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Preface

First established in 1993 with a conference in Elba, Italy, COSIT (the International COn-
ference on Spatial Information Theory) is widely acknowledged as one of the most im-
portant conferences for the field of spatial information theory. This conference series
brings together researchers from a wide range of disciplines for intensive scientific ex-
changes centered on spatial information theory. COSIT submissions typically address
research questions drawn from cognitive, perceptual, and environmental psychology,
geography, spatial information science, computer science, artificial intelligence, cogni-
tive science, engineering, cognitive anthropology, linguistics, ontology, architecture,
planning, and environmental design. Some of the topical areas include, for example, the
cognitive structure of spatial knowledge; events and processes in geographic space;
incomplete or imprecise spatial knowledge; languages of spatial relations; navigation by
organisms and robots; ontology of space; communication of spatial information; and the
social and cultural organization of space to name a few. This volume contains the papers
presented at the 9th International Conference on Spatial Information Theory, COSIT
2009, held in Aber Wrac’h, France, September 21-25, 2009.

For COSIT 2009, 70 full paper submissions were received. These papers were
carefully reviewed by an international Program Committee based on relevance to the
conference, intellectual quality, scientific significance, novelty, relation to previously
published literature, and clarity of presentation. After reviewing was completed, 30
papers were selected for presentation at the conference and appear in this volume.
This number of papers reflects the high quality of submissions to COSIT this year.
These papers were presented in sessions held September 22-24, 2009 at the Centre de
la Mer, Aber Wrac’h, France.

The conference began with a day of tutorials and workshops. Two tutorials were of-
fered for COSIT registrants. They included a half-day tutorial on “Processes and
Events in Geographical Space” (Antony Galton) and a full-day tutorial on “Perspec-
tives on Semantic Similarity for the Spatial Sciences” (Martin Raubal and Alex
Klippel). Full-day workshops were offered on “Spatial and Temporal Reasoning for
Ambient Intelligence Systems” (Mehul Bhatt and Hans Guesgen) and “Presenting
Spatial Information: Granularity, Relevance and Integration” (Thora Tenbrink and
Stephan Winter). Based on the outcome of the workshops, special issues of journals
are planned that will feature the research presented at these workshops. The final day
of the conference is traditionally reserved for the COSIT doctoral colloquium. The
COSIT 2009 doctoral colloquium was organized and chaired by Clare Davies of the
Ordnance Survey, UK. This colloquium provides an opportunity for PhD students to
present their research in a friendly atmosphere to an international audience of fellow
students, researchers, and industry participants. Students at any stage of their PhD can
apply to participate. This colloquium is an ideal forum for presenting research in the
early stages, as well as work that is nearing completion.

A highlight of the COSIT conference series is its excellent keynote speakers. At
COSIT 2009, three keynote speakers were featured. On the first day of full presentations,
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the speaker was James Pustejovsky, Director of the Brandeis Lab for Linguistics and
Computation, Brandeis University. The next speaker on day two of the conference was
Neil Burgess, Deputy Director, Institute of Cognitive Neuroscience, at University Col-
lege London. The third speaker was Bill Hillier, Director of the Space Syntax Labora-
tory, University College London.

COSIT is held every two years, most recently during the month of September.
COSIT 2009 was held in the Centre de la Mer that overlooked the beautiful Baie des
Anges, site of the picturesque village of Aber Wrac’h in Brittany, France. In addition
to the beautiful location on the coast, conference participants also enjoyed an exhibi-
tion by a modern artist, Bruno Kowalski, who kindly organized an exhibition of his
recent paintings.

We are very grateful to the numerous generous sponsors of COSIT 2009 that
helped us to organize a high-level event, in particular the Region Britanny and city of
Brest, Groupement d’Intérét Scientifique Europole Mer, Institute Géographique Na-
tional, Ordnance Survey, UK, Taylor and Francis, and the German Transregional
Collaborative Research Center SFB/TR 8 on spatial cognition. The Cognitive Science
Society of the United States assisted student participation at the doctoral colloquium.
The success of the conference can be also attributed to the members of staff and doc-
toral students of the French Naval Academy Research Institute that provided continu-
ous support to the organization of the event from the very start. Special thanks to
Marie Coz, who supervised much of the administration and day-to-day organizing.

COSIT has both a Steering Committee and a Program Committee. The Steering
Committee now has 16 members, while the Program Committee for COSIT 2009
consisted of 63 leading researchers drawn from the fields listed previously. The
COSIT 2009 organizers would like to thank both committees for their help with this
conference. These committees oversaw all the reviewing and contributed greatly to the
shaping of the conference program. We thank also any additional reviewers who con-
tributed reviews on the papers submitted. Sadly, in late May 2009, the COSIT com-
munity lost a valued member, Professor Reginald Golledge of the Geography Depart-
ment at the University of California, Santa Barbara. Professor Golledge’s pioneering
work in spatial cognition and behavioral geography, for example, developing personal
guidance systems for blind travelers, has been immensely important for the field and is
widely recognized for its significance. Professor Golledge contributed greatly to the
COSIT conference series right from the early years of this conference, serving on both
the Steering Committee and the Program Committee, and he will be missed very much
by all COSIT participants.

In addition to the Steering Committee and Program Committee, the COSIT organizers
would also like to acknowledge Matt Duckham, who maintained the main COSIT web-
site and Jean-Marie le Yaouanc, who set up the local COSIT website. The organizers
thank all these individuals for their hard work in making COSIT 2009 a great success.

September 2009 Kathleen Stewart Hornsby
Christophe Claramunt

Michel Denis

Gérard Ligozat
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A Conceptual Model of the Cognitive Processing of
Environmental Distance Information

Daniel R. Montello

Department of Geography
University of California, Santa Barbara
Santa Barbara, CA 93106 USA

montello@geog.ucsb.edu

Abstract. I review theories and research on the cognitive processing of envi-
ronmental distance information by humans, particularly that acquired via direct
experience in the environment. The cognitive processes I consider for acquir-
ing and thinking about environmental distance information include working-
memory, nonmediated, hybrid, and simple-retrieval processes. Based on my
review of the research literature, and additional considerations about the sources
of distance information and the situations in which it is used, I propose an inte-
grative conceptual model to explain the cognitive processing of distance infor-
mation that takes account of the plurality of possible processes and information
sources, and describes conditions under which particular processes and sources
are likely to operate. The mechanism of summing vista distances is identified
as widely important in situations with good visual access to the environment.
Heuristics based on time, effort, or other information are likely to play their
most important role when sensory access is restricted.

Keywords: Distance information, cognitive processing, spatial cognition.

1 Introduction

Entities and events on Earth are separated by space—this separation is distance. Hu-
man activity takes place over distance and involves information about distance. Dis-
tance information helps people orient themselves, locate places, and choose routes
when traveling. It also helps people evaluate the relative costs of traveling from one
place to another and utilize resources efficiently, including food, water, time, and
money [1]. Understanding how humans think about and understand distance contrib-
utes to predictive and explanatory models of human behavior. For example, it has
been axiomatic to geographers, planners, and transportation engineers that humans are
effort minimizers and choose routes and destinations partially out of their desire to
minimize functional distance [2], [3], [4]. Because overcoming the separation be-
tween places that are further away generally requires more time, effort, money, or
other resources, we expect less interaction between places further away. This gener-
alization has been considered so fundamental to explanation in geography that it has
been dubbed the “First Law of Geography” (the repeated use of this phrase in

K. Stewart Hornsby et al. (Eds.): COSIT 2009, LNCS 5756, pp. 1-17] 2009.
© Springer-Verlag Berlin Heidelberg 2009



2 D.R. Montello

textbooks and research literature suggests it is taken quite seriously, e.g., see the Fo-
rum [5] in the journal Annals of the Association of American Geographers).

Behavioral geographers and others proposed some time ago that is was not
objective or actual distance that alone accounted for human activity. Instead, they
proposed that models of human spatial activity could be improved by considering
subjective distance—what people know or believe about distance [4], [6], [7], [8].
For example, when I choose to visit one store rather than another because it is closer,
I base this choice on my belief that the one is closer, whatever the true distance is.
Thus it is evident that understanding human perception and cognition of distances is
necessary for understanding human spatial activity and interaction between places.

Although much navigation and spatial planning can occur without precise metric
information about distances, or even without distance information at all, I have argued
elsewhere that some quantitative information about distances is required to explain
human behavior in the environment, for both conceptual and empirical reasons [1],
[9]. Neither information about the sequences of landmarks nor information about
travel times are sufficient by themselves (of course, travel time could provide the ba-
sis for metric information about the separations between places). Conceptually, some
quantitative distance information was needed by our evolutionary ancestors in order
to navigate creatively; such creativity includes making shortcuts and detours in an
efficient manner. Inferring the direction straight back to home after several hours or
days of circuitous travel requires distance information, not just information about
landmark sequences or travel times. Such creativity clearly is still valuable in present
times for many of us, in many situations. Empirically, systematic observation that
people can make metrically accurate distance estimates, and can perform shortcut and
detour tasks with some accuracy, supports the psychological reality of distance
knowledge [1], [10], [11].

Recognizing its importance and pervasive role in human activity, this paper pro-
vides a comprehensive and interdisciplinary review of the cognitive processing of
distance information by humans. It also proposes a conceptual model of the percep-
tion and cognition of environmental distance. As I stated in [1], a complete model of
environmental distance knowledge and estimation provides answers to four questions:

1. What is perceived and stored during travel that provides a basis for dis-
tance knowledge?

2. What is retrieved from long-term memory (LTM) when distance infor-
mation is used (e.g., when travel planning is carried out) that determines
or influences distance knowledge?

3. What inferential or computational processes, if any, are applied to infor-
mation retrieved from LTM to produce usable distance knowledge?

4. How does the technique used to measure distance knowledge influence
estimates of distance?

Distance knowledge and its expression as measured data in cognitive research result
from processes and information sources addressed by the first three questions, in addi-
tion to aspects specific to the measurement technique used to collect estimates, ad-
dressed by the fourth question. In [12], I reviewed techniques for measuring distance
knowledge, comparing techniques based on psychophysical ratio, interval, and ordinal
scaling; mapping; reproduction (i.e., retraveling); and route choice. Of course, re-
searchers have uncovered significant new insights about distance estimation since my
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review. One of the most significant insights about estimating distance (and other spa-
tial properties such as slope) concerns an apparent dissociation between spatial
knowledge expressed via direct motoric action, such as retraveling a route as part of
distance reproduction, and knowledge expressed via indirect, symbolic techniques,
such as verbal estimation in familiar units (a common technique I grouped with ratio
scaling methods in [12]), [13], [14].

In [1], I focused on the sources of information for distance knowledge, addressing
primarily the first two questions above. To the extent that distance information is
acquired via travel through the environment, knowledge of distances must ultimately
be based on some kind of environmental information, such as the number of land-
marks encountered, or proprioceptive information, such as the bodily sense of travel
speed. I organized these sources of information into three classes: (1) number of en-
vironmental features, typically but not exclusively visually perceived, (2) travel time,
and (3) travel effort or expended energy. I concluded that environmental features
enjoys the most empirical support as a source of distance information, although not all
types of features are equally likely to influence beliefs about distance. Features no-
ticed by travelers and used by them to organize traveled routes into segments will
most impact distance knowledge, e.g., [15], [16]. Two explicit variants of features as
a source of distance information are step counting and environmental pattern counting
(e.g., counting blocks).

Travel time is logically compelling as a source of distance information, especially
in situations of restricted access to other kinds of information, but it has not been con-
vincingly demonstrated in much research and is often misconceptualized insofar as
researchers have failed to consider the role of movement speed. Also, travel effort
enjoys very little empirical support but may still function when it provides the only
possible basis for judging distances. Since 1997, new research has been reported on
the perception of travel speed [17] and its role in distance cognition [18], [19]. Also,
research has been reported on the role of effort that suggests it can influence the per-
ception of vista distances when people anticipate they will need to climb a sloped
pathway [20], [21]. Nonetheless, showing that experienced effort influences esti-
mates of environmental distances that have actually been traveled remains an elusive
phenomenon.

In this paper, I address the remaining question relevant to a complete model of di-
rectly experienced environmental distance knowledge and estimation, Question 3.
This question asks what inferential or computational processes, if any, are brought to
bear on information retrieved from LTM so as to produce usable distance information.
To address this question, I describe alternative processes for how humans acquire,
store, and retrieve directly experienced distance information. I summarize these proc-
esses in the form of a conceptual model that comprehensively presents alternative
ways people process distance information and the conditions likely to lead to one al-
ternative or another.

My review and model are organized around a theoretical framework that proposes
there are alternative processes accounting for distance knowledge in different situa-
tions and multiple, partially redundant information sources that differentially provide
information about distances as a function of availability and spatial scale. A few
models of environmental distance processing have been proposed in the literature.
The model I present below modifies and extends models proposed some time ago by
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Briggs [22], Downs and Stea [23], and Thorndyke and Hayes-Roth [24]. These pro-
posals contributed to a comprehensive theory of environmental distance information
but have not been significantly updated in over two decades. Furthermore, these older
models did not fully express the plurality of plausible distance processes, the idea that
a single process can operate on different information sources, nor the idea that a sin-
gle source might be processed in different ways. Thus, the evidence that researchers
have put forth for some aspect of distance cognition is often consistent with multiple
specific explanations, making its interpretation ambiguous. What’s more, there are
partially redundant cognitive systems for processing and estimating traveled dis-
tances. More than one system can operate within and between research studies, and
even within individual people on different occasions.

2 Environmental Distance, Directly Experienced

As in my earlier review of sources of distance information [1], I am concerned in this
manuscript with information about distances in environmental spaces [25]. These are
physical spaces (typically Earth-surface spaces) that are much larger than the human
body and surround it, requiring considerable locomotion for their direct, sensorimotor
apprehension. Examples of environmental spaces include buildings, campuses, parks,
and urban neighborhoods (it is largely an open research question as to how well spa-
tially talented people can directly apprehend the spaces of large cities and beyond).
Their direct apprehension is thus thought to require integrating information over sig-
nificant time periods, on the order of minutes, hours, days, or more. However, unlike
gigantic spaces (termed geographic spaces in [25]), environmental spaces are small
enough to be apprehended through direct travel experience and do not require maps,
even though maps may well facilitate their apprehension. Many studies, especially in
geography, concern distance information acquired indirectly (symbolically) in natu-
ralistic settings, at least in part, e.g., [26], [27], [28], [29], [30]. The results of theses
studies are somewhat ambiguous with respect to how travel-based environmental dis-
tance information is processed.

There is a great deal of research on the perception of distance in vista spaces, visu-
ally perceptible from a single vantage point [31], [32], [33], [34], [35]. This research
has often been concerned with evaluating the fit of Stevens’s Power Law to vista dis-
tance estimates under various conditions. The Power Law states that subjective dis-
tance equals physical distance raised to some exponent and multiplied by a scaling
constant. Most interest has been in the size of the exponent, which has usually been
found to be near 1.0, a linear function (exponents < 1.0, a decelerating function, have
been reported more often than exponents > 1.0, but both have been found). This work
is relevant to our concern with environmental distance for at least two reasons. First,
psychophysical distance scaling has been methodologically important in the study of
environmental distance information, as I reviewed above. Second, I propose below
that perceived distances in vista spaces provide an important source of information for
environmental distance knowledge.

However, it is important to distinguish between “visual” and “spatial.” Spatial in-
formation expresses properties like size, location, movement, and connectivity along
one or more dimensions of space. Most visually-acquired information has a spatial
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aspect to it, but not all does—color provides perhaps the best example. And although
vision provides extremely important spatial information to sighted people, especially
spatial information about external reality distant from one’s body, other sensory
modalities also provide important information about space. These senses include
audition, kinesthesis, and haptic and vestibular senses (some evidence even suggests
olfaction may play a role for people [36]). There is apparently a spatial mode of cog-
nitive processing that is more abstract than any sensory mode, and it is clear that spa-
tial processing is not limited to or wholly dependent on visual processing [37], [38],
[39], [40]. The fact that blind and blindfolded people can accurately estimate dis-
tances in the environment shows that vision is not required for the perception and
cognition of distance, e.g., [41], [42]. The cognitive processes discussed below differ
in their reliance on different sensory modalities, but it is apparent that different mo-
dalities provide partially redundant means of picking up distance information.

2.1 Active versus Passive Travel

Even restricting ourselves to distance information acquired directly during travel in
the environment, we must consider whether this travel is active or passive [43], [44],
[45], [46]. The terms actually reflect two relevant distinctions. More commonly
made is the distinction between voluntarily controlling one’s own course and speed
versus being led along a given path by another agent—that is, making navigation de-
cisions or not. Active travel in this sense could be called “self-guided.” Driving an
automobile is typically self-guided; riding as a passenger is not. The distinction is
important because distance knowledge depends in part on one’s attention to the envi-
ronment, to one’s own locomotion, or to the passage of time. Attention likely varies
as a function of the volition of one’s locomotory and wayfinding decisions.

