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3.1  Introduction

Contact dermatitis describes the skin reaction resulting 
from exposure to irritants (irritant contact dermatitis) 
or allergens (allergic contact dermatitis). In most 
patients, irritant and allergic contact dermatitis (ACD) 
are clinically indistinguishable. Also histopathologi-
cally, no distinguishing markers have been identified. 
This is in line with the fact that in irritant and ACD, 
principal inflammatory pathways are essentially simi-
lar. The pivotal different factor in ACD is the involve-
ment of “allergen-specific” T cells as initiators of the 
inflammatory skin reaction. In irritant contact dermati-
tis (ICD), the inflammatory reaction mainly depends on 
either or both chemical and physical irritation. The 
most frequent chemical irritative factors are long- 
lasting and repetitive contacts to water, detergents, sol-
vents, or a combination of these factors, often aggravated 
by too high or too low humidity. Inflammatory reac-
tions to irritants are not triggered by one specific sub-
stance or cause, and do not show rapid amplification of 
severity by repeated insults and are thus called 
“unspecific.”

In the following chapter the immunopathological 
mechanisms of ICD and ACD reactions will be dis-
cussed further in detail.

3.2  Irritant Contact Dermatitis

3.2.1  Skin Barrier Perturbation Can Lead 
to Irritant Contact Dermatitis

The skin functions as a barrier protecting an individual 
from dehydration, mechanical trauma, irradiation, micro-
bial insults, and direct exposure to harmful sensitizing or 
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irritant chemicals [1, 2]. Perturbation of the skin barrier 
can result in ICD. The barrier function is provided by the 
uppermost layer of the epidermis, the stratum corneum. 
The epidermis consists of more than 90% keratinocytes. 
Proliferating basal keratinocytes undergo a commitment 
to terminally differentiate and, in doing so, form a com-
pact multilayered cellular compartment consisting of, 
depending on the skin region, approximately eight living 
cell layers (approximately 50–100 mm thick). As the 
keratinocytes become more differentiated, they approach 
the outermost layers and ultimately form the stratum cor-
neum (10–20 mm thick). The stratum corneum consists 
of dead, terminally differentiated keratinocytes (corneo-
cytes) embedded in extracellular lipid. The corneocytes 
and the lipid component of the stratum corneum can be 
considered as bricks and mortar and form the barrier to 
the environment and potentially harmful substances 
 [3–5]. In order for a potential irritant to cause an irritant 
reaction, it must first penetrate or damage the stratum 
corneum to exert its effect on the viable epidermal and 
dermal layers below.

A chemical can penetrate the skin via three routes: 
the intercellular lipid route, the transcellular route 
across cornified cells and lipid bilayers, and via diffu-
sion along hair follicles and sweat glands [4, 6–9]. 
Chemicals can also penetrate at sites of skin trauma 
(wounds) and where the barrier function is impaired 
by other diseases. Hydrophobic substances have the 
potential to penetrate via the lipid layers, whereas 
hydrophilic substances preferentially penetrate via the 
hair follicles and sweat lands. The lipid bilayer is the 
primary target for common skin damaging factors such 
as solvents and soaps since these substances degrade 
the lipid bilayer directly and expose the underlying 
viable epidermal layers to the irritant. Once an irritant 
has penetrated the stratum corneum, it may exert cyto-
toxic effects on the keratinocytes and trigger keratino-
cytes to release alarm signals in the form of cytokines 
and chemokines. In this way, the innate immune sys-
tem is triggered and the ICD reaction is initiated.

3.2.2  Pathogenesis of Acute Irritant 
Contact Dermatitis

Thus, ICD reflects an innate inflammatory response of 
the skin to direct injury. Frequency and intensity of skin 

contacts with harmful agents determine the outcome. 
For acute ICD, the reaction is often caused by a single 
exposure to the irritant and the skin manifestations usu-
ally disappear within days to weeks. The source of the 
irritant is most often a chemical or abrasion to the skin. 
One of the major initial events before skin damage is 
observed is the release of proinflammatory cytokines. 
This in turn amplifies the inflammatory reaction by 
releasing chemokines, resulting in vasodilation and 
infiltration of cells (e.g., lymphocytes, eosinophils, 
macrophages, neutrophils, T cells) into the epidermis 
and dermis. The resulting physiological signs of irrita-
tion are damage to the epidermis as observed by spon-
giosis and microvesicle formation, erythema, induration, 
and edema leading to localized painful areas of skin 
[10–13] (Fig. 3.1).

However, the clinical appearance is often very 
variable and, moreover, difficult to distinguish from 
ACD [14, 15]. ACD shows all the features of ICD, 
but in an accelerated and/or augmented fashion due 
to the involvement of allergen-reactive T cells. 
Proinflammatory cytokines locally released by the 
latter, such as IFN-g, IL-4, and IL-17, as will be dis-
cussed below, serve to amplify the overall inflamma-
tory reactivity and protect the body against potentially 
harmful agents. Indeed, clinical observations show a 
clear role for irritancy in ACD: virtually all aller-
gens have irritant properties, whereas irritated skin 
is easier to sensitize than nonirritated skin. During 
both an ACD and an ICD reaction, alarm signals 
provided by skin barrier disruption, epidermal cel-
lular changes and cytokine/chemokine release, stim-
ulate the initial trafficking of immune cells to the 
site under attack.

Core Message

In acute ICD, similar immunological mechanisms  ›
are involved as in acute ACD. However, the cru-
cial difference is the involvement of specific T 
cells in ACD. Major events in acute contact der-
matitis include damage of the epidermal skin bar-
rier by contact irritants and subsequent activation 
of unspecific innate immune responses.
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Fig. 3.1 (a–d) Immunological events in irritant contact derma-
titis (ICD). (a) Physical and/or chemical irritation triggers the 
fast release of prestored cytokines and other inflammatory 
mediators, termed “danger signals.” (b) In response to the 
release of these danger signals proinflammatory chemokines 
from resident epidermal and dermal cells. (c) Subsequently, 
inflammatory chemokines are secreted from resident cells and 

already infiltrated inflammatory cells. A major cytokine is this 
process is CXCL8 (formerly known as IL-8). (d) As a conse-
quence, from the producion of inflammatory chemokines, more 
and more inflammatory cells, including neutrophils ( ), are 
attracted and, under the influence of inflammatory triggers, 
secrete inflammatory mediators. This results in the clinically 
visible acute ICD
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3.2.3  Development of Chronic Irritant 
Contact Dermatitis

Chronic ICD is one of the most frequent forms of 
ICD and is caused by repeated contact of the skin to 
weak irritants [16, 17]. Multiple subthreshold skin 
damaging exposures, each starting before complete 
recovery from the previous insult, result in this 
eczematous skin condition (Fig. 3.2). Chronic ICD is 
characterized by dryness, fissuring, and hyperkerato-
sis (more pronounced than in acute ICD) and is diag-
nosed when the ICD persists for longer than 6 weeks. 
It is often located on the hands, and despite removal 
of the irritant, the clinical reaction may remain for 
several years. Factors such as water, detergents, 
organic solvents, oils, alkalis, acids, oxidizing agents, 
heat, cold friction all contribute to the elicitation of 

chronic ICD [16, 17]. Such factors are frequently 
associated with a wet working environment, and 
therefore, chronic ICD is a frequent work-related der-
matitis [18, 19]. A wet work environment is defined 
as regular work with the hands in a wet environment 
for longer than 2 h per day, regular use of occlusive 
gloves over the same period of time, and / or frequent 
and intensive hand washing (approximately 20 times 
per day) [18, 20].

Chronic ICD is a multifactorial disorder in that both 
exogenous and endogenous factors are involved in its 
development. The exogenous factors have already 
been mentioned above and involve direct exposure of 
the skin to irritants. Endogenous factors are based on 
the individual’s susceptibility to develop chronic ICD. 
These factors include variations in the skin barrier 
structure and composition, innate immune reactivity 
variations, and a skin atopic background. In the past, 
differences in transepidermal water loss (TEWL), ery-
thema, irritation thresholds, and gender-related differ-
ences have been investigated [21–27]. However, no 
significant differences were found that could explain 
why one individual develops chronic ICD at the work 
environment, whereas another individual in the same 
work environment does not. Recently, much attention 
has been paid to atopic dermatitis (AD) as a poten-
tially important predisposing factor since a history of 
AD more than quadruples the risk of hand eczema in 
cases of skin exposure in a wet work environment 
[28]. It was shown that penetration of the irritant SLS 
and subsequent increase in TEWL and erythema was 
higher in subjects with AD than in healthy individuals 
indicating that more permeable skin is more suscepti-
ble to irritants [29]. Also, genetic risk factors have 
been linked with the development of AD, which in 
turn may influence the development of chronic ICD 
[30–34].
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Fig. 3.2 Chronic ICD results from the continuing presence of 
various inflammatory triggers. Keratinocytes at skin sites of for-
mer inflammatory skin reactions contain higher levels of stored 
IL-1a. Upon exposure to unspecific inflammatory triggers, 
IL-1a is easily secreted and stimulates the activation of the 
inflammatory cascade. As a consequence of continuing expo-
sure to inflammatory triggers, epidermal, dermal, and infiltrated 
inflammatory cells produce different growth factors, including 
epidermal growth factor (EGF) and keratinocyte growth factor 
(KGF). These growth factors stimulate proliferation of fibro-
blasts and keratinocytes, which results in the hyperkeratotic and 
desquamating clinical phenotype of chronic ICD

Core Message

In chronic ICD, repetitive skin contacts to dif- ›
ferent contact irritants cause substantial and 
 prolonged skin barrier damage. A skin atopic 
background is a strong risk factor for developing 
chronic ICD.
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3.2.4  Genetic Risk Factors in Irritant 
Contact Dermatitis and Atopic 
Dermatitis

AD is a hereditary disease and, as already mentioned, 
is an important predisposing factor for chronic ICD. It 
is associated with hyperreactivity of the skin to irri-
tants, aero-allergens, microbes, and scratching. Next to 
overexpression of the epithelial cell and fibroblast-
produced cytokine TSLP [35], recently two loss-of-
function polymorphisms in the gene encoding for 
filaggrin have been described as strong predisposing 
factors for AD [33]. Depending on the disease pheno-
type, 16–56% of patients with AD carry one or more 
filaggrin null mutations compared to only 5–10% of 
the general European population [33, 34, 36–39]. 
Filaggrin is involved in the formation of corneocytes, 
and therefore, in the formation of the stratum corneum 
[37]. Once cornification is complete, filaggrin is 
degraded into free amino acids. These free amino acids 
contribute to the natural moisturizing factor compo-
nent of the stratum corneum by retaining water. 
Therefore, it is possible that filaggrin null alleles may 
be responsible in part for the dry skin characteristic of 
AD. De Jong et al. showed that FLG null alleles are 
associated with increased susceptibility to chronic 
ICD; however, whether or not the filaggrin null allele 
is an independent risk factor needs further study [32].

Until now, no genetic factors have been identified 
that contribute to hand eczema in the absence of AD. 
However, it is possible that unidentified polymor-
phisms in cytokines and chemokines may be involved 
in chronic ICD. Indeed, such polymorphisms have 
already been reported in several other inflammatory 
diseases e.g., rheumatoid arthritis and multiple sclero-
sis [40]. A case–control study in 197 patients with 
chronic ICD vs. 217 healthy individuals showed that 
polymorphisms in several cytokine genes (IL-1a, 
IL-1b, IL-8, IL-10 and TNF-a) and the two loss-of-
function polymorphisms in the filaggrin gene did not 
provide a substantial risk factor for development of 
chronic ICD [30]. However, the study did show that (1) 
both the variant TNFA-308A allele and the filaggrin 
null alleles predispose to flexural eczema, (2) the vari-
ant TNFA-308A allele can increase susceptibility to 
chronic ICD, and (3) the IL1A-889T allele might pro-
tect against hand dermatitis. Here, the ratio of IL-1 
receptor antagonist (IL-RA)/IL-1a increased 2–3-fold, 

corresponding to a reduced level of agonistic IL-1a in 
the stratum corneum in subjects expressing the vari-
ant genotype as compared to the wild type genotype. 
In conclusion, genetic polymorphisms of TNFA-308 
and IL1A-889 may influence the susceptibility of 
chronic ICD.

3.2.5  Cellular Immunological Changes 
in Irritant Contact Dermatitis

Next to its barrier function, the skin is recognized as an 
immunologically active organ. Barrier perturbation 
results in the generation of the first alarm signal. Skin 
epidermal cells, notably keratinocytes, melanocytes 
and Langerhans cells (LC), respond to nonspecific irri-
tant stimuli by producing cytokines, adhesion mole-
cules, and chemotactic factors [41–43]. Keratinocyes 
are the major source of skin derived cytokines. 
Epidermal cytokines diffuse into the dermis and trig-
ger dermal cells (e.g., fibroblasts and endothelial cells) 
to also secrete chemokines [44, 45]. In this way the 
proinflammatory response is amplified and a chemot-
actic gradient is introduced directing infiltrating cells 
into the site of tissue damage. The initial proinflamma-
tory response can result in Langerhans’ cell migration 
out of the epidermis, potentially contributing to aller-
genicity, and infiltration of monocytes, neutrophils, 
macrophages, and lymphocytes into the skin. This skin 
innate immune response is rapid, provides the initial 
line of defense against damage caused by irritants, is 
antigen-nonspecific, and lacks immunological memory 
[13, 46, 47].

