C) is defined as
usual. Nonzero positive real numbers are successful, Succ = R+.

The diffusion rate of H2O is determined by a∗C
d∗v , where a is the diffusion area,

d the diffusion distance, and v the volume of the compartment that the molecule
leaves, see [8]. We assume that 1/10 of Inn’s surface serves as diffusion area. The
radius and surface of Inn are computed from its volume by functions rad and
surf, see Fig. 7. The diffusion distance represents the average way a molecule
travels from one compartment to the other. Following the approach in [8], we
assume the diffusion distance to be the distance between the two compartment
centers. In the model, it is determined by function dist applied to the constant
outer radius of Out and the variable radius of Inn.

In ourmodel, we represent the compartments InnandOutaspublic channels inn
and out, respectively, each referring to the variable volume of the corresponding
compartment. The public channel diffusewith the dummy value unit represents
diffusion reactions. Three processes are defined: H2O (inn,out), which describes a
watermolecule inInn thatmaydiffuse to Out,H2O (out,inn), its symmetricvariant,
and Membrane(), which enables diffusion on channel diffuse at all times.

The parametric processes H2O (ori,des) may perform diffusion by communi-
cation on channel diffuse and then continue with H2O (des,ori). The speed
of this reaction is given by the diffusion rate, which varies with volumes and
surfaces and is therefore consecutively recomputed. This is done by applying the
function in the brackets diffuse[...]?. Every application of this function per-
forms volume changes by assignments ori := val ori - V(H2O ) and des :=
val ori + V(H2O ). Since the simulator needs to compute the diffusion rates for
all possible interactions in the system (there are at most two, water moving in or
out), it has to reset the environment every time. Only once some interaction is
chosen by the Stochastic Simulation Algorithm [9], it can commit to the changes
required by this interaction.

By adapting the diffusion area and distance at each diffusion event, we extend
the model presented in [21], where only volume changes are considered. In order

Fig. 8. Experiment results without (Model A) and with (Model B) variable surfaces
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to compare both versions of the model, we implemented and simulated them in
our tool, which is part of the modeling and simulation framework JamesII [10].
The results can be seen in Fig. 3. Model B, being the one that considers updates
of the diffusion area and distance, features a steeper slope. This is due to the
fact that with the increasing volume of Inn, the diffusion area grows faster than
the distance, which raises the resulting diffusion rates.

4 Programming BioAmbients

We encode BioAmbients [18] in the imperative π-calculus, in order to show how
to express concurrent systems with compartments and dynamic rearrangement
systematically. In a first step, we ignore local stochastic aspects as in [1,15] which
would not impose any particular problem, since these do not account for volume
changes. See below for a discussion of extensions.

The syntax of BioAmbients is recalled in Fig. 9. It has the same syntactic cate-
gories as the π-calculus. Processes P can be enclosed by ambients [P ] whose nest-
ing structure restricts interaction capacities similarly to compartments. There
are prefixes for two kinds of interactions: communication and rearrangement.
Communication prefixes ”d x?(ỹ)” and ”d x!(ỹ)” are prefixes of senders or re-
ceivers annotated by a communication direction d, which is either local, s2s,
c2p, or p2c. They enable message sending either locally in an ambient, between
sibling ambients, from a parent to a child, or vice versa. Similarly, there are
rearrangement prefixes, prefixes of senders ”c x!” and receivers ”c x?” without
arguments and annotated by rearrangement capacity c, either merge, in, or
out. Rearrangement operations with these prefixes serve for ambient merging,
entering into siblings, or exiting the current ambient. The reduction rules of the
(nondeterministic) operational semantics of BioAmbients are given in Fig. 10.
We refer the reader to [18] for the full operational semantics.

In order to encode BioAmbients, we identify every ambient using a channel
r that gives reference to the characteristic values (cv) of the ambient. The cv

〈n, r′〉 consists of a unique name n naming the ambient and the reference r′ of its
parent (which is unit at the top-level). The ambient is encoded by a store binding
r to the cv possibly via a reference chain: [r "→ r1, . . . , rn−1 "→ rn, rn "→ 〈n, r′〉].
The elements in ambient r will be encoded by defined processes A(r).

Characteristic values can be changed by assignments r:=v. When assignments
are executed, the simulation algorithm automatically updates the communication

Processes P, Q ::= [P ] | A(ẽ) | P |Q | (νx:v) P | Σ | 0
Sums Σ, Σ′ ::= π.P | Σ + Σ′

Prefixes π ::= d x!z̃ | d x?z̃ | c x! | c x?
Communication directions d ::= local | s2s | c2p | p2c
Rearrangment capacities c ::= merge | in | out
Definitions D ::= A(x̃) � P

Fig. 9. Syntax of BioAmbients
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Communication : local x!z̃.P + Σ | local x?ỹ.Q + Σ′ → P | Q{z̃/ỹ}[
Q | c2p x!z̃.P + Σ

] | c2p x?ỹ.P ′ + Σ′ → [Q | P ] | P ′{z̃/ỹ}[
Q | p2c x?ỹ.P + Σ

] | p2c x!z̃.P ′ + Σ′ → [
Q | P{z̃/ỹ}

] | P ′[
Q | s2s x!z̃.P + Σ

] | [Q′ | s2s x?ỹ.P ′ + Σ′] → [P | Q] | [Q′ | P ′{z̃/ỹ}
]

Rearrangement : [Q | merge x!P + Σ] | [Q′ | merge x?P ′ + Σ′] → [Q | P | Q′ | P ′]

[Q | in x!P + Σ] | [Q′ | in x?P ′ + Σ′] → [
[Q | P ] | Q′ | P ′][

[Q | out x!P + Σ] | Q′ | out x?P ′ + Σ′] → [Q | P ] | [Q′ | P ′]

Fig. 10. Reduction rules of BioAmbients

(a) enter/accept rearrangement leading to the update of entering cv.

(b) exit/expel rearrangement leading to the update of exiting cv.

(c) merging rearrangement leading to the update of merged cv.

Fig. 11. Simplified diagrams illustrating enter, exit and merge rearrangements

potential of all elements in the compartment. For instance, for a compartment
that contains n copies of the same element A(r), all updates can be done by a
single inspection of the definition of A(r), not n-times in contrast to priority-based
encodings. Since dereferentiation might be required, this might still cost time O(n)
in the rare worst case, but will often be more efficient.
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parent =df λr. here (snd (val (ref� r))) here =df λr. fst (val (ref� r))

�A(x̃) � P � =df A(x̃, r) � �P �r where r �∈ {x̃} ∪ fn(P )
�A(x̃)�r =df A(x̃, r) �P | Q�r =df �P �r | �Q�r

�Σ + Σ′�r =df �Σ�r + �Σ′�r �(νx)P �r =df (νx:unit) �P �r

�[P ]�r =df (νn : unit)(νr′ : 〈n, r〉)�P �r′ �0�r =df 0

�d x!(y).P �r =df x[〈d, r〉]!(y).�P �r for d ∈ {local, s2s, p2c,c2p}
�local x?(y).P �r =df x[λ〈local, r′〉.(here r)=(here r′)]?(y).�P �r

�s2s x?(y).P �r =df x[λ〈s2s, r′〉.(parent r)=(parent r′)]?(y).�P �r

�p2c x?(y).P �r =df x[λ〈c2p, r′〉.(here r)=(parent r′)]?(y).�P �r

�c2p x?(y).P �r =df x[λ〈p2c, r′〉.(parent r)=(here r′)]?(y).�P �r

�c x!P �r =df x[〈c, r〉]!().�P �r for c ∈ {merge, in, out}

�in x?P �r =df x

⎡⎣λ〈in, r′〉.if (parent r)=(parent r′)
then if not (here r)=(here r′)
then (ref� r′ := 〈here r′, r〉)

⎤⎦?().�P �r

�out x?P �r =df x

[
λ〈out, r′〉.if (parent r′)=(here r)

then (ref� r′ := 〈here r′, snd(val(ref� r))〉)
]
?().�P �r

�merge x?P �r =df x

⎡⎣λ〈merge, r′〉.if (parent r)=(parent r′)
then if not (here r)=(here r′)
then (ref� r′ := r)

⎤⎦?().�P �r

Fig. 12. Encoding BioAmbients

We encode BioAmbients into πimp(L(cap, dir)), which provides constants for
all directions and capacities of BioAmbients. The encoding is given in Fig. 12.
We first define two lambda expressions here and parent which map ambients r
to their name here r = n and to the name of their parent parent r = here r′.

For every BioAmbients process P in ambient r, the encoding defines a unique
process �P �r in πimp(cap, dir). Encoding an ambient [P ] with parent r consists
in creating a new ambient name n and a reference r′ to the cv 〈n, r〉, and proceed
with the encoding �P �r′ . In general, this is how one can dynamically create new
ambients. Encodings of rearrangement prefixes are illustrated by the diagrams
in Fig. 11. Dashed arrows link references to their cv’s. The graphical boxes
represent ambients [P ] and are annotated by the cv of the ambient.

In Diagram (a), ambient r with cv 〈n1, r1〉 enters ambient r′ with cv 〈n2, r2〉.
The translation has to specify that the first ambient becomes a child of the
second. Therefore, we update the cv of r to 〈n1, r

′〉, such that its parent is now
r′. Note that the rearrangement is allowed only if the ambients are siblings. We
thus have to perform the sibling test and the cv update in an atomic manner
by a communication constraint on x in �in x?P �r :

λ〈in, r′〉.if (parent r)=(parent r′) then

if not (here r)=(here r′) then (ref� r′) := 〈here r′, r〉
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This function matches its argument against the pair 〈in, r′〉, checks that the
parent of receiver r coincides with the parent of its communication partner r′,
checks that both processes are not located within the same ambient and finally
updates the cv of the sender accordingly. Note that an encoding of BioAmbients
with stochastic aspects, as considered in [1,15], would simply make this function
return the rate of x (that is val x assuming communication channels refer to
their stochastic rate) in the sequence with the reference assignment. Diagram (b)
describes the exiting ambients and Diagram (c) ambient merging. These used
similar concepts as ambient entering in Diagram (a).

We define the top-level encoding �P �νr by (νr:〈unit, unit〉) �P �r and call an
environment ρ for P ground if ρ(x) = unit for all x ∈ fn(P ). We define $ as the
least congruence such that ≡⊆$ and (νr′:v) (νr:r′) P $ (νr′:v) P{r′/r}. This
equivalence is preserved by reduction of BioAmbients encodings, that is for any
BioAmbients term P and πimp(L(cap, dir)) processes Q1 = �P �νr and Q2, such
that Q1 $ Q2, then (Q1, ρ) → (Q′

1, ρ) iff (Q2, ρ) → (Q′
2, ρ) with Q′

1 $ Q′
2.

Theorem 1 (Soundness and completeness of BioAmbients encoding)

1. For all BioAmbients processes P, P ′, if P → P ′ then there exists a process
Q′ $ �P ′�νr of πimp(L(cap, dir)) such that (�P �νr , ρ) → (Q′, ρ) for every
ground environment ρ of �P �νr.

2. For all BioAmbients processes P , ground environment ρ of �P �νr, and
πimp(L(cap, dir)) process Q′, if (�P �νr , ρ) → (Q′, ρ) then there exists a
BioAmbients process P ′ of such that P → P ′ and �P ′�νr $ Q′.

BioAmbients with Variable Volumes. Stochastic rates of reactions in com-
partmented systems depend on concentrations of reactants and thus on volumes
of compartments. This was already illustrated by the osmosis example in Section
3. In this section, we discuss notions of volumes for ambients, and how to model
them in the imperative π-calculus. Which logics for volumes to choose depends
on the concrete geometry that is assumed.

When considering spatial systems where compartment nesting corresponds to
geometrical nesting, we have to distinguish two notions of volumes: the molecular
volume of a compartment, which sums up the volumes of all molecules that it
contains, and the geometric volume, which adds the geometric volumes of all child
compartments to the molecular volume. In the osmosis example, the geometric
volume of the outer sphere shell (of which is outer radius R depends) does indeed
include the volumes of all molecules of the inner sphere.

In order to model BioAmbients with molecular and geometric volumes in the
imperative π-calculus, we can enrich the cv’s of compartments by these volumes,
and define lambda expressions mvol r and avol r to access them when know-
ing the ambient’s reference r. Furthermore, we have to update these volumes
for all operations of the calculus, which can be expressed by using assignment
operations and real arithmetics. These details need elaboration beyond 15 pages.



Dynamic Compartments in the Imperative π-Calculus 249

5 Conclusion and Outlook

We have shown that imperative assignments for the π-calculus yield global ef-
fects, that offer an alternative to priorities. These permit to express operations
of compartment dissolution and merging in an efficient, simpler and stochastic
manner. The imperative π-calculus thus answers the question for a better mod-
eling language for dynamic compartments. In work, we would like to further
investigate on the relation to Bigraphs.
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Abstract. Systems of ordinary differential equations (ODEs) are often
used to model the dynamics of complex biological pathways. We con-
struct a discrete state model as a probabilistic approximation of the ODE
dynamics by discretizing the value space and the time domain. We then
sample a representative set of trajectories and exploit the discretization
and the structure of the signaling pathway to encode these trajecto-
ries compactly as a dynamic Bayesian network. As a result, many inter-
esting pathway properties can be analyzed efficiently through standard
Bayesian inference techniques. We have tested our method on a model
of EGF-NGF signaling pathway [1] and the results are very promising in
terms of both accuracy and efficiency.

1 Introduction

Quantitative mathematical models are needed to understand the functioning of
complex biological systems. In particular they are needed to capture the dy-
namics of various intra (and inter)-cellular processes. Here we focus on signaling
pathways which typically sense extra-cellular or internal signals and in response,
activate a cascade of intra-cellular reactions. A multitude of signaling pathways
govern and coordinate the behavior of cells. As might be expected, many disease
processes arise from defects in signaling pathways. Thus the study of signaling
pathways via quantitative dynamic models is of critical importance.

A standard formalism used to model signaling pathways (and other bio-
pathways) is a system of Ordinary Differential Equations (ODEs); the equations
describe specific bio-chemical reactions while the variables typically represent
concentration levels of molecular species (genes, RNAs, proteins). This formal-
ism can be extended to include discrete aspects [2] and the techniques we develop
here can be adapted to such extensions as well.

Signaling pathways usually involve a large number of molecular species and
bio-chemical reactions. Hence the corresponding ODEs system will not admit
closed form solutions. Instead, one will have to resort to numerically generated
trajectories to study the dynamics. A second barrier is that the values of many
of the parameters (rate constants) associated with the ODEs will be unknown.
Even assuming all the parameters are known, the observables of the system will
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have very limited precision. Specifically, the initial concentration levels of the
various proteins and rate constants will often be available only as intervals of
values. Further, experimental data in the form of the measured concentration
levels of a few proteins at a small number of time points will also be available
only in terms of intervals of values. In addition, the data will often be gath-
ered using a population of cells. Consequently, when numerically simulating the
ODEs model, one must resort to Monte Carlo methods to ensure that sufficiently
many point values from the relevant intervals of values are being sampled. As a
result, analysis tasks such as model validation, parameter estimation and sensi-
tivity analysis will require the generation of a large number of trajectories. This
motivates our goal of probabilistically approximating the dynamics of ODEs via
discretizations.

We start with a system of ODEs and a prior distribution of the initial states.
Usually, this prior will consist of a uniform distribution over certain intervals
of values of the variables and the rate constants. We then fix a suitable dis-
cretization of the value and time domains. This is followed by sampling the
prior distribution of initial states to numerically pre-compute and store a rep-
resentative subset of trajectories induced by the ODEs dynamics. The key idea
is to exploit the dependencies/independecies in the pathway structure and the
discretization, to compactly encode these trajectories as a time-variant dynamic
Bayesian network [3]. The resulting approximation is called the Bayesian Dy-
namics Model (BDM). Since the trajectories are grouped together through the
discretization, our method bridges the mismatch between the accuracy of the
results obtained by ODE simulation and the limited precision of experimental
data used for model construction and verification. Secondly, the BDM represents
the global pathway dynamics more explicitly in the graph structure of the under-
lying dynamic Bayesian network (DBN). As a result, many interesting pathway
properties can be analyzed efficiently through standard Bayesian inference tech-
niques, instead of resorting to a large number of ODE simulations. There is a
one-time computational cost incurred to construct the BDM but this cost can
be amortized by performing multiple analysis tasks such as expected profiles
estimation, parameter estimation, sensitivity analysis etc. using the BDM. We
have tested our method on a model of EGF-NGF signaling pathway [1] and the
results obtained are very promising in terms of both accuracy and efficiency.

In terms of related work, a variety of qualitative and quantitative computa-
tional models have been proposed in the recent years to study bio-pathways
[2,4,5,6]. Among the quantitative models, one usually distinguishes between
population-based models driven by stochastic simulations and ODEs based mod-
els driven by -deterministic- numerical simulations. Clearly, both approaches are
needed to cover different contexts. Indeed, our work is, in spirit, related to the
discretized approximations presented in [7,8,9] that can be applied to high level
modeling formalism such as PEPA and PRISM. In these cited works, the dynam-
ics of a process-algebra-based description of the bio-pathway is given in terms of
a Continuous Time Markov Chain (CTMC) which is then discretized (using the
notion of levels) to ease analysis. Apart from the fact that our starting point is
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a system of ODEs, a crucial additional step we take is to exploit the structure
of the pathway to encode the dynamics more compactly as a dynamic Bayesian
network and perform analysis tasks directly on this representation. In a similar
vein, we feel that our model is a more compact discrete state model than than
the graphical model of a network of non-homogenous Markov processes studied
in [10]. We also believe that the techniques proposed in [11], as well as the verifi-
cation techniques reported in [12,13] can be adapted to our setting. Interestingly,
there have been recent attempts to synthesize ODEs from PEPA model [14], the
motivation being that numerical simulations are faster than stochastic simula-
tions. We note however, in our setting, though BDM is a probabilistic graphical
model, we do not have to resort to stochastic simulations. The inferencing al-
gorithm we use (the so called Factored Frontier Algorithm [15]), in one sweep,
gathers information about the statistical properties of the family of trajectories
encoded by the BDM.

In the next section, we describe our method for constructing our BDM ap-
proximation. In section 3, we present a basic inferencing technique and methods
for performing tasks such as parameter estimation and global sensitivity analysis
using the BDM. We also simultaneously use a realistic signaling pathway model
to evaluate these techniques. In the final section, we summarize the paper and
discuss future work. The interested reader can find additional technical material
in the form an appendix and relevant supplementary material at [16].

2 The Bayesian Dynamics Model

Conceptually, our approximation technique consists of three steps:

1. We start with a system of ODEs; a discretization of the value space of
each variable and rate constant into a finite set of intervals; and a digi-
talization of the temporal domain of interest into a finite set of time points
{t0, t1, . . . , tmax}. We also assume a prior distribution of the initial values
(usually, a uniform distribution) over some of the intervals of the value space.
These initial values will define an uncountably infinite family of trajectories
TRAJideal, which in turn, via the discretization, will induce a Markov chain
MCideal.

2. It is impossible to compute MCideal explicitly. However, it can be approxi-
mated by sampling the set of initial values according to the prior and using
numerical integration to generate a representative subset TRAJapprox ⊆
TRAJideal of trajectories. Then, using the discretization and simple count-
ing, we can construct the Markov Chain MCapprox which will be an approx-
imation of MCideal.

3. However, MCapprox can be very large since the number of states that this
Markov chain will be, in the worst case, exponential in the number of vari-
ables. To get around this, we exploit the pathway structure (i.e. the way
the variables are coupled to each other in the system of ODEs) to repre-
sent MCapprox compactly as time-variant dynamic Bayesian network. This
representation of MCapprox is called the Bayesian Dynamics Model (BDM).



254 B. Liu, P.S. Thiagarajan, and D. Hsu

We emphasize that this three step procedure is just a conceptual framework; we
construct the BDM directly from the given system of ODEs. In what follows,
we describe the main technical ideas. The interested reader can find background
material and additional details in the appendix portion of the supplementary
material.

2.1 ODEs and Flows

We assume a set of ODEs ẋi(t) = fi(x(t),p) involving the continuous real-
valued variables {x1, x2, . . . , xn} and real-valued parameters {p1, p2, . . . , pm}.
In our setting, we will often be interested in studying the dynamics for different
combinations of values for the parameters. Hence it will be convenient to treat
them also as variables. However they will be time-invariant in the sense once
their values are fixed at t = 0, these values will not change through the passage
of time. Consequently, we will implicitly assume the given system of ODEs to be
augmented with m additional differential equations of the form ṗj(t) = 0 with
j ranging over {1, 2, . . . , m}. In what follows, we will often let x, v range over
IRn

+, the values space of the variables and k range over IRm
+ , the values space of

the parameters and z range over IRn+m
+ , the combined values space.

In vector form, our system of ODEs may be then represented as Z′ = F (Z).
The ODEs will be mainly modeling mass action kinetics or variants such as
Michaelis-Menten kinetics. Hence we can assume F : IRn+m

+ → IRn+m
+ to be a C1

(continuously differentiable) function. Furthermore, the variables representing
the concentration level of a species within a single cell as well as the parameters
capturing the reaction rates will take values from a bounded interval. Hence the
domain of F can be restricted to a bounded region D of IRn+m

+ .
Given z0 = (v0,k) where v0 specifies the initial values of the variables and k

specifies the parameters values, the system of ODEs will have a unique solution
(due to F ∈ C1) [17]. We shall denote this solution by Z(t) with Z(0) = z0 and
Z′(t) = F (Z(t)).

It will be convenient to define the flow Φ : IR+ × D → D of Z′ = F (Z)
for arbitrary initial vectors z. It will be a C0 (continuous) function given by:
Φ(t, z) = Z(t) with Φ(0, z) = Z(0) = z and d

dt(Φ(t, z)) = F (Φ(t, z)) for all t.

2.2 The Markov Chain MCideal

Pathways models are usually validated by experimental data available only for a
few time points with the concentrations measured at the last time point typically
signifying the steady state value. Hence we assume the dynamics is of interest
only for discrete time points and that too only up to a maximal time point.
Consequently, we fix a time step ∆t > 0 and the time points of interest is
assumed to be the set {d · ∆t} with d ranging over {0, 1, . . . , d̂} where d̂ · ∆t is
the maximal time point of interest.

Next we assume that the values of the variables can be observed with only
finite precision and accordingly partition the range of each xi into Li intervals
[vmin

i , v1
i ), [v1

i , v2
i ), . . . , [vLi−1

i , vmax
i ]. We denote this set of intervals as Ii. We also
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similarly discretize the range of each parameter pj into a set of intervals denoted
as In+j . The set I = {Ii}1≤i≤n ∪ {In+j}1≤j≤m is called the discretization.

