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Abstract. We consider a problem of hyper-minimisation of an automa-
ton [2,3]: given a DFA M we want to compute a smallest automaton N
such that the language L(M)ΔL(N) is finite, where Δ denotes the sym-
metric difference. We improve the previously known O(|Σ|n2) solution
by giving an expected O(|δ| log n) time algorithm for this problem, where
|δ| is the size of the (potentially partial) transition function. We also give
a slightly slower deterministic O(|δ| log2 n) version of the algorithm.

Then we introduce a similar problem of k-minimisation: for an au-
tomaton M and number k we want to find a smallest automaton N such
that L(M)ΔL(N) ⊆ Σ<k, i.e. the languages they recognize differ only
on words of length less than k. We characterise such minimal automata
and give algorithm with a similar complexity for this problem.

Keywords: finite automata, minimisation, hyper-minimisation, cover
automata.

1 Introduction

DFA is the simplest device recognising languages known in the formal language
theory. Studying its properties is motivated by simplicity of the notion, possible
applications of the result, connections with various areas in theoretical computer
science and the apparent beauty of the results of automata theory.

DFA is defined as a quintuple 〈Q, Σ, δ, q0, F 〉, where Q is the (finite) state-
set, Σ — (finite) alphabet, δ — the transition function, q0 — starting state, and
F ⊆ Q is the set of accepting states. By the usual convention, n denotes |Q|.

One of the classical problem in the field is minimisation of a given automaton
M : two automatons M , N are equivalent, denoted by M≡N , if L(M) = L(N).
An automaton M is minimal if for each equivalent N it holds that |Q(M)| ≥
|Q(N)|). Minimisation of an automaton is is a problem of giving a smallest
equivalent automaton. A breakthrough was made by Hopcroft [9], who gave
an algorithm running in time O(n log n). When the alphabet is not fixed, his
algorithm runs in time O(|Σ|n log n), as addressed directly by Gries [7].

A recent development in the area was done by considering a partial function
δ instead of full transition function: whenever δ(q0, w) is not defined, the word
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w is not accepted. Valmari and Lehtinen [12] gave an O(|δ| log n) algorithm in
this case. As |δ| = O(|Σ|n), this refines the previously existing results.

The question whether any algorithm faster than O(|δ| log n) for automata
minimisation is possible remains a challenging open problem. In particular, no
argument suggesting that minimisation cannot be done in linear time is known.
On the other hand, it is known [5] that there are automata for which all possible
executions of the Hopcroft algorithm run in Θ(n log n).

A recent notion of f -equivalence [2,3] considers a minimisation of an au-
tomaton while allowing the resulting language to differ from the original one
on a finite amount of words. Languages L and L′ are f -equivalent, denoted
by L∼L′, if |LΔL′| < ∞, where Δ denotes the symmetric difference of two
languages. Similarly, automata M , M ′ are f -equivalent, denoted by M∼M ′,
if L(M)∼L(M ′). Automaton M is hyper-minimal, if for every M ′∼M it holds
that |Q(M)| ≤ |Q(M ′)|. This springs a natural question: how difficult is it to
hyper-minimise an automaton N , i.e. to construct a hyper-minimal automaton
M∼N . It is known that such construction can be done in time O(n2) [2]. We
improve its runtime to (expected) O(|δ| log n), which can be determinized and
run in O(|δ| log2 n). As minimisation reduces to the hyper-minimisation, any
substantially faster algorithm would be a major breakthrough in the field.

We then introduce a similar notion of k-f -equivalence, denoted by ∼k: L∼kL′

if max{|w| : w ∈ LΔL′} < k. An automaton M is k-minimal if for all M ′ such
that L(M)∼kL(M ′) it holds that M has the least number of states. Similarly
we study the problem of k-minimisation of a given automaton M .

We introduce relations that allow to better understand the structure of the k-
minimal automata and characterise them. Using them we give an algorithm for k-
minimisation working in (expected) O(|Σ|n log n) time. Note that the algorithm
reads k as part of the input and the running time does not depend on k. As
before it can be determinised and have O(|Σ|n log2 n) running time. Since hyper-
minimisation of M is equivalent to n-minimisation, one cannot expect that any
algorithm faster than O(|δ| log n) can be found.