A second, less commonly made, distinction is between travel that requires consid-
erable energy output by the body versus travel that does not. Active travel in this
sense could be called “self-powered.” Walking and running are self-powered; driving
an automobile and being carried are not. This distinction is important for distance
cognition because of its implications for travel time, speed, and physical effort, all
likely influences on distance knowledge. Furthermore, motor feedback resulting from
self-powered travel provides input to a psychological system that updates one’s loca-
tion in the environment [47], [48]. These considerations cast doubt on the validity of
using desktop virtual environments as environmental simulations in distance cogni-
tion research, e.g., [49]. Thus, the two distinctions between active and passive travel
are relevant to distance knowledge because of their implications for the relative im-
portance of different information sources and cognitive processes.

3 Cognitive Processes

I turn now to the question of how distance information acquired directly is cognitively
processed during its acquisition, storage, and retrieval. In particular, how extensive
and elaborate are the mental computations or inferences one must carry out in order
to use information about environmental distance? I propose four different classes of
processes that answer this question: working-memory, nonmediated, hybrid, and
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simple-retrieval processes. Working-memory processes are those in which relatively
effortful (i.e., demanding on limited resources of conscious thought) inferential or
computational processes are brought to bear on cognitive representations constructed
in working memory (WM) when distance information is used; information about dis-
tance per se is not explicitly stored in memory during locomotion. Nonmediated
processes are those in which distance information is encoded and stored directly dur-
ing locomotion, without the need for much explicit inference or computation when
distance information is used. Hybrid processes combine the two: Information about
the distances of single segments is directly stored and retrieved, but effortful WM
processes are required to combine the segments into knowledge of multi-segment
distances. Finally, simple retrieval occurs when distance information is well learned
and can be retrieved from long-term memory (LTM) as an explicit belief without any
inferential processes. For example, one may have stored in LTM that it is about 240
miles from Fargo to Minneapolis, and can directly retrieve (i.e., recall or recognize)
that without making an inference or computation. In some cases, a simple-retrieval
process results from the explicit storage of distance information originally derived via
other processes. Explicit estimates of distance would especially be available for sim-
ple retrieval when a person has previously made an explicit estimate based on other
processes and then externalized it in words or numbers. In many other cases, it
probably results in the first place from knowledge acquired indirectly via maps or
language.

Models of spatial working-memory processes typically describe the WM represen-
tations as analogue or imagistic, although WM representations may be numeric,
verbal, and so on. Two types of analogue representations may be considered. Travel
re-creation refers to a process in which a temporally-ordered sequence of environ-
mental images is generated that essentially re-creates a sequence of percepts experi-
enced while moving through the environment. Survey-map scanning refers to a
process in which a unitary, map-like spatial image is generated that represents part of
an environment more abstractly, essentially from a vertical or oblique perspective.
Foley and Cohen [50] refer to travel re-creation as scenographic encoding and sur-
vey-map scanning as abstract encoding. The distinction between travel re-creation
and survey-map scanning is similar to the distinction by Thorndyke and Hayes-Roth
[24] between environmental representations learned via navigation and those learned
via maps. However, the distinction I make here refers to the nature of the representa-
tion and not to its manner of acquisition. Although the nature of one’s learning ex-
perience almost certainly influences the nature of one’s environmental representations
(as Thorndyke and Hayes-Roth proposed and empirically supported), the extent to
which this is true is still an open question (see review and discussion in [51]).

The generation and use of one or the other type of analogue representation might
be empirically distinguishable in several ways. Thorndyke and Hayes-Roth [24] con-
jectured that patterns of performance on certain distance and angular estimation tasks
would differ for the two. For instance, straight-line distance estimates should be less
accurate than distance estimates along a route in the case of travel re-creation; the
opposite should be true in the case of survey-map scanning. Siegel et al. [52]
proposed that when a route is represented and accessed as a linear sequence (travel re-
creation), distance estimates in opposite directions would differ in accuracy as a func-
tion of the direction in which the route was learned. Palij [53] suggested that what he
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called imagined terrains (re-created travels) should be readily accessible in any
alignment that is necessary for the task at hand. Cognitive maps (Palij’s term for sur-
vey maps) should require extra time and effort to access in alignments that differ from
a canonical alignment, such as the alignment in which one has viewed the layout.
Such alignment effects are robust and well established when involving in-situ naviga-
tion maps, e.g., [54], but somewhat inconsistent when involving mental representa-
tions acquired from direct experience, e.g., [S5]. Either way, however, it is likely that
a re-created travel would also be less accessible in non-canonical alignments, such as
those not based on the forward direction of travel.

What types of effortful processes might be applied to the representations generated
in working memory as part of WM (and hybrid) processes? Thorndyke and Hayes-
Roth [24] provided detailed possibilities. In the case of information acquired via
navigation (travel re-creation), they proposed that individual straight-line segments
are estimated and summed in WM to arrive at an estimate of total route distance (they
did not specify how individual segments are estimated). If straight-line estimates
were required between points not in the same segment, angular estimation coupled
with some “mental trigonometry” would also be required. In the case of information
acquired via maps (survey-map scanning), straight-line distance between any two
points is estimated from scanning the imaged map, as in image scanning [56]. If route
distance is required, individual segments would have to be scanned and the resulting
distances summed. Whatever the case, the existence of such WM processes is sug-
gested by introspection, logical analysis of task demands, and scanning-time data,
e.g., [57]. Furthermore, research shows that the context created when representations
are constructed in WM during estimation can affect the magnitude of estimated dis-
tances considerably [58]. Among other things, it can lead to patterns of asymmetries
wherein the distance from A to B is estimated to be different than the distance from B
to A [59], [60].

Hirtle and Mascolo [61] suggested additional WM processes. They conducted a
protocol analysis in which subjects thought aloud while estimating distances between
US cities. Although such information would be strongly influenced by maps and
other symbolic sources, their work richly suggests many possible processes that could
be used to generate estimates from directly-acquired knowledge. Hirtle and Mascolo
identified as many as 20 strategies or heuristics claimed to have been used by sub-
jects, including simple retrieval, imagery, translation from retrieval of time, compari-
sons to other distances, and various forms of mathematical manipulation of segments
(e.g., segment addition). They also found that the use of compound strategies (as in a
hybrid process) was more likely with longer distances and less familiar places. That
is, various indirect heuristics are more likely to be used when people do not have di-
rect travel experience with a particular route.

For the most part, the WM processes described by Thorndyke and Hayes-Roth, and
by Hirtle and Mascolo, do not explain what information is used to estimate the lengths
of individual segments, nor how it is processed. But it is clear that processes used to
access information with WM representations would be demanding of attentional
resources—effortful and accessible to consciousness. With both WM and hybrid
processes, however, repeated retrieval and inference with some particular distance
information could eventually result in its processing by simple retrieval.
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The class of nonmediated processes contrasts sharply with the WM and hybrid
processes. Nonmediated processes do not rely on effortful inferences operating on
WM representations. Instead, nonmediated processes lead to direct storage of dis-
tance information. Alternatively, information about time or effort might be acquired
via a nonmediated process of some kind. Estimates of distance could then be derived
from simple computational processes translating time or effort into distance.

Nonmediated processes essentially offer an alternative to the idea that the genera-
tion and manipulation of images in WM is necessary for generating environmental
distance knowledge. In the general context of imagery and psychological processing,
Gibson [62] wrote that:

No image can be scrutinized...[a]n imaginary object can undergo an
imaginary [italics in original] scrutiny...but you are not going to dis-
cover a new and surprising feature of the object this way. For it is the
very features of the object that your perceptual system has already
picked up that constitute your ability to visualize it. (p. 257)

This quote suggests that it would be necessary to “know” how far it is from A to B in
order to construct an accurate image of it in WM—that “new” information cannot be
extracted from images. If so, the imagery experienced and reported during distance
estimation would be epiphenomenal. Pylyshyn [63], whose theoretical orientation
otherwise differs radically from Gibson’s, offers a related criticism of the functional
scanning of images based on a theory of tacit information.

Gibson did not specifically address environmental distance information. However,
his framework does suggest one way that nonmediated processes might work to gen-
erate distance knowledge. The visual system is attuned to pick up dynamic changes in
the optic array, called optic flow, that specify movement of oneself through the envi-
ronment (visual kinesthesis). When coupled with perceptions of environmental lay-
out, visual kinesthesis might lead to information about traveled distance without the
necessity of constructing analogue memory representations. Rieser and his colleagues
[48] developed this approach in their theory of visual-proprioceptive coupling. Ac-
cording to this, information about distance gained from optic flow is used to calibrate
proprioceptive systems. These proprioceptive systems also produce distance informa-
tion during locomotion, allowing acquisition of environmental distance information
by blind or blindfolded subjects (also see [64]). An interesting way in which Rieser
and his colleagues demonstrated calibration is to show that reproductions of walked
distances can be altered by recalibrating the visual-proprioceptive coupling when re-
search subjects are required to walk on treadmills pulled around on trailers.

Vestibular and kinesthetic sensing would likely play an important role in a nonmedi-
ated process for generating distance information [65], [66], although there are appar-
ently situations where these proprioceptive body senses play a restricted role, such as
when riding in an automobile [67]. The acceleration picked up by the vestibules and the
semicircular canals is integrated over time by the central nervous system, again without
the need for effortful scanning or manipulation of images. Information about traveled
distance is thus available as a function of relatively automatic perceptual updating proc-
esses that have evolved to allow humans and other organisms to stay oriented in the
environment without great demands on attentional resources [68], [69].
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3.1 Processes: Summary and Discussion

I propose four classes of mechanisms by which humans process information about
environmental distances: working-memory, nonmediated, hybrid, and simple-retrieval
processes. These are primarily distinguished from one another on the basis of the exten-
siveness of the computations or inferences people carry out in WM in order to use dis-
tance information. According to a working-memory process, effortful manipulations
are carried out on explicit representations constructed in WM. These representations are
frequently analogue representations (i.e., images of path extensions) but need not be.
Two major types of relevant analogue representations can be identified—travel re-
creation and survey-map scanning; I considered ways the two might be empirically dis-
tinguished. I also detailed several ways that WM representations could be manipulated
in order to infer explicit estimates of distance (e.g., image scanning).

In stark contrast, a nonmediated process does not require the construction or ma-
nipulation of WM representations, analogue or otherwise. Instead, distance informa-
tion is acquired and stored during locomotion as a result of implicit computational
processes that are outside of the conscious awareness of the locomoting person. Hy-
brid processes combine WM and nonmediated processes. The lengths of single seg-
ments are stored and retrieved by a nonmediated process; information about the single
segments is manipulated in WM in order to arrive at information about multi-segment
distances. Finally, simple retrieval occurs when an explicit distance judgment can be
retrieved from LTM without any inferential or computational processes. This would
take place with directly experienced extents when an estimate of the length of some
particular route has become well learned and stored explicitly in LTM.

Although only one of these processes can operate during a particular occasion in
which distance information is used, it is not necessary to conclude that only one of
them generally characterizes the processing of distance information. On the contrary,
it is likely that all four processes are used in different situations. What determines
which process operates? My review and description of the four classes suggests that
one of the major factors involved is whether an explicit judgment of distance is re-
quired in a given situation, and whether that estimate is already stored as such in
LTM. I turn now to a model that proposes some specific conditions that influence
when such explicitness is likely to be necessary.

4 A Comprehensive Conceptual Model of the Cognitive
Processing of Directly-Acquired Environmental Distance
Information

Ideas about processes can be combined with ideas about sources of information in
order to formulate a comprehensive conceptual model of the perception and cognition
of environmental distance. I propose a model that addresses three questions posed in
the introduction: (1) What is perceived and stored during travel that provides a basis
for distance knowledge?, (2) what is retrieved from LTM when distance information
is used?, and (3) what inferential or computational processes, if any, are brought to
bear on the retrieved information so as to produce usable distance knowledge? (The
model does not specifically address the influence of the techniques researchers use to
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T.agk requires Visual or proprioceptive Time/effort
explicit knowledge? movement information heuristics
available?
Updating via
dead reckoning

Distance estimate Simple
already in LTM? retrieval
Person has visual Prqspec.tive Time/effort
access to vistas? estimation? heuristics

Explicit step

Summing vista :
counting

distances

Larger-scale
extents?

Prospective
estimation?

Time/effort Explicit step/pattern
heuristics counting

Fig. 1. Proposed model of the multiple processes and information sources for perceiving and
cognizing environmental distance. Diamonds are decision nodes, rectangles are end states. All
end states make knowledge of distance available in the form needed for the task being per-
formed.
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measure distance knowledge.) Figure 1 depicts the model. It is designed to accom-
modate the availability of alternative processes and multiple, partially redundant in-
formation sources. It does this by referring to the demands of the particular task, the
availability of particular information sources, the degree of familiarity with the route
in question, and its spatio-temporal scale.

At the outset, it is clear that information about environmental distance based on di-
rect travel experience depends on the perception or awareness of body movement or
change of position, whether valid or not. This perception generally derives from
some combination of vision, Kinesthesis, vestibular sensation, audition, and motor
efference—any or all of them can contribute in a given situation. As a consequence,
information that does not involve any sense or belief of movement, such as a judg-
ment of elapsed time alone, cannot in itself account for distance knowledge.

The model first branches as a function of whether a task requires, or at least tends
to activate, explicit knowledge of distance. Some tasks require only implicit informa-
tion about distance. Locomotion over familiar routes in the environment is an impor-
tant example; most of us find our way efficiently through the environment on a daily
basis without thinking explicitly about our navigational decisions. Nonetheless, our
coordinated and efficient travel still requires at least implicit distance knowledge in
many situations. The fact that people sometimes have considerable implicit informa-
tion about distances that guides their behavior in the environment does not, however,
ensure that they will be able to externalize that information well using a distance es-
timation technique. It is therefore possible for subjects to estimate distances explicitly
very poorly but do quite well actually navigating, e.g., [70].

In fact, locomotion along familiar routes sometimes does not require much distance
information at all, as we observed above, although at least implicit knowledge of
distance is often involved. A case in point: Some people can infer the straight-line
direction from one place to another rather well, with less than 20° of error, even though
they have never traveled directly between the two places [10]. This ability requiresdis-
tance information of some kind. As long as the route is relatively small in scale, so
that explicit information is not required, evidence is strong that people can perform this
task using only the implicit information about distance provided by the optic flow
and/or proprioceptive feedback occurring during locomotion, e.g., [71]. People may
have little or no awareness of the operation of this process. As long as visual or pro-
prioceptive information about movement is available, therefore, the model proposes
that people (strictly speaking, their cognitive systems) will use a nonmediated process
of perceptual updating to “reason” about distances and directions. However, if such
perceptual movement information is not available (e.g., a subway ride at constant
speed), then the model again suggests that people will need to rely on heuristics about
the time and/or effort required to make the trip in order to arrive at knowledge of trav-
eled distance. (As an aside, this situation suggests an important reason why people get
lost much more easily when movement information is restricted: Without implicit spa-
tial knowledge, their cognitive system must depend entirely on effortful explicit sys-
tems to maintain orientation, which becomes confused without ongoing attention.)

Other tasks require explicit information about distances, i.e., they require conscious
awareness of distance quantities to various levels of precision. Notable examples are
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route planning and giving verbal route directions. In addition, I propose that travelers
will require explicit distance information whenever they think about routes of large
spatio-temporal scale, no matter what the task (e.g., even when navigating in familiar
environments or performing path integration over long distances). Of course, an oc-
casion requiring explicit distance knowledge that is of special interest to behavioral
researchers is when a person participates as a research subject in studies of distance
cognition. Nearly all such studies require subjects to make explicit (typically numeri-
cal, graphical, or verbal) estimates of distances in the environment.

If the task does call for explicit distance information, the model next asks whether
an estimate of the length of a given route is already stored in LTM. If it is, the proc-
ess of simple retrieval operates. This might be the case when a person is very familiar
with a particular route and has reasoned about its length in the past.

The model then asks whether the traveler has visual access to vistas; that is, can the
person see (rarely, hear) the extents of vistas that end at walls or other visual barriers
in the environment? Vistas would be inaccessible to people with severe visual im-
pairment, to people wearing blindfolds, or to people in darkness. If a person does not
have access to vistas, then the model asks whether the acquisition of information used
to estimate distance occurs under prospective conditions. Prospective conditions exist
when a person knows in advance of traveling through the environment that an esti-
mate of distance will be requested. In such cases, step or pattern counting can be used
as a way to estimate distance. If prospective conditions do not hold, the person would
need to use heuristics about the time and/or effort required to make the trip in order to
explicitly estimate distance, after travel is complete. In such cases, subjective dis-
tance and time (or effort) will be most strongly related.

If visual access to vistas is available, the model proposes that visually-perceived
and retrieved environmental structure will provide the major source of information for
distance. Under these conditions, distance knowledge is derived from a hybrid proc-
ess in which the perceived lengths of route segments that are visible from single van-
tage points (i.e., vistas) are summed to arrive at estimates for the entire route. This
can be termed summing vista distances. Any structural features that induce segmenta-
tion of routes into vistas, such as opaque barriers, thus tend to elongate estimated en-
vironmental distances under the appropriate conditions.