As pointed out earlier, the initial values vector as well as the rate constants
(even when they are known) will be given not as point values but as distributions
(usually uniform) over the intervals defined by the discretization. We correspond-
ingly assume we are given a prior distribution in the form of a probability density
function Υ 0 capturing the distribution of initial values. For example, suppose we
are given that the initial values are uniformly distributed within a hypercube
Î1 × Î2 × . . . × În+m, where Îi ∈ Ii for each i. Let Îi = [li, ui) and ŵi = ui − li.
Then the corresponding prior probability density function Υ 0 will be given by:

Υ 0(z) =

{
1

ŵ1·ŵ2·...·ŵn+m
if z ∈ Î1 × Î2 × . . . × În+m,

0 otherwise.

The associated probability space we have in mind is (D,BD, P 0) where BD is
the Borel σ-algebra over D; the minimal σ-algebra containing the open sets of D
under the usual topology. P 0 is the probability distribution induced by Υ 0 and
is given by:

P 0(B) =
∫

B
Υ 0(z)dz, for every B ∈ BD.

Further, TRAJideal = {Z(t)}t≥0 with Z(0) ∈ Î1× Î2× . . .× În+m is the family of
trajectories starting from all the possible points in this hypercube. Since the flow
is continuous and hence measurable we can associate a probability distribution
P t over BD for every t. To define this, let Φ−1

t (B) = {z′ | Φ(t, z′) ∈ B} for
B ∈ BD. Since Φ(t, ·) is measurable, we have Φ−1

t (B) ∈ BD too. We can now
define P t as:

P t(B) = P 0(Φ−1
t (B)), for every B ∈ BD.

Let v be in the range of xi. We define [v] as the interval in which v falls. In other
words, [v] = I iff v ∈ I. Similarly, [k] = J if k ∈ J for a parameter value k of pj

with J ∈ In+j .
Lifting this notation to the vector setting, if z = (v1, v2, . . . , vn, k1, k2, . . . , km)

∈ IRn+m
+ , we define [z] = ([v1], [v2], . . . , [vn], [k1], . . . , [km]) and refer to it as a

discrete state. An MC-state is a pair (s, d), where s is a discrete state and
d ∈ {1, 2, . . . , d̂}.

We next define Pr(s, d) = P d·∆t({z | z ∈ I1 × I2 × . . . × In+m}), where
s = (I1, I2, . . . , In+m). We term the MC-state M to be feasible iff Pr(M) > 0.

The transition relation denoted as →, between MC-states is defined via: M =
(s, d) → M ′ = (s′, d′) iff d′ = d + 1 and both M and M ′ are feasible and there
exist z0, z, and z′ such that Φ(d · ∆t, z0) = z and Φ((d + 1) · ∆t, z0) = z′.
Furthermore, [z] = s and [z′] = s′.

Let E, F denote, respectively, the event that the system is in the discrete
state s at time d · ∆t and in the discrete state s′ at time (d + 1) · ∆t for two
feasible MC-states (s, d ·∆t) and (s′, (d + 1) ·∆t). Let EF = E ∩F denote joint
event {z0 | Φ(d ·∆t, z0) ∈ s, Φ((d+1) ·∆t, z0) ∈ s′}. Consequently, we define the
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transition probability Pr((s, d) → (s′, d′)) = Pr(F |E) = Pr(EF )/Pr(E). Since
Pr(E) > 0 this transition probability is well-defined.

Let M = {M1, M2, . . . , Mn̂} be the set of M-states. We can now define
the Markov chain MCideal = (M, {pij}) with transition probabilities pij =
Pr(Mi → Mj) as above.

2.3 The Markov Chain MCapprox

MCideal can not be explicitly computed. Hence we sample z0 a sufficiently larger
number of times, say N , according to the prior distribution P 0 (we say more
about N below). For each sampled initial z0, we determine through numerical
integration the M-states [Φ(d·∆t, z0)], with d ranging over {0, 1, . . . , d̂}. We also
determine the transitions along this trajectory. Then through a simple counting
process involving these N trajectories, we compute a Markov chain that we refer
to as the MCapprox.

Since N is finite, there will be an error between the transition probabilities
(also the MC-state probabilities) computed using MCapprox and the ones defined
by MCideal. By the central limit theorem [18], this error can be probabilistically
bounded. In other words, given an error bound ε and a confidence level c, we can
compute N , the number of samples required to get an error less than or equal
to ε with likelihood c (the Appendix gives more details). Further, this error will
tend to 0 with probability 1 as N tends to ∞. There will be an additional error
induced by the pth-order numerical integration method we use to compute the
N trajectories. This error will tend to 0 as ∆t tends to 0 or p tends to ∞.

However, the number of states of this Markov chain will be exponential in n
and hence for many signaling pathways MCapprox will be too large a structure.
Hence we shall construct a time-variant DBN called the BDM to compactly
represent MCapprox. We shall however compute the BDM directly from the N
sampled trajectories.

2.4 The BDM Representation

In what follows, we assume the basic background concerning Bayesian networks
and dynamic Bayesian networks [3]. The graphical structure of the DBN used for
our approximation can be derived from the differential equations. It will have n+
m random variables (corresponding to the variables and the parameters) as nodes
for each time slice d · ∆t with d ranging over {0, 1, . . . , d̂}. For convenience, we
will use the same name to denote a variable (parameter) and the corresponding
random variable. From the context it should be clear which role is intended.
The random variable xi (pj) can assume as values, the finite set of intervals Ii

(In+j).
The variable (parameter) xi (pj) in the time slice d ·∆t will be written as xd

i

(pd
j ). Edges connecting a node in the d-th slice to a node in the (d+1)-th slice will

be determined by the dependencies of the variables and the parameters in the
ODEs. Suppose zd

l is a (variable or parameter) node in the d-th time slice and
zd+1

q is a node in the next time slice. Then there will be an edge from zd
l to zd+1

q
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S + E
k1�
k2

ES
k3−−→ E + P

dS

dt
= −k1 · S · E + k′ · ES

dE

dt
= −k1 · S · E + (k2 + k3) · ES

dES

dt
= k1 · S · E − (k2 + k3) · ES

dP

dt
= k3 · ES

Fig. 1. The ODE model of the enzyme-kinetic system and its BDM

iff zl = zq or zq is a variable node and zl appears in the expression for żq in the
system of ODEs. As usual, the parents of the node zd+1

q will be the set of nodes
of the form zd

l from which there is an edge into zd+1
q . Suppose, parents(xd+1

i ) =
{zd

1 , . . . , zd
l }. Then conditional probability table (CPT) associated with the node

xd+1
i will have entries of the form Pr(xd+1

i = I | zd
1 = I1, . . . , zd

l = I l) = h with
I ranging over Ii and Ik ranging over Ik and h ∈ [0, 1].

For instance, Figure 1 shows two adjacent slices of a enzyme-kinetic system. In
this BDM, the parent nodes of P d+1 are P d, ESd and kd

3 . As mentioned earlier,
the parameters are assumed to not change their values during a run and hence
we denote kd

i as simply ki and there will be no CPTs associated with these nodes.
As illustrated by the example, the connectivity between the nodes in successive
slices will remain invariant. However, due to the fact that the CPTs associated
with the nodes capture the transition probabilities of MC-states, they will be
time variant.

MCapprox will have, in the worst case, O(d̂Kn) states and O((d̂ − 1)K2n)
transitions, where K is the maximum of |Ii| with 1 ≤ i ≤ n+m. In contrast, the
number of nodes in the BDM representation is O(d̂(n + m)) and the conditional
probability table associated each node will have at most O(KR+1) entries, where
R is the maximal number of parents a node can have. Usually, the reactants in
pathway models will be sparsely coupled to each other and hence R will be
much smaller than n. For instance, in the case study to be presented, n = 32
and R = 5. Even in cases where R is large, due to the nature of the ODEs we
deal with, we can often break up the corresponding node into nodes with smaller
fan-in degrees and thus reduce R [16].

To fill up the entries of the CPTs associated with the nodes we randomly
choose N combinations of initial values for the variables and the parameters
from their prior distribution as before. (If we want a coverage of J samples
per interval in an n + m dimensional vector of intervals, then by exploiting
the network structure, we can make do with N = JKR+1 samples.) We then
perform numerical integration to generate N trajectories and discretize those
trajectories by the predefined intervals and compute the conditional probabilities
for each node by simple counting. For example, suppose α trajectories hit (P d =
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I ′, ESd = I ′′, k3 = I ′′′) and β of them in turn hit (P d+1 = I), then Pr(P d+1 =
I|P d = I ′, ESd = I ′′, k3 = I ′′′) = β

α .
Further, the MCapprox can be easily recovered from this DBN [19]. In this

sense, our BDM representation is a principled probabilistic approximation of
the dynamics induced by the system of ODEs. Various optimizations can be
developed to reduce the practical complexity of the BDM construction. The
details can be found in [16].

Though the construction of the BDM involves significant computational effort,
it is a one time cost. Moreover, a substantial portion of the computation can be
executed in parallel. Further, once the BDM has been constructed, many of
the analysis tasks can be performed very efficiently and the one time cost of
constructing the BDM can be easily amortized. We present some experimental
results in support of this in the next section.

3 Analysis

We now present some of the analysis techniques that we have developed so far
for the BDM representation. These techniques are based on the basic Bayesian
inference method called the FF (Factored Frontier) algorithm [15] and can be
used to answer elementary probabilistic queries as well for performing parameter
(rate constants) estimation and sensitivity analysis. Our goal here is not to
develop new algorithms to solve these problems. Rather, we wish to demonstrate
how standard techniques for tackling these problems can be adapted to BDM
framework in a straightforward manner. We validate our techniques using a
relatively large signaling pathway and show the relevant experimental results
along with our techniques.

3.1 The EGF-NGF Signaling Pathway and Its BDM

PC12 cells are a valuable model system in neuroscience. They proliferate in
response to EGF stimulation but differentiate into sympathetic neurons in re-
sponse to NGF. This interesting phenomenon has been intensively studied [20].
It has been reported that the signal specificity is correlated with different Erk
dynamics. Specifically, a transient activation of Erk1/2 has been associated with
cell proliferation, while a sustained activity has been linked to differentiation.
How EGF and NGF affect the dynamics of active Erk through a network of
intermediate signaling proteins is shown schematically in Figure 2.

This model not only includes a common pathway to Erk through Ras shared
by both the EGFR and NGFR, but also includes two important side branches
through PI3K and C3G, which introduce multiple feedback loops thus complicat-
ing the dynamics. The ODE model of this pathway is available in the BioModels
database1. It consists of 32 differential equations and 48 associated rate param-
eters (estimated from multiple sets of experimental data).

1 http://www.ebi.ac.uk/biomodels/

http://www.ebi.ac.uk/biomodels/
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. . . . . .
d[ f reeEGFR ]

dt
= 0 .0121008× [boundEGFR]

0.0000218503×[ EGF ] × [ f reeEGFR ]
d[boundEGFR]

dt
= 0 .0000218503×[ EGF ] × [ f reeEGFR ]

0.0121008×[boundEGFR ]
d[Sos]
dt

=
1611.97× [P90Rsk* ] × [Sos]

[Sos] + 896896
694.731× [boundEGFR ] × [Sos]

[Sos] + 6086070
389.428 × [boundNGFR ] × [Sos]

[Sos] + 211.266
d[Sos*]

dt
=
694.731× [boundEGFR ] × [Sos]

[Sos] + 6086070

+
389.428× [boundNGFR ] × [Sos]

[Sos] + 211.266
1611.97× [P90Rsk* ] × [Sos]

[Sos] + 896896
. . . . . .

Fig. 2. EGF-NGF pathway [1]

To construct the BDM, we first derived its graph from its ODEs. We then
discretized the ranges of each variable and parameter into 5 equal-size intervals
and fixed the time step ∆t to be 1 minute. Our experimental data (western
blot) is such that 5 uniform intervals seems an appropriate choice. However our
construction can be easily extended to non-uniform values intervals and time
points. To fill up the conditional probability tables associated with the nodes,
3×106 trajectories were generated up to 100 mins by sampling initial states and
parameters from the prior which are assumed to be uniform distributions over
certain intervals (see [16]). The computational workload was distributed on 10
Opteron 2.2GHz processors in a cluster. It took around 4 hours to construct the
BDM. All the subsequent experiments reported below were done using an Intel
Xeon 2.8GHz processor.

3.2 Probabilistic Inference

As pointed out earlier, although the dynamics defined by the ODEs is deter-
ministic, to answer a basic query such as “what will be the concentration of the
protein xi at time t?” one will have to numerically generate a representative
sample of trajectories and compute the average of the values for xi at t yielded
by the individual trajectories.

Using our BDM approximation, we can answer such a basic query and other
more sophisticated queries by Bayesian inference. Specifically, given a Bayesian
network, some observed evidence and some knowledge about the distribution
of values of a set of variables, Bayesian inference aims to compute posterior
distribution for a set of query variables. In our setting, the observed evidence
refers to the initial conditions, known parameters, and experimental data. Query
variables potentially refer to all the random variables in the BDM. We adopt the
approximate algorithm known as the Factored Frontier (FF) algorithm [15]. It
approximates joint distributions over each time point as a product of marginal
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Fig. 3. Simulation results of EGF-NGF signaling pathway. Solid lines represent nomi-
nal profiles and dash lines represent BDM simulation profiles.

distributions and computes the posterior distribution according to:

Pr(xd
i |D) =

∑
I

(Pr(xd
i |Pa(xd

i ) = I)
∏

u∈Pa(xd
i )

Pr(u|D)). (1)

Here Pr(u|D) are the marginal distributions over the parents, D is the evidence,
and Pa(xi) denotes the parents of xi. The implementation of FF is straightfor-
ward. By storing Pr(xd

i |Pa(xd
i )) in the conditional probability tables and prop-

agating Pr(u|D) to the next time point, we can use equation 1 to compute
Pr(xd

i |D). The time complexity of this algorithm is O(d̂(n+m)KR+1), where K
is the maximal number of intervals associated with a variable or rate constant’s
value domain. Further, R is the maximal number of parents a node can have.

Using this algorithm, and with some additional simple computations, many
queries can be answered. For instance, we identify each interval I = [l, u) in I
with its mid-point l+u

2 . Then after inferring the probability distribution of xi

over intervals, the expected value E(xd
i ) at a time slice d can be computed and

used to validate the model by comparing it with the cell population based data
that may be available for xi at d · ∆t.

To test the quality of our approximation, we implemented Monte Carlo inte-
gration for the ODE model to get good estimates by sampling. Specifically, we
numerically generated a number of random trajectories -according to the prior-
using ODEs, discretized them and computed the average values of the variables
at the chosen time points. Our experiments show that the average values con-
verge when the number of random trajectories generated is roughly 104. The
averaged trajectories projected to individual protein concentration time series
values are termed to be the nominal simulation profiles. Using the implemented
FF algorithm, the mean of each variable over time was computed. The resulting
time profiles are termed to be the BDM-simulation profiles. As summarized in
Figure 3, our BDM-simulation profiles fit the nominal simulation profiles quite
well for most of the cases.

In terms of running time, a single execution of FF inference requires 0.29
seconds while generating a stable nominal profile requires 386.4 seconds. Thus,



Probabilistic Approximations of Signaling Pathway Dynamics 261

the total computation time will be sharply reduced by our approach when many
such “queries” need to be answered. In the next subsection, we will further
demonstrate this advantage by carrying out a simulation-intensive analysis task.

3.3 Parameter Estimation

Lack of knowledge about the parameters and hence the need to perform param-
eter estimation using limited data has long been identified as a major bottleneck
of pathway modeling. Current approaches to parameter estimation formulate
it as a non-linear optimization problem [21]. A typical procedure will involve
searching in a high dimensional solution space, in which each point represents a
vector of parameter values. Whether a point is good or not is measured by the
objective function, which will capture the difference between experimental data
and prediction generated by simulations using the corresponding parameters.

For a large pathway model, one often needs to evaluate a very large number of
solution points involving a numerical integration for each evaluation. This makes
the whole process computationally intensive. The BDM representation allows us
to carry out the search for good parameter values in a hierarchical manner. Due
to the discretized nature of the BDM, the solution space is transformed to a recti-
linear grid consisting of a space-filling tessellation by hyperrectangles that we call
blocks. An important observation is that kinetic parameters are often robust [22].
In other words, the points around the best solution in the search space will also
have relatively small objective values. Thus, instead of searching point by point
in the solution space, we can first search for a few promising blocks and then take
a closer look within these small blocks. Therefore, the general scheme of our “grid
search” algorithm will consist of two phases: (1) identify good blocks, (2) do lo-
cal search within candidate blocks. We note that phase(2) is necessary only when
we aim to estimate parameters with finer granularity than the granularity of the
BDM’s discretization. Otherwise, one can skip phase(2) and return a probabilistic
estimate (typically a Maximal Likelihood Estimate) of a combination of intervals
of parameter values. For executing phase(1), we can apply any standard search
algorithms over the discretized search space. As the discretized search space is
much smaller than the original one, simple direct search algorithm such as Hooke
& Jeeves’s search [23] can be adopted and the overall search process will only re-
quire a small number of executions of the FF algorithm.

In order to test the performance of the BDM-based parameter estimation
method, we synthesized experimental time series data for 9 (out of 32) proteins
{bounded EGFR, bounded NGFR, active Sos, active C3G, active Akt, active
p90RSK, active Erk, active Mek, active PI3K}, measured at the time points
{2, 5, 10, 20, 30, 40, 50, 60, 80, 100} (min).This data was synthesized using
prior knowledge about initial conditions and parameters [16]. To mimic western
blot data which is cell population based, we first averaged 104 random trajec-
tories generated by sampling initial states and rate constants, and then added
observation noise with variance 5% to the simulated values. With the assumed
measurement precision, those values were discretized into 5 intervals, which rep-
resent the concentration levels in western blot data. We reserved the data of 7
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Fig. 4. Parameter estimation results. (a) BDM-simulation profiles vs. training data.
(b) BDM-simulation profiles vs. test data.

proteins for training the parameters and reserved the rest data for testing the
quality of the estimated parameter values.

Assuming that 20 of the 48 parameter values are unknown, a modified version
of Hooke & Jeeves algorithm was implemented to search for in the discretized
parameter space. The parameters obtained can be found in [16]. As shown in
Figure 4, the BDM-simulation profiles generated using the estimated parameters
obtained (with the match to training data as shown) has good agreement with
the test data.

We compared the efficiency and quality of our results with the following ODEs
based optimization algorithms: Levenberg-Marquardt (LM), Genetic Algorithm
(GA), Stochastic Ranking Evolutionary Strategy (SRES), and Particle Swarm
Optimization (PSO). These optimization algorithms were executed using the
COPASI [24] tool. We scored the resulting parameters obtained from all the al-
gorithms using the weighted sum-of-squares difference between the experimental
data and the corresponding simulation profiles (i.e. low scores correspond to low
errors). The results are summarized in Figure 5, which suggests that our method
achieves a good balance between accuracy and performance. We also note that
the cost of constructing the BDM representation gets rapidly amortized. In fact
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the savings become even more significant when we perform additional analysis
tasks such as sensitivity analysis.

3.4 Global Sensitivity Analysis

Sensitivity analysis has been used to identify the critical parameters in signal
transduction. To overcome the limitations of traditional local sensitivity analy-
sis methods global methods have been proposed recently, e.g. multi-parametric
sensitivity analysis (MPSA) [25]. The MPSA procedure consists of: (1) draw sam-
ples from parameter space and for each combination of parameters, compute the
weighted sum of squared error between experimental data and predictions gen-
erated by selected parameters; (2) classify the sampled parameter sets into two
classes (good and bad) using a threshold error value; (3) plot the cumulative fre-
quency of the parameter values associated with the two classes; (4) evaluate the
sensitivities as the Kolmogorov-Smirnov statistic of cumulative frequency curves.
To improve this process, [25] adopts Latin hypercube sampling (LHS) since it
requires fewer samples while guaranteeing that individual parameter ranges are
evenly covered. In our BDM setting, MPSA can be done in a similar manner
using LHS since the parameter space is discretized into blocks. In addition, the
number of samples used to reach convergence is reduced since we can quickly
evaluate the whole block instead of having to draw samples from a block.

We modified and implemented the MPSA method for the BDM. Using the same
experimental data set introduced in previous subsection, the global sensitivities
(K-S statistics) of the parameters were computed. The results are shown in Figure
6. The cumulative frequency distributions for the acceptable and unacceptable
cases of the rate constants can be found in [16]. Specifically, the reactions involved
in the phosphorylation of Erk (k23), Mek (k17), Akt (k34) and p90RSK (k28) have
the highest sensitivities, indicating that these reactions affect the system behavior
most directly. These results are consistent with previous findings [20].

The MPSA method adopts Monte Carlo strategy for the ODE model. We
recorded the running time of the algorithm till the K-S values converged. The
total running time of the ODEs based MPSA method was about 22 hours, while
the MPSA method based on the BDM required only 34 minutes.
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4 Discussion

We have proposed a probabilistic approximation scheme for signaling pathway
dynamics specified as a system of ODEs. Given a discretization and an initial
distribution, it consists of pre-computing and storing a representative sample
of trajectories induced by the system of ODEs. We use a dynamic Bayesian
network representation, called the Bayesian Dynamics Model, to compactly rep-
resent these trajectories by exploiting the pathway structure. Basically, the un-
derlying graph of the BDM captures the dependencies of the variables on other
variables and rate constants as defined by the system of ODEs. Due to the prob-
abilistic graphical representation, a variety of analysis questions concerning the
pathway dynamics traditionally addressed using Monte Carlo simulations can
be converted to Bayesian inference and solved more efficiently. Using the FF
algorithm for doing basic Bayesian inference, we have adapted standard param-
eter estimation and sensitivity analysis algorithms to the BDM setting. We have
demonstrated the applicability of our techniques with the help of the good sized
EGF-NGF signaling pathway.

A number of further lines of work suggest themselves. Firstly, we need to ap-
ply our method to a variety of pathway models. We are currently doing so in
collaboration with biologists. Secondly, it will be useful to augment the ODE
model with some discrete features but this should be easy to achieve. A more
challenging issue is to abstract the BDM representation to an input-output trans-
ducer so that one can efficiently model networks of pathways and inter-cellular
interactions models. Finally, it will be important to develop formal verification
techniques based on the BDM representation. In this context, it is worth noting
that the FF algorithm can compute the marginal probabilities of the discretized
values of variables at specific time points. Hence a good starting point will be to
develop probabilistic bounded model checking methods for specifications based
on the BDM model.
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Abstract. To cope with the increasing complexity of regulatory net-
works, we define a reduction method for multi-valued logical models.

