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Abstract. The modeling of concepts from a cognitive perspective is im-
portant for designing spatial information systems that interoperate with
human users. Concept representations that are built using geometric and
topological conceptual space structures are well suited for semantic sim-
ilarity and concept combination operations. In addition, concepts that
are more closely grounded in the physical world, such as many spatial
concepts, have a natural fit with the geometric structure of conceptual
spaces. Despite these apparent advantages, conceptual spaces are under-
utilized because existing formalizations of conceptual space theory have
focused on individual aspects of the theory rather than the creation of
a comprehensive algebra. In this paper we present a metric conceptual
space algebra that is designed to facilitate the creation of conceptual
space knowledge bases and inferencing systems. Conceptual regions are
represented as convex polytopes and context is built in as a fundamen-
tal element. We demonstrate the applicability of the algebra to spatial
information systems with a proof-of-concept application.

1 Introduction

In recent years there has been an increasing demand for research on the repre-
sentation and modeling of cognitive phenomena for spatial information systems
[21,22]. Semantic similarity measurement in particular has been an active area
of research for spatial applications [17,29]. Since human users interface and in-
teroperate with these systems, they must have a means for representing the
conceptual structures that exist in the users’ minds, especially those concepts
that are related to spatial cognition. Although geometric modes of concept repre-
sentation have not been as widely adopted as other representational frameworks
for cognitive modeling, they have garnered interest from researchers in the spa-
tial sciences, because many spatial concepts are intrinsically thought of in terms
of their geometric and topological features.

Models of human cognitive processes require a formal representation that a
computer system can interpret. The two prevailing frameworks for representing
cognitive processes are the symbolic and connectionist methods [9]. The symbolic
method aims at modeling high-level abstract concepts using symbol manipula-
tion schemes. Inferences are often the result of first-order logical operations on
the symbols in the model. The connectionist method attempts to model cogni-
tion in a way that more closely compares to the biological neural structure of
the brain, mathematically represented as nodes and their weighted connections.

K. Stewart Hornsby et al. (Eds.): COSIT 2009, LNCS 5756, pp. 51–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



52 B. Adams and M. Raubal

While useful for many cognitive computational tasks, both of these representa-
tional frameworks do not perform well at modeling certain aspects of cognition,
specifically semantic similarity and concept combination. Semantic similarity
measurement is fundamental to the task of cognitive categorization, because
conceptual units are classified with other conceptual units with which they are
most similar [28]. Using symbolic representations, the combination of concepts
is most often measured as the set-theoretic intersection of the properties of two
classes, but this method fails when combining concepts without shared properties
[10]. For example, stuffed gorilla combines the concepts stuffed and gorilla. How-
ever, the gorilla concept has no intersecting properties with the stuffed concept
because it is a living thing. In addition, ad hoc concepts, which by definition are
concepts that combine from different domains, are similarly difficult to represent
using symbolic representations [16]. In the case of connectionist representations,
even small connectionist models can be highly complex and become unwieldy
for representing semantics on the level needed for operating with concepts.

As a complement to the two representational frameworks listed above, Gär-
denfors has introduced conceptual space theory [9]. Conceptual spaces are geo-
metric and topological structures that represent concepts as convex regions in
multi-dimensional domains. This theory constitutes a mid-level spatialization
approach to concept representation and is particularly suited as a framework for
spatial information systems. Conceptual spaces can model semantic similarity
naturally as a function of distance within a geometric space, and conceptual
regions are subject to geometric operations such as projections and transforma-
tions that result in new concept formations.

Critics of conceptual space theory have contended that its usefulness has
only been demonstrated for simplistic cases with little abstraction and using
formalizations that are designed for specific contexts [33]. It is our position that
rather than being due to theoretical limitations, the difficulty in assessing the
experimental worth of conceptual spaces has been in part that no conceptual
space algebra exists with well-defined operations that allow one to build and
reason with complex conceptual space structures. To help rectify that situation,
in this paper we present a metric conceptual space algebra, consisting of formal
definitions of its components and operations that can be applied to them. The
work builds upon previous formalizations of conceptual spaces but aims to be
more comprehensive both as a mathematical model and as a launching pad for
computational implementation. Our key contributions are the formalizations of
query operations for semantic similarity measurement and concept combination.