As stated, ACD and ICD reactions share alarm 
signal(s) [14, 48, 49]. This is supported by several 
in vivo and in vitro studies in which both allergen and 
irritant exposures result in increased cytokine levels in 
keratinocytes and fibroblasts [41, 45]. So, which is the 
initiating cytokine, and is it prestored or does de novo 
synthesis occur? Of all the cytokines produced by kera-
tinocytes, only IL-1a, IL-1b, and TNF-a activate a suf-
ficient number of effector mechanisms to independently 
trigger cutaneous inflammation [47]. Furthermore, 
large stores of preformed and biologically active IL-1a 
have also been detected as a depot in the stratum cor-
neum and within the epidermis [50, 51]. In contrast, 
other cytokines such as TNF-a and IL-8 are detectable 
only at low amounts deep within the stratum corneum 
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[50, 52]. These results strongly suggest that the release 
of prestored IL-1a upon barrier perturbation is the ini-
tiating cytokine signal, which triggers the induction of 
other inflammatory mediators. Upon release, IL-1a 
stimulates further release of IL-1a and the production 
and release of other cytokines. While resting keratino-
cytes produce some cytokines constitutively, exposure 
to irritants induces production of (pro-) inflammatory 
cytokines (IL-1a, TNF-a), chemotactic cytokines 
 (IL-6, IL-8, CCL20, CCL27), growth-promoting cytok-
ines (GM-CSF, TGF-b), and cytokines regulating spe-
cific immune responses (IL-10, IL-12, IL-18) [11, 43]. 
Thus, via cytokine cascades, an inflammatory response 
can be rapidly generated. In this way, keratinocytes act 
as proinflammatory signal transducers, responding to 
nonspecific external stimuli with the production of 
inflammatory cytokines, adhesion molecules, and 
chemotactic factors, stimulating the dermal stroma to 
amplify the response.

In this context, it should be mentioned that in the 
skin, TNF-a is stored in dermal mast cells, and follow-
ing stimulation, it is produced by keratinocytes and 
LC. Antibodies to TNF-a abolish many inflammatory 
skin reactions, including allergic and ICD [53]. An 
in vitro study using a full thickness human skin equiv-
alent model showed that antibodies directed against 
either TNF-a or IL-1a were able to completely inhibit 
inflammatory chemokine secretion by dermal fibro-
blasts [45]. Therefore, taken together, these findings 
suggest that both TNF-a and IL-1a are pivotal cytok-
ines in mediating irritant induced skin inflammation. 
In conclusion, several cell types and downstream 
mechanisms act in concert in inducing different types 
of skin irritant responses. Determining the cell source, 
kinetics of production, and the regulation of inflamma-
tory mediators in the skin will be the key to predicting 
and treating irritant responses arising from different 
environmental agents (Table 3.1).

3.3  Introduction Allergic Contact 
Dermatitis

During the past few decades, our understanding of 
why, where, and when ACD might develop has rapidly 
increased. Critical discoveries include the identifica-
tion of T cells as mediators of cell-mediated immunity, 
their thymic origin and recirculation patterns, and the 
molecular basis of their specificity to just one or few 
allergens out of the thousands of allergens known. 
Progress has also resulted from the identification of 
genes that determine T-cell function and the develop-
ment of monoclonal antibodies that recognize their 
products. Moreover, the production of large amounts 
of recombinant products, e.g., cytokines and chemok-
ines, and the breeding of mice with disruptions in dis-
tinct genes (knock-out mice) or provided with 
additional genes of interest (transgenic mice) have 
allowed in-depth analysis of skin-inflammatory pro-
cesses, such as those taking place in ACD.

Although humoral antibody-mediated reactions can 
be a factor, ACD depends primarily on the activation 
of allergen-specific T cells [54], and is regarded as a 

Cell type Cytokine/chemokine/growth factors

Epidermal cells
 Keratinocyte

Cytokines: IL-1a, IL-1b, IL-1RA, IL-3 
(mouse), IL-6, IL-7, IL-8 (human), 
IL-10, IL-12, IL-15, IL-18, IL-20, 
IL-23, IL-24, IL-33, TNF-a, TGF-a, 
TGF-b
Chemokines: CCL2, CCL5, CCL20, 
CCL27, CXCL1, CXCL10, CXCL14 
(mouse)
Growth factors: G-CSF, GM-CSF, 
M-CSF

 Langerhans’ cell Cytokines: IL-1a, IL-1b, IL-6, IL-15, 
IL-18, IL-23, TNF-a, TGF-b
Chemokines: CCL3, CXCL1, CXCL14

 Melanocyte Cytokines: IL-1a, IL-1b, IL-6, IL-7, 
IL-8, IL-10, IL-12, IL-24, TNF-a, 
TGF-a, TGF-b
Chemokines: CCL2, CCL5, CXCL1, 
CXCL14 (mouse)
Growth factors: G-CSF, GM-CSF, 
M-CSF

Dermal fibroblast Cytokines: TNF-a, IL-8, IL-6
Chemokines: CCL2, CCL5, CCL20, 
CXCL1, CXCL12

Table 3.1 Cytokines, chemokines, and growth factors expressed 
by epidermal cells and dermal fibroblasts

Cytokines may be constitutively expressed or induced upon 
 irritant stimuli [11, 41, 43–47]

Core Message

Unspecific innate immune reactions cause the  ›
development of ICD reactions. Some genetic 
risk factors including polymorphisms in TNF-a 
genes have been detected. Further research is 
needed to unravel the inflammatory innate 
immune cascades involved in ICD.
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prototype of delayed hypersensitivity, as classified by 
Turk [55] and Gell and Coombs (type IV hypersensi-
tivity) [56]. Evolutionarily, cell-mediated immunity 
has developed in vertebrates to facilitate eradication of 
microorganisms and toxins. Elicitation of ACD by 
usually nontoxic doses of small molecular-weight 
allergens indicates that the T-cell repertoire is often 
slightly broader than one might wish. Thus, ACD can 
be considered to reflect an untoward side effect of a 
well-functioning immune system.

Subtle differences can be noted in macroscopic 
appearance, time course, and histopathology of aller-
gic contact reactions in various vertebrates, including 
rodents and man [57]. Nevertheless, essentially all 
basic features are shared. Since both mouse and guinea 
pig models, next to clinical studies, have greatly con-
tributed to our present knowledge of ACD, both data 
sets provide the basis for this chapter.

In ACD, a distinction should be made between 
induction (also known as sensitization or primary) and 
effector (also known as elicitation or secondary) phases 
[58] (Fig. 3.3). The induction phase includes the events 
following a first contact with the allergen and is com-
plete when the individual is sensitized and capable of 
giving a positive ACD reaction. The effector phase 
begins upon elicitation (challenge) and results in clini-
cal manifestation of ACD. The entire process of the 
induction phase requires at least 4 days to several 
weeks, whereas the effector phase reaction is fully 
developed within 1–4 days. Main episodes in the induc-
tion phase (steps 1–5) and effector phase (step 6) are:

In the following sections, we will discuss these six main 
episodes of the ACD reaction in more detail. Furthermore, 
we will discuss local hyperreactivity, such as flare-up and 
retest reactivity, and hyporeactivity, i.e., upon desensiti-
zation or tolerance induction.

1. Binding of allergen to skin components. The 
allergen penetrating the skin readily associates 
with all kinds of skin components, including 
major histocompatibility complex (MHC) pro-
teins. These molecules, in humans encoded for 
by histocompatibility antigen (HLA) genes, 
are abundantly present on epidermal antigen 
presenting cells, called LC.

2. Hapten-induced activation of allergen-presenting 
cells. Allergen-carrying LC become activated, 
mature, and travel via the afferent lymphatics to 
the regional lymph nodes, where they settle as so-
called interdigitating cells (IDC) in the paracorti-
cal T-cell areas.

3. Recognition of allergen-modified LC by specific 
T cells. In nonsensitized individuals the frequency 

of T cells with certain specificities is usually far 
below one per million. Within the paracortical 
areas, conditions are optimal for allergen- carrying 
IDC to encounter naïve T cells that specifically 
recognize the allergen–MHC molecule com-
plexes. The dendritic morphology of these aller-
gen-presenting cells strongly facilitates multiple 
cell contacts, leading to binding and activation of 
allergen-specific T cells.

4. Proliferation of specific T cells in draining lymph 
nodes. Supported by interleukin (IL)-1, released 
by the allergen-presenting cells, activated T cells 
start producing several growth factors, including 
IL-2. A partly autocrine cascade follows since at 
the same time receptors for IL-2 are upregulated 
in these cells, resulting in vigorous blast forma-
tion and proliferation within a few days.

5. Systemic propagation of the specific T-cell prog-
eny. The expanded progeny is subsequently 
released via the efferent lymphatics into the blood 
flow and begins to recirculate. Thus, the fre-
quency of specific effector memory T cells in the 
blood may rise to as high as one in a thousand, 
whereas most of these cells display receptor mol-
ecules facilitating their migration into peripheral 
tissues. In the absence of further allergen con-
tacts, their frequency gradually decreases in sub-
sequent weeks or months, but does not return to 
the low levels found in naive individuals.

6. Effector phase. By renewed allergen contact, 
the effector phase is initiated, which depends 
not only on the increased frequency of specific 
T cells, and their altered migratory capacities, 
but also on their low activation threshold. Thus, 
within the skin, allergen-presenting cells and 
specific T cells can meet, and lead to plentiful 
local cytokine and chemokine release. The 
release of these mediators, many of which have 
a proinflammatory action, causes the arrival of 
more inflammatory cells, thus further amplify-
ing local mediator release. This leads to a gradu-
ally developing eczematous reaction that reaches 
its maximum after 18–72 h and then declines.
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3.3.1  Binding of Contact Allergens  
to Skin Components

3.3.1.1  Chemical Nature of Contact Allergens

Most contact allergens are small, chemically reactive 
molecules with a molecular weight less than 500 Da 
[59] (Fig. 3.4). Since these molecules are too small to 
be antigenic themselves, contact sensitizers are gener-
ally referred to as haptens.

Upon penetration through the epidermal horny 
layer, haptens readily conjugate to endogenous epider-
mal and dermal molecules. Sensitizing organic com-
pounds may covalently bind to protein nucleophilic 

groups, such as thiol, amino, and hydroxyl groups, as 
is the case with poison oak/ivy allergens (reviewed in 
[60, 61]). Examples of contact allergens containing 
electrophilic components include aldehydes, ketones, 
amides, or polarized bonds. Metal ions, e.g., nickel 
cations, instead form stable metal–protein chelate 
complexes by coordination bonds [62]. The most reac-
tive nucleophilic side chains are those found in the 
amino acids lysine, cysteine and histidine [63]. Of 
note, their degree of ionization and hence nucleophi-
licity is dependent on the pH of the microenvironment, 
which is influenced by surrounding amino acids as 
well as protein location within the epithelium [64]. 
Predicting the chemicals that can function as haptens 
in ACD as well as identifying cutaneous proteins 
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Fig. 3.3 Immunological events in allergic contact dermatitis 
(ACD). During the induction phase (left), skin contact with a 
hapten triggers migration of epidermal Langerhans cells (LC) 
via the afferent lymphatic vessels to the skin-draining lymph 
nodes. Haptenized LC home into the T cell-rich paracortical 
areas. Here, conditions are optimal for encountering naïve T 
cells that specifically recognize allergen–MHC molecule com-
plexes. Hapten-specific T cells now expand abundantly and gen-
erate effector and memory cells, which are released via the 
efferent lymphatics into the circulation. With their newly 

acquired homing receptors, these cells can easily extravasate 
peripheral tissues. Renewed allergen contact sparks off the 
effector phase (right). Due to their lowered activation threshold, 
hapten-specific effector T cells are triggered by various hap-
tenized cells, including LC and keratinocytes (KC), to produce 
proinflammatory cytokines and chemokines. Thereby, more 
inflammatory cells are recruited further amplifying local inflam-
matory mediator release. This leads to a gradually developing 
eczematous reaction, reaching a maximum within 18–48 h, after 
which reactivity successively declines
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involved in hapten–protein complexes is the subject of 
current intense investigations [65, 66] and discussed in 
more detail elsewhere in this textbook.

3.3.1.2  Hapten Presentation by Langerhans 
Cells (LC)

Sensitization is critically dependent on direct associa-
tion of haptens with epidermal LC-bound MHC mol-
ecules, or peptides present in the groove of these 
molecules. Both MHC class I and class II molecules 
may be altered this way, and thus give rise to allergen-
specific CD8+ and CD4+ T cells, respectively. Distinct 
differences between allergens can, however, arise from 
differences in chemical reactivity and lipophilicity 
(Fig. 3.4), since association with MHC molecules may 
also result from internalization of the haptens, fol-
lowed by their intracellular processing as free hapten 

molecules or hapten–carrier complexes. Lipophilic 
haptens can directly penetrate into LC, conjugate with 
cytoplasmic proteins, and be processed along the 
“endogenous” processing route, thereby favoring asso-
ciation with MHC class I molecules [67]. In contrast, 
hydrophilic allergens such as nickel ions may, after 
conjugation with skin proteins, be processed along the 
“exogenous” route of antigen processing and thus 
favor the generation of altered MHC class II molecules. 
Thus, the chemical nature of the haptens can determine 
to what extent allergen-specific CD8+ and/ or CD4+ T 
cells will be activated [68–70].