Starting with a detailed model, this method enables the computation
of a reduced model by iteratively “hiding” regulatory components. To
keep a consistent behaviour, the logical rules associated with the targets
of each hidden node are actualised to account for the (indirect) effects
of its regulators.

The construction of reduced models ensures the preservation of a num-
ber of dynamical properties of the original model. In particular, stable
states and more complex attractors are conserved. More generally, we fo-
cus on the relationship between the attractor configuration of the original
model and that of the reduced model, along with the issue of attractor
reachability.

The power of the reduction method is illustrated by its application to
a multi-valued model of the segment-polarity network Controlling seg-
mentation in the fly Drosophila melanogaster.

Keywords: Regulatory networks, logical modelling, model reduction,
decision diagrams, regulatory circuits, stable states, complex attractors,
Drosophila development, segmentation.

1 Introduction

Biological data generation and integration efforts result in the delineation of ever
more comprehensive and complex regulatory networks involved in the control of
numerous processes. Consequently, current modelling and analysis approaches
are reaching their limits in terms of the number and variety of components
and interactions that can be efficiently considered. This is true for quantitative
frameworks (e.g., differential or stochastic models), as well as for qualitative
approaches. Indeed, although logical modelling enables to handle networks com-
prising relatively large numbers of components (see e.g. [1,2]), the size of the
state space grows exponentially with the number of regulatory nodes.
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One way to handle this problem consists in developing compositional ap-
proaches to compute the dynamical properties of comprehensive networks, re-
lying on the knowledge of the properties of simpler sub-systems or modules. A
complementary approach consists in reducing large systems, by focusing on the
most relevant components and redefining their interactions in order to preserve
relevant dynamical properties (e.g. stable states).

Most often, modellers intuitively and manually reduce regulatory networks to
address specific questions. Such empirical reductions have several drawbacks: (i)
the process is error prone and limited to relatively simple cases; (ii) the main-
tenance of different versions of a model (complete and reduced) is cumbersome;
(iii) storing the sole reduced model leads to the loss of relevant biological infor-
mation.

These considerations led us to develop a reliable, automated reduction method
in the context of a logical modelling framework. In this respect, we lean on
the software GINsim, which facilitates the definition of comprehensive logical
regulatory graphs, as well as the analysis of their dynamical properties [3,4].
Established on firm mathematical bases, our reduction method allows the user
to select nodes to be made implicit and to perform dynamical analyses on reduced
model versions, which preserve relevant topological and dynamical properties.

The paper is organised as follows. Section 2 recalls the definitions of logical
regulatory graphs and of the associated state transition graphs. Next, the re-
duction method is defined in Section 3. Relationships between the dynamical
behaviour of the original model and that of the reduced model are delineated in
Section 4. A multi-valued logical model of the segment-polarity network is then
used to demonstrate the power of the proposed reduction method in Section 5.
The paper ends with conclusions and further prospects.

All models presented in this paper can be opened, edited, simulated, and anal-
ysed with GINsim, which implements the logical formalism and the reduction
method presented here.

2 Logical Modelling of Regulatory Networks

Our modelling approach leans on the generalised logical formalism initially de-
veloped by R. Thomas et al. [5,6,3]. In this context, a regulatory network and
its dynamics are both represented in terms of oriented graphs.

2.1 Regulatory Graphs

Definition 1. A logical regulatory graph (LRG) is a directed labelled multigraph
R = (G,Max, Γ, Θ,K) where,

– G = {g1, . . . , gN} is the set of nodes, representing regulatory components.
– Max : G → N∗ associates a maximum level Max(gi) = Maxi to node gi.

The current level of gi, denoted xi, takes its values in Di = {0, . . . ,Maxi}.
– Γ is the set of arcs, defined as a finite multiset of ordered pairs of elements of

G representing regulatory interactions. If Maxi > 1, gi may have different
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effects onto a component gj, depending on level xi. Hence, the arc connecting
gi to gj may be a multi-arc encompassing different interactions. The multi-
plicity of the arc (gi, gj) (i.e. the number of its constitutive interactions), is
denoted mi,j (1 ≤ mi,j ≤ Maxi). Loops (even multi-loops) are allowed: an
arc (gi, gi) denotes an autoregulation of gi.
For each gj ∈ G, Reg(j) denotes the set of its regulators: gi ∈ Reg(j) if and
only if (gi, gj) ∈ Γ .

– Θ is a labelling function, which associates a threshold to each element of Γ .
More precisely, θi,j,k is associated to the kth interaction between gi and gj

(denoted (gi, gj , θi,j,k), k ∈ {1, . . . , mi,j}), with 1 ≤ θi,j,1 < · · · < θi,j,mi,j ≤
Maxi. This interaction is active, when xi, the level of its source gi, lays
between the threshold of this interaction and that of the next interaction:
θi,j,k ≤ xi < θi,j,k+1 (by convention, θi,j,mi,j+1 = Maxi + 1).

– K = (K1, . . . ,KN ) defines the logical rules attached to the nodes specifying
their behaviours: each Ki is a multi-valued logical function that gives the
target value of gi, depending on the levels of the regulators acting on gi:

Ki :

⎛⎝∏
gj∈G

Dj

⎞⎠ "→ {0, . . . ,Maxi}.

The logical function Ki can be equivalently defined on the set
∏

gj∈Reg(i) Dj ,
giving the target value of gi depending on the current levels of its regulators.
Figure 1 illustrates this definition of a logical regulatory graph. In the following,
when no confusion is possible, we will use i to denote gi.

G = {g1, g2, g3, g4}
Max1 = Max2 = Max4 = 1
Max3 = 2
D1 = D2 = D4 = {0, 1},D3 = {0, 1, 2}
Reg(2) = {g1, g3}
θ3,2,1 = 2

Fig. 1. Example of logical regulatory graph. Left: graphical representation of a LRG.
Blunt arrows depict inhibitions while normal arrows depict activations (this is only
a graphical convention, since the logical functions encode the regulatory effects). The
rectangular node g3 is ternary, whereas the others nodes are Boolean. The thresholds of
all interactions are set to 1, except that of (g3, g2), which is set to 2. Right: illustration
of the notations of Definition 1. Examples of logical functions Ki are displayed in
Figure 2 for the same model.

2.2 State Transition Graphs

We represent the dynamical behaviour of a LRG in terms of a state transition
graph, defined as follows.
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Definition 2. Given a LRG R = (G,Max, Γ, Θ,K), its associated full state
transition graph (STG) E = (S, T ) is a directed graph, where:

– S = Πi∈GDi is the state space, a state of the system being a vector x =
(xi)i=1,...,N , with xi ∈ Di, ∀i ∈ G,

– T ⊂ S2 is the set of transitions defined as follows: (x, y) ∈ T if and only if
∃i ∈ G such that:

xi �= Ki(x),
y = x+∆i(x).ei, where ∆i(x) = Ki(x)−xi

|Ki(x)−xi| and ei is the canonical vector
in S (ei

i = 1 and ei
j = 0, ∀j ∈ G, j �= i).

Here ∆i(x) gives the sign of the update of i (increase or decrease). One can also
consider a state transition graph related to an initial (set of) condition(s). It is
then a subgraph of the full STG.

When analysing the behaviour of a LRG, we mainly focus on attractors, which
represent asymptotic dynamical properties. Given a STG, attractors are its ter-
minal strongly connected components, classified as:

– stable states: reduced to a unique terminal node,
– cyclic attractors: terminal elementary (oriented) cycles,
– complex attractors: other terminal strongly connected components (i.e. in-

volving intertwined cycles).

Cyclic and complex attractors will be called non-trivial attractors.
In what follows, LRGs are assumed consistent, i.e. all interactions are effective

and autoregulations functional, meaning that all interactions have a dynamical
role and could be recovered from the logical functions K (see further explanations
in the Appendix A).

3 Logical Regulatory Graph Reduction

This section presents the principles underlying the reduction of a regulatory
graph and then defines the new model, called reduced model. In what follows, we
consider a reduction consisting of the removal of a single regulatory component
(making it implicit). The generalisation to a reduction encompassing a set of
nodes is obtained by iterating the corresponding one-node reductions. However,
the ordering of a sequence of one-node reductions may have an impact on the
resulting reduced model (see Appendix B).

Here, we aim at defining a reduction method, which preserves, as much as
possible, the dynamical properties of the original model. The underlying principle
is already intuitively applied by modellers when they make regulatory nodes
implicit in their networks.

The removal of a node r basically consists in connecting directly its regulators
to its targets, which logical functions are thus revised. In the revised logical
functions, the effect of r at a given value xr is conveyed by the values of the
regulators leading r to xr. In other words, we consider the update of the removed
component as a fast process, which is performed before anything else.
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Following this principle, it is impossible to remove an autoregulated compo-
nent since fixed values of its other regulators may not lead to a unique target
value. Thus, the removal of an autoregulated component implies additional de-
cisions, impeding the definition of a systematic procedure. In the following, we
will require that autoregulated components should not be removed.

To properly implement an algorithm producing the reduced model, we need
further notations to manipulate the logical functions. Given a regulatory graph
R = (G,Max, Γ, Θ,K) and a node i ∈ G, we denote:

– x
{l}
i (l ∈ Di) the Boolean variable with value 1 when xi = l, 0 otherwise.

– xS
i the Boolean variable that is true if xi ∈ S, false otherwise. Hence xS

i is
defined by,

xS
i �

∨
l∈S

x
{l}
i , S ⊆ Di.

Note that x∅
i is always false and xDi

i always true.
– For all v ∈ Di, the logical function Kv

i that gives the conditions under which
the target value of node i is v. This function is defined as follows:

Kv
i =

∨
n=1,...p

Cn
i , (1)

where Cn
i are conjunctive clauses Cn

i =
∧

j∈Reg(i) x
Sj,i,n

j , where Sj,i,n ⊆ Dj .
Each clause Cn

i defines a situation (i.e. sets of combinations of incoming
interactions acting upon i) for which the target value of i is v.

In Equation (1), each clause Cn
i defines a subset of S, D = Πj∈GSj,i,n (with

Sj,i,n = Dj , ∀j /∈ Reg(i)), such that for all x ∈ D, Ki(x) = v. Hence, Equation
(1) defines a set of cubes in the state space S, where the target value of i is v.

Definition 3. Given a LRG R = (G,Max, Γ, Θ,K), the reduced LRG Rr =
(Gr,Maxr, Γ r, Θr,Kr) obtained by removing a non-autoregulated component r ∈
G is defined as follows:

– Gr = G \ {r}.
– Maxr : Gr → N∗, s.t. ∀i ∈ Gr Maxr(i) = Maxi.
– For all i ∈ Gr, and for all v ∈ Di, the logical function Krv

i is defined as
follows. Consider Kv

i =
∨

n=1,...p Cn
i , the disjunctive form of Kv

i , as defined
previously. For all n = 1, . . . p (i.e. for each clause Cn

i ), let define Frn
i as:

Frn
i =

⎛⎝ ∨
w∈Sr,i,n

Kw
r

⎞⎠ ∧
⎛⎝ ∧

j∈Reg(i)\{r}
x

Sj,i,n

j

⎞⎠
Then Krv

i =
∨

n=1,...p Frn
i .

– Γ r and Θr are deduced from Kr; for all i ∈ Gr, j ∈ Gr,

mr
i,j =

∑
v∈[1,Maxi]

11i,j,v,
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Fig. 2. Reduction in terms of MDDs. Left: the same LRG as in Figure 1, where g4

(greyed-out) is selected for removal. Logical functions for g1 and g4 are shown on the
right, along with their MDD representations. Right: the reduced LRG after removal of
g4, along with the resulting logical function for g1. In the MDDs, internal nodes are
labelled with the associated variable (xi), whereas leaves represent the value of the
logical functions. Children of internal nodes are ordered from left to right: the leftmost
(resp. rightmost) child is the root of the sub-diagram corresponding to the case xi = 0
(resp. xi = Maxi).

where 11i,j,v = 1 if it exists x ∈ S such that xi = v−1 and Kr
j (x) �= Kr

j (x+ei).
Then (i, j) ∈ Γ r if mr

i,j > 0 (and the multiplicity of (i, j) in Γ r is given by
mr

i,j). Finally, the ordered set of values v such that 11i,j,v = 1 defines the
thresholds θr

i,j,k (k = 1, . . . , mr
i,j).

The logical function Krv
i is deduced from the logical function Kv

i by replacing,
in each clause, literals xS

r by the formulae giving the conditions under which
the target value of r is in S (remark that this definition may not give Krv

i in a
proper disjunctive form). Note that if Cn

i does not depend on r (i.e. r /∈ Reg(i))
then Sr,i,n = Dr and Frn

i = Cn
i for all n, therefore Krv

i = Kv
i .

The set of arcs verifies:

Γ r ⊆ {(i, j) ∈ Gr × Gr, s.t. (i, r), (r, j) ∈ Γ or (i, j) ∈ Γ}.

In practice, the construction of the new logical function is performed using Re-
duced Ordered Multivalued Decision Diagrams (ROMDDs or MDDs for short).
Decision diagrams are rooted directed acyclic graphs, widely used to represent
logical functions (see e.g. [7,8]). In these diagrams, internal nodes are labelled
with decision variables and have one child per value, while leaves represent the
values of the function. Decision variables are ordered: each internal node has a
rank and the sub-diagrams rooted by the children of a node of rank i do not
contain internal nodes of rank j ≤ i. In [9] we used MDDs to represent the logical
functions Ki. In this context, decision variables are the levels of the components
of the model. For the sake of simplicity, we consider that the ordering of the
MDD variables is the same as that of the LRG components. Given the MDD
representation of Ki and a state x, a unique path from the root of the MDD
to one of its leaves is defined. Along this path, the child chosen for each non-
terminal node is labelled with the value of the corresponding variable in state
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x. The terminal node reached through this path gives the value of Ki(x). Each
clause of Kv

i corresponds to a path leading to a leaf valued v.
To compute the MDD representing Kr

i , we define the recursive algorithm given
in Appendix C and illustrated in Figure 2.

4 Dynamics of the Reduced Model

In this section, the dynamical behaviour of a reduced LRG (as specified in Def-
inition 3) is compared to that of the original LRG. In particular, we show that
the reduction preserves existing attractors and does not add any spurious path.

Let E = (S, T ) be the full state transition graph of R = (G,Max, Γ, Θ,K)
and r ∈ G a node not autoregulated. Let Er = (Sr , T r) be the full STG of
Rr = (Gr,Maxr, Γ r, Θr,Kr), the LRG obtained after the removal of r from G.

Consider the projection πr : S → Sr such that, ∀i ∈ Gr, ∀x ∈ S, (πr(x))i = xi,
and the equivalence relation on S: ∀x, y ∈ S, x ∼r y iff πr(x) = πr(y).

We denote [x]∼r the equivalence class: [x]∼r = {y ∈ S s.t. y ∼r x}. The class
[x]∼r contains all states of S that differ only by their rth component, i.e. the
(Maxr + 1) states {xi ∈ S, i = 0, . . . ,Maxr}, such that xi ∼r x and xi

r = i.
Because r is not autoregulated, ∀xi ∈ [x]∼r, Kr(xi) = Kr(x). This implies that:

– (xi, xi+1) ∈ T , for all i < Kr(x),
– (xi, xi−1) ∈ T , for all i > Kr(x),
– (xKr(x), xi) /∈ T , for all i.

Hence, for all x ∈ S, there exists a path in S from x to xKr(x), which is the
representative state of [x]∼r .

Definition 4. x ∈ S is the representative state of an equivalence class for ∼r

iff xr = Kr(x) .

We can then define the retrieval function sr : Sr → S such that, ∀z ∈ Sr ,

(sr(z))i = zi, for all i ∈ G \ {r},
(sr(z))r = Kr(x), with x such that πr(x) = z.

In other words, sr(z) is the representative state of the equivalence class projected
on z (see Figure 3). Relying on this, we can introduce an alternative definition
of the logical functions in the reduced LRG: ∀i ∈ Gr, Kr

i : Sr "→ Di is defined
as Kr

i (z) = Ki(sr(z)). Note that if (r, i) �∈ Γ (i.e. r is not a regulator of i),
Kr

i (πr(x)) = Ki(x).

Remark 1. It follows from their definitions that functions πr and sr verify:

1. πr ◦ sr is the identity function.
2. For any x ∈ S, (sr ◦ πr(x)) ∼r x.
3. If x ∈ S is a representative state, then, sr ◦ πr(x) = x.
4. For any z ∈ Sr, Kr(z) = πr(K(sr(z))) ; indeed, ∀x ∈ S, ∀i ∈ Gr,Kr

i (πr(x)) =
Ki(sr ◦ πr(x)).
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Fig. 3. Dynamical behaviour of the reduced model given in Figure 2, before and after
removal of the ternary node g3. Left: State transition graph (STG), partitioned into four
equivalence classes for g3. Each equivalence class contains 3 states; its representative
state is greyed out and internal transitions are dashed. Right: STG of the reduced
model, each state corresponding to an equivalence class of the original STG. After
the reduction, the stable state 102 is projected on 10 and all transitions are preserved
except the one from the second equivalence class to the third one. This results in the
isolation of the non-terminal strongly connected component involving the first two
equivalence classes of the original STG, hence generating the attractor (01, 00).

The following lemma establishes the relationships between transitions in E and Er.

Lemma 1. 1. Let z, z′ ∈ Sr.

(z, z′) ∈ T r =⇒ ∃x ∈ S s.t. πr(x) = z′ and (sr(z), x) ∈ T .

2. Let x, y ∈ S. If x is a representative state, then

(x, y) ∈ T =⇒ (πr(x), πr(y)) ∈ T r .

Proof. Recall that ∆i(x)
�
= Ki(x)−xi

|Ki(x)−xi| . For z ∈ Sr s.t. zi �= Kr
i (z), we similarly

denote:

∆r
i (z)

�
=

Kr
i (z) − zi

|Kr
i (z) − zi| =

Ki(sr(z)) − (sr(z))i

|Ki(sr(z)) − (sr(z))i| = ∆i(sr(z)) .

1. Consider z, z′ ∈ Sr such that (z, z′) ∈ T r. Then ∃i �= r s.t. Kr
i (z) �= zi, and

z′ = z + ∆r
i (z) ei. By definition, Kr

i (z) = Ki(sr(z)) �= (sr(z))i = zi. This
implies that (sr(z), x) ∈ T with x ∈ S and x = sr(z) + ∆i(sr(z)) ei, and
then πr(x) = z′.

2. Consider x, y ∈ S such that Kr(x) = xr. The hypothesis (x, y) ∈ T implies
that ∃i ∈ G, i �= r s.t. Ki(x) �= xi, and y = x + ∆i(x) ei.
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We have Kr
i (πr(x)) = Ki(x) (since x is a representative state), and xi =

(πr(x))i, since i �= r. So, Kr
i (πr(x)) �= (πr(x))i, and then ∃z ∈ Sr s.t.

(πr(x), z) ∈ T r, with

z = πr(x) + ∆r
i (πr(x)) ei = πr(x) + ∆i(sr ◦ πr(x)) ei = πr(y) . ��

The first item of Lemma 1 states that any transition in T r corresponds to at
least one transition in T . Clearly, the reverse is not true. The second item of the
lemma gives a condition under which transitions are preserved from T to T r. Of
course, it is important to know which transitions are lost through the reduction.

Definition 5. The reduction preserves a transition (x, y) ∈ T if (πr(x), πr(y)) ∈
T r, or πr(x) = πr(y). The reduction preserves a path (s1, . . . , sn) ∈ E if all its
transitions are preserved.

In other words, a path (s1, . . . , sn) in E is preserved if the reduction preserves
the transitions between equivalence classes, in the required order.

The following property characterises the transitions that are not preserved by
the reduction.

Property 1. A transition (x, y) ∈ T is not preserved by the reduction if and only
if the three following conditions are satisfied:

1. x is not a representative state,
2. y �∈ [x]∼r (⇒ ∃i �= r s.t. yi �= xi),
3. ∆i(x) �= ∆i(sr ◦ πr(x)) .

The last condition means that there is no call for updating i in the same direction
in state sr ◦ πr(x).

Proof. Consider a transition (x, y) ∈ T , which satisfies the three conditions.
Suppose that (x, y) is preserved by the reduction, then (πr(x), πr(y)) ∈ T r (the
case πr(x) = πr(y) is not possible because of the second condition). This means
that there exists j �= r s.t. (πr(x))j �= (πr(y))j , and (πr(x))k = (πr(y))k for any
k �= j. With Condition 2 and by definition of πr, we deduce that j = i. Moreover,
we know that:

πr(y) = πr(x) + ∆r
i (πr(x)) ei = πr(x) + ∆i(sr ◦ πr(x)) ei .

Finally, y = x + ∆i(x) ei, and, as yi = (πr(y))i, we have ∆i(x) = ∆i(sr ◦ πr(x)).
This contradicts Condition 3. Hence, (x, y) is not preserved by the reduction.

Conversely, let (x, y) ∈ T be a transition not preserved by the reduction.

– Condition 1 is satisfied by the second item of Lemma 1.
– Condition 2 is satisfied because y ∈ [x]∼r ⇒ πr(x) = πr(y) ⇒ (x, y)

preserved, hence a contradiction.
– We know that y = x+∆i(x) ei. As Kr(πr(x)) = πr(K(sr◦πr(x))) (cf. Remark

1),

Kr
i (πr(x)) = (πr(K(sr ◦ πr(x))))i = Ki(sr ◦ πr(x))

�= xi = (πr(x))i .
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Hence, there exists z ∈ Sr s.t. (πr(x), z) ∈ T r with

zi = πr(x) + ∆r
i (πr(x)) ei

= πr(x) + ∆i(sr ◦ πr(x)) ei = πr(x) + ∆i(x) ei .

Consequently, πr(y) = z and (x, y) is preserved, hence a contradiction. ��

Given C, a set of states in S, we denote πr(C)
�
= {πr(x), x ∈ C}. Given C′,

a set of states in Sr, we denote sr(C′)
�
= {sr(z), z ∈ C′}. Note that πr(C)

may contain less elements than C, and that sr(C′) contains only representative
states. The following results relate attractors in E and Er. Proofs are provided
in Appendix D and E.

Theorem 1. Consider a LRG R = (G,Max, Γ, Θ,K) and Rr the reduced LRG.
Let E (resp. Er) be the full STG of R (resp. of Rr), then:

1. Stable states in E and Er verify:
– x stable state in E =⇒ πr(x) stable state in Er. Furthermore no other

stable state is projected on πr(x),
– z stable state in Er =⇒ sr(z) stable state in E.