A variety of theoretical and empirical claims motivate my stress on the importance of
vista spaces in distance cognition. Gibson [62] emphasized the perception of vistas as
integral to the perception of environmental structure under ecologically realistic condi-
tions. A great deal of research on the influence of environmental features (reviewed in
[1]), including research on opaque and transparent barriers, points to the import role of
discrete pieces of the environment that are visually accessible from particular view-
points. This stress on vistas also echoes more general theories of human and robotic
spatial learning and orientation that posit their central function, [72], [73].

When visual access to vistas is available, and explicit distance information is re-
quired, I propose that summing vista distances is the primary mechanism for arriving at
distance estimates. In addition, if a prospective estimation situation exists, people can
use either step counting or environmental pattern counting if they are aware of such
strategies and are not otherwise distracted from using them. The possible moderating
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influence of various heuristics is also allowed here by the model. These heuristics could
be based on travel time or effort, or on such things as route indirectness or the number
of features that do not obstruct visibility. The model hypothesizes, however, that
heuristic influences will most likely operate with routes of large spatio-temporal scale
(i.e., long routes). Under such conditions, the ability to attend to and retrieve relatively
continuous information about vistas or elapsed movement is reduced. What’s useful for
estimating the length of a walk through a building is less useful for estimating the length
of a long train trip. For instance, [61] noted that indirect strategies such as time retrieval
were more commonly reported with longer distances. Similarly, [74] found an effect of
travel effort on estimated distance only for walks that were at least several minutes in
duration (as opposed to walks of 45 to 90 seconds).

5 Summary and Conclusions: Future Research Directions

In this paper, I proposed that people process information about environmental distances
via one or more of four classes of processes operating on one or more of three sources
of information, information acquired during travel through the environment. The four
processes include working-memory, nonmediated, hybrid, and simple-retrieval proc-
esses. The three sources of information include number of environmental features,
travel time, and travel effort. Previous reviews have failed to recognize the plurality of
processes and sources that could account for distance knowledge. A comprehensive
review of the literature suggests that at different times, people take advantage of alterna-
tive processes and multiple, partially redundant sources for acquiring and using infor-
mation about distances in the environment. The conceptual model presented in Figure 1
attempts to show the conditions that determine which of these multiple processes and
information sources will actually operate in a given situation.

It is evident that the perception and cognition of environmental distance is a fruit-
ful research topic for the integration of many aspects of spatial cognition research.
The topic involves issues ranging from low-level processes, such as the propriocep-
tion of one’s movement speed during locomotion, to higher-level processes, such as
the representation and manipulation of information via mental imagery. Such re-
search has the potential to help address many interesting theoretical and practical
questions related to human behavior in the environment. This review suggests, how-
ever, the need for further conceptual refinement and the empirical replication of phe-
nomena that have been previously reported. In particular, we need to understand bet-
ter the way environmental features of different types will or will not structure mental
representations of environments, and the situations in which time and distance heuris-
tics operate. Although I based my proposal that the summing of vista distances is a
prominent mechanism for the cognitive processing of environmental distance infor-
mation, this proposal needs further direct empirical evaluation. Finally, research
should address the question of how distance information acquired in various ways,
both directly and indirectly (symbolically), is combined or reconciled.
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Abstract. The cognition of spatial objects differs among people and is highly
influenced by the context in which a spatial object is perceived. We investigated
experimentally how humans perceive geometric figures in geometric propor-
tional analogies and discovered that subjects perceive structures within the fig-
ures which are suitable for solving the analogy. Humans do not perceive the
elements within a figure individually or separately, but cognize the figure as a
structured whole. Furthermore, the perception of each figure in the series of
analogous figures is influenced by the context of the whole analogy. A compu-
tational model which shall reflect human cognition of geometric figures must be
flexible enough to adapt the representation of a geometric figure and produce a
similarly structured representation as humans do while solving the analogy.
Furthermore, it must be able to take into account the context, i.e. structures and
transformations in other geometric figures in the analogy.

Keywords: computational model for spatial cognition, geometric proportional
analogy, re-representation, adaptation, context.

1 Introduction

The cognition of spatial objects involves the construction of a consistent and mean-
ingful overall picture of the environment. Gestalt Psychology (Wertheimer 1912;
Kohler 1929; Koffka 1935) argues that human perception is holistic: instead of col-
lecting every single element of a spatial object and afterwards composing all parts to
one integrated picture, we experience things as an integral, meaningful whole. The
whole contains an internal structure described by relationships between the individual
elements.

Perception of the same thing can be different possibly due to differences between
humans, due to changes in the context, or due to ambiguity in the figure itself. The
following figures show several examples with ambiguous perceptions. The Necker
cube shown in Fig. 1 is an example for a multistable perceptual experience where
two alternative interpretations tend to pop back and forth unstably. The cube can
be seen in two ways, because it is not possible to decide, which one of two crossing
lines is in the front or in the back. Fig. 1(b) and (c) show two possible ways to
perceive it.

K. Stewart Hornsby et al. (Eds.): COSIT 2009, LNCS 5756, pp. 18-B3 2009.
© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

Fig. 1. The Necker Cube (a) is an ambiguous line drawing. Figure (b) and (c) show two possi-
ble ways to interpret the Necker Cube.

(a) (b)

]

Fig. 2. The perception of a figure is influenced by its context: figure (a) is usually perceived as
two complete squares one covering the other, although the covered square is only incompletely
visible. In figure (b), the “covered” square is usually perceived as incomplete, because the other
square (the context) is incomplete as well.

Fig. 2 is an example where the perception is influenced by the context. Figure (a)
shows one complete square and an incomplete square. Most people tend to perceive
one square as being covered by the other and therefore complete the non-visible part
of the square in their mind to two complete squares. In figure (b), it is more likely that
people perceive both squares as incomplete, because the visible square is incomplete
as well.

These figures may serve as examples where identical geometric figures are per-
ceived differently and the perception of one element is influenced by its context. A
computational model of spatial cognition must be able to compute different percep-
tions, i.e. different representations for the same spatial object. We will introduce a
language for describing geometric figures and show how Heuristic-Driven Theory
Projection (HDTP) can adapt representations to reflect different perceptions.

HDTP is a computational approach for analogy making and analogical reasoning.
It represents the source and the target stimulus symbolically as two logical theories. In
the analogy identification process, HDTP compares both theories for common pat-
terns and establishes a mapping of analogous formulas. The mapping of analogous
formulas is captured at an abstract level: The generalized theory formally describes
the common patterns of the source and the target stimulus and the analogical relation
between them. The symbolic basis of HDTP allows not only the representation of the
geometric figures, but also for the representation of general rules which describe
how representations can be adapted to reflect different perceptions. The separation
of the knowledge about the geometric figure and the abstract knowledge of human
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perceptions allows HDTP to compute different representations, i.e. compute different
conceptualizations of the same geometric figure on-the-fly. HDTP proposes different
possible analogies depending on the conceptualization of the figure.

In this paper, we investigate the spatial cognition of simple geometric figures and
develop a computational model to compute different perceptions. We conducted ex-
periments with proportional analogies, where subjects have to find a follow-up for a
series of geometric figures. Subjects selected different solutions depending on the
perception of the geometric figure. In section 2 we describe the experiment, present
the results and analyze how subjects perceived the geometric figures in the context of
an analogy. Section 3 introduces “Heuristic-Driven Theory Projection” (HDTP), a
formal framework to compute analogies. A logical language is used to describe the
individual elements in a simple geometric figure in an unstructured manner. From this
flat representation it is possible to automatically build up different possible structures
and compute “perceptions” which are reasonable to solve the analogy. This mecha-
nism is called re-representation (section 3.3). In section 4, we sketch related work on
computational models for solving geometric proportional analogies and discuss the
differences to our approach. Section 5 evaluates the applicability of the approach for
simple geometric figures and outlines, how HDTP could be used to model human
cognition of complex spatial objects.

2 Spatial Cognition of Geometric Figures to Solve Analogies

Here, we give an overview of the experiment focusing only on the results relevant for
the computational model. Details about the design and the results of the experiment
can be found in (Schwering et al. 2008; Schwering et al. 2009a).

2.1 Setting of the Experiment

The human subject test investigated preferred solutions for proportional analogies of
the form (A:B)::(C:D) - read A is to B as C is to D - where A, B and C are a given
series of figures and the analogy is completed by inserting a suitable figure for D. All
analogies in the test were ambiguous and allowed for different plausible solutions.
The analogies were varied in such a way that different perceptive interpretations
might be triggered which result in different solutions. For the experiment' we used the
Analogy Lab, a web-based software platform especially developed for this purpose.
Each subject was subsequently shown 20 different analogies randomly chosen from
30 different stimuli: for each analogy they saw the first three objects from an analogy
(figure A and B from the source domain and figure C from the target domain) and had
to select their preferred solution from three given possible answers (Fig. 3). In every
analogy, all three possibilities were reasonable solutions of the analogy; however
different solutions required different perceptions of the geometric figures A, B, and C.

! The experiment consisted of different parts: One part was choosing the preferred solution
from three given possible answers. In a second part, participants had to construct themselves
via drag&drop their solution. For this analysis we use only data from the choice-part of this
experiment.
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Fig. 3. The analogy lab® is a web-based tool to conduct experiments. This screenshot shows one
analogy with three possible solutions which can be selected.

The aim of this experiment was to investigate the subjects’ perception of geometric
figures®, but also to investigate how the perception changes across different variations
of one analogy.

The experiment revealed that subjects applied different strategies to solve the
analogies and came up with different solutions. The different solutions can be ex-
plained, when the elements in figures A, B, and C are structured differently.

2.2 Different Conceptualization of the Same Stimulus

In the experiment, we investigated 30 different analogies. From this set we selected
four analogies to be presented as examples in this paper. We discuss the possible
perceptions of the geometric figures, present the preferences of different solutions and
discuss how a conceptualization of the figure is related to one solution. We analyze
how a computational model could reflect the human perception by reproducing the
same groupings and same relations as the subjects did.

Fig. 4 shows the first analogy: the majority of the 161 subjects who solved this
analogy selected the geometric figure consisting of one single white square as solu-
tion for this analogy. This solution results4, if the elements in figure A, B and C are
grouped into middle elements and outer elements. Figure B can be constructed from
figure A by deleting all outer objects. The second preferred solution, the two black
circles, results if the subjects group the geometric figures A, B and C according to
color and delete all white objects while all black objects remain. The third solution
was chosen only two times. It can be explained by keeping the middle elements with

2 http://mvc.ikw.uos.de/labs/cc.php

3 In a different experiment, we let subjects comment on their solution. From these comments
we got evidence that subjects built up different structured representations to solve the analogy
in one or the other way. Due to space limitation, we cannot include a detailed comment analy-
sis in this paper.

* We would like to point out that these are our interpretations. We base these interpretations on
comments that the participants of our experiments gave after solving each analogy. Although
in most cases our interpretation seems to be very straight forward, there can be other interpre-
tations that led subjects choose a solution.
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e 161 subjects solved this analogy
e 129 (80%) selected the solution with one white square

. e 30 (19%) selected solution with two black circles

. ~ ® 2 (1%) selected the solution with one white circle
-

Fig. 4. The first analogy can be solved by focusing on the position of the elements or on the
color. The results show that the majority of subjects preferred to keep the middle object, while
several subjects chose to keep the black objects. Only two subjects selected the white circle as
solution.
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their position and color, but changing the shape to a circular shape. However, this
solution is obviously not preferred.

At a more general level, we can reveal different strategies that subjects applied to
solve this analogy. The majority of subjects considered the relative position of the
elements and grouped elements in middle and outer elements. The second biggest
group of participants focused on the color and formed one group with white elements
and one group with black elements.

Fig. 5 shows a variation of the first analogy: In figure A, the two top circles are
black and all other circles are white and in figure C the colors are flipped compared to
figure C in the previous analogy. This variation has a huge effect on the preference
distribution and also on the preferred perception. The majority of the subjects chose
the figure with one black square as solution for this analogy. Subjects choosing this
solution presumably grouped according to colors and deleted all white elements while
they kept the black ones. The second preferred solution was one white circle. These
subjects focused on the relative position: The top elements form one group and the
others form another group. The analogy is solved by keeping the top elements and
moving them to the middle of the figure. The third preferred solution keeps the color
of the top elements and the shape of the middle elements.

Although both analogies are very similar, the resulting preferences are relatively
different. The majority of subjects chose either a grouping strategy based on the posi-
tion or based on color, but in the first analogy the position-strategy was clearly pre-
ferred, while in the second analogy the color was more preferred. The strategy of
transferring the color from elements in the source domain but keeping the same shape
as in figure C was hardly applied in analogy one (only 1% of the participants), but
applied by 20% of the participants in analogy two.
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e 157 subjects solved this analogy

71 (45%) selected the solution with one black square

55 (35%) selected the solution with one white circle

31 (20%) selected the solution with one white square
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Fig. 5. The second analogy can be solved by focusing on the color of the elements (preferred
solution) or on the position (second preferred solution). It is also possible to treat shape and
color differently and transfer only color while the shape remains the same (third preferred
solution).

Fig. 6 shows an analogy where the geometric figure B can be perceived as a 180°
rotation of figure A. In this case the figure is seen as one whole and is not divided into
any subgroups. Subjects who selected the most preferred solution presumably applied
this strategy.
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. Data:

CI C) e 162 subjects solved this analogy
® O | |
. e 74 (46%) selected the solution where the right
O bottom circle is black and the other circles are white

02 e 45 (28%) selected the solution where the top left
circle is white and the other circles are black

® 43 (27%) selected the solution where the top circle
00 4 is black and the other circles are white

Fig. 6. The preferred solution of the third analogy is constructed via rotating the whole figure
180°. Participants choosing this solution presumably did not divide the figures into subgroups,
but grouped all circles in figure A, all circles in figure B and all circles in figure C in three
separate groups independently of their color. The second preferred solution results from a color
flip. The third solution can be explained by dividing figure C in two groups: the upper two
circles form one group because they repeat figure A and the lower circles from a second group.
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Data:

e 157 subjects solved this analogy

04

e 111 (71%) selected the solution where the white
square is above the black circle

e 44 (28%) selected the solution where the black
circle is above the white square
® 2 (1%) selected the solution where the white square
is left of the black circle
]

Fig. 7. The first solution of the fourth analogy has different explanations: the elements can be
grouped in circles and squares and switch position. They can be perceived as one whole and
rotated. They can be perceived as one whole with a mirroring axis between the circle and the
square. If the mirroring axis is defined relative to the figure, the most preferred solution is
correct. If the axis is defined absolute, the second preferred solution is the correct one.
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The second preferred solution is constructed by flipping the colors, i.e. circles
are grouped according to the color and all black circles become white and all white
circles become black. In the third preferred solution, figure A is mapped on the two
upper circles in figure C. Obviously, figure C is perceived as two groups: one con-
tains the upper two circles and the second one contains the lower two. In this case,
one part of figure C is an identical repetition of figure A. The solution is con-
structed by applying the transformation between A and B to that subgroup of C, that
is identical to A. The additional subgroup of C - the two bottom white circles -
remain the same.

The fourth analogy is shown in Fig. 7. The most preferred solution has different
possible explanations: Each figure consists of two elements: a circle and a square.
From figure A to B the circle and square change position, therefore the solution is a
white square above the black circle. The same solution can be constructed with a
different interpretation: figure A is perceived as a whole and is rotated 180°. A third
interpretation is also possible: subjects might have perceived a vertical symmetry axis
between the circle and the square. Figure B is mirrored along this axis. If the axis is
perceived relative to the elements in the figure, the axis in C runs horizontally be-
tween the circle and the square. A very similar explanation exists for the second pre-
ferred solution: participants perceived as well a vertical symmetry axis between the
circle and the square and mirrored figure C along a vertical axis as well. The third
solution was only selected by 2 subjects and is not very preferred.
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2.3 Results of the Experiment

The experiment shows that analogies have different solutions depending on how
geometric figures are perceived. The preferred perception is influenced by the
context, i.e. by the other figures in the analogy (cf. analogy 1 and analogy 2). Propor-
tional analogies are a suitable framework to investigate human perception of geomet-
ric figures, because different perceptions can be easily discovered if they lead to
different solutions.

Grouping is a common strategy to establish the required structure to solve the
analogy. In the examples above, grouping based on similarity (such as grouping of
elements with common color or common shape) and grouping based on position play
important roles. The position is often defined relative, e.g. middle and outer elements
seem to be more prominent than other positions. Spatial proximity or continuous
movement are other criteria for structuring geometric figures. In analogy three, figure
C is an extended version of figure A. In such cases, the extended figure can be di-
vided into two groups: One group comprising the original figure and the second group
comprising the additional elements.

3 A Computational Model for Geometric Analogies

The holistic Gestalt perception contradicts the atomistic way computers process
information. A computational model for spatial cognition must be able to compute
an overall, holistic representation from a list of single elements. We developed a
language to describe geometric figures. The analogy model HDTP’ computes dif-
ferently structured representations of a geometric figure based on a flat list of single
elements.