It should be noted that the O(n2) algorithm and our algorithms work in a
different way then the Hopcroft’s algorithm, which iteratively refined the par-
tition of states. Both Badr’s [2] and Badr et al. [3] algorithms calculated the
equivalence classes of ∼ and then greedily merged the appropriate states. Our
algorithm for hyper-minimisation, as well as the one for k-minimisation, works
in phases: roughly speaking, in the �-th phase it finds pairs of states q, q′ such
that max{|w| : w ∈ L(q)ΔL(q′)} = � and merges them.

The notion of k-f -equivalence is somehow complementary to the problem of
finding a minimal cover automata — for an automaton M such that k is the
length of longest word in L(M) we want to find a minimal automaton N such
that L(N)∩Σ≤k = L(M) [4]. It was introduced with practical purpose in mind:
if an automaton recognises a finite language then one can store the length of the
longest recognised word and a cover automaton. The input is accepted if it is
not too long and recognised by the cover automaton. A clever modification of
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Hopcroft algorithm can be applied in this setting, yielding a O(n log n) algorithm
for finding a minimal cover automaton [10].

In parallel, a similar work concerning hyper-minimisation was done by M.
Holzer and A. Maletti [8], who independently gave a randomised algorithm for
hyper-minimisation running in expected time O(|Σ|n log n).

2 Preliminaries

For an automaton M = 〈Q, Σ, δ, q0, F 〉 we define its language L = L(M) in
the usual sense. By M(w) we denote δ(q0, w). We say that a word w induces
a language L(w) := w−1L: the language recognised after reading the word w.
Let also LM (q) denote L(〈Q, Σ, δ, q, F 〉), where M = 〈Q, Σ, δ, q0, F 〉, i.e. the
language recognized by the automaton M with the starting state set to q.

A standard approach to minimisation is to consider a Myhill-Nerode relation
on words, defined for the language L = L(M) as

w≡Lw′ iff ∀u ∈ Σ∗ wu ∈ L ⇐⇒ wu′ ∈ L.

This relation has finitely many equivalence classes for regular languages and each
such class corresponds to one state in the minimal DFA recognising the language
L. To make this approach more efficient, it should be noted that if M(w) =
M(w′) then w≡Lw′, i.e. the relation is in fact defined for states: q≡Lq′ ⇐⇒
LM (q) = LM (q′). The minimisation algorithm starts with partition of states
into two classes F and Q \ F and iteratively refine the partition until it is left
with the set of equivalence classes of ≡L [9,12].

It is easy to see that the minimisation reduces to hyper-minimisation: consider
an automaton M . Create M ′ by adding one accepting state dummy , one fresh
letter $ to the alphabet and extend the transition function by δN (q, $) = dummy
and for every letter b ∈ Σ δN (dummy, b) = dummy. Then for each q ∈ Q(M) it
holds that LN (q) = LM (q) ∪ $(Σ ∪ {$})∗, hence it is infinite. Remove the state
dummy from an automaton hyper-minimal for M ′. The obtained automaton is
minimal for L(M).

The relation ∼ plays a similar role in the problem of hyper-minimisation as
≡ in the problem of minimisation. We refine ∼ so that it can be used to the
problem of k-minimisation as well.

We employ the classification of states developed in [3]: the preamble, de-
noted by P (M), or simply P , is a set of states q reachable from q0 by finitely
many words, i.e. L(〈Q, Σ, q0, δ, {q}〉) is finite. On the other hand, kernel K(M),
or simply K, is defined as Q \ P , i.e. set of states q such that language
L(〈Q, Σ, q0, δ, {q}〉) is infinite.

The automaton M ′ is obtained by merging state q to state p in automaton
M = 〈Q, Σ, δ, q0, F 〉 if M ′ is obtained by changing all transitions ending in q to
transitions ending in p and deleting state q. If q was a starting state then p is
the new starting state. Formally M ′ = 〈Q \ {q}, Σ, δ′, q′0, F \ {q}〉 where

δ′(r, a) =

{
δ(r, a) if δ′(r, a) �= q

p if δ′(r, a) = q
, q′0 =

{
q0 if q0 �= q

p if q0 = q .
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For two languages L, L′ define their distance as

d(L, L′) =

{
max{|u| : u ∈ L(w)ΔL(w′)} + 1 if L �= L′ ,

0 if L = L′ .