Hence, the number of stable states is conserved by the reduction.
2. If (s1, . . . sn) is a cyclic attractor in E, then (πr(s1), . . . πr(sn)) is a cyclic

attractor in Er.
3. If C is a complex attractor in E, z ∈ πr(C) and (z, z′) ∈ T r, then z′ ∈ πr(C).

As a consequence, πr(C) contains at least one non-trivial attractor in Er.

Theorem 1 characterises the dynamical properties conserved by the reduction.
Going further, it is possible to identify the situations leading to the generation
of additional non-trivial attractors. A non-trivial attractor in the reduced STG
corresponds to a (part of a) strongly connected component of the original STG.
This SCC is itself a non-trivial attractor or involves outgoing transitions all in
conflict with transitions concerning the removed component. In other words, we
can fully characterise the set of states in the original STG giving rise to a non-
trivial attractor in the reduced dynamics. Interestingly, this set corresponds to
transient oscillatory behaviour from which the system cannot escape provided
that updates of the removed component are always faster than other concurrent
changes. This is formalised by Theorem 2 in Appendix E.

5 Application: Segment Polarity

We demonstrate the power and flexibility of our reduction method through its
application to the segment-polarity network, which plays a key role in the seg-
mentation of the fly embryo. This system has been thoroughly analysed by devel-
opmental geneticists and has been already modelled using continuous [10,11,12]
and logical approaches [13,14,15]. However, all these studies involved impor-
tant simplifications of the network, particularly so as a proper modelling of
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Fig. 4. Logical model of the segment polarity network for two cells, based on [15].
Ellipsoid and rectangular nodes denote Boolean and ternary components, respectively.
The two cellular networks have been properly connected to take into account Wg and
Hh diffusion, as well as Hh sequestration by Ptc, as in [16]. The anterior cell contains
the extended version of the model, where greyed-out components will be removed,
leading to the model on the right. Dashed arrows denote indirect interactions resulting
from this reduction. Greyed-out components in the posterior cell are candidates for
further reduction.

its behaviour requires the chaining of several identical networks to account for
inter-cellular interactions through Wingless (Wg) and Hedgehog (Hh) signalling.
Describing the most complete model to date, [15] had to discard various compo-
nents known to play important roles in Wg and Hh signalling to keep dynamical
simulations and analyses computationally tractable for up to six cells. Here, we
propose a logical model based on their full description of the segment polar-
ity network. The resulting regulatory graph encompasses 18 components and 31
regulatory interactions (left part of Figure 4).

In order to model the intercellular interactions involved in the formation of
segment boundaries, we have to connect neighbouring cells (along the anterior-
posterior axis) through Wg and Hh signalling. Wg is known to bind its receptor,
Frizzled (Fz), only at very short range, amounting here to neighbouring cells.
This can be represented by positive arcs linking each Wg node to Fz nodes of
neighbouring cells. In contrast, Hh is able to reach more distant cells, but can
be sequestered by its receptor Patched (Ptc). Similar interactions have been
modelled in [16] in terms of positive arcs between Hh nodes in neighbouring
cells (diffusion) and negative arcs from Ptc onto the Hh node of neighbouring
cells (sequestering). Figure 4 illustrates the intercellular network obtained after
coupling two cells and reducing one of the cellular sub-networks down to nine
components.

The reduction method described above can be advantageously applied to ease
the identification of all attractors of such intercellular models (Sánchez et al.
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Table 1. Dynamical characteristics of different reduced models derived from that of
Figure 4 (involving 2 x 9 nodes after applying the same reduction to both cells). The
number of reachable states decreases drastically with the number of considered nodes.
Note that the three stable states remain reachable for all reductions listed, but the last
one (removal of Slp).

LRG size Removed components Number of reached states Reached stable states
2x9 – > 106 TT, WE, EW
2x7 Fz,Ptc 12476 TT, WE, EW
2x6 Fz,Ptc,Nkd 1625 TT, WE, EW
2x8 Slp 11350 TT, WE

considered six cells). The modeller can select the sets of nodes to discard from
the network, depending on biological considerations (e.g. different time scales,
specific mutations, etc.). In a first step, it is reasonable to conserve transcription
factors and components involved in intercellular communications: Wg, Hh and
their receptors (Fz and Ptc). However, since the transcription factor Cubitus
interruptus is represented by three nodes here (full length immature Ci protein,
activator Ci-act and repressor Ci-rep forms), we choose to retain only the two
nodes corresponding to active regulatory forms. These choices correspond to the
removal of the greyed-out components in the left part of Figure 4.

The reduced model involves half of the nodes of the original one, which
amounts to a much higher reduction of the number of possible states, as this
grows exponentially with the number of regulatory nodes. The resulting regula-
tory graph (Figure 4, right) remains easy to grasp as it reasonably unfolds most
intra-cellular and inter-cellular regulatory pathways. As we shall see, this logical
model can be further reduced to facilitate analyses encompassing more cells.

For proper logical rules (cf. [15] and supplementarymaterial), one can check that
the detailed and the reduced two-cells models have exactly three stables states (as
predicted by Theorem 1). These multi-cellular stable states combine three types of
cellular states: a Wg expressing state (denoted W), an En expressing state (E), and
a trivial state (T) expressing neither Wg, nor En. The three stable states for the
two connected cells correspond to TT, WE and EW cell combinations reported
by Sánchez et al. All three stable states are reachable from biologically relevant
initial conditions (significant amounts of Wg and Slp in the anterior cell, significant
amount of En in the posterior cell), provided as an outcome of the activity of the
pair-rule system, cf. [17,15]. However, the size of the corresponding state transition
graph still impedes detailed dynamical analyses (see Table 1).

As shown in Table 1, the removal of Fz, Ptc and Nkd drastically reduces the
number of reached states without changing the reachability of the three stable
states from the considered initial state. However, the sole removal of Slp impedes
the reachability of the stable state with inverted Wg and En expressing cells. It
also suppresses the functionality contexts of all negative circuits [9,15], implying
that the state transition graph does not contain any cyclic attractor. Indeed,
after further reduction to three nodes per cell (Wg, En and Hh), we were able
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to check the absence of non-trivial attractors in the full STG. As the reduction
cannot delete existing non-trivial attractors (see Theorem 1), this implies that
all attractors of the original model are stable states.

6 Conclusions and Prospects

We have defined a reduction method that can be applied to multi-valued log-
ical models while preserving important dynamical properties. In particular, all
attractors of the original dynamics have a counterpart in the dynamics of the
reduced model. Furthermore, trajectories in the reduced model can be formally
related to trajectories in the original one. This enables to infer the existence
of paths in the dynamics of a detailed model whenever it is possible to show
(by simulation and graph analysis) that paths exist between the correspond-
ing states in a reduced version of the model. However, the reverse is not true.
Indeed, a reduction can lead to the loss of reachability properties. Whenever
several asynchronous component updates are possible at a given state, the elimi-
nation of one of the updated components amounts to consider it as ”faster” than
the concurrent ones, leading to the possible exclusion of some transitions in the
reduced STG. Such reductions relate to the delineation of specific priority class
configurations [18].

One particular feature of the reduction method defined here is that the re-
moval of (functional) autoregulated components is forbidden. This rule is related
to previous work on the dynamical roles of the regulatory circuits. Indeed, it has
been recently proven in the discrete framework that positive regulatory circuits
are necessary to generated multiple attractors, whereas negative circuits are nec-
essary to generate cyclic attractors (cf. [19] and references therein). At least in
the discrete framework, these properties depend only on the sign of the regula-
tory circuit, i.e. on the product of the sign of the involved interactions and not
on their number. From a qualitative dynamical point of view, it is thus possible
to reduce the number of components of a circuit down to a single autoregulated
component, while keeping the corresponding property, as long as we conserve
the sign of the circuit (along with some functionality constraints).

Our formal presentation of the reduction method mainly focuses on the re-
moval of a single component. However, iterating this process enables the removal
of several components. This raises the question of the impact of the order in
which reductions are performed. As shown in Appendix B, the removal of a
component may be possible only after the prior removal of others. If we aim at
removing as many components as possible, the ordering of removals may thus
be crucial. Further work is needed to properly define optimal or maximal reduc-
tions for the general case. When the removal of a set of components is possible
in several orders, we suspect that the dynamics of the resulting model does not
depend on the order (work in progress).

The worst case complexity of the algorithm for the reduction of a node r that
regulates k targets is in O(md), where m is the highest number of levels of the
involved components and d is the depth of the MDDs representing the revised
logical functions associated to the target nodes. In most cases, m ≤ 3 and d ≤ 5.
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Applying our reduction method to a detailed model of the segment-polarity
network, we were able to show the absence of non-trivial attractors in a state
transition graph too large to be stored. As indicated for this application, the
reduction method offers a great flexibility to the modeller. Biological arguments
(e.g. information on relative reaction speeds) can be used to select sets of nodes
for consistent model reduction. In the course of the dynamical analysis of com-
plex networks (e.g. multicellular networks), further reduction can be performed
to identify all attractors and check their reachability from specific initial states.

To ease the maintenance of a detailed model along with its reduced versions,
the GINsim implementation enables the user to define and record various re-
ductions for the same reference model. In order to handle still larger and more
complex networks, such reduction could be combined with algorithmic meth-
ods enabling the analysis of large state transition graphs ([20] and references
therein), or yet with model checking techniques ([21] and references therein).

Supplementary Materials. GINsim can be downloaded from http://
gin.univ-mrs.fr/GINsim. The Appendix, and the models, are available
at the following URL: http://gin.univ-mrs.fr/GINsim/publications/
naldi2009.html.

Acknowledgments. A.N. has been supported by PhD grant from the French
Ministry of Research and Technology. C.C. acknowledges the support provided
by the Calouste Gulbenkian Foundation. This work was further supported by
research grants from the French National Agency (project ANR-08-SYSC-003),
from EU FP7 (APO-SYS Project), and by the Belgian Science Policy Office
(IAP BioMaGNet).

References

1. Saez-Rodriguez, J., Simeoni, L., Lindquist, J., Hemenway, R., Bommhardt, U.,
Arndt, B., Haus, U., Weismantel, R., Gilles, E., Klamt, S., Schraven, B.: A logical
model provides insights into t cell receptor signaling. PLoS Comput. Biol. 3(8),
e163 (2007)

2. Franke, R., Müller, M., Wundrack, N., Gilles, E.D., Klamt, S., Kähne, T., Nau-
mann, M.: Host-pathogen systems biology: logical modelling of hepatocyte growth
factor and helicobacter pylori induced c-met signal transduction. BMC Syst. Biol. 2,
4 (2008)
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Abstract. In this paper we consider the modeling of a selected portion of signal
transduction events involved in the angiogenesis process. The detailed model of
this process contains a large number of parameters and the data available from
wet-lab experiments are not sufficient to obtain reliable estimates for all of them.
To overcome this problem, we suggest ways to simplify the detailed representa-
tion that result in models with a smaller number of parameters still capturing the
overall behaviour of the detailed one.

Starting from a detailed stochastic Petri net (SPN) model that accounts for
all the reactions of the signal transduction cascade, using structural properties
combined with the knowledge of the biological phenomena, we propose a set of
model reductions.

1 Introduction

Formal modeling is a central theme in systems biology in which mathematical model-
ing and simulation can play an important role. The Petri net (PN) formalism [18] is a
framework that allows the construction of a precise and clear representation of biologi-
cal systems based on solid mathematical foundations. This formalism permits the study
of qualitative properties related to the structure of the model (e.g., the structure of a
biological pathway). The variant of PNs, called Stochastic Petri Nets (SPNs) [16,15,2]
and characterized by the addition of timing and/or stochastic information, can be used
for quantitative analysis (e.g., analysis that involve the rates in biochemical reactions).
PNs have been first proposed for the representation of biological pathways by Reddy
et al [17]. Since their introduction, many other researchers constructed PN models of
biological pathways [11] with the aim of using their representations to obtain qualita-
tive information about the behavior of these systems, mostly via simulation [12,9]. The
interaction of qualitative and quantitative analysis is necessary to check a model for
consistency and correctness; following this idea, Heiner et al [10] proposed a method-
ology to develop and analyze large biological models in a step-wise manner.

In this paper we present our experience in modeling signal transduction pathways for
the angiogenesis process using SPNs. The general goal is to analyze the temporal dy-
namics of a few relevant biological products and this requires to build and parameterize
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the model of the phenomenon under study. A detailed model is built by biologists and
then the parameters are estimated on the basis of data obtained by wet-lab experiments.
It is often the case however that the amount of available wet-lab data is not sufficient to
have reliable estimates of the many parameters involved in the model. The key contri-
bution of this paper aims at alleviating this problem by providing a simplification pro-
cess which transforms the detailed model into a simpler one with less parameters. The
proposed simplification process is guided by qualitative properties together with knowl-
edge on the phenomenon under study and it is validated by comparing the quantitative
properties of the detailed and simplified models. Moreover, this process represents the
basis of the development of arguments useful for identifying both critical complexes
and interactions that play a crucial role in the biochemical system under study. With
respect to the framework proposed by Gilbert et al [8], where the main idea is to il-
lustrate the complementarity among the three different ways of modeling biochemical
network , i.e. qualitative, stochastic and continuous, here we focus our attention on
the definition and robustness of the simplification process to limit the complexity of
the model.

Techniques that can be seen as simplification procedures have already been published
in the literature. See, for example, [4,3] where approximate analysis methods based on
aggregation of states are proposed. The goal of these techniques is however different
from ours, since they aim at reducing the complexity of the analysis of the model and
not the difficulty of its parametrization. Indeed, they result in simpler models in which
the number of parameters is identical to that of the original one.

The paper is organized as follows. Section 2 provides an overview of PNs and SPNs
and of their use in biochemical systems. Section 3.1 describes the angiogenesis case
study. Section 3.2 presents the approach we followed to build the SPNs and Section 3.3
shows the formal and biological rules used in the simplification process as well as the
resulting SPNs. The quantitative analysis performed in order to verify the mathematical
robustness of the simplified model is proposed in Section 3.4. We conclude with a
discussion and an outlook of future works in Section 4.

2 Modeling Formalism and Solution Techniques

The descriptions commonly applied in biology, where the relations among components
are expressed by biochemical reactions, or by interactions of genes as well as by cell
population interactions, are easy to transform into PNs in which places correspond to
genes/proteins/compounds (substrates) and transitions to their interactions.

2.1 Petri Net Representation for Biochemical Entities Interactions

PNs are a graphical language for the formal description of distributed systems with
concurrency and synchronization. PNs are bipartite graphs with two types of nodes,
namely places and transitions, connected by directed arcs. The state of the system is
given by the distribution of tokens over the places of the net. The dynamics of the
model (starting from an initial marking) is captured by state changes due to firing of
transitions and by the consequent movement of tokens over the places.
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Definition 1. [PN - syntax ]A Petri Net graph is a tuple (P, T, W,m0), where

– P is a finite set of places;
– T is a finite set of transitions;
– P and T are such that P ∩ T = ∅;
– W : (P × T ) ∪ (T × P ) → IN defines the arcs of the net and assigns to each of

them a multiplicity;
– m0 is the initial marking which associates with each place a number of tokens.

When applied in systems biology, places represent biochemical entities (enzymes, com-
pounds, etc.) and transitions represent the interactions among entities [17]. The quan-
tities of the entities are represented by tokens in the places. The biological system we
consider consists of biochemical reactions similar to those reported in Fig. 1-a where
we show the PN representation scheme we adopted to describe all reactions of this type.
Fig. 1-b represents the state evolution due to firing of transition k53.

Pip3

Pten

Pip3 : Pten

Pip3

Pten

Pip3 : Pten

(a) (b)

k53 k53

k54 k54

Fig. 1. PN representation of reactions Pip3 + Pten
k53
�
k54

Pip3 : Pten

2.2 Analysis Techniques Based on Structural Properties

The PN graph inspection can provide several functional properties of the model, whose
validity is true independently of the initial state of the system: such properties are, for
instance, the boundedness and the existence of structural deadlocks and traps [18,2].
In deriving such kinds of information an important role is played by the so called
net’s invariants. There exist two kinds of invariants: place invariants (P-invariants) and
transition invariants (T-invariants) [18]. In this paper we deal with P-invariants only.
A P-invariant is a weighted sum of tokens contained in a subset of places of the net
that remains constant through the entire evolution of the model, starting from an initial
marking. The subset of places used for computing the P-invariant is the support (i.e.,
the set of nonzero components) of a P-semiflow f [14], which is a vector of nonnegative
weights assigned to all the places of the net. A P-semiflow f is an integer and nonnega-
tive solution of the matrix equation fC = 0, where C is the incidence matrix of the net,
obtained by properly using the information provided by the flow relation W .

The interpretation of a P-invariant in a biological context, where tokens
represent compounds, enzymes etc., is relatively simple: the places that support the
semiflow f represent a portion of the PN where a given kind of correlated matter is
preserved.
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2.3 Quantitative Temporal Analysis

To study the temporal dynamics of a biological system it is natural to apply an extension
of PNs that allows to introduce in the model temporal specifications. SPNs are time
extensions of PNs in which exponentially distributed random delays (interpreted as
durations of certain activities) are associated with the firings of the transitions. SPNs are
qualitatively equivalent to PNs, meaning that for their structural analysis it is sufficient
to disregard their time specifications. The temporal stochastic behaviour of an SPN is
isomorphic to that of a continuous time Markov chain (CTMC). This CTMC can be
built automatically from the description of the SPN and corresponds to the behaviour of
the biological system described by the Master Chemical Equations [7]. This “stochastic
approach” based on SPNs, adopts a discrete view of the quantity of the entities and sees
their temporal behaviour as a random process.

Another possibility is to adopt a “deterministic approach” in which the temporal
behaviour of the entities is seen as a continuous and completely predictable process. In
our context we make use also of the deterministic approach because it allows for faster
and simpler evaluation of the simplification process we propose for SPNs.

The deterministic approach translates the interactions into a set of coupled, first-order,
ordinary differential equations (ODE) with one equation per entity. These equations de-
scribe how the quantities of the entities change based on the speed and the structure of
the interactions among reactants. Referring again to the reactions considered in Figure
1, the corresponding ODEs are

dXPip3(t)
dt

= −k53XPip3(t)XPten(t) + k54XPip3:Pten(t),

dXPten(t)
dt

= −k53XPip3(t)XPten(t) + k54XPip3:Pten(t),

dXPip3:Pten(t)
dt

= k53XPip3(t)XPten(t) − k54XPip3:Pten(t)

where Xi(t) denotes the quantity of reactant i at time t. Having the ODEs and informa-
tion on the initial amount of the different entities, numerical integration of the ODEs is
applied to calculate the quantities at a given time instant.

3 A Stochastic Petri Nets Based Approach Applied to Signal
Transduction Pathways for the Angiogenesis Process

One main objective in systems biology is to model and analyze temporal dynamics of
the phenomenon under study. By using SPNs as the formalism for the construction of
the model, the analysis is performed in two steps: the first provides qualitative infor-
mation on the structure of the model and the second investigates quantitative properties
including statistical indices describing the temporal behavior of the system. Here we
use this approach to study the angiogenesis process.

3.1 Biological Case Study Definition

Angiogenesis, defined as the formation of new vessels from the existing ones, is a
topic of great interest in all areas of human biology, particularly to scientists study-
ing vascular development, vascular malformation and cancer biology. Angiogenesis is
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a complex process involving the activities of many growth factors and relative recep-
tors, which trigger several signaling pathways resulting in different cellular responses.
The Vascular Endothelial Growth Factor (VEGF) family proteins are widely regarded
as the most important growth factors involved in angiogenesis. VEGF-A, a member of
VEGF family, has been most carefully studied and is thought to be of singular impor-
tance. VEGF receptor-2 (KDR in humans) is thought to mediate most of VEGF-A’s
angiogenic functions, including cell proliferation, survival, and migration. Although the
core components of the main KDR-induced pathways have been identified, the molec-
ular mechanisms involved need to be characterized in fine details in order to better
understand the flow of information. Indeed, a strong body of evidences indicates the
presence of common adaptor/effector proteins involved in the survival and prolifera-
tion pathways induced by VEGF-A/KDR axis, pointing out the difficulty to isolate a
specific pathway and suggesting the presence of common nodes which contribute to
create an intricate signaling network. In particular, the phosphorylated active receptor,
indicated as KDR∗, catalyzes phosphorylation of several intracellular substrates in-
cluding the adaptor protein Gab1 [13,5]. The main pathway through which VEGF-A
induces cell proliferation involves the activation of PLCγ [19]. Activation of PLCγ
promotes phosphatidylinositol 4,5-bisphosphate (Pip2) hydrolysis giving rise to 1,2-
diacylglycerol (DAG). VEGF-A-induced cell survival is dependent on the activity of
Pi3K [6]. The activated Pi3K phosphorylates Pip2 generating phosphatidylinositol-
3,4,5-triphosphate (Pip3). This recruits Akt to the membrane where it is activated
trough phosphorylation. Activated Akt induces cell survival. Taking into account these
notions, we wrote a system of biochemical reactions based on the available biological
information together with further supposed mechanisms which could contribute to un-
derline the presence of additional molecular nodes in the context of VEGF-A-induced
proliferation and survival pathways.

3.2 Model Construction

In this section we discuss the approach we followed to represent the signal transduction
cascade by SPN. Consider the detailed biological model depicted in Fig. 2.