3.3.1.3  Pre and Prohaptens

Whereas most contact allergens can form hapten– 
carrier complexes spontaneously, some need activation 
first. Contact allergens requiring activation outside the 

horny layer
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Fig. 3.4 Hapten presentation by epidermal Langerhans cells. 
Allergen penetrating into the epidermis readily associates with 
all kinds of skin components, including major histocompatibil-
ity complex (MHC) proteins, abundantly present on epidermal 

Langerhans cells (LC). Both MHC class I and class II molecules 
may be altered directly or via intracellular hapten processing 
and, subsequently, be recognized by allergen-specific CD8+ and 
CD4+ T cells
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body, e.g., by UV-light or oxygen, are called prehap-
tens [71, 72]. The typical photoallergen tetrachlorosali-
cylanilide is a prototype of this. Tetrachlorosalicylanilide, 
which undergoes photochemical dechlorination with 
UV irradiation, ultimately provides photoadducts with 
skin proteins [73]. Contact allergens dependent on acti-
vation inside the body, e.g., by enzyme-induced meta-
bolic conversion, are referred to as prohaptens. A 
classical prohapten is p-phenylenediamine, which 
needs to be oxidized by N-acetyltransferases to a reac-
tive metabolite that can form a trimer, known as 
Bandrowski’s base [74, 75]. Reduced enzyme activity 
in certain individuals, related to genetic enzyme poly-
morphisms, explains the reduced risk of sensitization 
to prohaptens that need enzymatic activation [76, 77]. 
Subsequent chapters of this book will present in exten-
sive detail the numerous groups of molecules that have 
earned disrepute for causing ACD.

3.3.2  Hapten-Induced Activation  
of Allergen-Presenting Cells

3.3.2.1  Physiology of Langerhans Cells

Although originally thought to be neurons based on 
their staining properties and cellular morphology [79], 
LC were subsequently surmised to function as “profes-
sional” antigen-presenting-cells [80]. They form a 
contiguous network within the epidermis and represent 
2–5% of the total epidermal cell population [81]. Their 
principal functions are internalization, processing, 

transport, and presentation of skin-encountered anti-
gens [82, 83]. As such, LC play a pivotal role in the 
induction of cutaneous immune responses to infectious 
agents as well as to contact sensitizers [84–86]. Recent 
studies of LC indicate that this cell type has direct epi-
dermal innervations and can respond to a number of 
neurotransmitters (among them are calcitonin gene-
related peptide, a-melanocyte stimulating hormone, 
and substance P). Most of the experimental evidence 
to date indicates a suppressive effect of the neurohor-
mones and neuropeptides on Langerhans cell function 
and cutaneous inflammation, but it has become evident 
lately that the timing of exposure to a stimulus is criti-
cal to the outcome of the immune response. Thus, 
administration of a stress hormone or exposure to a 
stressor before the LC encounters an allergen may 
diminish the immune response toward that substance, 
while a stressor may enhance immune function when 
acting on a maturing LC or before reexposure to the 
allergen [87]. LC originate from CD34+ bone marrow 
progenitors, entering the epidermis via the blood 
stream [88]. Their continuous presence in the epider-
mis is also assured by local proliferation [89, 90]. They 
reside as relatively immature DC, characterized by a 
high capacity to gather antigens by macropinocytosis, 
whereas their capacity to stimulate naïve T cells is still 
underdeveloped at this stage [91]. Their prominent 
dendritic morphology and the presence of distinctive 
Birbeck granules were observed long ago [79, 92, 93]. 
In the last decade, their pivotal function in the induc-
tion of skin immune responses was explained by high 
expression of molecules mediating antigen-presenta-
tion (e.g., MHC class I and II, CD1), as well as of cel-
lular adhesion and costimulatory molecules (e.g., 
CD54, CD80, CD86, and cutaneous lymphocyte anti-
gen [CLA]) [94–96].

3.3.2.2  Hapten-Induced LC Activation

Upon topical exposure to contact sensitizers, or other 
appropriate stimuli (e.g., trauma, irradiation), up to 
40% of the local LC become activated [97, 98], leave 
the epidermis, and migrate, via afferent lymphatic ves-
sels, to the draining lymph nodes [99] (Fig. 3.5). This 
process of LC migration results from several factors, 
including contact allergen-induced production of 
cytokines favoring LC survival [100–102] and loosen-
ing from surrounding keratinocytes [103–105]. Thus, 

Core Message

Allergenicity depends on several factors deter- ›
mined by the very physicochemical nature of 
the molecules themselves, i.e., their capacity to 
penetrate the horny layer, lipophilicity, and 
chemical reactivity. The sensitizing property of 
the majority of contact allergens could be pre-
dicted from these characteristics [63, 78]. Two 
other factors, however, further contribute to the 
allergenicity of chemicals, viz their proinflam-
matory activity and capacity to induce matura-
tion of LC. These issues will be dealt with in 
more detail in the following sections.
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Fig. 3.5 (a–d) Hapten-
induced migration of 
Langerhans cells. (a) In a 
resting state, epidermal 
Langerhans cells (LC) reside 
in suprabasal cell layers, 
tightly bound to surrounding 
keratinocytes (KC), e.g., by 
E-cadherin. (b) Early after 
epidermal hapten exposure, 
LC produce IL-1b and IL-18, 
which induce the release of 
IL-1a, TNF-a, and GM-CSF 
from keratinocytes. Together, 
these three cytokines 
facilitate migration of LC 
from the epidermis toward 
the lymph nodes. (c) 
Emigration of LC starts with 
cytokine-induced disentan-
glement from surrounding 
keratinocytes (e.g., by 
downregulation of 
E-cadherin) and production 
of factors facilitating 
penetration of the basal 
membrane (e.g., matrix 
metalloproteinases) and 
interactions with extracellular 
matrix and dermal cells (e.g., 
integrins and integrin 
ligands). (d) Once in the 
dermis, LC migration is 
directed toward the draining 
afferent lymphatic vessels, 
guided by local production of 
chemokines (e.g., CCL19 and 
CCL21) acting on newly 
expressed chemokine 
receptors, such as CCR7, on 
activated LC. Along their 
journey, haptenized LC 
further matures as character-
ized by their increased 
dendritic morphology and 
expression of costimulatory 
and antigen-presentation 
molecules
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within 15 min after exposure to a contact sensitizer, 
production of IL-1b mRNA is induced [106, 107]. 
Along with this, caspase-1, formerly known as inter-
leukin-1-converting enzyme, is activated and cleaves 
the active IL1b cytokine from the translated precursor-
IL1b protein. Caspase-1 activates also IL-18 from its 
precursor form. These inflammatory processes are now 
viewed at as making up the “inflammasome” [108]. 
IL-1b in concert with IL-18 stimulates release of tumor 
necrosis factor (TNF)-a and granulocyte–macrophage 
colony-stimulating factor (GM-CSF) from keratino-
cytes [108]. Together these three cytokines facilitate 
migration of LC from the epidermis toward the lymph 
nodes [109]. IL-1b and TNF-a downregulate mem-
brane-bound E-cadherin expression and thus cause 
disentanglement of LC from surrounding keratinocytes 
(Fig. 3.5) [104, 105, 110]. Simultaneously, adhesion 
molecules are upregulated promoting LC migration by 
mediating interactions with the extracellular matrix 
and dermal cells, such as CD54, a

6
 integrin, and CD44 

variants [111–115]. Also, production of the epidermal 
basement membrane degrading enzyme metalloprotei-
nase-9 is upregulated in activated LC [116].

Next, LC migration is directed by hapten-induced 
alterations in chemokine receptor levels [117]. Upon 
maturation, LC downregulate expression of receptors 
for inflammatory chemokines (e.g., CCR1, 2, 5, and 
6), whereas others (including CCR4, 7, and CXCR4) 
are upregulated (Fig. 2.3) (reviewed by [118] and 
[119–121]). Notably, CCR7 may guide maturing LC 
into the draining lymphatics and the lymph node 
paracortical areas, since two of its ligands (CCL19 
and 21) are produced by both lymphatic and high 
endothelial cells [122, 123]. Importantly, the same 
receptor-ligand interactions cause naive T cells, 
which also express CCR7, to accumulate within the 
paracortical areas [124]. Migratory responsiveness of 
both cell types to CCR7 ligands is promoted by leu-
kotriene C4, released from these cells via the trans-
membrane transporter molecule Abcc1 (previously 
called MRP1) [117, 125–127]. Interestingly, Abcc1 
belongs to the same superfamily as the transporter 
associated with antigen-processing TAP, known to 
mediate intracellular peptide transport in the “endog-
enous route” which favors peptide association with 
MHC Class I molecules. Final positioning of the LC 
within the paracortical T-cell areas may be due to 
another CCR7 ligand, EBI1-ligand chemokine (ELC, 
CCL19), produced by resident mature DC [128].

3.3.3  Recognition of Allergen-Modified 
Langerhans’ Cells by Specific T Cells

3.3.3.1  Homing of Naive T Cells Into  
Lymph Nodes

More than 90% of naive lymphocytes present within 
the paracortical T-cell areas have entered the lymph 
nodes by high endothelial venules (HEV) [134]. These 
cells are characterized not only by CCR7 but also by 
the presence of a high molecular-weight isoform of 
CD45 (CD45RA) [134, 135]. Entering the lymph 
nodes via HEV is established by the lymphocyte adhe-
sion molecule L-selectin (CD62L), which allows roll-
ing interaction along the vessel walls by binding to 
peripheral node addressins (PNAd), such as GlyCAM-1 
or CD34 [136–138]. Next, firm adhesion is mediated 
by the interaction of CD11a/CD18 with endothelial 
CD54, resulting in subsequent endothelial transmigra-
tion. Extravasation and migration of naïve T cells to 
the paracortical T-cell areas are supported by chemok-
ines such as CCL18, 19, and 21 produced locally by 
HEV and by hapten-loaded and resident DC [125, 
139–141]. In nonsensitized individuals, frequencies of 
contact allergen-specific T cells are very low, and esti-
mates vary from 1 per 109 to maximally 1 per 106 
[134, 142]. Nevertheless, the preferential homing of 
naive T cells into the lymph node paracortical areas 
and the large surface area of IDC make allergen- 
specific T-cell activation likely with only few dendritic 
cells exposing adequate densities of haptenized-MHC 
molecules [143, 144].

Core Message

Along with their migration and settling within  ›
the draining lymph nodes, haptenized LC 
 further mature, as characterized by their 
increased expression of costimulatory and 
antigen-presentation molecules [129, 130]. In 
addition, they adopt a strongly veiled, inter-
digitating appearance, thereby maximizing the 
chances of productive encounters with naive 
T lymphocytes and recognition of altered self 
[131–133].
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3.3.3.2  Activation of Hapten-Specific T Cells

As outlined in “Binding of Contact Allergens to Skin 
Components,” the chemical nature of the hapten deter-
mines its eventual cytoplasmic routing in antigen- 
presenting cells (APC), and thus whether presentation 
will be predominantly in context of MHC class I or II 
molecules (Fig. 3.4). T cells, expressing CD8 or CD4 
molecules, can recognize hapten-MHC class I or II 
complexes showing stabilized MHC membrane expres-
sion [145, 146]. Chances of productive interactions 
with T cells are high since each MHC-allergen com-
plex can trigger a high number of T-cell receptor (TCR) 
molecules (“serial triggering”) [147]. Moreover, after 

contacting specific CD4+ T cells, hapten-presenting 
DC may reach a stable superactivated state, allowing 
for efficient activation of subsequently encountered 
specific CD8+ T cells [148]. The actual T-cell activa-
tion is executed by TCRx-chain mediated signal trans-
duction, followed by an intracellular cascade of 
biochemical events, including protein phosphorylation, 
inositol phospholipid hydrolysis, increase in cytosolic 
Ca2+ [149, 150], and activation of transcription factors, 
ultimately leading to gene activation (Fig. 3.6) [151].

For activation and proliferation, TCR triggering 
(“signal 1”) is insufficient, but hapten-presenting APC 
also provide the required costimulation (“signal 2”; 
Fig. 3.7) [152, 153]. The costimulatory signals may 

Fig. 3.6 Activation of hapten-specific T cells. T-cell receptor 
(TCR) triggering by hapten-major histocompatibility complex 
(MHC) complexes (“signal 1”) is insufficient for T-cell activa-
tion. But “professional” antigen-presenting cells (APC), such as 
Langerhans cells, can provide the required costimulation (“sig-
nal 2”) involving secreted molecules, such as cytokines, or sets 
of cellular adhesion molecules present on the outer cellular 
membranes of APC and T cells. T cells, stimulated in this way, 
activate nuclear responder elements (e.g., CD28RE). Together 
with nuclear transcription factors (NF) produced upon TCR trig-

gering, these nuclear responder elements enable transcription of 
T-cell growth factors, e.g., IL-2. APC–T cell interaction gives 
rise to mutual activation (“amplification”): on APC, ligation of 
CD40 with CD154 molecules on T cells induces overexpression 
of several costimulatory molecules, including CD80 and CD86. 
In turn, these molecules bind to and increase expression of CD28 
on T cells. This interaction stabilizes CD154 expression, caus-
ing amplified CD154–CD40 signaling, and preserves strong 
IL-2 production, finally resulting in abundant T-cell expansion
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involve secreted molecules, such as cytokines (IL-1), 
or sets of cellular adhesion molecules (CAMs) and 
their counter-structures present on the outer cellular 
membranes of APC and T cells. Expression levels of 
most of these CAMs vary with their activational status, 
and thus can provide positive stimulatory feedback-
loops. For example, as mentioned above, after specific 
TCR binding and ligation of CD40L (CD154) on 
T cells with CD40 molecules, APC reach a superacti-
vated state, characterized by overexpression of several 
CAMs, including CD80 and CD86 (Fig. 3.6) [154, 
155]. In turn, these molecules bind to and increase 
expression of CD28 on T cells. This interaction 
 stabilizes CD154 expression, causing amplified 
CD154–CD40 signaling [155, 156].