This definition can be easily extended to states by setting d(q, q′) =
d(L(q), L(q′)). If we fix a language L then the distance between words is de-
fined as dL(w, w′) = d(L(w), L(w′)). Usually the language L is clear from the
context and so we drop the index L.

Fact 1 (d is a pre-ultrametric). For all languages L, L′, L′′ it holds that
d(L, L′′) ≤ max(d(L, L′), d(L′, L′′)).

The distance between the words allows relation between words similar to the
f -equivalence: w∼u iff d(w, u) < ∞ and w �∼u otherwise. This relation is right
invariant : u∼w implies ux∼wx for all words x.

Fact 2. ∼ is a right invariant equivalence relation.

We extend the f -equivalence to states and automata: q∼q′ iff for every w, w′

such that M(w) = q and M(w′) = q′ it holds that w∼w′; M∼M ′ iff q0∼q′0. Not
that the definition for automata coincides with the one given in the Introduction:
M∼M ′ iff L(M)ΔL(M ′) is finite.

We characterise the distance between two states in an operational manner.
To this end for each � ≥ 0 we introduce relation DM

� on Q(M) defined by:

– DM
0 (q, q′) iff q = q′,

– DM
� (q, q′) iff for all a ∈ Σ either DM

�−1

(
δM (q, a), δM (q′, a)

)
or both δM (q, a)

and δM (q′, a) are not defined.

Denote also DM (q, q′) ⇐⇒ ∃�D
M
� (q, q′). By an easy induction it follows that

both DM
� and DM are equivalence relations. We drop the upper index M when-

ever the automaton is clear from the context.

Fact 3. If M is minimal and the transition function is always defined then
D�(q, q′) iff d(q, q′) ≤ �.

To compute the relation D, one does not need to consider � > n:

Lemma 1. Consider an automaton M . Then DM = DM
n .

3 Hyper-minimisation

Badr et. al claimed [3, Thm. 3.2] that any (greedy) algorithm that at each step
merges p to q such that p≡q ∨ (p∼q ∧ p ∈ P (M)) correctly hyper-minimises the
automaton. Unfortunately this is not the case, still the argument can be easily
corrected — some additional care is needed, when merging two states from
the preamble. We say that a linear order < on Q is valid, if for every pair of states
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p, q ∈ P and letter a ∈ Σ it holds that δ(q, a) = p implies q < p and for q ∈ P ,
p ∈ K it holds that q < p.

Theorem 1. Any (greedy) algorithm that at each step merges p to q such that
p≡q ∨ (p∼q ∧ p ∈ P (M) ∧ p < q) correctly hyper-minimises the automaton.

Such an order can be easily constructed — it is enough to sort topologically the
acyclic graph corresponding to the states of the preamble and arbitrarily define
it on the kernel.

Our algorithm utilises this approach, similarly to the previously known ones.
Its novelty lays in the way pairs of states to be merged are found and the data
structures that are employed.

On high level in the �-th phase we calculate for the remaining states the
relation D� on the remaining states, i.e. the distance between them. After that
we merge some states and continue to the following phase. This approach result
in no more than |Q| phases, by Lemma 1.

3.1 Signatures

Since we deal with partial δ function, it is important to treat differently the
states q of the automaton with different sets of defined transitions: for a state
q the set {a : δ(q, a) is defined} is the signature of q, denoted by sig(q). This
allows bounding the running time by |δ| rather than n|Σ|.

We would like to think that sig(q) �= sig(q′) implies that q �∼q′ and hence we
can minimise states with different signatures separately. This can be achieved,
whenever there are no states inducing finite languages.

Fact 4. Suppose that automaton M has no states q such that L(q) is finite.
Then sig(q) �= sig(q′) implies q �∼q′.

The states inducing finite languages are naturally divided into those in the
preamble and those in the kernel. The former can be easily removed.

Fact 5. Let M be an automaton and M ′ be obtained from M by removing the
set of states P (M) ∩ {q : |L(q)| < ∞}. Then for q ∈ Q(M ′) it holds that
LM (q)∼LM ′(q). In particular L(M)∼L(M ′).