3.1 Heuristic-Driven Theory Projection (HDTP)

HDTP is a symbolic analogy model with a mathematically sound basis: The source
and the target domain are formalized as theories based on first-order logic. HDTP
distinguishes between domain knowledge—facts and laws holding for the source or
the target domain—and background knowledge, which is assumed to be generally
true. Knowledge about a geometric figure is captured by domain knowledge, while
general principles of perception are captured in the background knowledge (Fig. 9).
An analogy is established by aligning elements of the source with analogous ele-
ments of the target domain. In the mapping phase, source and target are compared for
structural commonalities. HDTP (Gust et al. 2006; Schwering et al. 2009¢) uses anti-
unification to identify common patterns in the source and target domain. Anti-
Unification (Plotkin 1970; Krumnack et al. 2007) is the process of comparing two
formulae and identifying the most specific generalization subsuming both formulae.

5 This paper shall present the idea of the computational model and sketch the overall process. A
detailed description of the syntactic and semantic properties of HDTP can be found here (Gust
et al. 2006; Krumnack et al. 2007; Schwering et al. 2009c).
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Fig. 8. Anti-unification compares two formulae and creates the least general generalization.
While (a) and (b) are first-order anti-unification, (c¢) and (d) require second-order anti-
unification to capture the common structure of the formulae.

We use anti-unification to compare the source theory with the target theory and
construct a common, general theory which possibly subsumes many common struc-
tures of the source and the target domain. Fig. 8 gives several examples for anti-
unification. Formulae are generalized to an anti-instance where differing constants are
replaced by a variable. In (a) and (b), first-order anti-unification is sufficient. The
formulae in (c) and (d) differ also w.r.t. the function symbols. While first-order anti-
unification fails to detect commonalities when function symbols differ, higher-order
anti-unification generalizes function symbols to a variable and retains the structural
commonality. In example (d), F is substituted by f/g, X is substituted by x/a and Y is
substituted by A(a, b)/b. A detailed description of anti-unification in HDTP can be
found in (Krumnack et al. 2007). An example for anti-unification of formulas describ-
ing geometric figures is shown below in Fig. 13.

Fig. 9 sketches the HDTP architecture to solve geometric proportional analogies.
Figure A and figure B of the analogy are part of the source domain, while figure C

of figure A and B,

generalized
axioms
typically a flat
representation of all generalized flat representation
elements\ substitution th eory substitution of”ﬁgure C
anti-instance anti-instance ,

source target
domain domain

generalization

one representation

all possible re-representations
which can be inferred

background knowledge

(laws to re-represent geometric figures according to the human perception)

Fig. 9. Overview of the HDTP architecture
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(and the still missing figure D) are part of the target domain. All elements in a geo-
metric figure are described by a set of axioms in a formal language (cf. section 3.2).
The background knowledge contains laws how to compute structured representations
of a geometric figure. Our experiment revealed that one possible strategy is grouping
elements with a common color; therefore, the background knowledge contains a law
for filtering elements with a common color out of all elements belonging to one fig-
ure. Applying these laws to the axiomatic description of a figure leads to a structure
(re-)representation of this figure.

To solve the analogy, HDTP compares figure A and figure C for structural com-
monalities and establishes a mapping between analogous elements in figure A and C.
HDTP uses anti-unification for the mapping process and computes a generalization of
the commonalities. The generalized theory with its substitutions specifies formally the
analogical relation between source and target. Additional information about the
source domain - in proportional geometric analogies this is information how to con-
struct figure B from figure A - is transferred to the target domain and applied to figure
C to construct figure D (Schwering et al. 2009b).

3.2 Language to Formalize Different Conceptualizations of Geometric Figures

We developed a formal language based on the “Languages of Perception” by (Dastani
1998). Basic elements of a geometric figure can be described by its (absolute) posi-
tion, shape and color. We can detect groups of elements following the criteria men-
tioned in section 2.3. For the following example, grouping based on common shape
and color is important. The language also supports other structures such as iteration of
elements or groups. Since we focus on the basic principle of re-represen-tation and on
the changing of flat representations to structured ones, we describe this process exem-
plary for grouping elements according to their shape and do not elaborate all other
possible structures that could be expressed with this language.

The analogy shown in Fig. 10 was solved by grouping all circles in figure A into
one group and all remaining elements (in this case a white square) into a second
group. Grouping all remaining elements into one group was a common strategy in our
experiment. All circles become black, while the remaining elements stay the same.
With this strategy the solution to this analogy is keeping the grey square of figure C
and changing the color of the circles to black.

. ® © |
:'. @ * 0
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O O O

Fig. 10. In this analogy, all circles become black and the squares remain as they are
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Fig. 11. In HDTP, the analogy is separated into a source and a target domain and a coordinate
system determines the absolute position of elements

Fig. 11 shows the same analogy as it would be described in HDTP: figure A and B
belong to the source domain and figure C and D belong to the target domain. A coor-
dinate system is used to determine the absolute position of the elements.

HDTP starts with a flat representation of all elements. The elements of figure A are
described as follows®:

$ flat representation of figure A

ol := [shape:square, color:white, position:p(2,1)]
02 := [shape:circle, color:grey, position:p(2,3)]
03 := [shape:circle, color:grey, position:p(2,4.5)]
04 := [shape:circle, color:grey, position:p(2,6)]

Based on the flat representation, HDTP has to compute a structured representation
which reflects human cognition. First, we show how a structured representation looks
like for the running example and how the language supports the re-representation. In
the next section, we sketch the process how HDTP automatically detects the correct
re-representation steps and computes such structured representations. As we already
mentioned, the source domain is perceived as two figures (figure A and figure B) and
figure A is divided into a group of circles and the remaining objects (the square):

$ representation of figure A with structure
group figA := [0l,02,03,04]

group gl filter (figA, (shape:circle), +)
group g2 filter(figA, (shape:circle), -)

Groups can be expressed extensionally or intensionally. Extensional groups are de-
fined by listing all members of the group. This is typically the case for the group of
elements belonging to one figure such as the group £igA. Intensional groups are
specified by the defining criteria such as groups g1 and g2. Group g1l is constructed
by selecting those elements of group £igA which have a circular shape. The plus and
the minus sign indicate the polarity: a minus stands for the complement of a group
and is used to group the remaining elements in figure A. It is also possible to combine
different filters by concatenating different filtering criteria: A group containing all
grey circles would be defined as follows:

group gl := filter(figA, (shape:circle, color:grey),+)

® The elements of figure B are constructed from figure A by changing the color of all circles to
black and keeping the square. Therefore, they are not described explicitly here.
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HDTP uses its background knowledge to transform flat representations into structured
ones. The background knowledge contains rules to filter a group for certain elements,
i.e. filter group £igA for all elements which have a circular shape. All circular ele-
ments are extracted, added to a list of elements which is used to construct the new
group. Analogously, groups can be filtered for a certain color, absolute position, or
relative position such as “middle elements”.

group gl := filter(figA, (position:top),+)

Additional rules are required for groupings based on the relative position. HDTP
background knowledge contains rules to compute spatial relations “above”, “below”,
“right”, and “left” based on a single cross calculus. For example, top elements are
computed by selecting those elements from a group which are not below another
element. A single cross calculus is sufficient for the simple geometric analogies used
in our experiment. For more complex stimuli one can choose to implement a different
calculus to compute spatial relations.

Like figure A, figure C is first represented as a flat list of elements. To establish a
mapping, figure C must be regrouped in a way analogous to figure A. If the same
subgroups can be constructed, the same transformation can be applied. The following
code shows the flat representation and the division into a group of circular elements
and a second group of remaining elements.

% formalization of figure C as list of flat elements

o5 := [shape:square, color:white, position:p(2,1)]
06 := [shape:circle, color:grey, position:p(2,3.5)]
o7 := [shape:circle, color:grey, position:p(2,5)]

o

$ representation of figure C in two groups
group figC := [05,06,07]

group g3 filter (figC, (shape:circle), +)
group g4 filter (figC, (shape:circle), -)

3.3 Solving the Analogy: Re-representation and Anti-unification

The previous section presented the language that is used to describe geometric figures
and rules to compute higher structures. Finding the correct conceptualization of a
geometric figure within a proportional analogy is an iterative process (Fig. 12): First,
HDTP computes different possible conceptualization of figure A using prolog laws in
the background knowledge (Schwering et al. 2009b). There are numerous ways in
which figure A of the running example could be represented (Schwering et al. 2009a):
it could be grouped based on shape, based on color (grey elements, versus white ele-
ments), it could be considered as one whole group or any other way of grouping. The
re-representation is heuristic-driven:

e It is influenced by Gestalt principles, e.g. according to the law of similarity it
makes sense to group grey elements and white elements or circles and squares.

e It is influenced by possible transformations to figure B. If several elements are
repeated in B, it is likely that a transformation must exist between the elements in
A and the repeated elements in B.
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Fig. 12. Iterative process of computing the correct structured representation of the analogy

However, the structure of figure A is not independently created from the overall anal-
ogy: Once one (or several) preferred conceptualization of A exist, HDTP tries to re-
represent figure C in an analogous ways, i.e. it tries to establish the same groupings as
in figure A. If this is not possible, the structure of figure A must be revised.

Once figures A and C have a structured representation and the transformation be-
tween A and B is known, an analogical mapping can be established via anti-
unification and figure D is constructed via analogical transfer.

Fig. 13 shows the anti-unification for an object description and a group definition.
The upper part shows an example of a comparison between object o1 and object o5 .
Both objects are squares at the position (2,1), but object o1 is white and object o5 is
grey. Both formulas differ only with respect to the identifier and with respect to their
color. Therefore identifier and color are replaced by a variable X respectively Y in the
generalization. The same holds for the group definitions in Fig 13(b): one group is
defined on elements in figure A and the other is defined on the elements in figure C of
the target domain. The generalization replaces the differing group identifier (g1/g2)
with a variable G and £igA/£igC with the variable F.

(a) X := [shape:square, color:Y, position:p(2,1)]
X -> ol X -> o5
Y -> white Y -> grey
ol := [shape:square, o5 := [shape:square,
color:white, color:grey,
position:p(2,1)] position:p(2,1)]
(b) group G :=

filter (F, (shape:circle), +)

G -> gl, G -> g3,
F -> figA F -> figC
group gl := group g3 :=
filter (figA, (shape:circle), +) filter (figC, (shape:circle), +)

Fig. 13. Anti-unification of two object descriptions and two intentional group definitions
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4 Related Work

Proportional analogies were studied in various domains such as the natural-language
domain (Indurkhya 1989; Indurkhya 1992), the string domain (Hofstadter and
Mitchell 1995), analogical spatial arrangement at a table top scale (French 2002), and
in the domain of geometric figures.

In (1962; 1969), Evans developed a heuristic program to solve GPAs. Before the
actual mapping process, the program computes meaningful components consisting of
several line segments in each figure. Evan’s analogy machine determined the relation
between A-B, computed a mapping between A-C based on rotation, scaling, or mir-
roring, and selected an appropriate solution from a list of possible solutions. In con-
trast to our approach, the representation and the mapping phase are sequentially sepa-
rated from each other. While we use structural criteria, Evans uses mathematical
transformation to detect a suitable mapping between figure A and C.

O’Hara & Indurkhya (1992; 1993) worked on an algebraic analogy model which is
able to adapt the representation of line drawing figures during the analogy-making
process. Dastani et al. developed a formal language for this algebraic model to de-
scribe elements in geometric figures and compute automatically a structural, Gestalt-
based representation (Dastani and Scha 2003). This approach accounts also for con-
text effects, i.e. figure C has an effect on the conceptualization of figure A (Dastani
and Indurkhya 2001). Both ideas strongly influenced our work. We reuse many ideas
developed for this algebraic model and apply them to our logic-based framework.

Mullally, O’Donoghue et al. (2005; 2006) investigated GPAs in the context of
maps. They used structural commonalities to detect similar configurations in maps
and to automatically classify geographic features. Due to the limitation to maps, they
do not support the complex spatial analysis required for our GPAs.

Several other approaches deal with the perception of visual analogies in general.
Davies and Goel investigate the role of visual analogies in problem solving (Davies et
al. 2008). Forbus et al. (2004) developed an approach to compare sketch drawings.
Since GPAs are not the focus of these approaches, we do not discuss them here.

5 Conclusions, Discussion and Future Work

We presented HDTP, a formal framework to automatically compute different concep-
tualizations of the same figure. We discuss the presented approach and afterwards
argue how this approach could be used in a more general context of recognition and
classification of spatial objects.

5.1 Summary and Conclusions

Human spatial cognition is a holistic process: we tend to see whole patterns of
stimuli when we perceive a spatial object in an environment. According to Gestalt
theory, parts of the spatial object derive their meaning from the membership in the
entire configuration. Computers, on the other hand, process visual information in an
atomistic way. To receive similar patterns as the ones humans perceive, we need a
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computational model which can generate in a bottom-up manner the structure which
is necessary to interpret the stimulus correctly.

Experiments on geometric proportional analogies have shown that subjects per-
ceive the same geometric figure in different ways and that the preferred perception
changes, if the context in the analogy is varied. Subjects apply different strategies to
solve the analogies: the elements in the geometric figures are often regrouped accord-
ing to shape, color or position to establish a common structure in source and target
domain.

HDTP is a heuristic-driven computational framework for analogy-making and can
be used to simulate the human way of solving geometric proportional analogies. We
developed a logic-based language to describe geometric figures. HDTP takes such
formal descriptions of the figures in the source and the target domain and tries to
detect common structures. Usually, source and target are not available in an analo-
gously structured representation at first. HDTP re-represents the descriptions to trans-
form the flat representation into a structured representation of the geometric figure.
Different structured representations reflect different conceptualizations of a geometric
figure. The process of re-representation is essential to model spatial cognition of
geometric figures in the context of proportional analogies: finding the analogous
structural patterns in figure A and figure C can be considered as the main task in
analogy-making. In the mapping process, HDTP uses the theory of anti-unification to
compare a source and a target formula and computes a generalization. The analogical
relation between the source and the target is established by creating a generalized
theory subsuming all formulae in the source theory and all formulae in the target
theory. The proportional analogy is solved by transferring the relation between figure
A and B and apply it to figure C to construct figure D.

5.2 Opportunities and Drawbacks of the Approach

In our experiments, we investigated only simple, artificial stimuli so far. The stimuli
had different number of elements which varied across three different shapes, three
different colors and different positions. The artificial stimuli are simple enough to
control variations, to emphasize different aspects and different Gestalt principles and
to trigger different perceptions. With systematic variations it is possible to detect how
certain variations change the perception. The number of possible re-representations
and transformations is limited. The language we are using at the moment supports
only simple elements, but it could be extended. Future development shall support
complex forms and line drawings like the ones in Fig. 14. It shall become possible to
compute an area from a given set of lines and check whether it is a familiar form such
as a square or a triangle. The detection of complex structures and forms requires a
spatial reasoner which can detect spatial relations.

Analogy making provides a good framework to test spatial cognition, because
variations in context may lead to different perceptions which result in different solu-
tions. The different solutions serve as indicator for different conceptualizations.

In section 3.3 we describe a heuristic-driven framework to compute different con-
ceptualizations. We assume the relatively difficult situation where none of the figures
is pre-structured. Real-world tasks are often easier. In a recognition task for example,
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a new stimulus (the target domain) is compared to known stimuli (the source domain).
The new stimulus must be restructured to fit to the given structure of the source do-
main. A pre-defined structure of the source domain reduces drastically the complexity
of the underlying framework.

5.3 Spatial Object Recognition as Future Application

In this paper, we discussed the computational framework only in the context of analo-
gies. However, we think that HDTP could serve as a general framework for visual
recognition and concept formation. Visual recognition of spatial stimuli is based on
matching new stimuli to familiar ones. Often, things are best characterized by their
structural (and functional) features, but superficial features do not reveal much about
the nature of an object. Therefore, we argue that analogical comparison is very suit-
able to model the human cognitive process of recognition.

So far, HDTP was tested only with artificial stimuli. The language used at the mo-
ment can describe simple elements and express very limited spatial relations. How-
ever, the basic principle of the computational model presented in this paper is flexible
enough to support complex spatial objects as well. First experiments have shown, that
structural commonalities play an important role in object recognition (Stollinski et al.
2009). Future work will investigate HDTP in analogy making between complex stim-
uli like sketches of real world spatial objects.

Fig. 14 shows different sketches of an oven. Although they differ from each other,
they share a lot of structural commonalities: all of them have four hotplates which are
inside a polygon representing the top surface of the oven. Five temperature regulators
and a spy window (with or without handle to open the door) are inside a polygon
representing the front surface of the oven. Similarly to geometric figures, each sketch
is represented by its primitive elements (lines and ovals). Background knowledge
contains laws how to analyze geometric forms, detect polygons from lines or compute
even more complex structures such as a cube.