The activational cascade is, as illustrated above, char-
acterized by mutual activation of both hapten-presenting 
APC and hapten-reactive T cells. While this activation 
protects the APC from apoptotic death and prolongs 
their life to increase the chance of activating their cog-
nate T cells, only the latter capitalize on these interac-
tions by giving rise to progeny. As discussed below, to 
promote T-cell growth, cellular adhesion stimuli need   

to be complimented by a broth of cytokines, many of 
which are released by the same APC. Together, elevated 
expression levels of (co-)stimulatory molecules on APC 
and local abundance of cytokines overcome the rela-
tively high activation threshold of naive T cells [157].
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Fig. 3.6 (continued)

Core Message

The intricate structure of lymph node para- ›
cortical areas, the differential expression of 
chemokines and their receptors, the character-
istic membrane ruffling of IDC, and the pre-
dominant circulation of naïve T lymphocytes 
through these lymph node areas provide opti-
mal conditions for T-cell receptor binding, i.e., 
the first signal for induction of T-cell activation 
[158]. Intimate DC–T cell contacts are further 
strengthened by secondary signals, provided 
by sets of CAMs, and growth-promoting 
cytokines (reviewed in [159, 160]).
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3.3.4  Proliferation and Differentiation 
of Specific T Cells

3.3.4.1  T-Cell Proliferation

Upon their activation, naive allergen-specific T cells start 
producing several cytokines, including IL-2, the classical 
T-cell growth factor [161, 162]. In particular, ligation of T 
cell-bound CD28 receptors unleashes full-scale IL-2 pro-
duction in T cells by increasing IL-2 transcription and 
mRNA stabilization [163]. T-cell IL-2 production peaks 
within 24 h, and declines subsequently (Villarino 2007). 
Concomitant upregulation of the IL-2 receptor a-chain 
facilitates the assembly of high affinity IL-2 receptor com-
plexes that augment autocrine T-cell responsiveness, thus 
providing a positive feedback loop leading to T-cell clonal 

expansions up to 1,000-fold [164]. The process of prolif-
eration can be visible as an impressive, sometimes painful 
lymph node swelling.

3.3.4.2  T-Cell Differentiation

Whereas allergen-specificity remains strictly conserved 
along with their proliferation, within few days T cells 
show distinct expression of transcription factors associ-
ated with varying cytokine production profiles and 
[165–168]. Thus, the recent offspring of allergen- 
specific CD4+ T cells can show at least five distinct 
cytokine profiles, generally associated with helper/
effector or regulatory/suppressive functions (Fig. 3.7). 
Type 1 Th cells are characterized by a predominant 
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Fig. 3.7 Spectrum of allergen driven CD4+ T cell differentia-
tion: current schematic view. Depending on the immunologi-
cal microenvironment (amount of allergen, danger signals, 
and other soluble mediators), activated naïve T cells are 
skewed into distinct phenotypes. The presence of allergen and 
sufficient danger signals leads to the development of effector 
T cell phenotypes of ACD. Presence of IL-6, TGF-b, IL-21, 

and IL-23 stimulates the generation of TH17/Th23 cells. 
Development of TH1 cells is stimulated by the presence of 
IL-12 and IFN-g, and the development of TH2 is favored by 
IL-4. The absence of sufficient danger signals stimulates the 
development of tolerogenic phenotypes, including TH3 and 
Tr1 [165–167, 175, 201, 239, 241]
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release of IFN-g, IL-2, and TNF-b, all known as proto-
typical proinflammatory and cytotoxic cytokines. Type 
2 Th cells secrete IL-4, IL-5, and IL-13, which have 
distinct proinflammatory activities, but are most promi-
nent in promoting humoral antibody production, e.g., 
along mucosal surfaces where IgA contributes to exclu-
sion of microbial entry [169, 170]. Next, the Th3 subset 
is distinguished by its release of transforming growth 
factor (TGF)-b, which displays anti-inflammatory 
activities [170]. Recently, Th-17 cells have been recog-
nized as a separate lineage of proinflammatory T cells, 
characterized by the production of IL-17A and IL-17E, 
as well as IL-22, all of which play pivotal roles in auto-
immune diseases, e.g., by recruiting neutrophils and 
macrophages [171, 172]. Finally, still another subset of 
CD4+ T cells is recognized for its strong regulatory role 
in controlling inflammatory reactivities, i.e., the Tr1 
cells or “inducible Tregs,” characterized by the secre-
tion of IL-10 [166, 167]. This CD4+ T cell population is 
phenotypically remarkably heterogeneous, with part of 
the cells expressing high amounts of the high affinity 
IL-2 receptor (“CD25high”), either or not accompanied 
by expression of the transcription factor FoxP3 [173–
175] (Fig. 3.7). Tr1 cells have essential roles in the 
maintenance of immune homeostasis, regulating effec-
tor T-cell responses and preventing their potentially 
pathogenic effects by various indirect ways, e.g., by 
suppressing macrophage functions [176, 177]. Each of 
these five cytokine profiles is under control of distinct 
sets of transcription factors that are shown in Fig. 3.7, 
but are discussed further elsewhere (e.g., [165, 166, 
178–180].

To some extent, the same distinct cytokine profiles 
may develop in CD8+ T cells, where at least type 1 and 
2 cytokine releasing CD8+ cells are known to contrib-
ute to ACD [68, 181].

Several factors are thought to contribute to the 
above described polarized cytokine production profiles 
in allergen-specific T cells, including (1) the site and 
cytokine environment of first allergenic contact, (2) the 
molecular nature and concentrations of the allergen, 
and (3) the neuroendocrine factors.

3.3.4.3  Cytokine Environment

In the skin-draining lymph nodes, allergen-activated 
LC and dermal dendritic cells rapidly produce large 
amounts of IL-12, switching off IL-4 cytokine 

production, thereby promoting the differentiation of 
Th1 cells [182–184]. Of note, since Th1 cells retain, 
next to IL12R, high IL-4R expression, they remain 
sensitive to IL-4 as a growth factor [185]. Thus, they 
also retain the capacity to shift cytokine production 
toward the type 2 profile. In contrast, type-2 T cells, 
e.g., developing in mucosa-draining lymph nodes, 
rapidly lose the genes encoding the IL-12-R b2 
chain and thus type-2 differentiation is irreversible 
[186, 187].

Early differentiation of type-1 T cells is promoted by 
microbial danger-signal-induced IL-12 and IL-18, lead-
ing to IFN-g release by nonspecific “bystander” cells, 
e.g., DC and NK cells, within the lymph nodes [188, 
189]. IFN-g interferes with skewing toward other 
cytokine profiles. Since Th1 cells rapidly lose func-
tional IFN-gR expression, these cells, in contrast to Th2, 
Th3, and Th17 cells, become refractory to the growth-
inhibitory effects of IFN-g [190–192]. Interestingly, 
T-cell skewing may also be facilitated by primary con-
tact-mediated signals, e.g., Th1 skewing by CD154 
ligation through APC-bound CD40 [193] or Th2 skew-
ing by ligation of CD134 (OX40) through APC-bound 
CD252 [194, 195].

In the process of T-cell skewing toward the other 
major cytokine profiles, TGF-b plays a central role. 
TGF-b can be produced by various cell types, includ-
ing Th3 cells themselves, but is most prominently pro-
duced by mucosal epithelial cells [166, 192, 196]. 
Apparently, in conjunction with IL-10 production, e.g., 
produced by mucosal B cells, allergen-stimulated T 
cells rapidly initiate endogenous TGF-b production 
thus revealing the Th3 phenotype [197]. These cells 
may stimulate IgA production along the mucosae, but 
elsewhere immunosuppressive activities prevail. 
Interestingly, in conjunction with abundant local IL-2 
production, such as induced by strong antigenic stimu-
lation involving most effective CD28 triggering, 
TGF-b favors skewing toward IL-10 production, 
thereby providing an effective immunoregulatory feed-
back loop [198, 199]. Still, in the presence of strong 
and persistant microbial molecule-induced danger/
growth signals, e.g., IL-6, IL-21, and IL-23, TGF-b 
induces the development of Th17 and/or Th22 cells, 
which both have been postulated to contribute to vari-
ous allergic and autoimmune disorders [168, 172, 192, 
200, 201] (Fig. 3.7).

Thus, ACD may be caused by any combination of 
at least three distinct types of effector T cells, releasing 
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type-1, -2, and –17/22 cytokines, respectively. Consi-
dering that contact allergens will mainly enter via the 
skin, type-1 proinflammatory T cells are thought to 
represent the primary effector cells in ACD [202, 203]. 
Nevertheless, in sensitized individuals, type-2 T cells 
also play a role, as shown by both IL-4 production and 
allergen-specific type-2 T cells in the blood and at 
ACD reaction sites (see Sect. 3.3.6) [204–206]. Their 
role may increase along with the longevity of sensiti-
zation, since several factors contribute to shifting 
type-1 to type-2 responses, including reversibility of 
the former and not of the latter T cells, as mentioned 
above [207, 208]. Still, other sets of cytokines, includ-
ing IL-17 and/or IL-22, are important in immune 
defense mechanisms, and thus Th17 and or Th22 cells 
have also been found to mediate allergic and autoim-
mune disorders [209]. Given rapid local release of both 
IL-4 and TGF-b within mucosal tissues, mucosal aller-
gen contacts, if accompanied by strong danger signals, 
may lead in particular to Th2 and Th17 effector cells. 
Without these signals, rather immunoregulatory sub-
sets (Th3, Tr1) would develop, as is observed in the 
induction of “oral tolerance” (see below) [210].

3.3.4.4  Nature of the Allergen

A second factor in determining T-cell cytokine produc-
tion profiles, although still poorly understood, is the 
molecular character of the contact allergen itself, and 
the resulting extent of TCR triggering [211, 212]. For 
both protein and peptide antigens, high doses of anti-
gen might favor type-2 responses, whereas intermedi-
ate/low doses would induce type-1 T-cell responses 
[211, 213]. Strong antigenic stimulation was also 
shown to upregulate CD40L expression on T cells and, 
in combination with microbial-induced IL-6, to pro-
mote Th17 differentiation. To what extent this trans-
lates to contact allergens is still unclear. Certainly, 
endogenous capacities of contact allergens to provide 
danger signals and activate the “inflammasome,” in 
combination with their capacity to induce differentia-
tion-skewing cytokines (in particular IL-4, IL-6, IL-12, 
and IL-23), will affect the outcome [214, 215]. In this 
respect, some contact allergens are notorious for induc-
ing type-2 responses, even if their primary contact is 
by the skin route, e.g., trimellitic acid, which is also 
known as a respiratory sensitizer [216].

3.3.4.5  Neuroendocrine Factors

Diverse neuroendocrine factors codetermine T-cell 
 differentiation [217–219]. An important link has 
been established between nutritional deprivation and 
decreased T cell-mediated allergic contact reactions 
[220]. Apparently, adipocyte-derived leptin, a hormone 
released by adequately nourished and functioning fat 
cells, is required for type-1 T-cell differentiation. 
Administration of leptin to mice restored ACD reactiv-
ity in mice during starvation [220]. Also, androgen 
hormones and adrenal cortex-derived steroid hor-
mones, e.g., dehydroepiandrosterone (DHEA), pro-
mote type-1 T-cell and ACD reactivity. DHEA, like 
testosterone, may favor differentiation of type-1 T cells 
by promoting IFN-g and suppressing IL-4 release [221, 
222]. In contrast, the female sex hormone progester-
one furthers the development of type-2 CD4+ T cells 
and even induces, at least transient, IL-4 production 
and CD30 expression in established type-1 T cells 
[223, 224]. Type-2 T-cell polarization is also facilitated 
by adrenocorticotrophic hormone (ACTH) and gluco-
corticosteroids [225], and by prostaglandin (PG)E

2
 

[226]. PGE
2
, released from mononuclear phagocytes, 

augments intracellular cAMP levels, resulting in inhi-
bition of proinflammatory cytokine, like IFN-g and 
TNF-a, production [227–230] and thus can influence 
the development of effector T cells in ACD.