Unfortunately, such a straightforward approach cannot be applied to states from
the kernel inducing finite languages. On one hand such states cannot be removed,
as this causes the language of the automaton to change on infinitely many words.
On the other hand, their existence prevents us from using Fact 4. An intermediate
approach turns out to work, we can remove the problematic states temporarily,
calculate the D classes and then bring back those states.

Lemma 2. Suppose that automaton M is minimal and has no states q ∈ P (M)
such that L(q) is finite. Let M ′ be obtained from M by removing the states
Q′ = {q : q ∈ K(M) ∧ |L(q)| < ∞}. Then for q, q′ ∈ Q \ Q′ it holds that
DM ′

(q, q′) ⇐⇒ LM (q)∼LM (q′).
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3.2 Automata Reduction

Fig. 1. Example of introducing gadgets on
a single state

Our algorithm has a high time-
dependency on |Σ|. Thus we reduce
the input so that we can treat |Σ| as
a small constant. To this end we trans-
form the input automaton M into
other one, denoted by Gadgets(M),
using only four-letter alphabet Σ′ =
{0, 1, 2, 3}. On the other hand, we in-
crease the number of states from n to
O(|δ|). On a high level, one can imag-
ine that we encode possible letters of
Σ as 0–1 sequences. The letters 2, 3
are used to indicate which states sim-
ulate the states from the original automaton and which states are technical
gadgets and distinguish states of different signatures. For simplicity of the pre-
sentation, we add a special non-accepting state trash such that each transition
not defined explicitly goes to trash. Assume that the automaton M is minimised

a

b c

a

a

b

0
1

0

0

0

1

0

1

0

2

2

2 2
p

3

3

3

3

33

3

transitions to proper and auxiliary states
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Fig. 2. Automaton M and its M ′. There are two signatures.

and does not have states inducing finite language. To shorten the notation, let M ′

denote Gadgets(M). Please consult Fig. 1 and Fig. 2 for an illustration. Parti-
tion the set of states into subsets with the same signature. For each signature sig
with � symbols {a0, . . . , a�−1} introduce �−1 new auxiliary states per each state
q of this signature, named s1,q, s2,q, . . . s�−1,q. By convention, let s0,q = q, we
call it a proper state. Then define transition function as δM ′(si,q, 0) = δM (q, i)
for i = 0, . . . � − 1; δM ′(si,q, 1) = si+1,q for i = 0, . . . � − 2. The newly created
states s1,q, s2,q, . . . s�−1,q are assigned the signature sig(q).
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Moreover, we distinguish proper states from auxiliary states by creating a
gadget state p with δM ′(p, 2) = p and adding the transition δM ′(q, 2) = p for
each state q. Then we distinguish states corresponding to different signatures by
another gadget: let {sig1, sig2, . . . , sigk} be the set of all signatures. Introduce
signature states {sig1, sig2, . . . , sigk} and add transitions δM ′(sigi, 3) = sigi+1 for
i = 1, . . . , k − 1, δM ′(sigk, 1) = sigk and δM ′(sj,q, 3) = sig(q).

The size of the automaton M ′ is Θ(|δM |) and M ′ can be constructed using
in similar time bounds. The only nontrivial part is that we need to group states
with the same signatures using counting sort. To upper bound the running time
by O(|δ| log n) instead of O(|δ| log |δ|) we show that the DM ′

classes are of size
O(n).

Lemma 3. Let M ′ = Gadgets(M). Then none of the signature states nor the
trash nor the state gadget is DM ′

-equivalent to any other state. If DM ′
(si,q, si′,q′)

then sig(q) = sig(q′) and i = i′.

The automaton M ′ retains the basic properties of M , meaning that two states
in M are f -equivalent iff they are equivalent in M ′.

Lemma 4. Let q, q′ ∈ Q(M) and M ′ = Gadgets(M). Then DM (q, q′) iff
DM ′

(q, q′).

3.3 Algorithm and Its Running Time

We now present Algorithm Comp-f-equiv(M) calculating the hyper-minimal
automaton f -equivalent to M .

direction of merging

boundary of a group

group’s representative
state

Fig. 3. Example of states in a group

Preprocessing. First of all we cal-
culate K(M) and P (M). This takes
just a linear time: we find the strongly
connected components of the underly-
ing graph and mark vertices that can
be reached from those of them that
are nontrivial (i.e. contain either more
than two vertices or a loop).