Section 2 introduces conceptual space theory and previous formalization
approaches. In section 3, we define a conceptual space algebra with its com-
ponents. Concepts are thereby represented as convex polytopes. In addition,
contrast classes and context are formally defined. Section 4 presents the alge-
braic operations, i.e., core metric operations, and query operations for similarity
and concept combination. Section 5 applies the conceptual space algebra to the
problem of comparing countries and regions of the world with different contexts.
The final section presents conclusions and directions for future research.
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2 Related Work

The theory of conceptual spaces was introduced as a framework for representing
information at the conceptual level [9]. Conceptual spaces are based on the
paradigm of cognitive semantics, which emphasizes that meanings are mental
entities, i.e., mappings from symbols to conceptual structures, which refer to the
real world [20]. They can be utilized for knowledge representation and sharing,
and account for the fact that concepts are dynamic and change over time [4,26].

A conceptual space is a set of quality dimensions with a geometric or topologi-
cal structure for one or more domains. Domains are represented by sets of integral
dimensions, which are distinguishable from all other dimensions, e.g., the color
domain. Concepts cover multiple domains and are modeled as n-dimensional re-
gions. Every instance of the corresponding category is represented as a point
in the conceptual space. This allows for expressing the similarity between two
instances as a function of the spatial distance between their points. Recent work
has investigated the representation of actions and functional properties in con-
ceptual spaces [12].

Vector algebra offers a natural framework for representing conceptual spaces.
A conceptual vector space can be formally defined as Cn = {(c1, c2, . . . , cn)|ci ∈
C} where the ci are the quality dimensions [25]. Vector spaces have a metric and
therefore allow for the calculation of distances between points in the space. This
can also be utilized for measuring distances between concepts, either based on
their approximation by prototypical points or regions [30]. Calculating semantic
distances between instances of concepts requires that all quality dimensions of
the space must be represented in the same relative unit of measurement. Given
a normal distribution, this can be achieved by applying the z-transformation
for these values [7]. Different contexts can be represented by assigning weights
to the quality dimensions of a conceptual vector space. Cn is then defined as
{(w1c1, w2c2, . . . , wncn)|ci ∈ C, wj ∈ W} where W is the set of real numbers.
The use of convex hull and Voronoi tessellation algorithms can be used to learn
conceptual space regions from a set of data points [13].

Work has been done to link conceptual space theory to established represen-
tational frameworks. Conceptual spaces are mid-level representations and they
have been bridged to higher-level symbol representations [3]. The geometric rep-
resentation of concepts has been extended to a fuzzy graph representation as well
[27]. However, the work done so far has not provided an integrated framework
that encompasses the full suite of conceptual space principles within a mathe-
matically defined geometric and topological structure, which is the aim of the
algebra presented here.

3 Formal Definitions

In this section we present a formal definition of a metric conceptual space and its
components. The conceptual space definition is mathematical and designed for
the practical goal of facilitating the construction of conceptual space knowledge
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bases. For this reason, the convex regions used to represent concepts are specified
with more explicitness than in previous formalizations of conceptual spaces.
Convex regions are defined as a convex polytopes [14], which are generalizations
of polygons to n dimensions. The n−1 dimensional faces of a convex polytope are
called facets. This definition of a concept region was chosen because operations on
polytopes are computationally tractable for domains composed of more than two
dimensions. Curved regions can be approximated using polytopes in much the
same way that polygon primitives are used to describe more complex structures
in geographic information systems (GIS) and computer graphics applications. In
addition, there are mathematical representations for convex polytopes that are
generalizable over any number of dimensions. This is important, because unlike
in GIS and graphics applications, the number of dimensions in a domain can be
arbitrarily large.

A designation of the context is required for many conceptual space algebra op-
erations. Methodologies for representing context for similarity measurement has
been an active research area [19]. We extend the notion of context for similarity
as weights on domains as well as quality dimensions. Take, for example, a con-
ceptual space with a color domain that is composed of three quality dimensions:
hue, value, and saturation. It is conceivable that one may want to weight the en-
tire color domain lower in a night context [36], while also weighting value higher
than hue and saturation. This secondary weighting has the effect of making a
dark red color more similar to a dark blue color than to a light red color.

The role of context is not confined to similarity measurement. When com-
bining concepts the salience of the domains for each concept helps to determine
which regions override other regions. Given the ubiquity of context, we define a
context as a set of salience weights that can be applied to components of any
type in the conceptual space. This definition leaves open the option of applying
salience to objects in the conceptual space in a manner beyond what is discussed
in this paper, which will facilitate extending the operation set of the algebra.
For example, one can create a context for a set of instances where each instance
in the set is given its own salience weight for prototype learning.