Core Message

In healthy individuals, primary skin contacts  ›
with contact allergens lead to differentiation 
and expansion of allergen-specific effector  
T cells displaying Th1, Th2, and/or Th17 
cytokine profiles. The same allergens, if 
encountered along mucosal surfaces, favor the 
development of allergen-specific Th2 and 
Th17 effector cells, and/or Th3 and Tr1 aller-
gen-specific regulatory T cells. While the first 
two subsets may assist or replace Th1 cells in 
proinflammatory effector functions, the latter 
two subsets are mainly known for downregu-
lating immune responsiveness. For most, if 
not all allergens, along with prolonged aller-
genic contacts, the role of Th2 cells as effector 
cells gradually increases given reduced lon-
gevity of Th1 responses.
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3.3.5  Systemic Propagation of the 
Specific T-Cell Progeny

3.3.5.1  T-Cell Recirculation

Upon sensitization via the skin, the progeny of primed 
T cells is released via the efferent lymphatic vessels 

of the skin-draining lymph nodes and the thoracic 
duct into the blood (Fig. 3.8). If the first encounter 
with allergen occurs via the intestinal route, (e.g., 
along with induction of oral tolerance), priming will 
take place in the Peyer’s patches and mesenteric 
lymph nodes, and primed T cells will be released from 
there to the circulation. The subsequent recirculation 
and homing pattern of primed T cells is guided by 
adhesion molecules and chemokine receptors, which 
they express on the cell membrane (Table 3.2). As 
outlined below, expression of these molecules is 
determined by the site of priming, as well as by the 
activational state of the T cells. In addition, there is a 
distinct relationship between the sets of chemokine 

afferent
lymphatic

vessel

efferent lymphatic vessel

skin

CD62E (ligand for CLA)

heart

DT

arterial
system

lymph node

venous
system

PNAd
(ligand for CD62L)

CCL19 & 21
(ligand for CCR7) 

Fig. 3.8 Systemic propagation of hapten-specific T cells. From 
the skin-draining lymphoid tissue, the progeny of primed T cells 
is released via the efferent lymphatic vessels and the thoracic 
duct (DT) into the blood and becomes part of the circulation. 
Like their naïve precursors, these CCR7+ effector/memory  

T cells can still enter lymphoid tissues and settle in paracorticale 
areas by binding to its ligands CCL19 and CCL21. But increased 
expression of skin-homing molecules, e.g., cutaneous lympho-
cyte antigen (CLA), facilitates their spontaneous migration in 
the skin

The respective contributions of similar subsets o  ›
f allergen-specific CD8+ T cells are still unknown, 
but distinct effector roles of allergen-specific Tc1 
and Tc2 have been postulated.
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and homing receptors expressed by T cells and their 
type of differentiation.

First, primed T cells have different homing recep-
tors depending on the site of priming, a process called 
“imprinting” [231, 232]. During priming of allergen-
specific T cells in the skin-draining lymph nodes, both 
CD4+ and CD8+ T cells are stimulated to express CLA 
[233] and the chemokine receptors CCR4 and CCR10, 
a phenotype that predisposes for eventual migration to 
the skin. In the mesenteric lymph nodes, on the other 
hand, T cells are stimulated to express the integrin 
a4:b7 and the chemokine receptor CCR9, a phenotype 
which predisposes for gut homing. An instructive role 

of the peripheral tissues in this imprinting process was 
demonstrated in a mouse model on T cell priming by 
dendritic cells, where either dermal or intestinal cells 
were added to the cultures, resulting in T cells express-
ing mouse “CLA” or a4:b7 integrin, respectively 
[231]. For the imprint of gut homing, retinoic acid was 
identified as a crucial factor, while for the imprint of 
skin homing, the active metabolite of vitamin D3 was 
shown to be essential, because it induces CCR10 
expression in T cells [234]. Still, for induction of CLA 
and thus for establishing the full skin-homing profile, 
cell–cell contact and/or other mediators, like IL-12, 
seem to be required [231].

Table 3.2 Molecules involved in the migration of hapten-specific T lymphocytes 

Receptor/ligand T-cell Cell Tissue References

CD62L
(L-selectin)

HEV
Janeway [436],
Sallusto [212]

CCR7 Stromal cells, DC Sallusto [212]

CD11a/CD18
(αL:β2-integrin, LFA-1) 

increased upon
activation Endothelial cells

Endothelial cells

Janeway [436]

CD49d
(α4:β1-integrin,
VLA-4)

increased upon
activation Endothelial cells Janeway [436]

CD162
(P- selectin ligand,
PSGL-1)

increased upon
activation

CLA skin homing Cutaneous
endothelial cells 

Woodland [461]

Woodland [461]

CCR4 Th2 Keratinocytes Woodland [461]

CCR5 Th1 Keratinocytes (a.o.) Meller [479], Gaga [490]

CCR6 Th17 Langerhans cells
Endothelial cells 

Larsen [455]
Meller [479]

CCR10 Th22, CLA+ Keratinocytes
Langerhans cells

Duhe [462], Homey [491],
Kagami [492],  Woodland
[461]  

CXCR3 Th1 Keratinocytes Moed [285]
Meller [479]

α4:β7-integrin gut homing Endothelial cells Janeway [436]

T-cells

gu
t

Ligand/receptor

CD34, GlyCAM-1
(PNAd)

CCL19, CCL21

CD54, CD102
(ICAM-1, ICAM-2)

CD106, fibronectin
(VCAM-1)

CD62P
(P-selectin)

CD62E
(E-selectin)

CCL17
(TARC)

CCL2 (MCP-1)?
CCL3 (MIP-1α)

CCL20
(MIP-3α / LARC)

CCL27
(CTACK)

CXCL9 and CXCL10
(Mig and IP-10)

MAdCAM-1

CCL25 (TECK) Epithelial cells Grimm [493]; Miles [460]CCR9 T-
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After priming and imprinting, circulating gut hom-
ing memory T lymphocytes, bearing the a4:b7 integ-
rin, can attach to intestinal endothelial cells by binding 
to the mucosal vascular addressin MAdCAM-1. 
Further infiltration in the mucosa is guided by chemok-
ines, such as CCL25, produced by small intestinal epi-
thelial cells [235]. Thus, along the gut, T lymphocyte 
progeny is attracted that has been generated in other 
mucosal tissues. Likewise, in the skin, CLA-positive 
cells that have been generated in skin-draining lymph 
nodes are attracted. CLA binds to E-selectin (CD62E) 
on dermal endothelial cells, while CCR4 and CCR10 
expression allow the lymphocytes to migrate in the 
skin toward CCL17 and CCL27 produced by keratino-
cytes in the epidermis.

At least as important for the recirculation and hom-
ing characteristics of T cells is the activational state of 
the cells. In this respect, primed T cells can be divided 
into two main subsets: the central memory T cells 
(T

CM
) and the effector memory T cells (T

EM
). Like their 

naive precursors, T
CM

 can still enter the peripheral 
lymphoid tissues due to the fact that they continue to 
express CD62L and CCR7, allowing for binding to 
HEV in the lymph nodes and migration into the para-
cortical areas. T

EM
, on the other hand, have lost these 

molecules and migrate, due to simultaneous upregula-
tion of several other adhesion molecules, preferentially 
to peripheral inflamed tissues. T

EM
 are characterized 

by rapid effector function upon antigenic stimulation, 
but, in the absence of antigenic stimuli, T

EM
 eventually 

convert to T
CM

 by reacquiring CCR7 and CD62L. In 
turn, T

CM
 may convert to T

EM
 upon antigenic restimula-

tion [167, 232, 236, 237].
Peripheral endothelial binding and extravasation 

of T cells to inflamed tissues require the expression 
of both selectins and integrins on the T cell mem-
brane, such as LFA-1, VLA-4, and PSGL-1. The vas-
cular expression of their respective ligands (Table 3.2) 
is strongly increased by cytokines released at inflam-
matory sites. The density of adhesion molecules on 
the T cell membrane is generally upregulated upon 
activation, in particular in T

EM
. Since their expres-

sion is highest only for short periods after activation, 
only recently activated T cells show a unique pro-
pensity to enter skin sites and exert effector 
functions.

Third, the differentiation of T cells (Th1, Th2 etc.) 
is clearly associated with distinct homing character-
istics. T cells biased toward a proinflammatory 

phenotype show a higher propensity to enter skin 
sites, as compared to mucosal tissues [233, 238]. 
[201, 239] In mice, the early influx of type-1 T cells 
into delayed-type hypersensitivity (DTH) reactions 
was found to be more efficient than that of type-2 
T cells, although both cell types expressed CLA. 
Here, CD162, highly expressed by type-1 T cells, 
was found to be important for this preferential hom-
ing [240]. Also, the pattern of chemokine receptors 
differs between the Th subsets (Table 3.2). Some 
receptors, such as CXCR3, are preferentially 
expressed on Th1 cells, whereas others, such as 
CCR4 and CCR8, are in particular expressed by Th2 
cells [167, 175, 241, 242]. The latter chemokine 
receptors are not only overexpressed on type-2 
cytokine-producing T cells, but also on basophils and 
eosinophils. Together these cells strongly contribute 
to local immediate allergic hyperresponsiveness. The 
more recently described Th17 and Th22 lymphocyte 
subsets expressing CCR4, CCR6, and CCR10 [239, 
241] are attracted to the skin by epidermal CCL17, 
CCL20, and CCL27, respectively (Table 3.2). Overall, 
results obtained thus far favor the view that the proin-
flammatory subsets (Th1 and Th17/22) will be the 
first to enter skin sites upon local inflammatory stim-
uli, their primary function being an early control of 
antigenic pressure, e.g., through amplification of 
macrophage effector functions. The ACD reaction is, 
however, a dynamic process, in which the first influx 
of cells influences the local chemokine environment 
and determines the type of subsequent infiltrating 
cells. Thus, upon repeated exposure to contact aller-
gens, gradually Th2 cells and regulatory cells may 
dominate [243]. Interestingly, also at the T cell level 
modulation of the cytokine and chemokine receptor 
profiles may occur, thereby maintaining plasticity of 
the immune response [167, 180]. The actual compo-
sition of the T cell infiltrate in ACD skin lesions does 
not only depend on the influx of lymphocytes, but 
should rather be regarded as the resultant of infiltra-
tion, apoptosis and retention of lymphocytes, next to 
their emigration to the lymphatics.

Finally, the antigen specificity of T cells contributes 
to their migration pattern. Allergens penetrated via the 
epidermis and displayed at the dermal endothelial 
 surface may be recognized by allergen-specific T cells, 
thereby resulting in activation, immobilization, and 
transendothelial migration of these cells at sites of 
allergen exposure [241].
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3.3.5.2  Allergen-Specific T-Cell Recirculation: 
Options for In Vitro Testing

The dissemination and recirculation of primed, 
allergen-specific T cells in the body suggests that 
peropheral blood offers a most useful and accessible 
source for T-cell based in vitro assays for ACD. A 
major advantage of in vitro testing would be the nonin-
terference with the patient’s immune system, thereby 
eliminating any potential risk of primary sensitization 
and boosting by in vivo skin testing. Although such 
tests have found several applications in fundamental 
research, e.g., on recognition of restriction elements, 
cross-reactivities, and cytokine profile analyses, their 
use for routine diagnostic purposes is still limited. 
Even in highly sensitized individuals, frequencies of 
contact allergen-specific memory/effector cells may 
still be below 1 per 104 [244–246]. Given the relatively 
small samples of blood obtainable by venepuncture 
(at only one or a few time points), numbers of specific 
T cells in any culture well used for subsequent in vitro 
testing would typically be below 100 cells/well. For 
comparison, in vivo skin test reactions recruit at least 
1,000 times more specific T cells from circulating lym-
phocytes passing by for the period of testing, i.e., at 
least 24 h [247].

Therefore, the sensitivity of in vitro assays, e.g., 
allergen-induced proliferation or cytokine production, 
may not always be sufficient to pick up weak sensiti-
zation. Intermediate or strong sensitization is, how-
ever, readily detected in vitro by both proliferation and 
cytokine production assays [245, 248–250]. With 
respect to the latter, both the “Elispot” assay, where 
allergen-induced cytokine production is evaluated at 
the single cell level, and the cytokine evaluation in 
allergen-stimulated culture supernatants provide ade-
quate information [249, 251, 252]. Notably with 
respect to cytokine production, type-2 cytokines 
appear to provide most specific parameters for contact 
sensitization in these assays, [251, 253] although gen-
erally both Th1 and Th2 cytokines are being produced 
in vitro by allergic individuals, upon allergen exposure 
[250, 254].

Importantly, most of the above mentioned success-
ful in vitro studies evaluated hydrophilic allergens, 
such as nickel, chromium, and palladium salts. Reports 
on successful in vitro assays with other hydrophobic 
and more toxic allergens are scarce [250, 255, 256]. 
Appropriate allergen presentation is a major hurdle in 
in vitro studies because of the broad range of require-
ments for different allergens with unique solubilities, 
toxicities, and reactivity profiles. Moreover, in the 
absence of LC, monocytes are the major source of 
APC, and their numbers in peripheral blood vary sub-
stantially within and between donors. Of note, opti-
mal APC function is particularly critical for in vitro 
activation of resting memory T cells, since in the 
absence of repeated allergenic contacts, activated 
effector memory T cells (T

EM
) may finally revert to a 

more naïve phenotype, with a higher threshold for 
triggering [236, 257]. Supplementing in vitro test cul-
tures with appropriate mixtures of cytokines may, 
however, compensate for suboptimal APC function 
[250, 251, 258].