Then we remove the states from the
preamble inducing finite languages
and minimise the automaton. Let us
denote this automaton by M1. We
temporarily remove the states from
the kernel of M1 that induce finite lan-

guages and denote the result by M2. Then we built M ′ = Gadgets(M2).
The algorithm also requires some simple data structures: for each state q a

list of its predecessors l[q]

l[q] = {q′′ : ∃x ∈ {0, 1, 2, 3} such that δM ′ (q′′, x) = q}
is created. Moreover, we store rank of q — the number of its predecessors.
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The Theorem 1 requires a pre-computed linear valid order on Q. To fix such
an order, sort topologically the states of the preamble and order the states of the
kernel arbitrarily, such that they are all greater than the states of the preamble.

For technical reasons, we do not store the states in the dictionary, but rather
their dictionary representatives, Dic. So a table of representatives is also created.
In the beginning, for each state q, Dic[q] = q.

Dictionaries. For the states of M ′ we built a dictionary mapping a tuple
〈q0, q1, q2, q3〉 into a state q such that δ(q, i) = qi for all i. Each state occurs
at most once in the structure. To implement this dictionary, we use dynamic
hashing with a worst-case constant time lookup and amortized expected constant
time for updates (see [6] or a simpler variant with the same performance bounds
[11]). We convert each tuple into an integer from {1 . .N}, where N = |δ|4 fits
in a constant number of machine words, so we can hash it in a constant time.
Whenever we insert a tuple already existing in the structure, we have a new pair
of states to merge.

The analogous dictionary with O(log n) time per operation is very simple for
the deterministic case: note that by Lemma 3 if q, q′ are merged then they are
both either auxiliary states or proper states, they have the same signature and
correspond to the same letter. So it is enough to built a separate dictionary
for each set of states Qsigj ,i = {si,q : sig(q) = sigj}. As there are only O(n)
elements in such set by Lemma 3, it can be implemented as a balanced binary
tree. In order to have a constant time access to the dictionary itself, we create a
table of all signatures. For a single signature sigj it keeps a pointer to the table
indexed by 1 . . . , �j, where �j is the size of the alphabet associated with sigj . For
an index i there is a pointer to the dictionary for the set Qsigj ,i. This O(log n)
bound per operation can be greatly improved if we are allowed to fully use the
power of RAM model: plugging in the exponential search trees of [1] gives us a
total running time of O(|δ| log n log2 log n

log log log n ).

Merging states. Suppose two states q > q′ are to be merged. Let q1 be the
one of them with higher rank and q′1 the one with lower rank. We remove Dic[q′1]
from the dictionary and keep only Dic[q1] and set Dic[q] to Dic[q1]. The rank of
q is set to be the sum of ranks q and q′.

Then we update the dictionary by reinserting all states q′′ such that
δM ′(q′′, x) = q′1 for some x ∈ {0, 1, 2, 3}. To do this efficiently, we scan l[q′1].
After the update l[q′] is appended to l[q]. We also store the information that q′

was merged to q: a group consists of the states that were merged to a single state.
A representative of the group is the unique state that survived the merging.

When all the merging is done, for each q we calculate the representative of
q’es group: we inspect a sequence q = q0, q1 . . . , qm such that qi was merged to
qi+1 and qm was not merged to anything. Then q0, q1 . . . , qm−1 were all merged
to qm. All the states that were merged to a single qm form a DM ′

-class. This
information can be used to merge the states from the P (M1) to their f -equivalent
states, i.e. those that are in the same DM ′

-class.



364 P. Gawrychowski and A. Jeż

Theorem 2. Comp-f-equiv(M) properly hyper-minimises the automaton M
and runs in expected time O(|δ| log n) (O(|δ| log2 n) worst-case).

4 k-Minimisation

We now consider the problem of k-minimising the automaton. Note that M and
N are k-f-equivalent iff d(L(M), L(N)) ≤ k. The general scheme is the same as
previously, this time we are in more difficult situation: there is no notion similar
to ∼ which works in the case of k-minimisation. Moreover, there is no theo-
retic characterisation of the k-minimal automaton. We begin with introducing a
proper notion and describing the k-minimal automaton from a theoretical point
of view. In particular we show that the k-minimal automaton can be obtained
by merging some states into the others and the merging can be done in a (some-
how) greedy fashion. Then we implement this approach. Unfortunately we were
unable to efficiently deal with signatures in this case and the algorithm runs in
O(|Σ|n log n) time. We assume that the transition function is total.