These reactions describe KDR-proximal signaling events in the context of the sur-
vival and proliferation signal modules induced by receptor activation. In particular, re-
actions are split into four blocks. The First Block represents the earliest signaling events
which include KDR∗ (we use the star to denote that proteins are active), Gab1, and
Pip3. The Second Block concerns the regeneration of Pip2, a common substrate for the
two signal modules that we are considering. In this block Pip2 recovery was considered
to result from the contribution of Pten-dependent dephosphorylation of Pip3 in com-
bination with DAG catabolism (here recapitulated in the pseudo-enzyme E). The Third
Block includes the reactions describing the survival pathway triggered by the PI3K/Akt
axis. The Fourth Block represents the proliferation pathway involving PLCγ activation.
Using the reaction representations outlined in Section 2.1 and the GreatSPN tool [1] the
SPN model of the angiogenesis process was built as illustrated in Fig. 3. Exploiting the
block organization and the structure of the model we analyzed the biochemical reactions
in order to identify possible pathways and sub-pathways that describe embedded behav-
iors of the complete model. We denoted the reactions by means of their kinetic constants.
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Pip2 Production (Second Block)

Pip3 + Pten
k53
�
k54

Pip3:Pten

Pip3:Pten
k55→ Pip2 + Pten

—————-

Pten + Pip2
k56
�
k57

Pten:Pip2

Pten:Pip2 + Pip3
k58
�
k59

Pten:Pip2:Pip3

Pten:Pip2:Pip3
k60→ Pten:Pip2 + Pip2

—————-

Dag + E
k61
�
k62

Dag:E

Dag:E
k63→ Pip2 + E

Survival (Third Block)

Gab1∗:Pip3 + Pi3k
k12
�
k13

Gab1∗:Pip3:Pi3k

Gab1∗:Pip3:Pi3k + Kdr∗
k14
�
k15

Kdr∗:Gab1∗:Pip3:Pi3k

—————-

Kdr∗:Gab1∗ + Pi3k
k16
�
k17

Kdr∗:Gab1∗:Pi3k

Kdr∗:Gab1∗:Pi3k
k18→ Kdr∗:Gab1∗:Pi3k∗

Kdr∗:Gab1∗:Pi3k∗ + Pip2
k19
�
k20

Kdr∗:Gab1∗:Pi3k∗:Pip2

Kdr∗:Gab1∗:Pi3k∗:Pip2
k21→ Kdr∗:Gab1∗:Pi3k + Pip3

—————-

Kdr∗:Gab1∗:Pip3 + Pi3k
k22
�
k23

Kdr∗:Gab1∗:Pip3:Pi3k

Kdr∗:Gab1∗:Pip3:Pi3k
k24→ Kdr∗:Gab1∗:Pip3:Pi3k∗

Kdr∗:Gab1∗:Pip3:Pi3k∗ + Pip2
k25
�
k26

Kdr∗:Gab1∗:Pip3:Pi3k∗:Pip2

Kdr∗:Gab1∗:Pip3:Pi3k∗:Pip2
k27→ Kdr∗:Gab1∗:Pip3:Pi3k + Pip3

—————-

Pip3 + Akt
k28
�
k29

Pip3:Akt

P ip3:Akt
k30→ Pip3 + Akt∗

KDR-Receptor (First Block)

Kdr∗ + Gab1
k0
�
k1

Kdr∗:Gab1

Kdr∗:Gab1
k2→ Kdr∗:Gab1∗

Gab1 + Pip3
k3
�
k4

Gab1:Pip3

Kdr∗ + Gab1:Pip3
k5
�
k6

Kdr∗:Gab1:Pip3

Kdr∗:Gab1:Pip3
k7→ Kdr∗:Gab1∗:Pip3

Kdr∗:Gab1∗:Pip3
k8
�
k9

Gab1∗:Pip3 + Kdr∗

Kdr∗:Gab1∗ + Pip3
k10
�
k11

Kdr∗:Gab1∗:Pip3

Proliferation (Fourth Block)

Kdr∗ + Plcγ

k31
�
k32

Kdr∗:Plcγ

Kdr∗:Plcγ
k33→ Kdr∗:Plc∗γ

Kdr∗:Plc∗γ + Pip2
k34
�
k35

Kdr∗:Plc∗γ:Pip2

Kdr∗:Plc∗γ:Pip2
k36→ Kdr∗:Plcγ + Dag

—————-

Kdr∗:Gab1∗ + Plcγ

k37
�
k38

Kdr∗:Gab1∗:Plcγ

Kdr∗:Gab1∗:Plcγ
k39→ Kdr∗:Gab1∗:Plc∗γ

Kdr∗:Gab1∗:Plc∗γ + Pip2
k40
�
k41

Kdr∗:Gab1∗:Plc∗γ:Pip2

Kdr∗:Gab1∗:Plc∗γ:Pip2
k42→ Kdr∗:Gab1∗:Plcγ + Dag

—————-

Kdr∗:Gab1∗:Pip3 + Plcγ

k43
�
k44

Kdr∗:Gab1∗:Pip3:Plcγ

Kdr∗:Gab1∗:Pip3:Plcγ
k45→ Kdr∗:Gab1∗:Pip3:Plc∗γ

Kdr∗:Gab1∗:Pip3:Plc∗γ + Pip2
k46
�
k47

Kdr∗:Gab1∗:Pip3:Plc∗γ:Pip2

Kdr∗:Gab1∗:Pip3:Plc∗γ:Pip2
k48→ Kdr∗:Gab1∗:Pip3:Plcγ + Dag

—————-

Gab1∗:Pip3 + Plcγ

k49
�
k50

Gab1∗:Pip3:Plcγ

Gab1∗:Pip3 : Plcγ + Kdr∗
k51
�
k52

Kdr∗:Gab1∗:Pip3:Plc∗γ

Pip2 Regeneration (Second Block)

Fig. 2. Reactions of the detailed model

In the model Akt and DAG have been considered as the end points of the survival and
proliferation pathways, respectively. Taking into account these end points in combination
with the notion that Akt activation is strictly Pip3-dependent, we examined the signal
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transduction cascade focusing our attention mainly on the reactions that lead to the pro-
duction of Pip3 (i.e. k21 and k27) and DAG (i.e. k36, k42, and k48).

This analysis (supported also by a careful drawing of the SPN) allowed us to rec-
ognize different sub-pathways that lead to the survival or proliferation effects. In the
context of the survival signal module we identified two sub-pathways, each one charac-
terized by the presence of a distinguishing complex, KDR∗:Gab1∗ or KDR∗:Gab1∗:
Pip3, belonging to the First Block. Actually, the sub-pathways that determine the sur-
vival behavior are three since an additional element, Gab1∗:Pip3, also contributes to the
formation of KDR∗:Gab1∗:Pi3k:Pip3 complex already involved in one of the iden-
tified sub-pathways. Summarizing there are three sub-pathways that lead to survival
effect starting from: KDR∗:Gab1∗, KDR∗:Gab1∗:Pip3 and Gab1∗:Pip3. Consider-
ing the proliferation module, we identified four different sub-pathways that are distin-
guished by the compounds belonging to the First Block, i.e.: KDR∗, KDR∗:Gab1∗,
KDR∗ :Gab1∗ :Pip3 or Gab1∗ :Pip3. Notice that the distinguishing elements of the
detected sub-pathways are the same within the survival and proliferation modules, with
the exception of the compound KDR∗.

Referring again to the SPN of Fig. 3, we can notice that the time evolution of this SPN
is intuitively portrayed by a top-down view. On the top is depicted the place KDR∗

that represents the starting point of the signal cascade induced by its ligand. From the
KDR∗ cascade start all the sub-pathways that characterize the proliferation and sur-
vival pathways. The places describing DAG and Pip3 are aligned on the bottom of the
net. It is interesting to note that the sub-pathways we identified in the detailed model
are represented in the SPN with structures, such as that outlined by a dashed box in Fig.
3, which correspond to the reaction groups separated by continuous lines in Fig. 2. We
denote these Sub-Components by SC. Each SC involves:

– the binding between an enzyme and other species present in the cascade (e.g. tran-
sitions k31k32);

– the enzyme activation (e.g. transition k33);
– the recruitment of the Pip2 (e.g. transitions k34k35);
– the production of the molecules representing the pathway end point and the enzyme

deactivation (e.g. transition k36).

3.3 Model Simplification

The SPN we obtained requires a simplification process to take place in order to limit
the complexity of the parameterization and analysis of the model as we pointed out
before. The computation of the P-semiflows of this SPN show that the net is bounded
(the net is covered by P-semiflows, i.e., every place of the net is member of the support
of one P-semiflow, at least). Interpreting the P-semiflows in biological terms, we can
recall again that this means that all the compounds associated with the places of the net,
independently of their original amounts, cannot grow indefinitely during the evolution
of the model out of its initial state

The presence of repeated structures in the SPN corresponds to the fact that the bio-
logical model is characterized by the existence of several similar reaction groups, and
this observation can be used to identify simplification steps to be applied to the detailed
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E
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Kd*G*P3k*P3
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K52

K51
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K34

K36

K35K40

K42

K41K46

K48
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K61

K62

K63
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K15
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K26K25
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K28K29

K60
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γ
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Fig. 3. SPN representing the detailed model. Compound symbols: KDR ≡ Kd, Gab1 ≡ G,
Pi3k ≡ P3k, P lcγ ≡ Pg, Pip3 ≡ P3, Pip2 ≡ P2, Pten ≡ Pt.
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model. In particular, the SCs shown in the previous section are enzymatic kinetics re-
action groups. Each of these groups can be written as the reactions set (1) where the
enzyme E binds reversibly to the compound C.

E + C � EC → E∗C (1)

E∗C + S � E∗CS

E∗CS → EC + P

This complex EC irreversibly becomes E∗C, which means that the enzyme is acti-
vated. E∗C binds reversibly to the substrate S (forming E∗CS), before converting it
into a product P and releasing the complex EC. In order to simplify the detailed model
we can represent each SC by the following couple of “merging” pseudo-reactions:

E + S → E∗S (2)

E∗S + S′ � E + S + P

Survival (Third Block)

Gab1∗:Pip3 + Kdr∗ + Pi3k
k12→ Kdr∗:Gab1∗:Pip3:Pi3k∗

Kdr∗:Gab1∗:Pip3:Pi3k∗ + Pip2
k13→ Gab1∗:Pip3 + Kdr∗ + Pi3k + Pip3

—————-

Kdr∗:Gab1∗ + Pi3k
k14→ Kdr∗:Gab1∗:Pi3k∗

Kdr∗:Gab1∗:Pi3k∗ + Pip2
k15→ Kdr∗:Gab1∗ + Pi3k + Pip3

—————-

Kdr∗:Gab1∗:Pip3 + Pi3k
k16→ Kdr∗:Gab1∗:Pip3:Pi3k∗

Kdr∗:Gab1∗:Pip3:Pi3k∗ + Pip2
k17→ Kdr∗:Gab1∗:Pip3 + Pi3k + Pip3

—————-

Pip3 + Akt
k18
�
k19

Pip3:Akt

P ip3:Akt
k20→ Pip3 + Akt∗

KDR-Receptor (First Block)

Kdr∗ + Gab1
k0
�
k1

Kdr∗:Gab1

Kdr∗:Gab1
k2→ Kdr∗:Gab1∗

Gab1 + Pip3
k3
�
k4

Gab1:Pip3

Kdr∗ + Gab1:Pip3
k5
�
k6

Kdr∗:Gab1:Pip3

Kdr∗:Gab1:Pip3
k7→ Kdr∗:Gab1∗:Pip3

Kdr∗:Gab1∗:Pip3
k8
�
k9

Gab1∗:Pip3 + Kdr∗

Kdr∗:Gab1∗ + Pip3
k10
�
k11

Kdr∗:Gab1∗:Pip3

Pip2 Production (Second Block)

Pip3 + Pten
k29
�
k30

Pip3:Pten

Pip3:Pten
k31→ Pip2 + Pten

—————-

Pten + Pip2
k32
�
k33

Pten:Pip2

Pten:Pip2 + Pip3
k34
�
k35

Pten:Pip2:Pip3

Pten:Pip2:Pip3
k36→ Pten:Pip2 + Pip2

—————-

Dag + E
k37
�
k38

Dag:E

Dag:E
k39→ Pip2 + E

Proliferation (Fourth Block)

Kdr∗ + Plcγ
k21→ Kdr∗:Plc∗γ

Kdr∗:Plc∗γ + Pip2
k22→ Kdr∗ + Plc∗γ + DAG

—————-

Kdr∗:Gab1∗ + Plcγ
k23→ Kdr∗:Gab1∗:Plc∗γ

Kdr∗:Gab1∗:Plc∗γ + Pip2
k24→ Kdr∗:Gab1∗ + Plcγ + DAG

—————-

Kdr∗:Gab1∗:Pip3 + Plcγ
k25→ Kdr∗:Gab1∗:Pip3:Plc∗γ

Kdr∗:Gab1∗:Pip3:Plc∗γ + Pip2
k26→ Kdr∗:Gab1∗:Pip3 + Plcγ + DAG

—————-

Gab1∗:Pip3 + Kdr∗ + Plcγ
k27→ Kdr∗:Gab1∗:Pip3:Plc∗γ

Kdr∗:Gab1∗:Pip3:Plc∗γ + Pip2
k28→ Gab1∗:Pip3 + Kdr∗ + Plcγ + DAG

Pip2 Regeneration (Second Block)

Fig. 4. Reactions after first step of simplification

By exploiting this representation, we rewrite the reactions of the Third and the Fourth
Blocks as shown in Fig. 4, and we use them to simplify the original SPN obtaining the
net depicted in Fig. 5, that is still covered by P-semiflows, meaning that these trans-
formations are acceptable also from a qualitative point of view. Note that in this new
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n1

n2

n3

n4

n5

n6

n7

n8

γ

n9

Fig. 5. SPN obtained after the first step of simplification (Simpl1)

SPN any SC is represented by a sequence of transition-place-transition, such as the one
outlined by the dashed box, again. These SCs are defined by reaction groups separated
by continuous line in Fig. 4. A further simplification step can be performed on the basis
of the following reaction:

E + S + S′ → E + S + P (3)

The application of this observation to reactions of the Third and Fourth Blocks provides
the reactions illustrated in Fig. 6, used to define the new simplified net illustrated in
Fig. 7 (which is again covered by P-semiflows). Note that in this last SPN any SC is
represented by a singular transition such as the one outlined again by the dashed box.
Moreover reactions k29k30, k31 and k37k38, k39 of the Second Block are simplified
following the scheme: E + S → E + P . The structural criteria that we used to guide
the simplification process helped us to verify that the reduced models maintain the
biological significance of the original one and provide a good approximation of its
behavior. Notice that the reaction substitutions represented by Eq. (2 and 3) can be
seen as patterns (or net substructures) that can be replaced every time they occur in
the detailed and intermediate nets of the simplification process. In reality, it has not
been possible to perform these transformations ”mechanically”. Instead, the invariant
conditions had to be checked for each simplification substitution. At the end of this
process, considering that the P-semiflows of the simplified SPNs have smaller supports,
we found the same eight P-semiflows in all the three nets:

– one P-semiflow including KDR∗ and the complexes containing it that are present
in the sub-pathways (both in proliferation and in survival) that bring to the recruit-
ing of substrate Pip2;



On the Use of Stochastic Petri Nets in the Analysis of Signal Transduction Pathways 291

Pip2 Production (Second Block)

Pip3 + Pten
k22→ Pten + Pip2

—————-

Pten + Pip2
k23
�
k24

Pten:Pip2

Pten:Pip2 + Pip3
k25
�
k26

Pten:Pip2:Pip3

Pten:Pip2:Pip3
k27→ Pten:Pip2 + Pip2

—————-

Dag + E
k28→ Pip2 + E

Proliferation (Fourth Block)

Kdr∗ + Plcγ + Pip2
k18→ Kdr∗ + Plcγ + DAG

—————-

Kdr∗:Gab1∗ + Plcγ + Pip2
k19→ Kdr∗:Gab1∗ + Plcγ + DAG

—————-

Kdr∗:Gab1∗:Pip3 + Plcγ + Pip2
k20→ Kdr∗:Gab1∗:Pip3 + Plcγ + DAG

—————-

Gab1∗:Pip3 + Kdr∗ + Plcγ + Pip2
k21→ Gab1∗:Pip3 + Kdr∗ + Plcγ + DAG

KDR-Receptor (First Block)

Kdr∗ + Gab1
k0
�
k1

Kdr∗:Gab1

Kdr∗:Gab1
k2→ Kdr∗:Gab1∗

Gab1 + Pip3
k3
�
k4

Gab1:Pip3

Kdr∗ + Gab1:Pip3
k5
�
k6

Kdr∗:Gab1:Pip3

Kdr∗:Gab1:Pip3
k7→ Kdr∗:Gab1∗:Pip3

Kdr∗:Gab1∗:Pip3
k8
�
k9

Gab1∗:Pip3 + Kdr∗

Kdr∗:Gab1∗ + Pip3
k10
�
k11

Kdr∗:Gab1∗:Pip3

Survival (Third Block)

Gab1∗:Pip3 + Kdr∗ + Pi3k + Pip2
k12→ Gab1∗:Pip3 + Kdr∗ + Pi3k + Pip3

—————-

Kdr∗:Gab1∗:Pip3 + Pi3k + Pip2
k13→ Kdr∗:Gab1∗:Pip3 + Pi3k + Pip3

—————-

Kdr∗:Gab1∗ + Pi3k + Pip2
k14→ Kdr∗:Gab1∗ + Pi3k + Pip3

—————-

Pip3 + Akt
k15
�
k16

Pip3:Akt

P ip3:Akt
k17→ Pip3 + Akt∗

Pip2 Regeneration (Second Block)

Fig. 6. Reactions after second step of simplification

– one P-semiflow including Gab1 and the complexes containing it that are present in
the sub-pathways (both in proliferation and in survival) that bring to the recruiting
of substrate Pip2;

– one P-semiflow including Akt and the complexes that lead to its activation;
– one P-semiflow including both Pip3 and Dag, and Pip2 that is the common sub-

strate in both pathways. This semiflow includes also the cascade complexes con-
taining Pip3;

– each enzyme present in the model (Pi3k, Plcγ, Pten, E) has a semiflow including
the complexes containing it.

The consistency among the structural properties of all the nets allowed us to consider
the simplified models valid from a qualitative point of view.

3.4 Model Analysis for Accuracy Assessment

The simplification process proposed in Section 3.3 results in SPNs which maintain the
qualitative properties of the original SPN, but are approximations of the detailed model
from a quantitative point of view. In this section we report in silico experiments that
were performed in order to check the validity of the simplifications from the point of
view of quantitative properties. Indeed, before using the simplified models in a param-
eter identification experiment which uses real data coming from wet-lab experiments,
it is necessary to make sure that an overall agreement exists between the quantitative
temporal behaviours of the detailed and the simplified models for a wide range of model
parameters. This test allows to build confidence on the fact that the reduced model is
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n3

n4

n5

n6 n7

n8

n1

γ

n9

Fig. 7. SPN obtained after the second step of simplification (Simpl2)

suited for a preliminary analysis of the angiogenesis process as it can be done with in
silico experiments.

This accuracy assessment was performed applying the “deterministic approach” de-
scribed in Section 2.3. We compared the temporal behaviours of the detailed SPN with
those of the simplified SPNs obtained for several different initial markings and sev-
eral sets of transition rate parameters. Throughout the comparisons we concentrated
on three important entities, in particular Pip3 and Dag, and the substrate Pip2 which
is common to both the survival and the proliferation pathways. Hereafter we report
on two cases which illustrate the obtained results. The initial condition is identical for
the two cases: for all three SPNs (see Figures 3, 5 and 7) we use the initial marking
n1 = 2, n2 = n3 = n4 = 1, n5 = 20, n6 = n7 = n8 = n9 = 1 which reflects
the concentration differences that are likely to exist in wet-lab experiments. Different
sets of transition rates are used in the two cases to push the behaviours of the models
in opposite directions. In the first case the rates are such that the transitions along the
survival pathway are ten times faster than all the others. Figure 8A depicts the tempo-
ral behaviour for the detailed model. With these parameters the concentration of Pip3

increases, the concentration of Pip2 decreases and the concentration of DAG remains
low. The temporal behaviour of the simplified models, depicted in Figures 8B-C, shows
the same major characteristics. In the second case the transitions along the proliferation
pathway are ten times faster than all the others. Figures 8E-F-G depict the temporal be-
haviour for the three models. Also in this case, the major characteristic, i.e. the fact that
the concentration of DAG prevails over the concentration of Pip2 and Pip3, is main-
tained. The general agreement among the results of all these models was also tested by
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Fig. 8. The left (right) column shows the ODE results from the first (second) set of parameters

computing the steady state distribution of tokens in the places corresponding to com-
pounds Pip3 and DAG and to the substrate Pip2, obtained from the solutions of the
CTMCs corresponding to all the SPN models we have constructed (that we do not report
in detail in this paper, due to space constraints).

For the first set of experiments reported here, the rates of corresponding transitions
in the simplified and detailed models were set equal independently of the fact that in
the simplified SPNs they often represent the compound effect of a few transitions of the
detailed one. As a result, even if the overall characteristics are maintained, the shape
of the curves can be rather different and the dynamics take place on different time
scales. Focusing our attention on the curves corresponding to the first set of parameters
(Figures 8A-B-C), we can notice that the crossing of the two concentration curves for
Pip2, which decreases, and Pip3 that grows takes place at time instants that are not of
the same order of magnitude in all the three cases. A more important difference, how-
ever, is observed when we concentrate on the dynamics of DAG that shows a small
initial growth followed by a descent to a value next to zero. For this case, the most
simplified model predicts an important initial climb that makes the shape of the curve
quite different from the others (see Figure 8C). Turning our attention to the curves cor-
responding to the second set of parameters (Figures 8E-F-G), we can notice that all the
models predict a crossing between the concentration of Pip2 which decreases and the
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concentration of DAG that instead grows. With these parameters the concentration of
Pip3 remains always extremely small. In this case the predictions of the more compact
model are quantitatively quite different since the crossing is reported to happen much
sooner and the shapes of the curves are very different.

In order to mimic better the temporal behaviour of the detailed SPN, we applied
an optimization technique to determine the transition rates for the simplified SPNs.
We used the nonlinear optimization function of MatLab to find these transition rates
with which the curves resulting from the simplified SPNs became closer to the curves
resulting from the detailed SPN. The results are illustrated for the SPN obtained after
the second step of simplification (Simpl2) in Figure 8D and 8H. It can be seen that by
properly setting the transition rates, even the simplest of our SPNs (Simpl2) can mimic
quite precisely the behaviour of the detailed model (compare the diagrams A with D
and E with H of Figure 8).

4 Discussion

In this paper we showed how to use structural properties of SPNs and biochemical prop-
erties of the system in guiding the simplification process. The procedure was presented
through a case study, namely, the model of signaling transduction pathways involved in
the angiogenesis process. We showed that the procedure results in simplified SPNs that
are able to mimic precisely the temporal behavior of the detailed SPN.

One non trivial step is to determine the transition rates in the simplified SPNs in
such a way that the resulting temporal behavior is a good approximation of that of the
detailed SPN. In this work we faced this problem by applying optimization.

In the future, on the basis of the simplification schemes presented in this paper, we
plan to work on generalizations of these reduction steps which will allow to operate on
other portions of the detailed model and on the identification of rules concerning the
relations existing among the corresponding rates of the detailed and simplified models.
In addition, we will study the possibility of defining formally the quantitative charac-
teristics that have to be maintained by the simplification process. In particular, temporal
logics will be considered to this purpose.