An effective model for spatial cognition requires a spatial reasoner to compute spa-
tial relations or different 3D perspectives on the same object in space. Already our
experiments with simple geometric figures revealed such requirements: Several par-
ticipants applied three dimensional transformations between figure A and B, which
cannot be represented in the two-dimensional model of HDTP. Future work will in-
vestigate how existing models for spatial reasoning can be integrated. Also the repre-
sentation language as well as the re-representation rules must be extended.

Fig. 14. Analogy-based sketch recognition compares different sketches of spatial objects and
detects common structures
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5.4 Sketch Map Comparison as Future Application

A second application area for analogical reasoning is the comparison of sketch maps
to metric maps. While metric maps such as street maps are constructed from exact
measurements, sketch maps are drawn by humans based on their cognitive map.
Fig. 15 shows a sketch map and a metric map of the same area. A qualitative com-
parison of both maps reveals many structural commonalities: the spatial objects lie
along streets forming the same street network. The sketch map is a simplified and
schematized representation of the metric map.

Sketch Map Metric Map

f

Hiiffer-Str

Robert-Koch-Str Landois Str
= P

Fig. 15. Analogy-based comparison of a sketch map and a metric map of the same area reveals
structural commonalities between spatial objects such as houses, streets, water-bodies and trees

Analogical comparison focuses only on structural commonalities such as the rela-
tion of geographic features to streets and streets being connected to other streets. It
abstracts from metric details. Therefore, we argue that analogical comparisons are a
useful tool for sketch map comparisons.
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Abstract. Named urban neighborhoods (localities) are often examples of vague
place extents. These are compared with current knowledge of vagueness in con-
cepts and categories within semantic memory, implying graded membership
and typicality. If places are mentally constructed and used like concepts, this
might account for their cognitive variability, and help us choose suitable geo-
spatial (GIS) data models. An initial within-subjects study with expert geo-
graphic surveyors tested specific predictions about the role of central tendency,
ideals, context specificity, familiarity and expertise in location judgements —
theoretically equivalent to categorization. Implications for spatial data models
and a further research agenda are suggested.

Keywords: place, neighborhood, vague extents, concepts, expertise, urban spa-
tial cognition.

1 Background: Vagueness and Place

Vagueness is a curse and a blessing for spatial information research: a curse prag-
matically since GIS (geographic information systems) were not designed to represent
it, and a blessing academically since this challenge has inspired many innovative
ways to overcome it. As a result, vague extents for adjoining spatial areas can now be
handled with a range of modelling techniques [1;2]. However, some types of vague-
ness seem far more complex and unpredictable than others. The gradient shift be-
tween mountain and plain [3] or the thinning of trees at the edge of a forest [4] are
measurable, stable gradations. Humans' apparently slippery and changeable concepts
of places and their extents may not be [5; 6; 7; 8].

Nevertheless, there is great potential for better data models of (vernacularly rec-
ognised) place to enhance geographic information use in many areas of government,
infrastructure, research, commerce and health [2]. Thus Mark et al [5], in outlining
key themes for geographic spatial cognition research, added almost as an after-
thought [p.764] "the issue of place - what are the cognitive models of place and
neighborhood, and can these be implemented in computational environments? What
would a place-based, rather than coordinate-based GIS look like, and what could it
do, and not do?"

K. Stewart Hornsby et al. (Eds.): COSIT 2009, LNCS 5756, pp. 36-50, 2009.
© Crown copyright 2009. Reproduced by permission of Ordnance Survey.
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Fig. 1. Example of the problem of defining named localities. To locals 'Allington' means some
or all of the central area of this map, ultimately bounded by the river and the old London Road
(running from left to centre-bottom). It has no central core or consistent urban style. Its shops
and pub are close to London Road, as is the school that is the only key feature of Palace Wood,
the named locality to the south. The remains of Allington village, and its castle, are separated
from most of the suburb by two rail lines, a trading estate and open space.(Ordnance Survey
1:25000 mapping, © Crown copyright 2009).

Ten years on, the vague extent of many types of place still remains a confusing
topic, viewed as marginal by most geographers and environmental psychologists
[9].1deally, empirical work would lead us toward a testable theory of place (extent)
cognition, which could help us to evaluate the suitability of computational methods
and models for representing place more meaningfully within GIS. However, research-
ers in the above areas have often eschewed this question, in favour of a stronger focus
on residents' affective attachments and social concerns within particular cities or re-
gions, although exceptions do exist [10; 7].

Thus it is still unclear which modelling techniques might best reflect how people
mentally store and process knowledge of vaguely defined places in everyday life. To
find this out, we first need more basic research into the cognitive phenomenon of
vague place extents. This paper will report one initial experiment from an ongoing
research programme, designed to examine the question: how do people decide
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whether a given urban location or feature (e.g. a building or street corner) falls within
a named area of a city — loosely termed a 'locality' or 'neighborhood"?

Urban neighborhoods are a well-known example of vague places, both in definition
and extent. Therefore, in many cities some locations must lie in indeterminate areas
somewhere between two adjacent places. The location may be viewed as falling
within either or neither of them, a choice referred to in this paper as a 'location judg-
ment'. A long research tradition has established that the perceived boundaries of urban
neighbourhoods can vary greatly between individuals [11] and with increased famili-
arity [7], and may depend on social (and socially communicated) factors just as much
as physical environmental differences [8]. Predicting and modelling neighborhood
boundaries has so far seemed an intractable challenge, as individual and contextual
differences can seem overwhelming (Figure 1).

This paper will first briefly review some of the literature concerning vagueness of
neighbourhoods, then compare it directly to our knowledge of vagueness issues in the
more cognitive science domain of concepts and categories (semantic memory). It will
then describe a preliminary study to test whether some of the implications of that
comparison do in fact apply to people's location judgments. Specifically, this initial
experiment used a within-subjects questionnaire method to examine two aspects of
potential intra-individual differences in location judgments: whether and how place
familiarity and professional geographic expertise might cause different choices to be
applied by the same person in different contexts. Finally, as well as outlining further
ongoing work, I will discuss the implications of the places-as-concepts approach for
choosing among existing models of geographic place data.

2 Causal Factors in Perceived Neighborhood Extents

Since the 1960s there has been a regular stream of papers concerning people's concep-
tions of their own neighborhood, but less on how they view others within a familiar
city (with exceptions, e.g. [7]). Within that 'own neighborhood' research area, often
the very concept of neighborhood seems to be in danger of confounding named con-
ventional or even administrative districts with people's personal (and usually but not
always unnamed) sense of 'home range', so much so that researchers sometimes bend
over backwards to avoid using the word 'neighborhood' at all in their instructions to
participants, or add 'home range' as well in case it differs (e.g. [12; 10; 13]).
Nevertheless, we could make a tentative assumption that the same criteria people
use to define their own neighborhood (particularly where it does coincide with a
named locality) may also be used, at least in part, to help them define the other
neighborhoods in the same city, since we have long known that cognition of those is
not purely spatial either [14]. The relative importance of different criteria seems to
differ greatly between studies — often due to limitations in the research method used.
They may also be changing over time: perhaps unsurprisingly, more recent studies in
the US and UK seem to place less emphasis on use of local within-neighborhood
amenities (e.g. shops) and less socialising within neighborhoods than older studies

"' T will use these two words interchangeably in this paper, except when distinguishing named
(generally larger) localities from neighborhoods' in the more personal sense of 'home range'
[10].
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from the 1960s and 1970s (see also [15]). Defining factors which have been suggested
in the literature include, in no particular order (since relative effect sizes have not
been established):

e physical infrastructure boundaries, e.g. major streets or rail lines — although the
focus on these may be more likely among people with formal geographic expertise
([16; 13])

e use of local amenities e.g. shops and schools ([11; 17])

e amount and extents of people's walking (and sometimes cycling) from home, for
errands or pleasure ([18; 10; 13])

e local social or political activity ([11; 8; 13; 19])

e social cohesion — "people like us" ([11; 17; 13])

e media stories naming specific localities and creating a stronger awareness of their
identity ([8; 17])

e environmental aesthetics and similar housing styles ([8; 13])

e familiarity, especially if measured objectively e.g. through landmark identification
([18; 7D

Obviously, not all of these will be used to determine entire named localities as in
Figure 1; some will apply only to a smaller and more personal area (Stanton's "home
range" concept [10]). Such areas — particularly one's own — are not always viewed by
locals as a vaguely-bounded area at all, but sometimes as an experiential network with
defined ends for each separate branch ([10; 18]). This can also be true of larger named
localities, and seems to remain true even for some long-term residents, contradicting
the "route-to-survey knowledge" school of thought on cognitive mapping, but not
more recent studies of it [20]. Meanwhile one study of newcomers learning a city
from scratch found that their knowledge of its localities from one test to the next was
strangely uncorrelated, rather than showing a smooth learning curve [7], perhaps
suggesting a dynamic rather than static assessment of those localities' identities and
extents.

In fact, many authors have expressed the concern that there may not be a stable,
strong, consistent or even any concept of neighborhoods with definable (even vague)
extents, in many people's minds. Schnell et al [17] found that for many residents of Tel
Aviv-Jaffa, there was no sense of specific locality at all in their part of the city. Beguin
& Romero [7] bemoaned the unknown "black box" of people's place cognition which
"forces us" to assume that "there is a unique cognition of an urban item (either a
neighborhood or any element of it) in an individual's mind at a given time" [p.688]. Yet
Bardo [12], discussing people's own home neighbourhood concept, recognised that "a
particular individual may define more than one neighborhood depending upon the frame
of reference he or she is given" [p.348]. Martin [8] went further to claim [p.362] that
"we do not know neighborhoods when we see them; we construct them, for purposes of
our research or social lives, based on common ideals of what we expect an urban
neighborhood to be. The neighborhoods that we define through research or social ex-
change are always subject to redefinition and contention; they are not self-evident."
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3 Neighborhoods as Concepts?

So cognitively speaking, neighborhoods — and perhaps other types of vernacular place
such as larger regions — are potentially vague (sometimes), and may be context-
specific constructions rather than stable spatial entities. This may also be true of an-
other well studied cognitive phenomenon: concepts. Concepts used to be viewed as
stable yet often vague stored mental entities, until Barsalou [21] showed that provid-
ing different contexts could change the way that people categorized the same
instances of people or objects. Although his data did not actually demonstrate within-
subject variability, Barsalou claimed in his conclusion that human conceptual ability
was "extremely dynamic" [p.648] in that "people may not retrieve the same concept
from long-term memory every time they deal with a particular category" [p.646]. To
Barsalou, concepts are constructed in working memory, not merely retrieved from a
stable store. This has the important implication that the same instance may be classi-
fied differently — as one category or another — depending on context. Yet participants
will also happily, when asked, pile cards depicting the same objects into sharply
delineated piles, and the literature rarely reports any reluctance to do so.

Barsalou also made another distinction which may prove valuable if we were to de-
cide to treat neighborhoods and other places as concepts. Until then the notion of central
tendency had dominated theorists' thinking on (largely taxonomic types of) concepts for
around a decade — the idea that in any category of instances (even if formally defined),
some are seen as better examples of it than others. The most popular theory [22] de-
scribed this in terms of resemblance to a central core or prototype. Barsalou showed that
many categories are instead goal-derived — existing to fulfil a function or need — and
that people's ratings of goodness-of-example in such categories tend towards an extreme
ideal’ that would be the ultimate fulfilment of that need, rather than a central 'typical’
average. Additionally, he argued for personal familiarity and also frequency of instantia-
tion (how often you come across the instance classified within the category) as potential
extra influences on goodness-of-example judgements.

Work since Barsalou's paper has shown that, if anything, we seem to use ideals for
more types of categories than he predicted — sometimes even for natural-kind catego-
ries that are obviously taxonomic such as trees or birds [23]. Furthermore, experts
seem to rely on ideals much more than the novice student participants of most lab
studies. Yet different types of expert (e.g. professional landscapers versus taxono-
mists) will apply different ideals, and at the highest levels of expertise personal fa-
miliarity may have also a greater impact than central tendency [24]. However, we
may assume that expertise is applied primarily within the professional context in
which it is usually used, and that experts are able to think like laypeople when dealing
with more everyday contexts. Thus we might expect to see within- as well as be-
tween-subjects differences in the effects of expertise, where contexts are changed.

More recently, Hampton [25] hazarded three potential ways in which categorization
of an instance (e.g. an object) might vary with context within the same individual:
changes occurring in either (a) the representation of the instance, (b) the representation
of the category, or (c) the threshold of similarity required to categorize the instance into
it. Hence the same person could classify the same entity differently due to circumstance
— sometimes into one category, and sometimes into another — creating the effect of
vagueness. Hampton also argued that if people consider vagueness acceptable, the same
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person may be aware that they could classify a given instance as both "X and not X" — a
result which he claimed is difficult to represent in the fuzzy logic often used to model
vaguely bounded entities.

Hampton also asked "How do we live with vagueness?" [p.378] His suggested an-
swer to this was that social constraints, and the need to communicate effectively with
others, mean that we are bound to build and use consensus, rather than having no
sense of boundaries at all between related categories.

3.1 Location Judgments as Category Membership

Why apply concept theories to place? After all, place is inherently spatial and hence,
even if we were to imagine a place as a category and a single location as an instance
of it, we would usually assume that central tendency in the form of distance from a
core would be a more realistic model of fuzzy location judgements than Barsalou's
goal-derived categories and their indefinable 'ideals'. Yet the brief literature review
above seems to suggest otherwise. Furthermore, a recent review and study of cogni-
tive mapping of urban environments [20] has suggested that while people may store
their route knowledge through a city as a network of individual locations or 'vista
spaces' (as defined by [26]), those locations must also still be categorised into places
or regions if we are to explain the well-known hierarchical biases in spatial reasoning
(e.g. [14]). This would help to explain how studies of cognitive mapping seem to
emphasise a mental route network model, even though people can readily draw poly-
gons on a map to show separate districts or neighborhoods in the same city.

If this is reasonable, then even the few papers cited above on concepts (out of a lit-
erature mountain) have clear implications for those neighborhoods, and for location
judgements as a form of categorization task:

1. Under different circumstances the same people may produce different representa-
tions of the same neighborhood, even though most will also happily draw crisp
boundaries around it on a map when requested.

2. Neighborhoods may prove to be more of a goal-derived category for many resi-
dents in many situations, implying that locations seen as 'good examples' might
tend towards a goal-fulfilling ideal (e.g. historic buildings) rather than a core cen-
tral prototype (spatial or otherwise typical). However, again this may vary with
context.

3. Expertise — particularly formal knowledge — may increase and change the use of
ideals in defining a place.

4. As people communicate more about a place, social consensus will create increased
similarity between and within people's judgements of it.

5. People may be willing to accept that a location can be seen simultaneously as in
and not in a place; if this is true then any computational model of the resulting
vagueness needs to accommodate this.

Note that points 3 and 4 could contradict each other. Greater familiarity may cause a
more personal and goal-derived 'expert' understanding of a place, or it may create
greater consensus with others which might suggest increasing reliance on central
tendency. This obviously requires more explicit empirical testing than it has had so
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far in the neighborhood literature, where some authors have noted greater consistency
among longer-term residents ([7], while others have found them to have very personal
familiarity-based and non-consensus definitions [10].

4 Expertise, Familiarity and Location Judgements

To begin to test the above predictions, and thus start to evaluate the plausibility of
places as concepts, the present study focused on the criteria people use for making
location judgements under different (hypothetical) circumstances, particularly varying
the roles of expertise and familiarity. Focusing directly on the criteria used for these
choices may allow us to start teasing out the cognitive factors underpinning the vague
vernacular geography of neighborhoods.

Expert-novice studies in cognition are often problematic, due to the many non-
expertise-related differences that tend to exist between two different groups of people:
e.g. often the expert group is older and has more general experience of both general
and professional life, as well as the specific task domain under study. Therefore the
present study adopted a within-subjects approach — comparing a group of geographic
place experts with themselves under different circumstances.

4.1 Participants

22 professional field surveyors working for Ordnance Survey, the national mapping
agency of Great Britain, took part in the experiment. These surveyors (19 male, 1
female and 2 undisclosed, median age group 45-54 years) work mostly from home
and are spread geographically across the country. Their main roles are to survey
changes in their local area mainly at a highly detailed level, intended for 1:1250-scale
urban and 1:2500-scale rural mapping (effectively to an accuracy of <1 metre on the
ground), and to gather information for generalised smaller-scale products such as
maps and gazetteers.

Although formally authorising and recording place names and extents is no longer a
part of this role, all but one of the surveyors were experienced enough (mean=28.5
years, s.d.=9, min=8, max=38) to remember having had to do it formally, and/or to have
more recently done it informally as part of their general updates of mapping data. Most
of them also used the questionnaire to express their views and ideas on the organisa-
tion's ongoing issues with, and potential means of collecting, place information.

4.2 Method

The experiment was administered via a paper questionnaire, which participants com-
pleted in their own time and mailed back to the researcher. Between initial briefing
and instructions, and final debriefing with space for comments, the questionnaire
consisted of three independent sections whose order was counterbalanced between
participants. Each section consisted of two sets of Likert rating-scale items, preceded
by a page of context-setting questions. Participants were instructed not to look back to
previous sections while completing each one.