3.1 Metric Conceptual Space Structure

A metric conceptual space is a multi-leveled structure. A distinction is made be-
tween the representation of the geometric elements (regions and points) and the
conceptual elements (concepts, properties, and instances). In contrast to other
formalizations of conceptual spaces, regions and points are associated with only
one domain each, and not with the conceptual space as a whole. Concepts and
instances, on the other hand, span across one or more domains. This structure
facilitates semantic similarity measurements for concepts and instances that take
into account different distance measurements for within and between domains
as well as concept combination operations that operate domain-by-domain.

The following definitions are organized in a top-down way beginning with the
definition of a conceptual space and defining each component of this space in
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turn. We refer to concepts, properties, and instances as objects in the conceptual
space.

Definition 1. A metric conceptual space is defined as a 6-tuple, S = 〈Δ, Γ, Ĭ,

�, K, c〉.
• Δ is a finite set of domains, where a domain δ ∈ Δ.
• Γ is a finite set of concepts, where a concept γ ∈ Γ .
• Ĭ is a finite set of instances, where an instance ı̆ ∈ Ĭ.
• � is a finite set of contrast classes, where a contrast class �∈ �.
• K is a finite set of contexts, where a context k ∈ K.
• c is a constant similarity sensitivity parameter.

The set components of a conceptual space are dynamic and can be modified by
applying algebraic operations. The conceptual space algebra defines a number
of operations that take elements from one or more of the components of the
conceptual space and produce values. In some cases query operations will pro-
duce numeric or Boolean values, but in other cases they will produce higher-level
structures such as new concepts and modify the existing set. In the latter case,
the products are inserted into the appropriate set component. For example, an
operation to learn a new concept will add the new concept into the Γ component
of the conceptual space.

3.2 Domains and Quality Dimensions

Definition 2. A domain is defined as a set of quality dimensions, δ = Q. Q
is the finite set of integral quality dimensions that form the domain, where a
quality dimension q ∈ Q. ∀q, q ∈ δ ∧ δ �= δ′ ⇒ q /∈ δ′.

Definition 3. A quality dimension is defined as a triple, q = 〈μ̂, r̂, ô〉.
• μ̂ indicates the measurement level or scale of the dimension, where μ̂ ∈
{ratio, interval, ordinal}.

• r̂ indicates the range of the dimension, where r̂ is a pair r̂ = 〈min, max〉.
• ô indicates whether the dimension is circular, where ô ∈ {true, false}.

The quality dimensions in a conceptual space represent a means for measuring
and ordering different quality values of objects in the space (in the case of con-
cepts these values might be a range of values). There are four widely-recognized
scales of measurement – nominal, ordinal, interval, and ratio – that can be used
to assign values to data, and each of these measurement levels has associated
with it different mathematical properties [32]. The μ̂ component of a quality
dimension can specify the quality dimension scale as ordinal, interval, or ratio.
Interval and ratio scales both work naturally for quality dimensions because dif-
ferences in measurements can be easily compared due to the fact that the units
for these scales are equalized. An ordinal scale’s values are rank ordered and are
consistent with the ordering operations of a conceptual space algebra. However,
conclusions of semantic similarity for ordinal quality dimensions should be made
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with care, taking into account the fact that ordinal scales do not have equalized
scales. Psychometric analysis techniques for imposing a distance measurement
on an ordinal scale (e.g., Rasch models) can be used to convert an ordinal scale
to interval scale [24]. Since, we are primarily interested in quality dimensions as
ways of specifying measurement and for use in ordering operations, nominally
scaled quality dimensions are not directly supported by this definition. However,
it is possible to represent the values on a nominal scale as properties in a do-
main. One approach for modeling geographic nominal data values as regions in
a conceptual space has been shown in [2].

Quality dimensions can be phenomenal or scientific, which means they rep-
resent subjective psychological dimensions or are defined by positivist scientific
theories, respectively [11]. Conceptual spaces are equally capable of representing
both types of dimensions and there is no distinction made between scientific and
phenomenal dimensions in the formal definition. A circular dimension is one that
wraps around, so the maximum distance value is r̂max−r̂min

2 . For example, the
hue dimension in the color domain is a circular dimension with value range of
[0, 2π], and any measured distance will be < π.