Core Message

Priming via the skin results in CLA-positive  ›
T cells, which upon inflammatory stimuli pref-
erentially enter the skin; on the other hand, gut 
homing T cells have been primed and gener-
ated along mucosal surfaces. Upon priming, 
T cells loose much of their capacity to recircu-
late via the lymph nodes, but gain the capacity 
to enter the tissues. In particular, recently acti-
vated T cells will enter skin-inflammatory 
sites. ACD reactions are primarily infiltrated 
by CD4 and/or CD8 proinflammatory cells, 
later reactions may be dominated by Th2 cells 
and regulatory T cells. Skin infiltration by 
T cells is fine tuned by sets of adhesion mole-
cules and chemokine receptors, whose expres-
sion is not rigid, but can be modulated by 
microenvironmental factors.

Core Message

After antigenic activation the progeny of  ›
primed T cells is released via the efferent lym-
phatics into the bloodstream. Circulating aller-
gen-specific cells can be challenged in vitro to 
provide diagnostic parameters for contact 
hypersensitivity. At least for water-soluble 



T. Rustemeyer et al.64

3.3.6  The Effector Phase of Allergic 
Contact Dermatitis

3.3.6.1  Elicitation of ACD

Once sensitized, individuals can develop ACD upon 
reexposure to the contact allergen. Positive patch test 
reactions mimic this process of allergen-specific skin 
hyperreactivity. Thus, skin contacts induce an inflam-
matory reaction that, in general, is maximal within 
2–3 days and, without further allergen supply, declines 
thereafter (Fig. 2.8). Looked at superficially, the 
mechanism of this type of skin hyperreactivity is 
straightforward: allergen elicitation or challenge leads 
to the (epi)dermal accumulation of contact allergen-
specific memory/effector T lymphocytes, which, upon 
encountering allergen-presenting cells, are reactivated 
to release proinflammatory cytokines. These, in turn, 
spark the inflammatory process, resulting in macro-
scopically detectable erythema and induration. As 
compared to immediate allergic reactions, developing 
within a few minutes after mast-cell degranulation, 
ACD reactions show a delayed time course, since both 
the migration of allergen-specific T cells from the der-
mal vessels and local cytokine production need sev-
eral hours to become fully effective. Still, the picture 
of the rise and fall of ACD reactions is far from clear. 
Some persistent issues are discussed below, notably: 
(1) irritant properties of allergens, (2) role of early 
phase reactivity, (3) T-cell patrol and specificity, (4) 
effector T-cell phenotypes, and (5) downregulatory 
processes.

3.3.6.2  Irritant Properties of Allergens

Within a few hours after allergenic skin contact, immu-
nohistopathological changes can be observed, includ-
ing vasodilatation, upregulation of endothelial adhesion 
molecules [259, 260], mast-cell degranulation [261, 
262], keratinocyte cytokine and chemokine produc-
tion, [45, 263] influx of leucocytes [264, 265], and LC 
migration toward the dermis [112, 266–268]. These 
proinflammatory phenomena, which are also observed 
in nonsensitized individuals [269] and in T cell-defi-
cient nude mice [270], strongly contribute to allerge-
nicity [58]. Clearly most, if not all, of these effects can 
also be caused by irritants and, therefore, do not unam-
biguously discriminate between irritants and contact 
allergens [45, 271–273]. Apparently, true differences 
between these types of compounds depend on whether 
or not allergen-specific T cells become involved. Thus, 
only after specific T-cell triggering, distinctive features 
might be observed, e.g., local release of certain 
chemokines such as the Th1 associated chemokines 
CXCL9, CXCL10 (IP-10), and CXCL11 (I-TAC/IP-9) 
[263, 274] or the Th2 related chemokines CCL11, 
CCL17, and CCL22 [263, 274]. Certainly, proinflam-
matory effects of contact allergens increase, in many 
ways, the chance of allergen-specific T cells meeting 
their targets. The first cells affected by skin contact, 
i.e., keratinocytes and LC, are thought to represent 
major sources of pivotal mediators such as IL-1b and 
TNF-a [106, 275]. First, as described in “Hapten-
Induced Activation of Allergen-Presenting Cells,” 
these cytokines cause hapten-bearing LC to mature 
and migrate toward the dermis [94, 131, 268]. But 
these cytokines also cause (over)expression of adhe-
sion molecules on dermal postcapillary endothelial 
cells, and loosen intercellular junctions. In that way, 
extravasation of leucocytes, including allergen-specific 
T cells, is strongly promoted [241, 275–278]. Moreover, 
haptens can stimulate nitric oxide (NO) production of 
the inducible NO-synthase (iNOS) of LC and keratino-
cytes, which contributes to local edema, vasodilata-
tion, and cell extravasation [279, 280].

Histopathological analyses support the view that 
the major causative events take place in the papillary 
dermis, close to the site of entry of allergen-specific 
T cells, for instance at hair follicles, where haptens 
easily penetrate and blood capillaries are nearby [281]. 
Here, perivascular mononuclear cell infiltrates develop, 
giving the highest chance of encounters between 

allergens, such as metal salts, the degree of 
allergen-specific proliferation and cytokine 
production, in particular type-2 cytokines, cor-
relates with clinical allergy. For routine appli-
cation of a broad spectrum of allergens, culture 
conditions still need to be improved. For 
mechanistic in vitro studies in ACD, however, 
with selected sets of relatively nontoxic aller-
gens, peripheral blood provides an excellent 
source of lymphocytes and APC.
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allergen-presenting cells and specific T cells. Once 
triggered, extravasated T cells will readily enter the 
lower epidermal layers, in which haptenized keratino-
cytes produce lymphocyte-attracting chemokines, such 
as CXCL9/10, CCL17, CCL20, and CCL27 ([201, 232, 
263, 274]; Table 3.2). Subsequently, since  effector mem-
ory T cells can also be triggered by  “nonprofessional” 
APC, including KC, fibroblasts, and infiltrating mono-
nuclear cells, ACD reactivity is amplified in the epi-
dermis [157, 159, 269]. Together, these events result in 
the characteristic epidermal damage seen in ACD, 
such as spongiosis and hyperplasia. Notably, in ongo-
ing ACD reactions, the production of chemokines 
attracting lymphocytes and monocytes/macrophages, 
in addition to the production of cytokines, adds to the 
nonspecific recruitment and activation of leucocytes 
[119, 282, 283]. Thus, like the very early events in the 
effector phase reaction, the final response to a contact 
allergen is antigen-nonspecific. It is, therefore, not sur-
prising that allergic and irritant reactions are histologi-
cally alike.

3.3.6.3  Early Phase Reactivity

In the elicitation phase allergen-specific T cells are 
triggered by MHC-bound allergen, just like in the 
afferent phase. The role of LC in allergen presentation 
upon elicitation is, however, less prominent, and also 
other cells such as mast cells, macrophages, and kera-
tinocytes may now contribute, since effector T cells 
are easily triggered and do not require professional 
antigen presentation. The role of keratinocytes in the 
onset of the ACD reaction is important because of the 
cytokines and chemokines they produce upon hapten 
application [237, 263], thereby facilitating the influx 
of effector T cells. In addition, a variety of other cells 
and mediators may contribute to the initiation of the 
ACD reaction, as summarized below.

The role of neutrophils in the onset of ACD reac-
tions has not been well-established, though recent 
studies in mice demonstrate that skin reactivity to 
 haptens largely depends on CXCL1, released from 
endothelial cells when the first hapten-specific CD8 T 
cells encounter the allergen and produce IL-17. CXCL1 
may then attract neutrophils to the elicitation site, thus 
facilitating further influx of allergen-specific T cells 
[284]. In the human system, neutrophil infiltration was 
also observed in skin biopsies from nickel patch tests, 

presumably as a result of IL-17/IL-22 mediated inflam-
mation [201]. Moreover, it has been shown that IL-8/
CXCL8, a potent neutrophil chemoattractant, is read-
ily produced by human antigen-presenting cells upon 
hapten exposure [285]; this could also contribute to an 
early influx of neutrophils in ACD reactions.

The role of an antibody-mediated early-phase reac-
tion in the development of ACD is still unclear in man, 
although Askenase and his colleagues have generated 
robust data to support this view in murine models 
[286]: Hapten-specific IgM, produced upon sensitiza-
tion by distant hapten-activated B-1 cells, can bind 
antigen early after challenge and activate complement. 
The resulting C5a causes the release of serotonin and 
TNF-a from local mast cells and platelets, leading to 
vascular dilatation and permeabilization, detectable as 
an early ear swelling peaking at 2 h [287]. Furthermore, 
C5a and TNF-a induce the upregulation of adhesion 
molecules on local endothelial cells [288, 289], thereby 
contributing to the recruitment of T cells in hapten 
challenge sites [289, 290]. In addition, human T cells 
were found to express the C5a receptor and are 
chemoattracted to endothelium-bound C5a [291]. 
However, against most contact allergens, including 
nickel, no antibodies have been detected in man, argu-
ing against humoral mechanisms playing more than a 
minor role in clinical ACD [292, 293]. Interestingly in 
mice, immunoglobulin light chains, which have long 
been considered as the meaningless remnants of a 
spillover in the regular immunoglobulin production of 
B cells, were discovered to mediate very early hyper-
sensitivity reactions by mast cell activation [294].

In addition to an auxiliary role of B cells and anti-
bodies, natural killer (NK) cells have been reported to 
play a role in the onset of ACD reactions. Mice lacking 
both T and B cells (RAG2−/−) could still be sensitized 
to contact allergens, and Thy1+ NK cells were identi-
fied here as effector cells with a prominent role for the 
activating NK receptor NKG2D [295]. Interestingly, 
another NK-like cell, the invariant NKT cell, that rec-
ognizes CD1d bound glycolipids resulting in rapid IL-4 
and IFN-g release, was also found to play a role in the 
elicitation of contact sensitivity in mice: blocking of 
CD1d prevented both sensitization and elicitation by 
contact allergens [296]. Notably, in human ACD reac-
tions relatively high frequencies of invariant NKT cells 
have been observed, ranging from 1.7 to 33% of total 
infiltrating T cells, which is 10–100-fold higher than 
the frequency found in the circulation [297]. Also, other 
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T cells with relatively restricted TCR repertoire, such 
as Tgd cells, have been reported to contribute in a 
nonantigen-specific, probably non-MHC-restricted 
manner, to (early) elicitation responses [298].

To conclude, using various mouse models, different 
types of early allergen-specific reactivity have been 
claimed to play initiating roles in ACD, but clinical 
evidence for such mechanisms is still lacking.

3.3.6.4  T-Cell Patrol and Specificity of T-Cell 
Infiltrates

Whereas early nonspecific skin reactivity to contact 
allergens is pivotal for both sensitization and elicita-
tion, full-scale development of ACD, of course, 
depends on allergen-specific T cells within the (epi)
dermal infiltrates. In healthy skin there is a constant 
flow of memory T cells ending up in the draining 
lymph nodes: about 200 T cells/h/cm2 skin [115]. Since 
one single antigen-specific T cell can already trigger 
visible skin inflammation [299, 300], randomly skin-
patrolling memory/effector T cells might account for 
the initiation of the allergen-specific effector phase. 
However, since frequencies of hapten-specific T cells 
in sensitized individuals may still remain below 1 in 
10,000, this does not seem to be a realistic scenario. 
Thus, augmented random and/or specific T-cell infil-
tration accompanies the development of ACD. 
Apparently, local chemokine release upon allergen 
contact is pivotal in this respect (see T-Cell recircula-
tion; 482). Chemokine gene expression evaluated 48 h 
after NiSO4 application was increased for both Th1 
related cytokines (CXCL9, CXCL10, and CXCL11) 
and Th2 related cytokines (CCL11, CCL17, and 
CCL22). On the other hand, CCL27 that attracts pref-
erentially CCR10 bearing Th17/22 cells is constitu-
tively produced in resting skin, but is rapidly released 
upon allergen contact to accumulate in the draining 
lymph nodes.

The question concerning the specificity of ACD 
T-cell infiltrates has so far received little attention. In a 
guinea pig model, preferential entry of dinitrochlo-
robenzene (DNCB)-specific T cells was observed 
within 18 h after elicitation of skin tests with DNCB, 
as compared to nonrelated compounds [301]. Probably, 
extravasation of hapten-specific T cells benefits from 
T-cell receptor-mediated interactions with endothelial 
MHC molecules, presenting hapten penetrated from 

the skin [241]. Within minutes after epicutaneous 
application, hapten can indeed be found in dermal tis-
sues and on endothelial cells [259, 302, 303]. Indeed, 
the frequency of allergen-specific cells in positive 
patch tests to urushiol was found to be 10–100-fold 
higher than in the blood [246]. Interestingly, whereas 
preferential entry may already contribute to relatively 
high frequencies of allergen-specific T cells (within 
48 h up to 10%) [205, 299], at later stages, when the 
ACD reaction fades away, the local frequency of aller-
gen-specific T cells may increase even further, due to 
allergen-induced proliferation and rescue from apop-
tosis. Thus, at former skin reaction sites, these cells 
can generate “local skin memory” (see Sect. 3.3.7).