4.1 Relation on States

We start with defining a relation playing the same role as ∼:

Definition 1. We say that w∼ku if d(w, u) = 0 or d(w, u) + min(|w|, |u|) ≤ k
and w �∼ku otherwise.

The intuition of this relation is similar to the one for ∼: consider any regular
language L, an automaton M recognising it, and two words w, w′. Let M(w) = q,
M(w′) = q′. Suppose q is merged to q′. If L(q) �= L(q′) then wL(w) ⊆ L(M) is
changed to wL(w′), so it should hold that |w|+d(L(w), L(w′)) ≤ k. On the other
hand if we were to merge q′ to q then w′L(w′) ⊆ L(M) is changed to w′L(w),
hence it should hold that |w′| + d(L(w), L(w′)) ≤ k. Choosing the smaller of
those terms we obtain min(|w|, |w′|)+d(L(w), L(w′)) ≤ k, as in the definition of
∼k. On the other hand, if w �∼kw′ then it seems that we cannot merge the states
q and q′. The second part of this intuition is formalised in Lemma 6. The first
one needs some further refinements before it is put to work.

Note that ∼k is not an equivalence relation for any k. Still, it has some use-
ful properties, which are quite close to being an equivalence relation and are
essentially used in proofs of combinatorial properties and in the analysis of the
algorithm for calculating the k-hyper-minimal automaton.

Lemma 5. For all k the relation ∼k has the following properties

1. it is right invariant
2. if w1∼kw2, w2∼kw3 and |w2| ≥ max(|w1|, |w3|) then w1∼kw3

3. if w1∼kw2, w2∼kw3 and |w1| ≤ min(|w2|, |w3|) then w1∼kw3

As promised, sets of words {wi}j
i=1 such that for w �= w′ ∈ {wi}j

i=1 we have
w �∼kw′ can be used to lower-bound the size of the k-minimised automaton:
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Lemma 6. Consider L′ ⊆ L such that for each w �= w′ ∈ L′ it holds that
w �∼kw′. Then for each automaton M such that L∼kL(M) it holds that M(w) �=
M(w′), in particular M has at least |L′| states.

The definition of ∼k can be easily extended to states: q∼kq′ if for all (w, w′)
such that M(w) = q, M(w′) = q′ it holds that w∼kw′. One can easily see that
this is equivalent to q∼kq′ when

d(q, q′) = 0 or d(q, q′) + min(max(|w| : M(w) = q), max(|w| : M(w) = q′)) ≤ k

Instead of considering for a state q all the words w such that M(w) = q it is
enough to consider the longest one:

Definition 2. For every state of q ∈ Q let its representative word (called
word[q]) be a longest word w such that M(w) = q if q ∈ P or any word with
length at least k, if q ∈ K.

This definition is designed in a way so that the ∼k equivalence between states
could be expressed in terms of representatives of states:

Fact 6. word[q]∼k word[q′] iff q∼kq′.

4.2 k-Minimal Automaton

We want to define a k-minimal automaton k-f-equivalent to M using relation ∼k

on states of M . Since ∼k is not an equivalence relation, we need some additional
refinement. To this end we construct an equivalence relation ≈k which refines
∼k defined on the set of states of M . Its equivalence classes correspond to states
in the k-minimal automaton M ′∼kM . The relation has the following properties:

1. q≈kq′ implies q∼kq′

2. for each class of abstraction {qi}i∈I of ≈k we designate its representative
word w — the longest of {word[qi]}i∈I . We denote by Rep[q] the repre-
sentative of q in its class of abstraction and we extend the notion of the
representative word to words: Rep[w] = Rep[M(w)].

3. Rep[q] �= Rep[q′] implies Rep[q]�∼k Rep[q′]

The relation is defined algorithmically. Let us first define Rep[wi] = wi for all
wi such that wi = word[qi] for some state qi. Then consider {w1, . . . , wn} =
{word[q]}q∈Q in any order. If for considered wi there exists wj such that
Rep[wj ] = wj , wi∼kwj and |wi| ≤ |wj | then for all w such that Rep[w] = wi

set Rep[w] = wj (choose any such j if there are many possible ones). In the
end we extend the notion for states: Rep[q] = Rep[word[q]] and set q≈kq′ if
Rep[q] = Rep[q′].