3.3 Concepts, Properties, and Instances

Definition 4. A concept is defined as a pair, γ = 〈♦, P 〉.
• ♦ is a finite set of convex regions, where there is an injective relation
between ♦ and Δ. That is, there is a one-to-one relationship from regions in
the set to domains and there can only be one region per domain.

• P is a prototypical instance.

Definition 5. A property is defined as a concept with |♦| = 1.

A concept is a collection of convex regions across one or more domains and an
associated prototypical instance. ∀p, p ∈ P ⇒ ∃
, 
 ∈ ♦ ∧ p ∈ 
. The prototypes
or representative members of a concept play an important role in categorization
[28]. There is experimental evidence that the perceived similarity of an object to
a prototypical exemplar is used by humans during classification [15]. Given the
prototypical instance(s) of one or more concepts, one can derive the regions that
compose it using a Voronoi tessellation technique [13]. Conversely, a prototypical
instance can be identified by finding the point of central tendency for a set of ex-
emplar points in each domain. The measurement level of the quality dimensions
determines how the central tendency is calculated: the geometric mean (or the
arithmetic mean of the natural logarithm scale) for ratio scaled, the arithmetic
mean for interval scaled, and the median for ordinal scaled dimensions.

Definition 6. A convex region 
 is defined as a convex polytope in the n-
dimensional space corresponding to a given domain, δ.

As defined, a convex region in a conceptual space can be represented as either
1) a set of vertices that constitute the convex hull of the region or 2) a bounded
intersection of half-spaces that can be written as a set of linear inequalities [14].
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Fig. 1. Example region in education index domain and H-Polytope representation

The first representation is called a V-polytope and the second representation
a H-polytope. The H-polytope and V-polytope representations are equivalent,
but some important core operations, such as point inclusion, have much better
combinatorial complexity when starting with a H-polytope representation.

A region within an n-dimensional domain can be written in the H-polytope
matrix form Aq ≤ b, where q is a variable transpose vector and each qi corre-
sponds with an ∈ Q:

⎛
⎜⎜⎜⎝

a11 a12 · · · an1

a21 a22 · · · an2

...
...

. . .
...

am1 am2 · · · anm

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

q1

q2

...
qn

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎝

b1

b2

...
bm

⎞
⎟⎟⎟⎠

The values in any row i of the A matrix and b transpose vector correspond to
the coefficients of the linear inequality that defines the ith half-space boundary
of the polytope.

Figure 1 shows a region with five facets in a domain built from two dimensions:
adult literacy rate (ALR) and gross enrollment ratio (GER). The domain is based
on the United Nations’ measure of educational attainment [35]. A country’s
education index is equal to 2

3 × ALR + 1
3 × GER. Here we define a concept of

medium education attainment as the region where 0.5 ≤ education index ≤ 0.8.

Definition 7. An instance ı̆ is defined as a finite set of points with an injective
relation to Δ. That is, there is a one-to-one relationship from points in the set
to domains and there can only be one point per domain.

Instances, which can be thought of as real-world objects or data points for train-
ing sets, are represented by a set of points (or vectors) in one or more domains.
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Definition 8. A point p is defined as a vector of quality dimension values in
the n-dimensional space corresponding to a given domain, δ.

3.4 Contrast Class

Definition 9. A contrast class � is defined as a region in a unit hypercube
that corresponds to a domain in the conceptual space. Each dimension of the
hypercube corresponds to one quality dimension in the domain. The region is
specified by one or two parallel hyperplanes that intersect the unit hypercube:

min : −a1x1 − a2x2 − · · · − anxn ≤ −b1

max : a1x1 + a2x2 + · · · + anxn ≤ b2

Contrast classes are described as a special type of property (or class of properties)
by Gärdenfors. We define it as a unique type of element for the algebra, because
it is used differently from a normal property by algebraic operations. It is more
appropriately thought of as a function that describes sub-regions relative to
regions in a domain. In a one-dimensional domain the contrast class region is
bounded by two points on a unit line segment; in two dimensions the region is
bounded by two parallel lines intersecting a unit square; and so on. The operation
for combining a contrast class with a concept is detailed in section 4.

Some common contrast classes are large, small, old, young, northern, south-
ern. The example shown in figure 1 is the result of combining a medium contrast
class to the education attainment property. Education attainment covers the
square area [0,1] on both dimensions, and the medium contrast class is projected
on that region resulting in the medium education attainment sub-region.