3.3.6.5  Effector T-Cell Phenotypes

The debate on phenotypes of effector T cells in ACD is 
still ongoing and the number of T cell subsets poten-
tially involved is growing every year (Fig. 3.7). 
Consensus exists, however, on the phenotype of the 
skin-homing T cell, i.e., CLA positive. This molecule 
enables binding to cutaneous endothelial cells via 
E-selectin (CD62E) and thus migration into the 
dermis.

Since cutaneous infiltrates show a clear preponder-
ance of CD4+ T cells, it is not surprising that these cells 
have most often been held responsible for mediating 
ACD. In nickel allergic individuals, indeed, allergen 
responding cells were found to be CD4+CLA+ memory 
T cells [304]. Other studies, however, revealed 
CD8+CLA+ nickel reactive T cells as most discriminat-
ing for allergic individuals, since CD4+ nickel reactive 
T cells were also found in healthy controls [244]. 
While the effector mechanism of CD4+T cells is mainly 
based on cytokine production, CD8+ T cells may 
mediate skin inflammation also through killing of hap-
ten-bearing target cells. In mice, generally CD8+ 
T cells are found to cause contact sensitivity reactions, 
certainly to strong allergens, like DNFB [284, 297]. In 
mice CD4+ T cells are rather found to be regulatory, as 
shown by the fact that contact sensitization to weak 
allergens succeeded only after depletion of the CD4+ 
T cells [305]. Of note, most model allergens studied in 
mice are hydrophobic molecules such as DNFB and 
oxazolone, whereas in human studies, very often, 
water-soluble metal salts, such as NiSO4, are used as 
model allergen. This could, at least partly, explain the 
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different T cell subsets involved (Fig MHCI/II presen-
tation). So, taken together, it has become clear that 
both CD4+ and CD8+ T cells can act as effector cells in 
DTH and ACD reactions. Likewise, neither of these 
subsets can be regarded simply as regulatory or sup-
pressor cells, although both of these subsets may, 
depending on the allergen models and read-out assays, 
play such roles [68, 306].

An essentially similar conclusion holds true for 
T-cell subsets (whether CD4+ or CD8+), releasing 
type-1, type-2, or type-17 cytokines or combinations 
thereof. While type-1 cytokines, in particular IFN-g, 
display well-established proinflammatory effects by fi 
increasing MHC and ICAM-1 expression [284, 307], 
thereby contributing to improved allergen presenta-
tion and infiltration, IL-4, a hallmark type-2 cytokine, 
can cause erythema and induration, when released in 
the skin [308, 309]. Indeed, blockage of IL-4 can 
interfere with ACD [309]. IL-17 plays a role in recruit-
ment and activation of neutrophils. It was shown to be 
produced both by CD8+ T cells (in mouse models with 
DNFB; 483) and by CD4+ T cells (in human nickel 
patch tests; 456). The latter study shows, interestingly, 
that within a few hours after challenge, CCL20 expres-
sion is upregulated in the skin, attracting CCR6 posi-
tive cells. Since all Th17 cells do express this receptor, 
an early preferential influx of Th17 and, as a conse-
quence, IL-17 and IL-22 production could be an 
essential early event in the development of the ACD 
reaction.

Thus, a picture emerges in which ACD reactions 
can be caused both by allergen-specific type-1, type-
2, and type-17 T cells [168, 201, 244, 251, 297, 304]. 
In retrospect, the downregulatory effects of IL-4 on 
ACD reactions observed earlier in some mouse mod-
els [310] might be ascribed to accelerated allergen-
clearance, rather than to blunt suppression. Still, both 
with time and repeated allergen-pressure, type-2 
responsiveness may rapidly take over [243, 311]. 
Allergen-specific T cells isolated from skin test sites 
of sensitized individuals, as compared to blood, 
showed a strong bias toward type-2 cytokine profiles 
[204]. Additional local IFN-g release seems, however, 
indispensable, since for a broad panel of contact aller-
gens, clinical ACD reactions were characterized by 
increased expression of mRNA encoding IFN-g-
inducible chemokines [274]. In addition, transgenic 
mice expressing IFN-g in the epidermis showed 
strongly increased ACD reactivity [312].

3.3.6.6  Downregulatory Processes

Resolution of ACD reactions and risk factors for the 
development of chronicity are not yet fully understood. 
Of course, if the allergen source is limited, as with skin 
testing, local concentrations of allergen usually rapidly 
decrease, thus taking away the critical trigger of the 
ACD reaction cascade. Since even ACD reactions due 
to chronic exposure to allergen seldomly result in per-
manent tissue destruction and scarification, immuno-
regulatory factors most likely contribute to prevention 
of excessive cytotoxicity and fatal destruction of the 
basal membrane. Both IL-1 and heparinase, secreted 
from activated keratinocytes and T cells, protect kera-
tinocytes from TNF-a-induced apoptosis [313, 314]. 
Moreover, activated effector T cells can undergo acti-
vation-induced cell death (AICD) during the resolu-
tion phase [315]. Notably, proinflammatory type-1 T 
cells, expressing high levels of Fas-ligand (CD95L) 
and low amounts of apoptosis-protecting FAP-1 pro-
tein, are more susceptible to AICD than type-2 cells 
[316]. This may partly explain the shift toward type-2 
reactivity that is observed upon prolonged allergen 
exposure [311]. Moreover, during the late phase of 
ACD, keratinocytes, infiltrated macrophages, and 
T cells start producing IL-10 [317–319], which has 
many anti-inflammatory activities, including suppres-
sion of antigen-presenting cell and macrophage func-
tions [320, 321]. In addition, the release of factors, 
such as PGE

2
 and TGF-b, derived from activated kera-

tinocytes and infiltrated leucocytes, e.g., type-3 T cells, 
contribute to dampening of the immune response [322, 
323]. Release of PGE

2
, on the one hand, inhibits pro-

duction of proinflammatory cytokines [230, 324] and, 
on the other hand, activates basophils [325]. These 
may constitute up to 5–15% of infiltrating cells in late 
phase ACD reactions [326] and are also believed to 
contribute to downregulation of the inflammatory 
response [327, 328]. TGF-b silences activated T cells 
and inhibits further infiltration by downregulating the 
expression of adhesion molecules on both endothelial 
and skin cells [236]. Regulatory cells producing these 
suppressive mediators might even predominate in skin 
sites, frequently exposed to the same allergen, and 
known to show local (allergen-specific) hyporespon-
siveness [329]. It is of interest in this context that CD4+ 
memory T cells expanded from late DTH reactions 
could be educated to become CD4+CD25++ regulatory 
T cells expressing Foxp3.
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3.3.7  Flare-Up and Retest Reactivity

3.3.7.1  Local Allergen Retention

Flare-up reactivity of former ACD and patch test reac-
tion sites is sometimes observed [330–332]. From the 
basic mechanisms of ACD, it can be inferred that 
 allergen-specific flare-up reactions depend either on 
local allergen or T-cell retention at these skin sites. 
Upon short-lasting, low-dose contacts, e.g., by skin 
testing, local allergen retention usually does not exceed 
a 2-week period, which is actually long enough to 
exceed the time required for active sensitization. In 
experimental guinea pig studies, we observed that skin 
tests with DNCB, chromium, or penicillin could 
become positive even if primary sensitization was 
postponed to 1 week after skin testing. Apparently 
effector T cells released into the circulation at that late 
time still detected sufficient residual allergen at the 
former skin test sites to cause flare-up reactivity 
(Scheper et al., unpublished results). Maximum aller-
gen-persistence for around 14 days was also reported 
by Saint-Mezard et al., [58] using the hapten fluores-
cein-isothiocyanate in a mouse model for flare-up 
reactivity. Also in humans flare-up reactions due to 
locally persisting allergen can be observed, when from 
about 4–6 days after primary sensitization, peripheral 
effector T cell frequency increases [333]. Clinically, 
this phenomenon can explain anomalous results from 
patch testing with multiple contact allergens. When a 

patient suspected for penicillin allergy was patch tested 
with cross-reactive penicillin derivatives, a regular 
24–72 h reaction was only observed to one of the peni-
cillins, but all others also became positive from about 
8–9 days after skin testing. The first penicillin deriva-
tive turned out to release formaldehyde to which the 
patient was found to be allergic. Positive reactivity to 
formaldehyde apparently had potentiated primary sen-
sitization to penicillin, causing the other previously 
negative reaction sites to flare-up (Neering, personal 
communication). Thus, skin test sites may occasion-
ally flare-up if the testing dose itself led to the release 
or activation of sufficiently high numbers of effector T 
cells in the circulation.

3.3.7.2  Local T-Cell Retention

In contrast, allergen-specific T cells may persist for at 
least several months in the skin causing “local skin 
memory” (Figs. 3.9 and 3.10) [334, 335]. Thus, 
locally increased allergen-specific hyperreactivity, 
detectable through either accelerated “retest” reactiv-
ity (after repeated allergenic contact at the same skin 
site) or flare-up reactivity (after allergen entry from 
the circulation, e.g., derived from food ingestion), 
may be observed for long periods of time at former 
skin reaction sites [336–338]. Typically, the ery-
thematous reactions peak between 2 and 6 h after 
contact with the allergen. Histological examination of 
such previously positive skin reaction sites shows that 
the majority of remaining T cells is CD4+ CCR10+ 
[335]. The remarkable flare-up reactivity at such sites 
can be understood by considering that just one spe-
cific effector T cell can be sufficient to generate mac-
roscopic reactivity [300]. Moreover, a very high 
frequency of the residual T cells may be specific for 
the allergen, as discussed above in Sect. 3.3.6. 
Apparently, local specific T cell retention is highly 
advantageous in combating microbial infections, 
since memory T cells localized in peripheral tissues 
contribute to robust protection, e.g., to viral infec-
tions [232]. Only in highly sensitized individuals 
unrelated skin test sites may also show flare-up reac-
tions [334] and even generalized erythematous macu-
lar eruptions can be observed with higher allergen 
doses [339]. The latter reactivities probably relate to 
the fact that recently activated T cells show strong 
expression of adhesion and homing molecules, 

Core Message

ACD reactions can be mediated by classical  ›
effector cells, i.e., allergen-specific CD4+ type-1 
T cells, which, upon triggering by allergen-
presenting cells, produce IFN-g to activate non-
specific inflammatory cells such as macrophages. 
However, CD8+ T cells and other cytokines, 
including IL-4, IL-17, and IL-22, can also play 
major roles in ACD. The conspicuous differ-
ence with DTH reactions induced by intrader-
mal administration of protein antigens, i.e., the 
epidermal infiltrate, can largely be attributed 
to hapten-induced chemokine release by 
keratinocytes.
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e.g., CLA and chemokine receptors such as CCR5, 
facilitating random migration into peripheral tissues 
and thus allergen-specific T cell patrol in the skin 
[232, 340]. Upon subsequent allergen entry from the 
circulation, these allergen-specific T cells could 
mediate generalized erythematous reactions [331].

Interestingly, local allergen-specific T cell reten-
tion/ “local skin memory” can be clinically exploited 
to discriminate between simultaneous sensitization to 
different sensitizers (“concomitant sensitization”) and 
cross-reactivity between different sensitizers [341–
343]. Using several different combinations of contact 
allergens in a guinea pig model, we retested guinea 
pigs previously sensitized to DNCB and methyl 

methacrylate (MMA), with the same allergens and 
some other methacrylate congeners. Accelerated retest 
reactivities were observed with the latter congeners on 
the former MMA, but not DNCB, patch test sites 
[341]. Thus, with preferential local retention of MMA-
specific T cells at the MMA skin test site, no acceler-
ated retest reactivity could be elicited with DNCB, but 
to varying degrees with all four MMA-related com-
pounds. In clinical practice using this approach, 
Matura [342] confirmed positive cross-retest reactions 
for cloprednol and tixocortol pivalate, both belonging 
to group A, and budesonide, amcinonide, and triamci-
nolone, all belonging to group B corticosteroids (see 
also [344]).

Fig. 3.9 (a–c) The effector phase of allergic contact dermatitis. 
(a) 0 h: In resting skin relatively few randomly patrolling, skin-
homing CLA+ T cells are present. (b) 0–4 h: Reexposure of the 
contact allergen, binding to (epi)dermal molecules and cells, 
induces release of proinflammatory cytokines. (c) 2–6 h: 
Influenced by inflammatory mediators, activated epidermal 
Langerhans cells (LC) start migrating toward the basal mem-
brane and endothelial cells express increased numbers of adhe-
sion molecules. Endothelial cell-bound hapten causes preferential 
extravasation of hapten-specific T cells, which are further guided 

by inflammatory chemokines. (d) 4–8 h: Hapten-activated 
T cells release increasing amounts of inflammatory mediators, 
amplifying further cellular infiltration. (e) 12–48 h: The inflam-
matory reaction reaching its maximum, characterized by (epi)
dermal infiltrates, edema, and spongiosis. (f) 48–120 h: 
Gradually, downregulatory mechanisms take over, leading to 
decreased inflammation and disappearance of the cellular infil-
trate. Finally, primordial conditions are reconstituted except for 
a few residual hapten-specific T cells causing the local skin 
memory. KC keratinocyte; DC dendritic cell
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3.3.8  Hyporeactivity: Tolerance 
and Desensitization

Of course, uncontrolled development and expression 
of T cell-mediated immune function would be detri-
mental to the host. During evolution, several mecha-
nisms developed to curtail lymph node hyperplasia or 
prevent excessive skin damage upon persisting antigen 
exposure.