Fact 7. The relation defined above satisfies conditions (1)–(3).

Consider again minimised automaton M , using relation ≈k on its states we define
an automaton N = Equivalence-To-Automaton(M,≈k) and later show how
to create it efficiently. Construct an automaton N by taking
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QN = {〈w〉 : Rep[w] = w} δ(〈w〉, x) = 〈Rep[wx]〉 FN = {〈w〉 : M(w) ∈ F}

and set a starting state 〈Rep[ε]〉. By property 3 of ≈k one can easily derive that
N is k-minimal.

The natural attempt to show that L(N)∼kL(M) is to prove that N(w) =
〈Rep[w]〉. Unfortunately this is not the case. We proceed in a slightly more
complicated fashion. First we argue that the defined automaton behaves well on
short words and then show that d(LM (w), LN (〈w〉)) can be upper-bounded in
terms of |w|. Those facts allow proving that L(N)∼kL(M).

Theorem 3. Automaton N is k-minimal and N∼kM .

4.3 Algorithm

We show how to efficiently calculate N = Equiv-To-Auto. An algorithm similar
to Comp-f-equiv is used. As we do not use different signatures for different states,
we do not employ gadgets for signatures and additional symbol 3 in the alphabet.
On the other hand we have to be a little more subtle now, as we are interested in cal-
culating the classes of relation DM

� and not only DM ′
. Roughly speaking in the �-th

phase we calculate the equivalence classes of DM
� . To this end we merge states not

in some arbitrary fashion but in order representing the inductive definition of D�.

group representative

points at star representative

star boundary

group boundary

Fig. 4. Example of states in a group and in a star

The algorithm works
similar to Comp-equiv-k.
We list only the impor-
tant differences. We first
minimise the automaton,
obtaining M1 and then
introduce gadgets as in
Section 3.2, except for
the signature gadgets,
which are not needed:
M ′ = Gadgets(M1). The
algorithm works in phases.
In one phase it first merges
all the proper states that
could be merged at the be-
ginning of this phase. Then

it starts merging the auxiliary states and gadget states. When there are no more
auxiliary states to merge, the counter is increased and the next phase begins.
Also more information is stored. A group of states that were merged together
is subdivided into stars. Each star has its representative (star-representative).
In particular group-representative is one of the star-representatives of stars
forming this group.

If two groups, represented by q and q′, are merged, we check whether q∼kq′.
If so then two stars represented by q and q′ are merged and assigned the longer
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of the two representative words. Note that this representative also becomes the
new group representative.

When merging of groups is finished, N = Equiv-To-Auto(M1, star) is built,
treating the states in one star as states in one equivalence class of ≈k.

The running time analysis of Comp-equiv-k is the same as the one of Comp-

f-equiv. All additional operations are done in constant time per operation.
The following lemma formalises the intuition that auxiliary states do not

influence the process of merging state and thus phases correspond to calculating
the distance between the states of the automaton.

Lemma 7. Two states q, q′ ∈ Q(M1) are merged in �-th phase of Comp-equiv-

k iff d(q, q′) ≤ �.

To prove the correctness of the algorithm we show that the following invariants
concerning groups and stars are kept: the first two invariants describe properties
of stars, the following four the properties of groups.

1. Let q1, . . . , qi be all the states in a star. Then |word[q1]| ≥ |word[qj ]| for
j = 2, . . . , i,

2. qj∼kqj′ for all j, j′ = 1, . . . , i.
3. group is a union of stars
4. Let p1, . . . , pi′ be the star-representatives of star forming a group represented

by p1. Then |word[p1]| ≥ |word[pj ]| for j = 2, . . . , i′,
5. pj �∼kpj′ for all j �=, j′ ∈ {1, . . . , i′},
6. the group consisting of proper states is an equivalence class of DM1

�

Theorem 4. Comp-equiv-k correctly k-minimises M .

Open Problem

Is there a fully deterministic algorithm which hyper-minimize (or maybe even
k-minimise) an automaton in time O(|Σ|n log n)?
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