3.5 Context

Definition 10. A context k is defined as a finite set of salience weight, con-
ceptual space component pairs k = 〈ω, component〉. The conceptual space com-
ponents in the context must all be of the same type (e.g., quality dimensions),
which is referred to as the context type. In addition,

∑n
i=1 ωi = 1 where each

weight ωi in a context has a value 0 ≤ ωi ≤ 1.

If a context is used in an operation that is applied to a context typed conceptual
space component that is not included in the context then the salience weight
of that component is 0. For example, if a similarity operation is applied to
two instances that span the same three domains and the context only contains
weights for two of the three domains then the third dimension’s salience weight
will be 0 for the operation.

4 Algebraic Operations

In this section we introduce the algebraic operations that can be placed on the
components of a conceptual space. We organize the operations into core metric
operations on points and regions followed by similarity and concept combination
query operations. We use shorthand notations for the components (Table 1).
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4.1 Core Operations

Regions and points are the most primitive objects in a conceptual space, each
existing within a single δ ∈ S. Since a domain is a metric and topological space,
all of the operations that can be applied to regions and points in a topolog-
ical vector space are applicable. The computational implementation of these
operations essentially reduces to problems of numeric linear algebra, which are
well-established. With the understanding that there are many more operations
possible on these primitive types, we present the particulars of how the H-
polytope representation of conceptual regions can be used to implement inter-
section and inclusion operations algorithmically. In addition, the within domain
distance metric for points and regions is defined.

�1

⋂ �2 → �new. This function calculates the intersection of two convex re-
gions. The result is a new convex region or an empty set. The first step of an
algorithm to calculate the intersection of two H-polytopes is to get the union of
the two systems of linear inequalities. It is possible that this union will result
in redundant inequalities, so a linear programming problem is constructed to
remove these redundancies: Given two regions 
1 and 
2 represented as Aq ≤ b
and Sq ≤ t, respectively, maximize each inequality sT q in 
2 subject to Aq ≤ b
and only add the inequality to the union if the optimal value is less than or
equal to t [8]. There are several algorithmic techniques used for solving linear
programming problems, the most popular being the Simplex method [6]. The
Simplex method performs very well in most cases, averaging a number of itera-
tions that is less than three times the number of inequalities in the set [23]. The
total computational complexity of the intersection operation is therefore linear
with respect to the number of inequalities in most cases.

p ∈ � → Boolean. The inclusion operation given a point and a region rep-
resented as a H-polytope is equivalent to testing whether the point satisfies the
entire system of linear inequalities. The computational complexity is linear with
respect to the number of facets in the polytope.

Table 1. Notation for named elements

Notation Meaning Example

γconcept named concept γeuropean state

�concept
domain region of concept in domain γeuropean state

coordinates

δdomain named domain δcoordinates

δdomain
quality dim quality dimension in domain δcoordinates

latitude

�
domain
contrast class contrast class in domain �

coordinates
southern

δ (γP ) domain of property δ
(
γtemperate zone

)
= δcoordinates

Q
(
δdomain

)
quality dimensions of domain Q

(
δcoordinates

)
= {longitude, latitude}
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dist(p1, p2, k) → R. The distance metric for two points that exist within the
same domain is defined as a weighted Euclidean metric, where the weights are
determined by a quality dimension-typed context, k.

dist(p1, p2, k) =

√√√√
n∑

i=1

ωi(p1i − p2i)2

where n is |Q|, i is an index to an ordering of Q, qi is the ith element in that
ordered set, and (ωi, qi) ∈ k. If a dimension is circular then the difference p1i −
p2i in the above equation will be modulo the range of the quality dimensions
divided by two. Euclidean distance measure, as opposed to another instance of
the Minkowski metric, was chosen because of experimental results that show
its cognitive plausibility for measuring the similarity of concepts composed of
integral qualities [9,18]. When the qualities are separable, the city-block distance
was found to be more appropriate, which is captured by the similarity operation.

Normalization of dimensions is important to ensure that a change in units
does not result in a different distance measurement and subsequently a different
similarity measurement. However, given the variety of options depending on
the structure of domains, we reserve normalization as a preprocessing operation
rather than an integral component of the distance measure.