The first (‘Work') page of one of the three sections focused on the surveyor's work
context, asking questions about their role, length of experience, current and previous



Are Places Concepts? Familarity and Expertise Effects in Neighborhood Cognition 43

geographical regions, and experience and views concerning collecting place names
and extents. The participant was then asked to name a town where they had done
some surveying, but which they did not know very well, and asked whether they had
ever had to collect placename information there. On turning over the page, they were
asked to imagine that they were trying to decide whether a specific location in the
town fell within a particular named neighborhood. 13 potential factors were then
listed, with Likert rating scales” from 0-5; participants circled a number for how much
each factor would help them decide that the location fell within the neighborhood.
(Participants could also write in and rate their own factors, although few did so’.) The
next page asked them which of the factors (now in a different randomised order)
would help them to decide that another location was not in the neighborhood.

Another ('Home') section related to the surveyor's home, with the first page asking
them to name their home town, say how long they had lived there, and name a
neighborhood within it that they knew very well either from living or frequently visit-
ing there (and if the latter, how often and why they did so). They were then asked to
think of and name two locations near the edge of that neighborhood (but not necessar-
ily near each other). For each location, the participant indicated his confidence (from
0-10) that the location was within the named neighborhood, and also indicated the
percentage of local people whom he thought would agree that it was. The next two
pages asked him to take one of these locations and imagine he was arguing for its
being within the named neighborhood, rating the same 13 (differently randomised)
factors as before for helpfulness, then doing the same while imagining themselves
arguing that the other location was not in the neighborhood.

The first page of the remaining section ('New Area') asked the participant to imag-
ine moving home to a new area, and to consider the problem of trying to choose a
new home while getting to know the town. They were asked to say whether they had
ever moved home, and how long ago this was. The next two pages asked him to imag-
ine trying to decide that a given house was within a certain desirable neighborhood,
and then trying to prove that an estate agent was stretching the truth by such a claim,
once again using the same 13 (again re-randomised) factors.

Thus each section of the questionnaire took the same basic form — setting a context
and then asking participants to rate the helpfulness of 13 potential factors in arguing
for, and then against, a location classification within a real or imaginary neighbor-
hood.

4.3 Criteria and Hypotheses

The 13 factors were described in full sentences, but are presented in shortened form
below for ease of reference:

% Piloting showed that a longer scale would not be meaningful, and would be too fatiguing for
this many questions.

3 Only 9/22 participants added (at the most) one or two extra criteria per scenario — too few and
too disparate to analyse. They included (with number of participants): local government offi-
cials' views (2); local residents' views (2); neighborhood names appearing on streetname
signs, as happens in some UK towns particularly post-war new towns' (2); the location having
visible dominance or centrality within the neighborhood (3); thematic groupings of related
street names (1); being on a different bus route from the rest of the neighborhood (1).
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. Right/wrong side of a physical barrier e.g. road or embankment

. Same/different administrative, electoral or school district

. Neighborhood name does (not) appear in Royal Mail official address

. Named this way (or not) by real estate agents or property developers

. Always/never referred to this way by local people

. Mentioned (or not) using this name in the local media, tourist or other local infor-
mation

7. Name (dis)similar to that of the neighborhood

8. Close to/far from a key feature e.g. shops, church, park, main street

9. Close to/far from the placement of the name on maps

10. (Dis)similar visual appearance to the rest of the neighborhood

11.People in this neighborhood like (or don't like) to be associated with it

12.Same/different function/use as the rest of the neighborhood

13.Age or other sense of belonging to/differing from it

AN B W=

These factors partly reflect the above literature, and partly known (and somewhat
British-specific) issues such as the Royal Mail's use of some locality names in their
'official' address designations, and people's frequently stated reliance on Ordnance
Survey (OS) maps to define an assumed 'correct' geography.

It will be noted that factors 1-3 imply crisp and definitive 'in/out' factors, and thus
preclude any notion of graded membership as found with most concepts. As suggested
earlier, we might expect formal geography experts to prefer these factors, particularly
when imagining acting within their professional context. Factors 4-7 are dependent on
potentially variable use of the neighborhood name by other people in non-definitive
contexts, and thus evoke Barsalou's frequency of instantiation. Items 8 and 9 concern
central tendency: potential distance from an imagined spatial core or prototype. Items
10-13 involve non-spatial factors that could evoke either central tendency or, perhaps
more probably, an 'ideal'. For example, a beautiful historic house may be seen as the
ultimate ideal of an older neighborhood, while not at all typical of it.

Based on Barsalou's ideas, we could tentatively hypothesise significant differ-
ences between the imagined scenarios in their mean score across criteria, with the
more formal work context treating the fewest criteria as strongly relevant, and with
these being more ideals-related (for ideals relevant to the experts' job). Nevertheless
we might also expect some criteria to be preferred to others by this participant
group across scenarios (since, for instance, the experts in Lynch et al's study still
applied their expertise to an out-of-context experimental task, with perhaps some
differential treatment of certain criteria between different scenarios (an interaction
effect).

If Hampton was correct that people are able to appreciate vagueness and "X and
not X" situations when either the instance, category or threshold of acceptance
changes in some way, then within each scenario (but not necessarily across them) we
might expect to also see differences in criteria relevance between the 'in' and the 'not
in' decisions (i.e. an interaction of scenario and decision). Finally, we could see an
interaction of all three factors together (criterion, scenario and decision), if each indi-
vidual set of ratings was treated as a separate situation by the participants despite their
formal geographic background, which encourages and rewards more consistent rule
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application. This would be the strongest test of both Barsalou's and Hampton's theo-
ries' applicability to location judgements.

4.4 Results

A within-subjects (repeated-measures) ANOVA* was run on the mean rating scores for
Scenario x Criterion x Decision (3x13x2). Strongly significant main effects were found
for Scenario (Greenhouse-Geisser-corrected F39111333=8.84, p=0.0009) and for Crite-
rion (Fy4 26, 56720=14.08, p<0.0001), but only weakly for Decision (F; ;505=3.60, p=0.06).

Post hoc tests by Scenario showed the nature of the main effect: the mean score for
the New Area scenario was significantly lower across criteria and decision than either
Work (t126=-3.71, p=0.0002) or Home (t;123=-2.91, p=0.004). This suggests that the
participants found more of the location judgement criteria to be more relevant (on
average) in the unfamiliar New Area scenario than in the course of their familiar work
or home lives.

The weak main effect for Decision suggested that overall, participants gave a
slightly higher mean relevance rating across criteria when they were considering
including a location in a neighbourhood, than when considering excluding it. How-
ever, there was a very strong interaction effect between Scenario and Decision
(F130.104126=10.69, p=0.0003), which is illustrated in Figure 2 (left), and a weaker
interaction between Criterion and Decision (Fsg379021=2.05, p=0.06) also shown in
Figure 2 (right). The interaction between Scenario and Criterion was weaker still
(p=0.2), with no three-way interaction (p=0.4).
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Fig. 2. Left: interaction between scenario and decision, showing the most consistency in the
Work scenario, and the least in the Home one. Right: interaction between criterion and decision
(showing only criteria differing by >0.3). Note that the relevance of comparing the location's
and neighborhood's names was deemed much stronger when judging exclusion than inclusion,
whereas other strongly-varying criteria changed in the opposite direction.

* The ANOVA was also rerun including a main effect of questionnaire order to check for any
effect of this, but none was found (p>0.8).
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Post hoc tests did not reveal clear levels of separation among the criteria. The three
highest-scorers were criteria 1 (physical barrier, mean=3.56), 3 (Royal Mail address,
mean=3.48) and 5 (locals' naming, mean=3.40), followed by 8 (distance from key
features, mean=3.20), 2 (named administrative area, mean=3.20) and 9 (nearness to
the name on a map, mean=3.17). The four lowest scorers were 12 (shared function,
mean=2.28), 11 (desirability of association, mean=2.28), 10 (similarity of appearance,
mean=2.30) and 4 (property industry naming, mean=2.47). It will be noted that these
four means falling below 2.5 implies that these four factors were less than averagely
popular with the surveyors across the six contexts. Also note that the top two criteria
imply crisp, definitive geography of a neighbourhood as discussed earlier, whereas
the lowest three are the most likely to invoke the notion of 'ideals'.

The ANOVA was also replicated while grouping the criteria by those types, i.e. re-
flecting either crisp definitions, frequency of instantiation, central tendency or ideals.
This found the same pattern of results for the other main and interaction effects, and a
very strong main effect for criteria type (F1450=42.76 p<0.0001), but no significant
interactions of it with the other factors. The raw means and confidence intervals for the
four criterion types are shown in Figure 3. It confirms that ideals were used the least as
criteria, followed by frequency of instantiation, spatial central tendency and, most im-
portantly, crisp definitive factors. Post hoc tests showed that the strongest locus of the
effect was the distinction between ideals (the least used type) and the other three types
(e.g. comparing ideals to frequency of instantiation, t,y=-2.91, p=0.009).

Finally, the participants' own confidence ratings out of 10 that the locations speci-
fied in the Home section of the questionnaire did belong within the neighborhood
(mean=9.77, sd=9.59), and their estimate of the percentage of the population who

Mean+/-95% confidence
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Fig. 3. Means and 95% confidence intervals for the four criterion types, across scenarios and
decisions
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would agree with this (mean=77%, sd=26%), were compared and correlated. Hamp-
ton [25] predicted that as people's concepts are socially influenced, social consensus
on category membership should correlate with individuals' strength of conviction
about it. Both measures were strongly skewed towards 100%; Spearman's non-
parametric correlation showed r,,=0.56, p=0.006. (However, since both measures
were estimated by the same participant, confirmatory bias is likely to have been in-
volved, so further tests with independent samples are needed.)

5 Discussion

Field surveyors are obliged to optimise precision, accuracy and certainty in their
work. Crisp delineation of geographic features is often required for topographic map
surveying, and even when Ordnance Survey surveyors formally collected placenames
these were always verified as 'authoritatively' as possible. Surveyors were once in-
structed to consult local administrators and documents or, in their absence, such sup-
posed authority figures as school heads, clergy or doctors [27], or in more recent
egalitarian times an opportunity sample of local residents. These days certain OS data
products include Royal Mail address definitions, which may or may not include a
named locality as delineated by that organisation (although their definitions are often
ignored by or unknown to many locals). Surveyors' professional objectivity also re-
quires downplaying any aesthetic or subjective issues in recording information. Over-
all, for this population, these factors would predict exactly the pattern of biases that
were found in the data. Thus, contradicting studies such as that by Lynch et al [23], in
this domain experts may be less likely to rely on ideals.

Nevertheless, if neighborhoods can be treated as concepts to some extent, these
participants demonstrated the flexibility of concept definitions predicted by both Bar-
salou [21] and more recently by Hampton [25], differentiating both among scenarios
(at least in strength of criteria ratings, although not clearly in the actual choice of
criteria) and between decisions of inclusion versus exclusion. This seems to imply
that, as Hampton suggested, the 'threshold’ for category membership can shift be-
tween scenarios when applied to locations as potential members of places — a quanti-
tative but perhaps not qualitative effect of context. However, since people tend to-
wards consistency when answering similar questions repeated within the same ques-
tionnaire, this response bias may have masked a stronger distinction between scenar-
ios, by encouraging repeated selection of the same criteria. Further research is needed
to overcome this, either with a between-subjects design or by gathering responses on
separate occasions or in different forms.

It should be noted that when treated as a 13-level factor, differences among criteria
interacted with scenario, but this was not replicated when the criteria were collapsed
into the four types discussed above. Thus it would seem that this classification did not
account for all of the variance among individual criteria. Indeed, the third highest-
scoring criterion was the (potentially vague) neighborhood extent implied by locals'
use of its name — more reminiscent of Barsalou's frequency of instantiation than of
crisp delineation — while the fourth was distance from key features, implying Rosch's
older notion of central tendency [22]. Yet one of the four below-chance-scoring crite-
ria, naming by property industry agents such as in real estate, was arguably also an
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example of frequency of instantiation. The difference, may lie in the level of authen-
ticity and hence authority that may be assigned to these two local sources.

This study obviously raises further questions, which ongoing research is currently
attempting to answer. Do non-professional laypeople (i.e. formal 'novices', perhaps
using a between-subjects experiment design) differ from the present sample in the
criteria they apply to location judgements? If so, does this difference tend further
toward the use of ideals, or is it purely based on central tendency (either in terms of
distance from core features or typicality of appearance/function?) Does it differ more
or less than for experts between familiar and less familiar places?

Validation is also required: do people's actual location judgements (categorisa-
tions) draw on the same criteria that they would identify in a rated list, and vary in a
similar way between contexts as the present study implies? A more controlled (but
less ecologically valid) experiment could also artificially induce familiarity and ex-
pertise to some degree, allowing all participants to consider the same locations and
places. This would remove any chance of any unknown potential confounding factors,
given that participants in the present study were all thinking about different places
while rating the criteria relevance in the 'Home' and (to a lesser extent) the "'Work'
scenarios.

Even for this professional group apparently varies in location judgement criteria
between deciding inclusion and exclusion. This seems to indicate potential problems
for some proposed methods of modelling vague place extents. Just as people are
asymmetric in their distance judgements between two points [28], so their criteria for
(and hence potential values of) place extents may not be consistent even for the same
place when considered under different circumstances. According to Hampton fuzzy
logic-based models cannot easily accommodate such "X and not X" outcomes. This
could shed doubt on such models' applicability to place in the GIS context [29].

At the same time, however, the recognition even by this sample of the role of fac-
tors such as frequency of instantiation means that the eggyolk model of place (e.g.
[30; 6]) may oversimplify variations among locations by trying to include all "maybe"
or "disputed" locations in a single 'eggwhite' polygon, and all "definitely agreed"
locations in a neat 'eggyolk’ one. The messy familiarity surfaces noted by authors such
as Aitken and Prosser [18] imply that even when aggregated across local residents,
the 'yolk' and 'white' may not form neat contiguous surfaces. Obviously, this hypothe-
sis requires further testing. Hampton [25] talked of conceptual vagueness as a prob-
lem of 'psychological supervaluation', which suggests that the supervaluations we
may require for place might have to cope with intrapersonal as well as cross-
population differences in implied extents.

An alternative way forward might be to evaluate the computational models which
have been proposed within cognitive science for modelling category formation and
use (e.g. [31; 32]). However, it is not clear how the inputs and outputs of such models
could help us to handle place in the GIS context, nor whether they can be scaled up
practically to cope with the vastness of topographic data. Ideally within that data, or
linked to it, place membership information would be available or calculable for every
location and/or object in the urban and rural landscape. This is not trivial. For exam-
ple, the OS MasterMap® topographic database of Great Britain contains over 450
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million features®. There is a real danger that any computational models which have
not been tested beyond a few dozen categories with a handful of categories and ex-
emplars (dog is an animal, flower and tree are plants, etc.) might not be quite up to the
job of a national dataset reflecting everyday place cognition.
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Abstract. The modeling of concepts from a cognitive perspective is im-
portant for designing spatial information systems that interoperate with
human users. Concept representations that are built using geometric and
topological conceptual space structures are well suited for semantic sim-
ilarity and concept combination operations. In addition, concepts that
are more closely grounded in the physical world, such as many spatial
concepts, have a natural fit with the geometric structure of conceptual
spaces. Despite these apparent advantages, conceptual spaces are under-
utilized because existing formalizations of conceptual space theory have
focused on individual aspects of the theory rather than the creation of
a comprehensive algebra. In this paper we present a metric conceptual
space algebra that is designed to facilitate the creation of conceptual
space knowledge bases and inferencing systems. Conceptual regions are
represented as convex polytopes and context is built in as a fundamen-
tal element. We demonstrate the applicability of the algebra to spatial
information systems with a proof-of-concept application.

1 Introduction

In recent years there has been an increasing demand for research on the repre-
sentation and modeling of cognitive phenomena for spatial information systems
[21122]). Semantic similarity measurement in particular has been an active area
of research for spatial applications [I7J29]. Since human users interface and in-
teroperate with these systems, they must have a means for representing the
conceptual structures that exist in the users’ minds, especially those concepts
that are related to spatial cognition. Although geometric modes of concept repre-
sentation have not been as widely adopted as other representational frameworks
for cognitive modeling, they have garnered interest from researchers in the spa-
tial sciences, because many spatial concepts are intrinsically thought of in terms
of their geometric and topological features.

Models of human cognitive processes require a formal representation that a
computer system can interpret. The two prevailing frameworks for representing
cognitive processes are the symbolic and connectionist methods [9]. The symbolic
method aims at modeling high-level abstract concepts using symbol manipula-
tion schemes. Inferences are often the result of first-order logical operations on
the symbols in the model. The connectionist method attempts to model cogni-
tion in a way that more closely compares to the biological neural structure of
the brain, mathematically represented as nodes and their weighted connections.