Furthermore, we will consider the study of the whole VEGF-induced intracellular
network, including signal modules that were not considered here, such as the migra-
tion pathway. This could contribute to a better understanding of the intricate signaling
induced by VEGF-A during the angiogenesis.
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Abstract. This paper presents an Interval Decision Diagram based ap-
proach to symbolic CSL model checking of Continuous Time Markov
Chains which are derived from stochastic Petri nets. Matrix-vector and
vector-matrix multiplication are the major tasks of exact analysis. We
introduce a simple, but powerful algorithm which uses explicitly the Petri
net structure and allows for parallelisation. We present results demon-
strating the efficiency of our first prototype implementation when applied
to biochemical network models, specifically with increasing token num-
bers. Our tool currently supports CSL model checking of time-bounded
operators and the Next operator for ordinary stochastic Petri nets.

1 Motivation

Stochastic Petri nets are a natural way to model biochemical networks, where
token values may be interpreted as molecules or concentration levels [GHL07],
[HGD08]. Petri nets reflect explicitly the network structure, which contributes
to a better understanding of the network behaviour, and – as we are going to
see – supports efficiency gains otherwise not possible.

A stochastic Petri net’s semantics is a Continuous Time MarkovChain (CTMC)
which can be investigated by simulative approaches, or analysed analytically by
transient and steady-state analysis [Ste94], or model checking of Continuous-time
Stochastic Logic (CSL) [ASSB00]. In this paper we concentrate on (analytic) CSL
model checking, which has been proven to be particularly useful for model valida-
tion and model-based experiment design in systems and synthetic biology: special
behavioural properties are expressed in CSL, a flexible and powerful query lan-
guage, and then checked exhaustively against all behaviour the model can exhibit.

The tool of choice when applying CSL model checking of CTMCs is often
the probabilistic model checker PRISM [PNK06], which seems to represent the
current state of the art [JKO+08]. Stochastic Petri nets can be easily translated
into the PRISM input language as it has been done in [CDDS06], [GHL07],
[HGD08]. However, computational experiments reach pretty fast their limits, as
they always do if the famous state space explosion problem is one of the game
players.
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PRISM’s approach to cope with the problem is symbolic analysis based on
Multi Terminal Binary Decision Diagrams (MTBDD), which are basically Binary
Decision Diagrams (BDD) allowing more than two terminal nodes, each standing
for a different value. While this often works fine for technical systems resulting
into 1-bounded networks, it does not smoothly scale to the generalised bounded
case. First of all, prior knowledge of the boundedness degree of each place is
required. A place with an upper bound of k tokens is represented by �ld(k)�
MTBDD variables. This may result in an overhead in computation time and
memory. Since tokens may represent concentration levels, increasing the analysis
accuracy implies an increase of the possible number of tokens on places. Secondly,
PRISM creates an MTBDD which represents the entire CTMC with states and
transitions encoded in a matrix. Therefore it is necessary to double the number of
MTBDD variables to index rows and columns. Finally, a further drawback occurs
if the CTMC contains many different rate values, since the number of terminal
nodes in the MTBDD equals this amount. These lessons learnt from the PRISM
approach made us elaborate a new technique for symbolic CSL model checking,
specifically designed for biochemical networks with increasing token numbers.

The efficient analysis of qualitative Petri nets, provided they are bounded,
but not necessarily 1-bounded, is discussed by A. Tovchigrechko in [Tov08]. He
deploys Interval Decision Diagrams (IDD), which generalise BDDs by allowing
more than two outgoing arcs for each node, but keeping the idea of two terminal
nodes only. The developed data structures and algorithms support state space
based analysis, including model checking of Computational Tree Logic (CTL).
They do neither require a priori knowledge of the boundedness degree nor a suit-
able network partitioning as Kronecker-based approaches do, see e.g. [CJMS06].
The IDDs’ inherent compression effect often yields compact representations of
very large state spaces [HST09], see also caption of Table 2 in Section 4.

In this paper we are going to demonstrate how these IDD techniques can
be transfered and adapted to CSL model checking, which basically requires to
incorporate matrix-vector multiplication. In doing so we always bear in mind
the option of parallelised processing on nowadays standard workstations. It goes
without saying, the application of our results is not restricted to stochastic Petri
nets. Specifically we will demonstrate how PRISM’s efficiency may take advan-
tage of our pre-analysis of a network’s inherent structure.

2 Preliminaries

Stochastic Petri Net. An ordinary stochastic Petri net SPN is a tuple
(P, T, F, V, s0). As usual, P denotes the set of places, T the set of transitions,
F : ((P × T ) ∪ (T × P )) → {0, 1} the arc weight function, and s0 the initial
state (marking). The mapping V : T → H , where H is the set of hazard func-
tions, associates to each transition a function ht from H , defining a generally
state-dependent, but always exponentially distributed firing rate. We deal with
biologically interpreted stochastic Petri nets; thus we consider besides arbitrary
arithmetic functions specifically functions representing biomass action semantics
(BMA) and biolevel interpretation semantics (BLI). All these functions have in
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common that the domain is restricted to the preplaces of the corresponding
transition. For more details see [GHL07].

Continuous Time Markov Chain. The semantics of a stochastic Petri net
is a CTMC which is isomorphic to the reachability graph of the underlying
qualitative Petri net, but state transitions are labelled with firing rates. Without

loss of generality we assume, if s
t−→ s′ and s

t′−→ s′ are state transitions in the
CMTC, then t = t′. A CTMC is a tuple (S,R, L, s0), with S denoting the set of
reachable states of the underlying net, R : S×S → R≥0 the rate function, usually
represented as matrix, L : S → 2AP the labelling function, and s0 the initial
state. The set AP := {p◦n|p ∈ P, ◦ ∈ {<,≤, =, �=,≥, >}, n ∈ N0}∪{true, false}
of atomic propositions is defined over the set of places, which serve as integer
variables. The entry R(s, s′) is defined as:

R(s, s′) =
{

ht(s) if ∃ t ∈ T : s
t−→ s′

0 otherwise .

The total rate E(s) = Σs′∈SR(s, s′) is the sum of entries of the matrix row
indexed with s. A state s with E(s) = 0 is called an absorbing state, since there
is no way to leave it when reached. The probability of a transition t enabled in
state s to fire (which results in state s′) within n time units is 1 − e−R(s,s′)·n.
The transient probability π(α, s, τ) is the probability to be in state s at time
τ starting from a certain probability distribution α, with α : S → [0, 1] and
Σs∈S α(s) = 1. The vector of transient probabilities for all states at time τ
with the initial distribution α is denoted by π(α, τ). An established technique
to compute the transient probabilities (transient analysis) of CTMCs is the uni-
formisation method. Its basic operation is vector-matrix multiplication which
must be done for a certain number of iterations. For more details see [Ste94].

Continuous time Stochastic Logic. CSL is the stochastic counterpart to
Computation Tree Logic (CTL). We consider CSL without the steady state
operator and time-unbounded path formulae, and define state formulae

φ ::= a | ¬φ | φ ∧ φ | φ ∨ φ | P
�p[ϕ] ,

and path formulae

ϕ ::= Xφ | φU[τ1,τ2]φ | F[τ1,τ2]φ | G[τ1,τ2]φ ,

with a ∈ AP , ��∈ {<,≤,≥, >}, p ∈ [0, 1], and τ1, τ2 ∈ R≥0 ∧ τ1 ≤ τ2 ∧ τ2 < ∞.
For convenience we introduce the operators F φ and Gφ as short-hand notations
for the frequently used patterns true Uφ, and ¬(true U¬φ).

CSL model checking of a CTMC M can be realised by transient analysis. The
basic concept is to do transient analysis for a CTMC M ′ which has been derived
from M by making certain states absorbing, depending on the formula to be
checked. For more details, e.g. formal semantics definition, see [BHHK00].
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Interval Decision Diagrams. An IDD is a rooted, directed and acyclic graph
with nodes having an arbitrary number of outgoing edges. Each edge is labelled
with a left-closed and right-open interval on N0. The intervals of the outgoing
edges of each IDD node define a partition of N0, inducing a total order of the
edges. There are two nodes without outgoing edges: the terminal nodes, labelled
with ONE and ZERO.

Each IDD node gets associated a variable, in our context a place of the stochas-
tic Petri net. We assume that the variables occur in the same order on each path
from the root to a terminal node – we get ordered IDDs. Furthermore we assume
that an IDD does not contain isomorphic subgraphs – we get reduced ordered
IDDs. As for BDDs, the variable ordering may influence the IDD size.

We use IDDs to encode sets of states of stochastic Petri nets, see Figure 1. The
height of an IDD always equals the number of places, independently of the places’
boundedness degree. IDD’s grow in the breadth: a large variety of tokens on a
given place may increase the number of outgoing edges of the corresponding IDD
nodes, depending on the IDD-inherent compression effect. We consider bounded
Petri nets; thus, each IDD node for a k-bounded place has at least two outgoing
edges: [0, k+1), and [k+1, ∞).

A path (sequence of IDD nodes connected by edges) reaching the terminal
node ONE represents generally a set of states. We get one state by choosing
exactly one value from each of the intervals of all edges occurring along a path.
For the efficient manipulation of state sets we assume operations like ∩,∪, \.
Further we assume operations for the manipulation of state sets by the firing
of transitions. Fire(S, t) := {s′|s ∈ S ∧ s

t−→ s′} represents the set of states
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Fig. 1. A Petri net and the IDD, encoding its six reachable states. The path n7 3−→
n6 0−→ n2 0−→ 1 represents the initial state m ≡ (p1 : 3, p2 : 0, p3 : 0). The path
n7 1−→ n4 1−→ n1 1−→ 1 represents the state m′ ≡ (p1 : 1, p2 : 1, p3 : 1) which is reached
from m by firing transition t2. Edges are labelled with intervals and additional index
data, see Section 3.1.
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obtained by firing the transition t for each state in S, and Img(S) represents
the set of all direct successor states of S. Analogously, we define RevFire(S, t)
and PreImg(S) for backward firing. For more details see [Tov08].

While CTL model checking can be completely reduced to the manipulation of
sets of integer states, CSL model checking by transient analysis requires the (re-
peated) multiplication of a real-valued matrix with a real-valued vector (or vice
versa). On account of the state space explosion problem it is not worth thinking
about implementing this vector-matrix multiplication explicitly with matrix and
vector indexed by states. There is no way to avoid the explicit representation of
the vector π. Actually, we need at least three (four) copies of it. Thus, the whole
problem boils down to the question: How to multiply with a matrix without
having (explicitly represented) the matrix?

In the following we present a matrix-free on-the-fly approach to realise CSL
model checking more efficiently than other tools available so far. Our tool IDD-
CSL computes all required data at each iteration anew from one augmented IDD
representing the reachable states of an SPN. Thus, our technique does not care
about the number of different matrix entries in the rate matrix. This is – in
terms of data structures – the main difference to PRISM’s approach, where the
CTMC’s state space S and its rate matrix R are represented symbolically by a
BDD and an MTBDD.

3 Multiplication with IDDs

3.1 Basic Algorithm

We do not use dedicated data structures to represent the CTMC as other sym-
bolic model checkers do. All necessary information is derived from the set of
reachable states encoded as an IDD and the Petri net structure itself. However,
we do need the lexicographic index for each state in the state set, which will be
determined by each depth first search traversal of the decision diagrams. One
slight extension of the IDD is required to get these indices, which brings us to
the index-labelled IDD, LIDD for short.

Now the basic idea of our approach is simply explained. The traversal of an
IDD representing a state set S′ ⊆ S drives the traversal of the LIDD, representing
S. This indirect, partial traversal of the LIDD S allows to compute the index
for each state s′ ∈ S′. Additionally we keep track of the index of the state
s′′, reached by firing a given transition t ∈ T in s′, assuming s′ enables t. We
compute the enabling states for a transition t by ESt := S∩RevFire(S, t). When
traversing an IDD, we always consider the pre- and post-conditions for the firing
of a transition t of the underlying Petri net to determine the LIDD paths of
the related target states. This idea is inspired by the fire algorithm proposed
in [Tov08]. Each traversal extracts the indices of all state transitions (matrix
entries) of the CTMC induced by the firing of a transition t. Traversing the
LIDD for all transitions controlled by their enabling states eventually extracts all
non-zero matrix entries. Thus, each iteration required for the transient analysis
means the LIDD traversal for all transitions of the Petri net.
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Algorithm 1. LIDD index labelling
procedure augmentIdd(states : LIdd)

augmentNode(states.root);
end procedure

function augmentNode(node : LIddNode) int :
if node = ONE then

return 1;
end if
if node = ZERO then

return 0;
end if
count, reachable : int;
count := 0;
for 0 ≤ i < node.edges() do

edge : LIddEdge;
edge := node.edge(i);
edge.smaller = count;
reachable :=augmentNode(edge.node());
count := count + reachable ∗ edge.intervalWidth();

end for
return count;

end function

Augmentation of an IDD with index information. The required state in-
dexing calls for an augmentation of the IDD, representing the reachable states, by
some information which allows the necessary computation. Inspired by [MC99]
we store the amount of lexicographic smaller states for each edge, which can be
reached by all its previous sibling edges. This style to organise the index informa-
tion allows to keep several sets within one and the same LIDD with different sets
having different nodes as root. Algorithm 1 sketches how to derive recursively
the LIDD representing S. The generated additional index data are labelled with
a pound (#) in Figure 1.

Determining a matrix entry. We need the value (rate) of the current matrix
entry R(i, j) to multiply the rate matrix with a vector or vice versa. This rate is
determined by the hazard function of the Petri net transition which is responsible
for the state transition from the state with index i to the state with index j.
Consequently, while computing the index pair for each state transition, we have
to compute this function value, too. See Algorithm 2.

Manipulating the matrix. Please recall, model checking of time-bounded
CSL operators for a CTMC M can be reduced to the problem of applying tran-
sient analysis to M ′ which has been derived from M by making certain states
absorbing. For this purpose, PRISM creates a new MTBDD representing the rate
matrix of M ′. In our approach this means only to call the procedure traverse
for the non-absorbing subset NESt of the enabling states ESt of a transition
t. When A is an IDD representing the set of absorbing states, NESt can be
computed efficiently by ESt \ A.

Model checking the X operator involves the so-called Embedded Markov
Chain (EMC). The EMC is a Discrete-time Markov Chain (DTMC), i.e. tran-
sitions are labelled with probabilities and the rate matrix R is replaced by the
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Algorithm 2. LIDD traversal
procedure traverseAllTransitions

//the following for loop can be parallelised
t : Transition;
ESt : Idd;
for 0 <= j < SPN.transitions() do

t := SPN.getTransition(j);
fa : FunctionArgumentSet;
ESt := S ∩ RevFire(S, t);
traverse(t, ESt.root, S.root,S.root, 0, 0, fa);

end for
end procedure

procedure traverse(t : Transition, root : IddNode, src, dest : LIddNode,
srcIndex, destIndex : int, fa : FunctionArgumentSet)

if root = ONE then
//e.g. vector-matrix r=v*M :
//r[srcIndex] = v[destIndex]*rf.compute(fa)
//rate is M[srcIndex][destIndex]
rate : double;
rate := t.rateFunction.compute(fa);
processData(srcIndex, destIndex, rate);
return ;

end if
p : Place;
value, value2, srcIndex2, destIndex2 : int;
edgeIndexSrc, edgeIndexDest : int;
edgeIndexSrc, edgeIndexDest := 0;
src2, dest2 : LIddNode;
edge : Edge;
p := src.correspondingPlace();
for 0 ≤ i < root.edges() do

edge := root.edge(i);
if edge.node() �= ZERO then

value := edge.lowerBound();
while value < edge.upperBound() do

value2 := value;
if isPreP lace(p, t) then

fa.setArgument(p, value);
end if
value2 := value + getWeight(p, t);
edgeIndexSrc := nextEdgeIndex(src, edgeIndexSrc, value);
edgeIndexDest := nextEdgeIndex(src, edgeIndexDest, value2);
src2 := src.edge(edgeIndexSrc).node();
dest2 := dest.edge(edgeIndexDest).node();
srcIndex2 := srcIndex+smallerStates(src, edgeIndexSrc, value);
destIndex2 := destIndex+smallerStates(dest, edgeIndexDest, value2);
traverse(edge.node(), src2, dest2, srcIndex2, destIndex2, fa);
value := value + 1;

end while
end if

end for
end procedure

function smallerStates(node : LIddNode, edgeIndex, val : int) int :
smaller : int;
edge : LIddEdge;
edge : node.edge(edgeIndex);
smaller := 0;
if edgeIndex > 0 then

smaller := node.edge(edgeIndex − 1).smaller;
end if
return smaller + (val − edge.lowerBound()) ∗ edge.node().lastEdge().smaller;

end function
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probability matrix P, where each entry (s, s′) represents the probability of a
state transition from s to s′. The sum of each row of P is 1. The EMC Me is
derived from a CTMC M by defining P as P(s, s′) := R(s, s′)/E(s). We assume
that the values E(s) for all states are stored in a vector. Multiplying the EMC
with a vector means to adapt Algorithm 2 by the code given in Algorithm 3.

This approach should also work for PRISM’s traversal algorithm. PRISM uses
a further MTBDD to represent the EMC, for which the number of terminal nodes
and thus the overall number of nodes can explode (see Section 4).

Algorithm 3. Adaptation of Algorithm 2 to handle Embedded Markov Chains

if root = ONE then
// e.g. vector-matrix r=v*M :
// r[srcIndex] = v[destIndex]*rf.compute(fa)
// rate is M[srcIndex][destIndex]
rateEmbedded : double;
rateEmbedded := t.rateFunction.compute(fa)/E[srcIndex];
processData(srcIndex, destIndex, rateEmbedded);
return ;

end if

3.2 Optimization Techniques

In this section we sketch some optimization techniques contributing to the effi-
ciency of our approach.

Variable Ordering. It is well known that the chosen variable order is crucial
for the size of decision diagrams and thus for the efficiency of related algorithms.
[Noa99] suggests a greedy algorithm to obtain a static variable order for Zero
Suppressed Binary Decision Diagrams which is based on heuristics exploiting the
Petri net structure. The basic idea is to create an order where related variables
are close together. Related variables are in our case places, which are directly
connected by a Petri net transition. The heuristic algorithm creates step-wise an
order ω, starting at the lowest IDD level and using the weight function W (p) to
determine the next place from the set of unprocessed places to be inserted in ω
based on the set of already processed places Q. Using the standard dot notation
to specify the set of pre- or postnodes of a given node we define W (p) by:

W (p) :=
Σt∈•p

|•t∩Q|
|•t| + Σt∈p• |t•∩Q|

|t•|
| •p ∪ p • | . (1)

Our approach benefits from the observation that the variable orders obtained by
this algorithm usually yield small IDDs, see [Tov08], [HST09], and Section 4.

A prominent heuristics to represent matrices as MTBDDs relies on variable
orders with alternating row and column variables. Additionally, it is worthwhile
to find a good overall variable order, as we will see in Section 4. PRISM reads
models as they are, i.e. it will not change the order of modules and the vari-
ables therein contained. Using the sketched ordering algorithm when specifying
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PRISM models generally speeds up the state space construction and the model
checking significantly.

Caching. As for every implementation of decision diagrams, efficiency depends
on considering redundancies. Generally, nodes on lower IDD levels will be visited
many times. Subpaths beginning in these nodes will be traversed each time anew.
Following [Par02] we set a certain layer of the LIDD and cache index and rate
information for each of its nodes for all paths to reach this node. Each time a
node of the cache layer is reached, the cache data must be retrieved only.

Our algorithm traverses the LIDD transition-wise driven by an unlabelled IDD
representing the enabling states of the transition or a non-absorbing subset of it.
Thus it is necessary to store transition-specific information for all LIDD nodes
of the cache layer. The cache data contain for each transition the index pair and
the rate function of all possible path extensions. Each visit of a cache layer node
comes with a unique index pair and a unique set of function arguments which
allow to compute all related matrix entries using the cache data. A cache datum
consists of an index pair and a rate function. Often many index pairs refer to the
same function. Thus we associate to a function a set of index pairs. In general, a
cache layer node keeps several rate function instances and their assigned index
pairs for each transition. Changing the enabling states or the rates of the CTMC,
e.g. by uniformisation, needs to reinitialise all cache data.

To use cache data requires a modification of Algorithm 2. When visiting a
cache layer node, the transition-related cache data will be processed and the
procedure traverse returns, compare Algorithm 4.

A crucial point for an implementation of this approach is to store the cache
data, in particular the index sets, as memory-saving as possible. A naive way
of doing this is to store lists of index pairs. But a closer look to the possible
values reveals that there are often consecutive pairs with a fixed step size. This
is a consequence of the fact that we obtain a huge state space by filling a Petri
net with tokens, but without changing its structure. If such sequences of con-
secutive index pairs exceed a critical length it is worthwhile to represent them
by a tuple (first rowIndex, first colIndex, row stepSize, col stepSize, steps).
Then, the sequence (0, 0); (5, 10); (10, 20); . . . ; (100, 200) can be encoded by the
tuple (0, 0, 5, 10, 20). An issue here is to find a suitable critical length.

Traversal for transition sets and arbitrary state sets. The basic algorithm
sketched so far requires a separate traversal for each transition of the stochastic
Petri net. An improvement is to generalise the algorithm such that it controls
the traversal of the LIDD S for a set of transitions and an IDD encoding an
arbitrary set of states S′ ⊆ S. Then the algorithm must treat lists of source and
target indices. The lists contain for each transition an entry holding the current
traversal data. The basic algorithm ensures that the traversal-controlling IDD
contains enabling states of a transition only. A generalization of the algorithm
must deal with disabling states, too. Our prototype tool IDD-CSL implements
the generalised algorithm.
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Algorithm 4. Adaptation of Algorithm 2 in order to use cache data
if cacheLayerReached() then

rate : double;
rf : RateFunction;
indices : IndexSet;
actSrcIndex, actDestIndex : int;
cd : CacheData;
cd := src.cacheData(t);
for 0 ≤ i < cd.entries() do

rf := cd.getFunction(i);
indices := cd.getIndices(i);
rate := rf.compute(fa);
for 0 ≤ j < indices.size() do

actSrcIndex := srcIndex + indices.getSrcIndex(j);
actDestIndex := destIndex + indices.getDestIndex(j);
processData(actSrcIndex, actDestIndex, rate);

end for
end for
return ;

end if

Parallelisation. Today’s workstations or even standard personal computers in
an everyday secretary office tend to possess two or more processors. Thus it
is appealing to take advantage of the available multiple processors. There are
basically two approaches to divide the problem of a matrix-vector multiplication
or vice versa into smaller tasks, which can be solved concurrently.

On the one hand one could divide the Petri net’s transition set and apply
the algorithm concurrently to each subset. Doing so obviously requires some
kind of synchronisation techniques. On the other hand one could partition the
state space. Applying our algorithm concurrently with forward (backward) firing
transitions with a partitioned state space means to devide the matrix row-wise
(column-wise) into submatrices and requires no synchronisation when doing a
matrix-vector (vector-matrix) multiplication, because each row (column) is con-
sidered for all transition by only one thread. When synchronisation is required
all threads get their own complete result vector and collect the results of all
other threads after each computation phase.