4.2 Query Operations

Similarity. Experiments on similarity cognition have shown that the similarity
of two objects can be measured as an exponentially decaying function of the
distance between the two objects: sim(d) = e−cd [31]. The following similarity
operation utilizes a compound distance function that takes into account the
structural distinction of separable and integral dimensions.

sim(̆ıA, ı̆B, k, K) → R. Given two instances, ı̆A and ı̆B, a domain-type context,
k, and a set of quality dimension-type contexts, K, this function calculates a
distance between ı̆A and ı̆B. Let Δı̆ = Δ(̆ıA)

⋂
Δ(̆ıB). The distance between

two instances is a weighted sum of all of the within domain Euclidean distance
measures for each p ∈ ı̆:

d(̆ıA, ı̆B, k, K) =
|Δı̆|∑
j=1

kj ×
√
|Q (δj)| × dist (pj (ı̆A) , pj (̆ıB) , Kj)

where j is an index to an ordering of Δı̆. Ignoring context weights, the result
of this distance function is a composite value that is ≥ the Euclidean distance
and ≤ the city-block distance, if all the quality dimensions were in one multi-
dimensional space. The context and context set parameters allow one to apply
saliences on both domain and quality dimension levels. Because Euclidean and
city-block metrics are being mixed, each weighted within-domain Euclidean dis-
tance measure is also normalized by the square root of the cardinality of the
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domain to prevent low dimensional domains from having more salience than
high dimensional domains. Following this distance function we get the following
similarity function for two instances:

sim(̆ıA, ı̆B, k, K) = e−cd(̆ıA,ı̆B ,k,K)

sim(γA, γB, k, K) → R. There are many possible methods for measuring the
distance between two regions within a domain. The simplest method is just to
measure it as the distance between prototypical points within each region. The
analogue to that method for a similarity measure between concepts would be to
measure the distance between prototypical instances for the two concepts using
the similarity function just described. Other methods have been proposed to
measure distance between spatial conceptual regions using the vertices of the
convex hull of the region [30]. The advantage to these methods is that they
allow for asymmetrical distance measurements, the lack of which is a common
criticism of geometric models of similarity [34]. Using the V-polytope form of
the regions, the methods can be used to calculate the within-domain distance
for each domain, which can then be summed in a weighted form as above. The
distance from an instance to a concept can also be calculated.

Concept combination. Gärdenfors describes techniques for combining con-
cepts in conceptual spaces, but his methodology has not been formalized yet [9].
Here we describe three concept combination operations using the components
of a conceptual space as defined above. The operations are property-concept,
concept-concept, and contrast class-concept combinations. For these operations
it is important to note that one concept is the modifier concept and the other is
the modified concept. This distinction is linked with the importance of the order-
ing of concepts in linguistic expressions. For example, the concept combination
green village is distinct from the concept combination village green. We follow
a convention that the modifier concept is the first parameter and the modified
concept is the second parameter of any combination operation.

The following algorithms describe how the regions of concept combinations
are formed. With all three concept combination operations not only new regions
but also new prototypical points need to be learned. The process is the same for
all three. For any newly created region 
new, the new prototypical point is set
equal to the centroid of 
new. Alternately, in the case that an associated instance
set is available, the prototypical point can be learned from the set of instances
∈ 
new.

combine (γP , γC) → γnew. Algorithm 1. The combination of a property and
a concept is the simplest case. There is no need to specify the salience of the
domains, because it is understood that δ(γP ) is of higher salience. In the case
that γC does not have a region specified for the domain of γP , the property’s
region is added to the concept. When the property region is part of a specified
domain for γC then there are two possible outcomes. The property region and the
concept region for that domain can overlap, in which case the new concept region
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is the intersection of the regions. If they do not overlap, the property region will
override the concept region in that domain. For example, the property-concept
combination purple mountain will override the mountain region in the color
domain to the purple region assuming that the color region for mountain is in
another area of the color domain. The other domains are unaffected.