K. Stewart Hornsby et al. (Eds.): COSIT 2009, LNCS 5756, pp. 51-68] 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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While useful for many cognitive computational tasks, both of these representa-
tional frameworks do not perform well at modeling certain aspects of cognition,
specifically semantic similarity and concept combination. Semantic similarity
measurement is fundamental to the task of cognitive categorization, because
conceptual units are classified with other conceptual units with which they are
most similar [28]. Using symbolic representations, the combination of concepts
is most often measured as the set-theoretic intersection of the properties of two
classes, but this method fails when combining concepts without shared properties
[10]. For example, stuffed gorilla combines the concepts stuffed and gorilla. How-
ever, the gorilla concept has no intersecting properties with the stuffed concept
because it is a living thing. In addition, ad hoc concepts, which by definition are
concepts that combine from different domains, are similarly difficult to represent
using symbolic representations [16]. In the case of connectionist representations,
even small connectionist models can be highly complex and become unwieldy
for representing semantics on the level needed for operating with concepts.

As a complement to the two representational frameworks listed above, Gar-
denfors has introduced conceptual space theory [9]. Conceptual spaces are geo-
metric and topological structures that represent concepts as convex regions in
multi-dimensional domains. This theory constitutes a mid-level spatialization
approach to concept representation and is particularly suited as a framework for
spatial information systems. Conceptual spaces can model semantic similarity
naturally as a function of distance within a geometric space, and conceptual
regions are subject to geometric operations such as projections and transforma-
tions that result in new concept formations.

Critics of conceptual space theory have contended that its usefulness has
only been demonstrated for simplistic cases with little abstraction and using
formalizations that are designed for specific contexts [33]. It is our position that
rather than being due to theoretical limitations, the difficulty in assessing the
experimental worth of conceptual spaces has been in part that no conceptual
space algebra exists with well-defined operations that allow one to build and
reason with complex conceptual space structures. To help rectify that situation,
in this paper we present a metric conceptual space algebra, consisting of formal
definitions of its components and operations that can be applied to them. The
work builds upon previous formalizations of conceptual spaces but aims to be
more comprehensive both as a mathematical model and as a launching pad for
computational implementation. Our key contributions are the formalizations of
query operations for semantic similarity measurement and concept combination.

Section 2 introduces conceptual space theory and previous formalization
approaches. In section 3, we define a conceptual space algebra with its com-
ponents. Concepts are thereby represented as convex polytopes. In addition,
contrast classes and context are formally defined. Section 4 presents the alge-
braic operations, i.e., core metric operations, and query operations for similarity
and concept combination. Section 5 applies the conceptual space algebra to the
problem of comparing countries and regions of the world with different contexts.
The final section presents conclusions and directions for future research.
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2 Related Work

The theory of conceptual spaces was introduced as a framework for representing
information at the conceptual level [9]. Conceptual spaces are based on the
paradigm of cognitive semantics, which emphasizes that meanings are mental
entities, i.e., mappings from symbols to conceptual structures, which refer to the
real world [20]. They can be utilized for knowledge representation and sharing,
and account for the fact that concepts are dynamic and change over time [4126].

A conceptual space is a set of quality dimensions with a geometric or topologi-
cal structure for one or more domains. Domains are represented by sets of integral
dimensions, which are distinguishable from all other dimensions, e.g., the color
domain. Concepts cover multiple domains and are modeled as n-dimensional re-
gions. Every instance of the corresponding category is represented as a point
in the conceptual space. This allows for expressing the similarity between two
instances as a function of the spatial distance between their points. Recent work
has investigated the representation of actions and functional properties in con-
ceptual spaces [12].

Vector algebra offers a natural framework for representing conceptual spaces.
A conceptual vector space can be formally defined as C™ = {(c1, ¢a,...,¢n)|ci €
C'} where the ¢; are the quality dimensions [25]. Vector spaces have a metric and
therefore allow for the calculation of distances between points in the space. This
can also be utilized for measuring distances between concepts, either based on
their approximation by prototypical points or regions [30]. Calculating semantic
distances between instances of concepts requires that all quality dimensions of
the space must be represented in the same relative unit of measurement. Given
a normal distribution, this can be achieved by applying the z-transformation
for these values [7]. Different contexts can be represented by assigning weights
to the quality dimensions of a conceptual vector space. C™ is then defined as
{(wie1,wacs, ..., wney)|e; € Cow; € W} where W is the set of real numbers.
The use of convex hull and Voronoi tessellation algorithms can be used to learn
conceptual space regions from a set of data points [13].

Work has been done to link conceptual space theory to established represen-
tational frameworks. Conceptual spaces are mid-level representations and they
have been bridged to higher-level symbol representations [3]. The geometric rep-
resentation of concepts has been extended to a fuzzy graph representation as well
[27]. However, the work done so far has not provided an integrated framework
that encompasses the full suite of conceptual space principles within a mathe-
matically defined geometric and topological structure, which is the aim of the
algebra presented here.

3 Formal Definitions

In this section we present a formal definition of a metric conceptual space and its
components. The conceptual space definition is mathematical and designed for
the practical goal of facilitating the construction of conceptual space knowledge
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bases. For this reason, the convex regions used to represent concepts are specified
with more explicitness than in previous formalizations of conceptual spaces.
Convex regions are defined as a convex polytopes [14], which are generalizations
of polygons to n dimensions. The n—1 dimensional faces of a convex polytope are
called facets. This definition of a concept region was chosen because operations on
polytopes are computationally tractable for domains composed of more than two
dimensions. Curved regions can be approximated using polytopes in much the
same way that polygon primitives are used to describe more complex structures
in geographic information systems (GIS) and computer graphics applications. In
addition, there are mathematical representations for convex polytopes that are
generalizable over any number of dimensions. This is important, because unlike
in GIS and graphics applications, the number of dimensions in a domain can be
arbitrarily large.

A designation of the context is required for many conceptual space algebra op-
erations. Methodologies for representing context for similarity measurement has
been an active research area [I9]. We extend the notion of context for similarity
as weights on domains as well as quality dimensions. Take, for example, a con-
ceptual space with a color domain that is composed of three quality dimensions:
hue, value, and saturation. It is conceivable that one may want to weight the en-
tire color domain lower in a night context [36], while also weighting value higher
than hue and saturation. This secondary weighting has the effect of making a
dark red color more similar to a dark blue color than to a light red color.

The role of context is not confined to similarity measurement. When com-
bining concepts the salience of the domains for each concept helps to determine
which regions override other regions. Given the ubiquity of context, we define a
context as a set of salience weights that can be applied to components of any
type in the conceptual space. This definition leaves open the option of applying
salience to objects in the conceptual space in a manner beyond what is discussed
in this paper, which will facilitate extending the operation set of the algebra.
For example, one can create a context for a set of instances where each instance
in the set is given its own salience weight for prototype learning.

3.1 Metric Conceptual Space Structure

A metric conceptual space is a multi-leveled structure. A distinction is made be-
tween the representation of the geometric elements (regions and points) and the
conceptual elements (concepts, properties, and instances). In contrast to other
formalizations of conceptual spaces, regions and points are associated with only
one domain each, and not with the conceptual space as a whole. Concepts and
instances, on the other hand, span across one or more domains. This structure
facilitates semantic similarity measurements for concepts and instances that take
into account different distance measurements for within and between domains
as well as concept combination operations that operate domain-by-domain.
The following definitions are organized in a top-down way beginning with the
definition of a conceptual space and defining each component of this space in
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turn. We refer to concepts, properties, and instances as objects in the conceptual
space.

v

Definition 1. A metric conceptual space is defined as a 6-tuple, S = (A, I, 1,

0,K,c>.

A is a finite set of domains, where a domain § € A.
I'isa finite set of concepts, where a concept v € I'.
Iisa finite set of instances, where an instance 7 € I.
is a finite set of contrast classes, where a contrast class ¥ € J
K is a finite set of contexts, where a context k € K.
c is a constant similarity sensitivity parameter.

The set components of a conceptual space are dynamic and can be modified by
applying algebraic operations. The conceptual space algebra defines a number
of operations that take elements from one or more of the components of the
conceptual space and produce values. In some cases query operations will pro-
duce numeric or Boolean values, but in other cases they will produce higher-level
structures such as new concepts and modify the existing set. In the latter case,
the products are inserted into the appropriate set component. For example, an
operation to learn a new concept will add the new concept into the I' component
of the conceptual space.

3.2 Domains and Quality Dimensions

Definition 2. A domain is defined as a set of quality dimensions, 6 = Q. Q
is the finite set of integral quality dimensions that form the domain, where a
quality dimension ¢ € Q. Vq,q €A £ = q ¢ §'.

Definition 3. A quality dimension is defined as a triple, ¢ = (ji, 7, 0).

e [i indicates the measurement level or scale of the dimension, where i €
{ratio, interval, ordinal}.

e 7 indicates the range of the dimension, where 7 is a pair ¥ = (min, maz).

e 6 indicates whether the dimension is circular, where 6 € {true, false}.

The quality dimensions in a conceptual space represent a means for measuring
and ordering different quality values of objects in the space (in the case of con-
cepts these values might be a range of values). There are four widely-recognized
scales of measurement — nominal, ordinal, interval, and ratio — that can be used
to assign values to data, and each of these measurement levels has associated
with it different mathematical properties [32]. The i component of a quality
dimension can specify the quality dimension scale as ordinal, interval, or ratio.
Interval and ratio scales both work naturally for quality dimensions because dif-
ferences in measurements can be easily compared due to the fact that the units
for these scales are equalized. An ordinal scale’s values are rank ordered and are
consistent with the ordering operations of a conceptual space algebra. However,
conclusions of semantic similarity for ordinal quality dimensions should be made
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with care, taking into account the fact that ordinal scales do not have equalized
scales. Psychometric analysis techniques for imposing a distance measurement
on an ordinal scale (e.g., Rasch models) can be used to convert an ordinal scale
to interval scale [24]. Since, we are primarily interested in quality dimensions as
ways of specifying measurement and for use in ordering operations, nominally
scaled quality dimensions are not directly supported by this definition. However,
it is possible to represent the values on a nominal scale as properties in a do-
main. One approach for modeling geographic nominal data values as regions in
a conceptual space has been shown in [2].

Quality dimensions can be phenomenal or scientific, which means they rep-
resent subjective psychological dimensions or are defined by positivist scientific
theories, respectively [I1]. Conceptual spaces are equally capable of representing
both types of dimensions and there is no distinction made between scientific and
phenomenal dimensions in the formal definition. A circular dimension is one that
wraps around, so the maximum distance value is ’Qm”jmi". For example, the
hue dimension in the color domain is a circular dimension with value range of
[0, 27], and any measured distance will be < 7.

3.3 Concepts, Properties, and Instances
Definition 4. A concept is defined as a pair, v = (O, P).

e O is a finite set of convex regions, where there is an injective relation
between { and A. That is, there is a one-to-one relationship from regions in
the set to domains and there can only be one region per domain.

e P is a prototypical instance.

Definition 5. A property is defined as a concept with |O] = 1.

A concept is a collection of convex regions across one or more domains and an
associated prototypical instance. Vp,p € P = Jo,0 € O A p € ©. The prototypes
or representative members of a concept play an important role in categorization
[28]. There is experimental evidence that the perceived similarity of an object to
a prototypical exemplar is used by humans during classification [I5]. Given the
prototypical instance(s) of one or more concepts, one can derive the regions that
compose it using a Voronoi tessellation technique [I3]. Conversely, a prototypical
instance can be identified by finding the point of central tendency for a set of ex-
emplar points in each domain. The measurement level of the quality dimensions
determines how the central tendency is calculated: the geometric mean (or the
arithmetic mean of the natural logarithm scale) for ratio scaled, the arithmetic
mean for interval scaled, and the median for ordinal scaled dimensions.

Definition 6. A convex region ¢ is defined as a convexr polytope in the n-
dimensional space corresponding to a given domain, §.

As defined, a convex region in a conceptual space can be represented as either
1) a set of vertices that constitute the convex hull of the region or 2) a bounded
intersection of half-spaces that can be written as a set of linear inequalities [14].
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Fig. 1. Example region in education index domain and H-Polytope representation

The first representation is called a V-polytope and the second representation
a H-polytope. The H-polytope and V-polytope representations are equivalent,
but some important core operations, such as point inclusion, have much better
combinatorial complexity when starting with a H-polytope representation.

A region within an n-dimensional domain can be written in the H-polytope
matrix form Ag < b, where ¢ is a variable transpose vector and each ¢; corre-
sponds with an € Q:

a11 @12 -+ Qnl q1 b1

a21 G22 -+ Ap2 q2 bo
<

Aml1 AGm2 **° Anm dn bm

The values in any row i of the A matrix and b transpose vector correspond to
the coefficients of the linear inequality that defines the i*" half-space boundary
of the polytope.

Figure[Ilshows a region with five facets in a domain built from two dimensions:
adult literacy rate (ALR) and gross enrollment ratio (GER). The domain is based
on the United Nations’ measure of educational attainment [35]. A country’s
education index is equal to g x ALR + :1,) X GER. Here we define a concept of
medium education attainment as the region where 0.5 < education index < 0.8.

Definition 7. An instance 7 is defined as a finite set of points with an injective
relation to A. That is, there is a one-to-one relationship from points in the set
to domains and there can only be one point per domain.

Instances, which can be thought of as real-world objects or data points for train-
ing sets, are represented by a set of points (or vectors) in one or more domains.
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Definition 8. A point p is defined as a vector of quality dimension values in
the n-dimensional space corresponding to a given domain, §.

3.4 Contrast Class

Definition 9. A contrast class ¥ is defined as a region in a unit hypercube
that corresponds to a domain in the conceptual space. Fach dimension of the
hypercube corresponds to one quality dimension in the domain. The region is
specified by one or two parallel hyperplanes that intersect the unit hypercube:

Min : —a1T] — aa%s — -+ — Aply < —b1

max : a1x1 + asg + - + anty < by

Contrast classes are described as a special type of property (or class of properties)
by Géardenfors. We define it as a unique type of element for the algebra, because
it is used differently from a normal property by algebraic operations. It is more
appropriately thought of as a function that describes sub-regions relative to
regions in a domain. In a one-dimensional domain the contrast class region is
bounded by two points on a unit line segment; in two dimensions the region is
bounded by two parallel lines intersecting a unit square; and so on. The operation
for combining a contrast class with a concept is detailed in section 4.

Some common contrast classes are large, small, old, young, northern, south-
ern. The example shown in figure[lis the result of combining a medium contrast
class to the education attainment property. Education attainment covers the
square area [0,1] on both dimensions, and the medium contrast class is projected
on that region resulting in the medium education attainment sub-region.

3.5 Context

Definition 10. A context k is defined as a finite set of salience weight, con-
ceptual space component pairs k = (w,component). The conceptual space com-
ponents in the context must all be of the same type (e.g., quality dimensions),
which is referred to as the context type. In addition, Y . w; = 1 where each
weight w; in a context has a value 0 < w; < 1.

If a context is used in an operation that is applied to a context typed conceptual
space component that is not included in the context then the salience weight
of that component is 0. For example, if a similarity operation is applied to
two instances that span the same three domains and the context only contains
weights for two of the three domains then the third dimension’s salience weight
will be 0 for the operation.

4 Algebraic Operations

In this section we introduce the algebraic operations that can be placed on the
components of a conceptual space. We organize the operations into core metric
operations on points and regions followed by similarity and concept combination
query operations. We use shorthand notations for the components (Table [I).
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4.1 Core Operations

Regions and points are the most primitive objects in a conceptual space, each
existing within a single § € S. Since a domain is a metric and topological space,
all of the operations that can be applied to regions and points in a topolog-
ical vector space are applicable. The computational implementation of these
operations essentially reduces to problems of numeric linear algebra, which are
well-established. With the understanding that there are many more operations
possible on these primitive types, we present the particulars of how the H-
polytope representation of conceptual regions can be used to implement inter-
section and inclusion operations algorithmically. In addition, the within domain
distance metric for points and regions is defined.

©1[) 02 — ©Onew- This function calculates the intersection of two convex re-
gions. The result is a new convex region or an empty set. The first step of an
algorithm to calculate the intersection of two H-polytopes is to get the union of
the two systems of linear inequalities. It is possible that this union will result
in redundant inequalities, so a linear programming problem is constructed to
remove these redundancies: Given two regions ¢1 and ©9 represented as Ag < b
and Sq < t, respectively, maximize each inequality s”¢ in o subject to Ag < b
and only add the inequality to the union if the optimal value is less than or
equal to t [§]. There are several algorithmic techniques used for solving linear
programming problems, the most popular being the Simplex method [6]. The
Simplex method performs very well in most cases, averaging a number of itera-
tions that is less than three times the number of inequalities in the set [23]. The
total computational complexity of the intersection operation is therefore linear
with respect to the number of inequalities in most cases.

p € © — Boolean. The inclusion operation given a point and a region rep-
resented as a H-polytope is equivalent to testing whether the point satisfies the
entire system of linear inequalities. The computational complexity is linear with
respect to the number of facets in the polytope.