Although parallelisation is not the focus of this paper, we are going to indicate
its potential by presenting some related results in the following section.

4 Benchmarks

In this section we present results comparing our prototype implementation IDD-
CSL with PRISM, and by transitivity with a couple of CSL model checking tools
on the market [JKO+08]. As benchmarks we consider stochastic Petri nets of the
following popular biochemical networks.

– The mitogen-activated protein kinase (MAPK) cascade published in [LBS00]
and discussed as three related Petri net models in [GHL07], [HGD08]. All
initial states considered in our paper are multiples of level 4. This is the
minimal initial (integer) state respecting the ratio in the initial (real-valued)



306 M. Schwarick and M. Heiner

concentrations as given in [LBS00]. Our model is structurally identical with
the MAPK cascade given on the PRISM website. The models only differ in
the names of variables, the initial state and the specified rate constants.

– The RKIP inhibited ERK pathway (ERK) published in [CSK+03], analysed
with PRISM in [CVOG05], discussed as qualitative and continuous Petri
nets in [GH06], and as three related Petri net models in [HDG10].

– The circadian clock model (CC) published in [BL00] and available as PRISM
model on the PRISM website.

For the comparison with PRISM we either use the export feature of our modelling
tool Snoopy [Sno08] (MAPK, ERK) or an available PRISM model (CC). The lat-
ter example needs capacities to enforce boundedness, which we
simulate in the Petri nets by complementary places. All models have scalable
initial states. The experiments consider biomass action (resp. biolevel interpreta-
tion) semantics, for which IDD-CSL offers the predefined BioMassAction (resp.
BioLevelInterpretation) function.

Our implementation makes use of Intel’s instruction set extension SSE2 which
could also speed up PRISM. In some cases the efficiency gain is about 10 percent.
Our test system is a Dell Precision workstation with 4 GB main memory and
an Intel Xeon with 4 × 2.83GHz running a 64bit Linux. In our computational
experiments we focus on runtime. All related figures are given in seconds.

The influence of variable order. In contrast to the modelling style in [KNP08],
our generated monolithic PRISM models consist of one module only, with a mod-
ule variable for each place. The value range of the variables (boundedness degree)
and the variable order were computed by our IDD-based tool box. Table 1 illus-
trates the impact of the chosen variable order on PRISM’s efficiency for different
levels of the MAPK cascade, and Table 2 the CTMC size for different levels com-
puted with PRISM using a good variable order.

Table 1. Comparison of two variable orders. The table shows the time and the number
of MTBDD nodes, which PRISM needs to construct the rate matrix of the CTMC for a
good variable order,computed using formula (1), and for the plain order of the original
PRISM model, specified according to [KNP08].

levels terminal good order original order
nodesa) time nodes time nodes

4 30 0.12 8,672 2.47 123,730
8 76 1.56 60,452 401.68 3,881,914

12 140 22.99 199,496 - -
16 219 71.25 542,339 - -
20 320 296.87 953,146 - -
24 453 635.92 2,029,598 - -
28 697 928.45 3,771,617 - -
32 770 1847.60 6,015,521 - -

a)i.e., number of different entries in rate matrix; ’-’ exceeds the available memory;
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Table 2. CTMC size for different levels computed with PRISM using a good variable
order, see Section 3.2. In principle our tool IDD-CTL allows to compute the state space
up to level 320 (2.627e+27 states ) in about 2 minutes on a standard personal computer
[HST09]. However, the transient analysis it limited to the available memory to store
the required vectors π(α, τ ) in the size of the state space.

levels number of states number of edgesa)

4 24,065 206,007
8 6,110,643 78,948,888
12 315,647,600 4,958,809,056
16 6,920,337,880 122,381,517,819
20 88,125,763,956 1,689,018,298,500
24 769,371,342,640 15,635,976,824,982
28 5,084,605,436,988 108,065,356,604,208
32 27,124,071,792,125 597,236,499,605,178

a) i.e., number of non-zero entries in rate matrix;

Table 3. The formula P>0.0[F[0,1]RafP = 2] is true for all states for which the prob-
ability is not zero to reach a state within one time unit which satisfies RafP = 2. For
model checking of this formula all states satisfying RafP = 2 become absorbing; there
are 1, 083, 102 of them. The derived CTMC M ′ comprises 64, 368, 742 state transitions.

PRISMa)

clb) totalc) iterd)

65 208.35 140.82
60 222.67 169.76
55 201.23 154.94
50 200.13 158.99
45 195.83 159.90
40 198.43 163.03
35 214.64 179.90
30 226.16 191.22
25 218.51 184.06
20 230.66 195.92
1 2318.86 2275.71

IDD-CSL
cl 1 thread 2 threads

total iter total iter
3 440.23 170.06 432.77 157.08
5 158.65 110.02 158.71 99.75
7 93.84 79.48 72.71 55.01
9 84.62 75.51 62.57 50.55
10 84.49 75.04 60.81 49.17
11 90.65 81.73 64.08 52.18
13 100.40 91.39 67.47 55.97
15 127.72 118.09 81.40 69.71
17 253.60 243.05 147.85 134.09
19 692.84 676.05 387.62 368.08
21 1808.66 1771.00 957.26 917.07

a) using a good variable order, determined by the network structure, see Table 1;
b) cache layers; c) includes time for state space construction, initialisation, computation
and determining the satisfying states; d) effective probability computation time;

The influence of caching. Tables 3 and 4 compare the runtime of IDD-CSL
and PRISM with different cache layers1 for the eight level version of the MAPK
cascade with biolevel interpretation semanctics. We use the flat PRISM model
with a good variable order, compare Table 1, for these experiments. We take
formulae which differ only in the specified time intervals. The interval [0, 1] – in
1 In PRISM the highest cache layer is the root node layer, in IDD-CSL it is the

terminal node layer. PRISM’s hybrid engine is used.
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Table 4. The formula P>0.0[F[1,1]RafP = 2] is true for all states for which the
probability is not zero to be at time 1 in a state which satisfies RafP = 2 . Any path
formula F[τ,τ ]φ is suitable to trigger transient analysis up to time point τ using CSL
model checking.

PRISMa)

cl total iter

65 242.80 163.05
60 231.65 170.69
55 275.53 219.89
50 222.23 173.32
45 210.13 167.48
40 209.91 168.83
35 212.23 171.38
30 211.43 170.39
25 221.78 181.28
20 231.90 192.46
1 2745.47 2691.70

IDD-CSL
cl 1 thread 2 threads

total iter total iter
3 382.00 148.05 365.91 129.08
5 135.06 94.01 124.50 74.27
7 88.74 75.84 67.32 50.43
9 82.22 73.47 60.25 48.34
10 81.58 72.82 58.55 47.21
11 87.67 78.98 62.42 51.11
13 97.53 88.98 65.55 54.34
15 124.67 116.00 78.85 67.56
17 260.95 250.09 150.66 137.09
19 782.22 766.00 428.38 409.02
21 2128.20 2087.00 1150.41 1106.00

a) using a good variable order, determined by the network structure, see Table 1;

contrast to the interval [1, 1] – generally results into a set of absorbing states due
to the CSL model checking algorithm [BHHK00]. A high amount of absorbing
states reduces memory consumption and run time.

The MTBDD needs 66 row and 66 column Boolean variables. The IDD needs –
independently of the number of levels – 22 integer variables, i.e. as many as there
are places in the Petri net model. Thus, the MTBDD hight is 132, and the IDD
hight is 22. The tables show the total processing time and the effective iteration
time for the computation of the probability vector π(α, 1), which requires 218
iterations for each experiment of the used formulae. The best results in terms of
total time and iteration time, depending on the used cache layer are highlighted
in bold. The last line in each table represents the case where caching is disabled.

Further results. Table 5 and 6 present results for the transient analysis using
CSL model checking for the ERK model and the circadian clock model with
biomass action semantics. We give the total run time for both tools. In general
PRISM’s explicit sparse matrix engine is faster then its hybrid MTBDD engine
at the expense of a higher memory usage [JKO+08]. The tables show that our
tool outperforms also the sparse engine. The CTMC size affects the model check-
ing performance. Thus, a high amount of absorbing states (which depends on
the CSL formula) may significantly speed up the model checking. Except from
choosing the engine or the number of threads, we run the tools with their de-
fault settings. Please note that changing, e.g., the cache layer would affect the
run time and the memory consumption.

We also performed experiments with the X operator; we report here of one of
them, which relates to the MAPK cascade. The formula P<0.1[XRafP = 2] is
true for all states for which the probability is less than 0.1 to reach in one step
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Table 5. CSL-based transient analysis of ERK for several initial markings. The for-
mula P>0.0[F[1,1]Raf1Star = 1] is true for all states for which the probability is not
zero to reach a state within one time unit which satisfies Raf1Star = 1.

level CTMC size PRISM IDD-CSL
states edges hybrid sparse 1 thread 2 threads

5 1,974 12,236 0.73 0.65 0.20 0.17
10 47,047 372,372 5.52 3.97 1.27 1.05
15 368,220 3,213,408 † † 20.73 16.67
20 1,696,618 15,609,594 † † 148.92 118.59
25 5,723,991 54,438,930 † † 740.28 581.39
30 15,721,464 152,964,146 † † 3,005.62 2,455.57
† time for initialisation exceeds 24 hours;

Table 6. CSL-based transient analysis of the circadian clock for several initial mark-
ings. The formula P>0.0[F[1,1]a = 1] is true for all states for which the probability is
not zero to reach a state within one time unit which satisfies a = 1.

level CTMC size PRISM IDD-CSL
states edges hybrid sparse 1 thread 2 threads

5 31,104 290,160 3.90 2.36 1.76 1.16
10 644,204 6,766,320 122.55 64.94 44.65 26.10
15 4,194,304 45,972,480 1,090.44 570.43 466.47 312.83
20 16,336,404 183,032,640 5,569.65 2,835.89 2,471.70 1684.96
25 47,525,504 539,650,800 † - 8,595.37 6,027.33
30 114,516,604 1,312,110,960 † - 26,085.95 17,314.66
− exceeds the physical memory; † time for initialisation exceeds 24 hours;

a state which satisfies RafP = 2. To represent the Embedded Markov Chain
PRISM creates an MTBDD which comprises 48, 149, 682 nodes, among which
are 217, 974 terminal nodes. The model checking takes 201.09 seconds including
state space construction and initialization. IDD-CSL requires five seconds.

The figures speak for themselves. The gap between PRISM and IDD-CSL gets
larger with increasing amount of levels (tokens, boundedness degree). Our data
structure is less sensitive to increasing the amount of levels, and does not care
about the amount of different matrix entries in the rate matrix.

5 Technicalities

The tool is implemented in C++, re-using our IDD-based CTL model checking
implementation IDD-CTL [HST09] and the GNU MB Bignum Library (GMP).
The parsing of CSL formulae has been generated by the lexical analyser and
parser generator flex and bison. For parallelisation we use the POSIX pthread
library. The tool comes as an all-inclusive binary (statically linked libraries) for
our development and reference test system Linux. Versions for Windows and
Mac/OS are in preparation.
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The Petri net models have been constructed using Snoopy [Sno08], [HRS08], a
tool to design and animate or simulate hierarchical graphs, among them stochas-
tic Petri nets as used in this paper. Snoopy provides export to various analysis
tools, recently complemented by PRISM, as well as import and export of the
Systems Biology Markup Language (SBML).

The tools are available at www-dssz.informatik.tu-cottbus.de, free of charge
for scientific purposes. At the same web site you find also the Petri net examples
(in Snoopy, APNN, and PRISM syntax), which we used as benchmarks in the
preceding section. Thus, all reported computational experiments can be easily
repeated.

6 Conclusions

We have presented a new tool for symbolic CSL model checking of ordinary
stochastic Petri nets. We combine approved heuristics with an innovative ap-
proach to represent symbolically a CTMC’s rate matrix by Interval Decision
Diagrams. We accept potentially higher computational costs in favour of smaller
data structures. The models have to be bounded, however, no a priori knowledge
of the precise boundedness degree is required. Likewise, we do not depend on a
suitable partitioning as Kronecker-based approaches do. A crucial point for the
tool’s performance are the algorithms exploiting knowledge of the network struc-
ture. The implementation benefits in particular from the chosen static variable
order which also increases PRISM’s performance significantly.

In total we gave the results of more than 100 computational experiments. The
presented benchmarks show that our data structure used for the symbolic state
space representation is relatively insensitive to increasing token numbers. The
IDD hight is completely defined by the number of variables. The IDD breadth
may increase with increasing token numbers, but this depends on the IDD com-
pression effect. Our approach is not sensitive at all to an increasing amount of
different entries in the rate matrix. In summary this means that we are able to
do transient analysis for any SPN for which we can construct the state space,
provided we have enough memory to keep the vectors π. Using our IDD-CSL
prototype we are now able to compute CSL properties, which were formerly not
amenable to analytic model checking, for examples see [GHL07], [HGD08].

We are working on improvements of the sketched optimisation techniques, in
particular the parallelisation. Furthermore we are going to support non-ordinary
stochastic Petri nets and full CSL model checking. Thus, iterative solving of
homogenous linear equation systems will be realised. For the time being we
model capacities of places by introducing complementary places, which does its
job, but blows up the models (e.g., our circadian clock model) and prohibits
the use of predefined functions as BioMassAction. To avoid such restrictions
and eventually improve performance and memory consumption, we are going to
support extended arc types, including the inhibitor arcs.

There are other stochastic Petri net tools, offering numeric analysis techniques
as transient analysis which is the key to CSL model checking, e.g. SMART
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[CJMS06] and Möbius [PCS07]. We will also compare our tool with them, in-
cluding technical networks in a representative benchmark suite as well.

Acknowledgements. We appreciate the support by the PRISM tool, which
we use in our back-to-back testing process as golden prototype.

Snoopy’s export to PRISM has been implemented by Fei Liu, who is funded
by the FMER (BMBF), funding number 0315449H. The export offers various
variable ordering options for comparison and teaching purposes.
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Abstract. Quantitative models in Systems Biology depend on a large
number of free parameters, whose values completely determine behavior
of models. These parameters are often estimated by fitting the system to
observed experimental measurements and data. The response of a model
to parameter variation defines qualitative changes of the system’s be-
havior. The influence of a given parameter can be estimated by varying
it in a certain range. Some of these ranges produce similar system dy-
namics, making it possible to define general trends for trajectories of the
system (e.g. oscillating behavior) in such parameter ranges. Such trends
can be seen as a qualitative description of the system’s dynamics within
a parameter range. In this work, we define an automata-based formal-
ism to formally describe the qualitative behavior of systems’ dynamics.
Qualitative behaviors are represented by finite transition systems whose
states contain predicate valuation and whose transitions are labeled by
probabilistic delays. Biochemical system’ dynamics are automatically ab-
stracted in terms of these qualitative transition systems by a random
sampling of trajectories. Furthermore, we use graph theoretic tools to
compare the resulting qualitative behaviors and to estimate those pa-
rameter ranges that yield similar behaviors. We validate this approach
on published biochemical models and show that it enables rapid explo-
ration of models’ behavior, that is estimation of parameter ranges with
a given behavior of interest and identification of some bifurcation points.

1 Introduction

Dynamic models in System Biology rely on kinetic parameters to represent the
range of possible behaviors when enzymatic information is incomplete. Analysis
of these parametrized models aims at the identification of parameter ranges yield-
ing similar qualitative behaviors, or of parameter values yielding a given behavior
of interest. Qualitative transient behavior can be successfully analyzed by model
checking algorithms applied to models admitting a computable path semantics.
However, in Systems Biology state explosion and negative decidability results
limit the scope of model checking to a certain subset of models. Moreover, some
published and curated Systems Biology models lack explicit semantics. Little can
be assumed for these “black box” models, except the possibility of simulation.
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Mining these simulation results to identify parameter regions yielding similar
behaviors is hindered by the size of the parameter space to explore, numerical
artifacts and the lack of formal definition of what it means for simulation results
to be similar.

In this paper, we propose the new formalism of qualitative transition systems
for abstracting simulation results in terms of discrete objects that admit efficient
similarity measures.

Indeed, simulation results for ODEs are obtained using numerical integration
schemes operating on floating point numbers. The resulting approximation is
problematic for the identification of precise transient properties since transient
properties of interest are mathematically by equality between real numbers (e.g.
f ′(x) = 0 is necessary for a local maximum) which is inconsistent in floating
point arithmetic[1]. Consequently, even analysis of basic properties (like the de-
tection of the first time a deterministic system is in a previously visited state) fail
in practice due to this inconsistency. Furthermore, different integration schemes
(n-th order, implicit/explicit) yield different and incomparable numerical ap-
proximations of the same trajectory. Although using normalized sampling and
fixed precision decimal numbers seem to solve this problem, the multiplicity of
time scales in ODEs show that this solution is not completely satisfying.

For dynamic models admitting a computable path semantics, the impact of
numerical artifacts is absent. Indeed, it is possible to compute a finite description
of the set of trajectories of the model. Consequently, for these models, model
checking algorithms can decide if a logical representation of a behavior holds, and
if not, can provide a counter example. Recently, a probabilistic model checking
approach was successfully used to solve the inverse problem: given a logical
representation of a transient behavior, return a parameter space in which any
trajectory satisfies the specified behavior with sufficiently high probability[2].
For dynamic models suitable for model checking, the intuitive notion of “similar
behavior” is thus fully formalized and generally decidable.

Contributions. In the next section we introduce Qualitative Transition Systems
(QTS) and define their probabilistic semantics. A novel abstraction operation is
defined in section 3 with the goal of building QTSs from simulation results. We
then show in section 4 that when constructing a QTS from an ODE, the QTS
construction can be made independent of the numerical integration scheme. In
section 5, we show that trajectory comparison using QTS can be made more
resistant to noise by detecting points of interest (extremums and inflection)
through the construction of a piecewise linear approximation (PLA). In section
6, we validate our approach on models from literature.

2 Qualitative Transition Systems

Given a set Σ, we denote by Σ∗ the set of all (finite) words s0 · · · sk over Σ. A
(finite) timed word over Σ is any word W = (t0, s0) · · · (tk, sk) ∈ (IR≥0 × Σ)∗

such that ti < ti+1 for i ∈ [0, k). The nonnegative real numbers ti are interpreted
as the absolute observation times and the si are the observed values. We will
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focus in the paper on the particular case of Σ = IRn, where observed values are
vectors of reals. In this case, timed words are called (multivariate) time series,
and are denoted S = (t0, x0) · · · (tk, xk).

We define a Qualitative Transition System (QTS) in the following way.

Definition 1. A qualitative transition system is a tuple A = 〈Q, E, µ, σ, w〉
where Q is a finite set of set of qualitative states, E ⊆ Q × Q is a finite set
of transitions, µ, σ : E → IR are mean and standard deviation labelings, and
w : E → IN is a weight labeling.

For any transition e ∈ E, µ(e) and σ(e) are respectively interpreted as being the
mean and the standard deviation of a normal distribution that is followed by a
random variable called sojourn time. The weight labeling w induces probabilities
for transitions. Formally, the transition probability labeling p : E → [0, 1] induced
by w is defined by

p(q, q′) =
w(q, q′)∑

(q,q′′)∈E w(q, q′′)
.

A QTS is thus a transition system where each transition is labeled with the
amount of time the system is idle before moving to another state. The delay
between two state changes follows a parametrized normal distribution. This has
to be contrasted with continuous Markov chains, where the sojourn time in a
state must be exponentially distributed (see e.g. [3] for a complete definition).

Suppose that a QTS is in the state q, and that there exists an outgoing
transition e = (q, q′). The probability of moving from state q to state q′ is p(e),
the transition probability of e. Suppose that the transition e is selected in favor
of other outgoing transitions; the system will stay in the state q for a delay
that is normally distributed with mean µ(e) and with standard deviation σ(e).
Let X be such a normally distributed random variable that denotes the sojourn
time in the state q, and let FX be its cumulative distribution function. The
probability to move from q to q′ between t1 and t2 time units is thus given by
FX(t2)−FX(t1). Contrary to the standard semantics of continuous time Markov
chains, our semantics does not involve a race condition. That is, in a given state,
the probability for the successor state is not conditioned by the delays but solely
by the transition weights, similarly to a discrete time Markov Chain.

3 Abstraction of a Time Series in Terms of Qualitative
Transition Systems

3.1 Abstraction of a Time Series in Terms of Timed Words

In order to represent a real-valued trajectory as an abstract-valued trajectory,
each concrete observation (t, x) of a time series S is transformed into an abstract
observation (t, a) where the observation time t is unchanged and a is an abstract
value in a finite domain A called the abstract domain. The rationale behind
abstraction is that two concrete observations that are transformed into the same
abstract observation are assumed indistinguishable w.r.t. qualitative properties.
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Formally, an abstraction function is any function α : IRn → A where A is a
finite domain. For any time series S = (t0, x0) · · · (tk, xk) in (IR≥0 × IRn)∗, the
abstraction of S is the timed word α(S) = (t0, α(x0)) · · · (tk, α(xk)) in (IR≥0 ×
A)∗. Note that abstraction functions may be combined by the cartesian product.
In practice, it is often desirable to use multiple-arity abstraction functions that
are defined on a fixed-width “window” of observations, i.e, functions (IRn)d+1 →
A where d ∈ IN is the window width.

For such a function α, the abstraction of S would be defined as the timed word
α(S) = (td, α(x0, . . . , xd)) · · · (tk, α(xk−d, . . . , xk)). Observe that α(S) = α(S′)
where S′ = (td, (x0, . . . , xd)) · · · (tk, (xk−d, . . . , xk)) is a time series over IRnd.
For simplicity, and without loss of generality, we only formalize our approach for
unary abstraction functions (with zero width).