Algorithm 1. Property-Concept Combination
operation combine(γP , γC) → γnew

if Δ (γC) � δ (γP ) then
if �γP

δ(γP )

⋂ �γC
δ(γP )

= ∅ then

γnew ⇐
(
♦ (γC) −

{
�γC

δ(γP )

}) ⋃ {
�γP

δ(γP )

}

else
γnew ⇐

(
♦ (γC) −

{
�γC

δ(γP )

}) ⋃ {
�γP

δ(γP )

⋂ �γC
δ(γP )

}

end if
else

γnew ⇐ ♦ (γC)
⋃ {

�γP
δ(γP )

}

end if
return γnew

combine (γA, γB, KA, KB) → γnew. Algorithm 2. As with similarity, context
plays an important role in concept combinations. When combining two concepts
that both span more than one domain, only the regions in a subset of the do-
mains will be affected depending on the context. For both concepts a salience
weight is given for each domain (i.e., a domain-type context). If the domains are
shared by the two concepts then the context will determine which concept has
precedence. Otherwise, the new concept will adopt the region from the concept
for which the domain is specified. Currently, the weights are only for comparison,
therefore values of 0 and 1 are sufficient. However, room is left for more complex
combination operations that take into account the differences in weight values.

combine(�, γ) → γnew. The operation to apply a contrast class to a concept
only affects the domain for which the contrast class is defined, which we refer to
as δCC . For the sake of brevity, the following is a high-level description of the
operation, which at a low-level relies on standard geometric operations. Let 

be the region of γ in δCC and p the prototypical point ∈ 
. Find the minimum
bounding box around 
, which gives a range magnitude for each dimension of

. Stretch the contrast class unit hypercube (and min, max hyperplanes accord-
ingly) to the size of the minimum bounding box. Center this stretched version
over p and intersect the hyperplane(s) with 
 to get 
new. γnew is equal to γ
in all other domains with 
new. Figure 2 illustrates these steps with a contrast
class tall and concept mountain in a size domain with two dimensions: height
and width. This operation can be applied recursively. For example, tall can be
applied again to tall mountain to obtain a region for very tall mountain.
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Algorithm 2. Concept-Concept Combination
operation combine(γA, γB , KA, KB) → γnew

Let Δnew = Δ (γA)
⋃

Δ (γB)
Let γnew = ∅
for all δ ∈ Δnew do

if δ /∈ Δ (γB) then
insert �γA

δ into γnew

else if δ /∈ Δ (γA) then
insert �γB

δ into γnew

else { // check context}
if KAδ > KBδ then

γnew = γnew

⋃
combine (γAδ, γBδ)

else
insert �γB

δ into γnew

end if
end if

end for
return γnew

5 Application: Country Concept Comparison

The developed metric conceptual space algebra provides a means for creating
complex conceptual space structures and applying similarity and concept com-
bination operations to concepts represented in the space. In order to demonstrate
the functionality of these algebraic operations and its use for spatial problems
with high dimensional data, we present a case study where the algebra is used
for the comparison of countries and regions of the world.

The countries of the world and the groups to which they are classified are
complex concepts. The United Nations Development Program (UNDP), for ex-
ample, divides the countries of the world into eight mutually exclusive classes:
Arab States, East Asia and Pacific, Latin America and the Caribbean, South
Asia, Southern Europe, Sub-Saharan Africa, Central and Eastern Europe and
the CIS, and High-Income OECD [35]. This classification scheme is based on a
combination of cultural, geographic, political, historical, and economic factors,
but as such it does not afford the ability to make more nuanced comparisons
between countries and regions. With a conceptual space representation these fac-
tors can be organized into separable domains. The similarity of countries can be
compared based on context, and concept combination can generate new classes.

5.1 Data Collection

Data for 155 countries were aggregated from the CIA World Factbook, UNDP,
and the World Resources Institute [5,35,37] and were used to represent each
country as an instance in a conceptual space with 16 quality dimensions orga-
nized into six domains (Table 2). The UNDP classes were represented as concepts
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(a) Tall contrast class (b) Mountain region

(c) Stretched contrast class (d) Tall mountain region

Fig. 2. Example contrast class-concept combination: tall + mountain

formed by taking the convex hulls of country instances in that class for each do-
main. We defined the prototypes of these classes as the set of points formed by
mean values of all the instances in the class. For the population and size dimen-
sions the values were scaled logarithmically. All data values and dimensions were
then normalized so that each quality dimension had a range [0,1].

5.2 Results

For demonstrating the similarity operation, three contexts were created, which
we refer to as “natural resources”, “geographic”, and “human issues”1. Table 2
presents the weights for each context. Using the instance similarity operation we
found the similarity between every pair of countries for a given context. Table 3
shows a sample of these similarity results for Turkey.