Table 1. Notation for named elements

Notation Meaning Example
concept named COHCGpt ,yeuropean state
concept region of concept in domain ~curepean state
domain g P Veoordinates

5domazn named domain 6coov‘dznates

5?5;’3%; dim quality dimension in domain §fog;dinates

domain t t cl in d : Qcoov‘dinates
contrast class CONLIast Class 1n domain southern

5 (,Ytempe'rate zone) — 6coov‘dinates

o (yp) domain of property
Q (6%m*™)  quality dimensions of domain @ (§°°°"*"****) = {longitude, latitude}
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dist(p1, p2, k) — R. The distance metric for two points that exist within the
same domain is defined as a weighted FEuclidean metric, where the weights are
determined by a quality dimension-typed context, k.

dist(phszf) = Zwi(pli _p21)2
i=1

where n is |Q|, 7 is an index to an ordering of Q, g; is the i*" element in that
ordered set, and (w;,q;) € k. If a dimension is circular then the difference p1, —
ps, in the above equation will be modulo the range of the quality dimensions
divided by two. Euclidean distance measure, as opposed to another instance of
the Minkowski metric, was chosen because of experimental results that show
its cognitive plausibility for measuring the similarity of concepts composed of
integral qualities [9I8]. When the qualities are separable, the city-block distance
was found to be more appropriate, which is captured by the similarity operation.

Normalization of dimensions is important to ensure that a change in units
does not result in a different distance measurement and subsequently a different
similarity measurement. However, given the variety of options depending on
the structure of domains, we reserve normalization as a preprocessing operation
rather than an integral component of the distance measure.

4.2 Query Operations

Similarity. Experiments on similarity cognition have shown that the similarity
of two objects can be measured as an exponentially decaying function of the
distance between the two objects: sim(d) = e~¢¢ [31]. The following similarity
operation utilizes a compound distance function that takes into account the
structural distinction of separable and integral dimensions.

sim(ia,ip,k, K) — R. Given two instances, 4 and g, a domain-type context,
k, and a set of quality dimension-type contexts, K, this function calculates a
distance between 74 and ip. Let Ay = A(ia) () A(ig). The distance between
two instances is a weighted sum of all of the within domain Fuclidean distance
measures for each p € 7:

| A
dlia.ip k) = 3 ky x \J1Q(6))] x dist (p; (ia) . p; (i) . )
j=1

where j is an index to an ordering of A;. Ignoring context weights, the result
of this distance function is a composite value that is > the Euclidean distance
and < the city-block distance, if all the quality dimensions were in one multi-
dimensional space. The context and context set parameters allow one to apply
saliences on both domain and quality dimension levels. Because Euclidean and
city-block metrics are being mixed, each weighted within-domain Euclidean dis-
tance measure is also normalized by the square root of the cardinality of the
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domain to prevent low dimensional domains from having more salience than
high dimensional domains. Following this distance function we get the following
similarity function for two instances:

sim(ia, i, k, K) = e~ cda B k. K)

sim(va,vB,k, K) — R. There are many possible methods for measuring the
distance between two regions within a domain. The simplest method is just to
measure it as the distance between prototypical points within each region. The
analogue to that method for a similarity measure between concepts would be to
measure the distance between prototypical instances for the two concepts using
the similarity function just described. Other methods have been proposed to
measure distance between spatial conceptual regions using the vertices of the
convex hull of the region [30]. The advantage to these methods is that they
allow for asymmetrical distance measurements, the lack of which is a common
criticism of geometric models of similarity [34]. Using the V-polytope form of
the regions, the methods can be used to calculate the within-domain distance
for each domain, which can then be summed in a weighted form as above. The
distance from an instance to a concept can also be calculated.

Concept combination. Gardenfors describes techniques for combining con-
cepts in conceptual spaces, but his methodology has not been formalized yet [9].
Here we describe three concept combination operations using the components
of a conceptual space as defined above. The operations are property-concept,
concept-concept, and contrast class-concept combinations. For these operations
it is important to note that one concept is the modifier concept and the other is
the modified concept. This distinction is linked with the importance of the order-
ing of concepts in linguistic expressions. For example, the concept combination
green village is distinct from the concept combination wvillage green. We follow
a convention that the modifier concept is the first parameter and the modified
concept is the second parameter of any combination operation.

The following algorithms describe how the regions of concept combinations
are formed. With all three concept combination operations not only new regions
but also new prototypical points need to be learned. The process is the same for
all three. For any newly created region ¢y, the new prototypical point is set
equal to the centroid of ¢,,,. Alternately, in the case that an associated instance
set is available, the prototypical point can be learned from the set of instances
€ Cnew-

combine (Yp,Yc) — Ynew. Algorithm 1. The combination of a property and
a concept is the simplest case. There is no need to specify the salience of the
domains, because it is understood that d(yp) is of higher salience. In the case
that vo does not have a region specified for the domain of vyp, the property’s
region is added to the concept. When the property region is part of a specified
domain for vy then there are two possible outcomes. The property region and the
concept region for that domain can overlap, in which case the new concept region
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is the intersection of the regions. If they do not overlap, the property region will
override the concept region in that domain. For example, the property-concept
combination purple mountain will override the mountain region in the color
domain to the purple region assuming that the color region for mountain is in
another area of the color domain. The other domains are unaffected.

Algorithm 1. Property-Concept Combination

operation combine(yp,vc) — Vnew
if A(yc) 2 6(yp) then

. . glel —

if <>5&:) moé('w) =0 then

Vnew <= (0 (ye) — {%V(CWP)D U {Og@p)}

else
o Y ¥
e = (0 00) = {e3,, }) U{38,) N3G, }
end if
else
Yrew <= O (ve) U {0}(’}1,)}
end if

return vYpew

combine (Ya,v5, K4, KB) — “Ynew. Algorithm 2. As with similarity, context
plays an important role in concept combinations. When combining two concepts
that both span more than one domain, only the regions in a subset of the do-
mains will be affected depending on the context. For both concepts a salience
weight is given for each domain (i.e., a domain-type context). If the domains are
shared by the two concepts then the context will determine which concept has
precedence. Otherwise, the new concept will adopt the region from the concept
for which the domain is specified. Currently, the weights are only for comparison,
therefore values of 0 and 1 are sufficient. However, room is left for more complex
combination operations that take into account the differences in weight values.

combine(®, v) — Ynew. The operation to apply a contrast class to a concept
only affects the domain for which the contrast class is defined, which we refer to
as dcc. For the sake of brevity, the following is a high-level description of the
operation, which at a low-level relies on standard geometric operations. Let ¢
be the region of v in dc¢ and p the prototypical point € ¢. Find the minimum
bounding box around ¢, which gives a range magnitude for each dimension of
©. Stretch the contrast class unit hypercube (and min, max hyperplanes accord-
ingly) to the size of the minimum bounding box. Center this stretched version
over p and intersect the hyperplane(s) with ¢ to get ¢new. Ynew is €qual to 7y
in all other domains with ¢,,. Figure 2] illustrates these steps with a contrast
class tall and concept mountain in a size domain with two dimensions: height
and width. This operation can be applied recursively. For example, tall can be
applied again to tall mountain to obtain a region for very tall mountain.
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Algorithm 2. Concept-Concept Combination

operation combine(va,vB, Ka, KB) — Ynew
Let Apew = A(ya) U A (v8)
Let Ynew = 0
for all § € Apew do
if 6 ¢ A(vg) then
insert ¢J4 into Ynew
else if § ¢ A(v4) then
insert ¢ into Ynew
else { // check context}
if Kas > Kps then
Yrew = Ynew |J combine (vas, VBs)
else
insert ¢}% into Ynew
end if
end if
end for
return Ynew

5 Application: Country Concept Comparison

The developed metric conceptual space algebra provides a means for creating
complex conceptual space structures and applying similarity and concept com-
bination operations to concepts represented in the space. In order to demonstrate
the functionality of these algebraic operations and its use for spatial problems
with high dimensional data, we present a case study where the algebra is used
for the comparison of countries and regions of the world.

The countries of the world and the groups to which they are classified are
complex concepts. The United Nations Development Program (UNDP), for ex-
ample, divides the countries of the world into eight mutually exclusive classes:
Arab States, East Asia and Pacific, Latin America and the Caribbean, South
Asia, Southern Europe, Sub-Saharan Africa, Central and Eastern Europe and
the CIS, and High-Income OECD [35]. This classification scheme is based on a
combination of cultural, geographic, political, historical, and economic factors,
but as such it does not afford the ability to make more nuanced comparisons
between countries and regions. With a conceptual space representation these fac-
tors can be organized into separable domains. The similarity of countries can be
compared based on context, and concept combination can generate new classes.

5.1 Data Collection

Data for 155 countries were aggregated from the CIA World Factbook, UNDP,
and the World Resources Institute [5I35037] and were used to represent each
country as an instance in a conceptual space with 16 quality dimensions orga-
nized into six domains (Table2]). The UNDP classes were represented as concepts
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Fig. 2. Example contrast class-concept combination: tall + mountain

formed by taking the convex hulls of country instances in that class for each do-
main. We defined the prototypes of these classes as the set of points formed by
mean values of all the instances in the class. For the population and size dimen-
sions the values were scaled logarithmically. All data values and dimensions were
then normalized so that each quality dimension had a range [0,1].

5.2 Results

For demonstrating the similarity operation, three contexts were created, which
we refer to as “natural resources”, “geographic”, and “human issues”l]. Table &I
presents the weights for each context. Using the instance similarity operation we
found the similarity between every pair of countries for a given context. Table 3]
shows a sample of these similarity results for Turkey.

To demonstrate the use of contrast classes we defined a northern contrast
class for the coordinates domain as 555{’5%’;“65 > 0.5 and combined it with the
eight UNDP classes. This contrast class corresponds roughly to the top half —

along the latitude dimension — of any region (re-centered over the prototype) in

! These context weights and their associated labels were chosen merely to illustrate
the similarity operation, without making a claim for cognitive plausibility.
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Table 2. Country conceptual space domains and contexts

Domains & Quality Dimensions Context N.R. Context Geo. Context H.I.

. Land area 0.8 0.5 0.5
Size { Water area 0.4 { 0.2 0.3 { 0.5 0.1 { 0.5
. Latitude — 0.7 —
Coordinates {Longitude 0.0 { B 0.4 {0.3 0.0 { B
Forests 0.5 0.2 0.0
Grasslands 0.0 0.2 0.0
Wetlands 0.1 0.2 0.0
Land type % Croplands 0:5 0.4 0.3 0.2 0-1 0.5
Barren 0.0 0.2 0.0
Urban 0.0 0.0 0.5
. Adult lit. rate — — 0.7
Education {Gross enrol. ratio { — 0.0 { — 0.3 {0.3
Economic { GDP index 0.1{1.0 0.0 {— 0.2 {1.0
Population - - 0.4
Demographic < Pop. growth rate 0.0 { — 0.0 ¢ — 03¢ 04
Urban pop. (%) - — 0.2

Table 3. Top 5 most similar countries to Turkey by context

Natural Res. Geography Human Issues
Thailand 0.877 Kyrgyzstan 0.833 Spain 0.890
Malaysia 0.875 Spain 0.832 Zimbabwe 0.872
Colombia 0.872 Italy 0.831 Uruguay 0.840

Mexico 0.867 Nepal 0.817 Greece 0.827
Viet Nam 0.855 Uzbekistan 0.815 Italy 0.815

the coordinates domain. Figure [Bal shows the results of combining northern with
the coordinates region of sub-Saharan Africa. Also shown are all the instances
with points in the coordinates domain that lie within that region.

Next we created a property region in the land type domain to describe the
property desert-like. This region is defined as the area where barren > 0.6 and
wetlands < 0.1. The property was combined with the arab state concept to
create a desert-like arab state. Figure Bb] shows a two-dimensional projection of
the land type domain with the result of this combination.

Finally, to test complex concept combination we created an ad hoc cat-
egory for arid, highly educated countries with a large urban population. In
the land type domain it was represented by a region where barren > 0.5,
forests < 0.1, and wetlands < 0.05; in the education domain it was the re-
gion where g x ALR + é X GER > 0.8; and in the demographic domain it was
the region where urban population > 0.8. The result was that one could repre-
sent, for example, the combination of this ad hoc category with the concept of
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Fig. 3. Concept combinations

Latin America to posit a scenario of an arid, highly developed version of Latin
America.

6 Conclusions and Future Work

In this paper we presented a metric conceptual space algebra that defines con-
ceptual spaces as multi-leveled representational structures with operations that
are well-suited for computational implementation. A clearer distinction is made
between domains and quality dimensions than in previous formalizations of con-
ceptual spaces, which allows for more expressivity for similarity and complex
concept combination operations. The conceptual regions that exist in domains
are defined as convex polytopes, so that primitive geometric and topological
operations can be implemented using algorithms that are tractable. We demon-
strated a practical application of conceptual space algebraic operations for a
spatial information system, though the algebra presented in this paper is de-
signed for general use [11].

This paper presented a theoretical framework for a metric conceptual space
algebra, and there exist many avenues for extending it. The described operations
assume no correlation between the different regions that compose a concept, but
in reality the quality values of concepts are very often correlated. One possible
solution is to integrate multivariate analysis with existing operations. In addi-
tion, concepts are often uncertain and dynamic. The algebra described in this
paper should be extended to accommodate convex regions that are fuzzy. Pa-
rameterized rough fuzzy sets may be one component to such an extension [IJ.
Introducing operations that allow one to query about the shape of conceptual
regions over time would also be a valuable addition to the algebra [26].
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Abstract. Ontologies are a common approach to improve semantic in-
teroperability by explicitly specifying the vocabulary used by a partic-
ular information community. Complex expressions are defined in terms
of primitive ones. This shifts the problem of semantic interoperability to
the problem of how to ground primitive symbols. One approach are se-
mantic datums, which determine reproducible mappings (measurement
scales) from observable structures to symbols. Measurement theory offers
a formal basis for such mappings. From an ontological point of view, this
leaves two important questions unanswered. Which qualities provide se-
mantic datums? How are these qualities related to the primitive entities
in our ontology? Based on a scenario from hydrology, we first argue that
human or technical sensors implement semantic datums, and secondly
that primitive symbols are definable from the meaningful environment,
a formalized quality space established through such sensors.

Keywords: Semantic Heterogeneity; Symbol Grounding Problem; Se-
mantic Datum; Meaningful Environment.

1 Introduction

The symbol grounding problem [I3] remains largely unsolved for ontologies: ul-
timately, the semantics of the primitive terms in an ontology has to be specified
outside a symbol system. Tying domain concepts like river and lake to data about
their instances (as proposed, for example, in [5]) constrains these in potentially
useful ways, but defers the grounding problem to the symbol system of the in-
stance data. While these data may have shared semantics in a local geographic
context, they do not at higher levels, such as in an INSPIRE scenario of integrat-
ing data and ontologies across Europe (http://inspire. jrc.ec.europa.eu/).
It does not seem practical for, say, Romanian hydrologists, to ground their lake
and river concepts in British geography, or vice versa. Furthermore, grounding
domain concepts in a one-by-one manner is an open-ended task. One would pre-
fer a method for grounding ontological primitives in observation procedures in
order to support more general ontology mappings.

In this paper, we propose such a method and demonstrate its applicability by
the category water depth. We provide an ontological account of Gibson’s mean-
ingful environment [12] and use Quine’s notion of observation sentences [20] as a

K. Stewart Hornsby et al. (Eds.): COSIT 2009, LNCS 5756, pp. 69-87] 2009.
© Springer-Verlag Berlin Heidelberg 2009
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basis for grounding ontological concepts in reproducible observation procedures.
At first glance it seems improbable that highly elaborated scientific concepts,
like those of INSPIRE, could be reconstructed from meaningful primitives. Al-
though such a wider applicability of the method remains to be shown, we suggest
however - like Quine - that even the elaborated language of natural science must
eventually be grounded in observational primitives. After discussing basic issues
from measurement theory, philosophy and cognition (section 2), we review the
core ideas of Gibson’s meaningful environment and formalize them (section 3).
Using the example of water depth, we apply the theory in section 4, before draw-
ing some conclusions on what has been achieved and what remains to be done
(section 5).

2 Measurement and the Problem of Human Sensors

In this section we introduce the notion semantic datum and claim that successful
grounding ultimately rests on the existence of human sensors for body primitives.

2.1 Semantic Datums for Languages about Qualities

Measurement scales are maps from some observable structure to a set of sym-
bols [26]. Measurement theory merely provides us with formal constraints for
such mappings, namely scale types. It does not disambiguate scales themselves.
For example, we can distinguish ratio scales from interval scales, because ratio
scales can be transformed into each other by a similarity transformation, while
for interval scales we need a linear transformation [26]. But individual scales are
never uniquely determined by their formal structure. This is called the unique-
ness problem of measurement [26]. Therefore the symbol grounding problem [13]
remains unsolved: In order to disambiguate scales, we need to know about the
conventions of measurement standards, like unit lengths or unit masses.

One approach to this problem are semantic datums [14][I8]. A semantic da-
tum interprets free parameters. It p