For example, the sign function can abstract a time series into a timed word
over the domain domain {−, 0, +}. The rank function can abstract a timed word
over the domain {1, ..., n!} by mapping to each component of a vector its index in
the corresponding sorted vector. For example, sort(11,−2, 1, 2) = (−2, 1, 2, 11)
therefore rank(11,−2, 1, 2) = (4, 1, 2, 3). In the same way, the sign of the first
(resp. second) derivative can distinguish between intervals where the time series
is increasing (resp. rapidly increasing) or decreasing (resp. rapidly decreasing).
Abstracting the value of first derivative (resp. second derivative) requires two
points (resp. three points).

x ≤ y, x ≤ 0, y ≥ 0

2 4 6 8 10
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x ≤ y, x ≥ 0, y ≥ 0

x ≤ y, x ≤ 0, y ≥ 0

x ≥ y, x ≥ 0, y ≥ 0

x ≥ y, x ≥ 0, y ≤ 0

x ≥ y, x ≥ 0, y ≤ 0

x ≥ y, x ≤ 0, y ≤ 0

Fig. 1. Decomposition of a limit cycle of a two variables (x, y) system. By considering
the sign and rank of the variables, we map an abstract value (here denoted by a formula)
to each point of the trajectory. Boxes in the figure encompass successive points that are
mapped to the same abstract value. Successive points of the trajectory are collapsed
whenever they have the same abstract value, that is whenever they have the same sign
and rank. This trajectory can thus be abstracted as a seven state QTS.
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Since the abstract domain is finite, it is often the case that the abstract
time series α(S) has successive observations that are equal. These repeated
observations are removed by collapsing them. Formally, for any timed word
W = (t0, a0) · · · (tk, ak), let collapse(W ) be the timed word (ti0 , ai0) · · · (tih

, aih
)

where i0 < · · · < ih are such that i0 = 0 and aij = aij+1 = · · · = aij+1−1 �= aij+1

for every 0 ≤ j < h. Observe that collapsing is idempotent: for any timed word
W , it holds that collapse(W ) = collapse(collapse(W )). The reduced abstraction
of any time series S is then defined as the timed word collapse(α(S)).

3.2 Abstraction of a Timed Word in Terms of Qualitative Transition
System

The abstraction of a time series in terms of timed words abstracts the value com-
ponent of the time series. In order to adequately compare two timed words, we
also need to abstract the time of observations. Consider a timed word W =
(t0, a0) · · · (tk, ak) over an abstract domain A. To qualitatively abstract this
timed word, it is represented as a transition system by considering that for any
i ∈ [0, k), the pair ((ti, ai), (ti+1, ai+1)) of successive abstract observations of W
is induced by a timed transition ai → ai+1 between two states of a transition
system with a delay of ti+1 − ti. We can then consider the set of all transitions
between two given states. From such a set of transitions with identical source and
target, we suppose that the delays are approximately normal, and thus estimate
the mean and standard deviation of the supposed underlying normal distribu-
tion. In this way, the set of concrete transitions can be abstracted by a single
stochastic transition in a qualitative transition system. Formally, a timed word
is abstracted in terms of QTS with the following definition. For any finite subset
X ⊆ IR, we denote by E[X ] the mean of X and by V[X ] its variance.

Definition 2. The QTS abstraction of a timed word W = (t0, a0) · · · (tk, ak)
over A is the qualitative transition system A = 〈Q, E, µ, σ, w〉 with

Q = {ai | 0 ≤ i ≤ k} µ(q, q′) = E[∆(q, q′)]
E = {(ai, ai+1) | 0 ≤ i < k ∧ ai �= ai+1} σ(q, q′) =

√
V[∆(q, q′)]

w(q, q′) = |Γ (q, q′)|
where for any (q, q′) ∈ E, Γ (q, q′) is the set of pairs (i, j) with 0 ≤ i < j ≤ k
such that ai = q, aj = q′, and ai−1 �= ai = ai+1 = · · · = aj−1, and ∆(q, q′) is
the multiset defined by ∆(q, q′) = {tj − ti | (i, j) ∈ Γ (q, q′)}.
Note that in the definition, the set Γ (q, q′) contains pairs of indices (i, j) such
that all observations between i and j are removed by collapsing. Therefore, any
two timed words W and W ′ over A satisfying collapse(W ) = collapse(W ′) have
the same QTS abstraction.

4 Abstraction of the Transient Behavior of Deterministic
Parametrized Models

Deterministic parametrized models, such as ODE systems, can exhibit different
qualitative behaviors depending on the value of the parameters. When these
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systems admit a simulation algorithm (e.g. numerical integration), they generate
time series. We show in this section that under assumptions concerning the
simulation algorithms, the properties of interest of a given system are preserved
by the abstraction in terms of qualitative transition systems.

Sampling independence. In the context of time series obtained by sampling,
the definition of QTS obviously depends on the precision of the sampling. How-
ever, we show that for convex abstraction functions if the sampling is “precise
enough” then the QTS obtained from any oversampling has the same transitions
(but with more precise delay distributions). We first introduce additional nota-
tions. For any two vectors x, y ∈ IRn, we denote by xy the open line segment
between x and y, formally x y = {λx + (1 − λ)y | λ ∈ IR, 0 < λ < 1}. A time
series S = (t0, x0) · · · (tk, xk) is a sampling of a (partial) function f : IR≥0 → IRn

if xi = f(ti) for every i ∈ [0, k]. Given a time series S = (t0, x0) · · · (tk, xk), we
denote by ΛS : [t0, tk] → IRn its linear interpolation, defined by: ΛS(ti) = xi

for each 0 ≤ i ≤ k, and ΛS(t) = t−ti

ti+1−ti
xi+1 + ti+1−t

ti+1−ti
xi for each 0 ≤ i < k

and ti < t < ti+1. Given an abstraction function α : IRn → A, we say that α is
convex if α−1(a) is a convex subset of IRn for every a ∈ A.

We consider for the remainder of this section a convex abstraction function
α : IRn → A. When the sampling is precise enough, the linear interpolation
ΛS is often used in practice, in place of the “real trajectory”. We formalize this
notion of precision with respect to the abstraction function. A time series S =
(t0, x0) · · · (tk, xk) is called α-adequate if α(x) ∈ {α(xi), α(xi+1)} for every i ∈
[0, k) and x ∈ xi xi+1. It is called α-loose otherwise. Intuitively, when S is
α-adequate, the abstraction function α along xi xi+1 is either constant, or is
first equal to α(xi) on xi z and then equal to α(xi+1) on z xi+1, for some
z ∈ xi xi+1. Indeed, if α(xi xi+1) ⊆ {a, b} with a = α(xi) and b = α(xi+1)
being distinct, then, by convexity of α, the segment xi xi+1 is partitioned into
the two convex sub-segments xi xi+1∩α−1(a) and xi xi+1∩α−1(b), and z is at
the boundary between these two sub-segments. Therefore, an α-adequate time
series S captures all changes of α along its linear interpolation ΛS . However,
these changes are captured up to the precision ti+1 − ti of the sampling, which
leads us to the following definition. The α-fitting of an α-adequate time series
S = (t0, x0) · · · (tk, xk) is the abstract timed word Ŝ = (t̂0, â0) · · · (t̂k, âk) defined
by âi = α(xi), t̂0 = t0, and

t̂i+1 =

{
ti+1 if α(xi) = α(xi+1)
inf {t | t ≥ ti ∧ α(ΛS(t)) = α(xi+1)} otherwise.

Proposition 1. For any α-adequate time series S = (t0, x0) · · · (tk, xk), the
respective QTS abstractions 〈Q, E, µ, σ, w〉 and 〈Q̂, Ê, µ̂, σ̂, ŵ〉 of α(S) and Ŝ

satisfy Q = Q̂, E = Ê, w = ŵ. Moreover, letting ∆ = max
{
ti − t̂i | 0 ≤ i ≤ k

}
,

|µ(e) − µ̂(e)| ≤ ∆ and σ2(e) ≤ σ̂2(e) + 4∆2 + 4∆σ̂(e)
√

ŵ(e) for every e ∈ E.

Note that in the above proposition, we have ∆ ≤ max {ti+1 − ti | 0 ≤ i < n}.
Hence, the error on µ (w.r.t. to the α-fitted one) is bounded by the sampling
period.
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An oversampling of S is any sampling U = (u0, y0) · · · (ul, yl) of ΛS such
that t0 · · · tk is a subsequence of u0 · · ·ul. It follows from the definitions that
any oversampling of an α-adequate time series S is also α-adequate. Note that,
informally, the α-fitting of an oversampling of S is an “abstract oversampling”
of the α-fitting of S. According to Proposition 1, the QTS obtained by oversam-
pling S is equal to the QTS obtained from S, except for the imprecision on µ
and σ. This shows that for qualitative analysis there is little to be gained by
oversampling: α-adequate time series are sufficient.

Periodic orbits detection. Oscillations are ubiquitous qualitative behaviors
found in systems with a feedback loop. Although bifurcation analysis provides
numerical methods to establish the presence of periodic orbits for ODEs, these
methods cannot be applied to a general deterministic system such as an ODE
with events. However, we show in this section that a QTS can be used efficiently
to estimate the likelihood of a periodic orbit in a time series.

Under an adequate abstraction function, a QTS that abstracts the transient
behavior of a system with a periodic orbit has cycles in its transition rela-
tion. Consider a QTS obtained by applying the abstraction function α to an
α-adequate time series S obtained by sampling a continuous function f : t → IRn.
By definition, f admits an orbit if and only if there exists a time point t and a
period π such that f(t) = f(t + π). Furthermore, f admits a periodic and non
constant orbit if and only if there exists an intermediate time step t′ < t + π
such that f(t′) �= f(t + π). Since S is adequately sampled for α, there exist
at least three successive different values in collapse(α(S)) and consequently the
resulting QTS has at least a cycle of length 1.

Since equality between the real numbers and their floating point approxima-
tion is not coherent, detection of periodic orbits for a time series must rely on
estimations. To find a periodic orbit in a time series S it is sufficient to find a
period π ∈ IR≥0 such that there exist two elements (ti, xi), (tj , xj) ∈ S such
that (tj , xj) ≈ (ti + π, xi) for an adequate approximation relation ≈. However,
for ODE systems integrated with an adaptive time step algorithm this scheme
produces mainly false positives (successive integration steps in a quasi steady
region of an ODE) and false negatives (regions with high variability).

The existence of a periodic orbit of period π also implies that for any value
k ∈ IN, f(t) = f(t+k∗π). Thus, if the system reaches a periodic orbit at point l,
then the nearest points (according to an euclidean distance on IRn) of l contain
points from all possible periods.

Therefore, we estimate the likelihood of a periodic orbit by considering a point
l = (tl, xl) of S that we suppose being in the periodic orbit, and a set of sample
points P from S such that for any point p′ = (tp′ , xp′) in S − P , for any point
p = (tp, xp) in P , we have | xp′ − xl |>| xp − xl |. Less formally, P is a set
containing the points that are the nearest to l w.r.t. the euclidean distance. The
likelihood L((tl, xl), π, P ) of π being the period of the orbit of xl given a sample
P of neighbors of xl is then defined by
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L((tl, xl), π, P ) =

(∑
δ∈∆

([δ] − δ)2
)−1

with ∆ = {(tp − tl) /π | tp ∈ P} and [δ] being the integer part of δ.
Finding the period π that maximizes L is difficult in practice, since this func-

tion admits local maxima that are far from the global maximum. However, the
sum of the mean of the longest cycle containing the last observation in a QTS
provides a good initial guess of this period. (See the case study 6.2).

5 Accounting for Noise by Comparing Critical Points

Qualitative transition systems can capture the dynamics of a time series, even
if the time series contains numerical errors that are only local. In the case of
time series admitting global noise, abstraction functions that were adequate for
a smooth time series may not be resistant to noise and can generate a QTS that
inadequately captures the dynamics of noise. For example, abstracting with the
sign of the first derivate can adequately detect oscillations[2] but fails for time
series even with little noise. Although moving average can smooth a time series
and seem to circumvent this problem, the size of the window must be fixed a
priori and this approach is thus neither general nor adaptive.

We propose here an adaptive approach to capture the most important points
w.r.t. the shape of a time series. The critical points of continuous function f :
IR → IR are the set of points where f ′(x) = 0. These are points where the
function f either has a peak and changes direction (local or global extremum)
or presents a curvature change (inflection points). In both cases the shape of
f changes around the point. We generalize this definition to time series in the
following way.

Definition 3. The critical point of a time series S = (t0, x0) · · · (tk, xk) is the
point (tc, xc) ∈ S maximizing the function Λ(tc, xc) = |xc − x0| + (tc − t0) ∗
(xk − x0)/(tk − t0).

The critical point of a time series is the point of maximal distance with the
linear interpolation between the first and last points of the series. In a numerical
context, this point is uniquely defined.

A critical point splits the time series in two time series. Since a critical point
is also defined for these series, we can recursively approximate a time series by
considering a piecewise function which is linear between critical points.

Definition 4. The piecewise linear approximation of order i (hereafter PLA) of
a time series is the piecewise linear function on the intervals I0, ..., Ik where any
interval Ij has a lower bound (resp. upper bound) corresponding to the location
of the jth (resp. j + 1) critical point.

In order to compute the PLA of a time series, we define the piecewise linear
interpolations of a set of points as the union of the linear interpolation between
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two successive points. The computation of the PLA of order i is then performed
as follows.

PLA(S, i) returns a list of critical points of S = (t0, x0) · · · (tk, xk) for each
dimension of S.

1. For each dimension d ∈ [0, dim(x)],
(a) Initialize the critical points with the first and the last point of S projected

on the dimension d : Cd ← {(t0, πd(x0)), (tk, πd(xk))}.
(b) While | Cd |< i,

i. Compute the linear interpolation between each successive pair of Cd:
Let Λj(t) = t−tj

tj+1−tj
xj+1+ tj+1−t

tj+1−tj
xj,where (tj , xj) and (tj+1, xj+1)

are two successive points in Cd

ii. Build the piecewise linear interpolation: let Λ(t) = Λj(t) for t ∈
[tj , tj+1],

iii. Let (tc, xc) = argmax{πd(xc) − Λ(tc) | (tc, xc) ∈ S},
iv. Insert (tc, πd(xc)) in Cd s.t. Cd remains sorted w.r.t. the first com-

ponent
2. Return {Cd | d ∈ [0, dim(x)]}

The previous algorithm cannot append a point twice to the list of critical points.
Indeed, once a point is appended to the list it becomes a bound of the piece-
wise linear interpolation that is used for determining the next critical point.
Consequently, at this point the distance between the next piecewise linear inter-
polation and the time series is 0, and the distance can not be maximized. Note
that this does not hold for the piecewise linear regression. Which implies that,
for any unidimensional time series, the segmented linear regression of i intervals
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Fig. 2. Example of piecewise linear approximation applied to two randomly generated
noisy time series. The first of the three successive plots represents the time series while
the last two plots represent the result of the first two iterations of the PLA algorithm.
After two iterations, the PLA algorithm selects two points (as well as the first and
last point) that are considered as being representative of the global shape of the time
series.
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minimizing the residuals with the time series can be obtained by considering the
critical points as bounds of the interval.

Examples of critical points. Critical points are highly related to the shape
of the time series. Consider for example the sigmoid shape: a simple shape de-
scriptor may simply specify that we start from a low plateau, follow an almost
vertical increase before reaching another high plateau. Such a sigmoid shape ex-
hibits two critical points, one at the end of the first (low) plateau, and one at the
start of the second (high) plateau. Similarly, consider an oscillatory time series
such as the one depicted in figure 2: its critical points contain the successive
highest local maximum and the lowest local minimum.

6 Case Studies and Experimental Results

In this section we show how our approach can be used in practice by solving four
problems related to qualitative behavior analysis. Although each problem and
solution is illustrated on a specific model, the methods that are used are general-
purpose. All the models used in this section were downloaded from the BioModels
database[4] in the SBML V2 L1 format[5], simulated using MathSBML[6] and
were used without any modification. Simulations were performed on an Intel
Core2 3,2GH personal computer and each algorithm was allowed to run for at
most five minute. If parameter values are not specified in the case studies, it
means that those provided in the SBML file were used.

6.1 Searching a Trajectory with a Given Periodic Orbit

The first model we consider is a model of the cell cycle based on the interactions
between the cyclin dependent kinase cdc2 and cyclin [7]. The model is comprised
of six variables and ten parameters. We consider the following problem. Given the
representative trajectory and its associated parameters described in the original
article (left in figure 3), what kind of similar trajectories can be found in the
whole parameter space ?

Abstracting the behavior of the left figure with a rank abstraction function
yields the QTS depicted in the right part of figure 3. Notice the highlighted non
deterministic states. These states and transitions are due to numerical errors and
happen while the system reaches its periodic orbit. Consequently, the weights of
the outgoing highlighted transitions are 1 while the incoming transitions are 17.
All other transitions in the single cycle of the QTS have a weight of 18.

We obtained 500 random samples for the six parameters considered as being
critical by the original author. For each parameter sample, we computed the
trajectory, abstracted it in terms of QTS by applying the rank function and
computed the Sorensen similarity index over the set of transitions to compare
the sampled QTS with the representative QTS. Figure 4 depicts a subset of the
results. Note that we chose parameter values exhibiting “similar” sustained os-
cillations, but of different transient behaviors. We then compared these results
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Fig. 3. Dynamic behavior of the cell cycle model for default parameter values. Left: an
example of trajectory obtained by numerical integration of the Tyson cell cycle model
[7]. Right: abstraction of this trajectory in terms of QTS by using the rank function as
the abstraction function (transition labels are omitted). The total standard deviation
of this QTS is 0.07. The states and transitions highlighted by the circle correspond to
stochastic transitions and represent numerical integration errors.
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Fig. 4. Trajectory comparison for the Tyson cell cycle model. For 500 randomly sam-
pled parameter spaces, we abstracted the simulated trajectory in terms of QTS by using
the rank function. Trajectories were clustered in 9 bins by measuring the Sorensen sim-
ilarity index between each of the 500 QTS with the QTS of the figure 3. From each
of the nine clusters, a representative trajectory is depicted here together with its QTS
and similarity value. These trajectories are sorted (column wise, increasing) by their
similarity value.

with the one obtained with a stochastic simulation algorithm. For each simula-
tion result, we used the PLA algorithm to reduce each noisy trajectory to its
50 most critical points, and abstracted these points in terms of QTS by apply-
ing the rank function. Trajectories similar to the one simulated with numerical
integration were found for comparable parameters values.
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Fig. 5. Oscillation period for the MAPK cascade model. Left: contour plot representing
the period of oscillations. The bottom axis (resp. left axis) represents values of the k4
(resp. v5) parameter. The contour plot was built with 500 simulations with random
parameters. Regions with comparable periods are represented by a region with uniform
color. Right: Two example trajectories exhibiting oscillations of minimal and maximal
period A:1094 time units and B:2236 time units.

6.2 Estimating the Period of Orbits

The model of MAPK cascade from [8] describes the effect of negative feedback
and ultra-sensitivity on the emergence of oscillations. We investigated the dy-
namics of the period of the orbits under parameter changes. To estimate these
periods, we considered the parameters {k4, v5} as random variables following an
uniform distribution over the intervals [0, 1] and [0, 0.1]. For parameters’ sample
of size 500, we abstracted the corresponding time series in terms of QTS. These
QTS were then reduced by removing transitions whose probability decreased as
the simulation advanced. We then approximated the orbit’s period with the sum
of means of the transitions of the longest cycle of the QTS. This approximation
was then used in a local maximization procedure to identify the exact period
value maximizing the likelihood function. In our tests, providing this initial “ed-
ucated guess” of the period value to the maximization procedure yielded the
global maximum in 98% of cases.

We can see from the results (figure 5) that, for this parameter subspace,
oscillating behavior is very common and that the dynamics of the period does
not exhibit abrupt changes.

6.3 Searching for Any Periodic Orbits

We consider again the MAPK cascade model [8] but with a more general objec-
tive. We consider the problem of detecting the possible oscillating behaviors and
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Fig. 6. Example trajectories of the MAPK cascade exhibiting oscillating behavior
found with a random sampling of ten parameters of the MAPK cascade model [8].
On the right of each plot, the associated QTS reduced to its periodic form; under it,
the period value with maximum likelihood.

of computing the probability of finding an oscillating behavior in a larger pa-
rameter subspace. The parameters of interest are {k3, k4, k7, k8, V5, V6, V9, V10}
and are considered as random variables following an uniform probability over the
interval [0, 1] ⊂ IR. We built a QTS as in previous sections. In this study, only
periods in the range [200, 5000] with a likelihood greater than 10 were considered
genuine. Although all the resulting trajectories exhibit transient or limit cycle
oscillations, they follow different transient dynamics. The four example trajecto-
ries of figure 6 show a subset of the possible dynamics: each of these time series
admits a specific alternation of species at their maximum concentration. Multiple
instances of each of these dynamics were successfully identified by applying the
method from section 6.1. The number of samples needed before finding an oscil-
lating behavior was 57 on average. For comparison, when k3, k4, k7 and k8 were
sampled in the interval [0, 0.1], the average number of samples needed dropped
to 10.6.

6.4 Searching for Given Transient Behavior in a Parameter
Subspace

The extracellular signal regulated kinase (ERK) pathways plays a role in a hid-
den oncogenic positive feedback loop via a crosstalk with the Wnt pathway
[9]. The pathological cases identified by the authors involve “an irreversible re-
sponse leading to a sustained activation of both pathways”. Applying our QTS
construction with random samples of the β-catenin synthetic rate (V12) yields
results depicted in figure 7.

This model involves 28 species, 58 parameters, and 2 discrete events. Applying
the rank abstraction yields transition systems with a state space of 600 states
on average out of the possible 28! state configurations.
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Fig. 7. ERK Crosstalk simulation results. From top left to bottom right, simulation
results are sorted by similarity with the non pathological case (reversible activation).
The sampled value of v12 and the similarity index with the non pathological case are
under each plot.

7 Discussion and Conclusions

In this paper, we have described the formalism of qualitative transition systems.
A QTS is a transition system where each transition is labeled with the amount of
time the system requires before moving to another state. The delay between two
state changes follows a parametrized normal distribution. We have shown how
QTS can be used to study qualitative properties of parametrized models. This
is achieved by defining an appropriate abstraction function. By representing the
characteristic qualitative features of a trajectory in an abstract domain that is
countable, qualitative similarity can be detected by a simple equality test.

We have shown that the soundness of this approach depends on the adequacy
of sampling with respect to the abstraction function. In particular, we have
shown that for convex abstraction functions, if the sampling is “precise enough”,
then the QTS obtained from any oversampling has the same transitions. Finally,
we applied this approach to some well known models. QTS were used to explore
the parameter space and to detect uniform behaviors (oscillations etc.).

The limits of our approach as compared to model checking is the lack of
exhaustivity. This has to be counterbalanced by the fact that our method is
applicable to a large panel of formalisms, even those lacking a precise semantics.
Consequently, we can avoid any model transformation. Finally, our approach
can be applied independently to the data and to the model. The areas of future
research for qualitative transition systems can be declined on the both technical
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and practical plans. As for the former, we envision a more thorough study of
similarity measures of QTS and how QTS similarity relates to language equiv-
alence. As for the latter, we plan to develop clustering techniques in order to
detect the resulting behavior similarity in an experimental context.
Funding. This work was supported in part by the European Commission FP6
programme “Yeast Systems Biology Network” (YSBN), LSHG-CT-2005-018942.
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