3.3.8.1  Regulation of Immune Responses

First, allergen contacts, e.g., by oral or intravenous 
administration, may lead to large-scale presentation of 
allergen by cells other than skin DC (Fig. 3.11). In the 
absence of appropriate costimulatory signals (as 

described above in Sect. 3.3.3), allergen presented by, 
e.g., immature Langerhans’ cells may anergize naive 
T cells, i.e., cause receptor-downregulation associated 
with an unresponsive state, eventually leading to their 
death by apoptosis (Fig. 3.12) [345–347]. With increas-
ing densities of MHC-antigen complexes on the sur-
face of professional APC, at least three different levels 
of T-cell tolerance may be induced, characterized by 
active suppression, anergy, or deletion [348, 349]. 
Unresponsiveness of T cells, induced by allergenic 
contacts at skin sites where LC/DC functions have 
been damaged, e.g., by UV irradiation, or are naturally 
absent, e.g., in the tail skin of mice, may be ascribed to 
T-cell anergy, frequently associated with TCR/CD4 or 
CD8 downregulation, and apoptosis/deletion [350, 
351]. Whereas anergy and deletion reflect “passive” 
unresponsiveness, tolerance by active suppression may 
also be induced under similar circumstances [352]. 
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Fig. 3.10 Local skin memory. In former allergic contact derma-
titis sites, a few hapten-specific T cells can remain, mainly close 
to dermal dendritic cells (DC). Retest reaction: renewed hapten 

contact can induce a rapid onset of an erythematous reaction, 
sparked off by the residual hapten-specific T cells. KC keratino-
cyte; LC Langerhans cell
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Actually, with increasing dose and exposure times, 
even regular epicutaneous allergenic contacts induce 
not only T effector cells but also lymphocytes control-
ling T-cell proliferation (afferently acting regulatory 
cells) and/or causing decreased skin reactivity (regula-
tory cells of effector phase). Thus, allergic contact 
hypersensitivity is the resultant of a delicate balance 
between effector and regulatory mechanisms [329, 
353].

3.3.8.2  Cellular Basis of Active Tolerance

Upon preferential stimulation of regulatory cells, e.g., 
by feeding nonprimed, naïve individuals with contact 
allergens, strong, and stable allergen-specific, active 
tolerance may develop [354–356]. The concept of 
active regulatory (“suppressor”) cells controlling ACD 
is based on the fact that in experimental animal mod-
els, such allergen-specific tolerance can be transferred 

by lymphoid cells from tolerant to naive animals [298, 
357]. Active suppression, as revealed by these adop-
tive cell transfers, is a critical event in regulating T-cell 
responses to contact sensitizers and to all possible pep-
tide/ protein antigens, including bacterial, autoim-
mune, and graft rejection antigens [358–360].

Like effector T cells in ACD, regulatory cells are 
not a single subpopulation of cells. As outlined above, 
depending on, e.g., the nature of the allergen and route 
of exposure, ACD can be mediated by both CD4+ and 
CD8+ T cells, either or both releasing Th1, Th2, Th3, 
Th17/22 cytokines. With distinct effector phenotypes 
for particular allergens, each of the other phenotypes 
can act as regulatory cells ([361, 362]: CD8+ Treg). 
Notwithstanding, type-2 cytokine-producing cells are 
prominent in regulating ACD, with allergic contact 
hypersensitivity enhanced and tolerance reversed by 
interfering with type-2 T cell functions [363–366]. 
Also, interferons and IL-12, both impairing Th2 and 
Th17/22 cells, were shown to inhibit regulatory cells 

hypersensitivity

tolerance

antigen ingestion skin contact(s) 48 h after
reexposure

Fig. 3.11 Induction of oral tolerance. Hapten ingestion, prior to potential sensitizing skin contact(s), can induce hapten-specific 
tolerance



3 Mechanisms of Irritant and Allergic Contact Dermatitis 73

and stimulate effector cell functions in mouse models 
[367–369]. In particular, after mucosal allergen con-
tact stimulation, T cells producing IL-10 and/or TGF-b 
(type-3 cytokine profile), many of which coexpressing 
CD4, CD25, and the transcription factor Foxp3 (Treg), 
may act as regulatory cells [174, 370, 371]. These 
T cells promote anti-inflammatory immunity, e.g., by 
switching antibody production to IgA, which mediates 
secretory immunity and thus contributes to antigen 
exclusion in the lumen, e.g., of the gastro-intestinal 
tract [372]. Of note, TGF-b strongly suppresses devel-
opment of both type-1 and -2 effector T cells, and can 
silence T cells in a seminaïve state [236].

3.3.8.3  Regulatory Mechanisms of  
the Effector Phase

A critical feature of the regulatory principles involving 
mutual regulation of T-cell subpopulations by Th1, Th2, 

Th3, and Th17/22 cytokines is that regulatory functions 
are most effective during initiation of immune responses 
(Fig. 3.7). Thus, once established, effector T cell and 
cytokine profiles show remarkable stability and refrac-
toriness to regulatory forces. Downregulation of allergic 
skin reactions may, therefore, take considerable time. 
Of course, the preliminary factor facilitating decreased 
allergic skin reactivity is the removal of hapten by 
 exudate and innate immune cells of the inflammatory 
infiltrate. But, at chronically exposed sites, specific reg-
ulatory mechanisms can also be involved, such as 
CD8+ T cells, acting either as regulator/ suppressor 
(CD28−CD11b+) or cytotoxic (CD28+CD11b–) T cells 
[373, 374], which may downregulate skin reactivity by 
targeting allergen-presenting DC [374]. Multiplicity 
and redundancy of regulatory mechanisms have thus far 
hampered development of robust clinical treatments 
exploiting regulatory T cell functions to provide for 
allergen-specific downregulation of the effector phase 
of ACD. The development of potential therapeutic 
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Fig. 3.12 The character of the APC–T cell interaction deter-
mines the immunological outcome. Sensitization: Naïve T cells, 
activated by antigen-presenting cells (APC) providing both hap-
ten-specific (“signal 1”) and appropriate costimulatory (“signal 
2”) signals, develop into effector T cells, characterized by 

Th-17/22, -1, and -2 cytokine secretion profiles. Tolerance: In 
the absence of appropriate costimulatory signals, immunological 
tolerance may develop. With increasing density of MHC–hapten 
complexes on the surface of APC, activating “signal 1” T-cell 
pathways, multiple levels of T-cell tolerance might be induced
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applications of regulatory cells in various disorders, 
such as ACD and autoimmune diseases, therefore, needs 
much more time than envisioned earlier [375].

3.3.8.4  Redundancy of Tolerance Mechanisms

Besides regulatory T cells, producing different cytok-
ines or exerting distinct cytotoxicities, other mecha-
nisms may also contribute to immune regulation and 
tolerance. Clearly, the risk of excessive immune reac-
tivity should be very low. These mechanisms involve 
allergen-specific T cells shedding truncated TCRs, act-
ing as antagonists and blocking allergen presentation 
[376], and high-dose allergen-induced anergic T cells 
[349]. Possibly, the latter cells, by actively suppressing 
DC functions, can function as “active” suppressor cells 
[377, 378]. Interestingly, DC, becoming suppressive 
by this mechanism [378] or by suppressive cytokines 
like IL-10 and PGE

2
 [230, 379, 380], can, in turn, act 

themselves as suppressor cells by conferring antigen-
specific anergy to subsequently encountered T cells 
[377, 378, 381]. Although, at present, consensus has 
been reached about a critical role of regulatory/ sup-
pressor cells in the development and expression of 
ACD, the relative contributions of each of the various 
mechanisms are still far from clear.

3.3.8.5  Induction of Lasting Tolerance  
Only in Naive Individuals

Both clinical and experimental findings indicate that 
full and persistent tolerance can only be induced prior 
to any sensitizing allergen contacts [356, 382, 383]. 
Upon primary allergenic contacts, naive T cells dif-
ferentiate to produce polarized cytokine profiles 
(Figs. 3.7 and 3.11). Once polarized, however, T-cell 
profiles are irreversible, due to loss of cytokine (recep-
tor) genes, or at least very stable, due to the mutually 
suppressive activities of T-cell cytokines. An impor-
tant corollary of the latter concept of active suppres-
sion is the bystander effect, in which the response to 
any antigen can be downregulated by immunosuppres-
sive cytokines acting in a local tolerogenic microenvi-
ronment [384]. The latter was observed for both 
protein antigens [385] and methacrylate contact aller-
gens [357]. Stable polarization/ skewing may also 

explain why even low, nonsensitizing doses of nickel 
applied to the skin prevented subsequent tolerance 
induction by feeding the metal allergen [386]. 
Apparently, the progeny of naïve allergen-specific 
cells, once “on the stage,” has been triggered to a “sub-
clinical” degree toward effector cell differentiation 
and becomes refractory to regulatory cell action. This 
may also have contributed to incomplete tolerance 
induction in earlier clinical studies when feeding with 
poison ivy-/oak-derived allergens [387]. Indeed, to our 
knowledge, permanent reversal of existing ACD in 
healthy individuals has, as yet, never been achieved. 
Nevertheless, as described above, effector cells still 
seem susceptible, though transiently, to the downregu-
lation of allergen reactivity, as was observed in desen-
sitization procedures [386, 388].

3.3.8.6  Transient Desensitization in Primed 
Individuals

For dermatologists, methods by which patients might be 
desensitized for existing ACD would be a welcome 
addition to the currently prevailing symptomatic thera-
pies, and investigators have made a wide variety of 
attempts to achieve this goal. Unfortunately, as men-
tioned above, therapeutic protocols involving ingestion 
of poison ivy allergen, penicillin, or nickel sulfate were 
of only transient benefit to the patients [387–391]. 
Similarly, in animal models, only a limited and transient 
degree of hyposensitization was obtained by Chase 
[392] when feeding DNCB-contact-sensitized guinea 
pigs with the allergen, whereas for achieving persistent 
chromium-unresponsiveness in presensitized animals, 
Polak and Turk [393] needed a rigorous protocol involv-
ing up to lethal doses of the allergen. As outlined above, 
mechanisms underlying specific desensitization in ACD 
probably depend on direct interference of allergen with 
effector T-cell function by blocking or downregulating 
TCRs, leading to anergy and apoptosis [394]. As the 
onset of desensitization is immediate, no suppressor 
mechanisms may initially be involved. Apparently in 
the absence of LC, MHC class II-positive keratinocytes 
can serve as APC and are very effective in rendering 
allergen-specific effector cells anergic [395]. Moreover, 
at later stages active suppression may come into play 
resulting from secondary inactivation of DC function by 
anergized T cells [350]. Nevertheless, major problems 
with in vivo desensitization procedures relate to the 



3 Mechanisms of Irritant and Allergic Contact Dermatitis 75

refractoriness of effector T cells to regulatory cell func-
tions, and the rapid replacement of anergized effector 
cells by naïve T cells from relatively protected periph-
eral lymphoid tissues provides a source of new effector 
cells upon sensitizing allergen contacts. The same con-
clusions can be drawn from attempts to achieve local 
desensitization. It was found that local desensitization 
by repeatedly applying allergen at the same skin site did 
not result from local skin hardening or LC inactivation, 
as local reactivity to an unrelated allergen at the site was 
unimpaired [329]. Persistence of cellular infiltrates, in 
the absence of erythematous reactivity, at a desensitized 
skin site could reflect local anergy, but also locally 
active regulatory cells. Upon discontinuation of allergen 
exposure, however, local unresponsiveness was rapidly 
(within 1 week) lost. Collectively, this data illustrate the 
problems encountered in attempting to eradicate estab-
lished effector T-cell function, not only in ACD but also 
in autoimmune diseases [356, 360].

3.4  Summary and Conclusions

Extensive research has led to a better understanding of 
the mechanisms of ICD and ACD. The primary role of 
innate immune cells in coping with exogenous potential 
harmful threats is rapidly being uncovered. Also, the 
basic immunology of ACD is now well-defined, includ-
ing T-cell migratory patterns, recognition of distinct 
allergens, interactions with other inflammatory cells to 
generate inflammation, and cytokine profiles. But new 
complexities have emerged. For instance, in contrast to 
earlier belief, many of the currently known T-cell sub-
populations can act either or both as effector and regu-
latory cells, depending on the nature of the allergen, the 
route of entry, frequency of exposure, and many other 
still ill-defined factors. In particular, the poor under-
standing of regulatory mechanisms in ACD still ham-
pers further therapeutic progress. So far, no methods of 
permanent desensitization have been devised.

Nevertheless, next to the established anti-inflamma-
tory drugs, recently defined cellular interaction mole-
cules and mediators provide promising targets for new 
generations of anti-inflammatory drugs, some of which 
have already entered clinical trials. Clearly, drugs 
found to be effective in preventing severe T-cell-
mediated conditions, e.g., rejection of a vital organ 
graft, should be very safe before their use in ACD 

would seem appropriate. To date, prudence favors 
alternative measures to prevent ICD and ACD, be it 
through legal action to outlaw the use of certain mate-
rials or through avoiding personal contact with these 
materials. In the meantime, for difficult-to-avoid aller-
gens, further studies on the potential value of tolero-
genic treatments prior to possible sensitization seem 
warranted.
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