To demonstrate the use of contrast classes we defined a northern contrast
class for the coordinates domain as δcoordinates

latitude ≥ 0.5 and combined it with the
eight UNDP classes. This contrast class corresponds roughly to the top half –
along the latitude dimension – of any region (re-centered over the prototype) in

1 These context weights and their associated labels were chosen merely to illustrate
the similarity operation, without making a claim for cognitive plausibility.
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Table 2. Country conceptual space domains and contexts

Domains & Quality Dimensions Context N.R. Context Geo. Context H.I.

Size

{
Land area
Water area

0.4

{
0.8
0.2

0.3

{
0.5
0.5

0.1

{
0.5
0.5

Coordinates

{
Latitude
Longitude

0.0

{−
− 0.4

{
0.7
0.3

0.0

{−
−

Land type %

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Forests
Grasslands
Wetlands
Croplands
Barren
Urban

0.5

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5
0.0
0.1
0.4
0.0
0.0

0.3

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.2
0.2
0.2
0.2
0.2
0.0

0.1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.0
0.0
0.0
0.5
0.0
0.5

Education

{
Adult lit. rate
Gross enrol. ratio

0.0

{−
− 0.0

{−
− 0.3

{
0.7
0.3

Economic
{

GDP index 0.1
{

1.0 0.0
{− 0.2

{
1.0

Demographic

⎧⎨
⎩

Population
Pop. growth rate
Urban pop. (%)

0.0

⎧⎨
⎩

−
−
−

0.0

⎧⎨
⎩

−
−
−

0.3

⎧⎨
⎩

0.4
0.4
0.2

Table 3. Top 5 most similar countries to Turkey by context

Natural Res. Geography Human Issues

Thailand 0.877 Kyrgyzstan 0.833 Spain 0.890
Malaysia 0.875 Spain 0.832 Zimbabwe 0.872
Colombia 0.872 Italy 0.831 Uruguay 0.840

Mexico 0.867 Nepal 0.817 Greece 0.827
Viet Nam 0.855 Uzbekistan 0.815 Italy 0.815

the coordinates domain. Figure 3a shows the results of combining northern with
the coordinates region of sub-Saharan Africa. Also shown are all the instances
with points in the coordinates domain that lie within that region.

Next we created a property region in the land type domain to describe the
property desert-like. This region is defined as the area where barren ≥ 0.6 and
wetlands ≤ 0.1. The property was combined with the arab state concept to
create a desert-like arab state. Figure 3b shows a two-dimensional projection of
the land type domain with the result of this combination.

Finally, to test complex concept combination we created an ad hoc cat-
egory for arid, highly educated countries with a large urban population. In
the land type domain it was represented by a region where barren ≥ 0.5,
forests ≤ 0.1, and wetlands ≤ 0.05; in the education domain it was the re-
gion where 2

3 × ALR + 1
3 × GER ≥ 0.8; and in the demographic domain it was

the region where urban population > 0.8. The result was that one could repre-
sent, for example, the combination of this ad hoc category with the concept of
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(a) Northern sub-Saharan
Africa in coordinates

(b) Desert-like Arab state in
2D land type projection

Fig. 3. Concept combinations

Latin America to posit a scenario of an arid, highly developed version of Latin
America.

6 Conclusions and Future Work

In this paper we presented a metric conceptual space algebra that defines con-
ceptual spaces as multi-leveled representational structures with operations that
are well-suited for computational implementation. A clearer distinction is made
between domains and quality dimensions than in previous formalizations of con-
ceptual spaces, which allows for more expressivity for similarity and complex
concept combination operations. The conceptual regions that exist in domains
are defined as convex polytopes, so that primitive geometric and topological
operations can be implemented using algorithms that are tractable. We demon-
strated a practical application of conceptual space algebraic operations for a
spatial information system, though the algebra presented in this paper is de-
signed for general use [11].

This paper presented a theoretical framework for a metric conceptual space
algebra, and there exist many avenues for extending it. The described operations
assume no correlation between the different regions that compose a concept, but
in reality the quality values of concepts are very often correlated. One possible
solution is to integrate multivariate analysis with existing operations. In addi-
tion, concepts are often uncertain and dynamic. The algebra described in this
paper should be extended to accommodate convex regions that are fuzzy. Pa-
rameterized rough fuzzy sets may be one component to such an extension [1].
Introducing operations that allow one to query about the shape of conceptual
regions over time would also be a valuable addition to the algebra [26].
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